==n,
drec_:m _egh

* An all-inclusive book to

Reliable

* Quick and Easy learning in

teach you everything about Simple Steps
Visual Basic 2008 * Most preferred choice
* Easy, Effective, and worldwide for learning

Visual Basic 2008

Visual Basic 2008

JSmarLE
STEPS

1 H

21 EventDrive
{3 EventHand
¥ FaultHand

dleExt:

|1810/dx3 Janes g

& Pointer

4 CallExternalMethod
| Code

. Compensate

E CompensatableSequence |1

2@

File Edit View Project Build Debug Data Tools T

e R e~ -
|;._IE_J T v“ it ‘

! T ‘

Workflowl.vb [

—

!

* SIME

5TE

=)

J

,_.
i

©Copyright by Dreamitech Press, 19-A, Ansari Road, Daryaganj, New Delhi-110002

This book may not be duplicated in any way without the express written consent of the publisher, except in the
form of brief excerpts or quotations for the purposes of review. The mfmnmon contained I\erem li for the
personal use of the reader and may not be in any other books, or
any kind of software without written mmruﬂm publisher. Making copies ol' this book or any portion for any
purposc other than your own is a violation of copyright laws.

Limits of Linbility/disclsimer of Warranty: The author and publisher have used their best efforts in preparing this
book. The suthor make no representation or wamanties willlrespectl.olhewcum)' or completeness of the
contents of this book, and specifically disclaim any implied warranties ef mcmhmuhllny or fitness of any
perticular se. There are no warmnties which extend beyond the d d in this p
No mmlymybeuuﬂedorﬁmuledbynlnmprmhvnmmm sales materials. Tllencclmlcyand
7 of the i provided herein and the opinions stated herein are not guaranteed or wamanted
to produce any particulars results, and the advice and strategies contained herein may not be suitable for every
individual. Neither Dreamtech Press nor author shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Trademarks: All brand names and product names used in this book are trademark d trademarks, or
trade names of their respective holders. Damm:h?nsaxsnmmmdmmmpmduc:urwndnrmnnmmd
in this beok.

ISBN: 978-81-7722-918-9

Edition: 2009

Printed at: Printman India, Patparganj, Delhi.

CONTENTS

Chapter 1w Infroducing .NET Framewark 1
Introduction 2
Versions of NET F k 2
Benefits of NET £ ! 3
Architerture of NET F wk 3.5 k1

Commaon Language Runtime. 4

NET Fi k Class Library 5

Common Type System 5

Common Language Specification 5

Jows Forms 5
ASP.NET and ASP.NET AJAX [
ADO NET &

i ion Foundation &

Winc C jcation F fati [}

Winekows Workilow Foundati &

Windows CardSpace &

LING 7
Installing Visual Studio 2008 7
Opening Visual Studio 2008 1
Exploring Visual Studio 2008 1DE 13

Menu Bar. 13

Toolbar 13

Desig, + Window 14

Code Fditor 14

Server Explorer 15

Solution Explorer 15

Toalbox 16

Properties Window 16

Ohbject Browser 17

Class View Window 18
] ¥ 18

Chapter 2w Getting Started with Visual Basic 2008

Introduction 20
Creating a Visual Basic 2008 Console Application 20
Mew Features of Visual Basic 2008 21
Query Expressi 22
Local Type Inference 22
Ohbject Initiali 22
E Mot hcls 23
Lambda Exp 23
Anony Types 23
Nullable Types 23
Partial Method 24
Support for XML 24

Visual Basic 2008 in Simple Steps

-

Visual Basic 2008 Keywords 24
Visual Basic 2008 Operators 26
Arithmetic Operators 26
Assigy Op .26
Concatenation ators 27
Comparison O 27
Lagical Operators 28
Operator Precedence. 30
Data Types i
ata Type Lonversion 3X
Variables 32
i 34
Selection Stater 34
If Else § 15
Splect Case S ih
lteration Statements iz
While Statement 7
Do While it 38
Eor 39
Eor Each 40
Arrays 41
g v 41
Working with Classes and Objects 44
Arcess Modifiers 45
tethods in Visual Basic 45
Constructors and Destructor AG
Partial Classes 47
Shared Method: 48
£ o Methad 49
Encapsulation 52
Inheritance. 54
Defining a Derived Class 55
Accessing Members of the Base Class 56
Working with Abstract Classes 57
Working with Sealed Classes 58
Implementing Polymorphism 59
Implementing Compile Time Polymormphism 59
Runtime Polymorphism 62
Structunes %]
Using a Structure (]
‘Warking with Properties 65
Using a Property b5

vi

.y N Using an Anonymeous Type for Read-Only Properties 66

o (AL |nterfares f7

o Defining an Interface 67

- Implementing an Interface 67

i - ' Inheriting an Interface 68

o Namespace 69

2 - Creating paces 70

Referencing N paces 70

ﬁ h Summary 72
Slui

i Introduction 74

Creating a Visual Basic 2008 Windows Forms Application 74

Performing Some Basic Operations on Windows Forms. 75

Setting the Title of a Form 75

Adding Controls to a Form 76

k fling the Click Event of a Button 79

Docking and Anchoring Controls, 79

Setting the Tab Order of Controls. a1

Enabling and Disabling Controls B4

Working with Multiple Forms 86

Setting the Startup Form 88

Creating Message Boxes 91

Creating Input Boxes 94

Creating Dialog Boxes 96

Summary erer 99

Chapter 5 '». Working with Windows Controls

102

The Lahel Cantral 102
Formatting the Text in Labels 102
Handling the Click Event of Label 104
The TextBox Control 104
The Button Contral 107
F ing the Text in BUtonscoeuismmmisaim s 107
Setting the Background and Fereground Colors of Buttons 108
The RadioB: Control 111
The CherkBox Control 114
The CombaBox Control 116
The ListBox Cantrol 120
The GroupBox Control 122
The Panel Control 124
The PictureBox Contral 126
The ProgressBar and Timer Controls y 128
Summary 130

vil

Visual Basic 2008 in Simple Steps

Tl Introditcing Windows Presentation Foundation
" Intecsduction 132
The Architecture of WPF 1.5 132
The P i rk Comy 133
< The PresentationCore Component 133
¥ The WindowsBase Component 133
The MIL or Milcore Comg 133
Types of WPF Application 133
Standalone WPF Application: 133
XAML Browser Applications 135
The WPF 3.5 Designer 137
The Design View 137
The XAML View 140
The Split View Bar 4
The Tag Navigat 142
XAML and WPE 143
XA EL ts and ik 143
Namespaces and XAML 145
Markup Extensi 145
Comman Controls in WPE 3.5 146
Using the Gnd Control 147
Using the Button Conlrol . 148
Using the TextBox Control 149
Using the PasswordBox Control 151
Using the TextBlock Control 153
Using the Border Control 154
Using the GridSplitter Control 155
Using the Canvas Control 157
Using the StackPanel Control 158
Resources and Styles 159
Using a Static Resource 160
Using a Dynamic Resource. 161
Setting Style Through a Resource 163
Summary 164
Chapter 7 & Windows Workflow Foundation 165
Introduction 166
Workilow Principles 166
Workflows Coordinate Work Performed by People and Soity 166
el are Long ing and Stateful 166
‘Waorkflows are based on E ible Models 166
Workflows are Transg and Dynamic throughout their Lifeeyele s 166
Components of Windows Workilow Foundati 167
Workflow 167
Base Activity Library 168
Custom Activities 169
Hast Progess 170

vili

R Engine 170
Buntime Services 170
Developing a Simple Workflow Application 170
Implementing Conditions in Workflows ... 172
Using Warkflows with Other Applications 175
5 179

v

Chapter 8 « Working with Data and ADO.NET

Introduction 182
Introducing ADO.NET 182
Mew Features in ADO NFT 182
Components of ADONET 183
Basic Operations in ADO.NET 185
Types of Data Binding in Windows Forms 108

Simple Data Binding

Complex Data Binding

Data Binding in Windows F ion Fe ion

Diata Flow Direction 203
Declaration of Data Binding in WPFE 204
Binding Sources in WPF 209

cion, 18

LING Queries 218
Executing a Simple LING Queny 218
The Standard Query Operator 220
The Sorting Of 220
The Set Oy 222
Filtering Operator 223
The Quantilier Oy 224
The Projection Operators 225
The Partitioning Oy 226
The Join Op 228
The Grouping Operators. 230
The G ion Of 131
The Element Opera 231
The Conversion Operators 232
The Aggregate Operators 232
LING to ADO.NET 232
LINQ to SO 232
LINQ to DataSet 236
Anony Types 237
Lambda Expressions 237
5 238

Y

Visual Basic 2008 in Simple Steps

“Chapter 10 » Deploying Visual Basic 2008 Applications

|ntrocduction

240
3 Deploying Applications by Using Windows Installer 240
Deploying Applications by Using ClickOnce 252
Summary 256

P8 Bl ‘Chapter 11 = Web Service and WCF Service
o i Introduction 258
m g Using a Web Service 258
m Using a WCF Service 265
= S 270

o ¥

Urheberrechtlich geschitztes Bild

Urheberrechtlich geschiltztes Material

Visual Basic 2008 in Simple Steps

Introduction

The .NET Framework is one of the most widely used software development environment in today's
programming world, Before its introduction, programmers had to face a lot of difficulties to integrate the
code written using different programming languages. This was due to the reason that each language used a
different execution environment to execute the code written using that language. For example, code written
using Visual Basic 6.0 requires a different execution environment for execution than that is required by code
written using Visual C4++. With the NET Framework, Microsoft has provided programmers a single platform
for developing applications using different programming languages, such as Visual Basic, Visual C#, and
Visual C++.

The NET Framework 3.5 is shipped with the Microsoft Visual Studio 2008. Microsoft Visual Studio is a set of
development tools designed to help software developers to develop complex applications more quickly and
easily. It provides the necessary envi in which devel can create and execute various types of
applications, including Console applications, Windows Forms applications, WPF applications, Web
applications, and Web services. It has improved the process of development and made it easier.

In this chapter, we learn about versions of .NET Framework, benefits of .NET Framework, and architecture of
NET Framework. We also learn how we can install Visual Studio 2008 and how we can open it, Finally, we
take a look at Visual Studio 2008 IDE.

Let’s first start by taking an overview of the different versions of .NET Framework.

Versions of .NET Framework

The .NET Framework has seen many upgrades since the release of its first version in 2002, All the versions of

the .NET Framework that have been released till now are described as follows:

O .NET Framework 1.0: The .NET Framework 1.0 is the first version of the .NET Framework and was
released by Microsoft on February 13, 2002. It is available for download in the form of a redistributable
package as well as a Software Development Kit (SDK). It is also a part of Visual Studio .NET 2002,
which is the first version of Visual Studio .NET.

O .NET Framework 1.1: The first major upgrade of the .NET Framework, the .NET Framework 1.1, was
released on April 3, 2003. It is available for download in the form of a redistributable package as well
as a Software Development Kit (SDK). It is also a part of Wisual Studio .NET 2003, which is the second
version of Visual Studio .NET. In contrast to the NET Framework 1.0, the .NET Framework 1.1 has in-
built support for mobile ASP.NET controls and Open Database Connectivity (ODBC) and Oracle
databases. It also has support for Internet Protocol version 6 (IPv6).

o NET Framework 2.0: The second major upgrade of the .NET Fi k, the .NET Framework 2.0, was
released on January 22, 2006. It is available for download in the form of a redistributable package as
well as a Software Development Kit (SDK). It is also a part of Visual Studio 2005 and Microsoft SQL
Server 2005. The .NET Framework 2,0 is the last version of the .NET Framework that has support of
Windows 2000, The .NET Framework 2.0 has many changes and enhancements as compared to the
MET Framework 1.1, It has a number of Application Programming Interface (APl) changes. It contains
many new ASP.NET Web controls and data controls. It also contains new personalization features for
ASP.NET, for example support for themes, skins, and WebParts.

Q .NET Framework 3.0: The third major upgrade of the .NET F ork, the .NET Fra rk 3.0, was
released on November 21, 2006. It contains a set of managed code APIs, which are an integral part of
Windows Vista and Windows Server 2008. Managed code is the code that runs under Common
Language Runtime (CLR). We discuss CLR in detail later in this chapter. The .NET Framework 3.0 uses
the same version of CLR that was incorporated with .MET Framework 2.0. The NET Framework 3.0
includes the following four new components:

- \'l‘l' o :\ s ‘r. sl MPF}
* Windows Communication Foundation (WCF)

Chapter 1: Introducing NET Framework 3.5

* Windows Workflow Foundation (WF)
* Windows CardSpace (WCS)

O .NET Framework 3.5: The fourth major upgrade of the .NET Framework, the .NET Framework 3.5, was
released on November 19, 2007. Similar ta the .NET Framework 3.0, the \NET Framework 3.5 also uses
the same version of CLR. The .NET Framework 3.5 also installs the NET Framework 2.0 5P1 and the
NIFr Framework 3.0 SP1, which includes methods and properties that are required for the .NET
F ork 3.5 fi such as Language Integrated Query (LINQ). In addition to LINQ, the .NET
Framework 3.5 includes many other new features, such as extension methods, lambda expressions,
anonymous types, and built-in support for ASP.NET AJAX.

After having a quick overview of the versions of the .NET Framework, let's move on to discuss the benefits of

the .NET Framework.

Benefits of .NET Framework

The .NET Framework offers many benefits to the programmers in developing applications. Some of these
benefits are as follows:

0 Consistent programming model: The .NET Framework provides a consistent object-oriented
programming model across different languages. You can use this model to create programs for
periorming different tasks, such as connecting to and retrieving data from databases, and reading from
and writing to files.

o 1 interoperability: | 2 perability is a feature that enables code written in different
Ianguages to interact with each other. Thls allows reusability of code and improves the efficiency of the
development process. For example, you can inherit a class created in C# in Visual Basic and vice-
versa, The CLR has built-in support for language interoperability. However, there is no assurance that
the code written using one programming language will work properly in programs developed using
another programming language. Therefore, to ensure multi-language code interoperability, a set of
language features and rules, called Common Language Specification (CLS), is defined. The components
that follow these rules and expose only CLS features are said to be CLS-compliant,

O Automatic management of resources: When you create a .NET application, you do not need to
manually free application resources, such as files, memory, network and database connections. The
CLR automatically tracks the resource usage and saves you from the task of manual resource
management,

Qa Ease of deplay The .NET Fr k makes the task of deployment easier. In most cases, to install
an application, you need to copy the application along with its components, on the target computer.
The .NET Framework provides easy deployment of applications by installing new applications or
components that do not have an adverse effect on the existing applications. In .NET, applications are
deployed in the form of assemblies; therefore, registry entries are not required to store information about
components and applications. In addition, problems that used to arise due to different versions of an
assembly are alsa overcome or elimi lin .NET F ork since blies also store information
about different versians of the components used by an application.

Architecture of .NET Framework 3.5

The .NET Framework 2.0 and the .NET Framework 3.0, along with their service packs, form the foundation
of the NET Framework 3.5. In other words, the architecture of the .NET Framework 3.5, besides its new
features and enhancements, includes components of the \NET Framework 2.0 and the .NET Framewaork 3.0.
Architecture of the NET Framework 3.5 is shown in Fig. VB-1.1:

Visual Basic 2008 in

TR
LMo ASPNET 35 i‘
Wngows -
Prrtartaton 2 E
s g
(PR
2 VBMET
Comemen Typa System o
.
[NET Framenri Canss Liteary | és"-‘l
i}

r
Windows Foemm ‘ ’7.459%1

NET Frirmmork Bans Class Libeary |

| Comson Langaags Rustans (CLRY |

=

1
| Distang Syatem Hartwme i

Fig.VB-1.1

As shown in Fig.VB-1.1, the main components of the NET Framework 2.0 are CLR, .NET Framework Base
Class Library, Windows Forms, ASP.NET, Common Type System (CTS), CLS, and .NET languages, such as C#
and Visual Basic. The NET Framework 3.0 adds four major components — Windows Presentation
Foundation (WPF}, Windows Communication Foundation (WCF), Windows Workflow Foundation (WF), and
Windows CardSpace—to the .NET Framework 2.0. Similarly, the .NET Framework 3.5 adds few more
components and features, including LINQ, ASP.NET 3.5, and ActiveX Data Objects .NET (ADO.NET) Entity
Framework and Data services, to the NET Framework 3.0.

Let’s now discuss the major components of the .NET Framework 3.5, one by one,

Common Language Runtime

One of the most important components of the \NET Framework is CLR, better known as the runtime. It
provides functionalities, such as memory management, exception handling, debugging, security, thread
execution, code execution, code safety, code verification, compilation. The CLR can host a variety of
languages and provides common tools to these languages; thereby, ensuring interoperability between code
written in different languages. The managed environment of the runtime eliminates many common software
issues. For example, the runtime automatically releases the objects when they are no |nnger in use, This
automatic memory management resolves the issue of memory leaks and invalid memory references.

CLR is the module that actually runs your .NET applications. When you run a .NET application, the language
compiler compiles the source code into an intermediate code, called Microsoft Intermediate Language
(MSIL) code. The MSIL code is similar to Java's bytecode. The MSIL code is later converted by the Just-In-
Time {JIT) compiler into native machine code, which is the final executable code. Fig.VB-1.2 explains the
functioning of CLR:

Chapter 1: Introducing NET F k3.5

Visual E_.asll:
Visual Basic compiler
source code
C"I i MNative
compiler compile :
C# source code MSIL code —'n-mamme
coda
Other NET
Other NET language compiler
source code
Fig.VB-1.2
NET Framework Class Library

The NET Framework Class Library is a huge library made up of a hierarchy of namespaces. Each namespace
in the NET Framework Class Library is a collection of different .NET types, such as classes, structures,
interfaces, i and del The es are logically defined by their functionality. For
example, the System.Data nam(spacc contains all lhc functionalities available for accessing databases. This
namespace is further broken down into other namespaces, such as System.Data.SqlClient, which exposes
functionality required to work with Structured Query Language (SQL) Server databases and
System.Data.OleDb, which exposes func‘tnumlnry required to work with Object Linking and Embedding

Database (OLE DB) databases. Grouping types in paces also solves the problem of name collisions as
we can have members itypes) with the same name in more than one namespace,
The System namespace contains the most basic classes, structures, interfaces, deleg and ion:

Some important classes of the System namespace are Console, Math, Object, String. Array, Enum, and
Delegate. Some important structures of the System namespace are Boolean, Byte, Char, Decimal, Single,
Double, and In132.

Cammon Type System

Commaon Type System (CTS) is the component of CLR through which the NET F ok provides supy
for multiple languages. The CTS specification describes all possible data types and programming constructs
supported by the runtime and specifies how these entities can interact with each other; therefore, calling one
language from another does not require type conversions. CTS provides a base set of data types for all the
languages supported by .NET Framework; however, each language uses aliases for the base data types
provided by CTS. For example, CTS uses the data type System.Int32 to represent a 4 byte integer value;
however, Visual Basic uses the alias Integer for the same, This is done for the sake of clarity and simplicity.

Common Language Specification
The Common Language Specification (CLS), a subset of CTS, defines the common types and programming
construcls lhat are supporled by all .NET programming languages. CLS enables interoperability on the .NET
ges supporting the CLS can easily use each other’s class libraries. Application
Progralnmihg Interfaces (APIs) that are designed by following the rules defined in CLS can be used by all
MNET-compliant languages.

Windows Forms

A Windows form is similar to a blank slate on which we can add controls to perform various functions.
Windows forms are used to develop Windows Forms applications. The .NET Framework provides you the
facility to develop Windows Forms applications using a .NET-compliant language. A Windows form can be
used to accept input from a user or display information to the user. You can add controls to a Windows form
and develop responses to the user actions, such as mouse clicks or key presses.

Visual Basic 2008 in Simple Steps

ASP.NET and ASP.NET AJAX

ASP.NET is a Web development model, which is used to develop interactive, data-driven Web applications
over the Internet, ASP.NET Web applications can be created using any CLR-compliant language, such as
Visual Basic, Visual C#, and Visual C++,

AJAX, formerly code-named as Atlas, is an extension of ASP.NET for developing and implementing AJAX
functionality. ASP.NET AJAX includes both client-side and server-side components that allows developers to
create Web applications, which does not require complete reload of the page while making any
madifications to the page. It enables you to send only parts of a Web page to the Web server by allowing
you to make asynchronous calls to the Web server. This decreases network traffic as well as processing on
the Web server.

ADO.NET
ActiveX Data Objects NET (ADO.NET) is a technology for working with data and databases of all types. It
provides access to various data sources, such as Microsoft SQL Server, and data sources exposed through
OLE DB and eXtensible Markup Language (XML}, You can use ADO.NET to connect to data sources for
retrieving, manipulating, and updating data. The most important feature of ADO.NET is disconnected data
architecture. In this architecture, applications are connected to the databases only till data is retrieved or
modified.

Windows Presentation Foundation
Apart from Windows Forms, Windows client applications can also be developed through WPF (formerly
codenamed as Avalon). WPF also facilitates building various kinds of interfaces, such as documents, media,
two and three-di ional graphics, animations. It helps in creating Windows client applications of superior
quality. You can use WPF for creating both standalone and browser-hosted applications. WPF introduces a
new language called eXtensible Application Markup Language (XAML), which is a language based on XML.

Windows Communication Foundation

Windows C ication Foundation (WCF} (formerly codenamed as Indigo} is a service-oriented
technology introduced by Microsoft for building and running connected systems. The service-oriented
design results in a distributed system that runs between the services and clients. You can understand WCF
more easily if you are familiar with concepts, such as Web services, remoting, distributed transactions, and
message queuing.

WCF based applications are interoperable with any process as these communicate through Simple Object
Access Protocol (SOAP) messages. When a WCF process connects with a non-WCF process, it uses XML-
based encoding for SOAP messages, but when it connects with another WCF process, the SOAP messages
are encoded into a binary format.

Windows Workflow Foundation
Windows Workflow Foundation (WF) is a technology introduced by Microsoft that provides a programming
model for building workflow based applications on Windows. The components of WF include activities,
workflow runtime, workflow designer, and a rules engine. WF is a part of .NET Framework 3.0 and 3.5.
The most insportant feature of WF is the separation between the business process code and the actual
implementation code. Before WF was introduced, both the business logic and the actual implementation
code were wriiten together while developing applications.

Windows CardSpace

Windows CardSpace (WCS) is a client software provided by Microsoft that makes the process of securing
resources easier and also makes sharing personal information on the Internet more secure. It helps
programmers to develop Web sites and software that are less prone to identity related attacks such as
phishing. WCS solves the problems of traditional anline security mechanisms by reducing dependence on

Chapter 1: Introducing .NET Framework 3.5

user names and passwords. Il, instead, uses a separate desktop and cryptographically strong authentication
to ensure secure online transactions.

Liva
Language Inlegraled Query tLlNQI is a component of the .NET Framework 3.5 that adds native data
querying capabilities to .NET languages using the syntax similar to SQL. This implies that with LINQ, you

can write statements similar to SQL statements, in a .NET language, such as Visual Basic,

Though LING queries resemble SQL, they are not restricted to accessing only relational databases. LINQ

enabled data access components are as follows:

O LINQ to ADO.NET: Includes two options, LINQ to SQL, which translates a query into a SQL query, and
then issues it against tables in a SQL Server database, and LINQ to DataSet, which executes a query on
the contents of a DataSet.

O LINQ to Object: Allows querying objects in a collection. LINQ to Objects is not dynamic. Once you
create a result sel and use it, any changes made to the source collection do not automatically update
the result set.

Q LINQ to XML: Allows querying of XML data. In addition, it also helps in creating and manipulating XML
data. This option has a different syntax, but the basic organization of the LINQ query remains the same,

Here, we discussed the architecture of .NET framework 3.5. In the next section, we learn how to install

Visual Studio 2008.

Installing Visual Studio 2008

In order to develop a .NET application, you need to have the required 1 on your computer,
such as Visual Studio 2008 or Visual Web Developer. Visual Studio 2008 is a software development product
that enables programmers to develop various types of applications including Console applications, Windows
applications, Web applications, and Web services. Before installing Visual Studio 2008, you need to install
the hardware and software components given in Table 1.1 on your computer:

Visual Basic 2008 in Simple Steps

After installing all these components on your computer, perform the following steps to install Visual Studio 2008:

1. Insert the DVD-ROM of Visual Studio 2008 in the DVD-ROM drive. The Visual Studio 2008 Setup
wizard begins, as shown in Fig.VB-1.3:

Fig. 13

2. Click the Install Visual Studio 2008 link, as shown in Fig.VB-1.3. The setup loads the installation
components, as shown in Fig.VB-1.4:

Fig VB-1.4
After the loading process is completed, the Next button becomes enabled, as you can see in Fig.VB-1.5:

Chapter 1: Introducing NET Framework 3.5

Fig.VB-15

Click the Next button, as shown in Fig.VB-1.5, The Microsoft Visual Studio 2008 Setup — Start Page
page appears, as shown in Fig.VB-1.6:

Fg. V-1t

Select the 1 have read and accept the license terms radio button and then click the Next button to
continue, as shown in Fig.VB-1.6. The Microsoft Visual Studic 2008 Setup - Options Page page
appears, as shown in Fig.VB-1.7:

Fig.VB-1.7

Visual Basic 2008 in Simple Steps

In the left side of the Microsoft Visual Studio 2008 Setup - Options Page page, you are presented with three

radio buttons—Default, Full, and Custom—that permit you to choose the features of Visual Studio 2008 to

install.

5. Select a radio button, as shown in Fig.VB-1.7. In this case, we have selected the Custom radio button as
we are going to install a customized version of Visual Studio 2008,

6. Click the Next button, as shown in Fig.VB-1.7. The next page appears where ynu can select the features
of Visual Studio 2008 that you want to install, from the list displayed on the left side of the page, as
shown in Fig.VB-1.8:

[T LT BT Nt
BT AT TRe Ve

Fig.VB-18

7. Select the features of Visual Studio 2008 and click the Install button, as shown in Fig.VB-1.8. The
installation of Visual Studio 2008 starts, as shown in Fig.VB-1.9:

Fig VB-1.9

After a few minutes, the final setup page, Microsoft Visual Studio 2008 Setup - Finish Page, appears
indicating that the Visual Studio 2008 setup has been completed successiully, as shown in Fig.VB-1.10:

10

Chapter 1: Introducing NET Framework 3.5

Success
Visual Studio Setup is comnplete

Visual Stuiio Y008 has besn U Bocamentatian:
fnstaind.

rary bor Vel Shste TO0K, A BAE. 4va 1
Sha mEsRabon mada, o Sowniid MEON

Librpry Lasposs Ldbon

U secarity Wetes:

14 Bkl s sommarsdod Fat 1ou Lpdate e Computer meT
The latest secunty patches for o r{wurne spstens. See the
indous Lpdate wen

o Evt lateat upabes. You can #9e '|l .cdml ta rm:ﬂi_l
SE. Dindows Server 2390 aed yiala

s oo thal you Choese 10 0Pt n B the
ShCra Updale ferics by ke

avadanle updanes far T and otrar My

Toucan 0 Be wwAng (e ste

Fig.VB-1.10
8. Click the Finish button to end the Visual Studio 2008 Setup wizard, as shown in Fig.VB-1.10.
After learning how to install Visual Studio 2008, let's now learn how we can open (or start) Visual Studio
2008,

Opening Visual Studio 2008

After you have installed Visual Studio 2008 on your computer, you can open it by performing the following
steps:

1. Click the Start button on the task bar, as shown in Fig.VB-1.11:

Fig.VB-1.11

2. Then click All Programs=>Microsoft Visual Studio 2008->Microsoft Visual Studio 2008, as shown in
Fig.VB-1.11. The Choose Default Environment Settings dialog box appears, as shown in Fig.VB-1.12:

1"

Visual Basic 2008 in Simple Steps

» bt s
| v eyt o e, s b il 8 e e o bt
| st ey

e e b b P b St e

e s T s st A s P o

e e b et b
Fate e o bt e S
e 1
—
g paepmaty e

The Choose Default Environment S:tlms.s dlalog box allows you to select the default environment settings

for Visual Studio 2008 installed on your computer.

3. Select one of the available options and click the Start Visual Studio button, as shown in Fig.VB-1.12. In
this case, we have selected General Development Settings. This configures the environment for Visual
Studio 2008, as shown in Fig.VB-1.13:

O by i

[T —

Fig.VB-1.13
Adfter a few minutes, the Start Page of Visual Studio 2008 appears, as shown in Fig.VB-1.14:

Fig VB-1.14

Chapter 1: Introducing NET Framework 3.5

In this section, we have leamed how we can open Visual Studio 2008, Let's now explore Visual Studio 2008 IDE.

Exploring Visual Studio 2008 IDE

The Visual Studio 2008 Integrated Development Environment (IDE) provides development and execution
environment for various kinds of applications, such as console applications, Windows applications, and
Web applications. It contains a number of menu bars, toolbars, and windows that help you throughout the
development of an application. Fig.VB-1.15 shows the Visual Studio 2008 IDE:

Dasign window Code Editor
|

§ B Canmnony
& CRMDES MCF
Server » B I

Tmlhol—b.

Fig VB-115
Let's now discuss some important components of Visual Studio 2008 IDE, one by one.

Menu Bar

Menu bar is a collection of menus, each of which contains a set of options for performing various tasks.
These menus include File meny, Edit menu, Build menu, Debug menu, and so on. Each menu in the menu
bar cantains options for performing a specific category of tasks, For example, the File menu contains options
for performing the file management tasks, such as creating a new project, opening an existing project, saving
a project, and closing an opened project. Fig.VB-1.16 shows the different menus present in the menu bar:

[Fle Edit View Project Buid Debug Data Format TJook Tet Ansiyre Window Help |
Fig.VB-1.16

Toolbar

Toolbar works as a container for the commands used to perform various tasks while developing applications
in Visual Studio 2008. Many of these commands are the shortcuts to the options present in the various
menus of the menu bar, The commands present in the Toolbar include commands for creating a new
project, opening an existing project, and saving a project. Fig.VB-1.17 shows the various commands
available in the Toolbar:

- - BB A a BB b Dby s b a [BE[E Y
Fig VB-1.17

13

Visual Basic 2008 in Simple Steps

Design Window

Design window is the place where we design the user interface for our application. It occupm the middle
portion of the Visual Studio 2008 IDE. The user interface for a form can be designed by adding and
organizing controls on the form, in the Design window. You can open a form in the Design window by
double-clicking it in the Solution Explorer, Fig.VB-1.18 shows the Design window of Formi:

Fig.VB-1.18

Code Editor

Code Editor is the place where we can add the code for handling a form and the various controls added to it.

Generally, we write the code in the Code Editor in the form of event handlers, which are methods that tell

the computer how to respond when an event occurs. For example, we can open a message box displaying a

message, when the user clicks a button added to a farm. You can open the Code Editor using any of the

following ways:

O By rightclicking a form in the Solution Explorer and selecting the View Code option from the context
menu

O By double-clicking the form or any control added to the form in the Design window

Q By selecting the form in the Solution Explorer and pressing the F7 key on the keyboard

Fig.VB-1.19 shows the default code of Forml in the Code Editor:

Fig.VB-1.19

14

Chapter 1: Introducing NET Framework 3.5

Server Explorer

Server Explorer is a window that allows your application to communicate with a database server. Using the
Server Explorer, you can create a data connection for connecting to a database server. The database file you
specify while crealing a database connection gets added to the Server Explorer along with all the tables it
contains. You can use the data contained in these tables in your application and also make changes in the
table data using the Server Explorer. You can open the Server Explorer by either clicking View->Server
Explorer on the menu bar or pressing the CTRL+ALT+S key cc tion on the keyboard. Fig.VB-1.20
shows the Server Explorer with a data connection added to it:

| % (i Database Disgrams
1 £ Tables
| w I Asphiet Mumm

|
© L jresdrauqierpress Empioyee dbo :
|
I
|

Fig. VB-1.20

Solution Explorer

Solution Explorer enables you to view all the files related to an application. You can open the Solution
Explorer by either clicking View=>Solution Explorer on the menu bar or pressing the CTRL+ALT+L key
combination on the keyboard. Fig.VB-1.21 shows the different files of an application in the Solution

Explorer:

.@ﬂm.ma&

[Sohution ‘Windowsippheation]” umm'
= (30 WindowsApplicationl

Fig.VB-1.21

15

Visual Basic 2008 in Simple Steps

The Properties button (first buttus. from the left) in the toolbar of the Solution Explorer (Fig.VB-1.21) can be
clicked to display the properties of the currently selected item in the Solution Explorer. By default, Solution
Explorer do not show all the files included in a solution. You can make all of them displayed in the Solution
Explorer by clicking the Show All Files button (second button from the left) in the toalbar of the Solution
Explorer. You can also use the View Code and View Designer buttons present in the toolbar of the Solution
Explorer to switch between the Design window and Code Editor of a form,

Toolbox

Toolbox is a window that provides you a set of controls for designing the user interface for a form of an
application. It appears in the left side of the Design window on the Visual Studio 2008 IDE. The controls in
the Toolbox are grouped under different tabs, such as Common Controls tab, Menus & Toolbars tab, and
Data tab. Each tab stores controls related to a specific category, for example, the Data tab stores the controls,
which are used in the applications that require interaction with databases. You can open the Toolbox by
clicking View=>Toolbox on the menu bar or by pressing the CTRL+ALT+X key combination on the
keyboard. Fig.VB-1.22 shows the various tabs of the Toolbox:

Fig. VB-122

Properties Window

Properties window enables you to set properties and events of a form and its controls at the design time. You

can open the Properties window using any of the following ways:

a By clicking View->Properties Window on the menu bar

O By pressing the F4 key on the keyboard

Q By right-clicking an item added to a project and selecting the Properties option from the context menu
that appears

O By right-clicking the opened form or any control added to the form in the Design window and selecting
the Properties option from the context menu

Fig.VB-1.23 shows the properties of Forml in the Properties window:

16

Chapter 1: Introducing NET F k3.5

Fig.VB-1.23

You can notice in Fig.VB-1.23 that the propertics are grouped under different categories, such as
Appearance, Behavior, Data, and Design. The Alphabetical button (second button from the lefti in the
toolbar of the Properties window can be used to arrange these properties in an alphabetical order. Similar to
displaying properties of a form or a control, you can also display its events in the Properties window, by
clicking the button with lightening sign in the toolbar of the Properties window. You can also select some
other form or control from the drop-down list present above the toolbar of the Properties window to display
its properties or events in the Properties window,

Object Browser

The Object Browser enables you to view or search objects, such as namespaces, classes, structures,
interfaces, and enums, along with their members, such as variables, properties, methods, and events. You
can also use the Object Browser 1o view the information related to an item, such as properties, methods, and
classes, in your code. You can do so by right-clicking the item in the Code Editor and selecting the Go To
Definition option from the context menu that appears. You can open the Object Browser by either clicking
View=>Object Browser on the menu bar or pressing CTRL+ALT+) key combination on the keyboard.
Fig.VB-1.24 shows the Object Browser:

Fig.VB-1.24

17

Visual Basic 2008 in Simple Steps

Class View Window

The Class View window enables you 1o view the items, such as classes, methads, and properties, associated
with a project, in a tree structure. You can also use this window to search an item associated with a project.
You can open the Class View window by either clicking View=>Class View on the menu bar or pressing
CTRL+SHIFT+C key combination on the keyboard. Fig.VB-1.25 shows the Class View window:

Fig VB-125

Summary
In this chapter, we learned about:

a

couoeodg

Versions of .NET Framework
Benefits of NET Framework
Architecture of NET Framework 3.5
How to install Visual Studio 2008
How to open Visual Studio 2008
Visual Studio 2008 IDE

18

Urheberrechtlich geschiiizies Bild

Urheberrechtlich geschitzies Material

Visual Basic 2008 in Simple Steps

Introduction

With ever increasing need for more computer professionals, people now a days are opting for [T-enabled
jobs. There are lots of programming languages available these days to learn, so one can get confused which
programming language should be learned. People likely opt for languages that involve less code and at the
same lime, provide visually powerful programming environment for developing applications. Visual Basic is
one of those languages that involve less code and is rich in graphical user interface. For a beginner, it is one
of the easiest languages to learn. Before the introduction of .NET Framewaork, the last version of Visual Basic
was Visual Basic 6.0. The latest version of Visual Basic is Visual Basic 2008 and it was released in
November 2007.

In this chapter, we will learn how to create a Console application in Visual Basic 2008, keywords, operators,
data types, variables, and constants. We will also learn about selection statements, iteration statements, and
arrays in Visual Basic 2008,

Let's first start by learning how to create a Console application in Visual Basic 2008.

Creating a Visual Basic 2008 Console Application

Visual Basic 2008 Console application is a command-line oriented application that allows the user to read

characters from console, write characters to the consale, and is executed in the Command Prompt. Console

application does not have its user interface and it looks similar to MS-DOS application, which reminds you

of the M5-DOS operating system. Consale applications work in a Command Prompt and do not have any

support for graphics and graphical devices, such as mouse, joystick, and so on.

To create a Console application, perform the following steps:

1. Start Visual Studio 2008 by clicking the Start=» All Programs=>Microsoft Visual Studio 2008-> Microsoft
Visual Studio 2008 option.

2. Click File->»New->Project on the menu bar or press the CTRL+SHIFT+N keys together. This opens the
New Project dialog box, as shown in Fig.VB-2.1:

[Tegie

4 AP B Sgpiriton
gy Pt

e T T
Ef Wimctree boren Comte! Lisary

C Semmeliyma o e

Fig.VB-2.1
3. Select Visual Basic>Windows in the Project types pane, as shown in Fig.VB-2.1.
4. Select Console Application in the Templates pane, as shown in Fig.VB-2.1.

20

Chapter 2: Getting Started with Visual Basic 2008

w

Type a name for your application in the Name text box, as shown in Fig.VB-2.1, In this case, we have

typed ConsoleApplication.

6. Enter the complete path of the folder where you want to save your application in the Location box, as
shown in Fig.VB-2.1. In this case, we have entered C:\Users\Rohit\Desktop\Chapter2.

7. Click the OK button, as shown in Fig.VB-2.1. This closes the New Project dialog box and creates a new

Console application, as shown in Fig.VB-2.2:

| File Edt Wiew Prpc Buld Debug Duts Tosk Tet Anshes Wndow Help i

EEEE T IR TSR T T - DU | I

Sub Maini)

End San

- ind Module

oy v Gt [D ot sty
Coton Tock

[T

— 3 o | PR Meduial sb

Fig.VB-22
When you create a new Console application in Visual Basic 2008, by default, the application contains a
module file. A module file is a file with .vb extension and it contains the code for your Visual Basic program.
You can notice in Fig.VB-2.2 that a mou.le file, Modulel.vb, has been created in the Solution Explorer. The
default code for the Module1.vb file is as follows:

Ihe preceding code detines a module, named Modulel. A module is a Visual Basic type similar to a class.
The module, Modulel, contain a Sub procedure, Main, A Sub procedure is a series of Visual Basic
statements enclosed by the Sub and End Sub statements. When the Console application runs, the Main Sub
procedure is called automatically.

In this section, we have looked at how to create a Console application in Visual Basic 2008. In the next
section, we discuss new features of Visual Basic 2008.

New Features of Visual Basic 2008

Visual Basic 2008 includes many new features that increase the productivity of Visual Basic developers and
help them to create applications in Visual Basic more easily and efficiently. The new features of Visual Basic
2008 are as follows:

Q Query expressions

Local type inference

Object initializers

Extension methods

Lambda expressions

[S =y =y =}

21

Visual Basic 2008 in Simple Steps

Q Anonymous types

O Nullable types

O Partial methods

Q Support for XML

Let's discuss these different features one by one,

Query Expressions
A query expression is an expression that is used to query and transform data from a LINQ enabled data
source (you read about LINQ in detail in Chapter 9, Introducing Language-Integrated Query). Query
expressions comprise of the list of different types of clauses that help the user in performing different types of
tasks. These clauses are as follows:

a Aggregate clause: Applies one or more aggregate functions to a collection,

O Distinct clause: Restricts the value of the current range variables. As a result, the duplicate values are
deleted from the query results.

Q From clause: Provides the collection and range variables for the query.

O Group By clause: Helps in grouping the elements of the result of the query. This clause is also helpful
in applying aggregate functions to each group.

O Group Join clause: Combines two collections into a single hierarchical collection.

Join clause: Joins two collections into a single collection.

Let clause: Computes the value of the query result and then assign that value to a new variable in the

query.

0O Order By clause: Determines the order of sorting for columns in a query.

Select clause: Declares the set of range variables for the query.

Skip clause: Segregates some specified elements from a group of elements. As a result, it returns only

remaining elements.

QO Skip While clause: Excludes the elements in a collection unless some specific condition is not satisfied
for the first time,

O Take clause: Provides certain specific number of adjacent elements from the start of the collection.

O Take While clause: Contains the elements unless the condition remains true, and ignores the
remaining elements,

0 Where clause: Provides centain specific filtering conditions for the query.

Local Type Inference
In Visual Basic 2008, compiler uses type inference feature to determine the local variables that are declared
without using the As keyword. Normally, when we declare a variable, we use the As keyword to specify its
data type. Such type of declaration is called explicit type declaration. However, with the type inference
feature, you can skip the As keyword from the initialization expression. In this way, you can declare
variables without explicitly specifying their data type.
The following code snippet shows how 10 declare a vanahle using expllcn type decfarntlon
t Dim k As Integer=9 :
The following code snippet shows how to declare a variable using the local type inference
feature:

Dim number=7

Object Initiali
Obiject initializer is an important feature in Visual Basic 2008. It specifies the properties of the objects. An
object initializer lets you assign values to the accessible fields or properties of an object without explicitly
creating and invoking a constructor. You can use object initializers with the help of a single expression.

Cco

Cco

Chapter 2; Getting Started with Visual Basic 2008

However, you can also use the object initializer in other contexts, such as Language Integrated Query
(LINQ) query expressions (you will learn more about LINQ in Chapter 9, Introducing Language-Integrated
Cueryt,
Extension Methods .

Visual Basic 2008 introduces extension methods to specify that a set of methods available on an instance of
a type, such as class, interface, is open for extension. This means that you can add new methods to existing
class without rewriting it or deriving a new class from it. Therefore, extension methods increase the set of
methods available in any type. To create a extension method, use the <Extension()> attribute from the
System.RunTime.CompilerServices namespace.

Lambda Expressions
A lambda expression is a function without a name that a single expression and retums a value.
Visual Basic 2008 introduces lambda expressions as anonymous methods that contain expressions and
statements to replace the delegate functions. These expressions are used in Visual Basic 2008 for declaring
method code inline. You can use lambda expressions to create delegates or expression tree types. The
following code snippet shows how to declare a lambda expression:
Dim addition = Function{num as Integer) num+l

Anonymous Types
Visual Basic 2008 offers anonymous types as a new feature. This feature allows you to create objects without
letting you to define a new type. Instead, the compiler itself generates the type. This type is also not having
any useable name, inherits directly from Object type and contains the properties that are specified during
the declaration of the objects. Since the name of the data type is not specified, that is why it is referred to as
anonymous type.
Following code snippet declares and creates variable entity as an instance of an anonymous type that has
two properties, Quality and weight.
The syntax for declaring ymaus type is as

Dim entity=New with{Key.Quality="A", .weight=1.97}

Remember query expression uses anonymous types for combining columns of data selected by a query.
Although using anonymous types, you can select any number of columns.

Nullable Types

In certain situations, you may be working with a value type that does not have a defined value. For instance,
in a database, you have to make a distinction so that the field may either have a meaningful assigned value
or have no assigned value. Therefore, value types can be extended in such a way that they can have either
normal values or a null value. Such an ton refers to a nullable type.

Each nullable type is constructed from the generic Nullable(T) structure. The following code illustrates how
to construct a nullable Boolean type and then declares a variable of that type. There are following three
ways of writing the declaration:

iall,

Variable backtowork can hold any of the three values, True; False; or no value. It is easy to declare
variables and properties with nullable types. You can also declare an array with elements of nullable types.
You can even use a Function procedure to return a nullable type.

Nete
i You cannot create a uliable type on a reference type suich as an array, a string, or a cass.

23

Visual Basic 2008 in Simple Steps

Partial Methods

While working on a large project, there are times when you need to split the definition of a class, a struct, an
interface, or a method over two or more source files. Each source file should contain a section of the class or
method definition, and when you compile the application, the compiler combines all the source files.
Splitting and combining a large project helps a group of developers to work on a single class of the large
project simultaneously. You can use the Partial keyword to split a class definition. The Partial keyword
determines whether or not the other source files of the class, interface, struct, or method can be defined in
the namespace. However, note that all the source files must use the Partial keyword and be available during
compilation to form the final type. A partial method provides the means for incorporating certain custom-
generated code into the built-in designer code. This method is primarily used for the purpose of data
validation. You can create the partial method for data validation in two steps:

0 Define the method signature

O Write the implementation

The designer of the code defines the method signature and one or more calls to the method, then the
developers provide the implementations for the methods, resulting in customizing the behavior of the
generated code. In case no implementation is provided, the calls made to the method are removed by the
computer, resulting in no additional performance overhead.

Support for XML
In Visual Basic 2008, you can now use XML as data types, to make the process of XML creation, XML
transformation, XML modification, and query XML fast and easy. Visual Basic 2008 provides support for
XML in the form of LINQ to XML (You learn about LINQ in detail in Chapter 9, Introducing Language-
Integrated Query) using XML literals and XML axis properties, as discussed here:
O XML literals: Enable you to include XML directly in your code.
O XML axis properties: Enable you to access child nodes, descendant nodes, and attributes of an XML

literal.

In this section, we have learned about new features of Visual Basic 2008. In the next section, we discuss
keywords of Visual Basic 2008.

Visual Basic 2008 Keywords

A keyword is a word that is used for a specific task. Visual Basic 2008 provides the two types of keywords—
reserved and unreserved. Reserved keywords are the one, which you cannot use for your programming
elements such as variables and procedures. On the other hand, unreserved keywords are those keywords,
which you can use for your programming elements such as variables and procedures. However, it is
suggested to avoid using these as keywords, as it leads 1o subtle errors and makes the code difficult to
understand.

Table 2.1 lists the reserved keywords available in Visual Basic 2008:

Chapter 2; Getting Started with Visual Basic 2008

Table 2.2 lists the unreserved keywords available in Visual Basic 2008:

25

Visual Basic 2008 in Simple Steps

In this section, we have learned about keywords of Visual Basic 2008. In the next section, we discuss
operators of Visual Basic 2008,

Visual Basic 2008 Operators

Operators play a vital role in performing some computation or other operations, such as arithmetical and

logical operations on the operands, Therefore, the operator refers to the operations to be performed in the
pression, All the op have their own specified precedence. Operator precedence determines which

operation will be executed first in an expression that involves multiple operations. Different operators

available in Visual Basic 2008 are as follows:

0 Arithmetic operators

Assignment operators

Concatenatich operators

Comparison operators

Logical operators

Now, we discuss all these operator types one by one, starting with arithmetic operators,

oDooe

Arithmetic Operators

The operators that are used for performing arithmetic operations such as subtraction, multiplication, and
division, are called Arithmetic operators. Different arithmetic operators that are available in Visual Basic
2008 are given here in Table 2.3:

Here, we have discussed the arithmetic operators found in Visual Basic 2008. Now, we discuss the
assignment operators found in Visual Basic 2008,

Assignment Operators

The operators that are used for assigning the values of one variable to another variable after performing
different operations such as XOR operation, multiplication, division, integer division, addition, and
subtraction. The following are the different assignment operators that are available in Visual Basic 2008, as
listed in Table 2.4:

26

Chapter 2: Getting Started with Visual Basic 2008

Here, we have discussed the assignment operators found i Visual Basic JUUB. Now, we discuss ine
concatenation operators found in Visual Basic 2008.

Concatenation Operators

Many times, you may need to combine two text strings to display a message. The process of combining two
text strings into one string is called string concatenation and the operators that are used to perform string
concatenation are called concatenation operators. The following are the different concatenation operators
that are available in Visual Basic 2008, as listed in Table 2.5:

The & (ampersand) and + (addition) operators are used for concatenating two text strings. The + operator is
used for concatenating numeric operands with string operands whereas the & operator is used only for
concatenating strings, as shown in Table 2.5.

Here, we have discussed the concatenation operators found in Visual Basic 2008. Now, we discuss the
comparison operators supported by Visual Basic 2008,

Comparison Operators
Comparison operators are the operators that are used to compare two expressions. We can use this operator
to compare numeric values, strings, and objects. A comparison operation s an operation that returns a
Boolean value as a result. A Boolean value can be either True or False. Table 2.6 presents a list of all the
comparison operators supported by Visual Basic 2008 and explains how they can be used:

27

Visual Basic 2008 in Simple Steps

logical operators supported by Visual Basic 2008.

Logical Operators

Logical operators are used to compare the expressions that involve Boolean operators and the result
obtained from these operators is a Boolean value. Logical operators can be classified into the following three

types:

Q Unary logical operators

0O Binary logical operators

a Short-Circuiting Logical Operations

Out of the above three types of logical operators, we will describe first two most common Logical Operators:
Unary logical operators and Binary logical operators one by one.

Unary Logical Operators

A logical operator that involves only one operator is called a unary logical operator. Net operator is the
unary logical operator in Visual Basic 2008, It performs the logical negation operation of an expression that
evaluates a Boolean value. The Not operator returns exactly apposite of the operand on which it is applied.
For example, if the expression evaluates to be True, then the result after applying the Not operator will be

T ————————

After execution of the preceding lines of code, the Boolean variables X and Y will store the Boolean values
False and True, respectively. As we know, the expression (5>3) evaluates to True; however, when this

Chapter 2: Getting Started with Visual Basic 2008

expression is preceded by the Not operator, that is, Not(5>3), it returns False. In the same way, when the
expression (2>7) is preceded by the Not operator, that is, Not{2>7), it returns True.
Binary Logical Operators

Binary operators are those operators that take two operands {expressions). Three most commonly used
binary logical operators available in Visual Basic 2008 are as follows:

O And

a Or

o Xor
And

The And operator is used to perform logical conjunction of two Boolean expressions. If both Boolean
expressions evaluate to be True, then the final result after applying the And operator will also be True.
However, if one of the two Boolean expressions evaluates to be False, then the final result after applying the
And operator will also be False,

The following code snippet explains how we can use the And operator in our code:

True and False, respectively.

or
The Or operator is used to perform logical disjunction of two Boolean expressions. If both Boolean
expressions evaluate to be False, then the result after applying the Or operator will also be False. For all

other cases, the result of applying the Or aperator will be True. The following lines of code explain how we
can use the Or operator in our code:

False and True, respectively.

KNor
The Xor operator is also used to perform logical disjunction of two Boolean expressions. If only one Boolean
expression evaluates to be True, then the final result after applying the Xor operator will be True. However,
if both the Boolean operators evaluate to be True or False, the result of applying the Xor operator will be
False. The following code explains the use of the Xor operator:

True and False, respectively.

In addition to all the operators discussed so far, some other operators are also used in Visual Basic 2008,
These are AddressOf, GetType, and TypeOf operators. The AddressOf operator gets the address of the
procedure, the GetType operator gets the information about a type, and the TypeOf operator compares an
object reference variable 1o a data type.

Here, we have discussed the logical operators found in Visual Basic 2008, Now, we learn about the
precedence in which operators are executed in an application, developed by using Visual Basic 2008.

Visual Basic 2008 in Simple Steps

Operator Precedence

In Visual Basic 2008, you can use a large set of operators simultaneously in the expression to perform
required calculations. However, using two or more operators may conilict the operator precedence; that is,
which operation we will perform first. For this purpose, Visual Basic 2008 makes use of the precedence of
different operators available in Visual Basic 2008. Therefore, operator precedence is a set of rules that
specifies the order in which the compiler evaluates expressions. The operators associate with either the
expression on its left or the expression on its right, and this is known as the associativity of the operator, To
understand operator precedence maore clearly, consider the following expression that contains two
arithmetic operators:

Segen 2
In preceding example, if we first add 5 and 3 and then multiply the result by 2, the result will be 16.
However, if we first multiply 3 10 2 and then add 5 to the result, the result will be 11. You can notice that
the result is not the same in both cases. To avoid such contradictory results, Visual Basic 2008 has its own
rules of precedence for all the operators supported by the language.
The arithmetic and concatenation operators have higher precedence than the comparison and logical
operators, Comparison operators have higher precedence than the logical operators. However, all
comparison operators have equal precedence; that is, they are evaluated in the order, left to right, in which
they are arranged in the expression.
The arithmetic operators have the highest precedence, therefore, they are arranged in the order of highest
precedence to lowest precedence, as follows:
Exponentiation (*)
Unary identity and negation (+, -)
Multiplication and division (*, /)
Integer division (\)
Modulus arithmetic (Mod)
Addition and subtraction {+, -}
Now, the concatenation operators and their order of precedence are as follows:
Q String concatenation (+)
Q String concatenation (&)
The Comparison operators have the same precedence and are evaluated from, left to right in the expression.
Order of precedence of comparison operators is as follows:
Equality (=)
Inequality (<>)
Less than, greater than (<, »)
Greater than or equal to (>=)
Less than or equal to (<=}
Like
Is
The Logical/Bitwise operators have the precedence order, from highest 1o lowest:
0 Negation—{Nat)
0 Conjunction—{And, AndAlso}
0 Disjunction—{Or, OrElse, Xor)
In this section, we have discussed Visual Basic 2008 operators and their precedence, In the next section, we
discuss data types supported by Visual Basic 2008.

Coococoeo

CoooooDao

30

Chapter 2: Gelting Started with Visual Basic 2008

Data Types
A data type determines the type of data that is stored in a variable. It can be Integer, String, Boolean, and so
on. For creating a variable of a particular data type, we should first know the range of possible values that
the data type allows. The various data types supported by Visual Basic 2008, their storage size, and the
range of values they allow are given in Table 2.7:

N

Visual Basic 2008 in Simple Steps

In this section, we have discucsed data types in Visual Basic 2008. In the next section, we discuss how to
make a conversion between different data types in Visual Basic 2008.

Data Type Conversion

Sometimes, we may be required to assign value stored in the variable of one data type to the variable of
some other data type. When we do this, the value of the data type changes or modifies according to the
target data type. But before assigning the value, first we should know whether c ion b the two
data types is possible or not.

Conversion is always dependent on compatibility. If the values of data types can be assigned to each other
then data types are considered as compatible data types, otherwise not. For example, we can assign value
stored in a Byte variable to an Integer variable (compatible data types) whereas we cannot assign value
stored in an Integer variable to a Char variable (incompatible data types).

Moreover, we can assign value stored in variable with data type having smaller storage size to variable with
dala type having larger storage size without any problem. However, we must ensure that the value we are
going to assign does not fall outside the range of values supported by the target data type.

Visual Basic 2008 provides some conversion functions, which we can use while assigning the value, A list of
such functions and their purpose are given in Table 2.8:

discussed data type conversion in Visual Basic 2008. In the next section, we discuss
about variables in Visual Basic 2008.

In this section, we have

Variables

A variable is an identifier that denotes a storage location in the memory. By using a variable’s name in your
program, you are referring to the information stored at that location. Every variable has a type that

32

Chapter 2: Getting Started with Visual Basic 2008

determines what values can be stored in that variable. A variable can store different values during the
execution of a program. Each variable has a data type and it can store only those values that fall in the range
of values supported by its data type. You can give any name to a variable but it should be meaningful
because it makes the code more readable, Some examples of meaningful variable names are salary, height,
name, age and total marks.

While assigning name to a variable in Visual Basic 2008, we should follow the following rules:

QA variable name can only contain alphabets, digits, and underscores

0 A variable name should not begin with a digit or any numeric value

QA variable name cannot contain a blank space

O Keywords cannot be used as a variable name

Besides using the preceding rules, we should also try to use meaningful names for naming the variables. For
example, instead of using variable names such as a, b, ¢, and d, we can use more specific variable names
such as age, height, weight, and grade.

A variable can be declared in Visual Basic 2008 at class, module, procedure, or block level using the Dim

A variable can be assigned a value at the time of its declaration by using the = sign. Variables can be
assigned a value at the time of their declaration as follows:

The default data type for any variable is Object. If any variable is not assigned a value, the default value is
assigned to it according to its data type. The rules to determine, which default values are assigned to the
uninitialized variables, are as follows:
a 0, for all numeric types (including Byte)
O Binary 0 for Char
O Nothing for all reference types such as Object, String, and all arrays. It indicates that no object is
associated with the reference.
Q False for Boolean
O 12:00 AM of January 1 of the year 1 for Date (01/01/0001 12:00:00 AM)
We can also declare multiple variables of the same data type without repeating the type, as follows:
Dim countl, count2 As Integer
Variable names can be prefixed to indicate their data type, which helps when someone else is reading your
code. Use of variable prefixes is optional, Table 2.9 lists some of the prefixes that have become conventional
for the Visual Basic data types:

33

Visual Basic 2008 in Simple Steps

Integer int
Long Ing
Object obj
Single sng
String str
User-defined type udt

In this section, we have discussed variables in Visual Basic 2008. In the next section, we discuss about
constants in Visual Basic 2008,

Constants

An explanation of the terms used in the preceding syntax is given in Table 2.10:

Constants are the names given to the values that do not change during the execution of the program.
Declaring a constant is useful when we have 1o use a value at many places in a program. If we have
declared a value as a constant at one point then, we can use the name of the constant instead of the value
for further references, and all the instances of that value can be modified by changing only the value of the
constant at the point of declaration. In Visual Basic 2008, constants are declared with the keyword Const.
The syntax of declaring constants in Visual Basic 2008 is as follows:

H <attrlist>] [{ Public | Protected | Friend | Protected Friend | Private }] [
S| 1 const constantlist

Some parts of the preceding syntax have already defined in Table 2.1, The remaining term is a constantlist,
which is declared in the staterment. Each constant in the constantlist must use the following syntax:
name [As type] = initexpr

: Term Explanation

initexpr
A constant can be declared as follows:
Const Pi = 3.14159

In this section, we have discussed about constants in Visual Basic 2008. In the next section, we learn about
selection statements in Visual Basic 2008.

Selection Statements

Selection statements are the statements, which changes the program flow based upon whether a certain
condition is fulfilled or not. This condition is Boolean expression, which is checked before the execution of
a block of code inside the selection statement. Visual Basic supports two types of selection statement, as
follows:

a If Else statement

34

Chapter 2: Getting Started with Visual Basic 2008

a Select Case statement
Let’s now discuss these statements, one by one,

If Else Statement

This statement allows you to test whether a certain condition is fulfilled or not. If the condition is fulfilled,
the program control is transferred to the blocks of code that are inside the If statement; otherwise, the
program control is transferred to another block of code. The syntax for an If Else statement is as follows:

be executed and ultimately the It statement will terminate. It the condition is False, then the condition in the
Elself statement is tested and corresponding block of code is executed. If none of the conditions, If and
Elself, are True and the Else statement is present, the code inside the Else statement is executed.

Let's perform these steps to see how an If Else statement can be implemented in a Console application:
1. Create a new Console application with the name IFELSE.
2. Add the following code to Modulel.vb file:

3. Run the application by pressing the F5 key on the keyboard.
Now, if you enter the value, 2008, you will get the output, as shown in Fig.VB-2.3:

Fig.VB-23
On the other hand, if you enter the value, 2007, you will get the output, as shown in Fig.VB-2.4:

35

Visual Basic 2008 in Simple Steps

Fig VB-2.4

Selact Case Statement
This statement compares the value of an expression with different values of other expressions in some given
Case statements. Now, if the Case matches with the specified test expression, the programs control transfers
to that Case 1t and the ents that are inside that Case statement get executed. The syntax for a

statement. You can use multiple Case statements in a Select Each Case W is having a
different value that is tested against testexpression. Finally, the code that matches testexpression is executed.

Let's perform these steps to see how a Select Case statement can be implemented in a Console application:
1. Create a new Console application with the name SELECTCASE.

3. Run the application by pressing the F5 key on the keyboard. The output of the application is displayed,
as shown in Fig.VB-2.5:

Chapter 2: Getting Started with Visual Basic 2008

FigVB-25

In this section, we have discussed about selection statements in Visual Basic 2008. In the next section, we
learn about iteration statements in Visual Basic 2008,

Iteration Statements

Suppose you want to execute a set of statements 50 times in your program. Instead of writing the code 50

times, you can put the code inside a loop and specify a condition that the loop has to execute 50 times;

thus, this condition saves the complexity and time involved in coding. An iteration statement executes a
or a set of its in a repeated manner. In Visual Basic, there are four types of iteration

statements, which are as follows:

O While statement

O Do While statement

O For statement

O For Each statement

Let's now discuss these statements, one by ane.

While Statement

It executes a set of statements as long as a given condition is True. The syntax for a While... End While
statement is given as follows:

In the preceding syntax, the statements enclosed in the While statement are repeatedly executed till the
condition is True. You can also i a While st at any time with an Exit While statement.

Let's perform these steps to see how a While can be impl d in a Console application:
1. Create a new Console application with the name WHILE.
2. Add the following code to Module1.vb file:

37

Visual Basic 2008 in Simple Steps

as shown in Fig.VB-2.6:

Fig.VB-26

Do While Statement

The Do While statement is helpful in the execution of different set of statements for variable number of
times. The syntax for a Do While statement is given here:

There are two types of Do While statements depending upon the execution of the conditions. In the first type
of Do While syntax, condition s evaluated at the beginning and in the second type of Do While, condition
is evaluated at the end of the loop.

Let’s perform these steps to see how a Do While can be impl d in a Console application:

1. Create a new Console application with the name DOWHILE.

2. Add the following code to Modulel.vb file:

a8

Chapter 2: Getting Started with Visual Basic 2008

3. Run the application by pressing the F5 key on the keyboard. The output of the application is displayed,
as shown in Fig.VB-2.7:

Fig.VB-2.7
For Statement

The For statement is one of the most popular statement among all Visual Basic statements. A statement is
used when we have to execute a group of statements repeatedly for a specified number of times. The syntax
for a For statement is given here:

The For statement needs a loop index for its execution, as it counts the number of loop iterations. In the
preceding syntax, when the statement starts, the counter is automatically set to start. Each time during the
looping cycle, counter is incremented by one. For every step, you can specify a positive or negative value in
the For statement. In case, if you don’t specify a value, it is set to a default value, 1. When the value of
counter equals to end, the loop ends. datatype is the data type of counter, which is required when counter
is not already declared. You can also terminate a For statement at any time with an Exit For statement.

Let’s perform these steps to see how a Fer statement can be implemented in a Console application:

1. Create a new Console application with the name FOR.

3. Kun the application by pressing the F5 key on the keyboard. The oulput of the application is displayed,
as shown in Fig.VB-2.8:

39

Visual Basic 2008 in Simple Steps

For Each Statement

The For Each statement iterates through all the items in a list, which may be an array or a collection of
objects. The For Each statement works in the same way as the For loop works. The syntax of the For Each

chatomant iz ac fnllne

1. Lreate a new Lonsole applhication with the name FUKEALH.

2. Add the following code to Module1.vb file:

3. Run the application by pressing the F5 key on the keyboard. The output of the application is displayed,
as shown in Fig VB-2.9:

Fig.VB-2.9

In this section, we have discussed about iteration statements in Visual Basic 2008, In the next section, we
learn how about arrays in Visual Basic 2008.

40

Chapter 2: Getting Started with Visual Basic 2008

Arrays

An array is a set of values that are logically related to each other, such as the highest marks per subject in a
class of students. An array allows you to refer to these values by the same name and use a number called
Index, for identifying the individual values. The individual values of an array are called the elements of the
array. These elements are stored in the amay with the index values starting from 0 to one less than the size of
the array.
The syntax for declaring an array is as follows:

Dim ArrayName(ArraySize) | As datatype
The syntax for declaring an array that can hold ten integer elements is as Io!lows

Dim myArray(10) As Integer =
The array myArray in the preceding example contains 10 elements, which are stored in the indexes starting
from 0 to 9. Using an array is much easier than declaring 10 different variables, as it involves only single
variable, myArray as compared to 10 different variables. To store and retrieve values to and from arrays in
Visual Basic 2008, perform the following steps:
1. Create a new Console application with the name Arrays.
2. Add the following code to Module1.vb file:

3. Kun the application by pressing Ine ks key on the keyboard. |he output of the application Is displayed,
as shown in Fig.VB-2.10:

Fig.VB-2.10

Summary

In this chapter, we learned:

O How to create a Console application in Visual Basic 2008
New features of Visual Basic 2008
Keywords, operators, data types, variables, and constants
Selection statements and iteration statements in Visual Basic 2008
How to create arrays in Visual Basic 2008

oooco

4

Urheberrechilich geschiitztes Material

Urheberrechtlich geschiitztes Bild

Urheberrechtlich geschitzies Material

Visual Basic 2008 in Simple Steps

Introduction

Programming, in simple words, means giving instructions to a computer to process the data and provide the
required output. There are mainly two programming approaches, Procedure-Oriented Programming (POP)
and Object-Oriented Programming (OOP).

In procedure-oriented programming, you first break the problem into smaller sections of code and then solve
each section separately. Later on, all the solved sections of the program are integrated to solve the entire
problem. Each small section of the code is written within a block of cade, called a method. You can call one
method from another. Therefore, these methods are dependent on each other. As a result, reusability of the
application becomes difficult. Some programming languages that use the POP approach are COBOL,
FORTRAN, and C.

The concept of OOP has been introduced to overcome the difficulty of limited or no reusability of code.
OOP uses the concept of object for reusing the existing code, The concept of OOP revolves entirely around
an object. An object in a programming language does not mean a tangible or visible thing rather it is an
organization of code. An object may contain certain behaviors and properties, In programming languages,
we represent a behavior as a method and properties of an object as attributes, Out of these two approaches,
OOF is considered better to follow since it follows an approach, which is related to real world objects.
Examples of languages that follow OOP concepts are C++, JAVA, and VB.

In this chapter, you learn about the four main principles of OOP: encapsulation, inheritance, abstraction,
and polymorphism. In addition, you learn about classes and objects, structures, properties, interfaces, and
namespaces used in Visual Basic.

Working with Classes and Objects

A class is a primary building black for the programs created in a programming language that follows the
OOP approach, such as Visual Basic and C#. You can use classes to encapsulate variables and methods into
a single unit. Let's look at an example to understand the concept of classes better. Suppose you need to
create an object of a class, named Bird, in your program. To do so, you first need to create a class called
Bird, which contains all the functionalities or behaviors and properties of any bird. You can then use the
Bird class to create objects of the Bird class, as needed. For example, you can use the Bird class as a
template to create an object named Owl. The Owl object of the Bird class would contain a property
nocturnal, which would imply that ow! is a nocturnal bird.

Classes allow you to define a self-contained environment wherein, you control all the functions that can be
applied to a given set of data and also control access to the data. The declaration of a class starts with the
Class keyword followed by the class name. A class is similar to a container that may have data members
(variables, constants, or fields) and member functions imethods, properties, events, indexers, operators,
constructors, and destructars), and other classes, A class also supports inheritance, which is a mechanism in
which a derived class extends a base class. The syntax of a class in Visual Basic is as follows:

Note
| You wi leam more about inheritancelater i th chapter.

To access the data members and member functions of a class, you need to create an object of that class. The
syntax to create an object of a class in Visual Basic is as follows:

<access-modifiers <ObjectName> As <ClassNames ‘peclaration

<oObjectNames = New <ClassName()> ‘Instantiation
These are some important concepts that will help vou while working with classes and objects:

o Access modifiers

44

Chapter 3: Understanding Object-Oriented Prog ing Concepts

Methods

Constructors and destructors

Partial classes

Shared methods

Extension methods

Let's learn about each of these in detail next.

Access Modifiers

Access modifiers in Visual Basic are keywaords used 1o specify the accessibility of a member or a type.
Access modifiers help you to avoid jumbling of data and methods with the existing code, as well as protect
an object of a class from outside interference. The access modifier protects an object by defining a certain
scope to access its data and methods in a restricted manner, You can declare a class and its methods with an
access modifier. However, one method can contain only one modifier. The different types of access
maodifiers used in Visual Basic are listed in Table 3.1:

copooao

Methods in Visual Basic

A method in Visual Basic is a block of code that contains a series of statements to perform an action. Every
action in Visual Basic is performed in the context of a method. Methods are declared in a class by specifying
the access level, the return value, the name of the method, and the method parameters. All these are
collectively referred 1o as the sig e of the method

You can find an example of declaring a method in the following code snippet:

45

Visual Basic 2008 in Simple Steps

Let's now learn how you can work with constructors and destructors in a Visual Basic program.

Constructors and Destructors

Constructors and destructors are special types of methods. A constructor is a method that is called when an

object is created. A destructor is a methed that is called when the object is finally destroyed. The constructor

initializes all class members whenever you create an object of the class, and the destructor destroys the

values assigned to the class bers, when the object is not required anymore. In Visual Basic, the New

keyword is used to create constructors and the Finalize or Dispose methods are used to call a

destructor.

The main features of constructors are:

O A constructor is a Sub procedure declared with the New keyword.

O Constructors have the same name as the class itself.

a Constructors do not have any return type.

a Itis not mandatory to declare a constructor; it is invoked automatically.

A destructor (or finalizer) is called when an object is finally destroyed. Destructors are used to clean the

instances of classes when the instances are not required. You cannat call a destructor in your application;

they are invoked automatically. Visual Basic provides a garbage collection mechanism that is executed

when the runtime environment finds it necessary or when an object is not destroyed until its reference count

drops to 0. You have no way of telling when an object will be destroyed; and when the destructor will be

called. You can, however, implement a custom method that allows you to control object destruction by

calling the destructor,

Let's create an application named ConstructorApp to learn how to use constructors, by performing the

following steps:

1. Click Start->All Programs->Microsoft Visual Studio 2008-»Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. In the Visual Studio 2008 IDE, click File-»New->Project from the menu bar to open the New Project
dialog box.

3. In the New Project dialog box, sefect Visual Basic->Windows in the Project types pane and the
Console Application option in the Templates pane.

4. Enter ConstructorApp in the Name text box to specify the name of the application and specify an
appropriate location for the application in the Location box.

5. Click the OK button. The New Project dialog box closes and the ConstructorApp application is created.

6. In the Module1.vb file, add the code given in Listing 3.1:

Listing 3.1: Defining Constructor

Chapter 3: Understanding Object-Oriented Programming Concepls

In Listing 3.1, we have created three cOnsiructors: the Tirst wilnout any parameters, the second with ane

parameter, and the third with two parameters,

7. Press the F5 key to run the application. The output of the code given in the Listing 3.1 appears as shown
in Fig.VB-3.1:

Fig.VB-3.1

Partial Classes
A partial class in Visual Basic is the class that enables you to specify the definition of a class in two or more
source files. All the source files contain a section of the class definition. The definitions in the different
source files are combined when the application is executed. You can divide a class into two or more partial
classes, each stored in a separate file, so that you can work on each partial class separately.
You can declare a partial class by using the Partial keyword. The Partial keyword indicates that all the parts
of the class must be available at compile time to generate the final class.
Let’s create an application named PartialClass to learn how to use a partial class, by performing the
following steps:
1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.
2. Enter PartialClass in the Name text box to specify the name of the application and specify an

appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the PartialClass application is created.
4. In the Module1.vb file, add the code given in Listing 3.2:
Listing 3.2: Using a Partial Class

47

In Listing 3.2, the fields and constructors of the Orders class are declared in one partial class definition, and
the PrintOrders method is defined in another partial class definition.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.2 appears, as
shown in Fig.VB-3.2:

Fig.VB-3.2
Shared Method's
You can call a shared method without creating an instance of the class in which the shared method is
declared. You can use the class name and the dot operator (.) to access a shared method outside the class,
Let's create an application named SharedMethod to learn how to use a shared method in a class, by
performing the following steps:
1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.
2. Enter SharedMethod in the Name text box to specify the name of the application, specify an
appropriate location for the application in the Location box.
3. Click the OK button. The New Project dialog box closes and the SharedMethod application is created.
4. In the Modulel.vb file, add the code given in Listing 3.3:
Listing 3.3: Using Shared Methods

Chapter 3: Understanding Object-Oriented Prog ing Concepts

In Listing 3.3, two shared functions, reciprocal and fraction, are created inside a class, MathFunction, and
are accessed using the name of the class.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.3 appears, as
shown in Fig.VB-3.3:

Fig-VB-3.3

Extension Methods

Extension method is one of the new features in Visual Basic 2008. An extension method is a technique used

to extend a class without deriving a new class from that class. The behavior of extension methods is similar

to that of shared methods. An extension method can either be a Sub procedure or a function. You cannot

define an extension property, field, or event. All extension methods must be marked with the <Extension()>

extension attribute from the System.Runtime.CompilerServices namespace.

Let's create an application named ExtensionMethod to learn how to use an extension method, by

periorming the following steps:

1. Repeat the steps 1-3 discussed while creating ConstructorApp application.

2. Enter ExtensionMethod in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box,

3. Click the OK button. The New Project dialog box closes and the ExtensionMethod application is
created.

4. In the Module1.vb file, add the code given in Listing 3.4:

Listing 3.4: Implementing an Extension Method

Now, to call the extension method you need to add another module, named ModuleZ.vb, to the
ExtensionMethod application.

:emdathod i nl

5. Right-click the application E in the

Explorer, as shown in Fig.VB-3.4:

Visual Basic 2008 in Simple Steps

Fig.VB-34
6. Click Add=>New Item (Fig.VB-3.4). This opens the Add New Item dialog box, shown in Fig.VB-3.5:

Fig.VB35

7. Select Module from the Templates pane and click the Add button (Fig.VB-3.5). This adds Module2.vb
file to the ExtensionMethod application.

8. Add the code in Listing 3.5 to Module2.vb file:

Chapter 3: Understanding Object-Oriented Programming Concepts

Listing 3.5: Code in Module2.vb File

After adding the code to Module2.vb file, you need to set the Stariup object of ExtensionMethod application.

9. Rightclick ExtensionMethod project and sefect the Properties option from the context menu, as shcwn
in Fig.VB-3.6:

FigVB36
This opens the Project designer, where you can set project properties, as shown in Fig.VB-3.7:

51

Visual Basic 2008 in Simple Steps

Fig.VB-3.7
10. Select the Application tab (Fig.VB-3.7).
11. Select Module2 from the Startup object drop-down list (Fig.VB-3.7).
12. Press the F5 key to run the application. The output of the application appears, as shown in Fig.VB-3.8:

Fig VB-3.8

Encapsulation

Encapsulation is the process of hiding the irrelevant information and showing only the relevant information
to the user. It is a way to organize data and methods into a single unit; therefore, preventing the data from
being modified by unauthorized users. Encapsulation is implemented through access modifiers. Access
madifiers help to implement this feature by defining a scope to access data and methods in a restricted
manner. Consequently, you can describe encapsulation as the ability of an object to hide its internal data
and methods, and make only the intended parts of the object programmatically accessible,

In OOP terms, encapsulation is the process of wrapping data and members in a class, Only specific methods
or properties can access the private members of a class. In other words, encapsulation is an approach to
hide the internal state and behavior of a class or an object from unauthorized access. It restricts the external

Chapter 3: Understanding Object-Oriented Progr ing Concepls

user from sharing and manipulating data, therefore minimizing the chances of data corruption. The
advantages of encapsulation are as follows:

a

Data hiding through the use of the Private access modifier: Encapsulation provides a way to protect
our data from unauthorized access. Th . instead of defining our data as Public, we declare
specific fields, such as, data members, member functions, properties, or indexers, as Private. The
private data can be indirectly operated in two ways, first, through the accessor and mutator methods,
and secondly, through a named property.

Increasing the maintainability of the code: Encapsulation increases the maintainability of the code by
showing only the relevant information to the user.

Preventing data corruption: Encapsulation prevents data corruption by specifying member variables of
a class as private, so that they can only be accessed by specific methods or properties.
Wrapping up of data bers and ber functions in a class: Encapsulation binds the data members

and the member functions of a class into a single unit. This is the most important feature of
encapsulation.

Let's create a Console application named EncapsulationExample to learn how to implement encapsulation,
by performing the following steps:

1.
2

4.

Repeat the steps 1-3 discussed while creating the ConstructorApp application.
Enter EncapsulationExample in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

Click the OK button. The New Project dialog box closes and the EncapsulationExample application is
created.

In the Module1.vh file, add the code given in Listing 3.6:

Listing 3.6: Implementing Encapsulation

accessible only in the class where they are decalred. To implement encapsultaion, the Private keyword is
used.

53

Visual Basic 2008 in Simple Steps

5. Now, open the Project Designer as done earlier in the ExtensionMethod application.
6. Set the Startup object to Sub Main, as shown in Fig.VB-3.9:

o groap. Ding an dwm edn thar
et 0 g 4 o the boolboe. |

E by ongle s, » sppliame

e s

Fls.\m-«l.i-
7. Press the F5 key to run the application. The output of the code given in the Listing 3.6 appears as
shown in Fig.VB-3.10:

Fig.VB-3.10

Inheritance

The most important reason for using OOP is to promote the reusability of code and eliminate redundancy of
code. To ensure reusability, the object oriented languages promote the use of inheritance. Inheritance is
defined as the property through which a child class obtains all the features defined in its parent class. A
parent class is at a higher level in the class hierarchy as compared to the child class. For example, if we
consider the Parrot class as a child class, it obtains its features from the parent class, the Bird class.

When a class inherits the properties of another class, the class inheriting the properties is called a derived
class and the class that allows inheritance of its properties is called a base class. Inheritance in OOP is of
four types:

Chapter 3: Under {ing Object-Oriented Programming Concepts

Single inheritance: Contains one base class and one derived class

Hierarchical inheritance: Contains one base class and multiple derived classes of the same base class
Multilevel inheritance: Contains a class derived from a derived class

Multiple inheritance: Contains several base classes and a derived class

Visual Basic supports single, hierarchical, and multilevel inheritance. It does not support multiple
inheritance directly because multiple inheritance supports multiple base classes and in Visual Basic, a
derived class cannot have more than one base class. You can implement multiple inheritance in Visual Basic
through interfaces.

Nete
t An interface is a collection of data members and member functions. You leam about interface in detall later in the chapter.

CcCooo

Inheritance represents a kind of relationship between two classes. Let’s understand it thfough an example.
Suppose there are two classes named A and B and the B class is derived from the A class, as shown in
Fig.VB-3.11:

| Class A (Base Class) |

| Class B (Derived Class) |

Fig.VB-3.11
In Fig.VB-3.11, A class is referred as the base class or the parent class and B class is referred as the derived
class or child class. The derived class, B, is a completely new class and contains all the data and methods of
its base class, and also includes its own data and methods,
In this section, you learn how to:
a Define a derived class
a Access the members of a base class
a Work with abstract classes
a Work with sealed classes

Defining a Derived Class
A derived class gains all the non-private data of its base class. It also gains the behavior of the base class, in
addition to any other data or behavior defined for itself. It means the derived class, B, has two effective
types: the type of the new class and the type of the class that it inherits.
Let's understand how we can define derived classes with the help of the following code snippet:

55

Visual Basic 2008 in Simple Steps

Accessing Members of the Base Class

When a class is derived from a base class, the members of the base class become the members of the
derived class. The access modifier is used while declaring members of the base class to specify the access
scope of the base class members in the derived class.

Let's create an application named AccessingMembers to learn how to access members of a base class, by
performing the following steps:

1. Repeat the steps 1-3 discussed while creating ConstructorApp application.

2. Enter AccessingMembers in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the AccessingMembers application is
created,

4. In the Module1.vb file, add the code given in Listing 3.7:
Listing 3.7: Accessing Base Class Members

In Listing 3.7, BaseClass 1s the parent class and DerivedClass is the derived class.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.7 appears, as
shown in Fig.VB-3.12:

Fig.VB-3.12

Chapter 3: Under fing Object-Oriented Progr ing Concepls

Working with Abstract Classes

If the objects of a class cannot be instantiated, it is called an abstract class. In Visual Basic, we have a single

base class and can have multiple derived classes. If you have created a base class and want to ensure that no

object of the base class is created later, you can make the base class as abstract. The Mustinherit keyword in

a class indicates that the class cannot be instantiated and is an abstract class, The basic purpose of an

abstract class is to provide a common definition of the base class that can be shared by multiple derived

classes.

Some characteristics of an abstract class are as follows:

Q You cannet instantiate an abstract class directly. This implies that you cannot create an object of the
abstract class. To use the members of the abstract class, you need to define a non-abstract class that
inherits the abstract class. After you have defined the non-abstract class, you can access the members of
the abstract class using the objects of the non-abstract class,

Q An abstract class can contain abstract as well as non-abstract members.

O You must declare at least one abstract method in an abstract class,

O An abstract class is always public.

Let's create an application named AbstractClass 1o learn how to use an abstract class, by performing the

following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter AbstractClass in the Mame text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the AbstractClass application is created.

4. In the Module1.vb file, add the code given in Listing 3.8:

Listing 3.8: Working with Abstract Classes

57

Visual Basic 2008 in Simple Steps

In Listing 3.8, we have created an abstract class, Shape. Inside the Shape class, we have created an
abstract function, Area,

5. Press the F5 key to run the application. The output of Listing 3.8 appears, as shown in Fig.VB-3.13:

Fig.VB-3.13

Working with Sealed Classes

A sealed class implies that the class cannot be used as a base class. The main purpose of using a sealed class

is to take away the inheritance feature from the users so that they cannot derive a class from a sealed class.

Once you have declared a class as sealed, no other class can inherit that class. The Notinheritable keyword

is used to indicate that a class cannot be inherited. When you apply the Notlnheritable keyword as a

modifier to a class, the class becomes final.

Let's create an application named SealedClass to learn how to use a sealed class, by performing the

following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter SealedClass in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the SealedClass application is created.

4. In the Module1.vb file, add the code given in Listing 3.9:

Listing 3.9: Using Sealed Class

In Listing 3.4, we have created a sealed class, SealedClass, and use it in the Main Sub procedure.
5. Press the F5 key to run the application. The output of Listing 3.9 appears, as shown in Fig.VB-3.14:

Chapter 3: Under ling Object-Oriented Prog ing Concepts

Fig VB-3.14

Implementing Polymorphism
Polymorphism, in general, can be explained as one entity having multiple forms. In Visual Basic, you can
use one procedure in multiple ways, with the help of polymorphism. For example, suppose you have to
write a program for calculating the area of some geometrical shape. You can use the same procedure name
for calculating the area of a circle, a triangle, or a rectangle, using different parameters.
The important features of polymorphism are as follows:

o Allows you to invoke methods of a derived class through the base class reference during runtime.

O Helps impl t diffi impl ions of multiple methods that are called through the same name.
O Helps call a method of a class irrespective of the specific implementation it provides.

In Visual Basic, there are two ways to implement palymorphism:

g Compile time polymorphism

3 Run time polymorphism

Let's learn about them in detail.

Implementing Compile Time Polymorphism
When the compiler compiles a prog the compiler has the information about the method arguments.
Accordingly, the compiler binds the appropriate method to the respective object at the compile time itself.
This process is called compile time polymorphism or early binding. You can implement compilc lime
polymorphism through overloaded methods and nperators The argumcnrs passed are matched in terms of
number, type, and order; and then the overl
Compile time polymorphism is categorized as follows:
0 Method Overloading
0 Operator Overloading

Method Overloading

Method overloading is a concept in which a method behaves according to the number and types of
parameters passed to it. Method overloading allows you to define multiple methods with the same name but
with different signatures, When you call overloaded methods, the compiler automatically determines which
methad should be used according to the signature specified in the method call.

Nete
| s descrived earter, a method signatur s the combination ofthe method's ame aiong with the rumber and types of parameters. |

Let's create an application named MethodOverloading to learn how to overload a method, by performing
the following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application. .

Visual Basic 2008 in Simple Steps

2. Enter MethodOverloading in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the MethodOverloading application is
created,

4. In the Module1.vb file, add the code given in Listing 3.10:

Listing 3.10: Overloading Method

rectangle, When the Area Sub procedure is called, the compiler tries to find a method (Sub procedure)

whase signature exactly matches with the method call. The retrieved Sub procedure is then executed. If the

compiler finds multiple matches, it generates an error message.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.10 appears as
shown in Fig.VB-3.15:

Fig.VB-3.15

Operator Overloading

All the operators have their specified meaning and functionality; for ple, the + of adds two
numerals, and the - operator subtracts two numerals. However, at times, you might need to change the
default functionality of an operator, You can do so by operator overloading; for example, the + operator can
be overloaded to concatenate two strings, instead of numerals.,

The mechanism of assigning a special meaning to an operator, according to user defined data types such as
classes, is known as operator overloading. 1t is not possible to overload all the operators. Table 3.2 shows
the overloading behavior of different operators:

Chapter 3: Und ling Object-Oriented Progr ing Concepts

Let's create an application named OperatorOverloading to learn how to overload a method, by performing

the following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter OperatorOverloading in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the 01(button. The New Project dialog box closes and the OperatorOverloading application is
created.

4. In the Module1.vb file, add the code given in Listing 3.11:

Listing 3.11: Overloading an Operator

61

Visual Basic 2008 in Simple Steps

In Listing 3.11, the Operator — method takes one argument of type UnaryOperator and changes the sign of
data member opr.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.11 appears, as
shown in Fig.VB-3.16:

Fig-VB-3.16

Runtime Polymorphism

Runtime polymorphism in Visual Basic is better known as overriding. Overriding allows a derived class to
define a specific implementation for a method, other than the implementation defined by its base class. This
implementation of the method in the derived class overrides or replaces the implementation of the method
in its base class. This feature is known as runtime polymorphism because the compiler binds the method to
an object while the program is being executed (runtime), and not when the program is being compiled.
When you call a method, the method defined in the derived class is invoked and executed instead of the
one in the base class, but with the following conditions:

O You must declare the base class method as Overridable.

O You must implement the derived class method using the Overrides keyword.

Let's now learn how to override a method in Visual Basic.

Overriding a Method

A basic concept behind OOP is that you can create virtual methods, which can be overridden in a derived

class. OOF allows the derived class to provide implementation of a method that is defined in the parent

class. You can do this in Visual Basic with the Overridable and Overrides keywords. For this, you must

explicitly define the Sub procedures in the base class as Overridable. You use the Overridable keyword in a

Sub procedure to indicate that you want to have a base method overridden in a derived class. Using the

Overrides keyword, you must specifically tell the compiler that you are intending to override an existing

overridable Sub procedure.

Let's create an application named MethodOverriding to learn how you can overload a method by

performing the following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter the name MethodOverriding in the Name text box to specify the name of the application, and
specify an appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the MethodOverriding application is
created

4. In the Module1.vb file, add the code given in Listing 3.12:

62

Chapter 3: Understanding Object-Oriented Programming Concepls

Listing 3.12: Overriding a Method

5. Fress the F5 key to run the application. The oulput of the code given in the Listing 3.12 appears, as
shown in Fig.VB-3.17:
Fig.VB-3.17
Structures

A structure in Visual Basic is a user-defined value type. A structure can contain constructors, fields, methods,
properties, and nested types, similar to a class. The Structure statement creates a structure of elements in
Visual Basic. All elements of a structure are private by default, and a structure initializes its elements to the
default value for each data type if nothing is specified. In Visual Basic, one big difference between structures

63

Visual Basic 2008 in Simple Steps

and classes is that a structure does not support inheritance. If you do not use the New operator to call a
constructor when you are declaring a structure variable, the structure object is created but the values of the
structure variable are unassigned.

The syntax of a Structure statement is similar to that of a class, with the main difference being that a
structure is a value type and a class is a reference type. The syntax of a Structure statement is:

In the preceding syntax:

O attributelist: Specifies the attributes to be applied to a declared programming element. This is optional.

a accessmodifier: specifies an access modifier, such as Public, Protected, Friend, and Private. This is
optional.

0 Structure: Is a keyword used to create a structure,

O name: Specifies the name of the structure,

Q End Structure: Terminates the structure definition.

Let's now learn how you can use a structure in our Visual Basic code.

Using a Structure
Structure in Visual Basic allows you to create a new value-type objects that are similar to the built-in type
objects such as Integer, Decimal, Boolean, and so on.
Let’s create an application named Structure to learn how you use a structure, by performing the following
steps: :
1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.
2. Enter the name Structure in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.
3. Click the OK button. The New Project dialog box closes and the Structure application is created.
4. In the Module1.vb file, add the code given in Listing 3.13:
Listing 3.13: Using a Structure

Chapter 3: Understanding Object-Oriented Prog ing Concepls

In Listing 3.13, you can find that a structure, X, is created using the Structure keyword. The X is then called
in the Main Sub procedure of the code.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.13 appears, as
shown in Fig.VB-3.18:

Fig.VB-3.18

Working with Properties

In Visual Basic, properties are a standard part of the language itself, A property provides you a way to expose
an internal data element of a class in a simple and intuitive manner. Visual Basic is one of the first languages
to offer direct support for properties.

You can implement properties in Visual Basic with the Get property procedure and Set property procedure,
You can create a property by defining an externally available name and then writing the Set and Get
property procedures to implement the property. The Get property procedure is used to return the property
value, and the Set property procedure is used to assign a new value to the property.

In this section, you will learn about using a property and using an anonymous type for read-only properties.

Using a Property
To read and write the data, Visual Basic introduced the concept of properties. It also prevents the data from
external usage and modifications. You can declare a property in which you can use the Get and Set property
procedure to retrieve the required value and to assign a value to the specified data,
Let's create an application named Properties to learn to use properties, by performing the following steps:
1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter the name Properties in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the Properties application is created.
4. In the Modulel.vh file, add the code given in Listing 3.14:
Listing 3.14: Using a Property

Visual Basic 2008 in Simple Steps

As shown in Listing 3.14, a property Name is defined which takes Get and Set property procedures to get
and assign value to the variable empName. In the Main sub procedure of the Module1, you can see that we
have created an object of the EmployeeDetail class, named detail, using which we call the property Name
to assign and retrive the values through the property procedures.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.14 ,appears as
shown in Fig.VB-3.19:

Fig.VB-3.19

Using an Anonymous Type for Read-Only Properties

While creating properties for your application, you might need to create a few read-only properties as well,

You can encapsulate these read-only properties into a single unit through anonymous types. Anonymous

types provide a way to encapsulate the read-only properties of an object without having to first explicitly

define a type. The compiler penerates the type name as required but this type name is not available at the

source code level. The compiler derives the properties type to generate the type name. In other words,

anonymous types create unnamed structure types. In Visual Basic 2008, the declaration of an instance of an

anonymous type starts with the New keyword, followed by the With keyword, The declaration uses an

initializer list to specify the properties of the type. The statement, New With {.Name = “Key Board"}, creates

an anonymous type instance with a member named Name. Its syntax is similar to object initializers except

that object initializers specify a type between the New and With keywords. An anonymous type provides

you an easy way 1o encapsulate a set of read-only properties into a single object without defining a new

type.

Let's create an application named AnonymousType to leamn to use an anonymous type for read-only

properties by performing the following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter the name AnonymousType in the Name text box to specify the name of the application, and
specify an appropriate location for the application in the Location box.

3. Click the OK button. The AnonymousType application is created.

4. In the Module1.vh file, add the code given in Listing 3.15:

Listing 3.15: Using Anonymous Type for Read-Only Properties

66

Chapter 3: Understanding Object-Ortented Prog ing Concepls

In Listing 3.15, we define a new anonymous type and create an object named product.

5. Press the F5 key to run the application. The output of the code given in the Listing 3.15 appears, as
~ shown in Fig.VB-3.20:

Fig-VB-3.20

Interfaces

Interface is a collection of abstract data members and member functions. Interfaces in Visual Basic are
introduced to provide the feature of multiple inheritance to classes. The methods defined in an interface do
not have their implementation and only specify the number and types of parameters they will take and the
type of values they will return. An interface is always implemented in a class,

Interface in Visual Basic is equivalent to an ahstract base class. You connaot instantiate an object through an
interface, but you can offer a set of functionalities that is common to several different classes.

Let’s learn how we can define, implement, and inherit an interface in Visual Basic.

Defining an Interface

An interface is defined in the same way as defining a class. The difference is that a class is declared with the
Class keyword and an interface is declared with an Interface keyword. The syntax of defining an |nlerf.1ce in
Visual Basic is as follows:

In the preceding syntax, the Interface keyword is used to define an interface.,

Implementing an Interface

You can implement an interface using a class. An interface is impl 1 using the
The code-snippet for implementing an interface is given in Listing 3.16:

Listing 3.16: Implementing an Interface

p ts keyword,

67

Visual Basic 2008 in Simple Steps

In Listing 3.16, the Implementinterface class implements two interfaces, named MyFirstinterface and
MySecondinterface. The interface, named MyFirstinterface, contains a single method, MyFirstMethod, and
the interface, named MySecondlnterface, contains a method, MySecondMethod. Both these methods do not
return any value. The interface methods, MyFirstMethod and MySecondMethod, are invoked with the help
of an object of the Implementinterface class.

Inheriting an Interface

You can derive a new interface from an existing interface in the same way as deriving a new class from a

base class. The derived interface inherits all the members of the base interface in the same way as a derived

class does. Suppose, you have a class that implements an interface derived from another interface. Now,

when you call a method of the base interface using an object of the class, then the entire inheritance

hierarchy is searched until the actual type of the method is found.

Let’s create an application named Interfacelnheritance to learn to inherit an interface, by performing the

following steps:

1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter the name Interfacelnheritance in the Name text box to specify the name of the application, and
specify an appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the Interfacelnheritance application is
created.

4. In the Module1.vb file, add the code given in Listing 3.17:

Listing 3.17: Interface Inheritance

68

Chapter 3: Understanding Object-Oriented Prog ing Concepls

5. Press the F5 key to run the application. The output of the code given in the Listing 3.17 appears, as
shown in Fig.VB-3.21:

Fig VB-3.21

In Fig.VB-3.21, you can see that Derivedinterface interface implements Baselnterface interface and both of
them are implemented in the Interfacelmplementer class.

Namespaces

The concept of namespace is not new to Visual Basic. A namespace is a kind of wrapper around one or
more structural elements that make the elements unique. Whether or not you explicitly declare a namespace
in the Visual Basic source file, the compiler adds a default namespace. Namespaces have public access and
is not modifiable.

A namespace in Visual Basic has the following properties:

O Itorganizes large code projects

O The operator delimits it

Namespaces in Visual Basic is of two categories: user-defined and system-defined. The user-defined
namespaces are the namespaces you create in the code, and the system-defined namespaces are the one
which are already added in your code when you create a new application. All the code you write exists

69

Visual Basic 2008 in Simple Steps

within an implied namespace that exists for the current context of the code. In Visual Basic, the Imports
statement is used to tell the compiler which namespaces you want to use in the program.

Let's learn to create a user-defined namespace and also how you can pass the reference of the namespace in
your program.
Nete
! Namespaces are ahvays public; therefore, the deciaraton of a namespace cannot indude any access modifer.

Creating Namespaces

When you create a large number of classes, it is helpful to divide them into their own namespaces to help

organize things. You can use namespaces to group the type so that you can use it multiple times and also to

avoid the conflict with the names that are already declared. When you create a namespace, you must use

the Namespace keyword followed by its name.

Let's create an application named MyNamespace to lean to create namespace, by performing the following

steps:

1. Repeat the steps 1 and 2 discussed while creating the ConstructorApp application,

2. In the New Project dialog box, select Visual Basic in the Project types pane and the Class Library
option in the Templates pane.

3. Enter the name MyNamespace in the Name text box to specify the name of the application, and specify
an appropriate location for the application in the Location box.

4. Click the OK button. The New Project dialog box closes and the MyNamespace application is created.

5. In the Class1.vh file, add the code given in Listing 3.18:

UserClass.
6. Click Build->Build Solution on the menu bar to build the application.

Referencing Namespaces
You can also use a user-defined namespace in your application. To use a user-defined namespace in your
application, you must add reference of that namespace to your application.
Let’s create an application named MyApplication to leam to add reference of MyNamespace namespace, by
performing the following steps:
1. Repeat the steps 1-3 discussed while creating the ConstructorApp application.

2. Enter the name MyApplication in the Name text box to specify the name of the application, and specify
an appropriate location for the application in the Location box.

3. Click the OK button. The New Project dialog box closes and the MyApplication application is created.
4. Right-click the project name in the Solution Explorer, as shown in Fig.VB-3.22:

70

Chapter 3: Understanding Object-Oriented Programming Concepls

5. Select Add Reference from the context menu (Fig.VB-3.22). The Add Reference dialog box opens, as
shown in Fig.VB-3.23:

Fig.VB-323
6. In the Add Reference dialog box, click the Browse tab to locate the MyNamespace.dll file
(Fig.VB-3.23).
7. Locate the MyNamespace.dll file and select it, (Fig.VB-3.23).
8. Click the OK button to add the reference to the MyApplication project (Fig.VB-3.23). The
MyNamespace.dll file is added to the MyApplication project.
9. In the Module1.vh file of the MyApplication project, add the code given in Listing 3.19:

k4

Visual Basic 2008 in Simple Steps
Listing 3.19: Adding Reference

In Listing 3.19, a user-detined namespace, My pace.MyT f 1s added to the MyApplication

project.

10. Press the F5 key to run the application. The output of the code given in the Listing 3.19 appears, as
shown in Fig.VB-3.24:

Fig-VB-3.24

Summary

In this chapter, you learned about:

a Defining classes and objects in a Visual Basic application
Hiding irrelevant information in a class using encapsulation
Implementing reusability of code through inheritance
Implementing the same procedure in multiple ways through polymorphism
Creating data types that store small amount of data with the help of structures
Working with properties
Specifying the members that must be supplied by classes with the help of interfaces
Organizing Visual Basic code with the help of namespaces

ooooooo

72

Urheberrechtlich geschitzies Bild

Urheberrechtlich geschitztes Material

Visual Basic 2008 in Simple Steps

Introduction

Windows forms are building blocks of an application. It is a graphical user interface for building Windows
client applications that use Common Language Runtime (CLR}. It is the name given to the Graphical User
Interface (GUI) that constitutes a part of Microsoft .NET Framework.

Apart from Console applications, which run directly from the Windows Command Prompt, other
applications designed on NET Framework are built using forms.

There are forms for Windows applications as well as Web applications. Windows forms possess advanced
graphical and visual representations and are therefore, highly customizable. These forms are also highly
programmable, that is, their behavior can be customized using any .NET compliant language. Windows
forms acts as a container for .NET controls, They offer various smart client features, such as tabbed
navigation (wherein a user can navigate to all the controls in a cycle), ordering of tabs, handling mouse
events, and so on.

In this chapter, you learn to create a Windows Forms application. We also learn to perform various
operations on Windows forms, such as adding controls on the form, setting the title of the form, setting tab
order of controls, enabling and disabling controls, and so on. Further, you also learn to create multiple
forms, message boxes, input boxes, and dialog boxes.

Let us start by creating the Windows Forms application in Visual Basic 2008,

Creating a Visual Basic 2008 Windows Forms Application

You can create a variety of applications using Windows forms. Various controls can be added to make the
applications more functional and user-friendly. You can add controls in the Windows forms from the
Toolbox by dragging and dropping the controls or by double-clicking controls.

Let's perform the following steps to create a new Windows Forms application:
1. Click File>New->Project. The New Project dialog box appears, as shown in Fig.VB-4.1:

Fig.VB-4.1
2. Select the Visual Basic=»Windows option in the Project types pane (Fig.VB-4.1).
3. Select the Windows Forms Application template in the Templates pane (Fig.VB-4.1).

4. Enter a name for your application in the Name text box. In our case, we have entered
FirstProject (Fig.VB-4.1).

74

Chapter 4: Working with Windows Forms

5. Enter the complete path of the folder where you want to save your application in the Location box
(Fig.VB-4.1).

6. Click the OK button (Fig.VB-4.1). The FirstProject application opens, as shown in Fig.VB-4.2:

Fig.VB-4.2

In this section, we learned to create a Windows Forms application in Visual Basic 2008. In the next section,
we discuss some basic operations that you can perform on Windows forms in Visual Basic 2008,

Performing Some Basic Operations on Windows Forms
You can perform basic operations on Windows forms. The different basic operations you can periorm on the
Windows forms are as follows:
a Setting the title of a form

Adding controls to a form

Handling the Click event of a button

Docking and anchoring controls

Setting tab order of controls

Enabling and disabling controls

Let's starl with learning how to set the title of a form.

Setting the Title of a Form
The text in the title bar of a farm can be set at either design time or run time. At design time, it can be set by
changing the Text property of the form from the Properties window. In the following steps, we set the title at

run time,

[= = iy = Ry =}

Let’s perform the following steps to set the title of the form:

1. Create a new Windows Forms application by entering SettingTitleText as the name of the application,
as shown in Fig.VB-4.3:

75

Visual Basic 2008 in Simple Steps

TP e {5 WP B ppcatian,
S i - Sty e
i ettt S ot Gt
ey) d
[o Tarvpiates
Te [taaetn Crdone Termpistes..
1 i
Werkea
o

Tt Prvjous
a R
Hamar
Loy
fresy o @
| temertems emegTinTer [
Fig.VB-43

2. Open the Code Editor by double-clicking the form and then add the hnghlnghted code given in Listing
4.1 in the Form1_Load event handler:

Listing 4.1: Code for Setting the Title Text of the Form

In Listing 4.1, you have set the title text tor the Form1 as Hello, using the lext property of Form1.

3. Run the application by pressing F5 key on the keyboard. As a result, the title text of the form changes to
Hello, as shown in Fig.VB-4.4;

£

Fig. VB-4.4
Adding Controls to a Form

In Visual Basic 2008, we can add controls such as Label, Button, TextBox, and so on to our application from
the Toolbox to facilitate user interaction.

Let’s perform the fallowing steps to add Button control to a form:
1. Create a new Windows Forms application by entering AddingControlsToForm as the name of the
application, as shown in Fig.VB-4.5:

76

Chapter 4: Working with Windows Forms

[oer— e
Vi v E ey i
- LSS Hrrea iy
- i ne——
St Duces Tiewgs Pt
e A L S by
Topog oo e Lo Ly
[y o 1 e
Tt [S -

Fig.VB-4.6
3. Drag and drop the Button contral on Form1 from the Toolbox, as shown in Fig VB-4.7:

R EEIEE E , —
Sl B o R e T

asa

[s
i

Al oot

Thasirataly e d

Fig VB-4.7

Visual Basic 2008 in Simple Steps

13}

4. Select the Button control and change its Name property to btnClick in the Properties window, as
shown in Fig.vVB-4.8:

Fig.VB-4.8

5. Set the Text property of the button to Click, as shown in Fig.VB-4.8. You observe that the text writlen on
the button is changed to the value you gave for the Text property, as shown in Fig.VB-4.9:

Fig.VB-49

78

Chapter 4: Working with Windows Forms

Note
[Sy, you can ad ot conrls such s L

Handling the Click Event of a Button
Visual Basic 2008 is an event-driven language, a language in which the flow of the program is controlled by
user actions, such as by pressing a key from the keyboard or by clicking some control with a mouse,
Clicking a button and entering some text into a text box are basic examples of events. We can write code to
handle an event in the code designer.
Let's first now learn how we can handle the Click event of a button by performing the following steps:
Create a new Windows Forms application with the name HandlingEvents.
Change the Text property of Farm1 to HandlingEvents,
Drag a Button control and a TextBox control from the Toolbox and diop on the HandlingEvents form.
Set the Text property of the button to ClickMe from the Properties windows.
To handle the Click event, double-click the button and add the code in the Code Editor, as given in
Listing 4.2:
Listing 4.2: Code for Handling the Click Event of the Button Control

oS e b =

6. Run the application by pressing the F5 key and click the ClickMe button (Fig.VB-4.10). As a result, the
text, Welcome to Visual Basic 2008, appears in the text box, as shown in Fig.VB-4.10:

Fig.VB-4.10
Docking and Anchoring Controls

Dacking refers to attaching a control to either an edge (top, right, bottom, or left) or the client area of the
parent control, On the other hand, in anchoring you specify the distance that each edge of your control
maintains from the edges of the parent control. You can use docking and anchoring to align and arrange the
controls present on a form.

Let's perform the following steps to dock and anchor a Button control in the application:

1. Open the AddingControlsToForm application.

2. For docking the Button control along the top edge of the form, select the button in the design view and
set its Dock property from the Properties window, as shown in Fig.VB-4.11:

79

Visual Basic 2008 in Simple Steps

W Aok 2 Whroaft Vil Sk &
Pl Bdt Vew Poet Buld Debuy Dals Tools Ted Asalyze Window Help
AL R R & 4
P R R A K S T R
¥ e Lt Desgn], S Py
§ a Addngl i Tebom
-
£
2
T
! =t susiaesn. 2
s & E e [y :
L i -] el Fahe
st e ldatie CamweCiily
Marta

B Lecaten

& hwge

B Manmanae

B Mirmnowtse

& Padding

o e
hasay

Fig.VB-4.11
The Button control is docked to the top edge of the form, as shown in Fig.VB-4.12:

Fie Edt Yiew Pojert Bold Debug Dute Took Test Snaior | Window Help
i S s a B EE & e
4 b Debug = any CPU

-

ETE IO - - S —
a Sokutron LddingCantrhTafeem: (| project) .
= @
i Wy Project
_ T Feembab b

BRRCHR Sy Windewn Fastm Bt

Fig.VB-4.12
We have seen how a control is docked. Now, we learn to anchor a control. To do so, first we must change

the Dock property of the Button control to None.
3. Select the Button control in the design view and set its Dock property 1o Mone from the Properties

window.

80

Chapter 4: Working with Windows Forms

4. To anchor the Button control along all the edges of the form, sefect the Anchor property of the Button
control in the Prnperhes window and click all the edges which are seen as blank, as shown in
Fig.VB-4.13:

W Akt LAt T - WA Wl Bt [t relenp
iummmwmmlmmumhw-m
G

.I = i - S g

Biddt s
+ mp SRy

" FigVB413
As a result, the button is anchored to all the edges of the form.

5. To see how anchoring works, resize the form from the bottom right comer. You see the Button control
also enlarging in the same proportion, as shown in Fig.VB-4.1

Fls,\".ﬂ-l.)-l
Setting the Tab Order of Controls

Controls on a Windows Forms can be made accessible in an appropriate sequence by setting their Tablndex
property.
Let's perform the following steps to set the tab order of controls:

1. Create a new Windows Forms application by entering SettingControlTabOrder as the name of the
application, as shown in the Fig.VB-4.15:

81

Visual Basic 2008 in Simple Steps

Fig.VB-4.15
2. Set the Text property of Form1 as SettingControlTabOrder from the Properties window, as shown in
the Fig.VB-4.16:
Form] Syem Windows Fosms Form -
miElElr g
Locaknabin Fubse “
18 Location 00
Locked Faie
MarMenulitng ineme]
Musimebior Troe
8 Masrmumtioe an §
MirirnceBos Trae E
B Mirsmnumiize L4
Opacty 0%
B Paddng 5900 i
RightToLeft ™
[RgWTolertlaycu Fase
Sherlion True
[ros True
B Sike 300,300
Sasleigitye Autn
Tog
TR, SctumConteollabudes
Tophtest Faine
Trrapsencyley O
UseWanCueson False
‘Wiedow tete Memal
Fig VB-416

Chapter 4: Working with Windows Forms

3.

Drag two Button controls and two TextBox controls from the Toolbox and drop them on the form, as
shown in Fig.VB-4.17:

Fig VB-4.17

Set the Name properties of the two buttons as btnName and binAge respectively. Set their Text
properties as Add Name and Add Age, respectively, as shown in the Fig.VB-4.18.

Set the Name properties of the two text boxes as txtName and txtAge, respectively.

Select the first Button control and set its Tablndex property value to 0 (zera), as shown in Fig.VB-4.18:

Fig VB-4.18

Visual Basic 2008 in Simple Steps
Note

N

Apply Step 6 for all other controls by making each control’s Tabindex property value one more than its
previous control’s Tablndex property value.

T o TS Sy S S —— S ——

8. Run the application by pressing the 5 key. The focus is on the first Button control, as shown in
Fig.VB-4.19:

Fig.VB-4.19
9. Press the TAB key. The cursor moves to the second control, containing the Tablndex value as 1. In this
case, the first TextBox is and you see it focused, as shown in Fig.VB-4.20:

. Fig VB-4.20

Enabling and Disabling Controls
You can set the various properties of the controls in Windows forms to perform manipulations in your
applications. For example, you can set the properties to enable or disable the controls using the Properties
window. To disable a control, set the Enabled property to False in the Properties window of the control.

Similarly, to enable a disabled control, set the Enabled property to True. By default, the Enabled property of
a control is set as True,

Chapter 4: Working with Windows Forms

Let's perform the following steps to learn how to enable and disable controls:

Create a new Windows Forms application with the name EnableDisableControls.

Drag a button control from the Toolbox and drop on the Form. Change the caption of the Button
control to ClickMe, as shown in the Fig.VB-4.21:

1.
2,

b Debug = Bay CRU -
v W ehitnm Dplers < Solusm Trebhli ~ 3

Fig VB-4.21
Double-click the Button control and add the following highlighted code to the Code Editor, as given in

Listing 4.3:
Listing 4.3: Code for Disabling the Button Contral

3.

Run the application by pressing the F5 key on the keyboard. The output of the application is shown in

4,
Fig.VB-4.22, which displays the ClickMe button enabled, by default:

Fig VB-4.22

85

Visual Basic 2008 in
5. Mow, click the ClickMe button, as shown in the Fig.VB-4.23:

Fig.VB-4.23

In this section, we learned to perform some basic operations on Windows forms in Visual Basic 2008. In the
next section, you learn to work with multiple forms.

Working with Multiple Forms
pr you have designed your application, with an introductory form to welcome the user, a data entry
form to get data from the user, and a summary form to display the data analysis results. Instantly, it occurs to
you that not all VB 2008 Windows projects are organized into modules, classes, and forms. How then does
the code in one form reach the code in another form? In other words, how can the codes in the analysis
module read what the user has entered in the data entry form?
This problem is easily solved if you have some idea about working with multiple forms. It means that how
the data entered by the user at one form is read at another form,
Let's perform the following steps to see how to work with multiple forms:
1. Create a new Windows Forms application, named WorkingWithMultipleForms. The application
contains just one Windows form, Form1.
2. To add a second form to this project, sefect Add Windows form from Project menu to open the Add
New Item dialog box.
3. Select Windows Form option in the Templates pane, as shown in Fig.VB-4.24:

Fig.VB-4.24

Chapter 4: Working with Windows Forms

5.

MNow, 12 is added to
the pi

Fig VB4.25

Mow, add a text box TextBox1, to Form2. When the user clicks on a button in Form1, we read the text
entered in the text box on Form2 and display it in a text box in Form1.

If you want to display the second form as soon as Form1 is loaded, then you must put the code for
displaying the second form inside the Load event handler of Form1.

6.

10.
1.
12

Add the following code to show the second form using the Show method, in the Code Editor:

NOW 300 3 BUTION CONTIOI ANG @ 1€XTHOX CONTFD! 10 FOrmI.
Set the Text property of the button to Read Text. When the user clicks this button, we want the text in
the text box of Form2 to be read and to display it in the text box of Form1.

Now, double-click the Read Text button in Form1 and add the following highlighted code inside the
Button1 Click event handler in the Code Editor:

Run the application by pressing F5 key. You can see Form1 and Form2 (Fig.VB-4.26).
Type some text in the text box in Form2, as shown in Fig.VB-4.26.
Click the Read Text buttan on Form1 (Fig.VB-4.26).

87

Visual Basic 2008 in Simple Steps

As a result, Form2 disappears and the text appears in the text box in Form1, as shown in Fig.VB-4.27:

Setting the Startup Form

A startup form is the first form displayed when an application having two or more forms loads. By default,
Form] is the startup form. We make a form as a startup form when we want to display it at the beginning of
our application. To learn how to set the startup form of an application, we open the project we created in
the previous section of this chapter and make the second form of this project as the startup form.

Let’s perform the following steps to set the startup form:
1. Open the WorkingWithMultipleForms project.
2. Select Project->»WorkingWithMultipleForms Properties on the menu bar, as shown in Fig.VB-4.28:

Chapter 4: Working with Windows Forms

Note

The Project Designer appears, as shown in Fig.VB-4.2%:

o Bt o e -

3 SR ettt o Shsdn

sorh

Fig VB-4.29

In the Project Designer, Form1 is selected in the Startup form option. Now, if you run this project, Form1
appears.
In the Project Designer, click the combo box under the Startup form option and select Form2, as

3.

shown in Fig.VB-4.30:

Visual Basic 2008 in Simple Steps

Fig.VB-4.30

Nete
E Similarly, to make a form appear as the first form in the application, select any existing form in the Project Designer.

4. Now, press F5 to run this project. Form2 appears, as shown in Fig.VB-4.31:

Fig.VB-431
As a result, Form2'ds :iow set as the startup form. Now, whenever the application is run, Form2 is displayed
in place of Form1, which is by default the startup form.

In this section, we learned to work with multiple forms in Visual Basic 2008. In the next section, you learn to
create message boxes in Visual Basic 2008,

Chapter 4: Working with Windows Forms

Creating Message Boxes

To display a message to the user at run time, we can create a message box. A message box can be created
through the code with the help of the MsgBox function. The syntax of the MsgBox function is below:

A of the arguments passed to the MsgBox function is as follows:

O Prompt: A string expression that is displayed as the message in the message box. The maximum length
for this expression is 1,024 characters,

O Buttons: A set of values specifying the number and type of buttons to display, the icon style to use, the
identity of the default button, and the modality of the message box. If you do not specify the Buttons
argument in the function, the function takes the default value zero as the value for the Buttons
argument.

O Title: The string expression displayed in the title bar of the dialog box. If you do not specify the Title, the
name of the application is placed in the title bar.

Table 4.1 shows the possible constants that the Buttons argument of the MsgBox function can take:

91

Visual Basic 2008 in Simple Steps

The MsgBox function returns a value from the MsgBoxR

The values in the MsgBoxResult

enumeration indicate which button in the message e box the user has clicked. These values may include one

of the following:
OK

Cancel
Abort

Retry
Ignore

Yes

No

OoDoDoopo

Let's perform the following steps to learn to create a message box:
1. Create a new Windows Forms application with the name UsingMsgBoxFunctionApp.
2. Set the Text property of Form1 as UsingMsgBoxFunction, as shown in the Fig.VB-4.32:

Feeml Systern.Windows.Forms.Form -
G
m_m-.—um
MainMeru5inp (ncne} -
MamimizeBon True
(B Maimurdae 1]
Minimaefos True
B Minimumiae 00
Opacity 100%
& Padding 0000
FightToleft e
FightTol el ayout Falze
Showlcon True
ShowlnTaskbar True
B Sze 266, 251
SieGripStyle Auto
Tag
R, UsnsMagloxT unction
Tophosz Fake
Transparencykey (|
UseWaitCurscr Fakee
WindowState Hormal -
Thet bt ansociated with the control.
Fig.VB-4.32

3. Drag a Button control and a TextBox control from the Toolbox and drop on your form.

4. Set the Name and Text properties of Button control to btnShowMessageB
respectively,

and Show M

Chapter 4: Working with Windows Forms

5. Set the Name property of the TextBox to txtMessage.

6. Double-click the Button on Form1 in the design view and add the following Code to the Code Editor, as
given in Listing 4.4:

Listing 4.4: Code for Using the MsgBox Function

In the above code, we create a message box and store the result of the selection made by the user on the

message box in an Integer variable named Result. If the user clicks the OK button at run time, the text

“You have clicked OK’, is added to the text box present on the Form.

7. Run the application by pressing the F5 key and click the Show Message Box button (Fig.VB-4.33). As a
result, a message box appears displaying a message, as shown in Fig.VB-4.33:

Fig.VB-4.33
8. Click the OK button in the message box as shown in Fig.VB-4.33. The message box closes and the text,
“You have clicked OK’, is added to the text box present on the form as shown in Fig.VB-4.34:

Fig.VB-4.34
In this section, we leamed to create a message box, which prnwdes a form-like user interface to display a
message to the user at run time. Besides displaying m B times we also need to accept

some input from the user at run time. This can be done using an input box We discuss input boxes in the
next section.

93

Visual Basic 2008 in Simple Steps

Creating Input Boxes

An Input box is also a form-like user interface similar to a message box. However, unlike a message box, an
input box accepts the input from the user. An input box can be created with the help of the InputBox
function. The syntax of the InputBox function is given below:

A description of the arguments passed to the InputBox function is given below:

=]

o

a

a

a

Prompt: A string expression that is displayed as the message in the input box. The maximum length for
this expression is 1,024 characters idepending on the width of the characters used).

Title: A string expression displayed in the title bar of the input box. Note that if you omit the title, the
application name is placed in the title bar.

DefaultRes A string expression displayed in the text box as the default response, in case no other
input is provided. Note that if you omit the DefaultResponse, the displayed text box is empty.

XPos: The distance in pixels of the left edge of the dialog box from the left edge of the screen. Note that
if you omit XPos, the dialog box is centered horizontally.

YPos: The distance in pixels of the upper edge of the dialog box from the top of the screen. Note that if
you omit YPos, the dialog box is positioned vertically about one-third of the way down the screen.

Let's perform the following steps to learn how we can create an input box:

1.
2.

3.

Create a new Windows Forms application with the name UsinginputBoxFunctionApp.
Set the Text property of Form1 as UsingInputBoxFunction, as shown in Fig.VB-4.35:

Fig.VB-4.35
Drag a Button control and a TextBox control from the Toolbox and drop on your Form.

4. Set the Name and Text properties of the Button control as btnShowlinputBox and Show Input Box,

respectively,

94

Chapler 4: Working with Windows Forms

5. Set the Name property of the TextBox control to txtMessage.
6. Double-click the Button control on Form1 in the desigr view and add the following code in the Code
Editor, as given in Listing 4.5:

Fig.VB-4.36:

Fig.VB-436
As a result, an input box appears, as shown in Fig.VB-4.36.
8. Enter some text in the text box provided on the input box, as shown in Fig.VB-4.37:

Fig.VB-4.37

9. Click the OK button in the input box, as shown in Fig.VB-4.37. The input box closes and the text box
present on the form shows the text that you typed, as shown in Fig.VB-4.38:

Visual Basic 2008 in Simple Steps

Soom bt Bos

Fous e ke

Fig. VB-4.38

In this section, we learned to create input boxes in Visual Basic 2008. In the next section, you learn to create
dialog box in Visual Basic 2008.

Creating Dialog Boxes

Dialog box is a ble window that is displayed on the screen when you select a specific menu option,

They are called as dialog box because they facilitate a dialog between the user and the computer by either

informing the user of something or requesting the user for some sort of input, or both. However, pre-defined

dialog boxes do not always iulfill our requirements. So, there are certain ways to create customized dialog
hoxes. In this section, we create an application, in which the user enters some text in a dialog box, and the
entered text is read when the dialog box closes.

Let's perform the following steps to learn how we can create a dialog box:

1. Create a new Windows Forms application with the name CreatingDialogBoxesApp.

2. Change the Text property of Form1 to CreatingDialogBoxes.

3. Add a Button control and a TextBox control on Form1 from the Toolbox.

4. Change the Name property of the Button and the TextBox controls as btnShowDialogBox and
txtEnteredText, respectively. Also change the Text property of the button to Show Dialog Box.

5. Now add one more form to your application by clicking Project-> Add Windows Form. Further, change
the Text property of Form2 to Enter Your Text.

6. Add one Label control, one TextBox control, and two Butten controls on Form2 from the Toolbox.

7. Change the Name property of the Label, the TextBox and the two Button controls as IblEnterText,
txtEnterText, and btnOK and btnCancel, respectively. Also change the Text properties of the Label and
the two Button controls as Enter Your Text and OK and Cancel, respectively. After adding controls to
Form2, it appears as shown in Fig.VB-4.39:

Fig VB-4.39

Chapter 4: Working with Windows Forms

8. Setthe antBordu‘Style pmperh,' of Form2 to l’txelealn;, as shown in Fig.VB-4.40:

mmmﬂnummrﬂrnmm&

Fig.VB-4.40

9. Set the ControlBox property of Form2 to False to remove the control box (the minimize, maximize, and
close buttons appear at the upper right cormer of the form).

10. Set the ShowInTaskbar property of Form2 to False meaning that when this dialog box appears, it does
nol display an icon in the Windows taskbar.

11. Set the DialogResult property of the OK button to OK and also the same property of the Cancel button
to Cancel, as shown in Fig.VB-4.41:

T
P
(]
| Bacue Corret
acimncimage [incess
[R——
[re—
=
[[
T -
e e
nabind T
0 ik ppsnce
= Samirs i
o Vit S B,
et W Corarsiten 1
bt T |
= =
y - i
i Tha kg b st predcrsd i g el |
faet '
Fig.VB-4.41

97

Visual Basic 2008 in Simple Steps

The DialogResult property retims a value from the DialogResult enumeration, when the dialog box is
closed. So, you can determine which Button the user has clicked. This property can have one of the
following values:

o OK
3 Cancel
Abort
Retry
Ignore
Yes

No

o None

Displaying and Reading Data from Dialog Boxes
For displaying the dialog box, the user clicks on the Show Dialeg Box button. Here, we use the ShowDialog
method, instead of the Show method. This is due to the reason that the ShowDialog method returns a
DialogResult value which indicates what button the user has clicked. Now, if the user clicks the OK Button,
the text entered by the user in the text box of the dialog box, is displayed in the text box of Form1.
Let's perform the following steps to display and read the data from dialog boxes:
12. Double-click the Show Dialog Box button on Form1 in the design view and adid the highlighted code

snippet given in Listing 4.6 in the Code Editor:

Listing 4.6: Using the ShowDialog Method

ococooeo

13. Double-click the OK button on Form2 in the design view and add the highlighted code snippet given in
Listing 4.7 in the Code Editor:
Listing 4.7: Code for Closing the Form

14. Now, run the application by pressing F5 key on the Keyboard. As a result, Form1 1oags.
15. Click the Show Dialog Box button on Form1, the dialog box, which is Form2, opens, as shown in
Fig.VB-4.42:

P

Fig VB-4.42

Chapter 4: Working with Windows Forms

16. Enter any text in the text box of the dialog box, as shown in Fig.VB-4.43.
17. Click the OK button, as shown in Fig.VB-4.43:

Fig VE-4.43

The dialog box closes and the text you entered in the text box of the dialog box is shown in the text box of
Form1, as shown in Fig VB-4.44:

Fig.VB4.44

Summary
In this chapter, you learned about:

a
a

a

Creating a Windows Forms application

Performing basic operations on Windows Forms, such as setting the title of a form, adding controls to a
form, and handling events

Waorking with multiple forms and setting the startup form

Creating of message boxes, input boxes, and dialog boxes

Urheberrechtlich geschitztes Bild

Urheberrechtlich geschiitztes Material

Visual Basic 2008 in Simple Steps

Introduction

A control is an object that can be placed on the form to facilitate the user interaction with the applications.
Windows controls are the controls used for creating Windows Forms applications. These controls are
available in the Toolbox of Visual Studio 2008 Integrated Development Environment {IDE}. In this chapter,
we are going to cover some popular Windows controls, such as Label, TextBox, Button, RadioBution,
CheckBox, ComboBox, ListBox, PictureBox, Timers, ProgressBar, and two grouping controls— GroupBox
and Panel. These two are called Grouping controls because they allow the developer to group other controls
while developing a Window Forms application. Let's now discuss different Windows controls one by one
with the help of applications.

The Label Control

The Label control is used for displaying static text that you do not want to be edited by the user or a banner
containing some message for the user. It can also be used to display dynamic text. Dynamic text is the text
that changes after the occurrence of an event in an application. For setting a label's appearance, you need to
set properties of the Label control.

Here, we learn how to perform the following tasks with the help of an application:

O Formatting the text in labels

Q Handling the Click event of labels

Formatting the Text in Labels

You can format the text in a label by setting the Font property of the label using the Properties window. To
format the text in the labels, perform the following steps:

1. Create a new Windows Forms application and name it LabelsExample.
2. Drag and drop the Label control on the Windows form from the Toolbox, as shown in the Fig.VB-5.1:

e

A b e
Fig.VB-5.1

102

Chapter 5: Working with Windows Controls

3. Set the BackColor property to LightPink from the Web tab, as shown in Fig.VB-5.2:

Fig.VB-5.2
4. Set the Text property to Hello World and TextAlign property to MiddleCenter, as shown in Fig.VB-5.2.

5. Select the Label control on the form and click the ellipsis button {...) in front of the Font property in the
Properties window. This opens the Fent dialog box, as shown in Fig.VB-5.3:

Fig. VB-53

6. In the Font dialog box, sefect a font, font style, and font size, and then click the OK button (Fig.VB-5.3).
In our case, we have selected Arial Black as the font, Bold as the font style, and 8 as the font size. You
can see the design view of this application in Fig.VB-5.4;

103

Visual Basic 2008 in Simple Steps

Fig.VB-5.4
Fig.VB-5.4 displays the appearance of the Windows form along with the Label control after setting the
properties,

Handling the Click Event of Label
You can perform an action at runtime with the Label control by handling its Click event in the code. To
handle the Click event of Label control, perform the following steps:
1. Select the Label control and double-click it in the form.

3. Run the application by pressing the F5 key on the keyboard and then click the label.
A message box displaying the message. You have clicked the label control, appears, as shown in Fig VB-5.5:

Vou have cheked the label control

Fig.VB-55
Here, we have discussed about Label control. Let's now learn about TextBox control in Visual Basic 2008,

The TextBox Control

The TextBox control is a Windows Forms control that lets you enter text on a Windows form at runtime.
TextBox contrals are mostly used when the user requires simple text area where one or few lines of text can
be displayed. By default, a TextBox control accepts only a single line of text. However, you can make a
TextBox control lo accept multiple lines of text, and disable text editing, by setting different properties of the
TextBox control,

104

Chapter 5: Working with Windows Controls

Let's perform these steps to create a Windows Forms application showing how to use TextBox control:
1. Create a new Windows Forms application and name it TextBoxExample.
2. Drag and drop a TextBox control from the Toolbox on Form1, as shown in Fig.VB-5.6:

Fig.VB-5.6
3. Double-click the TextBox contral for opening the Code Editor and add the following code, as given in
Listing 5.1:
Listing 5.1: Code for Using TextBox

The explanation of the lines of code of the preceding code snlppel isas tollows
| TextBoxl,ForeColor = Color.Blue ' s
In the above code snippet, the ForeColor property of a control is used to deilne the [ure curnr of the text. ln

our example, we have set it to blue color,

N InNE aDove COOE SNIPEET, WE are CNeckimng e Iengon on e exn Sriered an e exioux nrougn o

conditional If statement. As soon as the length of the text exceeds & characters, it displays a message box

showing the warning message and sets the ReadOnly. property of the textbox to True, which means that now

you are not able to write in the textbox.

4. Run the application by pressing the F5 key on the keyboard and as a result a form gets displayed, as
shown in Fig.VB-5.7:

105

Visual Basic 2008 in Simple Steps

Fig.VB-5.7

5. Enter some text in the textbox in the form. You will notice that the color of the text in the text box
becomes blue, as shown in Fig.VB-5.8:

6. Enter some more text in the text box. As soon as the character count exceeds 6, a message box appears,
as shown in Fig.VB-5.9:

Fig.VB-5.9
7. Click the OK button of the message hox, as shown in Fig.VB-5.9.
The textbox now becomes read-only, as shown in Fig.VB-5.10:

106

Chapter 5: Working with Windows Controls

Fig.VB-5.10

Neie
{ Wiitespaces are aso reated as characters. .]

Here, we have discussed about TextBox control. Let's now move on to learn about Button control in Visual
Basic 2008.

The Button Control

The Button control is one of the most basic Windows Forms controls. Almost every Windows Forms
application has at least one Button control associated with it. The Button control lets you generate a Click
event. Here, we learn how to perform the following tasks using the Button control:

o Formatting the text in buttons

0 Setting the background and foregraund colors of buttans

Formatting the Text in Buttons

You can format the text displaying on a Button control by setting its Font property. This property can be set
either using the Properties window or using the Code Editor.

Let's perform these steps to create a Windows Forms application showing how to format the text in buttons
using the Properties window:

1. Create a new Windows Forms application and name it ButtonExample.
2. Drag and drop the Button control on the Windows form from the Toolbox, as shown in Fig.VB-5.11:

Fig.VB-5.11

107

Visual Basic 2008 in Simple Steps
3.

Select the Button control on the form and then set its Text property to .NET Programming in the
Praperties window.

4. Set the Font property of the Button control using the Font dialog box. Here, we choose the Font Style as
Bold Italic and the Font as Arial Black and then click the OK button, as shown in Fig.VB-5.12:

You can see the design view of this application in Fig.VB-5.13:

Fig.VB-5.13
Fig.VB-5.13 shows the Button control with the name, .NET Programming.

Setting the Background and Foreground Colors of Buttons
You can add background and foreground color of a button by setting its BackColor and Forecolor
properties, respectively. Let's perform the following steps to set the background and foreground color of
buttons:
1.

Select the Button control and then in the Properties window, click the down arrow in front of the
BackColor property.

108

Chapter 5: Working with Windows Controls

A drop-down list appears with three tabs, named Custom, Web, and System, as shown in Fig.VB-5.14:

| The Backround color of the componene.
|

Fig.VB-5.14
2. Select the Web tab and then select a color from the color palette displayed under this tab. Here, we set
the color to Crimson, as shown in Fig.VB-5.14.
The background color of the button changes to crimson, as shown in Fig.VB-5.15:

Fig.VB-5.15

109

Visual Basic 2008 in Simple Steps

3. Select a color from the color palette of the ForeColor property. Here, we set the color to DarkBlue, as
shown in Fig.VB-5.16:

Fig-VB-5.16
The fore color of the Button control changes, as shown in Fig.VB-5.17

Fig VB-5.17

4. Run the application by pressing the F5 key on the keyboard. As a result, the output is displayed as
shown in Fig.vB-5.18:

110

Chapter 5: Working with Windows Controls

Fig VB-5.18

Here, we have discussed about the Button control. Let's now move on to learn about RadioButton control in
Visual Basic 2008.

The RadioButton Control

A RadioButton control, also known as an option button, is used to select one option from a set of options.
Radio buttons always work in groups. This means whenever you select one radio button from a group of
radio buttons, the other radio buttons in the group automatically get deselected. A radio button can display a
text, or an image, or both,

Let's perform these steps to create a Windows Forms application showing how to use RadioButton control:
1. Create a new Windows Forms application and name it RadioButtonExample.

2. Drag and drop two Label controls and three RadioButton controls from the Toolbox on Formi, as
shown in Fig.VB-5.19:

Fig.VB-5.19
3. Set the Name and Text properties of the controls, as shown in Table 5.1:

1

Visual Basic 2008 in Simple Steps

4. 5el the Fonl Style ot Label with text, Select the Font Color, as Bold, as shown in Fig.VB-5.20.
5. Set the size of the Label control with text WELCOME as 14 and make its Font Style as Bold, as shown in

Fig.5.20:
Fig.VB-5.20
6. In design view, double-click the Red radio button and add the following code snippet in the Code
Editor:

7. In the design view, double-click the Blue radio button and add the following code snippet in the Code
Editor:

8. In the design view, double-click the Green radio button and add the following code snippet in the Code
Editor:

112

Chapter 5: Working with Windows Cantrols

9. Press the F5 key on the keyboard to run the application. You will notice that the word WELCOME
appears in red color because the radio button beside the Red option is selected, by default, as shown in
Fig.VB-5.21:

Fig.VB-5.21

10. Now, sefect the radio button beside the Blue option, the word WELCOME is displayed in blue color, as
shown in Fig.VB-5.22;

M. VB-5.2Z

11. Similarly, sefect the radio button beside the Green option, the word WELCOME is displayed in green
color, as shown in the Fig.VB-5.23:

Fig.VB-5.23

113

Visual Basic 2008 in Simple Steps

Here, we have discussed aboot RadioButton control. Now, let’s learn about CheckBox control in Visual
Basic 2008.

The CheckBox Control

A CheckBox control accepts a value of either True or False. To select a CheckBox control, you need to just
click it. To clear, again click it. When you select the CheckBox, it holds the True value and when you clear
the CheckBox, it halds the False value. A CheckBox control can display image or corresponding text
associated with it. It can also display both at the same time.

Let’s perform these steps to create a Windows Forms application showing how to use CheckBox control:

1. Create a new Windows Forms application and name it CheckBoxesExample.

2. Drag and drop two Label controls and two CheckBox controls from the Toolbox on Form1, as shown in
Fig.VB-5.24:

Ready T E 0130
Fig VB-524
3. Set the Name and Text properties of these controls, as shown in Table 5.2:

4. Set the Font property of IbITitle by setting its Font style to Bold and Size 1o 10, as shown in Fig.VB-5.25.
5. Also, set the Fonl property of IbIWelcome by setting its Size to 12, as shown in the Fig.VB-5.25:

14

Chapter 5: Working with Windows Controls

Fig.VB-5.25

6. In the design view, double-click the Bold check box and add the following code snippet in the Code
Editor:

8. Kun the application by pressing the F5 key on the keyboard. The output window appears, as shown in
Fig.VB-5.26:

Fig VB-5.26

9. Select the CheckBox with text Bold. As a result, the label with text WELCOME changes its Font Style to
Bold, as shown in Fig.VB-5.27:

115

Visual Basic 2008 in

10. Sefect the CheckBox with text Italic. As a result, the label changes its Font Style to lalic, as shown in
Fig.VB-5.28:

Here, we have discussed about CheckBox control in Visual Basic 2008. Now, let’s learn about ComboBox
control in Visual Basic 2008,

The ComboBox Control
ComboBox is a Windows control that is widely used for selecting an option from a list just as the ListBox
control; however, unlike the ListBox control, you can also enter your own text in the ComboBox control,
The ComboBox control is used to display data in a drop-down list. When the user has selected an option,
the drop-d list contained in the ComboBox automatically collapses. A user can choose only a single
option from the list of items. You can also add or remove any item from this drop-down list. Each item in a
ComboBox control is recognized by its position in the drop-down list, which is known as an index.
Let's perform these steps to create a Windows Forms application showing how to use ComboBex control:
1. Create a new Windows Forms application and name it ComboBoxExample.
2. Now, drag and drop two ComboBox controls on the Windows form from the Toolbox. Also, drag and

drop three Label controls for displaying texts as banner.

116

Chapter 5: Working with Windows Controls

Table 5.3 lists the description of the different controls that are used in the ComboBoxExample:

3. Select I.abel! and then imm Ihe Propertls wind.o}-.v set Ihe Text properly as Seled Date. Slmllarly, set
the Text property for Label3 as Select Month and for the Label1 as Check Your SunSign.

4. Click the arrow at the top right corner of the ComboBox1 (Fig.VB-5.29). As a result, the Smart Tag of the
combo box appears, as shown in Fig.VB-5.29.

5. Click the Edit Items option on the Smart Tag of ComboBox1, as shown in Fig.VB-5.29:
T e

BERED i

Fig.VB-5.29
As a result, the String Collection Editor dialog box appears, as shown in Fig.VB-5.30:

6 gy SSSTHTS[EN-VEES

Fig.VB-5.30

6. In the String Collection Editor dialog box, add date values in the Enter the strings in the collection (one
per line) list box and then click the OK button (Fig.VB-5.30).

7. Similarly, add month values in the String Collection Editor dialog box for ComboBox2 and click the OK
button, as shown in Fig.VB-5.31;

17

Visual Basic 2008 in

L3031

Decernbed

Fig.VB-5.31

We assume that the user first select the date in the ComboBox1 and then select the month option from the

ComboBox2. To display a messape when the user selects the month, use the SelectedindexChanged event of

the ComboBox2. i

8. Double-Click Combobox2 and add the code under the SelectedindexChanged event handler in the
Code Editor, as shown in Listing 5.2:

Listing 5.2: Code for Using ComboBox

118

Chapter 5: Working with Windows Controls

Y. Fress the F5 key on the keyboard to run the application. As a result, the output gets displayed, as shown
in Fig.VB-5.32:

Fig VB-5.32
10. Choose a date from the combo box beside the Select Date option and the month from the combo box
beside the Select Month option. As a result, the sun sign according to the selected date and month
appears in a message box, as shown in Fig.VB-5.33:

119

Visual Basic 2008 in Simple Steps

Fig.VB-533
11, Click the OK button to close the message box (Fig.VB-5.33).

Here, we have discussed about ComboBox contral. Now, let's learn about ListBox control in Visual Basic
2008.

The ListBox Control
ListBox is a standard Windows control that is used to display the text as a list. The text can be displayed as a
sorted or an unsorted list. You can add the text as an item into this collection for displaying it on a ListBox
control. Similarly, you can remove an item for not displaying it on the ListBox control. Each item in a
ListBox control is recognized by its position in the list, which is known as its index.
Let’s perform these steps to create a Windows Forms application showing how to use ListBox control:
1. Create a new Windows Forms application and name it ListBoxExample.
2. Drag and drop a ListBox control from the Toolbox on Form1, as shown in Fig.VB-5.34:

Fig.VB-5.14

3. Click the ellipsis button (...) in front of the Items property in the Properties window to set the Items
property of the ListBox control (Fig.VB-5.34). The String Collection Editor dialog box appears, as shown
in Fig.VB-5.35:

120

Chapter 5: Working with Windows Controls

Fig.VB-535

4. Enter the items in the String Collection Editor dialog box and click the OK button, as shown in
Fig.VB-5.35.

Now, you can see all the items in ListBox control, as shown in Fig.VB-5.36:

Fig.VB-5.36

5. Double-click the ListBox control and add the following code to the SelectedindexChanged event in the
Code Editor:

displaying a message in the message box.
6. Press the F5 key on the keyboard to run the application, as shown in Fig.VB-5.37;

121

Visual Basic 2008 in Simple Steps

Fig VB-5.37
Select any item from the listbox. A message box appears showing the corresponding message, as shown
in Fig.VB-5.38:

7.

Fig.VB-5.38
Here, we have discussed about ListBox control in Visual Basic 2008, Now, let's learn about GroupBox
control in Visual Basic 2008,

The GroupBox Control

A GroupBex control is used to group together all the controls related to a task. Depending upon the various

tasks to be performed, the form can be divided into various groups. Group boxes can or cannot have a
caption.

Let's perform these steps to create a Windows Forms application showing how to use a GroupBox control:
1. Create a new Windows Forms application and name it GroupBoxesExample.

2. Drag and drop two GroupBox controls and one TextBox control on Form1. Also, add two RadioButton
controls inside each GroupBox.

3. Set the Name and Text properties of these controls, as shown in Table 5.4;

122

Chapter 5: Working with Windows Controls

4. Set the size of the TextBox control to 16 and the Font Style to Bold. Also, set the TextAlign property to
Center.

After inserting controls in the form and setting their respective properties, the form looks, as shown in

Fig.VB-5.39:

Fig.VB-5.39
5. In the design view, double-click the Red radio button and add the following code snippet in the Code
Editor:

123

Visual Basic 2008 in

8. Double—click the Pink radio bt} - "7 the Code Editor:
9. Press the F5 key on the to The output of this application is shown in
Fig.VB-5.40:
Fig.VB-5.40

Here, you can see, we have used two GroupBox controls to group two sets of RadioButton controls. If you
don’t use the GroupBox controls then you can only select one radio button out of the four. However, as we
need to set the font color as well as background color at the same time, so we have to group the
RadioButton controls into two separate groups using two GroupBox controls.

Here, we have discussed about GroupBox control in Visual Basic 2008. Now, let's learn about Panel control
in Visual Basic 2008.

The Panel Control
The Panel control is also used for putting different controls together into an identifiable group, same as the
GroupBox control. The differences between the two controls are that the Panel control has scroll bars, but
the GroupBox control does not have, and the GroupBox control displays a caption, but the Panel control
does not.
Let's perform these steps to create a Windows Forms application showing how to use Panel control:
1. Create a new Windows Forms application and name it PanelsExample.
2. Drag and drop two Panels on Form1 from the Toolbox.
3. Add three RadioButton controls to each of the two Panel controls. Also, add two TextBox controls in

Form1 from the Toolbox.

4, Set the Text properties of the RadioButton controls, as shown in Table 5.5:

After adding controls and setting their respective properties, the form looks as shown in Fig.VB-5.41:

124

Chapter 5: Working with Windows Controls

Fig, VB-5.41

5. Add the code to the Code Editor for handling the CheckChanged events of the RadioButton controls, as
shown in Listing 5.3:

6. Run the application by pressing the F5 key on the keyboard and then sefect a radio button in each
panel. As a result, two messages are displayed in the two text boxes, as shown in Fig.VB-5.42:

125

Visual Basic 2008 in Simple Steps

Here, we have discussed about Panel control in Visual Basic 2008. Now, let's learn about PictureBox
control in Visual Basic 2008,

The PictureBox Control

PictureBox is a Windows control that is used for displaying images in the Windows Forms applications. The
image or picture can also be edited in this picturebox. For example, you can stretch the image you have
added in the Windows form.

Let's perform these steps to create a Windows Forms application showing how to use PictureBox control:

1. Create a new Windows Forms application and name it PictureBoxesExample.

2. Drag and drop one PictureBox control on Form1 from the Toolbox. Fig.VB-5.43 displays the form after
adding the PictureBox control:

FI;.W-&.U

3. Click the ellipsis button (...} that is displayed in front of the Image property in the Properties window to
set the Image property of the PictureBox control, as shown in the Fig.VB-5.44:

126

Chapler 5: Working with Windows Controls

As a result, the Select Resource dialog box is displayed, as shown in Fig.VB-5.45:

Fig.VB-5.45
4. Click the Import button to add the image in the Select Resource dialog box (Fig.VB-5.46).

Fig.VB-5.46
5. Click the OK button, as shown in Fig.VB-5.46.
As a result, the picture adds in the PictureBox control placed on the form, as shown in Fig.VB-5.47:

127

Visual Basic 2008 in Simple Steps

6. Press the F5 key on the kcvboard to run the application, The output form is shown in Fig.VB-5.48:

Here, we have discussed about PictureBox control in Visual Basic 2008. Now, let's learn about ProgressBar
and Timer controls in Visual Basic 2008,

The ProgressBar and Timer Controls

The ProgressBar control is used to indicate Ihe progress of any opernuun It shows a bar that fills itself from

left to right as the operation progr . The A and A perties indicate the range of values

representing the progress of a task. Usually, the Minimum pruperty is set to value zero and Maximum

property is set to a value that indicates the completion of a task. Timers are controls that are used to generate

periodic events. These controls are called components and they do not appear in a window at run time. At

design time, they appear in the component tray below the form in which they are added. You can add a

Timer control to your form from the Toolbox.

Let's perform these steps to create a Windows Forms application showing how to use Progresshar and Timer

controls:

1. Create a new Windows Forms application and name it ProgressBarsTimersE:

2. Drag and drop one PictureBox, one Button, one ProgressBar, and one Timer control on Form1 from
the Toolbox.

3. Set the Name property of the Button to btnAddimage and its Text property to Add Image. Now, the
form appears as shown in Fig.VB-5.49:

Fig.VB-5.49

128

Chapter 5: Working with Windows Controls

4. In the design view, double-click the button having caption Add Image (Fig.VB-5.49) and add the
following code snippet in the Code Editor:

5. Now, add the following code for the Tick event of Timer1 in the Code Editor:

Note

6. Press the F5 key to run the application to see the output as shown in Fig.VB-5.50:

Fig.VB-5.50

7. Now, click the Add Image button (Fig.VB-5.50). This starts increasing the value of the Value property of
the ProgressBar control, as shown in the Fig.VB-5.51:

Fig.VB-5.51

After the value of the Value property of the ProgressBar control reaches 100, the image is loaded in the
PictureBox control on the form, as shown in Fig.VB-5.52:

Visual Basic 2008 in Simple Steps

Summary

.“

s

Fig. VB-5.52

In this chapter, we learned how to work with the following controls:

a The Label control

a The TextBox control

a The Button control

a The RadioButton control
a0 The CheckBox control
Q The ComboBox control
a The ListBox control

a The GroupBox control
a The Panel control

a The PictureBox control
1 The ProgressBar control
Q The Timer control

130

Urheberrechilich geschiitztes Bild

Urheberrechtlich geschitztes Material

Visual Basic 2008 in Simple Steps

Introduction

Apart from including Windows Forms to develop desktop applications, Visual Studio 2008 encompasses a

new technology known as Windows Presentation Foundation (WPF), previously known as Avalon, which

offers several features and functionalities to develop high-end desktop applications. WPF supports various
media, such as text, images, audio, and video, and allows you to work with two-dimensional (2-D) as well
as three-dimensional (3-D) graphics. Unlike Windows Forms, which require numerous technologies, such as

Graphics Device Interface (GDI+), Windows Media Player, and DirectX application programming interfaces

(APIs) to work with 2-D, 3-D, and multimedia, WPF offers a cohesive medium that inherently provides the

functionality of these technologies. This implies that you do not need separate APls in WPF to work with

graphics, animations, and multimedia and hence it is easier and simpler to develop graphic-rich desktop
applications by using WPF.

As stated, WPF allows you to develop desktop applications as its predecessor Windows Forms does;

however, WPF has several improvements and enhancements over Windows Forms. Some of the

enhancements for WPF include:

0 Improved application model: The WPF application model is made up of several namespaces and
classes that assist you in developing desktop applications.

O Improved controls: Several controls are common to both Windows Forms and WPF, for example,
buttons, text boxes, and labels. However, some WPF contrals, such as buttons, now support varied
content types (for example, text, image, and list of items).

O Support for data-validation and data-binding models and Language Integrated Query (LINQ): WFF
introduces certain classes, properties, and interfaces that allow you to bind data through the traditional
data model and LINQ.

0 Enhanced support for 2-D and 3-D graphics, animations, and multimedia: You can use a variety of 2-D
shapes and 3-D classes that allow you to create and manipulate the 3-D content to develop attractive
WEFF applications. In WPF, you can animate controls, 2-D shapes, and text to develop graphic-rich
applications. WPF also supports multimedia to incorporate audio, video, and images in the
applications.

WPF was initially incorporated with .NET Framework 3.0 and is now included in .NET Framework 3.5. The

version of WPF included in NET Framework 3.5 is WPF 3.5.

In this chapter, you leamn about the architecture of WPF 3.5 and the different types of WPF 3.5 applications.

In addition, you learn about the WPF 3.5 Designer, the use of eXtensible Application Markup Language

(XAML) in WPF, and some of the common controls of WPF 3.5. You also learn how to use resources and

styles in WPF.

Now, let’s start our discussion with the architecture of WPF 3.5.

The Architecture of WPF 3.5

Although WPF 3.5 is a part of .NET Framework 3.5, it has both ged and 1 ged comy
Managed and unmanaged components of WPF 3.5 are shown in Fig.VB-6.1:

Fig.VB-6.1

132

Chapter 6: Introducing Windows Presentation Foundation

As shown in Fig.VB-6.1, WPF 3.5 consists of the Pre ionFramework, P ionCore, WindowsB
CLR, milcore, User32, DirectX, and Kernel components. The components that are shaded, that is,
PresentationFram@work, PresentationCore, WindowsBase, and milcore, are the essential components to
work with WPF 3.5 applications. Now, let's briefly discuss these four components in detail.

The Fmsanramfmmmrk Component

The Pr i comp refers to the PresentationFramework.dll in NET Framework 3.5.
This component offers classes to control the app e and p ion of WPF 3.5 applications. For
instance, controls, layout, and data binding in WPF applications are handled by the PresentationFramework
component.

The PresentationCore Component

The PresentationCore component is implemented as the PresentationCore.dll assembly in .NET Framework
3.5. This component provides some of the most commonly used types and features of WPF 3.5, The classes
and types offered by the PresentationCore component provide certain essential functionalities, such as
properties and events in WPF 3.5, Note that the PresentationCore component does not offer types for the
user interface (U1 of WPF 3.5 applications such as those offered by the PresentationFramework component.

The WindowsBase Gampananr

The WindowsBase component is impl d as the WindowsBase.dll assembly in \NET Framework 3.5.
This component provides with the fundamental WPF fenturm, such as threading. Some of these features can
be accessed and used outside the WPF domain.

The MIL or Miicore Component

WPFF 3.5 also contains an unmanaged component called the Media Integration Layer (MIL or milcore).
Milcore is an unmanaged component in WPF 3.5. Milcore interacts with DirectX and acts as a medium or
interface between DirectX and CLR (and d WPF ¢ ts), Due to this interaction with DirectX,
which is the component that processes all the deslgn related elements in WPF, milcore allows the display of
2-D as well as 3-D content in WPF 3.5 applications.

Now, let's know about the types of applications in WPF 3.5,

Types of WPF Applications

You can develop WPF 3.5 applications using Visual Studio 2008. There are broadly two types of WPF
applications supported by Visual Studio 2008, which are standalone WPF applications and XAMIL. browser
applications (XBAPs). Let’s learn about these two types of applications in detail beginning with standalone
WPF applications.

Standalone WPF Applications
Standalone WPF applications are similar to Windows Forms applications, that is, you can install standalone
applications on the users’ computers and view them in the Start menu. Note that standalone WPF
applications run with the privileges of the currently logged-in user. Let’s now learn how to create a
standalone WPF application.

Creating a Standalone WPF Application

In Visual Studio 2008, you can easily and quickly create a standalone WFF application. Visual Studio 2008
offers a project template for creating standalone WPF applications. Using the project template of Visual

133

Visual Basic 2008 in Simple Steps

Studio 2008 to create a standalone WPF application ically adds the ial files in the application.
Perform the following steps to create a standalone WPF application in Visual Studio 2008:

1.

Click Start->All Programs>Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 on your
computer to open the Visual Studio 2008 IDE.

In the Visual Studio 2008 IDE, click File»New->Project from the menu bar to open the New Project
dialog box. In the New Project dialog box, sefect Visual Basic>Windows in the Project types pane, as
shown in Fig.VB-6.2:

g T R T

Fig.-VB-6.2

As shown in Fig.VB-6.2, there is a WPF Application project template in the Templates pane of the New
Project dialog box. This template creates the initial files and folders for creating standalone WFF

applications.

3. In the Templates pane of the New Project dialog box, sefect WPF Application, as shown in Fig.VB-6.2.

4. Specify an appropriate name and location for the standalone WPF application in the Name text box and
Location box, respectively, as shown in Fig.VB-6.2. In this case, we have specified WpfApplication1 as
the name and VB2008_S5\Chapteré folder in the D drive as the location.

5. Click the OK button in the New Project dialog box (Fig.VB-6.2). A new standalone WPF application

named WpfApplication1 is created, as shown in Fig.VB-6.3:

WPF Window

Fig.VB-63

As shown in Fig.VB-6.3, the designer interface of the standalone WPF applications is similar to that of
Windows Forms applications. For instance, there are certain tools available in the Toolbox and a form-like
structure called window at the center.

134

Visual Basic 2008

L

Visual Basic 2008

®)

Authored by:

Kogent Solutions Inc.

FPublished by

dre_i'ech

bbbbb

)

* SIME

Y]
o)

©Copyright by Dreamtech Press, 19-A, Ansari Rood, Daryaganj, New Delhi-110002

This book may not be duplicated in any way without the express writlen consent of the publisher, except in the
form of brief excerpts or quoetations for the wrpm of review, The |nl'ormn|on contained hemn is for the
personal use of the reader and may not be i d in any other books, datah or
any kind of software without written consent orlhe publisher. Making wpm ef this book or any portion for any
purpose other than your own is & violation of copyright laws.

Limits of Liability/disclaimer of Warranty: The author and publisher have used their best efforts in preparing this
book. The author make no representation or wemanties with respect 10 the accuracy or completeness of the
cootents of this book, and specifically disclaim any implied warranties nd'm:ll:lmul:ln.hty or fitness of d
particular purpese. There are no warranties which extend beyond the descri incd in this
Mo wmnlymrbee:waﬁwe:undodhysﬂuwmmmwnmmmamnals.ﬂm.muyand
of the i d herein and the opinions stated herein are not guaranteed or warmanted
] pmduce any particulars luulls and the advice and strategies contained herein may not be suitable for every
individual. Neither Dreamtech Press nor author shall bs liable for sny loss of profit or any other commercial
damages, including but not limited to special, incid 1, or other d

Trademarks: Mlbrandmeamdpmdmmesuedmmubmkm d trademarks, or
trade names of their respective holders. [h Press is not i wld:nnypmduclurw:ndnrlmntlm\nd
in this book.

ISBN: 978-81-7722-918-9

Edition: 2009

Printed at: Printman Indiz, Patparganj, Delhi.

111, CONTENTS

Chapter £ w Infroducing -NET Framework 3.5 1
Introduction 2
Versions of NET F i'd 2
Benefits of NET Framework 3
Architecture of NET F ik 3.5 3

Common Language Runtime 4

NET Framework Class Library 5

Common Type System 5

Common Language Specification 5

ind Forms. 5
ASP.NET and ASP.NET AJAX 6
ADONET &

N [jon Foundati 6

Windows Ci ication Foundati 6

Windows Workflow Foundation f

Windows CardSpace 6

LING 7
Installing Visual Studio 2008 7
Opening Visual Studio 2008 11
Exploring Visual Studio 2008 IDE 13

Menu Bor . 13

Toalbar 13

Desig - Window 14

Code Editor 14

Server Explorer 15

Solution Explorer 15

Toolbox 16

Properties Window 16

Object Browser 17

Class View Wind 18
S y 18
1 duction 20
Creating a Visual Basic 2008 Console Application 20
Mew Features of Visual Basic 2008 21

Query Expressions 22

Local Type Inference 22

Object Initiali 22

E T 43

Lambda Expressions.........oeereaes — 23

Anony Types 23

Nullable Types 23

Partial Method 24

Support for XML 24

v

, Visual Basic 2008 in Simple Steps

Introducing Windows Presentation Foundation

Introduction 132

The Architecture of WPF 3.5 132

The t tationf sk Comy 113

: The PresentationCore Comp 133
ool | The WindowsBase Comp 133
E- = The MIL or Milcore Comp 133
_— F Types of WPF Applications 133
m j Standalone WPF Application 133
: m XAML Browser Applications 135

4 The WPF 3.5 Designer 137
The Design View 137

The XAML View 140

The Split View Bar 141

The Tag Navigator 142

XAML and WPF 143

XAML Elements and Atrit 143

N paces and XAML 145

Markup E i 145

Common Controls in WPF 3.5 146

Using the Grid Control 147

Using the Button Control 148

Using the TextBox Control 149

Using the P, IBox Contol 151

Using the TextBlock Control 153

Using the Border Control 154

Using the GridSplitter Control 155

Using the Canvas Control 157

Using the StackPanel Control 158

Resources and Styles 159

Using a Static Resource 160

Using a Dynamic Resource. 161

Setting Style Through a Resource 163

Summary 164

Chapter 7 '» Windows Workflow Foundation 165

Introduction 166

Workflow Principles 166

Workflows Coordinate Waork F 1 by People and Sofn 166

Workflows are Long Running and Stateful 166

‘Workflows are based on Extensible Models 166

Workilows are Transparent and Dynamic throughout their LTecycle ., 166

Comy of Wind Workflow Foundation. 167

Workilow. 167

Base Activity Library 168

Custom Activities 169

Huost Process 170

viii

Visual Basic 2008 in Simple Steps

Introduction

The .NET Framework is one of the most widely used software development environment in today's
programming world. Before its introduction, programmers had to face a lot of difficulties to integrate the
code written using different programming languages. This was due to the reason that each language used a
different execution environment to execute the code written using that language. For example, code written
using Visual Basic 6.0 requires a different execution environment for execution than that is required by code
written using Visual C++. With the .NET Framewaork, Microsoft has provided programmers a single platiorm
for developing applications using different programming languages, such as Visual Basic, Visual C#, and
Visual Ce+.

The .NET Framework 3.5 is shipped with the Microsoft Visual Studio 2008. Microsoft Visual Studio is a set of
development tools designed to help software developers to develop complex applications more quickly and
easily. It provides the necessary environment in which developers can create and execute various types of
applications, including Console applications, Windows Forms applications, WPF applications, Web
applications, and Web services. It has improved the process of development and made it easier.

In this chapter, we learn about versions of .NET Framework, benefits of .NET Framework, and architecture of
.NET Framework. We also learn how we can install Visual Studio 2008 and how we can open it. Finally, we
take a look at Visual Studio 2008 IDE.

Let's first start by taking an overview of the different versions of .NET Framework.

Versions of .NET Framework

The NET Framework has seen many upgrades since the release of its first version in 2002, All the versions of

the .NET Framework that have been released till now are described as follows:

O .NET Framework 1.0: The .NET Framework 1.0 is the first version of the NET Framework and was
released by Microsoft on February 13, 2002. It is available for download in the form of a redistributable
package as well as a Software Development Kit (SDK). It is also a part of Visual Studio .NET 2002,
which is the first version of Visual Studio .NET.

o .NET Framework 1.1: The first major upgrade of the .NET Framework, the .NET Framework 1.1, was
released on April 3, 2003. It is available for download in the form of a redistributable package as well
as a Software Development Kit (SDK). It is also a part of Visual Studio NET 2003, which is the second
version of Visual Studio .NET. In contrast to the .NET Framewaork 1.0, the .NET Framework 1.1 has in-
built support for mobile ASP.NET controls and Open Database Connectivity (ODBC) and Oracle
databases. It also has support for Internet Protocol version 6 (IPv6).

O .NET Framework 2.0: The second major upgrade of the .NET Framework, the .NET Framework 2.0, was
released on January 22, 2006. It is available for download in the form of a redistributable package as
well as a Software Development Kit (SDK). It is also a part of Visual Studio 2005 and Microsoft SQL
Server 2005. The .NET Framework 2,0 is the last version of the .NET Framework that has support of
Windows 2000. The .NET Framework 2.0 has many changes and enhancements as compared to the
NET Framework 1.1. It has a number of Application Programming Interface (APl changes. It contains
many new ASP.NET Web controls and data controls. It also ¢ ins new p lization features for
ASPNET, for example support for themes, skins, and WebParts.

O .NET Framework 3.0: The third major upgrade of the .NET Framework, the NET Framework 3.0, was
released on November 21, 2006. It contains a set of managed code APls, which are an integral part of
Windows Vista and Windows Server 2008. Managed code is the code that runs under Common
Language Runtime (CLR). We discuss CLR in detail later in this chapter. The .NET Framework 3.0 uses
the same version of CLR that was incorporated with .NET Framework 2.0. The .NET Framework 3.0
includes the following four new components:

* Windows Presentation Foundation (WPF}
* Windows Communication Foundation {WCF)

Chapter 1: Introducing NET F k3.5

* Windows Workflow Foundation (WF)
* Windows CardSpace (WCS)

Q .NET Framework 3.5: The fourth major upgrade of the NET Framework, the .NET Framework 3.5, was
released on November 19, 2007. Similar to the NET Framework 3.0, the NET Framework 3.5 also uses
the same version of CLR. The .NET Framework 3.5 also installs the .NET Framework 2.0 SP1 and the
NET Framework 3.0 SP1, which includes rnethods and properties that are required for the .NET
F k 3.5 1 such as Languag grated Query (LINQ). In addition to LINQ, the .NET
Framework 3.5 includes many other new features, such as extension methods, lambda expressions,
anonymous types, and built-in support for ASP.NET AJAX.

After having a quick overview of the versions of the .NET Framework, let's move on to discuss the benefits of

the .NET Framework,

Benefits of .NET Framework

The .NET Framework offers many benefits to the programmers in developing applications. Some of these
benefits are as follows:

O Consistent programming model: The .NET F wk provides a consi object-ori d
programming model across different languages. You can use this model to create programs for
performing different tasks, such as connecting to and retrieving data from datab and reading from
and writing to files.

o L i bility: Language interoperability is a feature that enables code written in different

I.mguages to interact with each other. This allows reusability of code and i improves the efficiency of the
development process. For example, you can inherit a class created in C# in Visual Basic and vice-
versa, The CLR has built-in support for language interoperability, However, there is no assurance that
the code written usmg one programming language will work properly in programs developed using

her prog T , 10 ensure multi-language code interoperability, a set of
language features and rules, called Commaon Language Specification (CLS), is defined. The components
Jthat follow these rules and expose only CLS features are said to be CLS-compliant.

O Automatic management of resources: When you create a .NET application, you do nol need lo
manually free application resources, such as files, memory, network and database connections. The
CLR automatically tracks the resource usage and saves you from the task of manual resource
management.

0 Ease of deploy The .NET F ork makes the task of deployment easier. In most cases, to install
an application, you need to copy the application along with its components, on the target computer.
The .NET Framework provides easy deployment of applications by installing new applications or
components that do not have an adverse effect on the existing applications. In NET, applications are
deployed in the form of assemblies; therefore, registry entries are not required to store information about
components and applications. In addition, problems that used to arise due to different versions of an
assembly are also overcome or eliminated in .NET F ork since blies also store information
about different versions of the components used by an application.

Architecture of .NET Framework 3.5

The .NET Framework 2.0 and the NET Framework 3.0, along with their service packs, form the foundation
of the .NET Framework 3.5. In other words, the architecture of the .NET Framework 3.5, besides its new
features and enhancements, includes components of the NET Framework 2.0 and the NET Framewaork 3.0.
Architecture of the .NET Framework 3.5 is shown in Fig.VB-1.1:

Visual Basic 2008 in Simple Steps

il Wl
1 ADCNET ety nwi A
L P1 ASPHETIE || Framewon s :—‘m‘ -
| Casances || -rorerme
| E—
i Wndees Windosy Wematows wpz
{| Pusetaten || Commoication || Weridcn e 24 A
| [l il Fourdation CarsDpss]
VA | wwen) E
1
] . {Hhe HET
o 1| vener Vibudl C o
| J
Carmmon Lampuans Soachoation

Common Type Systen]

el
e
LT

HET Fearmerh Clats Litewy

===

11 FET Framewnri Base Clans Livary |
= -

P
N

WEYET

| Opaeating Syatern’ Hastwany

Fig VE-1.1

As shown in Fig.VB-1.1, the main components of the .NET Framework 2.0 are CLR, .NET Framework Base
Class Library, Windows Forms, ASP.NET, Comman Type System (CTS), CLS, and .NET languages, such as C#
and Visual Basic. The NET Framework 3.0 adds four major components — Windows Presentation
Foundation (WPF}, Windows Communication Foundation (WCF), Windows Workflow Foundation (WF), and
Windows CardSpace—to the .NET Framework 2.0. Similarly, the NET Framework 3.5 adds few more
compaonents and features, including LINQ, ASP.NET 3.5, and ActiveX Data Objects .NET (ADO.NET) Entity
Framework and Data services, to the NET Framewark 3.0,

Let's now discuss the major components of the \NET Framework 3.5, one by one.

Common Language Runtime

One of the most important components of the .NET Framework is CLR, better known as the runtime. It
provides functionalities, such as memory management, exception handling, debugging, security, thread
execution, code execution, code safety, code verification, compilation. The CLR can host a variety of
languages and provides common toals to these languages; thereby, ensuring interoperability between code
written in different languages. The managed environment of the runtime eliminates many commeon software
issues, For example, the runtime automatically releases the objects when they are no longer in use. This
automatic memory management resolves the issue of memory leaks and invalid memory references.

CLR is the module that actually runs your .NET applications. When you run a .NET application, the language
compiler compiles the source code into an intermediate code, called Microsofi Intermediate Language
(MSIL) code. The MSIL code is similar to Java's bytecode. The MSIL code is later converted by the Just-In-
Time T} compiler into native machine code, which is the final executable code. Fig.VB-1.2 explains the
functioning of CLR:

Visual Basic 2008 in Simple Steps
ASP.VET and ASP.NET AJAX

ASP.NET is a Web development model, which is used to develop interactive, data-driven Web applications
over the Intemnet. ASP.NET Web applications can be created using any CLR-compliant language, such as
Visual Basic, Visual C#, and Visual C++.

AJAX, formerly code-named as Atlas, is an extension of ASP.NET for developing and impl ting AJAX
functionality. ASP.NET AJAX includes both client-side and server-side components !hat allows deve]upers to
create Web applications, which does not require complete reload of the page while making any
modifications to the page. It enables you to send only parts of a Web page to the Web server by allowing
you to make asynchronous calls to the Web server. This decreases network traffic as well as processing on
the Web server.

ADO.NET
ActiveX Data Obijects .NET (ADO.NET) is a technology for working with data and databases of all types. It
provides access to various data sources, such as Microsoft SQL Server, and data sources exposed through
OLE DB and eXtensible Markup Language (XML). You can use ADO.NET to connect to data sources for
retrieving, manipulating, and updating data. The most important feature of ADO.NET is disconnected data
architecture. In this architecture, applications are connected to the databases only till data is retrieved or
maodified

Windows Presentation Foundation
Apart from Windows Forms, Windows client applications can also be developed through WPF (formerly
codenamed as Avalon). WPF also facilitates building various kinds of interfaces, such as documents, media,
two and three-di jonal graphics, animati It helps in creating Windows client applications of superior
quality. You can use WPF for creating both standalone and browser-hosted applications, WPF introduces a
new language called eXtensible Application Markup Language (XAML), which is a language based on XML.

Windows Communication Foundation

Windows Communication Foundation (WCF} (formerly codenamed as Indigo} is a service-oriented
technology introduced by Microsoft for building and running connected systems. The service-oriented
design results in a distributed system that runs between the services and clients. You can understand WCF
more easily if you are familiar with concepts, such as Web services, remoting, distributed transactions, and
message queding.

WCF based applications are interoperable with any process as these communicate through Simple Object
Access Protocol (SOAP) messages, When a WCF process connects with a non-WCF process, it uses XML-
based encoding for SOAP messages, but when it connects with another WCF process, the SOAP messages
are encoded into a binary format.

Windows Waorkflow Foundation

Windows Workilow Foundation (WF) is a technology introduced by Microsoft that provides a programming
model for building workflow based applications on Windows. The components of WF include activities,
waorkflow runtime, workflow designer, and a rules engine. WF is a part of .NET Framework 3.0 and 3.5,

The mast important feature of WF is the separation bet the busi process code and the actual
implementation code. Before WF was introduced, both the busi logic and the actual implementation
code were writen together while developing applications.

Windows CardSpace

Windows CardSpace (WCS) is a client software provided by Microsoft that makes the process of securing
resources easier and also makes sharing personal information on the Internet more secure. It helps
programmers to develop Web sites and software that are less prone to identity related attacks such as
phishing, WCS solves the problems of traditional online security mechanisms by reducing dependence on

Visual Basic 2008 in Simple Steps

2.

In the Visual Studio 2008 IDE, click File-»New->Project from the menu bar to open the New Project

dialog box. In the New Project dialog box, select Visual Basic»Windows in the Project types pane.
The project templates for Visual Basic Windows applications appear in the Templates pane, as shown
in Fig.VB-6.5:

m_ S e e e e S e T
Pty Tompiates | BT Framemeet 33 T
T = | Vv ustir etated templaten Ba

m.._.(—o [- Bcus iy £

e LR sgphetion S WPE B pplcation U

ot f Tp— Sty Froret i

i | Brdews v % WP Custor Cantond Libtory

e TR bt A e d
i)

Harma: g el ﬁ
[reme. D8 35 Caapten, :

Schsion Mame Wl dopbuatenl

Fig.VB-6.5
Select WPF Browser Application from the Templates pane, as shown in Fig.VB-6.5, to creale an XBAP.
Specify an appropriate name and location for the XBAP in the Name and Location boxes, respectively,
as shown in Fig.VB-6.5. By default, the first XBAP that you create is named WpfBrowserApplication1;
however, you can change it to make it more user-friendly. In this case, we accept the default name and
specify the D:\VB2008_SS\Chapter6 folder as the location.
Click the OK button in the New Project dialog box (Fig.VB-6.5). The dialog box is closed and
WpfBrowserApplication1 is created, as shown in Fig.VB-6.6:

WPF Page

Fig.VB-6.6

As shown in Fig.VB-6.6, the Ul of XBAPs is similar to the Ul of standalone WPF applications. In addition,
some of the essential files, such as the Application.xaml and Application.xaml.vb files, are also part of the
XBAP. However, XBAPs have the Pagel.xaml and Pagel.xamlvb files instead of the Window1.xaml and
Window1.xaml.vb files in standalone WPF applications. The Pagel.xaml and Pagel.xaml.vb files can be
viewed in the Solution Explorer and correspond to a page in the XBAP.

136

Chapter 6: Introducing Windows Pr fon

Nete

The WPF 3.5 Designer
In Visual Studio 2008, the WPF 3.5 Designer is the designer interface that offers an easy, quick, and
interactive way of working with the Ul of WPF applications, The important WPF Designer el for a

standalone WPF application are shown in Fig,VB-6,7:

Solution
Explorer

De

Spli
Properties
window

X

Tag

Fig.VB-6.7
As shown in Fig.VB-6.7, the WPF Desig bles the Wind, Forms Designer. For instance, the

window, a furm-like structure, appears at the cenler of the WPF Designer just as the Windows form is shown
at the center of the Windows Forms Designer. In addition, the WPF Designer and Windows Forms Designer
have the Solution Explarer, Properties window, and Toolbox. The difference lies in that the WPF Designer is
divided into two primary views, the Design view and XAML view. Other designer elements, such as the split
view bar and the tag navigator assist you in working with the Design and XAML views. Let's explore the
Design and XAML views, split view bar, and the tag navigator.

The Design View
As the name suggests, the Design view is the area where you build the visual aspect or Ul of a WPF
application by placing, dragging and resizing, and manipulating the appearance of the controls. The Design
view allows you to easily and quickly build the Ul of the WPF application in a What You See Is Wiat You
Get (WYSIWYG) manner, as shown in Fig.VB-6.8:

137

Visual Basic 2008 in Simple Steps

Zoom control — Gridline
- indicator
Fit in View button
< Gridline
Grid rail = e : i
Gridline
Fig.VB-6.8

As shown in Fig.VB-6.8, the Design view itself has several Ul elements that assist you in quickly designing
WPF applications, For instance, there is a Zoom control to zoom in or out of the Design view, move and
resize handles to appropriately position and resize the controls, margin lines to set the margins of a control,
and much more, Let's briefly go through the elements of the Design view.

Grid Rails, Gridlines, and Gridline Indicators

The grid rails, gridlines, and gridline indicators pertain to the Grid control of WPF. When yau create a WPF
3.5 application, a Grid control is by default added to the application. The Grid control allows you to
represent the WPF application as a grid or lattice. The entire grid is enclosed by grid rails that span
horizontally and vertically on the top and left respectively, as shown in Fig.VB-6.8.

By default, the grid has one row and one column; however, there can be multiple rows and columns. You
can create additional rows and columns by clicking the desired positions on the grid rails. When you click
the grid rails, gridlines and gridline indicators appear at those positions (Fig.VB-6.8). If you click the grid rail
on the top, then a vertical gridline appears dividing the grid into two columns. Similarly, if you click the grid
rail on the leit, then a horizontal gridline appears dividing the grid into two rows. You can control the height
and width of the rows and columns by moving the gridline indicators, which appear as triangles on the grid
rails.

The Zoom Control and Fit in View Button

You can find the Zoom control and the Fit in View button at the upper-left corner of the Design view. The
Zoom control allows you to zoom in and zoom out of the Design view. To zoom in or out, you can drag the
Zoom control slider up or down. The current zoom level, which in Fig.VB-6.9 is 100%, can be seen on top
of the Zoom control:

Current zoom level

Zoom control slider——»4

Fit in View button

Fig.VB-6.9

In case, you want to zoom or resize the Design view according to the available space in the Design view,
then you can quickly do so by clicking the Fit in View button, which appears just below the Zoom control.

138

Visual Basic 2008 in Simple Steps

control, then margin is measured from the edge of the control to the nearest gridline. Each control has four
margins—top, bottom, left, and right. These margins are represented by four lines, called margin lines,
emerging from the edges of the control, as shown in Fig.VB-6.12:

Margin Stub [~ Margin Lines

Fig.VB-6.12

Note that the margin lines appear only when the control is selected. You may notice in Fig.VB-6.12 that only
the top, bottom, and right margin lines of the button appear; there is no left margin line. Instead, there is a
small circle, called the margin stub, on the left edge of the button. The margin stub indicates that the
respective margin is set to zero.

The margins for a control are collectively accessed through the Margin property of the control. You can set
the Margin property of a control in the Design view, XAML view, or code-behind file. To set the Margin
property in the Design view, select the control and drag the control. You can also use the Properties
window to set the Margin property by typing values for margins. You need to provide the margin values in a
clockwise manner starting from the left margin, that is, left, top, right, and boitom. Note that when you type
the new margin values in the Properties window, the size of the control may change.

Snaplines
Snaplines are a feature in the WPF Design view that assists you in aligning the controls in the WPF 3.5
applications. A snapline appears only when there is more than one control and you drag or resize any
control. It appears as a light brown line along the edges of the controls, as shown in Fig.VB-6.13:

Snapline

Fig VB-6.13
In Fig.VB-5.13, you can see that at one end of the snapline, the number 82 is displayed. This number
represents the distance between the edges of the controls that you want to align. In case you do not want the
snaplines to be visible, you can press ALT while dragging or resizing the control.
With this, you have learned about the individual Ul companents of the Design view. Mow, let’s move on to
explore the XAML view of the WPF Designer.

The XAML View
As the name suggests, the XAML view allows you to view and work with the XAML code for WPF 3.5
applications. The XAML view and the Design view are inter-related to each other such that whatever

140

Visual Basic 2008 in Simple Steps

As stated earlier, there are three buttons on the right side of the split view bar. The first button, Vertical Split,
allows you to vertically split the Design view and XAML view, as shown in Fig.VB-6.16;

e - = S e
fin 04 Yo e [id Dubug Dype Josh Tof Gpsm Hedes [y
TR e R o H
i ——— = n G
i ‘ 5
H |
SRR SR
etton [t
1 i
e { Eadobunn
Eracy n§ cad “end " es

Fig.VB-6.16
The second button, Horizontal Split, allows you to see both the Design view and XAML view horizontally,
which is the default view. The third button, Collapse Pane, allows you to collapse or hide one of the panes.
For example, if you click the Collapse Pane button, then the Design pane collapses and you get more space
for the XAML view. In case you want to expand the collapsed pane, you can click the Expand Pane button
that appears in place of the Collapse Pane button.
The Tag Navigator

The tag navigator appears just below the XAML view. The tag navigator allows you to navigate to the parent
XAML tag or element of the currently selected element. It displays the currently selected tag (in bold) and the

hierarchy up to that tag, as shown in Fig.VB-6.17:

Fig.VB-6.17
As shown in Fig.VB-6.17, the Button control (or Button tag) is the currently selected tag in the XAML view.
Its name is displayed in bold in the tag navigator, The name of the Button tag is followed by hyperlinks that

are separated from each other by a forward slash, that is, Window/Grid/B The h it the
hierarchy up to the currently selected tag. If you place the mouse curser over a hypcrlmk, a thumbnail image
is displayed (Fig.¥B-6.17). You can click a hyperlink to select the tag that it represents, Note that if the
currently selected tag has any child tags, then the Seleet Child arrow is enabled and when you click the

arrow, a list of the child tags appear, as shown in Fig.VB-6.18:

142

Chapter 6: Introducing Windows P tation Fournd:
=0
YR WA |
|
Cotumrlicimacns |
| Buon Battend) I
5 Child Facboiumen (Fadodunenl] j .
amow |
Fig.VB-6.18
XAML and WPF .
WPF supports XAML (pronounced as h, which is a declarative mark based on eXtensible

Markup Language (XML) introduced by Microsoft Corporation, This ma'kup ldngudge allows designers 1o
easily and quickly define and describe the elements for the Ul of WPF applications. Application developers
can then specify program logic for the Ul elements defined through XAML in the code-behind files, using
any of the .NET languages, such as Visual Basic. However, you can also use the code-behind files to create
Ul elements at run time. Consequently, WPF allows both segregation and integration of the Ul aspect and
application logic in WPF applications.

Visual Studio 2008 extends support for XAML by incorporating XAML IntelliSense and allowing the
debugging and compilation of XAML content. Here, you learn how to work with the XAML elements and
attributes, namespaces, and markup extensions,

Nete
[mmsmmum]mmmmsmwmmmmmmuaﬁmmwwm

XAML Elements and Attributes
XAML makes use of markup tags or elements and attributes to define the Ul of WPF applications. The XAML
elements directly correspond to various managed WPF classes, while the XAML attributes correspond to the
properties and events of the classes.
In WPF, the XAML elements are represented as a logical tree with several nodes. Each element corresponds
to a tree node while the attributes of the elements become the properties of the nodes. When you add an
XAML element within an existing element, it becomes the child element of the existing element and
therefore the child node of the existing node. In this way, as you keep adding XAML elements in a WPF
application, the tree branches out to reflect the Ul of the application. Note that in any XAML file, there is
exactly one topmost or root element. In WPF standalone applications, the root element is the Window
element, while in XBAPs, the root element is the Page element,
Let’s take the example of a new WPF standalone application named MyWPFApplication. Listing 6.1 shows
the XAML code of the application:

143

Visual Basic 2008 in Simple Steps

As shown in Listing 6.1, there are four XAML elements, namely Window, Grid, Button, and Label. The
Window and Grid elements exist in the WPF application by default, while the Button and Label elements
are added by dragging and dropping the respective controls from the Toolbox. These elements can be
represented in a hierarchical manner as a tree, as shown in Fig.VB-6.19:

Windaw Y
L . .
1 Grid)
- .
~——
I L
T I - -
P ~, - - ~.
{ Button (Bursent) ; (luuum) {_ Bution (Button3))
e o S e . o
T
Label iLabait) |
‘\-\.._‘_‘__,_,..-/
Fig.VB-6.19

In Fig.VB-6.19, the Window element contains the Grid element, which in wm has three Button clements,
named Buttonl, Button2, and Button3, as its child elements. The Buttond element itself has a Label
element, named Label1, as its child element. Note that the Window, Grid, Button, and Label XAML
elements correspond to the instances of the Window, Grid, Button, and Label classes, respectively, while
the attributes of the XAML elements correspond to the properties of the respective classes.
You can recall from Listing 6.1 that the individual attributes are separated by whitespaces and are specified
in name-value pairs. For every attribute, the name and value of an attribute is separated by the equal to
operator (=). Note that the value is enclosed within double quotes, for example:
<Button Height="23" Name="pButtonl”>Welcome</Buttons

In the preceding code snippet, the value of the Height attribute is 23 and the value of the Name attribute is
Button1. The string Welcome is the text that appears on the button.
Although setting the properties through XAML attributes is easy, concise, and intuitive, WPF provides an
alternate way, known as the property element syntax, of setting the property values, In the property element
syntax, you can set the properties by specifying them as elements rather than as attributes. In the property

] syntax, the property is set by using the following syntax:

In the preceding syntax,

O element_name: The name of the element to which the property belongs

0 property_name: The name of the property

0 attributel_name, attrubute2_name, . . . attributeN_name: The names of the atiributes that the property
may contain

a valuel, value2, . . .valueN: The values of the attributes

O property_value: The value of the property

As shown in the preceding syntax, the dot operator (.) separates the element and property names. In Listing

6.2, you can see the property element syntax for the properties of the Button element:

144

Visual Basic 2008 in Simple Steps

You can provide a markup extension as either attributes or property elements, If you want to provide a
markup extension as an attribute, then you need to enclose it within the curly braces ({ }). The opening curly
brace is followed by the string token for the markup extension class. The string token is followed by a
whitespace, which is then followed by input to the markup extension, Let’s take a look at the XAML code:

<Button Margin="100" Name="Buttonl" Content="welcome” Style="{StaticResource

. mybackground}”/> .
In the preceding code, the Static| ce markup ion is used in the Button element to set the value
for its Style property. This implies that the Style property of the Button clement takes the value of the
mybackground resource. You learn more aboul resources and styles later in this chapter.

Common Controls in WPF 3.5

A control is an Ul element that allows interaction between the application and users of the application. WPF
has a rich set of controls that allow you to develop graphic-rich applications. Some of the WPF controls are
similar to those in Windows Forms, such as the Button and TextBox controls. However, there are certain
WPF controls, such as Grid and Canvas that are unique in terms of their appearance and behavior.

In WPF, you can add and work with the controls in both the Design view and code-behind file. However, it
is recommended that you define the look of the controls in the Design view and define the behavior of the
controls in the code-behind file. You can add a control in a WPF application by dragging it from the
Toolbox and dropping it on the Design view, You can also add a control by double-clicking it in the
Toolbox or writing the corresponding XAML code in the XAML View. Note that changes to a control in the
Design view automatically reflects in the XAML view and changes in the XAML view reflects in the Design
view,

Nete

Here, you learn how to add and work with some of the common controls in WPF 3.5 that are as follows:
The Grid control

The Button control

The TextBox control

The PasswordBox control
The TextBlock control

The Border control

The GridSplitter contral
The Canvas control

The StackPanel control
Let's start with the Grid control.

[s iy i sy S)

146

o

Presentation Fi

Using the Grid Control
When you created a WPF application, you may have noliced a Grid control is automatically added 10
the default window or page in the application. Every page in a WPF application (standalone or
XBAP) has a Grid control by default.
The Grid control is one of the most common and flexible controls, A container control refers 1o a
contral that encompasses other controls and provides a layout for those controls. The controls
that are encompassed or contained within a container control known as child controls or child elements.

In a Grid contral, the child elements are contained in the cells the grid. By default, a Grid control consists
of a single cell; however, you can create additional cells in Grid control by using its properties.

The Grid control is an instance of the Grid class, which has properties that allow you to work with
the Grid control. Table 6.2 lists the noteworthy properties of — Grid class:

Let's a new standalone WPF application to the use of the Grid control. For this, perform
the steps:
1. Click All Programs=>Microsoft Visual Studio Visual Studio 2008 1o open the

Studio 2008 IDE.
2. Create a new standalone WPF application with the name
3. In the Window1.xaml file, add the code given in Listing
Listing Adding Rows and Columns in a Grid Control

Visual Basic 2008 in Simple Steps

In Listing 6.3, the ShowGridLines property of the Grid control is set to True, which implies that straight lines
are visible between the rows and columns of the grid. The grid has two child elements—
Grid.RowDefinitions and Grid.ColumnDefinitions. The Grid.RowDefinitions element refers to the
RowDefinitions property of the grid allowing you to define a collection of rows in the grid. The
Grid.ColumnDefinitions element refers to the ColumnDefinitions property, which allows you to define a
collection of columns in the grid. The Grid.RowDefinitions element has four RowDefinition elements, each
corresponding to a row. Similarly, the Grid.ColumnDefinitions clement has two ColumnDefinition
elements, each of which corresponds to a column.

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.20:

Fig.VB-6.20

Using the Button Control
The Button control in WPF is similar to the one available for Windows Forms applications. It allows you to
perform an action when a user clicks it. The Button control in WPF is a basic Ul component that can
contain text as well as an image.
The Button control is an instance of the Button class. Table 6.3 lists the noteworthy properties of the Button
class:

Let's create a new standalone WPF application to demonstrate the use of the Button control. For this,

perform the following steps:

1. Click Start<»All Programs=>Microsoft Visual Studio 2008-»Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name ButtonDemoVB.

148

Visual Basic 2008 in

2. Create a new standalone WPF
3. In the Window1.xaml file, add
Listing 6.5: Demonstrating the Use of

In Listing 6.5, a TextBox control is added to the control. The TextBox control is

and has its Charader(.‘asmg property set to Upper. This implies that all the characters of the

enter appear in uppercase. The TextWrapping and TextAlig propertics of the TextBox1 control are set:

to Wrap and Center, respectively. This implies that the entered text is wrapped around the control and is

aligned at the center of the control. Note that another property, named VerticalScrollBarVisibility, of the

TextBox1 control is sel to Auto. This property is inherited from the TextBoxBase class and refers to whether

a vertical scroll bar appears in the contral.

4. Double-click the Buttonl button in the Design view. This opens the code-behind file
(Window1.xaml.vb file) and adds the Click event handler in the code-behind file.

5 Inthe Click event handlor af Ruttant add the follving roade in the Windaw rlace:

6. Press the F5 key o run the application and enter some text in the TextBox control (Fig.VB-6.22):

Fig.VB-6.22
7. Click the Clear TextBox button (Fig,VB-6.22). The text in the TextBox control is cleared, as shown in
Fig.VB-6.23:
Fig.VB-6.23

150

Chapter 6: Introducing Windows P fon Foundati

Using the Control

There may be a situation when you want users of your application to enter some confidential information
such as passwords. You may use a TextBox control to allow users to enter their passwords. However, while
a user enters the password, there is a possibility that some other user may accidentally see the password,
which is an undesirable situation. In such a situation, you can mask the password while entering it by using
the PasswordBox control. The PasswordBox control is a special type of text box that enables users to enter
and manipulate passwords. In the PasswordBox control, the each character of the input text is masked with
a given character such that the text appears as a string of that character. By default, any text entered in the
PasswordBox control appears as a series of filled circles.

Nete

The control is represented by the PasswordBox class, which has various properties that allow
you to work the PasswordBox control. Table 6.5 lists the noteworthy properties of the PasswordBox
class:

Let’s creale a new standalone WF application o demonstrate the use of the FasswordBox control. For this,
perform the following steps:

1. Click Start<»All Programs-»Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name PasswordBoxDemoVB.

3. Inthe Window1.xaml file, add the code given in Listing 6.6:

Listing 6.6: Demonstrating the Use of the PasswordBox Control

151

Chapter 6: 1 fucing Windows Pr tion Foundati

10. Click the Login button (Fig.VB-6.26). A message box appears, as shown in Fig.VB-6.27:

Suterstid logee! Plasas mat mbade you are beng mdimcted

Fig.VB-6.27
11. Click the OK button on the message box to close it (Fig.VB-6.27).
Note

{ The TextBax and PasswordBiox controls are simple cortros,that i, control tha cannot have any chd conroks, i)

Using the TextBlock Control
The TextBlock control in WPF allows you to work with text in a flexible manner as compared to the Label
control. The TextBlock control has several properties that facilitate easy manipulation of the appearance of
the text that it holds.
The TextBlock control is an instance of the TextBlock class, which offers various properties. Some of the

Let’s create a new standalone WPF application to demonstrate the use of the TextBlock control. For this,

perform the following steps:

1. Click Start->All Programs->Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name TextBlockDemoVB.

3. In the Window1.xaml file, add the code given in Listing 6.8:

Listing 6.8: Displaying Text by Using the TextBlock Control

153

Visual Basic 2008 in Simple Steps

properties of the control are set to White and Black respectively. This implies that the text in the TextBlock
control appears in white, while the background appears black. The FontSize and FontWeight properties of
the TextBlock control are set to 17 and Bold respectively so that the text appears large. In addition, the
TextWrapping and TextAlignment properties are set to Wrap and Center, respectively. This implies that
the text (if it spans multiple lines) is wrapped around the control and is displayed in the center of the control.

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.28:

Fig.VB-6.28

Using the Border Control
The Border control in WPF provides the facility to add a border, background, or both to other WPF controls.
The Border control can have only one child element. This implies that at a time, the Border control can
apply a border or background to only one element. In ather words, you cannot apply the Border contral to
multiple child elements.
The Border control is an instance of the Border class, which has several properties. Some of the noteworthy
properties are listed in Table 6.7:

LEl'S Create a new standalone WiEr application 1o gemonstrate e use ol e Boraer control. ror s,
perform the following steps:

1. Click Start->All Programs=>Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name GridWithBorderVB,

3. In the Window1.xaml file, add the code given in Listing 6.9:

Listing 6.9: Adding Border to a Grid Control

154

Chapter 6: Introducing Windows P ion Foundati

a Border control is ad{7:lor 5 ohild clomoes 4o sbe £uiq in the file,
Background property of tne soraer control, the background color of the Grid is set to
and the BorderThickness properties of the Border control are set to Black and 9,
In addition, the CornerRadius property of the Border control is set to 45, that is, the corners of
the are inclined at 45 degrees.

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.29;

Fig.VB-6.29

Using the GridSplitter Control
The GridSplitter control in WPF offers a unique facility of redistributing the space between two rows or two
columns of a Grid control. With the GridSplitter contral, the height and width of the Grid control do not
change but the space, between two adjacent rows or two adjacent columns of the grid, changes.
The GridSplitter control is an instance of the GridSpliter class, which has various properties to allow you to

manipulate the spaces between two rows or two columns of a Grid control. Table 6.8 lists the noteworthy
properties of the GridSplitter class:

perform the following steps:

1. Click Start-»All Programs->Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name GridSplitterDemoV8.
3. In the Window1.xaml file, add the code given in Listing 6.10:

155

Visual Basic 2008 in Simple Steps
Listing 6.10: Splitting a Grid Control by Using a GridSplitter Control

In Listing 6.10, the Grid control is divided into three rows and three columns—that constitute nine cells. In
the second row, a GridSplitter control is added. The ShowsPreview property of the GridSplitter control is
set to True. Setting this property displays the preview of how the rows and/or columns are resized when the
Gridsplitter control is moved. The ResizeDirection and ResizeBehavior properties of the GridSplitter
control are set to Rows and CurrentAndNext, respectively. This implies that the GridSplitter control can
resize only the rows, specifically the current (second row) and the next row (third row),

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.30:

Fig.VB-6.30
As shown in Fig.VB-6.30, the GridSplitter control appears in the second row of the grid.
5. Drag the GridSplitter control downwards, that is, towards the third row, as shown in Fig.VB-6.31:

Fig.VB-631

156

Visual Basic 2008 in Simple Steps

the top and left sides of the Canvas control. Similarly, the Button4 button appears at a distance of 15 units
from both the bottom and right sides of the Canvas control,

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.32:

Fig.VB-6.32

Using the StackPanel Control

Suppose you want to place multiple controls on a WPF window such that one appears on top of the other,
forming a vertical stack of those controls. In such scenarios, instead of using a Grid or Canvas control and
explicitly placing those controls accordingly, you can use a StackPanel control. The StackPanel control is
another container control that allows you to position its child controls in a vertical or horizontal stack. By
default, the child controls of the StackPanel control are stacked vertically. The vertical stack increases from
top to bottom. You can also stack the child controls horizontally. The horizontal stack increases from left to
right.

The StackPanel control is represented by the StackPanel class, which is derived from the Panel class. The
StackPanel class has several properties that assist you in working with the StackPanel control. The
noteworthy properties of the StackPanel class are listed in Table 6.10:

Let’s create a new standalone WFF application to demanstrate the use ot the StackFanel control. For this,

perform the following steps:

1. Click Start=>All Programs=>Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
= Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name StackPanelDemoVB.

3. In the Window1.xaml file, add the code given in Listing 6.12:

lickina & 17 | leinn tha ClarkDanal Cantenl

158

Chapter 6: Introducing Windows Presentation Foundation

In Listing 6.12, the Grid control has two StackPanel controls as its child controls, Both the StackPanel
controls have three buttons as the respective child controls. However, the child controls of the two
StackPanel controls are stacked differently. In the first StackPanel control named StackPanel1, the three
buttons (Button1, Button2, and Button3) are stacked vertically—one below the other, This is because the
Orientafion property of the StackPanel1 control is set to Vertical. However, the Orientation property of the
second StackPanel control (named StackPanel2) is set to Horizontal and hence has its child controls stacked
horizontally.

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB8-6.33:

Fig.VB-6.33
Mow that you have learned about some of the common controls used in WPF, let's move ahead to learn
about resources and styles in WPF.

Resources and Styles
Consider a situation where you want to apply a background color on several elements in a WPF application.
You may set the Background property on those elements; however, this may prove to be rather tedious. WPF
allows you to simplify and ease the use of such commonly used objects through resources. A resource refers
to an object, ‘'element, or value that is part of the resource dictionary and is reusable by other elements of the
application. Resource dictionary is an instance of the ResourceDictionary class and refers to a collection of
resources defined on an element.
Although you can define resources for any Ul element; however, it is advisable to define the resources on
the root element such as the Window or Page element. The resource that you define for an element also
applies to all the child elements of that element. For example, if you define resource for a Window element
with a Grid element as its child, then the resource for the Window element applies to the Grid element also.
Furthermore, if you define a resource for the Grid element, then that resource applies to the child elements
of the Grid element as well.

Note :

159

Chapter 6: Introducing Windows P tation F

In Listing 6.13, the Grid control uses the Resources property to define a set of resources. Two
SolidColorBrush resources (SolidColorBrush elements that fill a given area with a solid color) with the keys
firstBrush and secondBrush are defined. These two resources are used to set the Background property of the
three buttons (Button1, Button2, and Button3). The StaticResource markup extension is used to set the
Background property to the resource values,

4. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.34:

Fig VB-6.34

_Let’s now move on to learn about dynamic resources.
Using a Dynamic Resource
When you use the DynamicR e markup ion, the resource is referred to as a dynamic resource.

As compared to static resources, dynamic resources provide more flexibility and are useful in situations

when you want to defer the assignment of a property value until run time. For instance, situations when you

want to change the value of the resource at run time through user or system settings.

Unlike static resources that are looked up at the time of loading, dynamic resources are looked up only

when they are used at run time. With dynamic resources, an expression is created for the requested

resource. This expression is not evaluated until run time. When the dynamic resource is used at run time, the

key of the requested resources is looked up in the resources of the element on which the property is

being set. If the key is not found, then it is looked up upwards in the parent element and its resource

dictionary up to the root element. If the key is still not found, then the application, theme, and system

resources are looked up in that order,

Let's create a new standalone WFF application to learn how to use dynamic resources. For this, perform the

following steps:

1. Click Start->All Programs->»Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name DynamicResourcesDemoVB.

3. Inthe Window1.xaml file, add the code given in Listing 6.14:

Listing 6.14: Using a Dynamic Resource in XAML

161

Visual Basic 2008 in Simple Steps

In Listing 6.14, you can see that the Window control has three SolidColorBrush resources with the keys
firstBrush, secondBrush, and thirdBrush. The firstBrush resource is referenced in the Background property
of the Grid1 control as a static resource, The Background property of the Grid1 control is then used as a
dynamic resource in the Button1 control. This implies that whenever the background of the Grid1 control
changes, the background of the Button1 control also changes.

4. Double-click the Button2 button in the Design view and add the following highlighted code for the
Button2_Click event handler in the Code Editor:

In the preceding code, inside the Button2_Click event handler, the background of the Grid1 control is set to
the value of the secondBrush resource by using the FindResource method.

5. Double-click the Button3 button in the Design view and add the following highlighted code for the
Button3_Click event handler in the Code Editor:

the value of the thirdBrush resource by using the Hindiesource method.
6. Press the F5 key to run the application. The output of the application is shown in Fig.VB-6.35:

rls.vb-o-da
Note that the background of Dynamic Bulton is same as the background of Grid1.
7. Click the Color1 button (Fig.VB-6.35). The color of Window1 changes, as shown in Fig.VB-6.36:

Fig.VB-6.36
8. Click the Color2 button {Fig.VB-6.36). The color of Window1 changes, as shown in Fig.VB-6.37:

162

Chapter 6: Introducing Windows Presentation Foundati

Fig.VB-6.37
Let's now move ahead to learn about setting styles through resources.

Setting Style Through a Resource

One of the most common uses of resources in WPF is to apply styles uniformly to several elements. In most
cases, styles are defined as resources in WPF applications and therefore are included in the resource
dictionary of an element. In this way, styles become reusable entities allowing them to be used with multiple
elements in an application.

In WPF, you use the Style element while defining the resources for an element. Each Style element has

one or more elements that specify the property and its value to which the style is to be applied. The
syntax of the element is:
In the syntax,

0 x:Key: The key name of the Style element

=] Targel'hrpe The name of the type of an element on which the style is to be applied

=] 1, propertyName2, . . ., propertyNameK: The names of the properties

=] pmperty\fa!uﬂ propertyValue2, . . ., propertyValueK: The values of the properties

Let's create a new standalone WPF application to learn how to set styles through resources. For this, perform

the following steps:

1. Click Start-»All Programs-»Microsoft Visual Studio 2008->Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. Create a new standalone WPF application with the name StylesDemoVB.

3. In the Window1.xaml file, add the code given in Listing 6.15:

Listing 6.15: Using Styles as Resources

Urheberrechtlich geschiitztes Bild

Urheberrechtlich geschitzies Material

Visual Basic 2008 in

Introduction
Windows Workflow Foundation (WF) build a workflow and add the
workflow to an application. A that defines the flow of a process or a
set of tasks that produces a result. WF along with three other foundations.
These three foundations are (WPF), Windows Communication
Foundation (WCF), and Windows 2008 has built-in templates (that were not
available with Visual Studio 2005) to applications.

This chapter begins with the discussion on the principles of workflows and later explains the components of
WF. Further, you learn to develop a simple workflow application, implement conditions in workflows, and
use the workflows with other applications.

Let's begin with the principles of workflows.

Workflow Principles
The workflow platiorm that you use to develop workflow-based applications should embody some
principles. These principles are as follows:
g Workflows coordinate work performed by people and software
a Workflows are long running and stateful
a Workflows are based on extensible models -
a Workflows are transparent and dynamic throughout their lifecycle
Let's discuss these principles in detail one by one.

Workflows Coordinate Work Performed by People and Software

People play an important role in the world of software systems related to workflow and processes. Human
interaction is often done through e-mail, Web pages, mobile devices, or other front ends. WF provides the
necessary infrastructure to effectively handle human interaction and all the related issues.

Workflows are Long Running and Stateful

Humans are inherently less predictable than software systems because they are supposed to interact with the
software systems on an ad hoc basis. For example, they may interact with the software systems after few
minutes, hours, or months. Due to this reason, workflows need to be able to run for long periods. However,
running a workflow for long periods, and storing a running workflow in memory is not practical due to many
reasons. If every running workflow has to be stored in memory while waiting for something to happen, the
server would run out of memory immediately. Additionally, if the server crashes, the volatile memory will be
cleared and all data will be lost.

Workflows are based on Extensible Models
As stated earlier, workflows serve the purpose of automating business processes. Now, since each rypé' of
business has a wide range of problems; therefore, a workflow platform needs to be extensible. WF provides
you a set of base activities such as IfElse, Code, and Delay, to build a workflow. You can extend these
activities or build new activities to meet your requirements. Besides activities, you can also extend services
such as, tracking, management, and persistence, provided by the runtime engine.

Workflows are Transparent and Dynamic throughout their Lifecycle

Workflows are transparent and dynamic both at design time and run time. As WF is based on a declarative
and visual design-time model, existing workflows can be modified without changing the source code.

In this section, we discussed the principles of workflows, Next, we discuss the various components of WF.

166

Chapter 7: Windows Workflow Foundati

Components of Windows Workflow Foundation

WF consists of several components that work together with your application to perform the desired
workflow. Fig.VB-7.1 shows the architecture of WF, which displays how the comp of WFs fit togeth

Fig.VB-7.1
In WF architecture, there are following six major components:
O Workflow
a Base activity library
a Custom Aclivities
0 Host process
Q Runtime engine
Q Runtime services
Let’s discuss these components one by one.
Workflow
A workflow is a declarative therein each program statement is represented in terms of a

component, called an a:lhuty in ofher words, a workflow defines the business logic upon which a program
is based. A business process can involve applications as well as people. Workflows that are developed to
automate interactions among applications are known as system workflows. Such workflows are usually
static and predictable. In contrast to the system kil kfl that are | Jed to coordinate
interactions among people are known as human workflows. Applications that involve human interactions
generally need more flexibility than others, because people may change their minds, introduce new ideas
and exceptions, and cancel a process unexpectedly. Due to the difierences between system and human
workflows, integrating these two together becomes a challenging task. Yet, WF tries to support both system
and human workflows in a unified manner. To build both kind of workflows, WF provides the following two
types of built-in workflows:

O Sequential workflow
Q State machine workflow
Let's examine these two workflow types one by one.

Sequential Workflow
Sequential workflows are used in applications where the workflows activities are executed in a well-defined
order. This workflow executes a set of activities in order, one by one. It may involve branching or looping;
however, the flow of the workflow generally moves from top to bottom. Fig.VB-7.2 shaws an example of a
sequential workflow:

167

Visual Basic 2008 in Simple Steps |

Host Process .
Since a workflow created with WF is not a standalone product, therefore it needs a host application to be
hosted and run. Host process is the process within which a workflow is hosted and run. A host process may
be a Windows Forms application, a Web application, or a Web service application. The host process can
also be a place where generally user interaction takes place.

Runtime Engine
A runtime engine is not a separate service or process, it runs within the host process and is responsible to
execute each workflow instance. A host process may have multiple runtime engines running concurrently
and each engine executes multiple workflow instances simultaneously,

Runtime Services

Runtime services consist of predefined and user-defined classes that essentially live in the workflow runtime

engine during execution, The followings are important runtime services provided by WF to your application:

O Persistence services: These services enable you to save the state of a workflow for later use. You can
restart the workflow as per the requirement, even after the weeks of inactivity.

Q Tracking services: These services enable developers to monitor the state of the workilows. This is
particularly useful when you have multiple workflows active at the same time (e.g. in a shopping cart
application).

0 Transactions services: These services provide the transaction support needed for data integrity.

In this section, we discussed the various components of WF. Next, we learn to create a simple workflow

application.

Developing a Simple Workflow Application
A workflow application is similar to a Windows Forms application and can be developed by performing the
similar steps that are required to develop a Windows Forms application. Let’s now learn how to develop a
simple workflow application by performing the following steps:
1. Click Start-»All Programs->Microsoft Visual Studio 2008-3 Microsoft Visual Studio 2008 to start Visual
Studio 2008,
2. Click File<*New->Project on the menu bar or press the CTRL+5HIFT+N keys together. This opens the
New Project dialog box, as shown in Fig.VB-7.4:
- I -

[T O =

Fig.VB-7.4

170

Chapter 7: Windows Workflow Foundation

3. Now, sefect Workflow under the Visual Basic node in the Project types pane, as shown in Fig.VB-7.4.

4. Then, select Sequential Workflow Console Application in the Templates pane (Fig.VB-7.4).

5. Mow, type a name for your application in the Name text box, as shown in Fig.VB-7.4. In this case, we
have typed ASimpleWorkflowApplication.

6. Then, enter the complete path of the folder where you want to save your application in the Location
bax, as shown in Fig.VB-7.4. In this case, we have entered D:\Books\Simple Steps Books\Visual Basic

. 2008 in Simple Steps\Code Files\Chapter 7.

7. Then, click the OK button, as shown in Fig.VB-7.4. This closes the New Project dialog box and creates
a new Sequential Workflow Consale application, as shown in Fig.VB-7.5:

Fig.VB-7.5
Natice Fig.VB-7.5 that by default, a sequential workflow has only two steps, start and finish.

B. Drag a Code activity from the Windows Workflow v3.0 tab of the Toolbox, drop it between the start,
and finish markers on the form design view (Fig.VB-7.6).
9. Then, change the Name property of the Code activity to ShowMessageActivity, as shown in Fig. VB-7.6:

Fig.VB-7.6

7

Visual Basic 2008 in

10. Now, double-click the design view to open the Code Editor
and add the
11. Now, press the F5 key on of the application is in
Fig.VB-7.7: :
Fig.VB-7.7

In this section, we leamed to develop a simple workflow application. Next, we learn how to implement
conditions in workflows.

Implementing Conditions in Workflows
Similar to a Visual Basic program, you can also implement conditions in the workflow that you create with
WF. Activitics, such as IfElse and While, can be used to implement a condition in a workflow application.
You can implement a condition by using one of the following ways:

u]

By creating a rule condition: In this approach, the condition is created either directly in code or using a
tool, called the Rule Condition Editor. Rule conditions are stored in a separate eXtensible Markup
Language (XML) file. When a rule condition is encountered in a workflow, the expression in the
condition is evaluated and a Boolean value is returned.

By creating a code condition: In this approach, the condition is directly expressed in code. A code
condition can be created by writing a method in the code. The method contains code for the condition
and returns a Boolean value. Now, when the workflow is executed and the condition is encountered,
the method that contains code for the condition is called. In this process, the value retumed by the
method is used as the result for the code condition.

Let’s now learn how to implement conditions in a workilow application by performing the following steps:

1.
2.

3.

Create a new workflow application with the name ImplementingConditions.

Then, add a While activity and an IfElse activity from the Windows Workflow v3.0 tab of the Toolbox
to the form design view (Fig.VB-7.8).

Then, add two Code activities, one for each branch of the IfElse activity and also add a third Code
activity just before the finish marker, as shown in Fig.VB-7.8:

172

7 Foundation

& whllnictivity]

L Moy Pt
AR ' an
] Wokfoal
& Pty
I3
HEhmranchActityl Hiseframcniethtyd
8 ?
1
i i
Fig.VB-7.8
4. . add the following code snippet inside the Workflow1 class ide all hods) in the
wh file:
code snippet, we have defined two Integer type arrays, and marks, and an
type i. The rollNumbers array stores roll numbers of five students and the marks array stores
the of these five students.
Now, set conditions for the Whils =-t5 @0 2o fos oool beenol ~ubg JiE]se activity.
5. the While activity on the form design view and then select the Declarative Rule Condition
the Condition property, in the Properties window. This option enables you to create a rule
Noxe
6. , click the ellipsis {...) button in front of the ConditionName property, as shown in Fig.VB-7.9:

Fig.VB-7.9
This opens the Select Condition dialog box, as shown in Fig.VB-7.10:

173

Chapter 7: Windows Workflow Foundati

10. Click the OK button to close the Select Condition dialog box, as shown in Fig. VB-7.12.
Similar to the While activity, you can st conditions for each branch of the IfElse activity.
11. Set the following condition for the first branch of the IfElse activity by perlormtng sleps 5t09:
this.marks[i] »= 45 :
12. Similarly, set the following condmon for the second branch of the IfElse. acll\flr'_.f by perfon‘rung steps 5
to 9
this.marks[i] < 45
13. Now, double-click the first Code activity, codeAcll\rllyl on the forrn dcs1gn view to open the Code
Editor and add the following highlighted code snippet to the Code Editor:

14, Then, double-click the second Code activity, codeActivity2, on the form design view to open the Code
Editor and add the following highlighted code snippet to the Code Editor:

15. Similarly, double-click the third Code activity, codeActivity3, on the form design view to open the Code
Editor and add the following highlighted code snippet to the Code Editor:

16. Now, press the F5 key on the keyboard to run the application. The output of the application is shown in
Fig.VB-7.13:

Fig.VB-7.13

In this section, we learned how to implement conditions in workilows. Next, we learn how we can use our
custom workflows with some other applications, such as a Windows Forms application.

Using Workflows with Other Applications
WF allows you to create standalone workflow applications that can later be integrated with some other
applications, such as Windows Forms applications and Web applications. Here, we are going to discuss
how we can use workflows with a Windows Forms application. For this purpose, first, we create a workflow
library that contains a workflow and then we will add a Windows Forms project to the application that will
make use of the workflow created in the workflow library. To create the complete application, perform the
following steps:
1. Click Start-»All Programs->Microsoft Visual Studio 2008-> Microsoft Visual Studio 2008 to start Visual
Studio 2008.

175

Visual Basic 2008 in

2

[T]

8.
9.

Click File»New=»Froject on the CTRL+SHIFT+N keys together, This opens the
New Project dialog box, as shown in

-

-

lotumt Dt

Oatee

Tatabacn

Fepirmng

g

tes

wF

by Termptaes
e

e

. <~

Fig.VB-7.14
Now, select Workflow under the Visual Basic node in the Project types pane, as shown in Fig.VB-7.14.
Then, select Sequential Workflow Library in the Templates pane, (Fig.VB-7.14).
Now, type a name for your application in the Name text box, as shown in Fig.VB-7.14. In this case, we
have typed MyWorkflowLibrary.
Then, enter the complete path of the folder where you want to save your application in the Location
box, as shown in Fig.VB-7.14. In this case, we have entered D:\Books\Simple Steps Books\ Visual Basic
2008 in Simple Steps\Code Files\Chapter 7.
Then, click the OK button, as shown in Fig.VB-7.14. This closes the New Project dialog box and creates
your sequential workflow library, as shown in Fig.VB-7.15:

Fig.VB-7.15
Now, add two Code activities and a Delay activity to your workflow.

Then, change the Mame properties of the two Code activities to ShowMessageActivity and
ShowEndMessageActivity, respectively, as shown in Fig.VB-7.15.

10. Now, double-click the ShowMessageActivity activity on the form design view to open the Code Editor

176

Chapter 7: Windows Workflow Foundati

and add the following highlighted code snippet to the Code Editor:

of 5 seconds to the execution of the workflow.

12. Similarly, double-click the ShowEndMessageActivity activity on the form design view to open the Code
Editor and add the following highlighted code snippet to the Code Editor:

a NET assembly, named MyWorkflowLibrary.dll, which you can use in other .NET applications.

We have created a reusable .NET code library that ¢ ins a custom kilow, now we add a Windows

Forms project to the current application that will use the custom workflow.

14. Add a new Windows Forms project to your current solution by right-clicking the solution in the
Solution Explorer and selecting the Add-*New Project option from the context menu, and rename the
project as WorkflowTestApplication.

15. Then, add a Button control from the Windows Workflow v3.0 tab of the Toolbox to Form1 and change
its Text property to Execute Workflow, using the Properties window.

Now, we want to use the workilow that we created in the workflow library, MyWorkflowLibrary, in the

WorkilowTestApplication project. To do so, we need to add a reference of the MyWorkflowLibrary.dll

assembly to the WorkflowTestApplication project.

16. Right-click References under the the WorkflowTestApplication node in the Solution Explorer and select
the Add Reference option, as shown in Fig.VB-7.16:

Fig.VB-7.16
This opens the Add Reference dialog box, as shown in Fig.VB-7.17:

177

Visual Basic 2008 in Simple Steps

e, | cout S
e g LN - T R
Lo Date mecbés Ty 1
www AIL0H B P Applhertrn Esben

Fig.VB-7.17
17. Then, first click the Browse tab, and sefect the MyWaorkflowLibrary.dll file, as shown in Fig.VB-7.17.

18. Then, click the OK button, as shown in Fig.VB-7.17. This adds the reference of the
MyWorkflowLibrary.dll assembly to the WorkflowTestApplication project, as shown in Fig.VB-7.18:

DD .
:w Ty Wanfiowtibvary’ (0 peopets) oy
i 8 MyWarfiowbitery

&

by

&
i
4) Formilon

Fig.VB-7.18

19. Now, perform the steps 16 and 17 to add a reference of each of the following .NET assemblies to the
WorkflowTestApplication project (as these assemblies are predefined .NET assemblies, so you need to
use the .NET tab of the Add Reference dialog box to select each of these assembly):

20. Then, add the following Imports statements to Form1.vb file:

21. Now, double-click the Execute Workflow button on the form design view to open the Code Editor and
add the following highlighted code snippet to the Code Editor:

178

Chapter 7: Windows Workflow Foundati

22. Now, set the WorkflowTestApplication project as the startup project of the application using Solution
Explorer and press the F5 key on the keyboard to run the application. The output of the application is shown in
Fig.VB-7.19:

Fig.VB-7.19
23. Click the Execute Workflow button to execute the workflow (Fig.VB-7.19). This instantly displays the
message box, as shown in Fig.VB-7.20:

Fig VB-7.20

24. Click the OK button in the message box (Fig.VB-7.20). This displays anather message box after 5
seconds, as shown in Fig.VB-7.21:

Fig.VB-7.21
25. Click the OK button to close the message box.

Summary

In this chapter, we learned about:

a Principles of workflows
Components of Windows Workflow Foundation
How to develop a simple workflow application
How to implement conditions in workflows
How to use workflows with other applications

ocooo

179

Urheberrechilich geschiitztes Material

Vistunl Basic 2008 in Simple Steps
Introduction

Business is growing faster day by day and so is the need to store data. Data, as we know, is a collection of
facts, which is generally stored in a database in the form of tables. A database is a collection of tables and
each table stores large amount of data sy ically in a computer, so that information can be accessed
from the database quickly and efficiently whenever required. Databases that are used to relate data in
multiple tables are called relational databases. Some popular relational databases are Structured Query
Language (SQL} Server, Oracle, and Microsoft Access,

For retrieving and ipulating data directly from a database requires the knowledge of basic SQL
commands. The person who is not familiar with SQL commands is not able to use the data stored in a
datab In such a situation, most business applications provide a user-friendly interface, which helps in

retrieving data from a database without the need to write SQL commands. Microsoit ActiveX Data
Objects.NET {ADO.NET} is a model used by NET applications using which you can communicate with the
database directly for retrieving and manipulating data.

This chapter familiarizes you with ADO.NET, its new features and components, and also deals with the
different types of data binding. In addition, you also learn to bind data to Windows Forms application and
Windows Presentation Foundation (WPF),

Let's first explore ADO.NET in brief.

Introducing ADO.NET

ADO.NET is the main data access system that .NET applications use. ADO.NET uses a disconnected data
architecture, which means that the data you work with is just a copy of the data in the database. Microsoft
chose disconnected data architecture because of a number of reasons. In traditional client/server
applications, while the application is running, you get a connection lo a database and keep it open.
However, maintaining these connections require a lot of server resources. When you migrale to the Internet,
you should follow disconnected data architecture, instead of maintaining direct and continuous connections
with the server to reduce the load on servers. Let's now focus on the new features and components of
ADO.NET.

New Features in ADO.NET
* The new features of ADO.NET are as follows:

O Language-Integrated Query (LINQ): Language-Integrated Query (LING) is a new innovation and one of
the components of .NET Framework 2.5 that adds native data querying capabilities to .NET languages
using syntax similar to that of SQL. LING to ADO.NET is a LING technology to enable querying in
ADO.NET using LING programming model. LING to ADO.NET consists of two related technologies:
LINQ to DataSet and LING to SQL. LINQ to DataSet provides faster querying of data on the contents of
a DataSet. LINQ to SQL enables you to directly query SQL Server databases.

a LING to DataSet: LING to DataSet provides LINGQ capabilities for disconnected data stored in a dataset.
LING to DataSet makes it easier and faster to query data cached in a DataSet object. The LINQ to
DataSet feature enables you to work more efficiently.

O LINQ to SQL: LING to SQL is a component of .NET 3.5 Framework that provides a run-time
infrastructure for managing refational data as objects. You can use LINQ to 5QL technology for
translating a query into a SQL query, and then issue it against tables in a SQL Server database. LING to
SQL supports all the key capabilities that you would expect while working with SQL. You can insert,
update, and delete the information from the table.

For more information on LING, refer to Chapter 9, Introducing Language-Integrated Query.

182

Visual Basic 2008 in Simple Steps

Oracle. Some commonly used methods of the Connection object is Open and Close methods. The
Open method is used to open a connection with the database and the Close method is used to close the
connection,

Command: Executes a command against the database and retrieves a DataReader or a DataSet. It also
executes the INSERT, UPDATE, or DELETE command against the database. The base class for all
Command objects is the DbCommand class. The Command obiject is represented by two classes:
SqlCommand and OleDbCommand. The Command object provides three methods that are used 1o
execute c is on the datal The ExecuteNonQuery method executes the commands that have
no return value such as INSERT, UPDATE, or DELETE. The ExecuteScalar method returns a single value
from a database query. The ExecuteReader method returns a result set in the form of a DataReader
object.

DataReader: Retrieves data from the database in a forward-only, read-only mode, The base class for all
DataReader objects is the DbDataReader class. The DataReader object is 1 as a result of calling
the ExecuteReader method of the Command object.

DataAdapter: Retrieves data from the database and stores data in a dataset and reflects the changes
made in the dataset to the database. The base class for all DataAdapter objects is the DbDataAdapter
class. The DataAdapter object acts as intermediary for all the © ication b 1 the datab
and the DataSet object. The Fill method of a DataAdapter object is used to fill a DataTable or DataSet
objects with data from the database. The DataAdapter object commits the changes to the database by
calling the Update method. The DataAdapter provides four properties that represent four database
commands: SelectCommand, InsertCommand, DeleteCommand, and UpdateCommand.

Datasets
The other major component of ADO.NET is the DataSet object. The DataSet object always remains
disconnected from the database, consequently reducing load on the database. A dataset is connected to a
data provider using the DataAdapter object. The DataAdapter object is used as an intermediary between the
dataset and the data provider. The data in the dataset can be manipulated and updated independent of the
database since the dataset maintains a cached copy of the data from a database,

Table 8.2 lists the various components that make up a dataset:

184

Chapter 8: Working with Data and ADONET

11. Select the server name from the Server name combo box, as shown in Fig.VB-8.6.

By default, the radio button beside the Use Windows Authentication option is selected (Fig.VB-8.7). If you
want to use SQL Server authentication, then click the radio button beside the Use SQL Server
Authentication option, and provide user name and [| for authentication. In this ple, to connect
to the server, we make use of Windows authentication.

12. Now, select the database or enter the name of the database you want to connect to in the Select or
enter a database name combo box, as shawn in Fig.VB-8.7:

[T - 3 TR

T e p——————
a2 e

[Ea—

P

o

13. Click the Test Connection button, A box with the ge Test connection
succeeded, as shown in Fig.VB-8.7.

14. Click the OK button of the message box to close the message box, as shown in Fig.VB-8.7.

15. Now, click the OK button of the Add Connection dialog box. The Add Connection dialog box closes
and the data source is added to your application in the Server Expln!:!r. as shown in Fig.VB-8.8:

Fig.VB-8.8

Let's now see how you can establish a connection to the database using a connection string added in a
code-behind file.

Using a Connection String
You saw how to create a connection using a wizard. You can also create a connection string through the
code-behind file. For this, you should be aware of the syntax of the connection string for each of the data

source. The connection string for your application depends upon the type of data source you are
connecting to. For an OLE DB data source, such as Microsoft Access, use the ConnectionString property of

187

Visual Basic 2008 in Simple Steps

the OleDbConnection class, for SQL Server, use the ConnectionString property of the SqlConnection class,

and for an Oracle data source, use the ConnectionString property of the OracleConnection class.

The basic syntax of the connection string includes a series of keywords separated by semicolons. The equal

sign connects each keyword and its value. The following code snippet shows a connection string used to

connect to an SQL Server database:
‘Data SourcesSUMITA-PC\\SQLEXPRESS;Initial catalog=northwnd;Integrated Security=Trué

The explanation of the terms used in the previous code snippet is as follows:

O Data Source: Represents the name or the network address of the SQL Server instance to which you
want to connect,

0 Initial Catalog: Represents the name of the database.

O Integrated Security: Accepts a Booiean value, which can be either True or False. If the value is False
then you need to specify the user id and password in the connection string. If the value is True, then the
current Windows account credentials are used for authentication. The default value is True.

Mext, let's see how to execute commands by using the Command object.

Using a Command Object

After establishing a connection with the database, you can execute commands and also return results from
the database. To access a database, a data command should provide information about the connection, the
SQL statement or the name of the stored procedure to execute. Listing 8.1 shows how to use the Command
object:

Listing 8.1: Using the Command Object

Adding and Configuring a Data Adapter
A data adapter enables you to access data from a database in a disconnected way. Let's now leam how we
can access data in a data adapter from a database, by performing the following steps:

1. Open the DatabaseOperationsExample application.
2. Set the Text property of Form1 to Basic Database Operations.
Nete

3. Right-click the Data tab of the Toolbox and select the Choose ltems option from the context menu that
appears, as shown in Fig.VB-8.9:

188

Chapter 8: Working with Data and ADONET

F Bosrgtans B, w
- ap—
. botalael -

b rond DR {3
frre—— e
T ettiraaechas p—
A b e
) [
& e ;
Fig.VB-8.9
The Choose Toolbox Items dialog box appears, as shown in Fig.vVB-8.10:
e e |

St e S bt Sprembun AR Ohoa
s et [T R
Sprem el Sy 1400 Ookel b

[y

e
e I

St ke ety Syt Wodem Aeh ot
I e -
I ety et e

| ety
gy e g s Gl
i v 840 hant

Fig.VB-8.10

4. Under the .NET Framework Components tab in the Choose Toolbox Items dialog box, select the check
box beside the SqlDataAdapter option, as shown in Fig.VB-8.10.

5. Then click the OK button to close the Choose Toolbox ltems dialog box, as shown in Fig.VB-8.10. The
Choose Toolbox Items dialog box closes and the SqlDataAdapter control is added to the Toolbox, as
shown in Fig.VB-8.11:

Fig VB-8.11

6. Now, drag a SqlDataAdapter control to the form. The Data Adapter Configuration Wizard begins, as
shown in Fig.VB-8.12:

189

Visual Basic 2008 in Simple Steps

Fig.VB-8.12
7. Select a data connection from the Which data connection should the data adapter use? combo box or
create a new connection by clicking the New Connection button. Clicking the New Connection button
opens the Add Connection dialog box (Fig.VB-8.4). In this case, we use the connection we created
earlier for connecting to the northwnd database (Fig.vVB-8.12).
8. Click the Next button, as shown in Fig.VB-8.12. The next page for the Data Adapter Configuration
Wizard appears, which prompts the user to sefect a command type, as shown in Fig.VB-8.13:

| Chooss & Commend Typs
w430, e

| o et et inptes acsem the detubne?
LT pee———

| WPDATE and
DELETE catements 10 cave dota chamges.
2 rmtr rrsr horee s sshares
tatarmare, et
R —
. Use vt stared proceduies
imserteg, updating and
wiatng erord

BN - 0 JECE
<0
Fig.VB-8.13
The page displays the following three options to select:
O Use SQL statements: Enables the data adapter to use a SQL stalement to populate a table in a dataset,
This option is by default selected.

0 Create new stored procedures: Creates a new stored procedure to read and update a table in the
database.

O Use existing stored procedures: Enables the data adapter to use an existing stored procedure to read
and update a table in the database.

In this case, we go with the first option that is the Use SQL statements option,

9. Click the Next button, as shown in Fig.VB-8.13. The next page for the Data Adapter Configuration
Wizard appears, which prompts the user to generate an SQL statement, as shown in Fig.VB-8.14:

190

Visual Basic 2008 in Simple Sleps

Fig.VB-8.16

At the top of the Query Builder dialog box, you can see all the fields of the Employees table. You can select
either some fields or all the fields from the table,

14, Select the check box beside the * (All Columns) option from the Employees table, as shown in Fig.VB-8.16.

15. Click the OK button to create the SQL statement (Fig.VB-8.16). The SQL statement appears in the Data
Adapter Configuration Wizard, as shown in Fig.VB-8.17:

e Ao Cngurnsion Woased

.
Th SELECT tiabarant wié b i 10 crawne ton INGERT USDATE aned i 1
DELITT datemmmts

BT

ep——
ti bl

MU Gplomat
[t -

b=

Fig.VB-8.17

16. Click the Mext button (Fig.VB-8.17). The Data Adapter Configuration Wizard displays the wizard
results, as shown in Fig.VB-8.18:

182

Chapter 8: Working with Data and ADO.NET

S N
Wiznrd Fesuls 4
- (|
e

T et gt s e s ookt iy
oz

T oty e et b e g, chch b

L o] o)
Fig.VB-8.18

17. Click the Finish button to end the Data Adapter Configuration Wizard. This adds a DataAdapter object,
SqlDataAdapter1, and a Connection object, SglConnectionl, to the component tray, as shown in
Fig.VB-8.19:

Fig.VB-6.19

18. Click Data<Preview Data on the menu bar to preview the data from the data adapter, as shown in
Fig.VB-8.20:

193

Visual Basic 2008 in Steps

The Preview Data dialog box appears, as

19, Click the Preview button to view the data from the database in the Results pane, as shown in
Fig.VB-8.21.

20. Click the Close button to close the Preview Data dialog box (Fig.VB-8.21).
Creating a Dataset

Datasets, as already explained, contains a cached copy of the tables of a database. The dataset is
independent of the database and therefore the interaction between a dataset and a database is done through
a data adapter. You can fill data in a dataset by using the Fill method of the data adapter.

Now, let's create a dataset by performing the following steps:
1. Open the DatabaseOperationsExample application.
2. Click Data=»Generate Dataset on the menu bar, as shown in Fig.VB-8.22:

Fig.VB-822

The Generate Dataset dialog box appears, which prompts the user to select a dataset, as shown in
Fig.VB-8.23:

194

Chapter 8: Working with Data and ADONET

[oenerse Cuaet | igz gz;‘ L B
otreiaTe s Gathcet Pt ke he pcied ik,
s o duet

R g
e which ol o ek bt st
= ; SR

e th hshant vy the e

Lol
Fig.VB-8.23
You can select an existing dataset or create a new one. By default, the New radio button is selected. You can
provide a new name for the new dataset or you can use the default name, DataSet1. The Generate Dataset
dialog box also prompts the user to select a table to add to the dataset. By default, the table Employees is
selected, as shown in Fig.VB-8.23.

3. Click the OK button to add the dataset to the application, as shown in Fig.VB-8.23. The dataset,
DataSet11, is added to the component I.ray. as shown in an VB-8.24:

Fig VB-8.24

Using a Data Adapter to Retrieve Data in a Dataset

So far, we have created a data adapter and a dataset. Let's now see how to display data in a DataGridView
contral using data adapter and dataset. To do so, perform the following steps:

1. Open the DatabaseOperationsExample application.
2, Draga DataGuthm control to the form from the Data tab of the Toolbox, as shown in Fig.VB-8.25:

195

Chapter 8: Working with Data and ADONET

‘.ﬁimﬁl

i Dmtert] T D | gitme

Fig.VB-8.27
4. In the Smart Tag of the DataGridView control, select the Emplnym Iab[e from the Choose Data Source
combo box, as shown in Fig.VB-8.27. The EmployeesBindi e binding source is added to the

component tray, as shown in Fig.VB-8.28:

Fig.VB-8.28

5. Resize the form to accommodate the data of the Employees table.

6. Add the highlighted code snippet shown in Listing 8.2 to the Load event handler of the form to display
the data of the Employees table in a DataGridView control:

Listing 8.2: Populating the Dataset

197

Visual Basic 2008 in Simple Steps

As shown in Listing 8.2, the Fill method is used to populate the dataset, DataSet11, with the data of the
Employees table,

7. Press the F5 key on the keyboard to execute the DatabaseOperationsExample application. The output is
shown in Fig.VB-8.29:

FielsiE e

1=

Fig.VB-8.29

Types of Data Binding in Windows Forms
Data binding means to bind controls to data from data sources. Data binding can be used to bind either a
particular field in a table or bind the entire table to a control. For example, you can bind a text box to the
ProductName field of a table or bind the entire table to a data grid view.
There are two types of data binding in Windows Forms: simple data binding and complex data binding. Let's
see them in detail next.

Simple Data Binding
Simple data binding allows you to display one data element, such as a field's value from a table, in a
control. In Visual Basic, you can simple bind any property of a control to a data value. For example, you can
bind a Text property of a text box, Size and Image properties of a picture box or the BackColor property of a
label to a data source. You can bind a property of a control to a data source by using the DataBindings
property of the control.

In simple terms, you can say that simple data binding is the ability of a control to bind a single data element.
Let's see an example of simple data binding. For that, perform the following steps:

1. Create an application, named WindowsFormsDataBinding,

2. Set the Text property of Form1 to Simple Data Binding.

3. Drag the controls listed in Table 8.3 on Form1 from the Toolbox and also set their properties, as given
in Table 8.3:

198

Chapter §: Working with Dala and ADO.NET

5. MNow, add the highlighted code snippet shown in Listing 8.3 to the Load event handler of Form1 to
display the details of the employee whose EmployeelD is 6:

6. Press the F5 key on the keyboard to execute the WindowsFormsDataBinding application. The output is
shown in Fig.VB-8.30:

2 Simple Duta Binding [FSER=SC=Y
Erpioyes D
Frat Name Cnarna I
1
Last Mame icion f
Tale Sses Reoesertdne
Fig.VB-8.30
As shown in Fig.VB-8.30, the details of the employee whose ID is 6, have been displayed on text boxes.
Using the BindingContext Class

The Bmdins(on!ul class in Wmdom Forms application provides information about the binding and
Ji that is required to build the channel for data binding. You use the BindingContext class to
access the data bindings in a control. The inheritance hierarchy of the BindingContext class is shown hete
syss;e- .Object 2 t

.Windows . Forms . BindingContext
Each object that inherits from the Control class can have a single BindingContext uhject Using this ob]ecl
you can access the data bindings in a form, which allows you to set the current record displayed in simple-
bound controls, using the Position property. Let's see an example of simple data binding using the
BindingContext class. For that, perform the following steps:
1. Open the application, named WindowsFormsDataBinding.

199

Chapter 8: Working with Data and ADONET
displays the next record of the dataset. Finally, for Buttond, the Position property is st to a value one less
than the number of records to display the last record of the dataset.

4. Press the F5 key on the keyboard to execute the WindowsFormsDataBinding application. The output is
shown as in Fig.VB-8.31, which displays the details of the first record, by default:

Fig.VB-8.31

5. Click the >> button, as shown in Fig.VB-8.31. The last record of the dataset is displayed, as shown in
Fig.VB-8.32:

Fig.VB-8.32

Complex Data Binding

Complex data binding enables binding of a control to more than one data element, such as more than one

record in a database. Some of the controls that support complex data binding are: DataGridView,

ComboBox, ListBox, and CheckedListBox. Complex data binding can be perormed using the following

properties:

O DataSource: Rqarmcnts the data source, typically a dataset, such as DataSet11.

O DataMemb the data ber you want to work with, in the data source, typically a table
in a dataset, such as the Customers table in the northwnd database. The DataGridView control uses the
DataMember pmperty to determine which table to display.

a M the field you want a control to display, such as the customer's id,
Clumlrn:rlD The ListBox control uses the Displ playMember and ValueMember properties instead of a
DataMember property for data binding.

QO ValueMember: Represents the field you want the control to return in properties, such as returning the
customer 1D by using the SelectedValue property. The ListBox control uses the DisplayMember and
ValueMember properties, instead of a DataMember property.

Let's see an example of complex data binding through code, For that, perform the following steps:

1. Open the application, named WindowsFormsDataBinding.

2. Right-click \he WindowsFormsDataBinding application in the Solution Explorer and select
Add->Windows Form from the context menu to add a new form 1o the application, as shown in
Fig.VB-8.33:

201

Chapter 8: Working with Data and ADONET

Listing 8.5: Displaying Complex Data Binding

source and the DataMember property is used to set the table name from which the employee details need to
be displayed.
9. Set Form2 as the startup form for the application.

10. Press the F5 key on the keyboard to execute the WindowsFormsDataBinding application. The output is
shown in Fig.VB-8.35:

58 Corhes e Becing L0 B =)
EvplpesDLuhams Frabona The TheOiouten; Batioste
[e
e
e
191897
Yensss
(el
e
13198
znms

Fig VB-835

Data Binding in Windows Presentation Fourdation

As we know WPF makes it easier to design robust and visually appealing user interface. The added
:apabnhty that WPF provides is the data binding. In WPF, you can perform data binding using the

k Code, eXtensible Application Markup Language (XAML) or a combination of both. You can bind
Ihe WPF cantrols and their properties to make data binding flexible and easy. For more information on WPF,
refer to Chapter 6, Introducing Windows Presentation foundation.

As in other types of applications, such as the Window Forms and the ASP.NET Web application, WPF also
needs to have a target and a source for data binding. You can select the public property of the control in
WPF to bind your data, which includes properties of other controls, or any data source such as the
northwnd database. The target of the binding can be accessible to public property of the control, for
example, the Text property of the TextBox control. In all, you can say that data binding is one of the most
powerful features included in WPF,

Data Flow Directions
WPF data binding supports different types of binding modes between the target and the source. The data
flow in a binding can either move from the target to the source or from the source to the target. You should
specify the mode of data binding while binding the data in a WPF application, The Mode property defines
the binding mode that determines how the data will flow between the source and the target. There are four

203

Visual Basic 2008 in Simple Steps

types of binding mode available in WPF: OneTime data binding, OneWay data binding, TwoWay data
binding, and OneWayToSource data binding. Let's learn about the functioning of each of these in detail.

OneTime Data Binding
In OneTime data binding in WPF, the data flows from the source to the target. The binding occurs only once
when the application is started or the data context changes. The best time to use the OneTime binding is
when your data source does not impl the INotifyPropertyChanged interface. For example, when you
do not have to change the data or add any other data to your darabase. you can use OneTime binding in
your application. The OneTime binding can only retrieve the data but cannot update data in your database.

OneWay Data Binding
In OneWay data binding in WPF, the data flows from the source to the target. This type of binding is useful
for read-only data as it is not possible to change the data from the user interface. The OneWay binding
mode in WPF is the default binding mode.

TwoWay Data Binding
The data in TwoWay data binding in WPF moves in both directions, that is, from source to the target and
from target to source. In TwoWay data binding, you can make changes to the data in the user interface. In
this binding, the data is sent to the target, and if there is any change in the target property value, it is sent
back to the source. You can use the TwoWay binding when you want to change the data in the user
interface which is reflected in the data source.

OneWayToSource Data Binding
In OneWayToSource data binding, if the target property changes, the source property is updated
automatically. You can use the OneWayToSource binding when you want to change the data and get it
updated in the source,

Declaration of Data Binding in WPF
You can declare binding in WPF in different ways and formats, You can create binding in the XAML format
using the markup file of a WPF application. You can also create binding through code using the code-
behind file of a WPF application. The third way to create binding in WPF is by specifying the Path property.
You can specify the source value that you want to bind by using the Path property. Let’s see how you create
data binding in a WPF application in these three ways.

Using XAML
You can bind the WPF application in the XAML format by specifying the Binding property. Binding is the
markup extension. When you use Binding property as an extension 1o declare binding, the declaration
consists a series of clauses. The clauses are in the form of Name = Value pairs, where Name is the name of
the Binding property and Value is the value you are setting for the property. You should note that when you
are creating binding in the XAML format, the Binding property must be attached to the specific dependency
property of the target object. The following code snippet explains the basic syntax by using the Binding
property in the XAML format:

<TextBox Text="{Binding source={StaticResource myDataSource}, Path=Contactame}"/s

In the preceding code snippet, the Text property of the TextBox contral is using the Binding property. The
data binding in WPF provides you a simple and consistent way for the applications to present and interact
with data. In WPF, you establish a binding using the Binding property. Each binding in WPF has four
components: binding target, binding source, target property, and a path to the source value to use, Let's see
a binding example in WPF using XAML:
1. Create a WFF application, named WPFDalaBinding.
2. Set the title of Window1 to Binding using XAML using the Title property.
3. Add the code given in Listing 8.6 to the Window1.xaml file:

204

Chapter 8: Working with Data and ADO.NET

Listing 8.6: Creating Data Binding Using XAML

property to a ListBox control's selected value. In the code, the Binding property within the Ellipse.Fill

property sets the binding from Ellipse control to ListBox control by specifying control 1D in the

ElementName property and the Path property holds the value of the selected item in the list box.

4. Press the F5 key on the keyboard to execute the WPFDataBinding application. The output is shown in
Fig.VB-8.36:

[e i Y- AN

|| ook ok trom bt But

Fig.VB-8.36

5. Now, click the Green color in the list box, this fills the ellipse with the green color, as shown in
Fig.vB-8.37:

Fig.VB-6.37

205

Visual Basic 2008 in Simple Steps

Using the Code-Behind File

Another way to specify the binding is to set the properties directly on the Binding object in code. The

FrameworkElement class and the FrameworkContentElement class, both expose the SetBinding method.

You can call the SetBinding method directly in your application to bind the control in code. The following

code snippet explains the basic syntax of how to bind your WPF application in code:

me.MyText.SetBinding(Text@lock, TextProperty, Bindingl)

In this code snippet, you are binding the Text property of the TextBlock control.

Let's now see a binding example in WPF using the code-behind file:

1. Open the WPF application, named WPFDataBinding.

2. Add a new window to the application by right-clicking the application name in the Solution Explorer
and sefecting the Add»Window from the context menu. The Add New Item dialog box appears with
the name Window2.xaml in the Name text box. When you click the OK button, the Window2.xaml file
is added to the application.

3. Set the title of Window2 to Binding using code-behind file using the Title property.

4. Add the code given in Listing 8.7 to the Window2.xaml file:

Listing 8.7: Adding Code for the Window2.xaml| File

As shown in Listing 8.7, the Window2.xaml file is same as Window1.xaml file except for the Binding
property used for the Ellipse control in the Window1.xaml file. Here, we create the binding through code.

5. Add the code given in Listing 8.8 to the Window2.xaml.vb file:

Listing 8.8: Creating Data Binding Using the Code-behind File

the binding source. Similarly, the Path property is used to set the property of the binding source and tinally

the SetBinding property is used to bind the target control to the source.

6. Set Window2.xaml as the startup object by double-clicking the Application.xaml file in the Solution
Explorer and changing the StartupUri attribute of the Application.xaml file to Window2.xaml.

206

Chapter 8 Working with Data and ADO.NET

7. Press the F5 key on the keyboard to exccute the WPFDataBinding application. As a result, the output is
shown in Fig.VB-8.38:

Fig.VB-838
8. MNow, click the Orange color in the list box. This fills the ellipse with the orange color, as shown in
Fig.VB-8.39:
Fig.VB-8.3¢
Using the Path Property

You can also use the Path property to specify the source value that you want to bind in a WPF application.

The Path property is the name of the property of the source object used for binding. For example, you can

bind the Text property of the TextBox control. You can also bind an attached property of a control using the

Path property. For example, to bind the attached property DockPanel.Dock, the syntax that you should use

with the Path property is given here:

Path = (DockPanel.Dock)
You can also bind the property of a control to a particular field of the database using the Path property. The
syntax for this is given here:

Path=Employees.FirstName

In the preceding code snippet, you can bind the control ta the FirstName column of the Employees table.

Let's now see a hinding example in WPF using the Path property:

1. Open the WPF application, named WPFDataBinding.

2. Add a new window to the application by right-clicking the application name in the Solution Explorer
and selecting the Add-»Window from the context menu. A window with the name Window3.xaml is
added to the application.

3. Setthe title of Window3 to Binding using the Path Property by using the Title property.

4. Add the code given in Listing 8.9 to the Window3.xaml file:

Listing 8.9: Creating Data Binding Using the Path Property

207

Visual Basic 2008 in Simple Steps

property to a ListBox control's selected value. In the code, notice that the DataContext attribute for the
- Ellipse control is set to the binding definition. The Binding property within the Ellipse control sets the

binding for Ellipse control and ListBox control. Binding for the Ellipse control is set by specifying control 1D

in the ElementName property and hinding for the ListBox control is set through the value of the selected item

in the list box using the Path property.

5. Set Window3 as the startup object.

6. Press the F5 key on the keyboard to execute the WPFDataBinding application. The output is shown in

Fig.VB-8.40:
7 Birdng uing the Path Prpery
| Pick s color from belom st
|
I —y“.
< Green
Blue | [}
| Gray |
| ghGray |
|Red | |
!
!
Fig.VB-8.40
7. Now, cfick the Blue color in the list box. This fills the ellipse with the blue color, as shown in
Fig.VB-8.41:

W Bancng wsing the Path Prope-ty

Pick & color from below list

Fig.VB-8.41

208

Chapter 8: Working with Data and ADO.NET

Binding Sources in WPF
In data binding, the source refers 1o the object that you obtain data from. WPF supponts four types of binding
source: Common Language Runtime (CLR) object, ADO.NET data, eXtensible Markup Language (XML} data,
and DependencyObiject. For CLR object, the data binding works as long as the binding engine is able to
access the source property using reflection. The XML data fails to bind when it does not have permission to
access the given data. You can always bind to an ADO.NET object and DependencyObject.

Binding to CLR Objects
In WPF, you can bind to the public properties, or the sub. ies of any CLR object. The binding object
in WPF uses the CLR reflection 1o retrieve the values of the pmpemes When you are using the CLR object
for data binding in WPF, you should implement the INotifyPropertyChanged interface. This interface helps

you 1o update the target when the source property changes by implementing the INotifyPropertyChanged
interface. This helps in ensuring that the data used in binding stays current.

If the source object implements a proper notification mechanism, the target is updated automatically. You
can also use the UpdateTarget method to update the target property to provide property change notification.
Let's see an example to implement CLR object binding. For this, perform the following steps:

1. Create a WPF application, named BindingtoCLRObject.

2. Set the title of Window1 to Binding to a CLR Object using the Title property.

3. Add the code given in Listing 8.10 to the Window1.xaml file:

Listing 8.10: Preparing the User Interface

After adding the preceding code 1o the Window1.xaml file, add a class to your application.
4. For adding the class, right-chick the application name in the Selution Explorer and sefect the Add->Class
from the context menu, as shown in Fig.VB-8.42:

Chapter 8: Working with Data and ADONET

Listing 8.11: Complete Code for the Data.vb File

211

Visual Basic 2008 in Simple Steps

In the preceding code, a value is added to the user interface that you have created in Listing 8.10,
8. Now, add the code given in Listing 8.12 to Window1.xaml.vb:
Listing 8.12: Complete Code for the Window1.xaml.vb File

9. Press the F5 key on the keyboard to execute the BindingtoCLRObject application. A window appears
wherein you can enter employee details, as shown in Fig.VB-8.44:

WY Bnctog 30 0 CUR Cljec
e [
bl u

Fig.VB-8.44
10. Enter employee details in the text boxes, as shown in Fig.VB-8.44.
11. Click the SHOW DATA button. A message box appears, as shown in Fig.VB-B.45:

) Being to.0 2R Crgeut 7 Len [B0)
hamr Tt

—®

212

Chapter 8: Working with Data and ADO.NET

12. Click the OK button in the message box to close the message box.

Binding to ADO.NET Objects

You can also bind an ADO.NET object to a WPF application. For example, you can bind a data table to a
WPF application. You can implement the IBindinglist interface to provide change notifications. The
IBindingList interface provides features to support both simple and complex data binding to a data source.
While binding your WPF application to an ADO.NET object, the first step is to create a connection. After
establishing the connection, the adapter, which executes the SQL statement to retrieve the record from the
database, is created. The result is stored in the data table of the dataset by calling the Fill method of the
adapter. This result is then displayed in the WPF control.

To bind a WPF application to an ADO.NET object, first you need to create a connection string to bind your
WPF application to an ADO.NET object. Then you also need to bind your controls by specifying the
ItemSource and ltemTemplate properties. To display a particular column data, you should specify the
DisplayMemberBinding property. Let's create an application in which you can bind an ADO.NET object to
a WPF application. For this, perform the following steps:

1. Create a WPF application, named BindingtoADO.NET.

2. Set the title of Window1 1o Binding to ADO.NET using the Title property.

3. Add the code given in Listing 8.13 1o the Window1.xaml file:

Listing 8.13: Preparing the User Interface

Visual Basic 2008 in Simple Steps

With the help of the code given in Listing 8.13, you can prepare the interface on which you display your
data,

4. For database connectivity, import two namespaces, System.Data and System.Data.SqlClient, in the
Window1.xaml.vb file.

5. Now, add the code given in Listing 8.14 to the Window1.xamlvb file.
Listing 8.14: Code for Data Binding

database by using the DataContext object.

6. Press the F5 key on the keyboard to execute the BindingtoADO.NET application. The output is shown
in Fig.VB-8.46:

Fig.VH-5.46

7. Click the Get Data button. The employee details are displayed in a ListView control, as shown in
Fig.VB-8.46,

214

Chapter 8: Working with Data and ADO.NET

Summary
In this chapter, you learned about:
Q Features and components of ADO.NET
O Types of data binding
a Implementation of data binding in Windows Forms
Qo Impl ion of data binding in WPF

215

Urheberrechilich geschitzies Material

Visual Basic 2008 in Simple Steps

Introduction

Language Integrated Query (LINQ) is a new component of .NET Framework 3.5. The basic function of LINQ
is to add native data querying capabilities to .NET Framework using syntax similar to that of Structured
Query Language {SQL). LING allows you to define statements that interrogate a data source to yield a
requested result set. LING is an atternpt to provide a consistent way of obtaining and manipulating the data.
You can use LINQ directly within the VB programming language entities called query expressions. These
query expressions are based on numerous query operators that have been designed to work in a manner
similar to that of SQL. LING defines the set of query operators as the operators used to query, project, and
filter the data. The difierence, however, is that the query cxpress:ons can be used to interact with numerous
types of data, even with the data that does not belong to a k LING integ the query
syntax within a VB program, which makes it possible to access different data sources with the same syntax.
LINQ makes it possible by offering an abstraction layer.

In this chapter, you will learn about LING queries, standard query operators used in LING, LINQ to
ADO.NET, anonymous types, and lambda expressions.

LINQ Queries

A query is an expression that is used to retrieve data from a data source. It specifies, sorts, and groups the
data that is retrieved from a data source. LINQ queries are written in a specmllzcd query Ianguagc 1n the
past, you had to learn different languages for different data sources, for L for

and XQuery for Extensible Markup Language (XML). A LINQ query 5|mp||res this situation by providing a
consistent syntax to work with data across various kinds of data sources and with data of different formats.
You can use various clauses, such as From, Where, Order By, and Select, with a LINQ query. These are
predefined clauses that are used for the execution of a LING query.

The basic syntax of a LINQ query starts with the From clause and ends with the Select or Group By clause.
In addition, you can use the Where, Order By, and Order By Descending clauses to perform additional
functions, such as filtering data.

The following are the three basic steps to execute a LINQ query:

o Obtain the data source. The data source can be either a SQL database or an XML file.

a Create the query,

QO Execute the query.

Mow, let's learn how to execute a simple LING query.

Executing a Simple LING Query

A LING query is executed in a For Each statement. The For Each statement in VB requires the 1Enumerable

or [Enumerable(Of T) interface. A LINQ query contains three clauses: From, Where, and Select. The From

clause specifies the data source, the Where clause applies the filter, and the Select clause specifies the type

of result.

Now, let's create a new Windows Forms application, LINQQuery, in which you can use a simple LING

query to retrieve data. Perform the following steps to do this:

1. Click Start-»All Programs—=*Microsoft Visual Studio 2008 Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2, :jn llhe :isual Studio 2008 IDE, click File-»New->Project on the menu bar to open the New Project

ialog box.

3. In the New Project dialog box, sefect the Visual Basic»Windows option in the Project types pane and
the Windows Forms Application oplion in the Templates pane.

4. Enter LINQQuery in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

5. Click the OK button. The LINQQuery application is created.

218

Chapter 9: Introducing Language-Integrated Query

6. Add a ListView control and a Button control to Form1 and change the Text property of the Button1 to
Click, as shown in Fig.VB-B.I'.

M-& 0Bl b Dby - dercPy
gLtk n L

Fig.VB-9.1
7. Add the code given in Listing 9.1 to the Click event handler of Button1:
Listing 9.1: Code for the Button1_Click Event Handler

Listing 9.1 shows how the three parts of a LINQ query are expressed in the source code. The code uses an

integer array as the data source.

8. Press the F5 key to run the application and click the Click button. The output of the application is
shown in Fig.VB-9.2:

219

Visual Basic 2008 in Simple Steps *

The Standard Query Operators

The standard query operators are clauses that are used to create and refine data based on the query and the
needs of an application. Standard query operators provide querying capabilities, including filtering,
projection, aggregation, and sorting. The standard query operator in LINQ is an Application Programming
Interface (API) that enables querying of any .NET array or collection. You can use these standard query
operators to perform an operation on a sequence of data.

Standard query operators differ in the time they take to execute the query. The time taken by a query
depends on whether the query returns a single value or a sequence of values. The methods that return a
single value execute immediately. The methods that return a sequence of values reschedule the execution of
the query and return an output.

A list of all standard query operators used in LING is listed in Table 9.1:

Apgroegate operator Computes a single value from a collection
Now, let's know about each of the standard query operators in detail.

The Sorting Operators
The sorting operators in LINQ order the elements of a sequence based on one or more attributes, You can
sort the data with one specific attribute and perform primary sorting on the elements. You can then specify
the second sorting criterion and sort the elements within the primary sorted group. The different sorting
operators are the Order By and Order By Descending clauses.
The sorting functionality is achieved by using the Order By clause. The sorting operator can sort data either
in ascending order or in descending order. The default behavior of the Order By clause is to sort data in
ascending order. If you want to order your data in descending order, you need to use the Order By
Descending clause.
Now, let's create a new Windows Forms application, SortingOperator, where you can use the Order By and
Order By Descending clauses to sort data. Perform the following steps to do this:
1. Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application.
2. Enter SortingOperator in the Name text box to specify the name of the application, and specify an

appropriate location for the application in the Location box.

3. Click the OK button. The SortingOperator application is created,

220

Visual Basic 2008 in

8. Click the Descending button, as shown in Fig.VB-9.4. The data in the list view is sorted in the
descending order, as shown in Fig.VB-9.5:

Fig.VB-9.5

The Set Operators
The set operators in LING refer to the operators that are used to produce a result set. The result is based on
the presence or absence of the equivalent elements that are present within the same or separate collection.
The Distinct clause and the Union, Intersect, and Except methods are classified as the set operators.

The Distinct clause removes duplicate values from a collection. The Union method returns all the elements

in the two sets. The Intersect method returns the elements that appear in each of the two collections. The

Except method returns the elements of the first collection that do not appear in the second collection.

Now, let’s create a new Windows Forms application, SetOperator, where you can use the Distinct clause to

remove duplicate values from a set of data. Perform the following steps to do this:

1. Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application.

2. Enter SetOperator in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The SetOperator application is created.

4. Add a ListView control and a Button control to Form1 and change the Text property of Buttonl to

Distinct, as shown in Fig.VB-9.6:

Chapter 9: Introducing Language-Integrated Query

Fig-VB-9.6

5. Add the code given in Listing 9.4 to the Click event handler of Button1:
Listing 9.4: Code for the Button1_Click Event Handler

Ihe code in Listing 4.4 removes the duplicate numbers in the set and displays the result when you click the

Distinct button,

6. Press the F5 key to run the application and click the Distinct button. The output of the application is
shown in Fig.VB-9.7:

Fig.VB-9.7
Filtering Operator
Filtering, as the name suggests, refers to the operation of filtering the result set so that it contains only those
elements that satisfy a specified condition. The Where clause is used as the filtering operator in LINQ. It
filters a sequence based on the given condition. The Where clause is used in a query expression to specify
which elements from the data source will be returned in the query expression.
Now, let's create a Windows Forms application, FilteringOperator, where you can use the Where clause.
Perform the following steps to do this:
1. Repeatsteps 1 to 3 as discussed earlier in the case of the LINQQuery application.
2. Enter FilteringOperator in the Name text box to specify the name of the application, and specify an
appropriate lacation for the application in the Location box.

3. Click the OK button. The FilteringOperator application is created.

223

Visual Basic 2008 in Simple Steps

4. Add a ListView control and a Button control to Form1 and change the Text property of Button1 to
Click, as shown in Fig.VB-9.8:

Fig.VB-9.8
5. Add the code given in Listing 9.5 to the Click event handler of Button1:
Listing 9.5: Code for the Button1_Click Event Handler

The code in Listing 9.5 generates the numbers that are greater than 25, which is the condition specified in

the Where clause.

6. Press the F5 key to run the application and click the Click button. The output of the application is
shown in Fig.VB-9.9:

Fig.VB9.9
The Quantifier Operators
The quantifier operators return a Boolean value if the elements of a sequence satisfy a specific condition.
The operators that are classified as the quantifier operators are the Any, All, and Contains methods.

224

guage-Integrated Query

Chapter 9: fucing L

The Any method determines whether or not any elements in a sequence satisfy a condition. This method

enumerates the source sequence and returns True if any element satisfies the condition. The enumeration of

the source sequence terminates as soon as the result is known. The ArgumentNullException exception is

thrown if the argument is null.

The All method determines whether or not all the elements in the sequence satisfy the given condition. This

method tes the source sequence and returns True if no element fails the condition specified in the

query. The All method returns a True value for an empty seq e. The Arg tNullException exception

is thrown if any argument is null.

The Contains method checks the source sequence to determine whether or not it contains the specified

element. When the matching element is found, the Contains method returns the result.

The Projection Operators

The projection operators refer to the operators that are used 1o transform an object into a new form that

consists of only those properties that are subsequently used. The projection operators are used to transform

an object into a new object of a different type. By using the projection operators, you can construct a new

object of a different type that is built from each object. The Select clause and the SelectMany method are the

projection operators used in LINQ.

The Select clause performs a projection over a sequence and projects the value that is based on a transform

function. The Select clause in LINQ performs the same function as performed by the Select statement in

SQL. The Select clause specifies which elements are to be retrieved.

The SelectMany method projects a sequence of values that are based on a transform function and then

retrieves them into one sequence.

Now, let's create a new Windows Forms application, ProjectionOperator, where you can use the Select

clause. Perform the following steps to do this:

1. Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application.

2. Enter ProjectionOperator in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The ProjectionOperator application is created.

4. Add a ListView control and a Button control to Form1 and change the Text property of Buttonl to
Select Clause, as shown in Fig.VB-9.10:

“FigVBo10
5. Add the code given in Listing 9.6 to the Click event handler of Button1:

225

Visual Basic 2008 in Simple Steps

Listing 9.6: Code for the Button1_Click Event Handler

6. Press the F5 key to run the application and click the Select Clause button. The output of the application

is shown in Fig VB-9.11:

In Fig.VB-9.11, each word from the string of words is displayed, The complete string is displayed in three
lines,

Nete

The Partitioning Operators
The partitioning operators in LINQ are used to divide an input sequence into two sections, without
rearranging the elements, and then returning the result set with one of the sections that satisfies the given
condition. The Take, Skip, Take While, and Skip While clauses are referred to as the partitioning operators.
The Take clause takes the elements up to a specified position in a sequence. The Take While clause takes
the elements based on the specified function until an element does not satisfy the given condition. The Skip
clause skips elements up to the specified position in the sequence. The Skip While clause skips the elements
based on the given function until an element does not satisfy the given condition.
Mow, let's create a new Windows Forms application, PartitioningOperator, where you can use the Take and
Skip clauses. Perform the following steps to do this:

1.
2,

3.
4.

Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application,

Enter PartitioningOperator in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

Click the OK button. The PartitioningOperator application is created.

Add a ListView control and two Button controls to Form1 and change the Text property of Button1 to
Take and the Text property of Button2 to Skip, as shown in Fig.VB-9.12:

226

Chapter 9: Introducing Language-Integrated Query

M G e e b Dy Gms T Tes e e Mo

Fig.VB-3.12 '
5. Add the code given in Listing 9.7 to the Click event handler of Button1:

6. Add the code g.iven in Listing 9.8 to the Click event handler of Button2:
Listing 9.8: Code for the Button2_Click Event Handler

7. Press the F5 key to run the application and click the Take button. This displays the first five elements
from the input sequence in the list view, as shown in Fig.VB-9.13:

227

Visual Basic 2008 in Simple Steps

8. Click the Skip button, as shown in Fig.VB-9.13. This displays all the elements excluding the first four
elements from the input sequence in the list view, as shown in Fig.VB-9.14:

Fig VB-9.14
The Join Operators
The join operators in LINQ are used to join objects in one data source with objects that share a commaon
attribute in another data source. The join operators provided in LING are the Join and Group Join clauses.
The Join clause implements an inner join that is a type of join in which only those oh]ects that have a match
in other data sets are returned. The Group Join clause joins two seq es based on yselector function
and groups the results,
Now, let's create a new Windows Forms application, JoinOperator, where you can use the Join clause,
Perform the fallowing steps to do this:
1. Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application.
2. Enter JoinOperator in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.
3. Click the OK button. The JoinOperator application is created.
4. Add a ListView control and a Button control to Form1 and change the Text property of Button1 to Join
Data, as shown in Fig.VB-9.15:

Fe Bt Vew Projea Buld Doy Dets Format Teck Tem Anor Wemdow Hop

P R LN

- TEC TR —
BgiTolen Me -
tot ot Ut
fetntran s
T
Fig.VB-9.15
5. Click the Smart Tag of the ListView control and sefect Tile from the View combo box, as shown in

Fig.VB-9.16:

228

Chapter 9; Introducing Language-Integrated Query

Fig. VB-9.16

6. Now, add the code shown in Listing 9.9 to Form1.vh file, which is the code behind file of JoinOperator
application:

Listing 9.9: Code for the Form1.vb File

In Listing 9.9, the Customer data and the Order data are joined by using the Join clause.

7. Press the F5 key to run the application and click the Join Data button. The output of the application is
shown in Fig.VB-9.17:

229 .

Visual Basic 2008 in

The Grouping Operators
The grouping operators in LINQ are used to put data into groups so that the elements in each group share a
common attribute. The Group By clause is the grouping operator used in LING. The Group By clause
returns a sequence of the IGrouping(OT TKey, TElement) objects that contain zero or more itemns that match
the key for the group.
Now, let's create a new Windows Forms application, GroupingOperator, where you can use the Group
clause, Perform the following steps to do this:

1.
2.

3.
4.

Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application.

Enter GroupingOperator in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

Click the OK button. The GroupingOperalor application is created.

Add a ListView control and a Button control 1o Ferm1 and change the Text property of Button1 to
Group Data, as shown in Fig.VB-9.18:

Fig.VB-9.18
Click the Smart Tag of the ListView control and select Tile from the View combo box, as done earlier in
the JoinOperator example.
Add the code given in Listing 9.10 to the Click event handler of Button1:

Chapter 9: Introducing Language-Integrated Query

Listing 9.10: Code for the Button1_Click Event Handler

7. Press the F5 key to run the application and cfick the Group Data button. The output of the application is
shown in Fig.VB-9.19:

Fig.VB-9.19

The Generation Operators

The generation operators help_jncseating a new sequence of values. The generation operators are the
Default!fEmptyEmpty—Range, and Repeat methods.

The DefaultliEmpty method replaces an empty collection with a default single collection. The Empty
method generates an empty collection. The Range method generates a collection that contains a sequence of
numbers. The Repeat method generates a collection that contains at least one repeated value. The Range
method throws an ArgumentOutOfRangeException exception if the count is less than 0, or if the expression,
start + count - 1, evaluates to a value that is greater than the maximum value.

The Element Operators

The element operators in LING return just one element. The ElementAt, ElementAtOrDefault, First,
FirstOrDefault, Last, LastOrDefault, Single, and SingleOrDefault methods are referred to as element
operators. The ElementAt method returns the element at a specified index in a collection. The
ElementAtOrDefault method returns the element at a specified index in a collection or the default value if
the index is out of range. The First method returns the first element of the collection or the first element that
satisfies the given condition. The FirstOrDefault method returns the first element of a collection or the first
element that satisfies a given condition. It returns a default value if there is no such element. The Last
method returns the last element of the collection or the last element that satisfies a given condition. The
LastOrDefault method returns the last element of the collection or the last element that satisfies the given
condition. It returns a default value if there is no matching element. The Single method returns the only
element of the collection that satisfies the given condition. The SingleOrDefault method returns the only
element of the collection that satisfies the condition. It returns a default value if there is no such element

An ArgumentNullException exception is thrown if any argument is null. An InvalidOperationException
exception is thrown if no element matches the condition or the source sequence is empty.

2

Visual Basic 2008 in Simple Steps

The Conversion Operators

The conversion operators convert a collection 1o an array. They change the type of input objects. The
different conversion operators are the ToSequence, ToArray, Tolist, ToDictionary, ToLookup, OfType, and
Cast methads,

The ToSequence method simply returns the source argument by changing it to the IEnumerable(Of T)
interface. The ToArray method enumerates the source sequence and returns an array containing the
elements of the sequence. The Tolist method enumerates the source sequence and returns an object of the
List(Of T) interface type, containing the elements of the sequence. The ToDictionary method lists the source
sequence and evaluates the keySelector and el tSelector functions for each element to produce the
element key and value of the source sequence. The Tolookup method implements one-to-many dictionaries
that map the key to the sequence of values. The OfType method allocates and returns an enumerable object
that captures the source argument. The Cast method also allocates and returns an enumerable object that
captures the source argument,

The Aggregate Operators

The aggregate operators compute a single value from a collection. The different aggregate operators are the
Aggregate, Average, Count, LongCount, Max, Min, and Sum methods. The Aggregale method calculates the
sum value of the values in the collection. The Average method calculates the average value of the collection
of the values. The Count method counts the elements in the collection. The LongCount method counts the
elements in a large collection. The Max method determines the maximum value in a collection. The Min
method determines the minimum value in the collection. The Sum method calculates the sum of values in
the collection.

LINQ to ADO.NET

LINQ to ADO.NET is the term that describes the database-centric aspects of LINQ. LINQ to ADO.NET
consists of two separate technologies, LING to DataSet and LING to SQL.

LINQ to DataSet is a set of extensions to the standard ADO.NET DataSet programming model that allows
DataSet, DataTable, and DataRow objects to be a natural target for the LINQ query expression. LINQ to
DataSet provides richer, optimized querying over datasets,

LINQ to SQL allows you to interact with a relational database by removing the ADO.NET data types through
the use of entity classes. LINQ to SQL enables you to directly query SQL Server database schemas.

Now, let’s know about each of them in detail,

LING to SOL

LING to SQL is a component of .NET Framework 3.5 and is specifically designed to work with an SQL

server database. It allows you to write queries to retrieve and manipulate data from the SQL server. In other

words, using LINQ to SQL, you can perform various operations, such as retrieving data from the database, or

inserting, updating, and deleting information from a table in the database. Visual Basic 2008 provides you

the functionality to create LING to SQL classes from the existing database. It also provides a simple way to

bind the controls in your forms to your database.

LINQ to SQL creates an Object-Relational Mapping (ORM} layer between the tables in the SQL database

and the objects in a Visual Basic program. With the help of LINGQ 1o SQL ORM mapping. the classes that

match the database tables are created automatically from the database itself and you can start using the

classes immediately,

Now, let's create a new Windows Forms application, LINQeSQL, where you can implement LING to SQL.

Perform the following steps to do this:

1. Repeat steps 1 to 3 as discussed earlier in the case of the LINQQuery application.

2. Enter UINQHoSQL in the Name text box to specify the name of the application, and specify an
appropriate location for the application in the Location box.

3. Click the OK button. The LINQtoSQL application is created.

232

Visual Basic 2008 in Simple Steps

After creating the interface of Formi1, the next step in creating a LINQ to SQL application is to add a LINQ
to SQL class. Perform the following steps to add a LINQ to SQL class:

8. Right-cfick the project name LINQtoSQL in the Solution Explorer and select Add=>New Item from the
context menu that appears, as shown in Fig.VB-9.23:

?

deEMEBEEL
i
:

Fig.VB-9.23
The Add New Item dialog box opens, as shown in Fig.VB-9.24:

Fig.VB-9.24
9. In the Add New Item dialog box, select LINQ to SQL Classes in the Templates pane, as shown in
Fig.VB-9.24.
10. Provide the name MyClass.dbml in the Name text box, as shown in Fig. VB-9.24.
11.

Click the Add button, as shown in Fig.VB-9.24. The LINQ to SQL class, MyClass.dbml, is added to the
LINQtoSQL project, opening the Object Relational Designer window, as shown in Fig.VB-9.25:

Chapter 9: Introducing Language-Integrated Query

Sorves Enphoner

¥ i pantice-pe salerpees
4 if wartis pelgimpe

oy Sarvas Eplone e Tl

Fe 08t View Pumjea Buld Demg Dea
SR TR T RN

-3
G 1wtk

evpees

2P UnisCodnder
2 pomduiere
' Dncornnmued

MIW_

Fig.VB-9.25

12. Now, drag a table(s) on the Object Relational Designer window from the Server Explorer, as shown in
Fig.VB-9.25. In this case, we have added the Products table of the Northwind database.

13.
14. Now,
Listing 9.11:

15. Press the

Click Build=Build Solution on the menu bar.

the code given in Listing 9.11 to the Load event handler of Form:
for the Form1_Load Event Handler

key to run the application. The output of the application is shown in Fig.VB-9.26:

porcie BabaOgaueDied g potbnods Carbery Sauce 5 b Hobe Miou

0 bern n] Lo Pasora |

13 Horte 14 Tabu 5 Ganen Shauy

18 Favivn. 17 Bew Muttan 18 Camarvor Tgars

18 Tastens Chocotas Bacuts 20 Sr Findray's Masmalacs 21 5¢ Fadkry's Scones

22 Ghumals Kot 21 Tarwirid 24 Guarani Fartitca

5t M 7 Schagy

32 Finsis Sauerkrnd 25 Trisirger Asatbrsanrst 30 Nerd Ot aspesherieg

11 Gorganzoa Tebne T Macapare Fabssk 13 Caeta

34 Sanqumen e % Gesirys Bt 36 ingd 5

7 vl I Cota dn Bieye T Chatmse vete

1 Frtrs Csh et il < b
Fig.VB-9.26

235

Visual Basic 2008 in Simple Steps

Introduction

Imagine a scenario where you have built a software and now your friend also wants the same software, but
how are you going lo make it available? Definitely you are not going to develop the same application again.
Here comes the need for deployment.

Deployment is the process that makes software available for use by just installing it on the computer. In the
scenario stated above, we create setup files and then install the software on the user's computer.

Visual Basic 2008 applications are designed to be deployed and installed with the Windows installer
program, which uses Microsoft Installer {.msi) files. In addition, Visual Basic 2008 also enables you to
deploy your applications by using another technique called the ClickOnce deployment.

In this chapter, we will see how to create .msi files for applications. To install an application, you just need
to copy and execute the .msi file on the user machine and Installer Wizard does the rest for you in a series of
steps.

Deploying Applications by Using Windows Installer

Windows Installer allows you to deploy a Windows application by creating a Windows Installer Package.

The installer package has an extension of .msi and it contains the application, any dependent files, and

registry entries. After creating an application, all you need to do is to transfer the .msi file to the target

machine and then double-click the .msi file to install it. Before installing the application on the target

machine, ensure that the target machine supports Windows Installer and .NET Framewaork, so that your

application can function. You can create .msi installer files with Setup and Deployment projects in Visual

Basic 2008,

Let’s now follow these steps to develop and deploy an application named FillColor:

1. Click Start->All Programs->Microsoft Visual Studio 2008-*Microsoft Visual Studio 2008 to open the
Visual Studio 2008 IDE.

2. In the Visual Studio 2008 IDE, click the File<>New->Project menu item to open the New Project dialog
box,

3. Inthe New Project dialog box, sefect the Visual Basic-»Windows option in the Project types pane and
the Windows Forms Application option in the Templates pane.

4. Specify the name as FillColor in the Name text box and an appropriate location for the application in
the Location box.

5. Click the OK button.

6. Select Form1 in the design view and set the Text property of Ferm1 as Fll Color, as shown in Fig.VB-10.1:

Fig.VB-10.1

240

Chapter 10: Deploying Visual Basic 2008 Applications

7. Drag and drop the PictureBox, Button, ProgressBar, Timer, and ColorDialog controls from the Toolbox
to the form, as shown in Fig.VB-10.2:

o T

I LI RN R
il

Fig.VB-10.2
8. Set the Text property of the button as Pick Color, as shown in Fig.VB-10.2.

9. Upload an image in the PictureBox control through its Image property and set its BackColor property to
ButtonHighlight, as shown in Fig.VB-10.3:

[T —
B e Gt e By Do e Dee b ek e

CI T ; e

Dtes et

Fig.VB-103
10. Now, in the design view, double-click the Pick Color button and enter the following code snippet on
the Click event of the button:

When the user clicks on the Pick Color button, the preceding code opens a Color dialog box. When the user

selects any color from it and clicks the OK button, the Timer control is enabled.

11, Now, again in the design view, double-click the Timer control and enter the following code snippet on
the Tick event of the timer:

24

Chapter 10: Deploying Visual Basic 2008 Applications

Chuoss files 18 includs

Which sddivonal (les 3o ypou want 19 inclede!

Vet can wck iy uch 05 Bagsle s cr HTUE, o 10 S0 petvpe

Fig.VB-10.11

25. In this page, you can include other files to be deployed, such as readme.txt files, licensing agreements,
and so on. In this case, we are not including such files, so click the Next button (Fig.VB-10.11) to move
to the Create Project page of the Setup Wizard, as shown in Fig.vB-10.12:

Creats Project

T weizard il Ao £ruth B prajact baed oyl shascen

Braject pe Crete 3 cetup for o Windowr apphasbon

Far

e g]

Fig.VB-10.12

26. This is the final page of the Setup Wizard. Click the Finish button (Fig.VB-10.12) to create the installer file.
Once the setup is complete, you can see a new project added to your solution named FillColorSetup, as

shown in Fig.VB-10.13:

Visual Basic 2008 in Sim'pl'e Sreps

rumvnmmmmmrmtummnm

ik Wiy rer

ri;.vn-m.u
In the Properties window, you can set various properties for your setup project, such as ManufactureURL,
ProduciCode, and ProductName. You can also define the items to be created on the user desktop or user
program menu, such as a shortcut for the application.

27. Select the User's Desktop folder under File System on Target Machine, as shown in Fig.VB-10.14:

Fig.VB-10.14

28. Right-click the right pane and sefect Create New Shortcut from the context menu, as shown in Fig.VB-
10.14. The Select Item in Project dialog box appears, as shown in Fig. VB-10.15:

246

Visual Basic 2008 in Simple Steps

32. Now, select the L Machine (Fig.VB-10.18), and
then repeat the st w.

Fig.VB-10.18

33, Now, select the Application Folder under File System on Target Machine and set the AlwaysCreate
property to True, as shown in Fig.VB-10.19:

ey
i) .3t

| P e e s S G e

T -
Fig.VB-10.19
34, Similarly, set the AlwaysCreate property to True also for the User’s Desktop and User’s Programs
Menu folders, as shown in Fig.VB-10.20:

e]

Hnml-&q&ulhth—l-h-ﬁ-lhb-

Lresing geopect H clorietup _ prowct Custion secmitd ;
Fig.VB-10.20
35, Select the Build->Build FillColorSetup menu item when the FillColorSetup project is developed, as
shown in Fig.VB-10.21:

248

Visual Basic 2008 in Simple Steps

38. Click the Next button {Fig.VB-10.23) to move to the Select Installation Folder page of the wizard, as
shown in Fig.VB-10.24:

39. In this page, b and then click
the Next butto

B

40, Click the Next

250

Visual Basic 2008

-}

VISUAL BASIC 2008 IN SIMPLE STEPS is a book that helps
you to learn Visual Basic using Visual Studio 2008.
Precision, an easy-to-understand style, real-life examples
in support of the concepts and practical approach in
presentation are some of the features that make the book
unique in itself. The text in the book is presented in such a
way that it is equally helpful to beginners as well as
professionals.

The book covers:

Introduction to .NET Framewark 3.5 and Visual
Studio 2008

Fundamentals of Visual Basic 2008 programming
language

Working with Windows Forms and common
Windows controls

Windows Presentation Foundation (WPF) and its
controls

Windows Workflow Foundation (WF)

Working with databases in Visual Basic 2008
Language Integrated Query (LINQ)

Deployment of applications in Visual Basic 2008
Windows Communication Foundation (WCF)

