

[Team LiB]

 Table of Contents
 Index
 Reviews
 Reader Reviews
 Errata
 Academic
Apache Cookbook
By Rich Bowen, Ken Coar

Publisher: O'Reilly
Pub Date: November 2003

ISBN: 0-596-00191-6
Pages: 254

The Apache Cookbook is a collection of problems, solutions, and practical examples for webmasters, web
administrators, programmers, and everyone else who works with Apache. Instead of poking around mailing lists,
online documentation, and other sources, you can rely on the Apache Cookbook for quick solutions to common
problems, and then you can spend your time and energy where it matters most.
[Team LiB]

http://www.oreilly.com/catalog/apacheckbk/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=apacheckbk
http://www.oreilly.com/catalog/apacheckbk/errata/default.htm
http://academic.oreilly.com/default.htm
http://www.oreillynet.com/cs/catalog/view/au/1260@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/1259@x-t=book.view

[Team LiB]

 Table of Contents
 Index
 Reviews
 Reader Reviews
 Errata
Apache Cookbook
By Rich Bowen, Ken Coar

Publisher: O'Reilly
Pub Date: November 2003

ISBN: 0-596-00191-6
Pages: 254

 Copyright
 Preface
 What's in This Book
 Platform Notes
 Other Books
 Other Sources
 How This Book Is Organized
 Conventions Used in This Book
 We'd Like to Hear from You
 Acknowledgments
 Chapter 1. Installation
 Recipe 1.1. Installing from Red Hat Linux's Packages
 Recipe 1.2. Installing Apache on Windows
 Recipe 1.3. Downloading the Apache Sources
 Recipe 1.4. Building Apache from the Sources
 Recipe 1.5. Installing with ApacheToolbox
 Recipe 1.6. Starting, Stopping, and Restarting Apache
 Recipe 1.7. Uninstalling Apache
 Chapter 2. Adding Common Modules
 Recipe 2.1. Installing a Generic Third-Party Module
 Recipe 2.2. Installing mod_dav on a Unixish System
 Recipe 2.3. Installing mod_dav on Windows
 Recipe 2.4. Installing mod_perl on a Unixish System
 Recipe 2.5. Installing mod_php on a Unixish System
 Recipe 2.6. Installing mod_php on Windows
 Recipe 2.7. Installing the mod_snake Python Module

http://www.oreilly.com/catalog/apacheckbk/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=apacheckbk
http://www.oreilly.com/catalog/apacheckbk/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/1260@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/1259@x-t=book.view

 Recipe 2.8. Installing mod_ssl
 Chapter 3. Logging
 Recipe 3.1. Getting More Details in Your Log Entries
 Recipe 3.2. Getting More Detailed Errors
 Recipe 3.3. Logging POST Contents
 Recipe 3.4. Logging a Proxied Client's IP Address
 Recipe 3.5. Logging Client MAC Addresses
 Recipe 3.6. Logging Cookies
 Recipe 3.7. Not Logging Image Requests from Local Pages
 Recipe 3.8. Logging Requests by Day or Hour
 Recipe 3.9. Rotating Logs on the First of the Month
 Recipe 3.10. Logging Hostnames Instead of IP Addresses
 Recipe 3.11. Maintaining Separate Logs for Each Virtual Host
 Recipe 3.12. Logging Proxy Requests
 Recipe 3.13. Logging Errors for Virtual Hosts to Multiple Files
 Recipe 3.14. Logging Server IP Addresses
 Recipe 3.15. Logging the Referring Page
 Recipe 3.16. Logging the Name of the Browser Software
 Recipe 3.17. Logging Arbitrary Request Header Fields
 Recipe 3.18. Logging Arbitrary Response Header Fields
 Recipe 3.19. Logging Activity to a MySQL Database
 Recipe 3.20. Logging to syslog
 Recipe 3.21. Logging User Directories
 Chapter 4. Virtual Hosts
 Recipe 4.1. Setting Up Name-Based Virtual Hosts
 Recipe 4.2. Designating One Name-Based Virtual Host as the Default
 Recipe 4.3. Setting Up Address-Based Virtual Hosts
 Recipe 4.4. Creating a Default Address-Based Virtual Host
 Recipe 4.5. Mixing Address-Based and Name-Based Virtual Hosts
 Recipe 4.6. Mass Virtual Hosting with mod_vhost_alias
 Recipe 4.7. Mass Virtual Hosting Using Rewrite Rules
 Recipe 4.8. SSL and Name-Based Virtual Hosts
 Recipe 4.9. Logging for Each Virtual Host
 Recipe 4.10. Splitting Up a LogFile
 Recipe 4.11. Port-Based Virtual Hosts
 Recipe 4.12. Displaying the Same Content on Several Addresses
 Chapter 5. Aliases, Redirecting, and Rewriting
 Recipe 5.1. Showing Highlighted PHP Source Without Symlinking
 Recipe 5.2. Mapping a URL to a Directory
 Recipe 5.3. Creating a New URL for Existing Content
 Recipe 5.4. Giving Users Their Own URL
 Recipe 5.5. Aliasing Several URLs with a Single Directive
 Recipe 5.6. Mapping Several URLs to the Same CGI Directory
 Recipe 5.7. Creating a CGI Directory for Each User
 Recipe 5.8. Redirecting to Another Location
 Recipe 5.9. Redirecting Several URLs to the Same Destination
 Recipe 5.10. Permitting Case-Insensitive URLs
 Recipe 5.11. Replacing Text in Requested URLs
 Recipe 5.12. Rewriting Path Information to CGI Arguments
 Recipe 5.13. Denying Access to Unreferred Requests
 Recipe 5.14. Rewriting Based on the Query String
 Recipe 5.15. Redirecting All—or Part—of Your Server to SSL
 Recipe 5.16. Turning Directories into Hostnames
 Recipe 5.17. Redirecting All Requests to a Single Host

 Recipe 5.18. Turning Document Names into Arguments
 Chapter 6. Security
 Recipe 6.1. Using System Account Information for Web Authentication
 Recipe 6.2. Setting Up Single-Use Passwords
 Recipe 6.3. Expiring Passwords
 Recipe 6.4. Limiting Upload Size
 Recipe 6.5. Restricting Images from Being Used Off-Site
 Recipe 6.6. Requiring Both Weak and Strong Authentication
 Recipe 6.7. Managing .htpasswd Files
 Recipe 6.8. Making Password Files for Digest Authentication
 Recipe 6.9. Relaxing Security in a Subdirectory
 Recipe 6.10. Lifting Restrictions Selectively
 Recipe 6.11. Authorizing Using File Ownership
 Recipe 6.12. Storing User Credentials in a MySQL Database
 Recipe 6.13. Accessing the Authenticated Username
 Recipe 6.14. Obtaining the Password Used to Authenticate
 Recipe 6.15. Preventing Brute-Force Password Attacks
 Recipe 6.16. Using Digest Versus Basic Authentication
 Recipe 6.17. Accessing Credentials Embedded in URLs
 Recipe 6.18. Securing WebDAV
 Recipe 6.19. Enabling WebDAV Without Making Files Writable by the Web User
 Recipe 6.20. Restricting Proxy Access to Certain URLs
 Recipe 6.21. Protecting Files with a Wrapper
 Recipe 6.22. Protecting All Files Except a Subset
 Recipe 6.23. Protecting Server Files from Malicious Scripts
 Recipe 6.24. Setting Correct File Permissions
 Recipe 6.25. Running a Minimal Module Set
 Recipe 6.26. Restricting Access to Files Outside Your Web Root
 Recipe 6.27. Limiting Methods by User
 Recipe 6.28. Restricting Range Requests
 Chapter 7. SSL
 Recipe 7.1. Installing SSL
 Recipe 7.2. Generating SSL Certificates
 Recipe 7.3. Generating a Trusted CA
 Recipe 7.4. Serving a Portion of Your Site via SSL
 Recipe 7.5. Authenticating with Client Certificates
 Chapter 8. Dynamic Content
 Recipe 8.1. Enabling a CGI Directory
 Recipe 8.2. Enabling CGI Scripts in Non-ScriptAliased Directories
 Recipe 8.3. Using Windows File Extensionsto Launch CGI Programs
 Recipe 8.4. Using Extensions to Identify CGI Scripts
 Recipe 8.5. Testing That CGI Is Set Up Correctly
 Recipe 8.6. Reading Form Parameters
 Recipe 8.7. Invoking a CGI Program for Certain Content Types
 Recipe 8.8. Getting SSIs to Work
 Recipe 8.9. Displaying Last Modified Date
 Recipe 8.10. Including a Standard Header
 Recipe 8.11. Including the Output of a CGI Program
 Recipe 8.12. Running CGI Scripts as a Different User with suexec
 Recipe 8.13. Installing a mod_perl Handler from CPAN
 Recipe 8.14. Writing a mod_perl Handler
 Recipe 8.15. Enabling PHP Script Handling
 Recipe 8.16. Verifying PHP Installation
 Chapter 9. Error Handling

 Recipe 9.1. Handling a Missing Host Field
 Recipe 9.2. Changing the Response Status for CGI Scripts
 Recipe 9.3. Customized Error Messages
 Recipe 9.4. Providing Error Documents in Multiple Languages
 Recipe 9.5. Redirecting Invalid URLs to Some Other Page
 Recipe 9.6. Making Internet Explorer Display Your Error Page
 Recipe 9.7. Notification on Error Conditions
 Chapter 10. Proxies
 Recipe 10.1. Securing Your Proxy Server
 Recipe 10.2. Preventing Your Proxy Server from Being Used as an Open Mail Relay
 Recipe 10.3. Forwarding Requests to Another Server
 Recipe 10.4. Blocking Proxied Requests to Certain Places
 Recipe 10.5. Proxying mod_perl Content to Another Server
 Recipe 10.6. Configuring a Caching Proxy Server
 Recipe 10.7. Filtering Proxied Content
 Recipe 10.8. Requiring Authentication for a Proxied Server
 Chapter 11. Performance
 Recipe 11.1. Determining How Much Memory You Need
 Recipe 11.2. Benchmarking Apache with ab
 Recipe 11.3. Tuning Keepalive Settings
 Recipe 11.4. Getting a Snapshot of Your Site's Activity
 Recipe 11.5. Avoiding DNS Lookups
 Recipe 11.6. Optimizing Symbolic Links
 Recipe 11.7. Minimizing the Performance Impact of .htaccess Files
 Recipe 11.8. Disabling Content Negotiation
 Recipe 11.9. Optimizing Process Creation
 Recipe 11.10. Tuning Thread Creation
 Recipe 11.11. Caching Frequently Viewed Files
 Recipe 11.12. Sharing Load Between Servers Using mod_proxy
 Recipe 11.13. Distributing Load Evenly Between Several Servers
 Recipe 11.14. Caching Directory Listings
 Recipe 11.15. Speeding Up Perl CGI Programs with mod_perl
 Chapter 12. Miscellaneous Topics
 Recipe 12.1. Placing Directives Properly
 Recipe 12.2. Renaming .htaccess Files
 Recipe 12.3. Generating Directory/Folder Listings
 Recipe 12.4. Solving the "Trailing Slash" Problem
 Recipe 12.5. Setting the Content-Type According to Browser Capability
 Recipe 12.6. Handling Missing Host: Header Fields
 Recipe 12.7. Alternate Default Document
 Recipe 12.8. Setting Up a Default "Favicon"
 Appendix A. Using Regular Expressions in Apache
 Section A.1. What Directives Use Regular Expressions?
 Appendix B. Troubleshooting
 Section B.1. Troubleshooting Methodology
 Section B.2. Debugging the Configuration
 Section B.3. Debugging Premature End of Script Headers
 Section B.4. Common Problems on Windows
 Section B.5. Fixing Build-Time Error Messages
 Section B.6. Getting Server-Side Includes to Work
 Section B.7. Debugging Rewrites That Result in "Not Found" Errors
 Section B.8. .htaccess Files Having No Effect
 Section B.9. Address Already in Use
 Colophon

 Index
[Team LiB]

[Team LiB]

Copyright

Copyright 2004 Ken Coar and Rich Bowen.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of a
moose and the topic of Apache is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com
http://safari.oreilly.com

[Team LiB]

Preface

The Apache web server is a remarkable piece of software. The basic package distributed by the Apache Software
Foundation is quite complete and very powerful, and a lot of effort has gone into keeping it from suffering software
bloat. One facet of the package makes it especially remarkable: it includes extensibility by design. In short, if the
Apache package right out of the box does not do what you want, you can generally extend it so that it does. Dozens
of extensions (called modules) are included as part of the package distributed by the Apache Software Foundation.
And if one of these doesn't meet your needs, with several million users out there, there is an excellent chance
someone else has already done your work for you, who has concocted a recipe of changes or enhancements to the
server that will satisfy your requirements.

This book is a collection of these recipes. Its sources include tips from the firehose of the USENET newsgroups, the
Apache FAQ, Apache-related mailing lists, mail containing "how-to" questions, questions and problems posed on
IRC chat channels, and volunteered submissions.

All of the items in this book come from real-life situations, encountered either by us or by other people who have
asked for our help. The topics range from basic compilation of the source code to complex problems involving the
treatment of URLs that require SSL encryption.

We've collected more than a hundred different problems and their solutions, largely based on how often they
occurred, and have grouped them roughly by subject as shown in What's in This Book.

Primarily, these recipes are useful to webmasters who are responsible for the entire server; however, many are
equally applicable to users who want to customize the behavior in their own web directories through the use of
.htaccess files.

We've written Apache Cookbook to be a practical reference, rather than a theoretical discourse: reading it recipe by
recipe, chapter by chapter, isn't going to reveal a plot ("Roy Fielding in the Library with an RFC!"[1]). It's intended
to provide point solutions to specific problems, located through the table of contents or the index.

[1] An obscure reference to a board game called Clue and an obscure developer of HTTP.

[Team LiB]

[Team LiB]

What's in This Book

Because much of the material in this book is drawn from question-and-answer discussions and consultations, we
have tried to make it as complete as possible. Of course, this means that we have included "recipes" for some
questions to which there are currently no satisfactory answers (or at least to our knowledge). This has not been done
to tease, annoy, or frustrate you; such recipes are included to provide completeness, so that you will know those
problems have been considered rather than ignored.

Very few problems remain insoluble forever, and these incomplete recipes are the ones that will receive immediate
attention on the book's web site and in revisions of the book. If a reader has figured out a way to do something the
book mentions but doesn't explain, or omits mentioning entirely, our research team can be notified, and that solution
will go on the web site and in the next revision.

Who knows, you may be the one to provide such a solution!

[Team LiB]

[Team LiB]

Platform Notes

The recipes in this book are geared toward two major platforms: Unixish ones (such as Linux, FreeBSD, and
Solaris) and Windows. There are many that have no platform-specific aspects, and for those any mention of the
underlying operating system or hardware is gratefully omitted. Due to the authors' personal preferences and
experiences, Unixish coverage is more complete than that for the Windows platforms. However, contributions,
suggestions, and corrections for Windows-specific recipes will be gladly considered for future revisions and inclusion
on the web site.

[Team LiB]

[Team LiB]

Other Books

There are a number of books currently in print that deal with the Apache web server and its operation. Among them
are:

•

Apache: The Definitive Guide, Third Edition (O'Reilly)
•

Apache Unleashed (Macmillan)
•

Apache Administrator's Handbook (Macmillan)

You can also keep an eye on a couple of web pages that track Apache titles:

•

http://Apache-Server.Com/store.html
•

http://httpd.apache.org/info/apache_books.html

[Team LiB]

http://apache-server.com/store.html
http://httpd.apache.org/info/apache_books.html
http://Apache-Server.Com/store.html
http://httpd.apache.org/info/apache_books.html

[Team LiB]

Other Sources

In addition to books, there is a wealth of information available online. There are web sites, mailing lists, and USENET
newsgroups devoted to the use and management of the Apache web server. The web sites are limitless, but here are
some active and useful sources of information.

•

The comp.infosystems.www.servers.unix and comp.infosystems.www.servers.ms-dos USENET
newsgroups. Although these aren't dedicated to Apache specifically, there is a lot of traffic concerning it, and
experienced Apache users hang out here. If you don't have access to news, or know how to reach
USENET, check out http://groups.google.com/.

•

The Apache Today web site, run by Internet.Com. This site regularly lists articles about the web server and
making the most of it. The URL is http://ApacheToday.Com/.

•

The users@httpd.apache.org mailing list is populated with people who have varying degrees of experience
with the Apache software, and some of the Apache developers can be found there, too. Posting is only
permitted to subscribed participants. To join the list, visit http://httpd.apache.org/userslist.html.

•

The #apache IRC channel on the irc.freenode.net network—or on many other IRC networks, for that
matter. However, your chances of encountering us are most likely on the freenode network.

We must point out that none of these is an "official" support medium for the web server. In fact, there is no "official"
support path, since the software is largely developed by volunteers and is free. However, these informal support
forums successfully answer many questions.

[Team LiB]

http://groups.google.com/default.htm
http://apachetoday.com/default.htm
mailto:users@httpd.apache.org
http://httpd.apache.org/userslist.html
http://groups.google.com/
http://ApacheToday.Com/
http://httpd.apache.org/userslist.html

[Team LiB]

How This Book Is Organized

This book is broken up into twelve chapters and two appendixes, as follows:

Chapter 1 covers the basics of installing the vanilla Apache software, from source on Unixish systems, and on
Windows from the Microsoft Software Installer (MSI) package built by the Apache developers.

Chapter 2 describes the details of installing some of the most common third-party modules, and includes generic
instructions that apply to many others that have less complex installation needs.

Chapter 3 includes recipes about recording the visits to your web site(s), and Apache's error logging mechanism.

Chapter 4 tells you how to run multiple web sites using a single Apache server and set of configuration files.

Chapter 5 describes how to manipulate URLs, how to control which files they refer to, how to change them from one
thing to another, and how to make them point to other web sites.

Chapter 6 covers some of the basic issues of securing your Apache server against penetration and exposure by the
nefarious elements on the Internet.

Chapter 7 addresses the issues of making your Apache web server capable of handling secure transactions with
SSL-capable browsers—a must if you're going to be handling sensitive data such as money transfers or medical
records.

Chapter 8 tells you how to enhance your server with runtime scripts and make them operate as a particular user.

Chapter 9 describes how to customize the web server's error messages to give your site its own unique flavor.

Chapter 10 describes how to configure your Apache server to act as a proxy between users and web pages and
make the processes as transparent and seamless as possible.

Chapter 11 includes a number of recipes for addressing performance bottlenecks and improving the overall function
of your Apache server.

Chapter 12 covers a variety of miscellaneous topics that didn't seem to fit into any of the other chapters.

Appendix A explains how regular expressions are used for pattern-matching in Apache directives.

Appendix B covers some basic troubleshooting techniques, where to look for messages, common configuration
problems, etc.

[Team LiB]

[Team LiB]

Conventions Used in This Book

Throughout this book certain stylistic conventions are followed. Once you are accustomed to them, you can easily
distinguish between comments, commands you need to type, values you need to supply, and so forth.

In some cases, the typeface of terms in the main text will be different and likewise in code examples. The details of
what the different styles (italic, boldface, etc.) mean are described in the following sections.

Programming Conventions

In this book, most case examples of code will be in the form of excerpts from scripts, rather than actual application
code. When commands need to be issued at a command-line prompt (such as an xterm for a Unixish system or a
DOS command prompt for Windows), they will look something like this:
 % find /usr/local -name apachectl -print
/usr/local/apache/bin/apachectl graceful
C:>cd "\Program Files\Apache Group\Apache\bin"

C:\Program Files\Apache Group\Apache\bin>apache -k stop

On Unixish systems, command prompts that begin with # indicate that you need to be logged in as the superuser
(root username); if the prompt begins with %, then the command can be used by any user.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic

Used for commands, filenames, abbreviations, citations of books and articles, email addresses, URLs, and USENET
group names.

Bold

Used for labeling menu choices in a graphical interface.

Constant Width

Used for function names, command options, computer output, environment variable names, literal strings, and code
examples.

Constant Width Bold

Used for user input in computer dialogues and examples.

Constant Width Italic

Used for replaceable parameters, filesystem paths, and variable names.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Documentation Conventions

Since this book deals with a general topic rather than a specific one (such as the Perl language), there are additional
sources of information to which it will refer you. The most common ones are:

The online manual ("man") pages on a Unixish system

References to the manpages will appear something like, "For more information, see the kill(1) manpage." The number
in parentheses is the manual section; you can access this page with a command such as:
 % man 1 kill
The Apache web server documentation

Such a reference may appear as "See the mod_auth documentation for details." This refers to a web page like:
 http://httpd.apache.org/docs/mod/mod_auth.html

In some cases, the reference will be to a specific Apache directive rather than an actual module; in cases like this, you
can locate the appropriate web page by looking up the directive name on:
 http://httpd.apache.org/docs/mod/directives.html

This page lists all of the directives available in the standard Apache package. In some situations, the directive may be
specific to a nonstandard or third-party module, in which case the documentation should be located wherever the
module itself was found. The links above are for the documentation for Version 1.3 of the software. To access the
documentation for Version 2.0, replace "docs/" with "docs-2.0/" in the URLs.

http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/directives.html
http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/directives.html

[Team LiB]

[Team LiB]

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (which may in fact resemble bugs). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

Please address comments and questions concerning this book to the publisher:
 O'Reilly & Associates, Inc.1005 Gravenstein Highway NorthSebastopol, CA 95472(800) 998-9938 (in the United
States or Canada)(707) 829-0515 (international or local)(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access
this page at:
 http://www.oreilly.com/catalog/apacheckbk

To comment or ask technical questions about this book, send email to:
 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site
at:
 http://www.oreilly.com

We have a web site for the book, where we'll list errata and plans for future editions. Here you'll also find the source
code from the book available for download so you don't have to type it all in:
 http://Apache-Cookbook.Com/
[Team LiB]

http://www.oreilly.com/catalog/apacheckbk
mailto:bookquestions@oreilly.com
http://www.oreilly.com/default.htm
http://apache-cookbook.com/default.htm
http://www.oreilly.com/catalog/apacheckbk
http://www.oreilly.com
http://Apache-Cookbook.Com/

[Team LiB]

Acknowledgments

Originally, each recipe was going to be individually attributed, but that turned out to be logistically impossible.

Many people have helped us during the writing of this book, by posing a problem, providing a solution, proofreading,
reviewing, editing, or just (!) providing moral support. This multitude, to each of whom we are profoundly grateful,
includes Nat Torkington (our project editor and demonstrator of Herculean feats of patience), Sharco and Guy- from
#apache on irc.freenode.net, Mads Toftum, Morbus Iff (known to the FBI under the alias Kevin Hemenway), and
Andy Holman.

Ken Coar

I dedicate this book to my father, Richard J. Coar, for all the various kinds of support he has provided over the years.

My sincere thanks go out to the crew at O'Reilly, including Paula and Nat, who apparently never gave up hope
regardless of how many deadlines whooshed past unmet. Thanks also to the WriterBase Authors Support Group and
Cabal mailing lists, whereon much balm and advice was offered. Our technical reviewers Morbus and Quasi
provided much excellent feedback and helped make this a better book. The VMware software package was very
useful, and I'm grateful to its makers for their help and support.

The people who have worked on the Apache web server documentation, and the people who develop the software
itself, get a big note of thanks, too; without the former, collating a lot of the information in this book would have been
a whole lot more difficult, and without the latter, the book wouldn't have happened at all.

The users of the software, whose frequently challenging questions populate the mailing lists, the IRC channels, and
our inboxes, deserve thanks for all the inspiration they unwittingly provided for the recipes in this book.

But foremost among those to whom I owe gratitude is my significantly better half, Cathy, without whose patience,
support, and constructive criticism I would never have achieved what I have.

Rich Bowen

I dedicate this book to Sarah, who is the motivation for all the important things I do.

While it would be impossible to adequately thank all the folks who made this book possible, there are some people,
in addition to those already mentioned, that I'd like to especially thank.

A huge thank you to our technical reviewers. You created a huge quantity of additional work for us, made our lives
miserable, and made the book late. I don't think I've ever had such a thorough tech review, and the comments that
you made served to make this a much better book than it otherwise would have been. Without quasi, large parts of
the book would have been significantly less complete—and less correct. And Morbus gave the entire project the sort
of surreal, other-worldly aura that you expect from...well, from Morbus. Thank you both and to the many other
people who made various remarks about what we'd written.

To my wonderful family, thank you all. You have helped me through a very difficult time, and shown more love,
patience, and acceptance than I deserve. Mom and Dad, I love you. Ruth, you have given me the courage to plough
on. Andy, you are my hero.

Thanks to the folks on the Apache web server documentation project. The Apache documentation is some of the
best in the world of free software. Thanks to the dedication and attention to detail.

To the folks on irc.freenode.net, you are the ones who made this book happen. The recipes in this book are answers
to questions that you asked, refined over time by dozens and dozens of people who asked them again and again and
again.

And, finally, thanks to the members of the Geocachers of Central Kentucky (http://www.geocky.org/) for getting me
hooked on Geocaching, and placing the caches around the area, giving me something to go out and do when my
sanity was stretched a little thin.

http://www.geocky.org/default.htm
http://www.geocky.org/

[Team LiB]

[Team LiB]

Chapter 1. Installation

For this cookbook to be useful, you need to install the Apache web server software. So what better way to start than
with a set of recipes that deal with the installation?

There are many ways of installing this package; one of the features of open software like Apache is that anyone may
make an installation kit. This allows vendors (such as Debian, FreeBSD, Red Hat, Mandrake, Hewlett-Packard, and
so on) to customize the Apache file locations and default configuration settings so that these settings fit with the rest of
their software. Unfortunately, one of the consequences of customization is that the various prepackaged installation
kits are almost all different from one another.

In addition to installing it from a prepackaged kit, of which the variations are legion, there's always the option of
building and installing it from the source yourself. This has both advantages and disadvantages; on the one hand you
know exactly what you installed and where you put it, but on the other hand, it's likely that binary add-on packages
will expect files to be in locations different than those you have chosen.

If setting up the web server is something you're going to do once and never again, using a packaged solution
prepared by your system vendor is probably the way to go. However, if you anticipate applying source patches,
adding or removing modules, or just fiddling with the server in general, building it yourself from the ground up is
probably the preferred method. (The authors of this book, being confirmed bit-twiddlers, always build from source.)

This chapter covers some of the more common prepackaged installation varieties and also how to build them from
the source yourself.

Throughout the chapter, we assume that you will be using dynamic shared objects (DSOs) rather than building
modules statically into the server. The DSO approach is highly recommended; it not only makes it easy to update
individual modules without having to rebuild the entire server, but it also makes adding or removing modules from the
server's configuration a simple matter of editing the configuration file.

DSOs on Unixish systems typically have a .so extension; on Windows they end with a .dll suffix.

[Team LiB]

[Team LiB]

Recipe 1.1 Installing from Red Hat Linux's Packages

Problem

You have a Red Hat Linux server and want to install or upgrade the Apache web server on it using the packages that
Red Hat prepares and maintains.

Solution

If you are a member of the Red Hat Network (RHN), Red Hat's subscription service, you can use Red Hat's
up2date tool to maintain your Apache package:
 # up2date -ui apache apache-devel apache-manual

If you're running a more recent version:
 # up2date -ui httpd httpd-devel httpd-manual

If you aren't a member of RHN, you can still download the packages from one of Red Hat's servers (either
ftp://ftp.redhat.com/ or ftp://updates.redhat.com/), and install it with the following command:
 # rpm -Uvh apache
Discussion

The -Uvh option to the rpm command tells it to:

•

Upgrade any existing version of the package already on the system or install it for the first time if it isn't.
•

Explain the process, so you can receive positive feedback that the installation is proceeding smoothly.
•

Display a pretty line of octothorpes (#) across the screen, marking the progress of the installation.

If you use the packages Red Hat maintains for its own platform, you will benefit from a simple and relatively standard
installation. However, you can only update versions that Red Hat has put together an RPM package for, which
typically means that you may be lagging weeks to months behind the latest stable version.

There is also the issue of platform compatibility; for instance, at some point the version of Apache provided for Red
Hat Linux changed from 1.3 to 2.0, and newer versions of the operating system will probably only have the 2.0
packages available. Similarly, if you run an older version of Red Hat Linux, the newer packages will probably not
install properly on your system.

It's a good idea to install the apache-devel package as well. It's quite small, so it won't have much impact on your
disk usage; however, it includes files and features that a lot of third-party modules will need to install properly.

See Also

•

Red Hat's full platform release archive at ftp://ftp.redhat.com/
•

Red Hat's incremental update (errata) archive at ftp://updates.redhat.com/

ftp://ftp.redhat.com/default.htm
ftp://updates.redhat.com/default.htm
ftp://ftp.redhat.com/default.htm
ftp://updates.redhat.com/default.htm
ftp://ftp.redhat.com/
ftp://updates.redhat.com/
ftp://ftp.redhat.com/
ftp://updates.redhat.com/

[Team LiB]

[Team LiB]

Recipe 1.2 Installing Apache on Windows

Problem

You want to install the Apache web server software on a Windows platform.

If you already have Apache installed on your Windows system, remove it before installing
a new version. Failure to do this results in unpredictable behavior. See Recipe 1.7.

Solution

Primarily, Windows is a graphically oriented environment, so the Apache install for Windows is correspondingly
graphical in nature.

The simplest way to install Apache is to download and execute the Microsoft Software Installer (MSI) package from
the Apache web site at http://httpd.apache.org/download. The following screenshots come from an actual installation
made using this method.

Each step of the installation process is distinct in the process and you can revise earlier decisions, until the files are
installed. The first screen (Figure 1-1) simply confirms what you're about to do and the version of the package you're
installing.

Figure 1-1. First screen of Apache MSI install

The second screen (Figure 1-2) presents the Apache license. Its basic tenets boil down to the following: do what you
want with the software, don't use the Apache marks (trademarks like the feather or the name Apache) without
permission, and provide proper attribution for anything you build based on Apache software. (This only applies if you
plan to distribute your package; if you use it strictly on an internal network, this isn't required.) You can't proceed
past this screen until you agree to the license terms.

Figure 1-2. License agreement

Figure 1-3 shows the recommended reading for all new users of the Apache software. This describes special actions
you should take, such as making configuration changes to close security exposures, so read it closely.

Figure 1-3. Recommended reading for new users

If you are installing Apache for the first time, the installation process asks for some information so it can make an
initial configuration for your server (Figure 1-4). If you already have a version of Apache installed, anything you enter
on this screen will not override your existing configuration.

Figure 1-4. Initial server configuration information

The Server Name in the figure is filled with the same value as the Network Domain field; this is a nod to the growing
tendency to omit the "www" prefix of web sites and use the domain name (e.g., http://oreilly.com/ instead of
http://www.oreilly.com/). What name you specify for the server is just advisory, allowing the installation process to
configure some initial values; you can change them later by editing the configuration file. The important thing is that the
Server Name value be resolvable into an IP address.

Next comes a screen asking what portions of the package you want to install, as shown in Figure 1-5. Just go with
Complete unless you're an advanced user. The Custom option allows you to choose whether to install the Apache
documentation.

Figure 1-5. Installation type

Figure 1-6 asks where you want the software installed. The screen shot shows the default location, which will
become the ServerRoot.

Figure 1-6. ServerRoot directory

Once you've answered all the questions, a screen similar to Figure 1-7 will come up. This is your last chance to go
back and change anything; once you click the Install button on this screen, the installation puts the pieces of the
package in place on your system.

Figure 1-7. The last chance to change your mind

Figure 1-8 and Figure 1-9 show the last screens for the Windows MSI install; they show the progress of the
installation. When they're finished, Apache has been installed (and started, if you have chosen the Start as a service
option shown in Figure 1-4).

Figure 1-8. The installation progress

Figure 1-9. MSI installation finished

Discussion

A lot of effort has been put into making the Apache server run well on Windows and be managed like other
Windows applications. As a consequence, the primary installation method (InstallShield or MSI) should be familiar to
Windows users.

If you've never run Apache before, accept the defaults the first time you install it. This makes it easier for others to
provide assistance if you need help, because the files will be in predictable locations.

If you chose to start the Apache server as a service (see Figure 1-4), then you can modify the conditions for it to
start, such as the user it should run as or whether it should start automatically, just as you would any other service.
Figure 1-10 shows one way to do this; bring up the window by right-clicking on the My Computer icon on the
desktop and choose Manage from the pop-up menu.

Figure 1-10. Modifying the Apache service

See Also

•

The Apache license at http://www.apache.org/LICENSE
•

Recipe 1.7

http://httpd.apache.org/download
http://oreilly.com/default.htm
http://www.oreilly.com/default.htm
http://www.apache.org/LICENSE
http://httpd.apache.org/download
http://oreilly.com/
http://www.oreilly.com/
http://www.apache.org/LICENSE

[Team LiB]

[Team LiB]

Recipe 1.3 Downloading the Apache Sources

Problem

You want to build the Apache web server yourself from the sources directly (see Recipe 1.4), but don't know how
to obtain them.

Solution

There are a number of ways to obtain the sources. You can access the latest version in close to real-time by using
CVS, the tool used by the Apache developers for source control, you can download a release tarball, or you can
install a source package prepared by a distributor, among others.

From a prepackaged tarball, download the tarball from http://httpd.apache.org/dist/, and then:
 % tar xzvf apache_1.3.27.tar.gz

If your version of tar doesn't support the z option for processing zipped archives, use this command instead:
 % gunzip -c < apache_1.3.27.tar.gz | tar xvf -

From the very latest up-to-the-minute Apache 1.3 source repository (not guaranteed to be completely functional),
use:
 % cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic login
 Password: anoncvs

% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic checkout apache-1.3

You can fetch a particular release version instead of the bleeding edge code if you know the name the developers
gave it. For example, this will pull the sources of the 1.3.27 release, which is expected to be stable, unlike the
up-to-the-minute version:
 % cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic checkout -r APACHE_1_3_27
 apache-1.3

From the very latest up-to-the-minute Apache 2.0 source repository (not guaranteed to be completely functional),
use:
 % cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic login
 Password: anoncvs
% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic checkout -r
 APACHE_2_0_BRANCH httpd-2.0
% cd httpd-2.0/srclib

% cvs checkout apr apr-util

As with the method for the 1.3 version of the server, you can fetch a particular release of the 2.0 code if you know
the name assigned to it in CVS.

You can find the names of the tags used in the source tree by visiting either
http://cvs.apache.org/viewcvs.cgi/apache-1.3/ or http://cvs.apache.org/viewcvs.cgi/httpd-2.0/ and pulling down the
Show files using tag list at the bottom of the page.

All sorts of tags are used by the developers for various purposes. The tags used to label
versions of files used for a release are always of the form APACHE_n_m_e, so use these
to work with a particular release version.

Discussion

No matter how you install the source, the directory tree will be ready for configuration and building. Once the source
is in place, you should be able to move directly to building the package (see Recipe 1.4).

If you chose to install the sources using the CVS method, you can keep your sources up-to-date by simply executing
the following command from the top level of the source directory:
 % cvs update -Pd

This will update or fetch any files that have been changed or added by the developers since the last time you
downloaded or updated.

If you update to the latest version of the sources, you're getting whatever the developers are currently working on,
which may be only partially finished. If you want reliability, stick with the released versions, which have been
extensively tested.

See Also

•

Recipe 1.4

http://httpd.apache.org/dist/default.htm
http://cvs.apache.org/viewcvs.cgi/apache-1.3/default.htm
http://cvs.apache.org/viewcvs.cgi/httpd-2.0/default.htm
http://httpd.apache.org/dist/
http://cvs.apache.org/viewcvs.cgi/apache-1.3/
http://cvs.apache.org/viewcvs.cgi/httpd-2.0/

[Team LiB]

[Team LiB]

Recipe 1.4 Building Apache from the Sources

Problem

You want to build your Apache web server from the sources directly rather than installing it from a prepackaged kit.

Solution

Assuming that you already have the Apache source tree, whether you installed it from a tarball, CVS, or some
distribution package, the following commands, executed in the top directory of the tree, builds the server package
with most of the standard modules as DSOs:

Apache 1.3:
 % ./configure --prefix= /usr/local/apache --with-layout=Apache
 --enable-shared=max--enable-module=most
% make
make install

For Apache 2.0:
 % ./buildconf
% ./configure --prefix= /usr/local/apache --with-layout=Apache --enable-
 modules=most --enable-mods-shared=all
% make
make install

If you want more detailed information about the various options and their meanings, you can use the following
command:
 % ./configure --help
Discussion

Building the server from the sources can be complex and time-consuming, but it's required if you intend to make any
changes to the source code. It gives you much more control over things, such as the use of shareable object libraries
and the database routines available to modules. Building from source is also de rigeur if you're developing your own
Apache modules.

The options to the configure script are many and varied; if you haven't used it before to build Apache, locate some
online tutorials (such as those at http://Apache-Server.Com/tutorials/ or http://httpd.apache.org/docs-2.0/install.html)
when you want to change the defaults. The default options generally produce a working server, although the
filesystem locations and module choices may not be what you'd like; they may include modules you don't want or
omit some you do. (See Chapter 2 for some examples.)

See Also

•

Recipe 1.3
•

http://Apache-Server.Com/tutorials/
•

http://httpd.apache.org/docs-2.0/install.html

http://apache-server.com/tutorials/default.htm
http://httpd.apache.org/docs-2.0/install.html
http://apache-server.com/tutorials/default.htm
http://httpd.apache.org/docs-2.0/install.html
http://Apache-Server.Com/tutorials/
http://httpd.apache.org/docs-2.0/install.html
http://Apache-Server.Com/tutorials/
http://httpd.apache.org/docs-2.0/install.html

[Team LiB]

[Team LiB]

Recipe 1.5 Installing with ApacheToolbox

Problem

You have a complicated collection of modules you want to install correctly.

Solution

Download ApacheToolbox from http://www.apachetoolbox.com/. (Note that the version numbers will probably be
different than these, which were the latest available when this section was written.) Unpack the file:
 % bunzip2 Apachetoolbox-1.5.65.tar.bz2
% tar xvf Apachetoolbox-1.5.65.tar

(Depending on your version of tar, you may be able to combine these operations into a single tar xjvf command.)

Then run the installation script:
 # cd Apachetoolbox-1.5.65
./install.sh

Discussion

ApacheToolbox is developed and maintained by Bryan Andrews. It is a shell script that assists in the configuration
and installation of Apache. It includes support for over 100 commonly used or standard modules.

When you run the script, you select modules from lists appearing on various screens. Once you have decided on your
list of modules, ApacheToolbox downloads the third-party modules you have selected and the tools that you don't
have installed, and then runs the Apache configure script with any arguments needed to create the combination you
have requested.

The main screen (see Figure 1-11) lists the most popular third-party modules that ApacheToolbox can install. Select
or deselect a particular module by typing the number next to that module's name.

Figure 1-11. Main screen of ApacheToolbox install

Typing apache moves you to the second screen (see Figure 1-12), which lists the standard Apache modules. Add or
remove individual modules by typing the number next to their module names.

Figure 1-12. ApacheToolbox screen for standard Apache modules

You can choose options for configuring the modules on additional menus, and you can build an RPM on your
installation configuration, which you can then install on multiple machines without requiring that ApacheToolbox be
installed.

Once you have made all your module selections, type go to tell ApacheToolbox to start the configuration process.

Your preferences are saved to a file (etc/config.cache) so that if you want to reinstall Apache with the same
configuration, you merely need to run ApacheToolbox again, and it will start up with the selections from the last run.
To upgrade to a new version of Apache, get the latest version of ApacheToolbox, and ask it to run the installation
script with your last selections (without going through the menu process), by typing the following commands:
 # ./install.sh --update
./install.sh --fast

The —update option requires that you have lynx installed.

Once ApacheToolbox has completed its work, you can edit the configuration script to insert or modify arguments.
Once you are satisfied and ApacheToolbox has run the configuration script, go into the Apache source subdirectory
and run make and make install to compile and install Apache:
 # cd apache_1.3.27
make
make install

ApacheToolbox, as of this writing, is only available for Apache 1.3. We expect that it will
be available for Apache 2.0 as soon as there are enough third-party modules to warrant
the necessary development time.

See Also

•

http://ApacheToolbox.Com/

http://www.apachetoolbox.com/default.htm
http://apachetoolbox.com/default.htm
http://www.apachetoolbox.com/
http://ApacheToolbox.Com/

[Team LiB]

[Team LiB]

Recipe 1.6 Starting, Stopping, and Restarting Apache

Problem

You want to be able to start and stop the server at need, using the appropriate tools.

Solution

On Unixish systems, use the apachectl script; on Windows, use the options in the Apache folder of the Start menu.

Discussion

The basic Apache package includes tools to make it easy to control the server. For Unixish systems, this is usually a
script called apachectl, but prepackaged distributions may replace or rename it. It can only perform one action at a
time, and the action is specified by the argument on the command line. The options of interest are:
 apachectl start

This will start the server if it isn't already running. If it is running, this option has no effect and may produce a warning
message.
 apachectl graceful

This option causes the server to reload its configuration files and gracefully restart its operation. Any current
connections in progress are allowed to complete. The server will be started if it isn't running.
 apachectl restart

Like the graceful option, this one makes the server reload its configuration files. However, existing connections are
terminated immediately. If the server isn't running, this command will try to start it.
 apachectl stop

This shuts the server down immediately. Any existing connections are terminated at once.

For Windows, the MSI installation of Apache includes menu items for controlling the server, as shown in Figure 1-13.

Figure 1-13. Using the Start menu to control Apache

Both of the solutions shown (for Unixish and Windows systems) illustrate the basic server control operations: start,
stop, and restart. The purpose of the start and stop functions should be self-evident. Any time you modify the
server-wide configuration files (such as httpd.conf), you must restart the server for the changes to take effect.

See Also

•

Recipe 1.1
•

Recipe 1.2

[Team LiB]

[Team LiB]

Recipe 1.7 Uninstalling Apache

Problem

You have the Apache software installed on your system, and you want to remove it.

Solution

On Red Hat Linux, to remove an Apache version installed with the RPM tool, use:
 # rpm -ev apache

Other packaging systems may provide some similar mechanism.

On Windows, Apache can be typically removed like any other MSI-installed software (see Figure 1-14).

Figure 1-14. Uninstalling the Apache software

Discussion

Unfortunately, there is no generic works-for-all removal method for Apache installations on Unixish systems. Some
packages, such as Red Hat's RPM, do remember what they installed so they can remove all the pieces, as shown in
the solution. However, if the software was installed by building from the sources (see Recipe 1.4), the burden of
knowing where files were put rests with the person who did the build and install. The same applies if the software
was installed from source on a Windows system; it's only the MSI or InstallShield packages that make the
appropriate connections to allow the use of the Add/Remove Software control panel.

See Also

•

Recipe 1.4

[Team LiB]

[Team LiB]

Chapter 2. Adding Common Modules

There are a number of extremely popular modules for the Apache web server that are not included in the basic
distribution. Most of these are separate because of licensing or support reasons; some are not distributed by the
Apache Software Foundation because of a decision by the Apache developers; and some are integral parts of other
projects. For instance, mod_ssl for Apache 1.3 is developed and maintained separately not only because of the U.S.
export control laws (which were more restrictive when the package was originally developed), but because it
requires changes to the core software that the Apache developers chose not to integrate.

This chapter provides recipes for installing some of the most popular of these third-party modules; when available,
there are separate recipes for installation on Unixish systems and on Windows.

The most comprehensive list of third-party modules can be found in the Apache Module Registry at
http://modules.apache.org/. Some modules are so popular—or complex—that they have entire sites devoted to them,
as do the ones listed in this chapter.

Although hundreds of third-party modules are available, many module developers are only concerned with their single
module. This means that there are potentially as many different sets of installation instructions as there are modules.
The first recipe in this chapter describes an installation process that should work with many Apache 1.3 modules, but
you should check with the individual packages' instructions to see if they have a different or more detailed process.

Many of the modules are available from organizations that prepackage or distribute Apache software, such as in the
form of an RPM from Mandrake or Red Hat, but such prebuilt module packages include the assumptions of the
packager. In other words, if you build the server from source and use custom locations for the files, don't be
surprised if the installation of a packaged module fails.

All of the modules described in this chapter are supported with Apache 1.3 on Unixish systems. Status of support
with Apache 2.0 on Windows is shown in Table 2-1.

Table 2-1. Module support status

Module name

Windows

Support on Apache 2.0

mod_dav

Yes

Included; no installation necessary

mod_perl

Yes

Yes

mod_php

Yes

Yes

mod_snake

No

Unknown

mod_ssl

No

Included; no installation necessary

http://modules.apache.org/default.htm
http://modules.apache.org/

[Team LiB]

[Team LiB]

Recipe 2.1 Installing a Generic Third-Party Module

Problem

You have downloaded a third-party module that isn't listed in this chapter, and you want to install it.

Solution

Move to the directory where the module's source file was unpacked, and then:
 % /path/to/apache/ bin/apxs -cia module.c

Discussion

In the case of a third-party module that consists of a single .c file, there is a good chance that it can be built and
installed using the Solution. Modules that involve multiple source files should provide their own installation instructions.

The -cia options mean to compile, install, and activate. The first is pretty straightforward; install means put the .so file
in the place Apache expects to find it, and activate means to add the module to the httpd.conf file.

See Also

•

The apxs manpage, typically ServerRoot/man/man8/apxs.8

[Team LiB]

[Team LiB]

Recipe 2.2 Installing mod_dav on a Unixish System

Problem

You want to add or enable WebDAV capabilities to your server. WebDAV permits specific documents to be
reliably and securely manipulated by remote users without the need for FTP, to perform such tasks as adding,
deleting, or updating files.

Solution

If you're using Apache 2.0, mod_dav is automatically available, although you may need to enable it at compile time
with —enable-dav.

If you are using Apache 1.3, download and unpack the mod_dav source package from http://webdav.org/mod_dav/,
and then:
 % cd mod_dav-1.0.3-1.3.6
% ./configure --with- apxs=/usr/local/ apache/bin/apxs
% make
make install

Restart the server, and be sure to read Recipe 6.18.

Discussion

mod_dav is an encapsulated and well-behaved module that is easily built and added to an existing server. To test
that it has been properly installed, you need to enable some location on the server for WebDAV management and
verify access to that location with some WebDAV-capable tool. We recommend cadaver, which is an open source
command-line WebDAV tool. (The URL for the cadaver tool is found at the end of this recipe.)

To enable your server for WebDAV operations, you need to add at least two directives to your httpd.conf file. The
first identifies the location of the locking database used by mod_dav to keep WebDAV operations from interfering
with each other; it needs to be in a directory that is writable by the server. For example:
 # cd /usr/local/apache
mkdir var
chgrp nobody var

chmod g+w var

Now add the following line to your httpd.conf file, outside any containers:
 <IfModule mod_dav.c>
 DAVLockDB var/DAVlock

</IfModule>

The DAVLockDB location must not be on an NFS-mounted filesystem, because NFS
doesn't support the sort of locking mod_dav requires. Putting the lock database on an
NFS filesystem may result in unpredictable results.

Next, create a temporary directory for testing WebDAV functionality:
 # cd /usr/local/apache
mkdir htdocs/dav-test
chgrp nobody htdocs/dav-test

chmod g+w htdocs/dav-test

Add a stanza to your httpd.conf file that will enable this directory for WebDAV operations:
 <Directory "/usr/local/apache/htdocs/dav-test">
 DAV On

</Directory>

Now restart your server. It should be ready to handle WebDAV operations directed to the /dav-test local URI. To
test it with the cadaver tool, try the following commands; your output should look very similar to that shown:
 % cd /tmp
% echo "Plain text" > dav-test.txt
% cadaver
dav:!> open http://localhost/dav-test
Looking up hostname... Connecting to server... connected.
dav:/dav-test/> put dav-test.txt
Uploading dav-test.txt to '/dav-test/dav-test.txt': (reconnecting...done)
Progress: [= == == == == == == == == == == == == == ==>] 100.0% of 11
bytes succeeded.
dav:/dav-test/> propset dav-test.txt MyProp 1023
Setting property on 'dav-test.txt': (reconnecting...done) succeeded.
dav:/dav-test/> propget dav-test.txt MyProp
Fetching properties for 'dav-test.txt':
Value of MyProp is: 1023
dav:/dav-test/> propdel dav-test.txt MyProp
Deleting property on 'dav-test.txt': succeeded.
dav:/dav-test/> close
Connection to 'localhost' closed.
dav:!> exit

% rm dav-test.txt

Properties are attributes of a WebDAV resource. Some are managed by the system, such as the resource's size, but
others can be arbitrary and added, changed, and removed by the user.

Once you have verified that mod_dav is working correctly, remove the htdocs/dav-test directory, and the
corresponding <Directory> stanza in your httpd.conf file, and follow the guidelines in Recipe 6.18.

See Also

•

Recipe 6.18
•

http://webdav.org/mod_dav/
•

http://webdav.org/cadaver/

http://webdav.org/mod_dav/default.htm
http://webdav.org/mod_dav/default.htm
http://webdav.org/cadaver/default.htm
http://webdav.org/mod_dav/
http://localhost/dav-test
http://webdav.org/mod_dav/
http://webdav.org/cadaver/

[Team LiB]

[Team LiB]

Recipe 2.3 Installing mod_dav on Windows

Problem

You want to enable WebDAV capabilities on your existing Apache 1.3 server with mod_dav.

Solution

Apache 2.0 includes mod_dav as a standard module, so you do not need to download and build it.

Download and unpack the mod_dav Windows package from http://webdav.org/mod_dav/win32/. Verify that your
Apache installation already has the xmlparse.dll and xmltok.dll files in the ServerRoot directory; if they aren't there,
check through the Apache directories to locate and copy them to the ServerRoot. mod_dav requires the Expat
package, which is included with versions of the Apache web server after 1.3.9; these files hook into Expat, which
mod_dav will use.

Put the mod_dav DLL file into the directory where Apache keeps its modules:
 C:\>cd mod_dav-1.0.3-dev
C:\mod_dav-1.0.3-dev>copy mod_dav.dll C:\Apache\modules

C:\mod_dav-1.0.3-dev>cd \Apache

Add the following lines to your httpd.conf file:
 LoadModule dav_module modules/mod_dav.dll

You may also need to add an AddModule line if your httpd.conf file includes a ClearModuleList directive and
re-adds the other modules. Alternatively, you can insert the LoadModule for mod_dav after the ClearModuleList
directive.

Discussion

mod_dav is an encapsulated and well-behaved module that is easily built and added to an existing server. To test
that it has been properly installed, you need to enable some location on the server for WebDAV management and
verify access to that location with some WebDAV-capable tool, or browse to it in Windows Explorer, which knows
how to access WebDAV locations (as of Windows 2000), or access it from a different system where cadaver or
another WebDAV tool is available.

To enable your server for WebDAV operations, you need to add at least two directives to your
ServerRoot/conf/httpd.conf file. The first identifies the location of the locking database used by mod_dav to keep
WebDAV operations from interfering with each other; it needs to be in a directory that is writable by the server. For
example:
 C:\Apache-1.3>mkdir var

Now add the following lines to your httpd.conf file to enable WebDAV:
 <IfModule mod_dav.c>
 DAVLockDB "C:/Apache-1.3/var/dav-lock"

</IfModule>

Create a temporary directory for testing mod_dav 's ability to function:
 C:\Apache-1.3>mkdir htdocs\dav-test

Modify the <IfModule> container to enable WebDAV operations for this test directory:
 <IfModule mod_dav.c>
 DAVLockDB "C:/Apache-1.3/var/dav-lock"
 <Directory "C:/Apache-1.3/htdocs/dav-test">
 DAV On
 </Directory>

</IfModule>

Now restart your server and try accessing the /dav-test location with a WebDAV client. If you're using cadaver from
another system, see Recipe 2.2 for detailed instructions. If you want to use Windows Explorer to test mod_dav,
read the following section.

Using Windows Explorer to test mod_dav

After enabling the htdocs\dav-test directory for WebDAV operations and restarting your server, start up Windows
Explorer. Follow the steps below to access the directory using WebDAV. This can be done on the local system or
on another Windows system that can access your server system.

1.

Click on Network Places.
2.

In the righthand pane of the Windows Explorer window, you should see an item named Add Network Place.
Double-click on this item.

3.

When prompted for a location, enter:
http://127.0.0.1/dav-test/

If you are executing these steps on a different system, replace the 127.0.0.1 with the correct name of the
server on which you installed mod_dav.

4.

After clicking on Next, give this location any name you like or keep the default.
5.

After completing the dialog, Windows Explorer should open a new window with the name you selected in the
previous step. The window should be empty, which makes sense since the directory is.

6.

In the main Windows Explorer window, navigate to a directory (any directory) with files in it.
7.

Ctrl-drag a file (any file) from the main Windows Explorer window to the window that was opened by step 5.
8.

Windows should briefly display a progress dialog window, and then the file should appear in the destination
window.

Congratulations! The file was uploaded to your web server using WebDAV.

After your testing is complete, don't forget to remove the htdocs\dav-test directory and the <Directory
"C:/Apache-1.3/htdocs/dav-test"> stanza in your configuration file, or else anyone can upload files to your server.

See Also

•

Recipe 6.18
•

http://webdav.org/mod_dav/

http://webdav.org/mod_dav/win32/default.htm
http://webdav.org/mod_dav/default.htm
http://webdav.org/mod_dav/win32/
http://127.0.0.1/dav-test/
http://webdav.org/mod_dav/

[Team LiB]

[Team LiB]

Recipe 2.4 Installing mod_perl on a Unixish System

Problem

You want to install the mod_perl scripting module to allow better Perl script performance and easy integration with
the web server.

Solution

Download and unpack the mod_perl source package from http://perl.apache.org/. Then use the following command:
 % perl Makefile.PL \
> USE_APXS=1 \
> WITH_APXS= /usr/local/apache/bin/apxs \
> EVERYTHING=1 \
> PERL_USELARGEFILES=0
% make
% make install

Restart your server.

Discussion

mod_perl is quite a complex module, and there are several different ways to add it to your server. This recipe is the
fastest and lowest-impact one; if it doesn't suit your needs, check the various README.* files in the package
directory after unpacking. Because its primary language is Perl rather than C, the installation instructions are
significantly different from those for most other modules.

Once you have restarted your server successfully, mod_perl should be available and configured as part of it. You
can test it by making some changes to the httpd.conf file, adding a few scripts, and seeing whether the server
processes them correctly. Here is a sample set of steps to test mod_perl's operation.

1.

Create a directory where your mod_perl scripts can live:
cd ServerRoot

mkdir lib lib/perl lib/perl/Apache

2.

Create a file named startup.pl in your server's conf/ directory that will give mod_perl some startup
instructions:
#! /usr/bin/perl

BEGIN {
 use Apache ();
 use lib Apache->server_root_relative('lib/perl');
}
use Apache::Registry ();
use Apache::Constants ();
use CGI qw(-compile :all);
use CGI::Carp ();
1;

3.

Next, create the lib/perl/Apache/HelloWorld.pm file that will be used for our test:
package Apache::HelloWorld;

use strict;
use Apache::Constants qw(:common);
sub handler {
 my $r = shift;
 $r->content_type('text/plain; charset=ISO-8859-1');
 $r->send_http_header;
 $r->print("Hello, world! Love, mod_perl.\n");
 return OK;
}
1;

4.

Next, edit the server's configuration file to add the directives that will enable mod_perl to locate all the pieces
it needs, and tell it when to invoke the test script. Add the following lines to the httpd.conf file:
<IfModule mod_perl.c>

 PerlRequire conf/startup.pl
 <Location /mod_perl/howdy>
 SetHandler perl-script
 PerlHandler Apache::HelloWorld
 </Location>
</IfModule>

5.

Now restart your server and request the script using http://localhost/mod_perl/howdy.

If your configuration is valid, the response should be a page containing simply the words, "Hello, world! Love,
mod_perl."

See Also

•

http://perl.apache.org/
•

Writing Apache Modules with Perl and C by Doug MacEachern and Lincoln Stein (O'Reilly)
•

mod_perl Developer's Cookbook by Simon Cozens (O'Reilly)

http://perl.apache.org/default.htm
http://localhost/mod_perl/howdy
http://perl.apache.org/default.htm
http://perl.apache.org/
http://localhost/mod_perl/howdy
http://perl.apache.org/

[Team LiB]

[Team LiB]

Recipe 2.5 Installing mod_php on a Unixish System

Problem

You want to add the mod_php scripting module to your existing Apache web server.

Solution

Download the mod_php package source from the web site at http://php.net/ (follow the links for downloading) and
unpack it. Then:
 % cd php-4.3.2
% ./configure \
> --with-apxs= /usr/local/apache/bin/ apxs
% make
make install

Restart the server.

Discussion

To test that your installation was successful, create a file named info.php in your server's DocumentRoot; the file
should contain the single line:
 <?php phpinfo(); ?>

Add the following lines to your server's httpd.conf file:
 <IfModule mod_php4.c>
 AddType application/x-httpd-php .php
 AddHandler application/x-httpd-php .php

</IfModule>

After restarting your server, try fetching the document info.php using a browser. You should see a detailed
description of the PHP options that are active.

There are numerous additional options and extensions available for PHP; the recipe given here is only for the most
basic installation.

See Also

•

Recipe 8.15
•

Recipe 8.16
•

http://php.net/

http://php.net/default.htm
http://php.net/default.htm
http://php.net/
http://php.net/

[Team LiB]

[Team LiB]

Recipe 2.6 Installing mod_php on Windows

Problem

You want to add the mod_php scripting module to your existing Apache server on Windows.

Solution

This recipe needs to be described largely in terms of actions rather than explicit commands to be issued.

1.

Download the PHP Windows binary .zip file with API extensions (not the .exe file) from http://php.net/.
2.

Unpack the .zip file into a directory where you can keep its contents indefinitely (such as C:\PHP4). If you
use WinZip, be sure to select the Use folder names checkbox to preserve the directory structure inside the
.zip file.

3.

Copy the PHP4\SAPI\php4apache.dll to the \modules\ directory under your Apache installation's
ServerRoot.

4.

In a command-prompt window, change to the PHP4 directory where you unpacked the .zip file, and type:
...\PHP4>copy php.ini-dist %SYSTEMROOT%\php.ini

...\PHP4>copy php4ts.dll %SYSTEMROOT%

(If installing on Windows 95 or Windows 98, use %WINDOWS% instead of %SYSTEMROOT%.)
5.

Edit the %SYSTEMROOT%\php.ini file, locate the line that starts with extensions_dir, and change the value
to point to the PHP4\extensions directory. For instance, if you unpacked the .zip file into C:\PHP4, this line
should look like:
extensions_dir = C:\PHP4\extensions

6.

Edit the conf\httpd.conf file under the Apache ServerRoot and add the following lines near the other
LoadModule lines:
LoadModule php4_module modules/php4apache.dll

Add the following lines in some scope where they will apply to your .php files:
<IfModule mod_php4.c>

 AddType application/x-httpd-php .php
</IfModule>

7.

Restart the Apache server, and the PHP module should be active.

Discussion

The PHP module installation on Windows requires a lot of nit-picky manual steps. To test that your installation was
successful, create a file named info.php in your server's DocumentRoot; the file should contain the single line:
 <?php phpinfo(); ?>

After restarting your server, try fetching the document info.php from it using a browser. You should see a detailed
description of the PHP options that are active.

There are numerous additional options and extensions available for PHP; the recipe given here is only the most basic
installation. See the install.txt file in the PHP4 directory and the documentation on the web site for more details.

See Also

•

http://php.net/

http://php.net/default.htm
http://php.net/default.htm
http://php.net/
http://php.net/

[Team LiB]

[Team LiB]

Recipe 2.7 Installing the mod_snake Python Module

Problem

You want to add the mod_snake Python scripting module to your existing Apache server.

Solution

To install mod_snake on a Unixish system, download the source from the http://modsnake.sourceforge.net/ web site
(follow the link for downloading), unpack it, and then:
 % cd mod_snake-0.5.0
% ./configure --with-apxs= /usr/local/apache/bin/apxs
% make
make install

Restart the server.

At the time of this writing, mod_snake cannot be installed on Windows.

Discussion

mod_snake is a fairly standard Apache module; it can be added to an existing Apache installation without any
source-level changes. It requires that you have Python installed, and that the apxs script has been properly configured
and installed as part of the web server package.

See the README and INSTALL files in the unpacked package directory, and the HTML documentation in the
examples/tut/ directory, for additional information, examples, and ways to test that your installation was successful.

See Also

•

Recipe 2.1
•

http://modsnake.sourceforge.net/

[Team LiB]

http://modsnake.sourceforge.net/default.htm
http://modsnake.sourceforge.net/default.htm
http://modsnake.sourceforge.net/
http://modsnake.sourceforge.net/

[Team LiB]

Recipe 2.8 Installing mod_ssl

Problem

You want to add SSL support to your Apache server with the mod_ssl secure HTTP module.

Solution
 Windows

At the time of this writing, there is no supported means of installing mod_ssl on Windows.
 Apache 2.0

mod_ssl is included with 2.0, although it is not automatically compiled nor installed when you build from source. You
need to include the —enable-ssl option on your ./configure line, and enable it with LoadModule and AddModule
directives.
 Apache 1.3

To install mod_ssl on a Unixish system, download the tarball package from the http://www.modssl.org/ web site and
unpack it. Then:
 % cd mod_ssl-2.8.14-1.3.27
% ./configure \
> --with-apache=.. /apache_1.3.27 \
> --with-ssl=SYSTEM \
> --prefix= /usr/local/apache
% cd ../apache_1.3.27
% make
% make certificate

Discussion

The mod_ssl package requires source-level changes to the base Apache code, and so the version of the mod_ssl
package you install must match the version of the Apache distribution you have. If your Apache installation doesn't
include the source (such as if you installed a binary-only RPM or other vendor distribution), you won't be able to add
mod_ssl to it.

In addition to the Apache source, mod_ssl requires that you have Perl and the OpenSSL libraries installed. The
—with-ssl option on the build configuration statement indicates where this is located; if it is in a vendor distributed
directory, the special keyword SYSTEM tells the build to look for it, and you don't have to find it yourself.

Unlike most other Apache modules, when adding mod_ssl you run the ./configure script that's in mod_ssl's directory
rather than the one in the Apache source directory; the module's script makes changes to Apache's and then invokes
it directly.

This recipe is the bare basics; there are many optional components and features that mod_ssl allows you to specify at
configuration time. For more information, consult the README and INSTALL files in the mod_ssl source directory,
or the mod_ssl web site at http://www.modssl.org/.

See Also

•

Recipe 7.2
•

http://www.modssl.org/

http://www.modssl.org/default.htm
http://www.modssl.org/default.htm
http://www.modssl.org/default.htm
http://www.modssl.org/
http://www.modssl.org/
http://www.modssl.org/

[Team LiB]

[Team LiB]

Chapter 3. Logging

Apache can, and usually does, record information about every request it processes. Controlling how this is done and
extracting useful information out of these logs after the fact is at least as important as gathering the information in the
first place.

The logfiles may record two types of data: information about the request itself, and possibly one or more messages
about abnormal conditions encountered during processing (such as file permissions). You, as the webmaster, have a
limited amount of control over the logging of error conditions, but a great deal of control over the format and amount
of information logged about request processing (activity logging). The server may log activity information about a
request in multiple formats in mulitple log files, but it will only record a single copy of an error message.

One aspect of activity logging you should be aware of is that the log entry is formatted and written after the request
has been completely processed. This means that the interval between the time a request begins and when it finishes
may be long enough to make a difference.

For example, if your logfiles are rotated while a particularly large file is being downloaded, the log entry for the
request will appear in the new logfile when the request completes, rather than in the old logfile when the request was
started. In contrast, an error message is written to the error log as soon as it is encountered.

The web server will continue to record information in its logfiles as long as it's running. This can result in extremely
large logfiles for a busy site and uncomfortably large ones even for a modest site. To keep the file sizes from growing
ever larger, most sites rotate or roll over their logfiles on a semi-regular basis. Rolling over a logfile simply means
persuading the server to stop writing to the current file and start recording to a new one. Due to Apache's
determination to see that no records are lost, cajoling it to do this according to a specific timetable may require a bit
of effort; some of the recipes in this chapter cover how to accomplish the task successfully and reliably (see Recipe
3.8 and Recipe 3.9).

The log declaration directives, CustomLog and ErrorLog, can appear inside <VirtualHost> containers, outside
them (in what's called the main or global server, or sometimes the global scope), or both. Entries will only be
logged in one set or the other; if a <VirtualHost> container applies to the request or error and has an applicable log
directive, the message will be written only there and won't appear in any globally declared files. On the other hand, if
no <VirtualHost> log directive applies, the server will fall back on logging the entry according to the global
directives.

However, whichever scope is used for determining what logging directives to use, all CustomLog directives in that
scope are processed and treated independently. That is, if you have a CustomLog directive in the global scope and
two inside a <VirtualHost> container, both of these will be used. Similarly, if a CustomLog directive uses the env=
option, it has no effect on what requests will be logged by other CustomLog directives in the same scope.

Activity logging has been around since the Web first appeared, and it didn't take long for the original users to decide
what items of information they wanted logged. The result is called the common log format (CLF). In Apache terms,
this format is:
 "%h %l %u %t \"%r\" %>s %b"

That is, it logs the client's hostname or IP address, the name of the user on the client (as defined by RFC 1413 and if
Apache has been told to snoop for it with an IdentityCheck On directive), the username with which the client
authenticated (if weak access controls are being imposed by the server), the time at which the request was received,
the actual HTTP request line, the final status of the server's processing of the request, and the number of bytes of
content that were sent in the server's response.

Before long, as the HTTP protocol advanced, the common log format was found to be wanting, so an enhanced
format, called the combined log format, was created:
 "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

The two additions were the Referer (it's spelled incorrectly in the specifications) and the User-agent. These are the
URL of the page that linked to the document being requested, and the name and version of the browser or other
client software making the request.

Both of these formats are widely used, and many logfile analysis tools assume log entries are made in one or the other.

The Apache web server's standard activity logging module allows you to create your own formats; it is highly
configurable and is called (surprise!) mod_log_config. Apache 2.0 has an additional module, mod_logio, which
enhances mod_log_config with the ability to log the number of bytes actually transmitted or received over the
network. If these doesn't meet your requirements, though, there are a significant number of third-party modules
available from the module registry at http://modules.apache.org/.

The status code entry in the common and combined log formats deserve some mention, because its meaning is not
immediately clear. The status codes are defined by the HTTP protocol specification documents (currently RFC 2616
at ftp://ftp.isi.edu/in-notes/rfc2616.txt). Table 3-1 gives a brief description of the codes defined at the time of this
writing.

Table 3-1. HTTP status codes

Code

Abstract

Informational 1xx

100

Continue

101

Switching protocols

Successful 2xx

200

OK

201

Created

202

Accepted

203

Nonauthoritative information

204

No content

205

Reset content

206

Partial content

Redirection 3xx

300

Multiple choices

301

Moved permanently

302

Found

303

See other

304

Not modified

305

Use proxy

306

(Unused)

307

Temporary redirect

Client error 4xx

400

Bad request

401

Unauthorized

402

Payment required

403

Forbidden

404

Not found

405

Method not allowed

406

Not acceptable

407

Proxy authentication required

408

Request timeout

409

Conflict

410

Gone

411

Length required

412

Precondition failed

413

Request entity too large

414

Request-URI too long

415

Unsupported media type

416

Requested range not satisfiable

417

Expectation failed

Server error 5xx

500

Internal server error

501

Not implemented

502

Bad gateway

503

Service unavailable

504

Gateway timeout

505

HTTP version not supported

The one-line descriptions shown in Table 3-1 are sometimes terse to the point of being confusing, but they should at
least give you an inkling of what the server thinks happened. The first digit is used to separate the codes into classes
or categories; for example, all codes starting with 5 indicate there is a problem handling the request, and the server
thinks the problem is on its end rather than on the client's end.

For a complete description of the various status codes, you'll need to read a document about the HTTP protocol or
the RFC itself.

http://modules.apache.org/default.htm
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://modules.apache.org/
ftp://ftp.isi.edu/in-notes/rfc2616.txt

[Team LiB]

[Team LiB]

Recipe 3.1 Getting More Details in Your Log Entries

Problem

You want to add a little more detail to your access log entries.

Solution

Use the combined log format, rather than the common log format:
 CustomLog logs/access_log combined
Discussion

The default Apache logfile enables logging with the common log format, but it also provides the combined log format
as a predefined LogFormat directive.

The combined log format offers two additional pieces of information not included in the common log format: the
Referer (where the client linked from) and the User-agent (what browser they are using).

Every major logfile parsing software package is able to handle the combined format as well as the common format,
and many of them give additional statistics based on these added fields. So you lose nothing by using this format and
potentially gain some additional information.

See Also

•

http://httpd.apache.org/docs/mod/mod_log_config.html
•

http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs-2.0/mod/mod_log_config.html
http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

Recipe 3.2 Getting More Detailed Errors

Problem

You want more information in the error log in order to debug a problem.

Solution

Change (or add) the LogLevel line in your httpd.conf file. There are several possible arguments, which are
enumerated below:

For example:
 LogLevel Debug
Discussion

There are several hierarchical levels of error logging available, each identified by its own keyword. The default value
of LogLevel is warn. Listed in descending order of importance, the possible values are:
 emerg

Emergencies; web server is unusable
 alert

Action must be taken immediately
 crit

Critical conditions
 error

Error conditions
 warn

Warning conditions
 notice

Normal but significant condition
 info

Informational
 debug

Debug-level messages

emerg results in the least information being recorded and debug in the most. However, at debug level a lot of
information will probably be recorded that is unrelated to the issue you're investigating, so it's a good idea to revert to
the previous setting when the problem is solved.

Even though the various logging levels are hierarchical in nature, one oddity is that notice level messages are always
logged regardless of the setting of the LogLevel directive.

The severity levels are rather loosely defined and even more loosely applied. In other words, the severity at which a
particular error condition gets logged is decided at the discretion of the developer who wrote the code—your opinion
may differ.

Here are some sample messages of various severities:
 [Thu Apr 18 01:37:40 2002] [alert] [client 64.152.75.26] /home/smith/public_html/
 test/.htaccess: Invalid command 'Test', perhaps mis-spelled or defined by a
 module not included in the server configuration
[Thu Apr 25 22:21:58 2002] [error] PHP Fatal error: Call to undefined function:
 decode_url() in /usr/apache/htdocs/foo.php on line 8
[Mon Apr 15 09:31:37 2002] [warn] pid file /usr/apache/logs/httpd.pid overwritten --
 Unclean shutdown of previous Apache run?
[Mon Apr 15 09:31:38 2002] [info] Server built: Apr 12 2002 09:14:06

[Mon Apr 15 09:31:38 2002] [notice] Accept mutex: sysvsem (Default: sysvsem)

These are fairly normal messages that you might encounter on a production web server. If you set the logging level to
Debug, however, you might see many more messages of cryptic import, such as:
 [Thu Mar 28 10:29:50 2002] [debug] proxy_cache.c(992): No CacheRoot, so no caching.
 Declining.

[Thu Mar 28 10:29:50 2002] [debug] proxy_http.c(540): Content-Type: text/html

These are exactly what they seem to be: debugging messages intended to help an Apache developer figure out what
the proxy module is doing.

See Also

At the time of this writing, there is an effort underway to provide a dictionary of Apache error messages, what they
mean, and what to do about the conditions they report, but it doesn't have anything concrete to show at this point.
When it does, it should be announced at the Apache server developer site:
 http://httpd.apache.org/dev/

It will be mentioned on this book's companion web site, as well:
 http://Apache-Cookbook.Com/

In addition, see the detailed documentation of the LogLevel directive at the Apache site:
 http://httpd.apache.org/docs/mod/core.html#loglevel

http://httpd.apache.org/dev/default.htm
http://apache-cookbook.com/default.htm
http://httpd.apache.org/docs/mod/core.html#loglevel
http://httpd.apache.org/dev/
http://Apache-Cookbook.Com/
http://httpd.apache.org/docs/mod/core.html#loglevel

[Team LiB]

[Team LiB]

Recipe 3.3 Logging POST Contents

Problem

You want to record data submitted with the POST method, such as from a web form.

Solution

Generally not possible in Apache 1.3 unless the POST-handling module explicitly records the data; possible in
Apache 2.0 via input filter functionality, but no such filters are available at the time of this writing.

Discussion

In Version 1.3 of Apache, only one module receives the chance to process the message body of a request, which
contains the POST variable settings, and it's up to this module to record them. The request information is read from
the network exactly once by the module chosen by the server to handle the response, and therefore, the information
isn't available to the logging phase, which follows the content handling phase.

For example, if you're using mod_perl, you may be able to record the information if the content handler that delivers
the response is a Perl script being handled by mod_perl.

See Also

•

Watch this book's web site for updates about the availability of an input filter to do this:
http://Apache-Cookbook.Com/

•

See various articles on the Web about Apache 2.0 filters, such as:
http://OnLAMP.Com/apache/http://ApacheToday.Com/

[Team LiB]

http://apache-cookbook.com/default.htm
http://onlamp.com/apache/default.htm
http://apachetoday.com/default.htm
http://Apache-Cookbook.Com/
http://OnLAMP.Com/apache/
http://ApacheToday.Com/

[Team LiB]

Recipe 3.4 Logging a Proxied Client's IP Address

Problem

You want to log the IP address of the actual client requesting your pages, even if they're being requested through a
proxy.

Solution

None.

Discussion

Unfortunately, the HTTP protocol itself prevents this from being possible. From the client side, proxies are intended
to be completely transparent; from the side of the origin server, where the content actually resides, they are meant to
be almost utterly opaque, concealing the identity of a request.

Your best option is to log the IP address from which the request came. If it came directly from a browser, it will be
the client's address; if it came through one or more proxy servers, it will be the address of the one that actually
contacts your server.

Both the combined and common log formats include the %h format effector, which represents the (remote) client's
identity. However, this may be a hostname rather than an address, depending on the setting of your
HostNameLookups directive, among other things. If you always want the client's IP address to be included in your
logfile, use the %a effector instead.

See Also

•

The HTTP protocol specification at ftp://ftp.isi.edu/in-notes/rfc2616.txt

[Team LiB]

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt

[Team LiB]

Recipe 3.5 Logging Client MAC Addresses

Problem

You want to record the MAC (hardware) address of clients that access your server.

Solution

This cannot be logged reliably in most network situations and not by Apache at all.

Discussion

The MAC address is not meaningful except on local area networks (LANs) and is not available in wide-area
network transactions. When a network packet goes through a router, such as when leaving a LAN, the router will
typically rewrite the MAC address field with the router's hardware address.

See Also

•

The TCP/IP protocol specifications (see http://www.rfc-editor.org/cgi-bin/rfcsearch.pl and search for "TCP"
in the title field)

[Team LiB]

http://www.rfc-editor.org/cgi-bin/rfcsearch.pl
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl

[Team LiB]

Recipe 3.6 Logging Cookies

Problem

You want to record all the cookies sent to your server by clients and all the cookies your server asks clients to set in
their databases; this can be useful when debugging web applications that use cookies.

Solution

To log cookies received from the client:
 CustomLog logs/cookies_in.log "%{UNIQUE_ID}e %{Cookie}i"
CustomLog logs/cookies2_in.log "%{UNIQUE_ID}e %{Cookie2}i"

To log cookie values set and sent by the server to the client:
 CustomLog logs/cookies_out.log "%{UNIQUE_ID}e %{Set-Cookie}o"
CustomLog logs/cookies2_out.log "%{UNIQUE_ID}e %{Set-Cookie2}o"

Using the %{Set-Cookie}o format effector for debugging is not recommended if multiple cookies are (or may be)
involved. Only the first one will be recorded in the logfile. See the Discussion text for an example.

At the time of this writing, the Apache package includes no way to record all cookie
values, but one of the authors of this book is working on one. When it's available, it should
be mentioned on this book's web site, http://Apache-Cookbook.Com/.

Discussion

Cookie fields tend to be very long and complex, so the previous statements will create separate files for logging them.
The cookie log entries can be correlated against the client request access log using the server-set UNIQUE_ID
environment variable (assuming that mod_unique_id is active in the server and that the activity log format includes
the environment variable with a %{UNIQUE_ID}e format effector).

At the time of this writing, the Cookie and Set-Cookie header fields are most commonly used. The Cookie2 and
corresponding Set-Cookie2 fields are newer and have been designed to correct some of the shortcomings in the
original specifications, but they haven't yet achieved much penetration.

Because of the manner in which the syntax of the cookie header fields has changed over time, these logging
instructions may or may not capture the complete details of the cookies.

Bear in mind that these logging directives will record all cookies, and not just the ones in which you may be
particularly interested. For example, here is the log entry for a client request that included two cookies, one named
RFC2109-1 and one named RFC2109-2:
 PNCSUsCoF2UAACI3CZs RFC2109-1="This is an old-style cookie, with space characters
 embedded"; RFC2109-2=This_is_a_normal_old-style_cookie

Even though there's only one log entry, it contains information about two cookies.

On the cookie-setting side, here are the Set-Cookie header fields sent by the server in its response header:
 Set-Cookie: RFC2109-1="This is an old-style cookie, with space characters embedded";
 Version=1; Path=/; Max-Age=60; Comment="RFC2109 demonstration cookie"
Set-Cookie: RFC2109-2=This_is_a_normal_old-style_cookie; Version=1; Path=/; Max-

 Age=60; Comment="RFC2109 demonstration cookie"

And here's the corresponding log entry for the response:
 PNCSUsCoF2UAACI3CZs RFC2109-1="This is an old-style cookie, with space characters
 embedded"; Version=1; Path=/; Max-Age=60; Comment="RFC2109 demonstration cookie"

As you can see, the logging of the Cookie field in the request header was handled correctly, but only one of the
Set-Cookie fields in the response header was logged.

See Also

•

RFC 2109, "HTTP State Management Mechanism" (IETF definition of Cookie and Set-Cookie header
fields) at ftp://ftp.isi.edu/in-notes/rfc2109.txt

•

RFC 2165, "HTTP State Management Mechanism" (IETF definition of Cookie2 and Set-Cookie2 header
fields) at ftp://ftp.isi.edu/in-notes/rfc2165.txt

•

The original Netscape cookie proposal at http://home.netscape.com/newsref/std/cookie_spec.html

http://apache-cookbook.com/default.htm
ftp://ftp.isi.edu/in-notes/rfc2109.txt
ftp://ftp.isi.edu/in-notes/rfc2165.txt
http://home.netscape.com/newsref/std/cookie_spec.html
http://Apache-Cookbook.Com
ftp://ftp.isi.edu/in-notes/rfc2109.txt
ftp://ftp.isi.edu/in-notes/rfc2165.txt
http://home.netscape.com/newsref/std/cookie_spec.html

[Team LiB]

[Team LiB]

Recipe 3.7 Not Logging Image Requests from Local Pages

Problem

You want to log requests for images on your site, except when they're requests from one of your own pages. You
might want to do this to keep your logfile size down, or possibly to track down sites that are hijacking your artwork
and using it to adorn their pages.

Solution

Use SetEnvIfNoCase to restrict logging to only those requests from outside of your site:
 <FilesMatch \.(jpg|gif|png)$>
 SetEnvIfNoCase Referer "^http://www.example.com/" local_referrer=1
</FilesMatch>

CustomLog logs/access_log combined env=!local_referrer
Discussion

In many cases, documents on a web server include references to images also kept on the server, but the only item of
real interest for log analysis is the referencing page itself. How can you keep the server from logging all the requests
for the images that happen when such a local page is accessed?

The SetEnvIfNoCase will set an environment variable if the page that linked to the image is from the
www.example.com site (obviously you should replace that site name with your own) and the request is for a GIF,
PNG, or JPEG image.

SetEnvIfNoCase is the same as SetEnvIf except that variable comparisons are done in a
case-insensitive manner.

The CustomLog directive will log all requests that do not have that environment variable set, i.e., everything except
requests for images that come from links on your own pages.

This recipe only works for clients that actually report the referring page. Some people regard the URL of the referring
page to be no business of anyone but themselves, and some clients permit the user to select whether to include this
information or not. There are also "anonymising" sites on the Internet that act as proxies and conceal this information.

See Also

•

Recipe 6.5

[Team LiB]

[Team LiB]

Recipe 3.8 Logging Requests by Day or Hour

Problem

You want to automatically roll over the Apache logs at specific times without having to shut down and restart the
server.

Solution

Use CustomLog and the rotatelogs program:
 CustomLog "| /path/to/rotatelogs /path/to/logs/access_log.%Y-%m-%d 86400" combined
Discussion

The rotatelogs script is designed to use an Apache feature called piped logging, which is just a fancy name for
sending log output to another program rather than to a file. By inserting the rotatelogs script between the web server
and the actual logfiles on disk, you can avoid having to restart the server to create new files; the script automatically
opens a new file at the designated time and starts writing to it.

The first argument to the rotatelogs script is the base name of the file to which records should be logged. If it
contains one or more % characters, it will be treated as a strftime(3) format string; otherwise, the rollover time (in
seconds since 1 January 1970), in the form of a 10-digit number, will be appended to the base name. For example, a
base name of foo would result in logfile names like foo.1020297600, whereas a base name of foo.%Y-%m-%d
would cause the logfiles to be named something like foo.2002-04-29.

The second argument is the interval (in seconds) between rollovers. Rollovers will occur whenever the system time is
a multiple of this value. For instance, a 24-hour day contains 86,400 seconds; if you specify a rollover interval of
86400, a new logfile will be created every night at midnight—when the system time, which is based at representing
midnight on 1 January 1970, is a multiple of 24 hours.

Note that the rollover interval is in actual clock seconds elapsed, so when time changes
because of daylight savings, this does not in any way affect the interval between rollovers.

See Also

•

The rotatelogs manpage; try
% man -M /path/to/ServerRoot /man rotatelogs.8

replacing the /path/to/ServerRoot with the actual value of your installation's ServerRoot directive in
httpd.conf

[Team LiB]

[Team LiB]

Recipe 3.9 Rotating Logs on the First of the Month

Problem

You want to close the previous month's logs and open new ones on the first of each month.

Solution

The Apache distribution doesn't include a canned script to perform this duty, but you can find one on this book's
companion site at http://Apache-Cookbook.Com/sources/Chapter04/rotate-log-monthly.pl.

You use it by piping the desired activity log through the script, such as with:
 CustomLog "| rotate-log-monthly.pl logs/access_log-%Y-%M" CLF

The argument to the script is the name of the logfile; the special sequences beginning with % are passed to strftime(3)
to form the new logfile name.

Discussion

As with the other logging solutions in this chapter, the solution given here addresses a single specific need. If you want
to combine functions, such as splitting logfiles according to virtual host and rotating them on the first of each month,
you are going to need to use custom scripts.

The rotate-log-monthly.pl script is a rather brute-force approach and may not be appropriate for extremely high
traffic servers due to its sampling of the system time at each log entry. However, it illustrates the technique.

See Also

•

http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

http://apache-cookbook.com/sources/Chapter04/rotate-log-monthly.pl
http://httpd.apache.org/docs/logs.html#piped
http://Apache-Cookbook.Com/sources/Chapter04/rotate-log-monthly.pl
http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

Recipe 3.10 Logging Hostnames Instead of IP Addresses

Problem

You want to see hostnames in your activity log instead of IP addresses.

Solution

You can let the web server resolve the hostname when it processes the request by enabling runtime lookups with the
Apache directive:
 HostnameLookups On

Or, you can let Apache use the IP address during normal processing and let a piped logging process resolve them as
part of recording the entry:
 HostnameLookups Off
CustomLog "| /path/to/logresolve -c >> /path/to/logs/access_log.resolved" combined

Or, you can let Apache use and log the IP addresses, and resolve them later when analyzing the logfile. Add this to
http.conf:
 CustomLog /path/to/logs/access_log.raw combined

And analyze the log with:
 % /path/to/logresolve -c < access_log.raw > access_log.resolved
Discussion

The Apache activity logging mechanism can record either the client's IP address or its hostname (or both). Logging
the hostname directly requires that the server spend some time to perform a DNS lookup to turn the IP address
(which it already has) into a hostname. This can have some serious impact on the server's performance, however,
because it needs to consult the name service in order to turn the address into a name; and while a server child or
thread is busy waiting for that, it isn't handling client requests. One alternative is to have the server record only the
client's IP address and resolve the address to a name during logfile postprocessing and analysis. At the very least,
defer it to a separate process that won't directly tie up the web server with the resolution overhead.

In theory this is an excellent choice; in practice, however, there are some pitfalls. For one thing, the logresolve
application included with Apache (usually installed in the bin/ subdirectory under the ServerRoot) will only resolve IP
addresses that appear at the very beginning of the log entry, and so it's not very flexible if you want to use a
nonstandard format for your logfile. For another, if too much time passes between the collection and resolution of the
IP addresses, the DNS may have changed sufficiently so that misleading or incorrect results may be obtained. This is
especially a problem with dynamically allocated IP addresses such as those issued by ISPs.

An additional shortcoming becomes apparent if you feed your log records directly to logresolve through a pipe: as of
Apache 1.3.24 at least, logresolve doesn't flush its output buffers immediately, so there's the possibility of lost data if
the logging process or the system should crash.

See Also

•

The logresolve manpage:
% man -M /path/to/ServerRoot /man/logresolve.8

[Team LiB]

[Team LiB]

Recipe 3.11 Maintaining Separate Logs for Each Virtual Host

Problem

You want to have separate activity logs for each of your virtual hosts, but you don't want to have all the open files
that multiple CustomLog directives would use.

Solution

Use the split-logfile program that comes with Apache. To split logfiles after they've been rolled over (replace
/path/to/ServerRoot with the correct path):
 # cd /path/to /ServerRoot
mv logs/access_log logs/access_log.old
bin/apachectl graceful
 [wait for old logfile to be completely closed]
cd logs
../bin/split-logfile < access_log.old

To split records to the appropriate files as they're written, add this line to your httpd.conf file:
 CustomLog "| /path/to/split-logfile /usr/local/Apache/logs" combined
Discussion

In order for split-logfile to work, the logging format you're using must begin with "%v " (note the blank after the v).
This inserts the name of the virtual host at the beginning of each log entry; split-logfile will use this to figure out to
which file the entry should be written. The hostname will be removed from the record before it gets written.

There are two ways to split your access logfile: after it's been written, closed, and rolled over, or as the entries are
actually being recorded. To split a closed logfile, just feed it into the split-logfile script. To split the entries into
separate files as they're actually being written, modify your configuration to pipe the log messages directly to the
script.

Each method has advantages and disadvantages. The rollover method requires twice as much disk space (for the
unsplit log plus the split ones) and that you verify that the logfile is completely closed. (Unfortunately there is no
guaranteed, simple way of doing this without actually shutting down the server or doing a graceless restart; it's entirely
possible that a slow connection may keep the old logfile open for a considerable amount of time after a graceful
restart.) Splitting as the entries are recorded is sensitive to the logging process dying—although Apache will
automatically restart it, log messages waiting for it can pile up and constipate the server.

See Also

•

Recipe 3.10

[Team LiB]

[Team LiB]

Recipe 3.12 Logging Proxy Requests

Problem

You want to log requests that go through your proxy to a different file than the requests coming directly to your
server.

Solution

Use the SetEnv directive to earmark those requests that came through the proxy server, in order to trigger
conditional logging:
 <Directory proxy:*>
 SetEnv is_proxied 1
</Directory>

CustomLog logs/proxy_log combined env=is_proxied
Discussion

Apache 1.3 has a special syntax for the <Directory> directive, which applies specifically to requests passing through
the proxy module. Although the * makes it appear that wildcards can be used to match documents, it's misleading; it
isn't really a wildcard. You may either match explicit paths, such as proxy:http://example.com/foo.html, or use * to
match everything. You can not do something like proxy:http://example.com/*.html.

If you want to apply different directives to different proxied paths, you need to take advantage of another module.
Because you're dealing with requests that are passing through your server rather than being handled by it directly (i.e.,
your server is a proxy rather than an origin server), you can't use <Files> or <FilesMatch> containers to apply
directives to particular proxied documents. Nor can you use <Location> or <LocationMatch> stanzas, because
they can't appear inside a <Directory> container. You can, however, use mod_rewrite 's capabilities to make
decisions based on the path of the requested document. For instance, you can log proxied requests for images in a
separate file with something like this:
 <Directory proxy:*>
 RewriteEngine On
 RewriteRule "\.(gif|png|jpg)$" "-" [ENV=proxied_image:1]
 RewriteCond "%{ENV:proxied_image}" "!1"
 RewriteRule "^" "-" [ENV=proxied_other:1]
</Directory>
CustomLog logs/proxy_image_log combined env=proxied_image

CustomLog logs/proxy_other_log combined env=proxied_other

Directives in the <Directory proxy:*> container will only apply to requests going through your server. The first
RewriteRule directive sets an environment variable if the requested document ends in .gif, .png, or .jpg. The
RewriteCond directive tests to see if that envariable isn't set, and the following RewriteRule will set a different
envariable if so. The two CustomLog directives send the different types of requests to different logfiles according to
the environment variables.

See Also

•

The mod_rewrite and mod_log_config documentation

[Team LiB]

[Team LiB]

Recipe 3.13 Logging Errors for Virtual Hosts to Multiple Files

Problem

Unlike access logs, Apache only logs errors to a single location. You want Apache to log errors that refer to a
particular virtual host to the host's error log, as well as to the global error log.

Solution

There are at least two possible ways of doing this:

1.

Use piped logging to send entries to a custom script that will copy and direct error messages to the
appropriate files.

2.

Use piped logging to duplicate log entries:
ErrorLog "| tee logfile1 | tee logfile2 > logfile3"

Discussion

Unlike activity logs, Apache will log error messages only to a single location. If the error is related to a particular
virtual host and this host's <VirtualHost> container includes an ErrorLog entry, the error will be logged only in this
file, and it won't appear in any global error log. If the <VirtualHost> does not specify an ErrorLog directive, the
error will be logged only to the global error log. (The global error log is the last ErrorLog directive encountered that
isn't in a <VirtualHost> container.)

Currently, the only workaround to this is to have the necessary duplication performed by a separate process (i.e., by
using piped logging to send the error messages to the process as they occur). Of the two solutions given above, the
first, which involves a custom script you develop yourself, has the most flexibility. If all you want is simply duplication
of entries, the second solution is simpler but requires that your platform have a tee program (Windows does not). It
may also be subject to lagging messages if your tee program doesn't flush its buffers after each record it receives.
This could also lead to lost messages if the pipe breaks or the system crashes.

See Also

•

http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

http://httpd.apache.org/docs/logs.html#piped
http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

Recipe 3.14 Logging Server IP Addresses

Problem

You want to log the IP address of the server that responds to a request, possibly because you have virtual hosts with
multiple addresses each.

Solution

Use the %A format effector in a LogFormat or CustomLog directive:
 CustomLog logs/served-by.log "%{UNIQUE_ID}e %A"
Discussion

The %A effector signals the activity logging system to insert the local IP address—that is, the address of the
server—into the log record at the specified point. This can be useful when your server handles multiple IP addresses.
For example, you might have a configuration that includes elements such as the following:
 Listen 10.0.0.42
Listen 192.168.19.243
Listen 263.41.0.80
<VirtualHost 192.168.19.243>
 ServerName Private.Example.Com
</VirtualHost>
<VirtualHost 10.0.0.42 263.41.0.80>
 ServerName Foo.Example.Com
 ServerAlias Bar.Example.Com

</VirtualHost>

This might be meaningful if you want internal users to access Foo.Example.Com using the 10.0.0.42 address rather
than the one published to the rest of the network (such as to segregate internal from external traffic over the network
cards). The second virtual host is going to receive requests aimed at both addresses even though it has only one
ServerName; using the %A effector in your log format can help you determine how many hits on the site are coming
in over each network interface.

See Also

•

The mod_log_config documentation

[Team LiB]

[Team LiB]

Recipe 3.15 Logging the Referring Page

Problem

You want to record the URL of pages that refer clients to yours, perhaps to find out how people are reaching your
site.

Solution

Add the following effector to your activity log format:
 %{Referer}i
Discussion

One of the fields that a request header may include is called the Referer. Referer is the URL of the page that linked to
the current request. For example, if file a.html contains a link such as:
 another page

When the link is followed, the request header for b.html will contain a Referer field that has the URL of a.html as its
value.

The Referer field is not required nor reliable; some users prefer software or anonymising tools that ensure that you
can't tell where they've been. However, this is usually a fairly small number and may be disregarded for most web
sites.

See Also

•

Recipe 3.17
•

Recipe 6.5

[Team LiB]

[Team LiB]

Recipe 3.16 Logging the Name of the Browser Software

Problem

You want to know the software visitors use to access your site, for example, so you can optimize its appearance for
the browser that most of your audience uses.

Solution

Add the following effector to your activity log format:
 %{User-Agent}i
Discussion

Request headers often include a field called the User-agent. This is defined as the name and version of the client
software being used to make the request. For instance, a User-agent field value might look like this:
 User-Agent: Mozilla/4.77 [en] (X11; U; Linux 2.4.4-4GB i686)

This tells you that the client is claiming to be Netscape Navigator 4.77, run on a Linux system and using X-windows
as its GUI.

The User-agent field is neither required nor reliable; many users prefer software or anonymising tools that ensure that
you can't tell what they're using. Some software even lies about itself so it can work around sites that cater
specifically to one browser or another; users have this peculiar habit of thinking it's none of the webmaster's business
which browser they prefer. It's a good idea to design your site to be as browser-agnostic as possible for this reason,
among others. If you're going to make decisions based on the value of the field, you might as well believe it hasn't
been faked—because there's no way to tell if it has.

See Also

•

Recipe 3.17

[Team LiB]

[Team LiB]

Recipe 3.17 Logging Arbitrary Request Header Fields

Problem

You want to record the values of arbitrary fields clients send to their request header, perhaps to tune the types of
content you have available to the needs of your visitors.

Solution

Use the %{...}i log format variable in your access log format declaration. For example, to log the Host header, you
might use:
 %{Host}i
Discussion

The HTTP request sent by a web browser can be very complex, and if the client is a specialized application rather
than a browser, it may insert additional metadata that's meaningful to the server. For instance, one useful request
header field is the Accept field, which tells the server what kinds of content the client is capable of and willing to
receive. Given a CustomLog line such as this:
 CustomLog logs/accept_log "%{UNIQUE_ID}e \"%{Accept}i\""

a resulting log entry might look like this:
 PNb6VsCoF2UAAH1dAUo "text/html, image/png, image/jpeg, image/gif,
 image/x-xbitmap, */*"

This tells you that the client that made that request is explicitly ready to handle HTML pages and certain types of
images, but, in a pinch, will take whatever the server gives it (indicated by the wildcard */* entry).

See Also

•

Recipe 3.15
•

Recipe 3.17

[Team LiB]

[Team LiB]

Recipe 3.18 Logging Arbitrary Response Header Fields

Problem

You want to record the values of arbitrary fields the server has included in a response header, probably to debug a
script or application.

Solution

Use the %{...}o log format variable in your access log format declaration. For example, to log the Last-Modified
header, you would do the following:
 %{Last-Modified}o
Discussion

The HTTP response sent by Apache when answering a request can be very complex, according to the server's
configuration. Advanced scripts or application servers may add custom fields to the server's response, and knowing
what values were set may be of great help when trying to track down an application problem.

Other than the fact that you're recording fields the server is sending rather than receiving, this recipe is analogous to
Recipe 3.17 in this chapter; refer to that recipe for more details. The only difference in the syntax of the logging
format effectors is that response fields are logged using an o effector, and request fields are logged using i.

See Also

•

Recipe 3.17

[Team LiB]

[Team LiB]

Recipe 3.19 Logging Activity to a MySQL Database

Problem

Rather than logging accesses to your server in flat text files, you want to log the information directly to a database for
easier analysis.

Solution

Install the latest release of mod_log_sql from http://www.grubbybaby.com/mod_log_sql/ according to the modules
directions (see Recipe 2.1), and then issue the following commands:
 # mysqladmin create apache_log
mysql apache_log
mysql apache_log < access_log.sql
mysql> grant insert,create on apache_log.* to webserver@localhost identified by

 'wwwpw';

Add the following lines to your httpd.conf file:
 <IfModule mod_log_mysql.c>
 MySQLLoginInfo localhost webserver wwwpw
 MySQLDatabase apache_log
 MySQLTransferLogTable access_log
 MySQLTransferLogFormat huSUsbTvRA

</IfModule>
Discussion

Note that there is currently a difference between the name of the web location, the tarball, and the actual module. The
module file and directory retain the "mysql" name, but the directory and the tarball have moved to a more generic
"sql" naming convention.

See Also

•

http://www.grubbybaby.com/mod_log_sql/

[Team LiB]

http://www.grubbybaby.com/mod_log_sql/default.htm
http://www.grubbybaby.com/mod_log_sql/default.htm
http://www.grubbybaby.com/mod_log_sql/
http://www.grubbybaby.com/mod_log_sql/

[Team LiB]

Recipe 3.20 Logging to syslog

Problem

You want to send your log entries to syslog.

Solution

To log your error log to syslog, simply tell Apache to log to syslog:
 ErrorLog syslog:user

Some syslog reporting class other than user, such as local1, might be more appropriate in
your environment.

Logging your access log to syslog takes a little work. Add the following to your configuration file:
 CustomLog |/usr/local/apache/bin/apache_syslog combined

where apache_syslog is a program that looks like the following:
 #!/usr/bin/perl
use Sys::Syslog qw(:DEFAULT setlogsock);

setlogsock('unix');
openlog('apache', 'cons', 'pid', 'user');

while ($log = <STDIN>) {
 syslog('notice', $log);
}

closelog;

(Note that this script is only a skeleton; an actual production quality version should include code to check for errors,
etc.)

Discussion

There are two main reasons for logging to syslog. The first of these is to have many servers log to a central logging
facility. The second is that there are many existing tools for monitoring syslog and sending appropriate notifications on
certain events. Allow Apache to take advantage of these tools, and your particular installation may benefit.

Apache supports logging your error log to syslog by default. This is by far the more useful log to handle this way,
because syslog is typically used to track error conditions rather than merely informational messages.

The syntax of the ErrorLog directive allows you to specify syslog as an argument or to specify a particular syslog
facility. In the previous example, the user syslog facility was specified. In your /etc/syslog.conf file, you can specify
where a particular log facility should be sent—whether to a file or to a remote syslog server.

Since Apache does not support logging your access log to syslog by default, you need to accomplish this with a
piped logfile directive. The program that we use to accomplish this is a simple Perl program using the Sys::Syslog
module, which is a standard module with your Perl installation. Because the piped logfile handler is launched at server
startup and merely accepts input on STDIN for the life of the server, there is no performance penalty for using Perl.

If you have several web servers and want them all to log to one central logfile, this can be accomplished by having all
of your servers log to syslog and pointing that syslog facility to a central syslog server. Note that this may cause your
log entries to be in nonsequential order, which should not really matter but may appear strange at first. This effect can
be reduced by ensuring that your clocks are synchronized via NTP.

Consult your syslogd manual for further detail on setting up a networked syslog server.

See Also

•

The manpages for syslogd and syslog.conf

[Team LiB]

[Team LiB]

Recipe 3.21 Logging User Directories

Problem

You want each user directory web site (i.e., those accessed via http://servername/~username) to have its own logfile.

Solution

In httpd.conf, add the directive:
 CustomLog "|/usr/local/apache/bin/userdir_log" combined

Then, in the file /usr/local/apache/bin/userdir_log, place the following code:
 #!/usr/bin/perl

my $L = '/usr/local/apache/logs'; # Log directory

my %is_open = (); # File handle cache
$|=1;
open(F, ">>$L/access_log"); # Default error log

while (my $log = <STDIN>) {
 if ($log =~ m!\s/~(.*?)/!) {
 my $u = $1;
 unless ($is_open{$u}) {
 my $fh;
 open $fh, '>>' . $L . '/'. $u;
 $is_open{$u} = $fh;
 }
 select ($is_open{$u});
 $|=1;
 print $log;
 }
 else {
 select F;
 $|=1;
 print F $log;
 }
}

close F;
foreach my $h (keys %is_open) {
 close $h;

}

(Note that this script is only a skeleton; an actual production quality version should include code to check for errors,
etc.)

Discussion

Usually, requests to user directory web sites are logged in the main server log, with no differentiation between one
user's site and another. This can make it very hard for a user to locate log messages for his personal web site.

The Solution allows you to break out those requests into one logfile per user, with requests not going to a userdir
web site but going to the main logfile. The log handler can, of course, be modified to put all log messages in the main
logfile as well as in the individual logfiles.

File handles are cached to decrease the amount of disk activity necessary, rather than opened and closed with each
access. This results in a larger number of file handles open at any given time. Sites with a very large number of user
web sites may run out of system resources.

Because Perl buffers output by default, we need to explicitly tell our script not to buffer the output, so that log entries
make it into the logfile immediately. This is accomplished by setting the autoflush variable, $|, to a true value. This tells
Perl not to buffer output to the most recently selected file handle. Without this precaution, output will be buffered, and
it will appear that nothing is being written to your log files.

See Also

•

http://httpd.apache.org/docs/mod/mod_log_config.html
•

http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs-2.0/mod/mod_log_config.html
http://servername/~
http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

[Team LiB]

Chapter 4. Virtual Hosts

A web server system supports multiple web sites in a way similar to a person who responds to her given name, as
well as her nickname. In the Apache configuration file, each alternate identity, and probably the "main" one as well, is
known as a virtual host (sometimes written as vhost) identified with a <VirtualHost> container directive. Depending
on the name used to access the web server, Apache responds appropriately, just as someone might answer
differently depending on whether she is addressed as "Miss Jones" or "Hey, Debbie!" If you want to have a single
system support multiple web sites, you must configure Apache appropriately.

There are two different types of virtual host supported by Apache. The first type, called address-based or IP-based,
is tied to the numeric network address used to reach the system. Bruce Wayne never answered the parlour telephone
with "Batman here!" nor did he answer the phone in the Batcave by saying, "Bruce Wayne speaking." However, it's
the same person answering the phone, just as it's the same web server receiving the request.

The other type of virtual host is name-based, because the server's response depends on what it is called. To continue
the telephone analogy, consider an apartment shared by multiple roommates; you call the same number whether you
want to speak to Dave, Joyce, Amaterasu, or George. Just as multiple people may share a single telephone number,
multiple web sites can share the same IP address. However, all IP addresses shared by multiple Apache virtual hosts
need to be declared with a NameVirtualHost directive.

In the most simple of Apache configurations, there are no virtual hosts. Instead, all of the directives in the
configuration file apply universally to the operation of the server. The environment defined by the directives outside
any <VirtualHost> containers is sometimes called the default server or perhaps the global server. There is no official
name for it, but it can become a factor when adding virtual hosts to your configuration.

But what happens if you add a <VirtualHost> container to such a configuration? How are those directives outside
the container interpreted, and what is their effect on the virtual host?

The answer is not a simple one: essentially, the effect is specific to each configuration directive. Some get inherited by
the virtual hosts, some get reset to a default value, and some pretend they've never been used before. You'll need to
consult the documentation for each directive to know for sure.

There are two primary forms of virtual hosts: IP-based virtual hosts, where each virtual host has its own unique IP
address; and name-based virtual hosts, where more than one virtual host runs on the same IP address but with
different names. This chapter will show you how to configure each one and how to combine the two on the same
server. You'll also learn how to fix common problems that occur with virtual hosts.

[Team LiB]

[Team LiB]

Recipe 4.1 Setting Up Name-Based Virtual Hosts

Problem

You have only one IP address, but you want to support more than one web site on your system.

Solution

Use the NameVirtualHost * directive in conjunction with <VirtualHost> sections:
 ServerName 127.0.0.1
NameVirtualHost *

<VirtualHost *>
 ServerName TheSmiths.name
 DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost *>
 ServerName JohnSmith.name
 DocumentRoot "C:/Apache/Sites/JustJohnSmith"

</VirtualHost>
Discussion

With IP addresses increasingly hard to come by, name-based virtual hosting is the most common way to run multiple
web sites on the same Apache server. The previous recipe works, for most users, in most virtual hosting situations.

The * in the previous rules means that the specified hosts run on all addresses. For a machine with only a single
address, this means that it runs on that address but will also run on the loopback, or localhost address. Thus if you
are sitting at the physical server system, you can view the web site.

The argument to the <VirtualHost> container directive is the same as the argument to the NameVirtualHost
directive. Putting the hostname here may ignore the virtual host on server startup, and requests to this virtual host may
unexpectedly go somewhere else. If your name server is down or otherwise unresponsive at the time that your
Apache server is starting up, then Apache can't match the particular <VirtualHost> section to the NameVirtualHost
directive to which it belongs.

Requests for which there is not a virtual host listed will go to the first virtual host listed in the configuration file. In the
case of the previous example, hostnames that are not explicitly mentioned in one of the virtual hosts will be served by
the TheSmiths.name virtual host.

It is particularly instructive to run httpd -S and observe the virtual host configuration as Apache understands it, to see
if it matches the way that you understand it. httpd -S returns the virtual host configuration, showing which hosts are
name-based, which are IP-based, and what the defaults are.

Multiple names can be listed for a particular virtual host using the ServerAlias directive, as shown here:
 ServerName TheSmiths.name
ServerAlias www.TheSmiths.name Smith.Family.name

It is important to understand that virtual hosts render the server listed in the main body of your configuration file no
longer accessible—you must create a virtual host section explicitly for that host. List this host first, if you want it to be
the default server.

Adding name-based virtual hosts to your Apache configuration does not magically add entries to your DNS server.
You must still add records to your DNS server so that the names resolve to the IP address of the server system.
When users type your server name(s) into their browser location bars, their computers first contact a DNS server to
look up that name and resolve it to an IP address. If there is no DNS record, then their browsers can't find your
server.

For more information on configuring your DNS server, consult the documentation for the DNS software you happen
to be running, or talk to your ISP if you're not running your own DNS server.

See Also

•

http://httpd.apache.org/docs/vhosts/

http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/vhosts/

[Team LiB]

[Team LiB]

Recipe 4.2 Designating One Name-Based Virtual Host as the Default

Problem

You want all requests, whether they match a virtual host or use an IP address, to be directed to a default host,
possibly with a "host not found" error message.

Solution

Add the following <VirtualHost> section, and list it before all of your other ones:
 <VirtualHost *>
 ServerName default
 DocumentRoot /www/htdocs
 ErrorDocument 404 /site_list.html

</VirtualHost>
Discussion

Note that this recipe is used in the context of name-based virtual hosts, so it is assumed that you have other virtual
hosts that are also using the <VirtualHost *> notation, and that there is also an accompanying NameVirtualHost *
appearing above them. We have used the default name for clarity; you can call it whatever you want.

Setting the ErrorDocument 404 to a list of the available sites on the server directs the user to useful content, rather
than leaving him stranded with an unhelpful 404 error message. You may wish to set DirectoryIndex to the site list as
well, so that users who go directly to the front page of this site also get useful information.

It's a good idea to list explicitly all valid hostnames either as ServerNames or ServerAliases, so that nobody ever
winds up at the default site. However, if someone accesses the site directly by IP address, or if a hostname is added
to the address in question before the appropriate virtual host is created, the user still gets useful content.

See Also

•

Recipe 4.4

[Team LiB]

[Team LiB]

Recipe 4.3 Setting Up Address-Based Virtual Hosts

Problem

You have multiple IP addresses assigned to your system, and you want to support one web site on each.

Solution

Create a virtual host section for each IP address you want to list on:
 ServerName 127.0.0.1

<VirtualHost 10.0.0.1>
 ServerName TheSmiths.name
 DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost 10.0.0.2>
 ServerName JohnSmith.name
 DocumentRoot "C:/Apache/Sites/JustJohnSmith"

</VirtualHost>
Discussion

The virtual hosts defined in this example catch all requests to the specified IP addresses, regardless of what hostname
is used to get there. Requests to any other IP address not listed go to the virtual host listed in the main body of the
configuration file.

The ServerName specified is used as the primary name of the virtual host, when needed, but is not used in the
process of mapping a request to the correct host. Only the IP address is consulted to figure out which virtual host to
serve requests from, not the Host header field.

See Also

•

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.4 Creating a Default Address-Based Virtual Host

Problem

You want to create a virtual host to catch all requests that don't map to one of your address-based virtual hosts.

Solution

Use the _default_ keyword to designate a default host:
 <VirtualHost _default_>
 DocumentRoot /www/htdocs

</VirtualHost>
Discussion

The _default_ keyword creates a virtual host that catches all requests for any address:port combinations for which
there is not a virtual host configured.

The _default_ directive may be used in conjunction with a particular port number, such as:
 <VirtualHost _default_:443>

Using this syntax means that the specified virtual host catches all requests to port 443, on all addresses for which
there is not an explicit virtual host configured. This is the usual way to set up SSL, which you see in the default SSL
configuration file.

default typically does not work as people expect in the case of name-based virtual hosts. It does not match names
for which there are no virtual host sections, only address:port combinations for which there are no virtual hosts
configured. If you wish to create a default name-based host, see Recipe 4.2.

See Also

•

Recipe 4.2

[Team LiB]

[Team LiB]

Recipe 4.5 Mixing Address-Based and Name-Based Virtual Hosts

Problem

You have multiple IP addresses assigned to your system, and you want to support more than one web site on each
address.

Solution

Provide a NameVirtualHost directive for each IP address, and proceed as you did with a single IP address:
 ServerName 127.0.0.1
NameVirtualHost 10.0.0.1
NameVirtualHost 10.0.0.2

<VirtualHost 10.0.0.1>
 ServerName TheSmiths.name
 DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost 10.0.0.1>
 ServerName JohnSmith.name
 DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

<VirtualHost 10.0.0.2>
 ServerName TheFergusons.name
 DocumentRoot "C:/Apache/Sites/TheFergusons"
</VirtualHost>

<VirtualHost 10.0.0.2>
 ServerName DoriFergusons.name
 DocumentRoot "C:/Apache/Sites/JustDoriFerguson"

</VirtualHost>
Discussion

Using the address of the server, rather than the wildcard * argument, makes the virtual hosts listen only to that IP
address. However, you should notice that the argument to <VirtualHost> still must match the argument to the
NameVirtualHost with which they are connected.

See Also

•

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.6 Mass Virtual Hosting with mod_vhost_alias

Problem

You want to host many virtual hosts, all of which have exactly the same configuration.

Solution

Use VirtualDocumentRoot and VirtualScriptAlias provided by mod_vhost_alias.
 VirtualDocumentRoot /www/vhosts/%-1/%-2.1/%-2/htdocs
VirtualScriptAlias /www/vhosts/%-1/%-2.1/%-2/cgi-bin
Discussion

This recipe uses directives from mod_vhost_alias, which you may not have installed when you built Apache, as it is
not one of the modules that is enabled by default.

These directives map requests to a directory built up from pieces of the hostname that was requested. Each of the
variables represents one part of the hostname, so that each hostname is be mapped to a different directory.

In this particular example, requests for content from www.example.com is served from the directory
/www/vhosts/com/e/example/htdocs, or from /www/vhosts/com/e/example/cgi-bin (for CGI requests). The full
range of available variables is shown in Table 4-1.

Table 4-1. mod_vhost_alias variables

Variable

Meaning

%%

insert a %

%p

insert the port number of the virtual host

%M.N

insert (part of) the name

M and N may have positive or negative integer values, which have the following meanings (see Table 4-2).

Table 4-2. Meanings of variable values

Value

Meaning

0

The whole name

1

The first part of the name

-1

The last part of the name

2

The second part of the name

-2

The next-to-last part of the name

2+

The second, and all following, parts

-2+

The next-to-last, and all proceeding, parts

When the value is placed in the first part of the argument—in the M part of %M.N—it refers to parts of the
hostname itself. When used in the second part—the N—refers to a particular letter from that part of the hostname.
For example, in hostname www.example.com, the meanings of the variables are as shown in Table 4-3.

Table 4-3. Example values for the hostname www.example.com

Value

Meaning

%0

www.example.com

%1

www

%2

example

%3

com

%-1

com

%-2

example

%-3

www

%-2.1

e

%-2.2

x

%-2.3+

ample

Depending on the number of virtual hosts, you may wish to create a directory structure subdivided alphabetically by
domain name, by top-level domain, or simply by hostname.

See Also

•

http://httpd.apache.org/docs/mod/mod_vhost_alias.html
•

http://httpd.apache.org/docs/vhosts/

http://httpd.apache.org/docs/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/vhosts/

[Team LiB]

[Team LiB]

Recipe 4.7 Mass Virtual Hosting Using Rewrite Rules

Problem

Although there is a module—mod_vhost_alias—which is explicitly for the purpose of supporting large numbers of
virtual hosts, it is very limiting and requires that every virtual host be configured exactly the same way. You want to
support a large number of vhosts, configured dynamically, but, at the same time, you want to avoid mod_vhost_alias.

Solution

Use directives from mod_rewrite to map to a directory based on the hostname:
 RewriteEngine on
RewriteCond %{HTTP_HOST} ^(www\.)?([^.]+)\.com$

RewriteRule ^(.*)$ /home/%2$1
Discussion

mod_vhost_alias is useful, but it is best for settings where each virtual host is identical in every way but hostname.
Using mod_vhost_alias precludes the use of other URL-mapping modules, such as mod_userdir, mod_rewrite,
and mod_alias, and it can be very restrictive. Using mod_rewrite is less efficient, but it is more flexible.

For example, when using mod_vhost_alias, you must do all of your hosts with mod_vhost_alias; whereas with this
alternate approach, you can do some of your hosts using the rewrite rules and others using conventional virtual host
configuration techniques.

The directives in the Solution map requests for www.something.com (or without the www) to the directory
/home/something.

See Also

•

Recipe 5.16
•

http://httpd.apache.org/docs/vhosts/
•

http://httpd.apache.org/docs/vhosts/
•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 4.8 SSL and Name-Based Virtual Hosts

Problem

You want to have multiple SSL web sites on the same server.

Solution

In most common implementations of SSL, you are limited to one SSL host per address and port number. Thus, either
you need to have a unique IP address for each SSL host or run them on alternate ports to get more than one on a
particular IP address:
 Listen 443
Listen 444

<VirtualHost 10.0.1.2:443>
 ServerName secure1.example.com
 DocumentRoot /www/vhosts/secure1

 SSLEngine On
 SSLCertificateFile /www/conf/ssl/secure1.crt
 SSLCertificateKeyFile /www/conf/ssl/secure1.key
</VirtualHost>

<VirtualHost 10.0.1.3:443>
 ServerName secure2.example.com
 DocumentRoot /www/vhosts/secure2

 SSLEngineOn
 SSLCertificateFile /www/conf/ssl/secure2.crt
 SSLCertificateKeyFile /www/conf/ssl/secure2.key
</VirtualHost>

<VirtualHost 10.0.1.3:444>
 ServerName secure3.example.com
 DocumentRoot /www/vhosts/secure3

 SSLEngineOn
 SSLCertificateFile /www/conf/ssl/secure3.crt
 SSLCertificateKeyFile /www/conf/ssl/secure3.key

</VirtualHost>
Discussion

The limitation that restricts you to one SSL host per IP address is not a limitation imposed by Apache but by the way
that SSL works. When the browser connects to the server, the first thing that it does is negotiate for a secure
connection. During this process, the server sends its certificate to the client, which indicates that the rest of the
transaction will be encrypted.

Because this happens before the browser tells the server what resource it wants, this part of the conversation can be
based only on the IP address on which the client connected. By the time the server receives the Host header field, it
is too late—the certificate has already been sent.

It is possible to run SSL hosts on ports other than port 443, if the port number is explicitly specified in the URL. This
would allow you to get around this limitation, but it would put an additional burden on the end user to type the correct
URL with the port number.

See Also

•

Recipe 4.11

[Team LiB]

[Team LiB]

Recipe 4.9 Logging for Each Virtual Host

Problem

You want each virtual host to have its own logfiles.

Solution

Specify Errorlog and CustomLog within each virtual host declaration:
 <VirtualHost *>
 ServerName waldo.example.com
 DocumentRoot /home/waldo/www/htdocs

 ErrorLog /home/waldo/www/logs/error_log
 CustomLog /home/waldo/www/logs/access_log combined

</VirtualHost>
Discussion

The various logging directives can be placed either in the main body of your configuration file or within a
<VirtualHost> section. When it is placed within a virtual host, log entries for that virtual host go in the specified
logfile, rather than into the log file(s) defined in the main server configuration.

Each logfile counts against the total number of files and network connections your server is
allowed to have. If you have 100 virtual hosts, each with its own error and activity log,
that's 200 open channels—and if the server's quota is 256, you can only handle 56
concurrent requests at any one time.

In the recipe given here, the logfiles are placed within the home directory of a particular user, rather than in the main
log directory. This gives you easier access to those files, but you still need to take adequate precautions to set the
permissions on the directory in question. Consult Chapter 6 for a discussion on file permissions.

See Also

•

Chapter 3
•

Chapter 6

[Team LiB]

[Team LiB]

Recipe 4.10 Splitting Up a LogFile

Problem

Due to a large number of virtual hosts, you want to have a single logfile and split it up afterwards.

Solution
 LogFormat "%v %h %l %u %t \"%r\" %>s %b" vhost
CustomLog logs/vhost_log vhost

Then, after rotating your logfile:
 split-logfile < logs/vhost_log
Discussion

The LogFormat directive in this recipe creates a logfile that is similar to the common log file format but additionally
contains the name of the virtual host being accessed. The split-logfile utility splits up this logfile into its constituent
virtual hosts.

See Also

•

Recipe 3.11

[Team LiB]

[Team LiB]

Recipe 4.11 Port-Based Virtual Hosts

Problem

You want to present different content for HTTP connections on different ports.

Solution

Explicitly list the port number in the <VirtualHost> declaration:
 Listen 8080

 <VirtualHost 10.0.1.2:8080>
 DocumentRoot /www/vhosts/port8080
 </VirtualHost>

 Listen 9090

 <VirtualHost 10.0.1.2:9090>
 DocumentRoot /www/vhosts/port9090

 <VirtualHost>
Discussion

Port-based virtual hosting is somewhat less common than other techniques shown in this chapter. However, there are
a variety of situations in which it can be useful. If you have only one IP address, have no ability to add hostnames to
DNS, or if your ISP blocks in-bound traffic on port 80, it may be useful to run virtual hosts on other ports.

Visitors to your web site must list the port number in the URL that they use. For example, to load content from the
second virtual host previously listed, the following URL might be used:
 http://server.example.com:9090/
See Also

•

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/default.htm
http://server.example.com:9090/
http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.12 Displaying the Same Content on Several Addresses

Problem

You want to have the same content displayed on two of your addresses.

Solution

Specify both addresses in the <VirtualHost> directive:
 NameVirtualHost 192.168.1.1
NameVirtualHost 172.20.30.40

<VirtualHost 192.168.1.1 172.20.30.40>
 DocumentRoot /www/vhosts/server
 ServerName server.example.com
 ServerAlias server

</VirtualHost>
Discussion

This setup is most useful on a machine that has addresses that are internal to your network, as well as those that are
accessible only from outside your network. If these are the only addresses, you could use the * notation introduced in
Recipe 4.1. However, if there are more addresses, this allows you to specify what content appears on what address.

See Also

•

http://httpd.apache.org/docs/vhosts/
[Team LiB]

http://httpd.apache.org/docs/vhosts/default.htm
http://httpd.apache.org/docs/vhosts/

[Team LiB]

Chapter 5. Aliases, Redirecting, and Rewriting

When Apache receives a request, it is assumed that the client will be served a file out of the DocumentRoot
directory. However, there will be times when you want these resources to be served from some other location. For
example, if you wanted to place a set of documents on your web site, it may be more convenient to leave them where
they are, rather than to move them to a new location.

In this chapter, we deal with three general categories of these sort of cases. Aliasing refers to mapping a URL to a
particular directory. Redirecting refers to mapping a URL to another URL. And Rewriting refers to using
mod_rewrite to alter the URL in some way.

Other recipes in this chapter are related because they map URLs to resources that are at unexpected places in the
filesystem.

These topics are particularly interesting to webmasters who want to avoid link-rot or have sites that are periodically
subject to upheaval (files or directories are moved around, or even moved from server to server). The redirection
and rewriting capabilities of the Apache web server allow you to conceal such ugly behind-the-scenes disturbances
from the eyes of your Internet visitors.

[Team LiB]

[Team LiB]

Recipe 5.1 Showing Highlighted PHP Source Without Symlinking

Problem

You want to be able to see the syntax-enhanced source to your PHP scripts without having to set up symbolic links
for all of them.

Solution

Add a line such as the following to your httpd.conf file:
 RewriteRule "^(.*\.php)s$" "/cgi-bin/show.php?file=$1" [PT,L]

Create a file named show.php as shown below, and put it in your server's /cgi-bin/ directory:
 <?php
/*
 * Show the highlighted source of a PHP script without a symlink or copy.
 */
if ((! isset($_GET))
 || (! isset($_GET['file']))
 || (! ($file = $_GET['file']))) {
 /*
 * Missing required arguments, so bail.
 */
 return status('400 Bad Request',
 "Data insufficient or invalid.\r\n");
}

$file = preg_replace('/\.phps$/', '.php', $file);
if (! preg_match('/\.php$/', $file)) {
 return status('403 Forbidden',
 "Invalid document.\r\n");
}
$docroot = $_SERVER['DOCUMENT_ROOT'];
if ((! preg_match(";^$docroot;", $file))
 || (! preg_match(";^/home/[^/]+/public_html;", $file))) {
 return status('403 Forbidden',
 "Invalid document requested.\r\n");
}
Header('Content-type: text/html; charset=iso-8859-1');
print highlight_file($file);
return;

function status($msg, $text) {
 Header("Status: $msg");
 Header('Content-type: text/plain; charset=iso-8859-1');
 Header('Content-length: ' . strlen($text));
 print $text;
}

?>
Discussion

The script in the solution uses a built-in PHP function to display the script's source in highlighted form. The
preg_match against $docroot verifies the requested file is under the server's DocumentRoot. The next preg_match
also permits files in users' public_html directories.

See Also

•

Recipe 2.5

[Team LiB]

[Team LiB]

Recipe 5.2 Mapping a URL to a Directory

Problem

You want to serve content out of a directory other than the DocumentRoot directory. For example, you may have
an existing directory of documents, which you want to have on your web site that you do not want to move into the
Apache document root.

Solution
 Alias /desired-URL-prefix /path/to/other/directory

Discussion

The example given maps URLs starting with /desired-URL-prefix to files in the /path/to/other/directory directory.
For example, a request for the URL:
 http://example.com/desired/something.html

results in the file /path/to/other/directory/something.html being sent to the client.

This same effect could be achieved by simply creating a symbolic link from the main document directory to the target
directory and turning on the Options +FollowSymLinks directive.[1] However, using Alias explicitly allows you to
keep track of these directories more easily. Creating symlinks to directories makes it hard to keep track of the
location of all of your content. Additionally, a stray symlink may cause you to expose a portion of your filesystem that
you did not intend to.

[1] See the documentation for the Option directive at http://httpd.apache.org/docs/mod/core.html#options.

You may also need to add a few configuration directives to permit access to the directory that you are mapping to.
An error message (in your error_log file) saying that the request was "denied by server configuration" usually
indicates this condition. It is fairly common—and recommended in the documentation (
http://httpd.apache.org/docs/misc/security_tips.html#protectserverfiles)—to configure Apache to deny all access, by
default, outside of the DocumentRoot directory. Thus, you must override this for the directory in question, with a
configuration block as shown below:
 <Directory /path/to/other/directory>
 Order allow,deny
 Allow from all

</Directory>

This permits access to the specified directory.

Note that the Alias is very strict with respect to slashes. For example, consider an Alias directive as follows:
 Alias /puppies/ /www/docs/puppies/

This directive aliases URLs starting with /puppies/ but does not alias the URL /puppies. This may result in a trailing
slash problem. That is, if a user attempts to go to the URL http://example.com/puppies he gets a 404 error, whereas
if he goes to the URL http://example.com/puppies/ with the trailing slash, he receives content from the desired
directory. To avoid this problem, create Aliases without the trailing slash on each argument.

Finally, make sure that if you have a trailing slash on the first argument to Alias, you also have one on the second
argument. Consider the following example:
 Alias /icons/ /usr/local/apache/icons

A request for http://example.com/icons/test.gif results in Apache attempting to serve the file
/usr/local/apache/iconstest.gif rather than the expected /usr/local/apache/icons/test.gif.

See Also

•

http://httpd.apache.org/docs/mod/mod_alias.html
•

http://httpd.apache.org/docs/mod/core.html#options

http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/misc/security_tips.html#protectserverfiles
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/core.html#options
http://example.com/desired/something.html
http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/misc/security_tips.html#protectserverfiles
http://example.com/puppies
http://example.com/puppies/
http://example.com/icons/test.gif
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/core.html#options

[Team LiB]

[Team LiB]

Recipe 5.3 Creating a New URL for Existing Content

Problem

You have an existing directory which you want to access using a different name.

Solution

Use an Alias directive in httpd.conf:
 Alias /newurl /www/htdocs/oldurl
Discussion

While Alias is usually used to map URLs to a directory outside of the DocumentRoot directory tree, this is not
necessarily required. There are many times when it is desirable to have the same content accessible via a number of
different names. This is typically the case when a directory has its name changed, and you wish to have the old URLs
continue to work, or when different people refer to the same content is by different names.

Remember that Alias only affects the mapping of a local URI (the /foo/bar.txt part of http://example.com/foo/bar.txt);
it doesn't affect or change the hostname part of the URL (the http://example.com/ part). To alter that portion of the
URL, use the Redirect or RewriteRule directives.

See Also

•

Recipe 5.2
•

http://httpd.apache.org/docs/mod/mod_alias.html
•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html
http://example.com/foo/bar.txt);
http://example.com/
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.4 Giving Users Their Own URL

Problem

You want to give each user on your system his own web space.

Solution

If you want users' web locations to be under their home directories, add this to your httpd.conf file:
 UserDir public_html

To put all users' web directories under a central location:
 UserDir /www/users/*/htdocs

If you have mod_perl installed, you can do something more advanced like this (again, added to your httpd.conf file):
 <Perl>
Folks you don't want to have this privilege
my %forbid = map { $_ => 1 } qw(root postgres bob);
opendir H, '/home/';
my @dir = readdir(H);
closedir H;
foreach my $u (@dir) {
 next if $u =~ m/^\./;
 next if $forbid{$u};
 if (-e "/home/$u/public_html") {
 push @Alias, "/$u/", "/home/$u/public_html/";
 }
}

</Perl>
Discussion

The first solution is the simplest and most widely used of the possible recipes we present here. With this directive in
place, all users on your system are able to create a directory called public_html in their home directories and put
web content there. Their web space is accessible via a URL starting with a tilde (~), followed by their usernames.
So, a user named bacchus accesses his personal web space via the URL:
 http://www.example.com/~bacchus/

If you installed Apache from the standard source distribution, your default configuration file includes an example of
this configuration. It also contains a <Directory> section referring to the directory /home/*/public_html, with
various options and permissions turned on. You need to uncomment that section in order for anyone to have access
to these user web sites. This section should look something like the following:
 <Directory /home/*/public_html>
 AllowOverride FileInfo AuthConfig Limit
 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 <Limit GET POST OPTIONS PROPFIND>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS PROPFIND>
 Order deny,allow
 Deny from all
 </LimitExcept>

</Directory>

Make sure you understand what each of these directives is enabling before you uncomment this section in your
configuration.

The second solution differs in that the argument to UserDir is given as a full pathname and so is not interpreted as
relative to the user's home directory, but as an actual file path. The * in the file path is replaced by the username. For
example, http://example.com/~smith/ is translated to /www/users/smith/htdocs. This directory structure needs to
be configured in a manner similar to the previous example.

The third solution requires mod_perl and provides alias mappings for all top directories under the /home hierarchy
(typically user directories). It differs from the first two by not including the tilde prefix; user smith's web location
would be specified as http://example.com/smith/ instead of http://example.com/~smith/ but is still the filesystem
location /home/smith/public_html.

In each case, the directory in question, and directories in the path leading up to it, need to be readable for the
Apache user (usually nobody or www or httpd), and also have the execute bit set for that user, so the Apache
server can read content out of that directory. The execute bit is needed in order to get a directory listing. Thus, for
user bob, the directories /, /home, /home/bob, and /home/bob/public_html (or the corresponding directory paths
for the other solutions) all need to execute access, and the last one also requires read access.

On Unixish systems, you would set these permissions by issuing the following commands:
 % chmod o+x / /home /home/bob
% chmod o+rx /home/bob/public_html

The files within the directory need only be readable:
 % chmod 644 /home/bob/public_html/*

If you use the first solution, many users may be concerned about these file permissions, and rightly so, as it usually
allows all other users read access to these directories. Make sure that your users are aware of this, and that they
keep personal files in directories that are not world readable.

The advantage of this approach over the previous one is that these files are stored in a location that is not inside the
user's home directory, and so the user may keep sensible file permissions on her home directory. This lets her store
personal files there without concern that other users may have free access to them.

The last Solution is completely different and requires that you have mod_perl installed. The list of directives
previously mentioned goes in your configuration file, using the <Perl> configuration directive supplied by mod_perl,
which allows you to put Perl code in your configuration file to dynamically add things to the configuration file at server
startup.

At server startup, the code shown looks in the /home/ directory for any user that has a public_html directory and
creates an Alias for them. This has the advantage over the previous two solutions because the URLs no longer
contain that annoying tilde character, which people tend to think unprofessional. So user bacchus is now able to
access his personal web space via the URL http://www.example.com/bacchus/.

The %forbid list at the top of the code provides a list of users who should not be given this special alias for one
reason or another. This allows you to eliminate users for which this feature may cause a security risk, such as root, or
users who have shown that they can't be trusted with such privileges.

As with the previous examples, this should be accompanied by a <Directory> section that enables read access for
the directory /home/*/public_html.

And, of course, you can have this code point these aliases at any location, if you want to serve content out of some
other location rather than the home directories of the users.

See Also

•

http://httpd.apache.org/docs/mod/mod_userdir.html

http://httpd.apache.org/docs/mod/mod_userdir.html
http://www.example.com/~bacchus/
http://example.com/~smith/
http://example.com/smith/
http://www.example.com/bacchus/.
http://httpd.apache.org/docs/mod/mod_userdir.html

[Team LiB]

[Team LiB]

Recipe 5.5 Aliasing Several URLs with a Single Directive

Problem

You want to have more than one URL map to the same directory but don't want multiple Alias directives.

Solution

Use AliasMatch in http.conf to match against a regular expression:
 AliasMatch ^/pupp(y|ies) /www/docs/small_dogs
Discussion

The AliasMatch directive allows you to use regular expressions to match arbitrary patterns in URLs and map
anything matching the pattern to the desired URL. Think of it as Alias with a little more flexibility.

This example causes URLs starting with /puppy, as well as URLs starting with /puppies, to be mapped to the
directory /www/docs/small_dogs.

Apache's regular expression syntax is discussed in much greater detail in Appendix A.

See Also

•

Appendix A
•

Mastering Regular Expressions by Jeffrey Friedl (O'Reilly)

[Team LiB]

[Team LiB]

Recipe 5.6 Mapping Several URLs to the Same CGI Directory

Problem

You want to have a number of URLs map to the same CGI directory but don't want to have multiple ScriptAlias
directives.

Solution

Use ScriptAliasMatch in httpd.conf to match against a regular expression:
 ScriptAliasMatch ^/([sS]cripts?|cgi(-bin)?)/ /www/cgi-bin/
Discussion

This is a more complicated recipe than the previous one and may require that you read Appendix A. This directive
maps requests starting with /script/, /scripts/, /Script/, /Scripts/, /cgi/, and /cgi-bin/ to the directory /www/cgi-bin/,
and it causes all files in that directory to be treated as CGI programs.

This kind of directive is generally used to clean up a mess that you have made. If you design your web site well from
the start, this sort of thing is never necessary, but the first time you redesign, or otherwise rearrange your web site,
you'll find the necessity for these sorts of contortions.

See Also

•

Recipe 5.5
•

Appendix A

[Team LiB]

[Team LiB]

Recipe 5.7 Creating a CGI Directory for Each User

Problem

You want each user to have their own cgi-bin directory rather than giving them all access to the main server CGI
directory.

Solution

Put this in your httpd.conf:
 <Directory /home/*/public_html/cgi-bin/>
 Options ExecCGI
 SetHandler cgi-script

</Directory>
Discussion

You can't use ScriptAlias in this case, because for each user, the first argument to ScriptAlias would be different.
Using ScriptAliasMatch would also be impossible. The second argument to ScriptAliasMatch must be a constant
string.

This recipe lets each user put CGI scripts in her own personal web space. Files accessed via URLs starting with:
 http://www.example.com/~username/cgi-bin/

are treated as CGI scripts.

If you have suexec enabled, CGI programs run from this target directory will be run with the userid of the user
specified in the URL. For example, a CGI program accessed via the URL
http://www.example.com/~rbowen/cgi-bin/example.cgi would be run as the user rbowen.

See Also

•

Recipe 8.1

[Team LiB]

http://www.example.com/~
http://www.example.com/~rbowen/cgi-bin/example.cgi

[Team LiB]

Recipe 5.8 Redirecting to Another Location

Problem

You want requests to a particular URL to be redirected to another server.

Solution

Use a Redirect directive in httpd.conf, and give an absolute URL on the second argument:
 Redirect /example http://www.other.server/new/location
Discussion

Whereas Alias maps a URL to something in the local filesystem, Redirect maps a URL to another URL, usually on
another server. The second argument is a full URL and is sent back to the client (browser), which makes a second
request for the new URL.

It is also important to know that the Redirect directive preserves path information, if there is any. Therefore, this
recipe redirects a request for http://original.server/example/something.html to
http://www.other.server/new/location/something.html.

Redirections come in several different flavors, too; you can specify which particular type of redirect you want to use
by inserting the appropriate keyword between the Redirect directive and the first URL argument. All redirects
instruct the client where the requested document is now; the different types of redirection inform where the client
should look for the document in the future.

temp

A temporary redirection is used when the document is not in the originally requested location at the moment, but is
expected to be there again some time in the future. So the client remembers the URL it used on the original request
and will use it on future requests for the same document.

permanent

A permanent redirection indicates that not only is the requested document not in the location specified by the client,
but that the client should never look for it there again. In other words, the client should remember the new location
indicated in the redirect response and look there in all subsequent requests for the resource.

gone

This keyword means that the document doesn't exist in this location, and it shouldn't bother asking any more. This
differs from the 404 Not Found error response in that the gone redirection admits that the document was once here,
even though it isn't any more. It's not considered an error, unlike the 404 status.

seeother

A seeother redirection tells the client that the original document isn't located here any more and has been superseded
by another one in a different location. That is, the original request might have been for:
 http://example.com/chapter2.html

but the server answers with a seeother redirection to:
 http://bookname.com/edition-2/chapter2.html

indicating not only a new location, but that the original Chapter 2 has been superseded by the content of the second
edition.

By default, if no keyword is present, a temporary redirection is issued.

Here's an example of the various directive formats, including the HTTP status code number in case you want to use
an ErrorDocument to customize the server's response text:
 #
These are equivalent, and return a response with a 302 status.
#
Redirect /foo.html http://example.com/under-construction/foo.html
Redirect temp /foo.html http://example.com/under-construction/foo.html
RedirectTemp /foo.html http://example.com/under-construction/foo.html
#
These are equivalent to each other as well, returning a 301 status
#
Redirect permanent /foo.html http://example.com/relocated/foo.html
RedirectPermanent /foo.html http://example.com/relocated/foo.html
#
This tells the client that the old URL is dead, but the document
content has been replaced by the specified new document. It
returns a 303 status.
#
Redirect seeother /foo.html http://example.com/relocated/bar.html
#
Returns a 410 status, telling the client that the document has been
intentionally removed and won't be coming back. Note that there
is no absoluteURL argument.
#

Redirect gone /foo.html
See Also

•

http://httpd.apache.org/docs/mod/mod_alias.html

http://httpd.apache.org/docs/mod/mod_alias.html
http://www.other.server/new/location
http://original.server/example/something.html
http://www.other.server/new/location/something.html.
http://example.com/chapter2.html
http://bookname.com/edition-2/chapter2.html
http://example.com/under-construction/foo.html
http://example.com/under-construction/foo.html
http://example.com/under-construction/foo.html
http://example.com/relocated/foo.html
http://example.com/relocated/foo.html
http://example.com/relocated/bar.html
http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

[Team LiB]

Recipe 5.9 Redirecting Several URLs to the Same Destination

Problem

You want to redirect a number of URLs to the same place. For example, you want to redirect requests for /fish and
/Fishing to http://fish.example.com/.

Solution

Use RedirectMatch in httpd.conf to match against a regular expression:
 RedirectMatch ^/[fF]ish(ing)? http://fish.example.com
Discussion

This recipe redirects requests on one server for URLs starting with fish or fishing, with either an upper-case or
lower-case f, to a URL on another server, fish.example.com. As with Redirect, the path information, if any, is
preserved. That is, a request for http://original.server/Fishing/tackle.html is redirected to
http://fish.example.com/tackle.html so that existing relative links continue to work.

As with several of the earlier examples, RedirectMatch uses regular expressions to provide arbitrary text pattern
matching.

See Also

•

Appendix A

[Team LiB]

http://fish.example.com/.
http://fish.example.com
http://original.server/Fishing/tackle.html
http://fish.example.com/tackle.html

[Team LiB]

Recipe 5.10 Permitting Case-Insensitive URLs

Problem

You want requested URLs to be valid whether uppercase or lowercase letters are used.

Solution

Use mod_speling to make URLs case-insensitive:
 CheckSpelling On
Discussion

The mod_speling module is part of the standard Apache distribution but is not enabled by default, so you need to
explicitly enable it.

In addition to making URLs case-insensitive, mod_speling, as the name implies, provides simple spellchecking
capability. In particular, in the case of a "not found" error, mod_speling attempts to find files that may have been
intended, based on similar spelling, transposed letters, or perhaps letters swapped with similar-looking numbers, like
O for o and i for 1.

When mod_speling is installed, it may be turned on for a particular scope (such as a directory, virtual host, or the
entire server) by setting the CheckSpelling directive to On.

And, yes, that is the correct spelling of the module name.

See Also

•

http://httpd.apache.org/docs/mod/mod_speling.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_speling.html
http://httpd.apache.org/docs/mod/mod_speling.html

[Team LiB]

Recipe 5.11 Replacing Text in Requested URLs

Problem

You want to change all occurrences of string1 to string2 in a request's URI.

Solution
 RewriteCond %{REQUEST_URI} "string1"
RewriteRule "(.*)string1(.*)" "$1string2$2" [N,PT]
Discussion

The [N] flag tells Apache to rerun the rewrite rule. This rule will get run repeatedly until the RewriteCond fails. Thus,
it will get rerun as long as the URL contains the string that you want to replace. As soon as all occurrences of this
string have been replaced, the RewriteCond will fail, and the rule will stop. The [PT] tells mod_rewrite to pass the
rewritten URL on to the rest of Apache for any additional processing once the rewriting is done.

See Also

•

Appendix A

[Team LiB]

[Team LiB]

Recipe 5.12 Rewriting Path Information to CGI Arguments

Problem

You want to pass arguments as part of the URL but have these components of the URL rewritten as CGI
QUERY_STRING arguments.

Solution

This is just an example, of course; make appropriate changes to the RewriteRule line to fit your own environment and
needs:
 RewriteEngine on
RewriteRule ^/book/([^/]*)/([^/]*) /cgi-bin/book.cgi?author=$1&subject=$2 [PT]
Discussion

One reason you might want or need to do this is if you're gluing together two legacy systems that do things in different
ways, such as a client application and a vendor script.

For example, the RewriteRule in the Solution will cause:
 http://www.example.com/book/apache/bowen

to be rewritten as:
 http://www.example.com/cgi-bin/book.cgi?subject=apache&author=bowen

The [PT] flag on the RewriteRule directive instructs Apache to keep processing the URL even after it has been
modified; without the flag, the server would directly try to treat the rewritten URL as a filename, instead of continuing
to the step at which it determines it's a CGI script. It also allows multiple RewriteRule directives to make additional
refinements to the URL.

If the URL being rewritten already has a query string, or might, change the [PT] to [QSA,PT]. The QSA means
"query string add" and will cause the query string generated by the rewrite to be added to the query string in the
original URL. Without QSA, the original query string will be replaced.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://www.example.com/book/apache/bowen
http://www.example.com/cgi-bin/book.cgi?subject=apache&author=bowen
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.13 Denying Access to Unreferred Requests

Problem

You want to prevent other web sites from using your images (or other types of documents) in their pages and allow
your images to be accessed only if they were referred from your own site.

Solution

Put this in your httpd.conf:
 RewriteEngine On
RewriteCond %{HTTP_REFERER} !=""
RewriteCond %{HTTP_REFERER} "!^http://mysite.com/.*$" [NC]
RewriteCond %{REQUEST_URI} "\.(jpg|gif|png)$"

RewriteRule .* - [F]
Discussion

This recipe is a series of RewriteCond directives, designed to determine whether an image file is requested from
within a document on your site or if it is embedded in a page from another server. If the the latter, then the other site
is stealing your images and needs to be stopped.

The first rule checks to see if the referer is even set. Some clients don't send a referer, and some browsers can be
configured not to send referers. If we deny requests from all clients that don't send a referer, we'll deny a lot of valid
requests; so we let these ones in.

Next, we check to see if the referer appears to be from some site other than our own. If so, we keep going through
the rules. Otherwise, we'll stop processing the rewrite.

Finally, we check to see if this is a request for an image file. If the file is a nonimage file, such as an HTML file, then
we want to allow people to link to these files from somewhere offsite.

If we've reached this point in the ruleset, we know that we have a request for an image file from within a page on
another web site. The RewriteRule matches a request and returns Forbidden to the client.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.14 Rewriting Based on the Query String

Problem

You want to translate one URI into another based on the value of the query string.

Solution

Put this in your httpd.conf:
 RewriteCond "%{QUERY_STRING}" "^user=([^=]*)"
RewriteRule "/userdirs" "http://%1.users.example.com/" [R]
Discussion

mod_rewrite does not consider the query string as part of the URI for matching and rewriting purposes, so you need
to treat it separately. The given example translates requests of the form:
 http://example.com/people?user=jones http://jones.users.example.com/

The [R] tells mod_rewrite to direct the browser to the URL constructed by the RewriteRule directive.

See Also

•

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_alias.html
http://example.com/people?user=jones
http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

Recipe 5.15 Redirecting All—or Part—of Your Server to SSL

Problem

You want certain parts of your non-SSL web space to be redirected to a secured area.

Solution

You can redirect everything that is attached to port 80 with the following RewriteRule:
 RewriteCond "%{SERVER_PORT}" "^80$"
RewriteRule "^(.*)$" "https://%{SERVER_NAME}$1" [R,L]

You can redirect particular URLs to a secure version:
 RewriteRule "^/normal/secure(/.*)" "https://%{HTTP_HOST}$1" [R,L]

You can check to see whether the HTTPS environment variable is set:
 RewriteCond %{HTTPS} !=on
RewriteRule "^(/secure/.*)" "https://%{HTTP_HOST}$1" [R,L]

Or, you can simply use the Redirect directive in the http section of httpd.conf file to to cause a URL to be served as
HTTPS:
 Redirect / https://secure.example.com/

Make sure that this appears only in in the http scope and not in the https scope, or all https requests will loop.

Discussion

The first solution causes all requests that come in on port 80 (normally the unencrypted HTTP port) to be redirected
to the same locations on the current server but accessed through SSL. Note the use of SERVER_NAME; because
this is a complete site redirection, it's simplest to use the server's official name for itself.

The directive shown in the second solution causes all portions of the server's web space under http://
myhost/normal/secure to be redirected to the SSL location rooted at https://myhost/. The use of HTTP_HOST
rather than SERVER_NAME means that only the location and the scheme in the visitor's browser, not the server
name.

Note that the paths to the SSL and non-SSL locations differ; if you want the paths to be the same except for the
security, you can use something like the directives given in the third solution.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.16 Turning Directories into Hostnames

Problem

You want to migrate pathnames under a single hostname to distinct hostnames.

Solution

Use RewriteRule in httpd.conf:
 RewriteRule "^/(patha|pathb|pathc)(.*)" "http://$1.example.com$2" [R]
RewriteRule "^/([^./]*)(.*)" "http://$1.example.com$2" [R]

RewriteRule "^/~([^./]*)(.*)" "http://$1.example.com$2" [R]
Discussion

The first recipe redirects requests of the form http://example.com/pathseg/some/file.html to a different host, such as
http://pathseg.example.com/some/file.html, but only for those requests in which pathseg is patha, pathb, or pathc.

The second recipe does the same thing, except that any top-level path segment is redirected in this manner.

The third recipe splits the difference, redirecting all "user" requests to distinct hosts with the same name as the user.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://example.com
http://pathseg.example.com/some/file.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.17 Redirecting All Requests to a Single Host

Problem

You want all requests made of your system to be redirected to a specific host.

Solution

Put this in your httpd.conf:
 RewriteCond "%{HTTP_HOST}" "!^www.example.com$" [NC,OR]
RewriteCond "%{SERVER_NAME}" "!^www.example.com$" [NC]

RewriteRule "(.*)" "http://www.example.com$1" [R]
Discussion

Any request handled by your server within the scope of the directives in the Solution (which aren't directed to the
www.example.com host) is redirected there.

The two different RewriteCond directives are used to catch all requests made by some host other than
www.example.com, regardless of the redirection method.

The NC (No Case) flag makes the regular expression case-insensitive. That is, it makes it match regardless of
whether letters are upper- or lowercase.

The OR flag is a logical "or," allowing the two conditions to be strung together so that either one being true is a
sufficient condition for the rule to be applied.

Finally, the R flag causes an actual Redirect to be issued, so that the browser will make another request for the
generated URL.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.18 Turning Document Names into Arguments

Problem

You want to redirect requests for documents to a CGI script, or other handler, that gets the document names as an
argument.

Solution

Use RewriteRule in httpd.conf:
 RewriteRule "^/dir/([^./]*)\.html" "/dir/script.cgi?doc=$1" [PT]
Discussion

This solution causes all requests for HTML documents in the specified location to be turned into requests for a
handler script that receives the document name as an argument in the QUERY_STRING environment variable.

The PT flag should be included to allow any appropriate subsequent URL rewriting or manipulation to be performed.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Chapter 6. Security

In this chapter, security means allowing people to see what you want them to see and preventing them from seeing
what you don't want them to see. Additionally, there are the issues of what measures you need to take on your server
in order to restrict access via non-Web means. This chapter illustrates the precautions you need to take to protect
your server from malicious access and modification of your web site.

The most common questions ask how to protect documents and restrict access. Unfortunately, due to the complexity
of the subject and the nature of the web architecture, these questions tend to also have the most complex answers or
often no convenient answers at all.

Normal security nomenclature and methodology separate the process of applying access controls into two discrete
steps; in the case of the Web, they may be thought of as the server asking itself these questions:

•

Are you really who you claim to be?
•

Are you allowed to be here?

These steps are called authentication and authorization, respectively. Here's a real-world example: a flight
attendant checks your photo identification (authentication) and your ticket (authorization) before permitting you to
board an airplane.

Authentication can be broken down into what might be called weak and strong. Weak authentication is based on the
correctness of credentials that the end user supplies (which therefore may have been stolen from the real
owner—hence the name "weak"), whereas strong authentication is based on attributes of the request over which the
end user has little or no control, and it cannot change from request to request—such as the IP address of his system.

Although checking authentication and authorization are clearly separate activities, their application gets a bit blurred in
the context of the Apache web server modules. Even though the main difference between the many security modules
is how they store the credentials (in a file, a database, an LDAP directory, etc.), they nevertheless have to provide
the code to retrieve the credentials from the store, validate those supplied by the client, and check to see if the
authenticated user is authorized to access the resource. In other words, there's a lot of functionality duplicated from
module to module, and although there are frequently similarities between their behavior and directives, the lack of
shared code means that sometimes they're not quite as similar as you'd hope. This overloading of functionality has
been somewhat addressed in the next version of the web server after 2.0 (still in development at the time of this
writing).

In addition to the matter of requiring a password to access certain content from the web server, there is the larger
issue of securing your server from attacks. As with any software, Apache has, at various times in its history, been
susceptible to conditions that would allow an attacker to gain inappropriate control of the hosting server. For
example, they may have been able to access, or modify, files that the site administrator had not intended to give
access to, or they may have been able to execute commands on the target server. Thus, it is important that you know
what measures need to be taken to ensure that your server is not susceptible to these attacks.

The most important measure that you can take is to keep apprised of new releases, and read the CHANGES file to
determine if the new version fixes a security hole to which you may be subject. Running the latest version of the
Apache server is usually a good measure in the fight against security vulnerabilities.

Recipes in this chapter show you how to implement some of the frequently requested password scenarios, as well as
giving you the tools necessary to protect your server from external attacks.

Authentication and Authorization

When checking for access to restricted documents, there are actually two different operations involved:
checking to see who you are and checking to see if you're allowed to see the document.

The first part, checking to see who you are, is called authentication. The web server doesn't know
who you are, so you need to provide some proof of your identity, such as a username and matching
password. When the server successfully compares these bits of information (called credentials) with
those in its databases, the server will proceed, but if you're not in the list, or the information doesn't
match, the server will turn you away with an error status.

Once you have convinced the server you are who you say you are, it will look at the list of people
allowed to access the document and see if you're on it; this is called authorization. If you are on the list,
access proceed normally; otherwise, the server returns an error status and denies access.

The two different operations do not differentiate in the errors they return; it is always a 401
(unauthorized) code, even if the failure was in authentication. This is to prevent would-be attackers from
being able to tell when they have valid credentials.

[Team LiB]

[Team LiB]

Recipe 6.1 Using System Account Information for Web
Authentication

Problem

You want all the users on your Unixish system to be able to authenticate themselves over the Web using their
already-assigned usernames and passwords.

Solution

Set up a realm using mod_auth and name /etc/passwd as the AuthUserFile:
 <Directory "/home">
 AuthType Basic
 AuthName HomeDir
 AuthUserFile /etc/passwd
 Require valid-user
 Satisfy All

</Directory>
Discussion

We must stress that using system account information for web authentication is a very bad idea, unless your site is
also secured using SSL. For one thing, any intruder who happens to obtain one of your users' credentials not only
can access the protected files over the Web, but can actually log onto your system where it's possible to do
significant damage. For another, web logins don't have the same security controls as most operating systems; over the
Web, an intruder can keep hammering away at a username with password after password without the system taking
any defensive measures; all mod_auth will do is record a message in the Apache error log.However, most operating
systems will enter a paranoid mode and at least ignore login attempts for a while after some number of failures.

If you still want to do this, either because you consider the risk acceptable or because it doesn't apply in your
situation, the httpd.conf directives in the Solution will do the trick. The syntax and order of the fields in a credential
record used by mod_auth happens (and not by accident) to match the standard layout of the /etc/passwd lines.
mod_auth uses a simple text file format in which each line starts with a username and password and may optionally
contain additional fields, with the fields delimited by colons. For example:
 smith:$apr1$GLWeF/..$8hOXRFUpHhBJHpOUdNFe51

mod_auth ignores any additional fields after the password, which is what allows the /etc/passwd file to be used.
Note that the password in the example is encrypted.

You can manage Apache mod_auth credential files with the htpasswd utility, but don't use this utility on the
/etc/passwd file! Use the normal account maintenance tools for that.

Note that this technique will not work if shadow passwords are in use, because the password field of /etc/passwd
contains nothing useful in that situation. Instead, the passwords are stored in the file /etc/shadow, which is readable
only by root, while Apache runs as an unprivileged user. Furthermore, most modern Unixish operating systems use
the /etc/shadow means of user authentication by default.

See Also

•

Authentication and Authorization
•

HTTP, Browsers, and Credentials
•

Weak and Strong Authentication
•

The htpasswd manpage
•

The passwd(5) manpage

[Team LiB]

[Team LiB]

Recipe 6.2 Setting Up Single-Use Passwords

Problem

You want to be able to provide credentials that will allow visitors into your site only once.

Solution

No solution is available with standard Apache features.

Discussion

As described in HTTP, Browsers, and Credentials, the concept of being "logged in" to a site is an illusion. In order to
achieve the desired one-time-only effect, the server needs to complete the following steps:

1.

Note the first time the user successfully presents valid credentials.
2.

Somehow, associate that fact with the user's "session."
3.

Never allow those credentials to succeed again if the session information is different from the first time they
succeeded.

The last step is not a simple task, and it isn't a capability provided in the standard Apache distribution. To complicate
matters, there is the desire to start a timeout once the credentials have succeeded, so that the user doesn't
authenticate once and then leave his browser session open for days and retain access.

Fulfilling this need would require a custom solution. Unfortunately, we are not aware of any open or public modules
that provide this capability; however, search and watch the module registry for possible third-party implementations.

See Also

•

Recipe 6.3
•

http://modules.apache.org/

[Team LiB]

http://modules.apache.org/default.htm
http://modules.apache.org/

[Team LiB]

Recipe 6.3 Expiring Passwords

Problem

You want a user's username and password to expire at a particular time or after some specific interval.

Solution

No solution is available with standard Apache features, but a few third-party solutions exist.

Discussion

Refer to HTTP, Browsers, and Credentials. In order for Apache to provide this functionality, it would need to store
more than just the valid username and password; it would also have to maintain information about the credentials'
expiration time. No module provided as part of the standard Apache distribution does this.

There are several third-party solutions to this problem, including the Perl module Apache::Htpasswd::Perishable
and the mod_perl handler Apache::AuthExpire.

There are two slightly different ways to look at this problem, which will influence your choice of a solution. You may
want a user's authentication to be timed out after a certain amount of time, or perhaps after a certain period of
inactivity, forcing them to log in again. Or you may want a particular username/password pair to be completely
expired after a certain amount of time, so that it no longer works. The latter might be used instead of a single-use
password, which is impractical to implement in HTTP.

Apache::Htpasswd::Perishable partially implements the latter interpretation of the problem by adding expiration
information to the password file. Inheriting from the Apache::Htpasswd module, it adds two additional methods,
expire and extend, which set an expiration date on the password and extend the expiration time, respectively.

For example, the following code will open a password file and set an expiration date on a particular user entry in that
file:
 use Apache::Htpasswd::Perishable;

my $pass = Apache::Htpasswd::Perishable->new("/usr/local/apache/passwords/user.pass")
 or die "Could not open password file.";

$pass->expire('waldo',5); # Set the expiration date 5 days in the future

Such a mechanism is only useful if expired passwords are removed from the password file periodically. This can be
accomplished by running the following cron script every day. This will delete those users for whom the expiration
date has passed:
 #!/usr/bin/perl
use Apache::Htpasswd::Perishable;

my $password_file = '/usr/local/apache/passwords/user.pass';

open (F,$password_file) or die "Could not open password file.";
my @users;
while (my $user = <F>) {
 $user =~ s/^([^:])+:.*$/$1/;
 push @users, $user;
}
close F;

my $pass = Apache::Htpasswd::Perishable->new($password_file) or die
"Could not open password file.";
foreach my $user (@users) {
 $pass->htDelete($user) unless $pass->expire($user) > 0;

}

Apache::AuthExpire, on the other hand, implements timeouts on "login sessions." That is, a user must reauthenticate
after a certain period of inactivity. This gives you protection against the user who steps away from her computer for a
few moments, leaving herself "logged in."

As previously discussed, HTTP is stateless and so does not really have a concept of being logged in. However, by
watching repeated connections from the same address, such a state can be simulated.

To use the expiring functionality offered by Apache::AuthExpire, download the module from CPAN, and install it:
 # perl -MCPAN -e shell
cpan> install Apache::AuthExpire

Then configure your Apache server to use this module for your authentication handler.
 PerlAuthenHandler Apache::AuthExpire
PerlSetVar DefaultLimit 7200

The given example will time out idle connections after 7200 seconds, which is 2 hours.

See Also

•

Recipe 6.2
•

http://modules.apache.org/
•

http://search.cpan.org/author/JJHORNER/Apache-AuthExpire/AuthExpire.pm
•

http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm

http://modules.apache.org/default.htm
http://search.cpan.org/author/JJHORNER/Apache-AuthExpire/AuthExpire.pm
http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm
http://modules.apache.org/
http://search.cpan.org/author/JJHORNER/Apache-AuthExpire/AuthExpire.pm
http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm

[Team LiB]

[Team LiB]

Recipe 6.4 Limiting Upload Size

Problem

With more and more web hosting services allowing customers to upload documents, uploads may become too large.
With a little creativity, you can put a limit on uploads by using the security capabilities of the server.

Solution

Assume you want to put a limit on uploads of ten thousand (10,000) bytes. Here's how you could do that for your
/upload location:
 SetEnvIf Content-Length "^[1-9][0-9]{4,}" upload_too_large=1
<Location /upload>
 Order Deny,Allow
 Deny from env=upload_too_large
 ErrorDocument 403 /cgi-bin/remap-403-to-413

</Location>

You can tailor the response by making the /cgi-bin/remap-403-to-413 script look something like this:
 #! /usr/local/bin/perl
#
Perl script to turn a 403 error into a 413 IFF
the forbidden status is because the upload was
too large.
#
if ($ENV{'upload_too_large'}) {
 #
 # Constipation!
 #
 print <<EOHT
Status: 413 Request Entity Too Large
Content-type: text/plain; charset=iso-8859-1
Content-length: 84

Sorry, but your upload file exceeds the limits
set forth in our terms and conditions.
EOHT
}
else {
 #
 # This is a legitimate "forbidden" error.
 #
 my $uri = $ENV{'REDIRECT_REQUEST_URI'};
 my $clength = 165 + length($uri);
 print <<EOHT
Status: 403 Forbidden
Content-type: text/html; charset=iso-8859-1
Content-length: $clength

<html>
 <head>
 <title>Forbidden</title>
 </head>
 <body>
 <h1>Forbidden</h1>
 <p>
 You don't have permission to access $uri
 on this server.
 </p>
 </body>
</html>
EOHT
}

exit(0);
Discussion

This script is invoked when a request results in a 403 Forbidden error (which is what the Deny directive causes if it's
triggered). It checks to see if it's a real forbidden condition, or whether the upload file is too large, displaying an
appropriate error page.

Note that both paths issue a Status CGI response header field; this is necessary to propagate the correct status back
to the client. Without this, the status code would be 200 OK because the script would have been invoked
successfully, which is hardly the appropriate status. An incorrect status code may cause the browser to report to the
user that the file was uploaded successfully, which might generate confusion, as this may be in conflict with the
message of the error page.

Actually there is a status value that corresponds to "you sent me something too large" (413), so we remap the Deny's
403 (Forbidden) status to it.

The same Content-length field is used to indicate the amount of data included in a POST
request, such as from a web form submission, so be careful not to set your maximum too
low or your forms may start getting this error!

See Also

•

Chapter 9

[Team LiB]

[Team LiB]

Recipe 6.5 Restricting Images from Being Used Off-Site

Problem

Other sites are linking to images on your system, stealing bandwidth from you and incidentally making it appear as
though the images belong to them. You want to ensure that all access to your images is from documents that are on
your server.

Solution

Add the following lines to the .htaccess file in the directory where the images are, or to the appropriate <Directory>
container in the httpd.conf file. Replace the myserver.com with your domain name:
 <FilesMatch "\.(jpg|jpeg|gif|png)$">
 SetEnvIfNoCase Referer "^http://([^/]*\.)?myserver.com/" local_referrer=1
 Order Allow,Deny
 Allow from env=local_referrer

</FilesMatch>

In fact, by using the following recipe, you can even go one step further, and return a different image to users
accessing your images via an off-site reference:
 SetEnvIfNoCase Referer "^http://([^/]*\.)?myserver.com/" local_referrer=1
RewriteRule %ENV{local_referer| !1 /Stolen-100x100.png [L]
Discussion

The first solution will cause all requests for image files to be refused with a 403 Forbidden status unless the link
leading to the request was in one of your own documents. This means that anyone linking to your images from a
different web site system will get the error instead of the image, because the referer does not match the approved
server name.

Note that this technique can cause problems for requests that do not include a Referer request header field, such as
people who visit your site through an anonymising service or who have their browser configured not to send this
information.

The second solution is similar to the first, except that it substitutes an image of your choice for the one requested,
rather than denying the request. Using the values in the Solution, you can construct a Stolen-100x100.png that has
whatever admonitory message or perhaps just some picture that will deter the visitor from "stealing" your images.

See Also

•

Recipe 6.21

[Team LiB]

[Team LiB]

Recipe 6.6 Requiring Both Weak and Strong Authentication

Problem

You want to require both weak and strong authentication for a particular resource. For example, you wish to ensure
that the user accesses the site from a particular location and to require that he provides a password.

Solution

Use the Satisfy directive to require both types of authentication:
 <Directory /www/htdocs/sensitive>

 # Enforce all restrictions
 Satisfy All

 # Require a password
 AuthType Basic
 AuthName Sensitive
 AuthUserFile /www/passwords/users
 AuthGroupFile /www/passwords/groups
 Require group salesmen

 # Require access from a certain network
 Order deny,allow
 Deny from all
 Allow from 192.168.1

</Directory>
Discussion

In this example, a user must provide a login, identifying him as a member of the salesmen group, and he must also use
a machine on the 192.168.1 network.

The Satisfy All directive requires that all access control measures be enforced for the specified scope. A user
accessing the resource from a nonmatching IP address will immediately receive a Forbidden error message in his
browser, while, in the logfile, the following error message is logged:
 [Sun May 25 15:31:53 2003] [error] [client 208.32.53.7] client denied by server
configuration: /usr/local/apache/htdocs/index.html

Users who are in the required set of IP addresses, however, receive a password dialog box and are required to
provide a valid username and password.

See Also

•

Recipe 6.9

[Team LiB]

[Team LiB]

Recipe 6.7 Managing .htpasswd Files

Problem

You wish to create password files for use with Basic HTTP authentication.

Solution

Use the htpasswd utility to create your password file, as in Table 6-1.

Table 6-1. Managing password files with htpasswd

Command

Action

% htpasswd -c user.pass waldo

Create a new password file called user.pass with this
one new entry for user waldo. Will prompt for
password.

% htpasswd user.pass ralph

Add an entry for user ralph in password file user.pass.
Will prompt for password.

% htpasswd -b user.pass ralph mydogspot

Add a user ralph to password file user.pass with
password mydogspot.

Or, use the Perl module Apache::Htpasswd to manage the file programmatically:
 use Apache::Htpasswd;
$pass = new Apache::Htpasswd("/usr/local/apache/passwords/user.pass") or
die "Couldn't open password file.";

Add an entry
$pass->htpasswd("waldo", "emerson");

Delete entry

$pass->htDelete("waldo");
Discussion

The htpasswd utility, which comes with Apache, is located in the bin subdirectory.

On some third-party distributions of Apache, the htpasswd program has been copied into
a directory in your path, but ordinarily it will not be in your path; you will either have to put
it there, or provide the full path to the program in order to run it, such as
/usr/local/apache/bin/htpasswd.

The first line of the Solution creates a new password file at the specified location. That is, in the example given, it
creates a new password file called user.pass, containing a username and password for a user waldo. You will be
prompted to enter the desired password, and then prompted to repeat the password for confirmation.

The -c flag creates a new password file, even if a file of that name already exists, so make sure that you only use this
flag the first time. After that, using it causes your existing password file to be obliterated and replaced with the (almost
empty) new one.

The second line in the Solution adds a password to an existing password file. As before, the user is prompted to
enter the desired password, and then prompted to confirm it by typing it again.

The examples given here create a password file using the crypt algorithm by default on all platforms other than
Windows, Netware, and TPF. On those platforms, the MD5 algorithm is used by default.

For platforms that use crypt, each line of the password file looks something like:
 waldo:/z32oW/ruTI8U

The portion of the line following the username and colon is the encrypted password. Other usernames and passwords
appear one per line.

The htpasswd utility provides other options, such as the ability to use the MD5 algorithm to encrypt the password
(the -m flag), provide the password on the command line rather than being prompted for it (the -b flag), or print the
results to stdout, rather than altering the password file (the -n flag).

The -b flag can be particularly useful when using the htpasswd utility to create passwords in some scripted fashion,
rather than from an interactive prompt. The third line of the recipe above illustrates this syntax.

As of Apache 2.0.46, the -D flag lets you delete an existing user from the password file:
 % htpasswd -D user.pass waldo

whereas in previous versions, you would need to use some alternate method to remove lines from the file. For
example, you could remove a line using grep, or simply open the file in a text editor:
 % egrep -v '^waldo:' user.pass >! user.pass

Apache::Htpasswd, written by Kevin Meltzer, is available from CPAN (http://cpan.org/) and gives a Perl interface
to Apache password files. This allows you to modify your password files from CGI programs or via other
mechanisms, using just a few lines of Perl code as shown in the recipe.

In addition to the methods demonstrated in this recipe, there are also methods for checking a particular password
against the contents of the password file, obtaining a list of users from the file, or retrieving the encrypted password
for a particular user, among other things. See the documentation for this fine module for the full details on its many
features.

One final note about your password file. We strongly recommend that you store your password file in some location
that is not accessible through the Web (i.e., outside of your document directory). By putting it in your document
directory, you run the risk of someone downloading the file and running a brute-force password cracking algorithm
against it, which will eventually yield your passwords for them to use.

See Also

•

Recipe 6.7
•

http://search.cpan.org/author/KMELTZ/Apache-Htpasswd/Htpasswd.pm

http://cpan.org/default.htm
http://search.cpan.org/author/KMELTZ/Apache-Htpasswd/Htpasswd.pm
http://cpan.org/
http://search.cpan.org/author/KMELTZ/Apache-Htpasswd/Htpasswd.pm

[Team LiB]

[Team LiB]

Recipe 6.8 Making Password Files for Digest Authentication

Problem

You need to create a password file to be used for Digest authentication.

Solution

Use the following command forms to set up a credential file for a realm to be protected by Digest authentication:
 % htdigest -c "By invitation only" rbowen
% htdigest "By invitation only" krietz

Discussion

Digest authorization, implemented by mod_auth_digest, uses an MD5 hash of the username, password, and
authentication realm to check the credentials of the client. The htdigest utility, which comes with Apache, creates
these files for you.

The syntax for the command is very similar to the syntax for the htpasswd utility, except that you must also specify
the authentication realm that the password will be used for. The resulting file contains one line per user, looking
something like the following:
 rbowen:By invitation only:23bc21f78273f49650d4b8c2e26141a6

Note that, unlike entries in the password files created by htpasswd, which can be used anywhere, these passwords
can be used only in the specified authentication realm, because the encrypted hash includes the realm.

As with htpasswd, the -c flag creates a new file, possibly overwriting an existing file. You will be prompted for the
password and then asked to type it again to verify it.

htdigest does not have any of the additional options that htpasswd does.

See Also

•

Recipe 6.7

[Team LiB]

[Team LiB]

Recipe 6.9 Relaxing Security in a Subdirectory

Problem

There are times when you might want to apply a tight security blanket over portions of your site, such as with
something like:
 <Directory /usr/local/apache/htdocs/BoD>
 Satisfy All
 AuthUserFile /usr/local/apache/access/bod.htpasswd
 Require valid-user

</Directory>

Due to Apache's scoping rules, this blanket applies to all documents in that directory and in any subordinate
subdirectories underneath it. But suppose you want to make a subdirectory, such as BoD/minutes, available without
restriction?

Solution

The Satisfy directive is the answer. Add the following to either the .htaccess file in the subdirectory or in an
appropriate <Directory> container:
 Satisfy Any
Order Deny,Allow

Allow from all

HTTP, Browsers, and Credentials

It is easy to draw incorrect conclusions about the behavior of the Web; when you have a page displayed
in your browser, it is natural to think that you are still connected to that site. In actuality, however, that's
not the case—once your browser fetches the page from the server, both disconnect and forget about
each other. If you follow a link, or ask for another page from the same server, a completely new
exchange has begun.

When you think about it, this is fairly obvious. It would make no sense for your browser to stay
connected to the server while you went off to lunch or home for the day.

Each transaction that is unique and unrelated to others is called stateless, and it has a bearing on how
HTTP access control works.

When it comes to password-protected pages, the web server doesn't remember whether you've
accessed them before or not. Down at the HTTP level where the client (browser) and server talk to
each other, the client has to prove who it is every time; it's the client that remembers your information.

When accessing a protected area for the first time in a session, here's what actually gets exchanged
between the client and the server:

1.

The client requests the page.
2.

The server responds, "You are not authorized to access this resource (a 401 unauthorized
status). This resource is part of authentication realm XYZ." (This information is conveyed using
the WWW-Authenticate response header field; see RFC 2616 for more information.)

3.

If the client isn't an interactive browser, at this point it probably goes to step 7. If it is interactive,
it asks the user for a username and password, and shows the name of the realm the server
mentioned.

4.

Having gotten credentials from the user, the client reissues the request for the
document—including the credentials this time.

5.

The server examines the provided credentials. If they're valid, it grants access and returns the
document. If they aren't, it responds as it did in step 2.

6.

If the client receives the unauthorized response again, it displays some message about it and asks
the user if he wants to try entering the username and password again. If the user says yes, the
client goes back to step 3.

7.

If the user chooses not to reenter the username and password, the client gives up and accepts
the "unauthorized" response from the server.

Once the client has successfully authenticated with the server, it remembers the credentials, URL, and
realm involved. Subsequent requests that it makes for the same document or one "beneath" it (e.g.,
/foo/bar/index.html is "beneath" /foo/index.html) causes it to send the same credentials automatically.
This makes the process start at step 4, so even though the challenge/response exchange is still happening
between the client and the server, it's hidden from the user. This is why it's easy to get caught up in the
fallacy of users being "logged on" to a site.

This is how all HTTP weak authentication works. One of the common features of most interactive web
browsers is that the credentials are forgotten when the client is shut down. This is why you need to
reauthenticate each time you access a protected document in a new browser session.

Discussion

This tells Apache that access is granted if the requirements of either the weak (user credentials) or strong protection
(IP address) mechanisms are fulfilled. Then it goes on to say that the strong mechanism will always be happy
regardless of the visitor's origin.

Be aware that this sets a new default security condition for all subdirectories below the one affected. In other words,
you are not just unlocking the one subdirectory but all of its descendants as well.

See Also

•

Recipe 6.6
•

Recipe 6.10

[Team LiB]

[Team LiB]

Recipe 6.10 Lifting Restrictions Selectively

Problem

You want most documents to be restricted, such as requiring a username and password, but want a few to be
available to the public. For example, you may want index.html to be publicly accessible, while the rest of the files in
the directory require password authentication.

Solution

Use the Satisfy Any directive in the appropriate place in your .htaccess or httpd.conf file:
 <Files index.html>
 Order Deny,Allow
 Allow from all
 Satisfy Any

</Files>
Discussion

Regardless of what sorts of restrictions you may have on other files, or on the directory as a whole, the <Files>
container in the solution makes the index.html file accessible to everyone without limitation. Satisfy Any tells Apache
that any of the restrictions in place may be satisfied, rather than having to enforce any particular one. In this case, the
restriction in force will be Allow from all, which permits access for all clients.

Weak and Strong Authentication

The basic Apache security model for HTTP is based upon the concepts of weak and strong
authentication mechanisms. Weak mechanisms are those that rely on information volunteered by the
user; strong ones use credentials obtained without asking him. For instance, a username and password
constitute a set of weak credentials, while the IP address of the user's client system is regarded as a
strong one.

One difference between the two types lies in how Apache handles an authentication failure. If invalid
weak credentials are presented, the server will respond with a 401 Unauthorized status, which allows
the user to try again. In contrast, a failure to authenticate when strong credentials are required will result
in a 403 Forbidden status—for which there is no opportunity to retry.

In addition, strong and weak credentials can be required in combination; this is controlled by the Satisfy
directive. The five possible requirements are:

•

None. No authentication required.
•

Only strong credentials are needed.
•

Only weak credentials are required.
•

Both strong and weak credentials are accepted; if either is valid, access is permitted.
•

Both strong and weak credentials are required.

See Also

•

Recipe 6.9
•

Recipe 6.6

[Team LiB]

[Team LiB]

Recipe 6.11 Authorizing Using File Ownership

Problem

You wish to require user authentication based on system file ownership. That is, you want to require that the user that
owns the file matches the username that authenticated.

Solution

Use the Require file-owner directive:
 <Directory /home/*/public_html/private>
 AuthType Basic
 AuthName "MyOwnFiles"
 AuthUserFile /some/master/authdb
 Require file-owner

</Directory>
Discussion

The goal here is to require that username jones must authenticate in order to access the
/home/jones/public_html/private directory.

The user does not authenticate against the system password file but against the AuthUserFile specified in the
example. Apache just requires that the name used for authentication matches the name of the owner of the file or
directory in question. Note also that this is a feature of mod_auth and is not available in other authentication modules.

This feature was added in Apache 1.3.22.

See Also

•

The Require file-group keyword at http://httpd.apache.org/docs/mod/mod_auth.html#require

[Team LiB]

http://httpd.apache.org/docs/mod/mod_auth.html#require
http://httpd.apache.org/docs/mod/mod_auth.html#require

[Team LiB]

Recipe 6.12 Storing User Credentials in a MySQL Database

Problem

You wish to use user and password information in your MySQL database for authenticating users.

Solution

For Apache 1.3, use mod_auth_mysql:
 Auth_MySQL_Info db_host.example.com db_user my_password
Auth_MySQL_General_DB auth_database_name

<Directory /www/htdocs/private>
 AuthName "Protected directory"
 AuthType Basic
 require valid-user

</Directory>

For Apache 2.1 and later, use mod_authn_dbi:
 AuthnDbiDriver Config1 mysql
 AuthnDbiHost Config1 db.example.com
 AuthnDbiUsername Config1 db_username
 AuthnDbiPassword Config1 db_password
 AuthnDbiName Config1 auth_database_name
 AuthnDbiTable Config1 auth_database_table
 AuthnDbiUsernameField Config1 user_field
 AuthnDbiPasswordField Config1 password_field
 AuthnDbiIsActiveField Config1 is_active_field

 AuthnDbiConnMin Config1 3
 AuthnDbiConnSoftMax Config1 12
 AuthnDbiConnHardMax Config1 20
 AuthnDbiConnTTL Config1 600

<Directory "/www/htdocs/private">
 AuthType Digest
 AuthName "Protected directory>
 AuthBasicProvider dbi
 AuthnDbiServerConfig Config1
 Require valid-user

</Directory>
Discussion

There are a number of modules called mod_auth_mysql. The module used in the previous example is the
mod_auth_mysql from http://www.diegonet.com/support/mod_auth_mysql.shtml. For the full explanation of the
database fields that you will need to create, and the additional options that the module affords, you should consult the
documentation on the web site.

If you are running Apache 2.1 or later, you will want to take advantage of the new authentication framework, and use
the module mod_authn_dbi, available from http://open.cyanworlds.com/mod_authn_dbi/. Due to the new
authentication API in Apache 2.1, a number of things are possible that were not possible in earlier versions. For
example, a single module, such as mod_authn_dbi, can be used for either Basic or Digest authentication, by simply
changing the AuthType directive from Basic to Digest. (AuthBasicProvider would also become
AuthDigestProvider in the previous example.)

mod_authn_dbi uses libdbi, which is a generic database access library, allowing you to use your favorite database
server to provide authentication services. libdbi drivers are available for most popular database servers. For a more
complete description of mod_authn_dbi, you should consult the documentation on the web site.

See Also

•

http://www.diegonet.com/support/mod_auth_mysql.shtml
•

http://open.cyanworlds.com/mod_authn_dbi/

http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi/default.htm
http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi/default.htm
http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi/
http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi/

[Team LiB]

[Team LiB]

Recipe 6.13 Accessing the Authenticated Username

Problem

You want to know the name of the user who has authenticated.

Solution

Consult the environment variable REMOTE_USER.

In a Server-Side Include (SSI) directive, this may look like:
 Hello, user <!--#echo var="REMOTE_USER" -->. Thanks for visiting.

In your CGI code, it might look like:
 my $username = $ENV{REMOTE_USER};
Discussion

When a user has authenticated, the environment variable REMOTE_USER is set to the name with which she
authenticated. You can access this variable in CGI programs, SSI directives, PHP files, and a variety of other
methods. The value will also appear in your access_log file.

Note that, while it is the convention for an authentication module to set this variable, there are reportedly some
third-party authentication modules that do not set it, but provide other methods for accessing that information.

See Also

•

Recipe 6.14

[Team LiB]

[Team LiB]

Recipe 6.14 Obtaining the Password Used to Authenticate

Problem

You want to get the password that the user authenticated with.

Solution

Standard Apache modules do not make this value available. It is, however, available from the Apache API if you
wish to write your own authentication methods.

In the Apache 1.3 API, you need to investigate the ap_get_basic_auth_pw function. In the 2.0 API, look at the
get_basic_auth function.

If you write an authentication handler with mod_perl, you can retrieve the username and password with the
get_username function:
 my ($username, $password) = get_username($r);
Discussion

For security reasons, although the username is available as an environment variable, the password used to
authenticate is not available in any simple manner. The rationale behind this is that it would be a simple matter for
unscrupulous individuals to capture passwords so that they could then use them for their own purposes. Thus the
decision was made to make passwords near to impossible to attain.

The only way to change this is to rebuild the server from the sources with a particular (strongly discouraged)
compilation flag. Alternately, if you write your own authentication module, you would of course have access to this
value, as you would need to verify it in your code.

See Also

•

Recipe 6.13

[Team LiB]

[Team LiB]

Recipe 6.15 Preventing Brute-Force Password Attacks

Problem

You want to disable a username when there are repeated failed attempts to authenticate using it, as if it is being
attacked by a password-cracker.

Solution

There is no way to do this with standard Apache authentication modules. The usual approach is to watch your logfile
carefully. Or you can use something like Apache::BruteWatch to tell you when a user is being attacked:
 PerlLogHandler Apache::BruteWatch
 PerlSetVar BruteDatabase DBI:mysql:brutelog
 PerlSetVar BruteDataUser username
 PerlSetVar BruteDataPassword password

 PerlSetVar BruteMaxTries 5
 PerlSetVar BruteMaxTime 120

 PerlSetVar BruteNotify rbowen@example.com
Discussion

Due to the stateless nature of HTTP and the fact that users are not, technically, "logged in" at all (see HTTP,
Browsers, and Credentials), there is no connection between one authentication attempt and another. This makes it
possible to repeatedly attempt to log in with a particular username.

Apache::BruteWatch is one way to watch the logfile and send notification when a particular account is being
targeted for a brute-force password attack. With the configuration shown previously, if a given account fails
authentication 5 times in 2 minutes, the server administrator will be notified of the situation, so that she can take
appropriate measures, such as blocking the offending address from the site.

See Also

•

HTTP, Browsers, and Credentials

[Team LiB]

[Team LiB]

Recipe 6.16 Using Digest Versus Basic Authentication

Problem

You want to understand the distinction between the Basic and Digest authentication methods.

Solution

Use AuthType Basic and the htpasswd tool to control access using Basic authentication. Use AuthType Digest and
the htdigest tool for the Digest method.

Discussion

Basic web authentication is exactly that: primitive and insecure. It works by encoding the user credentials with a
reversible algorithm (essentially base-64 encoding) and transmitting the result in plaintext as part of the request
header. Anyone (or anything) that intercepts the transmission can easily crack the encoding of the credentials and use
them later. As a consequence, Basic authentication should only be used in environments where the protected
documents aren't truly sensitive or when there is no alternative.

In contrast, Digest authentication uses a more secure method that is much less susceptible to credential theft,
spoofing, and replay attacks. The exact details don't matter; the essential ingredient is that no username or password
traverses the network in plaintext.

Preparing a realm to use Basic authentication consists of simply storing the username/password pair and telling the
server where to find them. The password may or may not be encrypted. The same credentials may be applied to any
realm on the server, or even copied to a completely different server and used there. They may be stored in a variety
of databases; multiple modules exist for storing Basic credentials in flat text files, GDBM files, MySQL databases,
LDAP directories, and so on.

Setting up Digest authentication is a little more involved. For one thing, the credentials are not transportable to other
realms; when you generate them, you specify the realm to which they apply. For another, the only storage mechanism
currently supported directly by the Apache package is flat text files; if you want to keep your Digest credentials in an
LDAP directory or Oracle database, you're going to have to look for third-party modules to do it or else write one
yourself.

In addition to the more complex setup process, Digest authentication currently suffers from a lack of market
penetration. That is, even though Apache supports it, not all browsers and other web clients do; so you may end up
having to use Basic authentication simply, because there's nothing else available to your users.

See Also

•

Recipe 6.18

[Team LiB]

[Team LiB]

Recipe 6.17 Accessing Credentials Embedded in URLs

Problem

You know people access your site using URLs with embedded credentials, such as http://user:password@host/, and
you want to extract them from the URL for validation or other purposes.

Solution

None; this is a nonissue that is often misunderstood.

Discussion

For nonproxy requests, this doesn't even exist; the browser dissects the URL and turns it into the appropriate request
header fields (i.e., WWW-Authenticate). For proxy requests, who knows?

[Team LiB]

http://user:password@host/,

[Team LiB]

Recipe 6.18 Securing WebDAV

Problem

You want to allow your users to upload and otherwise manage their web documents with WebDAV, but without
exposing your server to any additional security risks.

Solution

Require authentication to use WebDAV:
 <Directory "/www/htdocs/dav-test">
 Order Allow,Deny
 Deny from all
 AuthDigestFile /www/acl/.htpasswd-dav-test
 AuthDigestDomain /dav-test/
 AuthName "DAV access"
 Require
 Satisfy any

</Directory>
Discussion

Because WebDAV operations can modify your server's resources and mod_dav runs as part of the server, locations
that are WebDAV-enabled need to be writable by the user specified in the server's User directive. This means that
the same location is writable by any CGI scripts or other modules that run as part of the Apache server. To keep
remote modification operations under control, you should enable access controls for WebDAV-enabled locations. If
you use weak controls, such as user-level authentication, you should use Digest authentication rather than Basic, as
shown in the Solution.

The contents of the <Directory> container could be put into a dav-test/.htaccess file, as well. Note that the
authentication database (specified with the AuthDigestFile directive) is not within the server's URI space, and so it
cannot be fetched with a browser nor with any WebDAV tools.

Your authentication database and .htaccess files should not be modifiable by the server user; you don't want them
getting changed by your WebDAV users!

See Also

•

Recipe 6.16

[Team LiB]

[Team LiB]

Recipe 6.19 Enabling WebDAV Without Making Files Writable by
the Web User

Problem

You want to run WebDAV but don't want to make your document files writable by the Apache server user.

Solution

Run two web servers as different users. The DAV-enabled server, for example, might run as User dav, Group dav,
while the other server, which is responsible for serving your content, might run as User nobody, Group nobody.
Make the web content writable by the dav user, or the dav group.

Remember that only a single web server can be handling a particular port/IP address
combination. This means that your WebDAV-enabled server will have to be using either a
different address, a different port, or both than the non-WebDAV server.

Discussion

A big security concern with DAV is that the content must be modifiable by the web server user for DAV to be able
to update that content. This means that any content can also be edited by CGI programs, SSI directives, or other
programs running under the web server. While the Apache security guidelines caution against having any files writable
by the web server user, DAV requires it.

By running two Apache servers, you can move around this limitation. The DAV-enabled web server, running on an
alternate port, has the User and Group directives set to an alternate user and group, such as:
 User dav
Group dav

which is the owner of the web content in question. The other web server, which will be responsible for serving
content to users, runs as a user who does not have permission to write to any of the documents.

The DAV-enabled web server should be well authenticated, so that only those who are permitted to edit the site can
access that portion of the server. You should probably also set up this server to be very lightweight, both in the
modules that you install as well as in the number of child processes (or threads) that you run.

Finally, it should be noted that the perchild MPM, under Apache 2.0, supports the idea of running different virtual
hosts with different user ids, so that this recipe could be accomplished by enabling DAV just for the one particular
vhost. However, as of this writing, the perchild MPM is not working yet.

See Also

•

http://httpd.apache.org/docs-2.0/mod/mod_dav.html
•

http://httpd.apache.org/docs-2.0/mod/perchild.html

http://httpd.apache.org/docs-2.0/mod/mod_dav.html
http://httpd.apache.org/docs-2.0/mod/perchild.html
http://httpd.apache.org/docs-2.0/mod/mod_dav.html
http://httpd.apache.org/docs-2.0/mod/perchild.html

[Team LiB]

[Team LiB]

Recipe 6.20 Restricting Proxy Access to Certain URLs

Problem

You don't want people using your proxy server to access particular URLs or patterns of URLs (such as MP3 or
streaming video files).

Solution

You can block by keyword:
 ProxyBlock .rm .ra .mp3

You can block by specific backend URLs:
 <Directory proxy:http://other-host.org/path>
 Order Allow,Deny
 Deny from all
 Satisfy All

</Directory>

Or you can block according to regular expression pattern matching:
 <Directory proxy:*>
 RewriteEngine On
 #
 # Disable proxy access to Real movie and audio files
 #
 RewriteRule "\.(rm|ra)$" "-" [F,NC]
 #
 # Don't allow anyone to access .mil sites through us
 #
 RewriteRule "^[a-z]+://[-.a-z0-9]*\.mil($|/)" "-" [F,NC]

</Directory>
Discussion

All of these solutions will result in a client that attempts to access a blocked URL receiving a 403 Forbidden status
from the server.

The first solution uses a feature built into the proxy module itself: the ProxyBlock directive. It's simple and efficient,
and it catches the results so that future accesses to the same URL are blocked with less effort; however, the pattern
matching it can perform is extremely limited and prone to confusion. For instance, if you specify:
 ProxyBlock .mil

the server denies access to both http://www.navy.mil/ and http://example.com/spec.mil/list.html. This is probably not
what was intended!

The second method allows you to impose limitations based on the URL being fetched (or gateway, in the case of a
ProxyPass directive).

The third method, which allows more complex what-to-block patterns to be constructed, is both more flexible and
more powerful, and somewhat less efficient. Use it only when the other methods prove insufficient.

<DirectoryMatch> containers work as well, so more complex patterns may be used.

The flags to the RewriteRule directive tell it, first, that any URL matching the pattern should result in the server
returning a 403 Forbidden error (F or forbidden), and second that the pattern match is case-insensitive (NC or
nocase).

One disadvantage of the mod_rewrite solution is that it can be too specific. The first RewriteRule pattern can be
defeated if the client specifies path-info or a query string, or if the origin server uses a different suffix naming scheme
for these types of files. A little cleverness on your part can cover these sorts of conditions, but beware of trying to
squeeze too many possibilities into a single regular expression pattern. It's generally better to have multiple
RewriteRule directives than to have a single all-singing all-dancing one that no one can read—and is hence prone to
error.

See Also

•

The mod_proxy and mod_rewrite documentation at http://httpd.apache.org/docs/mod/mod_proxy.html and
http://httpd.apache.org/docs/mod/mod_rewrite.html

http://www.navy.mil/default.htm
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_rewrite.html
http://www.navy.mil/
http://example.com/spec.mil/list.html.
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Recipe 6.21 Protecting Files with a Wrapper

Problem

You have files to which you want to limit access using some method other than standard web authentication (such as
a members-only area).

Solution

In httpd.conf, add the following lines to a <Directory> container whose contents should be accessed only through a
script:
 RewriteEngine On
RewriteRule "\.(dll|zip|exe)$" protect.php [NC]
RewriteCond %{REMOTE_ADDR} "!^my.servers.ip"

RewriteRule "\.cgi$" protect.php [NC]

And an example protect.php that just displays the local URI of the document that was requested:
 <?php
/*
 * The URL of the document actually requested is in
 * $_SERVER['REQUEST_URI']. Appropriate decisions
 * can be made about what to do from that.
 */
Header('Content-type: text/plain');
$body = sprintf("Document requested was: %s\n", $_SERVER['REQUEST_URI']);
Header('Content-length: ' . strlen($body));
print $body;

?>
Discussion

In the situation that prompted this recipe, authentication and authorization were completed using a cookie rather than
the standard mechanisms built into the web protocols. Any request for a document on the site was checked for the
cookie and redirected to the login page if it wasn't found, was expired, or had some other problem causing its validity
to be questioned.

This is fairly common and straightforward. What is needed in addition to this is a way to limit access to files according
to the cookie and ensure that no URL-only request could reach them.

To this end, a wrapper is created (called protect.php in the Solution), which is invoked any time one of the protected
document types is requested. After validating the cookie, the protect.php script figures out the name of the file from
the environment variables, determines the content-type from the extension, and opens the file and sends the contents.

This is illustrated in the Solution. Any time a document ending in one of the extensions .dll, .zip, .exe, or .cgi is
requested from the scope covered by the mod_rewrite directives, and the request comes from some system other
than the web server system itself (i.e., from a client system), the protect.php script will be invoked instead. In the
Solution, the script simply displays the local URI of the document that is requested; applying additional access control
or other functionality is easily developed from the example.

If access control is the main purpose of the wrapper and the access is granted, the wrapper needs to send the
requested document to the client. In this case, the wrapper could either determine the filesystem path to the desired
document and use the PHP routine fpassthru() to open it and send it to the client, or it could access the document
using PHP's ability to open a URL as though it were a file with the fopen(http://docurl) function call. (This latter
method is necessary if the document requires server processing, such as if it's a script.)

This would ordinarily trigger the wrapper on the dynamic document again, causing a loop. To prevent this, the
wrapper is only applied to dynamic documents if the requesting host isn't the server itself. If it is the web server
making the request, we know the wrapper has already been run and you don't need to run it again. The server
processes the document as usual and sends the contents back to the wrapper, which is still handling the original
request, and it dutifully passes it along to the client. This is handled by the RewriteCond directive, which says "push
requests for scripts through the wrapper unless they're coming from the server itself."

This method is perhaps a little less than perfectly elegant and not the best for performance, because each CGI
request involves at least two concurrent requests, but it does address the problem.

See Also

•

Chapter 5

[Team LiB]

[Team LiB]

Recipe 6.22 Protecting All Files Except a Subset

Problem

You want to deny all web access to files in a directory, except for those with a particular extension (i.e., a directory
with HTML files in it, where you don't want other files to be accessible).

Solution

Use a Files container in a Directory container to limit where authentication is required:
 <Directory "/usr/local/apache/htdocs">
 Satisfy All
 Order allow,deny
 Deny from all
 <Files *.html>
 Order deny,allow
 Allow from all
 Satisfy Any
 </Files>

</Directory>
Discussion

This method can be easily extended to apply to arbitrary filename patterns using shell global characters. To extend it
to use regular expressions for the filename, use the <FilesMatch> directive instead.

See Also

•

http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

Recipe 6.23 Protecting Server Files from Malicious Scripts

Problem

Scripts running on your web server may access, modify, or destroy files located on your web server if they are not
adequately protected. You want to ensure that this cannot happen.

Solution

Ensure that none of your files are writable by the nobody user or the nobody group, and that sensitive files are not
readable by that user and group:
 # find / -user nobody
find / -group nobody
Discussion

The User and Group directives specify a user and group under whose privileges the web server will run. These are
often set to the values of nobody and nobody, respectively, but they can vary in different setups. It is often advisable
to create a completely new user and group for this purpose, so that there is no chance that the user has been given
additional privileges of which you are not aware.

Because everything runs with these privileges, any files or directories that are accessible by this user and/or group will
be accessible from any script running on the server. This means that a script running under one virtual host may
possibly modify or delete files contained within another virtual host, either intentionally or accidentally, if those files
have permissions making this possible.

Ideally, no files anywhere on your server should be owned by, or writable by, the server user, unless for the explicit
purpose of being used as a datafile by a script. And, even for this purpose, it is recommended that a real database be
used, so that the file itself cannot be modified by the server user. And if files simply must be writable by the server,
they should definitely not be in some web-accessible location, such as /cgi-bin/.

See Also

•

Recipe 8.12
•

Recipe 6.24

[Team LiB]

[Team LiB]

Recipe 6.24 Setting Correct File Permissions

Problem

You want to set file permissions to provide the maximum level of security.

Solution

The bin directory under the ServerRoot should be owned by user root, group root, and have file permissions of 755
(rwxr-xr-x). Files contained therein should also be owned by root.root and be mode 755.

Document directories, such as htdocs, cgi-bin, and icons, will have to have permissions set in a way that makes the
most sense for the development model of your particular web site, but under no circumstances should any of these
directories or files contained in them be writable by the web server user.

The solution provided here is specific to Unixish systems. Users of other operating systems
should adhere to the principles laid out here, although the actual implementation will vary.

The conf directory should be readable and writable only by root, as should all the files contained therein.

The include and libexec directories should be readable by everyone, writable by no one.

The logs directory should be owned and writable by root. You may, if you like, permit other users to read files in this
directory, as it is often useful for users to be able to access their logfiles, particularly for troubleshooting purposes.

The man directory should be readable by all users.

Finally, the proxy directory should be owned by and writable by the server user.

On most Unixish file systems, a directory must have the x bit set in order for the files
therein to be visible.

Discussion

You should be aware that if you ask 12 people for the correct ways to set file permissions on your Apache server,
you will get a dozen different answers. The recommendations here are intended to be as paranoid as possible. You
should feel free to relax these recommendations, based on your particular view of the world and how much you trust
your users. However, if you set file permissions any more restrictive than this, your Apache server is likely not to
function. There are, of course, exceptions to this, and cases in which you could possibly be more paranoid are
pointed out later.

The most important consideration when setting file permissions is the Apache server user—the user as which Apache
runs. This is configured with the User and Group directives in your httpd.conf file, setting what user and group the
Apache processes will run as. This user needs to have read access to nearly everything but should not have write
access to anything.

The recommended permissions for the bin directory permit anyone to run programs contained therein. This is
necessary in order for users to create password files using the htpasswd and htdigest utilities, run CGI programs
using the suexec utility, check the version of Apache using httpd -v, or use any of the other programs in this
directory. There is no known security risk of permitting this access. The web server itself cannot be stopped or
started by an unprivileged user under normal conditions. These files, or the directory, should never be writable by
nonroot users, as this would allow compromised files to be executed with root privileges.

Extra-paranoid server administrators may wish to make the bin directory, and its contents, readable and executable
only by root. However, the only real benefit to doing so is that other users cannot run the utilities or httpd server,
such as on a different port. Some of those utilities, such as htpasswd and htdigest, are intended to be run by content
providers (i.e., users) in addition to the webmaster.

The conf directory, containing the server configuration files, can be locked down as tightly as you like. While it is
unlikely that reading the server configuration files will allow a user to gain additional privileges on the server, more
information is always useful for someone trying to compromise your server. You may, therefore, wish to make this
directory readable only by root. However, most people will consider this just a little too paranoid.

Document directories are particularly problematic when it comes to making permission recommendations, as the
recommended setting will vary from one server to another. On a server with only one content provider, these
directories should be owned by that user and readable by the Apache user. On a server with more than one content
developer, the files should be owned by a group of users who can modify the files but still be readable by the Apache
user. The icons directory is a possible exception to this rule, because the contents of that directory are rarely
modified and do not need to be writable by any users.

The include and libexec directories contain files that are needed by the Apache executable at runtime and only need
to be readable by root, which starts as root, and by no other users. However, since the include directory contains C
header files, it may occasionally be useful for users to have access to those files to build applications that need those
files.

The logs directory should under no circumstances ever be writable by anyone other than root. If the directory is ever
writable by another user, it is possible to gain control of the Apache process at start time and gain root privileges on
the server. Whether you permit other users to read files in this directory is up to you and is not required. However,
on most servers, it is very useful for users to be able to access the logfiles—particularly the error_log file, in order to
troubleshoot problems without having to contact the server administrator.

The man directory contains the manpages for the various utilities that come with Apache. These need to be readable
by all users. However, it is recommended that you move them to the system man path, or install them there when you
install Apache by providing an argument to the —mandir argument specifying the location of your system man
directory.

Finally, the proxy directory should be owned by, and writable by, the server user. This is the only exception to the
cardinal rule that nothing should be writable by this user. The proxy directory contains files created by and managed
by mod_proxy, and they need to be writable by the unprivileged Apache processes. If you are not running a proxy
server with mod_proxy, you may remove this directory entirely.

See Also

•

Learning the Unix Operating System, Fifth Edition, by Jerry Peek, Grace Todino, and John Strang (O'Reilly)
•

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html
http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

[Team LiB]

[Team LiB]

Recipe 6.25 Running a Minimal Module Set

Problem

You want to eliminate all modules that you don't need in order to reduce the potential exposure to security holes.
What modules do you really need?

Solution

For Apache 1.3, you can run a bare-bones server with just three modules. (Actually, you can get away with not
running any modules at all, but it is not recommended.)
 % ./configure --disable-module=all --enable-module=dir \
> --enable-module=mime --enable-module=log_config \

For Apache 2.0, this is slightly more complicated, as you must individually disable modules you don't want:
 % ./configure --disable-access \
> --disable-auth --disable-charset-lite \
> --disable-include --disable-log-config --disable-env --disable-setenvif \
> --disable-mime --disable-status --disable-autoindex --disable-asis \
> --disable-cgid --disable-cgi --disable-negotiation --disable-dir \

> --disable-imap --disable-actions --disable-alias --disable-userdir

Note that with 2.0, as with 1.3, you may wish to enable mod_dir, mod_mime, and mod_log_config, by simply
leaving them off of this listing.

Discussion

A frequent security recommendation is that you eliminate everything that you don't need; if you don't need something
and don't use it, then you are likely to overlook security announcements about it or forget to configure it securely. The
question that is less frequently answered is exactly what you do and don't need.

A number of Apache package distributions come with everything enabled, and people end up running modules that
they don't really need—or perhaps are not even aware that they are running.

This recipe is an attempt to get to the very smallest Apache server possible, reducing it to the minimum set of
modules that Apache will run. That is, if you take any of these out, Apache will not even start up, let alone serve a
functional web site.

Apache 1.3

With Apache 1.3, this question is fairly easy to answer. We've reduced it to a set of three modules, and, actually, you
can eliminate all of the modules if you really want to, as long as you're aware of the implications of doing so.

mod_dir is the module that takes a request for / and turns it into a request for /index.html, or whatever other file you
have indicated with the DirectoryIndex directive as the default document for a directory. Without this module, users
typing just your hostname into their browser will immediately get a 404 error, rather than a default document.
Granted, you could require that users specify a hostname and filename in their URL, in which case you could
dispense with this module requirement. This would, however, make your web site fairly hard to use.

mod_mime enables Apache to determine what MIME type a particular file is, and send the appropriate MIME
header with that file, enabling the browser to know how to render that file. Without mod_mime, your web server will
treat all files as having the MIME type set by the DefaultType directive. If this happens to match the actual type of
the file, well and good; otherwise, this will cause the browser to render the document incorrectly. If your web site
consists only of one type of files, you can omit this module.

Finally, mod_log_config, while not technically required at all, is highly recommended. Running your web server
without any activity logfiles will leave you without any idea of how your site is being used, which can be detrimental to
the health of your server. However, you should note that it is not possible to disable the ErrorLog functionality of
Apache, and so, if you really don't care about the access information of your web site, you could feasibly leave off
mod_log_config and still have error log information.

The default distributed configuration file will need some adjustment to run under these
reduced conditions. In particular, you will probably need to remove Order, Allow, and
Deny directives (provided by mod_access), and you will need to remove LogFormat and
CustomLog directives if you remove mod_log_config. Many other sections of the
configuration files are protected by <IfModule> sections and will still function in the
absence of the required modules.

Apache 2.0

With Apache 2.0, a new configuration utility is used, and so the command-line syntax is more complicated. In
particular, there is no single command-line option to let you remove all modules, and so every module must be
specified with a —disable directive.

The list of modules that are minimally required for Apache 2.0 is the same as that for 1.3. mod_dir, mod_mime, and
mod_log_config are each recommended, but not mandated, for the same reasons outlined previously.

[Team LiB]

[Team LiB]

Recipe 6.26 Restricting Access to Files Outside Your Web Root

Problem

You want to make sure that files outside of your web directory are not accessible.

Solution

For Unixish systems:
 <Directory />
 Order deny,allow
 Deny from all
 AllowOverride None
 Options None

</Directory>

For Windows systems:
 <Directory C:/>
 Order deny,allow
 Deny from all
 AllowOverride None
 Options None

</Directory>

Repeat for each drive letter on the system.

Discussion

Good security technique is to deny access to everything, and then selectively permit access where it is needed. By
placing a Deny from all directive on the entire filesystem, you ensure that files cannot be loaded from any part of
your filesystem unless you explicitly permit it, using a Allow from all directive applied to some other <Directory>
section in your configuration.

If you wanted to create an Alias to some other section of your filesystem, you would need to explicitly permit this
with the following:
 Alias /example /var/example
<Directory /var/example>
 Order allow,deny
 Allow from all

</Directory>
See Also

•

http://httpd.apache.org/docs/mod/mod_access.html

http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

[Team LiB]

Recipe 6.27 Limiting Methods by User

Problem

You want to allow some users to use certain methods but prevent their use by others. For instance, you might want
users in group A to be able to use both GET and POST but allow everyone else to use only GET.

Solution

Apply user authentication per method using the Limit directive:
 AuthName "Restricted Access"
AuthType Basic
AuthUserFile filename
Order Deny,Allow
Allow from all
<Limit GET>
 Satisfy Any
</Limit>
<LimitExcept GET>
 Satisfy All
 Require valid-user

</Limit>
Discussion

It is often desirable to give general access to one or more HTTP methods, while restricting others. For example,
while you may wish any user to be able to GET certain documents, you may wish for only site administrators to
POST data back to those documents.

It is important to use the LimitExcept directive, rather than attempting to enumerate all possible methods, as you're
likely to miss one.

See Also

•

http://httpd.apache.org/docs/mod/mod_auth.html
•

http://httpd.apache.org/docs/mod/mod_access.html
•

http://httpd.apache.org/docs/mod/core.html#limit
•

http://httpd.apache.org/docs/mod/core.html#limitexcept

http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/core.html#limit
http://httpd.apache.org/docs/mod/core.html#limitexcept
http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/core.html#limit
http://httpd.apache.org/docs/mod/core.html#limitexcept

[Team LiB]

[Team LiB]

Recipe 6.28 Restricting Range Requests

Problem

You want to prevent clients from requesting partial downloads of documents within a particular scope, forcing them
to request the entire document instead.

Solution

You can overload ErrorDocument 403 to make it handle range requests. To do this, put the following into the
appropriate <Directory> container in your httpd.conf file or in the directory's .htaccess file:
 SetEnvIf "Range" "." partial_requests
Order Allow,Deny
Allow from all
Deny from env=partial_requests

ErrorDocument 403 /forbidden.cgi

Then put the following into a file named forbidden.cgi in your server's DocumentRoot:
 #! /usr/bin/perl -w
use strict;
my $message;
my $status_line;
my $body;
my $uri = $ENV{'REDIRECT_REQUEST_URI'} || $ENV{'REQUEST_URI'};
my $range = $ENV{'REDIRECT_HTTP_RANGE'} || $ENV{'HTTP_RANGE'};
if (defined($range)) {
 $body = "You don't have permission to access "
 . $ENV{'REQUEST_URI'}
 . " on this server.\r\n";
 $status_line = '403 Forbidden';
}
else {
 $body = "Range requests disallowed for document '"
 . $ENV{'REQUEST_URI'}
 . "'.\r\n";
 $status_line = '416 Range request not permitted';
}
print "Status: $status_line\r\n"
 . "Content-type: text/plain;charset=iso-8859-1\r\n"
 . "Content-length: " . length($body) . "\r\n"
 . "\r\n"
 . $body;

exit(0);

Or use mod_rewrite to catch requests with a Range header. To do this, put the following into the appropriate
<Directory> container in your httpd.conf file or in the directory's .htaccess file:
 RewriteEngine On
RewriteCond "%{HTTP:RANGE}" "."

RewriteRule "(.*)" "/range-disallowed.cgi" [L,PT]

Then put the following into a file named range-disallowed.cgi in your server's DocumentRoot:
 #! /usr/bin/perl -w
use strict;
my $message = "Range requests disallowed for document '"
 . $ENV{'REQUEST_URI'}
 . "'.\r\n";
print "Status: 416 Range request not permitted\r\n"
 . "Content-type: text/plain;charset=iso-8859-1\r\n"
 . "Content-length: " . length($message) . "\r\n"
 . "\r\n"
 . $message;

exit(0);
Discussion

Both of these solutions are a bit sneaky about how they accomplish the goal.

The first overloads an ErrorDocument 403 script so that it handles both real "access forbidden" conditions and range
requests. The SetEnvIf directive sets the partial_request environment variable if the request header includes a Range
field, the Deny directive causes the request to be answered with a 403 Forbidden status if the environment variable is
set, and the ErrorDocument directive declares the script to handle the 403 status. The script checks to see whether
there was a Range field in the request header so it knows how to answer—with a "you can't do Range requests here"
or with a real "document access forbidden" response.

The second solution uses mod_rewrite to rewrite any requests in the scope that include a Range header field to a
custom script that handles only this sort of action; it returns the appropriate status code and message. The "sneaky"
aspect of this solution is rewriting a valid and successful request to something that forces the response status to be
unsuccessful.

See Also

•

http://httpd.apache.org/docs/mod/mod_setenvif.html
•

http://httpd.apache.org/docs/mod/mod_access.html
•

http://httpd.apache.org/docs/mod/mod_rewrite.html

http://httpd.apache.org/docs/mod/mod_setenvif.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_setenvif.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Chapter 7. SSL

Secure Socket Layers (SSL) is the standard way to implement secure web sites. By encrypting the traffic between
the server and the client, which is what SSL does, that content is protected from a third party listening to the traffic
going past.

The exact mechanism by which this encryption is accomplished is discussed extensively in the SSL specification,
which you can read at http://wp.netscape.com/eng/ssl3/. For a more user-friendly discussion of SSL, we recommend
looking through the mod_ssl manual, which you can find at http://www.modssl.org/docs/2.8/index.html. This
document discusses not only the specific details of setting up mod_ssl, but also covers the general theory behind SSL
it and has pictures illustrating the concepts.

In this chapter, we talk about some of the common things that you might want to do with your secure server,
including how to install it.

[Team LiB]

http://wp.netscape.com/eng/ssl3/default.htm
http://www.modssl.org/docs/2.8/index.html
http://wp.netscape.com/eng/ssl3/
http://www.modssl.org/docs/2.8/index.html

[Team LiB]

Recipe 7.1 Installing SSL

Problem

You want to install SSL on your Apache server.

Solution

The solutions to this problem fall into several categories, depending on how you installed Apache in the first place (or
whether you are willing to rebuild Apache to get SSL).

If you installed a binary distribution of Apache, your best bet is to return to the place from which you acquired that
binary distribution, and try to find the necessary files for adding SSL to it.

If you built Apache yourself from source, then the solution will depend on whether you are running Apache 1.3 or
Apache 2.0.

In Apache 1.3, SSL is an add-on module, which you must acquire and install from a different location than that from
where you obtained Apache. There are two main choices available: mod_ssl (http://www.modssl.org/) and
Apache-SSL (http://www.apache-ssl.org/); the installation procedure will vary somewhat depending on which one of
these you choose.

If you are building Apache 2.0 from source, the situation is somewhat simpler; just add —enable-ssl to the
./configure arguments when you build Apache to include SSL as one of the built-in modules.

Consult Chapter 1 and Chapter 2 for more information on installing third-party modules, particularly if you have
installed a binary distribution of Apache rather than building it yourself from the source code.

If you are attempting to install SSL on Apache for Windows, there is a discussion of this in the Compiling on
Windows document, which you can find at http://httpd.apache.org/docs-2.0/platform/win_compiling.html for Apache
2.0. Or, if you are using Apache 1.3 on Windows and wish to install SSL, you should consult the file
INSTALL.Win32, which comes with the SSL distribution, or look at the HowTo at
http://tud.at/programm/apache-ssl-win32-howto.php3.

Finally, note that the Apache SSL modules are an interface between Apache and the OpenSSL libraries, which you
must install before any of this can work. You can obtain the OpenSSL libraries from http://www.openssl.org/.
Although you may already have these libraries installed on your server, it is recommended that you obtain the latest
version of the libraries to have the most recent security patches and to protect yourself from exploits.

Discussion

So, why is this so complicated? Well, there are a variety of reasons, most of which revolve around the legality of
encryption. For a long time, encryption has been a restricted technology in the U.S.. Since Apache is primarily based
out of the U.S., there is a great deal of caution regarding distributing encryption technology with the package. Even
though major changes have been made in the laws, permitting SSL to be shipped with Apache 2.0, there are still
some gray areas that make it problematic to ship compiled binary distributions of Apache with SSL enabled.

This makes the situation particularly unpleasant on Microsoft Windows, where most people do not have a compiler
readily available to them, and so must attempt to acquire binary builds from third parties to enable SSL on their
Apache server on Windows. The URL given previously for compiling Apache 2.0 with SSL on Windows assumes
that you do have a compiler, and the document telling you how to build Apache 1.3 with SSL takes great pains to
encourage you not to use Apache 1.3 on Windows, where it does not have comparable performance to Apache on
Unixish operating systems.

See Also

•

http://httpd.apache.org/docs-2.0/platform/win_compiling.html
•

http://tud.at/programm/apache-ssl-win32-howto.php3
•

http://www.openssl.org/
•

http://www.modssl.org/
•

http://www.apache-ssl.org/

http://www.modssl.org/default.htm
http://www.apache-ssl.org/default.htm
http://httpd.apache.org/docs-2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org/default.htm
http://httpd.apache.org/docs-2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org/default.htm
http://www.modssl.org/default.htm
http://www.apache-ssl.org/default.htm
http://www.modssl.org/
http://www.apache-ssl.org/
http://httpd.apache.org/docs-2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org/
http://httpd.apache.org/docs-2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org/
http://www.modssl.org/
http://www.apache-ssl.org/

[Team LiB]

[Team LiB]

Recipe 7.2 Generating SSL Certificates

Problem

You want to generate certificates to use on your SSL server.

Solution

Use the openssl command-line program that comes with OpenSSL:
 % openssl genrsa -out hostname.key 1024
% openssl req -new -key hostname.key -out hostname.csr

At this point, you can either send your Certificate Signing Request (CSR) off to one of the certificate authority
companies, such as Thawte or Entrust, for them to sign, or, if you prefer, you can sign the key yourself:
 % openssl x509 -req -days 365 -in hostname.csr -signkey hostname.key
 -out hostname.crt

Then move these files to your Apache server's configuration directory, such as /www/conf/, and then add the
following lines in your httpd.conf configuration file:
 SSLCertificateFile /www/conf/hostname.crt
SSLCertificateKeyFile /www/conf/hostname.key
Discussion

The SSL certificate is a central part of the SSL conversation and is required before you can run a secure server.
Thus, generating the certificate is a necessary first step to configuring your secure server.

Generating the key is a multistep process, but it is fairly simple.

Generating the private key

In the first step, we generate the private key. SSL is a private/public key encryption system, with the private key
residing on the server and the public key going out with each connection to the server and encrypting data sent back
to the server.

The first argument passed to the openssl program tells openssl that we want to generate an RSA key (genrsa),
which is an encryption algorithm that all major browsers support.

The next argument gives openssl something to use as the source of randomness. The -rand flag will accept one or
more filenames, which will be used as a key for the random number generator. If no -rand argument is provided,
OpenSSL will attempt to use /dev/urandom by default if that exists, and it will try /dev/random if /dev/urandom
does not exist. It is important to have a good source of randomness in order for the encryption to be secure. If your
system has neither /dev/urandom nor /dev/random, you should consider installing a random number generator, such
as egd. You can find out more information about this on the OpenSSL web site at
http://www.openssl.org/docs/crypto/RAND_egd.html.

The -out argument specifies the name of the key file that we will generate. This file will be created in the directory in
which you are running the command, unless you provide a full path for this argument. Naming the key file after the
hostname on which it will be used will help you keep track of the file, although the name of the file is not actually
important.

And, finally, an argument of 1024 is specified, which tells openssl how many bytes of randomness to use in
generating the key.

Generating the certificate signing request

The next step of the process is to generate a certificate signing request. The reason it is called this is because the
resultant file is usually sent to a certificate authority (CA) for signing and is, therefore, a signing request. (A certificate
is just a signed key, showing that someone certifies it to be valid and owned by the right entity.)

A certificate authority is some entity that can sign SSL certificates. What this usually means is that it is one of the few
dozen companies whose business it is to sign SSL certificates for use on SSL servers. When a certificate is signed by
one of these certificate authorities browsers will automatically accept the certificate as being valid. If a certificate is
signed by a CA that is not listed in the browser's list of trusted CAs, then the browser will generate a warning, telling
you that the certificate was signed by an unknown CA and asking you if you are sure that you want to accept the
certificate.

This is a bit of an oversimplification of the process but conveys enough of it for the purposes of this recipe.

The arguments to this command specify the key for which the certificate is being generated (the -key argument) and
the name of the file that you wish to generate (the -out argument).

If you want a certificate that will be accepted by all major browsers, you will send the csr file, along with a check or
credit card information, to one of these CAs.

Signing your key

On the other hand, you can sign your own public key (also called "signing your own certificate," since signing your
public key results in a self-signed certificate), which will result in a perfectly usable certificate, and save you a little
money. This is especially useful for testing purposes, but it may also be sufficient if you are running SSL on a small
site or a server on your internal network.

The process of signing a key means that the signer trusts that the key does indeed belong to the person listed as the
owner. If you pay Entrust or one of the other commercial CAs for a certificate, they will actually do research on you
and verify, to some degree of certainty, that you really are who you claim to be. They will then sign your public key
and send you the resulting certificate, putting their stamp of approval on it and verifying to the world that you are
legitimate.

In the example given, we sign the key with the key itself, which is a little silly, as it basically means that we trust
ourselves. However, for the purposes of the actual SSL encryption, this is sufficient.

If you prefer, you can use the CA.pl script that comes with OpenSSL to generate a CA certificate of your own. The
advantage of this approach is that you can distribute this CA certificate to users, who can install it in their browsers,
enabling them to automatically trust this certificate and any other certificates that you create with that same CA. This
is particularly useful for large companies where you might have several SSL servers using certificates signed by the
same CA.

Of the arguments listed in the command, one of the most important ones is the -days argument, which specifies how
many days the certificate will be good for. If you are planning to purchase a commercial certificate, you should
generate your own self-signed key that is good for perhaps 30 days, so that you can use it while you are waiting for
the commercial certificate to arrive. If you are generating a key for actual use on your server, you may want to make
this a year or so, so that you don't have to generate new keys very often.

The -signkey argument specifies what key will be used to sign the certificate. This can be either the private key that
you generated in the first step or a CA private key generated with the CA.pl script, as mentioned above.

Configuring the server

Having generated the key and certificate, you can use them on your server using the two lines of configuration shown
in the previous solution.

The easy way

Now that we've gone through the long and painful way of doing this, you should know that there is a simpler.
OpenSSL comes with a handy script, called CA.pl, which simplifies the process of creating keys. The use of CA.pl is
described in Recipe 7.3 so you can see it in action. It is useful, however, to know some of what is going on behind
the script. At least, we tend to think so.

See Also

•

The manpage for the openssl tool
•

The manpage for the CA.pl script
•

CA.pl documentation, at http://www.openssl.org/docs/apps/CA.pl.html

http://www.openssl.org/docs/crypto/RAND_egd.html
http://www.openssl.org/docs/apps/CA.pl.html
http://www.openssl.org/docs/crypto/RAND_egd.html
http://www.openssl.org/docs/apps/CA.pl.html

[Team LiB]

[Team LiB]

Recipe 7.3 Generating a Trusted CA

Problem

You want to generate SSL keys that browsers will accept without a warning message.

Solution

Issue the following commands:
 % CA.pl -newca
% CA.pl -newreq
% CA.pl -signreq

% CA.pl -pkcs12
Discussion

Recipe 7.2 discusses the lengthy steps that are required to create keys and sign them. Fortunately, OpenSSL comes
with a script to automate much of this process, so that you don't have to remember all of those arguments. This
script, called CA.pl, is located where your SSL libraries are installed, for example, /usr/share/ssl/misc/CA.pl.

The lines in the Solution hide a certain amount of detail, as you will be asked a number of questions in the process of
creating the key and the certificate. Note also that you will probably need to be in the directory where this script lives
to get successful results from this recipe.

If you want to omit the passphrase on the certificate so that you don't have to provide the passphrase each time you
start up the server, use -newreq-nodes rather than -newreq when generating the certificate request.

After running this sequence of commands, you can generate more certificates by repeating the -newreq and -signreq
commands.

Having run these commands, you will have generated a number of files. The file newcert.pem is the file you specify in
your SSLCertificateFile directive, the file newreq.pem is your SSLCertificateKeyFile, and the file
demoCA/cacert.pem is the CA certificate file, which will need to be imported into your users' browsers (for some
browsers) so that they can automatically trust certificates signed by this CA. And, finally, newcert.p12 serves the
same purpose as demoCA/cacert.pem for certain other browsers.

Importing the CA

If your users are using Internet Explorer, you need to create a special file for them to import. Use the following
command:
 openssl X509 -demoCA/cacert.pem -out cacert.crt -outform DER

Then you can send them the cacert.crt file.

Clicking on that file will launch the SSL certificate wizard and guide the user through installing the CA certificate into
their browser.

Other browsers, such as Mozilla, expect to directly import the cacert.pem file. Users will navigate through their
menus (Edit xxxrarrxxx Preferences xxxrarrxxx Privacy and Security xxxrarrxxx Certificates), then click on Manage
Certificates, then on the Authorities tab, and finally on Import, to select the certificate file.

After importing a CA certificate, all certificates signed by that CA should be usable in your browser without receiving
any kind of warning.

See Also

•

The manpage for the CA.pl script
•

CA.pl documentation at http://www.openssl.org/docs/apps/CA.pl.html

http://www.openssl.org/docs/apps/CA.pl.html
http://www.openssl.org/docs/apps/CA.pl.html

[Team LiB]

[Team LiB]

Recipe 7.4 Serving a Portion of Your Site via SSL

Problem

You want to have a certain portion of your site available via SSL exclusively.

Solution

This is done by making changes to your httpd.conf file.

For Apache 1.3, add a line such as the following:
 Redirect /secure/ https://secure.domain.com/secure/

For Apache 2.0:
 <Directory /www/secure>
 SSLRequireSSL

</Directory>

Or, with mod_rewrite:
 RewriteEngine On
RewriteCond %{HTTPS} !=on

RewriteRule ^/(.*) https://%{SERVER_NAME}/$1 [R,L]
Discussion

It is perhaps best to think of your site's normal pages and its SSL-protected pages as being handled by two separate
servers, rather than one. While they may point to the same content, they run on different ports, are configured
differently, and, most importantly, the browser considers them to be completely separate servers. So you should too.

Don't think of enabling SSL for a particular directory; rather, you should think of it as redirecting requests for one
directory to another.

Note that the Redirect directive preserves path information, which means that if a request is made for
/secure/something.html, then the redirect will be to https://secure.domain.com/secure/something.html.

Be careful where you put this directive. Make sure that you only put it in the HTTP (non-SSL) virtual host
declaration. Putting it in the global section of the config file may cause looping, as the new URL will match the
Redirect requirement and get redirected itself.

Finally, note that if you want the entire site to be available only via SSL, you can accomplish this by simply redirecting
all URLs, rather than a particular directory:
 Redirect / https://secure.domain.com/

Again, be sure to put that inside the non-SSL virtual host declaration.

You will see various solutions proposed for this situation using RedirectMatch or various RewriteRule directives.
There are special cases where this is necessary, but in most cases, the simple solution offered here works just fine.

It it important to understand that this Redirect must appear only in the non-SSL virtual host, otherwise it will create a
condition where the Redirect will loop. This implies that you do in fact have the HTTP (non-SSL) site set up as a
virtual host. If you do not, you may need to set it up as one in order to make this recipe successful.

Thus, the entire setup might look something like this:
 NameVirtualHost *

<VirtualHost *>
 ServerName regular.example.com
 DocumentRoot /www/docs

 Redirect /secure/ https://secure.example.com/secure/
</VirtualHost>

<VirtualHost _default_:443>
 SSLEngine On
 SSLCertificateFile /www/conf/ssl/ssl.crt
 SSLCertificateKeyFile /www/conf/ssl/ssl.key

 ServerName secure.example.com
 DocumentRoot /www/docs

</VirtualHost>

This is, of course, an oversimplified example and is meant only to illustrate the fact that the Redirect must appear only
in the non-SSL virtualhost to avoid a redirection loop.

The other two solutions are perhaps more straightforward, although they each have a small additional requirement for
use.

The second recipe listed, using SSLRequireSSL, will work only if you are using Apache 2.0. It is a directive added
specifically to address this need. Placing the SSLRequireSSL directive in a particular <Directory> section will
ensure that non-SSL accesses to that directory are not permitted.

The third recipe, using RewriteCond and RewriteRule directives, requires that you have mod_rewrite installed and
enabled. Using the RewriteCond directive to check if the client is already using SSL, the RewriteRule is invoked
only if they are not; in which case, the request is redirected to a request for the same content but using HTTPS
instead of HTTP.

See Also

•

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
•

http://httpd.apache.org/docs/mod/mod_alias.html
•

http://httpd.apache.org/docs/mod/mod_rewrite.html

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Recipe 7.5 Authenticating with Client Certificates

Problem

You want to use client certificates to authenticate access to your site.

Solution

Add the following mod_ssl directives to your httpd.conf file:
 SSLVerifyClient require
SSLVerifyDepth 1

SSLCACertificateFile conf/ssl.crt/ca.crt
Discussion

If you happen to be lucky enough to have a small, closed user community, such as an intranet, or a web site for a
group of friends or family, it is possible to distribute client certificates so that each user can identify himself.

Create client certificates, signing them with your CA certificate file, and then specify the location of this CA certificate
file using the CACertificateFile directive, as shown above.

See Also

•

Recipe 7.2
•

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
[Team LiB]

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

[Team LiB]

Chapter 8. Dynamic Content

CGI programs are one of the simplest ways to provide dynamic content for your web site. They tend to be easy to
write, because you can write them in any language. Thus, you don't have to learn a new language to write CGI
programs.

Other dynamic content providers, such as PHP and mod_perl, also enjoy a great deal of popularity, because they
provide many of the same functions as CGI programs but typically execute faster.

Very few web sites can survive without some mechanism for providing dynamic content—content that is generated in
response to the needs of the user. The recipes in this chapter guide you through enabling various mechanisms for
producing this dynamic content and help you troubleshoot possible problems that may occur.

[Team LiB]

[Team LiB]

Recipe 8.1 Enabling a CGI Directory

Problem

You want to designate a directory that contains only CGI scripts.

Solution

Add the following to your httpd.conf file:
 ScriptAlias /cgi-bin/ /www/cgi-bin/
Discussion

A CGI directory will usually be designated and enabled in your default configuration file when you install Apache.
However, if you want to add additional directories where CGI programs are permitted, the ScriptAlias directive
does this for you. You may have as many ScriptAlias'ed directories as you want.

The one line previously introduced is equivalent to these directive lines:
 Alias /cgi-bin/ /www/cgi-bin/

<Location /cgi-bin/>
 Options ExecCGI
 SetHandler cgi-script

</Location>

Note that URLs that map to the directory in question via some other mechanism, such as
another Alias or a RewriteRule, will not benefit from the ScriptAlias setting, as this
mapping is by URL (<Location>), not by directory. As a result, accessing the scripts in this
directory through some other URL path may result in their code being displayed rather than
the script being executed.

See Also

•

Chapter 5
•

Recipe 8.2
•

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

Recipe 8.2 Enabling CGI Scripts in Non-ScriptAliased Directories

Problem

You want to put a CGI program in a directory that contains non-CGI documents.

Solution

Use AddHandler to map the CGI handler to the particular files that you want to be executed:
 <Directory "/foo">
 Options +ExecCGI
 AddHandler cgi-script .cgi .py .pl

</Directory>
Discussion

Enabling CGI execution via the ScriptAlias directive is preferred, for a number of reasons, over permitting CGI
execution in arbitrary document directories. The primary reason is security auditing. It is much easier to audit your
CGI programs if you know where they are, and storing them all in a single directory ensures that.

However, there are cases where it is desirable to have this functionality. For example, you may want to keep several
files together in one directory—some of them static documents, and some of them scripts—because they are part of
a single application.

Using the AddHandler directive maps certain file extensions to the cgi-script handler so they can be executed as
CGI programs. In the case of the aforementioned example, programs with a .cgi, .py, or .pl file extension will be
treated as CGI programs, while all other documents in the directory will be served up with their usual MIME type.

Note that the +ExecCGI argument is provided to the Options directive, rather than the ExecCGI argument—that is,
with the + sign rather than without. Using the + sign adds this option to any others already in place, whereas using the
option without the + sign will replace the existing list of options. You should use the argument without the + sign if you
intend to have only CGI programs in the directory, and with the + sign if you intend to also serve non-CGI
documents out of the same directory.

See Also

•

Recipe 8.1

[Team LiB]

[Team LiB]

Recipe 8.3 Using Windows File Extensionsto Launch CGI Programs

Problem

You want to have CGI programs on Windows executed by the program associated with the file extension. For
example, you want .pl files to be executed by perl.exe without having to change the #! line to point at the right
location.

Solution

Add the following line to your httpd.conf file:
 ScriptInterpreterSource registry
Discussion

Since Apache has its roots in the Unixish world, there are a number of things that are done the Unixish way, even on
Microsoft Windows. CGI execution is one of these things, but the ScriptInterpreterSource directive allows you to
have Apache behave more in the way that Windows users are accustomed to.

Usually, on Windows, a file type is indicated by the file extension. For example, a file named example.pl is
associated with the Perl executable; when a user clicks on this file in the file explorer, Perl is invoked to execute this
script. This association is created when you install a particular program, such as Perl or MS Word, and the
association is stored in the Windows registry.

On Unixish systems, on the other hand, most scripts contain the location of their interpreter in the first line of the file,
which starts with the characters #!. This line is often called the shebang line (short for sharp bang, which are the
shorthand names for the two characters).

For example, a Perl program might start with the line:
 #!/usr/bin/perl

The shell running the script looks in this first line and uses the program at the indicated path to interpret and execute
the script. In this way, files with arbitrary file extensions (or no extension at all) may be invoked with any interpreter
desired. In the case of Perl, for example, one might have several versions of Perl installed, and the particular version
desired may be invoked by using the appropriate #! line.

However, you may be accustomed to the operating system's innate way of executing a program, and this can be
somewhat nonintuitive. Thus, in the early days of Apache on Windows, the ScriptInterpreterSource directive was
added to make Apache behave the way that Windows users expected.

ScriptInterpreterSource may have one of two values. When set to the default value, script, Apache will look in the
script itself for the location of the interpreter that it is to use. When it is set to registry, it will look in the Windows
registry for the mapping that is associated with the file's extension and use this to execute the script.

This feature can be very useful for users who are running multiple servers, some on Unixish operating systems and
others on Windows, but who want the same CGI programs to run both places. Because Perl is unlikely to be located
at /usr/bin/perl on your Windows machine, using the ScriptInterpreterSource directive allows you to run the script
unedited on Windows, simply by virtue of it having a .pl file extension.

See Also

•

Recipe 8.2
•

Recipe 8.4

[Team LiB]

[Team LiB]

Recipe 8.4 Using Extensions to Identify CGI Scripts

Problem

You want Apache to know that all files with a particular extension should be treated as CGI scripts.

Solution

Add the following to your httpd.conf file in a scope covering the areas where it should apply, or in an .htaccess file
for the appropriate directory:
 AddHandler cgi-script .cgi
Discussion

The AddHandler directive shown in this solution tells Apache that any files that have a .cgi extension should be
treated as CGI scripts, and it should try to execute them rather than treat them as content to be sent.

The directive only affects files with that extension in the same scope as the directive itself. You may replace the
common .cgi extension with another, or even with a list of space-separated extensions.

Note the use of the term extension rather than suffix; a file named foo.cgi.en is treated as a CGI script unless a
handler with the .en extension overrides it.

See Also

•

Recipe 8.2

[Team LiB]

[Team LiB]

Recipe 8.5 Testing That CGI Is Set Up Correctly

Problem

You want to test that you have CGI enabled correctly. Alternatively, you are receiving an error message when you
try to run your CGI script and you want to ensure the problem doesn't lie in the web server before you try to find a
problem in the script.

Solution
 #! /usr/bin/perl
print "Content-type: text/plain\r\n\r\n";

print "It's working.\n";

And then, if things are still not working, look in the error log.

Discussion

Because Perl is likely to be installed on any Unixish system, this CGI program should be a pretty safe way to test that
CGI is configured correctly. In the event that you do not have Perl installed, an equivalent shell program may be
substituted:
 #! /bin/sh
echo Content-type: text/plain
echo

echo It\'s working.

And, if you are running Apache on Windows, so that neither of the above options works for you, you could also try
this with a batch file:
 echo off
echo Content-type: text/plain
echo.

echo It's working.

Make sure that you copy the program code exactly, with all the right punctuation, slashes, etc., so that you don't
introduce additional complexity by having to troubleshoot the program itself.

In either case, once the program is working, you should see something like the following screen capture (see Figure
8-1).

Figure 8-1. Your CGI program worked

The idea here is to start with the simplest possible CGI program to ensure that problems are not caused by other
complexities in your code. We want to ensure that CGI is configured properly, not to verify the correctness of a
particular CGI program.

There are a variety of reasons why a particular CGI program might not work. In very general terms, it can be in one
of three categories: misconfiguration of the web server, an error in the program itself, or incorrect permissions on the
files and directories in question.

Fortunately, when something goes wrong with one of your CGI programs, an entry is made in your error log.
Knowing where your error log is located is a prerequisite to solving any problem you have with your Apache server.
The error messages that go to the browser, while vaguely useful, tend to be catch-all messages and usually don't
contain any information specific to your actual problem.

Ideally, if you have followed the recipes earlier in this chapter, you will not be having configuration problems with
your CGI program, which leaves the other two categories of problems.

If your problem is one of permissions, you will see an entry in your logfile that looks something like the following:
 [Sun Dec 1 20:31:16 2002] [error] (13)Permission denied: exec of /usr/local/apache/
 cgi-bin/example1.cgi failed

The solution to this problem is to make sure that the script itself is executable:
 # chmod a+x /usr/local/apache/cgi-bin/example1.cgi

If the problem is an error in the program itself, then there are an infinite number of possible solutions, as there are an
infinite number of ways to make any given program fail. If the example program given above works correctly, you
can be fairly assured that the problem is with your program, rather than with some other environmental condition.

The error message Premature end of script headers, which you will see frequently in your career, means very little by
itself. You should always look for other error messages that augment this message. Any error in a CGI program will
tend to cause the program to emit warnings and error message prior to the correctly formed HTTP headers, which
will result in the server perceiving malformed headers, resulting in this message. The suexec wrapper can also confuse
matters if it's being used.

One particularly common error message, which can be rather hard to track down if you don't know what you're
looking for, is the following:
 [Sat Jul 19 21:39:47 2003] [error] (2)No such file or directory: exec of /usr/local/
 apache/cgi-bin/example.cgi failed

This error message almost always means one of two things: an incorrect path or a corrupted file.

In many cases, particularly if you have acquired the script from someone else, the #! line of the script may point to the
wrong location (such as #!/usr/local/bin/perl, when perl is instead located at /usr/bin/perl). This can be confirmed
by using the which command and comparing it to the #! line. For example, to find the correct location for Perl, you
would type:
 % which perl

The other scenario is that the file has been corrupted somehow so that the #! line is illegible. The most common cause
of this second condition is when a script file is transferred from a Windows machine to a Unixish machine, via FTP, in
binary mode rather than ASCII mode. This results in a file with the wrong type of end of line characters, so that
Apache is unable to read correctly the location of the script interpreter.

To fix this, you should run the following one-liner from the command line:
 % perl -pi.bak -le 's/\r//;' example.cgi

This will remove all of the Windows-style end-of-line characters, and your file will be executable.

See Also

•

"Debugging `premature end of script headers'"
•

Appendix B

[Team LiB]

[Team LiB]

Recipe 8.6 Reading Form Parameters

Problem

You want your CGI program to read values from forms for use in your program.

Solution

First, look at an example in Perl, which uses the popular CGI.pm module:
 #!/usr/bin/perl
use CGI;
use strict;
use warnings;

my $query = CGI->new;

Load the various form parameters
my $name = $form->param("name");

Multi-value select lists will return a list
my @foods = $form->param("favorite_foods");

Output useful stuff
print "Content-type: text/html\n\n";
print "Name: " . $form->{name} . "n";
print "Favorite foods: ";
foreach my $food (@foods) {
 print "$food";
}

print "\n";

Next, look at the same program in C, which uses the cgic C library:
 #include "cgic.h"
/* Boutell.com's cgic library */

int cgiMain() {
 char name[100];

 /* Send content type */
 cgiHeaderContentType("text/html");

 /* Load a particular variable */
 cgiFormStringNoNewlines("name", name, 100);
 fprintf(cgiOut, "Name: ");
 cgiHtmlEscape(name);

 return 0;

}

For this example, you will also need a Makefile, which looks something like this:
 CFLAGS=-g -Wall
CC=gcc
AR=ar
LIBS=-L./ -lcgic

libcgic.a: cgic.o cgic.h
 rm -f libcgic.a
 $(AR) rc libcgic.a cgic.o

example.cgi: example.o libcgic.a

 gcc example.o -o example.cgi ${LIBS}
Discussion

The exact solution to this will vary from one programming language to another, and so examples are given here in two
languages. Note that each of these examples uses an external library to do the actual parsing of the form content. This
is important, because it is easy to parse forms incorrectly. By using one of these libraries, you ensure that all of the
form-encoded characters are correctly converted to usable values, and then there's the simple matter of code
readability and simplicity. It's almost always better to utilize an existing library than to reimplement functionality
yourself.

The Perl example uses Lincoln Stein's CGI.pm module, which is a standard part of the Perl distribution and will be
installed if you have Perl installed. The library is loaded using the use keyword and is used via the object-oriented
(OO) interface.

The param function returns the value of a given form field. When called with no arguments, params() returns a list of
the form field names. When called with the name of a multivalue select form field, it will return a list of the selected
values. This is illustrated in the example for a field named favorite_foods.

The example in C uses the cgic C library, which is available from http://boutell.com/. You will need to acquire this
library and install it in order to compile the aforementioned code. The Makefile provided is to assist in building the
source code into a binary file that you can run. Type make example.cgi to start the compile. Note that if you are
doing this on Windows, you will probably want to replace .cgi with .exe in the example Makefile.

In either case, an HTML form pointed at this CGI program, containing a form field named name, will result in the
value typed in that field being displayed in the browser. The necessary HTML to test these programs is as follows:
 <html><head>
 <title>Example CGI</title>
</head>

<body>

 Form:

 <form action="/cgi-bin/example.cgi" method="POST">
 Name: <input name="name">

 <input type="submit">
 </form>

</body>

</html>

The examples given in this recipe each use CGI libraries, or modules, for the actual functionality of parsing the HTML
form contents. While many CGI tutorials on the Web show you how to do the form parsing yourself, we don't
recommend it. One of the great virtues of a programmer is laziness, and using modules, rather than reinventing the
wheel, is one of the most important manifestations of laziness. And it makes good sense, too, since these modules
tend to get it right. It's very easy to parse form contents incorrectly, winding up with data that has been translated
from the form encoding incompletely or just plain wrong. These modules have been developed over a number of
years, extensively tested, and are much more likely to handle the various cases that you have not thought about.

Additionally, modules handle file uploads, multiple select lists, reading and setting cookies, returning correctly
formatted error messages to the browser, and a variety of other functions that you might overlook if you were to
attempt to do this yourself. Furthermore, in the spirit of good programming technique, reusing existing code saves you
time and tends to prevent errors.

See Also

•

http://search.cpan.org/author/LDS/CGI.pm/CGI.pm
•

http://www.boutell.com/cgic/

http://boutell.com/default.htm
http://search.cpan.org/author/LDS/CGI.pm/CGI.pm
http://www.boutell.com/cgic/default.htm
http://boutell.com/
http://search.cpan.org/author/LDS/CGI.pm/CGI.pm
http://www.boutell.com/cgic/

[Team LiB]

[Team LiB]

Recipe 8.7 Invoking a CGI Program for Certain Content Types

Problem

You want to invoke a CGI program to act as a sort of content filter for certain document types. For example, a
photographer may wish to create a custom handler to add a watermark to photographs served from his web site.

Solution

Use the Action directive to create a custom handler, which will be implemented by a CGI program. Then use the
AddHandler directive to associate a particular file extension with this handler:
 Action watermark /cgi-bin/watermark.cgi
AddHandler watermark .gif .jpg
Discussion

This recipe creates a watermark handler that is called whenever a .gif or .jpg file is requested.

A CGI program, watermark.cgi, takes the image file as input and attaches the watermark image on top of the
photograph. The path to the image file that was originally requested in the URL is available in the
PATH_TRANSLATED environment variable, and the program needs to load that file, make the necessary
modifications, and send the resulting content to the client, along with the appropriate HTTP headers.

Note that there is no way to circumvent this measure, as the CGI program will be called for any .gif or .jpg file that is
requested.

This same technique may be used to attach a header or footer to HTML pages in an automatic way, without having
to add any kind of SSI directive to the files. This can be extremely inefficient, as it requires that a CGI program be
launched, which can be a very slow process. It is, however, connstructive to see how it is done. What follows is a
very simple implementation of such a footer script:
 #! /usr/bin/perl

print "Content-type: text/html\r\n\r\n";

my $file = $ENV{PATH_TRANSLATED};

open FILE, "$file";
print while <FILE>;
close FILE;
print qq~

<p>
FOOTER GOES HERE

~;

The requested file, located at PATH_TRANSLATED, is read in and printed out, unmodified. Then, at the end of it,
a few additional lines of footer are output. A similar technique might be used to filter the contents of the page itself.
With Apache 2.0, this may be better accomplished with mod_ext_filter.

See Also

•

Recipe 8.10
•

Recipe 10.7

[Team LiB]

[Team LiB]

Recipe 8.8 Getting SSIs to Work

Problem

You want to enable Server-Side Includes (SSIs) to make your HTML documents more dynamic.

Solution

There are at least two different ways of doing this.

Specify which files are to be parsed by using a filename extension such as .shtml. For Apache 1.3, add the following
directives to your httpd.conf in the appropriate scope:
 <Directory /www/html/example>
 Options +Includes
 AddHandler server-parsed .shtml
 AddType "text/html; charset=ISO-8859-1" .shtml

</Directory>

Or, for Apache 2.0:
 <Directory /www/html/example>
 Options +Includes
 AddType text/html .shtml
 AddFilter INCLUDES .shtml

</Directory>

Add the XBitHack directive to the appropriate scope in your httpd.conf file and allow the file permissions to indicate
which files are to be parsed for SSI directives:
 XBitHack On
Discussion

SSIs provide a way to add dynamic content to an HTML page via a variety of simple tags. This functionality is
implemented by the mod_include module, which is documented at
http://httpd.apache.org/docs/mod/mod_include.html. There is also a howto-style document available at
http://httpd.apache.org/docs/howto/ssi.html.

The first solution provided here tells Apache to parse all .shtml files for SSI directives. So, to test that the solution
has been effective, create a file called something.shtml, and put the following line in it:
 File last modified at '<!--#echo "LAST_MODIFIED" -->'.

Note the space between the last argument and the closing "-->". This space is surprisingly
important; many SSI failures can be traced to its omission.

Accessing this document via your server should result in the page displaying the date and time when you modified (or
created) the file.

If you wish to enable SSIs, but do not wish to permit execution of CGI scripts, or other commands using the #exec
or the #include virtual SSI directives, substitute IncludesNoExec for Includes in the Options directive in the
solution.

Some webmasters like to enable SSI parsing for all HTML content on their sites by specifying .html instead of .shtml
in the AddType, AddHandler, and AddFilter directives.

If, for some reason, you do not wish to rename documents to .shtml files, merely because you want to add dynamic
content to those files, XBitHack gives you a way around this. Of course, you could enable SSI parsing for all .html
files, but this would probably result in a lot of files being parsed for no reason, which can cause a performance hit.

The XBitHack directive tells Apache to parse files for SSI directives if they have the execute bit set on them. So,
when you have this directive set to On for a particular directory or virtual host, you merely need to set the execute bit
on those files that contain SSI directives. This way, you can add SSI directives to existing documents without
changing their names, which could potentially break links from other pages, sites, or search engines.

The simplest way of setting (or clearing) the execute permission bit of a file is:
 # chmod a+x foo.html # turns it on
chmod a-x foo.html # turns it off

The XBitHack method only works on those platforms that support the concept of execute access to files; this
includes Unixish systems but does not include Windows.

See Also

•

Recipe 8.11
•

Recipe 8.10

http://httpd.apache.org/docs/mod/mod_include.html
http://httpd.apache.org/docs/howto/ssi.html
http://httpd.apache.org/docs/mod/mod_include.html
http://httpd.apache.org/docs/howto/ssi.html

[Team LiB]

[Team LiB]

Recipe 8.9 Displaying Last Modified Date

Problem

You want your web page to indicate when it was last modified but not have to update the date every time.

Solution

Use SSI processing by putting a line in the HTML file for which you want the information displayed:
 <--#config timefmt="%B %e, %Y" -->
This document was last modified on <!--#echo var="LAST_MODIFIED" -->
Discussion

The config SSI directive allows you to configure a few settings governing SSI output formats. In this case, we're
using it to configure the format in which date/time information is output. The default format for date output is
04-Dec-2037 19:58:15 EST which is not the most user-friendly message. The recipe provided changes this to the
slightly more readable format December 4, 2002. If you want another output format, the timefmt attribute can take
any argument accepted by the C strftime(3) function.

See Also

•

Recipe 8.8
•

The strftime(3) documentation

[Team LiB]

[Team LiB]

Recipe 8.10 Including a Standard Header

Problem

You want to include a header (or footer) in each of your HTML documents.

Solution

Use SSI by inserting a line in all your parsed files:
 <--#include virtual="/include/headers.html" -->
Discussion

By using the SSI include directive, you can have a single header file that can be used throughout your web site.
When your header needs to be modified, you can make this change in one place and have it go into effect
immediately across your whole site.

The argument to the virtual attribute is a local URI and subject to all normal Alias, ScriptAlias, RewriteRule, and
other commands, which means that:
 <--#include virtual="/index.html" -->

will include the file from your DocumentRoot, and:
 <--#include virtual="/cgi-bin/foo" -->

will include the output from the foo script in your server's ScriptAlias directory.

If the argument doesn't begin with a / character, it's treated as being relative to the location of the document using the
#include directive.

Be aware that URIs passed to #include virtual may not begin with ../, nor may they refer
to full URLs such as http://example.com/foo.html. Documents included using relative syntax
(i.e., those not beginning with /) may only be in the same location as the including file, or in
some sublocation underneath it. Server processing of the URI may result in the actual
included document being located somewhere else, but the restrictions on the #include
virtual SSI command syntax permit only same-location or descendent-location URIs.

See Also

•

Recipe 8.7
•

Recipe 8.8

http://example.com/foo.html.

[Team LiB]

[Team LiB]

Recipe 8.11 Including the Output of a CGI Program

Problem

You want to have the output of a CGI program appear within the body of an existing HTML document.

Solution

Use SSIs by adding a line such as the following to the document (which must be enabled for SSI parsing):
 <--#include virtual="/cgi-bin/content.cgi" -->
Discussion

The SSI #include directive, in addition to being able to include a plain file, can also include other dynamic content,
such as CGI programs, other SSI documents, or content generated by any other method.

The #exec SSI directive may also be used to produce this effect, but for a variety of historical and security-related
reasons, its use is deprecated. The #include directive is the preferred way to produce this effect.

Note that Options IncludeNoExec, in addition to disabling the #exec SSI directive, also forbids the inclusion of CGI
programs using the #include virtual syntax. Thus, this method cannot be used to circumvent the restriction.

See Also

•

Recipe 8.8

[Team LiB]

[Team LiB]

Recipe 8.12 Running CGI Scripts as a Different User with suexec

Problem

You want to have CGI programs executed by some user other than nobody. For example, you may have a database
that is not accessible to anyone except a particular user, so the server needs to temporarily assume that user's identity
to access it.

Solution

When building Apache, enable suexec by passing the —enable-suexec argument to configure.

Then, in a virtual host section, specify which user and group you'd like to use to run CGI programs:
 User rbowen
Group users

Also, suexec will be invoked for any CGI programs run out of username-type URLs for the affected virtual host.

Discussion

The suexec wrapper is a suid (runs as the user ID of the user that owns the file) program that allows you to run CGI
programs as any user you specify, rather than as the nobody user which Apache runs as. suexec is a standard part of
Apache and is enabled by default.

The suexec concept does not fit well into the Windows environment, and so suexec is not
available under Windows.

When suexec is installed, there are two different ways that it can be invoked, as shown in the Solution.

A User and Group directive may be specified in a VirtualHost container, and all CGI programs executed within the
context of that virtual host are executed as that user and group. Note that this only applies to CGI programs.
Documents are still accessed as the user and group specified in the User and Group directives in the main server
configuration, not those in the virtual host, and need to be readable by that user and group.

Second, any CGI program run out of a UserDir directory is run with the permissions of the owner of that directory.
That is, if a CGI program is accessed via the URL http://example.com/~rbowen/cgi-bin/test.cgi, then that program
will be executed, via suexec, with a userid of rbowen, and a groupid of rbowen's primary group.

If UserDir points to a nonstandard location, you must tell suexec about this when you
build it. In a default configuration, suexec is invoked when CGI programs are invoked in a
directory such as /home/username/public_html/ for some username. If, however, you
move the UserDir directory somewhere else, such as, for example, /home/username
/www/, then you could configure suexec to be invoked in that directory instead, using the
following argument when you build Apache 1.3:
 --suexec-userdir=www

And, for Apache 2.0, you would specify the following:
 --with-suexec-userdir=www

Running CGI programs via suexec eliminates some of the security concerns surrounding CGI programs. By default,
CGI programs run with the permissions of the user and group specified in the User and Group directives, meaning
that they have rather limited ability to do any damage. However, it also means that CGI programs on one part of your
web server run with all the same permissions as those on another part of your server, and any files that are created or
modified by one will be modifiable by another.

By running a CGI program under suexec, you allow each user to exercise a little more control over her own file
permissions, and in the event that a malicious CGI program is written, it can only damage the files owned by the user
in question, rather than having free rein over the entire web server.

In Apache 2.0, the perchild MPM may largely do away with the need for suexec, but, as of this writing, perchild
does not work correctly.

PHP scripts that are run as CGI programs, rather than under the mod_php handler, may be run as suexec processes
in the same way as any other CGI program.

See Also

•

User directive at http://httpd.apache.org/docs/mod/core.html#user or
http://httpd.apache.org/docs-2.0/mod/core.html#user

•

Group directive at http://httpd.apache.org/docs/mod/core.html#group or
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group

•

The suexec documentation at http://httpd.apache.org/docs/programs/suexec.html or
http://httpd.apache.org/docs-2.0/programs/suexec.html

http://httpd.apache.org/docs/mod/core.html#user
http://httpd.apache.org/docs-2.0/mod/core.html#user
http://httpd.apache.org/docs/mod/core.html#group
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group
http://httpd.apache.org/docs/programs/suexec.html
http://httpd.apache.org/docs-2.0/programs/suexec.html
http://example.com/~rbowen/cgi-bin/test.cgi,
http://httpd.apache.org/docs/mod/core.html#user
http://httpd.apache.org/docs-2.0/mod/core.html#user
http://httpd.apache.org/docs/mod/core.html#group
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group
http://httpd.apache.org/docs/programs/suexec.html
http://httpd.apache.org/docs-2.0/programs/suexec.html

[Team LiB]

[Team LiB]

Recipe 8.13 Installing a mod_perl Handler from CPAN

Problem

You want to install one of the many mod_perl handler modules available on CPAN. For example, you want to install
the Apache::Perldoc module, which generates HTML documentation for any Perl module you happen to have
installed.

Solution

Assuming you already have mod_perl installed, you'll just need to install the module from CPAN, and then add a few
lines to your Apache configuration file.

To install the module, run the following command from the shell as root:
 # perl -MCPAN -e 'install Apache::Perldoc'

Then, in your Apache configuration file, add:
 <Location /perldoc>
 SetHandler perl-script
 PerlHandler Apache::Perldoc

</Location>

After restarting Apache, you can access the handler by going to a URL such as
http://example.com/perldoc/Apache/Perldoc.

Discussion

The CPAN shell, which is installed when Perl is installed, gives you an easy way to install Perl modules from CPAN.
CPAN, if you're not familiar with it, is the Comprehensive Perl Archive Network, at http://cpan.org, a comprehensive
archive of Perl stuff, including Perl modules for every purpose you can imagine and several you can't. This includes a
substantial number of mod_perl handlers.

The module specified in this recipe is a very simple one that gives you HTML documentation for any Perl module you
have installed, accessible via your Apache server. Other ones provide photo albums, weblog handlers, and DNS
zone management, among other things.

The first time you run the CPAN shell, you will need to answer a series of questions about your configuration, what
CPAN server you want to get modules from, where it should find your FTP clients, and so on. This only happens
once, then it just works.

The specific way that you need to configure Apache to use your newly-installed module will vary from one module to
another, but many of them will look like the example given. The SetHandler perl-script directive tells Apache that
the content will be handled by mod_perl, while the PerlHandler directive specifies what Perl module contains the
actual handler code.

See Also

•

http://cpan.org/
•

http://search.cpan.org/author/RBOW/Apache-Perldoc/
•

http://apachegallery.dk/
•

http://dnszone.org/

http://cpan.org/default.htm
http://cpan.org/default.htm
http://search.cpan.org/author/RBOW/Apache-Perldoc/default.htm
http://apachegallery.dk/default.htm
http://dnszone.org/default.htm
http://example.com/perldoc/Apache/Perldoc.
http://cpan.org
http://cpan.org/
http://search.cpan.org/author/RBOW/Apache-Perldoc/
http://apachegallery.dk/
http://dnszone.org/

[Team LiB]

[Team LiB]

Recipe 8.14 Writing a mod_perl Handler

Problem

You want to write your own mod_perl handler.

Solution

Here's a simple handler:
 package Apache::Cookbook::Example;

sub handler {
 my $r = shift;
 $r->send_http_header('text/plain');
 $r->print("Hello, World.");
}

1;

Place this code in a file called Example.pm, in a directory Apache/Cookbook/, somewhere that Perl knows to look
for it.

Discussion

The example handler given is fairly trivial and does not do anything useful. More useful examples may be obtained
from the mod_perl web site (http://perl.apache.org/) and from Geoffrey Young's (et al.) excellent book mod_perl
Developer's Cookbook. Also, although it is somewhat dated, the "Eagle book" (Writing Apache modules with Perl
and C) by Lincoln Stein and Doug MacEachern (O'Reilly) is an excellent introduction to mod_perl and the Apache
API.

The real question here, however, is how and where you should install the file that you've created. There are two
answers to this question, and which one you choose will be largely personal preference.

When Perl looks for a module, it looks through the list called @INC for directories where that module might be. You
can either put your module in one of those directories, or you can add a directory to the list.

To find out where Perl is looking, you can examine the values stored in @INC with the following:
 perl -le 'print join "\n", @INC;'

This will give you a listing that will look something like:
 /usr/local/lib/perl5/5.8.0/i686-linux
/usr/local/lib/perl5/5.8.0
/usr/local/lib/perl5/site_perl/5.8.0/i686-linux
/usr/local/lib/perl5/site_perl/5.8.0
/usr/local/lib/perl5/site_perl

.

This will of course vary from one system to another, from one version of Perl to another, but will bear some
resemblance to that listing.

To install a module called Apache::Cookbook::Example, you might put the file Example.pm at the location
/usr/local/lib/perl5/site_perl/5.8.0/Apache/Cookbook/Example.pm.

Alternately, you can tell Perl to look in some other directory by adding a value to the @INC list. The best way to do
this is to add the following to your startup.pl file:
 use lib '/home/rbowen/perl_libs/';

startup.pl should then be loaded by Apache at startup, using the directive:
 PerlRequire /path/to/startup.pl

This tells Perl to also look in that directory for Perl modules. This time, if your module is called
Apache::Cookbook::Example, you would now place it at the location
/home/rbowen/perl_libs/Apache/Cookbook/Example.pm

See Also

•

mod_perl Developer's Cookbook by Geoffrey Young, et al, at http://modperlcookbook.org/.

http://perl.apache.org/default.htm
http://modperlcookbook.org/default.htm
http://perl.apache.org/
http://modperlcookbook.org

[Team LiB]

[Team LiB]

Recipe 8.15 Enabling PHP Script Handling

Problem

You want to enable PHP scripts on your server.

Solution

If you have mod_php installed, use AddHandler to map .php and .phtml files to the PHP handler:
 AddHandler application/x-httpd-php .phtml .php
Discussion

This recipe maps all files with .phtml or .php to the PHP handler. You must ensure that the mod_php module is
installed.

See Also

•

Recipe 2.5
•

Installation instructions on the mod_php web site at http://www.php.net/manual/en/install.apache.php for
Apache 1.3 or http://www.php.net/manual/en/install.apache2.php for Apache 2.0

[Team LiB]

http://www.php.net/manual/en/install.apache.php
http://www.php.net/manual/en/install.apache2.php
http://www.php.net/manual/en/install.apache.php
http://www.php.net/manual/en/install.apache2.php

[Team LiB]

Recipe 8.16 Verifying PHP Installation

Problem

You want to verify that you have PHP correctly installed and configured.

Solution

Put the following in your test PHP file:
 <?php phpinfo(); ?>
Discussion

Place the above text in a file called something.php in a directory where you believe you have enabled PHP script
execution. Accessing that file should give you a list of all configured PHP system variables. The first screen of the
output should look something like Figure 8-2.

Figure 8-2. Sample phpinfo() output

See Also

•

Recipe 8.15

[Team LiB]

[Team LiB]

Chapter 9. Error Handling

When you're running a web site, things go wrong. And when they do, it's important that they are handled gracefully,
so that the user experience is not too greatly diminished. In this chapter, you'll learn how to handle error conditions,
return useful messages to the user, and capture information that will help you fix the problem so that it does not
happen again.

[Team LiB]

[Team LiB]

Recipe 9.1 Handling a Missing Host Field

Problem

You have multiple virtual hosts in your configuration, and at least one of them is name-based. For name-based virtual
hosts to work properly, the client must send a valid Host field in the request header. This recipe describes how you
can deal with situations in which the field is not included.

Solution

Add the following lines to your httpd.conf file:
 Alias /NoHost.cgi /usr/local/apache/cgi-bin/NoHost.cgi
RewriteEngine On
RewriteCond "%{HTTP_HOST}" "^$"

RewriteRule "(.*)" "/NoHost.cgi$1" [PT]

The file NoHost.cgi can contain something like the following:
 #! /usr/bin/perl -Tw

my $msg = "To properly direct your request, this server requires that\n"
 . "your Web client include the HTTP 'Host' request header field.\n"
 . "The request which caused this response did not include such\n"
 . "a field, so we cannot determine the correct document for you.\n";
print "Status: 400 Bad Request\r\n\"
 . "Content-type: text/plain\r\n\"
 . 'Content-length: ' . length($msg) . "\r\n\"
 . "\r\n\"
 . $msg;

exit(0);
Discussion

Once the directives in the solution are in place, all requests made of the server that do not include a Host: field in the
request header are redirected to the specified CGI script, which can take appropriate action.

The solution uses a CGI script so that the response text can be tailored according to the attributes of the request and
the server's environment. For instance, the script might respond with a list of links to valid sites on the server,
determined by the script at runtime by examining the server's own configuration files. If all you need is a "please try
again, this time with a Host: field" sort of message, a static HTML file would suffice:
 RewriteRule .* /nohost.html [PT]

A more advanced version of the script approach could possibly scan the httpd.conf file for ServerName directives,
construct a list of possibilities from them, and present links in a 300 Multiple Choices response. Of course, there's an
excellent chance they wouldn't work, because the client would still not be including the Host: field.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Recipe 9.2 Changing the Response Status for CGI Scripts

Problem

There may be times when you want to change the status for a response—for example, you want 404 Not Found
errors to be sent back to the client as 403 Forbidden instead.

Solution

Point your ErrorDocument to a CGI script instead of a static file. The CGI specification permits scripts to specify
the response status code.

In addition to the other header fields the script emits, like the Content-type: field, include one named Status: with the
value and text of the status you want to return:
 #! /bin/perl -w
print "Content-type: text/html;charset=iso-8859-1\r\n";
print "Status: 403 Access denied\r\n";

 :
Discussion

If Apache encounters an error processing a document, such as not being able to locate a file, by default it will return a
canned error response to the client. You can customize this error response with the ErrorDocument directive, and
Apache will generally maintain the error status when it sends your custom error text to the client.

However, if you want to change the status to something else, such as hiding the fact that a file doesn't exist by
returning a Forbidden status, you need to tell Apache about the change.

This requires that the ErrorDocument be a dynamic page, such as a CGI script. The CGI specification provides a
very simple means of specifying the status code for a response: the Status: CGI header field. The Solution shows how
it can be used.

See Also

•

Chapter 8
•

http://httpd.apache.org/docs/mod/core.html#errordocument
•

http://CGI-Spec.Golux.Com/

http://httpd.apache.org/docs/mod/core.html#errordocument
http://cgi-spec.golux.com/default.htm
http://httpd.apache.org/docs/mod/core.html#errordocument
http://CGI-Spec.Golux.Com/

[Team LiB]

[Team LiB]

Recipe 9.3 Customized Error Messages

Problem

You want to display a customized error message, rather than the default Apache error page.

Solution

Use the ErrorDocument directive in httpd.conf:
 ErrorDocument 405 /errors/notallowed.html
Discussion

The ErrorDocument directive allows you to create your own error pages to be displayed when particular error
conditions occur. In the previous example, in the event of a 405 status code (Method Not Allowed), the specified
URL is displayed for the user, rather than the default Apache error page.

The page can be customized to look like the rest of your web site. When an error document looks significantly
different from the rest of the site, this can leave the user feeling disoriented, or she may feel as if she has left the site
that she is currently on.

See Also

•

http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

Recipe 9.4 Providing Error Documents in Multiple Languages

Problem

On a multilingual (content negotiated) web site, you want your error documents to be content negotiated as well.

Solution

The Apache 2.0 default configuration file contains a configuration section, initially commented out, that allows you to
provide error documents in multiple languages customized to the look of your web site, with very little additional
work.

Uncomment those lines. You can identify the lines by looking for the following comment in your default configuration
file:
 # The internationalized error documents require mod_alias, mod_include
and mod_negotiation. To activate them, uncomment the following 30 lines.

In Apache 1.3 this is harder, but there's a solution in the works, as of this writing, that will make it similar to the 2.0
implementation. Check the Apache Cookbook web site for more information.

Discussion

The custom error documents provided with Apache 2.0 combine a variety of techniques to provide internationalized
error messages. As of this writing, these error messages are available in German, English, Spanish, French, Dutch,
Swedish, Italian and Portuguese. Based on the language preference set in the client browser, the error message is
delivered in the preferred language of the end-user.

Using content negotiation, the correct variant of the document (i.e., the right language) is selected for the user, based
on their browser preference settings. For more information about content negotiation, see the content negotiation
documentation at http://httpd.apache.org/docs-2.0/content-negotiation.html (for Apache 2.0) or
http://httpd.apache.org/docs/content-negotiation.html (for Apache 1.3).

In addition to delivering the error message in the correct language, this functionality also lets you customize the look
of these error pages so that they resemble the rest of your web site. To facilitate this, the files top.html and
bottom.html, located in the include subdirectory of the error directory, should be modified to look like the standard
header and footer content that appears on your web site. The body of the error message documents is placed
between the header and the footer to create a page that is less jarring to users when they transition from your main
site to the error pages that are generated.

You will also note that the error documents themselves contain SSI directives, which are used to further customize
the error documents for the user. For example, in the case of the 404 (file not found) error document, the page will
provide a link back to the page that the user came from, if the environment variable HTTP_REFERER is defined,
and if that variable is not found, the page will merely notify the user that the URL was not found. Other SSI directives
may be put in these documents, if you wish, to further customize them.

See Also

•

http://httpd.apache.org/docs/content-negotiation.html
•

http://httpd.apache.org/docs-2.0/content-negotiation.html
•

http://Apache-Cookbook.Com/

http://httpd.apache.org/docs-2.0/content-negotiation.html
http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://apache-cookbook.com/default.htm
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://Apache-Cookbook.Com/

[Team LiB]

[Team LiB]

Recipe 9.5 Redirecting Invalid URLs to Some Other Page

Problem

You want all "not found" pages to go to some other page instead, such as the front page of the site, so that there is no
loss of continuity on bad URLs.

Solution

Use the ErrorDocument to catch 404 (Not Found) errors:
 ErrorDocument 404 /index.html
DirectoryIndex index.html /path/to/notfound.html
Discussion

The recipe given here will cause all 404 errors—every time someone requests an invalid URL—to return the URL
/index.html, providing the user with the front page of your web site, so that even invalid URLs still get valid content.
Presumably, users accessing an invalid URL on your web site will get a page that helps them find the information that
they were looking for.

On the other hand, this behavior may confuse the user who believes she knows exactly where the URL should take
her. Make sure that the page that you provide as the global error document does in fact help people find things on
your site, and does not merely confuse or disorient them. You may, as shown in the example, return them to the front
page of the site. From there they should be able to find what they were looking for.

When users get good content from bad URLs, they will never fix their bookmarks and will continue to use a bogus
URL long after it has become invalid. You will continue to get 404 errors in your log file for these URLs, and the user
will never be aware that they are using an invalid URL. If, on the other hand, you actually return an error document,
they will immediately be aware that the URL they are using is invalid and will update their bookmarks to the new
URL when they find it.

Note that, even though a valid document is being returned, a status code of 404 is still returned to the client. This
means that if you are using some variety of tool to validate the links on your web site, you will still get good results, if
the tool is checking the status code, rather than looking for error messages in the content.

See Also

•

http://httpd.apache.org/docs/mod/core.html#errordocument
•

http://httpd.apache.org/docs/mod/mod_dir.html

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

[Team LiB]

Recipe 9.6 Making Internet Explorer Display Your Error Page

Problem

You have an ErrorDocument correctly configured, but IE is displaying its own error page, rather than yours.

Solution

Make the error document bigger—at least 512 bytes.

Discussion

Yes, this seems a little bizarre, and it is. In this case, Internet Explorer thinks it knows better than the web site
administrator. If the error document is smaller than 512 bytes, it will display its internal error message page, rather
than your custom error page, whenever it receives a 400 or 500 series status code. This size is actually configurable
in the browser, so this number may in fact vary from one client to another. "Friendly error messages" can also be
turned off entirely in the browser preferences.

This can be extremely frustrating the first time you see it happen, because you just know you have it configured
correctly and it seems to work in your other browsers. Furthermore, when some helpful person tells you that your
error document just needs to be a little larger, it's natural to think that he is playing a little prank on you, because this
seems a little too far-fetched.

But it's true. Make the page bigger. It needs to be at least 512 bytes, or IE will ignore it and gleefully display its own
"friendly" error message instead.

Exactly what you fill this space with is unimportant. You can, for example, just bulk it up with comments. For
example, repeating the following comment 6 times would be sufficient to push you over that minimum file size:
 <!-- message-obscuring clients are an abomination
 and an insult to the user's intelligence -->
See Also

•

http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

Recipe 9.7 Notification on Error Conditions

Problem

You want to receive email notification when there's an error condition on your server.

Solution

Point the ErrorDocument directive to a CGI program that sends mail, rather than to a static document:
 ErrorDocument 404 /cgi-bin/404.cgi

404.cgi looks like the following:
 #!/usr/bin/perl
use Mail::Sendmail;
use strict;

my $message = qq~
Document not found: $ENV{REQUEST_URI}
Link was from: $ENV{HTTP_REFERER}
~;

my %mail = (
 To => 'admin@server.com',
 From => 'website@server.com',
 Subject => 'Broken link',
 Message => $message,
);
sendmail(%mail);

print "Content-type: text/plain\n\n";

print "Document not found. Admin has been notified";
Discussion

This recipe is provided as an example, rather than as a recommendation. On a web site of any significant size or
traffic level, actually putting this into practice generates a substantial quantity of email, even on a site that is very well
maintained. This is because people mistype URLs, and other sites, over which you have no control, will contain
incorrect links to your site. It may be educational, however, to put something like this in place, at least briefly, to gain
an appreciation for the scale of your own web site.

The ErrorDocument directive will cause all 404 (Document Not Found) requests to be handled by the specified
URL, and so your CGI program gets run and is passed environment variables that will be used in the script itself to
figure out what link is bad and where the request came from.

The script used the Mail::Sendmail Perl module to deliver the email message, and this module should work fine on
any operating system. The module is not a standard part of Perl, so you may have to install it from CPAN (
http://www.cpan.org/). A similar effect can, of course, also be achieved in PHP or any other programming language.

The last two lines of the program display a very terse page for the user, telling him that there was an error condition.
You may wish, instead, to have the script redirect the user to some more informative and attractive page elsewhere
on your web site. This could be accomplished by replacing those last two lines with something like the following:
 print "Location: http://server.name/errorpage.html\n\n";

This would send a redirect header to the client, which would display the specified URL to the user.

See Also

•

http://httpd.apache.org/docs/mod/core.html#errordocument

http://www.cpan.org/default.htm
http://httpd.apache.org/docs/mod/core.html#errordocument
http://www.cpan.org/
http://server.name/errorpage.html\n\n";
http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

[Team LiB]

Chapter 10. Proxies

Proxy means to act on behalf of another. In the context of a web server, this means one server fetching content from
another server, then returning it to the client. For example, you may have several web servers that hide behind a
proxy server. The proxy server is responsible for having requests end up going to the right backend server.

mod_proxy, which comes with Apache, handles proxying behavior. The recipes in this chapter cover various
techniques that can be used to take advantage of this capability. We discuss securing your proxy server, caching
content proxied through your server, and ways to use mod_proxy to map requests to services running on alternate
ports.

Additional information about mod_proxy can be found at http://httpd.apache.org/docs/mod/mod_proxy.html for
Apache 1.3, or http://httpd.apache.org/docs-2.0/mod/mod_proxy.html for Apache 2.0.

Please make sure you don't enable proxying until you understand the security concerns involved and have taken steps
to secure your proxy server. (See Recipe 6.20 for details.)

You may also wish to consider a dedicated proxy server, such as Squid (http://www.squid-cache.org/), which is
focused entirely on one task, and thus has more options related to this task.

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://www.squid-cache.org/default.htm
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://www.squid-cache.org/

[Team LiB]

Recipe 10.1 Securing Your Proxy Server

Problem

You want to enable proxying, but you don't want an open proxy that can be used by just anyone at all.

Solution

For Apache 1.3:
 <Directory proxy:*>
 Order deny,allow
 Deny from all
 Allow from .yourdomain.com

</Directory>

For Apache 2.0:
 <Proxy *>
 Order Deny,Allow
 Deny from all
 Allow from .yourdomain.com

</Proxy>
Discussion

Running an open proxy is a concern because it permits users from the Internet to use your proxy server to cover their
tracks as they visit web sites. This can be a problem for a variety of reasons. The user is effectively stealing your
bandwidth and is certainly part of the problem. However, perhaps more concerning is the fact that you are probably
enabling people to circumvent restrictions that have been put in place by their network administrators, or perhaps you
are providing users with anonymity while they visit a web site, and as a consequence, these visits appear to come
from your network.

In these recipes, .yourdomain.com should be replaced by the name of your particular domain, or, better yet, the
network address(es) that are on your network. (IP addresses are harder to fake than host and domain names.) For
example, you might use, rather than the line appearing in the recipe, a line such as:
 Allow from 192.168.1

Note that every request for resources that goes through your proxy server generates a logfile entry, containing the
address of the client and the resource that they requested through your proxy server. For example, one such request
might look like:
 192.168.1.5 - - [26/Feb/2003:21:26:13 -0500] "GET http://httpd.apache.org/docs/mod/
 mod_proxy.html HTTP/1.1" 200 49890

Your users, if made aware of this fact, will no doubt find it invasive, because this will show all HTTP traffic through
the proxy server.

It is possible to configure your server not to log these requests. The technique for doing this is to set an environment
variable for proxied requests:
 <Directory proxy:*>
 SetEnv PROXIED 1

</Directory>

Then, in your log directive, specify that these requests are not to be logged:
 CustomLog /www/logs/access_log common env=!PROXIED
See Also

•

http://httpd.apache.org/docs/mod/mod_proxy.html
•

http://httpd.apache.org/docs/mod/mod_log_config.html

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs/mod/
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_log_config.html

[Team LiB]

[Team LiB]

Recipe 10.2 Preventing Your Proxy Server from Being Used as an
Open Mail Relay

Problem

If your Apache server is set up to operate as a proxy, it is possible for it to be used as a mail relay unless precautions
are taken. This means that your system may be functioning as an "open relay" even though your mail server software
is actually securely configured.

Solution

Use mod_rewrite to forbid proxy requests to port 25 (SMTP):
 <Directory proxy:*>
 RewriteEngine On
 RewriteRule "^proxy:[a-z]*://[^/]*:25(/|$)" "-" [F,NC,L]

</Directory>
Discussion

To use the Apache proxy as an SMTP relay is fairly trivial, but then so is preventing it. The solution simply tells the
server to respond with a 403 Forbidden to any attempts to use it to proxy to a remote mail server (port 25). Other
ports, such as HTTP (port 80), HTTPS (port 443), and FTP (ports 20 and 21), which are commonly permitted
proxy access, will not be affected.

See Also

•

http://httpd.apache.org/docs/mod/mod_proxy.html
•

http://httpd.apache.org/docs/mod/core.html#directory
•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 10.3 Forwarding Requests to Another Server

Problem

You want requests for particular URLs to be transparently forwarded to another server.

Solution

Use ProxyPass and ProxyPassReverse directives in your httpd.conf:
 ProxyPass /other/ http://other.server.com/
ProxyPassReverse /other/ http://other.server.com/
Discussion

Use this recipe when you have a frontend server and one or more backend servers, inaccessible from the Internet,
and you wish to serve content from them. In the example given, when a request is made for a URL starting with
/other/, Apache makes a request for the URL http://other.server.com/, and returns the content obtained by the client.
For example, a request for the URL /other/example.html results in a request for the URL
http://other.server.com/example.html.

The ProxyPassReverse directive ensures that any header fields returned by the secondary server (which contain the
name of the server, such as Location headers) will be rewritten to contain the URL that the end user will actually be
using, ensuring that the redirect actually functions as desired.

Note that links within HTML documents on the secondary site should all be relative, rather than absolute, so that
these links work for users using the content via the proxy server. In the recipe given, for example, a link to
/index.html removes the /other/ portion of the URL, causing the request to no longer hit the proxied portion of the
server.

Using this technique, you can have content for one web site actually served by multiple web server machines. This
can be used as a means to traverse the border of your network, or it can be used as a load-sharing technique to
lessen the burden on your primary web server.

See Also

•

http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://other.server.com/
http://other.server.com/
http://other.server.com/,
http://other.server.com/example.html.
http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

Recipe 10.4 Blocking Proxied Requests to Certain Places

Problem

You want to use your proxy server as a content filter, forbidding requests to certain places.

Solution

Use ProxyBlock in the httpd.conf to deny access to particular sites:
 ProxyBlock forbiddensite.com www.competitor.com monster.com
Discussion

This example forbids proxied requests to the sites listed. These arguments are substring matches; example.com will
also match www.example.com, and an argument of example would match both.

If you want more fine-grained control of what content is requested through your proxy server, you may want to use
something more sophisticated, such as Squid, which is more full-featured in that area.

See Also

•

The Squid proxy server, found at http://www.squid-cache.org/

[Team LiB]

http://www.squid-cache.org/default.htm
http://www.squid-cache.org/

[Team LiB]

Recipe 10.5 Proxying mod_perl Content to Another Server

Problem

You want to run a second HTTPD server for dynamically generated content and have Apache transparently map
requests for this content to the other server.

Solution

First, install Apache, running on an alternate port, such as port 90, on which you will generate this dynamic content.
Then, on your main server:
 ProxyPass /dynamic/ http://localhost:90/
ProxyPassReverse /dynamic/ http://localhost:90/
Discussion

Most dynamic content generation techniques use a great deal more system resources than serving static content. This
can slow down the process of serving static content from the same server, because child processes will be consumed
with producing this dynamic content, and thus unable to serve the static files.

By giving the dynamic content its own dedicated server, you allow the static content to be served much more rapidly,
and the dynamic content has a dedicated server. Each of the servers can have a smaller set of modules installed than
they would otherwise require, because they will be performing a smaller subset of the functionality needed to do both
tasks.

This technique can be used for a mod_perl server, a PHP server, or any other dynamic content method. Or you
could reverse the technique and have, for example, a dedicated machine for serving image files using
mod_mmap_static to serve the files very rapidly out of an in-memory cache.

In the example given, all URLs starting with /dynamic/ will be forwarded on to the other server, which will,
presumably, handle only requests for dynamic content. URLs that do not match this URL, however, will fall through
and be handled by the frontend server.

[Team LiB]

http://localhost:90/
http://localhost:90/

[Team LiB]

Recipe 10.6 Configuring a Caching Proxy Server

Problem

You want to run a caching proxy server.

Solution

Configure your server to proxy requests, and provide a location for the cached files to be placed:
 ProxyRequests on
CacheRoot /var/spool/httpd/proxy
Discussion

Running a caching proxy server allows users on your network to have more rapid access to content that others have
already requested. They will, perhaps, not be getting the most recent version of the document in question, but,
because they are retrieving the content from a local copy rather than from the remote web server, they will get it
much more quickly.

With the contents of the WWW growing ever more dynamic, running a caching proxy server perhaps makes less
sense than it once did, when most of the Web was composed of static content. However, since mod_proxy is fairly
smart about what it caches and what it does not cache, this sort of setup will still speed things up by caching the static
portions of documents, such as the image files, while retrieving the freshest version of those documents that change
over time.

The directory specified in the CacheRoot directive specifies where cached content will be stored. This directory must
be writable by the user that Apache is running as (typically nobody), so that it is able to store these files there.

Finally, note that, while in Apache 1.3, the functions discussed here are provided by mod_proxy; in Apache 2.0, the
proxying and caching functionality have been split into the modules mod_proxy and mod_cache, respectively. In
either case, these modules are not enabled by default.

See Also

•

http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

Recipe 10.7 Filtering Proxied Content

Problem

You want to apply some filter to proxied content, such as altering certain words.

Solution

In Apache 2.0 and later, you can use mod_ext_filter to create output filters to apply to content before it is sent to
the user:
 ExtFilterDefine naughtywords mode=output intype=text/html
 cmd="/bin/sed s/darned/blasted/g"

<Proxy *>
 SetOutputFilter naughtywords

</Proxy>
Discussion

The recipe offered is a very simple-minded "naughty word" filter, replacing the naughty word "darned" with the
sanitized alternate "blasted." This could be expanded to a variety of more sophisticated content modification, because
the cmd argument can be any command line, such as a Perl script, or arbitrary program, which can filter the content
in any way you want. All proxied content will be passed through this filter before it is delivered to the client.

Note that this recipe will work only in Apache 2.0, as the module mod_ext_filter, the SetOutputFilter directive,
and the <Proxy> directive are available only in Apache 2.0.

Note also that there are ethical and legal issues surrounding techniques like this, which you may need to deal with.
We don't presume to take a position on any of them. In particular, modifying proxied content that does not belong to
you may be a violation of the owner's copyright and may be considered by some to be unethical. Thankfully, this is
just a technical book, not a philosophical one. We can tell you how to do it, but whether you should is left to your
conscience and your lawyers.

See Also

•

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
•

http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html

[Team LiB]

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html
http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html

[Team LiB]

Recipe 10.8 Requiring Authentication for a Proxied Server

Problem

You wish to proxy content from a server, but it requires a login and password before content may be served from
this proxied site.

Solution

Use standard authentication techniques to require logins for proxied content:
 ProxyPass "/secretserver/" "http://127.0.0.1:8080"
<Directory "proxy:http://127.0.0.1:8080/">
 AuthName SecretServer
 AuthType Basic
 AuthUserFile /path/to/secretserver.htpasswd
 Require valid-user

</Directory>
Discussion

This technique can be useful if you are running some sort of special-purpose or limited-function web server on your
system, but you want to apply Apache's rich set of access control and its other features to access it. This is done by
using the ProxyPass directive to make the special-purpose server's URI space part of your main server, and using
the special proxy:path <Directory> container syntax to apply Apache settings only to the mapped URIs.

See Also

•

Recipe 6.7

[Team LiB]

[Team LiB]

Chapter 11. Performance

Your web site can probably be made to run faster, if you are willing to make a few tradeoffs, and spend a little time
benchmarking your site to see what is really slowing it down.

There are a number of things that you can configure differently to get a performance boost. Although, there are other
things to which you may have to make more substantial changes. It all depends on what you can afford to give up and
what you are willing to trade off. For example, in many cases, you may need to trade performance for security, or
vice versa.

In this chapter, we make some recommendations of things that you can change, and we warn against things that can
cause substantial slow-downs. Be aware that web sites are very individual, and what may speed up one web site may
not necessarily speed up another web site.

Topics covered include hardware considerations, configuration file changes, and dynamic content generation, which
can all be factors in getting every ounce of performance out of your web site.

Very frequently, application developers develop programs in conditions that don't nearly
enough reflect the conditions under which they will be run in production. Consequently, the
application that seemed to run adequately fast with the test database of 100 records, runs
painfully slowly with the production database of 200,000 records.

By ensuring that your test environment is at least as demanding as your production
environment, you greatly reduce the chances that your application will perform
unexpectedly slowly when you roll it out.

[Team LiB]

[Team LiB]

Recipe 11.1 Determining How Much Memory You Need

Problem

You want to ensure that you have sufficient RAM in your server.

Solution

Find the instances of Apache in your process list, and determine an average memory footprint for an Apache
process. Multiply this number by your peak load (maximum number of concurrent web clients you'll be serving).

Discussion

Because there is very little else that you can do at the hardware level to make your server faster, short of purchasing
faster hardware, it is important to make sure that you have as much RAM as you need.

Determining how much memory you need is an inexact science, to say the least. In order to take an educated guess,
you need to observe your server under load, and see how much memory it is using.

The amount of memory used by one Apache process will vary greatly from one server to another, based on what
modules you have installed and what the server is being called upon to do. Only by looking at your own server can
you get an accurate estimate of what this quantity is for your particular situation.

Tools such as top and ps may be used to examine your process list and determine the size of processes. The
server-status handler, provided by mod_status, may be used to determine the total number of Apache processes
running at a given time.

If, for example, you determine that your Apache processes are using 4 MB of memory each, and under peak load,
you find that you are running 125 Apache processes, then you will need, at a bare minimum, 500 MB of RAM in the
server to handle this peak load. Remember that memory is also needed for the operating system, and any other
applications and services that are running on the system, in addition to Apache, and so in reality you will need more
than this amount.

If, on the other hand, you are unable to add more memory to the server, for whatever reason, you can use the same
technique to figure out the maximum number of child processes that you are capable of serving at any one time, and
use the MaxClients directive to limit Apache to that many processes:
 MaxClients 125
See Also

•

http://httpd.apache.org/docs/misc/perf-tuning.html

[Team LiB]

http://httpd.apache.org/docs/misc/perf-tuning.html
http://httpd.apache.org/docs/misc/perf-tuning.html

[Team LiB]

Recipe 11.2 Benchmarking Apache with ab

Problem

You want to benchmark changes that you are making to verify that they are in fact making a difference in
performance.

Solution

Use ab (Apache bench), which you will find in the bin directory of your Apache installation:
 ab -n 1000 -c 10 http://www.example.com/test.html
Discussion

ab is a command-line utility that comes with Apache and lets you do very basic performance testing of your server. It
is especially useful for making small changes to your configuration and testing server performance before and after the
change.

The arguments given in the previous example tell ab to request the resource http://servername.com/test.html 1000
times (-n 1000 indicates the number of requests) and to make these requests 10 at a time (-c 10 indicates the
concurrency level).

Other arguments that may be specified can be seen by running ab with the -h flag. Of particular interest is the -k flag,
which enables keepalive mode. See the following keepalive recipe for additional details on this matter.

There are a few things to note about ab when using it to evaluate performance.

ab does not mimic web site usage by real people. It requests the same resource repeatedly to test the performance of
that one thing. For example, you may use ab to test the performance of a particular CGI program, before and after a
performance-related change was made to it. Or you may use it to measure the impact of turning on .htaccess files, or
content negotiation, for a particular directory. Real users, of course, do not repeatedly load the same page, and so
performance measurements made using ab may not reflect actual real-world performance of your web site.

You should probably not run the web server and ab on the same machine, as this will introduce more uncertainty into
the measurement. With both ab and the web server itself consuming system resources, you will receive significantly
slower performance than if you were to run ab on some other machine, accessing the server over the network.
However, also be aware that running ab on another machine will introduce network latency, which is not present
when running it on the same machine as the server.

Finally, there are many factors that can affect performance of the server, and you will not get the same numbers each
time you run the test. Network conditions, other processes running on the client or server machine, and a variety of
other things, may influence your results slightly one way or another. The best way to reduce the impact of
environmental changes is to run a large number of tests and average your results. Also, make sure that you change as
few things as possible—ideally, just one—between tests, so that you can be more sure what change has made any
differences you can see.

Finally, you need to understand that, while ab gives you a good idea of whether certain changes have improved
performance, it does not give a good simulation of actual users. Actual users don't simply fetch the same resource
repeatedly, but they obtain a variety of different resources from various places on your site. Thus, actual site usage
conditions may produce different performance issues than those revealed by ab.

See Also

•

The manpage for the ab tool

http://www.example.com/test.html
http://servername.com/test.html

[Team LiB]

[Team LiB]

Recipe 11.3 Tuning Keepalive Settings

Problem

You want to tune the keepalive-related directives to the best possible setting for your web site.

Solution

Turn on the KeepAlive setting, and set the related directives to sensible values:
 KeepAlive On
MaxKeepAliveRequests 0

KeepAliveTimeout 15
Discussion

The default behavior of HTTP is for each document to be requested over a new connection. This causes a lot of time
to be spent opening and closing connections. KeepAlive allows multiple requests to be made over a single
connection, thus reducing the time spent establishing socket connections. This, in turn, speeds up the load time for
clients requesting content from your site.

In addition to turning keepalive on, using the KeepAlive directive, there are two directives that allow you to adjust
the way that it is done.

The first of these, MaxKeepAliveRequests, indicates how many keepalive requests should be permitted over a single
connection. There is no reason to have this number set low. The default value for this directive is 100, and this seems
to work pretty well for most sites. Setting this value to 0 means that an unlimited number of requests will be permitted
over a single connection. This might allow users to load all of their content from your site over a single connection,
depending on the value of KeepAliveTimeout and how quickly they went through the site.

KeepAliveTimeout indicates how long a particular connection will be held open when no further requests are
received. The optimal setting for this directive depends entirely on the nature of your web site. You should probably
think of this value as the amount of time it takes users to absorb the content of one page of your site before they
move on to the next page. If the users move on to the next page before the KeepAliveTimeout has expired, when
they click on the link for the next page of content, they will get that next document over the same connection. If,
however, that time has already expired, they will need to establish a new connection to the server for that next page.

You should also be aware that if users load a resource from your site and then go away, Apache will still maintain
that open connection for them for KeepAliveTimeout seconds, which makes that child process unable to serve any
other requests during that time. Therefore, setting KeepAliveTimeout too high is just as undesirable as setting it too
low.

In the event that KeepAliveTimeout is set too high, you will see (i.e., with the server-status handler—see Recipe
11.4) that a significant number of processes are in keepalive mode, but are inactive. Over time, this number will
continue to grow, as more child processes are spawned to take the place of child processes that are in this state.

Conversely, setting KeepAliveTimeout too low will result in conditions similar to having KeepAlive turned off
entirely, when a single client will require many connections over the course of a brief visit. This is less easy to detect
than the opposite condition. In general, it is probably better to err on the side of setting it too high, rather than too low.

Since the length of time that any given user looks at any given document on your site is going to be as individual as the
users themselves, and varies from page to page around your web site, it is very difficult to determine the best possible
value of this directive for a particular site. However, it is unlikely that this is going to make any large impact on your
overall site performance, when compared to other things that you can do. Leaving it at the default value of 15 tends
to work pretty well for most sites.

See Also

•

http://httpd.apache.org/docs/mod/core.html#keepalive
•

http://httpd.apache.org/docs/mod/core.html#maxkeepaliverequests
•

http://httpd.apache.org/docs/mod/core.html#keepalivetimeout

http://httpd.apache.org/docs/mod/core.html#keepalive
http://httpd.apache.org/docs/mod/core.html#maxkeepaliverequests
http://httpd.apache.org/docs/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/mod/core.html#keepalive
http://httpd.apache.org/docs/mod/core.html#maxkeepaliverequests
http://httpd.apache.org/docs/mod/core.html#keepalivetimeout

[Team LiB]

[Team LiB]

Recipe 11.4 Getting a Snapshot of Your Site's Activity

Problem

You want to find out exactly what your server is doing.

Solution

Enable the server-status handler to get a snapshot of what child processes are running and what each one is doing.
Enable ExtendedStatus to get even more detail:
 <Location /server-status>
 SetHandler server-status
</Location>

ExtendedStatus On

Then, view the results at the URL http://servername/server-status.

Discussion

Provided by mod_status, which is enabled by default, the server-status handler provides a snapshot of your
server's activity. This snapshot includes some basic details, such as when the server was last restarted, how long it
has been up, and how much data it has served in that time. Following that, there will be a list of the child processes
and what each one is doing. At the bottom of the page is a detailed explanation of the terms used and what each
column of the table represents.

The server status display shows activity across the entire server—including virtual hosts. If
you are providing hosting services for others, you may not want them to be able to see this
level of detail about each other.

It is recommended that, as in the default configuration file that comes with Apache, you restrict access to this handler.
Part of the information contained on this page is a list of client addresses and the document that they are requesting.
Some users feel that it is a violation of their privacy for you to make this information readily available on your web
site. Additionally, it may provide information such as QUERY_STRING variables, PATH_INFO variables, or
simply URLs, which you wished to not be made public. It is therefore recommended that you add to the above
recipe some lines such as:
 Order deny,allow
Deny from all

Allow from 192.168.1

This configuration allows access only from the 192.168.0 network, or whatever network you put in there, and denies
access from unauthorized Internet users.

See Also

•

http://httpd.apache.org/docs/mod/mod_status.html
•

http://httpd.apache.org/server-status/

http://httpd.apache.org/docs/mod/mod_status.html
http://httpd.apache.org/server-status/default.htm
http://servername/server-status.
http://httpd.apache.org/docs/mod/mod_status.html
http://httpd.apache.org/server-status/

[Team LiB]

[Team LiB]

Recipe 11.5 Avoiding DNS Lookups

Problem

You want to avoid situations where you have to do DNS lookups of client addresses, as this is a very slow process.

Solution

Always set the HostNameLookups directive to Off:
 HostNameLookups Off

And make sure that, whenever possible, Allow from and/or Deny from directives use the IP address, rather than the
hostname of the hosts in question.

Discussion

DNS lookups can take a very long time and should be avoided at all costs. In the event that a client address cannot
be looked up at all, it can take up to a minute for the lookup to time out, during which time the child process that is
doing the lookup cannot do anything else.

There are a number of cases in which Apache will need to do DNS lookups, and so the goal here is to completely
avoid those situations.

HostNameLookups

Prior to Apache 1.3, HostNameLookups, which determines whether Apache logs client IP addresses or hostnames,
defaulted to on, meaning that each Apache log entry required a DNS lookup to convert the client IP address to a
hostname to put in the logfile. Fortunately, that directive now defaults to off, and so this is primarily an admonition to
leave it alone.

If you need to have these addresses converted to hostnames, then this should be done by another program,
preferably running on a machine other than your production web server. That is, you really should copy the file to
some other machine for the purpose of processing, so that the effort required to do this processing does not
negatively effect your web server's performance.

Apache comes with a utility called logresolve, which will process your logfile, replacing IP addresses with
hostnames. Additionally, most logfile analysis tools will also do this name resolution as part of the log analysis process.

Allow and Deny from hostnames

When you do host-based access control, using the Allow from and Deny from directives, Apache takes additional
precautions to make sure that the client is not spoofing its hostname. In particular, it does a DNS lookup on the IP
address of the client to obtain the name to compare against the access restriction. It then looks up the name that was
obtained, just to make sure that the DNS record is not being faked.[1]

[1] For example, the owner of the IP address could very easily put a PTR record in their reverse-DNS zone,
pointing their IP address at a name belonging to someone else.

For the sake of better performance, therefore, it is much better to use an IP address, rather than a name, in Allow
and Deny directives.

See Also

•

Chapter 3

[Team LiB]

[Team LiB]

Recipe 11.6 Optimizing Symbolic Links

Problem

You wish to balance the security needs associated with symbolic links with the performance impact of a solution,
such as using Options SymLinksIfOwnerMatch, which causes a server slowdown.

Solution

For tightest security, use Options SymlinksIfOwnerMatch, or Options -FollowSymLinks if you seldom or never
use symlinks.

For best performance, use Options FollowSymlinks.

Discussion

Symbolic links are an area in which you need to weigh performance against security and make the decision that
makes the most sense in your particular situation.

In the normal everyday operation of a Unixish operating system, symbolic links are considered to be the same as the
file to which they link.[2] When you cd into a directory, you don't need to be aware of whether that was a symlink or
not. It just works.

[2] Of course, this is not true at the filesystem level, but we're just talking about the practical user level.

Apache, on the other hand, has to consider whether each file and directory is a symlink or not, if the server is
configured not to follow symlinks. And, additionally, if Option SymlinksIfOwnerMatch is turned on, Apache not
only has to check if the particular file is a symlink, but also has to check the ownership of the link itself and of the
target, in the event that it is a symlink. While this enforces a certain security policy, it takes a substantial amount of
time and so slows down the operation of your server.

In the tradeoff between security and performance, in the matter of symbolic links, here are the guidelines.

If you are primarily concerned about security, never permit the following of symbolic links. It may permit someone to
create a link from a document directory to content that you would not want to be on a public server. Or, if there are
cases where you really need symlinks, use Options SymlinksIfOwnerMatch, which requires that someone may only
link to files that they own and will presumably protect you from having a user link to a portion of the filesystem that is
not already under their control.

If you are concerned about performance, then always use Options FollowSymlinks, and never use Options
SymlinksIfOwnerMatch. Options FollowSymlinks permits Apache to follow symbolic links in the manner of most
Unixish applications—that is, Apache does not even need to check to see if the file in question is a symlink or not.

See Also

•

http://httpd.apache.org/docs/mod/core.html#options

http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/mod/core.html#options

[Team LiB]

[Team LiB]

Recipe 11.7 Minimizing the Performance Impact of .htaccess Files

Problem

You want per-directory configuration but want to avoid the performance hit of .htaccess files.

Solution

Turn on AllowOverride only in directories where it is required, and tell Apache not to waste time looking for
.htaccess files elsewhere:
 AllowOverride None

Then use <Directory> sections to selectively enable .htaccess files only where needed.

Discussion

.htaccess files cause a substantial reduction in Apache's performance, because it must check for a .htaccess in every
directory along the path to the requested file to be assured of getting all of the relevant configuration overrides. This is
necessary because Apache configuration directives apply not only to the directory in which they are set, but also to
all subdirectories. Thus, we must check for .htaccess files in parent directories, as well as in the current directory, to
find any directives that would trickle down the current directory.

For example, if, for some reason, you had AllowOverride All enabled for all directories and your DocumentRoot
was /usr/local/apache/htdocs, then a request for the URL http://example.com/events/parties/christmas.html would
result in the following files being looked for and, if found, opened and searched for configuration directives:
 /.htaccess
/usr/.htaccess
/usr/local/.htaccess
/usr/local/apache/.htaccess
/usr/local/apache/htdocs/.htaccess
/usr/local/apache/htdocs/events/.htaccess

/usr/local/apache/htdocs/events/parties/.htaccess

Now, hopefully, you would never have AllowOverride All enabled for your entire filesystem, so this is a worst-case
scenario. However, occasionally, when people do not adequately understand what this configuration directive does,
they will enable this option for their entire filesystem and suffer poor performance as a result.

The recommended solution is by far the best way to solve this problem. The <Directory> directive is specifically for
this situation, and .htaccess files should really only be used in the situation where configuration changes are needed
and access to the main server configuration file is not readily available.

For example, if you have a .htaccess file in /usr/local/apache/htdocs/events containing the directive:
 AddEncoding x-gzip tgz

You should instead simply replace this with the following in your main configuration file:
 <Directory /usr/local/apache/htdocs/event>
 AddEncoding x-gzip tgz

</Directory>

Which is to say, anything that appears in a .htaccess can, instead, appear in a <Directory> section, referring to that
same directory.

If you are compelled to permit .htaccess files somewhere on your web site, you should only permit them in the
specific directory where they are needed. For example, if you particularly need to permit .htaccess files in the
directory /www/htdocs/users/leopold/, then you should explicitly allow then for only this directory:
 <Directory /www/htdocs/users/leopold>
 AllowOverride All

</Directory>

One final note about the AllowOverride directive: this directive lets you be very specific about what types of
directives you permit in .htaccess files, and you should make an effort only to permit those directives that are actually
needed. That is, rather than using the All argument, you should allow specific types of directives as needed. In
particular, the Options argument to AllowOverride should be avoided, if possible, as it may enable users to turn on
features that you have turned off for security reasons.

See Also

•

http://httpd.apache.org/docs/howto/htaccess.html
•

http://httpd.apache.org/docs-2.0/howto/htaccess.html

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html
http://example.com/events/parties/christmas.html
http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html

[Team LiB]

[Team LiB]

Recipe 11.8 Disabling Content Negotiation

Problem

Content negotiation causes a big reduction in performance.

Solution

Disable content negotiation where it is not needed. If you do require content negotiation, use the type-map handler,
rather than the MultiViews option:
 Options -MultiViews

AddHandler type-map var
Discussion

If at all possible, disable content negotiation. However, if you must do content negotiation—if, for example, you have
a multilingual web site—you should use the type-map handler, rather than the MultiViews method.

When MultiViews is used, Apache needs to get a directory listing each time a request is made. The resource
requested is compared to the directory listing to see what variants of that resource might exist. For example, if
index.html is requested, the variants index.html.en and index.html.fr might exist to satisfy that request. Each
matching variant is compared with the user's preferences, expressed in the various Accept headers passed by the
client. This information allows Apache to determine which resource is best suited to the user's needs.

However, this process can be very time-consuming, particularly for large directories or resources with large numbers
of variants. By putting the information in a .var file and allowing the type-map handler to be used instead, you
eliminate the requirement to get a directory listing, and greatly reduce the amount of work that Apache must do to
determine the correct variant to send to the user.

The .var file just needs to contain a listing of the variants of a particular resource and describe their important
attributes.

If you have, for example, English, French, and Hebrew variants of the resource index.html, you may express this in a
.var file called index.html.var containing information about each of the various variants. This file might look like the
following:
 URI: index.html.en
Content-language: en
Content-type: text/html

URI: index.html.fr
Content-language: en
Content-type: text/html

URI: index.html.he.iso8859-8
Content-language: he

Content-type: text/html;charset=ISO-8859-8

This file should be placed in the same directory as the variants of this resource, which are called index.html.en,
index.html.fr, and index.html.he.iso8859-8.

Note that the Hebrew variant of the document indicates an alternate character set, both in the name of the file itself,
and in the Content-type header field.

Enable the .var file by adding a AddHandler directive to your configuration file, as follows:
 AddHandler type-map .var

Each of the file extensions used in these filenames should have an associated directive in
your configuration file. This is not something that you should have to add—these should
appear in your default configuration file. Each of the language indicators will have an
associated AddLanguage directive, while the character set indicator will have an
AddCharset directive.

In contrast to MultiViews, this technique gets all of its information from this .var file instead of from a directory
listing, which is much less efficient.

You can further reduce the performance impact of content negotiation by indicating that negotiated documents can be
cached. This is accomplished by the directive:
 CacheNegotiatedDocs On

Caching negotiated documents can cause unpleasant results, such as people getting files in a language that they cannot
read or in document formats that they don't know how to render.

If possible, you should completely avoid content negotiation in any form, as it will greatly slow down your server no
matter which technique you use.

See Also

•

http://httpd.apache.org/docs/mod/mod_negotiation.html
•

http://httpd.apache.org/docs/mod/mod_mime.html#addhandler
•

http://httpd.apache.org/docs/mod/mod_mime.html#addcharset
•

http://httpd.apache.org/docs/mod/mod_mime.html#addlanguage
•

http://httpd.apache.org/docs/mod/core.html#optionsr

http://httpd.apache.org/docs/mod/mod_negotiation.html
http://httpd.apache.org/docs/mod/mod_mime.html#addhandler
http://httpd.apache.org/docs/mod/mod_mime.html#addcharset
http://httpd.apache.org/docs/mod/mod_mime.html#addlanguage
http://httpd.apache.org/docs/mod/core.html#optionsr
http://httpd.apache.org/docs/mod/mod_negotiation.html
http://httpd.apache.org/docs/mod/mod_mime.html#addhandler
http://httpd.apache.org/docs/mod/mod_mime.html#addcharset
http://httpd.apache.org/docs/mod/mod_mime.html#addlanguage
http://httpd.apache.org/docs/mod/core.html#optionsr

[Team LiB]

[Team LiB]

Recipe 11.9 Optimizing Process Creation

Problem

You're using Apache 1.3, or Apache 2.0 with the prefork MPM, and you want to tune MinSpareServers and
MaxSpareServers to the best settings for your web site.

Solution

Will vary from one site to another. You'll need to watch traffic on your site and decide accordingly.

Discussion

The MinSpareServers and MaxSpareServers directives control the size of the server pool, so that incoming
requests will always have a child process waiting to serve them. In particular, if there are fewer than
MinSpareServers idle processes, Apache will create more processes until that minimum is reached. Similarly, if there
are ever more than MaxSpareServers processes, Apache will kill off processes until there are fewer than that
maximum. These things will happen as the site traffic fluctuates on a normal day.

The best values for these directives for your particular site depends on the amount and the rate at which traffic
fluctuates. If your site is prone to large spikes in traffic, MinSpareServers needs to be large enough to absorb those
spikes. The idea is to never have a situation where requests come in to your site, and there are no idle server
processes waiting to handle the request. If traffic patterns on your site are fairly smooth curves with no abrupt spikes,
the default values may be sufficient.

The best way to watch exactly how much load there is on your server is by looking at the server-status handler
output. (See Recipe 11.4.)

You should also set MaxClients to a value such that you don't run out of server resources during heavy server loads.
For example, if your average Apache process consumes 2 MB of memory and you have a total of 256 MB of RAM
available, allowing a little bit of memory for other processes, you probably don't want to set MaxClients any higher
than about 120. If you run out of RAM and start using swap space, your server performance will abruptly go
downhill and will not recover until you are no longer using swap. You can watch memory usage by running a program
such as top, which shows running processes and how much memory each is using.

See Also

•

Setting the number of threads on single-child MPMs in Recipe 11.10
•

Number of threads when using the worker MPM in Recipe 11.10

[Team LiB]

[Team LiB]

Recipe 11.10 Tuning Thread Creation

Problem

You're using Apache 2.0 with one of the threaded MPMs, and you want to optimize the settings for the number of
threads.

Solution

Will vary from server to server.

Discussion

The various threaded MPMs on Apache 2.0 handle thread creation somewhat differently. In Apache 1.3, the
Windows and Netware versions are threaded, while the Unixish version is not. Tuning the thread creation values will
vary from one of these versions to another.

Setting the number of threads on single-child MPMs

On MPMs that run Apache with a single threaded child process, such as the Windows MPM (mpm_winnt), and the
Windows and Netware versions of Apache 1.3, there are a fixed number of threads in the child process. This
number is controlled by the ThreadsPerChild directive and must be large enough to handle the peak traffic of the
site on any given day. There really is no performance tuning that can be done here, as this number is fixed throughout
the lifetime of the Apache process.

Number of threads when using the worker MPM

The worker MPM has a fixed number of threads per child process but has a variable number of child processes, so
that increased server load can be absorbed. A typical configuration might look like the following:
 StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25

ServerLimit 16

The MinSpareThreads and MaxSpareThreads directives control the size of the idle pool of threads, so that
incoming clients will always have an idle thread waiting to serve their request. The ThreadsPerChild directive
indicates how many threads are in each child process, so when the number of available idle threads drops below
MinSpareThreads, Apache will launch a new child process, populated with ThreadsPerChild threads. Similarly,
when server load is reduced and the number of idle threads is greater than MaxSpareThreads, Apache will kill off
one or more child processes to reduce the idle pool to that number or less.

The goal, when setting these values, is to ensure that there are always idle threads ready to serve any incoming client's
request, without having to create a new one. The previous example will work for most sites, as it will ensure that
there is at least one completely unused child process, populated with 25 threads, waiting for incoming requests. As
soon as threads within this process start to be used, a new child process will be launched for future requests.

The values of MaxClients and ServerLimit should be set so that you will never run out of RAM when a new child
process is launched. Look at your process list, using top, or a similar utility, and ensure that ServerLimit, multiplied
by the size of an individual server process, does not exceed your available RAM. MaxClients should be less than, or
equal to, ServerLimit multiplied by ThreadsPerChild.

Setting the number of threads when using Netware or the perchild MPM

Whereas with most of the other MPMs the MinSpareThreads and MaxSpareThreads directives are server-wide, in
the perchild and netware MPMs, these directives are assessed per child process. Of course, with the netware
MPM, there is only one child process, so it amounts to the same thing.

With the netware MPM, threads are created and reaped as needed, to keep the number of spare threads between
the limits imposed by MinSpareThreads and MaxSpareThreads. The total number of threads must be kept at all
times below the limit imposed by the MaxThreads directive.

On the perchild MPM, these limits are set per child process, with each child process monitoring its number of idle
threads, and keeping that number between MinSpareThreads and MaxSpareThreads, while keeping at all times the
total number of threads below MaxThreadsPerChild.

Because creating additional threads consumes far fewer resources than creating new child processes, it is seldom
necessary to adjust these values from their default settings. With the perchild MPM, however, you may wish to
adjust the NumServers directive so that you don't run out of RAM. Note that the number set in NumServers is the
number of child processes that run all the time, as the perchild MPM does not create and kill child processes, but
rather tunes capacity by creating and killing threads.

See Also

•

http://httpd.apache.org/docs-2.0/mpm.html

http://httpd.apache.org/docs-2.0/mpm.html
http://httpd.apache.org/docs-2.0/mpm.html

[Team LiB]

[Team LiB]

Recipe 11.11 Caching Frequently Viewed Files

Problem

You want to cache files that are viewed frequently, such as your site's front page, so that they don't have to be
loaded from the filesystem every time.

Solution

Use mod_mmap_static or mod_file_cache (for Apache 1.3 and 2.0, respectively) to cache these files in memory:
 MMapFile /www/htdocs/index.html
MMapFile /www/htdocs/other_page.html

For Apache 2.0, you can use either module or the CacheFile directive. MMapFile caches the file contents in
memory, while CacheFile caches the file handle instead, which gives slightly poorer performance but uses less
memory:
 CacheFile /www/htdocs/index.html
CacheFile /www/htdocs/other_page.html
Discussion

For files that are frequently accessed, it is desirable to cache that file in some fashion to save disk access time. The
MMapFile directive loads a file into RAM, and subsequent requests for that file are served directly out of RAM,
rather than from the filesystem. The CacheFile directive, on the other hand, opens the file and caches the file handle,
saving time on subsequent file opens.

In Apache 1.3, this functionality is available with the mod_mmap_static module, which is labelled as experimental
and is not built into Apache by default. To enable this module, you need to specify the
—enable-module=mmap_static flag to configure when building Apache. mod_mmap_static provides only the
MMapFile directive.

In Apache 2.0, this functionality is provided by the mod_file_cache module, which is labelled as experimental, and is
not built into Apache by default. To enable this module, you need to specify the —enable-file_cache flag to
configure when building Apache. mod_file_cache provides both the MMapFile and CacheFile directives.

These directives take a single file as an argument, and there is not a provision for specifying a directory or set of
directories. If you wish to have the entire contents of a directory mapped into memory, the documentation provides
the following suggestion. For the directory in question, you would run the following command:
 % find /www/htdocs -type f -print \
> | sed -e 's/.*/mmapfile &/' > /www/conf/mmap.conf

In your main server configuration file, you would then load the file created by that command, using the Include
directive:
 Include /www/conf/mmap.conf

This would cause every file contained in that directory to have the MMapFile directive invoked on it.

Note that when files are cached using one of these two directives, any changes to the file will require a server restart
before they become visible.

See Also

•

http://httpd.apache.org/docs/mod/mod_mmap_static.html
•

http://httpd.apache.org/docs-2.0/mod/mod_file_cache.html

http://httpd.apache.org/docs/mod/mod_mmap_static.html
http://httpd.apache.org/docs-2.0/mod/mod_file_cache.html
http://httpd.apache.org/docs/mod/mod_mmap_static.html
http://httpd.apache.org/docs-2.0/mod/mod_file_cache.html

[Team LiB]

[Team LiB]

Recipe 11.12 Sharing Load Between Servers Using mod_proxy

Problem

You want to have a certain subset of your web site served from another machine, in order to share the load of the
site.

Solution

Use ProxyPass and ProxyPassReverse to have Apache fetch the content from another server:
 ProxyPass /other/ http://other.server.com/
ProxyPassReverse /other/ http://other.server.com/
Discussion

These directives will cause requests to URLs starting with /other/ to be forwarded to the server other.server.com,
with the path information preserved. That is to say, a request for http://www.server.com/other/something.html will be
translated into a request for http://other.server.com/something.html. Content obtained from this other server will be
returned to the client, which will be unable to determine that any such technique was employed. The
ProxyPassReverse directive ensures that any redirect headers sent from the backend server (in this case,
other.server.com) will be modified so that they appear to come from the main server.

This method is often used to have the dynamic portion of the site served by a server running mod_perl—often even
on the same machine, but on a different port—while the static portions of the site are served from the main server,
which can be lighter weight, and so run faster.

Note that URLs contained within documents are not rewritten as they pass through the proxy, and links within
documents should be relative, rather than absolute, so that they work correctly.

See Also

•

http://httpd.apache.org/docs/mod/mod_proxy.html
•

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://other.server.com/
http://other.server.com/
http://www.server.com/other/something.html
http://other.server.com/something.html.
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_proxy.html

[Team LiB]

Recipe 11.13 Distributing Load Evenly Between Several Servers

Problem

You want to serve the same content from several servers and have hits distributed evenly among the servers

Solution

Use DNS round-robin to have requests distributed evenly, or at least fairly evenly, among the servers:
 www.example.com. 86400 IN A 192.168.10.2
www.example.com. 86400 IN A 192.168.10.3
www.example.com. 86400 IN A 192.168.10.4
www.example.com. 86400 IN A 192.168.10.5
www.example.com. 86400 IN A 192.168.10.6

www.example.com. 86400 IN A 192.168.10.7
Discussion

This example is an excerpt from a BIND zone file. The actual syntax may vary, depending on the particular name
server software you are running.

By giving multiple addresses to the same hostname, you cause hits to be evenly distributed among the various servers
listed. The name server, when asked for this particular name, will give out the addresses listed in a round-robin
fashion, causing requests to be sent to one server after the other. The individual servers need be configured only to
answer requests from the specified name.

Running the host command on the name in question will result in a list of possible answers, but each time you run the
command, you'll get a different answer first:
 % host www.example.com
www.example.com has address 192.168.10.2
www.example.com has address 192.168.10.3
www.example.com has address 192.168.10.4
www.example.com has address 192.168.10.5
www.example.com has address 192.168.10.6
www.example.com has address 192.168.10.7
% host www.example.com
www.example.com has address 192.168.10.7
www.example.com has address 192.168.10.2
www.example.com has address 192.168.10.3
www.example.com has address 192.168.10.4
www.example.com has address 192.168.10.5

www.example.com has address 192.168.10.6

Make sure that when you update your DNS zone file, you also update the serial number,
and restart or reload your DNS server.

See Also

•

DNS and Bind by Paul Albitz and Cricket Liu (O'Reilly)

[Team LiB]

[Team LiB]

Recipe 11.14 Caching Directory Listings

Problem

You want to provide a directory listing but want to reduce the performance hit of doing so.

Solution

Use the TrackModified argument to IndexOptions to allow browsers to cache the results of an auto-generated
directory index:
 IndexOptions +TrackModified
Discussion

When sending a directory listing to a client, Apache has to open that directory, obtain a directory listing, and
determine various attributes of the files contained therein. This is very time consuming, and it would be nice to avoid
this when possible.

By default, the Last Modified time sent with a directory listing is the time that the content is being served. Thus, when
a client, or proxy server, makes a HEAD or conditional GET request to determine if it can use the copy that it has in
cache, it will always decide to get a fresh copy of the content. The TrackModified option to IndexOptions cause
mod_autoindex to send a Last Modified time corresponding to the file in the directory that was most recently
modified. This enables browsers and proxy servers to cache this content, rather than retrieving it from the server each
time, and also ensures that the listing that they have cached is in fact the latest version.

Note that clients that don't implement any kind of caching will not benefit from this directive. In particular, testing with
ab will show no improvement from turning on this setting, as ab does not do any kind of content caching.

See Also

•

The manpage for the ab tool

[Team LiB]

[Team LiB]

Recipe 11.15 Speeding Up Perl CGI Programs with mod_perl

Problem

You have existing functional Perl CGI programs and want them to run faster.

Solution

If you have the mod_perl module installed, you can configure it to run your Perl CGI programs, instead of running
mod_cgi. This gives you a big performance boost, without having to modify your CGI code.

There are two slightly different ways to do this.

For Apache 1.3 and mod_perl Version 1:
 Alias /cgi-perl/ /usr/local/apache/cgi-bin/
<Location /cgi-perl>
 Options ExecCGI
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 PerlSendHeader On
</Location>

Alias /perl/ /usr/local/apache/cgi-bin/
<Location /perl>
 Options ExecCGI
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On

</Location>

For Apache 2.0 and mod_perl Version 2, the syntax changes slightly:
 PerlModule ModPerl::PerlRun
Alias /cgi-perl/ /usr/local/apache2/cgi-bin/
<Location /cgi-perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::PerlRun
 Options +ExecCGI
</Location>

PerlModule ModPerl::Registry
Alias /perl/ /usr/local/apache2/cgi-bin/
<Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI

</Location>
Discussion

By using mod_perl's CGI modes, you can improve the performance of existing CGI programs without modifying the
CGI code itself in any way. Given the previous configuration sections, a CGI program that was previously accessed
via the URL http://www.example.com/cgi-bin/program.cgi will now be accessed via the URL
http://www.example.com/cgi-perl/program.cgi to run it in PerlRun mode or via the URL
http://www.example.com/perl/program.cgi to run it in Registry mode.

The primary difference between PerlRun and Registry is that, in Registry, the program code itself is cached after
compilation, whereas in PerlRun mode, it is not. While this means that code run under Registry is faster than that
executed under PerlRun, it also means that a greater degree of code quality is required. In particular, global variables
and other careless coding practices may cause memory leaks, which, if run in cached mode, could eventually cause
the server to run out of available memory.

When writing Perl CGI code to run under mod_perl, and, in general, when writing any Perl code, it is recommended
that you place the following two lines at the top of each program file, following the #! line:
 use strict;
use warnings;

Code that runs without error messages, with these two lines in them, runs without problems under Registry.

strict is not available prior to Perl 5, and warnings is not available prior to Perl 5.6. In
versions of Perl earlier than 5.6, you can get behavior similar to warnings by using the -w
flag to Perl. This is accomplished by adding it to the #! line of your Perl programs:
 #!/usr/bin/perl -w

See Also

•

Programming Perl, Third Edition, by Larry Wall, Tom Christiansen, and Jon Orwant (O'Reilly)

http://www.example.com/cgi-bin/program.cgi
http://www.example.com/cgi-perl/program.cgi
http://www.example.com/perl/program.cgi

[Team LiB]

[Team LiB]

Chapter 12. Miscellaneous Topics

With its hundreds of configuration directives, and dozens upon dozens of modules providing additional functionality,
the Apache web server can be terrifically complex. So too can the questions about how to use it. We have collected
many of the most common questions we have seen and categorized them, putting related topics into their own
chapters when there were enough of them.

However, some of the things that come up don't fall readily into one of the categories we have chosen, or perhaps
are more fundamental and we've collected them into this catch-all chapter of "things that don't belong anywhere else."

[Team LiB]

[Team LiB]

Recipe 12.1 Placing Directives Properly

Problem

You know what directive you need but aren't sure where to put it.

Solution

If you wish the scope of the directive to be global (i.e., you want it to affect all requests to the web server), then it
should be put in the main body of the configuration file or it should be put in the section starting with the line
<Directory /> and ending with </Directory>.

If you wish the directive to affect only a particular directory, it should be put in a <Directory> section that specifies
that directory. Be aware that directives specified in this manner also affect subdirectories of the stated directory.

Likewise, if you wish the directive to affect a particular virtual host or a particular set of URLs, then the directive
should be put in a <VirtualHost> section, <Location> section, or perhaps a <Files> section, referring to the
particular scope in which you want the directive to apply.

In short, the answer to "Where should I put it?" is "Where do you want it to be in effect?"

Discussion

This question is perhaps the most frequently asked question in every Apache help venue. It is usually answered in a
way that is relevant to the specific situation but not in a general all-purpose kind of way.

The situation is further complicated by the fact that the configuration file is frequently split over several files, which are
loaded via Include directives, and the (usually) mistaken impression that it will make a difference whether a directive
is put in one file or another.

Knowing exactly where to put a particular directive comes from understanding how Apache deals with sections (such
as <Directory> and <Location>). There is seldom one magic place that a directive must be placed to make it
work. However, there are usually a number of places where you can put a directive and have it produce an undesired
effect.

There are two main situations in which a directive, when added to your configuration file, will not have the desired
effect. These are when a directive is overridden by a directive appearing in the same scope but later in the
configuration, and when there is a directive in a more specific scope.

For the first of these two situations, it is important to understand that the Apache configuration file is parsed from top
to bottom. Files that are Include'ed are considered to appear in their entirety in the location where the Include
directive appears. Thus, if you have the same directive appearing twice but with different values, the last one
appearing will be the one that is actually in effect.

In the other situation, it's important to understand that, while directives in one directory apply to subdirectories, a
<Directory> section referring to a more specific or "deeper" directory will have precedence over sections referring
to "shallower" directories. For example, consider the following configuration:
 <Directory /www/docs>
 Options ExecCGI
</Directory>

<Directory /www/docs/mod>
 Options Includes

</Directory>

Files accessed from the directory /www/docs/mod/misc/ will have Options Includes in effect but will not have
Options ExecCGI in effect, because the more specific directory section is the configuration that applies.

Finally, you must consider .htaccess files as well, which can override settings in the main server configuration file, and
cause situations that are confusing and difficult to be tracked down.

See Also

For .htaccess files:
 http://httpd.apache.org/docs/howto/htaccess.htmlhttp://httpd.apache.org/docs-2.0/howto/htaccess.html

For directories:
 http://httpd.apache.org/docs/mod/core.html#directoryhttp://httpd.apache.org/docs/mod/core.html#directorymatch
http://httpd.apache.org/docs-2.0/mod/core.html#directory
http://httpd.apache.org/docs-2.0/mod/core.html#directorymatch

For location:
 http://httpd.apache.org/docs/mod/core.html#locationhttp://httpd.apache.org/docs/mod/core.html#locationmatch
http://httpd.apache.org/docs-2.0/mod/core.html#location
http://httpd.apache.org/docs-2.0/mod/core.html#locationmatch

For Apache:
 http://httpd.apache.org/docs/mod/core.html#fileshttp://httpd.apache.org/docs/mod/core.html#filesmatch
http://httpd.apache.org/docs-2.0/mod/core.html#fileshttp://httpd.apache.org/docs-2.0/mod/core.html#filesmatch

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/core.html#directorymatch
http://httpd.apache.org/docs-2.0/mod/core.html#directory
http://httpd.apache.org/docs-2.0/mod/core.html#directorymatch
http://httpd.apache.org/docs/mod/core.html#location
http://httpd.apache.org/docs/mod/core.html#locationmatch
http://httpd.apache.org/docs-2.0/mod/core.html#location
http://httpd.apache.org/docs-2.0/mod/core.html#locationmatch
http://httpd.apache.org/docs/mod/core.html#files
http://httpd.apache.org/docs/mod/core.html#filesmatch
http://httpd.apache.org/docs-2.0/mod/core.html#files
http://httpd.apache.org/docs-2.0/mod/core.html#filesmatch
http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/core.html#directorymatch
http://httpd.apache.org/docs-2.0/mod/core.html#directory
http://httpd.apache.org/docs-2.0/mod/core.html#directorymatch
http://httpd.apache.org/docs/mod/core.html#location
http://httpd.apache.org/docs/mod/core.html#locationmatch
http://httpd.apache.org/docs-2.0/mod/core.html#location
http://httpd.apache.org/docs-2.0/mod/core.html#locationmatch
http://httpd.apache.org/docs/mod/core.html#files
http://httpd.apache.org/docs/mod/core.html#filesmatch
http://httpd.apache.org/docs-2.0/mod/core.html#files
http://httpd.apache.org/docs-2.0/mod/core.html#filesmatch

[Team LiB]

[Team LiB]

Recipe 12.2 Renaming .htaccess Files

Problem

You want to change the default name of per-directory configuration files to something else, such as on a Windows
system, because filenames beginning with a dot can cause problems.

Solution

Use the AccessFileName directive to specify the new name:
 AccessFileName ht.access
Discussion

In addition to the server-wide configuration files, you can add directives to special files in individual directories. These
are called .htaccess (aitch tee access) files because that's the default name for them.

However, the Unixish convention of filenames that begin with a dot doesn't play well on all platforms; on Windows in
particular it can be difficult to edit files with such names.

Apache allows you to change the name it will use when looking for these per-directory files with the AccessFileName
directive (which can only appear in the server-wide configuration files). You can use any name that's valid on your
platform.

If you use the AccessFileName directive, be sure to make any additional appropriate changes to your configuration
such as the <FilesMatch "^\.ht"> container that keeps the files from being fetchable over the Web:
 <FilesMatch "^ht\.">
 Order deny,allow
 Deny from all

</FilesMatch>
See Also

•

Recipe 11.7
•

http://httpd.apache.org/docs/howto/htaccess.html
•

http://httpd.apache.org/docs-2.0/howto/htaccess.html

[Team LiB]

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html
http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html

[Team LiB]

Recipe 12.3 Generating Directory/Folder Listings

Problem

You want to see a directory listing when a directory is requested.

Solution

Turn on Options Indexes for the directory in question:
 <Directory /www/htdocs/images>
 Options +Indexes

</Directory>
Discussion

When a URL maps to a directory or folder in the filesystem, Apache will respond to the request in one of three ways:

•

If mod_dir is part of the server configuration, and the mapped directory is within the scope of a
DirectoryIndex directive, and the server can find one of the files identified in that directive, then the file will
be used to generate the response.

•

If mod_autoindex is part of the server configuration and the mapped directory is within the scope of an
Options directive that has enabled the Indexes keyword, then the server will construct a directory listing at
runtime and supply it as the response.

•

The server will return a 404 (Resource Not Found) status.

Enabling directory listings

The real keys to enabling the server's ability to automatically generate a listing of files in a directory are the inclusion
of mod_autoindex in the configuration and the Indexes keyword to the Options directive. This can be done either
as an absolute form, as in:
 Options FollowSymLinks Indexes

or in a selective or relative form such as:
 Options -ExecCGI +Indexes

Enabling directory listings should be done with caution. Because of the scope inheritance mechanism, directories
farther down the tree will also be affected; and because the server will apply the sequence of rules listed at the
beginning of this section in an effort to provide some sort of response, a single missing file can result in the inadvertent
exposure of your filesystem's contents.

Disabling directory indexing below an enabled directory

There are essentially two ways to work around this issue and ensure that the indexing applies only to the single
directory:

•

Add an Options -Indexes to .htaccess files in each subdirectory.
•

Add an Options -Indexes to a <Directory> container that matches all the subdirectories.

For example, to permit directory indexes for directory /usr/local/htdocs/archives but not any subdirectories, use:
 <Directory /usr/local/htdocs/archives>
 Options +Indexes
</Directory>

<Directory /usr/local/htdocs/archives/*>
 Options -Indexes

</Directory>
See Also

•

http://httpd.apache.org/docs/mod/core.html#options
•

http://httpd.apache.org/docs/mod/mod_dir.html
•

http://httpd.apache.org/docs/mod/mod_autoindex.html

http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/mod_autoindex.html
http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/mod_autoindex.html

[Team LiB]

[Team LiB]

Recipe 12.4 Solving the "Trailing Slash" Problem

Problem

Loading a particular URL works with a trailing slash but does not work without it.

Solution

Make sure that ServerName is set correctly and that none of the Alias directives have a trailing slash.

Discussion

The "trailing slash" problem can be caused by one of two configuration problems: an incorrect or missing value of
ServerName, or an Alias with a trailing slash that doesn't work without it.

Incorrect ServerName

An incorrect or missing ServerName seems to be the most prevalent cause of the problem, and it works something
like this: when you request a URL such as http://example.com/something, where something is the name of a
directory, Apache actually sends a redirect to the client telling it to add the trailing slash.

The way that it does this is to construct the URL using the value of ServerName and the requested URL. If
ServerName is not set correctly, then the resultant URL, which is sent to the client, will generate an error on the
client end when it can't find the resulting URL.

If, on the other hand, ServerName is not set at all, Apache will attempt to guess a reasonable value when you start it
up. This will often lead it to guess incorrectly, using values such as 127.0.0.1 or localhost, which will not work for
remote clients. Either way, the client will end up getting a URL that it cannot retrieve.

Invalid Alias directive

In the second incarnation of this problem, a slightly malformed Alias directive may cause a URL with a missing
trailing slash to be an invalid URL entirely.

Consider, for example, the following directive:
 Alias /example/ /home/www/example/

The Alias directive is very literal, and aliases URLs starting with /example/, but it does not alias URLs starting with
/example. Thus, the URL http://example.com/example/ will display the default document from the directory
/home/www/example/, while the URL http://example.com/example will generate a "file not found" error message,
with an error log entry that will look something like:
 File does not exist: /usr/local/apache/htdocs/example

The solution to this is to create Alias directives without the trailing slash, so that they will work whether or not the
trailing slash is used:
 Alias /example /home/www/example
See Also

•

http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername

http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername
http://example.com/something,
http://example.com/example/
http://example.com/example
http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername

[Team LiB]

[Team LiB]

Recipe 12.5 Setting the Content-Type According to Browser
Capability

Problem

You want to set Content-Type headers differently for different browsers, which may render the content incorrectly
otherwise.

Solution

Check the Accept headers with RewriteCond and then set the Contend-Type header with a T flag:
 RewriteCond "%{HTTP_ACCEPT}" "application/xhtml\+xml"
RewriteCond "%{HTTP_ACCEPT}" "!application/xhtml\+xml\s*;\s*q=0+(?:\.0*[^0-9])"

RewriteRule . - [T=application/xhtml+xml;charset=iso-8859-1]
Discussion

Different browsers tend to deal with content differently and sometimes need a nudge in the right direction. In this
example, for browsers that specify (using the HTTP_ACCEPT header) that they prefer XHTML content, we want
to send a Content-Type header specifying that the content we are sending fulfills that requirement.

The T (Type) flag sets the Content-Type for the response.

See Also

•

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 12.6 Handling Missing Host: Header Fields

Problem

You want to treat differently all requests that are made without a Host: request header field.

Solution
 SetEnvIf Host "^$" no_host=1
Order Allow,Deny
Allow from all
Deny from env=no_host
RewriteCond "%{HTTP_HOST}" "^$"

RewriteRule ".*" - [F,L]
Discussion

The Host: request header field is essential to correct handling of name-based virtual hosts (see Recipe 4.1). If the
client doesn't include it, the chances are very good that the request will be directed to the wrong virtual host. All
modern browsers automatically include this field, so only custom-written or very old clients are likely to encounter
this issue.

The solutions given will cause such requests to be rejected with a 403 Forbidden status; the exact text of the error
page can be tailored with an ErrorDocument 403 directive.

The first solution is slightly more efficient.

See Also

•

Recipe 4.1

[Team LiB]

[Team LiB]

Recipe 12.7 Alternate Default Document

Problem

You want to have some file other than index.html appear by default.

Solution

Use DirectoryIndex to specify the new name:
 DirectoryIndex default.htm
Discussion

When a directory is requested—that is, a URL ending in a / rather than in a file name—mod_dir will select the index
document from that directory and serve that file in response. By default, the index file is assumed to be index.html,
but this can be configured to something else with the DirectoryIndex directive.

Note also that DirectoryIndex can be set to several files, which are listed in order of precedence:
 DirectoryIndex index.html index.htm index.php default.htm

Finally, note that you can also provide a relative URL if you want to load content from some other directory, such as
a CGI program:
 DirectoryIndex /cgi-bin/index.pl
See Also

•

http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

Recipe 12.8 Setting Up a Default "Favicon"

Problem

You want to define a default favorite icon, or "favicon," for your site, but allow individual sites or users to override it.

Solution

Put your default favicon.ico file into the /icons/ subdirectory under your ServerRoot, and add the following lines to
your server configuration file in the scope where you want it to take effect (such as inside a particular <VirtualHost>
container or outside all of them):
 AddType image/x-icon .ico
<Files favicon.ico>
 ErrorDocument 404 /icons/favicon.ico

</Files>
Discussion

favicon.ico files allow web sites to provide a small (16 x 16 pixels) image to clients for use in labeling pages; for
instance, the Mozilla browser will show the favicon in the location bar and in any page tabs. These files are typically
located in the site's DocumentRoot or in the same directory as the pages that reference them.

What the lines in the solution do is trap any references to favicon.ico files that don't exist and supply a default
instead. An ErrorDocument is used instead of a RewriteRule, because we want the default to be supplied only if the
file isn't found where expected. A rewrite, unless carefully crafted, would force the specified file to be used regardless
of whether a more appropriate one existed.

See Also

•

Chapter 5

[Team LiB]

[Team LiB]

Appendix A. Using Regular Expressions in Apache

A number of the Apache web server's configuration directives permit (or require!) the use of what are called regular
expressions. Regular expressions are used to determine if a string, such as a URL or a user's name, matches a
pattern.

There are numerous resources that cover regular expressions in excruciating detail, so this appendix is not designed
to be a tutorial for their use. Instead, it documents the specific features of regular expressions used by
Apache—what's available and what isn't. Even though there are quite a number of regular expression packages, with
differing feature sets, there are some commonalities among them. The Perl language, for instance, has a particularly
rich set of regular expressions but only a small subset of them are available in the Apache regex library, which is
different from Perl's.

Regular expressions, as mentioned, are a language that allows you to determine if a particular string or variable looks
like some pattern. For example, you may wish to determine if a particular string is all uppercase, or if it contains at
least 3 numbers, or perhaps if it contains the word "monkey" or "Monkey." Regular expressions provide a vocabulary
for talking about these sort of tests. Most modern programming languages contain some variety of regular expression
library, and they tend to have a large number of things in common, although they may differ in small details.

Apache 1.3 uses a regular expression library called hsregex, so called because it was developed by Henry Spencer.
Note that this is the same regular expression library used in egrep, which is the same thing as grep on many Unixish
platforms.

Apache 2.0 uses a somewhat more full-featured regular expression library called Perl Compatible Regular
Expressions (PCRE), so called because it implements many of the features available in the regular expression engine
that comes with the Perl programming language. While this appendix does not attempt to communicate all the
differences between these two implementations, you should know that hsregex is a subset of PCRE, as far as
functionality goes, so everything you can do with regular expressions in Apache 1.3, you can do in 2.0, but not
necessarily the other way around.

To grossly simplify, regular expressions implement two kinds of characters. Some characters mean exactly what they
say (for example, a G appearing in a regular expression will usually mean the literal character G), while some
characters have special significance (for example, the period (.) will match any character at all—a wildcard
character). Regular expressions can be composed of these characters to represent (almost) any desired pattern
appearing in a string.

[Team LiB]

[Team LiB]

A.1 What Directives Use Regular Expressions?

Two main categories of Apache directives use regular expressions. Any directive with a name containing the word
Match, such as FileMatch, can be assumed to use regular expressions in its arguments. And directives supplied by
the module mod_rewrite use regular expressions to accomplish their work.

For more about mod_rewrite, see Chapter 5.

SomethingMatch directives each implement the same functionality as their counterpart without the Match. For
example, the RedirectMatch directive does essentially the same thing as the Redirect directive, except that the first
argument, rather than being a literal string, is a regular expression, which will be compared to the incoming request
URL.

A.1.1 Regular Expression Basics

To get started in writing your own regular expressions, you'll need to know a few basic pieces of vocabulary, such as
shown in Table A-1 and Table A-2. These constitute the bare minimum that you need to know. Although this will
hardly qualify you as an expert, it will enable you to solve many of the regex scenarios you will find yourself faced
with.

Table A-1. A basic regex vocabulary

Character

Meaning

.

Matches any character. This is the wildcard character.

+

Matches one or more of the previous character. For
example, M+ would match one or more Ms; "+" would
match one or more characters of any kind.

*

Matches zero or more of the previous character. For
example, M* would match zero or more Ms. This
means that it will not only match M, MM, and MMM,
but it will also match a string that doesn't have any Ms in
it at all.

?

Makes the previous character optional. For example,
the regular expression monkeys? will match a string
containing either monkey or monkeys. Note that the ?
applies only to a single character in the absence of any
enclosing parentheses.

^

Indicates that the following characters must appear at
the beginning of the string being tested. Thus, a regular
expression of ^zim requires that the string being tested
start with the characters zim. ^ is referred to as an
anchor, because it anchors the match to the beginning of
the string. In the context of a character class (see
below), the ^ character has another special meaning.

$

Indicates that the characters to be matched must appear
at the end of the string. Thus, a regular expression of
gif$ requires that the string being tested end with the
characters gif. $ is referred to as an anchor, because it
anchors the match to the end of the string.

\

Escapes the following character, meaning that it removes
the "specialness" of the character. For example, a
pattern containing \. would match a literal . character,
since the \ removes the special meaning of the .
character.

[]

Character class. Match one of the things contained in
the square brackets. For example, [abc] will match
either an a, or b, or c. [abc]+, on the other hand, would
match a sequence of a's, b's, and c's, or any
combination of them. Note that within a character class,
the ^ character doesn't have its normal anchor status but
means any character except those in the class. Thus, a
character class of [^abc] will match any character that is
not an a, b, nor c.

A character class containing a - between two characters
means an entire range of characters. For example, the
character class [a-q] means all of the lowercase letters
starting from a and ending with q. [a-zA-Z] would be all
uppercase, and all lowercase letters.

In addition to character classes that you form yourself,
there are a number of special predefined character
classes to represent commonly used groups of
characters. See Table A-2 for a list of these predefined
character classes.

()

Groups a set of characters together. This allows you to
consider them as a single unit. For example, you could
apply a + or ? to an entire group of characters, rather
than just a single character. The expression (monkeys)?,
for example, would make the entire word monkeys an
optional part of the match. In some regular expression
libraries, the () characters also capture the contents of
the match so that they can be used later.

Table A-2. Predefined regular expression character classes

Character class

Meaning

[[:alnum:]]

Any alphanumeric character

[[:alpha:]]

Any alphabetical character

[[:blank:]]

A space or horizontal tab

[[:ctrl:]]

A control character

[[:digit:]]

A decimal digit

[[:graph:]]

A nonspace, noncontrol character

[[:lower:]]

A lowercase letter

[[:print:]]

Same as graph, but also space and tab

[[:punct:]]

A punctuation character

[[:space:]]

Any whitespace character, including newline and return

[[:upper:]]

An uppercase letter

[[:xdigit:]]

A valid hexadecimal digit

[[:<:]]

The boundary between the left end of a word and
nonword characters

[[:>:]]

The boundary between the right end of a word and
nonword characters

A.1.2 Examples

The previous concepts can best be illustrated by a few examples of regular expressions in action.

A.1.2.1 Redirecting several URLs

We'll start with something fairly simple. In this scenario, we're getting a new web server to handle the customer
support portion of our web site. So, all requests that previously went to http://www.example.com/support/ will now
go to the new server, http://support.example.com/. Ordinarily, this could be accomplished with a simple Redirect
statement, but it appears that our web site developer has been careless and has been using mod_speling (see Recipe
5.10), so there are links throughout the site to both http://www.example.com/support/ and to
http://www.example.com/Support/, which would actually require not one but two Redirect statements.

So, instead of using the two Redirect statements, we will use the following one RedirectMatch directive:
 RedirectMatch ^/[sS]upport/ http://support.example.com/

The square brackets indicate a character class, causing this one statement to match requests with either the upper- or
lowercase s.

Note also the ^ on the front of the argument, causing this directive to apply only to URLs that start with the specified
pattern, rather than URLs that simply happen to contain that pattern somewhere in them.

A.1.2.2 Catching common misspellings

While watching the logfiles, we see that a number of people are misspelling support as suport. This is easily fixed by
slightly altering our RedirectMatch directive:
 RedirectMatch ^/[sS]upp?ort/ http://support.example.com/

The ? makes the second p optional, thus catching those requests that are misspelled and redirecting them to the
appropriate place anyway.

A.1.3 For More Information

By far the best resources for learning about regular expressions are Jeffrey Friedl's book Mastering Regular
Expressions and Tony Stubblebind's book Regular Expression Pocket Reference, both published by O'Reilly. They
cover regular expressions in many languages, as well as the theory behind regular expressions in general.

For a free resource on regular expressions, you should see the Perl documentation on the topic. Just type perldoc
perlre on any system that has Perl installed. Or you can view this documentation online at
http://www.perldoc.com/perl5.6.1/pod/perlre.html. But be aware that there are subtle (and not-so-subtle) differences
between the regular expression vocabulary of Perl and that of Apache.

http://www.perldoc.com/perl5.6.1/pod/perlre.html
http://www.example.com/support/
http://support.example.com/.
http://www.example.com/support/
http://www.example.com/Support/,
http://support.example.com/
http://support.example.com/
http://www.perldoc.com/perl5.6.1/pod/perlre.html

[Team LiB]

[Team LiB]

Appendix B. Troubleshooting

The Apache web server is a very complex beast. In the vanilla package it includes over 30 functional modules and
more than 12 dozen configuration directives. This means that there are significant opportunities for interactions that
produce unexpected or undesirable results. This appendix covers some of the more common issues that cause
problems, as culled from various support forums.

[Team LiB]

[Team LiB]

B.1 Troubleshooting Methodology

B.1.1 In the Error Log

The Apache software does quite a reasonable job of reporting the details when it encounters problems. The reports
are recorded in the server's error log, which is usually stored in one of the following places:

•

/usr/local/apache/logs/error_log
•

/var/log/apache/error_log
•

/var/log/httpd-error.log
•

/var/log/httpd/error_log
•

C:\Program Files\Apache Group\error.log

Where the error log is put depends upon how you installed and configured the server; the wealth of possible locations
in the list above is because popular prepackaged installation kits (from Red Hat, SuSE, etc.) each has its own
preferred location. Of course, the definitive location can be determined by examining your httpd.conf file for the
ErrorLog directive(s).

So the very first thing you should do when Apache appears to be misbehaving is see if the server has any comments
to make.

If the messages in the error log don't make the cause of the problem immediately clear, or if there aren't any
messages that seem to relate to the problem, it's a good idea to crank the logging level up by changing the LogLevel
setting in the httpd.conf file:
 LogLevel debug

The debug setting enables all possible error messages and makes the server extremely verbose, so it's a good idea to
set it back to warning or error after it has helped you locate the cause of your problem.

B.1.2 Characterize the Problem

When you're trying to diagnose a problem, here is a question you should ask yourself: "What is the current behavior,
and in what ways is it different from the expected or desired behavior?"

If you ask this question, a natural successive question is, "What could cause the current behavior?"

Between the answers to these two questions often lies a "Eureka!" moment. At the very least, they narrow your area
of research.

[Team LiB]

[Team LiB]

B.2 Debugging the Configuration

When diagnosing a problem by examining your server's configuration, be sure to examine all of the files involved. In
particular, look for files identified in Include directives, as well as those in the main httpd.conf file and in .htaccess
files.

If you're editing the server-wide configuration files, be sure to restart the server afterward to make the changes take
effect!

If editing a configuration or .htaccess file seems to have no effect, test that it's actually being processed by putting a
line of gibberish into the file and trying again.

If it seems that an .htaccess file is being ignored, even when you insert gibberish, it indicates that it's within the scope
of an AllowOverride None directive.

[Team LiB]

[Team LiB]

B.3 Debugging Premature End of Script Headers

When you're working with CGI scripts, certain messages can quickly become extremely familiar and tiresome;
typically the output in the browser window will be either a blank page or an Internal Server Error page.

This message has several different possible causes. These include, but are not necessarily limited to:

•

The CGI script is either not emitting any output at all, or it is emitting content before the required header lines,
or it's neglecting to emit the obligatory blank line between the header and the content.

•

The script encountered an error and emitted the error message instead of its expected output.
•

You're using suexec and one or more of the suexec constraints has been violated.

To test to see if the problem is an error condition or improper CGI response formatting, run the script interactively
from the command line to verify that it is emitting content in compliance with the CGI rules.

If you're using suexec, check the suexec logfile to see if there are security constraints being violated.

You can tell if you're using suexec with the following command:
 % httpd -l
Compiled-in modules:
 http_core.c
 mod_so.c

suexec: disabled; invalid wrapper /var/www/apache/bin/suexec

If you get a message that says that suexec is disabled, you can ignore that as a possible cause of the script's
execution problems.

If suexec is enabled, though, you should look at its logfile to get more details about the problem. You can find the
logfile with:
 # suexec -V
 -D DOC_ROOT="/usr/local/apache/htdocs"
 -D GID_MIN=100
 -D HTTPD_USER="www"
 -D LOG_EXEC="/usr/local/apache/logs/suexec.log"
 -D SAFE_PATH="/usr/local/bin:/usr/bin:/bin"
 -D UID_MIN=100

 -D USERDIR_SUFFIX="public_html"

The important line is -D LOG_EXEC="/usr/local/apache/logs/suexec.log"; it tells you exactly where suexec is
recording its errors.

You can find out more about CGI and suexec here:

•

The CGI specification, http://CGI-Spec.Golux.Com/
•

Recipe 8.12
•

The suexec manpage

http://cgi-spec.golux.com/default.htm
http://CGI-Spec.Golux.Com/

[Team LiB]

[Team LiB]

B.4 Common Problems on Windows

Windows has its own distinct set of problem areas that don't apply to Unixish environments.

B.4.1 Cannot Determine Hostname

When trying to start Apache from a DOS window, you receive a message like "Cannot determine hostname. Use
ServerName directive to set it manually."

If you don't explicitly supply Apache with a name for your system, it tries to figure it out. This message is the result of
that process failing.

The cure for this is really quite simple: edit your conf\httpd.conf file, look for the string ServerName, and make sure
there's an uncommented directive such as:
 ServerName localhost

or:
 ServerName www.foo.com

in the file. Correct it if there is one there with wrong information, or add one if you don't already have one.

Also, make sure that your Windows system has DNS enabled. See the TCP/IP setup component of the Networking
or Internet Options control panel.

After verifying that DNS is enabled and that you have a valid hostname in your ServerName directive, try to start the
server again.

B.4.2 Finding WS2_32.DLL on Windows

When trying to start Apache on Windows 95, a message like Unable To Locate WS2_32.DLL... appears. This file
is necessary for Apache to function properly.

Prior to Version 1.3.9, Apache for Windows used Winsock 1.1. Beginning with Version 1.3.9, Apache began using
Winsock 2 features (specifically, WSADuplicateSocket()). WS2_32.DLL implements the Winsock 2 API. Winsock
2 ships with Windows NT 4.0 and Windows 98. Some of the earlier releases of Windows 95 did not include
Winsock 2.

To fix it, install Winsock 2, available at http://www.microsoft.com/windows95/downloads/. Then restart your server,
and the problem should be gone.

B.4.3 Fixing WSADuplicateSocket Errors

If, when trying to start Apache on Windows, it fails and the Apache error log contains this message:
 [crit] (10045) The attempted operation is not supported for the type of object
referenced: Parent: WSADuplicateSocket failed for socket ###

it indicates that your system is using a firewall product that has inserted itself into the network software but doesn't
fully provide all the functionality of the native network calls.

To get rid of the problem, you need to reconfigure, disable, or remove the firewall product that is running on the same
box as the Apache server.

This problem has been seen when Apache is run on systems along with Virtual Private Networking (VPN) clients
such as Aventail Connect. Aventail Connect is a Layered Service Provider (LSP) that inserts itself, as a shim,
between the Winsock 2 API and Windows' native Winsock 2 implementation. The Aventail Connect shim does not
implement WSADuplicateSocket, which is the cause of the failure.

The shim is not unloaded when Aventail Connect is shut down. Once observed, the problem persists until the shim is
either explicitly unloaded or the machine is rebooted.

Another potential solution (not tested) is to add apache.exe to the Aventail Connect exclusion list (see below).

Apache is affected in a similar way by any firewall program that isn't correctly configured. Assure you exclude your
Apache server ports (usually port 80) from the list of ports to block. Refer to your firewall program's documentation
for the how-to.

Relevant information specific to Aventail Connect can be found at How to Add an Application to Aventail Connect's
Application Exclusion List at http://support.aventail.com/akb/article00586.html.

B.4.4 Handling System Error 1067

Sometimes, when starting Apache on Windows, you might get a message like "System error 1067 has occurred. The
process terminated unexpectedly." This unfortunately uninformative message means that the Web server was unable
to start correctly as a service for one reason or another.

As with any error, the first step should be to check your Apache error log. If that doesn't reveal anything useful, try
checking the Windows application event log to find out why Apache won't start. If that doesn't help, try:
 D:\>c:
C:\>cd "\Program Files\Apache Group\Apache"

C:\Program Files\Apache Group\Apache>apache

(If you don't get the prompt back, hit Ctrl-C to cause Apache to exit.)

This will run Apache interactively rather than as a service; any error messages should show up on your screen rather
than being concealed behind a System Error 1067 alert box.

http://www.microsoft.com/windows95/downloads/default.htm
http://support.aventail.com/akb/article00586.html
http://www.microsoft.com/windows95/downloads/
http://support.aventail.com/akb/article00586.html

[Team LiB]

[Team LiB]

B.5 Fixing Build-Time Error Messages

B.5.1 __inet Symbols

If you have installed BIND-8, then this is normally due to a conflict between your include files and your libraries.
BIND-8 installs its include files and libraries in /usr/local/include/ and /usr/local/lib/, while the resolver that comes
with your system is probably installed in /usr/include/ and /usr/lib/.

If your system uses the header files in /usr/local/include/ before those in /usr/include/ but you do not use the new
resolver library, then the two versions will conflict. To resolve this, you can either make sure you use the include files
and libraries that came with your system, or make sure to use the new include files and libraries.

If you're using Apache 2.0 or later, or Apache 1.3 with the APACI build script, you can make changes to the library
search lists by defining them on the ./configure command line:
 % LIBS=-lbind ./configure ...

If you're using Apache 1.3 or earlier and controlling the build process by editing the Configuration file directly, just
add -lbind to the EXTRA_LDFLAGS line in the file.

After making the appropriate change to your build configuration process, Apache should build with the correct library.

Apache Versions 1.2 and earlier use EXTRA_LFLAGS in the Configuration file instead.

As of BIND 8.1.1, the bind libraries and files are installed under /usr/local/bind by default, so you should not run
into this problem. Should you want to use the bind resolvers, you'll have to add the following to the respective lines:

•

For Apache 1.3 with APACI, or 2.0 and later:
% CFLAGS=-I/usr/local/bin/include \

> LDFLAGS=/usr/local/bind/lib LIBS=-lbind \
> ./configure ...

•

For Apache 1.2 or 1.3 with direct editing of Configuration, add/change the following lines in the file:
EXTRA_CFLAGS=-I/usr/local/bind/include

EXTRA_LDFLAGS=-L/usr/local/bind/lib
EXTRA_LIBS=-lbind

[Team LiB]

[Team LiB]

B.6 Getting Server-Side Includes to Work

The solution is to make sure that Options Includes is turned on and that either XBitHack is turned On, or that you
have the appropriate AddHandler directives set on the file type that you are using.

As discussed in Recipe 8.8, there are a number of ways to enable SSI. If the unparsed SSI directives are appearing
in the HTML when the page is loaded, this is a clear indication that SSI execution is not enabled for the document in
question.

If the server has difficulty parsing an SSI directive, it will substitute the phrases "An error occurred while processing
this directive" in its place in the response. If this happens, the cause of the problem should be listed in the server's
error log. See also Recipe 8.12.

[Team LiB]

[Team LiB]

B.7 Debugging Rewrites That Result in "Not Found" Errors

If your RewriteRule directives keep resulting in 404 Not Found error pages, add the PT (PassThrough) flag to the
RewriteRule line. Without this flag, Apache won't process a lot of other factors that might apply, such as Alias
settings.

You can verify that this is the cause of your problem by cranking the mod_rewrite logging level up to 9 and seeing
that the entries relating to the RewriteRule mention something about prefixes with document_root:
 RewriteLog logs/rewrite-log
RewriteLogLevel 9

% tail logs/rewrite_log
ip-address - - [date] [reqid] (2) prefixed with document_root to
/usr/local/apache/htdocs/robots.text
ip-address - - [date] [reqid] (1) go-ahead with /usr/local/apache/htdocs/robots.text

[OK]

Don't forget to turn off the RewriteLog directive, or possibly just turn down the logging
level, after you've done your checking! Otherwise your disk space may disappear like the
snows of yesteryear.

Without the PT flag, mod_rewrite assumes that any rewriting it does will be the last URL manipulation the server
needs to do for the request. Since mod_rewrite directives are handled very early in request processing, this can
mean that Alias, ScriptAlias, and other URL manipulations may not get executed. Specifying the flag tells
mod_rewrite to not short-circuit processing, but let it continue as usual.

[Team LiB]

[Team LiB]

B.8 .htaccess Files Having No Effect

Make sure that AllowOverride is set to an appropriate value. Then, to make sure that the .htaccess file is being
parsed at all, put the following line in the file and ensure that it causes a server error page to show up in your browser:
 Garbage Goes Here

.htaccess files override the settings in the main server configuration file. Because this is frequently an undesired thing,

.htaccess files are frequently disabled, which will cause your .htaccess file to be ignored.

.htaccess files are enabled using the AllowOverride directive, which lists categories of directives that may appear in
an .htaccess file. For example, if you wish to put authentication-related directives in an .htaccess file, you will need
to put the following line in the main server configuration file:
 AllowOverride AuthConfig

AllowOverride All permits any directive to be put in the .htaccess file, while the directive AllowOverride None
means, "Please ignore my .htaccess files."

Thus, the most common cause of an .htaccess file being ignored is simply that your configuration file tells Apache to
ignore it.

If you put garbage in your .htaccess file, this should generate a Server Error message in the browser, which will
verify that Apache is indeed looking at the contents of your file. However, if such a message is not displayed, this is a
sure sign that your .htaccess file is being completely ignored.

[Team LiB]

[Team LiB]

B.9 Address Already in Use

If, when attempting to start your Apache server, you get the following error message:
 [Thu May 15 01:23:40 2003] [crit] (98)Address already in use: make_sock: could not
bind to port 80

One of three things is happening:

•

You are attempting to start the server as a nonroot user. Become the root user and try again.
•

There is already some process running (perhaps another Apache server) using port 80. Run netstat, or
perhaps look at the process list and kill any process that seems to fill this role.

•

You have more than one Listen directive in your configuration file pointing to the same port number. Find the
offending duplicate directive and remove it.

In the case of the first condition, you will need to become the root user in order to start Apache. By long tradition,
only the root user may bind to any port lower than 1025. Since Apache typically runs on port 80, this requires root
privileges.

The second condition can be a little trickier. Sometimes a child process will refuse to die and will remain running after
Apache has been shut down. There are numerous reasons this might happen. Most of the time, you can kill this
process forcibly using kill or kill -9 while logged in as root. As long as this process is running and has the port
occupied, you will be unable to start anything else wanting to bind to that same port.

In the case of the third condition, the second Listen directive attempts to bind to port 80, which has already been
taken by the first Listen directive. Simply removing one of the Listen directives will clear up this problem.

[Team LiB]

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of Apache Cookbook is a moose. The moose roams the forests of North America, Europe,
and Russia. It's the largest of the deer family, and the largest moose of all, Alces alces gigas, is found throughout
Alaska. This particular moose, in fact, is so ubiquitous that it's played an important role in the development of the
state-though the relationship between moose and men is often adversarial.

Moose have a high reproductive potential and can quickly fill a range to capacity. And in Alaska, the removal of
mature timber through logging and fire has benefited them by providing new stands of young timber-high-quality
moose food. Moose get to be a pain when they eat crops, stand on airfields, wander the city streets, and collide with
cars and trains.

But in general, these animals are good for the state's economy. Moose are an essential part of the Alaskan landscape,
providing tourist photo opportunities when they feed along the highway. Residents and out-of-state hunters harvest
6,000 to 8,000 moose annually-approximately 3.5 million pounds of meat. The future for these animals in Alaska is
reasonably bright because humans are learning how to manage moose habitat with wildlife and how to mitigate
factors that affect moose populations, such as hunting and predation by wolves and bears.

Sarah Sherman was the production editor and copyeditor, and Marlowe Shaeffer was the proofreader for Apache
Cookbook. Matt Hutchinson and Claire Cloutier provided quality control. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is an
original engraving from The Illustrated Natural History: Mammalia. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons
were drawn by Christopher Bing. This colophon was written by Ed Stephenson.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

#apache IRC channel
#exec SSI directive
#include directive
#include virtual, URIs passed to
%a format effector
%A format effector
%d format effector
%h format effector
%i format effector
%m format effector
%M format effector
%v logging format
%Y format effector
<Directory proxy:*> section
<Directory> directive 2nd
<Directory> section
<Files> section
 directives and
<FilesMatch> section 2nd
<Location> section
 directives and
<LocationMatch> section
<Proxy> directive
<VirtualHost> section
 directives 2nd
 displaying same content on several addresses
 log
 name-based virtual host
.cgi files
.gif files
.htaccess files [See also configuration]2nd
 having no effect
 minimizing performance impact
 renaming
 restricting access
 Satisfy Any directive
 WebDAV
.htpasswd files
.shtml files
default <Virtual Host> keyword

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

ab (Apache bench)
Accept header field
access
 denying to unreferred requests
 restricted documents
AccessFileName directive
account information
Action directive
activity logging 2nd
AddCharset directive
AddFilter directive
AddHandler directive 2nd 3rd 4th
 identifying extensions
AddLanguage directive
addModule directive
address already in use error
address-based virtual hosts
 default
 name-based and
 setting up
AddType directive
alert log level
Alias directive
 invalid
 trailing slash
aliasing
 several URLs with single directive
AliasMatch directive
Allow directive
Allow from all directive
Allow from directive
AllowOverride directive
Andrews, Bryan
Apache
 building from sources
 modules
 mod_auth
 mod_auth_digest
 mod_auth_mysql
 mod_authn_dbi
 mod_autoindex 2nd
 mod_cache
 mod_cgi
 mod_dav [See mod_dav module]
 mod_dir 2nd
 mod_ext_filter
 mod_file_cache
 mod_log_config 2nd
 mod_log_sql
 mod_logio
 mod_mime
 mod_mmap_static 2nd
 mod_perl [See mod_perl modules]
 mod_php [See mod_php module]
 mod_proxy [See mod_proxy module]
 mod_rewrite [See mod_rewrite module]
 mod_snake [See mod_snake module]
 mod_speling
 mod_ssl [See mod_ssl module]
 mod_status module
 mod_unique_id
 mod_vhost_alias [See mod_vhost_alias module]
 online tutorials
 parsing configuration file
 performance [See performance]
 running as service on Windows
 sources of information
 sources, downloading [See downloading Apache sources]
 starting and stopping
 uninstalling
 version 1.3, required modules
 version 2.0, required modules
 web site
Apache Module Registry
Apache Today web site
Apache-SSL module
Apache::AuthExpire mod_perl handler
Apache::Constants
Apache::Cookbook::Example
Apache::Htpasswd::Perishable CPAN module
Apache::Perldoc module
Apache::PerlRun
Apache::Registry 2nd
apachectl script
 options
ApacheToolbox
 installing with
 versions compatability
AuthDigestFile directive
authentication
 accessing username
 based on system file ownership
 Basic versus Digest
 client certificates
 Digest
 MySQL database
 passwords
 preventing brute-force password attacks
 usernames and passwords
 weak and strong 2nd 3rd
authorization 2nd
AuthType directive
Aventail Connect

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

bandwidth, stealing
Basic versus Digest authentication methods
benchmarking
bin directory 2nd
BIND-8 and build-time error messages
books (Apache web server)
browser software, logging
browsers
 Content-Type headers
 credentials and
building Apache from sources

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

CA, importing
CA.pl script
CACertificateFile directive
CacheFile directive
CacheNegotiatedDocs directive
CacheRoot directive
caching files
cadaver
cannot determine host name error (Windows)
case-insensitive URLs
certificate signing request
certificates
 signing
 SSL
 authentication
 keys
CGI programs
 arguments, rewriting path information
 directories
 creating one for each user
 mapping several URLs to same
 not-script aliased
 only CGI scripts
 identifying by extension
 making content filters
 outputting to HTML files
 reading from parameters
 redirecting document requests to
 running as different user
 testing
 Windows
CGI.pm module
CGI::Carp
cgic C library
CheckSpelling directive
ClearModuleList directive
combined log format 2nd
common log format 2nd
conf directory 2nd
config SSI directive
configuration [See also .htaccess file]
 debugging
 directives
 file, parsing process
content
 creating URL for existing
 dynamic [See dynamic content]
 filters
 negotiation, disabling
 serving out of directory rather than DocumentRoot
Content-length field
Content-Type header field, setting according to browser
Cookie header field
cookies
 logging
 Netscape proposal
CPAN shell
credentials
 browsers and
 embedded in URLs
 single use
crit log level
CustomLog directive 2nd
 logging proxy requests
 logging server IP addresses

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

dates, last modified
DAVLockDB location
debug log level
debugging [See troubleshooting]
DefaultType directive
Deny directive 2nd
Deny from all directive
Deny from directive
Digest authentication
 versus Basic
directives
 #exec SSI directive
 #include directive
 <Directory> 2nd
 <FilesMatch>
 <Proxy>
 <VirtualHost> log
 <VirtualHost> section [See <VirtualHost> section directive]
 AccessFileName
 Action
 AddCharset
 AddFilter
 AddHandler [See AddHandler]
 AddLanguage
 addModule
 AddType
 Alias [See Alias directive]
 aliasing several URLs
 AliasMatch
 Allow
 Allow from
 Allow from all
 AllowOverride
 AuthDigestFile
 AuthType
 CACertificateFile
 CacheFile
 CacheNegotiatedDocs
 CacheRoot
 CheckSpelling
 ClearModuleList
 config SSI
 configuration
 CustomLog [See CustomLog directive]
 DefaultType
 Deny 2nd
 Deny from
 Deny from all
 ErrorDocument [See ErrorDocument directive]
 ErrorDocument 403
 ErrorDocument 404
 ErrorLog [See ErrorLog directive]
 FollowSymLinks
 in <Directory proxy:*> section
 Include 2nd
 keepalive-related
 Limit
 LimitExcept
 LoadModule
 LogFormat [See LogFormat directive]
 LogLevel [See LogLevel directive]
 MaxClients
 MaxSpareServers 2nd
 MinSpareServers
 MinSpareThreads
 MMapFile 2nd
 NameVirtualHost [See NameVirtualHost directive]
 not having a direct effect
 NumServers
 Options [See Options directive]
 Order
 outside any <VirtualHost>
 PerlHandler
 placing properly
 ProxyBlock 2nd
 ProxyPass 2nd 3rd
 ProxyPassReverse 2nd
 Redirect [See Redirect directive]
 RedirectMatch 2nd 3rd
 regular expressions and
 Require file-owner directive
 RewriteCond [See RewriteCond directive]
 RewriteRule [See RewriteRule directive]
 Satisfy [See Satisfy directive]
 scope
 ScriptAlias 2nd
 ScriptAliasMatch
 ScriptInterpreterSource 2nd
 sections and
 ServerAlias
 ServerName
 ServerRoot
 SetEnv
 SetEnvIf
 SetOutputFilter
 SSI [See SSI directive]
 SSI #include
 SSI include
 SSLCertificateFile
 SSLRequireSSL
 ThreadsPerChild
 User [See User directive]
 UserDir
 various formats including HTTP status codes
 VirtualDocumentRoot
 VirtualScriptAlias
directories
 CGI (see CGI programs
 directories)
 listings
 caching
 disabling indexing
 enabling
 generating
 ScriptAlias'ed
 setting file permissions
 turning into hostnames
DirectoryIndex directive 2nd 3rd
DNS
 lookups
 round-robin
 server, name-based virtual hosts and
document
 directories 2nd
 names, turning into argument
downloading Apache sources
dynamic content 2nd [See also CGI programs]
 giving its own dedicated server
 HTML files

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

email notification, receiving when error occurs
emerg log level
encryption technology, distributing
end of script headers, debugging
error
 conditions, notification
 documents in multiple languages
 handling
 log level
 logging
 logs
 messages
 customized
 fixing build-time
 Premature end of script headers
 pages
 404 Not Found
 IE displaying its own
ErrorDocument
 as a dynamic page
ErrorDocument 403 directive
ErrorDocument 404 directive
 setting to a list of available sites on server
ErrorDocument directive 2nd 3rd
 notification on error conditions
ErrorLog directive
 syslog and
 virtual hosts and
extensions
 protecting all files except for certain
 using to identify CGI scripts

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

favicon
files
 access outside web root
 caching
 permissions
 protecting all except for certain extensions
 protecting server
filtering proxied content
folder listings
 disabling indexing
 enabling
 generating
FollowSymLinks directive
footers, including in HTML files
FTP port

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

GDBM files
global scope
gone redirection
Group directive 2nd
 protecting server files

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

header fields
 Accept
 Cookie
 Host:
 logging arbitrary request
 logging arbitrary response
 Set-Cookie
 Status CGI response
 User-agent
headers
 debugging premature end of script
 including in HTML files
home page, setting something other than index.html as
Host field, handling missing
Host: header fields
HostNameLookups directive 2nd
hostnames
 logging instead of IP addresses
 turning directories into
hsregex
htdigest utility
HTML files
 dynamic content
 including CGI output
 including headers and footers
htpasswd utility
HTTP
 (secure) module, installing
 access control
 port
HTTP status codes
 301
 302
 303
 400 series status code
 401 (unauthorized) code
 403 Forbidden error 2nd 3rd
 Deny directive and
 open mail relay, preventing
 404 Not Found error 2nd 3rd 4th
 sent as 403 Forbidden instead
 SSI directives and
 using ErrorDocument to catch
 405 status code (Method Not Allowed)
 410
 500 series status code
 list of
 various directive formats and
HTTPS port

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

icons directory
IdentityCheck On directive
IE error pages
images
 files
 logging requests
 restricting from being used off-site
Include directive 2nd
include directory 2nd
index.html
 language variants
 setting other file as default
info log level
installing Apache
 ApacheToolbox [See ApacheToolbox, installing with]
 prepackaged kits
 Red Hat Linux
 Windows [See Windows, installing Apache]
Internal Server Error page
Internet.Com
IP addresses [See also address-based vitual hosts]
 logging hostnames instead of
 logging proxied
 logging server
IP-based virtual hosts [See address-based virtual hosts]
IRC channel, #apache

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

keepalive-related directives
key, private

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

LDAP directories
libexec directory 2nd
Limit directive
LimitExcept directive
load
 distributing evenly
 sharing between servers
LoadModule directive
localhost address
lock databases on NFS filesystem
logfiles [See also logging]
 error logs
 maintaining separate logs for each virtual host
 misspellings
 rotating
 first of month
 rotatelogs program
 splitting up
LogFormat directive
 logging server IP addresses
 splitting up a logfile
logging 2nd [See also logfiles]
 activity [See activity logging]
 arbitrary request header fields
 arbitrary response header fields
 browser software
 combined log format
 common log format
 cookies
 errors
 errors for virtual hosts to multiple files
 hostnames instead of IP addresses
 HTTP status codes
 image requests
 MAC (hardware) address
 more detailed errors
 more details in entries
 MySQL database activity
 POST contents
 proxied IP address
 proxy requests
 referring page
 requests by day or hour
 server IP address
 syslog
 types of data
 user directories
 vistual hosts
LogLevel directive
 documentation
LogLevel, default value
logresolve application
logs directory 2nd
loopback address

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

MAC (hardware) address, logging
Mail::Sendmail
Mail::Sendmail CPAN module
mailing lists
man directory 2nd
MaxClients directive
MaxSpareServers directive
MaxSpareThreads directive
memory, determining how much you need
methods, limiting by user
Microsoft Software Installer (MSI) package
MIME type
MinSpareServers directive
MinSpareThreads directive
misspellings in log files
MMapFile directive 2nd
mod_auth module
mod_auth_digest module
mod_auth_mysql module
mod_authn_dbi module
mod_autoindex module 2nd
mod_cache module
mod_cgi module
mod_dav module
 Unix
 enabling
 installing
 Windows
 enabling
 installing
mod_dir module 2nd
mod_ext_filter module
mod_file_cache module
mod_log_config module 2nd
mod_log_sql module
mod_logio module
mod_mime module
mod_mmap_static module 2nd
mod_perl modules
 Apache::AuthExpire
 Apache::Constants
 Apache::Cookbook::Example
 Apache::Htpasswd::Perishable
 Apache::Perldoc
 Apache::PerlRun
 Apache::Registry 2nd
 CGI::Carp
 dynamic content
 handler
 modules
 writing
 installing on Unix
 Mail::Sendmail
 ModPerl::PerlRun
 ModPerl::Registry
 proxying content to another server
 speeding up Perl CGI programs with
 Sys::Syslog
 using instead of mod_cgi
mod_php module
 installing on Unix
 installing on Windows
mod_proxy module 2nd
 proxy directory
mod_rewrite module 2nd
 range requests
 using to map to directory based on hostname
mod_snake module
 installing
mod_speling module
mod_ssl module 2nd 3rd
 installing
mod_status module
 server-status handler 2nd
mod_unique_id module
mod_vhost_alias module
 variables
ModPerl::PerlRun
ModPerl::Registry
modules [See also Apache, modules]
 running minimal set
 Apache 1.3
 Apache 2.0
 support status
 third-party [See third-party modules]
MPMs
 netware
 perchild
 prefork
 worker
MPMs, threaded
MultiViews method
MySQL
 database for authenticating users
 databases
 logging database activity

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

name-based virtual hosts
 address-based and
 default
 DNS server and
 setting up
 SSL and
NameVirtualHost directive 2nd
 name-based virtual host
Netscape cookie proposal
netware MPM
NFS filesystem, lock databases on
non-script aliased directories
notice log level
NumServers directive

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

online tutorials (Apache)
open mail relay
Options directive 2nd
 +ExecCGI argument and
 -FollowSymLinks
 SymlinksIfOwnerMatch
Order directive

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

parsing Apache configuration file
partial downloads
passwords
 authentication 2nd
 expiring
 managing .htpasswd files
 password file for Digest authentication
 preventing brute-force attacks
 single use
PCRE (Perl Compatible Regular Expressions)
perchild MPM
performance
 minimizing impact of .htaccess files
Perl CGI programs, speeding up
Perl Compatible Regular Expressions (PCRE)
PerlHandler directive
PerlRun mode
permanent redirection
PHP
 dynamic content
 module installation on Windows
 script handling, enabling
 seeing syntax-enhanced source without setting up symbolic links
 verifying installation
port-based virtual hosting
ports
POST logging
prefork MPM
private key, generating
process creation, optimizing
proxies [See also proxy servers]2nd
 filtering proxied content
 logging IP address
 logging requests
 restricting access to URLs
proxy directory 2nd
proxy servers
 authorization
 configuring caching
 content filter, using as
 forwarding requests to
 preventing being used as open relay
 securing
ProxyBlock directive 2nd
ProxyPass directive 2nd 3rd
ProxyPassReverse directive 2nd
Python module, installing

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

RAM, determining how much you need
range requests
Red Hat Linux
 installing Apache
 up2date tool
Redirect directive 2nd
 preserving path information
 URL served as HTTPS
redirecting 2nd
 all requests to single host
 document requests to CGI script
 several URLs to same destination
 to secure area
RedirectMatch directive 2nd 3rd
Registry mode
regular expressions
 character classes
 directives
 examples
 library
 resources
 vocabulary
releases, tags used to label versions
Require file-owner directive
response status, changing
restricted documents
restrictions, removing selectively
RewriteCond directive 2nd
 logging proxy requests
 NC (No Case) flag
 wrappers
RewriteRule directive 2nd 3rd 4th 5th
 [PT] flag
 404 Not Found error pages and
 logging proxy requests
 multiple
rewriting
 based on query string
RFC 2109
RFC 2165
RFC 2616
rotate-log-monthly.pl script
rotatelogs program
round robin, DNS
RSA key (genrsa)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Satisfy directive 2nd
 requiring both weak and strong authentication
ScriptAlias directive
ScriptAlias directives
ScriptAlias'ed directories
ScriptAliasMatch directive
ScriptInterpreterSource directive 2nd
sections and directives
secure HTTP module, installing
Secure Socket Layers [See SSL]
security [See also authentication; authorization]2nd
 relaxing in subdirectories
 removing restrictions selectively
seeother redirection
server-side includes
server-status handler
ServerAlias directive
ServerName
 directives
 incorrect or missing
ServerRoot directive
servers
 activity
 protecting files
 proxy [See proxy servers]
Set-Cookie header field
SetEnv directive
SetEnvIf directive
SetHandler perl-script directive
SetOutputFilter directive
size restrictions on documents
slash, trailing
SMTP relay
Spencer, Henry
split-logfile program 2nd
Squid proxy server
SSI #include directive
SSI directive 2nd 3rd 4th
 parsing for
SSI include directive
SSIs, enabling
SSL (Secure Socket Layers)
 authenticating with client certificates
 generating certificates
 keys
 installing
 name-based virtual hosts
 redirecting to
 serving a portion of site via
 support
SSLCertificateFile directive
SSLRequireSSL directive
starting and stopping Apache
Status CGI response header field
status for a response, changing
stealing bandwidth
Stein, Lincoln
strict setting in Perl
subdirectories, relaxing security in
suexec
 disabled message
symbolic links
 seeing syntax-enhanced source without setting up
symbolic links, optimizing
Sys::Syslog
syslog, logging
system error 1067
system file ownership

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

temporary redirection 2nd
third-party modules, installing
thread creation, tuning
ThreadsPerChild directive
trailing slash
troubleshooting
 .htaccess files
 address already in use error
 cannot determine host name error
 premature end of script headers
 server-side includes
 system error 1067
 Windows
 WSADuplicateSocket errors

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

unintalling Apache
unreferred requests, denying access to
up2date tool (Red Hat Linux)
upload documents, limiting
URIs passed to #include virtual
URLs
 accessing credentials embedded in
 aliasing with single directive
 case-insensitive
 creating for existing content
 giving each user own
 logging referring page
 mapping
 several to same CGI directory
 to directories
 redirecting [See redirecting]
 replacing text in
 restricting proxy access
 rewriting path information in CGI arguments
User directive 2nd
 protecting server files
user directories, logging
User-agent field
UserDir directive
usernames
 authentication
users@httpd.apache.org mailing list

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

versions, tags used to label
virtual hosts
 address-based [See address-based virtual hosts]
 displaying same content on several addresses
 hosting multiple with same configuration
 using rewrite rules
 logging
 logging errors to multiple files
 maintaining separate logfiles
 name-based [See name-based virtual hosts]
 port-based
 splitting up a logfile
Virtual Private Networking (VPN)
VirtualDocumentRoot directive
VirtualScriptAlias directive
VPN (Virtual Private Networking)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

warn log level
warnings setting in Perl
watermark.cgi file
WebDAV
 enabling server for
 enabling without making files writable
 securing
 tools
 Unix capabilities
 Windows capabilities
Windows
 cannot determine host name error
 CGI programs
 installing Apache
 first time
 module support status
 PHP module installation
 running Apache as service
 troubleshooting
Winsock 2
worker MPM
wrappers
WS2_32.DLL
WSADuplicateSocket errors

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

XBitHack directive

[Team LiB]

	Main Page
	Table of content
	Copyright
	Preface
	What's in This Book
	Platform Notes
	Other Books
	Other Sources
	How This Book Is Organized
	Conventions Used in This Book
	We'd Like to Hear from You
	Acknowledgments

	Chapter 1. Installation
	Recipe 1.1 Installing from Red Hat Linux's Packages
	Recipe 1.2 Installing Apache on Windows
	Recipe 1.3 Downloading the Apache Sources
	Recipe 1.4 Building Apache from the Sources
	Recipe 1.5 Installing with ApacheToolbox
	Recipe 1.6 Starting, Stopping, and Restarting Apache
	Recipe 1.7 Uninstalling Apache

	Chapter 2. Adding Common Modules
	Recipe 2.1 Installing a Generic Third-Party Module
	Recipe 2.2 Installing mod_dav on a Unixish System
	Recipe 2.3 Installing mod_dav on Windows
	Recipe 2.4 Installing mod_perl on a Unixish System
	Recipe 2.5 Installing mod_php on a Unixish System
	Recipe 2.6 Installing mod_php on Windows
	Recipe 2.7 Installing the mod_snake Python Module
	Recipe 2.8 Installing mod_ssl

	Chapter 3. Logging
	Recipe 3.1 Getting More Details in Your Log Entries
	Recipe 3.2 Getting More Detailed Errors
	Recipe 3.3 Logging POST Contents
	Recipe 3.4 Logging a Proxied Client's IP Address
	Recipe 3.5 Logging Client MAC Addresses
	Recipe 3.6 Logging Cookies
	Recipe 3.7 Not Logging Image Requests from Local Pages
	Recipe 3.8 Logging Requests by Day or Hour
	Recipe 3.9 Rotating Logs on the First of the Month
	Recipe 3.10 Logging Hostnames Instead of IP Addresses
	Recipe 3.11 Maintaining Separate Logs for Each Virtual Host
	Recipe 3.12 Logging Proxy Requests
	Recipe 3.13 Logging Errors for Virtual Hosts to Multiple Files
	Recipe 3.14 Logging Server IP Addresses
	Recipe 3.15 Logging the Referring Page
	Recipe 3.15 Logging the Referring Page
	Recipe 3.17 Logging Arbitrary Request Header Fields
	Recipe 3.18 Logging Arbitrary Response Header Fields
	Recipe 3.19 Logging Activity to a MySQL Database
	Recipe 3.20 Logging to syslog
	Recipe 3.21 Logging User Directories

	Chapter 4. Virtual Hosts
	Chapter 4. Virtual Hosts
	Chapter 4. Virtual Hosts
	Recipe 4.3 Setting Up Address-Based Virtual Hosts
	Recipe 4.4 Creating a Default Address-Based Virtual Host
	Recipe 4.4 Creating a Default Address-Based Virtual Host
	Recipe 4.6 Mass Virtual Hosting with mod_vhost_alias
	Recipe 4.7 Mass Virtual Hosting Using Rewrite Rules
	Recipe 4.7 Mass Virtual Hosting Using Rewrite Rules
	Recipe 4.9 Logging for Each Virtual Host
	Recipe 4.10 Splitting Up a LogFile
	Recipe 4.11 Port-Based Virtual Hosts
	Recipe 4.12 Displaying the Same Content on Several Addresses

	Chapter 5. Aliases, Redirecting, and Rewriting
	Recipe 5.1 Showing Highlighted PHP Source Without Symlinking
	Recipe 5.2 Mapping a URL to a Directory
	Recipe 5.3 Creating a New URL for Existing Content
	Recipe 5.4 Giving Users Their Own URL
	Recipe 5.5 Aliasing Several URLs with a Single Directive
	Recipe 5.6 Mapping Several URLs to the Same CGI Directory
	Recipe 5.7 Creating a CGI Directory for Each User
	Recipe 5.8 Redirecting to Another Location
	Recipe 5.9 Redirecting Several URLs to the Same Destination
	Recipe 5.10 Permitting Case-Insensitive URLs
	Recipe 5.11 Replacing Text in Requested URLs
	Recipe 5.12 Rewriting Path Information to CGI Arguments
	Recipe 5.13 Denying Access to Unreferred Requests
	Recipe 5.14 Rewriting Based on the Query String
	Recipe 5.15 Redirecting All—or Part—of Your Server to SSL
	Recipe 5.16 Turning Directories into Hostnames
	Recipe 5.17 Redirecting All Requests to a Single Host
	Recipe 5.17 Redirecting All Requests to a Single Host

	Chapter 6. Security
	Recipe 6.1 Using System Account Information for Web Authentication
	Recipe 6.2 Setting Up Single-Use Passwords
	Recipe 6.3 Expiring Passwords
	Recipe 6.4 Limiting Upload Size
	Recipe 6.5 Restricting Images from Being Used Off-Site
	Recipe 6.6 Requiring Both Weak and Strong Authentication
	Recipe 6.7 Managing .htpasswd Files
	Recipe 6.8 Making Password Files for Digest Authentication
	Recipe 6.9 Relaxing Security in a Subdirectory
	Recipe 6.10 Lifting Restrictions Selectively
	Recipe 6.11 Authorizing Using File Ownership
	Recipe 6.12 Storing User Credentials in a MySQL Database
	Recipe 6.13 Accessing the Authenticated Username
	Recipe 6.14 Obtaining the Password Used to Authenticate
	Recipe 6.15 Preventing Brute-Force Password Attacks
	Recipe 6.16 Using Digest Versus Basic Authentication
	Recipe 6.17 Accessing Credentials Embedded in URLs
	Recipe 6.18 Securing WebDAV
	Recipe 6.19 Enabling WebDAV Without Making Files Writable by the Web User
	Recipe 6.20 Restricting Proxy Access to Certain URLs
	Recipe 6.21 Protecting Files with a Wrapper
	Recipe 6.22 Protecting All Files Except a Subset
	Recipe 6.23 Protecting Server Files from Malicious Scripts
	Recipe 6.24 Setting Correct File Permissions
	Recipe 6.25 Running a Minimal Module Set
	Recipe 6.26 Restricting Access to Files Outside Your Web Root
	Recipe 6.27 Limiting Methods by User
	Recipe 6.28 Restricting Range Requests

	Chapter 7. SSL
	Recipe 7.1 Installing SSL
	Recipe 7.2 Generating SSL Certificates
	Recipe 7.3 Generating a Trusted CA
	Recipe 7.4 Serving a Portion of Your Site via SSL
	Recipe 7.5 Authenticating with Client Certificates

	Chapter 8. Dynamic Content
	Recipe 8.1 Enabling a CGI Directory
	Recipe 8.2 Enabling CGI Scripts in Non-ScriptAliased Directories
	Recipe 8.3 Using Windows File Extensionsto Launch CGI Programs
	Recipe 8.4 Using Extensions to Identify CGI Scripts
	Recipe 8.5 Testing That CGI Is Set Up Correctly
	Recipe 8.6 Reading Form Parameters
	Recipe 8.7 Invoking a CGI Program for Certain Content Types
	Recipe 8.8 Getting SSIs to Work
	Recipe 8.9 Displaying Last Modified Date
	Recipe 8.10 Including a Standard Header
	Recipe 8.11 Including the Output of a CGI Program
	Recipe 8.12 Running CGI Scripts as a Different User with suexec
	Recipe 8.13 Installing a mod_perl Handler from CPAN
	Recipe 8.14 Writing a mod_perl Handler
	Recipe 8.15 Enabling PHP Script Handling
	Recipe 8.16 Verifying PHP Installation

	Chapter 9. Error Handling
	Recipe 9.1 Handling a Missing Host Field
	Recipe 9.2 Changing the Response Status for CGI Scripts
	Recipe 9.3 Customized Error Messages
	Recipe 9.4 Providing Error Documents in Multiple Languages
	Recipe 9.5 Redirecting Invalid URLs to Some Other Page
	Recipe 9.6 Making Internet Explorer Display Your Error Page
	Recipe 9.7 Notification on Error Conditions

	Chapter 10. Proxies
	Recipe 10.1 Securing Your Proxy Server
	Recipe 10.2 Preventing Your Proxy Server from Being Used as an Open Mail Relay
	Recipe 10.3 Forwarding Requests to Another Server
	Recipe 10.4 Blocking Proxied Requests to Certain Places
	Recipe 10.5 Proxying mod_perl Content to Another Server
	Recipe 10.6 Configuring a Caching Proxy Server
	Recipe 10.7 Filtering Proxied Content
	Recipe 10.8 Requiring Authentication for a Proxied Server

	Chapter 11. Performance
	Recipe 11.1 Determining How Much Memory You Need
	Recipe 11.2 Benchmarking Apache with ab
	Recipe 11.3 Tuning Keepalive Settings
	Recipe 11.4 Getting a Snapshot of Your Site's Activity
	Recipe 11.5 Avoiding DNS Lookups
	Recipe 11.6 Optimizing Symbolic Links
	Recipe 11.7 Minimizing the Performance Impact of .htaccess Files
	Recipe 11.8 Disabling Content Negotiation
	Recipe 11.9 Optimizing Process Creation
	Recipe 11.10 Tuning Thread Creation
	Recipe 11.11 Caching Frequently Viewed Files
	Recipe 11.12 Sharing Load Between Servers Using mod_proxy
	Recipe 11.13 Distributing Load Evenly Between Several Servers
	Recipe 11.14 Caching Directory Listings
	Recipe 11.15 Speeding Up Perl CGI Programs with mod_perl

	Chapter 12. Miscellaneous Topics
	Recipe 12.1 Placing Directives Properly
	Recipe 12.2 Renaming .htaccess Files
	Recipe 12.3 Generating Directory/Folder Listings
	Recipe 12.4 Solving the 'Trailing Slash' Problem
	Recipe 12.5 Setting the Content-Type According to Browser Capability
	Recipe 12.6 Handling Missing Host: Header Fields
	Recipe 12.7 Alternate Default Document
	Recipe 12.8 Setting Up a Default 'Favicon'

	Appendix A. Using Regular Expressions in Apache
	A.1 What Directives Use Regular Expressions?

	Appendix B. Troubleshooting
	B.1 Troubleshooting Methodology
	B.2 Debugging the Configuration
	B.3 Debugging Premature End of Script Headers
	B.4 Common Problems on Windows
	B.5 Fixing Build-Time Error Messages
	B.6 Getting Server-Side Includes to Work
	B.7 Debugging Rewrites That Result in 'Not Found' Errors
	B.8 .htaccess Files Having No Effect
	B.9 Address Already in Use

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

