
Ian Griffiths & Matthew Adams

A Desktop Quick Reference

IN A NUTSHELL

.NET
WINDOWS FORMS

Controls, Forms,

Menus, GDI+ and more…

.NET WINDOWS FORMS
IN A NUTSHELL

Ian Griffiths and Matthew Adams

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

v

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

Table of Contents

Preface . ix

Part I. Introduction to Windows Forms

1. .NET and Windows Forms Overview . 3
Windows Development and .NET 3
The Common Language Runtime (CLR) 5
.NET Programming Languages 10
Components 11
The .NET Type System 12

2. Controls . 23
Windows Forms and the Control Class 23
Using Standard Control Features 24
Built-in Controls 47

3. Forms, Containers and Applications . 51
Application Structure 51
The Form Class 56
Containment 68
Layout 76
Localization 81
Extender Providers 86
Summary 87

vi | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

4. Menus and Toolbars . 88
Menus 88

5. Building Controls . 95
Composite Controls 95
Custom Controls 100
Designing for Developers 112
Summary 116

6. Inheritance and Reuse . 118
When To Inherit 119
Inheriting from Forms and User Controls 122
Inheriting from Other Controls 127
Pitfalls of Inheritance 136
Summary 140

7. Redrawing and GDI+ . 141
Drawing and Controls 141
GDI+ 145
Summary 196

8. Property Grids . 197
Displaying Simple Objects 197
Type Conversion 207
Custom Type Editors 225
Summary 231

9. Controls and the IDE . 233
Design Time vs. Runtime 233
Custom Component Designers 236
Extender Providers 264
Summary 268

10. Data Binding . 269
Data Sources and Bindings 269
Simple and Complex Binding 279
DataTable, DataSet, and Friends 282
The DataGrid Control 294
The DataView Class 298
Summary 300

Table of Contents | vii

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Part II. Windows Forms Reference

11. How To Use This Quick Reference . 303
Finding a Quick-Reference Entry 303
Reading a Quick-Reference Entry 304

12. Converting from C# to VB Syntax . 309
General Considerations 309
Classes 310
Structures 310
Interfaces 311
Class, Structure, and Interface Members 311
Delegates 315
Enumerations 315

13. The System.ComponentModel Namespace . 317

14. The System.Drawing Namespace . 389

15. The System.Drawing.Drawing2D Namespace 459

16. The System.Drawing.Imaging Namespace . 486

17. The System.Drawing.Printing Namespace . 515

18. The System.Drawing.Text Namespace . 537

19. The System.Windows.Forms Namespace . 541

20. The System.Windows.Forms.Design Namespace 810

Part III. Appendixes

A. Namespaces and Assemblies . 834

B. Type, Method, Property, Event, and Field Index 835

Index . 905

Chapter 3Forms, Apps, Containers

3
Forms, Containers, and
Applications
Any interactive application must have at least one window through which to
present its user interface. In the Windows Forms framework, all such top-level
application windows are represented by objects whose types derive from the Form
class. As with any user interface element, the Form class inherits from the Control
class, but it adds windowing features, such as management of the window border
and interaction with the Windows taskbar. All Windows Forms applications have
at least one class derived from Form.

In this chapter we will examine the structure of a typical Windows Forms applica-
tion and the way its constituent forms are created. We will look at the
programming model for forms, and the way that the Visual Studio .NET Forms
Designer uses this model. We will look in detail at the relationship between a
form and the controls it contains, and also at the relationships that can exist
between forms. The mechanisms underpinning the automatic layout features
described in the previous chapter will be examined, and we will see how to use
these to add our own custom layout facilities.

Application Structure
All Windows Forms applications have something in common, regardless of
whether they are created with Visual Studio .NET or written from scratch:

• They all have at least one form, the main application window.

• They all need to display that form at start up.

• They must shut down correctly at the appropriate time.

This section describes the basic structure that all applications have and the way
that their lifetime is managed by the .NET Framework.
54

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Startup and Shutdown

All programs have to start executing somewhere, and .NET applications have a
special method that is called when the application is run. This method is respon-
sible for creating whatever windows the application requires and performing any
other necessary initialization.

In C# and Visual Basic, this entry point is always a static method called Main. It
doesn’t matter which class this is defined in, although Visual Studio always makes
it a member of the main form that it puts in any new project. It generates code like
the C# code shown in Example 3-1.

Although Visual Studio makes Main visible if you’re developing with C#, it hides it
if you’re developing with Visual Basic. In Visual Basic projects, the code for Main is
not displayed in the form’s code window, nor is it listed in Class View or in the
Object Browser. However, examining a compiled Windows Forms application
using ILDASM, the .NET disassembler, indicates that a hidden public method
named Main is present in the application’s main form, as Figure 3-1 shows. Its
source code corresponds to that shown in Example 3-2.

Example 3-1. A typical application entry point

[STAThread]
static void Main()
{
 Application.Run(new Form1());
}

Figure 3-1. The hidden VB entry point revealed in ILDASM
Application Structure | 55

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

If your application needs to read the command-line parameters, you can modify
Main (or, if you’re coding in Visual Basic, you can add it yourself, rather than have
the compiler add it) so that it takes a parameter of type string[] or String(). You
will then be passed an array of strings, one for each argument. You can also
change the return type to int if you wish to return an exit code. Examples 3-3 and
3-4 illustrate these techniques. The STAThread custom attribute is a backward-
compatibility feature that will be discussed shortly.

It is also possible to retrieve the command-line arguments using the
Environment class’s GetCommandLineArgs method. You might find
this approach easier because you can call this method anywhere in
your program, not just in Main. It also means you don’t need to
modify the Main method’s signature, and in VB, it means you don’t
need to define a Main method at all.

The Main function turns out to be trivial in the majority of applications because
most interesting initialization takes place inside individual forms. All that happens
in Main is an instance of the program’s main user interface (Form1) is created, and
control is then passed to the framework’s Application class, which manages the
application’s execution for the remainder of its lifetime. The program runs until
the Application class decides it is time to exit. By default, this is when the main
form is closed.

The Application Class

To do its job, the Windows Forms framework needs to have a high degree of
control over our application. In particular, it must respond correctly to the kind of
input that all Windows applications are required to handle, such as mouse clicks

Example 3-2. An application entry point in VB

<STAThread> Public Shared Sub Main()
 Application.Run(new Form1())
End Sub

Example 3-3. C# application entry point with parameters

[STAThread]
static int Main(string[] args)
{
 Application.Run(new Form1());
}

Example 3-4. VB application entry point with parameters

<STAThread> _
Public Shared Function Main(args As String()) As Integer
 Application.Run(New Form1())
End Sub
56 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
and redraw requests. This means the framework needs to be in charge of our appli-
cation’s main thread most of the time; otherwise, it cannot deal with these events.*

Although our application’s execution is stage-managed by the framework, we can
still influence its behavior by using the Application class. For example, we can tell
the framework to shut down our program by calling the Application.Exit
method. In fact, interacting with the Application class is the first thing most
programs do. They typically start like Example 3-1, calling Application.Run to
surrender control to Windows Forms. This causes the framework to display the
Form object that it is given, after which it sits and waits for events. From then on,
our code will only be run as a result of some activity, such as a mouse click,
causing the framework to call one of our event handlers.

This event-driven style of execution is an important feature of Windows Forms.
The framework is able to deal with events only because we leave it in charge. Of
course, while one of our event handlers is running (e.g., the code in a Click
handler is executing), we are temporarily back in charge, which means the frame-
work will be unable to process any other events until our event handler returns.
Most of the time, this is a good thing, because life would become unbearably
complex if we could be asked to start handling a new event before we had finished
dealing with the previous one; reentrant code is notoriously hard to get right, so it
is a good thing that it is not usually required.

The only problem is that if our event handlers take a long time to execute, the
user interface will become unresponsive. Until our code returns control to the
framework, the user will not be able to click on or type into our program, or to
move the windows around. (Strictly speaking the input won’t be lost—such
events are stored in a queue, just as they are with normal Windows programs. But
there will be no response to this input until the handler returns.) We can’t even
give the user a way to abort the operation if it takes too long because the inability
to process user input makes it difficult to support any kind of Cancel button.

While the obvious solution is to avoid writing event handlers that take too long to
execute, this is not always possible. Fortunately, long-running event handlers can
choose to give the framework a chance to deal with any events that may be
queued up and awaiting processing. The Application class provides a method
called DoEvents. This handles any pending input and then returns. Of course, any
code that calls this method needs to be careful, because it is inviting reentrant
behavior, so whenever you call this method, you must consider the implications
of another of your event handlers being run before DoEvents returns. But it does
mean that slow code has a way of making sure the application does not appear to
lock up completely.

The DoEvents method is not the only way of reentering the framework’s event
handling code. Whenever you display a modal dialog (e.g., by using the
MessageBox class, or by displaying a form with the ShowDialog method, as
described later), Windows Forms is once again in charge of your thread and will
process events for you for as long as the window is displayed.

* This is similar to the way that classic Win32 applications must service the message queue.
Application Structure | 57

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Because the Application class effectively owns our thread, we must get its help
when we wish to shut down our program. By default, it monitors the form that we
passed to its Run method (usually the program’s main form), and it exits when that
form closes. However, we can also force a shutdown by calling its Exit method;
this closes all windows and then exits. (In other words, when Exit is called, the
Run method returns. This will usually cause the program to exit, because the only
thing the Main function usually does is call the Run method, as shown in
Example 3-1. When the Main method finishes, the program exits.)

The Application class also provides a few miscellaneous utility features. For
example, you can modify the way exceptions are handled. If any of your event
handlers should throw an exception, the default behavior is for the application to
terminate. But the Application class has a static (or shared) event called
ThreadException that is raised whenever such an exception occurs; handling this
event prevents the unhandled exception dialog from appearing, and the applica-
tion will not exit unless you explicitly terminate it in your handler. The
Application class also exposes an Idle event that is fired whenever some input has
just been handled and the application is about to become idle. You could use this
to perform background processing tasks.

Forms and Threads

With all this talk of the Application object owning our thread, and of keeping the
user interface responsive in the face of long-running operations, you may well be
wondering about the use of threads in Windows Forms applications. Although it is
possible to write multithreaded Windows Forms applications, there are some
serious restrictions. A full discussion of multithreaded programming is well beyond
the scope of this book, but it is important to know what the restrictions are.

There is one fundamental rule for threads in Windows Forms applications: you
can only use a control’s methods or properties from the thread on which it was
created. In other words, you must never call any methods on a control from a
worker thread,* nor can you read or write its properties. The only exceptions to
this rule are calls to the Invoke, BeginInvoke, and EndInvoke methods and to the
InvokeRequired property, which can all be used from any thread.

This may seem a surprisingly draconian restriction, but it is not as bad as it
sounds. It is possible to use the Control class’s Invoke method to run code on the
right thread for the control—you just pass a delegate to the Invoke method, and it
calls that delegate for you on the correct thread. The call will not occur until the
next time the Windows Forms framework processes messages on the control’s
thread. (This is to avoid reentrancy.) Invoke waits for the method to complete, so
if an event is being handled by the user interface thread currently, Invoke will wait
for that handler to finish. Beware of the potential for deadlock here; BeginInvoke
is sometimes a better choice because it doesn’t wait for the invoked method to
finish running—it just adds the request to run the method to the framework’s
internal event queue and then returns immediately. (It is possible that your user
interface thread was waiting for your worker thread to do something, so if you

* A worker thread is any thread other than the UI thread.
58 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
also make your worker thread wait for the user interface thread to do something,
both threads will deadlock, causing your application to freeze.)

The InvokeRequired property is a bool or Boolean that tells you whether you are on
the right thread for the control (InvokeRequired returns False) or not
(InvokeRequired returns True). This can be used in conjunction with the
BeginInvoke method to force a particular method to run on the correct thread, as
shown in the following C# code fragment:

private void MustRunOnUIThread()
{
 if (InvokeRequired)
 {
 BeginInvoke(new MethodInvoker(MustRunOnUIThread));
 return;
 }
 ... invoke not required, must be on right thread already
}

This method checks to see if it is on the right thread, and if not, it uses
BeginInvoke to direct the call to the control’s own thread.* MethodInvoker is a dele-
gate type defined by Windows Forms that represents methods with no parameters
and no return value (or, in Visual Basic, a Sub with no parameters). In fact, you
can use any delegate type you like, and there is an overloaded version of Control.
BeginInvoke that takes a parameter list (as an object array) as its second param-
eter, allowing you to use a delegate that requires parameters to be passed.

You may also be wondering why Visual Studio .NET places an STAThread attribute
on your application’s Main function, as shown in Example 3-1. This is required for
ActiveX controls to work. If you want to use ActiveX controls, the COM runtime
must be initialized in a particular way on the user interface thread. In .NET,
COM is always initialized by the CLR, so we use this attribute to tell the CLR how
we would like it to configure COM on this thread. A full discussion of COM
interop and COM’s threading model is beyond the scope of this book, although if
you are familiar with COM, you might find it helpful to know that this attribute
ensures that the main thread will belong to an STA.

So the Application class is responsible for managing our application’s lifetime, main
thread, and event processing. But all the interesting activity surrounds the forms
that make up our applications, so let’s now look in more detail at the Form class.

The Form Class
All windows in a Windows Forms application are represented by objects of some
type deriving from the Form class. Of course, Form derives from Control, as do all
classes that represent visual elements, so we have already seen much of what it
can do in the previous chapter. But we will now look at the features that the Form
class adds.

* This particular example shows a member function of some class that derives from Control—this
is why it is able to use the InvokeRequired and BeginInvoke members directly. This is not a require-
ment—the methods are public, so you can call them on any control.
The Form Class | 59

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

You will rarely use the Form class directly—any forms you define in your applica-
tion will be represented by a class that inherits from Form. Adding a new form in
Visual Studio .NET simply adds an appropriate class definition to your project.
We will examine how it structures these classes when generating new forms, and
we will look at how it cleans up any resource used by the form when it is
destroyed. Then, we will consider the different types of forms. Finally, we will
look at extender properties. These provide a powerful way of extending the
behavior of all controls on a form to augment the basic Control functionality.

The Forms Designer

Most forms are designed using the Forms Designer in Visual Studio .NET. This is
not an essential requirement—the designer just generates code that you could
write manually instead. It is simply much easier to arrange the contents of a form
visually than it is to write code to do this.

When you add a new form to a project, a new class definition is created. The
Designer always uses the same structure for the source code of these classes. They
begin with private fields in C# and Friend fields in VB to hold the contents of the
form. (The Designer inserts new fields here as you add controls to the form.) Next
is the constructor, followed by the Dispose and InitializeComponent methods;
these are all described below. If this is the main form in your application, the
program’s entry point (the Main method described above) will follow in C#
programs; in VB programs, it will be added by the compiler at compile time, but
will not be displayed with the form’s source code. Finally, any event handlers for
controls on your form will be added at the end of the class.

The Designer does not make it obvious where you are expected to add any code of
your own, such as fields or methods other than event handlers. This is because it
doesn’t matter—Visual Studio .NET is pretty robust about working around you.
It is even happy for you to move most of the code that it generates if you don’t
like the way it arranges things, with the exception of the code inside the
InitializeComponent method, which you should avoid modifying by hand. (The
editor hides this code by default to discourage you from changing it.)

Initialization

Any freshly created form will contain a constructor and an InitializeComponent
method. The job of these methods is to make sure a form is correctly initialized
before it is displayed.

The generated constructor is very simple—it just calls the InitializeComponent
method. The intent here is that the Forms Designer places all its initialization
code in InitializeComponent, and you will write any initialization that you require
in the constructor. The designer effectively owns InitializeComponent, and it is
recommended that you avoid modifying its contents, because this is liable to
confuse the Designer. So when you look at the source code for a form class, Visual
Studio .NET conceals the InitializeComponent method by default—it is lurking
60 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
behind a line that appears as “Windows Form Designer generated code.”* You can
see this code by clicking on the + symbol at the left of this line in the editor.

You must not make any modifications to the overall structure of the
InitializeComponent method. It is usually acceptable to make small
changes to existing lines, or to remove them entirely, but more sub-
stantial changes will almost certainly confuse Visual Studio .NET,
and you could find that you can no longer edit your form visually in
the designer. Most changes can be made using the Forms designer or
by modifying values in its Properties window, which causes Visual
Studio to update the InitializeComponent method automatically.

Although the theory is that you will never need to modify anything inside this gener-
ated code, you may occasionally have to make edits. If you do make such changes
by hand, you must be very careful not to change the overall structure of the method,
as this could confuse the Designer, so it is useful to know roughly how the method
is arranged. It begins by creating the objects that make up the UI: each control on
the form will have a corresponding line calling the new operator, and store the result
in the relevant field. In C#, for example, such code appears as follows:

this.button1 = new System.Windows.Forms.Button();
this.label1 = new System.Windows.Forms.Label();
this.textBox1 = new System.Windows.Forms.TextBox();

and in VB, it appears as follows:

Me.Button1 = New System.Windows.Forms.Button()
Me.Label1 = New System.Windows.Forms.Label()
Me.TextBox1 = New System.Windows.Forms.TextBox()

Next, there will be a call to the SuspendLayout method, which is inherited from the
Control class. Layout is discussed in detail later on, but the purpose of this call is
to prevent the form from attempting to rearrange itself every time a control is set
up. Then each control is configured in turn—any necessary properties are set
(position, name, and tab order, at a minimum), and event handlers (in C# only)
are added. In C#, this looks like the following:

this.textBox1.Location = new System.Drawing.Point(112, 136);
this.textBox1.Name = "textBox1";
this.textBox1.TabIndex = 2;
this.textBox1.Text = "textBox1";
this.textBox1.TextChanged += new
 System.EventHandler(this.textBox1_TextChanged);

The corresponding VB code appears as follows:

Me.TextBox1.Location = New System.Drawing.Point(112, 136)
Me.TextBox1.Name = "TextBox1"
Me.TextBox1.TabIndex = 2
Me.TextBox1.Text = "TextBox1"

* It is hidden with a pair of #region and #endregion directives. These are ignored by the compiler, but
used by the editor in Visual Studio .NET to hide parts of the file automatically behind single sum-
mary lines. You can also use these directives yourself if you want to make blocks of code collapsible.
The Form Class | 61

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

After this, the form’s size is set and then all the controls are added to its Controls
collection. (Simply creating controls and storing them in private fields is not enough
to make them appear on screen—they must be explicitly added to the form on
which they are to appear; this process will be discussed in detail later.) Finally, the
ResumeLayout method, which is inherited from the Control class, is called. This is
the counterpart of the earlier call to SuspendLayout, and it indicates to the form that
the various additions and modifications are complete, and that it won’t be wasting
CPU cycles when it manages its layout. This call will also cause an initial layout to
be performed, causing any docked controls to be positioned appropriately.

Disposal

The other method created on all new forms is the Dispose method. This runs
when the form is destroyed and frees any resources that were allocated for the
form. In fact, all controls have two Dispose methods: one public, supplied by the
framework, and one protected, which you usually write yourself. To understand
why, we must first look at the way resources are normally released in .NET.

The CLR has a garbage collector, which means that when objects fall out of use,
the memory used by those objects will eventually be freed automatically. Classes
can have special functions called finalizers, which are run just before the garbage
collector frees an object. Classes in the .NET Framework that represent expensive
resources such as window handles usually have finalizers that release these
resources. So in the long run, there will be no resource leaks—everything will
eventually be freed either by the garbage collector or by the finalizers that the
garbage collector calls. Unfortunately, the garbage collector only really cares
about memory usage, and only bothers to free objects when it is low on memory.
This means that a very long time (minutes or even hours) can pass between an
object falling out of use and the garbage collector noticing and running its final-
izer. This is unacceptable for many types of resources, especially the kinds used by
GUI applications. (Although current versions of Windows are much more
forgiving than the versions of old, hogging graphical resources has never been a
good idea and is best avoided even today.)

So the .NET Framework defines a standard idiom for making sure such resources
are freed more quickly, and the C# language has special support for this idiom.
Objects that own expensive resources should implement the IDisposable inter-
face, which defines a single method, Dispose. If code is using such an object, as
soon as it has finished with the object it should call its Dispose method, allowing it
to free the resources it is using. (Such objects usually also have finalizers, so if the
client code forgets to call Dispose, the resources will be freed eventually, if some-
what late. But this is not an excuse for not calling the method.)

The Control class (and therefore any class deriving from it) implements
IDisposable, as do most of the classes in GDI+, so almost everything you use in
Windows Forms programming relies on this idiom. Fortunately, the C# language
has special support for it. The using keyword can automatically free disposable
resources for us at the end of a scope:
62 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
using(Brush b = new SolidBrush(this.ForeColor))
{
 ... do some painting with the brush ...
}

When the code exits the block that follows the using statement, the Brush object’s
Dispose method will be called. (The Brush class is part of GDI+, and it imple-
ments IDisposable; this example is typical of redraw code in a custom control.)
The most important feature of this construct is that it will call Dispose regardless
of how we leave the block. Even if the code returns from the middle of the block
or throws an exception, Dispose will still be called, because the compiler puts this
code in a finally block for us.*

Unfortunately, Visual Basic does not have any equivalent to using
blocks in C#. You must remember to call Dispose yourself.

Forms typically have a lot of resources associated with them, so it is not surprising
that they are always required to support this idiom. In fact, all user elements are—
the Control class enforces this because it implements IDisposable. The good news
is that most of the work is done for us by the Control class, as is so often the case.
It provides an implementation that calls Dispose on all the controls contained by
the form and frees all resources that the Windows Forms framework obtained on
your behalf for the form. But it also provides us with the opportunity to free any
resources that we may have acquired that it might not know about. (For example,
if you obtain a connection to a database for use on your form, it is your responsi-
bility to close it when the form is disposed.)

The picture is complicated slightly by the fact that there are two times at which
resource disposal might occur. Not only must all resources be freed when Dispose
is called, they must also be freed if the client has failed to call Dispose by the time
the finalizer runs. The model used by the Control class† enables you to use the
same code for both situations: any code to free resources allocated by your form
lives in an overload of the Dispose method, distinguished by its signature: void
Dispose(bool) (in C#) or Sub Dispose(Boolean) (in VB). This method will be called
in both scenarios—either when the user calls IDispose.Dispose or when the final-
izer runs.

It is important to distinguish between timely disposal and finalization when
cleaning up resources. In a finalizer, it is never possible to be sure whether any
references you hold to other objects are still valid: if the runtime has determined
that your object is to be garbage collected, it is highly likely that it will also have
decided that the objects you are using must be collected too. Because the CLR
makes no guarantees of the order in which finalizers are run, it is entirely possible

* A finally block is a block of code that the CLR guarantees to run, regardless of how the flow of
execution leaves the preceding block. It allows a single piece of cleanup code to be used in the
face of normal exit, premature returns, and exceptions.

† Strictly speaking it inherits this model from its base class, the Component class in the System.
ComponentModel namespace.
The Form Class | 63

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

that any objects to which you hold references have already had their finalizers run.
In this case, calling Dispose on them could be dangerous—most objects will not
expect to have their methods called once they have been finalized. So most of the
time, your Dispose method will only want to do anything when the object was
explicitly disposed of by the user. The only resources you would free during final-
ization would be those external to the CLR, such as any temporary files created by
your object or any handles obtained through interop.

The Dispose method that you are intended to override is protected, so it cannot be
called by external code. It will be called by the Control class if the user calls the
public Dispose method (IDispose.Dispose). In this case, the parameter passed to
the protected Dispose method will be true. It will also be called when the finalizer
runs, in which case the parameter will be false. (Note that this method will only
be called once—if IDispose.Dispose is called, the Control class disables the
object’s finalizer.) So the parameter indicates whether resources are being freed
promptly or in a finalizer, allowing you to choose the appropriate behavior.
Consider the code generated by the Designer, as shown in Examples 3-5 and 3-6.

This checks to see if the public Dispose method was called, and if it was, it
disposes of the components object, if present. (The components object is a collec-
tion of any non-Control components in use on the form, e.g., data sources.) But if
finalization is in progress (i.e., the disposing parameter is false), it doesn’t
bother, for the reasons detailed above. If you add any code to this Dispose
method, it too will normally live inside the if(disposing) { ... } block.

Example 3-5. The default protected Dispose method in C#

protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
}

Example 3-6. The default protected Dispose method in VB

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
End Sub
64 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Components added to a form using the Forms Designer in Visual
Studio .NET will not necessarily be added to the form’s components
collection. Only those components with a constructor that takes a
single parameter of type IContainer will be added. (All the compo-
nents in the framework that require disposal have such a construc-
tor.) If you are writing your own component that has code in its
Dispose method, you must supply an appropriate constructor. This
constructor must call Add on the supplied container to add itself to
the components collection.

There are two very important rules you must stick to if you need to modify this
resource disposal code in your form. First, you must always call the base class’s
Dispose method in your Dispose method, because otherwise the Control class will
not release its resources correctly. Second, you should never define your own
finalizer in a form—doing so could interact badly with the Control class’s own
finalizer; the correct place to put code to release resources in a form (or any other
UI element) is in the overridden protected Dispose method. This is precisely what
the code generated by the forms designer does, as shown in Examples 3-5 and 3-6.

You may be wondering what the components member is for, and why it needs to be
disposed of. It is a collection of components, and its job is to dispose of those
components—if you add a component such as a Timer to a form, the Forms
Designer will automatically generate code to add that component to the
components collection. In fact, it does this by passing components as a construction
parameter to the component, e.g.:

this.timer1 = new System.Windows.Forms.Timer(this.components);

The component will then add itself to the components collection. As you can see
from Examples 3-5 and 3-6, the default Dispose method supplied by the Designer
will call Dispose on the components collection. This in turn will cause that collec-
tion to call Dispose on each component it contains. So if you are using a component
that implements IDispose, the easiest way to make sure it is freed correctly is simply
to add it to the components collection. The Forms Designer does this automatically
for any components that require disposal. (It determines which require disposal by
examining their constructors—if a component supplies a constructor that takes an
IContainer as a parameter, it will use that constructor, passing components as the
container.) You can also add any objects of your own to the collection:

components.Add(myDisposableObject);

or:

components.Add(myDisposableObject)

Showing Modal and Non-Modal Forms

All forms created by Visual Studio .NET will conform to the structure just
described. But as with dialogs in classic Windows applications, there are two ways
in which they can be shown: forms can exhibit either modal or non-modal behavior.
The Form Class | 65

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

A modal form is one that demands the user’s immediate attention, and blocks
input to any other windows the application may have open. (The application
enters a mode where it will only allow the user to access that form, hence the
name.) Forms should be displayed modally only if the application cannot proceed
until the form is satisfied. Typical examples would be error messages that must
not go unnoticed or dialogs that collect data from the user that must be supplied
before an operation can be completed (e.g., the File Open dialog—an application
needs to know which file it is supposed to load before it can open it).

You select between modal and non-modal behavior when you display the form.
The Form class provides two methods for displaying a form: ShowDialog, which
displays the form modally, and Show, which displays it non-modally.

The Show method returns immediately, leaving the form on screen. (The event
handling mechanism discussed earlier can deliver events to any number of
windows.) A non-modal form has a life of its own once it has been displayed; it
may even outlive the form that created it.

By contrast, the ShowDialog method does not return until the dialog has been
dismissed by the user. Of course, this means that the thread will not return to the
Application class’s main event-handling loop until the dialog goes away, but this
is not a problem because the framework will process events inside the ShowDialog
method. However, events are handled differently when a modal dialog is open—
any attempts to click on a form other than the one being displayed modally are
rejected. Other forms will still be redrawn correctly, but will simply beep if the
user tries to provide them with any input. This forces the user to deal with the
modal dialog before progressing.

There is a more minor (and somewhat curious) difference between modal and
non-modal use of forms: resizable forms have a subtly different appearance. When
displayed modally, a form will always have a resize grip at the bottom righthand
corner. Non-modal forms only have a resize grip if they have a status bar.

Be careful with your use of modal dialogs, because they can prove somewhat
annoying for the user: dialogs that render the rest of the application inaccessible for
no good reason are just frustrating. For example, older versions of Internet
Explorer would prevent you from scrolling the main window if you had a search
dialog open. If you wanted to look at the text just below the match, you had to
cancel the search to do so. Fortunately this obstructive and needless use of a modal
dialog has been fixed—Internet Explorer’s search dialog is now non-modal. To
avoid making this kind of design error in your own applications, you should follow
this guideline: do not make your dialogs modal unless they really have to be.

Closing forms

Having displayed a form, either modally or non-modally, we will want to close it
at some point. There are several ways in which a form can be closed. From a
programmer’s point of view, the most direct approach is to call its Close method,
as follows:

this.Close(); // C#

Me.Close() ' VB
66 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
A form may also be closed automatically by the Windows Forms framework in
response to user input; for example, if the user clicks on a form’s close icon, the
window will close. However, if you want to prevent this (as you might if, for
example, the window represents an unsaved file), you can do so by handling the
Form class’s Closing event. The framework raises this event just before closing the
window, regardless of whether the window is being closed automatically or by an
explicit call to the Close method. The event’s type is CancelEventHandler; its
Boolean Cancel property enables us to prevent the window from closing if neces-
sary. Examples 3-7 and 3-8 illustrate the use of this property when handling the
Closing event.

Example 3-7. Handling the Closing event in C#

private void MyForm_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 if (!IsWorkSaved())
 {
 DialogResult rc = MessageBox.Show(
 "Save work before exiting?",
 "Exit application",
 MessageBoxButtons.YesNoCancel);

 if (rc == DialogResult.Cancel)
 {
 e.Cancel = true;
 }
 else if (rc == DialogResult.Yes)
 {
 SaveWork();
 }
 }
}

Example 3-8. Handling the Closing event in VB

Private Sub MyForm_Closing(sender As Object, _
 e As System.ComponentModel.CancelEventArgs)
 If Not IsWorkSaved() Then
 Dim rc As DialogResult = MessageBox.Show(_
 "Save work before exiting?", _
 "Exit application", _
 MessageBoxButtons.YesNoCancel)

 If rc = DialogResult.Cancel Then
 e.Cancel = True
 Else If rc = DialogResult.Yes Then
 SaveWork()
 End If
 End If
End Sub
The Form Class | 67

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

The form in Examples 3-7 and 3-8 checks to see if there is unsaved work.
(IsWorkSaved is just a fictional method for illustrating this example—it is not part
of the framework.) If there is, it displays a message box giving the user a chance to
save this work, abandon it, or cancel, which keeps the window open. In the latter
case, this code informs the framework that the window should not be closed after
all by setting the Cancel property of the CancelEventArgs argument to true.

If you write an MDI application (i.e., an application that can display multiple
documents as children of a single main frame), the framework treats an attempt to
close the main window specially. Not only does the main window get a Closing
and Closed event, so does each child window. The child windows are asked first,
so if each child represents a different document, each child can prompt the user if
there is unsaved work. But none of the children are closed until all of the windows
(the children and the main window) have fired the Closing event. This means the
close can be vetoed by any of the windows. The close will only happen if all the
child windows and the main window are happy.

If nothing cancels the Closing event, the window will be closed, and the Closed
event will be raised. If the form is shown non-modally, the framework then calls
the form’s Dispose method to make sure that all the form’s resources are freed.
This means once a non-modal form has been closed, you cannot reuse the object
to display the form a second time. If you call Show on a form that has already been
closed, an exception will be thrown. For modal dialogs, however, it is common to
want to use the form object after the window has closed. For example, if the dialog
was displayed to retrieve information from the user, you will want to get that
information out of the object once the window closes. Modal dialogs are therefore
not disposed of when they are closed, and you must call Dispose yourself, as
shown in Examples 3-9 and 3-10. You should make sure that you use any proper-
ties or methods that you need before calling Dispose (i.e., inside the using block).

Example 3-9. Disposing of a modal dialog in C#

using (LoginForm lf = new LoginForm())
{
 lf.ShowDialog();
 userID = lf.UserID;
 password = lf.Password;
}

Example 3-10. Disposing of a modal dialog in VB

Try
 Dim lf As New LoginForm()
 lf.ShowDialog()
 userID = lf.UserID
 password = lf.Password
Finally
 If.Dispose()
End Try
68 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Although the framework will automatically try to close a window when its close
icon is pressed, it is common to want to close a form as the result of a button
click. It turns out that if the button does nothing more than close the form, you
do not need to write a click handler to make this happen. The Windows Forms
framework will automatically close the form when any button with a DialogResult
is clicked. So we will now look at dialog results.

Automatic button click handling

A dialog might be closed for several different reasons. Instead of clicking the OK
button, the user might attempt to cancel the dialog by clicking on its close icon or
Cancel button, or by pressing the Escape key. Most applications will distinguish
between such cancellation and normal completion, and some may make a finer
distinction still, such as a message box with Yes, No, and Cancel buttons.
Windows Forms provides support for automatically managing the various ways of
closing a window without having to write click handlers. It also makes it easy for
users of a form to find out which way a form was closed. Both of these facilities
revolve around dialog results.

The Form class’s ShowDialog method returns a value indicating how the dialog was
dismissed. The returned value corresponds to the DialogResult property of the
button with which the user closed the window. The following code shows an
excerpt from the initialization of a form containing two buttons, buttonOK and
buttonCancel (the Forms Designer will generate such code if you set a button’s
DialogResult property in the Properties window):

buttonOK.DialogResult = DialogResult.OK;
buttonCancel.DialogResult = DialogResult.Cancel;

Any code that shows this dialog will be able to determine which button was
clicked from ShowDialog’s return code. The returned value can also be retrieved
later from the DialogResult property of the Form object.

The type of the ShowDialog method’s return value and of the DialogResult prop-
erty of both the Form object and of individual Button controls is also DialogResult,
which is an enumeration type containing values for the most widely used dialog
buttons: OK, Cancel, Yes, No, Abort, Retry, and Ignore.

To handle button clicks without an event handler, you must set a button’s
DialogResult property to any value other than the default (DialogResult.None).
Then clicking that button will cause the framework to close the form and return
that value. If you want, you can still supply a Click event handler for the button,
which will be run before the window is closed. But the window will be closed
whether you supply one or not (unless there is a Closing handler for the form that
cancels the close, as described earlier).

It is also possible to return a dialog result without using a Button control. If you
wish to close the form in response to some event that did not originate from a
button, you can also set the Form class’s DialogResult property before calling Close.

But what about when the form is cancelled by pressing the Escape key? We
normally want the form to behave in the same way regardless of how it is
dismissed. Specifically, we would like to run the same event handler and return
The Form Class | 69

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

the same DialogResult in all three cases. This turns out to be simple because the
Windows Forms framework can fake a click on the Cancel button when the
Escape key is pressed. All we need to do is tell the form which is our Cancel
button (which could be any button—it doesn’t have to be labeled Cancel)—with
the Form class’s CancelButton property:

this.CancelButton = buttonCancel; // C#

Me.CancelButton = buttonCancel ' VB

If buttonCancel has a handler registered for its Click event, that handler will be
called either when the button is clicked, or when the Escape key is pressed. In both
cases, the same two things to happen: first, the Click handler (if there is one) is
called, then the window is closed. The Click handler for the button indicated by the
CancelButton property does not need to take any special steps to close the window.

The CancelButton property is ignored if the user simply closes the
window. In this case, the button’s click handler will not be called,
and its specified DialogResult will not be returned from ShowDialog.
So you will need to override the OnClosed method in your form to
handle all the possible ways of closing the dialog.

As with all buttons, if you specify a DialogResult other than None for the Cancel
button, that value will be used as the dialog result. However, the button referred
to by the CancelButton property is unusual in that if this property is set to None, it
behaves as though it were set to Cancel: the form will be closed, and the dialog
result will be Cancel. (Also, when you choose a CancelButton in the Forms
Designer, it sets the button’s DialogResult property to Cancel automatically. This
seems to be overkill, because it would return Cancel in any case.)

As well as supporting a CancelButton, a form can also have an AcceptButton. If set,
this will have a Click event faked every time the user presses the Enter key while on
the form. However, this turns out to be less useful than the CancelButton because
this behavior is disabled if the control that currently has the focus does something
with the Enter key. For example, although Button controls behave as though clicked
when Enter is pressed, if some button other than the AcceptButton has the focus,
that button will get a Click event, not the AcceptButton. If a multiline TextBox
control has the focus, it will process the Enter key instead. So if your form consists
of nothing but buttons and multiline text boxes, there is no point in setting the
AcceptButton property.

Note that unlike the CancelButton, if you do assign an AcceptButton, the form will
only be closed automatically when this button is clicked if you explicitly set the
accept button’s DialogResult property to something other than None.

We have now seen how to create, display, and dismiss forms. But of course, a
form’s main role is to act as a container of other controls—empty windows are
rarely useful. So we will now look in more detail at the nature of control contain-
ment in the Windows Forms framework.
70 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Containment
All useful forms contain some controls. There is more to this containment rela-
tionship than meets the eye, and if you are familiar with the old Win32 parent/
child relationship, you will find that things do not work in quite the same way.
We will look at the control nesting facilities supplied by both the Control class
and the ContainerControl class, paying particular attention to the implications of
containment for focus and validation events.

Parents and Owners

Controls rarely exist in complete isolation—top-level windows usually contain
some controls, and all non–top-level controls are associated with a window. In
fact, Windows Forms defines two kinds of relationships between controls. There
is the parent/child relationship, which manages containment of controls within a
single window. There is also a looser association that can exist between top-level
windows, which is represented by the owner/owned relationship.

Parent and child

A child window is one that is completely contained by its parent. For example, any
controls that you place on a form are children of that form. A child’s position is
specified relative to its parent, and the child is clipped to the parent’s bounds—i.
e., only those parts of the child completely inside the parent are visible. Forms can
be children too: document windows in an MDI application are children of the
main MDI frame.

A control’s parent is accessible through its Parent property (of type Control). If
you examine this property on a control on a form, you will typically find that it
refers to that form. However, many controls can behave as both a parent and a
child—if you place a button inside a group box on a form, the button’s parent will
be the group box, and the group box’s parent will be the form.

We can also find out if a control has any children—they are available through its
Controls property, of type Control.ControlCollection. Examples 3-11 and 3-12
show this property being used to attach a Click event handler to all controls on a
form. (Note that this only attaches itself to direct children of the form. It will not
handle clicks from controls nested inside other controls, e.g., a button inside a
panel. This could be fixed by writing a recursive version of the method.)

Example 3-11. Iterating through child controls with C#

private void AddClickHandlers()
{
 foreach(Control c in Controls)
 {
 c.Click += new EventHandler(AnyClick);
 }
}

Containment | 71

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

The parent/child relationship can be established through either the Parent prop-
erty or the Controls property. A child control’s Parent property can be set to refer
to a parent. Alternatively, you can use the Controls property on the parent—this
is a collection that has Add and AddRange methods to add children. The Forms
Designer uses the latter. If you examine the InitializeComponent method gener-
ated by the Designer for a form with some controls on it, you will see something
like this towards the end of the function in a C# project:

this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.checkBox1,
 this.btnCancel,
 this.btnOK});

In a VB project, the code appears as follows:

Me.Controls.AddRange(New System.Windows.Forms.Control() _
 {Me.checkBox1, Me.btnCancel, Me.btnOK})

(checkBox1, btnCancel and btnOK are controls that would have been initialized
earlier in the method.) This code would have worked equally well if the Designer
had set the Parent property to this in C# or to Me in VB on each of these controls,
but using Controls.AddRange is slightly more efficient, because it allows all the
controls to be attached to the form in one operation.

When nesting is in use, you will see a similar call to the AddRange method. For
example, if you create a panel with some controls in it, those controls will be
added with a call to Controls.AddRange on the panel. This panel itself would then
be added to the form’s Controls collection.

A control might not have a parent—its Parent property could be null (in C#) or
Nothing (in VB). Such controls are called top-level windows. Top-level windows

private void AnyClick(object sender, System.EventArgs e)
{
 Control clicked = (Control) sender;
 Debug.WriteLine(string.Format("{0} clicked", clicked.Name));
}

Example 3-12. Iterating through child controls with VB

Private Sub AddClickHandlers()
 Dim c As Control
 For Each c in Controls
 AddHandler c.Click, AddressOf AnyClick
 Next
End Sub

Private Sub AnyClick(sender As Object, e As EventArgs)
 Dim clicked As Control = DirectCast(sender, Control)
 Console.WriteLine(String.Format("{0} clicked", clicked.Name))
End Sub

Example 3-11. Iterating through child controls with C# (continued)
72 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
are contained directly by the desktop, and usually have an entry in the taskbar. For
normal Windows Forms applications, a top-level window is a form of some kind.*

Ownership

Ownership defines a rather less direct association between windows than
parenting. It allows a group of windows, such as an application window and its
associated tool windows, to behave as a single entity for certain operations such as
minimizing and activation.

Ownership is used to group related forms. It is often used for toolbox windows—
when an application is minimized, any associated tool windows it displays should
also be minimized. Likewise, when the application is activated (i.e., brought to the
front by a mouse click or Alt-Tab), the tool windows should also be activated. You
can automate this behavior by setting up an ownership association between the tool
windows and the main windows. Unlike parenting, ownership only exists between
top-level windows, because an owned form is never contained by its owner. (For
example, undocked toolbars can usually be moved completely outside the main
window, which would not be possible if they were children of that window.)

Although an owned form may live outside or overlap its owner, it will always
appear directly in front of it in the Z-order.† Bringing the owner to the foreground
will cause all the forms it owns to appear in front of it. (This is not the same thing
as a top-most form, which is described below.) Bringing an owned form to the
front will have the same effect as bringing its owner to the front. Minimizing an
owner causes all its owned windows to be minimized too, although an owned
window can be minimized without minimizing the owner.

Owned windows typically don’t need their own representation on the Windows
taskbar because they are subordinate to their owners. Because activating an
owned window implicitly activates the owner and vice versa, it would merely
clutter up the taskbar to have entries for both. So owned forms normally have
their ShowInTaskBar properties set to false.

The following code fragments (in VB and C#) show a new form being created,
owned, and displayed:

// defining an owner form in C#
MyForm ownedForm = new MyForm();
ownedForm.ShowInTaskbar = false;
AddOwnedForm(ownedForm);
ownedForm.Show();

* Strictly speaking, the framework allows for top-level controls that are not forms, so you should
not presume that a top-level control can necessarily be cast to Form. You can determine whether
a control is top-level from its TopLevel property.

† Windows defines a Z-order for all windows on the screen. It determines which windows are on
top of which other windows; i.e., if two windows were to overlap, the one that is highest in the Z-
order will obscure the one underneath. Z is used because it effectively determines the position of
the window in third dimension: X and Y are screen position, so Z must define the stacking order.
Containment | 73

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

' defining an owner form in VB
Dim ownedForm As New [MyForm]
ownedForm.ShowInTaskbar = False
AddOwnedForm(ownedForm)
ownedForm.Show()

(This fragment would be inside some method on the owner form, such as its
constructor.) AddOwnedForm is a method of the Form class that adds a form to the
list of owned forms. (Using ownedForm.Owner = this; or ownedForm.Owner = Me
would have exactly the same effect; as with parenting, the ownership association
can be set up from either side.) Note the use of the ShowInTaskBar property to
prevent this window from getting its own entry in the taskbar.

All owned forms are closed when their owning form is closed. Because they are
considered wholly subordinate to the owner, they don’t receive the Closed or
Closing events when the main form closes (although they do if they are closed in
isolation.) So if you need to handle these events, you must do so in the owning
form.

Top-most forms

It is important not to confuse owned forms with top-most forms. (These in turn
should not be confused with top-level forms, as defined earlier.) Superficially, they
may seem similar: a top-most form is one that always appears on top of any
non–top-most forms. Viewed in isolation, owned forms may look like they are
doing the same thing—an owned form always appears on top of its owner.
However, top-most forms are really quite different—they will appear on top of all
other windows, even those from other applications.

If you need a form to sit above all other windows, set its TopMost property to true.
Certain kinds of popup might need to set this property to true—your application
might need to display some visual alert that should be visible regardless of what
windows are currently open, much like Windows Messenger does. But exercise
good taste—making all windows top-most is pointless because ultimately only
one window can really be at the very top (the top-most window with the highest
Z-order), and it can be very annoying for the user to be unable to hide a top-most
window. If you decide to make a window top-most, unless it is a short-lived pop-
up window, you should provide a way of disabling this behavior, as the Windows
Task Manager does with its Always on Top menu option.

Owned forms and top-most forms are useful when we need to control the
ordering of forms either with respect to all other windows on the desktop or just
between specific groups of forms. But arguably the most important relationship is
the one between parent and child controls—this association is fundamental to the
way controls are contained within a window. Although the parent/child relation-
ship is managed by the Control class, there can be complications with focus
management for nested controls. This issue is dealt with by the ContainerControl
class, which we will look at now.
74 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Control and ContainerControl

As we have seen, the ability to act as a container of controls (i.e., to be a parent) is
a feature supplied by the Control class. Its Controls property manages the collec-
tion of children. Only certain control types elect to present this container-like
behavior in the Designer (e.g., the Form, Panel, and GroupBox controls), but more
bizarre nesting can be arranged if you write the code by hand—it is possible to
nest a button inside another button, for example. This is not useful, but it is
possible as a side effect of the fact that containment is a feature provided by the
base Control class.

But if you examine the Form class closely, you will see that it inherits from a class
called ContainerControl. You might be wondering why we need a special
container control class when all controls can support containment. The answer is
that ContainerControl has a slightly misleading name. ContainerControl only
really adds one feature to the basic Control.* The main purpose of a
ContainerControl is to provide focus management.

Sometimes you will build groups of controls that act together as a single entity.
The most obvious example is a form, which is both a group of controls and also a
distinct entity in the UI. But as we will see in Chapter 5, it is possible to build
non–top-level controls composed from multiple other controls (so-called user
controls).

Such groups typically need to remember which of their constituent controls last
had the focus. For example, if a form has lost the focus, it is important that when
the form is reactivated, the focus returns to the same control as before. Imagine
how annoying it would be if an application forgot which field you were in every
time you tabbed away from it. And we also expect individual controls on a form
to remember where they were—when the focus moves to a list control, we expect
it to remember which list item was selected previously, and we expect tree
controls to remember which tree item last had the focus.

Users expect UI elements to remember such state in between losing the focus and
reacquiring it. (Most users probably wouldn’t be conscious of the fact that they
expect this, but they would soon complain if you were to provide them with an
application that forgot where it was every time it lost the focus.) So the Windows
Forms framework helpfully provides us with this functionality in the
ContainerControl class.

Most of the time, you don’t really need to think about ContainerControl. It should
be used whenever you build a single UI element that consists of several controls,
but because the Form class and the UserControl class (see Chapter 5) both inherit
from ContainerControl, you are forced into doing the right thing.

Note that the Panel and GroupBox classes do not derive from ContainerControl,
even though they usually contain other controls. This is because they do not aim
to modify focus management in any way—they are essentially cosmetic. Focus for

* Strictly speaking, it adds two, but one is a feature it acquires by deriving from ScrollableControl:
the ability to add scrollbars to a control automatically.
Containment | 75

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

controls nested inside these controls is managed in exactly the same as it would
have been if they were parented directly by the form, because a ContainerControl
assumes ownership not just for its children, but for all its descendants. (Of course,
if it has any ContainerControl descendants, it will let those manage their own chil-
dren; each ContainerControl acts as a boundary for focus management.)

Focus and validation

As discussed in the previous chapter, focus management is closely related to vali-
dation. A control whose CausesValidation property is true will only normally be
validated when two conditions are met: first, it must have had the focus; and
second, some other control whose CausesValidation property is also true must
subsequently receive the focus. (Any number of controls whose CausesValidation
property is false may receive the focus in between these two events.)

Because ContainerControl groups a set of controls together and manages the focus
within that group, it has an impact on how validation is performed. When the focus
moves between controls within a ContainerControl, the validation logic works
exactly as described above. But when the focus moves out of a ContainerControl
that is nested within another ContainerControl (e.g., a UserControl on a Form),
things are a little more complex.

Figure 3-2 shows a form (which is a ContainerControl) and a UserControl. We will
discuss the UserControl class in Chapter 5, but for now, the important things to
know are that it derives from ContainerControl and that it is treated as a single
entity by the containing form (the form will not be able to see the individual text
boxes and labels inside the control). All the text boxes have Validating event
handlers, and all the controls have their CausesValidation properties set to true.
Currently, the focus is in the Foo text box.

When the focus moves to Bar, the rules of validation say that Foo must be vali-
dated. This is not a problem—both controls are inside the same ContainerControl
(MyUserControl). It is responsible for their focus management, so it will ensure that
Foo is validated. But what would happen if instead the focus moved to Quux? Quux
is not inside the user control—its focus is managed by another ContainerControl,
the form.

Figure 3-2. Validation and ContainerControl nesting

Parent ContainerControl (form)

Nested ContainerControl (user control)
76 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
The form knows nothing of the Foo and Bar fields—these are just encapsulated
implementation details of the user control. But it will correctly determine that
MyUserControl should be validated because both MyUserControl and Quux have their
CausesValidation property set to true. Fortunately, when any ContainerControl
(such as a UserControl) is validated, it remembers which of its member controls last
had the focus, and validates that. So in this case, when the focus moves from Foo to
Bar, the form validates MyUserControl, which in turn validates Foo.

Ambient Properties

Regardless of whether your controls are all children of the form, nested inside
group boxes and panels, or nested within a ContainerControl for focus manage-
ment, you will want your application to look consistent. When you modify certain
properties of a form’s appearance, all the controls on the form should pick up the
same properties. For example, if you change the background color of your form,
you will probably want any controls on the form to use the same background
color. It would be tedious if you had to set such properties manually on every
single control on the form. Fortunately you don’t have to—by default, the main
visual properties will propagate automatically.

The properties that behave like this are known as ambient properties. The
ambient properties on the Control class are Cursor, Font, ForeColor, and
BackColor. It is useful to understand exactly how ambient properties work—the
Forms Designer in Visual Studio .NET doesn’t show you everything that is going
on, and the results can therefore sometimes be a little surprising.

Using the Designer, you could be forgiven for assuming that if you don’t set a
visual property of a control, it will just have a default value. For example, the
background color of a button will seem to be SystemColors.Control. However, a
control distinguishes between a property that has had its value set and a property
that hasn’t. So when you don’t set the BackColor of a control, it’s not that the
BackColor has a default value; it actually has no value at all.

This is obfuscated somewhat by the fact that when you retrieve a control’s
BackColor, you will always get a nonempty value back. What is not obvious is that
this value didn’t necessarily come from the control in question. If you ask a
control for its background color when the background color has not been set on
that control, it starts looking elsewhere to find out what its color should be.

If a control doesn’t know what value a particular property should have, the first
place it looks is its parent. So if you put a button on a form, then read that button’s
BackColor without having set it, you are implicitly reading the form’s BackColor.

But what if there is no parent to ask? A Form might have no parent, so what does it
do when asked for its BackColor if none has been specified? At this point it
attempts to see if it is being hosted in an environment that supplies it with an
AmbientProperties object. To find this out, it uses the Control class’s Site prop-
erty, and if this is non-null, it will call its GetService method to determine whether
the environment can supply an AmbientProperties object. Usually there will be no
site, in which case, it finally falls back to returning its default value. (This will be
the case if the form is just being run as a standalone application; you usually only
get a site when being hosted in something like Internet Explorer.)
Containment | 77

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

So what impact do these ambient properties have on your application’s behavior?
Their effect is that unless you explicitly specify visual properties for your controls,
they will automatically pick up appropriate values from their surroundings. If a
control is being hosted in some environment that supplies values for these
ambient properties, such as Internet Explorer, it will use those. Otherwise, the
system-wide defaults will be used.

Some controls deliberately ignore certain ambient properties, either because they
have no use for them or because they positively want to use something else. For
example, the TextBox class overrides the BackColor property so that its back-
ground is always the SystemColors.Window color (typically white) by default,
regardless of what the ambient background color is.

Remember that whenever you read an ambient property on a control, you will get
back something, but unless that property was set explicitly on that control, the
value you get back will have been retrieved from elsewhere. Visual Studio .NET
makes it clear when you have modified a property on a control by showing the
value of that property in bold type. This is useful, but it does not tell you how the
property obtains its value when it has not been set explicitly—the Properties
window always shows the effective value, without telling you where that value
came from. In some cases, you may need to examine the source code to see
exactly what it has done: if the property has not been set explicitly in the
InitializeComponent method, the value shown will be the ambient one.

MDI Applications

Many Windows applications use the Multiple Document Interface (MDI). This
defines a user interface structure for programs that can display multiple files. The
application has a main window, and each document being edited is displayed
inside a child window. Windows Forms provides special support for this.

We could just create our document windows as children of the main application
window. However, this still leaves us with a certain amount of work to do to
manage menus correctly—MDI applications usually present their menus in the
main application window, but modify which items are present according to
whether a document window is active. Windows Forms is able to manage MDI
menus correctly for us, including automatically merging a child window’s menu
into the main application window. The details of menu merging are discussed in
Chapter 4, but to make this happen automatically, we must tell Windows Forms
that we are building an MDI-style application. First of all, we must set the parent
window’s IsMdiContainer property to true. Second, when we display a child
window, we must let Windows Forms know that is should behave as an MDI
child, as in the following C# code fragment:

ChildForm cf = new ChildForm();
cf.MdiParent = this;
cf.Show();

or in its equivalent VB code fragment:

Dim cf As New ChildForm()
cf.MdiParent = Me
cf.Show()
78 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
By establishing the parent/child relationship with the MdiParent property instead
of the normal Parent property, we enable automatic menu merging.

Layout
As we saw in the previous chapter, the framework can modify a control’s position
and size automatically. We looked at the docking and anchoring facilities, but
Windows Forms provides support for other styles of layout. The simplest of these
is a fixed layout in a scrollable window. Splitter support is also built in. In this
section, we will look at all these styles of layout, and then examine the mechanism
in the framework that underpins them all. It is possible to extend the layout facili-
ties to provide your own automatic layout strategies. We will look at the standard
events that support this, and then see a simple example custom layout engine.

Scrolling

Windows Forms provides a facility for enabling the contents of a control to
exceed the control’s size on screen, and for scrollbars to be added automatically to
enable the user to access all of it. This functionality is provided by the
ScrollableControl class. This is the base class of ContainerControl and of Panel,
which means that this behavior is available to all forms, panels, and user controls.

To enable automatic scrolling management, simply set the AutoScroll property to
true. If the window is smaller than its contents, scrollbars will be added automati-
cally. Of course, the class will need some way of knowing how large the window’s
contents are. By default, it will deduce this from its child controls—it will assume
that the window’s size should be exactly large enough to hold all the controls.

Because automatic scrolling will make the scrollable area exactly large enough to
hold the controls and no larger, the controls will be right up against the edge of
the window when it is scrolled as far down or across as it can go. However, you
can add some padding by setting the AutoScrollMargin property. This property’s
type is Size, which enables you to specify the vertical padding and the horizontal
padding separately. So specifying a margin of new Size(10, 20) would leave 10
units of blank space to the right of the right-most control and 20 units of blank
space beneath the lowest control.

Alternatively, you can set the scroll size explicitly with the AutoScrollMinSize
property, which is also of type Size. The space occupied by the controls will still
be calculated as described above, but if the AutoScrollMinSize property is larger,
its value will be used instead. (In fact, each dimension is used individually—the
effective window size will be wide enough for the controls and any padding speci-
fied with AutoScrollMargin, and at least as wide as AutoScrollMinSize.Width, and
it will be tall enough for the controls and any padding, and at least as tall as
AutoScrollMinSize.Height.)

You should not use both docking (discussed in the following section) and
scrolling in a single control. If you wish to have controls docked to the edge of a
scrolling window, you should add a child Panel control and make that do the
scrolling, setting the panel’s Dock property to Fill so that it will use all the
remaining space not used by other controls docked to the edges of the form. This
Layout | 79

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

is because the automatic scrolling logic does not interact well with the automatic
layout logic used when docking. Figure 3-3 shows such a form—it has a TextBox
docked to the left and a Panel docked to fill the remaining area. The Form itself is
not scrollable. The scrollbar is present because Panel’s AutoScroll property has
been set to true.

In fact, there is a little more to docking than was discussed in Chapter 2, so it is
time to revisit the topic.

Docking

We saw in Chapter 2 how to get a control to attach itself to the edge of a form by
using the Dock property. What we didn’t look at was what happens when more
than one control in a given window uses docking. Not only can you have multiple
controls docked in a single window, you can even have more than one docked to
the same edge, but it is important to understand exactly what the Windows
Forms layout logic does under these circumstances.

When two controls are docked on the same edge of a window, the behavior is
straightforward. The control that is docked first will be up against the edge of the
window, and the next one will be up against the first control, and so on. Every
time a control is docked, it effectively defines that edge of the window for docking
as far as other controls are concerned. (And any control that specifies Dock.Fill
gets all the space left over.)

This rule applies to multiple controls docked to different edges too—the first one
to be docked always gets the entire edge, and each subsequent control gets what-
ever is left over. Figure 3-4 shows the effect of this for a pair of controls, one of
which is docked to the top of the form, the other to the side.

But what determines the order in which docking occurs? If I have three controls
all docked to the left edge of a window, the order in which they will appear is

Figure 3-3. Combining scrolling and docking

Figure 3-4. The impact of docking order
80 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
determined by the fact that the children of a control are held in an ordered collec-
tion. (The Controls property remembers the order in which you added the
controls.) The later a control was added to the collection, the earlier it will be
considered for docking.

You can modify this order with the Forms Designer. If you bring a control to the
front, it is moved to the top of the list of controls passed to AddRange, because
when controls overlap, the ones at the front of this list appear on top. For
docking, this will cause it to be docked last, so it will appear innermost. So if you
have multiple controls docked to the same edge of a form, sending one of those
controls to the back in the editor will move it to the edge of the form, and
bringing it to the front will move it inwards.

Splitters

The purpose of a splitter is to divide a window into two resizable portions. For
example, the bar that divides the folders pane from the contents pane in a
Windows Explorer window is a splitter. The user can drag the splitter around to
change the way the space is shared between the two panes. The Windows Forms
framework supplies a Splitter control that provides this functionality.

The Splitter control never actually moves anything—it relies on the framework’s
docking mechanism to do the work for it. The usual way of using a splitter is to
have one between two other controls. The first control and the splitter are docked
to the same edge of the window, usually the left or the top. The splitter should be
docked towards the inside of the window (i.e., it should be ahead of the other
control in the list passed to AddRange, which means putting it to the back in the
Designer). The remaining control is then set to Dock.Fill so that it uses the
remaining space. Figure 3-5 shows a typical layout for a vertical splitter.

When the user drags a splitter, the splitter control only resizes the outermost
control. This causes the window to perform a layout operation, recalculating the
position of all docked controls. As a side effect of resizing the outermost control,
when the splitter’s position is calculated, it will automatically be moved to the
edge of that panel. The splitter doesn’t have to move itself—resizing the control it
is docked up against is enough, because Windows Forms’ automatic layout moves
the splitter automatically. This in turn changes the amount of space available for
the other control, and because that is set to Dock.Fill, the other control will fill
the space available, shrinking or expanding as required.

Figure 3-5. Use of docking for splitters

Outer control
(DockLeft)

Inner control
(DockFill)
Layout | 81

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

For the splitter to work, all three controls must be docked and in the correct
order. It is fairly common practice for one or both of the controls to be Panel
objects—this allows you to place multiple controls inside the areas that the
splitter resizes. This is useful if you want to use multiple controls in conjunction
with a splitter, because a splitter can only cause the two controls on either side of
it to be resized.

Layout Events

The splitter relies on the automatic layout features of the Control class. More-
over, it relies on the control class automatically recalculating the layout as a result
of one of its child controls being resized. This works because the Windows Forms
framework is designed to support automatic re-layout in response to certain
events. It also allows us to influence the way in which layout is performed.

Any time a control is added to or removed from another control, or something is
moved or resized, it is presumed that this will have an impact on how the form’s
contents should be arranged. So whenever this happens, the framework calls the
parent control’s PerformLayout method. This will perform the automatic docking
and anchor layout, but before doing that it raises the Layout event. This gives our
code a chance to execute custom layout logic.

So during normal operation, layout will be performed every time a window
changes size, or any of its contents are moved or resized. Most of the time, this is
fine, but what about when we are creating the window? Everything we do during
initialization would cause it to perform another layout. This would be a waste of
time, because only the very last layout it does would stick. So during initialization,
we call the form’s SuspendLayout method at the start, and then the form’s
ResumeLayout method when we have finished arranging the contents of the form.
(Visual Studio .NET puts these calls in for us.) This means we just get the one
layout performed at the end of the initialization process, which is what we require.

Sometimes you might want to take action to modify a form’s layout only when
particular things have happened. For example, your layout code might need to do
something only when a form is resized and ignore all other events. In such cases,
the Move and Resize events provide us with rather more specific notifications of
what has changed than the firehose Layout event.

Custom Layout

So why would we ever care about the Layout event? Unfortunately the Dock and
Anchor properties don’t cover every possible automatic layout eventuality. For
example, a common requirement is to have several controls fill the width of a
form (or maybe a panel in a form), sharing the space evenly between all the
controls. (So if there are three controls across, each will take exactly a third of the
space available.)

This cannot be done with the standard docking and anchoring layout, so some
custom logic must be used. The Layout event simply notifies us when it is time to
apply that logic.
82 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Example 3-13 shows a simple custom layout handler that can be attached to a
control’s Layout event like so:

myPanel.Layout += new LayoutEventHandler(HorizontalLayout);

Example 3-14 shows the corresponding custom layout handler in VB. (The Panel
control must also be declared programmatically using the WithEvents keyword.)

It will automatically adjust the width and horizontal position of each child
control, so that they fill their parent control and are each of the same width. Note
that you must attach this to the Layout event of the parent control whose children
you wish to arrange, not the children themselves.

Localization
The software market is a global one, and many programs will ship in regions where
the users’ first language will be different from the application developers’ native
tongue. While many software products get away with making the highly parochial
assumption that everybody speaks English, .NET lets us do better than that. It
provides support for building applications that support multiple languages.

Example 3-13. Example custom layout in C#

private void HorizontalLayout(object sender,
 System.Windows.Forms.LayoutEventArgs e)
{
 Control parent = (Control) sender;
 for (int i = 0; i < parent.Controls.Count; ++i)
 {
 Control child = parent.Controls[i];
 int pos = i * parent.Width;
 pos /= parent.Controls.Count;
 child.Left = pos;
 child.Width = parent.Width/parent.Controls.Count;
 }
}

Example 3-14. Example custom layout in VB

Private Sub HorizontalLayout(sender As Object, _
 e As LayoutEventArgs) _
 Handles myPanel.Layout
 Dim parent As Control = DirectCast(sender, Control)
 Dim child As Control
 Dim I, pos As Integer
 For i = 0 to parent.Controls.Count – 1
 child = parent.Controls(i)
 pos = i * parent.Width
 pos /= parent.Controls.Count
 child.Left = pos
 child.Width = parent.Width/parent.Controls.Count
 Next
End Sub
Localization | 83

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

The .NET Framework supplies facilities for localization of resources such as
strings and bitmaps, and the Forms Designer can create forms that make use of
this. To understand how to create localizable user interfaces, it is first necessary to
understand the underlying localization mechanism that it is based on, so we will
first look at global resource management, and then we will see how it is applied in
a Windows Forms application.

Resource Managers

The programming model for localizable applications is based on a simple premise:
whenever you require information that might be affected by the current language,
you must not hardcode this information into your application. All such informa-
tion should be retrieved through a culture-sensitive mechanism. (In .NET, the
word culture is used to describe a locality; it implies all the relevant information,
such as location, language, date formats, sorting conventions, etc.) The mecha-
nism we use for this is the ResourceManager class, which is defined in the System.
Resources namespace.

The ResourceManager class allows named pieces of data to be retrieved. (We’ll see
where this data is stored in just a moment.) For example, rather than hardcoding
an error message directly into the source, we can do the following in C#:

ResourceManager resources = new ResourceManager(typeof(MyForm));
string errorWindowTitle = resources.GetString("errorTitle");
string errorText = resources.GetString("errorFileNotFound");
MessageBox.Show(errorText, errorWindowTitle);

The equivalent code in VB is:

Dim resources As New ResourceManager(GetType([MyForm]))
Dim errorWindowTitle As String = resources.GetString("errorTitle")
Dim errorText As String = resources.GetString("errorFileNotFound")
MessageBox.Show(errorText, errorWindowTitle)

This creates a ResourceManager object and asks it for two named resources:
errorTitle and errorFileNotFound. It uses the strings returned by the
ResourceManager as the error text and window title of a message box.

So where will the ResourceManager find this information? It will look for a resource
file—a file that contains nothing but named bits of data, and it will expect to find
it embedded as a named resource in an assembly. (Any .NET assembly can have
arbitrary named files embedded in them. Any kind of file can be attached in this
way—e.g., text files, bitmaps, binary files. But the ResourceManager will be looking
for an embedded file in its special resource format.) It needs to know two things
to locate the embedded resource file: the name of the resource file and the
assembly in which it is embedded.

The name of the resource file is typically based on a class name. So in the previous
code fragments, the ResourceManager will be looking for a file named after the
MyForm class. It will always use the full name of the class, including its namespace,
so if MyForm is defined in the MyLocalizableApp namespace, the ResourceManager
will look for an embedded resource called MyLocalizableApp.MyForm.resources.
(We will see shortly how to get Visual Studio .NET to add an appropriately
named resource file to your project.)
84 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
But the ResourceManager also needs to know which assembly the resource file will
be contained in. The assembly it will load is determined by the culture in which
the code is running (i.e., what country and with which language).

A culture is identified by a two-part name. The first part indicates the spoken
language, and the second part indicates the geographical location. For example, en-
US represents the English-speaking U.S. locality, while fr-BE indicates the French-
speaking Belgian culture. We need both the spoken language and the region to
define a culture, because either on its own is not enough to determine how all infor-
mation should be presented. For example, many localities have English as a first
language, but can differ in other details. For example, although the en-US and en-GB
cultures (American and British, respectively) both use the same language, dates are
displayed differently—in the United Kingdom, the usual format is day/month/year,
while in the U.S., the month is usually specified first. In this particular case, the
country name alone would be sufficient, but that is often ambiguous, because many
countries have more than one official language (e.g., Canada and Belgium).

The culture that is in force is determined by the Regional and Language Options
Control Panel applet in Windows. The ResourceManager will use the two-part
culture string to locate the assembly. It will always look for an assembly called
AppName.resources.dll, where AppName is your application executable’s name. The
current culture merely determines the directories it will look in. If the culture is,
say, fr-BE, it will first look for a subdirectory called fr-BE. (It will look for this
directory beneath whatever directory your program happens to be running in.) If
it doesn’t find it there, it will then fall back to looking for generic French-language
resources in an fr directory. Finally, if it finds neither of these, it will look in the
application executable itself. This means that if there are no resources for the
appropriate culture, it will revert to using whatever resources are built into the
program itself. (These are referred to as the culture-neutral resources, but they are
usually written for whatever culture the application developer calls home.)

Figure 3-6 shows the directory structure of a typical localized application. The
executable file itself would live in the Localizable directory shown here. (There is
no significance to that name—you can call the root directory anything.) This
particular application has several culture-specific subdirectories, each of which
contains an assembly called AppName.resources.dll (where AppName is whatever the
main executable file is called). Both French and Dutch are supported. The
resource DLLs in the fr and nl directories would contain resources appropriate to
the French or Dutch languages respectively, which are independent of any partic-
ular French- or Dutch-speaking region. There are also location-specific resources
supplied. For example, if there are any phrases that require slightly different
idiomatic translations for French as spoken in France and French as spoken in
Wallonia, these will be in the resource files in the fr-FR and fr-BE subdirectories,
respectively. Note that this application should be able to function correctly in
locales such as fr-CA and nl-NL—even though there are no subdirectories specific
to these cultures, they will fall back to the fr and nl directories.

These resource assemblies in the culture-specific subdirectories are often referred to
as satellite assemblies. This is intended to conjure up a picture of the main applica-
tion assembly being surrounded by a collection of small but associated assemblies.
(Satellite assemblies are typically smaller than the main application because they just
Localization | 85

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

contain resources; the main application assembly tends to be at least as large as the
satellites because it usually contains both code and default resources.)

Resources and Visual Studio .NET

Visual Studio .NET can automatically build satellite resource assemblies for your
application, and the Forms Designer can generate code that uses a
ResourceManager for all localizable aspects of a form.

This raises an interesting question: what should be localizable? Text strings obvi-
ously need to be localizable, because they will normally need to be translated, but
there are less obvious candidates too. Some languages are more verbose than
others, and once the text of a label or button has been translated, the control may
not be large enough to display it. This means that for localization of strings to be
of any use, a control’s size must also be localizable. And if controls need to be
resized for localization purposes, this will almost certainly mean that other
controls on the same form will need to be moved. So on a localizable form, the
Forms Designer also retrieves the size and position of controls from the
ResourceManager, rather than hardcoding them in. In fact, it retrieves almost all the
properties that affect a control’s appearance from the ResourceManager, just in case
they need to be modified for a particular culture.

To get the Forms Designer to generate this localizable code, simply set the form’s
Localizable property (in the Misc category) to true. This will cause it to regenerate
the entire InitializeComponent method so that all relevant properties are read from
a ResourceManager. It also adds a new file to the project named after your form: if
your form’s class is MyForm, it will add a MyForm.resx file. By default, this file will be
hidden, but if you go to the Solution Explorer window and enable the Show All
Files button on its toolbar, your MyForm.cs or MyForm.vb file will grow a + symbol.
If you click this, you will see the MyForm.resx file. This file contains all the culture-
neutral values for your form’s properties. It is hidden by default because you do not
normally need to edit it directly; we will examine its contents shortly. (You may
remember that the ResourceManager class will actually be looking for a .resource file,
not a .resx file. Visual Studio .NET stores all resources in .resx files, but it compiles
these into .resource files when it builds your component.)

Having made your form localizable, any properties that you edit will simply be
changed in the resource file. So how do we exploit this to make a localized version
of the form for some other culture? Alongside the Localizable property, you will
see a Language property. This is usually (Default), to indicate that you are editing
the default resource file. But you can change this to another culture. If you set it to
German, you will see that another resource file is added to your application—
MyForm.de.resx. Visual Studio .NET will compile this file into a satellite assembly

Figure 3-6. A localized directory structure
86 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
in the de subdirectory.* If you do any further editing to the form, new property
values will be stored in this file, meaning that those values will be used when
running in a German culture. You can also specify a more specific culture—if you
select German (Austria), Visual Studio will add a MyForm.de-AT.resx file. This will
be built into a satellite assembly in the de-AT subdirectory, allowing you to supply
properties that will be used specifically in the German-speaking Austrian culture.

So your form will now have multiple faces. Whenever you change the Language
property, you will be shown how the form will look when displayed in the
selected culture. Any edits you make will only apply to the selected culture. Visual
Studio .NET takes care of the build process, creating whatever satellite assemblies
are required in the appropriate directories. If you want to see the effects of this
without modifying your computer’s regional settings, you can modify the culture
for your application with the following change to your Main method in C#:

[STAThread]
static void Main()
{
 System.Threading.Thread.CurrentThread.CurrentUICulture =
 new System.Globalization.CultureInfo("fr-FR");

Application.Run(new PropForm());
}

The corresponding VB code is:

<STAThread> Public Shared Sub Main()
 System.Threading.Thread.CurrentThread.CurrentUICulture = _
 New System.Globalization.CultureInfo("fr-FR")
 Application.Run(New PropForm())
End Sub

This sets the main thread’s culture to fr-FR. This will cause the ResourceManager
class to try to locate satellite assemblies containing French resources.

Resource Files

Visual Studio .NET will create and maintain the necessary resource files as you
edit your forms for the cultures you choose to support. However, it is often useful
to edit these files directly—for example, if you wish to support localization for any
error messages you display in a message box, you will need to add your own
entries to these files.

You can edit the .resx files that Visual Studio .NET creates—it provides a special
user interface just for this purpose. If you double click on a .resx file for a form
(having first made sure that the Solution Explorer is in Show All Files mode), you
will see a grid representing the contents of the file, as shown in Figure 3-7.

* Each .resx file in a project will end up as a single embedded resource in some assembly. All the
resource files for a given culture will be in the same assembly, so you will end up with one satellite
assembly for each culture you support. The name of the embedded resource will be determined
by the name of the .resx file. Visual Studio .NET always prepends the project’s default namespace
to the resource name, so MyForm.de.resx will end up being the MyNamespace.MyForm.resources
resource in the satellite assembly in the de directory. Any .resx file whose name does not contain
a culture code will end up in the main assembly, so MyForm.resx will become the MyNamespace.
MyForm.resources resource in the main executable assembly.
Localization | 87

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

The Forms Designer uses a naming convention for resource entries. Properties of a
control are always named as control.PropertyName, where control is the name of
the control on the form and PropertyName is the property whose value is being
stored. The value column indicates the value that the property is being set to; an
empty value indicates that the property is not to be set. The property’s type is also
stored in this file—the ResourceManager needs to know the data type (e.g., a
string, a Color, a Size, etc.) of each property to return the correct kind of object
at runtime.* The default type is string, so for string lookups you don’t need to
supply anything other than the name and value. To add your own resource entries
(e.g., error text), just type new entries at the bottom of the list. You may use what-
ever name you like, so long as it is unique within the resource file.

You can also add new .resx files to a project. This allows you to add a resource file
that is not attached to any particular form. (This is useful for custom control
libraries, which will not necessarily contain any forms at all.) Visual Studio .NET
uses the same naming convention here as it does for the .resx files it creates: if
there is a culture name in the filename, it determines which satellite assembly the
resource will be held in. And as before, the name of the embedded resource is
determined by putting the project default namespace in front of the filename. So
MyStuff.fr-BE.resx would create an embedded resource called MyAppNamespace.
MyStuff.resources in the satellite assembly in the fr-BE subdirectory.

The easiest way to use such a custom resource file is to name it after some class in
your code, and pass the type of that class to the ResourceManager when you
construct it like so:

ResourceManager rm = new ResourceManager(typeof(MyClass));

or:

Dim rm As New ResourceManager(GetType([MyClass]))

This would create a ResourceManager that would look for a MyAppNamespace.
MyClass.resources embedded resource, using the current culture to determine
where to find the assembly.

Extender Providers
Although the Control class provides a very rich set of features, inevitably it cannot
be all things to all people. UI innovations continue to emerge, so even if the

Figure 3-7. Editing a .resx file

* Values are stored and retrieved using .NET’s serialization facility. A type needs to support serial-
ization to be used in a resource file.
88 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Form
s, Apps,

Containers
Control class were to represent the state of the art today, in time, it would inevi-
tably end up looking short on features.

However, Windows Forms provides a very useful way of extending the abilities of
the basic Control class. It is possible to place a component on a form that adds a
feature to every single control on that form. Such a component is referred to as an
extender provider. We will see how to write extender providers in Chapter 9, but
no discussion of forms would be complete without looking at how to use them.

The Forms Designer supports extender providers. An extender provider can add
new properties to all controls on a form. An example of this in the Windows Forms
framework is the ToolTip class. As mentioned in Chapter 2, the Control class does
not provide ToolTip support. But this doesn’t matter—the framework has a
ToolTip class that is able to augment any control with ToolTip support. If you drop
the ToolTip component onto a form, it will appear in the component tray at the
bottom of the designer. (All non-UI components appear here; the only kind of
component that has any business appearing on the form at design time is a control,
so everything else appears in the component tray. And the ToolTip isn’t strictly a
UI component; it is a component that modifies the behavior of other controls.)
Once you have done this, if you look at the Properties tab for any of the controls
on your form, you will see that each has acquired a ToolTip property in the Misc
category. If you set some text for this property for a particular control, that text will
appear as a ToolTip whenever the mouse hovers over that control at runtime.

Of course, the classes representing each control haven’t really grown a new prop-
erty—.NET doesn’t allow class definitions to change at runtime. The extra
property is an illusion presented by the Designer. If you set the ToolTip property
on one of your controls in the designer, you will see that what really happens is
that code like this is added to the C# InitializeComponent method:

this.toolTip1.SetToolTip(this.button1, "This is a button!");

or code like this is added to the VB InitializeComponent method:

Me.toolTip1.SetToolTip(Me.button1, "This is a button!")

Because we cannot really add a new property to somebody else’s class, it is the
responsibility of the extender provider to remember which controls have had their
extender properties set to what. So the ToolTip class maintains a list of which
controls have ToolTips and what the text is. It must also provide a method for
setting the property. The name of that method is just the property name with Set
in front of it. It takes a reference to the control whose property is being set and the
property’s value. (We will see in Chapter 9 how an extender provider tells the
designer what extender properties it adds to the controls on a form.)

Whenever you use an extender provider, it will look like the previous code frag-
ments. You will call a SetXxx method on the provider itself, passing in a reference
to the control you would like to set the property on, and the value for the prop-
erty. It is up to the provider to decide what to do with that value—for example,
the ToolTip class attaches its own event handlers to the control and uses these to
make the ToolTip appear when the mouse hovers over it.
Extender Providers | 89

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Summary
All Windows Forms applications have at least one window in them, and each
window is represented by an object whose class derives from the Form class. These
classes are typically generated by the Visual Studio .NET forms designer, which
uses a standard structure for handling initialization and shutdown. An applica-
tion could have just one form or it might have several, but in any case, its lifetime
is managed by the Application class. The controls in a form can have their layout
managed automatically, and while there are several built-in styles of automatic
layout, the underlying mechanisms are also exposed, allowing custom automatic
layout systems to be written. Another useful feature of forms is the ability to use
an extender provider—these are components which add pseudo properties (so-
called extender properties) to some or all the controls on a form, allowing the basic
functionality of the Control class to be augmented.

Of course, a great many Windows applications adorn their forms with menus, so
in the next chapter we’ll look at how to add menus to your applications.
90 | Chapter 3: Forms, Containers, and Applications

This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

	Application Structure
	Startup and Shutdown
	The Application Class
	Forms and Threads

	The Form Class
	The Forms Designer
	Showing Modal and Non-Modal Forms

	Containment
	Parents and Owners
	Control and ContainerControl
	Ambient Properties
	MDI Applications

	Layout
	Scrolling
	Docking
	Splitters
	Layout Events
	Custom Layout

	Localization
	Resource Managers
	Resources and Visual Studio .NET

	Extender Providers
	Summary

