Word 2003
Visual

Basic

Programming

Copyright © 2005 by Lulu Publishing, Inc.
3131 RDU Centet, Suite 210

Morttisville, NC 27560

All rights reserved. No part of this book may be reproduced, in any form or by any means, without

permission in writing from the publisher or author.

Printed in the United States of America

10987654321

LULU PUBLISHING
3131 RDU Center, Suite 210, Motrisville, NC 27560
A Print On-Demand Solution Provider

Please visit our website at www.lulu.com

Chapter 1 INtroducCtion c...cccuueeiieeiiiiiiiiiriiecciicerrr e ass e e s e e sasss e e e e sessbasssreeeesesass 1

WHY LEARN VISUAL BASIC?coouitiiiiiiiiiieieieieieieieieteteteietetetetetebebetebebebebebebebesebebebes 1
VISUAL BASIC EDITORccoititiiiiiieiettitrteteteeste ettt bttt sttt et be bt st e beb et st e bebe sttt ebe st e s s ebese e st ebebene st bebene st ebebeneatnas 1
Start Visual Basic from WOId.........................iiiiiiiiiiiinicsicsec et 1
VESUAl BASIC EQIIOL.....................occoeiiiiiiiiiiii s 2
Visual Basic Menu and TOOIDALS..................ccocerieerieirieiriereereeree et 2
Project EXPIOrer WIBAOW.................ccvvcuereniceieniieieireicessestsie sttt ssestasessssessassessessassesseseasaesesnes 3
Visual Basic HEIP ...ttt 3
Properties WINAOW..................cciiiiiiiiiiiiiiicct s 4
YOUR FIRST VISUAL BASIC PROGRAMcocoviiririeiriiinieieeiisietesestssssesssessssesasessssessssssssesssessssesessssssesessssssssesssssssses 5
Macro 5
Add a Visual Basic MOAUIE.............................uciiiniiiriciiiiinicisicirec et 5
Module Code WINAOW...................occviiuiiiiiiiiiiiiii s 6
Name of Your Module 1S MYMOUIE...................overrrrrririririrrirerirresenene 6
Add 2 ProCedUre.....................uiciiiiiiiiciict ettt 7
Add Procedure WINAOW......................ciiiiiiiiniiiiiiics s 8
Your RElIOWOLId MACKO.......................oeuiiiiiiiiiieiieie ettt 9
Completing YOour COde.................iiiiiiiiiciiiie sttt s 9
Visual Basic FFUINCHONS ...ttt 10
RUD YOUE MACKO...............ooooooiiiiiciiee et 11
DEBUGGING ..ottt sttt sttt ettt ettt be et et ek e s et et ebebe e s e ebebeae st e b ebe st et et ek ese e b ebebene st ebebene et ebebene st bebenenes 12
COMIPIIE ELTOL ...ttt ettt et ettt ettt en s 12
RUNIIIE EITOL ...ttt s 13
Chapter 2 Object Programmingccueeeeieeeeiieieiieneiieeente s stesesieeestesease s e e e stese e e sesssesessesesnsesesssens 15
WHAT IS AN OBJECT?......oooveoieeeeeeeeeseesseeeseeessssssessssssssssssssssssssssssssssssssssssssesssassonas 15
ODBJECE ANA CIASS ...t bbb b b bene 15
ODbject Containn OtREr OBJECTS.............ueueeeeieieeieieieeeieeee e bbb bbb bbb bbb e 15
Object’s Property EXAMIPIE....................ocviiiiiiiiicicisiicicsiine s 16
ODbject’s MetBOd EXAIMIPIE.................cereeriicieiriieieieineseienese ettt ssestasseseesessaesennen 17
What is a COLIECHION OBJECE ...ttt sttt 18
OBJECT VARIABLEocuiiititittiitrieteitntst ettt sttt st et be st st b e st e st ebese e st ebebeat st et ebeae et e b ebese e esebesentsbebebene st ebebenetebebenenes 19
USING OBJECHS DILECLIY..............oouoeiiiiciiiie ettt 19
Declaring ObBject VariabIes........................cviiiiiiiniiiiiiiiiccsiis s 19
Declaring Object Variables without Assigning Object References................cvvvcrvcnvcnccncinnne, 19
Declaring Integer Variables without Assigning VAIUEs....................ecivivcincincncisieieiseisiscsisens 20
Run-Time Error and Good Programming PrACUCE...................cceccnecuneccinecneeneeneeiseesesseesens 21

Assigning Object Reference to an Object VAriable.......................cuceceecinnieiciiieieiccseisiinns 21

Assign Object Variable EXAIIPIE....................cvcuniciniciiiciricinicseiesiee s 22

WORKING WITH PROPERTIES AND METHODScectrtiteteuintnieieteentsieteesteteteseststesesesesaebeseessebesesestesesesensssesens 23
Assignt Valuies t0 OBJECt’S PLOPEITIES.................coviciiciiciiciiciecrie et 23
Assign Value to Object’s Property EXampIe.....................icininiciciiiniicciniisse s 24
SEt STATEIMEIL ...t 25
Set Statement Example — Property ODBJECt.................cniccerveniiereerenecenseneseneeseseessessesensesessaenes 26
Set Statement Example — Method ODJect........................icicininiiiiiiniiccsiisc s 28
Set Statement Returns OBJECt REIEIEIICE.ocvevveiieiitisttstssss sttt sttt ses 29
Set Statement EXample — COMPALISOLN....................cceereevcreereniciereeriseseesessssessesiesessssessasessessassessesissaenes 30

SUB PROCEDURE AND FUNCTION METHODSccotttttntietetntstetestntsieiesentsaeteseseststeseestesesesessssesessssssesenensanas 31
Sub Procedure Method EXAIMIPIE................cccveiceereeniicieirinicenseneseeeseseesseseesesessessaeessessassensasessaenes 32
Function that Returns a VAIUe....................cocviviiiiiiiiniiiiiiiicnc s 33

Chapter 3 More Object Programming.......ccciueeiuiiiiieeiiiiiiiiniiiieeiiiiiiiiiieeceiiisesiieeeeiissssssssseeessssnns 35
WORD OBJECT MODEL......c.ootiitietiitnieietetsisteteeststeteatsts sttt st bese st stebese e st s bebeststsbebest st ssebesetssebesentatebebeneatesebenensssesens 35
WHRELE IS My ODJECLE? ...ttt ettt ettt senes 35
ODJECE BIOWSELcooveeevevivieieirisis st sttt sttt bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb ene 36
1cons Used 111 OBJECt BIOWSEL ..o bbb bbb bene 37
DIELAUIL PLOPEILY ...ttt ettt ettt ettt et nes 37
DefAUIE MELRO................ocoeeoeeieeiieireereerte ettt e 38
Default Property and Method EXAMIPIe......................cevnicvereeriniceisiniseseeneseessessesesseseassessesessaeseses 39
Event and Event ProCEdUIe...................iveiciiiciiiiieestets s 41
Event Proceduure EXAmIPIE.....................iiiiiiiiiiiiciiicic sttt 41
What is an ENUim CIASS? ...ttt 43

NAVIGATING THE OBJECT HIERARCHY USING OBJECT BROWSERccceeiiniirieiiininieieeseieiee s 44
ActiveDocumEnt ODJECtceeieeirirrrsstssttitst sttt sttt sttt ettt atas 44
Document and Paragraplis ODJECLS.....................nciniciriciicinicnecseesee e 45
AdA MELRO.................ocooeoeeieeieereeree ettt sttt et sttt ettt 46
LI MELROL..................coo s 48
RANGE PrOPEILY ...ttt bbb 48
TEXE PLOPEILY ...ttt e sttt sttt 49
Recap 50

Chapter 4 Programming Fundamentals...........ocuueieeiiioiiieiieiieceetesteete st 51

SOME PROGRAMMING HOUSEKEEPINGcceceistirinietriinietesitssesesasessesesasessesesessssssesessssessssssssssesssssssesssssssss 51
Option EXPIICIt STAtEIMENL ...ttt s 51
Continuation Of STATEIMENL ...ttt 52
CoMMENTE LINC...............ccooiiiiiiiiiiiic s 52

VARIABLESc.ctiuiuiitettiintstetete st tet st st ettt st st et e st e et ebese st s ebe st e et e b e b et st e b e b e st et b ebeae et b ek e ae e e b e beb et et ebebene et et eb ettt ebenetsbebens 53

Variable INAITIC.................ocuiciiiiiciiciice et 53

VARIABLES THAT USE INUMBERS........ccorttttttttitetetrtstetetertstete et st tese st st tebese st bt esestssebesetssebesentssesesentatesesenesssesens 54

Numeric Variable EXAIMPIE..................ccvevereerinicierririeessinisieeesiseessesiesessesessiesessestassessestassessssessaeseses 55

VARIABLES OF THE BOOLEAN DATA TYPEoooiiiiitiieeeteeeteeeeeeet ettt ssest st stesssesessssensssensssensssessenssssns 56

COMPALISOI OPEIALOLS.................covuiiiiiiiciiiit sttt 57
Comparison Operator EXAMIPIE..................ccvecueuverieereinisceisesicesseseseeesesssssessassessessassessesessaeseses 57
LOZICAI OPEIALOLS..............cucooiieiiiiiiii s 59
Logical Operator EXample.....................iiiiiiiiiniicicisince s 60
VARIABLES THAT USE STRINGScosttiiiiiiiititisie ittt 61
Concatenate OPEIratOr & ...t 62
String Data Type EXAMIPIC..............eceiveeveeeeeeeiiiriiseeeeee ettt 62
VARIABLES THAT USE DATES.......cooiiiiiitiiiii s 64
Date Data Type EXAIMPIE...............cuceeeoieeeieeieiiieeneese sttt seens 64
CONDITIONAL STATEMENTootitiiriririririisistststststststststs et tseststststststststsssssss s st sssstssnes 66
If... Then...Else Statement (Single-Line FOLI)....................cccmccreccneecrecneecneeseeseeseessessssessseens 66
If.. . Then... EISe EXAIMPIE 1cccreereciricineecreecreee ettt ssesessens 66
If... Then...Else (Block Formn) StAtEIMEIL.................ccneenecirecirecireeneeneeseassessisese e sessisessssessssens 68
If.. . Then...EISe EXAIMPIE 2...............creeireeiricireeireeeneeesee e ass s seeas 68
If.. . Then.. . EISe EXAIMPIE 3..........c.cocnereenecireerecreeeneee ettt ssese e ssens 69
Chapter 5 Programming Loop & Other......couiiiiiniiiieiiniiiieiniiieiiiieeniiieeinieecnnsieeisnsieessssesesns 73
WWHY USE LOOP?.......coouiiitiiiieieieieteietetetete ettt tebesebess 73
For...INEXt STALEIMEIILooeiiiiiiitc bbb e 73
For...INext LoOp EXAIIPIE...............ocvrecueiviniiereiriicieisitcessesese et ssesessassessessassesseseasaesessensas 74
For Each...INEXt STALEIMIEIILcoeoieciiieiiieiieciie st 75
For...Each...Next Loop EXample 2.....................iiiiiincesissse s 78
D0... LOOP StALEIMEIL..............c.oeeereivcreiriieeririseere ettt ettt et esas 80
Use of the Do...Loop StatCmEIIL...................ccniicuciiiiiicisinincs st 81
WITH STATEMENToitiitititettiintrtetettrteteteteststeteteststebesee st ebes et st esebastatebebesetasebeseatssebesent st ebesent st ebebene st ebebenttebebanentnas 81
FUNCTION PROCEDUREcocctrtriitiiitrinietttnietesetststesestststesesese st sese st sasbes et st tebest st ssebesesesseseseaessesesenessssesenessssesenenes 82
WWHAT IS AN ARRAY?Poiiiiietiiitrteteteststetete st st be s et st ebebe e st sbeb e st st e bebese e b ebese e ebebeseatesebebeat st ebebeat st ebebent st ebebeneatebebenentnas 83
Table Programming with Array EXAIMIPIE..................ceeniveeveveceseniniseseeiseseseseississe e sssssassassassenns 84
DEBUGGING.....c.ciitiuiiieietette ettt ettt sttt ettt ettt s b et ebe st st et et e s et e b ebebe e st ebebeae st b ebeae et e b ebese e e b ebesent st ebebene st ebebene st ebebenenes 90
Debugging and Error Handling.iiiiiinininciisins s ssaes 90
Trace Execution Of YOUL PrOGIAIN. ...t 91
Step Into, Step Over and Step OUL........................cviiiuiiiiiiciiiiicc s 94
Chapter 6 Database and Mail Merge Programming......cccceeeevuueiiieeiiiiiiiinniiieeeiiininnnniieeeceinnnnneeeeeeen 95
CREATE DATABASEootitittttitrteiet ettt ettt sttt st b bttt b et st b b e et s 4 e bk et et b e b e st et bebe sttt e bebe e st ebebene st bebanenenas 95
Create TaADIe.............eoeeeeeceeiiieeee ettt s 96
Put Data in YOur TaDIe.................ccoeeiicirecireeireeree et seeae 97
DATABASE PROGRAMMINGcctriitiuiirieteuiestetetetsteteteseststetestststesesentstsbesesestesesantatesebesentssesesentasesesentasssesenesesesenenes 98
DAO ODBJECt LIDIAL ...ttt 98

Help and Documentation 011 DAO ODJECIS.......................iiiiiniciiciiiicciiisee s 99

DATABASE PROGRAMMING EXAMPLE.........ccccocvititrirtetnisinieteisinsesessstssesesasessesssessssesessssssssessssssssessssssssessssssesesessnes 99

DAtabase ODJEcCt................uueueueueueeueieieieieieieieeeee e bene 99
OpenDatabase MEthOd........................ccvecueuniniecieiniecereeee sttt et seses 100
WOLKSPACE ODJECL..................ooiiiiiiiiiiictt e 100
RECOLASEL ODJECHL...............coooeeeeeieeeeeeeeee e bbb bbb bbb bbb bene 100
OpenRecordsSet MEtROU......................cucececueeriicicieiriscereeee sttt ettt ses 101
WRAL IS SQULA...........ooeieeeeee ettt e 101
Get INUIMIDEL OF RECOIS................eceeoveieeereiniicieirieceerite ettt et 101
SELUP TADIC...........ooeoeiiiereee sttt ettt 103
Display Data from Database...................iiiiiiiiiiiiiiiiicsiisse s s 104
MAIL MERGE PROGRAMMINGcccectsuttruirientrteestestesestesessesessesessessesessessssensssessssensesessessssessssensesessesessessssensssensens 109
MAIIMELGE ODJECL................oooeiiiiiiiiit s 110
SEIECHION ODJECK..............ocououeeeeeiviiiiiiieeeetttt sttt ettt 110
Execute the Mail MEILge...................ciiciiiiiiiiciicinee ettt 112
Chapter 7 File Programimingcccceieeiieeiniiiieeiniiieeiniieeisisiietimiieeimmieeissiseissisessssssessssssesssss 117
FILESYTEMOBJECT OBJECTcootvetetiirieteteirieseteetssesestsessesesessssssessssssssesssessssessssssssesesessssesesessssesessssssesessssssass 117
CREATE NEW TEXT FILE........cooiiiiiiiiii bbb sss s ssssssns 117
FileSystemODBJECt ODBJEct...............ceieiicieiriiciersereseeerete ettt et ssetas e seeenas 117
TEXTSHIOAIIT ODJECK............cooeeeieireieierieee sttt sttt bbbttt bttt bt nentie b 118
LIST DIRECTORY AND FILES.........cooisiiiiiiieieiiseettrte ettt se e e s st asassssesesessssesassssnsesasenes 119
FFOIACE ODBJECE...........ouoeeeeiiieieeeeeeeee ettt bbb bbb bbb bbb bbb bbb bbb bbb bbb b bne 119
PROCESSING MULTIPLE WORD DOCUMENTS.....ccocuetirtriiieuiirieieteertsieteestsiebeestsaebesesestebeseestebesenessssesesesesnas 123
Create New Folder f0r QUIPUL FIIESccuenevcueiriicicieiniscienete et ssesessaenenes 123
Create Lo FIlC...............iiiiiiiit s s 123
Processing Multiple Word DOCUIIENILS.......................cciiniiiiuiiiiniiiinincs s s 124
Chapter 8 Form Programmingccccueeiieeiiiiiiiiiiiiieeeiiiiiiiiieeeeiiiseiieeeesicssssssseeeesssssssssssseeesssses 129
WHAT IS A FORMEP ...ttt b ettt b et b bt b b bt st bbb bebene st et b et et et et ene e bebene 129
Form and CONIIOIS......................iieiiiiiiieei st 130
FORM PROGRAMMING EXAMPLE — INSERT AINEW TABLEc.coceoeiiiniietiiieeteteeetete et easenenes 130
USEILFOLII) ODBJECL ...ttt sttt sttt 130
TOOIDOX ANA CONILOIS.............coueeeieirieessetee sttt ettt sttt bbbttt b 131
Change Name of UserForm Form and Caption Property......................cccnnioccnniescnns 132
Add Controls 10 USerForm FOrm1....................iiiiiiiiiisiiseie s saes 133
Change Name and Caption Property of CONtrol........................icininicccininiiccsisccsseses 135
Show Method of USELFOrImN ODBJECt...................uvvveiiiieirirtstssssssssss sttt sttt saes 137
Initialize Event of USErFOrm ODJECE ... s se e 138
Click Event of CommandButton Control, cmdOKuuueeeeeveeerereineesesesissesessesssesensens 140
Click Event of CommandButton Control, cmdCAancel........................uueveeeveeveveveieeieereirereireseienens 142
RUI MACTO..............ooiiiiiii s 143

FORM PROGRAMMING EXAMPLE — BUILD TABLE OF INDEXcccccceetniiieiiieseeeeteeseseseseseseses s 145

Show Method Of USELEFOIIN OBJECE ...ttt bene 147

Click Event of CommandButton Control, cmdFInd.........................uueveceeeeeecrcrereerirereeisirsseesnesens 147
Click Event of CommandButton Control, CINAEXIEeceeeeveereeereceeeceeeeseiessesesessssessesenns 152
RUD MACKO...........oueeoveeeeeeeeeee ettt sttt sttt a ettt et et et e s e st e st e b e st e be st ese s esesaeseeteseeteneeseneas 153
| 5 T 03 R 157

vii

About the Author

John Low is s software developer living in Norwalk, California. John received his first degree in mathematics,
then a master’s degree in computer science and a master’s degree in civil engineering. He can be reached at
johnlow5002@yahoo.com.

Who Should Read This Book

This book is for programmers and would-be programmers who want to learn Word 2003 Visual Basic
programming as quickly as possible. I assume that you are fluent in using Word 2003 as a word processor and
want to learn the Visual Basic programming part of Word 2003 to help you become more efficient with your
word processing task. It is preferable that you have some programming background but the concepts are
explained at the elementary level so a beginning programmer should be able to follow and learn.

I firmly believe in learning programming through examples so this book is full of programming examples to
explain the concepts and technique of programming Visual Basic. I expect you to try all the examples in this
book and make the code work for you. This is how you learn programming. Learning programming by doing is
fun and I want you to have as much fun as I have writing this book!

Chapter 1 Introduction

1 Introduction

Why Learn Visual Basic?

Why learn Visual Basic? Why do you have to resort to programming in a computer language that you may not be
familiar with inside a word processor? In short to save time. What is inside a document is just another form of
data, so it is natural that you write computer programs to manipulate the content (that is, the data) of your
document. Very few people who use Word ever utilize the macro or the Visual Basic programming features. As a
result they can end up spending many hours modifying documents manually that could have been done in a few
minutes (or seconds) with a macro. Using Word without using Visual Basic is like using a hammer to build a
house without using power tools. Being able to quickly write a program that saves hours of labor and automates
a task is a great advantage.

Visual Basic Editor

Start Visual Basic from Word

To start Visual Basic from Word, follow these steps.

Steps

1) Start a new Word document, and call it Lesson1.

2) From the Word menu select Tools / Macro / Visual Basic Editor (Figure 1.1).

Figure 1.1 Start V'isual Basic from Word

D Lesson1. doc - Microsoft Word

i Fle Edt Wiew Insert Format | Tools | Table Window Help
RN ™ B NS W4 ¥ Speling and Grammar... F7 i A4 Mormal + Garamond - 11
i*b Research... Ale+iClick.
I_ Language 13
Word Count...
Speech
Shared Wiorkspace. ..
Letters and Mailings »
Macra ’| ¥ Macros... AlL+FE
Customize... @ Record Mew Macro...
Options..., Security..,
& ﬁ VYisual Basic Editor Alt+F11
@8 Microsoft Script Editor — Alt+Shift+F11

Visual Basic Editor
The Visual Basic Editor window appears (Figure 1.2). The Visual Basic Editor window is where you create, edit,
debug, and run Visual Basic code associated with your Word documents. To the left of the Visual Basic Editor
window there are two sub-windows:
1) Project Explorer window;

2) Properties window.

The Project Explorer window displays the different projects associated with the document. A project is a
collection of files that contain your Visual Basic codes or programs.

The Properties window displays properties of the files or objects you’ve selected in the Project Explorer window.

Figure 1.2 isual Basic Editor

Visual Basic Editor
Project Explorer Standard toolbar

Properties window

4 Microsoft Visual Basic - Lesson1

(= &5 Microsoft Word Objects
™1 | ThisDocument
- .ﬁ Project (Lessonl1)
1= &3 Microsoft Word Objects
@ ThisDocument

[=} &5 References
5 Reference to Normal

|Project Project
Alphabetic | categorized |]
Project H

Visual Basic Menu and Toolbars

Figure 1.3 shows the Visual Basic Menu and Toolbars. The Visual Basic Menu displays the commands you use to
work with Visual Basic. Besides the standard File, Edit, View, Window, and Help menus, menus are provided to
access functions specific to programming such as Insert, Format, or Debug.

The Visual Basic Toolbar provides quick access to commonly used commands in the programming environment.
You click a button on the toolbar once to carry out the action represented by that button. By default, the
standard toolbar is displayed when you start the Visual Basic Editor. Additional toolbars such as debugging and
other tasks can be toggled on or off from the Toolbars command on the View menu.

Toolbars can be docked beneath the menu bar or can float if you select the vertical bar on the left edge and drag
it away from the menu bar.

Chapter 1 Introduction

Figure 1.3 Visual Basic menu and toolbars

all Microsoft Visual Basic - Lesson

I Fle Edit Mew Insert Format Debug Run Tools Add-Ins Window Help

1 S R YRR N 0 T O P T Y R85 e e S N

Project Explorer Window

Figure 1.4 shows the Project Explorer window. You use the Project Explorer window to view, modity, and
navigate the projects for every open document or template. You can resize the Project Explorer window and
either dock it to or undock it from any of the sides of the Visual Basic Editor window to make it easier to use.
All the Visual Basic code associated with a document or template is stored in a project that is automatically
stored and saved with the document or template.

Figure 1.4 Project Excplorer window

== g

= @ Mormal
| =5 Microsoft Word Objects
- B ThisDocument
= @ Proj.e"l:l: {Lesson1)
=125 Micrasoft Waord Objects
@ ThisDiocurnent

=5 References
ﬁ Feference to Marmal

Note

In Word, because the Normal template is available from every Word document, there's always a project for
Normal in the Project Explorer.

Visual Basic Help

Select the Project Explorer window by clicking on any part of empty space in the window. Press the I'1 key and
the Visual Basic Help for Project Explorer appears (Figure 1.5).

For information and help about a particular window in the Visual Basic Editor, click in the window and then
press F1 to open the appropriate Help topic. To see the Help topic for any other element of the Visual Basic
Editor, such as a particular toolbar button, search Help for the name of the element.

Figure 1.5 VVisual Basic Help

(2) Microsoft Visual Basic Help Q@|E|
Be 5

|5

Project Explorer
Seedlso =

Project - Project

nE o

EI@ Normal

\:]@ Project {(Document1)
E‘Eﬁ Microsaft Word Objects
FEEE 0} ThisDocument
-] References

4] 3|

Displays a hierarchical list of the
projects and all of the itermns
contained in and referenced by each
of the projects.

Properties Window

Figure 1.6 shows the Properties window for the selected project. You use the Properties window to set the
properties of an object at design time. Objects are fundamental building blocks to all of the Visual Basic
programming environments including Word, Excel, Access and Visual Basic.Net. Objects contain both code
(program logic) and data, making them easier to maintain than traditional ways of writing code. Properties are
data that describe an object. Methods are actions you tell the object to do. More on the topics of Objects in
Chapter 2 and 3.

If you don't think you'll be using the Properties window right now, you can close it to simplify your work space a
little. You can open it again at any time by clicking Properties Window on the View menu.

Figure 1.6 Properties window

Properties - Project EEI
|Pruject Project ;J
Alphabetic] Categorized]

Project

Chapter 1 Introduction

Your First Visual Basic Program

Macro

You are ready to write your first macro. A macro is a Visual Basic program that contains a sequence of
instructions (codes) that tells the computer what to do. You run a macro from the Tools / Macro menu from
Word, or from the Run menu of the Visual Basic editor.

Macros are written in the Visual Basic language programming language and stored on special files called modules.

When you write a macro you give it a macro name and you can have more than one macro in a module. You can
have more than one module associated with your Word document and you give each module a module name.

Add a Visual Basic Module

Before you write a macro you have to add (create) a module. Follow these steps to add a module:

Step

1) Select Project (Lessonl) in the Projector Explorer window and right click on it.
2) Select Insert / Module (Figure 1.7).

Figure 1.7 Add a Visual Basic module

“ll Microsoft Visual Basic - Lessoni

! Fle Edit Yew Insert Format Debug Run Tools Add-Ins Window

Project - Project

=& Normal
Project {Les g
{4 Microsaft gyl Vievi Code
;) ThisDd EE) view Object
[+-[] Referency
Project Properties...
‘ Insert M| E UserForm

Export File. .. @I Class Module

Close Project

Remove

Prink. ..

A'm

Dackable
Hide:

Pruject Project

Another way of adding a module is to select Project (Lessonl) in the Projector Explorer window and then select
Module from the Insert menu.

Module Code Window

The Module Code window appears (Figure 1.8). You write Visual Basic code for your macro in the Module Code
window. Visual Basic Code consists of Visual Basic language statements, constants, and declarations. Using the
Code Editor window, you can quickly view and edit any of the code in your macro.

The default name of the Visual Basic module you’ve added is Modulel. To change the default name of the
module to a different name follow these steps.

Steps

1) Make sure the Properties window of Modulel is visible. If it is not visible, display it by selecting
Modulel in the Project Explorer window and from the View menu select Properties Window.

2) Change the default name of the module you’ve added to myModule in the Properties window (Figure
1.8).

Figure 1.8 Module Code window

Type myModule here to change name

@ Microsoft Visual Basic - Lesson1

P Fle Edt Yew Insert Format Debug Run Todls AddIns Window Help
i3 bk a3 ol @ (e | S AR @) Ln, colt

o= ‘ “ Lesson1 - Module1 (Code) El@@
B E Normal
= @ Project (Lesson1)
=) 25 Microsoft Word Objects
ThisDocument
= 53 Modules
2 Modulet

+ (1 References

-

Properties -Modulet &)
{Module1 Module |
Alphabetic]Categnrizedl

[(ame) (2SS

Name of Your Module is myModule

The name of the module is changed to myModule, which appears in the Project Explorer window, the Properties
window and the Code window (Figure 1.9).

Chapter 1 Introduction

Figure 1.9 Name of your module is nryModule

myModule is the name

of the module

a Microsoft Visual Basic - Lesson1

P Ele Edt Yew et Fomet Debug fun Tools

b
Project - Project x

“-Lessoni - myModule (Code) |
s e I. —_
= l(nnlamlml
[E Normal
=4 Project {Lesson1) o
= {5 Microsoft Word Obiects
] ThisDocument
= &5 Modules

Propesti
| myMadule Madule
Aphabelic | catagorized |
(TR ke

Add a Procedure

Next you will add a Procedure in the myModule module. A procedure is a unit of code that instructs the

computer to perform a specific operation. A macro is one type of procedure. To add a procedure in the
myModule module following these steps.

Steps

1) Make sure the myModule (Code) window is visible and in-focus (selected).
2) Select Insert/Procedure from the Visual Basic Editor menu (Figure 1.10).

Figure 1.10 Add a procedure

i Microsoft Visual Basic - Lesson1
iRl Edb View
Project - Project

Insert | Format Debug Run

g Procedure...

3 UserFarm
42| madie neraly
21 Class Module |

Tools Add-Ins Window

essonl - myModule (Code)

Components.., Chrl+T

File...

.myMudule Module
Alphabetic | Categorized]

m myModuls ‘

Note

If the Module Code window is not in-focus (selected) you will not be able to select Insert/Procedure from the
Visual Basic menu as the Procedure field will be blanked out.

Add Procedure Window

The Add Procedure window appears (Figure 1.11).
There ate three types of procedures:

1) Sub procedure is a unit of code that performs a task but doesn't return a value. Sub procedure is known
as a macro. A Sub procedure is enclosed between the Sub and End Sub statements.

2) Function procedure is a unit of code that performs a specific task, like the Sub procedure. Unlike a Sub
procedure, however, a function procedure returns a value. A function procedure is enclosed between the
Function and End Function statements.

3) Property procedure is a unit of code that creates and manipulates custom properties. A property
procedure is enclosed between the Property Let and End Property statements.

There are two scopes for Procedure:

1) Public procedure is accessible to any procedure in any module in your application.

2) Private procedure is only accessible to other procedures in the same module.

Both Sub procedures and Function procedures can be either public or private.

Steps

1) Keep the default type of procedure unchanged as Sub and the default scope of procedure unchanged as
Public.

2) In the Name box type hellowWorld as the name of the procedure you are adding and click the OK
button.

3) helloWorld will be the name of your macro.

Figure 1.11 Add Procedure window

Add Procedure g|
Mame: | hellovorld]
Type
" Cancel
* Sub
" Function
" Property
Scope
" Public
" Private
I All Local variables as Statics

Chapter 1 Introduction

Note

A Sub procedure is a macro.

Your helloWorld Macro

The helloWorld macro is created and the Sub and End Sub statements automatically generated in the Code
window (Figure 1.12). The Visual Basic Editor positions the cursor at the beginning of the blank line between the
Sub and End Sub statements. Next you are ready to write Visual Basic code for your macro.

Instead of having Visual Basic editor insert the macro (Sub procedure) and generate the Sub and End statements
automatically for you, you can type in the same statements manually in the myModule (Code) window.

Figure 112 helloWorld macro

“; Lesson1 - myModule [Code)

{General} ﬂ |heIIoW0rI(I
Public Sub helloWorldi) e
End Sub
= S| oY
Completing Your Code

You are going to add the following code to the macro. It uses the Visual Basic function MsgBox to display a
dialog box with the (Hello World!) text.

MsgBox "Hello World!"

MsgBox is one of the many function procedures that Visual Basic provides. You atre using the MsgBox function
that accepts one parameter, the (HelloWorld!) text. The MsgBox function accepts other optional parameters. For
the general syntax and detailed information of the MsgBox function consult Visual Basic Help.

The following shows the completed code for the helloWorld macro.

Completed Code

Public Sub helloWorld()
MsgBox "Hello World!"
End Sub

Steps

1) Type in the above the code (Figure 1.13) between the Sub and End Sub statements of the helloWorld

2)

macro.

If you type MsgBox without capitalizing the M and the B, Visual Basic Editor automatically capitalize
them for you after you’ve typed the statement and click anywhere in the code window. Visual Basic does
that because it recognizes MsgBox as one of the Visual Basic functions.

Figure 1.13 helloW orld macro

. Lesson1 - myModule (Code)

‘(Geneml)

j |IleIIoW'orI(I j

Public Jub helloWorld()
MzgBox "Hello World!™
End Sub

Visual Basic Functions

Visual Basic provides other functions beside MsgBox. For a list of Visual Basic functions follow these steps.

Steps

D
2)

From the Visual Basic Editor’s menu, select Help

Select Microsoft Visual Basic Help.

When the Visual Basic Help window appears expand the Microsoft Visual Basic Documentation folder.
Expand the Visual Basic Language Reference folder.

Expand the Functions folder.

A list of Visual Basic functions by alphabetical order appears (Figure 1.14).

Choose any of the functions, the MsgBox function being one of them, to see the general syntax, detailed
information and examples.

10

Chapter 1 Introduction

Figure 1.14 [isual Basic functions

Search |

Table of Contents’ NG
7 Microsoft Word Visual Basic Reference ~
L Microsoft Visual Basic Documentation

9 Visual Basic User Interface Help
9 Visual Basic Conceptual Topics
¥ visual Basic How-Ta Topics
\LJVisual Basic Language Reference
@ Constants
«/Data Types
& Directives
“&/Events
\[JiFunctions
@ac
@06
HL
Wmp
(&) MaclD Function
@) MacScript Function
(i) Mid Function

() Monith Function

(@ Monthhame Function
(@ MsgBox Function
(@)Now Function
(@ NPer Function

| [R3

MsgBox function
List of Visual Basic functions

Run Your Macro

Now you are ready to run your macro. To try the macro follows these steps.

Steps

1) Close the Visual Basic Editor.

2) In the Word document window select Tools/Macro/Macro from the menu (Figure 1.15).

Figure 1.15 Run your macro

D Lesson1. doc - Microsoft Word

i Fle Edt

yiew 'Esert

Farmat

A=A NN A2

-
&

5 | Table

Window

Spelling and Grammear. ..

Research... Alt+Click

Language
Shared Waorkspace. ..

Letters and Mailings

Help
F7

4_4 Narmal

- Garamond

Macra

‘ b Macros...

1
i

arrs |

"
oo

]

Fecord Mew Macro...

.ﬁ Wsual Basic Edicor Ak+F11

\

1

Steps

1) The Macro window appears (Figure 1.16).
2) helloWordl should be one of the macros in the Macro Name box.
3) Select helloWorld in the Macro Name box and click the Run button.

Figure 1.16 helloW orld macro

Macros [’3|[’5_<|
Macro nanne:
| Run

Step Inko
Macras in: iAI\ active templates and documents » |
!Z_)ascription:
EMacro created 11/2/2004 by john L ‘

The Dialog box appears with the (Hello World!) greeting (Figure 1.17).

Figure 1.17 Result of helloW orld macro

Microsoft Word

Hello World!

Debugging

In programming or coding your codes may not work the first time you try them. Debugging refers to the process
of getting the bug out of your codes so they work. Visual Basic Editor provides many tools to help you debug
your program. You will be introduced to some of these tools as you progress in these chapters. For now, let’s
give you some simple examples.

Compile Error
Programming or coding in Visual Basic involves two steps. First you type in your code. Then you try it out by

running your macro. Each time you type a line of code Visual Basic Editor invokes the Visual Basic compiler to
parse (examine) the line you enter to see if there is any error. If there is an error it is called a compile error.

12

Chapter 1 Introduction

Steps

D

3)
4

Start the Visual Basic Editor and open your myModule module.

In the MsgBox line of code removes the two quotation marks from “Hello World!” and click anywhere
in the Code window.

A dialog box appears telling you there is a compile error (Figure 1.18).
Click the OK box, correct the error by adding back the 2 quotation marks and you will be fine.

Figure 1.18 Compile error

{General)

esson’ - helloMacro (Code)

| [helloWorld - I

Public

End Sub

HsgBox Hello [

-

Sub helloWorldl()

Microsoft Visual Basic E|

': Compile error:

Expected: end of statement

Runtime Error

After you finish coding your macro and the compiler cannot detect any compile error you are ready to test

running

Though

your codes. Any error at this stage, while you are testing or running your codes, is called a runtime error.
the compiler cannot find any compile or syntax error in the codes, your program may not run if it has

logical error.

For an example of runtime error, follow these steps.

Steps

1)
2)
3)
4
5
0)
7)

Start the Visual Basic Editor and open your myModule module.

Replace the MsgBox line of code by MsgBox 5 / 0 (Figure 1.19).

Run the helloWorld macro.

A dialog box appears saying there is a runtime error (Figure 1.19).

This error occurs because you are dividing 5 by the number 0, causing an overflow error.
Select the End box to close the dialog box.

Cotrect the error by removing / 0 from the MsgBox statement and run the macro again and you should
be fine.

13

Figure 1.19 Runtime error

.+ Lesson1 - helloMacro (Code)

{General) vl II\eIIoWorId -

Public Sub helloWorldi)
M=gBox 5 / 0O
End Suk

Microsoft Visual Basic

Run-time error '11'

Division by zero

Cantinue End | Debug I Help

This concludes Chapter 1.

14

Chapter 2 Object Programming

2 Object Programming

What is an Object?

Object and Class

An object is a combination of code and data that can be treated as a unit. An object contains properties, methods
and events. Properties are data or attributes of the object. The code or methods of the object perform actions
that can affect its own properties. Events are something that happen associated with an object. For example, the
Document object has the Paragraphs property, the Range method and the Open event.

Objects are defined and created from classes. An object is an instance of a class. When you create an object, you
are creating a copy or an instance of a class. All objects are created as identical copies of their class. After they are
created they exist as individual objects, and their properties can be changed. For example assume object A and
object B are objects of the Paragraphs class, so they both have the Count property but object A’s Count property
can have the value of 20 while object B’s Count property has the value of 40.

The following code sets A as an object of the Application class. That is, you've created a copy or an instance of
the Application class. As an object of the Application class, A has the same properties, methods and events of
the Application class.

Set A = Application

Objects are fundamental to Office Visual Basic programming. Every unit of content and functionality in Office
— each workbook, worksheet, document, range of text, slide, and so on — is an object that you can control
programmatically in Visual Basic. When you understand how to work with objects, you're ready to automate
tasks in Office.

Object Contain Other Objects

Properties and methods of an object can be objects by themselves, and as objects contain their own properties,
methods and events. For example, the Document object contains the Paragraphs property and the Range
method. The Paragraphs property is an object and contains its own properties and methods. The Range method
is an object and contains its own properties and methods. The structure and relationship of objects containing

other objects define the object hierarchy.

To use or refer to a particular object you have to navigate through the object hierarchy to get to the object you
want. For example the ActiveDocument object contains the Words(1) method. The Words(1) method is an
object itself and contains the Bold property. So to refer to the bold property of the first word of the active
document you use the following code:

ActiveDocument.Words(1).Bold = True

15

Object’s Property Example

The following code sets the first word of the active document bold, by assigning the True value to the
ActiveDocument.Words(1).Bold property.

Completed Code

Public Sub objProperty()
ActiveDocument.Words(1).Bold = True
End Sub

To try this example follows these steps.

Steps

1) Start a new Word document and the Visual Basic Editor.

2) Insert a new module and keep the default name as Modulel.
3) Inserta new procedure (macro) and name it objProperty.

4) Type in the above code (Figure 2.1).

5) Type in some sentence like the one in Figure 2.2.

6) Run your macro and see the first word of the sentence set to bold as shown in Figure 2.2.

Figure 2.1 objProperty macro

- Lasson 2 - Module1 {Code) |
{General) :J]DI)jPropert_v _:J

Public Sub objPropertcyi) e
Aetivelbocument . Words (1) .Bold = True =
End Sub

Figure 2.2
Result of objProperty macro before and after

Tom gives Marya g1ft|

Tom gives Mary 4 gift

16

Chapter 2 Object Programming

This example shows the hierarchy structure of objects. The Application object contains the property
ActiveDocument. The ActiveDocument property is an object by itself. The ActiveDocument property object
contains the Words property. The Words property is an object by itself. The Words property object contains the
Item(1) method. The Item(1) method is an object by itself. The Item(1) object has the Bold property. So to refer
to the bold property of the first word of the active document you use the following expression:

Application. ActiveDocument. Words.Item(1).Bold.

Because the Application object is the default object and the Item(1) method is the default method of the Words
object you drop the term Application and the term Item and the above expression becomes:

ActiveDocument.Words(1).Bold.

This is the expression you've used in your code in this example.

Object’s Method Example

The following code inserts the text “Today “ (with a trailing blank) before the first word of the active document.
You use the InsertBefore method of the ActiveDocument.Words(1) object to insert the text “Today “ (with a
trailing blank) before the first word of the active document.

Completed Code
Public Sub objMethod()

ActiveDocument.Words(1).InsertBefore "Today "
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and call it objMethod.

4) Type in the above code (Figure 2.3).

5) Type in some sentence like the one in Figure 2.4.

6) Run your macro and see the text “Today “ (with a trailing blank) being inserted before the first word of
the sentence as shown in Figure 2.4.

17

Figure 2.3 obiMethod macro

Lesson 2 - Module1 {Code)

|(General)

-

lJ jothethml

Puklic Sub objlethodi)
Aotivelocument . Words (1) . InsertBefore "Today ™

1

-
5

Figure 2.4
Result of the objMethod macro before and after

Tom gives Mary a gift. Today Torn gives Mary a gift |

Similar to the previous example, this example shows the hierarchy structure of objects. The Item(1) object
contains the InsertBefore method. So to refer to the InsertBefore method you use the expression

Application.ActiveDocument.Words.Item(1).InsertBefore “Today “.

Because the Application object is the default object and the Item(1) method is the default method of the Words
object you drop the term Application and the term Item and the above expression becomes:

ActiveDocument.Words(1).InsertBefore “Today “.

This is the expression you've used in your code in this example.

What is a Collection Object?

A collection object is a set of related objects. Collection objects are objects themselves. Think of a collection
object as an array of related objects. Each object within a collection object is called an element or an item of the
collection object. Collection objects are useful in that you can perform an operation on all the objects in a given
collection object as a group more efficiently.

In the previous example you’ve seen the example of a collection object. Words is a collection object and you use
the Item method of the Words collection object to refer to the items of the collection object as:

Words.Item(1), Words.Item(2), Words.Item(3),

Because the Item method is the default method of the Words collection object you drop the term Item and refer
to the items of the collection object as:

Words(1), Words(2), Words(3),

As illustrated by the previous example you use the following expression to refer to the first word of the active
document:

ActiveDocument.Words(1)

18

Chapter 2 Object Programming

Likewise you use the following expressions to refer to the second and the third word of the active document and
SO on:

ActiveDocument.Words(2), ActiveDocument.Words(3), ...

While the Words object is not one of them, many objects have similar names, one with a —s and one without a —
s. Por example the Paragraphs (with a —s) object and the Paragraph (without a —s) are different objects. The
Paragraphs object is a collection object while the Paragraph is not. They are both objects in their own right, but
as different objects they have different properties and methods. You can think of the Paragraphs collection
object as one that contains all the paragraphs in a given document, whereas the Paragraph object refers to an
individual paragraph in the document.

Object Variable

Using Objects Directly

You can use objects directly without using object variable to refer to it. You’ve seen examples of that. You use
the expression

ActiveDocument.Words(1)

to refer to the ActiveDocument.Words(1) object directly. However if you have to refer to the same object in
different patts of your codes it is too much typing, easy to make mistake and make the code difficult to read. It is
preferable to declare an object variable and use the object variable to refer to the same object.

Declaring Object Variables

Declaring an object variable is easy. The following expression declares doc as the object variable of the
Document class.

Dim doc as Document

Because doc is now an object variable of the Document class you can use all the properties and methods of the
Document object (class) after you assign to doc a reference to an object.

Declaring Object Variables without Assigning Object References

You must assign an object reference to the object variable you’ve declared before you start using it. If not, you
will get a run-time error. When you assign an object reference to an object variable you tell the computer the
physical memory address of the object you will be referencing in your code. The following code declares doc as a
Document object. It then uses it to refer to the property of an object. If you run this code you will get a run-time
error (Figure 2.5).

Public Sub declareObj()
Dim doc As Document
doc.Words(1).Bold = True
End Sub

19

Figure 2.5 declareOby macro

! n 2 - Module1 (Code). =]
(General) - declareObj -

Public Sub declareOhi)
Dim doc As Docuwent

doc.Words (1) .Bold = True
End Sub

Microsoft Yisual Basic

Run-time errar '91';

Object variable or With block variable not set

sl ||

Declaring Integer Variables without Assigning Values

It is interesting to compare the previous example with one where you declare an integer variable other than an
object variable. The following code declares intTest as a variable of the Integer data type and then uses it without
assigning values to it. If you run the code in a macro (Figure 2.6) you will get the result in Figure 2.7, where the
dialog box displays the number 1, the result of (intTest + 1). The computer assigns an initial value of 0 to the
integer variable intTest for you, so you get the result of 0 + 1 = 1.

Public Sub declarelnteger()
Dim intTest As Integer
MsgBox (intTest + 1)

End Sub

Figure 2.6 declarelnteger macro

. Lesson 2 - Module1 (Code)

ﬁaaneral) _:l J(Ieclareln‘teger — .7

Public Sub declareInteger ()
Dim intTest As Integer

MsgBox (intTest + 1) J
End 3ub

20

Chapter 2 Object Programming

Run-Time Error and Good Programming Practice

Why do you get different results when you declare two different types of variable, one an object variable and the
other an integer variable, and when you use them before assigning object reference to the former or integer
values to the latter?

When you declare an integer variable the computer assigns a default value of 0 to it when you use it. You see that
in the previous example. When you declare an object variable the computer is not able to assign to it a default
object when you use it so it quits and give you a run-time error.

In any event it is a good programming practice to assign integer values to your integer variables before you use
them in your code. For example if you want your integer variable to be 100 and you forget to assign it. The
computer will happily use the default value of 0 in the computation in your code and give you the incorrect
answer. Such error can be difficult to detect.

Assigning Object Reference to an Object Variable

You assign an object reference to an object variable by assigning to the object variable a reference to an object.
You assign an object reference to an object variable by using the Set statement. The following code assigns to the
object variable doc the ActiveDocument object. That is, you assign to the object variable doc a reference to the
ActiveDocument object.

Set doc = ActiveDocument.

When you assign the ActiveDocument object reference to the object variable doc you must have at least one
Word document open, otherwise you get a run-time error when you use the object variable doc to perform
operation in your code (Figure 2.8). If you have more than one Word documents open at the time, the Word
document with the focus (the one selected) will be used.

When you assign the ActiveDocument object reference to an object variable and no Word document is open.
You get this run-time error when you use the object variable.

Figure 2.8 Assign ActiveDocument object reference when no Word document is open

Microsoft Visual Basic

Run-time error '4246"

This command is not available because no document is open.

End I Debug Help

When you assign an object reference to an object variable by using the Set statement both the object variable and
the object reference must be of the same class.

For example in the following code you’ve declared doc as an object variable of the Document class so you are
fine because the ActiveDocument object is also of the Document class.

Dim doc as Document

Set doc = ActiveDocument

21

The following code will give you a run-time error (Figure 2.9) because you are assigning a reference to the
ActiveDocument.Characters(1) object, which is of the Range class, to the object variable doc which is of the
Document class.

Dim doc as Document
Set doc = ActiveDocument.Characters(1)

When you assign to an object variable a reference to an object of the different class you will get run-time error.

Figure 2.9 Assign object reference of different class

Microsoft Visual Basic

Run-time error 13"

Type mismatch

End ‘ Debug | Help

Note

When you assign an object reference to an object variable by using the Set statement both the object variable and
the object reference must be of the same class.

Assign Object Variable Example

The following code declares doc as an object variable of the Document class and assign to it a reference to the
ActiveDocument object. You then display doc using the MsgBox dialog box.

Completed Code

Public Sub assignObj()
Dim doc As Document
Set doc = ActiveDocument
MsgBox doc

End Sub

To try this example follows these steps.

Steps

1) Make sure you have at least one Word document open.
2) Start the Visual Basic Editor.

3) Use the same module as the one in the previous example.
4) Insert a new procedure (macro) and call it assignObj.

5) Type in the above code (Figure 2.10).

6) Run your macro and the dialog box displays the name of the active document as shown in Figure 2.11.

22

Chapter 2 Object Programming

Figure 2.10 assignObj macro

“: Lesson 2 - Modulel (Code)
{General) L] |assig|\0hi lJ

Public 3ub assignChir) i
Dim doc is Document
Set doco = Activelooument
HM=gBox doc

End Zub

Figure 2.11 Result of assignObj macro

Microsoft Word El

lesson 2.doc

Working with Properties and Methods

Assign Values to Object’s Properties

When you assign value to the property of an object, you give it a new value. You’ve seen example of that in the
following code where you assign the value of True (1 will do too) to the Bold property of the
ActiveDocumen.Words(1) object:

ActiveDocument.Words(1).Bold = True
You use the following syntax to assign value to a property for any type of object:

object.property = setting
When you assign a value to the property of an object both the value you are assigning and the property must not
be of the conflicting data type. For example in the following code the assignment is fine because the property

Bold is of the numeric data type (True =1, False = 0). The value True (or 1) will format the text to be bold. The
value False (or 0) will format the text to be non-bold.

ActiveDocument.Words(1).Bold = True

When the property and the value you are assigning are of the conflicting data type you get a run-time error. The
following example will give you a run-time error (Figure 2.12) because you are assigning the text (test) which is of
the string data type, to the Bold property which is of the numeric data type. The string data type conflicts with
the numeric data type.

ActiveDocument.Words(1).Bold = "test"

When you assign a value to the property of an object of conflicting data type you get a run-time error.

23

Figure 2.12 Assign value to property of an object of conflicting data type

Microsoft Visual Basic

Run-time error 13"

Type mismatch

End ‘ Debug | Help

Note

When you assign a value to the property of an object both the value you are assigning and the property must not
be of the conflicting data type

Assign Value to Object’s Property Example

The is similar to an earlier example except the following code declares doc as an object variable of the Document
class, assign to it a reference to the ActiveDocument object, then make the first word of the active document
bold, by assigning the True value to the doc.Words(1).Bold property.

Completed Code

Public Sub assignProperty()
Dim doc As Document
Set doc = ActiveDocument
doc.Words(1).Bold = True
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and call it assignProperty.
4) Type in the above code (Figure 2.13).

5) Type in some sentence like the one in Figure 2.14.

6) Run your macro and see the first word of the sentence set bold (Figure 2.14).

24

Chapter 2 Object Programming

Figure 2.13 assignProperty macro

| esson 2 - Module1 (Code) CEX
{General) L] iassignPruperty _'J

Public Sub assignProperty()
Dim doc Ls Document
Set doc = Activelocument
doc.Words (1) .Bold = True
End Sub

Figure 2.14
Result of assignProperty macro before and after

Totn gives Mary a gift. ‘Tom gives Ma_ryaglftl

Set Statement

You've used the Set statement to assign an object reference to an object variable as in the following example:
Set doc = ActiveDocument.

In general you can assign any object reference to an object vatiable as long as they are of the same class (same
object type) using the following general syntax:

Set objVariable = objectReference
The object reference can be a Property object or a Method object, as Properties and Methods can be objects

themselves. When you assign a Property object reference to an object variable both the Property and the object
variable must be of the same class (same object type).

When you assign a Method object reference to an object variable, the Method object must return an object
reference and the object being returned and the object variable must be of the same class (same object type).
Some Method objects don’t return anything, for example, a Sub procedure method.

The following code shows an example of assigning a Property object reference to an object variable. You declare
doc as an object variable of the Document class and assign to it a reference to the ActiveDocument property of
the Application object. The assignment is permitted because both doc and the ActiveDocument property are of
the same Document class.

Dim doc as Document
Set doc = Application.ActiveDocument

The following code is equivalent to the above code because the Application object is the default object so the
term is dropped from the expression.

25

Dim doc as Document

Set doc = ActiveDocument

The following code shows an example of assigning a Method object reference to an object variable. You declare
myRange as an object variable of the Range class and use the Item(1) method to return a reference to the object
that represents the first character of the active document. The assignment is permitted because the object being
returned and myRange are of the same Range class.

Dim myRange As Range

Set myRange = ActiveDocument.Characters.Item(1)

The following two expressions are equivalent because the Item method is the default method of the Characters
class so Item is dropped from the expression.

Set myRange = ActiveDocument.Characters.Item(1)

Set myRange = ActiveDocument.Characters(1)

Note

When you assign a Property object reference to an object variable using the Set statement both the Property and
the object variable must be of the same class (same object type).

When you assign a Method object reference to an object variable using the Set statement, the Method object
must return an object reference and the object being returned and the object variable must be of the same class
(same object type).

Set Statement Example — Property Object

The following code declares paras as an object variable of the Paragraphs class:

Dim paras As Paragraphs

The following code uses the Set statement to assign to paras a reference to the Paragraphs property of the
ActiveDocument object. By this assignhment you’ve made paras a collection object referring to all the paragraphs
of the active document.

Set paras = ActiveDocument.Paragraphs

The following code sets the first word of the second paragraph of the active document bold.

paras(2).Range.Words(1).Bold = True

26

Chapter 2 Object Programming

The following shows the completed code.

Completed Code

Public Sub setProperty()

Dim paras As Paragraphs

Set paras = ActiveDocument.Paragraphs
paras(2).Range.Words(1).Bold = True
End Sub

To try this example follows these steps.

Steps

D
2)
3)
4
5
0)

Start the Visual Basic Editor.

Use the same module as the one in the previous example.

Insert a new procedure (macro) and name it setProperty.

Type in the above code (Figure 2.15).

Type in 2 paragraphs like the one in Figure 2.16.

Run your macro and see the first word of the second paragraph changed to bold (Figure 2.16).

Figure 2.15 setProperty macro

“Lesson 2 - Module1 (Code)

FGEneral}

;l 1setPro|)erty

Public Sub setProperty ()

Dim paras As Paragraphs
et paras = ActiveDocument.Paragraphs
paras(2) .Range.Words (1) .Bold = True

Figure 2.16
Result of setProperty macro before and after

Tom gives Mary a gift. Totn gives Mary a gift.

John nuns. John runs.

27

Set Statement Example — Method Object

The following code declares para as an object variable of the Paragraph class:
Dim para As Paragraph

The following code uses the Set statement to return the reference to an object of the same Paragraph class using
the Add method. The Add method adds a new paragraph mark. As a result para now is an object of the
Paragraph class representing the new paragraph (an empty paragraph).

Set para = ActiveDocument.Paragraphs.Add
The following code adds the text “This sentence is new.” to the new paragraph.

para.Range. Text = "This sentence is new."

The following shows the completed code.

Completed Code

Public Sub setMethod()
Dim para As Paragraph
Set para = ActiveDocument.Paragraphs.Add
para.Range.Text = "This sentence is new."

End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.

3) Inserta new procedure (macro) and name it setMethod.

4) Type in the above code (Figure 2.17).

5) Type in a sentence like the one in Figure 2.18.

6) Run your macro and see a new paragraph added (Figure 2.18).

28

Chapter 2 Object Programming

Figure 2.17 setMethod macro

““Lesson 2 - Modulel (Code)
](General} LJ]seﬂl’u‘letho(l L]

-

Public Sub setMethod() :j
Dim para As Paragraph
Set para = LctiveDocument.Paragraphs. idd
para.Range. Text = "This sentence is new.”

End 3Jub

Figure 2.18
Result of setMethod macro before and after

Totn pives Mary a pift.

Tom gives Mary a gift.
This sentence is new |

Set Statement Returns Object Reference

You've seen that the Set statement returns another object, or more precisely speaking, a reference to another
object. The following two statements produce completely different results.

Set myRange = ActiveDocument.Words(1)

str = ActiveDocument.Words(1)

The former returns a reference to an object of the Range class whereas the latter returns the text content of the
tirst word (of string data type) of the document. Specifically the former returns the reference (memory address)

of the Words(1) method (object) whereas the latter returns the first word itself (content).

Because the Words(1) method returns an object of the Range class you have to declare myRange as an object of
the Range class as follows:

Dim myRange as Range

Set myRange = ActiveDocument.Words(1)

You have to declare str as a variable of the string data type for the following code to work.
Dim str as String

str = ActiveDocument.Words(1)

29

Set Statement Example — Comparison

The following code illustrates the last discussion.

Completed Code

Public Sub setCompare()
Dim myRange As Range
Dim str As String
Set myRange = ActiveDocument.Words(1)
str = ActiveDocument.Words(1)
MsgBox myRange.Font.Size
MsgBox str
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.
2) Use the same module as the one in the previous example.
3) Insert a new procedure (macro) and name it setCompare.

4) Type in the above code (Figure 2.19).

5) Type in a sentence like the one in Figure 2.20.
6) Run your macro and the first dialog box displays the font size of the first word of the document.
7) The second dialog box displays the text of the first word in the document (Figure 2.20).

Figure 2.19 setCompare macro

“ Lesson 2 - Modulel (Code)
{General) LJ]sethumparE lJ

Public 3ub setCompare () T
Dim myRange A= Bange
Dim str As String
et myRange = Activelocument.Words(1)
str = ActiveDocument.Words (1)
M=gBox myRange.Font.3ize
M=gBox str —
End Sub

30

Chapter 2 Object Programming

Figure 2.20
Result of setCompare macro before and after

Tom gives Mary a gift.

Displays the font size of the first word

Microsoft Word E|

Displays the text of the first word

Tom

Sub Procedure and Function Methods

A method is an object defined by a class. There are two kinds of methods, one that returns a value or an object,
as a function does, and one that don’t return anything, as a Sub procedure does.

1) Function (method)
2) Sub procedure (method)

Sub procedure performs some operation but returns nothing. For example, Space2 is Sub procedure (method) of
the Paragraphs object, so the following code makes all the paragraphs of the document double-spaces:

ActiveDocument.Paragraphs.Space2

You've used function (method) in earlier example such as the following code where you use the Add function
(method) to return an object of the Paragraph class.

Set para = ActiveDocument.Paragraphs.Add

A function (method) can return a value that is not an object as in the following code where you use the Calculate
function (method) to return a number. If the Sentences(1) object has the text 2 +3, the value returned will be 5.

ActiveDocument.Sentences(1).Calculate

31

Note

A function (method) returns a value or another object. A Sub procedure (method) returns nothing,.
Sub Procedure Method Example

the paragraphs of the document to be double-spaces:

End Sub

A Sub procedure (method) performs some operation. It doesn’t return a value or another object as a function
Completed Code
ActiveDocument.Paragraphs.Space2

(method) does. The following code uses the Space2 Sub procedure (method) of the Paragraphs object to make all
Public Sub subProc()

To try this example follows these steps.
Steps

D
2)
3)
4
5
0)

Start the Visual Basic Editor.

Use the same module as the one in the previous example.

Insert a new procedure (macro) and name it subProc.
Type in the above code (Figure 2.21).

Type in two sentence (single-space) like the one in Figure 2.22.

Run your macro and see the two paragraphs made double-space (Figure 2.22)
Figure 2.21 subProc macro

% Lesson 2 - Modulel (Code)
|{General} Lj {suI)Proc LJ
o
FPublic Sub subProci) —
Aotivebocument . Paragraphs. Spacel
End 3ub T
-
= v

Chapter 2 Object Programming

Figure 2.22
Result of subProc macro before and after

Totn ns.
Tom runs.
John smiles| :
ohn smlles.l

Function that Returns a Value

A function (method) can return a value that is not an object as in the following code where you use the Calculate
function (method) to return a number. If the Sentences(1) object has the text 2 +3, the value returned will be 5.

Completed Code
Public Sub fnCal()

MsgBox ActiveDocument.Sentences(1).Calculate
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.

3) Inserta new procedure (macro) and name it fnCal.

4) Type in the above code (Figure 2.23).

5) Type a sentence of 2 + 3 as shown in Figure 2.24.

6) Run your macro and the dialog box displays the value of 5, the calculated result of 2 + 3 (Figure 2.24).

Figure 2.23 fuCal macro

““ Lesson 2 - Module {Code)

- lsuhProc - I

{General)

-
Public Sub fnCali)
M=gBox ActiveDocument.3entences(l).Calculate
End Zub
-
4! I 4 A

33

Figure 2.24
Result of the fnCal macro before and after

Microsoft Word |E|

This concludes Chapter 2.

34

Chapter 3 More Object Programming

3 More Object Programming

Word Object Model

Where Is My Object?

To automate or program Word effectively using Visual Basic requires an understanding of the commonly used
Word objects and their properties and methods. It's important to know an object's place in the object model,
because before you can work with an object, you have to navigate through the object model to get to it. This
usually means that you have to step down through all the objects above it in the object hierarchy to get to it.

Figure 3.1 shows a partial list of Word objects from Visual Basic Help. To navigate through pages and pages of
charts like this you are sure to get lost in search for the object you are looking for. For this purpose the Object
Browser is an indispensable tool, giving you a quick way to navigate through the object models and showing you
what objects are available including the properties and methods of those objects.

Figure 3.1 Partial list of Word object model

Word Object Model

[Application

rAddins LLS ection
Bostmarks

utoCorrect

©.|
g
iy

AutoCorrectEntries | Hcells

Characters

ions | Hcolumns

FirstLetterExceptions

|

OtherCorrectionsExceptions Comments

|

TwolnitialCapsExceptions | Hpocument

rowser
aptionLabels EndnateOptions
Endnotes

Dictionaries

mail0ptions

I
7
3
T
2
£
H

B =

2
2 i
B

{[FraailCianatiea 1

35

Object Browser

To display the Object Browser follow these steps.

Steps

1) Start Visual Basic Editor.

2) From the View menu, choose Object Browser, or
3) Press F2, or

4) Click the Object Browser button on the toolbar.

5) The Object Browser appears (Figure 3.2).

Figure 3.2 Object Browser

Project/Library box
Search Text box

Members list window

w Object Brows: r

<All Libraries>

’—

Classes

@ [=qiobalgs 1A [&

& Addin ActiveDocument

& Adding ActivePrinter

& Adjustments ActiveWindow

& Answerwizard & Adding

& AnswerwizardFiles Answenizard

& Application S AppActivate

& Assistant & Application

& AutoCaption S Asc

& AutoCaptions v |=® AscB v
<All Libraries=

= Classes list window
Description pane

Figure 3.2 shows the Object Browser.

1) Project/Library box allows you to select a single library or project, ot to view all libraries and projects.

2) Search Text box lets you find objects and members.

3) Classes list window display all the classes belonging to the selected project or library in the
Project/Library box.

4) Members list window shows the properties, methods, and events that belong to the class selected in the

Classes list window.

5) Description pane shows the types and arguments of properties, methods, events and their descriptions.

36

Chapter 3 More Object Programming

Icons Used in Object Browser

Figure 3.3 shows icons used in the Object Browser. The following sections describe these in more details.

Figure 3.3 lcons used in Object Browser

Icon Element Type
| Class

g Property

25 Default Property
= Method

%o Default Method

¥ Event
= Enumeration
Default Property

The default property of an object has the icon of a hand holding a note with a tiny blue dot in the upper left
hand corner (Figure 3.3, Figure 3.4). Many objects have default properties. You can drop the name of a default
property of an object when referencing it. For example, Figure 3.4 shows that the Text property is a default
property of the Range class. So the following two expressions are equivalent when you use them in your code
(myRange has been declared as an object variable of the Range class).

myRange. Text = “Tom smiles.”
or
myRange = “Tom smiles.”

Knowing default properties of objects helps you understand abbreviated code such as the above example, when
you have to read code written by other programmers.

37

Figure 3.4 Default property

w Object Browser ['Z\[E”g|
Word | 4 1 b :@_J
- #fx
Search Results

| Library | Class | Member]
|

Classes Memhbers of Range'

) Paragraphs A |=% TCSCConverter »

ez Tent

E&! TextRetrievalilode
E&' ToplLevelTables
E&! TwiolinesinOne

21 ReadabilityStatistics 5 Uindetline
21 RecenfFile =% WholeStary =
Bl RecentFiles ¥ EE wWords b

Propery Text As String
Default member of Word Range

Note

You can drop the name of a default property of an object when referencing it.

Default Method

The default method of an object has the icon of a 3-dimensional bluish rectangle with a tiny blue dot in the
upper left hand corner (Figure 3.3, Figure 3.5). Many objects have default methods. You can drop the name of a
default method of an object when referencing it. For example, Figure 3.5 shows that the Item method (function)
is a default method of the Paragraphs class. So the following two expressions are equivalent when you use them
in your code (paras has been declared as an object variable of the Paragraphs class).

paras.Item(2).Range. Text = “Tom smiles.”
Or

paras(2).Range.Text = “Tom smiles.”

Knowing default methods of objects helps you understand abbreviated code such as the above example, when
you have to read code written by other programmers.

38

Chapter 3 More Object Programming

Figure 3.5 Default method

w’ Object Browser EJ[E|E|
Word - 4 al P
[- #Alx

Search Results

[Library | Class | Member |
Classes Memhers of Paragraphs’

&) Paragraph 4| |+ Indent »

& ParagraphFormat =& IndentCharidth

B Paragraphs o [IndentFirsLineCharwidth

1 PictureFarmat Y iterm i

B ProofreadingErrars & KeepTogether

&1 Range e Keepiithhext

& ReadahilityStatistic ¥ |g& Last o
Function item{/nciex A5 Long) As Paragraph

Default member of Word Paragraphs

Note

You can drop the name of a default method of an object when referencing it.

Default Property and Method Example

This example adds a new paragraph to the end of the document. It illustrates the use of default properties and
default methods.

The following code declares paras as an object variable of the Paragraphs class. You then use the Set statement to
assign to paras a reference to the Paragraphs property of the ActiveDocument object.

Dim paras As Paragraphs

Set paras = ActiveDocument.Paragraphs

Assuming the document has only one paragraph, the following code uses the Add method (a function method)
of paras (a Paragraphs object) to add a new paragraph mark to the end of the document.

paras.Add

The expression Paras.Item(2) uses the Item(2) method (a function method) of paras (a Paragraphs object) to
return a reference to an object of the Paragraph class that represents the second paragraph of the document.
That is, now Paras.Item(2) is a Paragraph object that represents the second paragraph of the document. The
expression Paras.Item(2).Range uses the Range property of Paras.Item(2) (a Paragraph object) so now
Paras.Item(2).Range becomes an object of the Range class. The following code assigns the text “That was
yesterday." to the Text property of Paras.Item(2).Range (a Range object).

Paras.Item(2).Range. Text = "That was yesterday."”

Because the Item method is a default method of the Paragraphs class and the Text property is a default property
of the Range class the two terms are dropped and you use the following statement instead of the above

statement.

Paras(2).Range = "That was yesterday."

39

The following shows the completed code.

Completed Code
Public Sub defaultPropertyMethod()
Dim paras As Paragraphs
Set paras = ActiveDocument.Paragraphs
paras.Add
paras(2).Range = "That was yesterday.”
End Sub

To try this example follows these steps.

Steps

1) Start a new Word document and the Visual Basic Editor.

2) Insert a new module and keep the default name as Modulel.

3) Inserta new procedure (macro) and name it defaultPropertyMethod.
4) Type in the above code (Figure 3.6).

Type in one (only one) paragraph like the one in Figure 3.7.

Run your macro and see a second paragraph of text added (Figure 3.7).

Figure 3.6 defaultPropertyMethod macro

“ Lesson 3 - Module1 {Code) EHE”E|

[(Generan ~| [defauttPropertyMethoa -]

Public Sub defsultPropertyMethod() =
Dim paras Az Paragraphs =
Set paras = ActiwvelDocwment.Paragraphs
paras. Ldd

paras (2) .Range = "That was yesterday."
End Zub

|

=

Figure 3.7 Result of odefanltPropertyMethod macro before and after

Totn gave Mary a gift.

TomsveMuy Lot That was yesterday.

40

Chapter 3 More Object Programming

Event and Event Procedure

Recall that an object contains properties, methods and events. An event in the member List window in the
Object Browser has the icon of a little yellowish lightning strike. Figure 3.8 shows the Open event of the
Document class. When you open a document the Open event (of the Document object representing the
document you’ve opened) is said to occur. This cause a message to be sent to the Windows operating system
which processes the message and broadcast it to all the windows (objects) active in the computer memory. Each
window (object) can then take appropriate action based on its own instructions for dealing with this message (the
Open event trigged by your opening of this particular document). The instruction (code) you write for dealing
with this event (the Open event) is an event procedure or an event handler.

You’ve seen in Chapter 1 the three types of procedure, Sub procedure (macro), function procedure and property
procedure. The event procedure is yet just another type of procedure.

When you write the event procedure for an object the naming convention for the name of the event procedure is
you combine the object’s name, an underscore _, and the event name. For example, when you write an event
procedure for the Open event of a Document object you use the procedure name of Document_Open.

Figure 3.8 Event procedure in Object Browser

wr Object Browser

Classes Mermbers of Document’
&) Dictionaries A | B8 Mame ~
&2 Dictionary £ MNew

] ~ |8 MoLineBreakaner

21 Documents & MoLineBreakBefore
@1 DropCap

21 DropDovwn e OpenEncoding

1 Editor E& OptimizeF ortorda7?
& Editors E& PageSetup

Genal | g
Event Open()

Member of Word Document

Event Procedure Example

In this example you write an event procedure that is invoked to display a dialog box to greet you whenever you
open the Word document.

Follow these steps to create an event procedure:

Steps

1) Open the Visual Basic Editor from your document.

2) From the Project window right click ThisDocument and select View Code (Figure 3.9).

41

Figure 3.9 Create en event procedure

- Microsoft Visual Basic - Lessond

: Fle Edit View [Inssrt Format Debug Run Took
o] g Bl oy d b
Project - Project I
s

3 B2 Normal

[= @ Project {Lesson3)

[Modules
[References

View Object
Project Properties. .,

Insert 3

ThisDocument Document] Import File. ..
Alphabetic | Categorized] Export File...

Close Project

Remove ThisDocument...
‘j.| Print. ..

0[] ockebe
Dief aulk TargetFrar T
| Hide

DisahleFeatures |False
DohlotEmbedSyste True

The Code window for ThisDocument appears (Figure 3.10).

Follow these steps to add your code.

Steps

1) The ThisDocument (Code) window has two dropdown boxes (Figure 3.10). Scroll down to the
Document object and select it.

2) With the left dropdown box of the code window displaying Document, the right dropdown box
contains a list of the events associated with the Document object. Select Open, the Open event of the
Document object (Figure 3.10).

3) Visual Basic editor automatically generates the heading Private Sub Document_Open() and the ending
End Sub of the event procedure for you. Type in the above code (Figure 3.10) between the heading and
the ending of the event procedure.

4) Choose File/Save from the Visual Basic menu.

5) Close your Word document.
6) Open your Word document.
7) You will see the Welcome greeting box appearing (Figure 3.11).

Figure 3.10 Document_Open event procedure

&, lesson 3 - ThisDocument {Code)

IDocumem _:j 10|)en = j

Private Sul Document_Openf()
| MsgBox "Welcome!'™
End Sub

42

Chapter 3 More Object Programming

Figure 3.11 Result of Document_Open event procedure

Microsoft Word [’S__<|

‘Welcome!

What is an Enum Class?

An enum class is a special class that contains just data but no methods. An enum class associates constant values
with names. For example Visual Basic has built-in enum class WdConstants that associates the name wdFirst
with the value of 1 (Figure 3.12). You use the name in an enum class instead of a value to improve clarity of your

code.

Figure 3.12 Enum class

- Ohject Browser

<All Libraries> == (A o ?J
~| #hl ¥

#
Classes Members of WdConstants'
2P widColorndex A E wdAutoPosition
= WdCompareTarget @ wdBackward
= WdCompatibility & wdCreatorCode
=7 WidConditionCode - &8 voclFirst
= |G onstants @ wdForward
= WdContinue —|@ wdToggle
=7 Wi Country E wdUndefined
= WidCursorMovement
=& WdCursorType - ¥
ConstwdFirst =1
Member of Word WdConstints

Enum Classes

For example, create a macro with the following code and run your macro you will get a dialog box displaying the
value of 1 (Figure 3.13).

Public Sub wd_First()
MsgBox wdFirst

End Sub

Figure 3.13

Microsoft Word [g|

43

Navigating the Object Hierarchy Using Object
Browser

In an earlier example you use the following code to add a new paragraph of text to the active document.
Public Sub defaultPropertyMethod()

Dim paras As Paragraphs

Set paras = ActiveDocument.Paragraphs

paras.Add

paras(2).Range = "That was yesterday."
End Sub

In the following section you will go through the process of using the Object Browser to help you navigate the
object hierarchy, and find information for coding the above example.

ActiveDocument Object

The ActiveDcoument object is a property of the Application class. You’ve seen the ActiveDocument object quite
a bit and you will see it quite a bit in your future code. You can start using the ActiveDocument object in your
code, if you already have an active document open (a document with the focus). Recall that before you can use
an object in code it must be an object already in the computer memory. Before you can use an object variable in
code it must refer to an object in memory. When you have an active document that is open (with the focus) the
ActiveDocument object automatically represents the active document which occupies the computer memory as
an object, so you can use the ActiveDocument object in code. If you use the ActiveDocument object in code
without having an active document open you’ll get a run-time error.

To find the ActiveDocument object in the Object Browser follow these steps.

Steps

1) Start Visual Basic Editor and the Object Browser.
2) In the Class List window scroll down to the Application class and select it.

3) The Member List window now displays all the properties, method and events of the Application class.
Select the ActiveDocument property.

4) The Description pane shows the description of the ActiveDocument property.

44

Chapter 3 More Object Programming

Figure 3.14 ActiveDocument object

w' Object Browser - _. |l
|Wor(| j ‘ e ﬂ
| -])

Classes Members of ‘Application’

21 Addins Al

) Adj ; .

I} S ActivePrinter

Ji] EE Active'yindow

B AutoCaptions =% AddAddress

21 AutoCoarrect ' Adding

B AutoCorrectEntries EE Answentizard

2 AutoCorrectEntry e Application

21 AutoTextEntries | [EE ArbitrangMLSUpporti: o
Property ActiveDocument As Document ~

read-only

Member of Word Application

The description pane has the following description of the ActiveDocument property.
Property ActiveDocument As Document

The first word Property tells you that the ActiveDocument object is a property of the Application class. The (As
Document) phrase tells you that the ActiveDocument property is an object of the Document class. Because it is
a Document object it has all the properties, methods and events of the Document class. If you need more
information of the ActiveDocument property press F1 while the ActiveDocument object is highlighted in the
Member List window and Visual Basic Help will give you the information.

Document and Paragraphs Objects

Next you want to look up the properties and methods of the Document object to see which properties and
methods can help you add a new paragraph of text to the active document. To look up the properties and
methods of the Document class you click the hyperlinked Document in the Description pane (Figure 3.15).

Figure 3.15 Go to Document class

Froperty ActiveDocument As Document ~
read-only ;
Member of Word Application

Click here to go to the Document class

This selects the Document class in the Class List window and displays the properties, methods and events of the
Document class in the Members List window (Figure 3.16). Scroll down the list of properties, methods and
events of the Document class in the Members List window to the Paragraphs property (Figure 3.106).

The Description pane shows that the Paragraphs property is of the Paragraphs class. In the following code you
declare paras as an object variable of the Paragraphs class and use the Set statement to assign to paras a reference
to the ActiveDcouemtn.Paragraphs object which represents all the paragraphs of the active documents.

45

Dim paras As Paragraphs
Set paras = ActiveDocument.Paragraphs
This assignment using the Set statement is permitted because both paras and the ActiveDocuemt.Paragraphs

object are of the same Paragraphs class.

Figure 3.16 Paragraphs object

w' Object Browser

<Al Libraries> - 4 || 2]
- #4| ¥

Classes Mermbers of Document’
2 Dictionary # | [OpenEncading M
w & OptimizeFororda7?

i 1 |8 PageSetu

2 DocumentLibrandh “aragraphs

& DocumentLibran g8 Parent

& DocumentPropertis E&H Password

2 DocumentPropery EH PasswordEncryptiona

2 Documents & FasswordEncryptionF

& DropCap | |E PasswordEncryptionk »

Froperty Paragraphs As Paragraphs A
read-only E

Member of Word Document

Add Method

Now that you’ve paras as a Paragraphs object you want to look up the properties and methods of the Paragraphs
class by clicking the hypetlinked Paragraphs in the Description pane (Figure 3.17).

Figure 3.17 Go to Paragraphs class

Property Paragraphs As Paragraphs A
read-only =

tember of Word Document -—
w

] |
Click here to go to the Paragraphs class

This selects the Paragraphs class in the Class List window and displays the properties and methods of the
Paragraphs class in the Members List window (Figure 3.18). You want to use the Add method (function) to add a
new paragraph mark to the document (Figure 3.18).

The Description pane shows that the Add method (a function method) returns a Paragraph object. Bear in mind
the Paragraph object and the Paragraphs object are different objects, where the latter is a collection object. You
use the Add method of the Paragraphs object to return a different object, a Paragraph object.

The Add method (function) has the following syntax according to the Description pane:
Function Add([Range]) As Paragraph

The Add method (function) takes on an optional parameter [Range], not to be confused with the Range class.
The [Range| parameter specifies the position where you want your new paragraph mark added. If you do not

46

Chapter 3 More Object Programming

specify where to add the paragraph mark as in the following code, the paragraph mark is added to the end of the
document after the last paragraph.

paras.Add

Figure 3.18 _Add method

w' Object Browser

[onmiee SV Al
AN - 1R

Classes Memhers of ‘Paragraphs’
£ Paragraph == EETI ~
B ParagraphFormat & AddSpaceBetwesnFa
BliParagraphs ¢ [AddBpaceBetweenfa
B Permissian o[BS Aligrment

B PictureFarmat & Application

B ProofreadingErrors e AutohAdiustRightinden
) ProperyTest %' BaselineAlignment

B ProperyTests ~| |8 Borders >

Function Add{[Range]) As Paraaraph
Member of Word Paragraphs

If you run the following code in a macro, assuming you have only one paragraph in the document and you’ve
turned on the (show) paragraph mark option, you will see a new paragraph mark added at the end of the

document (Figure 3.19).
Dim paras As Paragraphs
Set paras = ActiveDocument.Paragraphs

paras.Add

After you run the above code you have 2 paragraphs in your document, the second paragraph with no text (an
empty paragraph) in it (Figure 3.19). You can now use the Item method of the Paragraphs object as in the
following code to refer to the second paragraph (second item) of your document.

Paras.Item(2)

Using the above expression with only one paragraph in the document will give you a run-time error.

Figure 3.19 Add new paragraph mark

Tom smiles
|—'|I

New paragrlaph mark added

Item Method

While you still have the Paragraphs class selected in the Class List window (Figure 3.20), scroll down to the Item
method in the members List window and select it. The Description pane shows that the Item method (a function
method) returns a Paragraph object. Bear in mind the Paragraph object and the Paragraphs object are two
different objects, where the latter is a collection object. You use the Item method of the Paragraphs object to
return a different object, a Paragraph object.

The Item method (function) has the following syntax according to the Description pane (Figure 3.20).
Function Item(Index As Long) As Paragraph

The Item method (function) requires a parameter (Index As Long), where you use Index (1, 2, 3,) to refer to
the 1, 2nd /.. item (paragraph) of the document.

You use the following expression to refer to the second paragraph.
paras.Item(2)

Because the Item method returns a Paragraph object paras.Item(2) refers to a Paragraph object that represents
the second paragraph of the document.

Figure 3.20 Itens method

w Object Browser

|<All Libraries> | 1 % EJ
|

Clasges Members of Paragraphs'
& Paragraph 4| = Indent ~
=% |ndentCharidth

=% IndentFirstLineChar

_ [P T —
& PictureFarmat EE KeepTogether B
2 ProofreadingErrars S Keep\ithiext
2 PropertyTest E& Last
2 PropertyTests | |8 Leftindent v

Function em{indax 45 Long) As Paragraph
Default member of Word Paragraphs

Range Property

Now that you’re working with paras.Item(2), a Paragraph object, you want to look up the properties and
methods of the Paragraph class by clicking the hyperlinked Paragraph in the Description pane (Figure 3.21).

48

Chapter 3 More Object Programming

Figure 3.21 Go to Paragraph Class

Function Wem{inoex As Long) &5 Paraaraph
Default member of Word Paragraphs

|
Click here to go to the Paragraph class

This selects the Paragraph class in the Class List window and displays

the properties and methods of the Paragraph class in the Members List window (Figure 3.22).

Scroll down to the Range property in the members List window and select it (Figure 3.22). The Description pane
shows that the Range property is of the Range class. So the following expression is a Range object:

paras.Jtem(2).Range

Figure 3.22 Range property

w Object Browser EJIE'[X'
|<AN Libraries> |« 3]

Classes Members of Paragraph'
2 Pane 4 |2 OutlinePromote

/]

e PageBreakBefore
E& Parent

1 ParagraphFormat
2 Paragraphs
Bl Permission
1 PictureFormat =& Reset
&) ProofreadingErrars & |E& Rightindent

~

b
Froperty Range As Range ~
read-only 3
Defautt member of Word Paragraph v

Text Property

Now that you’re working with paras.Item(2).Range, a Range object, you want to look up the properties and
methods of the Range class by clicking the hyperlinked Range in the Description pane (Figure 3.23).

Figure 3.23 Go fo Range class

Fropetty Range As Range
read-anky
Default member of Wodd Paragraph

!
Click here to go to the Range class

This selects the Range class in the Class List window and displays the properties and methods of the Range class

in the Members List (Figure 3.24).

49

Scroll down to the Text property in the members List window and select it (Figure 3.24). The Description pane
shows that the Text property is of the String data type. Because the Text property is of the String data type you
can assign to it a string expression as in the following expression:

paras.Item(2).Range. Text = "That was yesterday."

Because the Item method is the default method of the Paragraphs class and the Text property is the default
property of the Range class you can drop those two terms and use the following equivalent expression:

paras(2).Range = "That was yesterday.”

Figure 3.24 Text property

w Object Browser,

|-c.AII Libraries> =

| |

Classes hMembers of ' Range'
| |eE Tables ~

%&

=% TCSCConverter
el Text
21 ReadabilityStatistics E&! TextRetrievalMode
21 RecentFile & TopLevelTables
21 RecenfFiles EH TwolinesinGne
2 Rectangle S Undetline =
21 Rectangles w | |=® WhaoleStory v

Froperty Text As String
Default member of Word Range

Recap

You’ve gone through the process of using the Object Browser to navigate the object hierarchy to help you with
your coding of the following:

Public Sub defaultPropertyMethod()
Dim paras As Paragraphs
Set paras = ActiveDocument.Paragraphs
paras.Add
paras(2).Range = "That was yesterday.”

End Sub

This concludes Chapter 3.

50

Chapter 4 Programming Fundamentals

Chapter 4’ Programming Fundamentals

Some Programming Housekeeping
Option Explicit Statement

It is a sound programming practice to put in the Option Explicit statement at the top of your module (Figure
4.1). In the presence of the Option Explicit statement you must declare every variable you use in the code or you
will get a compile error when you run your code (macro).

The Option Explicit statement is for the debugging and maintainability of your code. Suppose you declare a
variable and misspell the name of the variable in one of the many places in the code where you use it. Without
the Option Explicit statement the computer will not detect the error in your code and you may get an unintended

result which sometimes is difficult to detect and debug,.

In the following example you declare sngNum as a variable of the Single data type (more on that later) and then
misspell it as sngNom when using it. When you run the macro you will get a Compile Error (figure 4.1).

Public Sub singleNumber()
Dim sngNum As Single
sngNom = 2.3 * 4.5

End Sub

Figure 4.1 Option Explicit statement

](General} :_j]singIeNumher

Option Explicit

Public Sub singleMumber ()
Dim sngNum As 3ingle

End Sub =
Microsoft Visual Basic |§|

Compile error:
L

Yariable not defined

o |

-

51

Continuation of Statement

If you need to type long Visual Basic statements you can break the line into multiple lines by terminating the line
with a blank space followed by the underscore character _ before you continue to the next line, such as the
following (see also Figure 4.2).

MsgBox ActiveDocument.Words.Item(1) _
.Font.Size
The above statement is equivalent to the following:

MsgBox ActiveDocument.Words.Item(1).Font.Size

Figure 4.2 Continuation of statement

“; Lesson 4 - ModuleT (Code) EEX
|(Genera|} Lj]contShow lJ
Option Explicit

Public Sub contShowi()
M=gBox ActiveDocument.Words.Itemil) _
.Font.3ize
End Zub

=4 | ;I:J

L_ll_uL

Note

To continue your statement into the next line you must terminate the line with a blank space followed by _. The
blank space before _ is necessary for this to work.

Comment Line

A comment line begins with the apostrophe ¢ (Figure 4.3). You add comments to your code to explain the
working of your code, to add clarity and maintainability of your code. Other programmers can understand your
code a lot better if you have comments and documentation of your code.

52

Chapter 4 Programming Fundamentals

Figure 4.3 Comment line

“ Lesson 4 - Module1 [Code)

{General) Lj]comshow j

Option Explicitc e

Public Sub contShow()
' This and the fllowing 2 lines are comments.
" The following i= to illustrate the breaking

. of a statement into two lines.

M=sgBox ActiveDocument.Words.Item(1l]
Font.Size

End Sub

==l | iy

Variables

You use variable to represent, store and manipulate different types of data. The types of data can be objects,
numbers, dates, Boolean expression, strings and other data types. In the following sections you will learn about
these different types of data and use them in your code.

Variable Name

Your variable name must begin with an alphabet letter and may not contain spaces. For full detail of rules of
naming variable consult Visual Basic Naming Rules of Visual Basic Help.

Though not mandatory, you should name you variables beginning with a non-capitalized alphabet and a prefix as
presented in Figure 4.4. You don’t capitalize the name of your variables to distinguish them from the Visual Basic
keywords which are all capitalized. You use the prefix (Figure 4.4) with the name of your variables to tell what
data types the variables are associated with. These naming conventions are meant to increase clarity and
maintainability of your code. They are also invaluable in debugging of your code.

Variable names atre not case sensitive. For example the variable names intCash and intcash are the same to Visual
Basic. You won’t have much opportunity to practice though, because if you type your variable name as intCash
and later type it as intcash, Visual Basic changes the previous intCash to intcash. If you declare your variable in a
Dim statement such as (Dim intCash) then when you later type the variable as intcash Visual Basic changes it to
intCash.

The naming conventions for object variables are less uniform. In general they should be descriptive. For
examples you may use doc, para and paras as object variable names for the Document, Paragraph, and
Paragraphs classes respectively.

53

Figure 4.4 1V ariables naming convention

Data type Prefix Example
Boolean bln blnFlag
Byte byt bytType
Date dtm dtmBirth
Double dbl dblLarge
Integer int intCounter
Long Ing IngIndex
Single sng sngBig
String str strName

Variables that Use Numbers

You use variables of the numeric types to represent, store and manipulate different types of numbers. Figure 4.5
shows four types of numbers. Integer and Long types are integers. The Long data type has larger integer values
than the Integer data type, and requires more computer memory storage. Single and Double types are decimal
numbers for floating point arithmetic computation. The Double data type produces more accuracy (therefore the
term double) than the Single data type, and requires more computer memory storage.

The following code declares sngNum as a variable of the Single data type:

Dim sngNum as Single

Figure 4.5 Number data types

Data type Description

Integer Integers.

Long Integers.

Single Single-precision floating-point numbers.
Double Double-precision floating-point numbers.

You use arithmetic operator to perform computation on numbers or number variables. Figure 4.6 shows the
commonly used arithmetic operators.

The following code assigns to sngNum, a variable of the Single data type, the result of the multiplication of two
numbers, 2.3 and 4.5.

Dim sngNum As Single

sngNum = 2.3 * 4.5

54

Chapter 4 Programming Fundamentals

Figure 4.6 Arithmetic operator

Arithmetic | Description
Operator

* Multiply

+ Add

- Subtract
Divide
Raise to the power of

Mod Divide two numbers and return only the remainder

Numeric Variable Example

The following code declares sngNum as a variable of the Single data type, and assigns to it the result of
multiplying two numbers, 2.3 and 4.5.

Dim sngNum As Single

sngNum = 2.3 * 4.5

The following code assigns sngNum, which has the result of the computation, to the Text property of the
Words(1) object.

ActiveDocument.Words(1). Text = sngNum

The following shows the completed code.

Completed Code

Public Sub singleNumber()

Dim sngNum As Single
sngNum = 2.3 * 4.5

ActiveDocument.Words(1). Text = sngNum

End Sub

55

To try this example follows these steps.

Steps

1) Start a blank document and start Visual Basic Editor.

2) Insert a new module and keep the default name as Modulel.

Insert a new procedure (macro) and name it singleNumber.

Type in the above completed code (Figure 4.7).

5) Run your macro and see the number 10.35, result of 2.3 * 4.5, displayed in your document (Figure 4.8).

Figure 4.7 singleNumber macro

“: liesson 4 - Moduled (Code) =13
F(?eneral) _:j {;ingle“umher _:j
Option Explicit 7

Public Z3ub singleMNwuber ()
Dim sngNum As Single
sngNum = 2.3 * 4.5
Aetivebocument . Words (1) . Text = sngllhum
End Sub

/=L | s

Figure 4.8 Result of singleNumber macro

foas

Variables of the Boolean Data Type

Boolean data type can only be True or False (Figure 4.9). The following code declares blnFlag as a variable of the
Boolean data type.

Dim blnFlag as Boolean

56

Chapter 4 Programming Fundamentals

Figure 4.9 Boolean data type

Data type Description

Boolean Can only be True or False.

Comparison Operators

A Comparison operator (Figure 4.10) is used to compare two expressions and return a value that is True or False.
That is, it returns a result of the Boolean data type. The following code declares blnFlag as a variable of the
Boolean data type. The comparison 3 > 1 produces the value of True which is assigned to blnFlag.

Dim blnFlag as Boolean

blnFlag = (3 > 1)

Figure 4.10 Comparison operator

Comparison | Description
Operator
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
<> Not equal to

Comparison Operator Example

The following code declares blnFlag as a variable of the Boolean data type.
Dim blnFlag as Boolean

The following tests to see if the font size of the first word is less than 14. If it is, blnFlag = True. If it is not,
blnFlag = False.

blnFlag = (ActiveDocument.Words(1).Font.Size < 14)
The following code sets the first word to bold if the font size of the first word is less than 14.
ActiveDocument.Words(1).Bold = blnFlag

The following shows the completed code.

Completed Code
Public Sub blnCompare()

57

Dim blnFlag As Boolean
blnFlag = (ActiveDocument.Words(1).Font.Size < 14)
ActiveDocument.Words(1).Bold = blnFlag

End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and name it blnCompare.
4) Type in the above completed code (Figure 4.11).

5) If the document is blank, type in a sentence as that in Figure 4.12. If your document is not blank, make
sure the font size of the first word is less than 14.

6) Run your macro and see the first word set to bold (Figure 4.12).

Figure 4.11 binCompare macro

“; Lesson 4 - Modulel| (Code)

{General) - |hlnCnmpare - !

Option Explicit

Publiz Sub hlnCompare()
Dim blnFlag iz Boolean

bilnFlay = (ActiveDocument.Words(l).Font.Size < 14)
Aotivelocument .. Words (1) .Bold = blnFlag
End Zub

Figure 4.12 Result of binCompare macro before and after

I John sings a song, I John sings a song.

58

Chapter 4 Programming Fundamentals

Logical Operators

You use logical operators (Figure 4.13) to perform logical operations on data or variables that are of the Boolean
data type. Figure 4.14 shows the results of logical operators And and Or. The logical operator Not inverts
whatever value it is used with.
The two following expressions both return a True value.
3>1)
4>2
The following expression returns a True value.
(3>1)And (4>2)
The following expression returns a False value.
3>1)And 2>4)
The following expression returns a True value.
3>1)0r(2>4)
The following expression returns a True value.

Not (2> 4)

Figure 4.13 Logical operator

Logical Description

Operator

And Logical And

Or Logical Or

Not Logical Not

Figure 4.14 Result of And and Or

And True False Or True False
True True False True True True
False False False False True False

59

Logical Operator Example

The following code declares blnFlag as a variable of the Boolean data type.

Dim blnFlag as Boolean

The following tests to see if the font size of the first word is less than 14 and if there are less than 10 paragraphs
in the document. If both of the conditions are True, then blnFlag = True. If not then blnFlag = False.

blnFlag blnFlag = (ActiveDocument.Words(1).Font.Size < 14) _

And (ActiveDocument.Paragraphs.Count < 10)

The following code format the first word to bold if blnFlag = True.

ActiveDocument.Words(1).Bold = blnFlag

The following shows the completed code.

Completed Code

Public Sub blnlLogical()
Dim blnFlag As Boolean
blnFlag = (ActiveDocument.Words(1).Font.Size < 14) _

And (ActiveDocument.Paragraphs.Count < 10)
ActiveDocument.Words(1).Bold = blnFlag
End Sub

To try this example follows these steps.

Steps

1)
2)
3)
4
5

Start the Visual Basic Editor.

Use the same module as the one in the previous example.
Insert a new procedure (macro) and name it blnLogical.
Type in the above code (Figure 4.14).

If the document is blank, type in a sentence as that in Figure 4.16. If your document is not blank, make
sure the font size of the first word is less than 14. Also make sure there are less than 10 paragraphs in the
document.

Run your macro and see the first word set to bold (Figure 4.16).

60

Chapter 4 Programming Fundamentals

Figure 4.15 binl_ogical macro

““ Lesson 4 - Module1 (Code)

I(General) - ihlncampara -

Option Explicit

== |

Public Sub blnLogical()
Dim blnFlag As Boolean
blnFlag = (AcciveDocumenc.Words(1l).Fonc.Size < 14)

And (AetiveDocument.Paragraphs.Count < 10}
AetiveDocurent. Words (1) .Bold = blnFlag
End Sub

Figure 4.16 Result of binl_ogical macro before and after

chn sings a song, John sings 2 song.
23 2

Variables that Use Strings

The string data type consists of a sequence of contiguous characters that represent the characters themselves
rather than their numeric values. A string can include letters, numbers, spaces, and punctuation. You use variable

of the string data type to represent, store and manipulate characters or texts.

The following code declares strName as a variable of the string data type and assigns to it the text John.

Dim strName as String

sttName = “John”

Figure 4.17 String data type

Data type

Description

String

Contains characters ot text.

61

Concatenate Operator &

You use the concatenate operator & to concatenate or join two or more strings or variables of the string data
type. The following code declares strtWord as a variable of the string data type, joins two strings, Hello and

(World) to form the string “Hello World” and store it in strtWord. As a result strWord contains the string “Hello
World”.

Dim strWord As String

strtWord = "Hello" & " World"

Figure 4.18 Concatenate operator

String Description
Operator
& Concatenate

String Data Type Example

The following code declares strWord as a variable of the string data type.
Dim strWord As String

The following code stores the second word of the document in strWord.
sttWord = ActiveDocument.Words(2)

The following code insert <text> before the text in strWord and append </text> after the text in strtWord, and
stores the resulting string in strWord.

sttWord = "<text>" & strWord & "</text>"
The following code replaces the second word of the document by the content of strWord.

ActiveDocument.Words(2) = strWord

The following shows the completed code.

Completed Code

Public Sub strExample()
Dim strWord As String
sttWord = ActiveDocument.Words(2)
strWord = "<text>" & strWord & "</text>"
ActiveDocument.Words(2) = strWord

End Sub

62

Chapter 4 Programming Fundamentals

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.

3) Inserta new procedure (macro) and name it strExample.

4) Type in the above code (Figure 4.19).

5) If the document is blank, type in a sentence as that in Figure 4.20.

6) Run your macro and see the second word of the document, sings, replaced by <text>sings </text>.

Figure 4.19 strEixample macro

“““ Lesson 4 - Module1 (Code)

{General) - il)lnLogical vl

Option Explicit

-

Pulblic Sub strExsmple()
Dim strWord As String
strWord = Activelocument.Tords(2)

strijord = "<textx" & strWord & "</text:>"
hoetiveDoocwnent .. Words (2) = striord
End Zub
-
== <| I o4

Figure 4.20 Result of strExample macro before and after

John <text=smgs < /text=a song.

John sings a song.

63

Variables that Use Dates

The date data type or variable of the date data type represents dates. The following code declares dtmBirth as a
variable of the Date data type and assigns to it the date #10/6/2004#.

Dim dtmBirth as Date
dtmBirth = #10/1/2004#

Any recognizable date values can be assigned to a variable of the Date data type. The date vales must be enclosed
within number signs #. The following statements are all equivalent.

dtmBirth = #10/1/2004#
dtmBirth = #October 1, 2004#

dtmBirth = #1 Oct 2004#

Figure 4.21 Date data type

Data type Description
Date Floating-point numbers that represent dates.
Date Data Type Example

The following code declares dtmBirth as a variable of the Date data type and strText as a variable of the String
data type.

Dim dtmBirth As Date

Dim strText As String

The following code assigns a date to dtmBirth.

dtmBirth = #10/1/1970#

The following code joins three string expressions and stores the result in strText.

sttText = "Your birth date is " & dtmBirth & "I"

The following code writes the content of strText as the first sentence of a blank document.

ActiveDocument.Sentences(1) = strText

64

Chapter 4 Programming Fundamentals

The following shows the completed code.

Completed Code

Public Sub dateExample()
Dim dtmBirth As Date
Dim strText As String
dtmBirth = #10/1/1970#
sttText = "Your birth date is " & dtmBirth & "I"
ActiveDocument.Sentences(1) = strText

End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.

3) Insertanew procedure (macro) and name it dateExample.

4) Type in the above code (Figure 4.22).

5) Make sure the document is blank.

6) Run your macro and see the display of the text (Your birth date is 10/1/1970!) (Figure 4.23).

Figure 4.22 dateExample macro

“: Lesson 4 - Module1 (Code) |
](General) j IstrExample LI

Option Explicitc

Public Sub dateExample ()
Dim dtmBirth Ais Date
Dim strText As String
drwBirth = #10/1/1970#

strText = "Your hirth date is " & dtmBirth & "!"
AdetivelDocument.3entences (1) = strText
End Sub
=
== | 2l

65

Figure 4.23 Result of dateExample macro

Tourbirth date 15 10,/1,/1970!

Conditional Statement

You use conditional statements to control the flow of your program’s execution. Visual Basic provides the
If... Then...Else conditional statement to do that. There are two kinds of If... Then...Else statements:

If...Then...Else statement (sing-line form)

If...Then...Else statement (block form)

If... Then...Else Statement (Single-Line Form)

The If...Then...Else single-line form of statement is used to execute one or more lines of code if certain
condition is true. Figure 4.24 shows the syntax of the If... Then...Else statement. In syntax, items inside square

brackets [| are optional, so in this syntax | Else statements | are optional. Statements can be one or more lines of
statements separated by colons.

Figure 4.24

If condition Then statements | Else statements |

If... Then...Else Example 1

This example is similar to an earlier one in this chapter except you implement the same logic using the If...Then

statement in one line of code. You test to see if the font size of the first word is less than 14. If it is then you set
the first word to bold.

66

Chapter 4 Programming Fundamentals

The following shows the completed code.

Completed Code

Public Sub ifThen()
If (ActiveDocument.Words(1).Font.Size < 14) Then _
ActiveDocument.Words(1).Bold = True
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
) Insert a new procedure (macro) and name it ifThen.

4) Type in the above code (Figure 4.25).

5) If the document is blank, type in a sentence as that in Figure 4.26. If your document is not blank, make
sure the font size of the first word is less than 14.

6) Run your macro and see the first word set to bold (Figure 4.20).

Figure 4.25 ifThen macro

. Lesson 4 - Module1 (Code)

{General) - Iiﬂ'hen - l

Option Expliecit —

Public Sub ifTheni)
If [ActiveDocument.Words(l).Font.3ize < 14) Then _
AeviveDocument.Words(l) .Bold = True
End 3Jub

o | 4

Figure 4.26 Result of ifThen macro before and after

I John sings a song, I John sings a song.

67

If...Then...Else (Block Form) Statement

The If...Then...Else block form of statement executes one or more lines of code if certain condition is true. If
the condition is false it executes another line or lines of code. Figure 4.27 shows the syntax of the

If... Then...Else block form of statement. Statements can be one of more lines of statements and they don’t
have to be separated by colons.

Figure 4.27

If condition Then

[statements |
[Else |

[statements |

End If

If... Then...Else Example 2

The following code tests if the font size of the first word is less than 14

If (ActiveDocument.Words(1).Font.Size < 14) Then

If the above is true the following code inserts [before the first word and append | after the first word.
ActiveDocument.Words(1) = "[" & ActiveDocument.Words(1) & "]"

The following code makes the second word (was the first word before the last statement was executed) bold.

ActiveDocument.Words(2).Bold = True

The following is the completed code.

Completed Code

Public Sub ifThenEnd()
If (ActiveDocument.Words(1).Font.Size < 14) Then
ActiveDocument.Words(1) = "[" _
& ActiveDocument.Words(1) & "] "
ActiveDocument.Words(2).Bold = True
End If
End Sub

68

Chapter 4 Programming Fundamentals

To try this example follows these steps.

Steps
1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.

3) Insert a new procedure (macro) and name it ifThenEnd.
4) Type in the above code (Figure 4.28).

5) If the document is blank, type in a sentence as that in Figure 4.29. If your document is not blank, make
sure the font size of the first word is less than 14.

6) Run your macro and see the first word set to bold with the insertion of [and | before and after the
word (Figure 4.29).

Figure 4.28 ifI'henEnd macro

*: Lesson 4 - Module1 (Code) CEX

(General) - Ii‘tThenEnd -

-
Public Sub ifThenEnd() j
If (hctiveDocument.Words(l).Font.Size < 14) Then
ActiveDocuwent.Words(l) = "[" _
& hetiveDocurent.Wordsi(l) & "] 0™
ActiveDocument . Mords(2) .Bold = True

End If
End Sub
=
==L | v
—

Figure 4.29 Result of ifThenEnd macro before and after

John smiles at Mary. [John] smmiles at Mary.

If...Then...Else Example 3

The following code tests if the font size of the first word is less than 16.
If (ActiveDocument.Words(1).Font.Size < 16) Then
If it is the following code sets the font size of the first word to 16.

ActiveDocument.Words(1).Font.Size = 16

69

If not the following code increases the original font size of the first word by 4.

ActiveDocument.Words(1).Font.Size = ActiveDocument.Words(1).Font.Size + 4

The following is the completed code.

Completed Code

Public Sub ifThenElse()
If (ActiveDocument.Words(1).Font.Size < 16) Then
ActiveDocument.Words(1).Font.Size = 16
Else
ActiveDocument.Words(1).Font.Size = _
ActiveDocument.Words(1).Font.Size + 4
End If
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and name it ifThenElse.
4) Type in the above code (Figure 4.30).

5) If the document is blank, type in a sentence as that in Figure 4.31. If your document is not blank, make
sure the font size of the first word is less than 14.

6) Run your macro and you will see the font size of the first word changed to 16 (Figure 4.31)

7) Run the macro again and you will see the font size changed to 20 (16 + 4) (Figure 4.32).

Figure 4.30 ifThenElse macro

“Lesson 4 - Module1 {Code)

I(General) j Iiﬂ'henEn(I j

COption Explicit

Public 3ub ifThenElse |
If (ActiveDocuwent.Words(l).Font.3ize < 16) Then
AoetiveDocuwment . Words (1) .Font.3ize = 16
Else
AotiveDocument.Words (1) .Font.3ize = _
AeviveDocument.Words (1) .Fonc.Size + 4
End If
End Zub

I=I= |

—_——

N

70

Chapter 4 Programming Fundamentals

Figure 4.31 Result of if T henElse macro before and after

John smiles at hary. John striles at Maqu

Figure 4.32 Result of ifThenElse macro run again

JOll'[l srmtles at Mar.yl

This concludes Chapter 4.

71

Chapter 5 Programming Loop & Other

5 Programming Loop & Other

Why Use Loop?

Loop in Visual Basic provides a mean to perform the same task or operation repetitively. You will learn to use
loop in your code in this chapter.

For...Next Statement

Figure 5.3 shows the syntax of the For...Next statement. The For...Next loop repeats one or more statements a
specified number of times until an exit condition occurs. The exit condition occurs when (counter > end) or
when the (Exit For) statement is encountered, whichever comes first. Recall that in syntax, items inside the
square brackets [| are optional. Statements are optional and can be one or more lines of statements.

Figure 5.1 Syntax of For...Next statement

For counter = start To end [Step increment |
[statements |
[Exit For |
[statements |

Next [counter |

The following code repeat a statement 5 times with intlndex = 1, 2, 3, 4, 5. It sets the font size of the 15t word,
20d word, 3 word, 4t word and 5% word to size 12 (=10 + 1 *2), 14 (=10 + 2* 2),16 (= 10 + 3 *2), 18 (= 10
+4*2)and 20 (= 10 + 5 * 2) respectively. In this loop the exit condition is (intlndex > 5).
For intlndex =1 To 5

doc.Words(intIndex).Font.Size = 10 + intIndex * 2

Next

In the following example an additional exit condition is imposed by the (Exit For) statement.
For intlndex = 1 To ActiveDocument.Words.Count
ActiveDocument.Words(intlndex).Font.Size = 10 + intIndex * 2

If (ActiveDocument.Words(intIndex).Font.Size > 20) Then Exit For

73

Next

In the above loop the exit condition is

intIndex > ActiveDocument.Words.Count

or

ActiveDocument.Words(intIndex). Font.Size > 20

whichever condition comes fitst.

For...Next Loop Example

The following example uses the For...Next loop to set the font size of the first 5 words of the document
incrementally to 12, 14, 16, 18 and 20 respectively.

The following code declares blnFlag as a variable of the Boolean data type.
Dim blnFlag as Boolean

The following code tests to see if the font size of the first word is less than 14. If it is, blnFlag = True. If it is not,
blnFlag = False.

blnFlag = (ActiveDocument.Words(1).Font.Size < 14)
The following code sets the first word to bold if the font size of the first word is less than 14.

ActiveDocument.Words(1).Bold = blnFlag

The following shows the completed code.

Completed Code

Public Sub forNext()
Dim intIndex, intCount As Integer
intCount = ActiveDocument.Words.Count
For intIlndex = 1 To (intCount - 1)
ActiveDocument.Words(intlndex).Font.Size = 10 + intIndex * 2
Next
End Sub

74

To try this example follows these steps.

Steps

D
2)
3)
4
5)

Chapter 5 Programming Loop & Other

Start a blank document and start Visual Basic Editor.
Insert a new module and keep the default name as Modulel.

Insert a new procedure (macro) and name it forNextMacro.
Type in the above code (Figure 5.2).

Type a sentence as that in Figure 5.3. Run the macro and see the font size of the first 5 words of the
document set incrementally to 12, 14, 16, 18 and 20 respectively.
Figure 5.2 forNext macro

“; Lesson 5 - Module1 [Code)
(General)

Option Explicitc

Public 3ub forNext (]

| [forlext v]
Dim intIndex, intCount As Integer
intCount =
For intIndex

AetiveDocument . Words. Count
1 To iintCount - 1)

AetiveDocument . Words (intIndex) .Font.Size =
Hext

End Sub

-

10 + intIndex * 2

Figure 5.3 Result of forNext macro before and after

John smiles at Maqu

John smiles at Mary

For Each...Next Statement

Figure 5.4 shows the syntax of the For Each...Next statement. The For Each...Next loop repeats one or more
statements for each element in a group (collection) of objects. The loop exits when all the members of the
collection object are exhausted or when the (Exit For) statement is encountered, whichever comes first.
Statements are optional and can be one or more lines of statements.

75

Figure 5.4

For Each element In group
[statements |
[Exit For |
[statements |

Next [element |

The following example iterates through every paragraph in the active document, and underlines the second
character of each paragraph if the first character is the letter T. The loop exits when there are no more
paragraphs to process.
Dim para As Paragraph
For Each para In ActiveDocument.Paragraphs

If para.Range.Characters(1) = "T" Then

para.Range.Characters(2).Font.Underline = True

End If
Next
In the following example an additional exit condition is imposed by the (Exit For) statement. The loop iterates
through every paragraph in the active document to search for the text Tom as the first word of the paragraph. If
the search is successful, that is, if the text Tom is found as the first word of any paragraph the loop exits. If the

search is unsuccessful, the loop exits after searching for every paragraph of the document. The Visual Basic
function (Trim) is used to trim off any leading or trailing spaces of the words being searched for.

Dim para As Paragraph
Dim blnFound
blnFound = False
For Each para In ActiveDocument.Paragraphs
If (Trim(para.Range.Words(1)) = "Tom") Then
blnFound = True
Exit For
End If

Next

76

Chapter 5 Programming Loop & Other

For...Each...Next Loop Example 1

This example undetlines the 2nd character of every paragraph of the document if the 1st character of the
paragraph is T. It does this by looping through each paragraph in the document. If the 15t character of the
paragraph is T the 20 character of the same paragraph is underlined.

The following shows the completed code.

Completed Code

Public Sub forEachLoop()
Dim para As Paragraph
For Each para In ActiveDocument.Paragraphs
If para.Range.Characters(1) = "T" Then
para.Range.Characters(2).Font.Underline = True
End If
Next
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and name it forEachLoop.
4) Type in the above completed code (Figure 5.5).

5) Type some sentence in your document like that in Figure 5.6. Run the macro and you will see the 2nd
character underlined for every paragraph of the document if the 15t character of the paragraph is T
(Figure 5.6).

Figure 5.5 forEachloop macro

“: Lesson 5 - Moduleq (Code)]
J(General) _:J |(Declaralions) LI

Option Explicit

Public Zub forEachLoopi()
Dim para As Paragraph
For Each para In ActiveDocument.Paragraphs
If para.Range.Characters(l) = "T" Then
para.Range.Characters(2) .Font.Underline = True
End If
Hext
End Sub

77

Figure 5.6 Result of forEachloop macro before and after

Tom gave Mz.ry a gift. Tom gave Mary a gft.
Yesterday is Tuesday. Yesterday is Tuesday
Tomaorrow is Thursday.l Totnotrow is Thursday_l

For...Each...Next Loop Example 2

The following example sets the font size of each character in the document to 30 if the character is either o or a.
You do this by using two loops. The first loop loops through each paragraph in the document. Within the first
loop (that is, within each paragraph) it loops through every character and set its font size to 30 if the character is
either a or o.

The following shows the completed code.

Completed Code

Public Sub forEachLoop2()
Dim para As Paragraph
Dim intCount As Integer
For Each para In ActiveDocument.Paragraphs
For intCount = 1 To para.Range.Characters.Count
If (para.Range.Characters(intCount) = "o") _
Or (para.Range.Characters(intCount) = "a") Then
para.Range.Characters(intCount).Font.Size = 30
End If
Next
Next
End Sub

78

Chapter 5 Programming Loop & Other

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.

3) Inserta new procedure (macro) and name it forEachLoop?2.

4) Type in the above completed code (Figure 5.7).

5) If the document is blank, type in a sentence as that in Figure 5.8.

6) Run the macro and you will see the font size of every character which is either a or o, set to 30 (Figure

5.8).

Figure 5.7 forEachloop2 macro

“; Lesson 5 - Module1 {Code)

{General) - ifurEﬁchLuop -

Option Explicit

Public 3ub forEachLoop? ()
Dim para As Paragraph
Dimw intCount As Integer
For Each para In ActiveDocument.Paragraphs

For intCount = 1 To para.Range.Characters.Count
If (para.Range,.Characters(intCount) = "o") _
Or (para.Range.Characters(intCount) = "a") Then
para.Range . Characters (intCount) .Font.Size = 30
End If
Hext
Next
End Sub

I;[
e

Figure 5.8 Result of forEachloop2 macro before and after

Tom gave Mary a gift.
Y esterday is Tuesday.
Tormosrow is Thursday.

TOm gﬂve Maty a aft.

Yesterd a‘)r is Tuesd ay.

TOmO O is 'I'hu:sdayl

79

Do...Loop Statement

Figure 5.9 shows the syntax of the Do...Loop statement. The Do...Loop statement repeats a block of
statements while a condition (While condition) is true or when the (Exit Do) statement is encountered. If both
the (While condition) clause and the (Exit Do) statement are omitted in the Do...Loop statement the iteration
continues indefinitely. Statements are optional and can be one or more lines of statements.

Figure 5.9

Do [While condition |
[statements |
[Exit Do |

[statements |

Loop

The following example uses the Do...Loop to calculate the sum of 1 + 2 + ... + 100 = 5050. The loop exits
when intCount > 100, which occurs when the condition (While intCount <= 100) is violated.

Dim intCount, intSum As Integer

intCount = 1

intSum = 0

Do While intCount <= 100
intSum = intSum + intCount
intCount = intCount + 1

Loop

The following example uses another variation of the Do...Loop to calculate the same sum of 1 +2 + ... + 100
= 5050. The loop exits when intCount > 100, which occurs when the (Exit Do) statement is executed.

Dim intCount, intSum As Integer
intCount = 1
intSum = 0
Do
intSum = intSum + intCount
intCount = intCount + 1
If (intCount > 100) Then Exit Do

Loop

80

Chapter 5 Programming Loop & Other

Use of the Do...Loop Statement

Why we have so many loops structure?

The Do...Loop statement is extremely versatile of which the For...Next statement is a special case. That is,
every Por...Next loop can be implemented using the Do...Loop loop but not vice versa. The For...Next loop
takes less code and is simple to implement. You use the For...Next loop to solve most of the iteration problem
you encounter in programming and save the situation to use the Do...Loop loop when the logic is more
complicated in the iteration, or when it is next to impossible to do the iteration using the other method.

An example is when you write an event handler to perform some operation when an event occurs. In this

situation you use the Do...Loop to repetitively check to see if certain event has occurred. If the event has
occurred then certain operations get performed.

With Statement

The With statement allows you to write a series of statements on an object without specifying the name of the
object in each of the statement. Figure 5.10 shows the syntax of the With statement. Statements are optional and
can be one of more lines of statements that use the properties and methods of the object.

Figure 5.10

With object
[statements |
End With

The following code sets the InsideLineStyle, InsideLineWidth, OutsideLineStyle and OutsideLineWidth
properties of the Borders object, table2.Borders.

Dim table2 as Table
table2.Borders.InsideLineStyle = wdLineStyleSingle
table2.Borders.InsideLineWidth = wdLineWidth100pt
table2.Borders.OutsideLineStyle = wdLineStyleSingle
table2.Borders.OutsideLineWidth = wdLineWidth100pt
The following is equivalent to the above code using the With statement.
Dim table2 as Table
With table2.Borders

InsideLineStyle = wdLineStyleSingle

InsideLineWidth = wdLineWidth100pt

81

.OutsideLineStyle = wdLineStyleSingle

.OutsideLineWidth = wdLineWidth100pt

End With

Function Procedure

There are four types of procedure in Visual Basic, Sub procedure, function procedure, property procedure and
event procedure and you’ve seen examples of Sub procedure and event procedure. A function procedure is
similar to a Sub procedure, but unlike a Sub procedure which returns nothing, a function procedure returns a
value or an object. A function procedure may take arguments that are passed to it by a calling procedure. A
calling procedure can be any of the four types of procedure, Sub, function, property or event procedures. A
function returns a value or an object by assigning a value or an object to its name in one or more statements of
the function procedure.

The following example shows max, a function procedure that takes two arguments (numbers) num1 and num2
and returns the greater of the two numbers to main, the calling procedure which is a Sub procedure.

Completed Code

Public Sub main()
MsgBox max(3, 5)
End Sub

Public Function max(num1, num?2)

If num1 >= num?2 Then max = num1 Else max = num2

End Function

To try this example follows these steps.

Steps

1)
2)
3)
4
5)
0)

Start the Visual Basic Editor.

Use the same module as the one in the previous example.

Insert a new procedure (macro) and name it main

Insert a new function and name it max.

Type in the above completed code (Figure 5.11).

Run the macro and you will see the dialog box displaying the number 5 (greater of 3 and 5) (Figure 5.12).

82

Figure 5.11 Function procedure example

% Lesson 5 - Module1 [Code)
{General)

Option Explicit

LJ |main
Public 3ub main()

M=gEBox max (3,
End Zub

El
sl

Chapter 5 Programming Loop & Other

End Function

Public Function max (nuaml, nwumz)

If nuwol >= numZ Then wax = nuwl Else max = numl

What is an Array?

element of the array by the subscripts 0, 1, 2, and so on.

An Array is a collection of data using the same variable name and of the same data type. You refer to each

The following code declares intArray as an array of the Integer data type with 15 elements.
 Declare an array of integers with 15 items
Dim intArray(15) As Integer

the array.

myArray(0)

Visual Basic uses subscripts starting from 0, so intArray(0) refers to the 15t item of the array, intArray(1) refers to
Figure 5.13

myArray(1)

45 |

the 20d item, and intArrary(14) refers to the 15% item, the last item of the array. Figure 5.13 shows the layout of

myArray(2)
25 | 76

myArray(14)

83

The following code declares strState as an array of the String data type with 51 items to store the names of the 51
states.

¢ Declare an array of strings with 51 items
Dim strState(51) As String

Figure 5.14 shows the layout of the array.

Figure 5.14

strState(0) strState(l) strState(2) strState(50)

California | Florida ‘ Minnesota ‘ e

Note

All items in an array must be of the same data type.

Table Programming with Array Example

T2

This example parses (examines) a paragraph of words separated by the delimiters “,” or “.”, and converts the

5

words in the paragraph into a table with one word per row without the delimiters “,” or “.”.
The following code declares objTable as an object variable of the Table class.
Dim objTable As Table

The following code declares intIndex and intIndex2 as variables of the Integer data type. You will use them in a
loop later in the program.

Dim intIndex, intIndex2 As Integer

The following code adds a new paragraph mark in the document.

ActiveDocument.Paragraphs.Add

The following code selects the new paragraph mark added by the above code.
ActiveDocument.Paragraphs.Last.Range.Select

The above code is to position your selection in the last paragraph mark at which position to create a new table.
You’ve added this last paragraph mark which contains nothing yet (an empty paragraph). So when you are adding
a new table later you are adding the new table at the end of the document. All these positioning and maneuvering

are to make sure the new table you are going to create does not overwrite or replace any existing paragraph in
your document.

84

Chapter 5 Programming Loop & Other

Note

The Select method is a method of the Range class. It is a sub procedure method; therefore it does not return any
value or another object. What does it do? It selects the parent object which invokes the Select method. From
here on any Selection object or object variable of the Selection class refers to this particular object. That is, any
subsequent use of a Selection object or object variable of the Selection class is the same as using this particular
object.

The following code creates a new table of 12 rows and 1 column and assigns to objTable (an object variable of
the Table class which you’ve declared earlier) the reference to the new table just created. You create the table by
using the Add method (a function method) of the Tables class. From hereon objTable represents the table you've
just created.

Set objTable = ActiveDocument.Tables.Add _
(Range:=Selection.Range, NumRows:=12, NumColumns:=1)

The Add method is a function method that takes some required parameters and some optional parameters. The
Range parameter is required and must be a reference to an object of the Range class. You use the Range
parameter to tell the Add method where to put the new table. Recall you’ve used the Select method to select the
last paragraph mark of the document, as a result Selection.Range refers to the last paragraph mark (which
contains a empty paragraph) of the document and the new table will be created there.

The NumRows and NumColumns parameters tell the Add method the numbers of row and column of the table
to be created. In this case you are creating a table of 12 rows and 1 column. The Range, NumRows and
NumColumns parameters are required parameters. That means you must supply them when you use the Add
method of the Tables class.

The following code sets the ColumnWidth, RulerStyle, InsideLineStyle, .InsideLineWidth, OutsideLineStyle,
OutsideLineWidth properties of the table. You use the With statement to save some typing of the name of the
objects of which you are using the methods or properties. Again you use the combination of the Select method
and the Selection object to do this. See the earlier discussion on using the Select method and Selection object on
doing similar task.
With objTable
Select
With Selection
'Set column width to 1 inch
.Columns.SetWidth _
ColumnWidth:=InchesToPoints(1#), _
RulerStyle:=wdAdjustNone
With .Borders
UInsideLineStyle = wdLineStyleSingle
InsideLineWidth = wdLineWidth100pt
.OutsideLineStyle = wdLineStyleSingle

.OutsideLineWidth = wdLineWidth100pt

85

End With
End With
End With

The following code uses the For...Next loop to parse (examine) the first paragraph of the document and put the

(1324 (1324

words of the paragraph into a table with one word per row, discarding the delimiters “,” or
intIndex2 =1
For intlndex = 1 To (ActiveDocument.Paragraphs(1).Range.Words.Count - 1)
If (Trim(ActiveDocument.Paragraphs(1). Range.Words(intlndex)) <> "") And _
(Trim(ActiveDocument.Paragraphs(1).Range. Words(intlndex)) <> ".") Then
objTable.Cell(intlndex2, 1).Range. Text = _
ActiveDocument.Paragraphs(1).Range.Words(intIndex)
intIndex2 = intIndex2 + 1
End If
Next

You use two counters, intlndex and intIndex2 in this loop. The counter intIndex is used to loop through every
word in the first paragraph. You use counter intlndex2 to keep track of the words you put into the table. You

[T 2] T2l

have to use a different counter for this purpose because there are delimiters “,” or “.”” (each considered as one
word) that you don’t want to put into the table. The following expression gives the total number of words in the
first paragraph.

ActiveDocument.Paragraphs(1).Range.Words.Count - 1

You subtract 1 from the Count property to get the number of words in the paragraph because paragraph mark is
counted as one word in a Words collection object.

You use the following expression to refer to the intIndex ™ (intlndex = 1, 2,) word in the 15t paragraph.
ActiveDocument.Paragraphs(1).Range. Words(intIndex)

That is, the following expressions refer to the 15 word, 204 word,..... of the 15t paragraph.
ActiveDocument.Paragraphs(1).Range.Words(1)

ActiveDocument.Paragraphs(1).Range.Words(2)

You use the 15 of the following two expressions as they are equivalent:
ActiveDocument.Paragraphs(1).Range. Words(intIndex)

ActiveDocument.Paragraphs.Item(1).Range. Words.Item(intIndex). Text

86

Chapter 5 Programming Loop & Other

The expression
ActiveDocument.Paragraphs(1).Range. Words(intlndex)

represents the intIndex ® (intIlndex = 1, 2,) word of the 15 paragraph. Such a word is either a string of
alphabetized or numeric characters with no blank in between, or delimiters such as «,”, ., “&”, “(“. ©)”, “+7,

>
(132

....... and so on. For example the paragraph “He runs.” has 4 words, He, runs, “.” and the paragraph mark. The
paragraph (3+4 gives 7.) has 7 words, 3, +, 4, gives, 7, “.” and the paragraph mark.

Note

Each item or member in the Words collection object is a Range object that represents one word. Each word
(item) can be a string of alphabetized or numeric characters with no space within the string, or punctuations or
other delimiters such as “&”, “+7, Paragraph mark is considered a word (member) of the Words collection
object. The item (word) in the Words collection object includes both the word and the space or spaces after the
word.

As you loop through each and every word of the paragraph you use the following expression to test each word of

[T

the first paragraph to see if it is not ““,” and not “.”’. You use the Visual Basic function Trim to trim off any
leading blank or trailing blank of the word you use for the test because each item (word) in the Words collection
object includes both the word and the space or spaces after the word.

If (Trim(ActiveDocument.Paragraphs(1).Range.Words(intlndex)) <> "") And _
(Trim(ActiveDocument.Paragraphs(1).Range. Words(intlndex)) <> ".") Then
If the word is not “,” and not “.” you put the word into the table by the following code.
objTable.Cell(intlndex2, 1).Range. Text = _
ActiveDocument.Paragraphs(1).Range.Words(intIndex)
After this you increment the counter intIndex2 by 1 with the following code and go on to process the next word
in the paragraph until there are no more words to process in the paragraph. The counter intIndex2 is used to

keep track of the number of entries you've added to the table (excluding “,” and “.”).

intIndex2 = intIndex2 + 1

The following shows the completed code.

Completed Code

Public Sub tableExample()
Dim objTable As Table
Dim intIndex, intIndex2 As Integer
ActiveDocument.Paragraphs.Add
ActiveDocument.Paragraphs.Last.Range.Select
Set objTable = ActiveDocument.Tables.Add _

(Range:=Selection.Range, NumRows:=12, NumColumns:=1)

With objTable

87

Select
With Selection
'Set column width to 1 inch
.Columns.SetWidth _
ColumnWidth:=InchesToPoints(1#), _
RulerStyle:=wdAdjustNone
With .Borders
InsideLineStyle = wdLineStyleSingle
InsideLineWidth = wdLineWidth100pt
.OutsideLineStyle = wdLineStyleSingle
.OutsideLineWidth = wdLineWidth100pt
End With
End With
End With
intIndex2 =1
For intlndex = 1 To (ActiveDocument.Paragraphs(1).Range.Words.Count - 1)
If (Trim(ActiveDocument.Paragraphs(1).Range.Words(intIndex)) <> ",") And _
(Trim(ActiveDocument.Paragraphs(1).Range. Words(intIndex)) <> ".") Then
objTable.Cell(intlndex2, 1).Range. Text = _
ActiveDocument.Paragraphs(1).Range.Words(intIndex)
intIndex2 = intIndex2 + 1
End If
Next
End Sub

To try this example follows these steps.

Steps

1) Start the Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and name it tableExample.
4) Type in the above completed code (Figure 5.15).

5) If the document is blank, type in some sentences as that in Figure 5.16.

6) Run the macro and you will see the words of the first paragraph put into a table with one word per row,

13024 13024

without the delimiters “” or

88

Chapter 5 Programming Loop & Other

Figure 5.15 tableExample macro

“Lesson 5 - Module1 (Code)

(General) vl Ital)leExamnIe vI

Option Explicit

Public Sub tableExample()
Dim obiTable As Table
Dim intIndex, intIndexi As Integer
AetiveDocument . Paragraphs . Add
AeciveDocument . Paragraphs.Last. Range . Select
Set objTable = ActiveDocument.Tables.Aidd _
{Range:=3%election.Range, NwrRows:=12, NumColumns:=1)
With ohjTable
.Helect
With Selection
'Set coluwn width to 1 inch
.Columns.SetWidth _
Columniidth: =InchesToPoints (1),
Eulerityle:=wdidjustNone
With .Borders
.Insideline3tyle = wdlLineStyleSingle
.InzidelineWidth = wdLineWidthl00pt
.CutsidelineStyle = wdlLineStyleSingle
.OutzidelineWidth = wdlLineWidthi0Opt

End With
End With
End With
intIndexz = 1
For intIndex = 1 To (ActiveDocument.Paragraphs(l).Range.Words.Count - 1)
If (Trim{ictiveDocument.Paragraphs (1) .Range.lUords{intIndex)) <> ", "} And _
{Trim({ictivebocument . Paragraphs (1) .Range.Words (intIndex)) <> ".") Then

ohjTakle.Cell (intIndexZ, 1] .Range.Text =
AetiveDocument . Paragraphs (1) . Range . Words (int Index)
intIndexz = intIndexZ + 1
End If
Hext
End Sub

Figure 5.16 Result of tableExample macro before and after

He tums left. He tums nght, and nns. He tusns left. He turns right, and runs.

‘This is the second paragraph. This is the second paragraph.

He
turng
left
He
s
tight
and

pukial)

89

Debugging
Debugging and Error Handling

No matter how carefully you code errors can occur. The error can be in your code or the error can occur in the
external environment. For example an external error occurs when your program reads a file that has been deleted
by someone else. For handling external errors you write your code to anticipate them. Before you read a file your
code should check to see if it exists. If the file doesn’t exist your code should provide handling of such situation.
Before your code performs the computation of dividing by a number you should check to make sure the number
(divisor) is not zero. Suppose your code instructs the user of your program to enter a zip code, your program
should check to see if the number being entered is a valid zip code. The key is prevention and anticipation of
error and provision in your code of handling the errors if it occurs. It is common sense, like preventive health
care and safe driving. I have an instructor of traffic school who tell his students that the key to driving safely is to
assume that everyone else is not (driving safely)! You get the idea.

The process of locating and fixing errors in your own code is debugging. Visual Basic provides an abundance of
debugging tools to help you do that. In fact more than you and I ever need. From the Visual Basic menu selects
Debug to see the debugging tools available (Figure 5.17), or select View / Toolbars / Debug to display the
Debug toolbar (Figure 5.18). You will go through several examples of using these tools in the following sections.

Figure 5.17 Visual Basic Debug menn

Format | Debug | Run Tools AddIns Window Help

Compils Project

= Step Into Fg

Shift+Fa

tep Cver

CrhShift+Fa

kep Out

Run Ta Cursor Chrl+Fa

Add watch. .,
Edit Watch...

Chrl+

| Quick Watch... Shift+Fg

Ul Toggle Breakpoint, F9
Clear All Breakpoints Chrl+Shift+Fa

Chrl+F2

vl Set Mext Statement

| Show Mext Statement

90

Chapter 5 Programming Loop & Other

Trace Execution of Your Program

Most debugging involves tracing the execution of portion of your program to locate the error. Let’s use the
previous table programming example to illustrate that. Make sure that Module1 (Code) window is visible and in-
focus (selected). (Modulel is the module that contains the tableExample macro). In the tableExample macro
(Sub procedure) places your cursor anywhere within the following statement (Figure 5.19).

intlndex2 =1

Figure 5.19 show the cursor displayed at the end of the statement but the cursor at any other position within the
statement is fine. From the Visual Basic editor menu select Debug / Run to Cursor (Figure 5.19).

Figure 5.19 Select Run to Cursor

b [Debug | Run Tools Addns Window

Step Into

Step Out Chrl4s

Compile Project

Help

v| |tableExampie

Type 3 que:

= Run To Cursor ChrlFs

Cir+Fa

Add Watch.,

Edit Watch fanmany
4| Quick Watch Shift+Fa
G Toemeaport Fo |

Clear AllBreskpoints Chil4Shift-+F3

With .Borders

Ina Uitk
Ena with

End With

intIndexz = 1|

End If
Next
End 3ub

is Integer

phs. Add

phe.Last.Range. Select
ocument . Tables. Add _

nge, NumRows:=12, NumColumms:=1)

hoto i inch
B

nehesToPoints (1§),

RulerStyle:=udidjustNone

.InsidelineStyle = vdlineStyleSingle
. InsidelineVidth = wdlineWidth10Opt

.OutsideLineftyle = wdlineStyleSingle
.OutsideLineWidth = wdlineWidthi0Opc

For intTndex = 1 To (ictiveDocument.Paragraphs (1) .Rangs.Words.Count - 1)
If (Trim{ActiveDocument.Paragraphs(l).Range.Uords{intIndex)) <>
(Trim(ActiveDocument . Paragraphs (1) .Range.Words (intIndex)) <>
ohjTable.Cell{intTndex2, 1) .Range.Text = _
AetiveDocument . Paragraphs (1) . Range . Words (int Index)

intIndexz = intlndexz + 1

", knd
*.7) Then

After you’ve selected Debug / Run to Cursor the program begins execution and then stops at the statement
where the cursor was at with a yellow arrow sign and the statement highlighted in yellow (Figure 5.20). The

program is suspended at this statement (before the statement is executed).

intIndex2 =1

To execute this statement and go on to the next statement select Debug / Step Into from the Visual Basic editor
menu or press F8 (Figure 5.20).

91

Figure 5.20 Program execution stops at cursor

Debug | Bun Toos addins window Help Type a question for h

Compile Project

5= Step[nto F8
| [tablcExample ~

(= step over Shift+Fe
| fun To Cursor Cul+Fs

—————————{2 s Integer

tdd Watch,.. e i

£k Wakch... Cylt pphe.last.Range.Seleet
. b ifisp [OTHRRE.Tables.hda

QuckWateh.. S Lnge, MurRows:=12, NumColwmms:=1)
U Toggle Breakpoint F3

Clear all Bredkpaints Cirkshit+F3
5 Set et Statement CulFs ph to 1 inch

n

$ show Next Statement. nchesToPoints (16], _

Rulerstyle:=udidjustNone
Vith .Borders
.InsidelineStyle = wdlineStyleSingle
.InsideLineWidth = wdlineWidth1OOpt

.OutsideLineStyle = wdli 1=
.OutsidelineVidth = wALineWidthioopt
End with
End Wich
End With
| intIndex2 = 1

For intIndex = 1 To {lctiveDocument.Paragraphs(1).Range.Words.Count - 1)
If (Trim(ictiveDocument.Paragraphs (1) .Range.Words(intIndex)) <> ",") And _
{Trim{Activebosument . Paragraphs (1) .Range.Words [intTndex)) <> ".") Then
cbiTable.Cell(intIndex2, 1).Range.Text = _
ActiveDocument . Paragraphs (1) . Range . Words (int Index)
intIndexz = intIndexz + 1
End If
Next -

L 2

After you’ve selected Debug / Step Into from the Visual Basic editor menu (ot press F8) the yellow atrow shifts
to the next statement (Figure 5.21).

For intIndex = 1 To (ActiveDocument.Paragraphs(1).Range.Words.Count - 1)

Now the program is suspended at this statement (before the statement is executed).

Figure 5.21 Step into

*; Lesson’_test - Module (Code)

(General) -] [tableExample -

.Insidelinestyle = vdlinestylesingle z‘
.InsideLineVidch = vdlineWidchl0Opt

.OutsidelineStyle = wdlineStyleSingle

.OutsidelineVidth = wdLineUidth10Opt

End With
End With
End With
intIndexz = 1
=) For intIndex = 1 To (ActiveDocwment.Paragraphs(1).Range.Uords.Count - 1)
If (Trim{ActiveDocument.Paragraphs(1).Range. Words (intIndex)) <> ", ") And _
(Trim(LetiveDocuwent . Paragraphs (1) .Range.Words (intIndex)) <> "."] Then

objTable.Cell{intIndex2, 1).Range.Text = _
ActiveDocument . Paragraphs (1) . Rangs. Dords {int Tndex)
intTndex? = intTndex2 + 1
End If
Next
End Sub |

Next press I8 two more times to have the program stop at the following statement (Figure 5.22).
objTable.Cell(intlndex2, 1).Range. Text = _
ActiveDocument.Paragraphs(1).Range. Words(intIndex)

Next select View / Immediate Window from the Visual Basic editor menu (Figure 5.22).

92

Chapter 5 Programming Loop & Other

Figure 5.22 Select Immmediate window

Addns Window telp

wiew | Insert Format Debug
5l Code F7

Run Took

Obiect Shift+F7

- Module1 (Code)

ShiftF2 ~] [tbleExample
| Culshice:
st e _InsidelineStyle = wilineStyleSingle E|
22| Object Bromser "2 InsideLineWidth - wdlinelidehioopt
.OutsideLineStyle = wilineStyleSingle
2 tomedate window _cisk+a . s =valainicane
] Locals Windor End With
k| Watch Window
@ Call Stacks., chrl+L
N nt.Paragraphs (1) .Range. fords. Count — 1)
R apho (1) - Range . Vords (ncindex] | < 7,7 knd _
| Properties window F4 hs (1) . Range.Vords (intIndex)] <> ".") Then
— ob3Teble.Call (intIndex2, 1).Range.Text = _
L S ActiveDocument . Paragraphs (1) . Range . Vords (int Index)
Tab Order intIndexz = intIndexz + 1
b Emd If
»
ord AFLL L
=0 | P

The Immediate window appears (Figure 5.23). In the Immediate window type the following expression (preceded
by ?) and press enter (Figure 5.23).

?ActiveDocument.Paragraphs(1).Range.Words(intIndex)

The Immediate window displays He (Figure 5.23). This tells you that the content of the above expression is He.
Put your cursor over intlndex in the following statement (the statement before the statement being stopped at)

and you will see the box display (Figure 5.23).

(Trim(ActiveDocument. Paragraphs(1).Range. Words(intlndex)) <> ".") Then

This confirms that the content as represented by

?ActiveDocument.Paragraphs(1).Range. Words(intIndex)

is

?ActiveDocument.Paragraphs(1).Range.Words(1)

In the Immediate window type the following expression (preceded by ?) and press enter (Figure 5.23).
?ActiveDocument.Paragraphs(1).Range. Words(2)

The Immediate window displays turns (Figure 5.23). This tells you that the content of the above expression is the
text turns.

Figure 5.23 tableExample macro

(Gene: ~| [tableExample -

.OutsidelineWidch = wdlineWidchi0Ope Z]
End With
End Uith
End With
intIndex2 = 1
For intIndex = 1 To {ActiveDocument.Paragraphs(l).Range.Vords.Count - 1}
If (Trim({ictiveDocument.Paragraphs(1).Range.Words{intIndex)) <> ", "} &nd _
{Trim{AictiveDocument . Paragraphs (1) . Range.Vords{intIndex)} <> "."} Then
ohjTable.Cell {intIndexZ, 1) .Range.Text = _
=) Aot ivebocument . PRragraphs (1) . Range, Yords (intIndex)
intIndexZ = intlIndex2 + L
End If
Hext - e
PR [mmediate ®
2letiveDocument . Paragraphs (1) . Range. Words {int Index)
He

?hctiveDocument . Paragraphs (1) . Range. Vords(2)
turns

93

To stop debugging and resume normal execution of your program selects Run / Run Sub/UserForm from the
Visual Basic editor menu (or press F5).

Step Into, Step Over and Step Out

Visual Basic debugging provides three types of stepping through your code, Step Into, Step Over and Step Out.
Step Into lets you step through your code one statement at a time. You’ve seen example of using Step Into. Step
Over lets you step over a statement which is calling another procedure such as a Sub procedure or a function
procedure. For example suppose your program is suspended at the following statement.

intNumber = solve_equation (sngArray)

In the above statement you are calling solve_equation, a function procedure. If you use Step Into you will step
into solve_equation and stops at the first executable statement of solve_equation. If you don’t want to step into
solve_equation you use Step Over which will execute the above statement and stop at the next statement
following the above statement, without stepping into solve_equation. If there are no function or Sub procedure
being called in the statement being stopped, using Step Into or Step Over gives the same result.

Step Out lets you step out of the current procedure where the statement being stopped at is located. For
example, suppose your macro (Sub procedure) uses a function and the program execution is being stopped at a
statement in the function. Using Step Out will resume and finish execution of the function and suspend the
program at the statement after the statement which calls (uses) the function. For another example suppose your
macro (Sub procedure) does not call (use) any other procedure (Sub or function) and you’re being stopped at a
statement in the macro. In this situation using the Step Out will resume and finish execution of the macro until it
ends.

This concludes Chapter 5.

94

Chapter 6 DataBase and Mail Merger Programming

Chapter 6 Database and Mail Merge

Programming

Database programming is a vast topic. It is not possible to give a comprehensive treatment of the topic in this
chapter, but you will learn some of the principle and technique of database programming by going through an
example. You will also go through an example of using mail merge programming.

Create Database

You are going to create an Access database for the database programming example in this chapter. To create an
Access database follow these steps.

Steps

1) Start Access.
2) From the Access menu select File / New.
3) Select Blank database... from the New File window on the right.

4) When the File New Database window appears, name the database as commission and save it in the
c:\data folder (Figure 6.1). If you don’t have the c:\data folder you have to create the folder first before

saving the database file.

Figure 6.1 Create Access database

Type a uestian for help

Edt Wiew Insert Tools Window Help

| vl e e
{ New File: v x

File New Database ¢ nmn
Saveim (& data v @ 3@ X i B - tooks- tew
121 Blark database,

r t db
E & customer.me 28] Blark data access page.

Project using existing data

My Recent
Documents 2 Project using new dats...

(1] From existing file.

Templates
Search online for:

F2) Templates on Office Oniine:
2L On my computer.

Flename: |commissior| ~| geate |
My Hetwork =
Plsces Save astypel | Microsoft Office Acress Databass (*.mdb) b Cancel
4

95

Create Table

You’ll next create a table and define some data fields for the table.

Steps

1
2)

3)

From the commission: Database window select /Create table in Design View (Figure 6.2).

The Tablel: Table window appears. Type in the 6 Field Names of FirstName, LastName, Address, City,
State and Amount. Use the default Data Type of Text for the first 5 data fields. For the Amount data
tield use the Currency data type (Figure 6.2).

Close the Tablel: Table window and the Microsoft Office Access window appears asking Do you want
to save changes to the design of table “Table1’? Select the Yes button (Figure 6.2).

Figure 6.2

Create table

El Microsoft Access

[open I8 Desion Thew | X | 20 T

Objects

Creats table in Design view

Tables

E] Create table by using wizard

Queriss
Forms
Reports
Pages

Marcros

BNt S

Modules

Create kable by entering data

Data Type
Text
Text
| Text
|Text
Text
| Currency

Groups

Field Properties

[Favories

General | Lookup |

Microsoft Office Access

" : D you want to save changes ko the design of table 'Tablel'?

Ere |0 o W e

Steps
1) The Save As window appears (Figure 6.3).
2) Type in tblCustomer as the name for the table and Click the OK button.
Figure 6.3 Table name
Save As
Table Mame:
thiCommission | :

96

Chapter 6 DataBase and Mail Merger Programming

Steps

1) The Microsoft Office Access window appears asking Do you want to create a primary key now? (Figure
0.4).

2) Select the No button.

Figure 6.4 No primary key

Microsoft Office Access

There is no primary key defined.

’ ’ : Although 5 primary key isn't required, it's highly recommended. A table must have & primary key Far yvou to define &
L relationship between this table and other tables in the database.
Do wou want o create a primary key now?

[Ves J [No] [Cance\]

Note

You cannot enter duplicate or null (empty) values in the data field that has been designated as a primary key field
in an Access table.

Put Data in Your Table

You’ll next put data into the table you’ve created.

Steps

1) From the commission: Database window, select tblCommission to display the tblCommission: Table
window (Figure 6.5).

2) Enter data for at least 5 employees (Figure 6.5).
3) Close the thlICommission: Table window.

4) Exit Access.

5) Your Access database and the table are now ready for use.

Figure 6.5 Put data in table

E Microsoft Access

P file Edk Wiew Insert Format Records Tools Window Help

LR AN™ Bl = WS AP =1 Y 23R G gl D6
d commission ; Database (Access 2000 file format) A=
oren Womsin Htion | X [£ %

Objects B Create table in Design view

B create table by using wizard
B Create table by entering data
O tblkcammission

Tables

Queries
Farms
Reports B tblCommission : Table

Pages . FirstMame | Lasthame Address City. Armnount
Larson 2002 1st 5t Los Angeles | CA §250.00
Srnith 12345 W Blvd | Torrance §0.00
Do Clark 102 5th Ave Mew York | | §32500
Miller 201 Main 5t Fresno §540.00
Carter 546 Star Rd St Paul §750.00

§0.00

Macros

UG E Wmo

Groups

Record: (4] < T [)] of s

97

Database Programming

DAO Object Library

In the following example youll use DAO objects to read the Access database you’ve created and display the data
in a table format in your Word document. DAO stands for Data Access Objects. You use DAO objects to read,

update, create and manipulate databases. Before you can use DAO objects you must establish a reference to the
DAO object library.

Follow these steps to establish a reference to DAO object library.

Steps

1) Start Visual Basic Editor.

2) On the Tools menu, select References (Figure 6.6).

Figure 6.6 Referencing DAO object library

<4 Microsoft ¥isual Basic - Lesson 6

i File Edit Wiew Insert Formab Debug Run Tools | AddIns Window Help

ﬂ References...

Additional Contrals...

Macros...

@ Normal

= @ Project {Lesson B)
=25 Microsoft Word Objects
ks @ ThisDocument
=125 Modules
g2 Modulet
Bl (73] References

Cptions...
Project Properties...

| Digital Signature...

Steps

1) The Reference — Project window appears (Figure 6.7).

2) In the Available References box, scroll down to Microsoft DAO 3.6 Object Library and select it (Figure
6.7).

3) Close the References — Project window.

4) You’ve established a reference to DAO object library.

98

Chapter 6 DataBase and Mail Merger Programming

Figure 6.7 DAO 3.6 object library

References - Project E|

fvailable References: O

|| Microsoft a0 2.503.5 Compatibility Library A~ Cancel
Microsoft DAC 3.0 Object Library

Erowse...

Micrasoft Data Adapter Library
Micrasoft Data Binding Collection
|| Microsoft Data Bound Grid Control 5.0 {SP3) suppart Priarity
|| Microsoft Data Bound List Controls 6.0 support file
Microsoft Data Environment 1.0 +
Microsoft Data Environment: Extensibility Objects 1.0
| Microsoft Data Environment: Instance 1.0
| Microsoft Data Formatting Object Library 6.0 (SP4)
Mirrnsnft MNaka Rennrk Mesioner wh. M

5 >

v ject Librarsy
| Microsoft Data Access Components Installed Yersion
+

Help

il

Microsaft DAC 3.6 Object Library

Location: C:iProgram Files\Common FilesiMicrosoft Shared\DaChdao3ec
Language: Standard

Help and Documentation on DAO Objects

After you establish a reference to DAO object library you can navigate DAO objects in the Object Browser the
same way you navigate other Visual Basic and Words objects. More help and extensive documentation on DAO
objects is available when you use the Object Browser of the Visual Basic Editor in an opened Access database.
Additionally Access Help provides extensive help and documentation on DAO objects.

Database Programming Example

This example reads the commission table of the Access database you've created and display the data in a table in
your Word document. The following discussion walks you through the code with explanation of the objects and
logic involved.

Database Object

The Database object is a member class of DAO object library. A Database object represents an open database.
You use Database object and its methods and properties to read, update and manipulate an open database. The
following code declares dbs as an object variable of the Database class.

Dim dbs As Database

99

OpenDatabase Method

The OpenDatabase method is a function method of the Workspace class. As a function method it returns a
reference to an object of the Database class. The Workspace class is a member class of DAO object library.
When you use the OpenDatabase method you may drop the Workspace term, so the following 2 expressions are
equivalent.

Workspace.OpenDatabase
OpenDatabase

The following code uses the OpenDatabase method to open the Access database, c:\data\commission.mdb and
assign to dbs the reference to the database. That is, the OpenDatabase method returns to dbs (an object variable)
an object that represents the Access database, c:\data\commission.mdb.

Set dbs = OpenDatabase("c:\data\commission.mdb")

From now on you can use the methods and properties of the Database object to manipulate the Access database,
c:\data\commission.mdb that is represented by dbs (a Database object). You will next use the OpenRecordset
method of the Database object to do that.

Workspace Object

The Workspace class has methods and properties to manage the session when your code interacts with a
database. You use the methods and properties of the Workspace class to improve performance, control security
and manage transactions of the database.

The following methods (they are all Sub procedure methods) of the Workspace class are always used together to
ensure the integrity of the transaction when your code is adding, deleting or updating records to a database that is
being used by more than one user.

1) BeignTrans

2) CommitTrans

3) Rollback

Recordset Object

The Recordset object is a member class of DAO object library. You use the methods and properties of the
Recordset object to manipulate your database at the records level and for each record at the data field’s level.
Think of each record of a database as a row of data and for each row of data you have the columns representing
the data fields. There are 5 types of Recordset object and you will use the dynaset-type in the following example.
A dynaset-type Recordset object is a dynamic set of records that you can use to read, add, change, or delete
records from an underlying database table or tables. A dynaset-type Recordset object can contain fields from one
or more tables in a database.

The following code declares rst as an object variable of the Recordset class.

100

Chapter 6 DataBase and Mail Merger Programming

Dim rst As Recordset

OpenRecordset Method

The OpenRecordset method is a function method of the Database object. As a function method it returns a
reference to an object (representing records of the database) of the Recordset class. The following code uses the
OpenRecordset method to assign to rst the reference to the object representing the records selected according to
the criteria specified in the SQL statement contained in strtSQL (a string variable). The records selected are those
records of employees with amount > 0 (commission greater than 0) and the records selected are sorted by the
last name.

sttSQL = "SELECT * FROM tblCommission " _
& "WHERE Amount > 0 ORDER BY LastName"
Set rst = dbs.OpenRecordset(sttSQL, dbOpenDynaset, dbReadOnly)

In this example the OpenRecordset method takes on 3 parameters, sttSQL, dbOpenDynaset and dbReadOnly.
The strSQL parameter specifies the selection criteria of the records, the dbOpenDynaset parameter specifies the
Recordset object be the dynaset-type and the dbReadOnly specifies this is a read-only operations of the records.

From now on rst is a Recordset object representing the records of the employee with amount > 0. You can use
the methods and properties of rst (a Recordset object) to manipulate the records (rows) and columns (data fields)
of the selected records.

What is SQL?

SQL stands for Structured Query Language. It was originally developed by IBM in the 1970s and has since
evolved into a platform independent query language to update and query information in databases. You use SQL
statements to update and query databases from Access, SQL Server, Oracle and others. SQL has rich syntax and
can perform any operation imaginable on databases. A complete description of the SQL language will fill a
complete book of considerable size. You can find help and documentation in Microsoft Jet SQL Reference in
Access Help.

In this example you use the SQL Select statement to select the records of the employees whose Amount are > 0.
By convention you capitalize SQL keyword such as Select, although you don’t have to. You use the SQL clause
“Select * From tblCommission” to select all the records from the tblCommission: table. The SQL clause “Where
Amount > 0” specifies that you only select the employees whose Amount are > 0. You use the SQL clause
“Otrder by LastName” to sort the selected records in ascending (default) order of the last name of the employee.

SELECT * FROM tblCommission WHERE Amount > 0 ORDER BY LastName

Get Number of Records

The following code uses the MoveLast method (a Sub procedure method) of the Recordset object to move to
the last record of the selected records. The statement (intCount = rst.RecordCount) gets the number of
employee records being selected using the RecordCount property (a long integer data type) of the Recordset
class. You are going to use this information to add a table with the same number of rows equal to the number of
employees selected. The table displays the information of each employee in each row. You use the MoveFirst

101

method (a Sub procedure method) of the Recordset object to move to the first record of the selected records to
get ready for processing of the records later in the program.

rst.MoveLast
intCount = rst.RecordCount

rst. MoveFirst

Selection Object

The following code clears the content of the document. You use the WholeStory method (a Sub procedure
method) of the Selection object to select the whole content of the document. You then use the Delete method (a
function method) to delete what you’ve just selected.

' Clear the content of the document
Selection.WholeStory
Selection.Delete

The above code needs further clarification. The Selection object you use in this example is a member class of
Word object library. A Selection object represents a selected area in the document, or the insertion point if
nothing in the document is selected. Only one Selection object can be active at any time. After the statement
(Selection.WholeStory) is executed the Selection object represents the whole content of the active document.
That is, the WholeStory method assigns to the Selection object a reference to the content of the document. From
now on when you use the Selection object you are referring to the whole content of the document. If the
document is empty the Selection object represents the insertion point at the beginning of the document. The
(Selection.Delete) statement deletes the object represented by the Selection object, which is the whole content of
the document.

The Delete method is a function method that returns an integer value, the number of units being deleted. You
can specify the number of units as the number of characters deleted or the number of words deleted. As you are
not specifying the number of units being deleted, the returned value will be 1 if there is content in the document
or 0 if there is no content in the document (empty document).

The following code is another way of doing the same thing.

ActiveDocument.Content.Select

Selection.Delete

Note

A Selection object represents a selected area in the document, or the insertion point if nothing in the document is
selected. Only one Selection object can be active at any given time.

102

Chapter 6 DataBase and Mail Merger Programming

Setup Table

The following code creates a new table at the beginning of the document. You create the table by using the Add
method (a function method) of the Tables class. The Add method is a function method that takes on some
required parameters and some optional parameters. The Range parameter (Range:=Selection.Range) is required
and must be a reference to an object of the Range class. You use the Range parameter to tell the Add method
where to put the new table. Recall you’ve deleted the content of the document and the Selection object refers to
the position at the beginning of the document, so the new table will be created there.

The NumRows and NumColumns parameters tell the Add method the numbers of row and column of the table
to be created. In this case you are creating a table of (intCount + 2) rows and 3 column. The Range, NumRows
and NumColumns parameters are required parameters. That means you must supply them when you use the Add
method of the Tables class. You’re creating the number of rows of the new table equal to the number of records
selected (intCount) plus 2, so you can display each employee data per row, plus another 2 rows for the heading
and the total amount.
" Add new table
Set tblTable = ActiveDocument. Tables.Add _
(Range:=Selection.Range, NumRows:=intCount + 2, NumColumns:=3)
With tblTable
Select
With Selection
'Set column width to 1.5 inch
.Columns.SetWidth _
ColumnWidth:=InchesToPoints(1.5), _
RulerStyle:=wdAdjustNone
With .Borders
UInsideLineStyle = wdLineStyleSingle
InsideLineWidth = wdLineWidth100pt
.OutsideLineStyle = wdLineStyleSingle
.OutsideLineWidth = wdLineWidth100pt
End With
End With

End With

103

The following code writes heading to the first row of the table.
' Put in heading for the table

tblTable.Cell(1, 1).Range. Text = "Name"

tblTable.Cell(1, 2).Range. Text = "Address"

tblTable.Cell(1, 3).Range. Text = "Amount"

tblTable. Rows(1).Range.Bold = True

Display Data from Database

The following code uses the Do...Loop to loop through each record of the employee to read the data and write
them into the table (1 record per row). Recall that you’ve used MoveFirst method of the Recordset object to
move to the first record, and as a result of that rst (object variable of the Recordset class) now refer to the first
row (record) of the selected records. As you loop through each record you use the MoveNext method (a Sub
procedure method) of the Recordset object to move to the next record. At the beginning of the loop you use the
EOF property of the Recordset object to test whether the current record position is after the last record, and if
this is so (that means you’ve read every record) the Do...Loop exits.

You use the expression rst.Fields("LastName").Value to read the last name contained in the LastName data field
in the current record. The Fields property of the Recordset object is a collection object but the
Fields(“LastName”) is an object of the Field class. You use the Value property of the Field class to refer to the
data (last name of the employee) of the current record.

' Loop through the records to pick up the data

"and put it in the table.

sngSum = 0
intIndex = 2
Do While Not st EOF

tbITable.Cell(intIndex, 1).Range. Text = _
rst.Fields("LastName").Value & ", " & _
rst.Fields("FirstName").Value
tbITable.Cell(intIndex, 2).Range. Text = _
rst.Fields("Address").Value & ", " & _
rst.Fields("City").Value & ", " & _
rst.Fields("State"). Value
tbITable.Cell(intIndex, 3).Range. Text = _

Format(rst.Fields("Amount"). Value, "$##,##0.00")

104

Chapter 6 DataBase and Mail Merger Programming

sngSum = sngSum + rst.Fields("Amount").Value
rst.MoveNext
intIndex = intIndex + 1

Loop

You use the expression tblTable.Cell(intIndex, 1).Range. Text to refer to the text content of the specified cell of
the table. The Cell method (a function method) of the Table object returns an object of the Cell class. The Range
property of the Cell class is an object of the Range class. You then use the Text property of the Range object to
refer to the text content of the cell.

Before the Do...Loop the integer variable, intIndex is set = 1 and the single precision number variable, sngSum
is set = 0. The variable intIndex keeps track of the number of records read and the corresponding row of the
table to which the data are written. The variable sngSum accumulate the amount of commission amount of the
employees and reports the total amount in the last row of the table.

Note

The Fields collection object of a Recordset object represents the Field objects in a row of data, or in a record. To
refer to a Field object in a collection object, use Fields("name"), which is an object of the Field class, where name
is a valid data field name.

The following code write the total amount of commission amount to the last row of the table and close the
object variables, rst and dbs.

tblTable.Cell(intIndex, 2).Range. Text = "Total = "
tblTable.Cell(intIndex, 3).Range.Text = Format(intSum, "$##,##0.00")
tblTable. Rows(intlndex).Range.Bold = True

rst.Close

dbs.Close

The following is the completed code.

Completed code
Public Sub dbExample()

"'This example read from an Access database and
"write the records to a table in the Word

' document.

Dim tblTable As Table, sttSQL As String

Dim intIndex, intCount As Integer

105

Dim sngSum As Single
Dim dbs As Database, rst As Recordset

' Open database.

Set dbs = OpenDatabase("c:\data\commission.mdb")

' Sort by last name.
sttSQL = "SELECT * FROM tblCommission " _
& "WHERE Amount > 0 ORDER BY LastName"
Set rst = dbs.OpenRecordset(strSQL, dbOpenDynaset, dbReadOnly)

' Get the number of records so that table can be set up
" with the same number of rows.

rst.Movel.ast

intCount = rst.RecordCount

rst.MoveFirst

' Clear the content of the document
Selection.WholeStory

Selection.Delete

" Add new table
Set tblTable = ActiveDocument. Tables.Add _
(Range:=Selection.Range, NumRows:=intCount + 2, NumColumns:=3)
With tbITable
Select
With Selection
'Set column width to 1.5 inch
.Columns.SetWidth _
ColumnWidth:=InchesToPoints(1.5), _
RulerStyle:=wdAdjustNone
With .Borders
InsideLineStyle = wdLineStyleSingle
InsideLineWidth = wdLineWidth100pt
.OutsideLineStyle = wdLineStyleSingle
.OutsideLineWidth = wdLineWidth100pt
End With
End With

106

Chapter 6 DataBase and Mail Merger Programming

End With

' Put in heading for the table
tblTable.Cell(1, 1).Range.Text = "Name"
tblTable.Cell(1, 2).Range. Text = "Address"
tblTable.Cell(1, 3).Range. Text = "Amount"
tblTable. Rows(1).Range.Bold = True

' Loop through the records to pick up the data

"and put it in the table.

sngSum = 0
intlndex = 2
Do While Not st EOF

tblTable.Cell(intIndex, 1).Range. Text = _
rst.Fields("LastName").Value & ", " & _
rst.Fields("FirstName").Value
tblTable.Cell(intIndex, 2).Range. Text = _
rst.Fields("Address").Value & ", " & _
rst.Fields("City").Value & ", " & _
rst.Fields("State"). Value
tblTable.Cell(intIndex, 3).Range. Text = _
Format(rst.Fields("Amount").Value, "$##,##0.00")
sngSum = sngSum + rst.Fields("Amount").Value
rst. MoveNext
intIlndex = intIndex + 1

Loop

tblTable.Cell(intIndex, 2).Range. Text = "Total = "
tblTable.Cell(intlndex, 3).Range. Text = Format(sngSum, "$## ##0.00")
tblTable. Rows(intlndex).Range.Bold = True

rst.Close
dbs.Close
End Sub

107

To try this example follows these steps.

1) Start a blank document and start Visual Basic Editor.

2) Insert a new module and keep the default name as Modulel.
Insert a new procedure (macro) and name it dbExample.
Type in the above completed code (Figure 6.8).

5) Run the macro and see the table displaying the employee information in your document (Figure 6.9).

Figure 6.8 dbExample macro

Lesson 6 - Module1 (Code)

(General) ~| |avExample -

Public Sub dbExarple ()

! This example read from an Avcess database and
! write the records to a table in the Word
' document.

Dim thlTable As Table, str3QL As String
Dim intTndex, intCount ks Integer

Dim sngSum ks Single

Dim dbs As Datsbase, rst ks Recordset

! Open database.
Set dbs = OpenDatabase ("c:'idata)commission.mde”)

' Sort by last name.
str3QL = "SELECT * FROM thlCommission " _
& "WHERE Amount > O ORDER BY LastName"
Set rst = dbs.OpenRecordset [str3QL, dbOpenDynaset, dbReadOnly)

! Get the muwber of records so that table can he set up
! with the same nuwber of rows.

rst.HMoveLast

intCount = rst.RecordCount

rst.MoveFirst

' Clear the content of the document
Selection, WholeStory

Selection.Delece

! hdd new tahle

4 |

Lesson 6 - Module1 (Code)
(General) +| [avExampie -

' Add new table
Set thlTable = AetiveDocument.Tables.hdd _
(Range:=Selection.Range, NurRous:=intCount + 2, NumColumns:=3)
With thlTable
.Select
With Selection
‘Set colwmn width to 1.5 inch
.Columns. SecWidth _
Columniideh:=InchesToFoints (1.5), _
Rulerstyle:=wdAdjustNone
With .Borders
.InsideLineStyle = wdlineStyleSingle
.InsidelLineWidth = wdlineWidth100pt
.OutsidelineStyle = wdlineStyleSingle
.outsidelineVidth = wdlineWidchiOOpe
End Wich
End With
End With

! Put in heading for the table

thlTable.Cell(l, 1).Range.Text = "Nawe"
thiTable.Cell(l, 2).Range.Text = Middress"
thiTable.Cell(l, 3).Range.Text = "Amount”

thlTable.Rows (1) .Range.Bold = True

' Loop through the records to pick up the data

108

Chapter 6 DataBase and Mail Merger Programming

‘: Lesson & - Module (Code) FEX
(General) ~| [anExample =
! Loop through the records to pick up the data zl

' and put it in the table.
sngSum = 0
intIndex = 2
Do While Not rst.ECF
thlTable.Cell (intIndex, 1).Range.Text = _
rst.Fields ("LastName”] .Value £ ", " £
rst.Fields ("FirstName") .Value
thlTable.Cell(intIndex, 2).Range.Text =
rst.Fields ("Address") .Value £ ",
rst.Fields("City") .Valus & ", "
rst.Fields("State”) .Valus
thlTable.Cell(intIndex, 3).Range.Text = _

Forwat (rst.Fields ("Awount™) .Value, "§##,##0.00")
sng¥um = sngSum + rst.Fields("imount") .Value
rst.Movelext
intIndex = intIndex + 1

Loop

thlTable.Cell(intIndex, Z).Range.Text = "Total = "
thlTahle.Cell(intIndex, 3).Renge.Text = Format(sngSum, "§##,##0.007)
thlTable.Rovs (intIndex) .Range.Bold = Trus

rst.Close
dbs.Close
End Sub

Figure 6.9 Result of dbExample macro

Name Address Amount

Catter, Tom 346 Star Rd, St Faul, $750.00

Clarls, Mary 102 5th Awe, Meur $325.00
Fody NY

Larson, John 2002 1st. 36 Los. 25000
Angeles, CA

Miller, Susan $540.00

$1,565.00

Mail Merge Programming

You use the Mail Merge feature of Word to perform a mail merge operation, or you can write a macro using the
MailMerge object to perform the same operation. The following example shows you how to code a simple mail
merge macro. One advantage of coding your own mail merge macro is that you have complete programming
control of the process. In this example you extract the same information as in the last example from the same
Access database you've set up earlier. Unlike the last example where the data are displayed in a table in the
document, this example generates a monthly commission check letter for each of the 4 employees who earn a
commission last month.

Basically your code builds text and merge fields (data fields) in a letter format to produce a master document.
Then you use the MailMerge object to perform the mail merge operation to generate the monthly commission
letters for the employees selected.

109

MailMerge Object

The following code uses the MailMerge property of the Document class (ActiveDocument is an object of the
Document class) to return an object of the MailMerge class. You then use the OpenDatabase method (a Sub
procedure method) of the MailMerge object to attach a data source to the document. The OpenDatabase
method takes on 2 parameters in this case. The parameter Name:= strPath specifies the data source as the Access
database, c:\data\commission.mdb you’ve created eatlier and used in the previous example. The parameter
SQLstatement:=strSQL passes a SQL statement which specifies that only employees whose commission amount
> 0 are to be selected, and the records selected are to be sorted in alphabetical order of the last name of the
employee.

strPath = "c:\data\commission.mdb"

strSQL = "SELECT * FROM [thlCommission] " _
& "WHERE Amount > 0 ORDER BY LastName"

With ActiveDocument.mailMerge

.OpenDataSource Name:= strPath, SQLstatement:=strSQL

Selection Object

The following code clears the content of the document and makes the Selection object represent the insertion
point at the beginning of the document. See the previous example on a discussion of the technique involved.

' Clear content of document
Selection.WholeStory
Selection.Delete

The following code uses methods and properties of the Selection object to build texts and add merge fields (data
tields) to the main document. You’ve already cleared the content of the document and the Selection object refers
to the beginning of the document. You build and format the text starting from a blank document, which is the
main document that remains the same in each letter. The merge fields which are name, address and commission
amount of each employee changes in each letter.

You use the code (Selection.Font.Bold = True) to turn the Bold property on and the code (Selection.Font.Bold
= False) to turn it off. In this case Bold is a property of the Font object, and Font is a property of the Selection
object.

You use the TypeText method (a sub procedure method) of the Selection object to add a line of text.

The macro calls the Sub procedure, add_Para to add 2 new blank paragraphs (2 new paragraph marks). The Sub
procedure, add_Para uses the TypeParagraph method (a Sub procedure method) of the Selection object in a
For...Next loop to do that.

The macro calls the function procedure, insert_Field to insert a data field (merge field) called FirstName to the
main document. After this code is executed the main document will show the data field as <<FirstName>>. If
you select it and right click to select the Toggle Field Codes option it will be shown as { MERGEFIELD
FirstName}. The insert_Field function uses the Selection.Fields.Add method to do this. Add is a2 method (a
function method) of the Fields object which is a property of the Selection object. The Add method (a function

110

Chapter 6 DataBase and Mail Merger Programming

method) returns an object of the Field class. The Add method takes on 3 parameters. The
Range:=Selection.Range parameter tells the Add method to insert the data field to the position the Selection
object is referring to. The Type:=wdFieldMergelield parameter specifies that this is a MergeField field code. The
Text:=strName parameter gives the data field name. Similatly you insert the data fields for the last name, address,
city, state and the amount data fields.

With Selection

Font.Bold = True

TypeText "Monthly Commission Check”"

add_Para 2

Font.Bold = False

insert Field "FirstName"

TypeText""
insert_Field "LastName"
TypeParagraph
insert_Field "Address"
TypeParagraph
insert_Field "City"
TypeText","
insert_Field "State"
add_Para 2
TypeText "Your monthly commission check amount is "
Font.Bold = True
insert_Field "Amount \# $## #H##.00"

End With

Public Sub insert_Field(strName As String)
Selection.Fields.Add Range:=Selection.Range, _
Type:=wdFieldMergeField, Text:=strName

End Sub

Public Sub add_Para(intIndex As Integer)

Dim int2 As Integer

111

For int2 = 1 To intIndex
Selection. TypeParagraph
Next

End Sub

Execute the Mail Merge

You’ve added text, merge fields (data fields) to setup the main document. Next you are ready to merge the data
from the Access database to the main document to create the monthly letters to the employee. The following
code uses the Destination property of the MailMerge object to specify that the result of the mail merge is to be
sent to a new document. The Execute method (a Sub procedure method) of the MailMerge object performs the
specified mail merge operation.

.Destination = wdSendT'oNewDocument

.Execute

After the above code is executed a new document will be created. The new document contains the 4 monthly
commission letters for the 4 employees.

The following is the completed code.

Completed code

Public Sub mailMerge()
Dim strPath, sttSQL As String
' Clear content of document
Selection.WholeStory

Selection.Delete

strPath = "c:\data\commission.mdb"
sttSQL = "SELECT * FROM |[tblCommission] " _
& "WHERE Amount > 0 ORDER BY LastName"
With ActiveDocument.mailMerge
.OpenDataSource Name:=strPath, SQLstatement:=strSQL
With Selection
.Font.Bold = True
TypeText "Monthly Commission Check"
add_Para 2
.Font.Bold = False
insert Field "FirstName"

nn

TypeText

112

Chapter 6 DataBase and Mail Merger Programming

insert Field "LastName"

TypeParagraph
insert_Field "Address"
TypeParagraph
insert_Field "City"
TypeText","
insert_Field "State"
add_Para 2
TypeText "Your monthly commission check amount is "
Font.Bold = True
insert_Field "Amount \# $## #H##.00"

End With

.Destination = wdSendToNewDocument

.Execute

End With
End Sub

Public Sub insert_Field(strtName As String)
Selection.Fields.Add Range:=Selection.Range, _
Type:=wdFieldMergeField, Text:=strName
End Sub

Public Sub add_Para(intIndex As Integer)
Dim int2 As Integer
For int2 = 1 To intIndex
Selection. TypeParagraph
Next
End Sub

To try this example follows these steps.

Steps

1) Start a blank document and start Visual Basic Editor.

2) Insert a new module and keep the default name as Modulel.

3) Inserta new procedure (macro) and name it mailExample.

4) Type in the above completed code (Figure 6.10).

5) Run the macro and see the generated master document (Figure 6.11).

6) See the 4 monthly commission letters generated (Figure 6.12).

113

Figure 6.10 mailExample macro

Lesson 6 - Module1 (Code)

{General ~| |mailExample -

Public Sub mailExample () :j
| Dim strPath, str3oQL As String

! Clear content of document

Selection.WholeStory

Selection.Delete

strPath = "c:'datae)commission.mdh™
str3QL = "SELECT * FROM [thlComwission] " _
& "VHERE Awount > O ORDER BY LastName"
Vith LetiveDocument.MailMerge
.OpenDatagource Mame:=strPach, SQLstatement:=str3CL
Uith Selection
.Font.Bold = True
.TypeText "Monthly Commission Check!
add Para 2
.Font.Bold = False
insert_Field "FirstHeme"
.TypeText " "
insert Field "LastName"
. TypeParagraph
insert_Field "Address"
. TypeParagraph
insert_Field "Cicy™
.TypeText ", "
insert Field "State”
add Para 2
.TypeText "Your monthly commission check amount is "
.Font.Bold = True
insert Field "Awount \# §HE ##8. 00"
End With
.Destination = wdSendToNewDocument
.Execute
End Uith
End Sub

L

[(General) =] [insent Fietd

«Execute
End With
End Sub

Public Sub insert Field(strName ALs String)
Selection.Fields. Add Range:=3election.Range,
Type dFieldMergeField, Text:=strlame

End Sub

Fublic Sub add Para(intIndex As Integer)
Dim int2 is Integer

For intZ = i To intIndex
Selection. TypeParagraph
Mext
End Sub &

Al

Figure 6.11 Master document after mail merge

Monthly Commuission Check

st armes Lasthlamen
whiddressy

«Cityy, tates

Y our monthly eommissian check amount is « Amoumt

114

Chapter 6 DataBase and Mail Merger Programming

Figure 6.12 Result of mailExample macro

Monthly Commission Check

Tom Catter
5406 Star Rd

St Taul, MM

Yourmonthly commission checls amount is § 750.00

Monthly Commission Check

John Larson
2002 1st St

Los Angeles, CA

W ene vaanthhe caraaiceinn chacle am b de & 280 0

This Concludes Chapter 6.

Monthly Commission Check

Mary Clads
102 5th fime

Mewr Youlg NY

[cue monthly comemission check amount is § 325.00

Monthly Commission Check

[Fresnc, CA

Youtmonthly commission check amount & § 540.00

115

Chapter 7 File Programming

7 File Programming

FileSytemObject Object

In this chapter you will go through several examples of using the FileSystemObject object to learn some of the
technique and principles in working with folders and files, including Word document files and non-Word files.

Create New Text File

This example creates a new text file, write 2 lines to it, and close the file.

FileSystemObject Object

The following code declares fs as an object variable and uses the CreateObject method (a function method) of
the Interaction class to assign to fs a reference to the Scripting.FileSystemObject object. The assignment makes
fs an object of the FileSystemObject class. From now on fs can use the methods and properties of the
FileSystemObject object to manipulate the files system of the Windows operating system.

Dim fs As Object
Set fs = CreateObject("Scripting.FileSystemObject")

The Interaction class is a member module of VBA Library. When using the CreateObject method you may drop
the reference to the Interaction class and simply use CreateObject instead of Interaction.CreateObject. That is,
the following two expressions are equivalent:

Set fs = Interaction.CreateObject("Scripting. FileSystemObject")
Set fs = CreateObject("'Scripting.FileSystemObject")

The following code declares afile as an object variable and uses the CreateTextFile method (a function method)
of the FileSystemObject object to create a new text file called testfile.txt in the folder, c:\. The CreateTextFile
method also returns a TextStream object that can be used to read from or write to the file. From now on fs is a
TextStream object so you can use the properties and methods of the TextStream class to read from or write to
the file, c:\data\testfile.txt. You specify the True parameter to indicate that an existing file can be overwritten.

Dim afile As Object

Set afile = fs.CreateTextFile("c:\data\testfile.txt", True)

117

If you run the above code and the folder, c:\data don’t exist you will get a run-time error. After the above code is
executed and if you take no further action, the text file created by the above code will remain as a text file with
no content in it.

For a complete listing of methods and properties of the FileSystemObject object consult Visual Basic Editor /

Visual Basic Help / Table of Contents / Microsoft Visual Basic Documentation / Visual Basic Language
Reference / Objects / FileSystemObject Object.

TextStream Object

The following code uses the WriteLine method of the TextStream object to write 2 lines of text to the file,
c:\data\ testfile.txt.

afile. WriteLine ("This is sentence 1.")
afile. WriteLine ("This is sentence 2.")
For a complete listing of methods and properties of the TextStream object consult Visual Basic Editor / Visual
Basic Help / Table of Contents / Microsoft Visual Basic Documentation / Visual Basic Language Reference /

Objects / TextStream Object.

The following shows the completed code.

Completed Code

Public Sub newTxtFile()
"This example create a new txt file,
"write 2 lines to it, and close the file.
Dim fs, afile As Object
Set fs = CreateObject("Scripting.FileSystemObject")
Set afile = fs.CreateTextFile("c:\data\testfile.txt", True)
afile. WriteLine ("This is sentence 1.")
afile.WriteLine ("This is sentence 2.")
Set fs = Nothing
End Sub

To try this example follows these steps.

Steps

1) Start a blank document and start Visual Basic Editor.

2) Insert a new module and keep the default name as Modulel.
3) Insert a new procedure (macro) and name it newTxtFile.

4) Type in the above completed code (Figure 7.1).

5) Run the macro and see the new text file, c:\data\testfile.txt created with 2 lines of texts (Figure 7.2).

118

Chapter 7 File Programming

Figure 7.1 newTxtFile macro

= Lesson 7 - Module1 (Code)
{General} j |||ewa(File LJ

Option Explicit =

Public Sub newTxtFilel}

'This example create & hew txt file,

! yrite 2 lines to it, and close the file.

Dim fs, afile As Cbhject

Set fs = CreateObject ("Scripting.FileSystemObject")

Set afile = fs.CreateTextFile("c:\dataltestfile.txt", Trusj
afile.Writeline ("This is sentence 1.7)

afile.lritelLine ("This is sentence Z.")

Set fs = Nothing

End Sub

I testfile.txt - Notepad
File Edit Format Yiew Help

This is sentence 1.
This is sentence 2.

List Directory and Files

This example lists the folders and files of a directory.

Folder Object

The following code uses the CreateObject method (a function method) of the Interaction class to assign to fs a
reference to the Scripting.FileSystemObject object. The assighment makes fs an object of the FileSystemObject
class. From now on fs can use the methods and properties of the FileSystemObject object to manipulate the files
system of the Windows operating system.

Set fs = CreateObject("'Scripting.FileSystemObject")

The following code uses the GetFolder method of the FileSystemObject object to return a Folder object that
represents the folder, c:\. From now on fd is an object of the Folder class so you can use the methods and
properties of the Folder object to manipulate the folder, c:\.

Set fd = fs.GetFolder("c:\")

119

The following code uses the SubFolders property of the Folder object to list all the folders (files excluded) in the
directoty, c:\. The expression fd.SubFolders returns a Folders collection object consisting of all the folders
contained in the directory, c:\, including hidden and system folders.
"List all folders (not file) in a ditrectory
str = "Folders in " & "c:\" & vbCrLf _
& M- " & vbCrLf
For Each {2 In fd.SubFolders
str = str & f2.Name
str = str & vbCrLf

Next

MsgBox str

The following code uses the Files property of the Folder object to list all the files (folders excluded) in the
directoty, c:\. The expression fd.Files returns a Files collection object consisting of all the files contained in the
directory, c:\, including hidden and system files.

' List all files (not foldet) and folders in a directory
stt = "Files in " & "c:\" & vbCrLf _
& " " & vbCrLf
For Each {2 In fd.Files
str = str & f2.Name
str = str & vbCrLLf
Next

MsgBox str

For a complete listing of methods and properties of the Folder object consult Visual Basic Editor / Visual Basic
Help / Table of Contents / Microsoft Visual Basic Documentation / Visual Basic Language Reference / Objects
/ Folder Object.

120

Chapter 7 File Programming

The following is the completed code.

Completed Code

Sub listDirectory()
Dim fs, 2, fd, str
Set fs = CreateObject("Scripting.FileSystemObject")
Set fd = fs.GetFolder("c:\")

'List all folders (not file) in a directory
str = "Folders in " & "c:\" & vbCrLLf _
& " " & vbCrLf
For Each {2 In fd.SubFolders
str = str & f2.Name
str = str & vbCrLf
Next
MsgBox str

' List all files (not folder) and folders in a directory
str = "Files in " & "c:\" & vbCrLf
& Moo " & vbCrLf
For Each {2 In fd.Files
str = str & f2.Name
str = str & vbCrLf
Next
MsgBox str
End Sub

To try this example follows these steps.

Steps

1) Start a blank document and start Visual Basic Editor.

2) Use the same module as the one in the previous example.
3) Inserta new procedure (macro) and name it listDirectory.
4) Type in the above completed code (Figure 7.3).

5) Run the macro and the message box displaying a listing of the folders and files of the directory, c:\
(Figure 7.4).

121

Figure 7.3 /istDirectory macro

esson 7 - Modulel (Code)

(General)

+| [listhirectory =

Option Explicit

Sub listDirectoryi)

Dim fs, f£2, fd, str
Set fs = CreateChbject ("Scripting.FileSystemObject”)
gev fd = £=.GerFolder "o\ ")

! List all folders (not file) in a directory
str = "Folders in " & "e:\" & VOCILE _

& " -" & vhCrLE
For Each £2 In fd.SubFolders

str str & fI.Namwe

str = str & vhCrLf
Next
MsgBox str

str

"Files in " & "o

str =
str =
Hext

MsgBox str

str & vhCrLf

End Sub

i

' List all files (not folder) and folders in a directory

For Each f£2 In fd.Files
str & £2.Name

N & vhCrLE _
" & VhOrLE

Figure 7.4 Result of listDirector macro

Microsoft Word @

Falders in et Files in ¢,
arch 1.5im
BIPrinter AUTOEXEC.BAT
cod boot.ini
COMPAC COMFIG.5YS
data dbl.mdb
Documents and Settings I0.5%¥5

junk. MSDOS, 515
Kpcms msinfo.exe
misC MTDETECT.COM
MSOCache nitldr

My Music pagefile. sys
OPG pangzilZ exe
pic

Program Files

RECYCLER

System Yolume Information

Temp

testfile

unzipped

Yalugadd

WINDOWS

Microsoft Word

122

Chapter 7 File Programming

Processing Multiple Word Documents

This example loops through all the Word document files in a given directory, replace every occurrence of John
with Tom and write to a log file.

The following code uses the CreateObject method (a function method) of the Interaction class to assign to fs a
reference to the Scripting.FileSystemObject object. The assignment makes fs an object of the FileSystemObject

class. From now on fs can use the methods and properties of the FileSystemObject object to manipulate the files
system of the Windows operating system.

Set fs = CreateObject("'Scripting.FileSystemObject")

Create New Folder for Output Files

The following code creates a new folder (if it does not already exist), change_dir in the directory, c:\testfile\
where the Word documents (to be processed) resides. You first check to see if the folder, change_dir already
exists by using the FolderExists method of the FileSystemObject object. If the folder does not exist you use the
CreateFolder method of the FileSystemObject object to create the folder, change_dir in the directory,

c:\testfile\.

strPath = "c:\testfile\"

If Not fs.FolderExists(strPath & "change dir") Then
fs.CreateFolder (sttPath & "change_dit")

End If

Create Log File

The following code uses the CreateTextFile method (a function method) of fs (a FileSystemObject object) to
create a new text file, logfile.txt in the folder, c:\testfile\. The CreateTextFile method also returns to ftxt a
TextStream object that can be used to read from or write to the file, logfile.txt. From now on ftxt is a TextStream
object so you can use the properties and methods of the TextStream object to read from or write to the file,

c:\testfile\change_dir\logfile.txt. You specify the True parameter to indicate that an existing file can be
overwritten.

Set ftxt = fs.CreateTextFile(sttPath & "change_dir\" & "logfile.txt", True)

You will use this log file to record the activities when you process the Word documents in the directory.

123

Processing Multiple Word Documents

The following For Each...Next loop reads each Word document files in the directory, c:\testfile\, replace every
occurrence of John with Tom, save the changed Word document files to the folder, c:\testfile\change_dir . You
use the GetFolder method of the FileSystemObject object to return a Folder object that represents the folder,
c:\testfile\. The Files property of the Folder object returns a Files collection object consisting of all the files
contained in the folder, c:\testfile\. You then use the For Each...Next loop to loop through all the Word
document files in the Files Collection object representing the folder, c:\testfile\.

For Each fdoc In fs.GetFolder(strPath).Files

Next

The following code uses the Open method (a function method) of the Documents collection object to open a
Word document file with the file name of fdoc.Name (fdoc.Name contains the name of the Word file) in the
folder, c:\testfile\ as specified by the strPath string variable. The Open method returns an object (of the
Document class) representing one of the Word document in the folder and assigns the reference to doc (an
object variable). The Name property of the fdoc File object returns the name of one of the Word document file
belonging to the Collection object representing all the Word document files in the folder c:\testfile\. The Word
document is opened for read purpose only, as specified by the ReadOnly:=True parameter.

Set doc = Documents.Open(FileName:=strPath & fdoc.Name, ReadOnly:=True)

The following code uses the WriteLine method of ftxt (a TextStream object) to write to the log file,
c:\testfile\change_dir\logfile.txt, the name of the Word document being read at the moment and the words
count of the Word document.

fext.writeline ("FFFF* File read *Httttrk!)

fext.writeline ("Name of file = " & strPath & fdoc.Name)

ftxt.writeline ("Number of words in the document = " & doc.Words.Count)

The following code tests to see if the Word document contains the text John and if so record the finding in the
log file. You use the Execute method (a function method) of the Find property of the Content property which is
a Range object. The Content property of doc (a Document object) represents the content of the document.

If doc.Content.Find. Execute(FindText:="John") Then _

fext.writeline ("Word found.")

The following code uses the Execute method (a function method) of the Find property to replace every
occurrence of John by Tom.

doc.Content.Find.Execute FindText:="John", _

ReplaceWith:="Tom", Replace:=wdReplaceAll

The following code uses the SaveAs method (a Sub procedure method) of doc (a Document object) to save the
changed Word document with the specified name in the folder, c:\testfile\change_dir\. The Visual Basic

124

Chapter 7 File Programming

function Len(fdoc.Name) returns the number of characters of the name of the Word document. The expression
Len(fdoc.Name) - 4 returns the number of characters of the name of the Word document, minus 4. The Visual
Basic function Left(fdoc.Name, (Len(fdoc.Name) - 4)) returns the name of the Word document truncating the
last 4 characters that is, the .doc portion. Basically what you are doing here is taking the name of the Word
document, for example filel.doc, throw away the .doc portion and concatenate with _change.doc to form the
name of the changed Word document as filel_change.doc, which is then saved in the folder,
c:\testfile\change_dir\.

doc.SaveAs FileName:=strPath & "change_dir\" & _
Left(fdoc.Name, (Len(fdoc.Name) - 4)) & _

_change" & ".doc"

The following code closes the Word document and go on to the next Word document in the folder until every
Word document is processed.

For Each fdoc In fs.GetFolder(strPath).Files
doc.Close
fext.writeline (" ")

Next

The following is the completed code.

Completed Code

Sub procDoc()
' Loop through all doc.files in the directory

" replace every occurence of "John" with "Tom"
"and write to a log file.
Dim doc As Document
Dim strPath As String
Dim fs, fdoc, ftxt As Object
Set fs = CreateObject("Scripting.FileSystemObject")
strPath = "c:\testfile\"
If Not fs.FolderExists(strPath & "change_dit") Then
fs.CreateFolder (sttPath & "change_dit")
End If
Set ftxt = fs.CreateTextFile(strPath & "change dir\" & "logfile.txt", True)
For Each fdoc In fs.GetFolder(strPath).Files
Set doc = Documents.Open(FileName:=strPath & fdoc.Name, ReadOnly:=True)
fext.writeline ("FFFF* File read HFrofrfrrx
fext.writeline ("Name of file = " & strPath & fdoc.Name)

fext.writeline ("Number of wotds in the document = " & doc.Words.Count)

125

If doc.Content.Find. Execute(FindText:="John") Then _

fext.writeline ("Word found.")

doc.Content.Find.Execute FindText:="John", _

ReplaceWith:="Tom", Replace:=wdReplaceAll

doc.SaveAs FileName:=strPath & "change_dir\" & _

Left(fdoc.Name, (Len(fdoc.Name) - 4)) & _
" change" & ".doc"

doc.Close
fext.writeline (" ")
Next
Set fs = Nothing
End Sub

To try this example follows these steps.

Steps

1

2)
3)
4

Create the folder, c:\testfile\ and 3 Word documents, filel.doc, file2.doc, file3.doc in the folder,
c:\testfile\ (Figure 7.6).

Start a blank document and start Visual Basic Editor.
Use the same module as the one in the previous example.
Insert a new procedure (macro) and name it procDoc.
Type in the above completed code (Figure 7.5).

Run the macro and all the occurrence of John will be replaced by Tom and the 3 changed Word
document files and the log file are written to the folder, c:\testfile\change_dir\ (Figure 7.7).

Figure 7.5 procDoc macro

 Lesson 7 - Module1 (Code)

(General) ~| |prosboc -

Option Explicit o

=[= 4]

Sub prochoc (|
! Loop chrough all doc.files in the directory
! replace every occurence of MJohn" wich "Tom"
' amd write to a log file.
Dim doc ks Document
Dim strPath is String
Dim fs, fdoo, frxt As Chject
Set fz = CreateObject ["Scripting.FileSystemObject”)
sStrPath = "eritescfilel”
If Not £s.FolderExists(strPath & "change_dir”] Then

End If
Set frxt = f£3.CreateTextFile(strPath & "change dir\" & "logfile.txt”, True)
For Each fdoo In £5.GetFolder (strPath) .Files

Wext
Set £5 = Nothing
End Sub

fs.CreateFolder (strPath & "change dir")

get doc = Documents.Open(FileName:=strPath ¢ fdoc.Name, ReadOnly:=True)
ftxt.yriteline ("TT¥FTAT File read Traszasaw)
frxt.uriteline ("Name of file = " ¢ strPath & fdoo.Name)
fryt.uriteline (“Nusber of words in the document = " & doc.Uords.Count)
If doc.Content.Find. Execute (FindText:="John"] Then _
ftxt.writeline ("Word found.")
doc.Content.Find.Exscute FindText:="John", _
ReplaceWich:="Tom", Replace:=ydReplaceill
doc.Savels FileName:=strPath & "change dirh” &
Left (fdoc.Name, (Len(fdoc.Name) - 4)) & _

" change” £ ".doc”
doc.Close
foxt.wriceline (" 7

126

Chapter 7 File Programming

Figure 7.6 Input Word document files in ¢:\testfile folder

File Edit “iew Favorites Tools Help #

@Eack = Q @ pSearch [E Folders '

fogers - ¥ o file1,doc
1= Temp ~| Microsoft Word Docurnent
(] W ZO0KE

I unzipped o file2. doc
@ I5) valueadd @ Wicrosoft Word Document
[%) WINDOWS == 20KE
L DVDICD-RW Drive (E2) -
& [J control Panel Hles coc
B Microsoft Ward Document
[Shared Documents = 20 KE
& () johnn's Documents
=l % My Metwork Places
Eall i | 3 < i]

&

T4 file2. doc (Read-Only) - Microsoft Word

L @ Hormal ~ Garamond

This 1s file 2.
John tums left, and John muns

T4 file1.doc - Microsoft Word

: g Mormal

This is file 1
ohn smiles.

A filed. doc - Microsoft Word

@ Mormal

This is file 3
Tt is John I see]

Figure 7.7 Changed Word document files in c:\testfile\change_dir\ folder

@ C:\testfilelchange_dir

File Edit View Favorites Tools Help

Qe - @ F| POseach
x

Folders

[E} Folders -

file1_change.doc

&) Program Files B Microsaft Word Document
g 208
0 testfle Fils2_changed
_change doc
=] Micrasoft Ward Document
& 25 unzipped 20KB
B) Valueadd

file3_change.doc
Microsoft Yword Document
20KB

B [WINDOWS
2L DWDCD-RW Drive (E:)
@ [control Panel

@ [Shared Documents lngfile. bxt
& £ johnn's Documents | TEKXBt Document
% My Metwork Places @
< i | B & I | B

it file2_change.doc - Microsoft Word

View [nsert Fomat Iook Table Window Help

H @ Morrnal - Gatamond

[This is file 2.

Tom tuns left, and Toem s

I file1 _change. doc - Microsoft Word
i 'jf’gwat- aols T:a_‘bi‘i' MD&Q

Normal

This 15 file 1

Taom seailes.

T file3_change.doc - Microsoft Word

This 15 file 3
Itis Tom I see.

127

I logfile.txt - Notepad
File Edit Format View Help

W###WW FiWe read W e e

Name of file = c:\testfile\filel.doc
Number of words in the document = 11
word found.

e Fiwe Fead e S

Mame of file = c:\testfilel\fileZ.doc
Number of words in the document = 16
word found.

el FiWe read W e e e

Name of file = c:\testfile\filel. doc
Number of words in the document = 13
word found.

This concludes Chapter 7.

128

Chapter 8 Form Programming

Chapter 8 Form Programming

What is a Form?

A form is a user interface that accepts user’s input, interact with the user and perform some operation. In Visual
Basic a form is also called a Dialog Box. You’ve seen plenty of form in action when you use computers. For
example when you start the Word application the Microsoft Word window is a form (Figure 8.1). Most forms
display as a window like this one.

Figure 8.1 .4 Microsoft Word window

 Document - Wicroso Viord
§ g o = Goranord sucBzu[EESS == EE0- YA
FER Bk Yew Iuwet Fgmat Tock' Tabe Wndow ek Tyoe &+ ®
ARWEA RN 1T ROV I Re-ge A W == PN oc i LY e])
B TR TR, - i T ST TR R T TSR

e =

o1 et W mr w1 Gl

For another example, Select Table / Insert / Table from the Word menu and the Insert Table window appear
(Figure 8.2). This is also a form. You will go through creating a form similar to this in the following section to
learn the principle and technique of form programming,.

Figure 8.2 Word Insert Table dialog box

Insert Table

Table size

Mumber of columns: El 2

Burnber of rows: 2 =
AutoFit behavior
(&) Fized column width: |Auta =

D AutoFit to contents
) AuboFit to window

Table style: Table Grid AutoFormat,.,

[Remember dimensions For new kables

129

Form and Controls

Forms are objects. When you create a form you create an instance of a class. The UserForm class is a member
class of MSForms library. You will use the Userform form to create a dialog box similar to the Insert Table
dialog box of Word (Figure 8.2). A UserForm form can contain other objects such as controls. A Control is an
object you place on a form that has its own properties, methods, and events. You use controls to receive user
input, display output, and trigger event procedures. Because controls are objects you manipulate them using
methods, properties and events associated with the controls. You will learn to use some of the controls in the
two examples in this chapter.

You’ve seen two examples of forms, the Microsoft Word window when you start Word (Figure 8.1) and the
Insert Table dialog box when you want to insert a new table in your Word document (Figure 8.2). Both are forms
that contain controls but the Word window (form) is much more complicated and contains many more controls
and objects than the Insert Table dialog box.

Form Programming Example — Insert a New Table

This example illustrates the principle and technique of form programming. It displays a form (dialog box) in
which you input certain criteria to insert a table in your document. The form you see in this example is similar to
the Word Insert Table dialog box (Figure 8.2).

UserForm Object

You first create a UserForm form. The form contains various controls you place on the form. These controls
facilitate you or other users to interact with the form.

Follows these step to create a UserForm form.

Steps

1) Start a blank document and start Visual Basic Editor.

2) From the Visual Basic Editor menu select Insert / UserForm (Figure 8.3).

130

Chapter 8 Form Programming

Figure 8.3 Insert UserForm form

osoft Visual Basic - Lesson B

File Edit

Yiew | Insert | Format Debug Run
Project - Pri 3 UserForm

7 2% Module
§#1 Cass Module

= %8 Project {Lesq

Components.., CtrHT
55 Microsoft

(771 Modules

#-[7] References

Tools

3 b

A UserForm form and the Toolbox appears (Figure 8.4). The default name of the UserForm form is UserForm1

(Figure 8.4).

Figure 8.4 Userlorm form

Project - Project

=& Project {Lesson 8)
|=1-4#5 Micrasoft Word Objects
) ThisDacumenit

=145 Formis

B Userformt
1+ -(2] Modules

cmrms]
[x A an
Foe o

2y

(el Microsoft Visual Basic - Lesson B

fle Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help

R I TE N N W e O 0 SO T - i) O
x|

Toolbox and Controls

Figure 8.5 shows the Toolbox with the Controls which you drag and drop on a form. Figure 8.6 shows a list of
the different type of controls available in the tool box. You can program your own custom controls and add

them to the toolbox. In this example you will use the Label, CheckBox, CommandButton, Frame, OptionButton,
ComboBox controls in your form.

Figure 8.5 Toolbox

Toolbox FEI
Cantrols]
K Aab
F &
=

[
&

L

(LYL3

131

Figure 8.6 Controls in Toolbox

Icon | Control Icon | Control Icon | Control

= | CheckBox A| Label h | Select Objects
2| | ComboBox 2h| | ListBox - | SpinButton
= | CommandButton |||+ | MultiPage = | TapStrip

m Frame e OptionButton ah| | TextBox
Image i ScrollBar = ToggleButton

Change Name of UserForm Form and Caption Property

You’ve inserted a new UserForm form and the default name and the default Caption property had been set to
the same name, UserForm1 (Figure 8.4). Next you will change the name of the UserForm form from UserForm1
to frmTable and change the Caption property of the UserForm form from UserForm1 to Insert Table (Figure
8.7).

Note

The caption property is a property of the UserForm form whereas the name of the UserForm form is not a
property or a method of the UserForm form.

Follow these steps to change the name and the Caption property of the UserForm form.

Steps

1) Right click anywhere in the UserForm form and select Properties to display the Properties window of the
UserForm1 form (Figure 8.7).

2) Change the name of the UserForm form from UserForm1 to frmTable (Figure 8.7). See the change being
reflected in both the Properties window and the UserForm form (Figure 8.8).

3) Change the Caption property from UserForm1 to Insert Table (Figure 8.7). See the change being reflected
in both the Properties window and the UserForm form (Figure 8.8).

132

Chapter 8 Form Programming

Figure 8.7 Change UserForm form name and Caption property

‘@ Microsoft Visual Basic - Lesson 8

fple Edt Vew Iwet Fomat Debug Run Toos Addins Window el

IR R TR N I T A %
x|

Project - Project

rmal
= & Project (Lesson 8)

=12 Microsoft Word Objects
ThisDocument.
Forms
B UserFormt

#-(] Modules

#-[] References

Properties - UserForm1
UserForm1 UserForm
Alphabetic | Categorized |

UserFormt
iBackColor [&+e000000F

BorderColor W &+800000128)
o-

(Caption UserFormt —

Cycle 0- fmC;

DrawBuffer 32000

Enabled True

Font Tahoma

ForeColor

Height 231

— Change name of the UserForm form here
Change Caption property here

Figure 8.8 New Userborn form name and Caption property

l Microsoft Visual Basic - Lesson B
i File Edit Wew Insert Format Debug Run Tools Adddns Window Help
Project - Project

Normal
2% Project (Lesson 8) nsert table
53 Microsoft Word Chiects
] ThisDocument
(=425 Forms
FrmTable
[Modules
[References

Propetties - frmTable

frmTable UserForm

Alphabetic |Categonzed |

frmTable ”~
[exeoooooors
W sHooooize
0 - fmBordserStylehon
Insert table

0 - FmCydleAllForms

Add Controls to UsertForm Form

Next you’ll add Controls to the UserForm form. You’ll add the Label, CheckBox, CommandButton, Frame,
OptionButton and ComboBox controls to the UserForm form. To add these controls to the UserForm form

follow these steps.

Steps

1) If the Toolbox is not visible, make sure the UserForm form is in focus (that is, selected by clicking it), then

select View / Toolbox from the Visual Basic editor menu.

2) Drag and drop a Label control from the Toolbox into the UserForm form (Figure 8.9). After you drop the

Label control on the form you can use the mouse to resize it and move it around.

3) From the Toolbox, drop another Label control and 2 ComboBox controls into the form.

133

4) From the Toolbox drop a Frame control into the form and then drop 2 OptionButton controls into the
Frame control. You must follow the order exactly by dropping the Frame control first and then dropping
the 2 OptionButton controls into the Frame control. If you don’t follow the exact order of dropping the
Frame control first followed by the 2 OptionButton controls inside the Frame control your code won’t
work.

5) From the Toolbox drop 1 CheckBox control and 2 CommandButton controls into the form.

6) Rearrange, resize and move the controls until it look like that in Figure 8.10. All the controls have default
Caption properties. The 2 ComboBox controls have no Caption properties.

Figure 8.9 Label control

(al Microsoft Visual Basic - Lesson B

! File Edit Yew Insert Formab Debug Run Took Add-Ins Window Help

Project - P
==

B Lesson B - frmTable (UserForm)
&-&é Normal

= #% Project (Lesson 8) Insert table

= 45 Microsoft Ward Objects
B ThisDocument
=I5 Forms
E frmTable
= [T Modules
+-[7] References

Controls]
k A abl B EB
W @ [=
ST = P

e L

Figure 8.10 Label, CheckBox, CommandButton, Frame, OptionButton and ComboBox controls

B Lesson B - frmTable (UserForm)
BIIIIIHIIEE T

Insert table

* 7 Labell
Labelz

Ty | LT
" optionButtoni

" OptionButton2

callieheckBoxd

- CommandButton1 | - - - CommandButtonz

134

Chapter 8 Form Programming

Change Name and Caption Property of Control

After you've dropped the Label, CheckBox, CommandButton, Frame, OptionButton and ComboBox controls
into the UserForm form they have default names and default Caption properties. Next you’ll change the Caption
properties of the two Label controls but keep the default names. Follow these steps to do that.

Steps

1) Display the Properties window of the 15t Label control by either selecting the Label control or by right
clicking it and select Properties.

2) Change the Caption property of the Label control to (Number of rows:) (Figure 8.11).
3) Keep the default name of the Label control as Labell.

4) Similarly change the Caption property of the 2nd Label control to (Number of columns:) and keep the
default name as Label2.

Figure 8.11 Change Label control’s Caption property

‘& Microsoft Visual Basic - Lesson B

Insert table.
e 7
i
Gommmncrnmnt
Labelz [
—FrameL.
 optiorButtont
(" OptionButton2
False
[&Heoo0000Fe: I~ CheckBox1
1 - Friackstyleopaque
I +e0000006e:
0 - FrarderStyleNiane CommandButtont Commandguttonz
Nurber of raws:
o

Next you’ll change the names of the two ComboBox controls. The ComboBox control has no Caption property.
Follow these steps to do that.

Steps

1) Display the Properties window of the 1t ComboBox control by either selecting the ComboBox control or
by right clicking it and select Properties.

2) Change the name of the 1 ComboBox control to cboRow (Figure 8.12).

3) Similarly change the name of the 27 ComboBox control to cboColumn.

135

Figure 8.12 Change name of ComboBox control

Microsoft Visual Basic - Lesson B

e Edit View Insert Format Debug
Project - Project

Run Tools AddIns Window Help

g esson B - frmTable (UserForm)
-2 Normal
1= & Project (Lesson 8)
=1+ Microscft Word Objects
b ThisDacument
=155 Forms
' [fiTable
- (] Modules
- (1 References

© . Number of rows: Ll
© 1 umber of columns: : I—E

Properties - choRow

choRow ComboBox

 QptionButtent
Alphabetic | categorized |

cboRow| " OptionButton2
AukoSize False s i s
utoTab Fake
AutoWordSelact True i I CheckBoxt
BackColor [aB0000005%
Backstyle 1 - fmBackstyleOpac o B u i
BorderColor M &ri50000005% e C
ety a-
BoundCalumn 1 =
ColumnCount. 1 @

Next you’ll change the names or Caption properties of the remaining controls on the form. Follow these steps to
do that.

Steps

1) Change the names and Caption properties of the two OptionButton, the CheckBox and the two

CommandButton controls to that as shown in Figure 8.14. The new Caption properties of these controls
display like that in Figure 8.13.

Change the Caption property of the Frame control to Border setting (Figure 8.13) and keep the default
name as Framel.

The Caption properties of all the controls on the UserForm form should display like that in Figure 8.13.

Figure 8.13 Your finished UserForm form

‘il Microsoft Visual Basic - Lesson B

i Fle Edt Wew Insert Format Debug Bun Iook AddIns Window Help
Project - Project

I[=]

Normal
B project (Lesson 8)
=5 Microsoft Word Objects

] ThisDocument *© Humber of rows:
1= &5 Forms i

fimTable: - Humber of columns:
(77 Modules il e .

& References
& -~ Border setting.

€ Box
emdOK CommandButton

- T
flphabetic | categorized | i Mo

Accelerator

AutoSize False

BackColor [&Ha000000Fs.
Backstyle 1 - fmBackstyleOpaque
Cancel False

Caption oK

EDTtrTITlpTExt v

136

Chapter 8 Form Programming

Figure 8.14 Nawmses and Caption properties of controls

Control Name Caption Property
Label Labell Number of rows:
Label Label2 Number of columns:
ComboBox (1%) cboRow (None)
ComboBox (204) cboColumn | (None)
Frame Framel Border setting
OptionButton optBox Box
OptionButton optAll All grid
CheckBox chkNum Generate numeric
column heading?
CommandButton | cmdOK OK
CommandButton | cmdCancel | Cancel

Show Method of UserForm Object

Next you’ll create a new Macro for this form programming example. The macro (when invoked) will load and
display the UserForm form, frmTable you’ve set up. Recall that you've given the name of frmTable to the
UserForm form, which in essence make frmTable an object of the UserForm class. That means that frmTable
has available all the methods and properties of the UserForm class.

The following code uses the Show method of the UserForm object to display the UserForm form, frmTable.

Completed Code

Public Sub addTable()
frmTable.Show
End Sub

For a complete listing of the methods and properties of the UserForm class, consult Visual Basic Help.

Follow these steps to add a new Macro for this example.

Steps

1) Inserta new module (by selecting Insert / Module from the Visual Basic editor menu) and keep the
default module name as Modulel.

2) With the Modulel window in focus (selected) insert a new procedure (macro) and name it addTable.

3) Type in the above completed code (Figure 8.15) and save it.

137

Figure 8.15 addlable macro

(il Microsoft Visual Basic - Lesson B

Insert Formab Debug Run Tooks Adddns Window Help

“; Lesson B - Module1 (Code)

(General) +| [addTable =

=& Normal
= %% Project (Lesson 8) Option Explicit =
=55 Microsoft word Objects
ThisDacument Fublic Sub addTable()
=5 Forms frrTable.Show
frmTable End Sub

=73 Modules
<& Modulsl
#-[7] Referances

Initialize Event of UserForm Object

The UserForm object, besides having methods and properties, also has events associated with it. Next you’ll code
an event procedure (event handler) to perform some action when the UseForm form, frmTable is initialized
(loaded into the computer memory and displayed). The action to perform includes populating the ComboBox
control, cboRow with an array of integers from 1 to 30 and populating the ComboBox control, cboColumn with
an array of integers from 1 to 10. You do these using the AddItem method (a Sub procedure method) of the
ComboBox control (object). In addition to that the Text properties of the two ComboBox controls are set equal
to an initial value of 1. You set the Value property of the OptionButton control, optAll to be True (=1).

For a complete listing of the events associated with the UserForm object consult the Object Browser and Visual
Basic Help.

The following shows the completed code for the Initialize event procedure for the UserForm form, frmTable.

Completed Code

Private Sub UserForm_Initialize()
Dim intIndex
For intlndex = 1 To 30
cboRow.AddItem intIndex
Next
cboRow.Text = 1
For intlndex = 1 To 10
cboColumn.AddItem intIndex
Next
cboColumn.Text = 1
optAll.Value = True
End Sub

138

Chapter 8 Form Programming

Follow these steps to code the event procedure for the Initialize event of the UserForm form, frmTable.

Steps

)
2
3)

4

Make sure the frmTable (UserForm) window is visible, if not select the folder, frmTable in the Project
Explorer.

Display the frmTable (Code) window by double clicking anywhere in the frmTable (UserForm) window,
or right clicking it and select View Code.

The code window has two dropdown boxes. The left dropdown box contains a list of all the controls
(cboColumn, cboRow, chkNum) and UserForm. Select UserForm (Figure 8.16).

With the left dropdown box of the code window displaying UserForm, the right dropdown box contains
a list of events associated with the UserForm object. Select Initialize, the Initialize event of the
UserForm object (Figure 8.16).

Visual Basic editor automatically generates the heading Private Sub UserForm_Initialize() and the ending
End Sub of the event procedure for you. Type in the above code (Figure 8.17) between the heading and
the ending of the event procedure.

Figure 8.16 Initialize event

=1 Forms
frmTable

0-f

True

i Microsoft Visual Basic - Lesson B

fEle Ede View IDnsert Fomat Debug Bun Tools AddIne Window Help

x
=T o) = Lesson 8 - frmTabie (Code)

ject (Lesson 8)
=/ £59 Microsoft Word Objects.
] ThisDocument

[sreoomooore.
M =ro0c000125

Insert table
0 - FnCyelenlForms
32000

EEX

UserForm ~] Jeie =

derstyleton

Figure 8.17 UserForm_Initialize event procedure

M Lesson B - frmTable (Code)

UserForm

x| [mitiatize

Option Explicit =

Next

Next

End Sub

Ll

Private Sub UserForm Initialize()
Dim intIndex
For intIndex = 1 To 30
choRow. AddTtem intIndex

choRow.Text = 1
For intIndex = 1 To 10
choColumnn. iddltem intIndex

choColumn. Text = 1
optill.Valus = True

139

Click Event of CommandButton Control, cmdOK

Next you'll code an event procedure to perform some operation when you click the OK button on the
UserForm form, frmTable. The operation to perform is to insert a table according to some criteria you provide
through the other controls on the UserForm form. Your clicking of the OK button (a CommandButton control)
on the UserForm form, frmTable triggers the Click event of the CommanButton control and the code you write
in the event procedure will be called upon to perform the operation.

The following code uses the Add method (a function method) of the Tables class to insert a table into the
document and assign the reference to the inserted table to objTable, an object variable of the Table class. The
number of rows and the number of columns of the new table are specified by the Text properties of the
ComboBox controls, cboRow and cboColumn respectively. Recall that you've coded to populate these two
ComboBox controls in the event procedure when the UserForm form, frmTable is displayed (initialized) and
you‘ve also set the Text properties of these two controls to 1. If you don’t select other values for the number of
rows and columns the value of 1 will be used in the following code for cboRow.Text and cboColumn.Text. If
you select other values (other than the default value of 1) the values you select will be used in the following code
for cboRow.Text and cboColumn.Text.

Set objTable = ActiveDocument.Tables.Add _
(Range:=Selection.Range, NumRows:=cboRow.Text, _
NumColumns:=cboColumn.Text)

You’ve put in two OptionButton controls inside a Frame control on the UserForm form, frmTable and name
these two controls optBox and optAll. The fact that these two OptionButton controls are inside a Frame control
means that only one of the Value properties of the two OptionButton controls can be True (or 1). That is, when
you click one of the OptionButton you make the Value property of that OptionButton control equal to True
(=1) and the Value property of the other OptionButton control get set to False (=0) automatically. So the
following code set the border setting of the table to be a box (no inside grid line) when optBox.Value is True
(=1), that is, when you select the OptionButton control, optBox on the UserForm form, frmTable. It set the
border setting of the table to be all grid (not a box) when optBox.Value is False (=0), that is, when you select the
OptionButton control, optAlL

With .Borders
If optBox.Value Then
InsideLineStyle = wdLineStyleNone
Else
InsideLineStyle = wdLineStyleSingle
End If
You’ve put in a Checkbox control on the UsertForm form, frmTable and name it chkNum. If you check (select)

the CheckBox control, chkNum on the UserForm form, frmTable chkNum.Value is set to True (=1). In such a
case the For...Next loop generates a numeric column heading in the first column.

If chkNum.Value Then
For intlndex = 1 To cboRow.Text

objTable.Cell(intlndex, 1).Range. Text = intIndex

140

Chapter 8 Form Programming

Next
End If

The following shows the completed code for the Click event procedure for the CommanButton control,
cmdOK.

Completed Code

Private Sub cmdOK_ Click()
Dim intIndex, objTable
Set objTable = ActiveDocument.Tables.Add _
(Range:=Selection.Range, NumRows:=cboRow.Text, _
NumColumns:=cboColumn.Text)
With objTable
Select
With Selection
.Columns.SetWidth _
ColumnWidth:=InchesToPoints(5 / cboColumn.Text), _
RulerStyle:=wdAdjustNone
With .Borders
If optBox.Value Then
InsideLineStyle = wdLineStyleNone
Else
InsideLineStyle = wdLineStyleSingle
End If
.OutsideLineStyle = wdLineStyleSingle
End With
End With
End With
If chkNum.Value Then
For intIlndex = 1 To cboRow.Text
objTable.Cell(intlndex, 1).Range. Text = intIndex
Next
End If
Me.Hide
End Sub

141

Follow these steps to code the event procedure to handle the Click event of the CommandButton control,
cmdOK.

Steps

1)

2)

5)

Make sure the frmTable (UserForm) window is visible, if not select the frmTable folder in the Project
Explorer.

Display or make visible the frmTable (Code) window by double clicking anywhere in the frmTable
(UserForm) window, or right clicking the form window and select View Code.

The code window has two dropdown boxes. The left dropdown box contains a list of all the controls
(cboColumn, cboRow, chkNum) and UserForm. Select cmdOK (Figure 8.18).

With the left dropdown box of the code window displaying cmdOK, the right dropdown box contains a
list of events associated with the CommandButton control, cmdOK. Select Click, the Click event of the
CommandButton control, cmdOK.

Visual Basic editor automatically generates the heading Private Sub emdOK_Click() and the ending End
Sub of the event procedure for you. Type in the above code (Figure 8.18) between the heading and the
ending of the event procedure.

Figure 8.18 cndOK_Click event procedure

™™ Lesson B - frmTable (Code) [=1(E3]
cmd 0K »| |Click A

Private Sub cmdOK Click()

Dim intIndex, objTable

Set objTable = ActiveDocument.Tables.idd _

(Range:=Selection. Range, NuwRows:=choRouw.Text, _

HuriCo Lurins : =eboCo luwn. Text)

With ehjTsble
.Select
With Selection

End With
End With
If chidium.Value Then

For incIndex = 1 To choRow.Text

Hext
End If
Me.Hide
End Sub

|

.Columns.SerWidth _
Colummiidth:=InchesToPoints (5 / choColumn. Text), _
RulerStyle:=vdidjustione

With .Borders
1f optBox.Value Then

.InsideLineStyle = wdlineStyleNone
Else
.InsidelineStyle = wdlineStyleSingle
End If
.Outsideline$tyle = wdlineStyleSingle
End With

objTable.Cell(intIndex, 1).Range.Text = intIndex

Click Event of CommandButton Control, cmdCancel

Next you’ll code an event procedure to unload the UserForm form, frmTable from the computer memory when
you select the Cancel button on the UserForm form. Your clicking of the Cancel button (a CommandButton
control) on the UserForm form, frmTable triggers the Click event of the CommanButton control and the code
you write in the event procedure will be called upon to perform the operation.

The following code uses the Unload statement (a Visual Basic statement, not a method or property of an object)
to remove the current active UserForm form from the computer memory. Me is a special object that refers to the
currently active UserForm form, which is frmTable.

142

Chapter 8 Form Programming

Completed Code

Private Sub ecmdCancel_Click()
Unload Me

End Sub

Follow these steps to code the event procedure to handle the Click event of the CommandButton control,
cmdCancel.

Steps

1) Make sure the frmTable (UserForm) window is visible, if not select the folder, frmTable in the Project
Explorer.

2) Display or make visible the frmTable (Code) window by double clicking anywhere in the frmTable
(UserForm) window, or right clicking it and select View Code.

3) The code window has two dropdown boxes. The left dropdown box contains a list of all the controls
(cboColumn, cboRow, chkNum) and UserForm. Select cmdCancel (Figure 8.19).

4) With the left dropdown box of the code window displaying cmdCancel, the right dropdown box
contains a list of the events associated with the CommandButton control, cmdCancel. Select Click, the
Click event of the CommandButton control, cmdCancel (Figure 8.19).

5) Visual Basic editor automatically generates the heading Private Sub ecmdCancel_Click() and the ending
End Sub of the event procedure for you. Type in the above code (Figure 8.19) between the heading and
the ending of the event procedure.

Figure 8.19 vndCancel_Click event procedure

M | esson B - frmTable (Code)

cmdCancel x| [etick =l

Private Sub cmdCancel Click() T
Unload Me
End Sub

ALl g

EI

Run Macro

Now you’re ready to see your macro in action. To run the addTable macro follows these steps.

Steps

1) From the Word menu select Tools / Macro /Mactros.

2) When the Macro window appears selects addTable in the Macro Name pane and selects the Run button
(Figure 8.20).

143

Figure 8.20 Run addlable macro

Macros gl
Run
Step Into
Macros in: |AI\ active templates and documents "l Cancel
Description:
iMacro created 1/2/2005 by john L ‘

Steps

1) 'The Insert Table dialog box appears (Figure 8.21).

2) Scroll down the ComboBox controls to select 5 as the number of rows and 4 as the cumber of columns
for the new table you want to insert.

3) Select the All grid OptionButton control.

4) Check the CheckBox control to generate numeric column heading for your new table.Select the OK
button.

5) The new table with 5 rows and 4 columns and numeric column heading has been generated in your
document (Figure 8.22).

Figure 8.21 Insert Table dialog box

Mumber of rows: 5 =
Mumber of calumns: 4 =

- Border setting -

" Box

" all grid

|v iGenerate numeric column heading? §

O Caneel

144

Chapter 8 Form Programming

Figure 8.22 New table added

w & wl wf =

Form Programming Example — Build Table of Index

You’ll go through one more example in this chapter to learn about form programming. You’ll use a Label
control, a TextBox control and two CommanButton controls in this example to code a macro which help you
search words (word or words) and add them to the index entries. The macro then updates the table of index. If
there is no table of index it will be created. The only new control you use in this example is the TextBox control.
You've used the other controls, the Label and the CommandButton controls in the previous example.

Follow these steps to add the new UserForm form and the controls.

Steps

1) Start a new Word document with a few pages of text.
2) Start Visual Basic Editor.

3) Inserta new UserForm form and change its name from the default name of UserForm1 to frmIndex.
Change its Caption property from the default property of UserForm1 to Mark Index Entry (Figure 8.23).

4) Use the Toolbox to drag and drop one Label control, one TextBox control and two CommanButton
controls into the UserForm form, frmIndex. Change the names and Caption properties of the controls as
that shown in Figure 8.24. The UserForm form, frmIndex with these controls should like that in Figure
8.23.

5) See Figure 8.25 for the names and Caption properties of the Label control, Labell, the TextBox control,
txtText, and the two CommandButton controls, cmdFind and emdExit.

145

Figure 8.23 UserForm form frmlndex

Microsoft Visual Basic - LessonB_form

Project - Project

==

S Normal
@ Project {Lesson8_form})
#1- (7 Microsoft Word Objects
5 Forms
i Frenlndex

|frmIndex UserForm

Alphabetic | Categorized |

|

frmindex

[aHsoooo0oFe: »|
M 2Heo00001ZB,
0 - fraBarderstylehlon —
Mark Index Entry

~

Eife‘ Edit Wiew Insert Format I;ehug_ Run Tools Add-Ins Window Help

Figure 8.24 Names and Caption properties of controls

Control

Name

Caption Property

Label

Labell

Input text to search:

TextBox txtText (None)
CommandButton | cmdFind Find
CommandButton | cmdExit Exit

Figure 8.25 Label, TextBox, and CommanButton controls

& Microsoft Visual Basic - Lesson8_form

Project - Project

Alphabetic l[atagnrlzed |

Ele Edt Wew Inset Fomst Debug Run Took Adddns Window Help

(Hame) Labell
Accelerator

AukaSize False

BorderColor [2HE0000006R,

1 - froBiackStyleOpanue

BorderStyls 0 - fmBorder Stylehione:
[Caption Input text to search:

=

Inssrt Format Debug Run Tools Adddns Window Help

- Forms
frmindex

es - cmdlFind
cmdFind CommandButton

Alphabetic |Categunzed |

B LessonB_form - frmindex ...

ltrame) crdFind
[accelerator

False
Find

Mark Index Entry

- - Input text ko search:

1 - FBackStyleopaqus

Microsoft Visual Basic - LessonB_form

i Fle Edit Wiew Insert Format Debug Run
Project - Project

= ”E‘ ! B LessonB_form - frmindex (.

Toolks Add-Ins Window Help

Prope:

B Normal

@ Project {Lesson8_form)

Mark Index Entry

[Micrasoft Wword Objects
5 Forms Input text to search:

T

ExtTexrt TextBox

Alphabetic |Categurlzsd

iMame) ExtText
Autosize False
AutoTab False

Autowordselect True

T

i Microsoft Visual Basic - Lesson8_form

i File

Project

- Project

=23 5]

Edit View Insert Farmat Debug PRun Tools AddIns Window Help

E Normal

@ Project (Lesson3_form)
+- [Microsoft ‘Word Ohbjects
(=425 Farms

FrnIndex

Alphabetic lCategorized i

iMame)

crdExit

False

[aHaoooooore. = |
1 - FmBackStyleOpagqus
False:
Exit

146

Chapter 8 Form Programming

Show Method of UserForm Object

Next you’ll create a new Macro for this form programming example. The macro (when invoked) will load and
display the UserForm form, frmlndex you’ve set up. Recall that you’ve given the name of frmlndex to your
UserForm form, which in essence make frmIndex an object of the UserForm class. That means frmIndex has
available all the methods and properties of the UserForm class.

The following code uses the Show method of the UserForm object to display the UserForm form, frmIndex.

Completed Code

Public Sub addIndex()
frmIndex.Show

End Sub

Follow these steps to add a new Macro for this example.

Steps

1) Inserta new module (select Insert / Module from the Visual Basic editor menu) and keep the default
module name as Modulel.

2) With the Modulel window in focus (selected) insert a new procedure (macro) and name it addIndex.

3) Type in the above completed code (Figure 8.26) and save it.

Figure 8.26 addlndex macro

Click Event of CommandButton Control, cmdFind

Next you’ll code an event procedure to perform some operation when you click the Find button on the
UserForm form, frmIndex after you input some text in the Text box control, txtText. The operation to perform
is to search the document for the occurrence of the input words (word or words) and set the words found to be
an index entry depending on the decision by you. If you decide you want the words found in the document to be
inserted as an index entry then the table of index can be updated, again, depending on the decision by you.

The following code takes what you input into the Textbox control, txtText and assign it to strlnput, a string
variable. The words you type into the Textbox control, txtText becomes the Text property of the Textbox
control, txtText. The Visual Basic function Trim is used to trim off any leading blank and trailing blank of the
text string you input into the Textbox control, txtText.

147

strlnput = Trim(txtText. Text)

The following For...Next loop loops through every paragraph of the active document to search for the words
you input into the Textbox control, txtText.

Set doc = ActiveDocument

For Each para In doc.Paragraphs

The following code uses the Find property of the Selection object to search for the occurrence of the words
contained in strlnput, a string variable. You use the Select method (a sub procedure method) of the Range class
to select the current paragraph. The Select method returns the reference to the current paragraph to the Selection
object. Your use the Find property (object) of the Selection object (which now represents the current paragraph)
to specify the criteria of your search. The (Forward = True) property of the Find object specifies that you search
forward through the paragraph. Your use the ClearFormatting method (a Sub procedure method) to remove any
formatting from the current paragraph being searched. The (MatchWholeWord = True) property specifies that
the find operation locates only entire words and not text that's part of a larger word. The (MatchCase = False)
property specifies the find operation is not case sensitive. The Execute method (a function method) runs the
specified find operation and returns True (and assigns to the Boolean variable blnFound) if the search is
successful. If the search is successful the words found is automatically selected, that is, the words become the
Selection object so any subsequent use of the Selection object refers to the words being searched and found.

para.Range.Select
With Selection.Find
Forward = True
.ClearFormatting
MatchWholeWord = True
.MatchCase = False
blnFound = .Execute(FindText:=strInput)

End With

If the words being input is found the Boolean variable, blnFound is set to True and the following code uses the
MsgBox function to prompt you to ask if you want the found words (now selected) to be marked as an index
entry.
If blnFound Then
sttMsg = """ & strlnput & """ & " found, " & _

"mark as index entry?"

intAnswer = MsgBox(strMsg, intBtn)

148

Chapter 8 Form Programming

If you click the Yes button in the MsgBox window that you want the found (selected) words to be marked as an
index entry the following code uses the MarkEntry method (a function method) of the Indexes object to mark
the selected words as an index entry. The (Range:=Selection.Range) parameter is required to specify the location
of the index entry. The XE field is inserted after the selected words. The (Entry:=Selection.Range. Text)
parameter specifies that the selected words is to appear in the index.
If intAnswer = vbYes Then
' User chose Yes.

doc.Indexes.MarkEntry Range:=Selection.Range, _

Entry:=Selection.Range.Text

The following code uses the MsgBox function to ask you if you want to update the index table.
sttMsg = "Update index table?"

intAnswer = MsgBox(strMsg, intBtn)

If you click the Yes button in the MsgBox window that you want to update the index table the following code
checks (using the Count property of the Indexes object) to see if an index table exists. If there is no index table in
the document (that is, doc.Indexes.Count = 0) a new index table is created. You create the new index table using
the Add method (a function method) of the Indexes object. Before you create the new index table you set the
object variable, range2 to be the content of the document. Then you use the Collapse method (a Sub procedure
method) of the Range object to collapse rang? that refers to the entire content of the document. The
(Direction:=wdCollapseEnd) parameter specifies that after the collapse rang? is to be located at the end of the
document, that is where you’ll insert the new index table. You then use the Add method of the Indexes object to
add the new index table at the end of the document.

If intAnswer = vbYes Then
If doc.Indexes.Count = 0 Then
Set range2 = doc.Content
range2.Collapse Direction:=wdCollapseEnd
doc.Indexes.Add Range:=range2, Type:=wdIndexRunin

End If

After you’ve made sure that an index table exists the following code uses the Update method (a Sub procedure
method) of the Index class to update all the index tables in the document.

For Each idxTable In doc.Indexes
idxTable.Update

Next

149

The following code uses the MsgBox function to ask if you want to continue searching. If you click the No
button on the Msgbox window you will exit this Click event procedure and return to the UserForm form,
frmIndex. If you click the Yes button on the MsgBox window you will go on to search the same words (which
you input) in the next paragraph in the For...Next loop.

For Each para In doc.Paragraphs
sttMsg = "Search more?"
intAnswer = MsgBox(strMsg, intBtn)

If intAnswer = vbNo Then Exit Sub

The following is the completed code of the event procedure to handle the Click event of the CommandButton
control, cmdFind.

Completed Code

Private Sub ecmdFind_Click()
Dim doc, para, strlnput, blnFound, range2
Dim strMsg, intBtn, intAnswer, idxTable
' Define buttons.
intBtn = vbYesNo + vblnformation + vbDefaultButton2
strlnput = Trim(txtText. Text)
Set doc = ActiveDocument
For Each para In doc.Paragraphs
para.Range.Select
With Selection.Find
Forward = True
.ClearFormatting
.MatchWholeWord = True
.MatchCase = False
blnFound = .Execute(FindText:=strInput)
End With
If blnFound Then
strtMsg = """ & strlnput & """ & " found, " & _
"mark as index entry?"
intAnswer = MsgBox(strMsg, intBtn)
If intAnswer = vbYes Then

' User chose Yes.

150

Chapter 8 Form Programming

doc.Indexes.MarkEntry Range:=Selection.Range, _
Entry:=Selection.Range. Text
sttMsg = "Update index table?"
intAnswer = MsgBox(strMsg, intBtn)
If intAnswer = vbYes Then
If doc.Indexes.Count = 0 Then
Set range2 = doc.Content
range2.Collapse Direction:=wdCollapseEnd
doc.Indexes.Add Range:=range2, Type:=wdIndexRunin
End If
For Each idxTable In doc.Indexes
idxTable.Update
Next
End If
End If
sttMsg = "Search more?"
intAnswer = MsgBox(strMsg, intBtn)
If intAnswer = vbNo Then Exit Sub

End If

Next

Exit Sub
End Sub

Follow these steps to code the event procedure to handle the Click event of the CommanButton control,

cmdFind.
Steps
1) Make sure the frmIndex (UserForm) window is visible, if not select the folder, frmIndex in the Project
Explorer.
2) Display or make visible the frmIndex (Code) window by double clicking anywhere in the frmIndex
(UserForm) window, or right clicking the form window and select View Code.
3) The code window has two dropdown boxes. The left dropdown box contains a list of all the controls
(Labell, txtText, cmdFind, cmdExit) and UserForm. Select cmdFind (Figure 8.27).
4) With the left dropdown box of the code window displaying cmdFind, the right dropdown box contains a
list of the events associated with the CommandButton control, cmdFind. Select Click, the Click event of
the CommandButton control, cmdFind (Figure 8.27).
5) Visual Basic editor automatically generates the heading Private Sub cmdFind_Click() and the ending End

Sub of the event procedure for you. Type in the above code (Figure 8.27) between the heading and the
ending of the event procedure.

151

Figure 8.27 cmdFind_Click event procedure

M LessonB_form - frmindex (Code)

cmdFind w| |[Click -

Private Sub cmdFind Click() H
Dim doc, pars, strInput, blnFound, range2
Dim strMsg, intBtn, inthnsver, idxTable
' Define huttons.
intBtn = vhVesNo + vhInformation + vhDefaultButtonZ
strinput = Trim{txtText.Text
Set doc = ActiveDocument
For Each para In doc.Paragraphs
para.Range.Select
With Selection.Find
.Forvard = True
.ClearFormacting
.MatchUholeWord = True
.MatchCase = False
binFound = .Execute (FindText:=strinput
End With

M LessonB_form - frmindex (Code)

cmdFind ~| |click -

.MatchCase = False j
blnFound = .Execute(FindText:=strlnput)

End With

If Blnfound Then
strMsg = "'" ¢ strInput & "' & " found, " & _

"mark as index entry?”
intdnswer = MogBox (strM=g, intBon)
If intinsver = vhVes Then
! User chose Yes.
doc. Indexes.MarkEntry Range:=Selection.Range, _
Entry:=Selection.Range.Text
strMsg = "Update index tehle?”
intAnswer = MsgBox (strlisg, intBtn)
If intinswer = vbYes Then
If doc.Indexes.Count = 0 Then
Set range2 = doc.Content
range2.Collapse Direction:=wdCollapseEnd
doc. Indexes.Add Range:=range2, Type:=wdIndexRunin
End If
For Each idxTable In doc.Indexes
idxTable. Update

Hext
End If
End If
strlisy = "Search more?"

intinswer = MsgBox [strisg, intBrn)
If intinswer = vhNo Then Exit Suk
End If
Next
Exit Sub
End Suh

B oL

Click Event of CommandButton Control, cmdExit

Next you’ll code an event procedure to unload the UserForm form, frmIndex from the computer memory when
you click the Exit button on the UserForm form. Your clicking of the Exit button (the CommandButton
control) on the UserForm form, frmIndex triggers the Click event of the CommanButton control and the code
you write in the event procedure will be called upon to perform the operation.

The following code uses the Unload statement (a Visual Basic statement, not a method or property of an object)

to remove the current active UserForm form from the computer memory. Me is a special object that refers to the
currently active UserForm form, which is frmIndex.

Completed Code

Private Sub cmdCancel_Click()
Unload Me
End Sub

152

Chapter 8 Form Programming

Follow these steps to code the event procedure to handle the Click event of the CommandButton control,
cmdExit.

Steps

5

Make sure the frmIndex (UserForm) window is visible, if not select the folder, frmIndex in the Project
Explorer.

Display or make visible the frmIndex (Code) window by double clicking anywhere in the frmIndex
(UserForm) window, or right clicking the form window and select View Code.

The code window has two dropdown boxes. The left dropdown box contains a list of all the controls
(Labell, txtText, cmdFind, cmdExit) and UserForm. Select cmdExit (Figure 8.28).

With the left dropdown box of the code window displaying cmdEXxit, the right dropdown box contains a
list of the events associated with the CommandButton control, cmdExit. Select Click, the Click event of
the CommandButton control, cmdExit (Figure 8.28).

Visual Basic editor automatically generates the heading Private Sub emdExit_Click() and the ending End
Sub of the event procedure for you. Type in the above code (Figure 8.28) between the heading and the
ending of the event procedure.

Figure 8.28 cndExit_Click event procedure

M | essonB form - frmindex (Code)

cdExit | |[etick s
=
Priwvate Sub cmdExit_Clicki) e
Unload He
End Sub
-
=E »

Run Macro

Now you’re ready to see your macro in action. To run the addIndex macro follows these steps.

Steps

D
2)
3)
4
5)

From the Word menu select Tools / Macro /Macros.

When the Macro window appears selects addIndex in the Macro Name pane and click the Run button.
The Mark Index Entry dialog box appears (Figure 8.29).

Type in some words. In Figure 8.29 the text string (text file) is typed into the Textbox control, txtText.
Click the Find button.

153

Figure 8.29 Mark Index Entry dialog box

ormat Tools Table Window Hep Type a

L]0 - q 0% - B4_4 Hormal + 22 pt = Garamond -2 -[Blz U

B
FileSytemObject Object

FIEE T

Mark Index Entry

In this chapter you will go through several examples of using the FileSystern () Inpuk ket to search:
technique and principles in wrorking with the foldess and files, including Wor

files, of the Windours operating systern ket File|
Find Exic

Create New Text File

Steps

1) The MsgBox window appears saying the words “text file”” are found and asking you if you want to mark
it as an index entry (Figure 8.30).

2) The words Text File is selected (Figure 8.30).
3) Click the Yes button in the MsgBox window.

Figure 8.30 "sexct file” found

Format Tooks Table Window Help

Ao g 00 o Ei Mormal + 22 pt ~ Garamond -2 LBl U|E=

i 1 2 ' E [

FileSytemObject Object

Input text bo sea

ket file

Tn this chaptet you will go through several examples of using the FilaSystem
tochnique and prnciples in worlang with the folders and fles, including Wor
files, of the Windows operating systern

Create New

This example creates a new text fils, wrnite 2 lines

Microsoft Ward

L) CtextFile found, mark as index entry?

Steps

1) The MsgBox window appears asking if you want to update the index table (Figure 8.31).
2) Click the Yes button in the MsgBox window.

154

Chapter 8 Form Programming

Figure 8.31 Update index table?

Microsoft Word.
st Format Iools Teble indow Help

Ga B9 -] 9 100% « Etg Normal + 22 pt v Garsmond »2 «|B|Z 0=z
G40 B

| A P D)
FileSytemObject Object

Input tex

ket fil
Find

In this chapter you will go through several examples of using the FileSystera
technique and prinsiples in working with the foldess and fles, including Wor
5les, of the Windows operating systerm.

Microsoft Word

\j) Update inde: table?
e

Create New NSNS BIE

This example creates a new text file, write 2 lines|

Steps

1) The MsgBox window appears asking if you want to continue searching (Figure 8.32).
2) Click the No button in the MsgBox window.

Figure 8.32 Search more?

kicrosoft Word

4 Foma: Tools Tabke Window Hel

A | 0% s !zu Narmal + 22 pt » Garamond -z -[B|z 1=
Bl - B4 [B]z v [

' 1 2 ' 3 ca 4 ' 5.

FileSytemObject Object

In this chapts you will go though several emarmples of using the FileSystem
technique and principles in wosdding with the foldes and fles, including Wox
Hles, of the Windows operating system.

Microsoft Word

Create New Text File S -

This example creates a new text file, wiite 2 lines 4

Steps

1) Focus is returned to the Mark Index Entry dialog box (Figure 8.33).

2) Click the Exit button to exit the addIndex macro.

155

Figure 8.33 Exit addlndex Macro

£ A4 Nomal +22pt - Garamond "2 - \ I U \

rmat Took Table window Help

[W e W A R e W= B 519 10% - @ | dread i
\ S \ s] .

f f 2 3 4

FileSytemObject Object

Mark Index Entry
T this chapte you will go though several examples of using the FileSyste
technique and principles in wosling with the foldes and les, including Input text to search

Eles, o the Windows opesating system,
text file.

Create New

This example creates a new text file, write 2 lines to it, and close the fle

Steps

In the document click the Show/Hide toolbar (7] and see the {XE “Text File”} tag for the index entry (Figure
8.34).

Figure 8.34 {XE “Iext File”} index entry

licrosoft Wornd

b Fomat Took Table Window Help

ERE Y Edi Normal + 22 bt Garamond -2 -|[B].
W ETETE g g

[FileSytemObject Object]

1

In this chapter you will po through sevesal examples of wing the FleSpstom
technique and principles in wosdeng with the foldess and s, including Worc
Eles, of the Windows opesating systern

ﬂ

1

This example vreates 2 new text fle, wite 2 lines to it, and close the file

Steps

Scroll to the end of the document to see the index table added with “text File” as the index entry (Figure 8.35).

Figure 8.35 Index table Added

- Microsoft Word

sert Format Tools Table Window Help

EEWE= R RN | T E i A4 Mormal + 22 pt » Garamond -8

I"'_g"'l"'l"'l'"2"'|"'3"'|"'4

Text File, 1

This concludes Chapter 8.

156

Index

ActiveDcoument object, 44
Arithmetic Operator, 55

Array, 83

assign Method object reference, 25
assign Property object reference, 25
BeignTrans, 100

Boolean data type, 56

calling procedure, 82

caption property, UserForm, 132
case sensitive, variable name, 53
change Caption property of UserForm form, 132
change name of UserForm form, 132
class, 15

Click Event, CommandButton Object, 140
collection object, 18

CommitTrans, 100

Comparison operator, 57
concatenate operator &, 62
Control, 130

Controls in Toolbox, 132

create Access database, 95
CreateFolder method, 123
CreateTextFile method, 123
Database Object, 99

date data type, 64

Debugging, 90

Dialog Box, 129

Do...Loop statement, 80

Double data type, 54

dynaset-type Recordset object, 100
enum, 43

Error Handling, 90

event handler, 41

event procedure, 41

Events, 15

Execute method, Find object, 124

Fields collection object, 105
Fields("name"), 105

Files property, 120

FileSystemObject Object, 117

Find property, Selection object, 148
Folder Object, 119

FolderExists method, 123

For Each...Next Statement, 75
For...Next Statement, 73

form, 129

function, 31

Function procedure, 8

Function Procedure, 82

GetFolder method, 119, 124

Icons Used in Object Browser, 37

If... Then...Else (Block Form) Statement, 68
If...Then...Else Statement (Single-Line Form), 66
Initialize Event, UserForm Object, 138
instance of class, 15

Integer data type, 54

Interaction class, 117

logical operators, 59

Long data type, 54

macro, 5

macro name, 5

MailMerge Object, 110

Me, special object, 142

methods, 15

module, 5

MoveFirst method, 102

Movel.ast method, 101

object, 15

object hierarchy, 15

object reference, 21

Open method, Documents collection object, 124

OpenDatabase Method, 100

157

OpenRecordset Method, 101

Option Explicit Statement, 51
primary key, 97

Private procedure, 8

procedure, 7

properties, 15

Property procedure, 8

Public procedure, 8

Rollback, 100

SaveAs method, Document object, 124
Select method, 85

Selection object, 85, 102

Show Method, UserForm Object, 137
Single data type, 54

SQL, 101

Step Into, 94

Step Out, 94

Step Over, 94

string data type, 61

Sub procedure, 8, 31
SubFolders property, 120
syntax, square brackets | |, 66
TextStream Object, 118
Unload statement, 142
UserForm Object, 130
variable, 53

Variables Naming Convention, 54
Visual Basic Editor, 2

Visual Basic Naming Rules, 53
With Statement, 81

Words collection object, 87
Workspace Object, 100
Writeline method, 118, 124

158

