

FBML Essentials

Other resources from O’Reilly

Related titles Facebook Cookbook

CSS: The Definitive Guide

Programming Collective
Intelligence

Facebook: The Missing
Manual

JavaScript: The Definitive
Guide

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly Media brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the inno-
vator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

FBML Essentials

Jesse Stay

Tomcat ™

The Definitive Guide

Jason Brittain and Ian F. Darwin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

main.title Page iii Monday, May 19, 2008 11:21 AM

FBML Essentials
by Jesse Stay

Copyright © 2008 Stay N’ Alive Productions, LLC. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sarah Schneider
Copyeditor: Sarah Schneider
Proofreader: Sada Preisch

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are regis-
tered trademarks of O’Reilly Media, Inc. FBML Essentials, the image of a white-
throated dipper, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions, or for damages result-
ing from the use of the information contained herein.

ISBN: 978-0-596-51918-6

[M]

1215790051

http://safari.oreilly.com

Table of Contents

Foreword . vii

Preface . ix

1. “Hello Friends” . 1
The “Hello World” for Social Development 1
Step 1: Set Up a Facebook Developer Account 2
Step 2: Add the Developer App 3
Step 3: Set Up the App 4

2. HTML Design in a Facebook Environment . 13
Forms in FBML 13
Images in FBML 15
CSS and DOM in FBML 16
JavaScript in FBML 17
Other Things to Consider 18
Hosting 20
The Facebook Platform Architecture 21

3. FBML Reference . 23
Facebook FBML Test Console 23
Authorization Tags 24
Profile-Specific Tags 51
Users, Groups, Events, Networks, and Applications 58
HTML Display and Navigation 65
Virally Promoting Your App With FBML 115
Miscellaneous Tools for Rendering Data Using FBML 128
Dynamic FBML Attributes 140

4. FBJS Reference . 147
Introduction 147

v

General Information 147
Event Listeners 150
AJAX 151
Dialogs 152
Visualization 154
Conclusion 154

Afterword . 155

Index . 157

vi | Table of Contents

Foreword

When it initially launched, the Internet transformed the way humans connec-
ted. Soon enough we had access to unlimited content at our fingertips. Within
a matter of years, people were changing the way they communicated, and by
the late 1990s, social networks were beginning to make their transformative
impact. You could say a lot of things about the future of social networks, but
one thing you can’t disagree with is that Facebook was a catalyst for a sub-
stantial redevelopment and redesign of the way that we share information
about ourselves on the Web.

For developers, the launch of the Facebook Platform in 2007 brought about
many things: a new language to learn, an easy way to build valuable user re-
lationships and access personal data, and most importantly, the opportunity
to easily and quickly launch an application that can potentially reach millions
of people. Although the initial opportunity for application developers was
monumental, the opportunity that exists today should not be discounted. To-
day, developers can build applications that reach a large portion of users on
Facebook, the fifth largest website on the Internet.

Not only can your applications have massive reach, but there is also a sub-
stantial business opportunity to develop applications for others who recognize
the opportunity. Whether you are an entrepreneurial developer or you are
simply in pursuit of knowledge, you will not be disappointed with what Face-
book has to offer. As somebody who is a self-taught developer, I launched my
first application within 45 minutes and reached over 40,000 users. I experi-
enced firsthand the opportunity that the platform presents. Although Face-
book does have the occasional hiccup, you will not find any other platform
like it.

Whether you are programming in PHP, .NET, Ruby on Rails, or any other
language, you will surely be satisfied with the Facebook Platform. But keep in
mind that although it is easy to develop and launch an application quickly,
maintaining your application takes time. Once a week, Facebook administra-
tors fix the platform bugs that can occasionally make your application go

vii

down. Your app won’t be destroyed, but these disruptions are a part of life
while developing on Facebook. You are at the forefront of development and
this is just part of what it’s like to be on the bleeding edge.

If I could give you one word of advice for success on Facebook, it would be
this: community. Leverage the developer community for all it’s worth because
this is one of the most active developer communities I have ever seen. People
will constantly give you feedback, and they also will alert you to errors and to
other developers’ bad practices. The Facebook Platform is by no means a typ-
ical platform. It is constantly evolving and will continuously be under devel-
opment. Use this book as a way to build a solid base, and make sure that you
keep up-to-date with all the changes taking place on the platform.

Finally, good luck on your path to building the next big thing on Facebook. It
is a challenging task, but for anyone who is passionate about an idea, anything
can be accomplished.

—Nick O’Neill
AllFacebook.com

viii | Foreword

Preface

The Facebook Platform Emerges
On May 24, 2007, the world changed forever when Facebook CEO Mark
Zuckerberg announced that Facebook was opening its platform, or “social
graph,” to developers (see http://www.facebook.com/press/releases.php?
p=3102). This update would allow developers to access a wealth of informa-
tion, from names and birth dates to friend information and the ways that users
link together. Never since the invention of the web browser has an API made
such an impact on the world. For many, Facebook has become the web
browser for the social Internet.

Since Zuckerberg’s announcement at the F8 conference, software developers
around the world—including myself—have rushed to be the first to make their
millions in a literal gold rush not seen since the dot-com boom. In a matter of
days, we have watched our applications go from zero to millions of users.

The Facebook Platform has opened up a wealth of knowledge to us as devel-
opers. The API gives developers the flexibility through PHP, Java, Perl,
Ruby, .NET, and virtually any other language to access user information
through a simple REST interface. A data access language called Facebook
Query Language (FQL) allows simple SQL-like statements to retrieve infor-
mation through that API. The Facebook Data Store API gives developers a
location in which to store their regularly accessed data. A JavaScript™ client
library allows client-side access to the API, requiring only simple HTML to
render data from Facebook. On top of all that, Facebook released the Facebook
Markup Language (FBML), which lets you render data on a page without the
need to always access the API.

Each one of these aspects of the Facebook Platform could warrant its own
book. FBML Essentials is intended to be your guide to perhaps the most im-
portant and basic component of the platform, FBML.

ix

http://www.facebook.com/press/releases.php?p=3102
http://www.facebook.com/press/releases.php?p=3102

FBML
The Facebook Markup Language can be compared to the “icing” on the cake
that is the Facebook API. Although FBML is not completely necessary for
writing a successful Facebook application, it brings to the table many features
that make development on Facebook more efficient, and in the end, it makes
life as a social applications developer much better. For instance, you may have
previously retrieved the name of the user of your application through a simple
users.getLoggedInUser API call on the server. But perhaps you’ve discovered
that it’s not worth going through the entire process of authenticating the user
on the server side and returning the application user’s name. Or, what if you
want to further separate your presentation logic from your application logic?
A name, after all, is not necessarily something that should be calculated or
processed. You may want to have your HTML in a file that’s entirely separate
from the files you are making API calls from, and therefore something as simple
as a name might make sense to include with your HTML.

For these reasons, FBML can be an ideal tool for organizing your Facebook
applications and, most of all, for reducing the amount of API requests you have
to make to Facebook. One FBML tag on a page takes no HTTP requests off
your servers in order to render, whereas a simple API call for the same infor-
mation could take one HTTP request to authenticate with Facebook and an-
other to retrieve the information desired. This additional overhead slows down
your application, and in an environment where you could easily have millions
of users using your app, you want to save every request you can.

FBML is a tool, a resource, for you as a developer to make your work in the
Facebook API more efficient. FBML brings a lot of power to developers, al-
lowing them to use API calls only when most needed. As I will show in the
“Hello World” example in Chapter 1, an entire simple application can be
created using FBML alone!

The intent of this book is to get you to the point where you, as a Facebook
developer, can decide when FBML makes sense for your application and when
you are better off using the Facebook API. It’s my hope that you can continue
to use this book as a resource as your development skills mature.

x | Preface

One topic not covered in this book is the Social Network
Markup Language (SNML) and the social networking website
Bebo (http://www.bebo.com). SNML is a tag language ex-
tremely similar to FBML that works on the recently launched
Bebo Developers Platform. However, Bebo also supports cer-
tain FBML tags, so this book should serve as a reference for
developing on Bebo as well as on Facebook. I will update this
book’s Facebook Page (http://page.fbmlessentials.com) with
more information regarding Beboʼs SNML and supported
FBML tags as this new platform progresses.

Keep in mind that the only FBML tags that Bebo does not
yet support are <fb:mobile/>, <fb:visible-to-connection/>,
<fb:attachment-preview/>, and <fb:is-in-network/>. There-
fore, use this book as you see fit for your Bebo application
development! You can read a great how-to article on porting
apps from Facebook to Bebo (written by Blake Commagere,
developer of the Zombies, Vampires, and Werewolves games
on Facebook) here: http://dev.aol.com/article/2008/porting-
your-facebook-app-to-bebo.

Developer Guidelines
Before we get started, we should go over some guidelines. Although there are
no “official” guidelines for development at the time of this writing, other than
the Facebook Developer Terms of Service (http://developers.facebook.com/
terms.php), there are some unwritten rules generally accepted by the Facebook
developer community. Some of these may not make sense for you until we get
further on in the book, so you may want to bookmark this section for later
reference. Taken from the Facebook Developer Wiki, the following rules were
written up by a few developers outside of the Facebook organization (see http://
wiki.developers.facebook.com/index.php/Developer_Guidelines_Manual):

Invites

• Do not force a user to send invites.

— Show the invite page after performing an action.

— Make it clear the action has been performed, and that the user is not
forced to send invites to continue using the app/perform the action.

— You may also include a link to the invite page somewhere in your
application.

— Sending invites for an app using another app is prohibited by the
Terms of Service (TOS).

Preface | xi

http://www.bebo.com
http://page.fbmlessentials.com
http://dev.aol.com/article/2008/porting-your-facebook-app-to-bebo
http://dev.aol.com/article/2008/porting-your-facebook-app-to-bebo
http://developers.facebook.com/terms.php
http://developers.facebook.com/terms.php
http://wiki.developers.facebook.com/index.php/Developer_Guidelines_Manual
http://wiki.developers.facebook.com/index.php/Developer_Guidelines_Manual

— Do not include users who already have the app installed in the friend
selector (or variants).

• Do not use invites for ranking purposes.

— When using invites as part of an application’s function, such as user
ranking, make sure there are other ranking methods that can replace
invites.

— Using invites alone increases the chances for the application, and the
user’s rank within it, to lose value.

• Do not use blocked markup, or attempt to use sketchy methods to gain
a user’s attention in the Requests page.

— Usage of CSS, large fonts, and other prohibited markup is looked
down upon by the community. We highly discourage this.

— Usage of blocked markup can also lead to the removal of your
application.

Notifications/News Feed

• Do not post every action your app makes.

— Simply send/post when the primary function of an app is performed.

— Too many notifications and/or News Feed stories increase the
chance of an app being blocked and/or being viewed as a spammy
app by users.

User Interface

• Do not require install or login in the main canvas page.

— Doing so increases the chances of the user not using your applica-
tion, or just installing it and not using it.

— We recommend you have a page that entices the user to use the app,
but do not mislead the user with false data.

— Show what your application does, not a simple “Add this app and
you’ll see what this is about” or misleading descriptions.

• Do not require both an install and a login.

— Doing so is pointless. Only use one, as deemed necessary.

— It is a nuisance to users, and probably lowers chances of actual app
usage.

• Do not use JavaScript alerts.

— JavaScript alerts are annoying to the user, disrupt the smoothness of
the experience, and do not fit in well with the Facebook user
interface.

xii | Preface

Naming

• Do not use the same or similar name as an existing app without ex-
pressed permission of original author(s).

— Using similar names confuses users.

— It may be a copyright violation, when applicable.

In addition to the preceding guidelines, it is my opinion that you should con-
form to the following rules as well:

• Keep your applications in a format compatible with Facebook.

— Your application should feel like it is part of Facebook, with the same
look, colors, and formatting.

• Use FBML wherever possible to replace API calls.

— This reduces overall overhead and shortens development time.

— This also gives you a few more features, such as invite forms (covered
later in this book), which aren’t accessible via the API.

• Where FBML is not possible, render the page as FBML and use an
<fb:iframe/> tag for the areas that need to be rendered outside of FBML.

• Separate your presentation from your application logic!

— This can be a huge timesaver for you in the future, and it gives you a
single location in which to store your FBML tags without mixing them
up in your code.

Useful Resources
As a Facebook developer, like any master of a trade, you cannot succeed with-
out the proper tools and resources. There are a few websites you’ll need to
become familiar with if you are going to stay up-to-date in your skills. I’ll list
these here.

Tools and Documentation
Facebook developers website (http://developers.facebook.com)

The official Facebook site for developers and developer documentation.

Facebook Developer Wiki (http://wiki.developers.facebook.com)
The official Facebook wiki for developers. Go here for the most up-to-date
documentation on any FBML, FBJS, or development-related information.
Since it’s a wiki, it allows anyone to update the content, and it is updated
quite frequently.

Preface | xiii

http://developers.facebook.com
http://wiki.developers.facebook.com

Facebook FBML Test Console (http://developers.facebook.com/tools.php?fbml)
A console to test out your FBML. You enter the FBML in the box provided,
and it outputs the rendered markup as HTML.

Facebook Developers Forum (http://forum.developers.facebook.com/)
Want to ask other Facebook developers a question? This is the place to
do so, and to share issues and interact with the Facebook development
team.

Facebook bug tracking and submission (http://bugs.developers.facebook.com/)
If you find bugs in FBML or in any of your Facebook development, submit
them here. Search for an existing bug and see its status, or submit a new
bug.

The FBML Essentials Facebook app (http://apps.facebook.com/fbmlessentials)
The official Facebook app for FBML Essentials. I’m creating this app as I
write this book, and I will keep the app up-to-date as the platform evolves.
Here you can see working examples of the most-used FBML tags on Face-
book, take trivia quizzes, and challenge your friends on their FBML
knowledge! Become a fan of the app for updates as it evolves.

The FBML Essentials Facebook Page (http://page.fbmlessentials.com)
The official Facebook Page for FBML Essentials. Here I’ll post updates to
this book, news, photos, videos, fan pictures, and more. Visit this Page to
discuss the book and FBML development.

News and Information About Facebook Development
Stay N’ Alive blog, by Jesse Stay (http://staynalive.com)

“Stay” up-to-date with the latest and greatest in Facebook and social de-
velopment news and other topics. This is my blog, a must-read if you are
a reader of this book.

Jesse’s FriendFeed stream (http://friendfeed.com/jessestay)
Want to follow what I’m doing, what I’m interested in, and what I’m
linking to? Follow my FriendFeed stream and see what I’m talking about,
get in on the conversation, and find out where I am on Twitter, my blogs,
and more.

The Social Coding FriendFeed stream
(http://friendfeed.com/rooms/social-coding)

This is a great place I have set up for discussing and learning about devel-
oping for social websites and social networks in general.

xiv | Preface

http://developers.facebook.com/tools.php?fbml
http://forum.developers.facebook.com/
http://bugs.developers.facebook.com/
http://apps.facebook.com/fbmlessentials
http://page.fbmlessentials.com
http://staynalive.com
http://friendfeed.com/jessestay
http://friendfeed.com/rooms/social-coding

FacebookAdvice blog (http://facebookadvice.com)
The official blog for my previous book, I’m On Facebook—Now
What??? (Happy About). It covers how-tos, advice, tips, and tricks related
to Facebook in general.

Facebook blog (http://blog.facebook.com)
The official Facebook blog, targeted to a nondeveloper audience.

Facebook Platform status feed
(http://www.facebook.com/developers/message.php)

Subscribe to this feed in your RSS reader if you want to be notified when-
ever the platform goes down, whenever updates are made to the platform,
or whenever there is an update that could affect your code.

Facebook developer news
(http://developers.facebook.com/news.php?blog=1)

The official Facebook developers blog. Subscribe to this feed for all the
latest developer news, straight from Facebook. News will usually be here
before any other source.

Facebook developers marketplace
(http://www.facebook.com/developers/marketplace)

Looking for a job that needs a Facebook developer? This is the place to
look, and it’s also the place to post jobs related to Facebook development.

AllFacebook, by Nick O’Neill (http://allfacebook.com)
Facebook news and reviews, by the folks at SocialTimes.com.

FaceReviews, by Rodney Rumford (http://facereviews.com)
Facebook apps reviews, news, and other info, by Rodney Rumford.

InsideFacebook, by Justin Smith (http://insidefacebook.com)
More Facebook news and reviews, by Justin Smith.

Is This Book For You?
To understand the principles in this book, you need to at least know the prin-
ciples of HTML design and development, CSS principles, and some JavaScript.
FBML is a tag language, based on a pseudo-XML format, just like HTML.
Therefore, having a background in HTML will help you understand the con-
cepts taught in this book. This book is intended for the experienced developer
who wants to get started in the new world of Facebook development, and it
will serve as an introduction to the FBML tag language for the Facebook API.
You can also refer to this book throughout your Facebook development efforts
whenever you need it.

Preface | xv

http://facebookadvice.com
http://blog.facebook.com
http://www.facebook.com/developers/message.php
http://developers.facebook.com/news.php?blog=1
http://www.facebook.com/developers/marketplace
http://allfacebook.com
http://facereviews.com
http://insidefacebook.com

In Chapter 1, I will brief you on the basics of setting up a very simple Facebook
application. It has been my experience that although many Facebook devel-
opers have been working on apps since the platform launched, many of us still
do not fully understand the details of what is involved in setting up an appli-
cation. If you already know all that, you may want to skip ahead to Chap-
ter 2, but in the end it may be a good refresher for you to go through the “Hello
World” process with me.

Some Terms You Should Know
To fully understand what I am talking about in this book, there are a few terms
you should be familiar with before you start reading. I’ll list these here:

Facebook Platform
The Facebook Platform is the underlying engine that powers the Facebook
API. It is what parses your FBML and enables you as a developer to write
apps on top of Facebook.

F8
F8 is the developers conference that first made the Facebook Platform
popular. At this conference in 2007, Mark Zuckerberg, founder of Face-
book, announced the launch of the Facebook Platform for all developers.
At the time of this writing, another F8 conference is scheduled for July
2008.

Facebook profile
Each user on Facebook has a profile that displays information about who
they are, what their interests are, their birthday, location, and other in-
formation. At the time of this writing, the profile is a single page within
Facebook. In July 2008 a new design will be launched, which will spread
the user’s profile across multiple pages via tabs.

Facebook Page
When I mention a Facebook Page with a capital “P,” I am referring to what
is the equivalent of a Facebook profile for a business or company. Each
Facebook Page provides a place for the business to put a description of
itself, an image, and other miscellaneous information. Each Page also has
a place for a discussion board, a Wall, images, and videos. The Facebook
Page even allows apps to be installed that can be customized for businesses
instead of just single users.

Facebook application (or app)
The Facebook app is the core of what we are building in this book. It has
many different integration points for engaging the user and for informing
the user’s friends about how they use your app. By the time you finish this

xvi | Preface

book, you should be able to create a very basic Facebook application. I
strongly suggest you research the Facebook API and see what else you can
do with your app.

Canvas page
The canvas page is essentially any page within your application that is not
a profile box. Clicking on the link of any application in Facebook will take
you to its canvas page. As a developer, you are in full control of your canvas
page. You can advertise on canvas pages and monetize them however you
want, and you earn 100% of the revenues!

At the time of this writing, the only parts of Facebook
you can edit are the profile and the canvas page. The new
design will introduce another part you can edit—a cus-
tomizable “tab page”—but we wonʼt go into detail about
that here because Facebook has not released much
information at this time. Stay tuned to this book’s Face-
book Page at http://page.fbmlessentials.com to be kept
up-to-date on that feature.

Profile box
At the time of this writing, each Facebook profile allows you to install
applications on your profile page, which is just a single page on Facebook.
When the new tabbed profile design is rolled out in July, you will be able
to add profile boxes via a simple click on a button created with the <fb:add-
section-button/> tag (see that tag’s description in Chapter 3). You can
use this button to specify where within your profile you’d like to add an
application. You can set an app to appear on a special “Boxes” tab on your
profile, or as additional information on the “Info” tab, or as a narrow box
on other tabs.

New design
Slated for release in July 2008, the new Facebook design will center around
the user profile. This profile will be split into tabs to encourage more in-
teraction between users and—most importantly for readers of this book—
to provide more integration points for app developers. Facebook Pages
should be unaffected by the new profile design, and almost all FBML tags
covered in this book will still be applicable. I have tried to remove or note
those that will be deprecated by the time this book goes to print.

Preface | xvii

http://page.fbmlessentials.com

Although the tags listed in this book will continue to work
within Facebook’s new design, keep in mind that your inte-
gration points will change. I have done my best to note where
that may be the case, but at the time of this writing, the release
notes are too vague to fully predict everything you will need
to know. For this reason, please check back often to this
book’s Facebook Page at http://page.fbmlessentials.com, and I
will post updates there.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width
Used for program listings as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, envi-
ronment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values
determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM

xviii | Preface

http://page.fbmlessentials.com

of examples from O’Reilly books does require permission. Answering a ques-
tion by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “FBML Essentials by Jesse
Stay. Copyright 2008 Stay N’ Alive Productions, LLC, 978-0-596-51918-6.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596519186

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets
you easily search thousands of top tech books, cut and paste code samples,
download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

Preface | xix

http://www.oreilly.com/catalog/9780596519186
http://www.oreilly.com
http://safari.oreilly.com

Acknowledgments
Thanks to Paul Allen (the Younger), whose blog inspired me to see the im-
portance of the Facebook Platform. Thanks to Allan Young and Phil Burns for
inspiring me to quit my day job and truly get out on my own. Big thanks to
Joseph Scott, who somehow had enough faith in me to introduce me to
O’Reilly. Thanks to Elizabeth, Thomas, Joseph, and Jesse III for dealing with-
out a daddy for a short time while I wrote this book. Most of all, I’d like to
thank Rebecca, who endured childbirth the day before this was sent off for
review, lots of late nights, and dealing with four kids so I could finish writing.

xx | Preface

CHAPTER 1

“Hello Friends”

The “Hello World” for Social Development
I generally cringe when I see “Hello World” examples in modern books on
software development. It’s been used so often that it almost doesn’t teach
anything anymore. However, because the social Web brings a new layer to
web development, I’d like to show you a new layer to the “Hello World” ex-
ample. A social application is all about interaction—it’s about establishing a
conversation with your friends.

When writing social applications, you have to consider the fact that, in a way,
you’re having a conversation with the people you are writing software for. Not
only must your application talk to your users, but it must also allow them to
talk to you and to each other. Simply taking an existing website and putting it
on a social site such as Facebook will not bring you millions of users in weeks
or months like the apps described in this chapter. Your Facebook application
must give users the ability to share their actions with friends, broadcast to the
world, find people with similar interests, and most of all, identify themselves
in ways they never could before on traditional websites. Instead of asking
yourself, “How will my users utilize my application?,” you should now ask
yourself, “How will my users’ friends utilize my application?”

The following list shows some examples of several applications on Facebook,
all with 100,000 daily active users or more at the time of this writing. Examine
them and see if you can figure out why they have become as popular as they
are. Then, apply those features to your own Facebook application design:

iLike
(http://www.facebook.com/apps/application.php?id=2413267546&b)

I can’t tell you the number of clients who come to me asking for an ap-
plication “just like iLike.” iLike has all the elements of a good Facebook
app, allowing you to track the songs you’re listening to and share them

1

with your friends on Facebook. This is the ultimate example of an external
website that successfully integrated into Facebook.

Scrabulous
(http://www.facebook.com/apps/application.php?id=3052170175&b)

The ultimate social game on Facebook! This app allows you to challenge
your Facebook friends to Scrabble™, track your progress, and share your
progress with others. This is something you could invite your grandma to
play.

Likeness
(http://www.facebook.com/apps/application.php?id=2405948328&b)

Find out what celebrity, singer, or artist you are like, and then share it with
your friends.

Honesty Box
(http://apps.facebook.com/apps/application.php?id=2552096927&b)

This app provides an anonymous way for your friends to say things about
you without you knowing who said them.

Circle of Friends
(http://apps.facebook.com/apps/application.php?id=2270425051&b)

Find new friends with similar likes and interests, and share things with
them.

As you can see from these examples, simplicity is key when integrating social
elements into your application. We are going to start simple, too: we’ll create
a simple application using just FBML that says “hello” to you and allows you
to invite your friends to use it. The application we create here can be found at
http://apps.facebook.com/fbmlessentials. All examples throughout this book
will be added as components of this Facebook application so that you can see
the results of what we are developing.

Step 1: Set Up a Facebook Developer Account
The first step in creating a Facebook app is to register a developer account. Of
course, you can develop applications using your normal Facebook account,
but then you risk potentially exposing your app to competitors and others
while it’s still under development. It is generally better practice to always de-
velop and test your app in an account designated as a developer on Facebook.
To set up a developer account, do the following:

1. Log out of your normal Facebook account.

2. On the Facebook home page, click the “Sign Up” button:

2 | Chapter 1: “Hello Friends”

http://apps.facebook.com/fbmlessentials

3. Fill in the form with any information you want. This could be completely
fake, as it will be only your developer account, not your main account.

4. Submit the form, and wait for a confirmation email. In the email, click on
the link. You’re now logged into your new account!

5. Now that you’re logged in, copy this URL into your browser’s URL bar:
http://www.facebook.com/developers/become_test_account.php

6. On the next screen, click on the “Make [your developer username] a Test
Account” button:

7. That will take you to a final confirmation page. Congratulations, you now
have a developer account! Remember the email address you used for this
account, as you’ll need it to log in every time you want to test your app.

Don’t follow these steps using your real account or you will
lose very important functionality!

Step 2: Add the Developer App
1. This step is simple. To add the developer app, in your developer account

click on “Developers.”

2. On the subsequent page, click on “Get Started” in pink.

3. Click on the “Add Facebook Developer Application” button:

Or you can just copy this link and skip the process above:

http://www.facebook.com/developers

4. Leave everything checked, and click “Add Developer.”

5. You now have the developer app installed and can begin creating appli-
cations on Facebook. You’ll notice a new “Developer” link on the left now.

Step 2: Add the Developer App | 3

http://www.facebook.com/developers/become_test_account.php
http://www.facebook.com/developers

Step 3: Set Up the App
1. Click on the “Developer” link on the left in your developer account.

2. That should take you to the Developer page. Click on “Set Up New
Application.”

3. You now have the opportunity to enter an application name. We’ll call
this app “FBML Essentials”. Click on the checkbox:

4. Click on “Optional Fields,” and more form fields should become available
to you. Here are the optional fields and what they will do:

Developer Contact Email
This is the email address Facebook will use if it ever needs to contact
you about your application. For this example app, we will enter
admin@fbmlessentials.staynalive.com.

User Support Email
On your app’s Help page, users can send support requests. Requests
from that page will be sent to the address you set here. We’ll enter
support@fbmlessentials.staynalive.com for this app.

Callback URL
The callback URL is the anchor for your entire application. All Face-
book requests get forwarded to this URL behind the scenes. For the
purposes of this app, we’ll use http://fbmlessentials.staynalive.com.
You will want to enter the URL of your own website, one that you
control. It is important to add a trailing slash to this URL because all
requests to http://apps.facebook.com/fbmlessentials (see the “Canvas
Page URL” field, next) get translated to this URL behind the scenes,
and adding a slash ensures that the URL http://apps.facebook.com/
fbmlessentials/foo.php does not end up becoming something like
http://fbmlessentials.staynalive.comfoo.php.

Canvas Page URL
There is one box here that follows apps.facebook.com. The text you
enter in this box must be unique and unused by other Facebook app
developers. For the purposes of this app, we’ll enter “fbmlessentials”
in the box, which means that the canvas page URL will be http://
apps.facebook.com/fbmlessentials. (You’ll want to choose your own
when working on your own app, of course.) If the address is available,
it will say “available” next to the box.

4 | Chapter 1: “Hello Friends”

http://fbmlessentials.staynalive.com
http://apps.facebook.com/fbmlessentials
http://apps.facebook.com/fbmlessentials/foo.php
http://apps.facebook.com/fbmlessentials/foo.php
http://apps.facebook.com/fbmlessentials
http://apps.facebook.com/fbmlessentials

Use FBML (or Use iframe)
This goes back to the “unofficial” developer guidelines we discussed
earlier in the Preface. Rarely do you want to make your entire appli-
cation an iframe. Although that gives you more flexibility for highly
intensive JavaScript or Flash applications, it keeps you from valuable
uses of FBML. I suggest you select “Use FBML” and use the
<fb:iframe/> tag (described in Chapter 3) to insert rich JavaScript
applications into your Facebook app. For the purposes of this app,
we’ll select “Use FBML.”

Application Type
This can be “Website” or “Desktop.” “Desktop” enables the appli-
cation for use outside of a web environment. For the purposes of this
app, however, we’re going to select “Website.”

Mobile Integration
Check this option if you need your app to use mobile features on
Facebook. This enables SMS and mobile browser viewing. For now,
leave this unchecked.

IP Addresses of Servers Making Requests
This is a comma-separated list of IP addresses of your servers that
might be communicating with Facebook. This is a great security fea-
ture, but for this app, we’ll leave this blank.

Can Your Application be added on Facebook?
Sometimes you may not need the user to add your application to
Facebook in order to use it. If this is the case, you can choose “No”
here. For this app, choose “Yes,” and a new set of installation options
will become available to you. (See step 5 for more details.)

TOS URL
This is an optional URL that, if entered, forces the user to click a link
to accept a Terms of Service (TOS) agreement if they want to install
the app. We’ll leave this blank for now.

Developers
You must add other developers as friends in your account before you
can add them here. Once they are your friends, you can select any of
them to be allowed to work on and install your application while it is
under development.

5. If you selected “Yes” to the “Can Your Application be added on Face-
book?” option in the previous step, a new section called “Installation
Options” will appear. Here are your choices (all are optional) and what
they mean:

Step 3: Set Up the App | 5

Who can add your application to their Facebook account?
You have the option to choose between “Users,” “All Pages,” “Some
Pages,” and “No Pages.” Checking “Users” enables any user to add
the app to their profile. Selecting “All Pages” enables any user to add
the app to any page on Facebook. Selecting “Some Pages” allows you
to specify a certain type of Facebook page that your app can be added
to. For the purposes of this app, we’ll check “Users” and leave “No
Pages” selected. The result is that this app can be added only to user
profiles.

Post-Add URL
This is the URL to which your application gets redirected after a user
adds the app. This can be a great place to encourage a user to sign up
or add friends. For this app, we’ll enter http://apps.facebook.com/
fbmlessentials/invite.php in this field.

Application Description
When a user adds your application, this text appears on the page
asking the user to add the application. For this app, we’ll just enter
“FBML Essentials Demo Application.”

Post-Remove URL
A non-Facebook.com URL, this is a place to redirect the user after the
user removes your app, which will notify your application that it has
been removed. This can be a great way to disable a user’s account in
your database for tracking purposes. We’ll leave this blank for this
app.

Default FBML
Unless an API method is called through server-side code, this is the
default text that appears on a user’s profile under the application’s
profile box. It can contain most FBML tags in addition to text. Here
is where our first “Hello World” example comes into play. Enter the
following in this box:

Hello <fb:name uid="loggedinuser" useyou="false" />

6 | Chapter 1: “Hello Friends”

http://apps.facebook.com/fbmlessentials/invite.php
http://apps.facebook.com/fbmlessentials/invite.php

What just happened? You’ll see this later, but after the
application has been added, “Hello [user’s name]” will
appear in the application’s profile box in your user pro-
file. <fb:name/> is an FBML tag that calls the name of the
Facebook ID specified by uid. For this example, we enter
loggedinuser as the uid. This means that the name of the
person visiting your profile will be rendered by the tag.
useyou="false" means that if you’re visiting your own
profile, it doesn’t say “Hello you,” but rather, “Hello
[your name]”.

Default Action FBML*

This optional field should be a link that appears under the profile
picture of the user who installed the app. This must be an absolute
URL. For the purposes of this app, enter:

<fb:profile-action url='http://apps.facebook.com/fbmlessentials/
 invite.php'> Invite <fb:name uid="profileowner"
 useyou="false" /> to use FBML Essentials!
</fb:profile-action>

You'll see how this looks on a user’s profile later in this chapter.

What just happened? <fb:profile-action/> sets a link
under a user’s profile image. In fact, it will also place a
link on all of the user’s friends’ profile pages (visible only
when the person who has installed your app views those
profiles).

Default Profile Box Column
You have two options here: “Wide” or “Narrow.” For the small
amount of text we’re displaying, we’ll select “Narrow” for this app.

Developer Mode
When you are developing an app that you don’t want others to install
or see until you are finished, select this option. If you’d like, you can
add other developers who can test the app. Just don’t forget to un-
check this box when you go live! For this example app, it’s your choice
whether to select this option.

6. Along with “Installation Options,” a section called “Integration Points”
appears (these are also optional):

* Note that this will probably be deprecated when the new Facebook design is launched.

Step 3: Set Up the App | 7

Side Nav URL
If you want a link to appear on the lefthand side of the page when you
are logged into your Facebook account, you will need to enter an
apps.facebook.com URL in this box. For this application, we will enter
http://apps.facebook.com/fbmlessentials.

Privacy URL
This can be any URL. In FBML, you can specify the insertion of a
privacy link. The contents of this field will be the location to which
the privacy link takes the user. For this app, we’ll leave it blank.

Help URL
This can be any URL. In FBML, you can specify the insertion of a help
link (similar to the privacy URL). The contents of this field will be the
location to which the help link takes the user. For this app, we’ll leave
it blank.

Private Installation
When developing a Facebook application, there may be times when
you don’t want others to know you are working on it. Check this box
to prevent information about the app from appearing in your friends’
News and Mini-Feeds. For this app, this box is optional.

Attachments – Attachment Action
This action can be text or FBML. It appears when a user wants to add
an attachment to a Wall post or message. We’ll leave this blank for
this app.

Attachments – Callback URL
A non-apps.facebook.com URL that loads the content to be attached
to a Wall post or message. We’ll leave this blank for this app.

Hit “Submit,” and you’ve created your first application! Let’s add it and see
what it looks like. On the resulting page after you hit “Submit,” find your
application and click “View About Page.” Now, click “Add Application.” On
the following page, leave everything checked and click the button to add the
app.

The app will send you to the invite.php page we saw earlier (in the Default
Action FBML option). You will get a message similar to this:

This is because we haven’t set anything for invite.php yet. We’ll create that
shortly. Now, click on your “Profile” link in the upper-left corner. Under your
profile image, you’ll see an image similar to this:

8 | Chapter 1: “Hello Friends”

http://apps.facebook.com/fbmlessentials

And further down on the page, you’ll see a box similar to this:

Now, create an index.html or index.php file in the home directory where your
callback URL is. Place the following in that file:

Hello <fb:name uid="loggedinuser" useyou="false" />

Next, open the file you specified earlier in the Post-Add URL option (we used
invite.php), and add the following text (substituting your own information
where necessary, including replacing .php with .html if you used index.html):

<fb:request-form action="index.php" method="POST" invite="true"
 type="FBML Essentials" content="Hello Friend. <fb:req-choice
 url='http://apps.facebook.com/fbmlessentials' label='Go there!'/>">
 <fb:multi-friend-selector showborder="false" actiontext="Invite
 your friends to use FBML Essentials.">
</fb:request-form>

Click on the link to your new Facebook app in the left sidebar of your Facebook
account (or just click on the “Hello [your name]” link under your profile
image!). You’ll now get a page like this:

Step 3: Set Up the App | 9

If you click on the “FBML Essentials” link in the footer, remove the app from
your profile, and then re-add it (by clicking on the developer app and then on
your new app), and you’ll see the invite page again. This time it will look like
this:

10 | Chapter 1: “Hello Friends”

Now, if you have added any friends, select them here and choose “Send [your
app name] Invitation.” You’ll be prompted to verify the invitation. Hit “Send,”
and an invitation will be sent to the users you just selected, asking them to add
the app to their profiles. Congratulations—you have just written your first
app, all in FBML. Hello friends!

What just happened? The text or FBML you enter in your
index.html or index.php gets loaded with the callback URL you
entered previously in the application setup screen. In
invite.php, we used the <fb:request-form/> and <fb:multi-
friend-selector/> tags to create an automatically generated
invite form for your users to invite their friends. With these
tags, Facebook does all the work for you in making your app
viral! Because we added invite.php to the Post-Add URL field
in the setup, the application will always be directed there after
the user adds the app. This can be a great way to encourage
your users to add your app to Facebook.

In the next chapter, I will go over a few design considerations you need to
remember when planning out your FBML-based Facebook application. We’ll
cover some architecture options you’ll need to incorporate into your design,
as well as basic HTML design in an FBML environment.

Step 3: Set Up the App | 11

CHAPTER 2

HTML Design in a
Facebook Environment

HTML on an FBML-parsed page renders in just the same way that the FBML
renders. On the whole, most HTML tags in the Facebook environment will
render the same as normal HTML. However, for the developer’s benefit, as
well as for the security and protection of your app, and to integrate better with
the Facebook environment, Facebook parses a few tags differently than your
normal HTML. This chapter covers a few things to be aware of when designing
your Facebook application in FBML.

Forms in FBML
Forms in FBML are almost the same as forms in HTML, but when rendered
by Facebook, they produce a few more hidden input fields. The following
section covers the specs for the form tag.

The <form/> tag
The form tag renders a form in HTML, adding five additional hidden input
fields—the fb_sig_profile, fb_sig_user, fb_sig_session_key, fb_sig_time,
and fb_sig parameters—that give more information about the user submitting
the form to the processing script. The fb_sig parameter is essentially just a
hash (see http://en.wikipedia.org/wiki/Hash_algorithm) of all the other
fb_sig_ values preceding it.

It is important to note that the fb_sig_user and fb_sig_session_key parame-
ters are added only if the user using your app has successfully authenticated
and logged into Facebook.

13

http://en.wikipedia.org/wiki/Hash_algorithm

FBML-Specific Attributes
requirelogin=[true|false] default: true

If true, the user will be prompted to log in (if they have not already done so),
and then they will be asked if they want to submit data to your app. The login
redirects the user to the posted form, with the fb_sig_user and fb_sig_ses
sion values attached to that form.

The following optional attributes can be applied to any form element within
the form:

clicktoenable=[element id]
When added to any element within a form, this enables the element speci-
fied by element id when the current element is clicked. Multiple element
IDs can be submitted if they are separated by commas.

clicktodisable=[element id]
When added to any element within a form, this disables the element
specified by element id when the current element is clicked. Multiple
element IDs can be submitted if they are separated by commas.

clickthrough=[true|false] default: false
When added to any element within a form in which Dynamic FBML (such
as the previous attributes, or Mock AJAX or Visibility attributes) is being
used, and if it is set to true, this attribute allows the original form element
functionality to occur. One example use is for checkboxes. When
clicktoenable, clicktodisable, or any of the Visibility attributes are used
on a checkbox element, by default the checkbox will not get checked.
Setting clickthrough=true fixes this issue.

Example FBML

The following example demonstrates the form tag, where clicktodisable and
clickthrough are used together (refer to http://wiki.developers.facebook.com/
index.php/DynamicFBML/Forms):

<form>
 <input type="text" id="firstname" name="firstname" />
 <input id="sendbutton" type="submit" value="Submit"
 clicktodisable="firstname" clicktohide="sendbutton"
 clickthrough="true" />
</form>

Rendered HTML for Single Instance of Tag

The following is the rendered HTML for the example just shown (refer to
http://wiki.developers.facebook.com/index.php/UsageNotes/Forms):

14 | Chapter 2: HTML Design in a Facebook Environment

http://wiki.developers.facebook.com/index.php/DynamicFBML/Forms
http://wiki.developers.facebook.com/index.php/DynamicFBML/Forms
http://wiki.developers.facebook.com/index.php/UsageNotes/Forms

<form>
 <input type="hidden" name="fb_sig_profile" value="1160"/>
 <input type="hidden" name="fb_sig_user" value="1160"/>
 <input type="hidden" name="fb_sig_session_key"
 value="b12d7f73fc47536b32e89e-1160"/>
 <input type="hidden" name="fb_sig_time" value="1176705186"/>
 <input type="hidden" name="fb_sig"
 value="773af1263c2b7bade7958e6b58d3152f"/>
 ...
</form>

Additional information

• Any <input/> element added by the user cannot have a name that starts
with fb. Names that start with fb are reserved by Facebook.

• If you are uploading a file through a form, the form must not be posted to
an apps.facebook.com domain. Instead, your form should be submitted to
your own servers’ domain, and your servers should redirect the user back
to the apps.facebook.com domain after saving the file.

• See the section on Mock AJAX in Chapter 3 to learn how you can dynam-
ically load submitted form results into an additional <div/> tag on the page
using AJAX.

• Any form element that is disabled does not get submitted to the form.

• When used together, the clickthrough and clicktodisable tags don’t
allow a form to submit in Apple’s Safari 3 browser. This bug has been
submitted to Safari.

Images in FBML
All images in FBML get cached by Facebook’s servers. Facebook makes a re-
quest to your application, and as your application serves up tags, Face-
book parses those images, ensures that they aren’t too big and that they meet
various requirements, and then stores a copy of each image on the Facebook
servers. From that point on, the cached version of your image on Facebook’s
servers gets rendered by your browser, which saves your own servers from
unneeded bandwidth costs.

Your images must be smaller than 50 MB, cannot be animated, and cannot be
served as a script (a common method to track a cookie or even serve malicious
code). This ensures quality among applications and keeps Facebook users
feeling safe and secure when using your app. Images must be given as an
absolute link to the callback URL that you specified in your application in-
stallation settings (described in Chapter 1).

Images in FBML | 15

If the cache of your image does not work for some reason, Facebook renders
a blank image in your application. If you need to refresh your image from the
Facebook cache, it is recommended you get your hands dirty with some actual
Facebook API code. Look up the facebook.fbml.refreshImgSrc() API tag on
the Facebook Developer Wiki for more information about how to do this (see
http://developers.facebook.com/documentation.php?v=1.0&method=fbml.refre
shImgSrc).

Facebook also recommends that application developers do not append cache
breaking strings (random strings to break the image cache) to the end of their
URLs. This ensures that if your image ever actually does change, there is only
one version of your image on Facebook’s servers to update. It will also keep
the load off your servers.

CSS and DOM in FBML
CSS in FBML can be tricky if you don’t recognize the quirks associated with
it. FBML supports <link/> tags for importing external files into your rendered
HTML, as well as style attributes and <style/> tags for rendering the CSS
inline. One must recognize, however, that Facebook reads these external files
and parses them into its own formats.

Facebook treats <link/> tags very similarly to references in that, on first
load of the file, it stores a cached copy of the file on the Facebook servers. The
difference is that once the file is cached, that file never gets deleted. Therefore,
it might be wise to append a ?version=2.0 or similar parameter if you want to
indicate the file was changed. URLs in a <link/> href attribute must be abso-
lute, just like tags, and must link to the callback URL specified in the
application’s installation settings.

Here’s an example <link/> tag in FBML (referring back to our “Hello World”
application in Chapter 1):

<link rel="stylesheet" type="text/css" href="http://fbmlessentials.
 staynalive.com/facebook.css?version=1.0" />

CSS within your FBML, whether it’s within <style/> tags or documents linked
from <link/> tags, must adhere to certain guidelines. Facebook, when reading
id attributes in the DOM from your HTML, rewrites those IDs with the string
app, appended by the ID of your application, followed by an underscore, and
then the original ID you specified. The following HTML that you send to
Facebook through your app:

<div id="foo">bar</div>

gets rendered by Facebook as:

16 | Chapter 2: HTML Design in a Facebook Environment

http://developers.facebook.com/documentation.php?v=1.0&method=fbml.refreshImgSrc
http://developers.facebook.com/documentation.php?v=1.0&method=fbml.refreshImgSrc

<div id="app0123456789_foo">bar</div>

Therefore, in your CSS, all rules for IDs (those prefixed by #) must have the
app0123456789_ prefixed to the ID. Which means:

#foo { ... }

should be:

#app0123456789_foo { ... }

in your CSS <style/> element or file. Take some time to practice these exam-
ples. Improper CSS and prefixing with application IDs in the wrong places
have been the cause of some of the largest headaches I’ve had when using
FBML.

As a reference, see Table 2-1 for a list of the default CSS styles for each of the
major HTML elements in Facebook. Every time you insert one of these HTML
elements, the associated CSS gets assigned to that HTML element. This is
important to remember as you are trying to assign your own CSS to these
elements.

Table 2-1. Default CSS properties for elements on a Facebook canvas page

HTML element CSS properties

<body/>, <p/> font-family: lucida grande, tahoma, verdana, arial, sans-serif; font-size: 11px

<h1/> color: #333; font-size: 14px

<h2/>, <h3/> color: #333; font-size: 13px

<h4/>, <h5/> color: #333; font-size: 11px

<a/> color: #3B5998; text-decoration: none

a:hover text-decoration: underline

 border: 0px none

<select/> border: 1px solid #BDC7D8

<input/> border-color: #ADADAD; border-style: solid; border-width: 1px

JavaScript in FBML
Facebook provides an FBML-specific version of JavaScript parsing called FBJS
(Facebook JavaScript). This helps protect and not confuse the external scripts
Facebook uses on the rest of its site. (We’ll cover FBJS in much more detail in
Chapter 4.) Facebook wants to maintain security on profile pages so that users
don’t get inundated with music, videos, and pop ups right when they visit a
profile page.

JavaScript in FBML | 17

Similar to <link/> tags in CSS, you can load external JavaScript files through
<script/> tags that get cached in exactly the same way as <link/> tags. For
example, to load external JavaScript, you would load a <script/> tag such as
the following:

<script src="http://fbmlessentials.staynalive.com/facebook.js?version=
 1.0"></script>

Calls to the <script/> tag are limited to canvas pages only. Profile boxes can
use FBJS, but they must be called with inline JavaScript rather than by an
external JavaScript file.

Here are some rules regarding FBJS:

• Methods are prepended with app, followed by the application ID of your
app and an underscore. Be sure when referencing the method later to ref-
erence the parsed method name instead of your original method name.
Global functions provided by Facebook are not rewritten in this manner.

• Only the onclick attribute is supported in FBML/HTML elements for your
app. To access other events for your FBML/HTML, you must set up an
event listener.

• Profile FBJS only activates after a user performs some sort of click action
in the application’s profile box. This prevents music, pop ups, and other
things happening without the user’s permission when visiting another
user’s profile page.

Other Things to Consider
Thus far, we’ve covered most of the basic HTML techniques you need to con-
sider when writing your Facebook application. In the following sections, we’ll
cover a few more miscellaneous techniques and caveats that you will want to
know as you are developing your app.

User IDs and FBML
User IDs supplied to FBML are 64-bit integers created by Facebook to identify
each user. You might notice when you visit your Facebook profile that the URL
is structured like this: http://www.facebook.com/profile.php?id=683545112.

The number after the id= is your Facebook ID. When planning your app, you
may want to store this ID in a database for later reference. In MySQL, I use
the BIGINT(20) data type to do this. You will want to find the equivalent for
your database environment.

18 | Chapter 2: HTML Design in a Facebook Environment

http://www.facebook.com/profile.php?id=683545112

In addition to the ID, whenever there is a uid attribute in FBML, you can use
the following identifiers in place of the actual ID of the user:

loggedinuser
Returns the Facebook ID of the user who is visiting the profile or canvas
page on which your app is installed.

profileowner
Returns the Facebook ID of the user who has actually installed your app
(the profile owner), not the visiting user.

Public Canvas Pages and SEO
By default, your application’s canvas page is publicly searchable by search
engines and viewable by those not logged into Facebook. This makes it very
important to ensure that your application’s canvas pages are tuned for Search
Engine Optimization (SEO), so that others can use your app outside Facebook
or are at least encouraged to log in and use your application.

All FBML is built to work on canvas pages even when the user is not logged
in. To force a user to be logged in before using your app, use the
<fb:is-logged-out/> tag, described in the next section.

The <fb:is-logged-out/> tag
This tag enables only certain content to be viewable if the user is logged out.
If the user is logged in, the content between the <fb:else/> tags is rendered.
Note that <fb:is-logged-out/> has no FBML-specific attributes.

Example FBML

The following example demonstrates the <fb:is-logged-out/> tag:

<fb:is-logged-out>
 Any FBML can go here for the user only when the user is not logged in.
 <fb:else>
 When the user is logged in, any FBML can be used here.
 </fb:else>
</fb:is-logged-out>

Rendered HTML for Single Instance of Tag

If the user is not logged in to Facebook, the text “Any FBML can go here for
the user only when the user is not logged in” will appear. If the user is logged
in to Facebook, the text “When the user is logged in, any FBML can be used
here” will appear.

Other Things to Consider | 19

Additional information

Both inside and outside the <fb:is-logged-out/> tag, the tags in the following
table are rendered differently, depending on whether the user is logged in or
not.

Tag Logged-in behavior Logged-out behavior

<fb:if/> Content within <fb:if/> block is
rendered.

Content within <fb:else/> block is
rendered.

<fb:name/> Renders the full name of the user (by
default).

Renders only the user’s first name, regard-
less of attributes passed to the tag.

<fb:profile-pic/> Renders the user’s profile picture. Renders the user’s profile picture only if
the user’s preferences state to do so for
logged-out users. Otherwise, a question
mark is displayed to non-logged-in users.

Hosting
“Where is the best place to host?” is one of the biggest questions I hear from
my clients who want to build Facebook applications for their businesses. With
a traditional web application, traffic buildup is gradual because you are dealing
with a new audience in a nonviral channel for building hype for your website.
On Facebook, however, the situation is different. With a good idea and the
right viral elements in place, some applications have gone from zero page views
to hundreds of millions in a matter of days. Without the proper infrastructure
in place to handle this kind of traffic, your app could go down within minutes
and your maximum potential for spreading the application could go out the
door.

There are two hosting services at the time of this writing that I suggest you
look into. I won’t go into detail, but these services provide a means of quick
scaling as traffic to your application increases. The first—and my preference—
is Amazon EC2 (Elastic Compute Cloud) combined with S3 (Simple Storage
Service) for backups. EC2 gives you a very fast way to programmatically scale
your app as needed, while requiring you to pay only for the bandwidth and
servers you need. The second service is Joyent. Joyent provides speedy scaling
to new servers as needed, and it provides a direct line to Facebook so that your
applications will have the fastest connection possible to Facebook’s servers.
Beyond those two suggestions, of course, you can always find a good hosting
center if you know what you’re doing and negotiate your prices as you need
to scale. Just be prepared to have some servers of your own ready as a backup!

Once you have selected your service, what’s the best way to set up your servers
to prepare for an influx of traffic such as I mentioned? That would take an

20 | Chapter 2: HTML Design in a Facebook Environment

entire book to detail, but my best suggestion is to keep your data as persistent
as possible, so that if you need to fire up another instance of your server, it can
automatically know where to retrieve the data. I strongly recommend hiring a
good system administrator if this is not something you think you can handle,
and at least have him on hand to prepare for the event of heavy traffic.

The Facebook Platform Architecture
When you visit any application on Facebook, it looks just as though it were
being hosted right on the Facebook servers. In reality, Facebook is simply a
proxy, reading the browser requests, passing them onto your servers, reading
your servers’ responses, and then parsing that information back to the user in
HTML format (see Figure 2-1).

��������	���

��������	
���
	
����
�
	��	���
	
�
��

�
���
	
�
��

	
���	����	����	��	��������

���
�������	���

��������������

�
�
	����

�
	������������

Figure 2-1. When you access a Facebook app, you are actually talking to Facebook’s servers,
which in turn communicate back to your servers

The Facebook Platform Architecture | 21

The one exception to this process is when data is rendered within an iframe.
iframes on Facebook are not parsed by Facebook, so they allow you to do
almost anything you want without worrying whether Facebook is able to parse
the data you are providing. iframes have their limitations, however, because
FBML is not possible in an iframe! I’ll explain more of those limitations in the
<fb:iframe/> section in Chapter 3.

Chapter 3 is intended to be a reference to FBML. In it, I will include examples
of the code you’ll be writing and show you what these examples render. I hope
you’ll be able to refer back frequently to the next chapter as you continue your
development on Facebook.

22 | Chapter 2: HTML Design in a Facebook Environment

CHAPTER 3

FBML Reference

Throughout this chapter, I’ll cover the details of FBML, every single tag avail-
able at the time of this writing, and how each tag works. Please refer back to
this chapter often as you write your FBML.

Letʼs start by showing how you can test these tags in your own browser without
the need of a web server.

Facebook FBML Test Console
The Facebook FBML Test Console is an invaluable tool for any Facebook
developer to test his FBML tags before putting them into production. Because
Facebook has no true sandbox environment, every change to your application
that you publish is available for any of your users to see (unless you have two
versions of the same application, which is what a lot of developers end up
doing). To help you avoid making errors in the Facebook Platform before your
code goes live, Facebook has provided a test console for your FBML so that
you can see what your code will look like when it gets rendered by Facebook.

To use this console, simply go to the Facebook developers website at http://
developers.facebook.com and click on “Tools” in the top navigation. Youʼll see
a series of test consoles you can play with. These include a console for the API,
another for previewing the feeds you create, and—the one weʼre concerned
with here—the FBML Test Console. Click on the “FBML Test Console” tab,
and now you can test to your heartʼs content! If you want to skip these steps,
this link will take you straight there: http://developers.facebook.com/tools.php?
fbml.

The FBML Test Console enables you to specify any profile ID, any application
API key, and any set of HTML, FBJS, and/or FBML code so that you can see
how Facebook will render it. When you enter a bit of FBML code and click
“Preview,” you will be shown the browser output, along with the rendered
HTML and any errors for that output. See Figure 3-1.

23

http://developers.facebook.com
http://developers.facebook.com
http://developers.facebook.com/tools.php?fbml
http://developers.facebook.com/tools.php?fbml

Figure 3-1. The FBML Test Console

The rest of this chapter will serve as a reference for you as you write your FBML.
I suggest reading through the chapter and trying out each of the tags in the
FBML Test Console to see what they produce. There may be times when you
donʼt want to use FBML but instead want to reproduce what the FBML would
do as HTML. The Test Console is ideal for that. Practice using the tags de-
scribed in this chapter with the FBML Test Console, and soon youʼll be a pro!

Authorization Tags
Each of the following tags verify in some way the permissions for a user’s role
on Facebook. These tags can be quite useful for virally promoting your app.
For instance, if you want to encourage non-app users to install your app, use
the <fb:visible-to-added-app-users/> tag in your application’s profile box to
provide a message that encourages non-app users to add your application. Or,
if you want to provide an admin interface that allows the owner of an app or
the admin of a page to administer settings within your app, use the
<fb:if-is-user/> tag with a uid of profileowner, and only the user who added
your app will have access to those settings.

In this section, we will define the specifications of each authorization-related
FBML tag on Facebook. The first half of the tags render only on a user’s canvas
page or on a canvas page for a Facebook Page. The second half of the tags
render only on a user’s profile or on a Facebook Page; they will not render on
a canvas page. Each section in this chapter includes a brief description of the
tag, followed by required and optional attributes that can be passed to the tags,
as well as examples of how those tags can be used.

24 | Chapter 3: FBML Reference

The “User” Authorization Tag

<fb:user/>
<fb:user uid="...">...</fb:user>

Depending on the user’s privacy settings, the content rendered within this tag dis-
plays only to users who actually have permission to see that user’s profile.

FBML-Specific Attributes

Required

uid=[string]
The ID of the user to protect content for.

Optional
None.

Example FBML
Here is example FBML code for a user whose information you would like to protect:

<fb:user id="4">
The content rendered here will only display if you have permission to
 view Mark Zuckerberg's Profile.
</fb:user>

Rendered HTML for Single Instance of Tag
If you have permission to see Mark Zuckerberg’s profile, the following will appear
where you place the FBML example just shown:

The content rendered here will only display if you have permission to
view Mark Zuckerberg's Profile.

Of course, if you don’t have permission to see Mark Zuckerberg’s profile, nothing
will appear where the <fb:user/> tag is placed.

<fb:user/> | 25

Authorizing by User Agent

<fb:user-agent/>
<fb:user-agent [includes="..."|excludes="..."]>...</fb:user-agent>

Renders the content within the tags only if it is viewed with the specified browser or
browsers. You can also use this tag so that content renders only if it is viewed in all
browsers except a specified browser or browsers.

FBML-Specific Attributes

Required
This tag must contain at least one or both of the following attributes:

includes=[comma-separated list of one or more user agents] default: none
Specified group of browsers to display content for. Accepts either one
value or a comma-separated list of values. See http://www.user-agents.org/
index.shtml for a list of user-agent strings that can be used here.

excludes=[comma-separated list of one or more user agents] default: none
The network ID (nid) to test against. If the user is not in this network,
either the content within the <fb:else/> tags is rendered or no content is
rendered at all.

Optional
None.

Example FBML
Let’s say you want to render a message only to users of Mozilla Firefox. You would
write your FBML code like this:

<fb:user-agent includes="firefox">
 We love Firefox users!
</fb:user-agent>

If you want to render a message to everyone except Internet Explorer (IE) users, you
would write this:

<fb:user-agent excludes="ie">
 You picked a great browser that works well with our app!
</fb:user-agent>

To get really tricky, let’s display a message to all IE users except those who use IE 5.0:

<fb:user-agent includes="ie" excludes="ie 5">
 We like all versions of IE, except version 5.
</fb:user-agent>

26 | Chapter 3: FBML Reference

http://www.user-agents.org/index.shtml
http://www.user-agents.org/index.shtml

Rendered HTML for Single Instance of Tag
So, for the first example just shown, let’s say you’re a Firefox user and you visit the
app. The following message would be displayed:

We love Firefox users!

All other browsers would display nothing. For the second example, if you were using
an Internet Explorer-based browser, the app would show nothing. However, all
other browsers would show this:

You picked a great browser that works well with our app!

The third example would not display anything unless you were using a version of
Internet Explorer other than version 5.0. All other versions of Internet Explorer
would display this:

We like all versions of IE, except version 5.

Additional Information

• When both includes and excludes are used together, the order of priority
is includes first, then excludes.

• You can use shortcuts for the most common user-agent strings, but Face-
book’s documentation leaves it unclear what these shortcuts are other
than “ie,” “firefox,” and “mozilla.” You seem to be able to treat the names
broadly—as long as the user-agent name contains the shortcut that you
enter, it is considered a match and should work. As more information
about this tag comes to light, I will update this book’s Facebook Page
(http://page.fbmlessentials.com).

Canvas Page Authorization Tags
It’s important to note that most of the canvas page authorization tags listed in
this section are compatible with the <fb:else/> tag.

<fb:is-in-network/>
<fb:is-in-network>...<fb:else>...</fb:else></fb:is-in-network>

Content within the tags is rendered only if the user is in the specified network. Use
the <fb:else/> logic tag (described later in this chapter) to render content if a user
is not in the specified network.

<fb:is-in-network/> | 27

http://page.fbmlessentials.com

FBML-Specific Attributes

Required

network=[int] default: none
The network ID (nid) to test against. If the user is not in this network,
either the content within the <fb:else/> tags is rendered or no content is
rendered at all.

Optional

uid=[int] default: loggedinuser
The user ID to test the network against.

Example FBML
Here is example FBML code for <fb:is-in-network/>:

<fb:is-in-network network="1234567890" uid="0987654321">

 This text shows up if user with id 0987654321 is in
 the network with id 1234567890.

 <fb:else>

 If user with id 0987654321 is not in network with id
 1234567890 this text will show up.

 </fb:else>

</fb:is-in-network>

Additional Information

• This tag supports <fb:else/> even though it does not start with
<fb:if*/>.

• This tag works only on canvas pages and feed stories. It will not work on
profiles, notifications, or News Feeds.

<fb:if-can-see/>
<fb:if-can-see>...<fb:else>...</fb:else></fb:if-can-see>

Looks at a given user’s privacy settings and verifies, based on data provided to the
what attribute, whether a user has permission to see the enclosed content. Use the
<fb:else/> tag (described later in this chapter) to display content if a user does not
have permission to display the enclosed content. <fb:if-can-see/> can be an excel-
lent way to provide your own privacy controls on your application.

28 | Chapter 3: FBML Reference

FBML-Specific Attributes

Required

uid=[int] default: none
The user ID to test privacy settings against.

Optional

what=[profile|friends|not_limited|online|statusupdates|wall|groups|
courses|photosofme|notes|feed|contact|email|aim|cell|phone|mailbox|
address|basic|education|professional|personal|seasonal]
default: "search"

What to verify that the user can see, per their privacy settings.

Example FBML
Here is example FBML code for <fb:if-can-see/>:

<fb:if-can-see uid="0123456789" what="photosofme">
 <img src="http://fbmlessentials.staynalive.com/images/me.jpg"
 alt="external image of me" />
 <fb:else> Sorry - you can't see images of me! </fb:else>
</fb:if-can-see>

Rendered HTML for Single Instance of Tag
This is the rendered HTML if user 0123456789 can see your photos (based on your
privacy settings):

<img src="http://fbmlessentials.staynalive.com/images/me.jpg"
 alt="external image of me />

(Note that an image would be rendered in the browser.)

This is the rendered HTML if user 0123456789 cannot see your photos:

Sorry - you can't see images of me!

Additional Information

• This tag supports <fb:else/>.

• This tag may be used only on a user’s canvas page.

<fb:if-can-see-photo/>
<fb:if-can-see-photo>...<fb:else>...</fb:else></fb:if-can-see-photo>

If a user’s privacy settings for a particular photo allow you to see the photo, this tag
renders the enclosed content. It’s great for ensuring that your content appears only
to users who can see the photo.

<fb:if-can-see-photo/> | 29

FBML-Specific Attributes

Required

pid=[int] default: none
The ID of the photo, to verify whether the user has permission to see it.

Optional

uid=[int] default: none
The ID of the user whose photo you want to retrieve privacy settings for.
This attribute is needed only if you’re manually inserting the pid and the
pid is not API-supplied.

Example FBML
Here is example FBML code for <fb:if-can-see-photo/>:

<fb:if-can-see-photo pid="1988312" uid="683545112">
 <fb:photo pid=" 1988312" uid=" 683545112"/> Display text about
 photo here. <fb:else> Sorry - you can't see that photo,
 and therefore, no description for you! </fb:else>
</fb:if-can-see>

Rendered HTML for Single Instance of Tag
If user 683545112 can see the photo with the ID 1988312 (based on your privacy
settings), the rendered HTML looks like this:

<img pid="1988312" uid="683545112"
 src="http://photos-a.ak.facebook.com/photos-ak-sf2p/v170/243/47/
 683545112/n683545112_1988312_6347.jpg" />
 Display text about photo here.

Here is the rendered HTML if user 683545112 cannot see the photo with the ID
1988312:

Sorry - you can't see that photo, and therefore, no description for you!

Additional Information

• This tag supports <fb:else/>.

• This tag may be used only on a user’s canvas page.

<fb:if-is-app-user/>
<fb:if-is-app-user>...<fb:else>...</fb:else></fb:if-is-app-user>

Renders content within the tags if the user has added the application. Remember,
content on canvas pages can be rendered for any user—Facebook member or not—
who visits your app. This tag ensures that content renders only for existing Facebook

30 | Chapter 3: FBML Reference

members who have added your application. See also the description of the <fb:if-
user-has-added-app/> tag later in this chapter.

FBML-Specific Attributes

Required
None.

Optional

uid=[int] default: loggedinuser
The ID of the user. Use uid when displaying friends of a user who you
want to ensure haven’t added the app. This works great for notification
invite forms.

Example FBML
Here is example FBML code for <fb:if-is-app-user/>:

<fb:if-is-app-user> You have the application installed!
 <fb:else> Please install the application! </fb:else>
</fb:if-is-app-user>

Rendered HTML for Single Instance of Tag
The following shows up only if the user has installed the application:

You have the application installed!

The following shows up only if the user has not installed the application:

Please install the application!

Additional Information

• This tag supports <fb:else/>.

• This tag may be used only on a user’s canvas page.

• The difference between this tag and <fb:if-user-has-added-app/> is that
this tag signifies only that the user has accepted the terms and conditions
for your app. Use the other tag to ensure that the app has been fully added
to a user’s account.

<fb:if-is-friends-with-viewer/>
<fb:if-is-friends-with-viewer>...<fb:else>...</fb:else>
 </fb:if-is-friends-with-viewer>

Renders different content for those who may not be friends with the app user and
those who are friends with the app user.

<fb:if-is-friends-with-viewer/> | 31

FBML-Specific Attributes

Required
None.

Optional

uid=[int] default: profileowner
The ID of the user you want to verify as a friend of the viewer.

includeself=[true|false] default: true
If the viewer is actually the user with the specified ID and this is true, the
tag returns true.

Example FBML
Here is example FBML code for <fb:if-is-friends-with-viewer/>:

<fb:if-is-friends-with-viewer> The two of you are friends
 <fb:else> The two of you are not friends </fb:else>
</fb:if-is-app-user>

Rendered HTML for Single Instance of Tag
If the current viewer is friends with the person who has installed the application, the
rendered HTML looks like this:

The two of you are friends

If the current viewer is not friends with the person who has installed the application,
the rendered HTML looks like this:

The two of you are not friends

Additional Information

• This tag supports <fb:else/>.

• This tag may be used only on a user’s canvas page.

<fb:if-is-group-member/>
<fb:if-is-group-member>...<fb:else>...</fb:else></fb:if-is-group-member>

Content within this tag renders only if the user is a member of a specified group.
This tag can also be used to determine whether a particular user is an admin or an
officer in a specified group.

32 | Chapter 3: FBML Reference

FBML-Specific Attributes

Required

gid=[int]
The group ID used to verify whether a user is part of that group.

Optional

uid=[int] default: profileowner
The ID of the user you want to verify as a member of the group with the
specified gid.

role=[member|officer|admin] default: member
If you want to verify whether a user actually has a particular role within a
group, use something other than member here. If officer is specified, and
a gid is specified, the logged-in user must be an officer in the specified
group in order for the content to render.

Example FBML
Here is example FBML code for <fb:is-group-member/>:

<fb:if-is-group-member gid="1234567890"> Congrats! You belong to
 the group specified!
 <fb:else> Sorry - you don't belong to the group specified </fb:else>
</fb:if-is-app-user>

Here is a second example:

<fb:if-is-group-member gid="1234567890" role="admin"> The logged in
 user is an admin of this group.
 <fb:else> Sorry - you're not an admin of this group! </fb:else>
</fb:if-is-group-member>

Rendered HTML for Single Instance of Tag
For the first example, if the current user is part of the group with an ID of
1234567890, the rendered HTML looks like this:

Congrats! You belong to the group specified!

For the first example, if the current user is not part of the group with an ID of
1234567890, the rendered HTML looks like this:

Sorry - you don't belong to the group specified

For the second example, if the current user is an admin of the group with an ID of
1234567890, the rendered HTML looks like this:

The logged in user is an admin of this group.

<fb:if-is-group-member/> | 33

For the second example, if the current user is not an admin of the group with an ID
of 1234567890, the rendered HTML looks like this:

Sorry - you're not an admin of this group!

Additional Information

• This tag supports <fb:else/>.

• This tag may be used only on a user’s canvas page.

<fb:if-is-user/>
<fb:if-is-user>...<fb:else>...</fb:else></fb:if-is-user>

Within this tag, specify the IDs of the users for whom you would like to render
content. Only the users with listed IDs will be able to see that content.

FBML-Specific Attributes

Required

uid=[int] default: none
The ID of the user for whom to display content. For multiple users, sep-
arate multiple user IDs with commas.

Optional
None.

Example FBML
Here is example FBML code for <fb:if-is-user/>:

<fb:if-is-user uid="1234567890,0987654321"> You're special
 <fb:else> Sorry - you're one of the unprivileged. </fb:else>
</fb:if-is-user>

Rendered HTML for Single Instance of Tag
If you’re the user with the ID 1234567890 or 0987654321, the rendered HTML looks
like this:

You're special

If you’re not one of the two listed users, the rendered HTML looks like this:

Sorry - you're one of the unprivileged.

Additional Information

• This tag supports <fb:else/>.

34 | Chapter 3: FBML Reference

• This tag may be used only on a user’s canvas page.

<fb:if-user-has-added-app/>
<fb:if-user-has-added-app>...<fb:else>...</fb:else>
 </fb:if-user-has-added-app>

Content between the tags is rendered only if the user has completely added the
application to their Facebook account. See also the description of the <fb:if-is-
app-user/> tag earlier in this chapter.

FBML-Specific Attributes

Required
None.

Optional

uid=[int] default: loggedinuser
The user ID used to verify whether the listed user has added the app.

Example FBML
Here is example FBML code for <fb:if-user-has-added-app/>:

<fb:if-user-has-added-app uid="1234567890"> Thanks for adding the app!
 <fb:else> Please add the app. </fb:else>
</fb:if-user-has-added-app>

Rendered HTML for Single Instance of Tag
If the user with the ID 1234567890 has added the app, the rendered HTML looks
like this:

Thanks for adding the app!

If the user with the ID 1234567890 has not added the app, the rendered HTML looks
like this:

Please add the app.

Additional Information

• This tag supports <fb:else/>.

• This tag may be used only on a user’s canvas page.

• The difference between this tag and the <fb:if-is-app-user/> tag is that
the latter only requires the user to agree to the terms and conditions of the
app for the tag to return the content within, whereas this tag returns con-
tent only if the user has completely added the app.

<fb:if-user-has-added-app/> | 35

Profile and Facebook Page Authorization Tags
The user’s profile is the most visited part of any application. It is the landing
page for any search related to that user, and as such, it handles traffic for all
apps installed by that user. Therefore, you can see why it is important to de-
velop a good strategy for incorporating the profile into your application. This
is especially true for Facebook’s new profile design (to be launched soon after
this book goes to press), which adds even more ways you can adapt your ap-
plication into a user profile.* Successfully incorporating the profile into your
application is one of many methods you can use to increase installs for your
application.

It’s important to note that all of the profile and Facebook Page authorization
tags listed in this section are not compatible with the <fb:else/> tag. They are
also not compatible with Facebook canvas pages.

<fb:visible-to-owner/>
<fb:visible-to-owner>...</fb:visible-to-owner>

Renders the content within the tags only to the owner of a profile or the admin of a
page. The content is hidden, but it’s still viewable in the source HTML. This tag may
be used only on a user’s profile.

FBML-Specific Attributes

Required
None.

Optional

bgcolor=[color] default: none
The background color in which the text rendered in the box will appear.

Example FBML
Here is example FBML code for <fb:visible-to-owner/>:

<fb:visible-to-owner> Welcome to your app! </fb:visible-to-owner>

Rendered HTML for Single Instance of Tag
If you visit the app you have installed, the rendered HTML looks like this:

Welcome to your app!

* Please visit this book’s Facebook Page at http://page.fbmlessentials.com for updates on how to do
this when the new design is released.

36 | Chapter 3: FBML Reference

http://page.fbmlessentials.com

Additional Information

• Be careful not to use this tag to render sensitive information. The content
rendered by this tag, whether shown in the browser or not, is always
available in the source on the page.

• This tag works only on a user’s profile.

• Tags that control title, subtitle, and noninline tags will not render within
this tag.

<fb:visible-to-user/>
<fb:visible-to-user>...</fb:visible-to-user>

Displays the content within the tags only to the profile owner and the specified user.
If this tag is used on a Facebook Page, the content renders to a specified fan as well
as to the admin of the page.

FBML-Specific Attributes

Required

uid=[int] default: none
The ID of the user for whom you would like to display content. Note that
this cannot be a comma-separated list (as the <fb:if-is-user/> tag can
use) for canvas pages.

Optional

bgcolor=[color] default: none
The background color in which the text rendered in the box will appear.

Example FBML
Here is example FBML code for <fb:if-is-user/>:

<fb:visible-to-user uid="0123456789"> You are user 0123456789.
 </fb:visible-to-owner>

Rendered HTML for Single Instance of Tag
If you visit the app and you are either the user with the ID 0123456789 or the owner
of the app, the rendered HTML looks like this:

You are user 0123456789.

<fb:visible-to-user/> | 37

Additional Information

• Be careful not to use this tag to render sensitive information. The content
rendered by this tag, whether shown in the browser or not, is always
available in the source on the page.

• This tag works only on a user’s profile.

<fb:visible-to-friends/>
<fb:visible-to-friends>...</fb:visible-to-friends>

Renders the content within the tags only to the user who has installed the application
and to that user’s friends. This tag does not work on Facebook Pages.

FBML-Specific Attributes

Required
None.

Optional

bgcolor=[color] default: none
The background color in which the text rendered in the box will appear.

Example FBML
Here is example FBML for <fb:visible-to-friends/>:

<fb:visible-to-friends> Greetings, friend!
 </fb:visible-to-friends>

Rendered HTML for Single Instance of Tag
If your friend visits your profile, or if you visit your own profile, the rendered HTML
looks like this:

Greetings, friend!

Additional Information

• Be careful not to use this tag to render sensitive information. The content
rendered by this tag, whether shown in the browser or not, is always
available in the source on the page.

• This tag works only on a user’s profile.

• Use the <fb:visible-to-connection/> tag (described later in this chapter)
if you want to verify fans of a Page as well as friends of a user.

38 | Chapter 3: FBML Reference

<fb:visible-to-app-users/>
<fb:visible-to-app-users>...</fb:visible-to-app-users>

Renders the content between the tags only if the user has been granted full access to
use the app (i.e., they have agreed to the terms and conditions). However, the user
does not necessarily have to have fully added the app in order to see the content.
Use <fb:visible-to-added-app-users/> (described later in this chapter) to verify that
the user has completely added the app to their account.

FBML-Specific Attributes

Required
None.

Optional

bgcolor=[color] default: none
The background color in which the text rendered in the box will appear.

Example FBML
Here is example FBML code for <fb:visible-to-app-users/>:

<fb:visible-to-app-users> Welcome to the club!
 </fb:visible-to-app-users>

Rendered HTML for Single Instance of Tag
If a user who has been granted access to use the app visits your profile, the rendered
HTML looks like this:

Welcome to the club!

Additional Information

• Be careful not to use this tag to render sensitive information. The content
rendered by this tag, whether shown in the browser or not, is always
available in the source on the page.

• This tag works only on a user’s profile.

<fb:visible-to-added-app-users/>
<fb:visible-to-added-app-users>...</fb:visible-to-added-app-users>

Renders the content between the tags only if the user has completely added the app
to their account.

<fb:visible-to-app-users/> | 39

FBML-Specific Attributes

Required
None.

Optional

bgcolor=[color] default: none
The background color in which the text rendered in the box will appear.

Example FBML
Here is example FBML code for <fb:visible-to-added-app-users/>:

<fb:visible-to-added-app-users> Welcome to the club!
 </fb:visible-to-added-app-users>

Rendered HTML for Single Instance of Tag
If a user who has completely added the app to their account visits your profile, the
rendered HTML looks like this:

Welcome to the club!

Additional Information

• Be careful not to use this tag to render sensitive information. The content
rendered by this tag, whether shown in the browser or not, is always
available in the source on the page.

• This tag works only on a user’s profile.

• Use <fb:visible-to-app-users/> (described earlier) if you care only
whether a user has agreed to your app’s terms and conditions, not neces-
sarily whether they have added the app to their account.

<fb:visible-to-connection/>
<fb:visible-to-connection>...</fb:visible-to-connection>

Displays the content within the tags only if the user is a friend of the user whose
profile they are visiting, or is a fan of the Facebook Page they are visiting. The content
also renders for the profile owner and the Page admin.

FBML-Specific Attributes

Required
None.

40 | Chapter 3: FBML Reference

Optional

bgcolor=[color] default: none
The background color in which the text rendered in the box will appear.

Example FBML
Here is example FBML code for <fb:visible-to-connection/>:

<fb:visible-to-connection> Thank you to my fans!
 </fb:visible-to-connection>

Rendered HTML for Single Instance of Tag
If the user is one of your Facebook friends or is a fan of the Page you are an admin
of, or if you visit the profile or Page yourself, the rendered HTML looks like this:

Thank you to my fans!

Additional Information

• Be careful not to use this tag to render sensitive information. The content
rendered by this tag, whether shown in the browser or not, is always
available in the source on the page.

• This tag works only on a user’s profile.

• See the description of <fb:visible-to-friends/> earlier in this chapter
for another example. Note, however, that the <fb:visible-to-friends/>
tag is much more limited, so it is recommended that you use the
<fb:visible-to-connection/> tag.

Logic Tags
Two types of logic tags exist in FBML: 1) the <fb:if/> and <fb:else/> tags,
and 2) the <fb:switch/> tag. Each type renders data based on a set of criteria
being true or false. Of course, with any logic tag, a condition is required. If the
condition is satisfied, content is rendered. If the condition is not satisfied,
subsequent conditions are evaluated, or else content is not rendered.

<fb:if/>
<fb:if>...<fb:else>...</fb:else></fb:if>

Renders the content within the tags only if the value is equal to true. If the value is
set to false, nothing is returned. For this tag to be useful, some external program-
ming is necessary to set the content of the value either to true or false.

<fb:if/> | 41

FBML-Specific Attributes

Required
None.

Optional

value=[true|false] default: false
Returns the content within the tags unless value="false".

Example FBML
Here is example FBML code for <fb:if/>:

<fb:if value="true"> Display some content here </fb:if>

Rendered HTML for Single Instance of Tag
If the value attribute is set to true, the rendered HTML looks like this:

Display some content here

<fb:else/>
<fb:else>...</fb:else>

Renders the content within the tags only if the condition specified in the containing
tags is false. It is compatible within any type of <fb:if*/> tag or the
<fb:is-in-network/> tag, as well as within the <fb:is-it-april-fools/>,
<fb:is-it-christmas/>, <fb:18-plus/>, and <fb:21-plus/> tags.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is example FBML code for <fb:else/>:

<fb:if value="true"> Display content here only if value="true".
 <fb:else> If fb:if's value were "false", then this would
 be displayed. </fb:else> </fb:if>

Here is a second example:

42 | Chapter 3: FBML Reference

<fb:if-is-user uid="1,2,3"> Display content here only if the
 user has id 1,2,3. <fb:else> If uid is 4, 10, or anything
 but 1,2,3, display this content. </fb:else> </fb:if>

Rendered HTML for Single Instance of Tag
In the first example, because value="true", the rendered HTML will always look like
this:

Display content here only if value="true".

In the second example, if the user ID is 1, 2, or 3, the rendered HTML will look like
this:

Display content here only if the user has id 1,2,3.

In the second example, if the user ID is not 1, 2, or 3, the rendered HTML will look
like this:

If uid is 4, 10, or anything but 1,2,3, display this content.

Additional Information

• <fb:else/> is compatible within the following tags:

<fb:if/>
<fb:if-can-see/>
<fb:if-can-see-photo/>
<fb:if-is-app-user/>
<fb:if-is-friends-with-viewer/>
<fb:if-is-group-member/>
<fb:if-is-own-profile/>
<fb:if-is-user/>
<fb:if-user-has-added-app/>
<fb:is-in-network/>
<fb:is-it-christmas/>
<fb:is-it-april-fools/>

<fb:switch/>
<fb:switch>...<fb:default>...</fb:default></fb:switch>

Reads each tag within the tags, and the first one that returns content other than an
empty string gets returned as output.

FBML-Specific Attributes

Required
None.

<fb:switch/> | 43

Optional
None.

Example FBML
Here is example FBML code for <fb:switch/>:

<fb:switch> <fb:name uid="3"/> <!-- if name is blank, move
 on --> <fb:is-it-christmas> It's Christmas! </fb:is-it-christmas>
 <!-- if it's not christmas, move on --> <fb:default> If all the
 above tags return nothing, display this text </fb:default>
</fb:switch>

Rendered HTML for Single Instance of Tag
If <fb:name/> returns a name, the rendered HTML looks like this:

Rendered name for user with id '3' ('Jesse Stay')

If <fb:name/> returns nothing, but it’s Christmas day, the rendered HTML looks like
this:

It's Christmas!

If both <fb:name/> and <fb:is-it-christmas/> return nothing, the rendered HTML
looks like this:

If all the above tags return nothing, display this text

<fb:default/>
<fb:default>...</fb:default>

Always returns the content within. Used as the last tag within an <fb:switch/> tag,
this tag guarantees that if all tags within don’t return anything, at least the content
within will be returned.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
See the example under the <fb:switch/> tag earlier in this chapter.

44 | Chapter 3: FBML Reference

Additional Information

• Again, <fb:default/> always returns the content within. Therefore, to be
useful, it must always be the last tag in an <fb:switch/> statement.

Random Logic
Of course, for a completely random selection of content to display, the
<fb:random/> tag is your friend.

<fb:random/>
<fb:random>...<fb:random-option>...</fb:random-option></fb:random>

Allows you to specify a set of individual pieces of content. Facebook will then ran-
domly pick—based on the weight you specify—one or more of the options you
chose. <fb:random/> is especially useful in user profiles, where data cannot be
explicitly dynamic.

FBML-Specific Attributes

Required
None.

Optional

pick=[int] default: 1
Specifies the number of <fb:random-option/>s to return.

unique=[true|false] default: true
If pick is greater than 1, specifies whether to enforce the returned values
to be unique.

Example FBML
Here is example FBML code for <fb:random/>:

<fb:random> <fb:random-option> randomly selected text 1
 </fb:random-option> <fb:random-option> randomly selected
 text 2 </fb:random-option>
</fb:random>

Rendered HTML for Single Instance of Tag
The HTML for the example just shown renders randomly. It will either look like this:

randomly selected text 1

<fb:random/> | 45

Or like this:

randomly selected text 2 will be displayed.

<fb:random-option/>
<fb:random-option>...</fb:random-option>

Compatible with only the <fb:random/> tag, this tag specifies an item within
<fb:random/> that is to be randomly selected and returned to the browser.

FBML-Specific Attributes

Required
None.

Optional

weight=[float] default: 1.0
Helps control the frequency of the specified item.

Example FBML
Here is example FBML code for <fb:random-option/> (see the example under the
<fb:random/> tag earlier for context):

<fb:random-option weight="2"> This text appears twice as
 often as one with a weight of 1 </fb:random-option>

Messaging and Alerts in FBML
FBML provides some very useful tags for displaying both messages and errors
to your application’s users. These tags will display a standard Facebook error
or message, using Facebook’s style guidelines. It is strongly recommended that
you use these tags for errors and messages because they keep the Facebook
look and feel consistent within your application. This section is a list of tags
that will render standard Facebook errors and messages. I’ll provide examples
and images for each tag so you can see what they look like in real life.

<fb:error/>
<fb:error>...[<fb:message>...</fb:message>]</fb:error>

Renders a standard Facebook error message. This message appears in a standard
pink box.

46 | Chapter 3: FBML Reference

FBML-Specific Attributes

Required

message=[string] default: none
The error message heading to display in the error box. Optionally, you
can use an <fb:message/> internally to specify the error heading.

Optional

decoration=[no_padding|shorten] default: none
Modifies the appearance of the error box. no_padding removes the 20 pix-
els of padding that surrounds the error box, and shorten removes the 20
pixels of padding below the error message.

Example FBML*

Here is example FBML code for <fb:error/> by itself (using the message attribute):

<fb:error message="Don't touch that button!"/>

Here is example FBML code for <fb:error/> with an <fb:message/> tag embedded:

<fb:error> Don't touch that button! <fb:message> Danger, Will Robinson!
 </fb:message> </fb:error>

Rendered HTML for Single Instance of Tag
The rendered HTML for the first example looks like this (Figure 3-2 shows the
result):

<div class="standard_message has_padding"><h1 id="error"> Don't
 touch that button!</h1></div>

Figure 3-2. The <fb:error/> tag by itself

The rendered HTML for the second example looks like this (Figure 3-3 shows the
result):

<div class="standard_message has_padding"><h1 id="error"> Danger,
 Will Robinson! <p> Don't touch that button! </p> </h1></div>

* See this example in action at http://apps.facebook.com/fbmlessentials/?action=error.

<fb:error/> | 47

http://apps.facebook.com/fbmlessentials/?action=error

Figure 3-3. The <fb:error/> tag when used with <fb:message/>

Additional Information

• The <fb:error/> tag must contain one <fb:message/> tag or one message
attribute to specify the error heading text.

• The content for the error is optional.

<fb:explanation/>
<fb:explanation>...[<fb:message>...</fb:message>]</fb:explanation>

Renders a standard Facebook explanation message. This message appears in a
standard gray box.

FBML-Specific Attributes

Required

message=[string] default: none
The explanation message heading to display in the explanation box. Op-
tionally, you can use an <fb:message/> internally to specify the explanation
heading.

Optional

decoration=[no_padding|shorten] default: none
Modifies the appearance of the explanation box. no_padding removes the
20 pixels of padding that surrounds the explanation box, and shorten
removes the 20 pixels of padding below the explanation message.

Example FBML*

Here is example FBML code for <fb:explanation/> by itself (using the message
attribute):

<fb:explanation message="This is why you shouldn't have pushed the button."/>

And here is example FBML code for <fb:explanation/> with an <fb:message/> tag
embedded:

* You can see this example in action at http://apps.facebook.com/fbmlessentials/?action=explanation.

48 | Chapter 3: FBML Reference

http://apps.facebook.com/fbmlessentials/?action=explanation

<fb:explanation> This is why you shouldn't have pushed the button.
 <fb:message> We told you! </fb:message> </fb:explanation>

Rendered HTML for Single Instance of Tag
The rendered HTML for the first example looks like this (Figure 3-4 shows the
result):

<div class="standard_message has_padding"><h1 class="explanation_note">
 This is why you shouldn't have pushed the button. </h1></div>

Figure 3-4. The <fb:explanation/> tag by itself

The rendered HTML for the second example looks like this (Figure 3-5 shows the
result):

<div class="standard_message has_padding"><h1 class="explanation_note">
 We told you! <p> This is why you shouldn't have pushed the button.
 </p> </h1></div>

Figure 3-5. The <fb:explanation/> tag when used with <fb:message/>

Additional Information

• The <fb:explanation/> tag must contain one <fb:message/> tag or one
message attribute to specify the explanation heading text.

• The content for the explanation is optional.

<fb:success/>
<fb:success>...[<fb:message>...</fb:message>]</fb:success>

Renders a standard Facebook success message. This message appears in a standard
pink box.

<fb:success/> | 49

FBML-Specific Attributes

Required

message=[string] default: none
The explanation message heading to display in the success box. Option-
ally, you can use an <fb:message/> internally to specify the success
heading.

Optional

decoration=[no_padding|shorten] default: none
Modifies the appearance of the success box. no_padding removes the 20
pixels of padding that surrounds the success box, and shorten removes
the 20 pixels of padding below the success message.

Example FBML*

Here is example FBML code for <fb:success/> by itself (using the message attribute):

<fb:success message="Congratulations! You pressed the green button."/>

And here is example FBML code for <fb:success/> with an <fb:message/> tag
embedded:

<fb:success> Congratulations! You pressed the green button.
 <fb:message> Congratulations! </fb:message> </fb:success>

Rendered HTML for Single Instance of Tag
The rendered HTML for the first example looks like this (Figure 3-6 shows the re-
sulting success message):

<div class="standard_message has_padding"><h1 class="status">
 Congratulations! You pressed the green button. </h1></div>

Figure 3-6. The <fb:success/> tag by itself

The rendered HTML for the second example looks like this (Figure 3-7 shows the
resulting success message):

<div class="standard_message has_padding"><h1 class="status">
 Congratulations! <p> Congratulations! You pressed the
 green button. </p> </h1></div>

* You can see this example in action at http://apps.facebook.com/fbmlessentials/?action=success.

50 | Chapter 3: FBML Reference

http://apps.facebook.com/fbmlessentials/?action=success

Figure 3-7. The <fb:success/> tag when used with <fb:message/>

Additional Information

• The <fb:success/> tag must contain one <fb:message/> tag or one
message attribute to specify the success heading text.

• The content for the explanation is optional.

Profile-Specific Tags
To set profile-specific tags, or to render anything in a user’s profile for the
application, you must either place the code in your “Default FBML” box in
your application settings or make an explicit profile.setFBML call via the API.
It’s important to understand that FBML on a user’s profile is not dynamic.
This means that if you change the FBML, you must either set it through the
“Default FBML” box in your application settings or make an API call via
profile.setFBML again to reset the FBML for that user’s profile. Just refreshing
the user’s profile page will not refresh it with your new FBML! The following
tags work only in the application’s profile box on a user’s profile.

<fb:wide/>
<fb:wide>...</fb:wide>

FBML placed between these tags displays only when the application’s profile box is
in the wide column on a user’s profile. See the description of the <fb:narrow/> tag
next for how to display in the narrow column. In your application settings, I strongly
suggest that you set the default column for your application to narrow. This is be-
cause most application developers set the default column to wide (as that is the
default). However, it is important to set how the application will look in the wide
column on a user’s profile using the <fb:wide/> tag.

FBML-Specific Attributes

Required
None.

Optional
None.

Profile-Specific Tags | 51

Example FBML
Here is example FBML code for the <fb:wide/> tag; add this to your “Default FBML”
box in your application settings (or you can set it via the setFBML API call):

<fb:wide>
 When a user drags the application profile box into the wide column
 on their profile, this code will appear.
</fb:wide>

Rendered HTML for Single Instance of Tag
In our FBML Essentials application, when dragging the profile to the wide column
of your profile (after adding the app), it will look like Figure 3-8.

Figure 3-8. The application profile box in the wide column of a user’s profile

Additional Information

• Code within the <fb:wide/> tags renders in a 388-pixel-wide box on the
user’s profile (not including margins). There is also an 8-pixel left margin,
and no right margin. To center your content, make your content 380 pixels
wide.

• Code not placed in <fb:narrow/> or <fb:wide/> tags will show in either
column.

<fb:narrow/>
<fb:narrow>...</fb:narrow>

FBML placed between these tags displays only when the application’s profile box is
in the narrow column on a user’s profile. See the description of the <fb:wide/> tag
previously for how to display in the wide column. In the case where you set the
default FBML for your application to wide, you will need to set this in the event that
your users move the application profile box to the narrow column.

FBML-Specific Attributes

Required
None.

Optional
None.

52 | Chapter 3: FBML Reference

Example FBML
Here is example FBML code for the <fb:narrow/> tag; add this to your “Default
FBML” box in your application settings (or you can set it via the setFBML API call):

<fb:narrow>
 When a user drags the application profile box into the narrow column
 on their profile, this code will appear.
</fb:narrow>

Rendered HTML for Single Instance of Tag
In our FBML Essentials application, when dragging the profile to the narrow column
of your profile (after adding the app), it will look like Figure 3-9.

Figure 3-9. The application profile box in the narrow column of a user’s profile

Additional Information

• Code within the <fb:narrow/> tags renders in a 190-pixel-wide box on the
user’s profile (not including margins). There is also an 10-pixel right mar-
gin, and no left margin. To center your content, make your content 180
pixels wide.

• Code not placed in <fb:narrow/> or <fb:wide/> tags will show in either
column.

<fb:user-table/>
<fb:user-table><fb:user-item/><fb:user-item/>...</fb:user-table>

Renders a list of users, specified as <fb:user-item/> tags within the tags. Each
<fb:user-item/> tag renders a thumbnail for the specified user, with a linked name
for that user appearing to the right of the thumbnail. Look at the Mutual Friends
section on each profile page for a good example of what this looks like.

FBML-Specific Attributes

Required
None.

<fb:user-table/> | 53

Optional

cols=[int] defaults: 3 (for narrow column), 6 (for wide column)
The number of columns in the user table.

Example FBML
The <fb:user-table/> tag simply contains a list of <fb:user-item/> tags, as shown
in the following example (see the <fb:user-item/> tag described next for more
details):

<fb:user-table>
 <fb:user-item uid="683545112"/>
 <fb:user-item uid="4"/>
 <fb:user-item uid="7403766"/>
</fb:user-table>

Rendered HTML for Single Instance of Tag
When rendered, an <fb:user-table/> box on a user’s profile will produce HTML
that looks like this (Figure 3-10 shows the result):

<table class="friendTable" cellpadding="0" cellspacing="0" border="0"
 height="100%">
<tr>
<td >
 <table height="100%">
 <tr>
 <td height="100%" style="vertical-align: middle;">

 <img src="http://profile.ak.facebook.com/profile5/623/6/
 t683545112_5427.jpg"
 alt="" class="" />
 </td>
 </tr>
 <tr>
 <td>

 Jesse Stay
 </td>
 </tr>
 </table>
</td>
<td >
 <table height="100%">
 <tr>
 <td height="100%" style="vertical-align: middle;">

 <img src="http://profile.ak.facebook.com/profile5/1240/77/
 t4_65.jpg"
 alt="" class="" />
 </td>
 </tr>
 <tr>

54 | Chapter 3: FBML Reference

 <td>

 Mark Zuckerberg
 </td>
 </tr>
 </table>
</td>
<td >
 <table height="100%">
 <tr>
 <td height="100%" style="vertical-align: middle;">

 <img src="http://profile.ak.facebook.com/profile5/1161/15/
 t7403766_2745.jpg"
 alt="" class="" />
 </td>
 </tr>
 <tr>
 <td>

 Nick ONeill
 </td>
 </tr>
 </table>
</td>
<td >
 <table height="100%"></table>
</td>
<td >
 <table height="100%"></table>
</td>
<td >
 <table height="100%"></table>
</td>
</tr>
</table>

Figure 3-10. The result of our <fb:user-table/> example

Additional Information

• As with all tags in this section, <fb:user-table/> can be used only a user’s
profile, nowhere else.

<fb:user-table/> | 55

<fb:user-item/>
<fb:user-item uid="..."/>

To be used within <fb:user-table/>, this tag renders a thumbnail image and name
to the right of that image that links to that user’s profile. See the earlier description
of the <fb:user-table/> tag for context.

FBML-Specific Attributes

Required

uid=[bigint] default: none
The user ID of the user item to render.

Optional
None.

Example FBML
Here is an example of the <fb:user-item/> tag (see <fb:user-table/> for context):

<fb:user-item uid="683545112"/>

Rendered HTML for Single Instance of Tag
The underlying HTML looks like this (Figure 3-11 shows the result):

<table height="100%">
 <tr>
 <td height="100%" style="vertical-align: middle;">

 <img src="http://profile.ak.facebook.com/profile5/623/6/
 t683545112_5427.jpg"
 alt="" class="" />
 </td>
 </tr>
 <tr>
 <td>

 Jesse Stay
 </td>
 </tr>
</table>

56 | Chapter 3: FBML Reference

Figure 3-11. A single <fb:user-item/> instance

<fb:subtitle/>
<fb:subtitle>...</fb:subtitle>

Renders a subtitle box below the title of your app in the user’s profile. With
<fb:action/> tags, this tag will render several links on the righthand side.

FBML-Specific Attributes

Required
None.

Optional

seeallurl=[string]
Renders a “see all” link, with a specified URL. The URL must be a canvas
page URL (i.e., http://apps.facebook.com/...).

Example FBML
Here is example FBML code for <fb:subtitle/>. It renders a subtitle box below the
title on the app’s profile box on a user’s profile (Figure 3-12 shows the result—visit
the FBML Essentials app to see it in action!):

<fb:subtitle>
 by Jesse Stay, published by O'Reilly
 <fb:action href="http://apps.facebook.com/oreilly"> Purchase the Book!
 </fb:action>
</fb:subtitle>

Figure 3-12. The result of our <fb:subtitle/> example

<fb:subtitle/> | 57

Additional Information

• This tag does not work with <fb:visible-*/> tags.

• This tag can have multiple <fb:action/> tags within it.

Users, Groups, Events, Networks, and Applications

<fb:name/>
<fb:name uid="..."/>

Renders the name of the specified user. With various attributes you can customize
how that name is displayed.

FBML-Specific Attributes

Required

uid=[string|loggedinuser|profileowner]
The ID of the user whose name you would like to display. loggedinuser
displays the name of the user viewing the profile, whereas profileowner
can be used to display the name of the owner of the profile being viewed.

Optional

firstnameonly=[true|false] default: false
If true, displays just the first name of the user.

linked=[true|false] default: true
If true, links the name to the listed user’s profile.

lastnameonly=[true|false] default: true
If true, displays just the last name of the user.

possessive=[true|false] default: false
If true, makes the name possessive (adds ’s to the name, turning Jesse into
Jesse’s).

reflexive=[true|false] default: false
If true, and useyou is true, turns the pronoun “you” into “yourself.”

shownetwork=[true|false] default: false
If true, and an actual Facebook ID other than profileowner or
loggedinuser is used, the name will display the user’s network in paren-
theses to the right of the name (see the example for this tag).

58 | Chapter 3: FBML Reference

useyou=[true|false] default: true
If true, and the profile owner is the same as the logged-in user, displays
“you” as the user’s name.

ifcantsee=[string] default: empty string
Specifies text to display in case a user viewing the current user’s profile or
canvas page doesn’t have permission to see the user’s name.

capitalize=[true|false] default: false
If useyou is true and the specified uid is the logged-in user, capitalizes
“YOU”.

subjectid=[string] default: none
The user ID of the subject of the sentence when the name is the object of
the verb of the sentence. Use this tag when there are two <fb:name/> tags
in a sentence and you want to make sure the sentence that’s displayed is
grammatically correct when you’re visiting your own profile, when the
subject is visiting your profile, or when the subject is visiting his own pro-
file. (The example for this tag shows this in action.)

Example FBML
Here is example FBML code for <fb:name/>, using shownetwork="true" and
subjectid="683545112":

<fb:name uid="683545112"/> wrote about <fb:name uid="4"
 shownetwork="true" subjectid="683545112"/>!

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-13 shows the result):

you wrote about
 <a href="http://www.facebook.com/s.php?k=100000080&id=4"
 onclick="(new Image()).src = '/ajax/ct.php?app_id=4556145827&action_
 type=3&post_form_id=d05d40629636f8c5af8da6b3c997e549&position=2&' +
 Math.random();return true;">Mark Zuckerberg (Facebook)!

Figure 3-13. The result of our <fb:name/> example, when I visit my own profile (my ID is
683545112)

<fb:pronoun/>
<fb:pronoun uid="..."/>

Renders a pronoun for the specified user.

<fb:pronoun/> | 59

FBML-Specific Attributes

Required

uid=[string|actor]
The ID of the user to render a pronoun for. Use actor when using this tag
in a feed story to help render a pronoun for the actor.

A feed story is a blurb of text about the user of your app. This
blurb gets put in the user’s Mini-Feed, where it has the po-
tential to be sent to all of the user’s friends. See the section on
“Feed Forms” later in this chapter to learn how you can use
plain FBML/HTML to send a feed story to the Mini-Feed of a
user (i.e., the actor).

Optional

useyou=[true|false] default: true
Renders the pronoun “you” if you are the specified uid visiting the profile
or canvas page.

possessive=[true|false] default: false
Renders a possessive form of the user (his/her/your/their).

reflexive=[true|false] default: false
Renders a reflexive form of the user (himself/herself/yourself/themself).

objective=[true|false] default: false
Renders an objective form of the user (him/her/you/them).

usethey=[true|false] default: true
Renders “they” if the user has not specified a gender.

capitalize=[true|false] default: false
Capitalizes the first letter of the pronoun.

Example FBML
The following example FBML code for <fb:pronoun/> capitalizes the first letter, ren-
ders “they” if the user has not specified a gender, and renders the possessive form
of the pronoun (Figure 3-14 shows the result):

<fb:name useyou="false" uid="profileowner"/> has just finished
 <fb:pronoun uid="profileowner" possessive="true"
 capitalize="true"/> Book!

Figure 3-14. The result of our first <fb:pronoun/> example

60 | Chapter 3: FBML Reference

Here is another example (Figure 3-15 shows the result):

<fb:name useyou="false" uid="683545112"/> just gave
 <fb:pronoun uid="actor" possessive="true"/> book to Fred.

Figure 3-15. The result of our second <fb:pronoun/> example

<fb:profile-pic/>
<fb:profile-pic uid="..."/>

Renders the user’s profile picture, which is selected in the user’s settings.

FBML-Specific Attributes

Required

uid=[string] default: none
The ID of the user to return a profile picture for.

Optional

size=[thumb|small|normal|square|t|s|n|q] default: thumb
The size of the profile picture to render. Options are: thumb (t) (50 pixels
wide); small (s) (100 pixels wide); normal (n) (200 pixels wide); or square
(q) (50 50 pixels). The shortcut versions can also be used.

linked=[true|false] default: true
Produces a link for the profile picture back to the user’s profile.

Example FBML
The following is example FBML code for a square profile picture using <fb:profile-
pic/>. Note that any of the possible sizes can be replaced with square. This profile
picture will also link back to the user’s profile:

<fb:profile-pic uid="4" size="square"/>

Rendered HTML for Single Instance of Tag
The underlying HTML for the profile picture looks like this (Figure 3-16 shows the
result):

<a href="http://www.facebook.com/s.php?k=100000080&id=4"
 onclick="(new Image()).src = '/ajax/ct.php?app_id=4556145827&action_
 type=3&post_form_id=47574ff04e8cb37298e9ddcc2e84e84c&position=2&'
 + Math.random();return true;">
<img uid="4" size="square" src="http://profile.ak.facebook.com/profile5/

<fb:profile-pic/><fb:profile-pic/> tag | 61

 1240/77/q4_65.jpg" alt="Mark Zuckerberg" title="Mark Zuckerberg" />

Figure 3-16. The result of our <fb:profile-pic/> example

Additional Information

• The <fb:profile-pic/> is treated like a normal tag.

• All attributes supported by a normal HTML tag should work with
the <fb:profile-pic/> tag as well.

<fb:eventlink/>
<fb:eventlink eid="..."/>

Renders a link to a specified event.

FBML-Specific Attributes

Required

eid=[int] default: none
The ID of the event to link to.

Optional
None.

Example FBML
Here is example FBML code for <fb:eventlink/>:

<fb:eventlink eid="11436588798"/>

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-17 shows the result):

 Google I/O

Figure 3-17. The result of our <fb:eventlink/> example

62 | Chapter 3: FBML Reference

<fb:grouplink/>
<fb:grouplink gid="..."/>

Renders a link to a specified group on Facebook.

FBML-Specific Attributes

Required

gid=[string] default: none
The group ID for the group to link to.

Optional
None.

Example FBML
Here is example FBML code for <fb:grouplink/>. This will link to the Utah Facebook
Developers Garage group:

<fb:grouplink gid="3340942167"/>

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-18 shows the result):

 Utah Facebook Developers Garage

Figure 3-18. The result of our <fb:grouplink/> example

<fb:networklink/>
<fb:networklink nid="..."/>

Renders a link to the specified Facebook network.

FBML-Specific Attributes

Required

nid=[string] default: none
The network ID of the Facebook network to link to.

<fb:grouplink/> | 63

Optional
None.

Example FBML
Here is example FBML code for <fb:networklink/>. This will produce a link to the
“Facebook” network:

<fb:networklink nid="50431648"/>

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-19 shows the result):

 Facebook

Figure 3-19. The result of our <fb:networklink/> example

<fb:application-name/>
<fb:application-name/>

Renders the name of the current application. This is a good way to ensure that your
application name will always be correct, even if you change the name of your app in
the future.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is the FBML code for <fb:application-name/> (yes, it’s simple):

<fb:application-name/>

Rendered HTML for Single Instance of Tag
The rendered HTML would look like this for the FBML Essentials application on
Facebook:

FBML Essentials

64 | Chapter 3: FBML Reference

Additional Information

• This tag may be used for feed items.

HTML Display and Navigation
The following sections cover general HTML display tags and page navigation
tags.

General HTML Display Tags

<fb:title/>
<fb:title>...</fb:title>

When placed anywhere in a canvas page, this sets the <title/> tag in HTML for a
specific canvas page.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is the FBML code for <fb:title/> used in the FBML Essentials app:

<fb:title>O'Reilly FBML Essentials - Examples, Tips, Tricks, and
 Trivia About Facebook!</fb:title>

Rendered HTML for Single Instance of Tag
The example produces a title tag that looks like the following in <header/> in the
canvas page’s HTML (Figure 3-20 shows the result):

<title>O'Reilly FBML Essentials - Examples, Tips, Tricks, and
 Trivia About Facebook!</title>

Figure 3-20. The title bar that results from our <fb:title/> example

HTML Display and Navigation | 65

Additional Information

• This tag works only on canvas pages. It will not work on a user’s profile
page.

<fb:iframe/>
<fb:iframe src="..."/>

An excellent tool when you need to render complex JavaScript, Flash, or unsuppor-
ted FBML. This tag links to an external web address and renders the content from
that URL inside an HTML <iframe/> tag on the canvas page. From the external URL,
any HTML, JavaScript, or Flash may be used, but keep in mind that content will not
be parsed by Facebook, and therefore FBML will not be supported for anything
output by the <fb:iframe/> tags. <fb:iframe/> is not supported on user profile pages.

FBML-Specific Attributes

Required

src=[string] default: none
External URL (non-Facebook, e.g., your own servers) to render in the
iframe. All Facebook variables mentioned in the “Forms in FBML” section
in Chapter 2 are appended to this URL, including fb_sig_profile,
fb_sig_user, fb_sig_session_key, fb_sig_time, and fb_sig, in addition to
an fb_sig_in_iframe parameter to let the app know it is being called from
an iframe.

Optional

smartsize=[true|false] default: false
If true, automatically fits the iframe to the remaining space on the page
and disables the scrollbars.

frameborder=[1|0] default: 1
If 1, shows the iframe border. If 0, hides it.

scrolling=[yes|no|auto] default: yes
If yes, displays scrollbars. If no, doesn’t display scrollbars. If auto, scroll-
bars are displayed only if the enclosed content exceeds the size of the
iframe.

style=[string] default: none
Specifies the style for the iframe.

width=[int] default: none
Specifies the width of the iframe.

66 | Chapter 3: FBML Reference

height=[int] default: none
Specifies the height of the iframe.

resizable=[true|false] default: false
If true, allows the containing site to control the outer iframe’s size via
JavaScript. Cannot be used when smartsize is true. You must also specify
a name attribute when using the resizable attribute. Please see Chapter 4
for more functional examples that show how to do this.

name=[string] default: none
Name for the iframe. For use when resizable="true", and enables access
via JavaScript from the containing site.

Example FBML
Here is example FBML code for <fb:iframe/>:

<fb:iframe src="http://fbmlessentials.staynalive.com/?action=
 iframe&src=true& notabs=1" frameborder="1" width="100"
 height="100" style="margin:10px" scrolling="auto"/>

Rendered HTML for Single Instance of Tag
The generated <fb:iframe/> tag for the example looks like this (Figure 3-21 shows
the result):

<iframe
 src="http://fbmlessentials.staynalive.com/?action=iframe&
 src=true&notabs=1&
 fb_sig_in_iframe=1&fb_sig_time=1205793218.0177&
 fb_sig_added=0&fb_sig_user=683545112&
 fb_sig_profile_update_time=1205648428&fb_sig_session_key=
 54aeab3103ef387539a31aa1-683545112&
 fb_sig_expires=0&fb_sig_api_key=
 ba19d367e2d8c4ea5813d54f2cbba136&
 fb_sig=61cce193ae9cdc2cb2e2858481ea8cc9"
 frameborder="1"
 width="500"
 height="100"
 style="margin: 10px;"
 scrolling="auto">
</iframe>

Additional Information

• <fb:iframe/> works only on canvas pages. It will not work on a user’s
profile page.

• Be sure to use your own external, non-Facebook URL—i.e., the callback
URL you specified in your application settings—for the src. If you don’t,
the iframe will wrap the Facebook look and feel.

• FBML is not supported within the iframe.

<fb:iframe/> | 67

Page Navigation Tags

<fb:dashboard/>
<fb:dashboard>...[<fb:action/>][<fb:create-button/>][<fb:help/>]
 </fb:dashboard>

Renders a standard Facebook dashboard header that works on canvas pages. This
header provides links at the top of the page, and if the application has an icon, it will
include that icon next to your application’s name as part of the header.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is example FBML code for <fb:dashboard/>, taken from the FBML Essentials
app:

<fb:dashboard>
 <fb:action href="http://apps.facebook.com/fbmlessentials"
 title="Home">Home</fb:action>
 <fb:action href="http://apps.facebook.com/facebookquiz"
 title="How much do you know about Facebook?"> How much do you
 know about Facebook? </fb:action>
 <fb:help href="http://apps.facebook.com/fbmlessentials/?action=help"
 title="Get Help with this app">Help</fb:help>
 <fb:create-button href="http://apps.facebook.com/fbmlessentials/
 invite.php">Invite another Friend</fb:create-button>
</fb:dashboard>

Figure 3-21. The result of our <fb:iframe/> example

68 | Chapter 3: FBML Reference

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (see Figure 3-22):

<div class="dashboard_header">
 <div class="dh_links clearfix">
 <div class="dh_actions">
 Home
 |

 How much do you know about Facebook?
 </div>
 <div class="dh_help">

 Help
 </div>
 </div>
 <div class="dh_titlebar clearfix">
 <h2 style="background-image: url('http://static.ak.facebook.com/
 images/icons/hidden.gif?57:27651')">
 FBML Essentials
 </h2>
 </div>
 <div class="dh_new_media_shell">
 <a href="http://apps.facebook.com/fbmlessentials/invite.php"
 class="dh_new_media">
 <div class="tr">
 <div class="bl">
 <div class="br">
 Invite another Friend
 </div>
 </div>
 </div>

 </div>
</div>

Figure 3-22. The result of our <fb:dashboard/> example

Additional Information

• <fb:dashboard/> works only on canvas pages.

• This tag supports the <fb:action/>, <fb:create-button/>, and
<fb:help/> tags. See the descriptions of those tags later in this chapter for
more information.

• <fb:if-user-has-added/> does not work within an <fb:dashboard/> tag,
but it can be used to contain the tag.

<fb:dashboard/> | 69

<fb:action/>
[<fb:dashboard>|<fb:subtitle>]<fb:action href="...">...</fb:action>
 [</fb:dashboard>|</fb:subtitle>]

Renders a link on the right of an <fb:subtitle/> tag or on the left of an
<fb:dashboard/> tag. See the <fb:subtitle/> and <fb:dashboard/> tags earlier in this
chapter for context. <fb:action/> works the same—but looks different—in both
instances.

FBML-Specific Attributes

Required

href=[string] default: none
The URL for the link. This URL must be a Facebook canvas page (e.g.,
apps.facebook.com...).

Optional

title=[string] default: none
Tool tip title for a link.

onclick=[string] default: none
FBJS function to call when a link is clicked.

Example FBML
Here is example FBML code for <fb:action/>; please refer to the <fb:subtitle/> tag
for context (Figure 3-23 shows the result):

<fb:action href="http://apps.facebook.com/fbmlessentials"
 title="Home">Home</fb:action>

Figure 3-23. The <fb:action/> tag in an <fb:subtitle/> tag rendered on a user’s profile

Here is another example; please refer to the <fb:dashboard/> tag for context (Fig-
ure 3-24 shows the result):

<fb:action href="http://apps.facebook.com/facebookquiz"
 title="How much do you know about Facebook?">
 How much do you know about Facebook?
</fb:action>

Figure 3-24. The <fb:action/> tag in an <fb:dashboard/> tag rendered on the canvas page

70 | Chapter 3: FBML Reference

Additional Information

• This tag appears to the right of an <fb:subtitle/> tag and to the left of an
<fb:dashboard/> tag.

• When used in an <fb:subtitle/> tag, this tag works only on the user’s
profile. When used in an <fb:dashboard/> tag, it works only on a canvas
page.

<fb:create-button/>
<fb:dashboard>...<fb:create-button href="...">...</fb:create-button>
 </fb:dashboard>

Renders a special “Create” button that appears to the right of the title in an
<fb:dashboard/> tag. The button is rounded, has a + symbol on the left side, and can
contain any text you place between the tags.

FBML-Specific Attributes

Required

href=[string] default: none
The canvas page within Facebook to link to. It must be of the http://
apps.facebook.com... domain.

Optional

title=[string] default: none
Text that appears when you hover over the “Create” button.

onclick=[string] default: none
When clicked, calls the specified FBJS function.

Example FBML
Here is example FBML code for <fb:create-button/>, which generates a “Create”
button in the upper-right corner of the canvas page:

<fb:dashboard>
 <fb:create-button href="http://apps.facebook.com/fbmlessentials/
 invite.php">Invite another Friend</fb:create-button>
</fb:dashboard>

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-25 shows the result):

<div class="dh_new_media_shell">
 <a href="http://apps.facebook.com/fbmlessentials/invite.php"
 class="dh_new_media">

<fb:create-button/> | 71

 <div class="tr">
 <div class="bl">
 <div class="br">
 Invite another Friend
 </div>
 </div>
 </div>

</div>

Figure 3-25. The result of our <fb:create-button/> example

Additional Information

• This tag works only on the canvas page.

• It must link to a canvas page.

• Only one “Create” button per canvas page is allowed.

• There is no way to remove the + symbol from the button.

<fb:help/>
<fb:help href="...">...</fb:help>

Renders a “Help” link with specified text that links to a specified help location. This
tag works within an <fb:dashboard/> tag (described earlier in this chapter).

FBML-Specific Attributes

Required

href=[string] default: none
Location to send the user to when they click on the “Help” link.

Optional

title=[string] default: none
Tool tip text to show upon mouseover of the link.

Example FBML
Here is example FBML code for <fb:help/>:

<fb:dashboard>
 <fb:help href="http://apps.facebook.com/fbmlessentials/?action=help"
 title="Get Help with this app"/>
</fb:dashboard>

72 | Chapter 3: FBML Reference

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-26 shows the result):

<div class="dh_help">

 Help</div>

Figure 3-26. Our <fb:help/> example produces a link in the dashboard

Additional Information

• This tag works only in an <fb:dashboard/> tag.

<fb:header/>
<fb:header>...</fb:header>

Renders a header title in place of the tag, and optionally places the application’s icon
next to the header text.

FBML-Specific Attributes

Required
None.

Optional

icon=[true|false] default: true
If true, displays the application’s icon next to the header text.

decoration=[add_border|no_padding|shorten] default: none
If add_border, it adds a 1-pixel, solid #ccc-colored border below the header.
If no_padding, it removes the 20 pixels of padding around the header. If
shorten, it removes the 20 pixels of padding below the header.

Example FBML
The following example FBML code for <fb:header/> produces a standard Facebook
header (using the text, “Hello Friends” Example), along with the application icon
and all the styling that goes with it:

<fb:header>"Hello Friends" Example</fb:header>

<fb:header/> | 73

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-27 shows the result):

<div class="title_header">
 <h2 class="" style="background-image: url(http://
 static.ak.facebook.com/images/icons/hidden.gif?57:27651)">
 "Hello Friends" Example
 </h2>
</div>

Figure 3-27. The result of our <fb:header/> example

<fb:mediaheader/>
<fb:mediaheader uid="...">[<fb:owner-action>...</fb:owner-action>]
 [<fb:header-title>...</fb:header-title>]</fb:mediaheader>

Renders a special header that includes a picture of the specified user, along with a
“Profile” link, a “Send Message” link, or a “Poke” link. Additionally, customized
links can be set up (using the <fb:owner-action/> tag) that display only if the current
user is the same as the user specified. In such a case, the “Profile,” “Send Message,”
and “Poke” links are all replaced with the specified <fb:owner-action/> link.

FBML-Specific Attributes

Required

uid=[string] default: none
The ID of the Facebook user to render the media header for.

Optional
None.

Example FBML
Here is example FBML code for <fb:mediaheader/>; it renders differently depending
on whether you are the user with the specified ID (as shown in Figure 3-28) or not
(as shown in Figure 3-29):

74 | Chapter 3: FBML Reference

<fb:mediaheader uid="4">
 <fb:owner-action href="http://apps.facebook.com/fbmlessentials/">
 View Your Messages.</fb:owner-action>
 <fb:header-title><fb:mediaheader/> Example</fb:header-title>
</fb:mediaheader>

Figure 3-28. The result of the <fb:mediaheader/> example if your user ID is 4

Figure 3-29. The result of the <fb:mediaheader/> example if you are anyone else

Additional Information

• This tag must have room to span across the entire canvas.

• This tag does not work in profile boxes.

<fb:header-title/>
<fb:header-title>...</fb:header-title>

The text to display as the title for an <fb:mediaheader/> tag. See <fb:mediaheader/>
(described previously) for an example. Simply add the text you want to display in
between the tags.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Please see <fb:mediaheader/> earlier in this chapter for an example.

<fb:header-title/> | 75

<fb:owner-action/>
<fb:owner-action href="...">...</fb:owner-action>

A link to display in place of the Profile, Send Message, and Poke links if the user
viewing the app is the same as the specified user in an <fb:mediaheader/> tag.

FBML-Specific Attributes

Required

href=[string] default: none
The URL to take the user to when they click on the link.

Optional
None.

Example FBML
Please see <fb:mediaheader/> earlier in this chapter for an example.

Additional Information

• This tag works only within an <fb:mediaheader/> tag.

• Multiple links can coexist in a single <fb:mediaheader/> tag.

<fb:tabs/>
<fb:tabs><fb:tab-item href="..." title="..."/>...</fb:tabs>

Renders a set of standard Facebook tabs for your app. The tabs appear wherever the
tags are placed in the app. Please also see the <fb:dashboard/> tag (described earlier)
for a different style of navigation.

FBML-Specific Attributes

Required

href=[string] default: none
The URL to take the user to when they click on the link.

Optional
None.

76 | Chapter 3: FBML Reference

Example FBML
The following example FBML code for <fb:tabs/> renders “Hello Friends Example”
and “Invite Your Friends” tabs, with the first tab being selected:

<fb:tabs>
 <fb:tab-item href="http://apps.facebook.com/fbmlessentials/"
 title="Hello Friends Example" selected="true"/>
 <fb:tab-item href="http://apps.facebook.com/fbmlessentials/
 invite.php" title="Invite Your Friends" />
</fb:tabs>

Rendered HTML for Single Instance of Tag
The underlying HTML for the example looks like this (Figure 3-30 shows the result):

<div class="tabs clearfix"><center><div class="left_tabs">
 <ul class="toggle_tabs clearfix" id="toggle_tabs_unused">
 <li class="first "> <a href="http://apps.facebook.com/fbmlessentials/"
 class="selected"> Hello Friends Example <li class="last ">

 Invite Your Friends </div></center></div>

Figure 3-30. The result of our <fb:tabs/> example

Additional Information

• Multiple <fb:tabs/> are allowed on a single canvas page.

• This tag must contain at least one <fb:tab-item/>.

<fb:tab-item/>
<fb:tab-item href="..." title="..."/>

Renders a single tab within an <fb:tabs/> tag.

FBML-Specific Attributes

Required

href=[string] default: none
The location to take the user to when they click on the tab.

title=[string] default: none
Text to display in the tab.

<fb:tab-item/> | 77

Optional

selected=[true|false] default: false
If true, highlights the tab in blue (see the <fb:tabs/> example).

align=[left|right] default: left
Specifies the alignment of the tab.

Try align="right" for “Help” and “Admin” tabs so that
they stand out from the other left-aligned tabs.

Example FBML
Please see <fb:tabs/> earlier in this chapter for an example.

Additional Information

• Dynamic FBML (i.e., Mock AJAX and other added attributes) does not
work with this tag.

<fb:share-button/>
<fb:share-button class="...">...</fb:share-button>

Takes a given target URL—optionally with some meta information so that it knows
what to render—and displays a dialog box with a preview box of the target URL,
inviting the user to share that content with friends. The “Share” button will auto-
matically try to render the URL for you, or else you can provide metadata explicitly
in the share-button call or in the site itself that tells Facebook how to display the
preview.

FBML-Specific Attributes

Required

class=[url|meta] default: none
The method to provide attributes to Facebook to aid in rendering the
preview to be shared.

href=[string] default: none
Required only when class="url" is used. This is the URL to render a
preview for. The URL should contain meta elements (listed next) to pro-
vide the most intelligent preview possible.

78 | Chapter 3: FBML Reference

Optional
If meta is selected for the class attribute, you must provide optional link and meta
tags within the <fb:share-button/> tags.

Meta and Link Tags
The following are the accepted meta and link tags for different types of content.

Basic meta tags
These tags can be used with any content type. Be sure to include the medium meta
tag to specify the type of content. You can create a preview of any page, not just
audio and video sources, using these tags:

• <meta name="title" content="The title of the page"/>

• <meta name="description" content="The description of the content on
the page"/>

• <meta name="medium" content="[audio|image|video|news|blog|mult]"/>

• <link rel="image_src" content="The URL of the image to be
displayed"/>

• <link rel="target_url" content="The URL of the document being
shared"/>

Required meta tags for an audio source

• <meta name="title" content="The title of the page"/>

• <meta name="description" content="The description of the audio"/>

• <link rel="image_src" content="The URL of the image (such as album
art) for the audio"/>

• <link rel="audio_src" content="The URL of the audio file"/>

• <meta name="audio_type" content="Content-Type of the audio file"/>

Optional meta tags for an audio source

• <meta name="audio_title" content="The title of the audio (such as
song name)"/>

• <meta name="audio_artist" content="The author of the audio (singer,
rapper, speaker)"/>

• <meta name="audio_album" content="The album the audio belongs to"/>

Required meta tags for a video source

• <meta name="title" content="The title of the page"/>

• <meta name="description" content="The description of the page"/>

<fb:share-button/> | 79

• <link rel="image_src" content="The URL of the image or screenshot of
the video"/>

• <link rel="video_src" content="The URL of the video being previewed
or shared"/>

• <meta name="video_height" content="The height of the video"/>

• <meta name="video_width" content="The width of the video"/>

• <meta name="video_type" content="Content-Type of the video file"/>

Example FBML
Here is an example of the <fb:share-button/> tag with meta information. For the
following video:

<object width="425" height="355">
<param name="movie" value="http://www.youtube.com/v/I6IQ_FOCE6I&hl=en">
</param>
<param name="wmode" value="transparent">
</param>
<embed src="http://www.youtube.com/v/I6IQ_FOCE6I&hl=en"
 type="application/x-shockwave-flash" wmode="transparent"
 width="425" height="355">
</embed>
</object>

you would use this FBML code (note that I added my own screenshot in the
image_src field):

<fb:share-button class="meta">
 <meta name="medium" content="video"/>
 <meta name="title" content="Here Comes Another Bubble v1.1"/>
 <meta name="description" content="Funny Video About the 'Social
 Media Bubble'"/>
 <link rel="image_src" href="http://staynalive.com/wp-content/
 themes/revvedup-158/images/Picture_1-20080318-164716.jpg"/>
 <link rel="video_src" href="http://www.youtube.com/v/
 I6IQ_FOCE6I&hl=en"/>
 <link rel="target_url" href="http://youtube.com/watch?v=
 I6IQ_FOCE6I"/>
 <meta name="video_height" content="355"/>
 <meta name="video_width" content="425"/>
 <meta name="video_type" content="application/x-shockwave-flash"/>
</fb:share-button>

Here is a second example of the <fb:share-button/> tag, this time with just a URL:

<fb:share-button class="url" href="http://youtube.com/watch?v=
 I6IQ_FOCE6I"/>

Rendered HTML for Single Instance of Tag
Both examples will render as shown in Figure 3-31. (Note that the example with just
a URL would autopopulate its own screenshot from the first image on the page or

80 | Chapter 3: FBML Reference

from existing meta tags.) The “Share” button that generates this image when clicked
is shown in Figure 3-32.

Figure 3-31. The result of our <fb:share-button/> examples

Figure 3-32. The “Share” button

<fb:page-admin-edit-header/>
<fb:page-admin-edit-header/>

Adds a canvas-only header that makes it easy for page admins to manage the page
an app belongs to. This tag works only on canvas pages of apps that have been added
to a Facebook Page of which the user is an admin.

<fb:page-admin-edit-header/> | 81

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
This tag is very simple. It just looks like this:

<fb:page-admin-edit-header/>

If you are an admin of a Facebook Page that this app belongs to, you’ll see something
like Figure 3-33 (taken from http://wiki.developers.facebook.com/index.php/Fb:page-
admin-edit-header).

Figure 3-33. The result from our <fb:page-admin-edit-header/> example if you are an
admin

Creating Forms With FBML

<fb:editor/>
<fb:editor action="...">...</fb:editor>

Renders a special Facebook-formatted form with two columns. This is a great way
to render a form that matches the standard Facebook look and feel. For more com-
plex operations for a form, I strongly suggest you just use a standard HTML
<form/> tag. See also the following tags elsewhere in this chapter:

• <fb:editor-button/>

• <fb:editor-buttonset/>

• <fb:editor-cancel/>

• <fb:editor-custom/>

• <fb:editor-date/>

• <fb:editor-divider/>

• <fb:editor-month/>

82 | Chapter 3: FBML Reference

http://wiki.developers.facebook.com/index.php/Fb:page-admin-edit-header
http://wiki.developers.facebook.com/index.php/Fb:page-admin-edit-header

• <fb:editor-text/>

• <fb:editor-textarea/>

• <fb:editor-time/>

FBML-Specific Attributes

Required

action=[string] default: none
The location to send the form to. Note that all <fb:editor/> forms are sent
via the POST form method, so be sure you authenticate properly with that
in mind!

Optional

width=[int] default: none
The width of the form as a whole. (The form renders a table—this is the
table’s width.)

labelwidth=[int] default: none
The width of the labels in the form (the left column). The right column
will adjust based on the width value of <fb:editor/>.

Example FBML
Here is example FBML code for a form using <fb:editor/>:

<fb:editor action="http://apps.facebook.com/fbmlessentials">
 <fb:editor-custom>
 <input type="hidden" name="action" value="editor" />
 <input type="hidden" name="submit" value="true" />
 </fb:editor-custom>
 <fb:editor-text label="Your Name" name="name" value=""/>
 <fb:editor-textarea label="Your Address" name="address" value=""/>
 <fb:editor-date label="Your Birthday" name="birthday"/>
 <fb:editor-month label="Current Month" name="month"/>
 <fb:editor-time label="Current Time" name="time"/>
 <fb:editor-divider/>
 <fb:editor-buttonset>
 <fb:editor-button name="submit" value="Submit Name"/>
 <fb:editor-cancel name="cancel" value="Cancel"/>
 </fb:editor-buttonset>
</fb:editor>

Rendered HTML for Single Instance of Tag
The underlying HTML looks like the following (Figure 3-34 shows the result). This
is important because if you need Mock AJAX or a GET request, you have to render
your own form:

<fb:editor/> | 83

<form action="http://apps.facebook.com/fbmlessentials" method="post">
 <table class="editorkit" border="0" cellspacing="0" style="width:425px">
 <tr class="width_setter">
 <th style="width:75px"></th>
 <td></td>
 </tr>
 <tr>
 <th class="detached_label"><label></label></th>
 <td class="editorkit_row">
 <input type="hidden" name="action" value="editor" />
 <input type="hidden" name="submit" value="true" />
 </td>
 <td class="right_padding"></td>
 </tr>
 <tr>
 <th><label>Your Name:</label></th>
 <td class="editorkit_row"><input type="text" name="name"/></td>
 <td class="right_padding"></td>
 </tr>
 <tr>
 <th class="detached_label">
 <label>Your Address:</label>
 </th>
 <td class="editorkit_row"><textarea name="address"></textarea></td>
 <td class="right_padding"></td>
 </tr>
 <tr>
 <th><label>Your Birthday:</label></th>
 <td class="editorkit_row">
 <select name="birthday_month" id="birthday_month"
 onchange="editor_date_month_change(this, 'birthday_day','');" >
 <option value="1">Jan</option><option value="2">Feb</option>
 <option value="3">Mar</option><option value="4">Apr</option>
 <option value="5">May</option><option value="6">Jun</option>
 <option value="7">Jul</option><option value="8">Aug</option>
 <option value="9">Sep</option><option value="10">Oct</option>
 <option value="11">Nov</option>
 <option value="12" selected>Dec</option>
 </select>
 <select name="birthday_day" id="birthday_day">
 <option value="1">1</option><option value="2">2</option>
 <option value="3">3</option><option value="4">4</option>
 <option value="5">5</option><option value="6">6</option>
 <option value="7">7</option><option value="8">8</option>
 <option value="9">9</option><option value="10">10</option>
 <option value="11">11</option><option value="12">12</option>
 <option value="13">13</option><option value="14">14</option>
 <option value="15">15</option>
 <option value="16">16</option><option value="17">17</option>
 <option value="18">18</option>
 <option value="19">19</option><option value="20">20</option>
 <option value="21">21</option>
 <option value="22">22</option><option value="23">23</option>
 <option value="24">24</option>

84 | Chapter 3: FBML Reference

 <option value="25">25</option><option value="26">26</option>
 <option value="27">27</option>
 <option value="28">28</option><option value="29">29</option>
 <option value="30">30</option>
 <option value="31" selected>31</option>
 </select>
 </td>
 <td class="right_padding"></td>
 </tr>
 <tr>
 <th><label>Current Month:</label></th>
 <td class="editorkit_row">
 <select name="month" id="month" >
 <option value="-1">Month:</option><option value="1">Jan</option>
 <option value="2">Feb</option>
 <option value="3">Mar</option><option value="4">Apr</option>
 <option value="5">May</option>
 <option value="6">Jun</option><option value="7">Jul</option>
 <option value="8">Aug</option>
 <option value="9">Sep</option><option value="10">Oct</option>
 <option value="11">Nov</option>
 <option value="12">Dec</option>
 </select>
 </td>
 <td class="right_padding"></td>
 </tr>
 <tr>
 <th><label>Current Time:</label></th>
 <td class="editorkit_row">
 <select name="time_hour" id="time_hour">
 <option value="1">1</option><option value="2">2</option>
 <option value="3">3</option>
 <option value="4" selected>4</option><option value="5">5</option>
 <option value="6">6</option>
 <option value="7">7</option><option value="8">8</option>
 <option value="9">9</option>
 <option value="10">10</option><option value="11">11</option>
 <option value="12">12</option>
 </select>:
 <select name="time_min" id="time_min">
 <option value="00" selected>00</option><option value="05">05</option>
 <option value="10">10</option><option value="15">15</option>
 <option value="20">20</option>
 <option value="25">25</option><option value="30">30</option>
 <option value="35">35</option>
 <option value="40">40</option><option value="45">45</option>
 <option value="50">50</option>
 <option value="55">55</option></select><select name="time_ampm"
 id="time_ampm">
 <option value="am">am</option><option value="pm" selected>pm</option>
 </select>
 </td>
 <td class="right_padding"></td>
 </tr>

<fb:editor/> | 85

 <tr><th></th><td colspan="2"><div class="divider"></div></td></tr>
 <tr><th></th><td class="editorkit_buttonset">
 <input type="submit" class="editorkit_button action" value="Submit Name"
 name="submit" />
 orCancel
 </td><td class="right_padding"></td></tr>
 </table>
</form>

Figure 3-34. The result of our <fb:editor/> form example

Additional Information

• <fb:editor/> forms do not work with Mock AJAX. Use a normal form (see
the HTML example just shown) to make it work.

• <fb:editor/> forms get sent via POST methods.

<fb:editor-buttonset/>
<fb:editor-buttonset>...</fb:editor-buttonset>

Produces a set of buttons for an <fb:editor/> form. To be used with either an
<fb:button/> or <fb:cancel/> tag.

FBML-Specific Attributes

Required
None.

Optional
None.

86 | Chapter 3: FBML Reference

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

Additional Information

• This tag must contain at least one <fb:editor-button/> as a child.

<fb:editor-button/>
<fb:editor-button value="..."/>

Produces a standard input button within an <fb:editor-buttonset/> or by itself on
an <fb:editor/> form. When used by itself, it does not get styled as a regular editor
button.

FBML-Specific Attributes

Required

value=[string] default:none
Form field value for the submit button. Also the text that renders on the
submit button.

Optional

name=[string] default:none
The name of the form field (used for DOM access in FBJS and for your
server-side scripts).

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

<fb:editor-cancel/>
<fb:editor-cancel value="..."/>

Renders a cancel button for an <fb:editor/> form, within an
<fb:editor-buttonset/> if with a group of buttons, or by itself if not.

FBML-Specific Attributes

Required

value=[string] default: none
Form value for the cancel button. Also, the text to display in the button.

<fb:editor-button/> | 87

Optional

href=[#|string] default: #
The URL to redirect the user to if they click the cancel button.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

<fb:editor-custom/>
<fb:editor-custom>...</fb:editor-custom>

Allows for custom tags within <fb:editor/>. Any valid FBML tag is allowed. It works
great for placing hidden input form elements and checkboxes, or just plain text, as
a row in the <fb:editor/> box.

FBML-Specific Attributes

Required
None.

Optional

label=[string] default: none
Label that goes in the lefthand column for the <fb:editor-custom/> tag.
All content between the tags will go in the righthand column.

id=[string] default: none
The ID for the element to be accessed by FBJS.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

<fb:editor-date/>
<fb:editor-date label="..."/>

Renders a set of <select/> tags that provide a day drop-down menu and a month
drop-down menu, which can be read as dates by the POSTed script.

88 | Chapter 3: FBML Reference

FBML-Specific Attributes

Required

label=[string] default: none
The string of text to display in the left column of the <fb:editor/> form.

Optional

value=[int] default: Dec. 31 converted to UNIX timestamp
The UNIX timestamp to set the date drop-downs to when the page loads.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

Additional Information

• When the form is posted, two attributes are submitted:

date_month
The month value, i.e., a number between 1 and 12.

date_day
The day value, i.e., a number between 1 and 31.

• More than one <fb:editor-date/> submits only the last set in the form.
Use <fb:editor-custom/> to use more than one date selector. (See the ex-
ample HTML for the <fb:editor/> tag earlier in this chapter.)

• External validation should be performed, as nothing checks for illegal
dates (such as February 30).

• When you are posting to the same page, the previous selection does not
stay selected.

<fb:editor-divider/>
<fb:editor-divider/>

Creates a divider line between elements of an <fb:editor/> form. Translates to a
<div/> tag with a class of divider.

FBML-Specific Attributes

Required
None.

<fb:editor-divider/> | 89

Optional
None.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

<fb:editor-month/>
<fb:editor-month/>

Produces a drop-down menu of January through December for the month within
<fb:editor/> tags.

FBML-Specific Attributes

Optional

name=[month|string] default: month
The name to provide to the form element in the form; gets passed on in
the POST variables.

value=[Month:|int] default: Month:
The value at which to set the month, from 1–12 (1 = January, 12 =
December). In the POST variables, if Month: is selected, -1 gets passed back
to the form.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

<fb:editor-text/>
<fb:editor-text/>

Produces a standard form text input within <fb:editor/> tags.

FBML-Specific Attributes

Required
None.

Optional

label=[string] default: none
The text to display in the left column as a label for the row.

90 | Chapter 3: FBML Reference

name=[string] default: none
The name to pass back to the POST variables.

value=[string] default: none
The value to assign to the name in the POST variables; appears in the text
box on form load.

maxlength=[string] default: none
The max length of the text input box in the form.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

<fb:editor-textarea/>
<fb:editor-textarea>...</fb:editor-textarea>

Renders a standard form <textarea/> tag in an <fb:editor/> form.

FBML-Specific Attributes

Required
None.

Optional

label=[string] default: none
The label text for the left column of the <fb:editor/> form.

name=[string] default: none
The name of the <textarea/> form input to submit back to the POST
variables.

rows=[string] default: none
Same as a real <textarea/> tag; specifies the number of rows to display
(size).

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

Additional Information
To include a value in the <textarea/> tag, place it between the
<fb:editor-textarea/> tags.

<fb:editor-textarea/> | 91

<fb:editor-time/>
<fb:editor-time/>

Produces three drop-down menus for the hour, minute, and a.m./p.m. of the day
within an <fb:editor/> form.

FBML-Specific Attributes

Required
None.

Optional

label=[string] default: none
The label text to include on the left column of the <fb:editor/> form.

name=[time|string] default: time
The name within the form to send as a POST variable when the form is
submitted and to use within FBJS.

value=[string] default: none
The value to set in epoch seconds of what the drop-downs will be set to
when the page loads.

Example FBML
Please see the <fb:editor/> tag earlier in this chapter for an example.

Additional Information

• The three drop-downs send three POST variables:

name_hour
The hour of the day

name_min
The minute of the hour

name_ampm
The section of the day

• The selector is rounded to the nearest 15 minutes.

• The drop-downs show only the time, not the date.

92 | Chapter 3: FBML Reference

<fb:captcha/>
<fb:captcha/>

An element within <form/> tags, this tag places a “reCAPTCHA” image within the
form that contains two pieces of text that must be entered into a text input by the
user. The form gets redirected back to the URL in the action parameter for the form
with the additional parameter fb_sig_captcha_grade appended, which lets your app
know whether the CAPTCHA entry was successful.

As a developer, you can feel proud to include reCAPTCHAs
in your apps, not only because they help reduce spam on
Facebook, but because every entry is a contribution back to
the Archive.org project (http://www.archive.org). One of the
words in the Facebook reCAPTCHA is always a word from a
document scanned by Archive.org, and so your users are tran-
scribing that text one word at a time. See http://recaptcha.net
for more information on how the reCAPTCHA that Facebook
uses works.

FBML-Specific Attributes

Required
None.

Optional

showalways=[true|false] default: none
If true, the CAPTCHA will appear every single time the user visits the
form, regardless of whether the user previously passed the CAPTCHA test.
If false, the CAPTCHA will appear only until the user passes the test once.

Example FBML
Here is example FBML code for <fb:captcha/>:

<form action="http://fbmlessentials.staynalive.com" method="post">
 <fb:captcha showalways="true"/>
 <input type="submit" value="Submit Query" />
</form>

Rendered HTML for Single Instance of Tag
The example produces a CAPTCHA box that looks like the one in Figure 3-35.

<fb:captcha/> | 93

http://www.archive.org
http://recaptcha.net

Figure 3-35. The result of our <fb:captcha/> example

Additional Information

• fb_sig_captcha_grade will be appended to the URL you pass to the
action parameter within your form. If it returns 1, the user passed the
CAPTCHA test. If it returns 0, the user did not pass. It is your application’s
responsibility to handle this parameter appropriately.

<fb:submit/>
<fb:submit>...</fb:submit>

For any image or text between the tags, this tag turns them into a form submit button.
When a form_id is specified, it submits the identified form. Otherwise, if within an
existing form, it will submit the form it is part of.

FBML-Specific Attributes

Required
None.

Optional

form_id=[string] default: none
The ID of a form to submit. With this, the tag does not need to be within
normal <form/> elements.

Example FBML
Here is example FBML code for <fb:submit/> (taken from the Developer Wiki):

<fb:submit><img src="http://images.jupiterimages.com/common/
 detail/50/17/22851750.jpg"></fb:submit>

94 | Chapter 3: FBML Reference

<fb:typeahead-input/>
<fb:fbml version="1.1"><fb:typeahead-input name="...">...
 <fb:typeahead-option value="...">...</fb:typeahead-option>
 </fb:typeahead-input></fb:fbml>

Renders a type-ahead text input box that autodetects what the user is typing and
tries to match a drop-down menu of options with what the user is typing. A good
example of this can be seen in the search box in the upper-left corner of the Facebook
site. At the time of this writing, this tag is currently in beta and therefore requires
the <fb:fbml version="1.1"/> tags wrapped around it.

FBML-Specific Attributes

Required

name=[string] default: none
The name to submit in the POST request with the form. The selected value
in the input box will be passed with this name.

Optional

autocomplete=[on|off] default: on
If on, allows the browser’s autocomplete functions to override the auto-
complete of the <fb:typeahead-input/> tag. It is recommended that you
set this to off to override the browser functionality.

value=[string] default: none
The default value to include in the input box when the page loads. Note
that it doesn’t translate to the text of the <fb:typeahead-option/> box it
corresponds to.

Example FBML
Here is example FBML code for <fb:typeahead-input/>:

<form>
<fb:fbml version="1.1">
 <fb:typeahead-input name="name" autocomplete="off" value="mark">
 <fb:typeahead-option value="jesse">Jesse Stay</fb:typeahead-option>
 <fb:typeahead-option value="mark">Mark Zuckerberg</fb:typeahead-option>
 <fb:typeahead-option value="nick">Nick O'Neill</fb:typeahead-option>
 </fb:typeahead-input>
</fb:fbml>
</form>

<fb:typeahead-input/> | 95

Rendered HTML for Single Instance of Tag
The underlying HTML when rendered looks like this (Figure 3-36 shows the result):

<form>
<input type="hidden" name="name_val" id="name_val" />
<input name="name" autocomplete="off" value="mark" class="inputtext"
 onfocus="var source = new custom_source(
 [{"i":"jesse","t":"
 Jesse Stay"},{"i":"mark","
 t":"Mark Zuckerberg"},{"i":"
 nick","t":"Nick O'Neill"}]);
 source.text_placeholder = null;
 var ta = new typeaheadpro(this, source, {onselect: function(
 row) { $("name_val").value = row.i; ; }});">
</form>

Figure 3-36. The result of our <fb:typeahead-input/> example

Additional Information

• Be sure to include this tag within a <form/> tag to have it submit with the
form (or use FBJS).

• This tag must be included within an <fbml version="1.1"/> set of tags.

• This tag is currently under beta at the time of this writing.

• If none of the options are selected, the text entered in the input box gets
sent back to the form.

<fb:typeahead-option/>
<fb:typeahead-option>...</fb:typeahead-option>

For use inside <fb:typeahead-input/> tags; specifies a single option to suggest to the
user if their typing matches the containing text of the <fb:typeahead-option/> tag.

FBML-Specific Attributes

Required
None.

96 | Chapter 3: FBML Reference

Optional

value=[string] default: none
If specified, indicates the value to send with the POST in the
<fb:typeahead-input/> tag.

Example FBML
Please see the <fb:typeahead-input/> tag earlier for an example.

<fb:friend-selector/>
<fb:friend-selector/>

A special <fb:typeahead-input/> box that renders a form input text box that auto-
completes with a drop-down list of friends’ names, which the user can select from.
Only one friend can be chosen with this tag. To select multiple friends, use the
<fb:multi-friend-input/> tag. This tag can be used inside and out of
<fb:request-form/> tags.

FBML-Specific Attributes

Required
None.

Optional

uid=[int] default: uid of current logged-in-user
The ID of the user to display a <fb:friend-selector/> input box for.

name=[string] default: friend_selector_name
The name of the form element to submit with POST variables.

idname=[string] default: friend_selector_id
The name of the hidden element within the form that displays the ID of
the selected friend. If used within <fb:request-form/> tags, do not change
it to anything other than friend_selector_id.

include_me=[true|false] default: false
If true, includes the logged-in user in the list of friends to autocomplete.

exclude_ids=[array] default: none
Comma-separated list of user IDs to exclude from the friend’s list. This
can be used within an <fb:request-form/> to exclude those friends who
have already been invited.

include_lists=[true|false] default: false
If true, includes friends lists in the drop-down list of suggested friends.

<fb:friend-selector/> | 97

Example FBML
Here is example FBML code for <fb:friend-selector/>:

<form>
<fb:friend-selector name="my_friend" idname="my_friend_id"
 include_me="true" exclude_ids="4,1,2" include_lists="true"/>
</form>

Rendered HTML for Single Instance of Tag
The underlying HTML when rendered looks like this (Figure 3-37 shows the result):

<form>
 <input type="hidden" name="fb_sig_time" value="1206154647.8097" />
 <input type="hidden" name="fb_sig_added" value="0" />
 <input type="hidden" name="fb_sig_user" value="683545112" />
 <input type="hidden" name="fb_sig_profile_update_time"
 value="1205994295" />
 <input type="hidden" name="fb_sig_session_key"
 value="54aeab3103ef387539a31aa1-683545112" />
 <input type="hidden" name="fb_sig_expires" value="0" />
 <input type="hidden" name="fb_sig_api_key"
 value="ba19d367e2d8c4ea5813d54f2cbba136" />
 <input type="hidden" name="fb_sig"
 value="61014ec6e6d947973c28e2b823127bd2" />
 <input name="my_friend" idname="my_friend_id"
 value="Start typing a friend's name"
 class="inputtext typeahead_placeholder"
 maxlength="100" size="25" autocomplete="off" type="input"
 onfocus="var typeahead_source_instance1=
 new friend_source(
 '683545112-1206123558-1&u=683545112&include_me=
 1&lists=1');typeahead_source_instance1.set_exclude_ids(
 {"4":true,"1":true,"2":true});
 new FBML.friendSelector(this, typeahead_source_instance1,{
 should_use_absolute:1});" />
</form>

Figure 3-37. The result of our <fb:friend-selector/> example if I start typing “Jesse Stay”

Additional Information

• If a value that doesn’t exist in the list is entered, idname becomes blank
and the name value becomes that which was entered.

• If blank, the idname hidden field is not rendered.

98 | Chapter 3: FBML Reference

<fb:multi-friend-input/>
<fb:multi-friend-input/>

Renders a form input text box that produces a drop-down list of suggestions
for friends as the user types. The difference between this tag and the
<fb:friend-input/> tag is that this one allows the user to select multiple friends. The
tag produces an array in the POST variables with a list of user IDs that the user
selected. The submitted form returns an Array of id[] variables.

FBML-Specific Attributes

Required
None.

Optional

width=[string] default: 350px
The width of the field.

border_color=[string] default: #8496ba
The color of the border.

include_me=[true|false] default: false
If true, includes the logged-in user in the list of friends from which to
select.

max=[int] default: 20
The maximum number of friends that can be selected.

exclude_ids=[array] default: none
A comma-separated list of friends to be excluded from the list. This can
be useful when used within <fb:request-form/> tags to exclude users who
have been invited.

prefill_ids=[array] default: none
A comma-separated list of friends to include as already selected in the
selector when the page loads. This cannot be used in
<fb:request-form/> tags.

prefill_locked=[true|false] default: false
When true, prevents editing of the preselected prefill_ids IDs. The user
also cannot add other users.

Example FBML
Here is example FBML code for <fb:multi-friend-input/>:

<form>
<fb:multi-friend-input width="400px" border_color="#000"
 include_me="true" max="30" exclude_ids="4,1,2,3"

<fb:multi-friend-input/> | 99

 prefill_ids="683545112"/>
</form>

Rendered HTML for Single Instance of Tag
The underlying HTML when rendered looks like this (Figure 3-38 shows the result):

<form>
 <input type="hidden" name="fb_sig_time" value="1206158663.8048" />
 <input type="hidden" name="fb_sig_added" value="0" />
 <input type="hidden" name="fb_sig_user" value="683545112" />
 <input type="hidden" name="fb_sig_profile_update_time"
 value="1205994295" />
 <input type="hidden" name="fb_sig_session_key"
 value="54aeab3103ef387539a31aa1-683545112" />
 <input type="hidden" name="fb_sig_expires" value="0" />
 <input type="hidden" name="fb_sig_api_key"
 value="ba19d367e2d8c4ea5813d54f2cbba136" />
 <input type="hidden" name="fb_sig"
 value="942c93c1b92f36b878b3dbe2c46ea16f" />
 <div style="padding-right:3px; width:400px;border:1px solid #000"
 class="clearfix">
 <div tabindex="-1" id="ids" class="clearfix tokenizer">
 ^_^
 <input type="text" />
 </div>
 <script type="text/javascript">
 onloadRegister(
 function() {
 var typeahead_source_instance2=new friend_source(
 '683545112-1206123558-1&u=683545112&include_me=1'
);
 typeahead_source_instance2.set_exclude_ids(
 {"4":true,"1":true,"2":true,"3":true});
 var tok = new tokenizer(
 ge('ids'), typeahead_source_instance2,true,30);
 new token(
 {i:'683545112',t:'Jesse Stay',np:true}, tok);
 (new Image()).src='http://static.ak.facebook.com/inbox/images/
 token.gif';(
 new Image()).src='http://static.ak.facebook.com/inbox/images/
 token_selected.gif';(
 new Image()).src='http://static.ak.facebook.com/inbox/
 images/token_hover.gif';(
 new Image()).src='http://static.ak.facebook.com/inbox/
 images/token_x.gif';})
 </script>
 </div>
</form>

100 | Chapter 3: FBML Reference

Figure 3-38. The result of our <fb:multi-friend-input/> example

Additional Information

• When used in a Mock AJAX form, only the last ID in the Array of id[]
variables gets returned.

• This tag disables the friend input box when used on the same page as an
<fb:share-button/> tag.

• Only one of these tags can be used on a page.

Dialog Boxes in Facebook—The Facebook “Pop Up”
Facebook itself does not support pop ups for applications. Facebook has,
however, provided “dialog boxes” that appear as an overlay over the rest of
the page. In this section we’ll discuss the different tags that render these boxes.

<fb:dialog/>
<fb:dialog id="...">...<fb:dialog-content>...</fb:dialog-content></fb:dialog>

Creates an AJAX-based, pop-up dialog box that appears when a specified element
on the page is clicked. The dialog box can contain any specified content, and uses
Mock AJAX to refresh itself with new content.

FBML-Specific Attributes

Required

id=[string] default: none
The ID of the dialog box. When an element that has the
clicktoshowdialog attribute is clicked, this tag looks for this ID and
displays the dialog box if the IDs are equal.

Optional

cancel_button=[true|false] default: false
If true, displays a cancel button in the dialog box.

<fb:dialog/> | 101

Required included tags

• <fb:dialog-content/>, described later in this chapter.

Optional included tags

• <fb:dialog-title/>, described later in this chapter.

• <fb:dialog-button/>, described later in this chapter.

Example FBML
The following <fb:dialog/> instance launches a dialog box on the submission of a
form that has two buttons:

<fb:dialog id="my_dialog" cancel_button="true">
 <fb:dialog-content>Do you want to go to my blog?</fb:dialog-content>
 <fb:dialog-title>This is the <fb:dialog/> box.</fb:dialog-title>
 <fb:dialog-button type="button" value="Yes" href="http://staynalive.com"/>
 <fb:dialog-button type="button" value="No"
 href="http://apps.facebook.com/fbmlessentials"/>
</fb:dialog>
<p>Click here to display the
 dialog...</p>

Rendered HTML for Single Instance of Tag
When you click the link shown in Figure 3-39...

Figure 3-39. The link that results from our <fb:dialog/> example

…the dialog box shown in Figure 3-40 pops up on the page.

Figure 3-40. The dialog box

102 | Chapter 3: FBML Reference

Additional Information

• For more flexibility in producing dialog boxes in Facebook, use the
Dialog class in FBJS (see the “Dialogs” section in Chapter 4).

• See the <fb:dialogresponse/> tag for posting information from the sub-
mitted dialog back into the same dialog box (i.e., you want to keep the
dialog box open but show new information based on what the user clicks).

• This tag is in beta at the time of this writing.

<fb:dialog-content/>
<fb:dialog-content>...</fb:dialog-content>

The content to display in the <fb:dialog/> box. It can be any type of HTML or FBML
content.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Please see <fb:dialog/> earlier in this chapter for an example of how to use this tag.

Additional Information

• This tag must be used inside <fb:dialog/> tags.

<fb:dialog-title/>
<fb:dialog-title>...</fb:dialog-title>

The title of the <fb:dialog/> box.

FBML-Specific Attributes

Required
None.

<fb:dialog-content/> | 103

Optional
None.

Example FBML
Please see <fb:dialog/> earlier in this chapter for an example of how to use this tag.

Additional Information

• This tag must be used inside <fb:dialog/> tags.

<fb:dialog-button/>
<fb:dialog-button type="..." value="..."/>

Renders various types of buttons within <fb:dialog/> tags. Must be contained inside
<fb:dialog/> tags.

FBML-Specific Attributes

Required

type=[button|submit] default: none
The type of button to display. button displays a normal Facebook blue
button. submit displays a standard submit button. Note that if you don’t
specify anything, the button will not be rendered.

value=[string] default: none
The text to display inside the button.

Optional

close_dialog=[true|false] default: true
If true, closes the dialog when the user clicks the button.

href=[string] default: none
The URL to take the user to after clicking the button.

form_id=[string] default: none
The ID of the form to submit when the button is clicked.

clickrewriteurl=[string] default: none
See the section on “Mock AJAX” later in this chapter for more information
on this attribute.

clickrewriteid=[string] default: none
See the section on “Mock AJAX” later in this chapter for more information
on this attribute.

104 | Chapter 3: FBML Reference

clickrewriteform=[string] default: none
See the section on “Mock AJAX” later in this chapter for more information
on this attribute.

Example FBML
Please see the <fb:dialog/> tag earlier in this chapter for context.

Here are examples of the two different button types that can be created with
<fb:dialog-button/>. The first is a normal Facebook blue button:

<fb:dialog-button type="button" value="Yes"/>

And the second is a standard submit button:

<fb:dialog-button type="submit" value="No"/>

Rendered HTML for Single Instance of Tag
The two buttons look exactly the same, but the HTML differs. To show you the
difference, here is an <input/> tag with a button type:

<input class="inputsubmit" name="confirm" type="button" value="Yes"
 onclick="document.location='http://staynalive.com'" />

And here is an <input/> tag with a submit type:

<input class="inputsubmit" name="confirm" type="submit" value="No"
 onclick="document.location='http://apps.facebook.com/fbmlessentials'" />

Additional Information

• Multiple buttons can exist in one set of <fb:dialog/> tags.

• This tag must be used within <fb:dialog/> tags.

<fb:dialogresponse/>
<fb:dialogresponse>...<fb:dialog-content>...</fb:dialog-content>
 </fb:dialogresponse>

See the <fb:dialog/> tag earlier in this chapter for attributes and uses of
<fb:dialogresponse/>. This tag takes all the same internal tags that an
<fb:dialog/> box allows, and it also wraps around any response to a Mock AJAX
call within an <fb:dialog/> box.

FBML-Specific Attributes

Required
None.

<fb:dialogresponse/> | 105

Optional
None.

Example FBML
Let’s take our example from the <fb:dialog/> section and apply some Mock AJAX
attributes to it. Here is the <fb:dialog/> call we used earlier, but with Mock AJAX
attributes added in the No button:

<fb:dialog id="my_dialog" cancel_button="true">
 <fb:dialog-content><form id="my_form">Do you want to go to my blog?
 </form></fb:dialog-content>
 <fb:dialog-title>This is the <fb:dialog/> box.</fb:dialog-title>
 <fb:dialog-button type="button" value="Yes"
 href="http://staynalive.com"/>
 <fb:dialog-button type="button" value="No"
 clickrewriteurl="http://apps.facebook.com/fbmlessentials/
 get_dialog.php" click_rewrite_id="my_dialog"
 clickrewriteform="my_form"/>
</fb:dialog>
<p>Click here to display
 the dialog... </p>

The data returned by get_dialog.php will need to be wrapped in
<fb:dialogresponse/> tags like this:

<fb:dialogresponse>
 <fb:dialog-title>Response Title</fb:dialog-title>
 <fb:dialog-content>Response Content</fb:dialog-content>
 <fb:dialog-button type="button" value="Close"/>
</fb:dialogresponse>

Embedding Media With FBML

<fb:photo/>
<fb:photo pid="..."/>

Renders a Facebook photo based on the photo ID passed to it.

FBML-Specific Attributes

Required

pid=[int] default: none
The Facebook ID of the photo.

106 | Chapter 3: FBML Reference

Optional

uid=[int] default: none
When the pid is not supplied by the API, this is the user ID used to find
the pid.

size=[thumb|small|normal|square|t|s|n|q] default: normal
The size to display the photo. Options are t=thumb, s=small, n=normal, and
q=square.

align=[left|right] default: left
The alignment of the photo.

Example FBML
The following FBML code takes a photo with a pid of 12345 for the user with an ID
of 4 (Mark Zuckerberg) and displays it right-aligned as a square:

<fb:photo pid="12345" uid="4" size="square" align="right"/>

Additional Information

• When using a pid returned by the API or Facebook Query Language
(FQL), do not supply the uid attribute.

• Be sure to wrap any data you want to display with the photo in
<fb:if-can-see-photo/> tags.

<fb:mp3/>
<fb:mp3 src="..."/>

Need a playlist for your band? Want to allow your application’s users to display their
favorite music on their profile? This is a great tool for accomplishing these things
and more. <fb:mp3/> displays a simple play button/music player for a specified MP3
file on your servers.

FBML-Specific Attributes

Required

src=[string] default: none
The URL and path of the MP3 file on your servers. The URL must be
absolute.

Optional

title=[string] default: none
The title of the song.

<fb:mp3/> | 107

artist=[string] default: none
The name of the artist.

album=[string] default: none
The name of the album.

width=[int] default: 300
The width of the player, in pixels.

height=[int] default: 29
The height of the player, in pixels.

Example FBML
Here is example FBML code for the <fb:mp3/> tag:

<fb:mp3 src="http://fbmlessentials.staynalive.com/metzener.mp3"
 title="Take on Me" artist="Metzener" album="Take on Me Single"/>

Rendered HTML for Single Instance of Tag
When you run the example and the page loads, an image appears, as shown in
Figure 3-41.

Figure 3-41. The play button that results from our <fb:mp3/> example

When you click on the image, it starts playing, as shown in Figure 3-42.

Figure 3-42. After clicking on the play button

Additional Information

• The file must end in the extension .mp3. Query strings and generic
paths that still load an MP3 file will not work.

• Only .mp3 files are supported.

• The file’s bit rate must be in increments of 11 KHz.

• Nonstandard character sets will not work for the artist, title, or album.

108 | Chapter 3: FBML Reference

<fb:swf/>
<fb:swf swfsrc="..."/>

Renders a standard SWF (Shockwave Flash) object. On profile pages, an image must
be specified, and it will be displayed until the user clicks on it. On canvas pages, the
SWF file works as normal.

FBML-Specific Attributes

Required

swfsrc=[string] default: none
The URL of the Flash object. Must be an absolute URL.

Optional

imgsrc=[string] default: http://static.ak.facebook.com/images/
spacer.gif

The URL of an image to display when the page loads. This is useful in
particular for the profile page, as an image must be displayed until the user
clicks on it. This must be either a .gif or .jpg image.

height=[int] default: none
The height of the image and the Flash object.

width=[int] default: none
The width of the image and the Flash object.

imgstyle=[string] default: none
The style attribute of the tag.

imgclass=[string] default: none
The class attribute of the tag.

flashvars=[string] default: none
URL-encoded Flash variables. Also sends the fb_ values mentioned earlier
in the section “Forms in FBML” in Chapter 2.

swfbgcolor=[string] default: none
The background color of the Flash object.

waitforclick=[true|false] default: true
If false, the Flash object autoplays. This works only on canvas pages.

salign=[string] default: none
The salign attribute in the <embed/> tag.

loop=[true|false] default: false
If true, loops the Flash object over and over.

<fb:swf/> | 109

quality=[high|medium|low] default: none
The quality of the Flash object.

scale=[string] default: none
The scaling to apply to the Flash object.

align=[left|center|right] default: none
Describes how to align the Flash object.

wmode=[transparent|opaque|window] default: transparent
The opacity of the Flash object.

Example FBML
I use the following <fb:swf/> example in my GrandCentral app* on Facebook:

<fb:swf imgsrc="http://grandcentral.jessestay.com/images/webbutton_01.jpg"
 swfsrc="http://embed.grandcentral.com/webcall/
 3f09cc369b1816d0990c5b125eb76374" width="227" swfbgcolor="#ffffff"
 height="93" waitforclick="false"/>

Rendered HTML for Single Instance of Tag
The converted SWF object in HTML looks like this (Figure 3-43 shows the result):

<div id="2413262772_fbswf_47e5dd74885221322368475" height="93" width="227"
 overflow="hidden">
</div>
<script type="text/javascript">
 swf_47e5dd74894734870324870 =
 new SWFObject(
 "http://embed.grandcentral.com/webcall/
 3f09cc369b1816d0990c5b125eb76374",
 "swf_47e5dd74894734870324870", "227", "93", "5.0.0", "#ffffff"
);
 swf_47e5dd74894734870324870.addParam("allowScriptAccess", "never");
 swf_47e5dd74894734870324870.addParam("wmode", "transparent");
 swf_47e5dd74894734870324870.addVariable("fb_local_connection",
 "_id_47e5dd748843e6a84442969");
 swf_47e5dd74894734870324870.addVariable("fb_sig_time", "1206246772.5586");
 swf_47e5dd74894734870324870.addVariable("fb_sig_added", "1");
 swf_47e5dd74894734870324870.addVariable("fb_sig_user", "683545112");
 swf_47e5dd74894734870324870.addVariable("fb_sig_profile_update_time",
 "1205994295");
 swf_47e5dd74894734870324870.addVariable("fb_sig_session_key",
 "5e34a2335cf43f2b46ddb770-683545112");
 swf_47e5dd74894734870324870.addVariable("fb_sig_expires", "0");
 swf_47e5dd74894734870324870.addVariable("fb_sig_api_key",
 "a5438e29c1b4df4ec650d374b4175741");
 swf_47e5dd74894734870324870.addVariable("fb_sig",
 "ee27f0b9b9859a998e7c237ab4c4aec6");
 swf_47e5dd74894734870324870.addVariable("string_table",

* See http://www.facebook.com/apps/application.php?id=2413262772.

110 | Chapter 3: FBML Reference

http://www.facebook.com/apps/application.php?id=2413262772

 "/js_strings.php/t83767/en_US");
 swf_47e5dd74894734870324870.addVariable("swf_id",
 "swf_47e5dd74894734870324870");
 swf_47e5dd74894734870324870.fallback_js_fcn = spawn_flash_update_dialog;
 swf_47e5dd74894734870324870.fallback_html =
 "\x3cdiv class=\x22flash_fallback\x22\x3e\x3cdiv
 class=\x22flash_fallback_border\x22\x3e\x3cdiv class=
 \x22flash_fallback_header\x22\x3eFlash
 Player upgrade required\x3c/div\x3e\x3cdiv class=\x22flash_fallback_
 explanation\x22
 id=\x22flash_fallback_47e5dd74896126656860712\x22\x3eYou must download
 and install the latest version of the Adobe Flash Player to view
 this content.\x3c/div\x3e\x3cdiv class=\x22flash_fallback_button\
 x22\x3e\x3cinput type=\x22button\x22 class=\x22inputbutton\x22
 onclick=\x22this.disabled=true;getFlashPlayer();\x22 id=\x22\x22
 name=\x22\x22 value=\x22Download Flash\x22 /
 \x3e\x3c/div\x3e\x3c/div\x3e\x3c/div\x3e";
 swf_47e5dd74894734870324870.write("2413262772_fbswf_
 47e5dd74885221322368475");
</script>

Figure 3-43. Our <fb:swf/> example produces this “Call Me!” button

Additional Information

• As well as the traditional POST variables (discussed in Chapter 2) that get
passed to the SWF when it is loaded, Facebook also passes
allowScriptAccess="never" to the SWF.

• Facebook requires Flash 9.0 for all SWFs.

• The flashvars attribute must be entirely lowercase.

• Keep in mind that the Flash object is contained in <div/> tags. This could
affect the display styles of the object.

<fb:flv/>
<fb:flv src="..."/>

Renders a Flash-based FLV (Flash Video) player that can play FLV audio or video
files.

<fb:flv/> | 111

FBML-Specific Attributes

Required

src=[string] default: none
The URL of the FLV file. This must be an absolute URL and must be
FLV-encoded.

Optional

height=[int] default: none
The height of the FLV. This must be specified if using Internet Explorer.

width=[int] default: none
The width of the FLV. This must be specified if using Internet Explorer.

title=[string] default: none
The title of the audio or video.

Example FBML
Here is example FBML code for the <fb:flv/> tag:

<fb:flv src="http://fbmlessentials.staynalive.com/curtainLoop.flv"
 width="400" height="400" title="Curtain Loop from
 http://theflashblog.com/?p=86"/>

Rendered HTML for Single Instance of Tag
The source HTML of the rendered object looks like this (Figures 3-44 and 3-45 show
the results):

<div class="swf_holder" id="holder_fb_flv47e5e182263d28c68824513"></div>
<script type="text/javascript">
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755 =
 new SWFObject("http://static.ak.facebook.com/swf/flv_ad.swf?58:55325",
 "so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755", "400",
 "400", "5.0.0", "#000000");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addParam
 ("wmode", "transparent");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("video_src",
 "http%3A%2F%2Ffbmlessentials.staynalive.com%2FcurtainLoop.flv");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("deblocking", "1");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("video_title",
 "Curtain+Loop+from+http%3A%2F%2Ftheflashblog.com%2F%3Fp%3D86");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("scale_thumb", "0");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("keep_last_frame", "1");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("show_controls", "1");

112 | Chapter 3: FBML Reference

 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("string_table",
 "/js_strings.php/t83767/en_US");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.addVariable
 ("swf_id",
 "so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755");
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.fallback_js
 _fcn = spawn_flash_update_dialog;
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.fallback_
 html = "\x3cdiv class=\x22flash_fallback\x22\x3e\x3cdiv
 class=\x22flash_fallback_border\x22\x3e\x3cdiv
 class=\x22flash_fallback_header\x22\x3eFlash Player upgrade
 required\x3c/div\x3e\x3cdiv class=\x22flash_fallback_explanation\x22
 id=\x22flash_fallback_47e5e1822926f7b33344160\x22\x3eYou must download
 and install the latest version of the Adobe Flash Player to view this
 content.\x3c/div\x3e\x3cdiv class=\x22flash_fallback_button\x22\x3e\
 x3cinput type=\x22button\x22 class=\x22inputbutton\x22 onclick=\
 x22this.disabled=true;getFlashPlayer();\x22 id=\x22\x22 name=\x22\x22
 value=\x22Download Flash\x22 /\x3e\x3c/div\x3e\x3c/div\x3e\x3c/div\
 x3e";
 so_fb_flv47e5e182263d28c68824513_47e5e182291b47871811755.write
 ("holder_fb_flv47e5e182263d28c68824513");
</script>

Figure 3-44. The result of our <fb:flv/> example when the page is loading

<fb:flv/> | 113

Figure 3-45. The result of our <fb:flv/> example when the play button is clicked

<fb:silverlight/>
<fb:silverlight silverlightsrc="..."/>

Renders a Microsoft Silverlight control. At the time of this writing, this tag is not yet
functional.

FBML-Specific Attributes

Required

silverlightsrc=[string] default: none
The source URL for your Silverlight code.

Optional

imgsrc=[string] default: http://static.ak.facebook.com/images/
spacer.gif

The source of an image to display; requires a user to click to activate the
control. This is required on profile pages to prevent clutter.

height=[int] default: none
The height of the image or Silverlight object.

width=[int] default: none
The width of the image or Silverlight object.

114 | Chapter 3: FBML Reference

imgstyle=[string] default: none
The style attribute for use with the imgsrc attribute.

imgclass=[string] default: none
The class attribute for use with the imgsrc attribute.

swfbgcolor=[string] default: none
The background color of the Silverlight control.

Virally Promoting Your App With FBML
The following section describes several tags that you can use to virally promote
your application. One of the strengths of Facebook is the rich access it provides
to friends lists, and the tools it offers for promoting applications through those
friends. As an application developer, with just knowledge of FBML you can
do many things to spread your app to others on Facebook very quickly.

Request and Notification Tags
Notification tags require some API knowledge and access, but as you saw in
the “Hello Friends” example in Chapter 1, with request tags you can create
simple invite forms using just a series of FBML tags.

<fb:notif-subject/>
<fb:notif-subject>...</fb:notif-subject>

Specifies the subject of an email sent using the notifications.send() API method.
This FBML works only within that FBML call.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Send the following FBML code in a notifications.send() API call:

<fb:notif-subject>This is the subject of the E-mail</fb:notif-subject>

Virally Promoting Your App With FBML | 115

<fb:notif-page/>
<fb:notif-page>...</fb:notif-page>

Specifies the content of the notification, displayed on a user’s notifications page. It
works only from within a notifications.send() API method call.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Send the following FBML code in a notifications.send() API call:

<fb:notif-page>Add the
FBML Essentials app!
</fb:notif-page>

<fb:notif-email/>
<fb:notif-email>...</fb:notif-email>

Specifies the content of the email to be sent to the user in a notifications.send()
API method call. It can be used only in the notifications.send() API call. This is a
great way to send an email to the user (not the user’s Facebook inbox, but the user’s
real email address) and parse FBML beforehand as part of the email.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
To specify the FBML to be parsed for the user, send the following in a
notifications.send() API call:

<fb:notif-email>
Dear <fb:name uid="4"/>,

116 | Chapter 3: FBML Reference

Nice Profile!

-Jesse
</fb:notif-email>

<fb:request-form/>
<fb:request-form type="..." content="...">...</fb:request-form>

Renders a standard Facebook invite form. It must include either an
<fb:multi-friend-selector/> tag or a combination of <fb:multi-friend-input/> or
<fb:friend-selector/> tags and the <fb:request-form-submit/> tag. FBML invite
tags are one of the biggest reasons to base your application on FBML instead of
purely on <iframe/> tags, as these invite tags can save developers a lot of time pro-
ducing a list of friends and necessary calls to invite those friends. It should also be
noted that FBML is the most effective method of sending invites—these forms are
the only ways to invite a user’s friends to an app. To display a custom form on your
own, you may want to look into the notifications API call.

FBML-Specific Attributes

Required

type=[string] default: none
The name to include in the invite. It will appear as something to the effect
of “1 [type] request” under “Requests” in the upper-right corner of your
main Facebook page. It has a limit of 20 characters.

content=[string] default: none
The content of the request invitation to send to the friend(s) being invited.

Optional

invite=[true|false] default: false
Specifies whether it is an invitation or a request. The only difference is that
if true, it says, “[name] sent an invitation using [type]:” whereas if
false, it says, “[name] sent a request using [type]:”.

action=[string] default: http://apps.facebook.com/yourapp/null
The URL to redirect the user after they submit the form, or after they click
“Skip” in the form.

method=[GET|POST] default: POST
Specifies whether to submit the form via either the method GET or POST.

<fb:request-form/> | 117

Example FBML
The following FBML example for the <fb:request-form/> tag comes from our “Hello
Friends” example in Chapter 1:

<fb:request-form action="index.php" method="POST" invite="true"
 type="FBML Essentials" content="Hello Friend. <fb:req-choice
 url='http://apps.facebook.com/fbmlessentials' label='Go there!'/>">
 <fb:multi-friend-selector showborder="false"
 actiontext="Invite your friends to use FBML Essentials.">
</fb:request-form>

Here’s another example, this time using <fb:multi-friend-input/> and
<fb:request-form-submit/>:

<fb:request-form action="index.php" method="POST" invite="true"
 type="FBML Essentials" content="Hello Friend. <fb:req-choice
 url='http://apps.facebook.com/fbmlessentials' label='Go there!'/>">
 <fb:multi-friend-input width="350px" border_color="#8496ba"
 exclude_ids="4,5,10,15" />
 <fb:request-form-submit/>
</fb:request-form>

Rendered HTML for Single Instance of Tag
The first <fb:request-form/> example renders as shown in Figure 3-46.

The second <fb:request-form/> example renders as shown in Figure 3-47.

Additional Information

• <fb:request-form/> returns an ids[] attribute with a comma-separated
list of IDs that the invite was sent to. This attribute gets passed to the
action attribute specified in the <fb:request-form/>.

<fb:multi-friend-selector/>
<fb:multi-friend-selector actiontext="..."/>

Renders a full-page friend selector with pictures of all of the user’s friends and their
names and networks. This control handles all limits that Facebook enforces on ap-
plications, preventing the user from going over their allocated number of requests
per day for your application. For a smaller version of this without the pictures, see
the condensed version of <fb:multi-friend-selector/>. This tag can be used only
within <fb:request-form/> tags. Use the condensed attribute to produce a smaller
version of this.

118 | Chapter 3: FBML Reference

FBML-Specific Attributes

Required

actiontext=[string] default: none
The invite text to include in the multi-friend selector.

Optional

condensed=[true|false] default: false
If true, shows the condensed form of <fb:multi-friend-selector/>.

Figure 3-46. The result of our first <fb:request-form/> example (using <fb:multi-friend-
selector/>)

Figure 3-47. The result of our second <fb:request-form/> example (using <fb:multi-friend-
input/>)

<fb:multi-friend-selector/> | 119

showborder=[true|false] default: false
If true, displays a border around the multi-friend selector. Works only if
condensed="false".

rows=[int] default: 5
The number of rows of friends to display. Works only if
condensed="false".

max=[1...35] default: none
The maximum number of friends allowed to be selected. This caps at the
number of invites allowed to your app at a given time that remain for that
user.

exclude_ids=[array] default: none
A comma-separated list of friends to be excluded from the list of friends.

bypass=[step|cancel|skip] default: skip
Each multi-friend selector includes a bypass button. This attribute desig-
nates the kind of bypass button to be used: step renders “Skip This Step”;
cancel renders “Cancel”; and skip renders “Skip.” Works only if con
densed="false".

unselected_rows=[4...15] default: 6
The number of unselected rows to display in the condensed form of
<fb:multi-friend-selector/>. Works only if condensed="true".

selected_rows=[0,5...15] default: 5
The number of rows to display in the selected portion of the condensed
form of <fb:multi-friend-selector/>. If 0, displays only a single box for
both selected and unselected portions. Works only if condensed="true".

Example FBML
See the <fb:request-form/> tag earlier in this chapter for an example of the noncon-
densed <fb:multi-friend-selector/>.

Here is example FBML code for a condensed <fb:multi-friend-selector/> (Fig-
ure 3-48 shows the result):

<fb:request-form action="index.php" method="POST" invite="true"
 type="FBML Essentials" content="Hello Friend.">
 <fb:multi-friend-selector condensed="true" exclude_ids="1,4,5,6" />
 <fb:request-form-submit/>
</fb:request-form>

120 | Chapter 3: FBML Reference

Figure 3-48. The result of our condensed <fb:multi-friend-selector/> example

Additional Information

• This tag can be used only in <fb:request-form/> tags.

• To use this tag for notifications, you have to generate your own HTML.
View the source to see how Facebook does it, or create your own.

<fb:req-choice/>
<fb:req-choice url="..." label="..."/>

Provides a button to be used in the invite request sent to the user’s friends.

FBML-Specific Attributes

Required

url=[string] default: none
The URL to direct the user to when they click on the button. Must be an
absolute URL.

label=[string] default: none
Text to display on the button.

Optional
None.

<fb:req-choice/> | 121

Example FBML
Please see the <fb:request-form/> tag earlier in this chapter for an example of this tag.

Additional Information

• If two buttons with the same URL are used, only the last one will be
rendered.

• Each request defaults to have one ignore button. Having more than one
ignore button can cause problems.

• <fb:req-choice/> is built to be used within the content attribute of the
<fb:request-form/>. Be sure to properly encode it to fit within the quotes
of that attribute.

• You may have as many <fb:req-choice/> buttons as needed.

<fb:request-form-submit/>
<fb:request-form-submit/>

Creates a submit button for an <fb:request-form/>. When a uid is specified, this tag
forces the form to be submitted to a specified user, if the button is clicked.

FBML-Specific Attributes

Required
None.

Optional

uid=[int] default: none
The ID of the user to send the form to.

label=[text] default: none
The text to include in the submit button, if uid is used. It must include
either %n or %N in place of where the user’s name will be in order to use it
in this manner.

Example FBML
Please see the <fb:request-form/>tag earlier in this chapter for an example of this tag.

Feed Forms
Feed forms are another shortcut you can take for virally spreading your appli-
cation. By adding a simple fbtype attribute to your form, Facebook will inter-
cept your form submission and present the user with a dialog box that asks if

122 | Chapter 3: FBML Reference

the user would like to publish a news item to either their Mini-Feed or their
friends’ News Feeds. The code referenced in the action parameter of the form
should return JSON data in the form of a News Feed template. The following
is an example of the form you submit. Notice the fbtype attribute in the form
(you can also see this in action in the FBML Essentials app on Facebook):

<form fbtype="feedStory" action=
 "http://fbmlessentials.staynalive.com/index.php">
 <input type="text" name="status" value="" />
 <input type="hidden" name="submit" value="1" />
 <input type="hidden" name="action" value="feedforms" />
 <input type="hidden" name="notabs" value="true" />
 <input type="submit" value="Submit" name="submit"
 label="Publish This Story" />
</form>

The returning code in http://fbmlessentials.staynalive.com/index.php?sub
mit=1&action=feedforms¬abs=true would return JSON data that looks
like this:

{ 'method': 'feedStory',
 'content': {
 'next':
 'http://apps.facebook.com/fbmlessentials/index.php?action=feedforms',
 'feed': {
 'title_template': '{actor} published status',
 'title_data': { 'status': $_POST['status'] },
 'body_template': 'New status is "{status}"',
 'body_data': { 'status': $_POST['status'] }
 }
 }
}

The two variables that can be included in the fbtype attribute are feedStory
and multiFeedStory. When feedStory is used, the form gets published to the
user’s Mini-Feed. When multiFeedStory is used, the form gets published to
the user’s friends’ News Feeds. You can also use the fbnext attribute to specify
a URL in case there is an error in the process of submitting the feed story.

Feed forms aren’t the only way of posting to a user’s News and Mini-Feeds,
but it does guarantee better chances of your News Feed item appearing in the
user’s News or Mini-Feed when you get the user’s permission first via the feed
form. If your application can afford it, it is strongly suggested that you utilize
feed forms to submit feed stories to your users and users’ friends. Look at the
example in the FBML Essentials application on Facebook to see this in action.

<fb:request-form-submit/> | 123

http://fbmlessentials.staynalive.com/index.php?submit=1&action=feedforms¬abs=true
http://fbmlessentials.staynalive.com/index.php?submit=1&action=feedforms¬abs=true

The Wall
Wall attachments, which users include in their Wall posts, can be another great
way to virally promote your application. You’ll especially want to check out
the <fb:attachment-preview/> tag for some ways to do this. The tags in this
section offer ways to create your own Walls within your Facebook application.

<fb:wall/>
<fb:wall>...</fb:wall>

Emulates the Wall widget seen on user profiles, allowing you to have Wall-like
environments within your application. This can be a great way to add a messaging
system within your application.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is example FBML code for a simulated Wall using the <fb:wall/> tag (Fig-
ure 3-49 shows the result):

<fb:wall>
 <fb:wallpost t="1" uid="683545112">
 I agree Mark - F8 FTW!
 <fb:wallpost-action href="http://apps.facebook.com/fbmlessentials">
 Check out my new app!</fb:wallpost-action>
 </fb:wallpost>
 <fb:wallpost t="1" uid="4">Facebook Rocks!</fb:wallpost>
</fb:wall>

Figure 3-49. The result of our <fb:wall/> example

124 | Chapter 3: FBML Reference

<fb:wallpost/>
<fb:wallpost uid="...">...</fb:wallpost>

Produces a Wall post within an <fb:wall/> tag. It is not required to be inside
<fb:wall/> tags, however.

FBML-Specific Attributes

Required

uid=[int] default: none
The user ID of the Facebook user who is making the post.

Optional

t=[int] default: blank
Time, in epoch seconds, to be displayed in the Wall post. 1 is 5 p.m. on
December 31, 1969. When blank, a date and time are not displayed.

Example FBML
Please see <fb:wall/> earlier in this chapter for an example of this tag.

<fb:wallpost-action/>
<fb:wallpost-action href="...">...</fb:wallpost-action>

Produces a link within <fb:wallpost/> tags for users to click on. This tag must be
within <fb:wallpost/> tags.

FBML-Specific Attributes

Required

href=[string] default: none
The URL of the link. This URL must be absolute.

Optional
None.

Example FBML
Please see <fb:wall/> earlier for an example of this tag.

<fb:wallpost/> | 125

<fb:attachment-preview/>
<fb:attachment-preview>...</fb:attachment-preview>

Provides a link to a Wall message or text that, when clicked, renders a preview of
the attachment.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
The following FBML example renders a link that says, “Click here to preview the
attachment for this message.” When the user clicks on that link, a preview of the
attachment appears:

<fb:attachment-preview>
Click here to preview the attachment for this message
</fb:attachment-preview>

Additional Information

• This tag is for use with display of Wall attachments. See the application
setup to specify the URL that contains code to display the attachment.

• This tag cannot be used in an <fb:wall/> tag.

The <fb:add-section-button/> Tag
In early 2008, Facebook announced details of its plans to release a new de-
sign. As part of that design, it will release some new features into the API to
give developers more integration points on their users’ profiles. By the time
you read this book, these changes will most likely be implemented.

One of the most notable features of the new API and design is the addition of
the <fb:add-section-button/> FBML tag. This tag places a button in the app
that, when clicked, allows the user to add an application to their profileʼs main
page or to the “Info” tab introduced in the new profile design. Weʼll cover
details of this tag in this section.

126 | Chapter 3: FBML Reference

<fb:add-section-button/>
<fb:add-section-button "..."/>

Renders an “Add to Profile” or “Add to Info” button on an application’s canvas page.
After calling profile.setFBML or profile.setInfo on your app, this button allows
you to add a profile box or additional information to the main profile area, to the
“Boxes” tab, or to the “Info” tab. Where it appears partly depends on how you call
profile.setFBML: if the profile_main parameter is set, it will appear on the main
profile section of the user’s profile; if not, it will appear under the “Boxes” tab. Where
it appears also depends on the section you specify. If you specify a section of “Info,”
the information you set in the profile.setInfo API call will be sent to the user’s
“Info” tab. When you have called this once for the given section type, the button
will no longer appear for that section type until the user removes it from his profile.

It is important to note that this tag is still under development
at the time of this writing, so the way it works may change by
the time you read this. Please refer to http://wiki.develop
ers.facebook.com/index.php/New_Design_Narrow_Boxes and
also to http://wiki.developers.facebook.com/index.php/Fb:add-
section-button for more information about this tag. I will
update this book’s Facebook Page when this tag is updated.

FBML-Specific Attributes

Required

section=[profile|info] default: none
The section in which to place the content specified in the
profile.setInfo or profile.setFBML API calls.

Optional
None.

Example FBML
Here is example FBML code for the <fb:add-section-button/> tag:

<fb:add-section-button section="profile"/>

Rendered HTML for Single Instance of Tag
Assuming the user has not already clicked on the button for the profile section, the
example FBML will render something that looks like Figure 3-50.

<fb:add-section-button/> | 127

http://wiki.developers.facebook.com/index.php/New_Design_Narrow_Boxes
http://wiki.developers.facebook.com/index.php/New_Design_Narrow_Boxes
http://wiki.developers.facebook.com/index.php/Fb:add-section-button
http://wiki.developers.facebook.com/index.php/Fb:add-section-button

Figure 3-50. The “Add to Profile” button

Additional Information

• This tag works only on canvas pages.

• This tag is a work in progress at the time of this writing. Please refer to
this book’s Facebook Page to make sure you have the most up-to-date
information.

Miscellaneous Tools for Rendering Data Using FBML

<fb:time/>
<fb:time t="..."/>

Renders the time to the user. You pass in a time and date, in epoch seconds, and it
gives you a nicely formatted time. If the time you enter is the same day as the current
day, only the time is displayed in hour:minutes[am|pm] format. If not the same day,
but the same year, the year is not displayed, so the format is Month Day
hour:minutes[am|pm]. If neither the same day nor year, it is displayed in Month Day,
Year hour:minutes[am|pm] format.

FBML-Specific Attributes

Required

t=[int] default: none
The time to display, in epoch seconds.

Optional

tz=[string] default: the logged-in-user's time zone
The time zone to display. Accepted formats are PHP’s list of supported
time zones (see http://us.php.net/manual/en/timezones.php) and +/–
formats such as Etc/GMT-7.

preposition=[true|false] default: false
The preposition, as necessary, added to the date and time (“at,” “on”).

128 | Chapter 3: FBML Reference

http://us.php.net/manual/en/timezones.php

Example FBML
The following are some examples of the <fb:time/> tag and what they produce. This
FBML code:

<fb:time t="1"/>

would produce this:

December 31, 1969 5:00pm

whereas this FBML code:

<fb:time t="1" tz="America/Boise" preposition="true"/>

would produce this:

5:00pm on December 31, 1969

<fb:fbmlversion/>
<fb:fbmlversion/>

Prints the version of FBML currently in scope. If used outside of <fb:fbml/> tags,
prints the latest version of FBML.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
In the following example, the first instance of <fb:fbmlversion/> will print “1.0”.
The second will print “1.1”, which is the current version of FBML at the time of this
writing:

<fb:fbml version="1.0">
 The version listed here is <fb:fbmlversion/>
</fb:fbml>
The version listed here is <fb:fbmlversion/>

<fb:redirect/>
<fb:redirect url="..."/>

Redirects the page to the specified URL. This is the best way to redirect a user to a
new page in a Facebook application canvas page.

<fb:fbmlversion/> | 129

FBML-Specific Attributes

Required

url=[string] default: none
The URL to redirect the user to.

Optional
None.

Example FBML
To redirect the user to the FBML Essentials app home page, the <fb:redirect/> tag
would look like this.

<fb:redirect url="http://apps.facebook.com/fbmlessentials"/>

<fb:board/>
<fb:board xid="...">...</fb:board>

Creates a discussion board, controlled by Facebook. The board’s data is not acces-
sible by any underlying server code of the programmer. When you specify an xid for
the board, Facebook is able to track which topics and discussions go under which
board.

FBML-Specific Attributes

Required

xid=[string] default: none
The unique identifier for the board. Each board in your application should
have its own identifier. Note that only alphanumeric (A–Z, a–z, 0–9),
underscores (_), and hyphens (-) are allowed.

Optional

canpost=[true|false] default: true
If true, the user viewing the page can post to the board.

candelete=[true|false] default: false
If true, any user viewing the page can delete any topic or post to the board.

canmark=[true|false] default: false
If true, any user viewing the page can mark a post as relevant or irrelevant.

cancreatetopic=[true|false] default: true
If true, any user viewing the page can create a new topic.

130 | Chapter 3: FBML Reference

numtopics=[int] default: 3
The maximum number of topics to show in the first page of the board.
Clicking on the “See All” link will still show all topics.

callbackurl=[string] default: the current page
The reference point for all actions within the board. This is the URL to
fetch configuration for the discussion board.

returnurl=[string] default: the current page
The URL to take the user back to when they click on the “Return” link.

Example FBML
The following FBML code example produces two discussion boards using the
<fb:board/> tag, both on the same page (Figure 3-51 shows the result):

<div style="width:300px">
<fb:board xid="discussion_board"
 canpost="true"
 candelete="false"
 canmark="false"
 cancreatetopic="true"
 numtopics="5"
 returnurl="http://apps.facebook.com/fbmlessentials/board.php">
 <fb:title>Discuss FBML Essentials</fb:title>
</fb:board>
</div>
<div style="width:300px">
<fb:board xid="discussion_board_2"
 canpost="true"
 candelete="false"
 canmark="false"
 cancreatetopic="true"
 numtopics="5"
 returnurl="http://apps.facebook.com/fbmlessentials/board.php">
 <fb:title>Discuss Facebook Trivia</fb:title>
</fb:board>
</div>

Figure 3-51. The resulting discussion boards from our <fb:board/> examples

<fb:board/> | 131

Additional Information

• More than one <fb:board/> can exist on the same page, as long as the
blocks have different xids.

• To display the <fb:board/> block at a certain width, wrap it in a <div/>
block with a styled width.

<fb:comments/>
<fb:comments xid="..." canpost="..." candelete="..." numposts="...">...
 </fb:comments>

Similar to the <fb:board/> tag (described earlier in this chapter), this tag creates a
Wall-like component that users can comment on. The data for these
<fb:comments/> blocks is not available to the developer and is controlled by Face-
book. It provides an easy way for your users to make comments.

FBML-Specific Attributes

Required

xid=[string] default: none
The unique identifier for this comments block. Each post within the series
of posting comments will reference this identifier.

canpost=[true|false] default: none
If true, any viewing user can post to the comments.

candelete=[true|false] default: none
If true, any viewing user can delete comments.

numposts=[int] default: none
The total number of posts visible when the page loads. The “See All” link
allows the user to still see all posts.

Optional

callbackurl=[string] default: the current page
The URL that Facebook references to identify the source of the current
comments block.

returnurl=[string] default: the current page
The URL to take the user to after the user clicks the “Return” link.

showform=[true|false] default: true
If true, shows the form block below the comments on the first page of the
comments. The user will not have to click the “See All” link to add a
comment this way.

132 | Chapter 3: FBML Reference

send_notification_id=[int] default: none
The ID of the user to send notifications to when comments are made for
the current comment block.

Example FBML
The following example FBML generates a simple comments block for the “Hello
Friends” example in Chapter 1 (Figure 3-52 shows the result):

<div style="width:300px">
<fb:comments xid="hello_friends_comments" canpost="true" candelete="false"
 returnurl="http://apps.facebook.com/fbmlessentials/">
 <fb:title>Comments for Hello Friends Example</fb:title>
</fb:comments>
</div>

Figure 3-52. The resulting comments block from our <fb:comments/> example

Additional Information

• You can add more than one <fb:comments/> on a single page. Just specify
different xids for each <fb:comments/> block.

• To specify a width for your <fb:comments/> block, wrap it in a styled
<div/>.

<fb:mobile/>
<fb:mobile>...</fb:mobile>

Displays the content within the tags only when viewed from a mobile phone on
http://m.facebook.com. Does not appear to work on Apple iPhones.

FBML-Specific Attributes

Required
None.

Optional
None.

<fb:mobile/> | 133

http://m.facebook.com

Example FBML
Here is example FBML code for the <fb:mobile/> tag. All content outside the
<fb:mobile/> block will not be rendered on mobile phones:

This text will not appear on the mobile phone.
<fb:mobile>
This text will appear on the mobile phone.
</fb:mobile>

<fb:google-analytics/>
<fb:google-analytics uacct="..." ... >...</fb:google-analytics>

Renders the standard Google Analytics JavaScript code in the place where you put
the tags. For more information on Google Analytics, refer to http://analytics.goo
gle.com and http://www.google.com/urchin/index.html. Basically, Google Analytics
and Google’s Urchin Software analyze your site traffic and provide you with reports
about how your visitors use your site.

FBML-Specific Attributes

Required

uacct=[string] default: none
The Urchin or Google account ID provided to you by Google Analytics.
It’s often the text in the variable _uacct provided in the JavaScript that
Google gives you.

Optional
Based on http://wiki.developers.facebook.com/index.php/Fb:google-analytics, the fol-
lowing optional attributes are available:

page=[string] default: none
The argument given to the urchinTracker() function; either a page or a
virtual page.

ufsc=[1|0] default: 1
Sets the client info flag, where 1 = on and 0 = off. This is an Urchin Traffic
Monitor (UTM) user setting.

udn=[auto|none|domain] default: auto
Sets the domain name for cookies. Specify auto, none, or domain. This is a
UTM user setting.

uhash=[on|off] default: on
Specify whether the unique domain hash for cookies is on or off. This is
a UTM user setting.

134 | Chapter 3: FBML Reference

http://analytics.google.com
http://analytics.google.com
http://www.google.com/urchin/index.html
http://wiki.developers.facebook.com/index.php/Fb:google-analytics

utimeout=[int] default: 1800
Sets the inactive session timeout in seconds. This is a UTM user setting.

ugifpath=[string] default: /__utm.gif
Sets the web path to the __utm.gif file. This is a UTM user setting.

utsp=[string] default: |
Sets the transaction field separator. This is a UTM user setting.

uflash=[1|0] default: 1
Sets the Flash version detection option, where 1 = on and 0 = off. This is
a UTM user setting.

utitle=[1|0] default: 1
Sets the document title detection option, where 1 = on and 0 = off. This is
a UTM user setting.

ulink=[1|0] default: 0
Enables linker functionality, where 1 = on and 0 = off. This is a UTM user
setting.

uanchor=[1|0] default: 0
Indicates whether the use of anchors for campaigns is enabled, where 1 =
enabled and 0 = disabled. This is a UTM user setting.

utcp=[string] default: /
Specifies the cookie path for tracking. This is a UTM user setting.

usample=[1...100] default: 100
Represents the sampling percentage of visitors to track, which is a whole
number from 1 to 100. This is a UTM user setting.

uctm=[1|0] default: 1
Sets the campaign tracking module state, where 1 = off and 0 = on. This
is a UTM campaign tracking setting.

ucto=[int] default: 15768000
Sets the timeout in seconds. This is a UTM campaign tracking setting.

uccn=[string] default: utm_campaign
The name of the campaign. This is a UTM campaign tracking setting.

ucmd=[cpc|cpm|link|email|organic] default: utm_medium
Represents the campaign medium. Specify cpc, cpm, link, email, or
organic. This is a UTM campaign tracking setting.

ucsr=[string] default: utm_source
Represents the campaign source. This is a UTM campaign tracking setting.

uctr=[string] default: utm_term
The campaign term or keyword. This is a UTM campaign tracking setting.

<fb:google-analytics/> | 135

ucct=[string] default: utm_content
Represents the campaign content. This is a UTM campaign tracking
setting.

ucid=[int] default: utm_id
Represents the campaign ID number. This is a UTM campaign tracking
setting.

ucno=[string] default: utm_nooverride
Indicates whether or not to override the campaign. This is a UTM cam-
paign tracking setting.

Example FBML
Implementing <fb:google-analytics/> is actually quite simple. First, go to http://
analytics.google.com and set up an account and a new site to track. When it asks you
to verify the code on the site, you can ignore that part. Take the _uacct number from
the JavaScript you were provided and plug it into your Facebook application. The
FBML code will look something like this:

<fb:google-analytics uacct="UA-1279896-6" page="" />

Rendered HTML for Single Instance of Tag
The example yields HTML that looks something like this:

<script src="http://www.google-analytics.com/urchin.js"
 type="text/javascript">
</script>
<script type="text/javascript">
 _uacct = "UA-1279896-6";
 urchinTracker();
</script>

Additional Information

• If you want to do any link tracing, you can utilize FBJS on any links to
access your Urchin Tracker through the Facebook.urchinTracker()
method. Simply write something like the following code (taken from
http://wiki.developers.facebook.com/index.php/Fb:google-analytics):

<a href="http://www.example.com" onclick="Facebook.urchinTracker
 ('/outgoing/example.com')">

• This tag will work only on canvas pages. Profile pages will render nothing.
It is unclear at the time of this writing how this tag will work in the new
design on pages other than canvas pages.

136 | Chapter 3: FBML Reference

http://analytics.google.com
http://analytics.google.com
http://wiki.developers.facebook.com/index.php/Fb:google-analytics

<fb:18-plus/>
<fb:18-plus>...</fb:18-plus>

Renders the enclosed content only if the viewing user is 18-years-old or older. Sup-
ports <fb:else/> tags. It is believed that this tag was developed in order to satisfy
laws for alcohol-related Facebook apps. Facebook has a global audience, and in
many places around the world, alcohol is legal for those who are 18 and older,
whereas other places allow it only for those who are 21 and older.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is example FBML code for the <fb:18-plus/> tag. Only the text within the tags
will appear to those 18 and older:

<fb:18-plus>
 This will be displayed to 18 and older people.
 <fb:else>All 17 and younger will see this.</fb:else>
</fb:18-plus>

<fb:21-plus/>
<fb:21-plus>...</fb:21-plus>

Renders the enclosed content only if the viewing user is 21-years-old or older. Sup-
ports <fb:else/> tags. As with the <fb:18-plus> tag, it is believed that this tag was
developed in order to satisfy laws for alcohol-related Facebook apps. Facebook has
a global audience, and in many places around the world, alcohol is legal for those
who are 18 and older, whereas other places allow it only for those who are 21 and
older.

FBML-Specific Attributes

Required
None.

Optional
None.

<fb:18-plus/> | 137

Example FBML
Here is example FBML code for the <fb:21-plus/> tag. Only the text within the tags
will appear to those 21 and older:

<fb:21-plus>
 This will be displayed to 21 and older people.
 <fb:else>All 20 and younger will see this.</fb:else>
</fb:21-plus>

<fb:is-it-christmas/>
<fb:is-it-christmas>...</fb:is-it-christmas>

Renders the enclosed content only if it’s Christmas day. Something of an Easter egg
feature, this tag was released for fun around Christmas 2007. It is unclear how long
it will be supported.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is example FBML code for the <fb:is-it-christmas/> tag:

<fb:is-it-christmas>
 Ho! Ho! Ho!
<fb:else>
 Have a good day!
</fb:else>
</fb:is-it-christmas>

Additional Information

• Supports the <fb:else/> tag.

<fb:is-it-april-fools/>
<fb:is-it-april-fools>...</fb:is-it-april-fools>

This is no April fools joke! Facebook actually has an FBML tag that renders the
content enclosed within the tags only if it’s April Fools’ Day. This can be a great way
to have some fun with your users on April Fools’ Day. Something of an Easter egg

138 | Chapter 3: FBML Reference

feature, this tag was released for fun around April 1, 2008. It is unclear how long it
will be supported.

FBML-Specific Attributes

Required
None.

Optional
None.

Example FBML
Here is example FBML code for the <fb:is-it-april-fools/> tag:

<fb:is-it-april-fools>
 April Fools!
<fb:else>
 Have a good day!
</fb:else>
</fb:is-it-april-fools>

Additional Information

• Supports the <fb:else/> tag.

<fb:rock-the-vote/>
<fb:rock-the-vote ... >...</fb:rock-the-vote>

This tag is interesting because it’s the first FBML tag sponsored by a third party. The
year 2008—when this book is being released—is a Presidential campaign and elec-
tion year, and Facebook decided to offer developers a way to help their users register
to vote. So Facebook partnered with Rock the Vote and CREDO Mobile to provide
this service though a simple Facebook tag. The tag displays a link on your app that,
when clicked, pops up a voter registration form. You can optionally provide a Rock
the Vote API key given to you at http://www.rockthevote.com/partners, which allows
you to track the number of voter registrations your app has enabled.

FBML-Specific Attributes

Required
None.

<fb:rock-the-vote/> | 139

http://www.rockthevote.com/partners

Optional

api_key=[the API key supplied to you at http://www.rockthevote.com/
partners] default: none

The API key provided by http://www.rockthevote.com/partners that allows
you to track the number of voter registrations made through your app.

Example FBML
To place a Rock the Vote link in your app, just enter FBML code like this:

<fb:rock-the-vote>
 Not registered to vote yet? Click here!
</fb:rock-the-vote>

Rendered HTML for Single Instance of Tag
The example produces a link that looks like Figure 3-53.

Figure 3-53. Rock the Vote link on your app

When you click on the link, a form that looks like Figure 3-54 will pop up as a dialog
box.

Additional Information

• Again, to track registrations, you can obtain an API key at http://www.rock
thevote.com/partners.

Dynamic FBML Attributes
From within your FBML, you can apply special attributes to specific FBML
and HTML tags that allow you to perform AJAX, dynamically hide and show
elements, and other common JavaScript functions. The methods in this section
offer you an easy way to get things done without having to worry too much
about getting JavaScript to work in Facebook.

Visibility Attributes
With just a few attributes added to most elements in your FBML, you can
dynamically allow the displaying and hiding of data upon a click of a mouse
button. The following attributes can include more than one element ID, sep-
arated by commas:

140 | Chapter 3: FBML Reference

http://www.rockthevote.com/partners
http://www.rockthevote.com/partners
http://www.rockthevote.com/partners

clicktoshow
When the current element is clicked, the element IDs contained will switch
to display:block.

clicktohide
When the current element is clicked, the element IDs contained will switch
to display:none.

clicktotoggle
When the current element is clicked, the element IDs contained will switch
between their existing state and display:none and vice versa, depending
on the current state.

clickthrough
Set this to true when using radio buttons or checkboxes with which you
want to use clicktoshow, clicktohide, or clicktotoggle. Not setting

Figure 3-54. Rock the Vote pop-up form

Dynamic FBML Attributes | 141

clickthrough="true" when using these elements will render the element
inoperable.

Here are three examples that show how to use the visibility attributes:

<div id="example1" style="display:none">Visible</div>
Click here to make "Visible"
 appear.

<div id="example2">Visible2</div>
Click here to make "Visible2"
 dissapear.

<div id="example3">Visible3</div>

 Click here to toggle visibility of Visible1, Visible2, and Visible3

It is important to note that all styling (display:none, display:block, etc.) that
is affected by the attributes just described should be done inline, via style
attributes. Styling cannot be done inside a stylesheet document or via
<style/> tags.

Mock AJAX
Mock AJAX is a tool that, through simple attributes added to elements of
HTML and FBML, allows dynamic loading of data via AJAX directly from your
own servers. If you add a few attributes to a simple submit button, upon a click
of that submit button, the specified element will refresh with the specified
content from your servers. Here are the attributes available:

clickrewriteid
The ID of the element on the page to be refreshed.

clickrewriteurl
The URL on your servers (this cannot be a Facebook URL!) that returns
data to be refreshed into the specified element.

clickrewriteform
The form that will be submitted upon a click of the button containing
these attributes.

Mock AJAX works on anything that can be clicked, but it must submit a form
on the page when clicked. Here’s some example code using Mock AJAX:

<form id="ajax_form">
 <input type="text" name="test"/>
</form>
<a href="#" clickrewriteid="data" clickrewriteurl=
 "http://fbmlessentials.staynalive.com/mockajax.php"
 clickrewriteform="ajax_form">Click here to load the data
<div id="data"></div>

142 | Chapter 3: FBML Reference

To test the return data, inspect the term FBML.mockAjaxResponse using a de-
velopment tool such as Firefox’s Firebug. The data within should give you
clues as to what is going on. I strongly recommend using Firebug to debug
your Mock AJAX calls.

Data Access for JavaScript and Dynamic Rendering in FBML

<fb:js-string/>
<fb:js-string var="...">...</fb:js-string>

Loads rendered FBML into a JavaScript variable to be accessed later via FBJS. This
can be a great way to render FBML before passing it to the JavaScript.

FBML-Specific Attributes

Required

var=[string] default: none
The name of the variable that can be accessed later via FBJS.

Optional
None.

Example FBML
Here is example FBML code for the <fb:js-string/> tag:

<fb:js-string var="test_var">
 Hello <fb:name uid="loggedinuser"/>!
</fb:js-string>
<div id="test_div"></div>
<a href="#" onclick="document.getElementById('test_div').
 setInnerFBML(test_var)">Display test_div

<fb:fbml/>
<fb:fbml>...</fb:fbml>

Renders a block within a particular version of FBML. This is especially useful when
testing a beta version of a tag, or if you want to ensure your FBML will always work
as Facebook makes upgrades to FBML.

<fb:js-string/> | 143

FBML-Specific Attributes

Required
None.

Optional

version=[float] default: the current version
The version of FBML to parse the enclosed content under.

Example FBML
Here is example FBML code for the <fb:fbml/> tag:

<fb:fbml version="1.0">
This content would be parsed under FBML version 1.0 instead of the
 current version (1.1).
</fb:fbml>

<fb:ref/>
<fb:ref [url="..."|handle="..."]/>

Allows the developer to reference FBML, whether it be from Facebook’s servers or
an external URL. When handle is used, Facebook references a cached handle
stored on the Facebook servers that is set via the fbml.setRefHandle API method.
When url is used, Facebook references FBML retrieved from a URL that you specify
that it has cached on its servers. With url, you have to use the fbml.refreshRefUrl
API method.

FBML-Specific Attributes

Required

url=[string] default: none
The URL of the content to be loaded. Whenever this tag is called with that
URL, the content originally cached on Facebook’s servers will be loaded
in place. This is a great way to dynamically load content onto a user’s
profile. You must specify either url or ref, but not both.

ref=[string] default: none
The ref handle that points to data that was previously stored via the API
method call, fbml.setRefHandle. Whenever this tag is called for that ref
handle, that content will be loaded. This keeps you from having to con-
tinuously load data from your servers. It is also an excellent way to dy-
namically load content into a user’s profile. You must specify either url
or ref, but not both.

144 | Chapter 3: FBML Reference

Optional
None.

Example FBML
Two examples follow. Imagine these placed on a user’s profile. (They work on the
canvas page as well.)

First, assuming you made the API call:

fbml.setRefHandle("test_handle","Hello <fb:name uid='loggedinuser'/>");

then, anywhere you load:

<fb:ref ref="test_handle"/>

will display:

Hello <fb:name uid='loggedinuser'/>

Alternatively, if http://fbmlessentials.staynalive.com/ref.php were to contain:

Example url usage of <fb:ref/>

then, if you called the following on a canvas or profile page:

<fb:ref url="http://fbmlessentials.staynalive.com/ref.php"/>

this tag would be rendered as the following HTML:

Example url usage of <fb:ref/>

Additional Information

• Nested <fb:ref/>s are allowed.

Now that you’ve made it this far, let’s spend some time learning a little about FBJS,
Facebook’s own set of JavaScript libraries, in Chapter 4.

<fb:ref/> | 145

http://fbmlessentials.staynalive.com/ref.php

CHAPTER 4

FBJS Reference

Introduction
JavaScript is very possible to use in Facebook applications. A book about
FBML would not be complete without at least a short introduction to FBJS.
I’m going to keep this discussion “in a nutshell,” but you can find much more
information on the Facebook Developer Wiki at http://wiki.developers.face
book.com/index.php/FBJS.

FBJS is a very limited form of JavaScript, which Facebook has placed controls
on to prevent malicious code in applications from accessing data it shouldn’t.
Privacy is of the utmost importance on Facebook, and FBJS controls reflect
that. Despite the restrictions, with a little practice, FBJS can provide almost all
necessary functions that JavaScript can provide in an external application.

For even more flexibility in a JavaScript-heavy site, you should take some time
and look up the JavaScript Client Library on the Facebook Developer Wiki:
http://wiki.developers.facebook.com/index.php/JavaScript_Client_Library.

General Information
JavaScript in Facebook, just like FBML and HTML, gets parsed and rewritten
by Facebook before it is rendered for the user. Therefore, it is important that
you follow some specific rules to ensure that your JavaScript is fully compatible
with Facebook. The rules to keep in mind are as follows:

• JavaScript methods and variables should be prepended with the applica-
tion ID, followed by an “_” in Facebook. This won’t affect your code too
much, but it’s important to remember, as in certain instances you may
need to call the method or variable with the application ID attached. In
most cases you can just call the method name or variable name by itself
and Facebook will handle all the magic!

147

http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/JavaScript_Client_Library

• On profiles, JavaScript will not run without the user making some sort of
click action first. Therefore, it’s necessary to have an onClick event handler
of some sort within a link or element in order to launch anything on profile
pages. On canvas pages, the click action is not necessary.

• Most DOM methods will work, but to retrieve information you must pre-
pend the method with get. To set information, you must prepend the
method name with set, and rather than assigning a value via the = sign,
you must instead pass in the value as a variable. So, instead of:

document.getElementById('my_div').innerHTML = 'test content';

you would do this in FBJS:

document.getElementById('my_div').setInnerHTML('test content');

Table 4-1 lists all the methods available and their get and set equivalents
(this list is taken from the Developer Wiki).

The JavaScript methods in this table that have no
descriptions work the same way they do in normal
JavaScript.

Table 4-1. FBJS methods

JavaScript method FBJS “get” equivalent FBJS “set” equivalent Description

parentNode getParentNode

nextSibling getNextSibling

previousSibling getPreviousSibling

firstChild getFirstChild

lastChild getLastChild

childNodes getChildNodes

innerHTML setInnerFBML Direct strings passed to this
method may throw an
error. Pass all strings to
<fb:js-string/> first,
and then load the variable
from that. Note that you can-
not do getInnerHTML.

innerHTML setInnerXHTML XHTML/HTML passed to this
method gets sanitized by
Facebook. Note that you can-
not do getInnerHTML.

148 | Chapter 4: FBJS Reference

JavaScript method FBJS “get” equivalent FBJS “set” equivalent Description

innerText/text
Content

 setTextValue Allows plain-text values on-
ly; child nodes get removed.
There is no get equivalent.

form Use document.getEle
mentById('form_id')
instead.

action getAction setAction

value getValue setValue

href getHref setHref

target getTarget setTarget

src getSrc setSrc

className getClassName setClassName

 addClassName(class
Name)

Adds className as a
new class.

 removeClass
Name(className)

Removes the class
className.

 toggleClass
Name(className)

If the class className
exists, removes it. If not,
adds it.

 hasClassName(class
Name)

Returns true if class
Name exists. Returns
false otherwise.

tagName getTagName

id getId setId

dir getDir setDir

checked getChecked setChecked

clientWidth getClientWidth

clientHeight getClientHeight

offsetWidth getOffsetWidth

offsetHeight getOffsetHeight

 getAbsoluteTop Returns the absolute
position from the top of the
page.

 getAbsoluteLeft Returns the absolute
position from the left of the
page.

scrollTop getScrollTop setScrollTop

scrollLeft getScrollLeft setScrollLeft

General Information | 149

JavaScript method FBJS “get” equivalent FBJS “set” equivalent Description

scrollHeight getScrollHeight

scrollWidth getScrollWidth

tabIndex getTabIndex setTabIndex

title getTitle setTitle

name getName setName

cols getCols setCols

rows getRows setRows

accessKey getAccessKey setAccessKey

disabled getDisabled setDisabled

readOnly getReadOnly setReadOnly

type getType setType

selectedIndex getSelectedIndex setSelectedIndex

selected getSelected setSelected

location setLocation

style getStyle setStyle

 getRootElement Returns the topmost
element of your profile box
or canvas page.

 getSelection setSelection(start,
end)

Allows the retrieval and set-
ting of values in a text-box
element.

One of the biggest headaches in FBJS is the lack of get methods for innerHTML-
type methods. You can get around this by setting a variable and manipulating
that, and then accessing that variable in your JavaScript.

Event Listeners
addEventListener and removeEventListener work just as they do in regular
JavaScript. However, addEventListener in FBJS does not support the
useCapture parameter. In addition, Facebook provides the following methods:

listEventListeners(eventName)
Returns an array of identifiers for all events that have been added to this
event.

purgeEventListeners(eventName)
Removes all event listeners for the specified event.

150 | Chapter 4: FBJS Reference

AJAX
Facebook provides an AJAX class that developers can access to implement
simple AJAX calls. The AJAX class supports the following properties:

ondone(data)
An event handler that is called when the AJAX call is returned. data can
be an object, string, or FBML string.

onerror
An event handler that is called when an error is generated by the AJAX call.

requireLogin
If set to true, forces the user to be logged in before an AJAX call can be
made to the application owner’s server. Once logged in, it will pass the
fb_sig values back to your server as part of the call.

In addition to those properties, the AJAX class supports the following
methods:

post(url,query)
Starts an AJAX post to the given URL with the given query parameters.

abort()
Aborts the AJAX post.

Here is some sample AJAX code that mimics the Mock AJAX examples we
used in Chapter 3. I like to include this in all of my Facebook applications,
since it provides slightly more flexibility than a simple Mock AJAX call:

<script>
function do_ajax(url, div_id) {
 var ajax = new Ajax();
 ajax.responseType = Ajax.FBML;
 ajax.ondone = function(data) {
 document.getElementById(div_id).setInnerFBML(data);
 }
 ajax.requireLogin = true;
 ajax.post(url);
}
</script>

In this example I instantiate a new AJAX object, and set its response type as
FBML, since I know my servers will always return FBML. When the request
is done, I assign ondone() an anonymous callback function that sets the inside
of the given div ID with the returned data. I require the user to be logged in,
and finally, I make an AJAX post to the given URL. You could call this function
with the following HTML:

<div id="my_div">Please Wait...</div>
<a href="#" onclick="do_ajax

AJAX | 151

 ('http://fbmlessentials.staynalive.com/ajax.php','my_div')">
 Click here to load the div

When the user clicks the “Click here to load the div” link, the text that says
“Please Wait...” will quickly turn to the contents returned by the HTML that
the URL passed into do_ajax renders.

Dialogs
Besides the <fb:dialog/> FBML tag, you can also use FBJS to render dialogs.
FBJS dialogs give you slightly added flexibility that you don’t get from FBML.
The way to initiate a dialog box is simply by instantiating a new Dialog object
via the DOM. The following are the methods supported by the Dialog class:

Dialog(type)
The constructor for Dialog. Note that type can be one of either
Dialog.DIALOG_POP or Dialog.DIALOG_CONTEXTUAL:

Dialog.DIALOG_POP
Renders a dialog box that looks like Figure 4-1.

Dialog.DIALOG_CONTEXTUAL
Renders a dialog box that looks like Figure 4-2.

Figure 4-1. DIALOG_POP

Figure 4-2. DIALOG_CONTEXTUAL

152 | Chapter 4: FBJS Reference

onconfirm
Event handler that gets triggered when the leftmost button is clicked in
the dialog.

oncancel
Event handler that gets triggered when the rightmost button is clicked in
the dialog.

setStyle
Sets the style of the parent dialog box.

showMessage(title, content, button_confirm = 'Okay')
Renders a dialog box with just one confirm button, similar to an “alert”
box. The title and content can be either pure text or FBML content using
a variable from something like <fb:js-string/>.

showChoice(title, content, button_confirm = 'Okay', button_cancel =
'Cancel')

Renders a dialog box with both a confirm and a cancel button. The title
and content can be either pure text or FBML content using a variable from
something like <fb:js-string/> .

setContext
Useful only with DIALOG_CONTEXTUAL; sets where the pointer of the bubble
should point (see Figure 4-2).

hide
Hides the dialog box.

You can initiate a dialog box using something like the following FBML code
(this example is taken from the Developer Wiki):

<a href="#" onclick="new Dialog().showMessage
 ('Dialog', 'Hello World.'); return false;">
DIALOG_POP.

Alternatively, you could use:

<a href="#" onclick="new Dialog
 (Dialog.DIALOG_CONTEXTUAL).setContext(this).showChoice
 ('Dialog', 'Hello World.', 'Foo', 'Bar'); return false;">
CONTEXTUAL_DIALOG with two buttons: Foo and Bar

The first example renders a DIALOG_POPUP when you click on it, similar to the
screenshot in Figure 4-1. The second example renders a DIALOG_CONTEXTUAL
when you click on it, similar to the screenshot in Figure 4-2.

Dialogs | 153

Visualization
Facebook also provides a fairly rich JavaScript Animations library. With this
library you can “tween” (an animation term, short for “in-betweening”) CSS
attributes, and hide, fade, and make elements appear, among other things.
Although this is out of the scope of this book, you can learn more on the
Facebook Developer Wiki at http://wiki.developers.facebook.com/index.php/
FBJS/Animation.

Conclusion
As you’ve seen, Facebook offers a very rich platform for which developers can
build applications. With FBML, Facebook provides many tools and shortcuts
for developers to accelerate their work on these applications even further.
Facebook continues to add more features and tags (three or four tags were
added in the last month of this writing!). It is definitely a development platform
worth considering.

It is my hope that as you’ve read this book, or even just used it as a reference,
you’ve gained something from the materials provided. I believe Facebook is
here to stay. It is worth having a part in as it takes off like a windstorm! So grab
on, and enjoy the ride.

154 | Chapter 4: FBJS Reference

http://wiki.developers.facebook.com/index.php/FBJS/Animation
http://wiki.developers.facebook.com/index.php/FBJS/Animation

Afterword

Now that you have read FBML Essentials, you have the tools you need from a
coding perspective. I think that this book will become your bible for getting
your code together to make your Facebook app perform exactly as you desire.

It is important that you take what you have learned from this book and apply
it to your work in creative, unique, and compelling ways that will engage the
users of your shiny new Facebook application. Find a way to leverage the social
graph and bring interesting connections to the surface. Facebook gives you
this opportunity; it is in your best interest to think hard on this point.

I would encourage you to look at other applications that have high engagement
rates and high levels of daily active users and see what you can learn from what
they have implemented. Think about what makes a compelling application.
Do not try to shoehorn an existing website into Facebook in a way that results
in a depreciated user experience. That type of application will almost always
fail on Facebook.

I have looked at and evaluated well over 4,000 applications on the Facebook
Platform. I have learned that what makes an application successful on Face-
book is its ability to provide self-expression, personal and microtouch con-
nections, and a way to do something unique and different. Always be looking
for ways to allow your application to spread virally based on user interaction
with its core functionality.

Take a strategic look at what you want your application to achieve. What are
your business, marketing, and user engagement objectives? Fortune 500
companies may benefit from an application that is strategically designed for
optimal goal attainment. Small businesses and startups can also reach the 70+
million users on Facebook with a properly executed application.

I would also tell you to measure your app’s performance with some third-party
analytics. You will want to make iterations and do some A/B testing, if possible.
Measure, iterate, measure, iterate. Repeat as required.

155

Always look at your application through the eyes of your users. They will tell
you what they do and don’t like on your app’s About page. Make sure you
listen to them and respond quickly to their concerns.

As I like to say, “The only constant on Facebook is change.” Leverage the
changes that come your way, and embrace them as potential opportunities to
do new things that your application users will like.

Jesse has given you the direction to properly use FBML with this great book.
Use it often and it will save you hours of frustration.

My parting words here are to encourage you to have a well-constructed strategy
before you charge down the road and throw an app onto Facebook without
first thinking through what you want to attain. Know where you want to go
and how you are going to get there by giving users what they want. If you don’t
know how to do this, find the people who can help you through this ideation
and strategy process. Welcome to the brave and quickly evolving world of the
Facebook application. Now go out there and create, and dare to be great!

Cheers!

—Rodney Rumford
CEO: http://www.GravitationalMedia.com

Editor: http://www.facereviews.com

156 | Afterword

http://www.GravitationalMedia.com
http://www.facereviews.com

Index

Symbols
+ (plus) symbol in Create buttons, 72

A
abort method, 151
accounts (see developer accounts)
action attribute, 83, 117
actiontext attribute, 119
Add to Info button, 127
Add to Profile button, 127
addEventListener, 150
age

18 years or older, 137
21 years or older, 137

AJAX, xx
(see also Mock AJAX)
class, 151
pop-up dialog boxes, 101

album attribute, 108
alerts authorization tags (see messaging

and alerts authorization tags)
align attribute, 78, 107, 110
Amazon EC2 (Elastic Compute Cloud),

20
Analytics, Google, 134
animation, 154
API calls

developer guidelines for, xiii
api_key attribute, 140
Apple iPhones

<fb:mobile/> tag, 133
application type, 5
applications, xvi

popular
Circle of Friends, 2
Honesty Box, 2
iLike, 1
Likeness, 2
Scrabulous, 2

rendering name of, 64
apps (see applications)
April Fools’ Day, 138
artist attribute, 108
attachments, 8
attributes, xx

(see also dynamic FBML attributes)
form elements, 14

audio source
meta tags, 79

authorization tags, 24–51
canvas page authorization tags, 27–35
logic tags, 41–45
messaging and alerts, 46–51
profile and Facebook Page

authorization tags, 36–41
random logic, 45
user authorization tag, 25

authorizing by user agent tags, 26
<fb:user-agent/>, 26

autocomplete attribute, 95
autocompletion, 95, 97

B
Bebo

SNML and, xi
beta tags

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

157

<fb:dialog/>, 101
<fb:typeahead-input/>, 95
testing beta versions, 143

bgcolor attribute, 36, 37, 38, 39, 40, 41
bit rate

MP3 files, 108
border_color attribute, 99
browsers

rendering content for specified, 26
buttons

cancel buttons, 87
Create buttons, 71
<fb:dialog/> tag, 104
<fb:editor/> forms, 86
invite requests, 121
standard input buttons, 87
submit buttons, 94, 122

bypass attribute, 120

C
cache

images, 16
cache breaking strings

URLs, 16
callback URL, 4
callbackurl attribute, 131, 132
cancel buttons, 87
cancel_button attribute, 101
cancreatetopic attribute, 130
candelete attribute, 130, 132
canmark attribute, 130
canpost attribute, 130, 132
canvas page authorization tags, 27–35

<fb:if-can-see-photo/>, 29
<fb:if-can-see/>, 28
<fb:if-is-app-user/>, 30
<fb:if-is-friends-with-viewer/>, 31
<fb:if-is-group-member/>, 32
<fb:if-is-user/>, 34
<fb:if-user-has-added-app/>, 35
<fb:is-in-network/>, 27

canvas page URL, 4
canvas pages, xvii

default CSS properties, 17
SEO, 19

capitalize attribute, 59, 60
CAPTCHA, 93
Cascading Style Sheets (CSS)

using, 16
Christmas, 138
Circle of Friends application, 2
class attribute, 78
classes

AJAX, 151
clickrewriteform attribute, 105, 142
clickrewriteid attribute, 104, 142
clickrewriteurl attribute, 104, 142
clickthrough attribute, 14, 141
clicktodisable attribute, 14
clicktoenable attribute, 14
clicktohide attribute, 141
clicktoshow attribute, 141
clicktotoggle attribute, 141
close_dialog attribute, 104
cols attribute, 54
Commagere, Blake, xi
comments

on Wall-like components, 132
condensed attribute, 119
contact email address, 4
content attribute, 117
Create buttons

rendering, 71
CSS (Cascading Style Sheets)

using, 16

D
dashboard headers

rendering, 68
date_day attribute, 89
date_month attribute, 89
decoration attribute, 47, 48, 50, 73
default action FBML, 7
default CSS properties for elements on

Facebook canvas pages, 17
default FBML, 6
developer accounts

setting up, 2
developer guidelines, xi
developers

as friends, 5
dialog box tags, 101–106

<fb:dialog-button/>, 104
<fb:dialog-content/>, 103
<fb:dialog-title/>, 103
<fb:dialog/>, 101

158 | Index

<fb:dialogresponse/>, 105
dialog boxes

using, 152
Dialog class, 152
discussion boards, 130
<div/> tag, 111
divider lines, 89
documentation for FBML, xiii
DOM (Document Object Model)

methods and JavaScript, 148
using, 16

dynamic FBML
<fb:tab-item/> tag, 78

dynamic FBML attributes, 140–145
data access for JavaScript, 143
Mock AJAX, 142
visibility attributes, 140

dynamically loading content in users’
profiles, 144

E
EC2 (Elastic Compute Cloud), 20
eid attribute, 62
email

subject, 115
email addresses

for contact and support, 4
errors

tags for, 46
event handlers

AJAX calls, 151
dialogs, 153

event listeners, 150
events

rendering links to, 62
excludes attribute, 26
exclude_ids attribute, 97, 99, 120
explanation messages

rendering, 48

F
F8 conference, ix, xvi
Facebook Markup Language (see FBML)
Facebook Page, xvi
Facebook Page authorization tags (see

profile and Facebook Page
authorization tags)

Facebook Platform, ix, xvi
architecture, 21

<fb:18-plus/> tag, 137
<fb:21-plus/> tag, 137
<fb:action/> tag, 70
<fb:add-section-button/> tag, 127
<fb:application-name/> tag, 64
<fb:attachment-preview/> tag, 126
<fb:board/> tag, 130
<fb:comments/> tag, 132
<fb:create-button/> tag, 71
<fb:dashboard/> tag, 68
<fb:default/> tag, 44
<fb:dialog-button/> tag, 104
<fb:dialog-content/> tag, 103
<fb:dialog-title/> tag, 103
<fb:dialog/> tag, 101, 103, 104
<fb:dialogresponse/> tag, 105
<fb:editor-button/> tag, 87
<fb:editor-buttonset/> tag, 86
<fb:editor-cancel/> tag, 87
<fb:editor-custom/> tag, 88
<fb:editor-date/> tag, 88
<fb:editor-divider/> tag, 89
<fb:editor-month/> tag, 90
<fb:editor-text/> tag, 90
<fb:editor-textarea/> tag, 91
<fb:editor-time/> tag, 92, 93
<fb:editor/> tag, 82, 89, 90, 92
<fb:else/> tag, 27, 42
<fb:error/>tag, 46
<fb:eventlink/> tag, 62
<fb:explanation/> tag, 48
<fb:fbml/> tag, 143
<fb:fbmlversion/> tag, 129
<fb:flv/> tag, 111
<fb:friend-selector/> tag, 97
<fb:google-analytics/> tag, 134
<fb:grouplink/> tag, 63
<fb:header-title/> tag, 75
<fb:header/> tag, 73
<fb:help/> tag, 72
<fb:if-can-see-photo/> tag, 29
<fb:if-can-see/> tag, 28
<fb:if-is-app-user/> tag, 30, 35
<fb:if-is-friends-with-viewer/> tag, 31
<fb:if-is-group-member/> tag, 32
<fb:if-is-user/> tag, 34

Index | 159

<fb:if-user-has-added-app/> tag, 35, 69
<fb:if/> tag, 20, 41
<fb:iframe/> tag, 66
<fb:user-agent/> tag, 26, 27
<fb:is-it-april-fools/> tag, 138
<fb:is-it-christmas/> tag, 138
<fb:is-logged-out/> tag, 19
<fb:js-string/> tag, 143
<fb:mediaheader/> tag, 74, 75
<fb:mobile/> tag, 133
<fb:mp3/> tag, 107
<fb:multi-friend-input/> tag, 99
<fb:multi-friend-selector/> tag, 118
<fb:name/> tag, 20, 58
<fb:narrow/> tag, 52
<fb:networklink/> tag, 63
<fb:notif-email/> tag, 116
<fb:notif-page/> tag, 116
<fb:notif-subject/> tag, 115
<fb:page-admin-edit-header/> tag, 81
<fb:photo/> tag, 106
<fb:profile-pic/> tag, 20
<fb:pronoun/> tag, 59, 0
<fb:random-option/> tag, 46
<fb:random/> tag, 45
<fb:redirect/> tag, 129
<fb:ref/> tag, 144
<fb:req-choice/> tag, 121
<fb:request-form-submit/> tag, 122
<fb:request-form/> tag, 117, 122
<fb:rock-the-vote/> tag, 139
<fb:share-button/> tag, 78, 101
<fb:silverlight/> tag, 114
<fb:submit/> tag, 94
<fb:subtitle/> tag, 57
<fb:success/> tag, 49
<fb:swf/> tag, 109
<fb:switch/> tag, 43
<fb:tab-item/>tag, 77
<fb:tabs/> tag, 76
<fb:time/> tag, 128
<fb:title/> tag, 65
<fb:typeahead-input/> tag, 95, 96
<fb:typeahead-option/> tag, 96
<fb:user-item/> tag, 56
<fb:user-table/> tag, 53, 55
<fb:user/> tag, 25
<fb:visible-to-added-app-users/> tag, 39

<fb:visible-to-app-users/> tag, 39, 40
<fb:visible-to-connection/> tag, 38, 40
<fb:visible-to-friends/> tag, 38, 41
<fb:visible-to-owner/> tag, 36
<fb:visible-to-user/> tag, 37
<fb:wall/> tag, 124
<fb:wallpost-action/> tag, 125
<fb:wallpost/> tag, 125
<fb:wide/> tag, 51
FBML (Facebook Markup Language)

about, ix
default text on user's profile, 6
and iframe, 5
referencing, 144
version, 129

FBML Test Console, 23
fbml.refreshRefUrl API method, 144
fbml.setRefHandle API method, 144
fbtype attribute, 122
feed forms, 122
files, xx

(see also FLV (Flash Video) player;
MP3 files)
importing JavaScript files, 18
uploading through forms, 15

firstnameonly attribute, 58
Flash

rendering, 66
flashvars attribute, 109
FLV (Flash Video) player

rendering, 111
forms, xx

(see also feed forms; invite forms)
divider lines, 89
HTML design, 13
rendering with two columns, 82

forms tags, 82–101
<fb:captcha/>, 93
<fb:editor-button/>, 87
<fb:editor-buttonset/>, 86
<fb:editor-cancel/>, 87
<fb:editor-custom/>, 88
<fb:editor-date/>, 88
<fb:editor-divider/>, 89
<fb:editor-month/>, 90
<fb:editor-text/>, 90
<fb:editor-textarea/>, 91
<fb:editor-time/>, 92

160 | Index

<fb:friend-selector/>, 97
<fb:multi-friend-input/>, 99
<fb:submit/>, 94
<fb:typeahead-input/>, 95
<fb:typeahead-option/>, 96
<fb:editor/>, 82

form_id attribute, 94, 104
frameborder attribute, 66
friends

input text box, 97, 99
inviting, 117
selecting, 118

G
generic paths

MP3 files, 108
gid attribute, 33, 63
Google

Analytics, 134
groups

membership in, 32
rendering links to, 63

H
headers, xx

(see also dashboard headers)
for Page admins, 81
rendering special headers, 74
titles, 73

height attribute, 67, 108, 109, 112, 114
“Hello Friends” example, 1
Help links

rendering, 72
help URL, 8
hide method, 153
Honesty Box application, 2
hosting

HTML applications, 20
href attribute, 70, 71, 72, 76, 77, 78, 88,

125
HTML design, 13–22

Facebook Platform architecture, 21
forms, 13
hosting, 20
images, 15
JavaScript, 17

HTML display tags, 65

<fb:iframe/>, 66
<fb:title/>, 65

I
icon attribute, 73
id attribute, 88, 101
idname attribute, 97
idname field, 98
ifcantsee attribute, 59
iframes

and FBML, 5, 22
<iframe> tag, 66

iLike application, 1
images, xx

(see also photos)
using, 15

imgclass attribute, 109, 115
imgsrc attribute, 109, 114
imgstyle attribute, 109, 115
includes attribute, 26
includeself attribute, 32
include_lists attribute, 97
include_me attribute, 97
Info tab, 126
input

friends, 97, 99
text, 90

<input/> element, 15
installation

options, 5
integration points, 7
invite attribute, 117
invite forms

rendering, 117
invite requests

button for, 121
invites

developer guidelines, xi
IP addresses

servers making requests, 5
iPhones (Apple)

<fb:mobile/> tag, 133

J
JavaScript

data access and dynamic rendering,
143

Index | 161

rendering, 66
using, 17, 147–150

Joyent, 20

L
label attribute, 88, 89, 90, 91, 92, 121,

122
labelwidth attribute, 83
Likeness application, 2
lines (see divider lines)
<link> tags, 16
linked attribute, 58, 61
listEventListeners method, 150
loggedinuser identifier, 19
logic tags, 41–45

<fb:default/>, 44
<fb:else/>, 42
<fb:if/>, 41
<fb:switch/>, 43

loop attribute, 109

M
max attribute, 99, 120
maxlength attribute, 91
media tags, 106–115

<fb:flv/>, 111
<fb:mp3/>, 107
<fb:photo/>, 106
<fb:silverlight/>, 114
<fb:swf/>, 109

message attribute, 47, 48, 50
messaging and alerts authorization tags,

46–51
<fb:error/>, 46
<fb:explanation/>, 48
<fb:success/>, 49

meta tags
<fb:share-button/> tag, 79

method attribute, 117
methods

JavaScript, 18, 147
Microsoft Silverlight control

rendering, 114
Mini-Feeds, 123
mobile integration, 5
mobile phones

displaying content within tags, 133

Mock AJAX
about, 142
forms, 86, 101
responses to calls, 105

months
drop-down menu of, 90

MP3 files, 107
music, 107

N
name attribute, 67, 87, 90, 91, 92, 95, 97
names

rendering for specified users, 58
name_ampm variable, 92
name_hour variable, 92
name_min variable, 92
naming

developer guidelines for, xiii
network attribute, 28
networks

rendering content when user in, 27
rendering links to, 63

new design, xvi, 126
news about FBML, xiv
News Feeds, 122

developer guidelines, xii
nid attribute, 63
notifications, xx

(see also request and notification tags)
content, 116
developer guidelines, xii

notifications.send() API calls, 116
numposts attribute, 132
numtopics attribute, 131

O
oncancel method, 153
onclick attribute, 18, 70, 71
onconfirm method, 153
ondone property, 151
onerror property, 151
O’Neill, Nick, vii, xv

P
Page admins

headers, 81
page navigation tags, 68–82

162 | Index

<fb:action/>, 70
<fb:create-button/>, 71
<fb:dashboard/>, 68
<fb:header-title/>, 75
<fb:header/>, 73
<fb:help/>, 72
<fb:mediaheader/>, 74
<fb:page-admin-edit-header/>, 81
<fb:share-button/>, 78
<fb:tab-item/>, 77
<fb:tabs/>, 76

photos
privacy, 29
rendering, 61, 106
selecting friends, 118

pick attribute, 45
pid attribute, 30, 106, 107
playlists, 107
plus (+) symbol in Create buttons, 72
pop ups (see dialog boxes)
possessive attribute, 58, 60
post method, 151
post-add URL, 6
post-remove URL, 6
prefill_ids attribute, 99
prefill_locked attribute, 99
preposition attribute, 128
privacy

photos, 29
verifying settings, 28

privacy URL, 8
private installation, 8
profile and Facebook Page authorization

tags, 36–41
<fb:visible-to-added-app-users/>, 39
<fb:visible-to-app-users/>, 39
<fb:visible-to-connection/>, 40
<fb:visible-to-friends/>, 38
<fb:visible-to-owner/>, 36
<fb:visible-to-user/>, 37

profile-specific tags, 51–58
<fb:narrow/>, 52
<fb:subtitle/>, 57
<fb:user-item/>, 56
<fb:user-table/>, 53
<fb:wide/>, 51

profile.setFBML call, 51
profileowner identifier, 19

profiles, xvi
dynamically loading content into, 144
JavaScript, 148

promotion (see viral promotion)
pronouns

rendering for specified users, 59
purgeEventListeners method, 150

Q
quality attribute, 110
query strings

MP3 files, 108

R
random logic authorization tags, 45

<fb:random-option/>, 46
<fb:random/>, 45

reCAPTCHA, 93
redirecting pages to specific URLs, 129
ref attribute, 144
referencing

FBML, 144
reflexive attribute, 58, 60
removeEventListener, 150
request and notification tags, 115–122

<fb:multi-friend-selector/>, 118
<fb:notif-email/>, 116
<fb:notif-page/>, 116
<fb:notif-subject/>, 115
<fb:req-choice/>, 121
<fb:request-form-submit/>, 122
<fb:request-form/>, 117

requireLogin property, 151
resizable attribute, 67
resources for learning FBML, xiii
returnurl attribute, 131, 132
role attribute, 33
rows attribute, 91, 120
Rumford, Rodney, xv, 155

S
S3 (Simple Storage Service), 20
Safari 3 browser, 15
salign attribute, 109
scale attribute, 110
Scrabulous application, 2
<script/> tags, 18

Index | 163

scrolling attribute, 66
Search Engine Optimization (SEO)

canvas pages, 19
seeallurl attribute, 57
<select/> tag, 88
selected attribute, 78
selected_rows attribute, 120
send_notification_id attribute, 133
SEO (Search Engine Optimization)

canvas pages, 19
servers

IP addresses of, 5
setContext method, 153
Shockwave Flash (SWF) objects

rendering, 109
showalways attribute, 93
showborder attribute, 120
showChoice method, 153
showform attribute, 132
showMessage method, 153
shownetwork attribute, 58
side nav URL, 8
Silverlight control

rendering, 114
silverlightsrc attribute, 114
Simple Storage Service (S3), 20
size attribute, 61, 107
smartsize attribute, 66
SNML (Social Network Markup

Language)
Bebo and, xi

src attribute, 66, 107, 112
style attribute, 66
<style> tags, 16
subjectid attribute, 59
submit buttons, 94, 122
subtitles

rendering, 57
success messages

rendering, 49
support email address, 4
SWF (Shockwave Flash) objects

rendering, 109
swfbgcolor attribute, 109, 115
swfsrc attribute, 109

T
t attribute, 125, 128

tabs
rendering, 76

tags
custom tags, 88
reading tags within tags, 43

Terms of Service agreements
URL for, 5

Test Console, FBML, 23
testing

beta versions of tags, 143
text

standard input form, 90
type-ahead text input boxes, 95, 97

<textarea/> tag, 91
time

drop-down menus, 92
rendering to users, 128

title attribute, 70, 71, 72, 77, 107, 112
<title/> tag, 65
tools for FBML, xiii
type attribute, 104, 117
type-ahead text input boxes, 95, 97
tz attribute, 128

U
uid attribute, 19, 25, 28, 29, 30, 31, 32, 33,

34, 35, 37, 56, 58, 60, 61, 74, 97,
107, 122, 125

unique attribute, 45
unselected_rows attribute, 120
url attribute, 121, 130, 144
URLs, xx

(see also callback URL; canvas page
URL; help URL; post-add URL; post-
remove URL; privacy URL; side nav
URL)
cache breaking strings, 16
<fb:iframe> tag, 66
<fb:wallpost/> tags, 125
previewing, 78
redirecting pages to, 129
rendering with iframe, 66

user authorization tag, 25
user IDs, 18
user interfaces

developer guidelines, xii
users, xx

(see also profile)

164 | Index

list of, 53
usethey attribute, 60
useyou attribute, 59, 60

V
value attribute, 42, 87, 89, 90, 91, 92, 95,

97, 104
var attribute, 143
variables

JavaScript, 147
version

FBML, 129
version attribute, 144
video source

meta tags, 79
viral promotion, 115–126

feed forms, 122
request and notification tags, 115–122
Wall, 124–126

visibility attributes, 140

W
waitforclick attribute, 109
Wall

components users can comment on,
132

Wall tags, 124–126
<fb:attachment-preview/>, 126
<fb:wall/>, 124
<fb:wallpost-action/>, 125
<fb:wallpost/>, 125

weight attribute, 46
what attribute, 29
widgets (see Wall tags)
width attribute, 66, 83, 99, 108, 109, 112,

114
wmode attribute, 110

X
xid attribute, 130, 132

Index | 165

About the Author
Jesse Stay runs his own social media consulting and development business,
and has consulted for some of the top 100 applications on Facebook. Within
just two months, he successfully sold his first Facebook application, which he
wrote in just one week. He is the author of I’m On Facebook—Now What???
(Happy About), a book targeted toward helping individuals and business
owners better manage their lives through Facebook. You can follow him on
his blog, http://www.staynalive.com.

Colophon
The animal on the cover of FBML Essentials is a white-throated dipper (Cinclus
cinclus), an aquatic songbird found throughout Europe, the UK, and the Mid-
dle East. It is especially common in Britain and Ireland. Around seven inches
long, the dipper is round, squat, and short-tailed. Adult white-throated dippers
have dark plumage and a prominent white breast, with a reddish band above
a black belly. Young dippers are gray and lack the reddish band.

Dippers live near fast-flowing streams and rivers, and they swim underwater
to hunt for small fish and shrimps. Some people believe that the bird walks
along the bottom of a river, using its wings and strong feet to keep itself sub-
merged, but by most accounts the dipper swims, using its wings to “fly”
underwater. Like other waterfowl, the dipper has a translucent eyelid called a
nictitating membrane that protects its eye when it dives. Oils produced from
a gland above its tail keep the dipper warm and make its feathers nearly
waterproof.

The dipper’s nest is made from straw and moss, about the size and shape of a
soccer ball. This nest is usually built into the hollow of a rock, in a crevice
under a bridge or stone wall, or on an overhanging branch. When the bird is
perched on dry land, it makes a unique bobbing motion by bending and
straightening its knees and cocking its tail. The dipper gets its name from this
habit of bobbing, not from its water diving. No one knows for certain why the
bird dips in this way, but biologists believe the behavior is somehow linked to
the dipper’s rushing-water environment.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont’s
TheSansMonoCondensed.

http://www.staynalive.com

	FBML Essentials
	Table of Contents
	Foreword
	Preface
	The Facebook Platform Emerges
	FBML
	Developer Guidelines

	Useful Resources
	Tools and Documentation
	News and Information About Facebook Development

	Is This Book For You?
	Some Terms You Should Know
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Chapter 1. “Hello Friends”
	The “Hello World” for Social Development
	Step 1: Set Up a Facebook Developer Account
	Step 2: Add the Developer App
	Step 3: Set Up the App

	Chapter 2. HTML Design in a Facebook
 Environment
	Forms in FBML
	The <form/> tag
	FBML-Specific Attributes
	Example FBML
	Rendered HTML for Single Instance of Tag
	Additional information

	Images in FBML
	CSS and DOM in FBML
	JavaScript in FBML
	Other Things to Consider
	User IDs and FBML
	Public Canvas Pages and SEO
	The <fb:is-logged-out/> tag
	Example FBML
	Rendered HTML for Single Instance of Tag
	Additional information

	Hosting
	The Facebook Platform Architecture

	Chapter 3. FBML Reference
	Facebook FBML Test Console
	Authorization Tags
	The “User” Authorization Tag
	Authorizing by User Agent
	Canvas Page Authorization Tags
	Profile and Facebook Page Authorization Tags
	Logic Tags
	Random Logic
	Messaging and Alerts in FBML

	Profile-Specific Tags
	Users, Groups, Events, Networks, and Applications
	HTML Display and Navigation
	General HTML Display Tags
	Page Navigation Tags
	Creating Forms With FBML
	Dialog Boxes in Facebook—The Facebook “Pop Up”
	Embedding Media With FBML

	Virally Promoting Your App With FBML
	Request and Notification Tags
	Feed Forms
	The Wall
	The <fb:add-section-button/> Tag

	Miscellaneous Tools for Rendering Data Using FBML
	Dynamic FBML Attributes
	Visibility Attributes
	Mock AJAX
	Data Access for JavaScript and Dynamic Rendering in FBML

	Chapter 4. FBJS Reference
	Introduction
	General Information
	Event Listeners
	AJAX
	Dialogs
	Visualization
	Conclusion

	Afterword
	Index

