

Learning Flex 3

LearningFlex3_book.indb 1 5/27/08 1:52:12 PM

LearningFlex3_book.indb 2 5/27/08 1:52:12 PM

Learning Flex™ 3

Getting up to Speed with Rich Internet Applications

Alaric Cole

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

LearningFlex3_book.indb 3 5/27/08 1:52:13 PM

Learning Flex 3
Getting up to Speed with Rich Internet Applications

by Alaric Cole

Copyright © 2008 Alaric Cole. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Robyn G. Thomas

Production Editor: Michele Filshie

Copy Editor: Kim Wimpsett

Technical Reviewer: Allen Rabinovich

Proofreader: Nancy Bell

Interior Designer: Ron Bilodeau

Composition: David Van Ness

Cover Designer: Matthew Woodruff and Karen Montgomery, based on a series design by Mark Paglietti

Indexer: Ted Laux

Print History:

June 2008: First edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. This book's trade dress is a trademark of O’Reilly
Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibil-
ity for errors or omissions, or for damages resulting from the use of the information contained herein.

This book uses RepKoverTM, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51732-8
[F]

LearningFlex3_book.indb 4 5/27/08 1:52:13 PM

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training, straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat® software.

Get the latest news about books, online resources, and more at adobedeveloper-
library.com.

LearningFlex3_book.indb 5 5/27/08 1:52:13 PM

LearningFlex3_book.indb 6 5/27/08 1:52:13 PM

vii

Preface . xiii

Chapter 1
Getting Up to Speed . 1

What Is Flex? . 1
What about AIR? . 4
Where Flex Fits . 5
Why Use Flex? . 6
How Flex Compares to Other Technologies . 8
When Not to Use Flex . 11
Summary . 12

Chapter 2
Setting Up Your Environment . 13

Using Alternatives to Flex Builder . 13
Introducing Flex Builder and Eclipse . 14
Running Your First Application . 16
Summary . 21

Chapter 3
Using Design Mode . 23

A Blank Slate: Your Canvas . 23
Adding Components to the Application . 24
Moving Components Around . 24
Exploring Common Components . 25
Modifying Properties Directly . 28
Summary . 36

PrefacePreface iii

CONTENTS

LearningFlex3_book.indb 7 5/27/08 1:52:14 PM

Contentsviii

Chapter 4
Using Source Mode . 37

What Design Mode Does . 37
Anatomy of a Flex Application . 38
Components Added in Source Mode . 39
Code Completion . 40
MXML in Depth . 40
Summary . 46

Chapter 5
Learning the Basics of Scripting . 47

Getting Ready . 47
Inline ActionScript . 48
Dot Notation . 48
Assignment . 49
Functions . 50
Variables . 53
Data Types . 53
Objects . 55
Classes . 56
MXML and ActionScript Work Together . 57
ActionScript’s Relationship with MXML . 58
Comments? . 61
Summary . 61

Chapter 6
Adding Interactivity with ActionScript 63

Understanding Events . 63
Handling Events Inline . 64
Using Event Constants . 67
Making Things Happen . 67
Debugging for Kicks . 71
Summary . 76

LearningFlex3_book.indb 8 5/27/08 1:52:14 PM

Contents ix

Chapter 7
Using Data Binding . 77

What Is Data Binding? . 77
How to Use It . 78
Implementing Two-Way Bindings . 83
Storing Complex Data . 83
Creating Bindable Variables in ActionScript. 85
Determining When Data Binding Isn’t Appropriate . 86
Putting Data Binding to Work for You . 87
Summary . 91

Chapter 8
Laying Out Your Applications . 93

Types of Layouts . 93
The Display List . 95
Sizing . 99
Layout Container Options . 101
Advanced Containers . 103
Layout Controls . 106
Alignment . 108
Constraints-Based Layout . 109
Summary . 115

Chapter 9
Creating Rich Forms . 117

Preparing the Application . 117
Validating Data . 120
Restricting Input . 131
Formatting Data for Display. 132
Summary . 136

LearningFlex3_book.indb 9 5/27/08 1:52:14 PM

Contentsx

Chapter 10
Gathering and Displaying Data . 137

Using List Controls . 137
Using XML Data . 142
Implementing List Selection . 149
Connecting to Search Results. 150
Dragging and Dropping in Lists . 153
Using Inline Item Renderers . 154
Exploring Other Types of Service Components . 156
Summary . 158

Chapter 11
Controlling Flow and Visibility . 159

Controlling Visibility . 159
Navigation Components . 160
Creating a Photo Gallery Application . 164
Summary . 174

Chapter 12
Working with View States . 175

Scenarios for States . 175
Creating New States . 176
Modifying State Properties, Styles, and Events . 177
Adding Components . 179
Putting States to the Test . 183
Summary . 196

Chapter 13
Applying Behaviors, Transitions, and Filters 197

Behaviors . 197
Common Effects and Their Properties . 204
Sound Effects . 209
States Made More Interesting . 211
Filters . 215
Summary . 218

LearningFlex3_book.indb 10 5/27/08 1:52:15 PM

Contents xi

Chapter 14
Styling Applications . 219

Using Inline Styles . 219
Using Style Sheets . 223
Embedding Assets . 230
Skinning . 233
Using Themes . 235
Summary . 238

Chapter 15
Deploying Your Application . 239

Deploying to the Web . 239
Deploying to the Desktop . 251
Summary . 264

Index . 265

LearningFlex3_book.indb 11 5/27/08 1:52:15 PM

LearningFlex3_book.indb 12 5/27/08 1:52:15 PM

xiii

A lot of software developers cut their teeth on learning COBOL, Pascal, or
one of those other programming languages that have stuck around for years.
I didn’t learn programming that way. I didn’t take computer science courses
in school. I studied anthropology.

Being a developer was not something I imagined I would ever do for a living.
I did enjoy creating graphics and building websites, though, and I supported
myself through school doing just that. I found that I wanted to create some
fancy animated content for a website, so I decided to spend a weekend and
learn the Flash IDE. I was too cheap to buy a good book, so I spent a lot of
time perusing the included documentation. Hours later, I figured out how to
animate a line drawing I had made. Ecstatic, I dove through the documenta-
tion, learning more and more. What started as a weekend experiment turned
into a weekly passion, as I slowly progressed from simple timeline anima-
tions into scripting.

Flash was cool. I could take text and render it as a graphic, something I
couldn’t do with regular old HTML and JavaScript (DHTML). It also empow-
ered me to build applications on the Web that were not possible at the time
with DHTML. I could get data from a remote computer such as the weather
forecast and display it right in my Flash content, with complete control over
the look and feel. I could have a user send an email through Flash without
having to refresh the web page. I could display a photo gallery on my site,
rotating the photos, adding borders, and making it look like a real photo
album. I was hooked.

As the language of Flash, ActionScript, matured, I grew along with it. I found
that as my imagination led me to create richer experiences, the code I was
required to write became more and more complex. No longer just scripting
one-offs, I was learning real programming. I was pushing Flash beyond its
limits and had to continually find ways of making my code more readable
and maintainable. I found myself longing for a better way.

PREFACE

LearningFlex3_book.indb 13 5/27/08 1:52:15 PM

Prefacexiv

Then along came Flex. It was far from perfect in its first iteration, but I knew
it was going to stick. For once, I could create my applications with simple,
structured XML, which felt comfortably like the HTML I had been using all
along. Flex made sense, and it helped me to build complex applications more
quickly and easily than ever before.

I wasn’t the only one who felt this way. As Flex got better with each new
version, more developers began adopting it. Flex grew into a powerful frame-
work that can hold its own with the more traditional means of software
development. And it still hasn’t lost its fun.

Who This Book Is For
I wrote this book as a way for anyone to get started using Flex, even those
completely new to software development. This means those with no experi-
ence with the Flash IDE, web design, or programming in general can feel
comfortable jumping right in and tinkering with examples. While I attempt
to explain some basic concepts of programming to help the reader along, this
is not exactly a how-to book for programming or software design. My aim is
to get you going quickly and at a fun pace, learning Flex from the inside out.
My hope is at the end of each chapter you will be itching with questions, and
the following chapter will scratch that itch.

Flex is a powerful programming environment, and I’m not claiming to cover
everything about it. If you find that you enjoy this technology and want to
learn more, there are many great ways to continue your studies, including
taking a course, studying the code of others, or finding a suitable book for
advanced Flex or programming techniques. I’ll give you some fun, real-world
examples to play with that you should feel free to extend.

How This Book Is Organized
This book is meant to be read cover-to-cover. Skills are taught progressively,
so each chapter builds on the one preceding it. This is done using a hands-
on approach, allowing you to apply key concepts by building applications
progressively. You can feel comfortable being away from the computer and
reading each chapter, peeking at the code and seeing how it affects the
applications through extensive screenshots. Later, you can skim that chapter
and add the code to your examples, practicing each concept by applying it
directly. If there’s a topic you’re not interested in, feel free to skip that chapter.
Just make sure you grab the necessary code from the companion website at
www.greenlike.com/flex/learning, which contains the code for each chapter, so
your applications will work.

LearningFlex3_book.indb 14 5/27/08 1:52:15 PM

Preface xv

What This Book Covers
My aim is to give you a step-by-step tutorial through all aspects of Flex devel-
opment, from familiarizing yourself with the right tools to learning basic
features of ActionScript and MXML to sharing your completed work with
others. I chose topics based on what I felt empowered you to begin develop-
ment without overwhelming you.

The book therefore begins with the first step, setting up your computer for
Flex development. I chose to cover the most popular and (in my opinion) best
option for working in Flex: Flex Builder. While it is true that you can develop
Flex applications with just a text editor and a command-line interpreter, this
option doesn’t provide the optimum experience for a new developer. The
visual tools in Flex Builder make writing and understanding Flex code much
more natural and fun.

I supply you with simple, visual examples to get you started creating Flex
applications right away. I then discuss the basics of MXML and ActionScript
so that you’ll have a deeper understanding of the languages and how they
work together in Flex. After this introduction, I have you start building a
few real-world applications that you’ll continue with throughout the book. I
explain the standard set of skills for Flex, including the ability to move data
around and structure your applications. I talk in depth about different ways
of making a dynamic user interface and accepting user input. Once these
basic skills are in place, I give you plenty of time to have fun with your appli-
cations, going over the “flashy” stuff like animations and styles.

This is a beginner’s book, and Flex is a very powerful and fully featured devel-
opment tool, so there are some advanced subjects that I chose not to cover.
When I think it will help, I refer you to learn more about such related topics.

Companion Website
All the exercises included in this book are available for download from the
book’s companion website, www.greenlike.com/flex/learning. While I will
frequently show sections of code in the book, you may find it easier to down-
load the Flex projects and copy and paste the appropriate code into your
examples. This will prevent typos from ruining your fun. However, I do hope
that you follow along with the examples, because I’ve tried to create examples
that you’ll build upon from chapter to chapter.

LearningFlex3_book.indb 15 5/27/08 1:52:16 PM

Prefacexvi

Typographical Conventions
Used in This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard modi-
fiers (such as Alt and Command).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions,
and pathnames.

Constant width

Indicates ActionScript code, text output from executing scripts, XML tags,
HTML tags, and the contents of files.

Constant width bold

Shows commands or other text that should be typed by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

Using the Code Examples
This book is here to help you get your job done. In general, you can use the
code in this book in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant por-
tion of the code. For example, writing a program that uses several chunks
of code from this book does not require permission. Selling or distribut-
ing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: Learning Flex 3 by Alaric
Cole. Copyright 2008 O’Reilly Media, Inc., 978-0-596-51732-8.

If you think your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Note

This icon signifies a tip, suggestion, or
general note.

WarNiNg

This icon indicates a warning or caution.

LearningFlex3_book.indb 16 5/27/08 1:52:16 PM

Preface xvii

We’d Like to Hear from You
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

www.oreilly.com/catalog/9780596517328

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

www.oreilly.com

Acknowledgments
Like a good film, a good technical book is a product of the combined efforts
of lots of dedicated people. While I’m the only author for this book, I couldn’t
have done it alone.

I would like to personally thank the following:

Micah Laaker for the initial push and for all the insider tips.

Eli Robison for continued encouragement and for being a real friend.

Sharif Zawaideh at http://globalimagesllc.com for his stunning photos that
make the book shine.

Hepp Maccoy for the helpful feedback early on.

Justin Kelly for his reality checks (even though one of them bounced).

Michael Hoch for his un-boss-like understanding and patience when I came
to work dreary from all-night writing marathons.

Allen Rabinovich for going above and beyond the title of tech editor.

Lydia Schembri for her ornery motivation, positive energy, and grace.

Mom and Dad for being a true mother and father, respectively.

Robyn Thomas, Steve Weiss, Michele Filshie, Dennis Fitzgerald, David Van
Ness, and the rest of the O’Reilly team for their continued support. The qual-
ity of this book is a direct result of their guidance and hard work.

The Adobe Flex team for another solid release.

LearningFlex3_book.indb 17 5/27/08 1:52:16 PM

LearningFlex3_book.indb 18 5/27/08 1:52:16 PM

1

CHAPTER1

IN THIS CHAPTER

What Is Flex?

What about AIR?

Where Flex Fits

Why Use Flex?

How Flex Compares to
Other Technologies

When Not to Use Flex

Summary

The future is already here. It’s just not evenly distributed.

William Gibson—

Welcome to the future. Adobe Flex 3 is the hot new technology for creating
rich experiences both for the web and for the desktop (with Adobe AIR).
Bridging the gap between the expressiveness and ubiquity of Adobe Flash
and the power of desktop-class development, Flex is in a league of its own.

I have been working with Flex since its inception, and I can say with confi-
dence that there’s no better time to be learning Flex. With Flex 3, it’s easier and
faster than ever to create beautiful and powerful applications. Flex has been
around for just a few years, but it’s been growing exponentially. Not only is
there a solid market for those proficient in Flex, but the product has matured
into such a robust and open platform that current developers would be wise
to add it to their skill set and anyone just starting out can rest assured they’ve
chosen a great technology.

What Is Flex?
Flex is the way to make rich Internet applications (RIAs) quickly and easily.
At its basic level, it’s a framework for creating RIAs based on Flash Player.
Along with being a framework, Flex is also a new language. At its heart is
MXML, a markup language based on Extensible Markup Language (XML)
that makes it really easy and efficient to create applications. Unlike develop-
ing for some desktop platforms requiring a proprietary binary file format,
MXML is just text, so it’s easy to read and modify using just a text editor.
Therefore, sharing code is as easy as sharing a simple text file.

Flex Is a Modern, Hybrid Language
This XML-based system of creating applications will be familiar to tradi-
tional web programmers, because it uses a markup language and a JavaScript-
like scripting language. For web developers and designers who are used to
Hypertext Markup Language (HTML) and JavaScript, Flex will feel pretty

GETTING UP
TO SPEED

LearningFlex3_book.indb 1 5/27/08 1:52:17 PM

Learning Flex 32

What Is Flex?

natural. While quite different architecturally, the similarities at the surface
makes it easy to get started. It was created using the best parts of desktop
programming languages combined with the modern standards and practices
of the web.

What Does Flex Look Like?
You may have seen a few Flex applications on the web, or perhaps you’ve used
an Adobe AIR application. Maybe you’ve seen only those that have the default
theme, called Aero, which creates a bluish, translucent look. More than likely, you’ve
witnessed a Flex application that looked nothing like this (and you might not have
realized it). That’s because the entire look and feel of a Flex application is not set in
stone. It doesn’t have to look like Windows or Mac or anything else. Because Flex is
fully skinnable, meaning you can change the entire look just by plugging in a new
theme file. Even easier than that, a lot of free themes are available that let you change
the look dramatically with one simple switch. You can even let the users of your
application use their own themes!

Flex Is Flash
When Flex first came out, a friend of mine who enjoyed the expressiveness
of Flash asked me about Flex. She had glanced at a few applications built in
Flex and commented that they looked comparatively boring. “It’s all buttons
and panels,” she remarked. “Where’s the fun?”

So, I hacked a couple of examples to show her. One was a “flashy” little visu-
alization, and another was a typical application full of “buttons and panels,”
to which I quickly added a few effects and transitions. When I showed her the
beauty of Flex, she understood why I was so excited about the technology.

Flex applications, just like other Flash content, are deployed as .swf files (usu-
ally pronounced “swiff”). SWF files are very compact files that Flash Player
reads and renders onscreen, often in a browser. This means you can create
full-fledged applications that are small enough to download very quickly
and that will (with few exceptions) look and act the same on any computer
or operating system.

What’s the Flash Platform?
The Flash Platform is the overall term for the development platform based on Flash
Player, the little plug-in that could. Chances are, even if you’ve never thought about
it, you already have Flash Player installed on your system and have witnessed the
rich content it enables. If not, you’re in a small group of Internet users—less than 1
percent of all Internet users, that is. That makes Flash Player one of the most widely
distributed pieces of software today. If you’re developing on the Flash Platform, you
can rest assured that you’re targeting a platform with huge presence as shown in
Figure 1-1. More people can use Flash applications than nearly any other platform—
even developing for Windows has less reach!

LearningFlex3_book.indb 2 5/27/08 1:52:17 PM

What Is Flex?

Chapter 1, Getting Up to Speed 3

100

90

80

70

60

50

40

30

20

10

0

Pe
rc

en
ta

ge
 o

f I
nt

er
ne

t-
en

ab
le

d
PC

s
99.1

85.1
83.4

67.6

58.5
53.5

10.5

Adobe
Flash Player

Java Microsoft
Windows

Media Player

Apple
QuickTime

Player

Adobe
Shockwave

Player

RealOne
Player

SVG

Figure 1-1. Flash Player reach

Flex Is the Flex SDK
Flex is a set of user interface and other components that help developers
perform the tasks they need to create applications. This is all available in the
Flex Software Development Kit (SDK). The Flex SDK consists of a compiler,
documentation tools, and an extensive library of UI components and utili-
ties that greatly facilitate development. Now, instead of writing line upon line
of low-level code to draw a button programmatically or deal with timeline
animation, a Flex developer can simply type <mx:Button/> or drag and drop
a button where they want it.

Flex developers can use the SDK with just a text editor or via Flex Builder, the
powerful development environment from Adobe. Although it’s not necessary
to have a copy of Flex Builder to build Flex applications, it can really help. If
you don’t already have a favorite development environment, Flex Builder can
really speed up the development of Flex applications.

LearningFlex3_book.indb 3 5/27/08 1:52:17 PM

Learning Flex 34

What about AIR?

What about AIR?
Adobe Integrated Runtime (AIR) is the solution for bringing Flash and other
web-based content to the desktop. With all the benefits of the web-based
model these days, why would anyone want to do this? The main reason is
that the browser is a bit limiting. Browsers don’t have any built-in support
for drag-and-drop from the desktop, they have security limitations, and users
can’t access web applications when they don’t have an Internet connection.
Also, many users enjoy having an application in their Dock or Start menu
that they can quickly access by clicking an icon.

Another reason AIR shines is that it’s great for developers. With the preva-
lence of the web, a lot of developers are focusing on web technologies such as
HTML, JavaScript, and Flash in lieu of traditional desktop development envi-
ronments. And it’s a lucky day for those who are interested in Flex, because
Flex is a fantastic way to create AIR applications.

With Adobe AIR, there’s no need to learn C# or Java just to create a stand-
alone application—you can take your existing skills with Flex, Flash, or
JavaScript and start creating desktop applications; if you decide to make web
applications as well, there’s no learning curve. In fact—and this is perhaps
the most compelling reason for AIR—you don’t need to be chained to a
particular operating system to develop for the desktop, because AIR applica-
tions are operating system agnostic. In other words, you don’t need to decide
whether to develop for Windows, Mac, or Linux—you just write it once in
the language of your choice, and anyone can use it with Adobe AIR (see
Figure 1-2).

Figure 1-2. How Flex applications are used

LearningFlex3_book.indb 4 5/27/08 1:52:19 PM

Where Flex Fits

Chapter 1, Getting Up to Speed 5

Where Flex Fits
Flex is the next step in the development of RIAs. The phrase rich Internet
applications was coined by Macromedia (now Adobe) in 2002 to account
for the trend in more expressive applications on the web. In the beginning,
HTML documents on the web were just that, documents. They were text and,
later, images and multimedia. This client-server paradigm meant a user, by
typing a URL in their browser, would request a document. The web being so
far-reaching, savvy folks quickly learned to create server-based applications,
programs, which a user could access online. Think of all those forms you’ve
filled out, where you type your name and address and hit the submit button.
After a few moments, you’re greeted with an entirely new page telling you
your form was submitted (or that you had some errors you have to fix first).
This was a client-server model, where a “thin” client (a browser) requested
content and sent it back to a server for processing. To create dynamic HTML
pages, a server had to create the HTML and send it to the client, which would
read it like any other page. This took time.

Then, with the advent of JavaScript came the power to offload some applica-
tion workload onto the client. For instance, when configuring an item in an
online store, it used to be necessary send all calculations like shipping or sales
tax back to the server. With scripting, it was possible to calculate that infor-
mation right on the client machine and update the layout of the page based
on user interaction. Dubbed a “thick” client in contrast to the thin client, a
user’s computer needed to be a bit more powerful in order to run the scripts
and re-render the page.

However, this was still quite limiting to some developers, myself included.
Folks like me wanted to do much more. We wanted animation, transitions,
a rich experience. We wanted to be able to load data without refreshing the
page. Before Ajax was created, the answer for many was Flash.

The Flash IDE began as a solution for creating animations and multimedia
on the web. However, as it matured, more and more interactive elements
were added, and people began discovering ways to create things like games
in this new platform. Because Flash was quick, lightweight, and by nature
rich, others developed complex applications that could load and visualize
data, product catalogs, and photo viewers. But because the Flash IDE was an
animation tool, creating complex interactions was often difficult and, for tra-
ditional developers, a bit messy. With the advent of Flash Professional in 2003,
a number of time saving features were added, such as reusable components
and data connectors; however, that version left a lot to be desired, especially
for enterprise projects or projects with large teams.

Enter Flex. Building upon the power of Flash Player, Flex made it easy to
develop rich interfaces in a highly extensible way. With a more developer-
centric model, it was easier for Java programmers and others to jump on
board and start developing without the “What is this timeline?” confusion.

LearningFlex3_book.indb 5 5/27/08 1:52:19 PM

Learning Flex 36

Why Use Flex?

Even better, the new markup-based language made it easy to read and share
code, which has definitely contributed to its growing success.

Why Use Flex?
This is the question you may be asking yourself when you picked up this book.
Why use Flex? What are the pros and cons of using it? Flex was created for the
purpose of making rich experiences on the web much easier, but it has quickly
grown into a solid platform for even desktop development (coupled with AIR).

Flex Is for Applications
Flex was built to speed up the development of richly interactive applications
built on Flash Player. It includes a number of robust, customizable compo-
nents that make configuring an application quick and comparatively simple.
These programs can be run in a web browser or deployed as an AIR applica-
tion, so Flex is the perfect solution for writing an application once and giving
it to anyone, on the web and beyond.

Web Applications Defined
You’re probably familiar with a desktop application; it’s simply a piece of software
that you use, such as your web browser or your word processor. A web application
is an application you access through a web browser. You might even use the same
application in a desktop version and a web counterpart—an email program is a
common one that people use on their desktop as well as on the web. The desktop
email program makes it easy to access your mail any time, even when you’re offline;
the web version can be useful because it’s available anywhere there’s an Internet
connection, such as when you’re traveling and don’t have your home computer with
you. Now imagine that this same program existed both online and on the desktop,
with the same look and feel—and the same code base. Flex makes that possible.

For Easy Interactivity
Flex makes it easy to create a high level of interactivity. It comes with support
for data binding, an excellent event architecture, and a set of components with
great user feedback. Add to this the ability to quickly create beautiful effects
and transitions, and it’s easy to see why Flex is a great tool for developers.

For Development Speed
There is no faster way to create such compelling applications. In comparison
to development in the Flash IDE, Flex speeds up application development
exponentially. Although everything you can do in Flex can be done in the
Flash IDE, development in Flex will take just a fraction of the time. With Flex
Builder, development is faster still.

LearningFlex3_book.indb 6 5/27/08 1:52:19 PM

Why Use Flex?

Chapter 1, Getting Up to Speed 7

For Speed All Around
Flex components are built in ActionScript 3.0, the newest incarnation of the
programming language for Flash Player. Flash Player was totally rewritten
with performance in mind, and it shows. Although with any program you
should make an effort to optimize, you can feel confident that even with loads
of data and animations, your application will be responsive and not hog the
user’s resources.

Because It’s Clean
Flex is a developer’s dream. By design, it encourages good coding practices
such as code organization and class-based applications. Inheriting the idea
from web design, Flex supports the separation of content and design by
allowing the external styling of your applications. Because of this, you can
easily change your application’s skins, and you can drop in one of the many
freely-available themes to totally restyle your application on the fly. Along
with this, proponents of the Model-View-Controller (MVC) design pattern
will find that Flex supports this as well. Free sets of libraries are available,
such as the Cairngorm framework, which make implementing MVC easy.

Because It’s Free
Although you’ll have to pay for a copy of Flex Builder, the de facto visual
editor for Flex, the Flex framework is completely free. Therefore, if you so
choose, you can edit your application in your favorite text editor and compile
it on the command line without paying a dime. The scope of this book is
for beginners, and because a great way to get started quickly and easily is by
using Flex Builder, I’ll be referring to that most of the time. Luckily, Adobe
offers a fully functional free 30-day trial, so there’s no reason not to check it
out: www.adobe.com/products/flex.

Because It’s Open
Flex is also open source. This means all the component code is yours for
the looking (and using and reusing in most cases). This helps you as a new
developer learn, because you can study the code for the Flex framework. And
this also means that Flex is yours. That’s right, you can modify and improve
the code and submit it for inclusion in future versions. Not only this, but the
compiler is open as well, meaning every aspect of Flex is open source.

Being open source, a community has grown around extending and improv-
ing Flex. Loads of great high-level components are available that build upon
the base set, so you’re sure to find what you need to get the job done. And if
you want to contribute to making Flex better, you’re welcome to do so. Flex
is yours.

Try Flex Without
Installing
If you want to see Flex in action but
don’t feel like downloading anything
just yet, feel free to try the Flex Online
Compiler at http://try.flex.org. You
can paste any code or choose from
the introductory pieces and see the
results immediately in your browser.

LearningFlex3_book.indb 7 5/27/08 1:52:19 PM

Learning Flex 38

How Flex Compares to Other Technologies

For Data (and Fast)
In Flash Player, data transmission over the wire has less overhead, and the
result is a much faster experience for your users. Flex offers built-in support
for XML and Java objects as a way to exchange data and also has support
for Action Message Format (AMF). With Java and ColdFusion servers, you
can transmit compressed, binary data over the wire to your Flex application,
making data submission and retrieval much faster than is possible with
typical applications. And for you PHP folks, there’s AMFPHP, an open source
alternative for use with PHP.

Along with this, connecting your data to Flex has never been easier. With
some great new data wizards in Flex Builder, you’ll be able to easily connect
to a database—in many cases, most of your code will be generated for you.
With ColdFusion and Flex, you supply the database, and Flex Builder will
build out the application and server components for you.

Because It’s Beautiful
Although Flex comes with a default theme that might suit you well, its look
and feel is limited only by your imagination. You’re not required to make it
look like software made for a specific operating system or anything you’ve
seen before. Because of the way styles and skins are implemented in Flex,
you’ll be able to quickly and easily change the way your programs look, all
with a single line of code.

With the robust set of user interface controls that are available right out of
the box and with a wide variety of open source controls, you can create any
interface you like. With Flex Charting, you have a great set of charting and
data visualization tools at your disposal. You can use bar charts, pie charts,
or high-low-open-close charts. You name it. Because of the power and expres-
siveness of Flash and the ease of development in Flex, the number of third-
party data visualization components is growing every day.

How Flex Compares to Other
Technologies
Flex is a hybrid technology of sorts, taking the best bits from modern
programming languages while adhering to standards such as XML and
Cascading Style Sheets (CSS). In this way, it resembles some technologies a
great deal, and it differs from others.

LearningFlex3_book.indb 8 5/27/08 1:52:19 PM

How Flex Compares to Other Technologies

Chapter 1, Getting Up to Speed 9

Flash IDE
Like the Flash integrated development environment (IDE) in Flash and Flash
Professional, Flex creates applications that are run by Flash Player. However,
besides sharing a common scripting language, Flex is quite different from
using Flash. Flash is at its core an animation and drawing editor, and devel-
opment features were added later. Flex was designed from the ground up to
build applications. Although some users of Flash who have dealt only with
simple scripting may find using Flex a bit overwhelming, Java or C develop-
ers will feel more at home.

A Note about the Term Flash
I might as well get this out of the way early. I’ll often mention the term Flash in the
book, a term that for many is tough to define. That’s because Flash can refer to a few
things. One is the Flash IDE, the animation and development tool that started it all.
Another is the content you actually see on the web, like animations, advertisements,
or applications, which are .swf files that run inside the browser. Yet another is the
umbrella term for the technology that’s built upon Flash Player, the little plug-in that
makes it possible to view all this stuff on your computer. Out in the wild, you’ll hear
the word thrown around in different ways, but in this book, I’ll try to keep things a bit
solid. When I say “Flash,” I’m referring to the technology or the actual content. When
I want to talk about the development software, I’ll say the “Flash IDE” or the “Flash
authoring tool.”

There’s nothing you can’t do in Flash that you can do in Flex—technically,
that is. It would be possible to build a great application using just the Flash
IDE, and in fact that’s what I’ve done successfully for a large part of my career
(and that’s what many developers still do). However, there’s always a right
tool for any job, and Flex was built from the ground up to help you create
applications. It has support for easily moving data around, built-in support
for styling and skinning your applications, advanced controls for interactivity,
and a ton of other features to help you. (As you’ll see very soon, adding rich
animations and graphical effects to your programs is intuitive and easy with
Flex.) By the same token, Flex is not a drawing program or animation tool, so
if you’re looking to create movies or animated cartoons, the Flash authoring
environment is the best tool for the job.

C Languages
Though based on a language different from C++, Objective-C, and so on,
Flex is a developer’s dream. Using Flex Builder, which is an IDE similar to
Visual Studio and XCode, you can lay out, code, and deploy your application
from one solid piece of software. However, one of the great benefits of Flex’s
MXML markup language is that you can easily modify it without an IDE,
or even lay out an entire application with just a text editor. Because markup
language is much more readable than a scripting language, it’s easier to edit,
share, and maintain.

LearningFlex3_book.indb 9 5/27/08 1:52:20 PM

Learning Flex 310

How Flex Compares to Other Technologies

Being a class-based, object-oriented language and framework, developers
in C++ and other languages will be able to quickly get going with Flex.
However, C# developers may find the easiest transition, because the language
shares a number of commonalities.

Java/Java FX
Flex is similar to Java and the Java Swing platform. The way the scripting
language, ActionScript, is used and structured is similar. It inherits the con-
cept of packages, and its syntax is nearly identical. MXML will be the biggest
difference, but as you’ll discover, that’s an easy change as well. Because Flex
Builder is built on Eclipse, many Java programmers will already be comfort-
able using the IDE.

Java, like Flex, allows an application to be built that can be deployed either
on the web or to the desktop. However, the ubiquity and small size of Flash
Player compared to the Java SDK makes Flex applications available to a wider
audience. A lot of Java developers are learning Flex, and a lot of projects that
might have been built in Java are moving to Flex.

HTML/JavaScript/Ajax
Flex was built after the web explosion, and incorporated into its design are
a number of similarities to traditional web development. Most notably is a
tag-based language (MXML) coupled with an ECMA-compliant language
(ActionScript). Because JavaScript syntax is so similar, web programmers pro-
ficient in this language will find working in ActionScript easy. Web program-
mers with knowledge of XML or HTML will quickly understand how MXML
works. While, behind the scenes, MXML and ActionScript have a different
relationship to one another as compared with HTML and JavaScript, on the
surface the interaction will make sense to most traditional web developers.

Ajax (asynchronous JavaScript and XML) and Flex can do a lot of the same
things, and developers in either technology like to use what they know; in
fact, many can be downright religious. If you’re new to both, then you’ll have
more of a chance to make an objective opinion—but if you’ve made it this far,
I can assume you’ve found something about Flex you like. Flex can do a lot of
the same things as Ajax, letting a developer create web applications that don’t
rely so heavily on a page metaphor. Ajax libraries have really grown recently,
and with the right environment, working in Ajax isn’t too bad. But MXML/
ActionScript code is still easier to write and easier to maintain, and there’s
much less “hackery” than writing in Ajax.

Silverlight/XAML
Silverlight is Microsoft’s solution for rich web content; it shares the XML-
based markup paradigm coupled with a choice of programming languages.
In this way, knowing Silverlight will definitely help in learning Flex, and vice

LearningFlex3_book.indb 10 5/27/08 1:52:20 PM

When Not to Use Flex

Chapter 1, Getting Up to Speed 11

versa. Silverlight is also an attempt at offering true cross-platform compat-
ibility. With Flex, whatever you build will work pretty much the same every-
where because of the Flash plug-in, which is extremely small and already
installed on most computers. The Silverlight plug-in is larger, but its presence
is growing. Out-of-the-box, Silverlight offers a good number of advanced
controls and layout containers, although with the open-source initiative, the
number of third-party Flex components are increasing quickly.

OpenLaszlo
OpenLaszlo is a popular open source framework using Scalable Vector
Graphics (SVG) and XML/JavaScript to build RIAs. As such, developers in
this framework will make an easy adjustment to MXML and ActionScript
and will find a number of new, powerful features. Flex is open source, too!

How Do I Know It’s a Flex Application?
With the explosion of Web 2.0 and the rich interfaces that have become mainstream,
the lines have blurred between what’s possible in HTML and what’s reserved for Flash.
Just a few years ago, if you saw a fancy transition or animation, you could be sure it
was Flash. Nowadays, it’s tough to tell just by looking.

One trick to check whether a section of a website was done in Flex is to right-click
(Control-click on a Mac) the area in your browser. If the content is Flash or Flex, a
context menu will appear with the About Adobe Flash Player item at the bottom.
This will always tell you whether something is being shown with Flash Player—but
that doesn’t necessarily mean it was built using Flex. For that, there’s no sure method,
because folks have built some pretty sophisticated applications using just the Flash
IDE. However, once you get a feel for a few Flex applications and become familiar
with the most common components, you’ll often be able to tell by interacting with
the application a bit.

When Not to Use Flex
Flex is a great technology, and many will find it solves issues that have
plagued past development. However, it’s not for everyone. If you’re looking
to do simple animations and don’t want to write any code, a timeline-based
animation utility like Flash might be the best choice for you. Because it uses
a framework of components, Flex applications will often result in a larger file
size than custom Flash or ActionScript-only applications (however, this can
mostly be overcome with framework caching, which I’ll discuss near the end
of the book). In most cases, a slight increase in size is well worth the reduced
development time and functionality of the Flex framework. However, you
may not want simple widgets or small applications with minimal functional-
ity to be weighed down by the framework. Luckily, it’s not necessary to use
the Flex components (or even MXML) to use Flex. It’s completely possible to

LearningFlex3_book.indb 11 5/27/08 1:52:20 PM

Learning Flex 312

Summary

do an ActionScript-only project that you can compile with the free Flex com-
piler. And the default Flex IDE, Flex Builder, is a great tool for such projects.

If you need lots of functionality that deals with rich text, or need only simple
user interaction, you might be better off using HTML/Ajax. Although Flex
has great support for HTML, it may not be enough for some projects, and
may suffer a bit of a performance lag if there is a lot of text. However, if you
plan to deploy to AIR, Flex might be a great choice. AIR has native support
for the full gamut of HTML. But if you’re just looking for a website with loads
of text, use HTML. If you want animations or bits of interactivity, a great
solution is to use Flash or Flex in chunks within your HTML page.

Summary
Hopefully, you have a better idea of what Flex is all about. Created as a means
of developing applications based on the Flash Player, it has become a key
player in the world of rich applications for the web and the desktop. With a
robust set of components to make development easier, and a new markup
language for easy coding, Flex is a great choice for many developers. You’ve
seen how it compares to the Flash IDE and other languages, and learned what
it’s good for and when it’s not the best choice. If Flex is the tool you’re looking
to learn, the following chapters will get you started quickly. The next chapter
jumps right in to the basics of using Flex and Flex Builder.

Evaluating Flex
For more information on Flex as
a choice for you or your business,
check out the O’Reilly Short Cut Flex
Early Evaluation: Assessing Flex and
Your Project Needs. You can purchase
a copy from O’Reilly by going to
www.oreilly.com/catalog/evaluator1/.

LearningFlex3_book.indb 12 5/27/08 1:52:20 PM

13

CHAPTER 2

IN THIS CHAPTER

Using Alternatives
to Flex Builder

Introducing Flex
Builder and Eclipse

Running Your First
Application

Summary

Adobe Flex 3 is free, and you can use any editor you like to develop with it.
Your code is going to be just some text files that you can edit in any text edi-
tor, and you’ll be able to compile the files with the free Flex compiler. That
said, when getting to know Flex, Adobe’s Flex Builder is indispensable. Not
only is it the premier editor for Flex code, making it easy to get accustomed
to what’s available, but it will also seamlessly compile and organize your code
for you. I’ve been developing in Flex since the technology was introduced,
and although I’ve used other editors in the past, I continue to use Flex Builder
in my daily work. So, the goal of this book will be introducing you to develop-
ing in Flex with Flex Builder.

If you don’t have Flex yet, it’s easy to download from Adobe at www.adobe.
com/products/flex. If you prefer to use your own editor and compile via the
command line or other alternatives, you can download just the Flex SDK. I
recommend you grab a copy of Flex Builder, because Adobe will give you
30 days to try it with no limits. (Well, they’ll put a watermark in any chart
you create, but besides that, no features are taken away.) You have a couple of
options when buying or downloading Flex Builder, which I’ll discuss in the
later section “Flex Flavors.”

Using Alternatives to Flex Builder
If your copy of Flex Builder has expired, if you can’t install it, or if you’re just
being stubborn, any text editor will work in its stead. However, since you’ll
be working primarily in an XML-based language, you’ll be best off with an
editor that knows how to work with XML, because you’ll benefit from nice
features such as syntax highlighting (color-coded text). Here are a few popu-
lar editors:

Eclipse

This is the open source and free editor that, coupled with an XML-editing
plug-in, makes a great editor. Because it’s an IDE and not just a text editor,
it’s possible to set it up to compile your applications. www.eclipse.org

SETTING UP YOUR
ENVIRONMENT

LearningFlex3_book.indb 13 5/27/08 1:52:21 PM

Learning Flex 314

Introducing Flex Builder and Eclipse

FlashDevelop (Windows only)

This has been a popular open source IDE for ActionScript developers.
Now it has the ability to edit and compile Flex as well. http://osflash.org/
flashdevelop

TextMate (Macintosh only)

This is a great text editor with built-in support for ActionScript, but be
sure to look for a “bundle” for Flex, which makes working with MXML
second-nature. http://macromates.com

TextPad (Windows only)

Touted as a powerful editor that’s easy to get up and running, TextPad is a
good choice for coding MXML by hand in Windows. www.textpad.com

Your editor will take care of the writing part, but you’ll still need to compile
your code. Because this is an open platform, new options for compiling Flex
are available every day, so a quick search might help you find just what you
need. All of these third-party solutions are going to be built around the free
Flex command-line compiler, which you can use with just a few keystrokes in
your computer’s terminal or command prompt.

Introducing Flex Builder and Eclipse
Once you have a copy of Flex Builder, go through the program to familiarize
yourself with the most important features. Flex Builder is built on the popu-
lar and open source Eclipse IDE. Eclipse is powerful, but it might not be the
most beautiful or user-friendly program ever developed, so I’ll be here to
hold your hand through the process of discovering what’s what.

IDE stands for integrated development environment, which is a
piece of software made just for making other software. That is
to say, an IDE is a programmer’s tool for writing code, organizing
projects, debugging them, and deploying them—an all-in-one
solution for development. Other popular IDEs are Microsoft
Visual Studio and XCode.

You’ll be seeing mentions of the Eclipse IDE more than a few
times in this book in regard to Flex Builder. I’ll often refer to
Eclipse when I’m talking about a feature that isn’t specific to Flex
Builder but is part of the default Eclipse IDE, which it’s built on.

What’s the deal with Eclipse? By default it comes packaged as
a Java editor, but it can handle anything you throw at it via a
plug-in architecture. A lot of Java programmers use Eclipse as
their main development environment, but it’s also great for
JavaScript, HTML, C, Python, and tons of other languages. It also
works with source control when you’re developing as part of a

team and want to easily share and maintain your code.

Adobe chose to build upon Eclipse because of the IDE’s
popularity with Java programmers and because it offered a
number of tried-and-true features out of the box. This way
Adobe could concentrate less on building an entire IDE and
more on great new features. It was also cross-platform already,
so they didn’t need to create separate code bases for Mac,
Windows, and Linux.

Eclipse is most useful if you develop in multiple languages,
because you can use the same software for everything at
once. Many Flex developers might be writing HTML, PHP, or
ColdFusion along with their Flex applications, and they can open
all their files in one program.

Eclipse is built in Java and was inherited from an IBM project,
becoming fully open sourced in 2001.

More about the IDE

Note

For more information about using the
command-line Flex compiler to compile
Flex code, check out Adobe’s LiveDocs
at http://livedocs.adobe.com/flex/3/html/
compilers_01.html.

LearningFlex3_book.indb 14 5/27/08 1:52:21 PM

Introducing Flex Builder and Eclipse

Chapter 2, Setting Up Your Environment 15

Flex Flavors
Flex Builder comes in two flavors: stand-alone (or standard) and an Eclipse
plug-in. What’s the difference, you ask? Well, branding. If you’re used to your
setup in Eclipse and tend to use it for more than just Flex, feel free to down-
load and use just the plug-in. However, if Flex is your primary interest, be
good to yourself and get the stand-alone version. It will come with great fea-
tures like a Flex icon for your Dock/Start menu, a Flex splash screen, and—
well, you get the idea. Seriously, though, because it’s integrated, it’ll be easier
for you to get to the features you need. I’ll be using the stand-alone version
in my examples, so if you’re using the plug-in, there might be a few instances
where the screen looks different or menu items aren’t in the same place. You
can always install a copy of the stand-alone in a separate location from your
other Eclipse install, and later you can install the plug-in.

Flex Builder Installation
Once you have a copy of Flex Builder, open the installer, and follow the
onscreen instructions. It may ask you a few questions about where you’d like
to put your project files and things of that nature; unless you’re picky, just
trust the defaults. When everything’s finished, open Flex Builder, and you
should be greeted with a screen that looks like Figure 2-1.

Figure 2-1. The Flex Start Page

LearningFlex3_book.indb 15 5/27/08 1:52:22 PM

Learning Flex 316

Running Your First Application

This is the Flex Start Page, essentially a browser window running in Eclipse
(yes, it has its own browser). This page has a few tutorials and sample projects
for you to get your hands dirty in Flex, and it’s a great introduction. It’s not
necessary since you have this book, but you might enjoy playing around with
it. If you click the “Full Tutorial” link on the Create a Simple RIA tab, you’ll
see another browser window with an introduction to Flex, complete with a
table of contents on the left. In the “Get oriented with Flex” section is an
animated overview of the technology you might find useful.

Your Editor at a Glance
Eclipse and Flex Builder are built on the concept of panels, and you’ll see a
few open in your fresh install. The Flex Navigator will be the place you work
with your files and projects, the Outline panel will show you a tree view of
your application, and the Problems panel will show you all your problems
(like bugs and warnings). Luckily, because you’re starting fresh, you don’t have
any problems yet! I’ll go into more detail about the interface later, but for now
have some fun and run an application.

Running Your First Application
Note that everything is a project in Eclipse/Flex Builder. This means you’ll
never have just one stand-alone file; instead, you’ll have a group of files that
work together to make everything happen. So to create a new Flex applica-
tion, you’ll need to create a project.

Importing a Project Archive
To get your first project, you’re going to import an existing one into Flex
Builder. I’ve provided one on my site that you can download and import.
Point your browser to www.greenlike.com/flex/learning/projects/simple.zip, and
save it to your desktop or wherever you like.

Once you’ve downloaded the .zip file, go to Flex Builder, and choose
File→Import→Flex Project. The Import Flex Project dialog box appears, as
shown in Figure 2-2. This dialog box can take a zipped project archive and
import it into the Flex Builder workspace. Simply choose Archive file from
the “Import project from” section. Then click Browse, choose the .zip file you
just downloaded, and accept the default location to store it. Click Finish to
finalize the import.

Note

To view this book's companion website,
go to www.greenlike.com/flex/learning.
There you'll find the source code for the
projects you'll build as you read through
the book.

WarNiNg

If your browser unzips the archive
when you download the file or if you’ve
unzipped it yourself, the Import Flex
Project Archive command won’t work.
Instead, you’ll want to use the Import
Existing Projects into Workspace dialog
box, which I’ll explain later in the section
“Importing an Existing Project.”

LearningFlex3_book.indb 16 5/27/08 1:52:22 PM

Running Your First Application

Chapter 2, Setting Up Your Environment 17

Figure 2-2. Importing a Flex project archive (.zip)

After a few moments, you’ll see your project in the Flex Navigator. Click the
arrow next to the project name in the Flex Navigator to expose the contents
of the folder. You’ll see even more folders, but one of them contains the main
application. Which one is it? Well, it’s a common practice among program-
mers to include the source code in a folder called source or src. So, expand
the src folder as shown in Figure 2-3, and you’ll see the application file
SimpleFlexExample.mxml.

Opening a Sample Application
You’ve downloaded a project and imported it into your workspace, and now
you’re ready to look at the code. Double-click the SimpleFlexExample.mxml
file, and it opens in Flex Builder’s Design mode. This renders the application
in Design mode, giving you a pixel-perfect preview of how the application's
structured. To see the underlying code, switch to Source mode by clicking
Source on the Source/Design mode tab, as shown in Figure 2-4. I’ll go into
detail later; for now, let’s get running!

Figure 2-4. Switching between Source and Design mode

Figure 2-3. Your first project

LearningFlex3_book.indb 17 5/27/08 1:52:23 PM

Learning Flex 318

Running Your First Application

The Little Green Button: Running the Application
Now that the SimpleFlexExample.mxml file is open in Flex Builder, you can
run the application in a browser by selecting Run→Run SimpleFlexExample
or by clicking the green arrow button in your toolbar (shown in Figure 2-5
to the left of the green bug icon). This will launch a browser window after
a few moments, and you’ll see your first Flex application running in an
HTML page.

Figure 2-5. The Run button

Everything Is a Project
So now that you’ve imported your first project and run it, delete it. Yes, all
that hard work, and you’re going to throw it all away! Not to worry, though—
you can always bring it back. That’s because of the way projects are used in
Flex Builder: Deleting a project from your workspace doesn’t mean you have
to delete the actual source code, and just because source code exists on your
hard drive doesn’t mean it’s available to Flex Builder. I’ll show you how this
works; just follow along.

First, select the project in the Flex Navigator (select the top folder titled
SimpleFlexExample, not just one of the files or folders under the top folder).
Then choose Edit→Delete. You’ll be prompted with a dialog box asking
whether you’d like to delete the contents of the project (see Figure 2-6). Be
sure to select “Do not delete contents” (which should already be selected),
because this will keep the project files on your machine.

Figure 2-6. Deleting a project

Note

I’ll usually tell you how to access com-
mands using the menu bar, but many of
the most common commands are avail-
able as context menus in Flex Builder.
For example, to delete the project, you
could also right-click the project folder
(Control-click on OS X) and choose
Delete from the context menu.

LearningFlex3_book.indb 18 5/27/08 1:52:24 PM

Running Your First Application

Chapter 2, Setting Up Your Environment 19

Now you can check your filesystem for the project folder (usually your docu-
ments folder→Flex Builder 3 folder or wherever you originally placed the
project). The project should still be there, and you should see a directory
structure similar to what was displayed in the Flex Navigator.

So, what’s the point? Well, it shows you that a project in Flex Builder is a spe-
cific thing. Just because you have some Flex code lying around doesn’t mean
Flex Builder can use it—not until you turn it into a project. You can try this
by going to the src folder and double-clicking the SimpleFlexExample.mxml
file on your machine. It might open in a text editor, or your computer may
not even know what to do with the file. You might expect it to open in Flex
Builder, but unfortunately that’s not the case. If you want to use it, you have
to make it into a project so that Flex Builder can understand how to work
with it. To do that now, you’ll import the project again.

Importing an Existing Project
Sorry for the busywork, but importing projects is one of those tasks you’ll be
doing a lot of in Flex, so it’s best to get accustomed to how to do it. You might
think you already know how to import a project, but this is a little different.
Previously, you imported a project archive, which is a zipped-up version of
what you’re working with now. To import this “expanded” set of files, you’ll
use a slightly different command.

In Flex Builder, select File→Import→Flex Project just as before. However, this
time choose the Project folder option from the “Import project from” section
(as seen in Figure 2-7). This will allow you to import an expanded folder of
files instead of an archived project.

Click Browse, and choose the SimpleFlexExample folder you just looked at,
which holds the project and supporting files. Click Finish, and Flex Builder
will import the project.

Figure 2-7. Importing a project from a folder

Your Workspace
I’ll often mention workspaces in Flex
Builder. A workspace is any folder
on your system that you choose to
keep projects in, and it also contains
preference settings. You can actually
have more than one workspace,
but the one you set up when you
install Flex is the main one, and by
default it’s located in your documents
folder→Flex Builder 3 folder. If
you’d like another, you can select
File→Switch Workspace→Other and
create a new one.

LearningFlex3_book.indb 19 5/27/08 1:52:24 PM

Learning Flex 320

Running Your First Application

Cooking from Scratch:
Creating a New Flex Project
Of course, when you’re creating Flex applications, you’ll usually be creating
new projects. So, I’ll go over how to set one up from scratch, which you’ll then
use to get your hands dirty with Flex.

To create a new project, go to the File menu, and choose New→Flex Project. A
dialog box will pop up, giving you options for your project. Give the project a
name in the “Project name” field. In this case, I’ll call the project HelloWorld.

This dialog box has three sections: Project location, Application type, and
Server technology. “Project location” lets you modify where the project folder
and files will be stored on your machine. It defaults to your workspace folder,
but you can change this if you’d like by deselecting “Use default location” and
entering your own.

WarNiNg

You can’t use spaces or funky characters in your project name—only letters, numbers,
the dollar sign ($) character, and the underscore (_) character are allowed. Eclipse is
very good about warning you in its dialog boxes, so rest assured you won’t be able to
get away with anything.

The second section is “Application type.” This is where you get to choose
between developing for the web and developing for the desktop with Adobe
AIR. In this example, you want your application to run in a web browser, so
leave the default as a web application.

Adobe AIR
Adobe AIR is getting a lot of recognition lately, and it’s for good reason. Using AIR,
you can turn your web applications into full-fledged desktop applications, with a
Dock/Start menu icon, drag-and-drop support, and everything you’d expect from a
native application. Flex not only is a solid platform for creating programs that run in
a browser but it's also the premier solution for creating applications deployed as AIR
applications. With Flex Builder, deploying a project on the web or the desktop is as
simple as flipping a switch. I’ll talk about AIR occasionally throughout the book.

The third section, “Server technology,” refers to server technologies you might
want to use. This helps you get started connecting your Flex application
to data on a server, such as a remote XML file or database. For this simple
example, just leave the default server type as None, because you’re not going
to use any remote data. Later, if you want to connect your application to
ColdFusion or PHP or use LiveCycle Data Services, this is the place to start.
I’ll talk more about different data services and how to connect to them in
Chapter 10. You’ll notice the Next, Cancel, and Finish buttons at the bottom
of the dialog box. We’re in the mode of keeping it simple, so just click Finish
to accept the defaults for this project.

Note

You might have noticed the “Copy projects
into workspace” check box. This is useful
for when you have a project in another
location (such as one you’ve downloaded
and is sitting on your desktop or other
folder where you download files) and
you want to import the project and place
it in your workspace in one step. It’s nice
to keep your projects together so you
don’t accidentally delete something (like
when cleaning up your desktop).

Note

Each project has its own folder, which
typically has the same name as the
project’s name, but this isn’t necessary.
If you want your HelloWorld project
to be in the folder Hello World Project,
that’s perfectly fine; if you want it outside
your workspace, like in a folder on your
desktop, that’s cool, too. For me, I like to
keep it simple and organized and leave
the defaults.

Note

You can always change project settings
later, and this dialog box is just to help
you get started. Select your project, and
then select Project→Properties if you
want to change something.

LearningFlex3_book.indb 20 5/27/08 1:52:24 PM

Summary

Chapter 2, Setting Up Your Environment 21

The Structure of a Flex Project
Now that you’ve created a few projects, it’s a good time to go over what all
these folders mean. (I promise you’ll get to bin-debug something in just a
moment.) Every Flex project has, by tradition, a bin folder, an html-template
folder, a libs folder, and a src folder. Table 2-1 describes the purpose of each
of these folders, and Figure 2-8 shows the structure in the Flex Navigator
panel.

Table 2-1. Project folder structure

Name Short for Purpose

bin-debug binary debugging Holds the compiled code (the SWF file). For Flex web applications, this also con-
tains an HTML container and supplemental files. For AIR applications, it holds the
Application Descriptor File as well.

html-template html-template Holds the template HTML file that generates the container HTML file (web appli-
cations only).

libs libraries Holds files for additional compiled libraries.

src source Holds the source code. This can be .mxml files, .as files, and an Application
Descriptor File (AIR only).

Figure 2-8. The new project

Summary
Now that I’ve covered all the necessary stuff for getting started, you’re ready
to have some fun and build something. You’ve learned the basics of using
projects in Flex Builder, you know how to open and run an application, and
you understand the basic structure of a typical Flex application. Now you’ll
take what you know and build your own!

Note

It’s not necessary to keep these folder
names as is. If you’d like to call the source
folder source instead of src, or if you’d
like to omit it altogether and keep your
main MXML file in the top level of the
project, that’s fine, too. You can set this
up when creating a new project by click-
ing Next instead of Finish in the New
Project dialog box, or you can change the
settings later by right-clicking the project
and choosing Properties. You can modify
these default folders by going to the Flex
Build Path section and changing the Main
source folder and the Output folder.

LearningFlex3_book.indb 21 5/27/08 1:52:25 PM

LearningFlex3_book.indb 22 5/27/08 1:52:25 PM

23

CHAPTER 3

IN THIS CHAPTER

A Blank Slate: Your Canvas

Adding Components
to the Application

Moving Components
Around

Exploring Common
Components

Modifying Properties
Directly

Summary

Design mode is your what-you-see-is-what-you-get (WYSIWYG) editor for
Adobe Flex 3. It’s a great place to start, whether you’re an experienced coder
or a designer. Available at your disposal is a nice list of visual components
you can simply drag and drop to build your interface. You can modify every
option for these components visually, with the most common ones you’ll need
readily available. In this chapter, you’ll get acquainted with Design mode and
will begin to build an application visually.

A Blank Slate: Your Canvas
Let’s head back to the HelloWorld project and open the main application
(the main .mxml file) in Design mode. You’ll see a blank, bluish background,
the default style for all Flex applications. When you’re in Design mode, the
Components panel should be visible by default and appear on the lower left
next to the Outline panel and under the Flex Navigator. If the Components
panel is not visible, you can get it back by going to the Window menu,
which has the most common panels for Flex right at its top. Note that the
Components panel isn’t available when you switch to Source mode, because
in Source mode you’ll use MXML code to create components.

You can display the Components panel via Window→Components. This
panel holds all your user interface (UI) components that will help you build
everything.

USING
DESIGN MODE

LearningFlex3_book.indb 23 5/27/08 1:52:26 PM

Learning Flex 324

Adding Components to the Application

Adding Components to the
Application
To place components in your application, you can drag them from the
Components panel and drop them anywhere you like on your canvas, as
shown in Figure 3-1. They’ll then be on the canvas, and you can move them
around and set their properties visually. Let’s try dropping a button com-
ponent, which you’ll find near the top of the Components panel, under the
heading Controls.

Figure 3-1. Dragging a component onto the stage

Moving Components Around
Now that you have a button component on the stage, you can move it around
by dragging it to different parts of the stage. You might notice that if you drag
it toward the edges of the stage, some reference lines appear to help you line
the component up. These are known as guides or smart guides in the design
world, and you might have encountered them in Photoshop or your favorite
design program. These guides are a visual representation of what is called
snapping, which forces the component to align with adjacent edges or other
components. When dragging a component to an edge of the stage, snapping
will typically cause the component to snap 10 pixels from that edge. When
dragging near other components, the guides may appear and cause what
you’re dragging to snap 10 or 20 pixels from the other component. They may
also appear when dragging farther from another component, allowing you to
easily align what you’re dragging to other components on the stage. This can
be helpful to quickly line up your components and make your application
symmetrical and sleek.

Canvas ≈ Stage ≈
Application

I’ll be using the terms canvas,
stage, and application container
interchangeably. The blue
background you see in Design
mode is actually a visual container
component called Application, which
is the root of every Flex application.
It’s also a canvas of sorts, if you think
in terms of design, because it’s a
blank slate on which you place your
visual assets. Specifically, a Canvas
(uppercase) is a separate type of
container component, which is
different from the more generic
term canvas. I might also refer to
the canvas as the stage, which is an
older Flash term. This is in contrast to
the uppercase Stage object, which
is actually a class that all Flash/Flex
applications have at their root. The
term stage makes more sense when
referring to creating animations and
movies with the Flash IDE, but old
habits die hard.

tip

If you don’t want snapping to occur when
moving components around, hold down
the Alt (Option) key while dragging. This
will remove snapping and reference lines
and give you pixel-perfect control over
your placement. If you want to turn
snapping off, you can toggle the menu
item at Design→Enable Snapping.

LearningFlex3_book.indb 24 5/27/08 1:52:26 PM

Exploring Common Components

Chapter 3, Using Design Mode 25

Exploring Common Components
A component is simply any reusable piece of code which can be used as a tool
to build your application. The term component implies that it will be used
as a piece of a system, and you’ll tend to use more than a few of them in any
application. One of the more useful parts of Flex is the great set of compo-
nents it offers. And while they can be huge timesavers and require very little
know-how to get up and running, mastering them can take a while. Getting
to know them well and being able to customize them a great deal will take
some time, but once you’ve done that, you’re on your way to becoming a Flex
guru! Luckily, a few simple bits of information can get you up and running;
you’ll learn the intricacies as you gain experience.

Following are some of the more common components you’re likely to use.

Controls
Controls are visual components that are a basic part of a UI, such as buttons
and text. They’re called controls because they control the use of an applica-
tion. Think of a remote control, which has buttons to manipulate a television,
or a volume control, which can change the volume on your stereo.

Here are some of the more common controls you’re likely to use:

Button

This is pretty simple: a clickable control that looks and acts like a physi-
cal button. It also has the ability to toggle via the toggle property, and its
state can be accessed by the selected property.

CheckBox

This is much like a button, but with toggling as a default behavior.

ComboBox

This component combines a list component with a button component,
allowing a compact, drop-down/pop-up list of items for selection. The
selectedItem (object) or selectedIndex (integer) property lets you get or
set the selection.

Image

This component lets you load external assets. Possible types are GIF,
JPEG, PNG, and other SWFs. Use the source property to set a reference
to an image.

Label

This is a good solution for a simple, single-line label identifier.

List

This component takes a list of items and displays them, allowing selec-
tion and adding scroll bars if there are too many items for its size.

LearningFlex3_book.indb 25 5/27/08 1:52:27 PM

Learning Flex 326

Exploring Common Components

ProgressBar

This component is great for showing progress of things like downloads.
Pair this up with an Image component by setting the ProgressBar’s source
property to an Image control, and you’ll see the download progress.

RadioButton

This CheckBox-like control is useful when grouped, so that selecting one
deselects the others. The easiest way to use this control is by dragging a
RadioButtonGroup to the stage, which will pop up a dialog box that lets
you build your set of buttons visually.

Text

Use the Text component when you want to display chunks of text that
you don’t want to have scroll bars. It will set its size to a square that fits
the text.

TextArea

Use a TextArea when you want a piece of text that may be larger than the
available space. It will add scroll bars as needed.

TextInput

This is a common component for single-line input. With it, you can get
or set the value of the text via the text property (this applies to all text
components such as Text, TextArea, and RichTextEditor).

Layout Containers
Layout containers, or simply containers, are visual components used to man-
age the way an application is aligned or how controls are placed in relation-
ship to one another. Sometimes, they will have an explicit visual representa-
tion, such as a Panel’s title bar, but often they will only show themselves by
the way they arrange other controls (or even other containers).

Application

You don’t even have to think about this one. All Flex applications have
an instance of the Application component as their root. It’s a type of
container with some special mojo that makes it work well as the base
for everything else. By default, it lets you place components anywhere
you like, but you can also make it line your components up vertically or
horizontally. It’s more than a container though, and provides support for
a start-up progress bar (which you may have witnessed while loading a
Flex application in your browser), and it has a few special options which
help with customizing your application.

LearningFlex3_book.indb 26 5/27/08 1:52:28 PM

Exploring Common Components

Chapter 3, Using Design Mode 27

Canvas

This is a container that doesn’t do any special layout. Set the x and y of any
component that you place inside to have them show up where you want.

Form

This container makes creating an HTML-like form layout easy. Pair it up
with some FormItem components (explained next), and it will stack them
up vertically, with the form fields being left-aligned.

FormItem

This container takes a control such as a TextInput and gives it the option
of having a label. Just set the label property on the FormItem container
itself. When you place a few of these inside a Form container, everything
will line up like those HTML forms you’re used to using.

HBox

This takes components and lines them up horizontally.

Panel

This component is a container that has a window-like look, complete
with a title bar. When you drop these on the stage in Design mode, the
default layout will be “absolute,” meaning components placed inside it
should give x and y coordinates, much like a Canvas. But you can change
the layout to “horizontal” or “vertical” as well, which means you can line
up child controls in any way you like.

VBox

This takes components and lines them up vertically.

Navigators
Navigators are a hybrid type of visual component that's like a layout con-
tainer and a control mixed together. Its job is to take a set of containers,
making only one visible at a time. Navigators make designing a modular
interface easy.

Accordion

This is similar to a TabNavigator (explained next), except it stacks con-
tainers vertically and animates when different sections are selected. A
common usage scenario is with a group of Form containers, separating
into sections what would instead be a large, scrolling form.

TabNavigator

It takes a set of containers, like HBoxes and Panels, and makes it so only
one is visible at a time. File folder-like tabs are created with labels corre-
sponding to the label properties of the individual containers within, and
depending on which tab is selected by the user, that specific container
will be made visible, hiding the rest.

LearningFlex3_book.indb 27 5/27/08 1:52:30 PM

Learning Flex 328

Modifying Properties Directly

There are also components called non-visual components, which provide
functionality that isn’t inherently visual. Think of a data component that
could make connecting to remote data very easy—this would be one example
of a component that doesn’t have a face, so to speak. This means that for
non-visual components, you won’t be able to use Design mode to add them
or modify them, but will need to code them in directly. In the next chapter
we’ll discuss coding in Source mode, and later in Chapter 8 we’ll use our first
non-visual component.

Modifying Properties Directly
You can modify your button component directly in Design mode, such as
change its label and set up its size. For now, you can try changing the label
of your button by double-clicking the button on your stage. A text input will
pop up and let you change the label. You can also drag one of the handles that
appear around your component to change its size. As for the blue dots that
surround your component, those are constraint handles that let you easily set
up a constraints-based layout, which I’ll discuss a little later in Chapter 8.

Everything at Your Fingertips:
The Properties Panel
To modify a component’s properties, however, we’ll need to learn about one
more panel, the Flex Properties panel. You’ll probably see it over on the right
unless you’ve moved the panel or closed it. If you don’t see it, you can show it
by selecting Window→Flex Properties. Note that this panel doesn’t appear in
Source mode, because it’s assumed you don’t need it—you’re coding by hand
anyway, right? But in Design mode it can be your best friend.

It changes its options when you select different items on the stage, so if you
select a button component by clicking it on the stage, you’ll notice that the
Flex Properties panel (“properties panel” for short) changes to show mx:Button
in its heading and displays a custom set of properties for the button.

Standard View
Standard view is the default view of the Flex Properties panel (Figure 3-2),
and it includes a custom layout for each component. It’s really useful for
modifying the most common properties of a component, such as its label,
ID, width, and height. It’s extremely useful for modifying styles of your com-
ponent such as the font, text decoration (bold, italic, underline, and so on),
and transparency.

Flex Component
Explorer

Flex comes with an excellent applica-
tion that shows you all the common
components and how to use them.
It’s called the Flex Component
Explorer, and you can find it at
http://examples.adobe.com/flex3/
componentexplorer/explorer.html.

Figure 3-2. Flex Properties panel
(Standard view)

LearningFlex3_book.indb 28 5/27/08 1:52:31 PM

Modifying Properties Directly

Chapter 3, Using Design Mode 29

Category View
Category view (Figure 3-3) is another view of the Properties panel. This view
organizes all of a component’s properties into a hierarchical tree view. This is
much like how Standard view is organized into a few groups like Common,
Layout, and Style. However, in Category view you have every possible prop-
erty available. It’s useful for getting to a particular kind of property quickly.

Figure 3-3. Flex Properties panel (Category view)

Alphabetical View
The third and final view available in the properties panel is Alphabetical view.
This, like Category view, has all the possible properties available. However,
unlike Category and Standard view, none of the properties are organized in
Alphabetical View. It’s just a flat list organized from A to Z. This view is great
when you know the name or at least the first few letters of the property you
want to modify. It’s also useful for seeing at a glance what properties have
been set on a particular component.

Feel free to drag a few components onto the stage and move them around.
Modify some properties such as label, width, and color to get a feel for how
this panel works.

Common Properties
All Flex visual components (the ones you can manipulate in Design mode)
inherit from a base component called UIComponent. This component has
several properties related to visibility, mouse and keyboard interaction, focus,
sizing, and all the goodies you’d expect for visual manipulation. Because but-
tons, text inputs, and containers extend this base component, meaning they
inherit all of its functionality and add their own, they get all that stuff for
free. This means that once you learn the usage of a property for one com-
mon component, you’ll be able to take what you know and apply it to other
components.

Take the width property of a button control, for example. You can likely guess
that this property changes the width of this component. Because width is one
of those properties that is shared among visual components, understanding
how to use it with a button will help you to use it with other components as
well.

Note

Flex Builder for Windows offers a quick
way to get to a property when using
Alphabetical view. Simply start typing
the first few letters of the property, and
the selection will scroll to the first match.
This also works for other panels in Flex
Builder that have a large list of items.
Unfortunately, this functionality doesn’t
exist in the Mac version.

LearningFlex3_book.indb 29 5/27/08 1:52:31 PM

Learning Flex 330

Modifying Properties Directly

What’s an API? Or an SDK?
API stands for application programming interface, and it’s a catch-all term for
program functionality that’s exposed to developers. You might have heard the term in
the context of web services like the Yahoo! Search API, which allows you to query the
Yahoo! search database. But API applies equally to any way you can access or modify
some program or language. So for Flex, you’ll often hear the term referring to how to
use components.

You may also hear the term SDK, which is short for software development kit. This
typically refers to a set of components or tools to aid (or enable) development
for a particular platform. When downloading Flex Builder, you are downloading
the development environment along with the Flex SDK, which is the library of
components, the compilation tool, and a few other tools that make development in
Flex possible.

Here’s a fun sentence for you: “I built a Flex API for the Yahoo! Search API, and it’s
included in the Yahoo! Search SDK.” This means, “I built a better way to connect to
Yahoo! Search results via Flex, and this is part of a family of tools for using Yahoo!
Search.” You can get this Flex API by downloading the Yahoo! Search SDK
(which includes APIs for other languages like Java and ColdFusion), available at
http://developer.yahoo.com/download.

Following is a list of the most commonly used properties for the most com-
mon components, along with an example of each:

id

id (short for identifier) is a very important property, because it's the
name you give to a specific instance of a component. If you’ve placed two
buttons on the stage, calling them button1 and button2 allows you to
distinguish them later in code. Even better is when you give them
descriptive names based on what they do in the application (for example,
submitButton and refreshButton). It’s not always necessary to type an id
yourself, because Flex assigns one as necessary. But it’s helpful to do so.

<mx:Button id="submitButton"/>

x

This is a number that gets or sets the number of pixels a component
should display to the right of its parent. This means, when a component
is placed within a container, and that button’s x value is set to 20, the but-
ton will display 20 pixels to the right of that container’s left-most edge.

<mx:Button x="20"/>

y

This is a number that gets or sets the number of pixels a component
should display from the top of its parent. Similar to x, except this property
controls vertical position instead of horizontal position. See the Sidebar
“X and Why?: A Note about Coordinates” in Chapter 4 for more informa-
tion on how the x and y properties work.

<mx:Button y="10"/>

LearningFlex3_book.indb 30 5/27/08 1:52:32 PM

Modifying Properties Directly

Chapter 3, Using Design Mode 31

visible

This property controls whether an item is visible on stage. Setting visible
to false will make an item disappear from view, but it will still take up
space. For instance, if I have four buttons inside an HBox container, align-
ing all four horizontally, and I make the second button invisible, the two
buttons to its right and the one to its left will remain in the same place,
because the invisible button still makes room for itself (see Figure 3-4).

<mx:HBox>
 <mx:Button label="One"/>
 <mx:Button label="Two" visible="false"/>
 <mx:Button label="Three"/>
 <mx:Button label="Four"/>
</mx:HBox>

Figure 3-4. Button “Two” is invisible, in case you didn’t notice.

includeInLayout

Setting this to false on a component will cause a container to ignore that
component when calculating layout. If you don’t want something to take
up space, you set this to false. It’s useful when wanting to make a compo-
nent invisible along with not affecting your layout (see Figure 3-5).

<mx:HBox>
 <mx:Button label="One"/>
 <mx:Button label="Two" visible="false" includeInLayout="false"/>
 <mx:Button label="Three"/>
 <mx:Button label="Four"/>
</mx:HBox>

Figure 3-5. Button “Two” still exists, though it’s invisible and doesn’t take up space.

toolTip

A toolTip is a little pop-up message that displays when you hover your
mouse over a component for a moment, as shown in Figure 3-6. It can
help describe the item’s purpose. All Flex UI components support the
toolTip property, so it’s easy to implement.

<mx:Button toolTip="Click Me!"/>

Figure 3-6. A button with a toolTip

LearningFlex3_book.indb 31 5/27/08 1:52:32 PM

Learning Flex 332

Modifying Properties Directly

label

Not all components use labels, but many do. For a button, a label is a no-
brainer—it’s the text that displays on the button. CheckBox components
use them in a similar way. Containers use them as well. For instance, the
FormItem container will display a label, and can be used as a description
of a field when paired with another control, such as a TextInput, in a
Form (see Figure 3-7). For other layout containers, the label will display
when paired with navigation components. That is to say, when using a
navigation component such as a TabNavigator, a container’s label will
display as the label of the tab that selects it.

<mx:CheckBox label="I have read the terms and conditions"/>
<mx:Button label="Submit"/>

Figure 3-7. A checkbox and button with their own labels

text

This property changes the text displayed in text controls such as
TextInput, TextArea, and Label (see Figure 3-8).

<mx:Label text="Enter Your Name:"/>
<mx:TextInput text="Alaric"/>

Figure 3-8. Two controls that both use the text property

alpha

alpha is short for alpha channel, and it is a number from 0 to 1 that con-
trols how transparent an item is. If you want what is behind a component
to show through, you set an alpha value to less than 1. It’s percentage-
based, so .9 means 90 percent opaque, .45 means 45 percent opaque, and
so on. In the case of a list control, setting its alpha to .5 would allow the
colored background of your application to show through (see Figure 3-9),
making the list halfway transparent. (Or is it halfway opaque?)

<mx:TextArea alpha="0.5" text="The alpha of this TextArea control is
set to .5"/>

Note

Note that there is also a control called
Label which is used to place single lines
of text throughout your application. As
such, it doesn’t take a property called
label to change the words it displays.
Rather, it uses a property called text.

LearningFlex3_book.indb 32 5/27/08 1:52:33 PM

Modifying Properties Directly

Chapter 3, Using Design Mode 33

Figure 3-9. A TextArea control with an alpha set to 50%

enabled

Setting enabled to false makes a component unavailable. Typically, this
will cause the component to gray out and to not respond to mouse
actions as shown in Figure 3-10. This is useful if you’d like to disable a
button that shouldn’t be used yet, but it also works with containers and
their children. You can set an entire Panel’s enabled property to false, and
everything inside will be disabled as well.

<mx:Panel title="Enabled Panel" enabled="true">
 <mx:ColorPicker/>
 <mx:NumericStepper/>
 <mx:Button label="Button"/>
 <mx:CheckBox label="Checkbox"/>
 <mx:DateField/>
 <mx:ComboBox/>
</mx:Panel>

<mx:Panel title="Disabled Panel" enabled="false">
 <mx:ColorPicker/>
 <mx:NumericStepper/>
 <mx:Button label="Button"/>
 <mx:CheckBox label="Checkbox"/>
 <mx:DateField/>
 <mx:ComboBox/>
</mx:Panel>

Figure 3-10. Two Panels with the same contents; one is enabled, the other disabled

LearningFlex3_book.indb 33 5/27/08 1:52:34 PM

Learning Flex 334

Modifying Properties Directly

source

You can use this property for Image controls and other controls that point
to an external file. You can also use it with the ProgressBar control to
determine the progress of that Image control. For instance, two usages of
this property would be for what an Image control should display, and for
what a ProgressBar should watch.

<mx:ProgressBar source="{photo}"/>
<mx:Image id="photo" source="http://greenlike.com/photos/lydia.jpg" />

Figure 3-11. An Image and a ProgressBar working together beautifully

Let’s face it, some of these properties will take rote memorization, but when
using Design mode, the most common options are right at your fingertips.
Plus, because these components were designed well and with a lot of com-
monalities, most of the properties will seem natural.

LearningFlex3_book.indb 34 5/27/08 1:52:34 PM

Modifying Properties Directly

Chapter 3, Using Design Mode 35

Building a User Interface
Now that you’re familiar with some basics of Design mode, you can begin
to plan your HelloWorld application. If you’ve added some components to
the stage, remove them so you have a blank slate again. You can select each
one individually and press the Delete key, or you can click and drag on the
stage to select components and press the Delete key. Alternatively, select
Edit→Select All or press Ctrl+A (C+A in OS X) to select everything, and
then press Delete.

Let’s build a simple example using some common components:

Drag a Panel to the stage. A Panel is a type of container, so you’ll find it 1.
in the Components panel in the Layout section.

Give the Panel a title by double-clicking it or entering it in the properties 2.
panel. I’ll use Howdy Ya’ll, but feel free to say “hi” any way you like.

Drag a Label component into the Panel. Because a Panel is a container, 3.
it can hold items just like the main Application component can (which
is also a container). So, drop the Label in this Panel, and place it near the
top of the Panel.

Give the Label the text 4. My name is:, and make the text bold. You can apply
bold by selecting the label and clicking the Bold icon in the Flex Properties
panel in the Style section.

Drop a TextInput control under this Label.5.

Drop a CheckBox control under the TextInput.6.

Give the CheckBox the label 7. I’m a Flex Expert!. (You modify its label the
same way as most components, by double-clicking it on the stage.)

There you are—you have created the user interface for your first Flex appli-
cation. Let’s run it in a browser by clicking the Run button (remember the
green arrow?).

Flex Speaks Your Language
So, I mentioned you should say “hi” in any way you like, and I meant it. If “hello” to
you is Olá, 你好, or こんにちは, you’re in luck. Because Flex supports UTF-8, you can
insert characters from most languages without hassle. You can do this in both Source
and Design mode, so you can make a Flex application in any language. If you don’t
expect everyone to have the proper fonts available on their machine, you can always
embed fonts into a Flex application (see Chapter 14 for how to embed fonts and
other assets). While this will increase file size, it will ensure that characters display just
as you envisioned them.

LearningFlex3_book.indb 35 5/27/08 1:52:35 PM

Learning Flex 336

Summary

Figure 3-12. Save and Launch dialog box

You should see your application in a browser window (see Figure 3-13). Feel
free to type your name in the text input and turn on the check box that says
“I’m a Flex Expert!” It will give you a feel for how these components work
and, anyway, you deserve it!

Figure 3-13. Your first application

Summary
Now you’re comfortable with Design mode, and you’re able to create an appli-
cation by using the standard Flex components. You still have a few skills to
learn to make your applications interactive and fun, but you’re well on your
way to mastering Flex. In the next chapter, you’ll look at the code that was
generated from Design mode and start to write your own.

Save and Launch
When you attempt to run a project
but haven’t yet saved changes, you’ll
be greeted with a dialog box asking
whether you want to save your
work (see Figure 3-12). You’ll see a
nice option at the bottom of the
dialog box allowing you to “Always
save resources before launching.”
This is convenient, because you can
then click Run after modifying your
project, and your work will be saved,
built, and then run. I usually leave this
check box turned on, because it saves
time and effort.

LearningFlex3_book.indb 36 5/27/08 1:52:35 PM

37

CHAPTER 4

IN THIS CHAPTER

What Design Mode Does

Anatomy of a Flex
Application

Components Added in
Source Mode

Code Completion

MXML in Depth

Summary

In this chapter, you’ll go right into the heart of Adobe Flex 3, MXML. Using
the code that was generated automatically in the previous chapter, you’ll get
a feel for what makes MXML tick. Once you’re comfortable with the basics,
you can start to write your own code using the built-in editor.

What Design Mode Does
What Design mode does is create MXML code for you. When you drag a
component onto the stage, Design mode writes a corresponding tag in the
main application’s .mxml file. If you modify the MXML code in Source mode,
Design mode updates and shows those changes.

Open the application you started in the previous chapter, then switch to
Source mode to look at the code that Design mode created for you.

Typing Stereotypes
The great thing about Flex Builder’s Design mode is that you might never “grow out”
of it. I’ve been developing in Flex for years, and while I know MXML by heart and can
get most tasks done very quickly, I still find myself using Design mode on occasion.
As good as MXML is, it’s still so much more intuitive to design an application visually,
and besides, a ton of features in Design mode make it worthwhile. So, don’t listen if
someone says you’re not a real developer if you don’t do everything in a text editor.
The goal of any developer is to use the right tools for the job, and Design mode is
often the right tool.

USING SOURCE
MODE

LearningFlex3_book.indb 37 5/27/08 1:52:36 PM

Learning Flex 338

Anatomy of a Flex Application

Anatomy of a Flex Application
Looking at the source code for this simple HelloWorld example, you’ll see
something like the following:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">
 <mx:Panel x="10" y="10" layout="absolute" title="Howdy Ya'll">
 <mx:Label text="My name is:" fontWeight="bold" x="10" y="14"/>
 <mx:TextInput x="5" y="41"/>
 <mx:CheckBox label="I'm a Flex Expert!" x="10" y="71"/>
 </mx:Panel>
</mx:Application>

Now I’ll break this code down for you. The first line contains an XML decla-
ration, which is just some optional XML-specific stuff. It’s the next line with
the Application tag where the “Flex” begins.

Every Flex application will begin with a root tag. For Flex applications that
are deployed to the web, that root tag is called Application. For AIR appli-
cations, the root tag is called WindowedApplication and is pretty much the
same, with just a few desktop-specific features. For your application, which
is going to be viewed in a browser, you’ll see <mx:Application> displayed at
the root. Notice the attribute layout="absolute" in this tag. That’s one of
those defaults that Flex throws in, and it means “make everything placed
here need x,y coordinates.” Because an Application is a container, it has the
ability to either require x,y coordinates or lay components out in a horizontal
or vertical stack (more on this topic in the box “X and Why?: A Note about
Coordinates”).

The Panel tag within the Application tag is also a container, and it has
its default layout set to absolute as well. Notice the attributes x="10" and
y="10", which tell Flex to place the panel 10 pixels from the left corner of the
Application. The Label, TextInput, and CheckBox tags also have their coordi-
nates set, but these coordinates are relative to the panel container in which
they appear.

Of course, these tags have other attributes as well. Take a look at the Panel,
which has its title set via the title attribute. In addition, the Label uses the
text property to set its text and has a style property called fontWeight to
make it bold. Finally, the CheckBox uses a property called label to set its
label.

Try editing the code and changing some of the properties. You could, for
instance, change the label on the CheckBox to read “I’m a Flex Genius!”
When you’re done, switch to Design mode to see the changes.

LearningFlex3_book.indb 38 5/27/08 1:52:36 PM

Components Added in Source Mode

Chapter 4, Using Source Mode 39

Components Added in Source Mode
Now try modifying the UI by typing the MXML to add a component. Right
below the CheckBox but still within the Panel tag, add a button component
by typing <mx:Button label="Click me"/>.

Switching back to Design mode, you might notice that the button is placed
on top of everything else and probably not where you envisioned it (below
the CheckBox). That’s because you haven’t set the x,y coordinates for the
button yet, and Flex defaults to x="0" and y="0". Now, you have the choice
of guessing the coordinates and typing them in Source mode or moving the
button in Design mode. Actually, you have another option. If you want a
vertical layout for the items in your panel instead of having to set every item’s
x,y coordinates, you could change one property of the panel. You guessed it:
layout. Change the panel’s layout property to vertical either by typing in
Source mode or by changing it in the Properties panel.

Now the items are stacked on top of each other vertically, and that’s great.
But they’re stuck to the left edge of the panel in a not-so-attractive way. That’s
where the property paddingLeft comes into play. If you set the paddingLeft
property of the panel to 5, you will create a pleasing amount of space between
the left edge of the panel and its contents.

If you’ve ever studied geometry, you’re familiar with x,y
coordinates. You might remember that x means placement
along a horizontal axis, and y refers to placement along a
vertical axis. And you might have noticed something different
about how x,y coordinates work in Flash. A Cartesian coordinate
system, shown in Figure 4-1, will have an origin point at 0,0 and
x and y values that increase as you go toward the top or toward
the right. So, a point at x="3" and y="5" will be placed up and
to the right of the origin.

In Flash, the origin is at the top left of the stage, and the x and
y values increase as you go toward the bottom of the screen or
toward the right. So, in essence, the y values are backward in
Flash. That’s why giving a button a y value of 20 will place it 20
pixels from the top, and a y value of -20 will move it nearly out
of view—right off the top of the stage.

Figure 4-1. A Cartesian coordinate system

X and Why?: A Note about Coordinates

Titles, Labels,
and Text
You might have noticed that the
Panel, TextInput, and CheckBox
controls each have a different
property for what essentially sets
their label. Why not just have a
property called label? Well, actually
the panel does have that property,
but it’s not used to display in the title
bar. It uses the label to identify itself
when used in navigation controls,
which I’ll discuss in Chapter 11. The
panel also has a property called
status that displays some text in
the upper-right corner. I suppose
for the Label, giving it a property
called label didn’t make sense
aesthetically, but the main reason is
that it shares the text property with
other text display controls like Text,
TextArea, and RichTextEditor. This
concept might seem confusing at
first, but you’ll soon get the hang of
which properties are used for what.

LearningFlex3_book.indb 39 5/27/08 1:52:37 PM

Learning Flex 340

Code Completion

Code Completion
You’ve no doubt seen that Flex Builder pops up a list of autocomplete entries
when you start to type something in the editor in Source mode. This auto-
completion is one of its most useful and powerful features. Typos and mis-
spellings can wreck your project, and accepting a little help can go a long way
toward preventing errors and frustration.

When you begin to type an attribute, Flex Builder pops up suggestions, and
the most likely one (the one at the top of the list) is already selected (see
Figure 4-2), so pressing Enter inserts the complete text for you. This auto-
completion is useful not only for attributes but also for tags. If you’re about
to insert a button, you don’t even have to begin writing the mx: part—simply
typing the left bracket and the first few letters gets you started. And if you
ever want the autocompletion to pop up faster, or to pop up again after it is
closed, just press Ctrl+spacebar, and it comes to save the day.

Figure 4-2. Autocompletion menu

MXML in Depth
MXML is the heart of your source code. It’s relatively easy to read and write,
and understanding just a few rules will take you a long way in getting the
job done. Because MXML is a type of XML, it’s worth going over some of the
basics of XML.

The XML in MXML
One of the first books I read that had anything to do with programming was
a book about XML. I wasn’t studying computer science at the time, though I’d
always had a keen interest in programming and web design. I just remember
wondering what this fancy language was that I kept hearing about. Much to

LearningFlex3_book.indb 40 5/27/08 1:52:37 PM

MXML in Depth

Chapter 4, Using Source Mode 41

my surprise, I discovered I had been using it all along with HTML (specifi-
cally XHTML).

It’s all about structure
I learned that XML was just structured text, any text, that uses angle brackets
(< and >). That was the way it represented data, just by structuring via tags
created with angle brackets. There wasn’t much of a vocabulary to it, because
the author of XML decided his or her own vocabulary. XML was purely syn-
tax and structure.

You’re reading a book right now, so you certainly know that a book contains
different parts such as chapters and sections. If you wanted to represent a
book in XML, you could create your own tags like <book>, <chapter>, and
<section> and then add information to a document using those tags.

<book>
 <chapter>
 <section/>
 </chapter>
</book>

XML stands for Extensible Markup Language, and the extensible part is in
creating your own tags. The markup part means it can include text as well as
extra information about that text, via tags. In the case of HTML, you can use
tags to provide text as well as information such as formatting for that text.
As an example, early text-only word processors required writers to use tags
equivalent to <i> and to add italic and bold formatting (respectively) to a
document. These tags would be converted to the proper format when print-
ing, and this same type of markup is used in HTML today.

More importantly for a Flex application, XML shows hierarchy and structure.
MXML is, if you will, a vocabulary of XML, created to provide a way to easily
write the structure of a Flex application. So, lucky for us Flex developers, we
can describe an application by simply writing it.

A few ground rules
If you follow these few simple rules, you’ll have worry-free development:

All that is opened must be closed: An important fact to remember about
XML is that each tag must be complete. That is to say, if a tag is opened, it has
to be closed at some point. Computers are awfully logical, and they get upset
when rules aren’t followed. A tag definition, as you’ve seen, is created with a
left bracket (<), some text that is the tag’s name, followed by a right bracket
(>), for example, the tag <book>. This is considered an open tag. To show that
a tag is completely finished and won’t have anything else inside it, it must be
closed by using a forward slash (/).

You can ensure all tags are closed in a couple ways. The first is by creating
an end tag for each beginning tag. So if you create the tag <book>, you must
eventually close it with the end tag </book>. Another, shorthand way to close

LearningFlex3_book.indb 41 5/27/08 1:52:37 PM

Learning Flex 342

MXML in Depth

a tag—if it doesn’t have any nested tags—is by adding a forward slash imme-
diately before the right angle bracket of the same tag, like this: <book/>. So
<book></book> is equivalent to <book/>.

Case matters: XML is case-sensitive. That is to say, uppercase letters and low-
ercase letters aren’t considered the same. So, <book> and <Book> aren’t the same
in XML. And that means <mx:Text> and <mx:text> are different as well.

Declarations are optional, but polite: The first line of an XML document
may (optionally) contain a line declaring that it’s XML and what encoding it
uses. The declaration looks like this:

<?xml version="1.0" encoding="utf-8"?>

All MXML files created through Flex Builder automatically contain this dec-
laration, so you don’t need to worry about it.

Because MXML is a version of XML, MXML inherits all of these rules.

The Anatomy of a Tag
A tag can contain information in two ways, either by content or by attributes.
Content is simply the text that exists between two tags, and attributes are text
inside the opening tag only, with their information enclosed in quotes. Check
out the following XML:

<book title="Learning Flex" author="Alaric Cole">
 <chapter title="Getting Up to Speed"/>
 <chapter title="Setting Up Your Environment"/>
</book>

In this example, <book> is the root tag, and the title and author of that tag
are placed as attributes of that book. The code also has two child tags rep-
resenting two chapters. Compare the previous code to the following, which
contains the same information but arranged in a different way:

<book>
 <title>Learning Flex</title>
 <author>Alaric Cole</author>
 <chapter>
 <title>Getting Up to Speed</title>
 </chapter>
 <chapter>
 <title>Setting Up your Environment</title>
 </chapter>

</book>

This code is essentially the same as the first, but you’ll notice the second one
is a bit more verbose. The first uses attributes, and the second uses nested
tags. So, attributes can be useful as a more compact way to represent the
same information as nested tags—and more compact means more readable.
Compare this code to the same example in MXML.

WarNiNg

Make sure you don’t have any spaces,
empty lines, or other white space before
the XML declaration in a Flex applica-
tion. Otherwise, Flex gives you the friend-
ly warning Whitespace is not allowed
before an XML Processing Instruction
and won’t compile!

LearningFlex3_book.indb 42 5/27/08 1:52:38 PM

MXML in Depth

Chapter 4, Using Source Mode 43

You’re probably used to seeing something like this:

<mx:Label text="Learning Flex"/>

But did you know you could do the following?

<mx:Label>
 <mx:text>Learning Flex</mx:text>
</mx:Label>

Those two code examples are essentially the same, one using an attribute to
add the text property and the other using a nested tag. You’ll usually want
to use attributes in MXML for the reasons I stated earlier: compactness and
readability.

However, occasionally you’ll need to use nested tags for properties, instead of
using attributes. Because nested tags allow more complex content instead of
simply a single-line piece of text or numbers, they’re useful for plugging in
data that can’t be represented in an attribute. Consider the case of the text
property. If the text were a whole paragraph, it would look strange to place
it inline as an attribute. Even more important is when a component expects
structured data. You might need to set the data provider of a list control,
which would be an array of items, not just a single line of text. The same is
true for other properties that accept an array of items, such as the columns
property of a DataGrid. The columns property lets you set properties on indi-
vidual columns, and you can see an example of this by dragging a DataGrid
control to your application in Design mode. You’ll probably see code like this
generated:

<mx:DataGrid>
 <mx:columns>
 <mx:DataGridColumn headerText="Column 1" dataField="col1"/>
 <mx:DataGridColumn headerText="Column 2" dataField="col2"/>
 <mx:DataGridColumn headerText="Column 3" dataField="col3"/>
 </mx:columns>
</mx:DataGrid>

The columns property of the DataGrid can’t really be written as an attribute
because it expects a list of DataGridColumn tags, which in turn have their own
properties to set.

The MX in MXML: Namespaces Explained
You’ll notice that each tag in the MXML example contains by default the des-
ignation mx followed by a colon. This is an XML namespace, stating that the
Button and Panel tags belong to the mx namespace. What’s a namespace? Take
a look at the word itself: name + space. A namespace is a designation of what
a name for something is in regard to its placement in some type of structure.
Say, for the sake of this example, that your name is John Smith. Of course, lots
of other John Smiths exist, so how can you distinguish yourself? Well, you
could use your location, like your home address, because it’s highly unlikely
that several John Smiths live at that address (unless you’ve named your son
John Smith, but that’s a different story. Anyway, he’d at least have a “Jr.” or

LearningFlex3_book.indb 43 5/27/08 1:52:38 PM

Learning Flex 344

MXML in Depth

Roman numeral attached to his name to differentiate himself). So, in terms
of XML namespaces, you could refer to yourself as 123.PineStreet:JohnSmith;
that’s a name you’re unlikely to witness anywhere else!

So, namespaces help distinguish different components (which may have
the same name) by their location. In terms of MXML and ActionScript, the
namespaces refer to the package structure of your components (what folders
they’re organized in), but I’ll explain the details of packages later. For now just
accept that the Flex components are in the mx namespace because the source
for these components is located in a special grouping of folders. If you were to
create your own button-like component and wanted to name it Button, you
could do so, because you’d be placing the source for your special button code
in a different location than the Flex button component. You might then refer
to your button in MXML as something like <special:Button/> to differenti-
ate it from <mx:Button/>.

What if you aren’t planning to use your own components? Why not just make
mx the default namespace and omit all the extra mx: designations? That is, why
can’t you just see the tags <Button/> and <Panel/> instead of <mx:Button/>
and <mx:Panel/>? Well, the truth is you can if you’d like. Looking at the begin-
ning of a typical MXML file, you’ll see the following:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

Note the part that says xmlns:mx="http://www.adobe.com/2006/mxml".
Translated to English, that means “Create an XML namespace called ‘mx’
and point it to the location ‘http://www.adobe.com/2006/mxml’.”

Where Does This Namespace Point?
If you try to point your browser to http://www.adobe.com/2006/mxml, you probably
won’t see anything interesting. Although it looks like a web address, it’s really just an
identifier. Using the web address paradigm assures that you won’t have any conflicts
in naming. This way, if you eventually create your own identifier, you have the option
of using your web address, which makes it unlikely another person will have the same
identifier.

By default, the namespace for Flex components is set up to be mx, but you can
change it. For instance, instead of mx, you could use the name flex by doing
the following:

<flex:Application xmlns:flex="http://www.adobe.com/2006/mxml">

This line of code lets you use <flex:Button/> instead of <mx:Button/> in your
MXML file. Now, if you want to be able to use simply <Button/>, change the
namespace to an empty name:

<Application xmlns="http://www.adobe.com/2006/mxml">

Namespaces in
Nested Properties
Notice that you must use the
namespace (usually mx:) within a
nested property of an MXML tag. So
while attempting to make a property
into a nested tag instead of an
attribute, you might be tempted to
write the following (incorrect) code
for assigning text to a Label:

<mx:Label>
 <text>Some Text</text>
</mx:Label>

However, because the text property
is its own tag, it must use the
namespace mx: as well, to match it
with its parent tag:

<mx:Label>
 <mx:text>Some Text</mx:text>
</mx:Label>

If you’re using Flex Builder to write
your application, autocompletion will
usually insert this namespace for you,
so you don’t have to think about it.

Note

Notice how the Application tag, which
declares this namespace, is also affected
by it.

LearningFlex3_book.indb 44 5/27/08 1:52:38 PM

MXML in Depth

Chapter 4, Using Source Mode 45

Using this code, the default namespace will be empty, so when you type
<Button/>, you’re referring to the Flex button. If you had created your own,
you’d still need to use your namespace to distinguish your components from
the Flex defaults.

When you start using third-party components or begin creating your own,
you’re more likely to see a package name used as a namespace identifier.
Instead of something that looks like a web address, you’ll see something like
xmlns:components="best.flex.components.*". I’ll go over packages more in
depth in later chapters, but for brevity, just accept that a namespace in MXML
lets you distinguish between different sets of components by the folder in
which they’re located.

I Do Declare
The beauty of using markup languages for laying out an application is that
they’re declarative. Declarative means you’re stating something. (Remember
all those grammar exercises in school? Wait, that was an interrogative sen-
tence. Oh, but that one was declarative. Find me an imperative sentence.
There it was!) In essence, you can just say, “I think a button should go here,”
and Flex will listen. (Well, you do have to type it, unless you have a really
good speech-to-text program.) So instead of building your UI in scripts and
dealing with procedures, you just place a Button tag where you want a button
to exist, and Flex takes care of implementing it.

By comparison, ActionScript, the scripting language for Flex, is imperative.
That means you create commands that you want the computer to follow.

I’ll show a couple of examples to demonstrate this idea. Here’s how create a
panel with a button inside it in ActionScript:

import mx.containers.Panel;
import mx.controls.Button;

var panel:Panel = new Panel();
var button:Button = new Button();

addChild(panel);
panel.addChild(button);

This code instantiates a panel and a button and places the button within the
panel. (addChild() is the method for adding components to the display list,
which is the container that holds visual objects in your application.) Notice
how you’re issuing commands. (“Computer, import! Computer, add child!
Am I talking to myself?”)

Compare this script with the same thing in MXML:

<mx:Panel>
 <mx:Button/>
</mx:Panel>

What Does MX
Mean?
MX is an undisclosed acronym that
is also used for the name MXML and
for previous versions of Macromedia
products (Flash MX, Dreamweaver
MX). Some think it stands for
“Maximum eXperience,” but you can
make it whatever you like.

LearningFlex3_book.indb 45 5/27/08 1:52:39 PM

Learning Flex 346

Summary

That’s much less verbose, isn’t it? And it’s not necessary to really read the code
and follow its flow to understand what’s happening; you can quickly scan the
MXML and visualize the structure.

Not only that, but now the code is super easy to modify. Say you decided
that the button should be outside the panel instead of inside it. You’d simply
move the Button tag outside the Panel tag, and it would work fine. For the
ActionScript version, you’d have to follow the logic of the script and know
that you needed to change the method panel.addChild(button) to just
addChild(button), because you want to add the child to the main stage and
not the panel.

Summary
Now you’ve learned enough to really get moving with Flex and Flex Builder.
You know how to work with Design mode as well as with Source mode and
got your feet wet writing simple code. You’ve learned the basics of XML and
how it relates to MXML. Now you’re ready to get moving. Next up on the
agenda: making your applications interactive. For that you’ll need to learn a
little more about ActionScript.

LearningFlex3_book.indb 46 5/27/08 1:52:39 PM

47

CHAPTER 5

IN THIS CHAPTER

Getting Ready

Inline ActionScript

Dot Notation

Assignment

Functions

Variables

Data Types

Objects

Classes

MXML and ActionScript
Work Together

ActionScript’s Relationship
with MXML

Comments?

Summary

ActionScript is the glue that holds your application together. While you’ll use
MXML for the layout and structure of your application, you’ll generally need
(at least a little) ActionScript to make things happen. How much you’ll need
depends on the application, but then, as they say, a little goes a long way.

Knowing where to optimally place scripts, how to create reusable code, and
other basics of ActionScript programming will help you to build more pow-
erful Flex applications. Also, recognizing how ActionScript and MXML work
together is key to understanding the Flex framework. In this chapter, you’ll
gain the knowledge you need to get going with this powerful—and surpris-
ingly simple—programming language.

Getting Ready
In this chapter, you’ll learn to make your HelloWorld application from
Chapter 3 “do something.” So go ahead and open that project again; we’ll be
using some of it to do some hands-on learning.

Often, buttons are the main point of contact for making something happen,
so that’s where you’ll start. The button in your HelloWorld application says
“Click me,” so it makes sense to start with it.

As an example, I’ll show you how to autofill the TextInput with your name
when you click this button. That means you’ll be referring to this TextInput
in ActionScript to access the text properties. To do that, the TextInput will
need a name. That’s where the id attribute comes into play. Using the Flex
Properties panel in Flex Builder’s Design mode or using Source mode, add an
id attribute to the TextInput, calling it fullNameTextInput.

LEARNING THE
BASICS OF SCRIPTING

LearningFlex3_book.indb 47 5/27/08 1:52:40 PM

Learning Flex 348

Inline ActionScript

Naming Conventions
One popular naming convention, and the one I use for components, is appending
the type of component to the id. For example, the TextInput in the HelloWorld
application is used for inputting your name. So, you could call it fullName. (You can’t
call it full name because spaces aren’t allowed in id attributes.)

However, you might later create a Label that also displays your name, so you wouldn’t
want to call them both fullName, you’ll want to differentiate the two. It’s an easy
trick to call one fullNameTextInput and another fullNameLabel, which is
just adding the component’s type to its id. If this technique results in too many
letters for you, you can instead append the initials of the component type, calling it
fullNameTI.

Inline ActionScript
Inline ActionScript is script placed in an MXML tag. Typically in an applica-
tion, the program responds to certain events that occur, such as clicking or
dragging the mouse, or typing with the keyboard (more on this topic later).
You can respond to these events by telling a component to wait for a specific
event and then do something in response. A typical scenario is a person click-
ing a button and that button changing the property of another component.
For that, you can use inline ActionScript:

<mx:Button id="myButton" click="someComponent.someProperty =
'something'" />

All you had to do was add a click attribute to the Button and within that
attribute place ActionScript. Here’s a real example for the application:

<mx:Button label="Click me" click="fullNameTextInput.text =
'John Smith'"/>

This code says, when the button is clicked, make fullNameTextInput’s text
property equal to “John Smith.” The fullNameTextInput.text = 'John Smith'
part is ActionScript, placed inline. That’s scripting at its easiest, placed right
in an MXML tag.

Dot Notation
Previously, you added attributes to a tag to change the properties of a compo-
nent. For instance, adding a label attribute to an <mx:Button/> tag changed
the Button’s label property. This same behavior is available in ActionScript
as well, through the use of dot notation. Having created a TextInput called
fullNameTextInput in MXML, you can easily modify its text property via
the text attribute:

<mx:TextInput id="fullNameTextInput" text="John Smith"/>

LearningFlex3_book.indb 48 5/27/08 1:52:40 PM

Assignment

Chapter 5, Learning the Basics of Scripting 49

But, you can also change this text property in ActionScript. You do this by
typing the id of the component, fullNameTextInput, followed by a period
and then immediately followed by the name of the property you want to
modify:

fullNameTextInput.text

The period, or dot, is a way to say you want to access something that belongs
to this specific TextInput. The same would work for a Button called myButton.
To access its label property, you’d type the following:

myButton.label

Assignment
To change the value of such a property, you use something called assignment.
You want to assign the value of a property to another value, which you can
do with the equal sign (=) followed by the value. So, to change the text of a
TextInput control, you could use the following ActionScript:

fullNameTextInput.text = "John Smith";

What’s the difference between setting the text property this way and setting
it in MXML through attributes? Technically, there is no difference. However,
in an MXML attribute, you’re setting the property on the component as it’s
created. In ActionScript, you can set a property any time you wish, or delay an
assignment until an event occurs, such as when someone clicks a button.

You might have noticed the use of single (') quotes instead of double (")
quotes inside the click attribute. The single quotes appear simply because
double quotes would confuse the compiler as to when the click attribute
was finished. The funny thing is, you can actually switch the single and
double quotes, just as long as whatever begins the quote also ends it:

<mx:Button label="Click me" click='fullNameTextInput.text =
"John Smith"'/>

Now what if you wanted to do two or more things at once, all when someone
clicks a button? It’s just as easy, because you can add multiple statements
within the click attribute. Say you want to automatically select a CheckBox
when someone clicks the Button. All that takes is a little more code. Be sure to
first give the CheckBox an id of expertCheckBox and then modify your code
to include a little more in the click attribute:

<mx:Button label="Click me" click=" fullNameTextInput.text='John Smith';
expertCheckBox.selected=true "/>

In this case, you’re setting the selected property of the CheckBox to true,
which means it’s selected and displays a check mark. This is also a property
assignment and is done the same way, using the equal sign. Notice that a
semicolon (;) separates the two assignments. The semicolon tells the com-
piler you have two different statements occurring on the same line.

LearningFlex3_book.indb 49 5/27/08 1:52:40 PM

Learning Flex 350

Functions

As you can see, however, the code is starting to get a little messier. If you had
three or four assignments, the click attribute would get fairly long. Luckily,
functions let you place the code in a more convenient place, and you’ll get a
few benefits besides.

Functions
A function is a piece of code that you create for reusability. You place some
ActionScript code within a function, give the function a name, and when you
want to run that code, you reference that function. In the following section,
you’ll put your previous code, which sets the text of the TextInput and the
selection of the CheckBox, inside a function. To do so, you need to move your
code from inside the tag to another location.

Where to Place a Function
To place code elsewhere in the MXML file, you use a tag called <mx:Script/>.
The <mx:Script/> tag is a special tag that you can add only in Source mode,
because it’s not a visual component—but you’re not going to be writing code
in Design mode, so that’s fine. Here’s what the tag looks like:

<mx:Script>

 <![CDATA[

 //Your code goes here

]]>

</mx:Script>

You might be curious as to what that cryptic CDATA tag is all about. CDATA
is a special XML entity that tells the compiler not to look at the contents
of this tag as XML. Because you’ll be writing ActionScript here, which may
have characters such as quotes and angle brackets (< and >) that can con-
fuse the XML parser, you wrap it in a CDATA block. It’s all cryptic-looking,
so you’re unlikely to type such a thing by accident! Don’t worry if it looks
too complicated to remember, because using code completion with an
<mx:Script/> tag inserts all this code for you. Just place the insertion point
after your <mx:Application/> tag, begin typing <mx:Script, and then press
Enter. Flex Builder inserts all the necessary mumbo jumbo automatically.
You can also add a CDATA block by selecting Source→Add CDATA Block in
Flex Builder.

How to Create a Function
To create your function, use the keyword function followed by the name you
want to give it, followed by a couple of parentheses:

function setForm()

Note

In the following examples that show
ActionScript, all the code would be placed
inside an <mx:Script/> tag.

LearningFlex3_book.indb 50 5/27/08 1:52:41 PM

Functions

Chapter 5, Learning the Basics of Scripting 51

Following this function statement, place a couple of curly braces ({ and }).
These braces act as containers for the function—everything in them is con-
sidered part of the function. So, add the braces, and place the code that you
had in the click attribute inside them:

function setForm()
{
 fullNameTextInput.text = 'John Smith';
 expertCheckBox.selected = true;
}

Now you have your code, which does two things, placed nicely in a func-
tion. All you have to do is call that function (tell it to run), and this code
will execute. How do you do that? You call the function by using its name
followed by the parentheses:

<mx:Button label="Click me" click="setForm()"/>

Now when the button is clicked, both the TextInput and CheckBox selection
will be set.

Function Access
You’ll typically see access modifiers such as public or private, placed before
function definitions. These set the access of the function, or the ability for the
function to be seen and used. By default, the access is set to internal, which
means the function can be used by the current application as well as any
components within its package. (In Chapter 12, I’ll discuss packages in detail.)
Often, you’ll see functions set as public, meaning they can be accessed from
anywhere, and this is what I’ll typically use in my examples. The keyword
private would make the function accessible only in that Application.

If you’re not sure which to use, just set access to public. This makes the
function available for use anywhere in your code, so you won’t run into any
confusion. Later on, you can always change the access to something else, if
you want to be more restrictive.

Why would you ever want to restrict access? You might have functions in
your code that apply only to the current application—or component, if you
start creating your own. For instance, you may have a helper function that
is only useful where it is created, and don’t want other components to have
access to it, because such access is unnecessary.

Function Parameters
What about those parentheses? You put them there because they help des-
ignate something as a function. When you see them in your code, you’ll
instantly know something is a function. But the parentheses are more than
just aesthetics—you can use them to pass information, called parameters,
into the function. This, in essence, gives the function dynamic information at
the time of its call. Say you wanted to tell the function which text to set on

Note

Actually, access applies not only to func-
tions, but to any variable declaration. I’ll
explain variables a little later on in this
chapter.

LearningFlex3_book.indb 51 5/27/08 1:52:41 PM

Learning Flex 352

Functions

the TextInput like you did in the inline MXML. You can do that by using a
parameter for the function:

public function setForm(txt)
{
 fullNameTextInput.text = txt;
 expertCheckBox.selected = true;
}

This code creates a variable called txt of type String that’s available just to
the function. You give txt a value when you call the function by passing a
value in the parentheses:

<mx:Button label="Click me" click="setForm('John Smith')"/>

Now the text for the input isn’t set in stone; it can change on the fly via this
function.

You can also pass multiple parameters to a function:

public function setForm(txt, sel)
{
 fullNameTextInput.text = txt;
 expertCheckBox.selected = sel;
}

Now you can call the function like this:

<mx:Button label="Click me" click="setForm('John Smith', true)"/>

A useful feature is setting defaults for the parameters, which lets you decide
whether to pass in values when you call the function. If you don’t pass a
value, the parameter will use the default value. You set defaults by setting the
parameter to a value when it’s declared:

public function setForm(txt = "John Smith", sel = true)
{
 fullNameTextInput.text = txt;
 expertCheckBox.selected = sel;
}

Now you call the function with zero, one, or two parameters. Here’s none:

<mx:Button label="Click me" click="setForm()"/>

Here’s one:

<mx:Button label="Click me" click="setForm('John Smith')"/>

And here’s two:

<mx:Button label="Click me" click="setForm('John Smith', true)"/>

Methods
Now that you’ve learned about functions, it’s time you learned about methods.
This topic is going to be an easy one, because basically functions are methods.
When talking about a method, I really mean a function that is part of a class.
You created a function called setForm() in your code. What happens is that

LearningFlex3_book.indb 52 5/27/08 1:52:41 PM

Data Types

Chapter 5, Learning the Basics of Scripting 53

the setForm() function becomes a method of your main application. Most
classes have methods as well as properties, and the most common controls
and other classes you’ll be using may have some useful methods as well.

One method you’ve already learned about is addEventListener(), which reg-
isters event listeners. Another is addChild(), which places instances of com-
ponents on the display list. Another fun one is setFocus(), which is available
on all controls and makes that control the active control. For a TextInput, it
places the cursor so that you can begin typing, very useful for forms so that
you don’t have to use the mouse to be able to start typing in a field.

Now you'll use this function to make your little application more usable.
You’ll want to call setFocus() on the fullNameTextInput control once the
application is ready. (Calling setFocus() too soon may not work as you’d like.)
So, you’ll register an event listener with the applicationComplete event. Add
the following attribute to your Application tag:

applicationComplete="fullNameTextInput.setFocus()"

Variables
A variable is a way to store information that you can use in your applications.
For example, you may have an application that stores the name of a user, and
you can store this name in a variable. You create a variable in ActionScript by
using the var statement followed by the name of the variable.

var userName;

You can then assign a value to the variable:

username = "Tom";

Actually, when you create a variable, you can set its value in the declaration:

var username = "Tom";

Also, just like with functions, you can set the access of a variable:

public var username = "Tom";

You’ve already been using variables quite a bit, because the properties of com-
ponents you’ve used are actually variables. For instance, the text property of
a TextInput was declared as a variable within the source code of the TextInput
component.

Data Types
Typing can mean more than just pressing keys on the keyboard. In program-
ming, typing refers to a way to designate the kind of values a variable can
have. The intent is to force the developer to think about what kind of infor-
mation is needed. It also helps the program know the type of information,
which results in much better performance.

Note

Now when your application loads, the
TextInput control is ready to accept
keyboard input. Note that there may
be issues with the focus of Flash Player,
meaning you may have to click some-
where within the application to actually
set the focus to Flash Player and not the
browser.

LearningFlex3_book.indb 53 5/27/08 1:52:41 PM

Learning Flex 354

Data Types

Another great reason for typing is that each data type has certain properties
and methods available to help you. (You’ll use a few basic or fundamental
data types regularly, as described in Table 5-1. After reading this table, you’ll
be a pro at typing.) You’ll certainly want to do different things with text than
you would with numbers, so if you do a little planning, you’ll make life easier
in the long run.

Table 5-1. Fundamental data types

Name Description Example Default Value

String Text, plain and simple. Can be one character or
many. String is short for “string of characters.”

var hi:String = "Hello!" null

Number A numeric value that can be a fraction (decimal
value).

var pi:Number = 3.14 NaN (“Not A Number”)

uint An “unsigned” integer—a whole number that
can’t be negative. Can be in the range from 0 to
4,294,967,295.

var ultimate:uint = 42 0

int Any integer (a whole number, no fractions or deci-
mals). Can be in the range from -2,147,483,648
to 2,147,483,647.

var neg:int -12 0

Boolean A true/false value, like a switch. Valid values are
true and false.

var isHappy:Boolean = true false

void A special value for functions, meaning the func-
tion returns nothing. The only value it can have is
undefined.

function doNothing():void

{

}

undefined

Say your application has a form that asks for user information, such as name
and age. Obviously, name information is what’s called a String, and the age
would be a numeric value. But which numeric value? Well, it would be a
positive whole number, so looking at Table 5-1, you can see that the type uint
would be a good choice, but Number would work as well.

When declaring a variable or function, you can set its type pretty easily. You
use a colon (:), placed directly after the variable’s name (or after the parenthe-
ses in the case of a function). So to type a variable called userName to a String,
you’d do the following:

var userName:String = "Hello";

All you did here was insert a colon followed by the data type String. The
same applies to a number. The following code creates a variable called pi and
types it as a Number:

var pi:Number = 3.14;

For functions, it’s similar. Functions have the ability to return values, and the
value they return can be typed. Just place a colon and the return type after the
parentheses, and return a value using the return keyword. This next function
returns the sum of 2 and 2:

LearningFlex3_book.indb 54 5/27/08 1:52:42 PM

Objects

Chapter 5, Learning the Basics of Scripting 55

public function doSomeMath():Number
{
 return 2 + 2;
}

To access this value in code, you can assign the returned value of a function
to a variable:

var myMath:Number = doSomeMath();
//the value of myMath would then be 4

So, knowing all this fancy stuff, you can fix your setForm() function you
made earlier to include typing. Because you declared variables as parameters,
you can type them, and you can type the function as well:

public function setForm(txt:String = "John Smith", sel:Boolean =
true):void

{
 fullNameTextInput.text = txt;
 expertCheckBox.selected = sel;
}

You know the txt parameter will be a String of text, and you know the sel
parameter will be a Boolean, because a CheckBox has only two options
(either selected or not selected). But the function doesn’t return anything,
does it? In that case, you use a special data type, which really isn’t a data type
at all. It’s called void, and it’s just a way of saying “This function isn’t going to
return anything, so don’t expect it.” It’s good practice to include this.

Objects
Everything is an object. That’s right, in an object-oriented programming
language such as ActionScript, everything you deal with is an object of some
kind; that’s why you’ll notice the word object mentioned throughout this text.
“But that still doesn’t tell me what an object is!” you say? Okay. Here goes.

An object is, in a way, a container for anything else. It can hold a piece of text
or some numbers, it can have logic that manipulates pieces of data, and it can
even hold other objects. It can be thought of as something that has both state
and behavior, meaning it can have variables (state) and methods that work
with those variables (behavior). It’s the basic building block of any Flex appli-
cation, because, again, everything is an object. Your application is an object.
The Button inside your application is also an object, and any variables you
create are objects, such as the properties of a Button. And so on.

As an example, I’ll show you how to create your own object. Say you want to
create a new object called car and give it some properties that you expect a
car to have, such as the car’s type and color. You’d do that in ActionScript with
the following code, first creating an instance of an Object and then giving it
properties:

Note

You can determine the type of a property
by hovering over the property with the
mouse. After a moment, a tooltip will dis-
play with more information about that
property, including the data type.

LearningFlex3_book.indb 55 5/27/08 1:52:42 PM

Learning Flex 356

Classes

var car:Object = new Object();
car.type = "sports car";
car.color = "red";
car.topSpeed = 170;
car.isInsured = false;
car.driver = undefined;

Now you have a fast sports car with no insurance. You’re living dangerously.
Now you’ll create a driver for this car by creating another object:

var person:Object = new Object();
person.name = "Steve";
person.age = 19;

Now, because you have a perfect match for your car (an object), you can
modify the driver property (also an object) of the car to include this person
(an object as well):

car.driver = person;

Now what if you expected the program to have lots of cars and drivers and
you wanted to make sure they all had a defined set of properties? Classes are
a better way to deal with such things.

Classes
If everything is an object, then what is a class? A class is like a blueprint for
the kinds of information and properties an object will have, and an object is
an instance of a class.

When you created a car object, you gave it a few properties such as color and
type. If you wanted to create another car, you’d do the same thing, giving it
properties as you saw fit. But if you wanted to get organized, you could cre-
ate a Car class, setting it up with all the properties you expected to use. That
way, when you created a new car instance, you’d already have a blueprint of
what properties were available. This would give you a few benefits, such as
not having to worry about typos or forgetfulness (“Was the property called
hasInsurance, isInsured or was it something else?”). It also would give you
code completion in Flex Builder.

The car class would look like this in ActionScript (don’t worry about trying
to compile this code; just consider it an example):

public class Car
{
 var type:String;
 var color:uint;
 var topSpeed:int;
 var isInsured:Boolean;
 var driver:Person;
}

LearningFlex3_book.indb 56 5/27/08 1:52:42 PM

MXML and ActionScript Work Together

Chapter 5, Learning the Basics of Scripting 57

Notice that the driver property of the Car class is typed as Person. This
means a Person class exists, such as this:

public class Person
{
 var name:String;
 var age:int;
}

Notice all the properties of these classes are strongly typed, meaning you can
expect the age of a Person to be an integer and the isInsured property of a
Car to be a Boolean. You even know now that the driver property is a Person.
Now when you create new instances of cars or people, you know what prop-
erties to expect and what type they should be. Create a Car and a Person
again, taking advantage of the new classes:

var car:Car = new Car();
car.type = "sports car";
car.color = 0xFF0000;
car.topSpeed = 170;
car.isInsured = false;
car.driver = undefined;

var person:Person = new Person();
person.name = "Steve";
person.age = 19;

car.driver = person;

While this might seem like overkill this early on, you’ve actually benefited
from classes already, because the controls that you use in Flex are all made
from classes. For instance, the Button is actually from a Button class, and
when you use it in ActionScript or MXML, you know its properties are
always going to be the same. And while you may never need to create your
own classes in ActionScript, it helps to be familiar with the concept, because
it will come up frequently as you program with Flex.

MXML and ActionScript
Work Together
MXML doesn’t completely replace ActionScript. Rather, ActionScript and
MXML complement each other. As you’ll soon discover, scripting is still very
useful and usually necessary for interactivity. In fact, MXML isn’t necessary
at all, because you can build a full application in pure ActionScript. However,
I’m sure you’ll find that MXML is the best tool for the job of building your
application’s structure, because it’s easier to read and write.

LearningFlex3_book.indb 57 5/27/08 1:52:42 PM

Learning Flex 358

ActionScript’s Relationship with MXML

ActionScript’s Relationship
with MXML
Flex is composed of two languages, MXML and ActionScript. MXML is great
for laying out structure, and ActionScript is built for interactivity. What is the
difference between the two? In many ways they’re the same thing.

MXML = ActionScript
MXML markup is actually turned into ActionScript by the Flex compiler.
You can think of it like this: ActionScript is the core language of Flash Player,
and everything in Flex can be distilled into ActionScript. In this regard, you
could create a Flex application using an ActionScript project, and use only
ActionScript. However, because of the benefits of using a markup language,
MXML can be a more intuitive way to create applications.

Tags Are Classes
A tag placed declaratively in a Flex application is turned into the appropriate
code in ActionScript when it is compiled. For example, to create a Button in
MXML, you’d write the following code:

<mx:Button id="myButton" />

This could get compiled into the equivalent ActionScript code:

import mx.controls.Button;

var myButton:Button = new Button();

addChild(myButton);

Knowing this, you can use such ActionScript to create components dynami-
cally, not having to rely on MXML. The choice is yours, depending on the
needs of your application.

Attributes Are Properties
When you add attributes to a tag, you’re essentially changing the properties
of an instance of that component. For example, to change a Button’s label
property, you do the following in MXML:

<mx:Button id="myButton" label="Click Me"/>

which has the equivalent ActionScript:

import mx.controls.Button;

var myButton:Button = new Button();
myButton.label = "Click Me";

addChild(myButton);

Note

To compile means to convert, or translate,
source code into another language. So
a compiler is something that compiles
source code. To build means to assemble
all the necessary pieces of a Flex project
and compile them.

LearningFlex3_book.indb 58 5/27/08 1:52:43 PM

ActionScript’s Relationship with MXML

Chapter 5, Learning the Basics of Scripting 59

Looking at this ActionScript in more depth, you’ll see the first line contains
an import statement, importing mx.controls.Button. This is the way to tell
the compiler you want to ready a certain component or group of components
for use.

The second line declares a Button called myButton. This is equivalent to using
the id attribute in MXML. This way, you can reference this particular Button
later in your code.

Notice that a bit more is going on in the second line. For instance, the colon
followed by the word Button is a typing declaration, saying that this myButton
variable should be a Button. Because a variable can be anything, this is the
way to tell ActionScript you want a Button here, not a Panel or a piece of text
or something else.

This same line contains an equal sign and the statement new Button(); at the
end of the line. Entering new followed by a class’s constructor is how you create
things in ActionScript. The constructor is really a method of the same name
as the class, and it’s used to create new instances of classes. Just stating a vari-
able and giving it a type doesn’t usually make it into anything until you use
the equal sign and assign the variable to some value. For fundamental data
types, you can assign a variable directly and do not need to use a keyword,
such as a String (var name:String = "hello") or Number (var num:Number = 23).
But you can use this syntax if you like:

var name:String = new String("hello");

Attributes Are Styles
A component can have many types of properties, as you saw in Chapter 3
when I discussed the Flex Properties panel. You may have noticed that, under
the Category view of this panel, there is a section called Styles. Styles are
special properties of Flex components that are used to control the look and
feel of the component. While they can be considered properties, they are not
directly accessible in ActionScript using dot notation. In MXML, you can
easily set styles using attributes. However, because of the way that styles are
implemented in Flex, there is a different syntax for accessing style properties
in ActionScript, using the methods getStyle() and setStyle().

For example, the cornerRadius style property sets the roundness of a Button
control, and you could set this style with the following MXML:

<mx:Button id="myButton" cornerRadius="14" />

Being a style property, you cannot access it directly. Therefore, the following
code is incorrect:

myButton.cornerRadius = 14;

Note

These concepts may seem daunting at
first, and you might worry that you’ll
never remember what you need to
import, but Flex Builder is here to help.
If you use code completion when typing
Button, or any other class, Flex will
import it for you by writing the necessary
import statement.

LearningFlex3_book.indb 59 5/27/08 1:52:43 PM

Learning Flex 360

ActionScript’s Relationship with MXML

Instead, you must use the setStyle() method. This method takes two param-
eters. The first is the name of the style property, and the second is the value
you want to assign it to.

myButton.setStyle("cornerRadius", 14);

The method getStyle() allows you to get the value of a style property.
It takes a single parameter, which is the name of the style you’d like to
access, and returns a value representing the style. To get the cornerRadius of
myButton, for example, you could use the following ActionScript, which stores
the value in a variable called roundness:

var roundness:Number = myButton.getStyle("cornerRadius");

Attributes Are Event Listeners, Too
Event listeners are the way to tell a component to respond to an event, such
as a mouse click. You’ve already used them by setting up a click attribute for
a Button. However, while these listeners are set via an attribute in MXML,
they are not actually properties of the component. Instead, they are set via a
special method.

So, while to add a click listener to a Button in MXML, you’d do this:

<mx:Button id="myButton" click="doSomething()" />

the following would be done in ActionScript:

import mx.controls.Button;

var myButton:Button = new Button();
myButton.addEventListener("click", doSomething);

addChild(myButton);

Notice that the ActionScript way to register events uses the addEventListener()
method. This method takes two parameters: the name of the event (click in
this case) and the name of a function to call when that event occurs
(doSomething). Unlike inline ActionScript placed within a tag, this
addEventListener() method doesn’t allow you to make assignments such as
fullNameTextInput.text = txt. You’re allowed to place such assignments only
within a function and register that function. So, now you have yet another
reason to be familiar with functions.

When using the addEventListener() method, you place only the name of the
function you’d like to call in the second parameter. Don't include parentheses
following the function name. For example this code is incorrect:

myButton.addEventListener("click", doSomething());

Note

I’ll explain styles in depth in Chapter 14.
For more details on how to learn all the
properties, style properties, and available
events for a particular component, see the
sidebar "Reading Flex Documentation"
in the next chapter.

Behind the Scenes
Want to see all the ActionScript code
Flex generates from MXML? Within
your project’s properties dialog
(Project→Properties), go into the
compiler options by choosing Flex
Compiler from the list at the left. Here
you’ll see a field called Additional
compiler options. Within this field,
add the compiler argument –keep,
separating it from any other compiler
arguments with a space.

This will save the ActionScript code
the compiler creates from MXML, and
place it in a folder called generated
that you can look through. It’s nice
to see all the work Flex does for you.
(Note that the generated folder this
creates will be overwritten each time
you compile, so modifying it won’t do
you any good.)

LearningFlex3_book.indb 60 5/27/08 1:52:43 PM

Summary

Chapter 5, Learning the Basics of Scripting 61

Comments?
You’ll often find you need to comment your code, either to make a note for
yourself or others or to temporarily remove a piece of code or an application.
Commenting syntax is different between MXML and ActionScript.

In ActionScript, you can comment either one line or a block of code. To com-
ment out a single line, use the double forward slash syntax:

//This code won't be run
//public var foo:String = "No Comment";

For multiple lines, it’s more convenient to use the slash-asterisk syntax:

/*
 public var foo:String = "No Comment";
 public var bar:String = "Don't want to see it";
*/

Because MXML is XML, the way it’s commented is entirely different from
ActionScript. It uses special tag syntax to create a comment, namely, the char-
acters <!-- and -->. You may have seen this in HTML as well.

<!-- This is a comment in MXML -->
<mx:Button label="Button to Keep"/>
<!-- <mx:Button label="Button to Remove"/> -->

The ability to use comments is yet another benefit of using a markup lan-
guage to create applications. Using comments, you can remove an entire piece
of an application but keep the source code available to add at another time.
For example, your application might have a preferences panel for customiza-
tions, but you might have been pressed for time and couldn’t finish the panel.
Simply commenting the Panel allows you to keep your code for later use but
doesn’t compile it into the final application.

Summary
It’s not the goal of this book to make you an expert in ActionScript but instead
to give you an overview. I’ve given you enough information that you can cre-
ate simple interactivity; however, being a pro in ActionScript will take fur-
ther study. I recommend the Learning Series book Learning ActionScript 3.0:
A Beginner’s Guide (O’Reilly) for an easy-to-understand introduction to this
powerful language.

Note

It’s easy to add a comment in Flex
Builder without knowing the proper
syntax. You just select the text or code
that you want to comment, and select
Source→Add Block Comment. Whether
you’re editing ActionScript or MXML, the
proper comment syntax will be inserted.
When commenting, be sure you’ve select-
ed whole tags or blocks of code, or you’ll
get a compile-time error.

LearningFlex3_book.indb 61 5/27/08 1:52:44 PM

LearningFlex3_book.indb 62 5/27/08 1:52:44 PM

63

CHAPTER 6

IN THIS CHAPTER

Understanding Events

Handling Events Inline

Using Event Constants

Making Things Happen

Debugging for Kicks

Summary

Handling user input is what makes an application tick. Dealing with mouse
clicks, dragging, typing on the keyboard, and such is where the fun is. Other-
wise, you wouldn’t have an application; you’d have just an animation or a
static image, and that’s, well, comparatively boring.

However, understanding what someone using your application does and
responding to that action takes some planning and work. You have to account
for every interaction that you think is important. Basically, you’re thinking
about what a user might want to do and preparing for that. Of course, this
can be a challenge, but it can be really rewarding as well.

Understanding Events
A Flex application responds to user input by something called an event. An
event is something that happened, either by user interaction, or by other
things happening such as a photo appearing or data returning from a server.
(Getting data from a server is covered briefly in Chapter 10.) When a user
clicks a button, for instance, an event occurs. (The event for clicking some-
thing is called—you guessed it—click.) And when a button is created, an
event also occurs. (This event is called creationComplete.) When the event
happens, you say the event fired or was dispatched. To respond to such an
event, you set up something called an event handler or listener.

ADDING INTERACTIVITY
WITH ACTIONSCRIPT

LearningFlex3_book.indb 63 5/27/08 1:52:44 PM

Learning Flex 364

Handling Events Inline

Handling Events Inline
MXML makes listening for events very simple. All you have to do is add the
proper event attribute to a tag and tell it what to do. This could mean calling
a function or just modifying a property. The following code example shows
a Button (myButton) that changes the text of a Label (myLabel), as shown in
Figure 6-1, by modifying the Label’s text property. You do this simply by add-
ing the attribute click to the Button:

<mx:Label id="myLabel" text="The Button will change my text" />
<mx:Button id="myButton" label="Change it!" click="myLabel.text = 'Some

new text'"/>

Figure 6-1. The click event play-by-play

The same goes for other events, such as when a TextInput’s text changes by a
user typing into the component. That’s a change event, so the following code
would cause a TextInput to modify the Label:

<mx:Label id="myLabel" text="The TextInput will change my text" />
<mx:TextInput id="myTextInput" change="myLabel.text =

myTextInput.text"/>

This code modifies the Label’s text to match the TextInput’s text any time
the TextInput’s text changes. There’s actually a better way to make a property
update itself automatically when another property changes, and that’s called
data binding. I’ll go into more detail on that in Chapter 7.

While there’s no limit to the number and names of events that a component
can use, you will see a few old standards. Table 6-1 lists the most common
types of events.

LearningFlex3_book.indb 64 5/27/08 1:52:45 PM

Handling Events Inline

Chapter 6, Adding Interactivity with ActionScript 65

Table 6-1. The most common events

Event Name Constant Description

change Event.CHANGE Fired when a selection changes in a
list or navigation component such as
a TabBar, or when a text component’s
text is changed.

click MouseEvent.CLICK Fired when a user clicks an element.
This means someone pressed the mouse
button down and released it on the
same component.

creationComplete FlexEvent.CREATION_COMPLETE Fired when a Flex component is created.

mouseDown MouseEvent.MOUSE_DOWN Fired when someone presses the mouse
button down on a component.

mouseUp MouseEvent.MOUSE_UP Fired when someone releases the mouse
button on a component.

resize Event.RESIZE Fired when the application is resized
because of the browser or window being
resized.

rollOut MouseEvent.ROLL_OUT Fired when the mouse pointer moves
out of the component area.

rollOver MouseEvent.ROLL_OVER Fired when the mouse pointer moves
into the component area.

Of course, tons more events exist, and many are specific to certain controls,
but knowing the events in Table 6-1 will get you pretty far. You can see what
kinds of events a specific control offers in a few other ways:

In Design mode, click a control that’s been added to the stage, and look at •	
the Flex Properties panel’s Category view. Check out the Events section in
that list, and you’ll see every event available for that component.

In Source mode, when using code completion on a component, all of its •	
properties will pop up. The events will be listed with a little lightning bolt
icon next to them.

Check out the documentation for a component by selecting Help•	 →	
Help Contents and searching for a component or by selecting a component
in Source mode and then selecting Help→Find in Language Reference. At
the top of every component’s documentation page are links to its proper-
ties, methods, and events. Check out its list of events for details. (See the
sidebar “Reading Flex Documentation” for more information.)

LearningFlex3_book.indb 65 5/27/08 1:52:46 PM

Learning Flex 366

Handling Events Inline

Flex comes with some of the best documentation of any
programming language. You can access this documentation by
going to Help→Help Contents when in Flex Builder, or you can
access it online at http://livedocs.adobe.com/flex/3/.

The Flex documentation contains a number of articles on
using every aspect of Flex, so once you’re keen on using the
documentation, you can find pretty much everything you
need to build your skills, including lots of example code. Often,
you’ll find exactly what you’re looking for by using the search
functionality in the documentation.

One of the most useful parts of the documentation is the
Flex 3 Language Reference, which contains all the information
you need to use Flex components. It might seem daunting at
first, but once you get the hang of it, you’ll find yourself visiting
it quite a bit.

There are a few ways to get to the Language Reference. One is
to search for a component by name, such as Button. Another is
when you’re using Flex Builder in Source mode—from there you
can get the details for a specific component by selecting the
component and going to Help→Find in Language Reference.
Otherwise, you can browse for the Language Reference by
using the table of contents, where you’ll choose Adobe Flex 3
Help, then Adobe Flex 3 Language Reference. Typically, you’ll
access the reference when you’re looking for the specifics of a
component, so I recommend either searching for the component
or using the Find in Language Reference feature of Flex Builder.

Once you look at the reference for a particular component,
you’ll see something similar to Figure 6-2. At the top of every
component’s reference is a list of its available properties,
methods, events, styles, and so on—even a link to examples is
included.

Figure 6-2. The Flex Language Reference for Button

To see the available events for a component, you could click
the Events link at the top, or scroll your browser to the Events
heading. There you’d see the list of events as pictured in
Figure 6-3. However, like other properties of a component, there
may be a large list of inherited events which you can see by
clicking “Show Inherited Events.” Components typically inherit
functionality from a higher-level class, so to view the properties
of the base classes, you can choose to view the inherited events.
You’ll find it valuable, because many of the properties you’ll want
to access may be inherited from a higher class. In the case of
Button, it inherits its click event from the class UIComponent
(which is actually the base class for all visual Flex components).

Figure 6-3. The Flex Language Reference for Button - Events
The Flex 3 Language Reference is your one-stop shop for
everything you need to use components in ActionScript and
MXML, and you’ll find it an indispensable resource when you
start developing in Flex.

Reading Flex Documentation

LearningFlex3_book.indb 66 5/27/08 1:52:47 PM

Making Things Happen

Chapter 6, Adding Interactivity with ActionScript 67

Using Event Constants
A constant is a fixed value in Flex, which means it’s a way to store a value
that you don’t expect will change, to make it easier to remember. Constants
are usually used to give a name to some numeric value, because, let’s face it,
words are easier to remember than numbers. Can you remember π (pi) to
the fifteenth decimal place? I didn’t think so. What about the ASCII value for
the Caps Lock key? That’s why some smart person invented constants. Get a
piece of the pi by using the constant Math.PI, or get the keyboard code for the
Caps Lock key with Keyboard.CAPS_LOCK.

But numeric values aren’t all constants are good for. Flex often uses constants
for strings as well, and the most common place you’ll see them is in event
types. For instance, the event for when the user’s mouse goes out of the Flex
application’s bounds is called mouseLeave. Because the string “mouse leave”
or “mouse-leave” isn’t sufficient, Flex has a constant set up so you don’t have
to remember the specifics: Event.MOUSE_LEAVE.

You might be thinking to yourself, “That’s not any easier to remember!” True,
but if it makes you feel any better, because these constants are properties of
a class (MOUSE_LEAVE is a property of the Event class, PI is a property of the
Math class, and so on.), they’re available using code completion. That means
you don’t have to worry about typos. Type the first few letters, and Flex
Builder will fill in the rest for you.

You’ve probably noticed by now that constants are all in uppercase—that’s
to distinguish them as constants. Though this capitalization is not neces-
sary, it’s considered a best practice. And because it’s difficult to distinguish
 separate words in all-uppercase text, the standard is to place an underscore
(_) between the words.

Making Things Happen
Returning to the HelloWorld application, you’ll now make some things happen.

First, you’ll add a few more sources of user input. You have a name field
already, so now you’ll add an age field. Place another Label with the text “My
age is:” below the name text input, place a NumericStepper control below
that, and give them the id attributes ageLabel and ageNS. The NumericStepper
control is like a TextInput control that accepts only numbers and has special
keyboard and mouse interactions to make increasing or decreasing the num-
bers easy. You’ll want to set a couple of properties on the NumericStepper to
customize it. The property maximum will set the top value allowed, and the
minimum property will set the minimum. Set these to a maximum of 120 and
a minimum of 18. This additional code should look like the following:

<mx:Label id="ageLabel" text="My age is:"/>
<mx:NumericStepper id="ageNS" maximum="120" minimum="18" />

LearningFlex3_book.indb 67 5/27/08 1:52:47 PM

Learning Flex 368

Making Things Happen

Using Pop-up Alerts to Display Information
Now that you have a basic form, you’ll display the data in a pop-up. To do
that, you’ll create a function that uses the class called Alert, which is used to
display pop-up alerts:

import mx.controls.Alert;

public function showInfo():void
{
 Alert.show("Your name is " + fullNameTextInput.text +
 " and your age is " + ageNS.value);
}

Notice the import statement that imports the Alert class necessary for this
function. Remember that when you use code completion, most imports will
be written for you automatically.

This function has a few features you haven’t learned about yet. One is the
show() method on the Alert class. This is a static method, one that exists on
the Alert class itself, that displays a window centered above everything else.

Static Properties and Methods
Take a look at the code for displaying an alert, and notice the show() method. This
has a different syntax than you may be accustomed to using, because it exists on the
Alert class instead of an instance of that class. That is to say, you’re using the class
name (Alert), and calling the method using dot notation on the Alert class.

Just like constants, which are properties that are attached to a class, static methods
are attached to a class. Instead of creating a variable of Alert type, (such a calling
new Alert()), and then calling the show() method on that instance, you call the
method on the Alert itself.

Constants are generally static properties of a class, meaning they are variables
attached to the class itself, and that is why you use a similar syntax for constants and
static methods. (These are actually created using the static access modifier when
creating such methods or variables in ActionScript.)

Also note the value property of the NumericStepper control. Because the
value property behaves similarly to a TextInput control, you might expect
the property you’re looking for is text. However, the NumericStepper actu-
ally holds numeric data, so its property is called value instead. Because
it is a Number, you can do math calculations with its value property, like
ageNS.value + 10 to add 10 years to your age. (On second thought, maybe
taking away 10 years from the age would be better.)

This addition calculation brings up another point. Plus signs (+) are used
in ActionScript to both add numbers and piece together text. The use of the
plus signs in the case of adding years to your age would be addition, but in
the case of the " and your age is " + ageNS.value, the plus sign is used for
 concatenation, or the linking together of data. What you’re doing in your

LearningFlex3_book.indb 68 5/27/08 1:52:48 PM

Making Things Happen

Chapter 6, Adding Interactivity with ActionScript 69

application is creating a phrase that has dynamic information gathered from
your form fields. Although the value property, as you just learned, is numeric,
Flex is smart enough to realize that it can’t add a number to a string of text
such as " and your age is " so it changes the numeric value into a text value
for you. This might not even be something you would’ve noticed, but it’s good
to recognize, because this functionality may not work as expected in all situa-
tions. See the box “Conversion, Coercion, and Casting” for more information.

Conversion, Coercion, and Casting
So, now you understand the idea of typing your variables. You’ve thought it out and
decided what types your variables should be, you’ve typed everything nicely, and you
feel confident that your code is clean and optimized. Then you wake up one morning
and realize you need to change one data type into another. What to do?

A few methods of conversion are available to you, the Flex and ActionScript guru
that you are. One is coercion, or implicit conversion. This happens when you have a
variable of a numeric type but you imply in your code that this number should be
displayed as a string. Such is the case when setting a TextInput’s text property to
a number. In some cases, this will be fixed for you automatically, but sometimes the
compiler will complain. Then you need to do an explicit conversion, also known as
casting or typecasting. This kind of casting means you want to tell the compiler to
convert, at least temporarily, the type of a value to another type. In the case of using a
number in the text property, you want to change a numeric value to a text value.

You have lots of ways to accomplish an implicit conversion at your disposal.
One way is to use the constructor of the desired type to convert the value. The
constructor is the special method used to create a new instance of a class, such as
new String(). It’s the method of the same name as the class. Using the constructor
and passing in a value will convert the value. For instance, you could use the code
fullNameTextInput.text = String(ageNS.value). An additional means of
casting is using the keyword as. This tells the compiler to think of a value in another
way. Use the code fullNameTextInput.text = ageNS.value as String to
do that. A final means of conversion is to use the toString() method, which
most classes in Flex have implemented. The toString() method returns a string
representation and is a useful method to know. In that case, you could use the code
fullNameTextInput.text = ageNS.value.toString().

One last thing to notice in the example is the way the code breaks across
two lines, even though it’s considered one entity. Usually you’ll need to put
everything that is a complete statement on one line, such as passing a long
parameter into the show() method. But, when you have plus signs or commas,
you’re allowed to bend the rules and break the line. For readability, you place
an indentation in front of the following line to show that it is a continuation
of the previous line. Of course, you could still place all this code on one line,
but that may make it difficult to read for some users with smaller screens,
causing them to have to scroll horizontally to read all the code.

The next step is to remove the previous setForm() function you created and
to register the button’s click event with your new showInfo() function so that
when a user clicks the button, a pop-up alert displays. Do that, and then go

Note

A good rule of thumb is to set a maxi-
mum line length of 80 characters of text
in your source code. That way it will be
readable to most people.

LearningFlex3_book.indb 69 5/27/08 1:52:48 PM

Learning Flex 370

Making Things Happen

ahead and run it to see your work. You should see an alert similar to the one
in Figure 6-4. The full code for your application so far may look like this:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute"
 applicationComplete="fullNameTextInput.setFocus()">

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;

 public function showInfo():void
 {
 Alert.show("Your name is " + fullNameTextInput.text +
 " and your age is " + ageNS.value);
 }
]]>
 </mx:Script>

 <mx:Panel id="panel" x="10" y="10" width="250" height="200"
 layout="vertical" title="Howdy Ya'll" paddingLeft="5">
 <mx:Label text="My name is:" fontWeight="bold"/>
 <mx:TextInput id="fullNameTextInput"/>
 <mx:Label id="ageLabel" text="My age is:" fontWeight="bold"/>
 <mx:NumericStepper id="ageNS" maximum="120" minimum="18" />
 <mx:CheckBox id="expertCheckBox" label="I'm a Flex Expert!"/>
 <mx:Button label="Click me" click="showInfo()"/>
 </mx:Panel>

</mx:Application>

Figure 6-4. An Alert displaying some information

Using Change Events
So far you’ve worked only with click events, which occur when a Button or
other control is clicked. Now you’ll learn how to deal with another type of
event, a change event. These often occur when a selection changes or a text or
value changes on a control. When a NumericStepper or TextInput changes,
the controls fire change events. So, add a listener for the change event on your
NumericStepper control that runs the showInfo() function:

LearningFlex3_book.indb 70 5/27/08 1:52:49 PM

Debugging for Kicks

Chapter 6, Adding Interactivity with ActionScript 71

<mx:NumericStepper id="ageNS" maximum="120" minimum="18"
change="showInfo()" />

Now, when the value of the NumericStepper changes, this event fires, and
you’ll see the pop-up alert. The change will occur when either using the
mouse to change the value via the arrow buttons, using up and down arrows
on the keyboard, or typing in the NumericStepper and then confirming the
change (by pressing the Tab key or using the mouse to select another com-
ponent). Notice that both a Button’s click event and this NumericStepper’s
change event are registered with the same showInfo() function. It’s totally fine
to do that. Registering multiple functions to listen to one event is part of the
power of programming.

What Flex Does When You’re Not Looking
You might be wondering at this point how Flex does what it does. You write some
MXML or create your masterpiece in Design mode, but what happens when you push
that little green button?

Flex is, in one respect, a compiler for MXML and ActionScript. When using Flex Builder
to compile your application, a script runs in the background that does the following:

Converts all MXML into ActionScript1.

Converts all metadata into compiler arguments2.

Compiles the generated ActionScript into bytecode (3. .swf file)

ActionScript is still the main language for Flash applications. MXML is great for easily
creating applications and has great options like styling and creating services and
effects. But the Flex compiler converts your MXML into a web of ActionScript classes,
essentially taking your high-level code and creating lots of lower-level code. All this
code gets recompiled into SWF bytecode, which is a set of instructions for Flash
Player. It also looks at special metadata (the stuff in square brackets) and injects that
into the SWF as well; things like embedded assets, settings for frame rates, and so on.

Debugging for Kicks
While showing how to display an alert helps in learning how events can
work, displaying such a pop-up alert with every little change can be annoying.
Because this isn’t really a feature you’d want to implement in your application,
but more of a way for you to learn from and test your application, there’s a
better way to display information in regard to an event. It’s called debugging.
While the name implies that there’s a bug, or glitch, in your software that
you’re trying to locate, you’ll see there’s really more to debugging than that.
Debugging in Flex is a great way to show the innards of your application or
to display information while you’re developing.

Outputting Information to the Console
To debug your application, you’ll use a method called trace() that will dis-
play some text in the Console panel. Simply replace the Alert.show method
with trace, as in the following:

LearningFlex3_book.indb 71 5/27/08 1:52:49 PM

Learning Flex 372

Debugging for Kicks

public function showInfo():void
{
 trace("Your name is " + fullNameTextInput.text +
 " and your age is " + ageNS.value);
}

Now, just running the application won’t actually display this information.
To use trace, you’ll have to be debugging your application. How do you do
that? Pretty easily—I’m glad you asked. Instead of running the application
by using the green arrow button, you’ll click the green bug icon to its right.
Clicking this icon launches the application in debug mode. In most cases, it
will look the same to you, but now when you change the NumericStepper,
the string of text will be output to the Console panel.

Debug your application, click the NumericStepper a few times, and then
switch back to Flex Builder to see the information in the Console panel. The
same information that was previously in a pop-up alert is now output to a
new line of text in the Console panel, as shown in Figure 6-5.

Figure 6-5. The output of a trace in the Console panel

The trace statement is deceptively simple. However, coupled with debug
mode, it will be one of your most powerful tools as you grow as a developer.
Next you’ll learn how to use debugging to find out more information about
an event.

Using Event Parameters in Debugging
Remember those parameters you learned about that you could pass to a func-
tion? You’ll now add a parameter to your showInfo() function called event
and make it of type Event. (You could call it whatever you like, but I usually
just call it event in lowercase.) Now in the trace statement, you’ll be able
to get some details about the event, namely, two properties called type and
currentTarget. Your function should look like this:

public function showInfo(event:Event):void
{
 trace("The type is " + event.type +
 " and the current target is " + event.currentTarget);
}

What’s going to happen is an event object will be passed to this function.
It is of type Event, which is a general type that has properties attached to it
which are helpful in learning about the event. The type property contains

Note

The Console panel is, by default, located
at the bottom of your Flex Builder win-
dow, next to the Problems panel. If your
Console panel isn’t visible, make it visible
by selecting Window→Console.

LearningFlex3_book.indb 72 5/27/08 1:52:50 PM

Debugging for Kicks

Chapter 6, Adding Interactivity with ActionScript 73

the name of the event type, which in this case is a change event (“change”).
The currentTarget property contains a reference to the object that passed the
event, which is whatever called the function.

You might have realized that making this work requires one more step: you
have to actually pass the parameter to the function when you call it. There’s
a special parameter in Flex called event that is used to pass event objects to
functions, and you’re going to use it. It’s built in. You haven’t created any vari-
able called event, but Flex will create one at compile time. Think of it as a
feature. Pass in the event by using the following code for your change event
on the NumericStepper:

change="showInfo(event)"

And pass in the event for the button by using this for your click event on
the button:

click="showInfo(event)"

Because the function expects an event parameter to be passed in, failing to
pass it when calling the function results in a compile-time error.

Now when you debug the application and change the NumericStepper, you’ll
get a message in the Console panel like “The type is change, and the cur-
rent target is HelloWorld0.panel.ageNS.” Make sense? You knew the type of
the event would be change, but that current target value is a little cryptic.
Notice the ageNS, which is the id of the NumericStepper. But what’s the
HelloWorld0.panel part? Well, when Flex creates your application, it actually
creates a class based on the name of the application. In this case, Flex added
zero to the end of the name. As for the .panel part, that’s the id of the panel in
which the NumericStepper is located. So, in terms of a hierarchy, ageNS is con-
sidered part of panel, which is in turn part of the HelloWorld application.

When clicking the button, the trace statement will display slightly dif-
ferent information. Because the event registered on the button is a click
event, the trace will display the event type as “click.” Also, you’ll see that the
currentTarget is the button. (If you haven’t given the button an id, the Flex
compiler creates one for you, and it may be displayed here as “Button0” or
“Button23” or something like that.)

This event information is handy when creating functions, because you can
make the functions highly reusable. You could create one function that
changes what it does based on who called it (the currentTarget) or what type
of event occurred (the Event type).

Using Breakpoints
Next you’ll learn a pretty advanced technique, but it’s one I find so essential
that it merits explaining. I’m talking about using breakpoints in your code to
really see what’s happening.

LearningFlex3_book.indb 73 5/27/08 1:52:50 PM

Learning Flex 374

Debugging for Kicks

A breakpoint is a place in the logic of your code at which you’d like to stop
everything. Because some programming constructs can get complicated, it’s
really useful to be able to say, “Hold up a minute!” and check how things are
going. A breakpoint allows you to do that, letting you pause the application
and view its current status before continuing.

To use a breakpoint, double-click in the gutter, the area where the line
numbers appear to the left of your code. Do this next to the line of code in
which you want to create a breakpoint. In this case, you’ll want to create a
breakpoint in the only place it makes sense, the only place you really have
application logic, within your one and only function. So, place a breakpoint
to the left of your trace statement, as shown in Figure 6-6.

Figure 6-6. A breakpoint placed on line 11

Now when you debug the application, whenever the NumericStepper is
changed or the button is clicked, the function will be called and the break-
point will be set. You’ll probably be prompted the first time with a dialog
box from Flex Builder similar to Figure 6-7, which asks you whether you’d
like to switch to the Flex Debugging perspective. I recommend turning on
the checkbox that says “Remember my decision” because this will launch the
right perspective when breakpoints are set. Click the Yes button, and you’ll
have a whole new perspective.

Figure 6-7. Confirm Perspective Switch dialog box

Seeing a New Perspective
Perspectives in Flex Builder are just a way of specifying and remembering
a panel layout. When you’re developing in Flex Builder for the first time,
you’re using the Flex Development perspective, which contains panels like
Flex Properties and Flex Navigator. When debugging, you’ll be using a few
new panels specific to that task, and they’re contained in the Flex Debugging
perspective.

LearningFlex3_book.indb 74 5/27/08 1:52:51 PM

Debugging for Kicks

Chapter 6, Adding Interactivity with ActionScript 75

One of these new panels you’ll see, now that you’re in the Debugging per-
spective, is the Variables panel. By default it’s located in the top right of Flex
Builder. Flex Builder also allows you to move and resize panels easily just by
clicking and dragging the title bar of the individual panel. Because this panel
is a tree list that needs a lot of vertical space, I really recommend moving it so
that it takes up the whole right side of Flex Builder. Just click and drag the
panel, moving your mouse to the far right side of the Flex Builder window.
You’ll see a thin black outline, which is your feedback as to where the panel
will be placed. You can also drag the panel outside the Flex Builder window,
and it will be placed in its own pop-up window.

Whether you clicked the button or changed the NumericStepper, the
Variables panel will display information about your application in its current
state, at the breakpoint you set. You should see two items in a tree list, one
called this and another called event. The item this refers to the application
as a whole, and the item event refers to the event parameter that you passed
to the function.

Click the arrow to the left of the event item to display the child nodes. You’ll
focus on the items in the [inherited] node, so click the arrow to display
them. You’ll see all the properties of this event object, including the beloved
type and currentTarget properties, displayed with their current values, as
shown in Figure 6-8.

Figure 6-8. Variables panel

LearningFlex3_book.indb 75 5/27/08 1:52:51 PM

Learning Flex 376

Summary

Ending Your Debug Session
Feel free to poke around here as you wish. You might want to return to this
later, because it will tell you a lot about how Flex works, so keep it in mind.
For now, close this perspective, and end your debug session. Note that debug-
ging may lock up your browser, because it pauses Flash Player. So, the way
to end the session is by clicking the red, square button located both in the
Console panel and in the Debug panel, as shown in Figure 6-9. You can also
access this command by selecting Run→Terminate. That will terminate the
debugging session. When you’re done, you’ll also want to return to the Flex
Development perspective by using the toggle button bar at the top right of
Flex Builder or by selecting Window→Perspective→Flex Development.

Summary
Now you’ve learned a bit more about what events are and how to use them
in your application. Don’t worry if some of this is overwhelming; interactiv-
ity can be a very challenging part of development. If you need to return to
this chapter later for a refresher, feel free. While your application may not be
looking that different yet, you’ve learned some very important concepts in
creating interactivity that you’ll be able to use very soon.

In the next chapter, you’ll get into some of the powerful features of Flex. Then
you’ll really start to make your application into something useful.

Figure 6-9. Debug panel

LearningFlex3_book.indb 76 5/27/08 1:52:52 PM

77

CHAPTER 7

IN THIS CHAPTER

What Is Data Binding?

How to Use It

Implementing Two-Way
Bindings

Storing Complex Data

Creating Bindable Variables
in ActionScript

Determining When Data
Binding Isn’t Appropriate

Putting Data Binding to
Work for You

Summary

Say your application knows someone’s display name (Jed90210) and you’d
like to show that name in various places: on a button to sign out, on the
person’s profile page, and on the welcome screen to say “hello.” You could just
store a variable with the display name and reference that variable throughout
the application. But what if that person decides to change their display name
to Jed75961? In such a case, you’d need to write code to listen for changes to
the display name, updating all references to it explicitly. If you’ve referenced
the name in quite a few places, that would be a lot of code.

With Flex, you have another option. You can store the display name in one
place and reference it all you want. If the display name were updated, all ref-
erences to it would change automatically, without any need to write tedious
code to listen for changes. You can accomplish all this through the magic of
data binding.

What Is Data Binding?
Data binding is one of those features that makes Flex so great: it gives you the
ability to easily pass information around. It is simply a way to reference a piece
of data and watch for changes to that data in an intuitive way. This data can
be anything from a piece of text, such as a display name, to a structured list of
information, such as a bunch of stock quotes, and anything in-between—data
is simply information, in any form. Essentially, data binding makes it natural
for developers to share information across their applications. You can use data
binding: between one component’s properties and another, between a compo-
nent’s properties and a data model, and between different data models.

USING DATA
BINDING

LearningFlex3_book.indb 77 5/27/08 1:52:53 PM

Learning Flex 378

How to Use It

How to Use It
Data binding is surprisingly easy to use, considering how powerful it can be.
You can take advantage of it in a number of ways. Depending on your situ-
ation and coding style, you can choose the best way to implement it in your
application.

Basic Usage
The most basic example is binding a property of one control to a property
of another. Consider the following Label control’s text that is bound to a
TextInput control’s text:

<mx:TextInput id="helloTextInput" text="Hello, World"/>
<mx:Label text="{ helloTextInput.text }"/>

In this example, the phrase “Hello, World” will appear in both the TextInput
and Label controls. This is because the text property of the Label control is
bound to the text property of the TextInput control. You specify this by using
curly braces ({ and }) to surround the name of the property being bound to.
The curly braces are used to distinguish bindable information from regular
text in your MXML—without them the Label’s text property would be set to
the text “helloTextInput.text”. This is the simplest and most common usage
of data binding in Flex.

Not only will the text be the same when the application runs, but changes in
the TextInput will be reflected in the Label. That means the text typed into
the TextInput will display in the Label, automatically and immediately.

If you want to play around with some of the example code here
or write your own to get a feel for these concepts, please do so.
If you’re afraid to mess with the main project that you’ve been
working with, you can easily create a new project using the skills
you learned in Chapter 2.

Alternatively, you can create a new application within your main
project. Yes, Flex projects can have multiple applications within
them. To create an application within a project, select the project
in the Flex Navigator, and select File→New→MXML Application.
Complete the dialog box to create a new application, and you’re
good to go.

Note that while a Flex project can have multiple application files,
one application always is considered the default application.
What default application means is, “What application does the

green Run button launch when no application is selected?” If a
project has more than one application, the Run button has a few
rules it goes over before deciding which application to launch
when clicked:

If an application is being edited in Design or Source mode, •	
clicking the Run button runs that one.

If nothing is being edited, clicking the Run button launches •	
the application that is selected in the Flex Navigator.

If nothing is selected in the Flex Navigator, clicking the Run •	
button launches the main application.

Also worth noticing is that the Run button has a drop-down list
next to it. This list is populated by the applications contained in
the project currently selected in the Flex Navigator. You can use
this drop-down list to select which application you want to run.

Multiple Applications in a Project

LearningFlex3_book.indb 78 5/27/08 1:52:53 PM

How to Use It

Chapter 7, Using Data Binding 79

Note that you don’t want to bind the Label control to the TextInput con-
trol itself but to the TextInput control’s text property. Thus, the following is
 incorrect:

<mx:TextInput id="helloTextInput" text="Hello, World"/>
<mx:Label text="{ helloTextInput }"/>

This code would not cause an error, but the result would be less than spec-
tacular. What would happen is that Flex would assume you wanted the fully
qualified id of helloTextInput, and your label would read something like
“ApplicationName0. helloTextInput.”

As another example, you’ll see how to create two variables for a first name
and a last name, using the String tag. The String tag creates a String vari-
able that is set up for binding. You’ll then bind the first name to the text of
a label.

<mx:String id="firstName">Alaric</mx:String>
<mx:String id="lastName">Cole</mx:String>

<mx:Label id="nameLabel" text="{firstName}"/>

Notice the curly braces surrounding the variable name firstName in the text
attribute. The curly braces tell the Flex compiler to place the value of firstName
as a string of text into the Label control’s text attribute. Without curly braces,
Flex would place the literal string “firstName” as the text of the Label con-
trol. Curly brace syntax also tells Flex to listen for changes to the variable. If
“Alaric” were changed to another name, the Label control would update itself
accordingly. Curly braces signal to Flex that something is a binding.

The variable firstName is the source of the data binding expression. The text
of the Label control is the destination.

Multiple Destinations
I mentioned binding a display name across multiple parts of an application
earlier. Data binding isn’t limited to one source and one destination, though;
it can have the same source data bound to multiple destinations. Consider
the following code, which binds a display name to the text of a Label control
and the label of a Button control:

<mx:String id="displayName">Jed90210</mx:String>

<mx:Label id="nameLabel" text="{displayName}"/>
<mx:Button id="nameButton" label="{displayName}"/>

Note

Using data binding is one of those situ-
ations where giving your components
an id is essential. You must give an id
to the component that is the source of a
data binding expression so that you can
reference it.

LearningFlex3_book.indb 79 5/27/08 1:52:53 PM

Learning Flex 380

How to Use It

Concatenation
You’re not limited to just a variable name or a property in binding expres-
sions. You can also concatenate (piece together) and otherwise manipulate the
information inside the curly braces. If you want a label to greet the person,
you can do that easily:

<mx:String id="displayName">Jed90210</mx:String>

<mx:Label text="{'Hello, ' + displayName}"/>

This code combines the string “Hello, ” with the display name “Jed0210,”
because it uses the plus sign (+) to put together two strings.

More complex combinations can also occur where you might combine the
first and last names and add a greeting. It’s important to point out that when
either the first or last name changes, the label’s text will update:

<mx:String id="firstName">Alaric</mx:String>
<mx:String id="lastName">Cole</mx:String>

<mx:Label text="{'Hello, ' + firstName + ' ' + lastName}"/>

Another way to concatenate a string is by using multiple sets of curly braces.
Instead of concatenating strings via quotes and plus signs, you can simply
place more than one binding expression within an attribute. Thus, the follow-
ing is equivalent to the previous example:

<mx:Label text="Hello, {firstName} {lastName}"/>

In this code, regular text is being mixed with a binding expression. The Label
control contains the text “Hello, ” followed by a binding expression, then
another space, and then another binding expression. Of course, when the
application runs, the Label control displays the text “Hello, Alaric Cole” in
my case.

You can put white space between the curly braces and the property you want
to bind, because it will not affect the actual values. While white space will be
part of the actual created value if it’s outside the braces and this can be used
to help form strings for display, white space within the braces doesn’t matter.

In fact, a lot of Flex developers like to place a bit of space between the interior
of the curly braces and the variable reference to aid in readability, such as the
following:

<mx:Label text="Hello, { firstName } { lastName }"/>

See Figure 7-1 for details.

These spaces are not output

These spaces are output

Figure 7-1. How white space is seen in a binding expression

You Can Quote Me
on This

Notice that you typically use single
quotes inside curly braces in a
binding expression. This syntax
prevents confusion with the XML
attribute’s double quotes. When the
Flex compiler sees a set of beginning
and ending double quotes, it will
assume the attribute is complete,
and if any extra double quotes are
hanging around, it will get confused.

Actually, all that matters is that the
beginning and ending quotes match,
so you can even flip the double
quotes and single quotes, like this:
text='{"Hello, " + firstName +
" " + lastName}'.

You can also use Flex Builder’s Design
mode to enter the valid characters to
prevent errors. Select a component in
Design mode, and then look for the
property you want to modify in the
Flex Properties panel. When you enter
your value or binding expression
there, Flex Builder automatically
ensures that the right characters
are entered, possibly inserting
escape characters for the original
characters. These special character
sequences act as a substitute for
other characters, preventing conflicts
in your source code. When entering
a set of quotes in Design mode, Flex
Builder may create escape characters
such as ", which means
“double quote character.”

LearningFlex3_book.indb 80 5/27/08 1:52:54 PM

How to Use It

Chapter 7, Using Data Binding 81

More Uses for Curly Braces
You’ve used curly brace syntax to modify or piece together strings for data
binding and to cause fields to update automatically. So, what the braces are
actually doing is twofold: declaring bindable properties and distinguishing
regular text from dynamic text. You can actually use the curly braces just for
dynamic text without any bindings. The following example shows a simple
math operation placed inline, mixing regular text with dynamic text:

<mx:Label text="Eleven times forty-two equals {11 * 42}"/>

Here’s an example using more than one set of curly braces:

<mx:Label text="Hey {firstName}, eleven times forty-two equals
{11 * 42}"/>

The <mx:Binding/> Tag
In larger applications, you may find it useful to separate your binding decla-
rations. In previous examples, a Label tag, through the use of the curly braces
in its text attribute, told Flex it wanted to be bound to a specific variable, like
a first name. This is fine and is the typical way to set up bindings. However,
because of your coding style or the way in which your project in structured,
you may find that this makes the Label control “know” too much about what
it’s bound to. That’s because, in the case of binding to someone’s first name,
the Label tag would refer to that firstName variable explicitly.

Basic usage
If you prefer to keep things separated and declare bindings outside of compo-
nent tags, you can set up bindings in MXML in another way. Specifically, you
can use the <mx:Binding/> tag to declare what’s bound to what:

<mx:String id="firstName">Alaric</mx:String>

<mx:Label id="nameLabel"/>

<mx:Binding source="firstName" destination="nameLabel.text"/>

The <mx:Binding/> tag just says you want to bind the firstName variable to
the text property of the Label control called nameLabel. This is where it’s
useful to think of the source and destination of your binding, because the
<mx:Binding/> tag has a source property and a destination property that
you need to set up. Because the <mx:Binding/> tag must refer to both the
firstName variable as well as the Label control, the Label control needs to
have an id.

Multiple sources
I’ve talked about binding a source to multiple destinations and showed ear-
lier that someone’s display name could populate both a Label and a Button.
One of the benefits of using the <mx:Binding/> tag is that you can specify

Note

You don’t use curly braces within the
source and destination properties of
the <mx:Binding/> tag. So, <mx:Binding
source="{firstName}" destination=
"{nameLabel.text}"/> is incorrect.

LearningFlex3_book.indb 81 5/27/08 1:52:54 PM

Learning Flex 382

How to Use It

multiple sources for one destination. For example, it is possible in Flex to bind
a Label control’s text to two or more sources. You can’t accomplish this by
writing multiple destination attributes for a <mx:Binding/> tag, but you can
by using multiple <mx:Binding/> tags:

<mx:Binding source="oneTextInput.text" destination=
"confusedLabel.text"/>

<mx:Binding source="anotherTextInput.text" destination=
"confusedLabel.text"/>

<mx:TextInput id="oneTextInput"/>
<mx:TextInput id="anotherTextInput"/>

<mx:Label id="confusedLabel"/>

In this code, one Label’s text property is bound to two different TextInputs.
Whenever oneTextInput changes its value, that value is copied into the Label.
If anotherTextInput changes value, that value then becomes the Label’s text.

It isn’t necessary to use <mx:Binding/> tags for both binding declarations in
this example. While curly braces alone can’t designate multiple sources, curly
braces can be used in conjunction with an <mx:Binding/> tag. However, using
curly braces with an <mx:Binding/> tag can get confusing. Consider the fol-
lowing code, which has identical functionality to the previous example but
uses one <mx:Binding/> tag along with curly brace syntax to bind the Label
control’s text to two different TextInput controls:

<mx:Binding source="oneTextInput.text" destination="confusedLabel.
text"/>

<mx:TextInput id="oneTextInput"/>
<mx:TextInput id="anotherTextInput"/>

<mx:Label id="confusedLabel" text="{anotherTextInput.text}"/>

Binding Tags vs. Curly Brace Syntax
The <mx:Binding/> tag offers essentially the same functionality as curly braces,
just a different way to get to it. Using the <mx:Binding/> tag, you can put all
your binding declarations in one place. One benefit of this is that you can
easily modify the bindings placed in a central location. However, one of the
drawbacks is the loss of the ability to easily create complex bindings. Because
you’re limited to one source and one destination, you can’t create more intri-
cate bindings like you can with multiple sets of curly braces. However, you
can do this by separating your data into a separate location, explained shortly
in the section “Storing Complex Data.”

Note

You can place <mx:Binding/> tags
anywhere within the top level of your
application, meaning you can place
them between the opening and clos-
ing Application tags but not within
containers. A good practice is to place
them all in one location, preferably near
the top of the application code. If you
try to place an <mx:Binding/> tag
within a container or another place it
shouldn’t be, Flex will issue the warning
“<mx:Binding> is not allowed here.”
That’s straightforward enough, right?

LearningFlex3_book.indb 82 5/27/08 1:52:55 PM

Storing Complex Data

Chapter 7, Using Data Binding 83

Implementing Two-Way Bindings
By nature, a binding is a one-way road. You specify a source and a destination,
and the binding copies the information from the source into the destination.
You’re not limited to one-way bindings, however. If you want a binding to go
both ways, you can simply set up two bindings that copy from each other:

<mx:TextInput id="oneTextInput" text="{anotherTextInput.text}"/>
<mx:TextInput id="anotherTextInput" text="{oneTextInput.text}"/>

In this case, two TextInputs are bound to each other. When one changes
its text, the other matches. You can accomplish this same thing in an
<mx:Binding/> tag with the following code:

<mx:Binding source="oneTextInput.text" destination=
"anotherTextInput.text"/>

<mx:Binding source="anotherTextInput.text" destination=
"oneTextInput.text"/>

<mx:TextInput id="oneTextInput"/>
<mx:TextInput id="anotherTextInput"/>

Storing Complex Data
Flex makes it easy to store structured information in a data model. A data
model is a single object with multiple properties that you can declare, so that
you can store lots of information in one place. For example, instead of holding
a first name and a last name in separate variables, wouldn’t it be nice to hold
them in one variable called name, which has properties like first, middle,
last, and even title, suffix, and so on? This would be a data model. You
could go even one step further and make a data model with information like
address, phone number, email, and even this name object itself, creating a data
model to store user information.

Basic Usage
Data models are a great way to organize your code and are very practical as
well. If you’ll eventually be accessing data from a server (which I’ll discuss
in Chapter 9), it’s good practice to grab lumps of similar data all at once.
Instead of making separate calls to get someone’s name, email, and address,
you’d make just one call and store the result in a model for later use. You can
store data models by using <mx:Model/>. Here’s an example that creates a data
model called model that uses the <mx:Model/> tag:

<mx:Model id="model">
 <info>
 <name>
 <firstName>Tim</firstName>
 <lastName>O'Reilly</lastName>
 </name>

Yet Another Way
to Bind

You can set up bindings in Flex in
one more way. Because it’s not used
so frequently and is a fairly advanced
topic, it’s outside the scope of this
book to go into it in detail, but it’s
good to know it’s there. Using a
class called BindingUtils, you
can create bindings in ActionScript.
Why would you want to do this?
Well, if you need fine-grained
control of when bindings fire or
need to turn bindings off and on
at will, scripting is the way to go. If
you find that the <mx:Binding/>
tag or curly brace syntax isn’t
going to cut it, check out the
Adobe Flex 3 Language Reference
for the mx.binding.utils.
BindingUtils class, available by
going to Help→Help Contents.

LearningFlex3_book.indb 83 5/27/08 1:52:55 PM

Learning Flex 384

Storing Complex Data

 <email>tim@oreilly.com</email>

 <phone>(707)827-7000</phone>

 </info>
</mx:Model>

<mx:Binding source="areaCode.phone" destination="nameLabel.text"/>

<mx:Label id="nameLabel"/>

The <mx:Model/> tag is an MXML-only tag that lets you enter structured
data in XML format. In this case, you’re using it to store user information in
one central location that’s easy to read and understand. There is information
about a user’s name, email, and phone number, which are created using XML
tags. Notice that the root node of this is a tag called <info/>. A root tag must
be there to make this valid XML, but you can call it anything you like—the
word “info” isn’t necessary.

To access this information in a binding expression, you refer to the data mod-
el’s id followed by a dot and the property you want to access. For instance, to
get the phone number, you’d use the expression model.phone.

Multilevel Bindings
Now here’s the interesting part: you can use binding expressions within a
model! The following code creates a string variable called areaCode that
contains the text “707”. By using a curly brace binding expression within
an <mx:Model/> tag, the area code is added it to the beginning of the phone
number that exists inside the data model.

<mx:String id="areaCode">707</mx:String>

<mx:Model id="model">
 <info>
 <name>
 <firstName>Tim</firstName>
 <lastName>O'Reilly</lastName>
 </name>

 <email>tim@oreilly.com</email>

 <phone>{areaCode}827-7000</phone>

 </info>
</mx:Model>

<mx:Binding source="model.phone" destination="nameLabel.text"/>

<mx:Label id="nameLabel"/>

As before, the Label control’s text is bound to the phone number in this data
model. If you were to run this, you’d see the text “707827-7000” displayed in
the Label control.

Note

Note that you use the expression model.
phone and not model.info.phone to
get the phone number. That’s because
of the way the <mx:Model/> tag works:
the id model refers to the root of this
data model.

LearningFlex3_book.indb 84 5/27/08 1:52:55 PM

Creating Bindable Variables in ActionScript

Chapter 7, Using Data Binding 85

In other words, a multilevel binding has occurred. First, the phone number
is constructed using a binding to the country code. Then, the Label control is
bound to the phone number. If the country code changes, the phone number
will change as well, triggering the binding in the Label control. That’s very
powerful stuff.

You can use all the features of curly brace data binding in data models, mak-
ing data coercion very easy. That means you can concatenate strings and use
multiple sets of curly braces inside a model. This is sometimes called data
massaging, meaning piecing together, running calculations on, and possibly
formatting data for display (which I’ll discuss in Chapter 9). You’ve seen a
simple example of this, when you put together an area code and a phone
number to get a full phone number. You could take it a step further and really
expand on this data model:

<mx:Model id="model">
 <info>

 <name>
 <title>Mr.</title>
 <firstName>Tim</firstName>
 <lastName>O'Reilly</lastName>
 <displayName>{model.name.title} {model.name.lastName}

 </displayName>
 </name>

 <greeting>Hello, {model.name.displayName}</greeting>

 <email>tim@oreilly.com</email>

 <areaCode>707</areaCode>

 <phone>{model.areaCode}827-7000</phone>

 </info>
</mx:Model>

<mx:Binding source="model.greeting" destination="nameLabel.text"/>

This code is a bit complex, but it shows just how deep you can go with
multilevel bindings. In this case, you’ve created a displayName property that
is bound to the title and last name of a user. This, in turn, is being used by a
greeting property, which is then bound to a Label control. Whew!

Creating Bindable Variables
in ActionScript
So far you’ve used <mx:String/> tags, <mx:Model/> tags, and properties of
controls to create bindings, and everything has worked fine. However, when
creating your own variables in ActionScript, you need to explicitly declare
them as bindable. If you don’t, bindings will work when your application
starts up, but changes to the variables won’t be reflected. That is to say, the

Note

For more complex massaging of data,
you may find a class-based model more
efficient. Refer to the Flex documentation
about class-based models for more infor-
mation on this advanced topic.

LearningFlex3_book.indb 85 5/27/08 1:52:56 PM

Learning Flex 386

Determining When Data Binding Isn’t Appropriate

variable’s initial value would be copied, but if the variable changed, anything
bound to it wouldn’t be updated.

<mx:String/> tags, <mx:Model/> tags, and most properties of Flex components
work automatically with data binding. But when creating bindable variables
in ActionScript code, you have to do a little extra work. To specify that you
want an ActionScript variable to be bindable, you use a metadata declaration,
which is a special instruction to the Flex compiler that uses square brackets
([and]). The metadata tag you will use is [Bindable], placed before the vari-
able declaration:

<mx:Script>
 <![CDATA[
 [Bindable]
 public var firstName:String = "Alaric";

 [Bindable]
 public var lastName:String = "Cole";
]]>
</mx:Script>

This code is equivalent to the <mx:String/> tags used earlier, but it’s written
in ActionScript instead of MXML.

Why bindable metadata? When you create bindable variables, either through
a tag or via script, Flex actually writes a ton of ActionScript for you behind
the scenes, setting up listeners for changes to the variables. Without your
ability to declare what is bindable and what isn’t, Flex would have to create
a bunch of useless code for variables that you may not want to be bindable.
This useless code might make your application larger and slower than it
could be.

Determining When Data
Binding Isn’t Appropriate
As you’ve seen, data binding is a great way to move data around in your
application. As great as it is, why would you want to use anything else?
Well, the truth is, data binding isn’t the solution to everything. Sometimes it
isn’t the best tool for the job. If your application relies on some sort of tim-
ing mechanism to display its data, data binding may not be the right choice,
because you don’t have much control over when a binding is triggered. (This
limitation can be overcome by setting up bindings in ActionScript, as dis-
cussed in the box “Yet Another Way to Bind.”)

A binding is fired whenever the source value changes, and if you have a num-
ber of properties that rely on a source that is very large and frequently updat-
ed, the bindings may fire more frequently than you’d like. This may cause
performance issues because of too much going on at once. In such cases, it
may be better to manually set values for variables by scripting. However, in
most cases you’ll probably find data binding indispensable.

LearningFlex3_book.indb 86 5/27/08 1:52:56 PM

Putting Data Binding to Work for You

Chapter 7, Using Data Binding 87

Putting Data Binding to Work for You
Now that you know so much about data binding, you can put it to the test.
Start a new Flex project called ContactManager, and place the following code
in the main application file. Save the file as ContactManager.mxml.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:Panel
 x="10"
 y="10"
 layout="vertical"
 title="Contact Editor"
 paddingLeft="5"
 width="200"
 height="300">

 <mx:Label
 text="First Name"
 fontWeight="bold"/>
 <mx:TextInput id="firstNameTextInput"/>
 <mx:Label
 text="Last Name"
 fontWeight="bold"/>
 <mx:TextInput id="lastNameTextInput"/>
 <mx:Label id="ageLabel"
 text="Age"
 fontWeight="bold"/>
 <mx:NumericStepper id="ageNS"
 maximum="120"
 minimum="18"/>
 <mx:CheckBox id="dogsCheckBox"
 label="Likes Dogs"/>
 <mx:Label
 text="Favorite Color"
 fontWeight="bold"/>
 <mx:ColorPicker id="favoriteColorPicker"
 selectedColor="#FFFFFF"/>

 </mx:Panel>

</mx:Application>

This code creates a Panel control called “Contact Editor” that contains a few
different controls. A new one that you haven’t seen before is the ColorPicker,
which works like a color picker in design applications such as Adobe
Photoshop or like the color picker in Flex Builder’s Design mode in the Flex
Properties panel. It simply lets you select a color via a drop-down list of
swatches. In this case, you’ve set the selectedColor property to a hexadecimal
value, which is a compact way to designate a numerical value. (See the box
“Roses are FF0000, Violets are 0000FF” for more information.) Thus, the
color is represented by a numerical value, and this value, just like text, is bind-
able. (You’ll see that in a moment.)

Note

Formatting the MXML isn’t necessary.
But for the sake of readability, you can
format the MXML such that the id
attribute is placed on the same line as
the tag and all other attributes are on
their own line.

LearningFlex3_book.indb 87 5/27/08 1:52:56 PM

Learning Flex 388

Putting Data Binding to Work for You

Hexadecimal, or hex for short, is one way of representing 24-bit
color in a compact way. Hexadecimal is really just a means of
concisely representing large numbers, but for these purposes,
I’ll refer to its use in colors. Colors in Flex are displayed in what
are called hex triplets, the format being RRGGBB, where RR
specifies the amount of red, GG stands for the amount of green,
and BB represents the amount of blue. It’s beyond the scope
of this book to really explain hexadecimal, but suffice it to say
that hexadecimal is a way of representing base-16 numbers,
that is, a numerical system that is based on 16 (as opposed to
the numbering system we’re all used to that’s based on 10).
Thus, 16 values are available: 0–9 and A–F, which represent 10
through 15. So, the 16 possible values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, and F. For example, black is 000000, meaning no red,
green, or blue. Pure red is FF0000, because it’s the full value for
the red element and zero for the blue and green values. 00FF00
is full green, and 0000FF is complete blue. Mix and match as you
like to get other colors. If you remember anything from art class,
red and blue mixed together make purple. So, it would make
sense that pure red (FF0000) mixed with pure blue (0000FF)
would make a purple shade (FF00FF). If you remember that
white is actually a mix of all colors, you could’ve guessed that

white can be represented as FFFFFF.

It’s of course not necessary to write this stuff yourself, but it does
help make your code less mysterious. It’s worth noting that you
can represent hexadecimal values in Flex in a couple of ways.
One is via a hash character (#) followed by the value. That is to
say, to show red, you’d place a hash before the value, like so:
#FF0000. This is the way it is done in CSS, and MXML works with
this just fine. Another way to show that a value is hexadecimal is
by starting it with 0x. This would display red as 0xFF0000. This is
the way it’s used in ActionScript, so if you’re working with colors
or hexadecimal values in ActionScript, that’s the way you’d need
to represent it. For the beginner, if you need a hexadecimal
value for a color, you can simply use Design mode in Flex
Builder. The Flex Properties panel contains a few color pickers
that allow you to visually select a color.

If all this talk about base-16 has tickled your fancy, you may be
interested in the history of the word hexadecimal. Hexa comes
from the Greek έξ (hex) meaning “six,” while decimal is derived
from the Latin for “tenth.” If this all seems like Greek to you, well,
it’s worth noting that some people think the word should be
sexadecimal, that being a purely Latin form.

Roses are FF0000, Violets are 0000FF

Next, create another panel called “Contact Details” to which you’ll add a few
Label controls that are bound to the input controls in the Contact Editor
panel. Place the following code under the first Panel control (but before the
closing Application tag, of course):

 <mx:Panel
 layout="vertical"
 x="227"
 y="10"
 width="200"
 height="300"
 paddingLeft="5"
 title="Contact Details">
 <mx:Label
 text="Full Name:"
 fontWeight="bold"/>
 <mx:Label
 text="{firstNameTextInput.text} {lastNameTextInput.text}"/>
 <mx:Label
 text="Age:"
 fontWeight="bold"/>
 <mx:Label
 text="{ageNS.value} years old"/>
 <mx:Label
 text="Likes Dogs:"
 fontWeight="bold"/>
 <mx:Label
 text="{dogsCheckBox.selected}"/>

LearningFlex3_book.indb 88 5/27/08 1:52:57 PM

Putting Data Binding to Work for You

Chapter 7, Using Data Binding 89

 <mx:Label
 text="Favorite Color:"
 fontWeight="bold"/>
 <mx:Canvas
 width="60"
 height="60"
 backgroundColor="{favoriteColorPicker.selectedColor}"/>

 </mx:Panel>

This is a simple example of data binding using input controls in one Panel
control and displaying controls in the other. In Contact Editor, you’ll see
some TextInputs, a NumericStepper, a CheckBox, and a ColorPicker. The
values of these controls are updated on the fly in the Contact Details Panel.
Running this application, you should see something similar to Figure 7-2.

Figure 7-2. A simple application showcasing data binding

Worth noting is the use of a Canvas container to show your favorite color.
It has a backgroundColor style property, which is bound to the selected color
of the ColorPicker. The backgroundColor property expects a numerical value,
which is given by the ColorPicker. So now when the ColorPicker’s selection
changes, the Canvas will draw its background with that color. As you’ll learn
more about in Chapter 10, a Canvas is a layout container that lets compo-
nents be placed via x,y coordinates. But it also works in a pinch as a simple
graphical component used to display, in this case, a square of color.

You may be tempted to set the background color of your main application
using a binding similar to what you’ve built with a ColorPicker and a Canvas.
The application shares the style property backgroundColor with Canvas and
other containers, so this makes sense. However, binding isn’t supported for
properties of the <mx:Application/> tag.

To set the background color of the application based on a ColorPicker, you
would need to do so in script. The easiest way would be to listen for changes
to the ColorPicker and set the background color of the application explicitly.
You do so through a method of the <mx:Application/> tag called setStyle().

Note

The <mx:Binding/> tag wouldn’t work
when trying to bind backgroundColor.
This is because backgroundColor is
a style property and is handled dif-
ferently from other properties. While
it works through curly brace syntax
because the Flex compiler will detect
style properties versus other properties,
the <mx:Binding/> tag only takes prop-
erties.

LearningFlex3_book.indb 89 5/27/08 1:52:57 PM

Learning Flex 390

Putting Data Binding to Work for You

Actually, this method is shared among all Flex components, so it’s good to get
familiar with it. This method takes two parameters, a String that’s the name
of the style property you want to modify and the value to which you want
to change the style. In the case of background color, the style property is the
String backgroundColor, and the value you’d want to set it to is the selected
color of the ColorPicker instance. Thus, the full method call would be
setStyle('backgroundColor', favoriteColorPicker.selectedColor). You’d
want to call this method when the ColorPicker changes its value. A change
event is fired when this happens, so you’d want to set up a listener for the
change event by doing the following:

<mx:ColorPicker id="favoriteColorPicker"
 change="setStyle('backgroundColor',
 favoriteColorPicker.selectedColor)"/>

Now, when the ColorPicker changes, it calls this method, which changes the
background color of the application.

However, this event isn’t fired when the application starts up, so you might
end up with an initial background color that doesn’t match the current selec-
tion of the ColorPicker. To resolve this, you’ll need to call this method again
on a special event of the <mx:Application/> tag called applicationComplete.
This event is fired when the application loads and all of its top-level com-
ponents have been created. This simply means, when this event fires, you
can be sure that favoriteColorPicker has been created and you can access
its properties. Other events such as initialize occur during startup, but
applicationComplete is the one you want because it’s the last one that’s fired
and therefore the safest bet.

It is good coding practice, and useful for you besides, if you create a function
that calls the setStyle() method and in turn calls this function in both the
applicationComplete event and the change event, like in the following code:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 applicationComplete="modifyBackgroundColor()">

<mx:Script>
<![CDATA[
 public function modifyBackgroundColor():void
 {
 setStyle('backgroundColor', favoriteColorPicker.selectedColor);
 }
]]>
</mx:Script>

<!-- More code would go here -->

<mx:ColorPicker id="favoriteColorPicker"
 selectedColor="0xFFFFFF"
 change="modifyBackgroundColor()"/>

<!-- More code would go here -->

LearningFlex3_book.indb 90 5/27/08 1:52:57 PM

Summary

Chapter 7, Using Data Binding 91

Binding and Coercion
The way in which different types of values change as a result of data binding merits
an explanation. Notice the CheckBox in the example. It has a value of true (when
selected) or false (when it’s not selected). This is a Boolean value. However, when
you bind that value to the text of a Label control, something happens that you
might not have noticed. The Label’s text property expects a String value, meaning
it expects text, not a Boolean value. So, data binding is actually converting a Boolean
value to text. In this case, true is converted to the string “true,” while false is
converted to the string “false.”

This conversion is also occurring in the binding to the NumericStepper’s value
property. The value property is a Number, which again is converted to a String. If
you’re interested in the details, I’ll explain what Flex is actually doing. Every object in
ActionScript has a toString() method, which returns a String value. In the case of
a Number, the toString() method returns a textual representation of the Number.
What Flex does is call that method on a binding when necessary. Without that, you
would get runtime errors complaining that a Number isn’t a String and can’t be
converted to one. Luckily, Flex will convert the string for you.

However, this only works for string assignments. For instance, if you try to bind that
same NumericStepper’s value property to the text of a Label—that is, try to reverse
the binding—you’ll get an error. Flex will complain “Implicit coercion of a value of
type String to an unrelated type Number,” which means it can’t convert text to a
numeric value.

To get around this, you can convert text to a numeric value by casting.
For instance, you could coerce the String value into a Number like this:
<mx:NumericStepper value="{Number('33')}"/>.

Summary
Now you understand what those curly braces are all about. You’ve seen that
data binding is an invaluable tool for moving information around in your
application, and you know more than one way to go about it. You’ve even
built a simple example that shows that even colors are bindable in Flex.

You will continue to use and expand on this important concept through-
out the book, since data binding is used so frequently in Flex applications.
Knowing these basic concepts will take you far. With all this knowledge, you
can move on to the next set of skills. Next up, I’ll explain how to lay out your
applications.

LearningFlex3_book.indb 91 5/27/08 1:52:58 PM

LearningFlex3_book.indb 92 5/27/08 1:52:58 PM

93

CHAPTER 8

IN THIS CHAPTER

Types of Layouts

The Display List

Sizing

Layout Container Options

Advanced Containers

Layout Controls

Alignment

Constraints-Based Layout

Summary

Having a mechanism for layout is yet another one of the great features of Flex.
If you’ve ever developed applications using the Flash integrated development
environment (IDE), you know that layout can be one of the greatest chal-
lenges. Sometimes you will be developing something that works fine with a
static size. In that case, it’s okay if all of its components are set to one location
and one size, never needing to resize or reposition themselves. For this, the
Flash IDE has worked great. More often than not, however, you’ll want more
flexibility in your layout, and Flex provides this.

With today’s multitude of screen resolutions, having a layout that can expand
is often essential. If someone is viewing your application in a browser, they
can resize their browser. If your application is deployed to the desktop with
AIR, you’ll probably want the ability to resize that window as well. You may
even want to be able to move components around based on the size of the
application.

The Flex layout system is built using the web paradigm of layers and con-
straints, so having a background in web design or development doesn’t hurt.
However, Flex Builder’s Design mode will help you build a beautiful layout,
even if you’ve never heard of Cascading Style Sheets (CSS).

Types of Layouts
You can lay out components in your application in many ways. You can use
coordinates, layout containers, constraints, or a mixture of all three to find
the perfect layout.

Absolute Positioning
When creating a new Flex application in Flex Builder, the Application tag is
given the attribute layout="absolute". This makes the application have an
absolute layout, meaning components are positioned by an x,y coordinate.

This lets you stipulate where you want items to be placed within their par-
ent container, by specifying x and y coordinates on each of them. It’s called

LAYING OUT YOUR
APPLICATIONS

LearningFlex3_book.indb 93 5/27/08 1:52:58 PM

Learning Flex 394

Types of Layouts

absolute, in contrast to relative positioning, because absolute positioning
doesn’t take into account other components in the same container. That is,
each component within a container has its placement without regard to oth-
ers. Absolute positioning gives you complete control over where components
appear and can even allow the overlap of components.

For a quick-and-dirty approach to laying out your application, absolute posi-
tioning is great. In Design mode, you can simply place components where
you like, and their x,y will be written for you automatically. However, for
most interfaces, you need more control over positioning and may even need
to adjust the sizes of your components in addition to where they’re placed.
You can accomplish all this by using constraints or relative positioning using
specific layout containers.

The Canvas container, while being a layout container, lets you use an abso-
lute layout. However, most other containers have a predefined system for
relative layout.

Relative Positioning
Relative positioning is laying out the parts of your application by their rela-
tionship to one another. You typically do this by using layout containers.

I went over layout containers briefly in Chapter 3, but they merit a deeper
explanation here. Containers are special components that can have layout
controls (and even other containers) placed within them. You do this in
MXML by creating a container tag, such as <mx:Panel/>, and placing compo-
nents inside that tag. Thus, you could create a Panel container with a single
TextInput control inside it using the following MXML code:

<mx:Panel>
 <mx:TextInput/>
</mx:Panel>

Simple enough, right? Because the <mx:TextInput/> tag is inside the two
<mx:Panel> </mx:Panel> tags, it makes sense that the TextInput would be
drawn inside the Panel. In Flash terminology, the TextInput is considered a
child of the Panel. Conversely, the Panel is called the TextInput’s parent.

Two major types of relative layout exist:

Vertical

This lays children out in a vertical stack. The attribute layout="vertical"
accomplishes this.

Horizontal

This lays out children in a horizontal stack. The attribute you use is
layout="horizontal".

Some containers, such as HBox and VBox, accomplish a specific type of lay-
out (horizontal for HBox and vertical for VBox). This is fairly straight forward.

LearningFlex3_book.indb 94 5/27/08 1:52:59 PM

The Display List

Chapter 8, Laying Out Your Applications 95

An HBox or VBox can take any number of components, lining them up one
by one.

Other containers such as Panel and Application have three options for the
type of layout they will create. These may be known as hybrid containers,
because they may act like other containers, depending on the properties set.
They are useful because you can use one container, changing its layout just by
switching the layout property to one of vertical, horizontal, or absolute.

To really understand the usefulness of layout containers, it’s important to
first understand the concept of the display list in Flex. Once you grasp that,
you’ll make better decisions with your layout.

The Display List
The display list in Flex, and in all Flash-based content, is the name for the list
of all graphical elements in a particular application. For a Flex application,
you can think of it as a hierarchy of components, from the Application root
to a Panel within it to a Button that resides in that Panel. It’s actually much
more than this. For instance, a Button contains multiple graphical elements
itself such as its label and the graphics that make it look like a button. But
for beginning Flex developers, it’s convenient to think of it in terms of com-
ponents and containers.

How It Works
If you’re used to design programs, you might be familiar with the concept of
layers. This concept is similar to a display list in that the layers are a list of
elements, with more recent layers overlapping older ones.

What happens when you add items to a Panel in MXML is that each item
is added to the Panel’s display list in order of its location in the MXML. If
you’re familiar with layers, you can imagine the newest element overlapping
the previous. In programming, you would refer to the new items as having a
higher index. The first component added to a container has the lowest index,
and that index increases on each addition. Check out the following MXML,
which adds three Canvas containers to a Panel container, each Canvas having
a different color:

<mx:Panel id="colorsPanel"
 width="250"
 height="250"
 layout="absolute">

 <mx:Canvas id="redBox"
 x="70"
 y="70"
 width="50"
 height="50"
 backgroundColor="#FF0000" />

There’re Defaults,
and Then

There’re Defaults
By default, a new Flex application
created in Flex Builder will begin with
absolute positioning. In other words,
Flex Builder will automatically add the
attribute layout="absolute". This
is the same for the Panel container,
if you’re using Design mode to drag
and drop a Panel onto the stage.
However, it’s worth noting that the
default layout for both Application
and Panel is actually vertical. That
is, if you create an Application or
Panel control without specifying a
layout attribute, the layout will be
vertical. Flex Builder overrides this
setting by placing the attribute
layout="absolute".

LearningFlex3_book.indb 95 5/27/08 1:52:59 PM

Learning Flex 396

The Display List

 <mx:Canvas id="greenBox"
 x="90"
 y="90"
 width="50"
 height="50"
 backgroundColor="#00FF00" />
 <mx:Canvas id="blueBox"
 x="100"
 y="60"
 width="50"
 height="50"
 backgroundColor="#0000FF" />

</mx:Panel>

This code adds greenBox to the Panel’s display list after redBox, because
greenBox is after redBox in the MXML. Similarly, blueBox has the highest
index because it was added last. You can see how this works by looking at the
output of this code in Figure 8-1.

Accessing Children
The display list, being a list, means you can access each child of a container
by its index. You just use a method in ActionScript called getChildAt().
This method takes one parameter, an integer corresponding to the index of
the child you want. It’s zero-based, meaning that 0 is considered the first, 1
the second, 2 the third, and so on. In the case of the previous code, calling
getChildAt(0) returns redBox, while calling getChildAt(2) returns blueBox.

Adding and Removing Children
In Chapter 4, I briefly mentioned the method addChild(). This is the
ActionScript way of adding children to containers and the display list.
Creating a component in ActionScript doesn’t actually add it to the display
list, so you must specifically add it using this method. The ActionScript
equivalent of the previous MXML would be the following function:

//import the required classes
import mx.containers.Panel;
import mx.containers.Canvas;

public function createBoxes():void
{
 //create a Panel
 var colorsPanel:Panel = new Panel();
 colorsPanel.layout = "absolute";
 colorsPanel.width = 250;
 colorsPanel.height = 250;

 //add the Panel to the Application
 addChild(colorsPanel);

 //create a red box
 var redBox:Canvas = new Canvas();

Figure 8-1. Three colored boxes
overlapping in an absolute layout

LearningFlex3_book.indb 96 5/27/08 1:53:00 PM

The Display List

Chapter 8, Laying Out Your Applications 97

 redBox.x = 70;
 redBox.y = 70;
 redBox.width = 50;
 redBox.height = 50;
 redBox.setStyle("backgroundColor", 0xFF0000);

 //create a green box
 var g:Canvas = new Canvas();
 greenBox.x = 90;
 greenBox.y = 90;
 greenBox.width = 50;
 greenBox.height = 50;
 greenBox.setStyle("backgroundColor", 0x00FF00);

 //create a blue box
 var blueBox:Canvas = new Canvas();
 blueBox.x = 100;
 blueBox.y = 60;
 blueBox.width = 50;
 blueBox.height = 50;
 blueBox.setStyle("backgroundColor", 0x0000FF);

 //add the boxes to the Panel
 colorsPanel.addChild(redBox);
 colorsPanel.addChild(greenBox);
 colorsPanel.addChild(blueBox);
}

Just like the equivalent MXML example, the Canvas greenBox is added to the
Panel container after redBox, because the method panel.addChild(greenBox)
was called after panel.addChild(redBox). Therefore, greenBox has the index of
1, while redBox has the index of 0, just like before. Again, this means greenBox
is higher on the display list than redBox, and blueBox is the highest overall.

If you were to switch the layout of the Panel to vertical, the boxes would line
up in a vertical stack. Their order would be the same as their order in the
MXML, as shown in Figure 8-2.

Figure 8-2. Three colored boxes lined up, one below the other in a vertical layout

Just as you can add items to a display list, you can remove them; you merely use
the method called removeChild(). If you decided you didn’t want a blue box any-
more, you could remove it by calling colorsPanel.removeChild(blueBox).

Note

Simply placing the createBoxes() func-
tion in an <mx:Script/> tag in an
MXML file won’t actually run the func-
tion. You’ll have to call the function by
setting up an event listener somewhere.

Note

Just as creating an item in ActionScript
doesn’t add it to the display list, remov-
ing an item from the display list doesn’t
mean the item doesn’t exist anymore.
It simply removes it from view. You can
always add it back later.

LearningFlex3_book.indb 97 5/27/08 1:53:00 PM

Learning Flex 398

The Display List

Rearranging Children
What’s great about a display list is that it lets you rearrange items as you
want. For instance, if you later wanted greenBox to be on top, you could
use ActionScript to make that happen. First you would use the method
 colorsPanel.removeChild(greenBox), which would remove greenBox from the
Panel’s display list. Then you would call colorsPanel.addChild(greenBox),
which would add greenBox to the display list. Because it was added last,
greenBox would be at a higher index than both redBox and blueBox, as shown
in Figure 8-3. Again, if you were to switch the Panel to a vertical layout,
 greenBox would be at the bottom of the Panel, just like in Figure 8-4.

For a better understanding of the display list, try the following code, which
adds a click event listener to each of the colored boxes. When you click a box,
that box is placed higher on the display list.

<mx:Script>
 <![CDATA[
 public function moveUp(event:Event):void
 {
 //we expect the "current target" of this event to be a Canvas
 var box:Canvas = event.currentTarget as Canvas;

 //remove the box that was clicked
 colorsPanel.removeChild(box);

 //place it back at a higher point
 colorsPanel.addChild(box);
 }

]]>
</mx:Script>

<mx:Panel id="colorsPanel"
 width="250"
 height="250"
 layout="absolute">

 <mx:Canvas id="redBox"
 x="70"
 y="70"
 width="50"
 height="50"
 backgroundColor="#FF0000"
 click="moveUp(event)" />
 <mx:Canvas id="greenBox"
 x="90"
 y="90"
 width="50"
 height="50"
 backgroundColor="#00FF00"
 click="moveUp(event)" />

Figure 8-3. The green box placed higher
in the display list

Figure 8-4. A vertical layout showing the
green box highest in the display list

Note

You can use the swapChildren()
method to switch the location of two
items on the display list. For example, to
swap the location of the red and green
boxes, you could use colorsPanel.
swapChildren(redBox, greenBox).

LearningFlex3_book.indb 98 5/27/08 1:53:01 PM

Sizing

Chapter 8, Laying Out Your Applications 99

 <mx:Canvas id="blueBox"
 x="100"
 y="60"
 width="50"
 height="50"
 backgroundColor="#0000FF"
 click="moveUp(event)" />

</mx:Panel>

Try this code with different layout attributes on the Panel, and see how mov-
ing items around on the display list affects the way they are shown.

Note that the Panel, in turn, is part of the Application container’s display list.
Just as you can move elements around in a particular display list, you can
also move them in and out of others. This means the colored boxes aren’t even
limited to the Panel but can be moved around anywhere, such as another
container or the Application itself.

If you have two Panels, one called panel1 and the other panel2, you can move
children from one to the other. If panel1 has a child with an ID of someChild,
you can move it by first calling panel1.removeChild(someChild) and then
calling panel2.addChild(someChild).

Sizing
You can control the size of components by specifying a height and width.
This is typically done by specifying the number of pixels. Pixels are a mea-
surement of size corresponding to the smallest discrete area of illumination
on a computer’s screen. If you were to enlarge part of your computer screen,
you would see lots of little squares. Each of those squares is a pixel.

However, there’s more to controlling component size than simply specifying
a width or height in pixels. Containers not only help with providing arrange-
ment, but they also have the ability to allow a two-way effect of either resizing
themselves to fit their children or resizing their children to fit them.

Explicit Sizing
You can set an explicit size on a component via its width or height property,
or a component can have a default size. If a container such as a VBox, HBox,
or Panel doesn’t have a size set on itself, it will resize to fit the components
within it.

If the container does have a size set or if it runs out of available space, it
may clip its content. This means, because it’s not able to display its contents
completely, it will cut off the rest from view. In the case of many containers, a
scroll bar will appear, allowing the unseen content to be viewed by scrolling.

Note

A component placed within another com-
ponent isn’t accessible by dot notation.
That is to say, in the colored boxes
example, trying to access redBox by the
dot notation, colorsPanel.redBox is
incorrect. This is because redBox is part
of the panel’s display list, not a prop-
erty of the Panel. To access redBox, you
would use the display list API method
colorsPanel.getChild(redBox).

Chrome
Some containers have prominent
chrome, or graphics that give them
a “look and feel.” An example of a
container with pronounced chrome
is the Panel. It has a title bar and
borders that give it the look of a UI
window. Others don’t have much
of a look to them by default, such
as the Canvas container. However,
being components, they all have
style properties that can make
them stand out more. When you
set the backgroundColor style
property of the Canvas in the colored
boxes example, it drew a colored
background for itself. You’ll look
deeper into styles and how to modify
the look and feel of applications in
Chapter 14.

Note

Many controls can resize themselves
based on their properties. For instance,
both CheckBox and Button will resize
to fit their labels, if no explicit size is
defined.

LearningFlex3_book.indb 99 5/27/08 1:53:02 PM

Learning Flex 3100

Sizing

Relative or Percentage-Based Sizing
You can also size components within a container using relative sizing. This
means using percentages instead of pixels. While a Button, for instance, can
have a width of 22, meaning 22 pixels, it can alternatively have a width of, say
50 percent, which means it should resize itself to take up 50 percent of its
parent’s width.

Consider the following code, which creates an HBox that is 400 pixels wide,
with a Button inside set to a width of 50 percent:

<mx:HBox width="400">
 <mx:Button label="Button" width="50%"/>
</mx:HBox>

Figure 8-5 shows the result, where the Button takes up half the available
space of its container, the HBox.

Because its container is 400 pixels wide, the button will size itself to half
of that, or 200 pixels. You could also set the HBox to a relative size, say 100
percent. This would allow the HBox to resize to fit all the available space of
its container (the Application itself), and then the button would take up half
of that. If the application were resized, the widths of the HBox, and therefore
the button, would also change.

What would happen if you then removed the width property from the HBox?
The button’s width is expecting to be 100 percent of its parent’s width, but no
width would be set on its parent. So, the button would want a width of 100
percent, but 100 percent of what? In this case, the button would simply revert
to its default size (which is based on the size of its label).

Remember that containers have the ability to resize to fit their contents. If
using explicit or default widths on container children, it helps to know that
you have these choices for the container:

Do•	 set a size on the container. Content will be clipped if the sum of the
children’s sizes are larger than the container’s size.

Do •	 not set a size on the container. The container will resize as needed to
contain its children. If the container runs out of available space, content
will be clipped.

Minimum and Maximum Sizes
You also have control over the minimum and maximum widths or heights
that you want a component to have. This is especially useful when using
percentage-based sizes. Say, for example, that you have a button’s height set to
100 percent, but you don’t want it to actually grow more than 300 pixels high.
You could accomplish this by adding the property maxHeight:

<mx:Button height="100%" maxHeight="300" />

The same goes for width, using the maxWidth property.

width="400"

width="50%"

Figure 8-5. Percentage-based width

Note

While in MXML, you can set a width or
height of either a numerical value or a
percentage value; the width and height
properties in ActionScript expect only
a numerical value. To set percentage
widths in ActionScript, use the proper-
ties percentWidth and percentHeight,
which will accept a numerical value in
the range 0–100, corresponding to a per-
centage amount.

Note

When using relative, or percentage-based,
sizing on container children, it’s best
to set a width on the parent container.
Otherwise, both sizes will revert to the
default size of the child.

LearningFlex3_book.indb 100 5/27/08 1:53:02 PM

Layout Container Options

Chapter 8, Laying Out Your Applications 101

If you want to ensure that a component never goes below a certain size, you
can use the properties minWidth and minHeight to control minimum allow-
able width and height, respectively.

Layout Container Options
When using a layout container such as an HBox or Panel, you have a few
options to help you get the look you want.

Padding Layout
If you’ve used much CSS, you’re probably familiar with the concept of pad-
ding, which lets you specify the number of pixels of space with which you
want to pad a container. This allows some visual separation from the contain-
er and its children. In Flex, you use the properties paddingLeft, paddingRight,
paddingTop, and paddingBottom.

For example, placing a few Buttons within a Panel with a vertical layout will
have the Buttons placed at the top and left of the Panel in a vertical stack.
They will be hugging the edges of the Panel. If you want more space between
the edges, you can change this using the different padding properties, show-
cased in Figure 8-6.

Figure 8-6. Panels with different padding applied

It’s important to note that padding properties are not used just on containers;
they are also used in some controls, such as List. In this case, the properties
designate the amount of padding between the border of the control and its
content.

Gaps
Gaps are distances between child components when using many layout
containers. You have both horizontalGap and verticalGap, which you can set
independently to control how much space you want between components.
You can easily understand this by looking at Figure 8-7.

Note

Components will compete for available
space when using percentage-based sizes.
For instance, if two Buttons are placed
within a HBox that has a width of 300
pixels and each Button is given a width
of 100 percent, their actual widths will
be half the available space, or 150 pix-
els. If three Buttons were placed within
this container, each with a width of 100
percent, their actual width would be
divided into thirds (33 percent, or 100
pixels each). For a couple of Buttons, the
first with a width of 100 percent and the
second with a width of 70 percent, the
result would be around half the request-
ed space—the first about 60 percent, the
second around 40 percent.

LearningFlex3_book.indb 101 5/27/08 1:53:03 PM

Learning Flex 3102

Layout Container Options

Figure 8-7. Panels with different layouts and gap styles

The layout mechanisms in Flex are quite advanced, and they
take into account a huge number of variables. This usually works
seam lessly for the developer, allowing you to spend less time
worrying about your layout. If you’re interested in how this
works, Figure 8-8 gives a quick overview. Essentially, calculating
layout involves three steps. First, components like Buttons and
CheckBoxes that can resize themselves to fit their labels are
given the chance to do so if they don’t have an explicit size
already. Then, component sizes are gathered. This measurement
begins at the components that are deepest in the tree of the
application. For example, for the following code, the Button is the
most deeply nested component, followed in turn by the Panel,
then the Canvas, and finally the HBox:

<mx:HBox>
 <mx:Canvas width="300">
 <mx:Panel width="100%">
 <mx:Button width="50%"/>
 </mx:Panel>
 </mx:Canvas>
</mx:HBox>

Only pixel-based sizes are gathered, because percentage-based
sizes can be determined only in the next step. The final stage
of the layout process applies size and placement, in the reverse
order from the previous step. For the previous code, the HBox
would first have its size changed to allow it to fit the Canvas that
is 300 pixels wide. After this would come the Canvas. Because
the Canvas already has an explicit width, no changes would
occur, and it would remain at this width. The layout mechanism
would then move onto the Panel. Because the Panel has a width
of 100 percent, it would be sized so that its width fills the parent

Canvas. Finally, the Button would have its width applied, being
sized so that it fills half its parent Panel.

This process begins again if any components are added,
removed, or resized (whether through code or by someone
resizing the application window).

Figure 8-8. The three steps in the Flex layout process

The Flex Layout Process

Components are given the
chance to set default sizes
on themselves

All component sizes are
measured, starting with the
most deeply nested
components and ending with
the outermost containers.

The size and placement of
components are changed.
This is done from the
outermost containers to the
innermost components.

Note

While these properties are easy to set and
modify in MXML, it’s important to note
that they are style properties. As such,
you cannot access them in ActionScript
through dot notation. That is, the script
panel1.paddingLeft = 10 isn’t valid.
You must access such style properties
using the setStyle() method.

LearningFlex3_book.indb 102 5/27/08 1:53:05 PM

Advanced Containers

Chapter 8, Laying Out Your Applications 103

Advanced Containers
Going further than simple vertical or horizontal layout, a few containers provide
advanced functionality. Figure 8-9 shows a mixture of advanced containers.

Figure 8-9. A mix of advanced containers: a Grid on the left, a Tile on the right, and the
overall layout provided by an HDividedBox

Divided Boxes
While HBoxes and VBoxes can line children up in a horizontal or vertical
fashion, a couple of containers add a little more functionality. HDividedBox
and VDividedBox are just like their equivalent HBox and VBox, but they
allow resizing.

Between each child of a divided box, the Divided box draws a draggable
section divider. Moving the divider resizes that section. Divided boxes are
especially useful when using relative sizing.

Tiles
If you want a layout that can really roll with the punches, Tile is a great choice.
The Tile container arranges children like tiles, lining them up horizontally
until the available space is used up, and then it starts a new row. While laying
out in horizontal rows is the default behavior, Tile has a direction prop-
erty that you can set to vertical, and it will arrange by columns instead of
by rows.

All these tiles will have the same size and will be arranged in a perfect grid.
The largest child will set the size for all other tiles, unless you explicitly set a
tileWidth or tileHeight on the Tile container.

For example, consider that in your application you had a list of toolbar items.
You placed these items in an HBox at the top of your application to mimic
the toolbars in Microsoft Word. However, you realized that there were just

LearningFlex3_book.indb 103 5/27/08 1:53:05 PM

Learning Flex 3104

Advanced Containers

too many buttons to fit in the HBox, and the buttons got clipped. This HBox
could be replaced with a Tile container, and when space ran out, the buttons
would just get placed on a new row.

Grid
If you’ve ever used a Hypertext Markup Language (HTML) table, you already
know what a grid is. If not, suffice it to say that a Grid container can lay
out components in a tiled fashion similar to the Tile container. However, a
Grid allows the various items to span columns or rows. If you’ve ever used
a spreadsheet, you may have found that one cell in the spreadsheet needed
more horizontal space, so you allowed it to span multiple columns, meaning
you let one cell stretch to contain the space of the adjacent cell.

To accomplish this, the Grid expects its immediate children to be GridRow
or GridItem containers (which correspond roughly to <tr/> and <td/> tags
in an HTML table). It works with these containers to accomplish tasks like
column and row spanning, using the colSpan and rowSpan properties.

When using Design mode, dragging a Grid container onto the stage will
prompt you with a dialog box asking for the number of rows and columns
you want. This is an easy way to create a Grid, because it will then write
the code for you, inserting the necessary GridItem and GridRow containers.
From there you can simply drag and drop components into the individual
GridItem containers. You can put multiple children inside a GridItem con-
tainer as well, which can provide a lot of flexibility.

Form
The Form container creates a layout for its children in a way that mimics
an HTML form. It does this by working with a special container called a
FormItem. FormItem containers take an input control and provide it with a
label, without the need to use a Label control. An example follows:

<mx:Form>

 <mx:FormItem label="A Short Label">
 <mx:TextInput/>
 </mx:FormItem>

 <mx:FormItem label="A Very, Very Long Label">
 <mx:TextInput/>
 </mx:FormItem>

</mx:Form>

This creates a layout like Figure 8-10, causing the form fields (the two
TextInput controls) to line up vertically, while also lining up their corre-
sponding labels. The labels are matched in width, so that if you have a long
label and a short label, the longest label pushes the form fields to the right
so that it all fits nicely.

Note

If all this sounds too complicated, Grid
is probably not the container for you.
You can accomplish most of what it does
by using constraints, explained a little
later in this chapter. However, if you’ve
been using HTML tables a great deal,
you may find that Grid is a great choice
for you.

Figure 8-10. A simple Form layout

Note

FormItems have additional functionality
that help with form validation. I will dis-
cuss this more in depth in Chapter 9.

LearningFlex3_book.indb 104 5/27/08 1:53:06 PM

Advanced Containers

Chapter 8, Laying Out Your Applications 105

Forms can also take a FormHeading control, which provides a title for the
form. The FormHeading also lines up with the form fields automatically.

In Flex Builder’s Design mode, forms are easy to create. Just drag a Form
container onto the stage. Then when you drag form fields such as TextInputs,
NumericSteppers, or DateFields, Flex Builder automatically generates a
FormItem, and you can double-click the FormItem to change its label. If you
don’t want a label at all, it’s fine to enter an empty string or go into Source
mode and remove the label attribute from the FormItem altogether.

To really understand this container, return to the ContactManager project you
created in Chapter 7. In this chapter, you’ll rework the layout to take advantage
of this new container. Either re-create it in Design mode or modify your code
to replace the Panel containers with Form and FormItem containers:

<mx:Form>
 <mx:FormHeading
 label="Contact Editor"/>
 <mx:FormItem
 label="First Name">
 <mx:TextInput id="firstNameTextInput"/>
 </mx:FormItem>
 <mx:FormItem
 label="Last Name">
 <mx:TextInput id="lastNameTextInput"/>
 </mx:FormItem>
 <mx:FormItem
 label="Age">
 <mx:NumericStepper id="ageNS"
 maximum="120"
 minimum="18" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:CheckBox id="dogsCheckBox"
 label="Likes Dogs" />
 </mx:FormItem>
 <mx:FormItem
 label="Favorite Color">
 <mx:ColorPicker id="favoriteColorPicker"/>
 </mx:FormItem>
</mx:Form>

<mx:Form x="300">
 <mx:FormHeading
 label="Contact Details"/>
 <mx:FormItem
 label="Full Name">
 <mx:Label
 text="{firstNameTextInput.text} {lastNameTextInput.text}"/>
 </mx:FormItem>
 <mx:FormItem
 label="Age">
 <mx:Label
 text="{ageNS.value} years old"/>
 </mx:FormItem>
 <mx:FormItem
 label="Likes Dogs">
 <mx:Label

WarNiNg

For Form fields to line up properly, you
must enclose them in a FormItem con-
tainer, so even if you don’t want a label
displayed, keep the FormItem in place.

LearningFlex3_book.indb 105 5/27/08 1:53:06 PM

Learning Flex 3106

Layout Controls

 text="{dogsCheckBox.selected}"/>
 </mx:FormItem>
 <mx:FormItem
 label="Favorite Color">
 <mx:Canvas
 width="60"
 height="60"
 backgroundColor="{favoriteColorPicker.selectedColor}"/>
 </mx:FormItem>
</mx:Form>

Your ContactManager application should now look like Figure 8-11. Keep this
for now, because you’ll continue building upon this application throughout
this book.

Figure 8-11. ContactManager with a new Form layout

Layout Controls
A few controls are useful for layout. These controls help with relative layouts
by taking up space in containers.

Spacer
The Spacer is an invisible control that, when used in conjunction within lay-
out containers, will push other children around. Although it’s invisible, it can
still have a width and height, and it accepts all other sizing options such as
percentage-based sizes and minimum and maximum values.

For instance, a Spacer placed inside an HBox can separate the controls to
its left and right, pushing them apart. If you gave the Spacer a width of 100
percent, this can provide a layout where two visual controls are pushed to the
opposite edges of the HBox, as shown in Figure 8-12:

<mx:HBox width="250">
 <mx:Button label="Left"/>
 <mx:Spacer width="100%"/>
 <mx:Button label="Right"/>
</mx:HBox>

Tabbing Through
Fields

People expect to be able to easily
navigate through an application
with more than the mouse. The most
commonly used navigation button
is the Tab key. People expect to be
able to use this key to move through
input fields in an application, and
not providing this functionality will
be more than frustrating for most
people.

Usually, you won’t even have to
think about this one, because Flex
provides a default system of tab
navigation. Based upon the proximity
of a particular control or form field to
the currently selected field, focus will
generally move to the expected field
when using the Tab key. When using
containers such as Form, the tab
navigation will move from the current
field to the adjacent field in a way
that you can predict.

If you find that you need more fine-
grained control, components have a
property called tabIndex that you
can modify. This property expects an
integer that gives the order in which
the particular component should be
given focus when tabbing through
controls. Note that for this to work
properly, you must set the tabIndex
of every single control. Usually, using
containers that lay controls out in
the right order is a better way to
accomplish this.

Figure 8-12. A representation of a Spacer
at work in an HBox

LearningFlex3_book.indb 106 5/27/08 1:53:08 PM

Layout Controls

Chapter 8, Laying Out Your Applications 107

Planning Your Layout
Like all aspects of software development, designing a great interface layout can benefit from a bit of planning. I’ve found that
creating a simple diagram of my application really helps, especially if I plan to use a lot of layout containers. This helps me think about
how different components relate to one another.

Flex’s layout mechanism does a lot of calculations when determining optimal size and placement, so having too many nested
containers can cause a performance degrade. That’s why it’s good to plan for your layout in order to ensure you have only the pieces
you need. Remember, for instance, that the Application tag is a container itself. Thus, the following code, which attempts to line
up two Buttons vertically, isn’t optimal:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:VBox>
 <mx:Button/>
 <mx:Button/>
 </mx:VBox>

</mx:Application>

You could easily reduce this code by removing the VBox and replacing the layout by changing the Application tag’s layout
property to vertical:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">

 <mx:Button/>
 <mx:Button/>

</mx:Application>

The trick is to simplify and use only what you need. This not only makes your applications run better, but it makes your code easier to
understand, navigate, and maintain.

HRule and VRule
HRule and VRule controls work similarly to Spacer controls, but they have
chrome that shows a thin horizontal or vertical line by default. For example,
you could use an HRule in a Form container to visually separate different
sections. You can see how an HRule looks in Figure 8-13.

Figure 8-13. An HRule helps separate the sections of a Form container

Note

You can use the Label control like a lay-
out control in some situations. Because
setting its width or height to a larger
number doesn’t affect the actual text size,
it can provide an additional means of
controlling layout.

LearningFlex3_book.indb 107 5/27/08 1:53:08 PM

Learning Flex 3108

Alignment

Flex Builder provides a couple of ways to easily understand (and
navigate) the hierarchy of your application.

Using the Outline panel shown in Figure 8-14 (accessible by
selecting Window→Outline if not visible in your workspace), you
can see the structure of your application in a tree list. When you
select an item in this list, the selection is matched on the stage,
and vice versa.

Figure 8-14. The Outline panel
Another great option is the Show Surrounding Containers
feature. You can toggle this by selecting Design→Show
Surrounding Containers. What this does is highlight the
containers that enclose the currently selected component, as

shown in Figure 8-15. This helps you visualize the hierarchy of
containers, especially those containers that don’t have much
of a visual representation. It also helps when dragging and
dropping components to the stage, because it provides extra
padding around the current selection, making it easier to drop
components where you want.

Figure 8-15. An example of showing the surrounding
containers
You can even use the Outline panel and the Show Surrounding
Containers feature together for a very powerful and intuitive
way to understand your application. This enables you to view
and select containers and controls either in the tree view or
directly on the stage.

Visualizing the Structure of Your Application

Alignment
Many Flex containers like HBox and VBox can support both horizontal
and vertical alignment. This happens through the horizontalAlign and
verticalAlign properties, which accept values of left, center, or right. Take,
for example, a VBox with a width and height of 400 pixels that is lining up
three buttons. By default, the VBox’s horizontalAlign property will be set to
left, meaning the Buttons will all be aligned to the left edge of the VBox.
You can make them centered, however, by changing the property to center,
as shown in the following code:

<mx:VBox
 width="400"
 height="400"
 horizontalAlign="center">

 <mx:Button label="Button"/>
 <mx:Button label="Button"/>
 <mx:Button label="Button"/>

</mx:VBox>

An alternative system for layout that lets you both center components and
anchor them to the left or right edge is a constraints layout.

WarNiNg

Alignment won’t make any difference
if no explicit size has been set on the
container. Because a container with no
size will simply fit its contents, alignment
wouldn’t show because there would be
no space between the container and its
children.

LearningFlex3_book.indb 108 5/27/08 1:53:09 PM

Constraints-Based Layout

Chapter 8, Laying Out Your Applications 109

Constraints-Based Layout
You can use another, very powerful way to lay out your application, and it can
work in conjunction with layout containers. It’s a constraints-based layout,
and it not only provides a way to position components but works for sizing
as well.

Typical Usage
You can think of constraints as extensions to normal absolute positioning,
because they are used with the Canvas container or other containers such
as Application or Panel that have their layout set to absolute. They provide
a way to anchor a component to an edge of its container so that resizing
that container causes the component to either move or resize itself to stay
anchored to that point.

The best way to understand constraints is to convert an absolutely positioned
layout to a constraints-based layout.

Consider the following code, which places a Button in an Application with an
absolute layout. In Flex Builder’s Design mode, the Button is placed 5 pixels
from the bottom and right of the stage, which happens to be an x of 600 and
a y of 400 (see Figure 8-16).

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:Button label="Button" x="600" y="400"/>

</mx:Application>

To convert to a constraints layout, use the Layout section in the Flex Properties
panel. You will find not only fields for width and height and x and y, but you
will also see near the bottom a utility for creating constraints. Turning on the

x coordinate

y coordinate

Figure 8-16. The Layout section showing typical x and y coordinates

LearningFlex3_book.indb 109 5/27/08 1:53:10 PM

Learning Flex 3110

Constraints-Based Layout

top-right and bottom-left checkboxes in this section generates the constraints
code for you (see Figure 8-17). This creates constraints for the right edge and
the bottom edge, using the properties right and bottom:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:Button label="Button" right="5" bottom="5" />

</mx:Application>

Notice how the x and y attributes have been replaced by the constraint attri-
butes bottom and right.

constraints

Figure 8-17. The Layout section showing a converted constraints layout

Instead of the Button control being locked into place at an x of 600 and a y of
400, it’s now anchored 5 pixels from the bottom and 5 pixels from the right
edge. Figure 8-18 shows how the application looks when resized.

Figure 8-18. The Button is anchored to the bottom-right edge and stays there when the
application is resized

Note

What Design mode’s Layout section does
is look at the current position of the
Button in relation to its container, which
is in this case the Application. Seeing that
it’s 5 pixels from the right and 5 pixels
from the bottom, it automatically creates
anchors of 5 pixels when the right or
bottom checkboxes are turned off.

LearningFlex3_book.indb 110 5/27/08 1:53:12 PM

Constraints-Based Layout

Chapter 8, Laying Out Your Applications 111

You can add multiple constraints, which can even cause the Button to resize.
Using this same example, return to Design mode, and resize the Button so
that it takes up the entire Application, leaving just a few pixels of space as in
Figure 8-19. It may now have a large width and height set.

Figure 8-19. The Button with a width and height that match the currently visible
Application in Design mode

Next, add left and top constraints by turning off the two top-left check-
boxes in the Layout section. This replaces the Button’s width and height (see
Figure 8-20). The code created should be something like the following:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:Button label="Button" right="5" bottom="5" left="5" top="5"/>

</mx:Application>

Figure 8-20. The Button, now sized according to constraints all around

Width

Height

Left

Top

LearningFlex3_book.indb 111 5/27/08 1:53:13 PM

Learning Flex 3112

Constraints-Based Layout

Now, the Button resizes to stay anchored to all four corners of the Application
tag, as shown in Figure 8-21.

Figure 8-21. The Button is anchored to the four corners of the application and will grow
or shrink as needed when the application is resized

You can also use constraints to center components both vertically and hori-
zontally. To understand this, you’ll need to create a little example. So, start
with a blank application. In Design mode, place a single Panel anywhere on
the stage. Returning to the Layout section, this time turn on the top center
and left center checkboxes. This converts the current x,y coordinates into
center constraints called horizontalCenter and verticalCenter. The number
that is showing the input fields next to these checkboxes specifies the number
of pixels you want the Panel to be from the horizontal center and vertical
center, respectively. To anchor the Panel perfectly in the center, set both fields
to 0, as shown in Figure 8-22. This generates the following code:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:Panel
 width="250"
 height="200"
 layout="absolute"
 horizontalCenter="0"
 verticalCenter="0">
 </mx:Panel>
</mx:Application>

LearningFlex3_book.indb 112 5/27/08 1:53:14 PM

Constraints-Based Layout

Chapter 8, Laying Out Your Applications 113

Figure 8-22. A Panel that has been centered via constraints

Now, whether the Panel has its width or height changed or even if the
Application is resized, it will stick right in the center.

Bindings in Layout
You can use bindings in size and layout attributes to create powerful layouts. Just as
you can bind two TextInput’s text properties together, you can also bind two Panel’s
width properties together, ensuring that they always remain the same width as one
another.

Similarly, you can bind a Panel’s width to its height, making the Panel stay square.
You can bind x and y attributes and anchors as well. For instance, using an absolute
layout, you can bind the x of one Panel to the x and width of another, mimicking a
relative layout:

<mx:Panel id="onePanel"
 x="{anotherPanel.width + anotherPanel.x + 10}"
 width="{anotherPanel.width}"
 height="{anotherPanel.height}" />

<mx:Panel id="anotherPanel"
 width="250"
 height="200" />

You can also use the bindings to create calculations in coordinates or sizes. The
options are truly limitless.

One caveat of this approach, however, is that Flex Builder won’t be able to show the
layout binding in Design mode.

Constraint Rows and Columns
There’s actually more to constraints than I’ve discussed. You can use con-
straint rows and columns to gain further control over your constraints. These
rows and columns are imaginary (invisible) boxes that you can place around
your application and then anchor components to them. Instead of simply
anchoring a component to the edge of a container, you can now anchor it to
any point you want.

Note

Mixing left or right anchors with
horizontalCenter anchors can lead
to somewhat unpredictable results.
Similarly, top and bottom anchors
aren’t best mixed with verticalCenter
anchors. They are not mutually exclu-
sive, but it doesn’t necessarily make sense
to be anchored, for instance, to the left
edge and be centered horizontally. If you
specify both a center constraint and an
edge constraint in code, the size of the
component is calculated from the edge
constraints, while its position is deter-
mined by the center constraint. In Design
mode, Flex Builder keeps you from doing
this by removing anchors that aren’t
compatible.

LearningFlex3_book.indb 113 5/27/08 1:53:15 PM

Learning Flex 3114

Constraints-Based Layout

When you create a constraint column using the tag <mx:constraintColumn/>,
Flex places that column at the leftmost edge of the application. You then
set the width attribute on that column. Flex places the next column you create
to the right of the previous column.

Constraint rows, created with the tag <mx:constraintRow/>, appear from top
to bottom. Creating the first constraint row puts it at the top of the applica-
tion. You then set its height attribute, which determines how far down it
extends. The next row created will begin right below the first row, as set by
the first row’s height.

To anchor components to rows, you use almost the same syntax as with typi-
cal anchors. However, to show that you want the component anchored to a
specific row or column, you prepend that row or column ID to the property.
For example, in a typical constraint layout not using rows or columns, you
would anchor a Button control 5 pixels from the top of its container by
using <mx:Button top="5"/>. To instead anchor it 5 pixels from a constraint
row called row2, you would prepend row2 to that value, followed by a colon:
<mx:Button top="row2:5"/> (see Figure 8-23).

Figure 8-23. The syntax for anchoring to constraint rows or columns

You can create multiple rows or columns, attaching components to any one of
them. This allows a grid layout, supporting columns and row spans as well.

Try the following code, which maps some HRules and VRules to constraint
rows and columns. Because constraint rows and columns are invisible, this
lets you see where the constraint rows and columns are located. It then places
four Buttons in a grid, anchoring them to the rows and columns, as shown
in Figure 8-24.

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute ">

 <!--Create two columns, one from the left edge until 200 pixels,
 Another from 200 until the far right edge
 -->
 <mx:constraintColumns>
 <mx:ConstraintColumn id="col1" width="200" />
 <mx:ConstraintColumn id="col2" width="100%" />
 </mx:constraintColumns>

 <!--Create two rows, one from the top edge until 100 pixels,
 Another from 100 until the bottom
 -->
 <mx:constraintRows>
 <mx:ConstraintRow id="row1" height="100"/>
 <mx:ConstraintRow id="row2" height="100%"/>
 </mx:constraintRows>

Note

Rows and columns appear in the order
you define them in MXML. For rows, the
height of the previous row sets where
the next row appears. Similarly for col-
umns, the previous column’s width deter-
mines where the next column appears.
Setting the y or x on constraint rows or
columns has no effect. You must always
use the height or width properties
to determine where a row or column
appears.

row or
column ID

amount

Note

You can’t use curly braces when refer-
ring to constraint rows or columns
in components. Thus, <mx:Button
top="{row1:0}"/> is incorrect.

LearningFlex3_book.indb 114 5/27/08 1:53:16 PM

Summary

Chapter 8, Laying Out Your Applications 115

 <!--Use VRules and HRules to map the locations of the
 constraint rows and columns
 -->
 <mx:VRule height="100%" left="col1:0" />
 <mx:VRule height="100%" left="col2:0" />

 <mx:HRule width="100%" top="row1:0" />
 <mx:HRule width="100%" top="row2:0" />

 <!--Place Buttons in a grid layout -->
 <mx:Button
 label="column 1, row 1"
 left="col1:5"
 right="col1:5"
 top="row1:5"
 bottom="row1:5"/>

 <mx:Button
 label="column 1, row 2"
 left="col1:5"
 right="col1:5"
 top="row2:5"
 bottom="row2:5"/>

 <mx:Button
 label="column 2, row 1"
 left="col2:5"
 right="col2:5"
 top="row1:5"
 bottom="row1:5"/>

 <mx:Button
 label="column 2, row 2"
 left="col2:5"
 right="col2:5"
 top="row2:5"
 bottom="row2:5"/>

</mx:Application>

Summary
In this chapter, you learned a great deal about laying out applications in Flex.
You discovered some new types of layouts and learned how to use the display
list, which allows you to easily move components around, even in and out
of other containers. You now know how to size your components with both
explicit sizes and percentage-based sizes, which gives you a lot of flexibility in
your layouts. You learned about a few new containers as well and made your
ContactManager application better looking because of it. You’ve also learned
some very advanced techniques for constructing layouts using constraints.
There was plenty to cover in this chapter, but everything you’ve learned has
an immediate use. In the next chapter, you’ll learn more about the Form con-
tainer and how to create rich experiences with Forms and user input.

Figure 8-24. Four Buttons placed in a grid
layout and anchored to constraint rows
and columns

LearningFlex3_book.indb 115 5/27/08 1:53:17 PM

LearningFlex3_book.indb 116 5/27/08 1:53:17 PM

117

CHAPTER 9

IN THIS CHAPTER

Preparing the Application

Validating Data

Restricting Input

Formatting Data for Display

Summary

Have you ever filled out an HTML form on a website, submitted it, and wait-
ed for the result—only to find that one of the fields had an error or omission?
How easy was it to find your mistake? Was it something silly like not putting
parentheses around the area code of a phone number (or putting them in if
they weren’t needed)? Wouldn’t it be nice if that never happened again?

With Flex, the tasks of validating input and formatting the results are second-
nature. Built into the most common controls is a great way to give feedback
to people using your application if something they’ve entered isn’t correct,
and there’s also an easy way to format their input. With Flex validators and
formatters, you’ll be able to give your applications an easy-to-use UI.

Preparing the Application
First, you’ll return to the ContactManager application you modified in
Chapter 8 to take advantage of the Form container. In this chapter, you’ll
add a few fields and modify the application so it really looks like an address
book. You’ll add phone number, email, address, and zip code fields, and you’ll
replace the current CheckBox with one to designate whether a contact is a
company. You’ll also get rid of the NumericStepper, because an actual birth
date makes more sense to store (you’ll learn how to calculate an age later in
this chapter). You’ll learn a great way of entering dates using the DateField
control, which provides a pop-up calendar interface.

To start, make sure the ContactManager application is open, and go ahead
and add a DateField to the Contact Editor Form. Once added, set the
DateField’s editable property to true. Setting the editable property to true
lets people type in the DateField, instead of having to use the mouse to navi-
gate to a date.

Next, add a TextInput control for the phone number field. You’ll also create
a way for someone to select the type of the phone number, be it mobile,
home, or some other kind. Because you want to accept one of three values,
a CheckBox isn’t going to do, because a CheckBox has only two values:

Note

Remember that you can use Design
mode to easily wrap your form fields in
FormItem containers. Simply drag the
control you want to use into the Form,
and Flex Builder will create a FormItem
automatically.

CREATING RICH
FORMS

LearningFlex3_book.indb 117 5/27/08 1:53:18 PM

Learning Flex 3118

Preparing the Application

on (true) or off (false). Radio buttons are great for letting someone select
one of a few values, so you’ll create a set of radio buttons in this chapter.

To do so, go into Flex Builder Design mode, and drag a RadioButtonGroup
into the FormItem for the phone number. You’ll be prompted with a dialog
box similar to Figure 9-1, which lets you configure your group. Give the group
a name of phoneRadioButtonGroup, and set up three radio buttons corre-
sponding to three types of phone numbers: mobile, home, and other. You can
add a new one by clicking the Add button. Once you click OK, Flex Builder
generates a <mx:RadioButtonGroup/> tag and three <mx:RadioButton/> tags
like the following, that you can see in Source mode:

<mx:RadioButtonGroup id="phoneRadioButtonGroup" />

<mx:RadioButton label="mobile" groupName="phoneRadioButtonGroup"/>
<mx:RadioButton label="home" groupName="phoneRadioButtonGroup"/>
<mx:RadioButton label="other" groupName="phoneRadioButtonGroup"/>

The <mx:RadioButtonGroup/> tag isn’t a container tag for the RadioButtons;
it’s a nonvisual control that RadioButtons are connected to, and it lets you
access their state, such as which one is selected in the group. RadioButtons are
connected to this group by pointing their groupName property to this group.

Back in Design mode or Source mode, whichever you prefer, set the first
RadioButton in the group to selected so mobile is selected automatically. You
can do this by setting that RadioButton’s selected property to true.

You’ll want to make sure that at least a first name and email address are
entered. The first step in doing that is to add a property to the corresponding
FormItems called required, setting it to true. This doesn’t actually do any-
thing other than display visual feedback via a red asterisk next to the field.
However, you’ll learn how to ensure a value is entered very soon by using a
validator.

Your code for the Contact Editor Form should look like this:

<mx:Form id="contactEditor">
 <mx:FormHeading
 label="Contact Editor"/>
 <mx:FormItem
 label="First Name"
 required="true">
 <mx:TextInput id="firstNameTextInput"/>
 </mx:FormItem>
 <mx:FormItem
 label="Last Name">
 <mx:TextInput id="lastNameTextInput"/>
 </mx:FormItem>
 <mx:HRule
 height="22"
 width="100%"/>
 <mx:FormItem
 label="Email"
 required="true">
 <mx:TextInput id="emailTextInput"/>
 </mx:FormItem>

Figure 9-1. The Insert Radio Button Group
dialog box

LearningFlex3_book.indb 118 5/27/08 1:53:18 PM

Preparing the Application

Chapter 9, Creating Rich Forms 119

 <mx:FormItem
 label="Phone">
 <mx:TextInput id="phoneTextInput"/>

 <mx:RadioButtonGroup id="phoneRadioButtonGroup" />

 <mx:RadioButton
 label="mobile"
 groupName="phoneRadioButtonGroup"
 selected="true"/>
 <mx:RadioButton
 label="home"
 groupName="phoneRadioButtonGroup"/>
 <mx:RadioButton
 label="other"
 groupName="phoneRadioButtonGroup"/>
 </mx:FormItem>
 <mx:FormItem
 label="Address">
 <mx:TextArea id="addressTextArea"/>
 </mx:FormItem>
 <mx:FormItem label="Zip">
 <mx:TextInput id="zipCodeTextInput"/>
 </mx:FormItem>
 <mx:HRule
 height="22"
 width="100%"/>
 <mx:FormItem
 label="Birthday">
 <mx:DateField id="birthdayDateField"
 editable="true"/>
 </mx:FormItem>
 <mx:FormItem
 label="Favorite Color">
 <mx:ColorPicker id="favoriteColorPicker"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:CheckBox id="companyCheckBox"
 label="Company" />
 </mx:FormItem>
</mx:Form>

For now, you can just remove the Contact Details section, because it con-
tains references to controls you’re no longer using. (You’ll build a new and
improved version a little later on.) Then run the application so you can see
your new work, which should look like Figure 9-2.

Try using the DateField conrol. Not only can you select a date from the
pop-up calendar, but you can enter a date as well. The DateField has built-in
data validation and parsing, which allows it to accept many different date
formats. For example, to enter a birthday of July 20th, 1979, you could enter
7/20/1979, 7-20-79, or even 7 20 1979. How’s that for service? As long as
you enter the month before the date, it just works. And even that format is
configurable. Using the formatString property, you can enter a String value
to display the date the way you want. For instance, suppose you prefer to see
it in a format with the year followed by the month and date. You can simply
add formatString="YYYY-MM-DD". Not only will the displayed format of the

Figure 9-2. The new and improved
Contact Editor form

Note

Check the Flex Language Reference for
the DateField control to see the possible
values for the formatString property.

LearningFlex3_book.indb 119 5/27/08 1:53:19 PM

Learning Flex 3120

Validating Data

date change, but setting this property will make the control expect the date
to be entered.

While the DateField looks as though it contains simply text, it has a
selectedDate property that is actually a Date object. Date is a complex data
type that is used just for dates and times. It represents a single moment of
time, down to the millisecond. When you type in a date that is validated
by the DateField control or when you select a date from the pop-up list, its
selectedDate property is populated with a Date.

The DateField is a great example of letting someone enter data freely, without
worrying that they’re going to break the form. You’ll take some of that with
you as you learn about how to implement validation.

Validating Data
Seeing how great the DateField works, it’s painful to think of all those forms
on the web that don’t have such great validation. User-friendly and beautiful
forms are natural to Flex; all you need are some basic validation techniques.

Using Validators
To learn validation hands-on, you’ll just go down the line, setting up valida-
tion for each of the fields in the Contact Editor. You’ll start with the first
name field, which you’ve designated as required on its FormItem. However,
the FormItem shows it only as required but doesn’t actually do any error
checking. For that functionality, you’ll use a nonvisual component called
StringValidator.

StringValidator
A StringValidator is a basic validator that can ensure text has been entered. To
use it, simply place an <mx:StringValidator/> tag at the top of your MXML
file, within the <mx:Application/> tag. It’s not required to place validators at
the top, but it’s standard practice to put any nonvisual components there to
make them easier to find and modify. The <mx:StringValidator/> tag has a
source attribute that points to the control you want it to watch. The property
attribute tells it which property of this control should be validated. To set up
validation for the firstNameTextInput field, your tag should look like this:

<mx:StringValidator id="firstNameValidator"
 source="{firstNameTextInput}"
 property="text"/>

Now run the application and see what validation does. If you change focus
from the first name field (by tabbing to the next field or using the mouse to
select another field) and haven’t entered a value, a red border surrounds the
firstNameTextInput field, signaling that something is wrong. If your mouse
hovers over that field, a nonintrusive message pops up explaining what is
wrong. By default it reads “This field is required.”

Note

You might have wondered, if there’s a
DateField control, why aren’t there other
data-specific controls for information
like zip codes and email addresses? There
probably are some out in the wild that
you can download and use, but you have
a pretty solid set of tools right now. You’ll
make TextInputs work as great input
fields for all your data, coupling them
with validators. I’ll discuss using third-
party components in the next chapter.

WarNiNg

The source property of the
StringValidator tag, and all valida-
tors in general, expects a binding, mean-
ing it expects an actual instance of a
control. However, it doesn’t expect a
binding to the property of the control,
just the control. Thus, the following code
is incorrect:

<mx:StringValidator source=
"{firstNameTextInput.text}" />

LearningFlex3_book.indb 120 5/27/08 1:53:19 PM

Validating Data

Chapter 9, Creating Rich Forms 121

But you can do better than that. Using the validator’s requiredFieldError
property, you can enter your own message. For a more descriptive and slightly
rude alternative, you can add the property requiredFieldError="I'm sure
you've got a name.Why not enter it here?" If you noticed the  char-
acters and thought I was swearing, I’m sorry to let you down.  is a XML
character reference, which is a way to insert a special character. Using this
character reference inserts a line break into the error string, making it more
presentable.

Be sure to run the application and try the new validation techniques. Your
application will look like Figure 9-3.

Figure 9-3. The user-friendly form

You’ll now continue with the next field you want to validate. For this appli-
cation, you’ve specified that a last name isn’t required for your form. So, you
don’t need to validate it, right? Well, that may not be true. A last name isn’t
required, but if one is entered, you can ensure it’s a proper name.

One way to do this is by using another StringValidator, this time setting its
required property to false (which is by default true). Because it isn’t set as
required, just pointing this new validator to the last name field won’t cause
any validation to occur. If you’d like you can use the minLength property to
enable a very simple check, making sure the name is at least two characters
long. This could prevent someone from inputting an initial, when you want
a full name.

Note

In ActionScript, you would use the \n
escape sequence to create a line break.
So, in ActionScript, the code might look
like this:

stringValidator.requiredFieldError
= "I'm sure you've got a name.
\n Why not enter it here?";

WarNiNg

This application showcases validation
features. There could be instances where
a user’s name is actually only one letter
long, and such validation could cause
irritation. When you’re designing vali-
dation schemes, always try to think of
every possibility you might encounter
from your users.

LearningFlex3_book.indb 121 5/27/08 1:53:20 PM

Learning Flex 3122

Validating Data

You’ll also be able to customize the error message that displays, just like the
previous validator. You won’t customize it by using a requiredFieldError,
however, as this error message will display when the text entered is too short.
To accomplish this, use the tooShortError property:

<mx:StringValidator id="lastNameValidator"
 source="{lastNameTextInput}"
 property="text"
 required="false"
 minLength="2"
 tooShortError="What kind of last name is that?"/>

Run and test the application, testing the new validation techniques. Your
application will look like Figure 9-4.

Figure 9-4. The increasingly demanding application

EmailValidator
The next item on the list is the email field. To validate an email address,
you use the handy component EmailValidator. It works just like the
StringValidator, so add the tag and connect it to the emailTextInput control.
You can add a custom requiredFieldError message as well, just to keep the
application cheeky. However, EmailValidator has a ton of other error mes-
sages and options for customizing them. It has a missingAtSignError message
and an invalidDomainError and everything in between. You don’t need to
set a value for all these messages, because the component gives a nice set of
defaults. But it’s nice to know they’re there.

LearningFlex3_book.indb 122 5/27/08 1:53:21 PM

Validating Data

Chapter 9, Creating Rich Forms 123

<mx:EmailValidator id="emailValidator"
 source="{emailTextInput}"
 property="text"
 requiredFieldError="An at sign (@) is missing in your e-mail

address."/>

Now your application will display a silly warning whenever no email address
is entered. Using the standard error messages, it will also display descriptive
errors if an invalid email address is entered.

Run and test the application. Your application will look like Figure 9-5.

Figure 9-5. The very specific error messages of the EmailValidator

PhoneNumberValidator
Next on the agenda is the phone number. If you haven’t already guessed,
you’re going to use a PhoneNumberValidator to validate this one. This is
another case where the field isn’t required, but you want to validate any entry
that is made.

<mx:PhoneNumberValidator id="phoneValidator"
 source="{phoneTextInput}"
 property="text"
 required="false" />

What is special about this component is that it will, by default, accept
numerous formats for phone numbers without complaint. That means you
can enter (415)555-8273, 415-5558273, or even 415 555 8273, and it will

Note

EmailValidator and PhoneVali dator do
not actually verify that an email address
or phone number exists. Like all valida-
tors, they are simply ensuring that the
information looks like a valid entry.
Checking, for instance, whether an email
address is actually registered would
require a connection to a database or
Web service that provides such a service.
I’ll talk about how to connect to remote
data in the next chapter.

LearningFlex3_book.indb 123 5/27/08 1:53:21 PM

Learning Flex 3124

Validating Data

be accepted. However, entering I don’t have a phone isn’t going to cut it, as
shown in Figure 9-6.

Figure 9-6. No getting past the PhoneValidator

ZipCodeValidator
You won’t need to validate the address field, although you could validate it
the same way you did the last name field if you want, ensuring that if a value
is entered, it’s of the necessary length. So, you’ll move on to the zip code.
ZipCodeValidator will take care of this one nicely.

The ZipCodeValidator is set up to validate either U.S. zip codes (the default)
or both Canadian and U.S. zip codes. You specify this using the domain prop-
erty, which accepts either the string “US Only” or the string “US or Canada.”
So, you’ll allow Canadian zip codes as well.

This is one of those cases where the concept of constants comes into play.
You learned about these in Chapter 6. (For a review, see the section titled
“Constants” in Chapter 6.) The string “US or Canada” can be easily forgot-
ten or typed in incorrectly, and doing so would cause the ZipCodeValidator
to function incorrectly. Instead, you can use a constant value that’s available
on the mx.validators.ZipCodeValidatorDomainType class. Using a binding,
you can enter the constant ZipCodeValidatorDomainType.US_OR_CANADA for
the value of the domain property. This makes it impossible to make a typo,

Note

For many client-server applications, vali-
dating just on the client side isn’t enough.
Generally, these applications will have
a server-side validation scheme as well,
ensuring that no improper information is
stored on the server. But that’s not your
worry at the moment. I’ll leave that topic
for another book.

LearningFlex3_book.indb 124 5/27/08 1:53:22 PM

Validating Data

Chapter 9, Creating Rich Forms 125

because the compiler will check the value. Using code completion in Flex
Builder, the value is very easy to enter.

To make this class available to you, however, you must import it. So, the code
you’ll need for this validator is in two parts. First you have an <mx:Script/>
tag that contains an import statement:

<mx:Script>
 <![CDATA[
 import mx.validators.ZipCodeValidatorDomainType;
]]>
</mx:Script>

And then you have the validator itself:

<mx:ZipCodeValidator id="zipCodeValidator"
 source="{zipCodeTextInput}"
 property="text"
 domain="{ZipCodeValidatorDomainType.US_OR_CANADA}"
 required="false"/>

Now your form can validate both U.S. and Canadian zip codes, as shown in
Figure 9-7.

Figure 9-7. The ZipCodeValidator even speaks Canadian

Other available validators
You don’t necessarily need to validate the DateField, because the control takes
care of it on its own. However, you can use the DateValidator class if you’d

Note

When using code completion in Flex
Builder to enter this constant value,
the class will be imported for you auto-
matically.

LearningFlex3_book.indb 125 5/27/08 1:53:22 PM

Learning Flex 3126

Validating Data

like, which makes it easy to validate dates. A number of other validators exist
as well, such as CreditCardValidator, CurrencyValidator, NumberValidator,
and SocialSecurityValidator. Now that you know how to use many of the
most common validators, taking on any of these will be easy for you.

Creating That Error Look, Without Error
You’ve discovered how to use validators to display an error message in a control, and
that gives great feedback to the person using your application. But did you know
you have another way to display an error message on a control without a validator?
Using the property errorString, you can cause a red border and pop-up message
to display.

For example, you could give the ColorPicker an error message, such as the one in
Figure 9-8, using the following code:

<mx:ColorPicker id="favoriteColorPicker"
 errorString="Hmm. Not quite the color I was expecting. . ."/>

This property can be very helpful if used in a script so that the error message displays
based upon certain events or criteria. To remove the error message, just set the
errorString back to an empty string, like in the following ActionScript:

favoriteColorPicker.errorString = "";

Figure 9-8. Using an error string

Note

There is even a RegExpValidator that
you can use to build very powerful
validation using regular expressions,
which let you find patterns in text. You
could even create an advanced vali-
dator for the address field by using
the RegExpValidator, because you could
make sure that an address pattern was
entered—such as a city name, followed
by a comma, followed by state name or
abbreviation.

LearningFlex3_book.indb 126 5/27/08 1:53:23 PM

Validating Data

Chapter 9, Creating Rich Forms 127

Custom Validation Techniques
You might have noticed that these validation components display an error
message only once a value is entered (or not entered) and then focus is moved
to another field. This is because they work by certain triggers, or events that
cause the validation to start.

Each validation component has a property called trigger that can be set to
a component instance. This property defaults to the component that is the
validator’s source. You can also set the triggerEvent, which takes the name
of the event that causes validation to occur. This defaults to an event called
valueCommit, which is fired on many input controls when they are sure an
entry is finalized; this typically occurs when the focus changes to another
control, but it can also happen if the value of a control is changed in script.

For example, to cause validation to fire on the email address field
(emailTextInput) while someone types in the field, you add the triggerEvent
with a value of change, which is the event that occurs when changes are made
on a TextInput. (The trigger of the validator is still the emailTextInput, as
this is the default based upon the validator’s source property.)

<mx:EmailValidator id="emailValidator"
 source="{emailTextInput}"
 property="text"
 requiredFieldError="Please enter your email.I promise not to

send spam."
 triggerEvent="change" />

This is a nice concept to help understand triggers, but this code wouldn’t be
very helpful to those using your application. They would see an error mes-
sage as they were typing, They may be on their way to entering a valid email
address, but the error would complain that the entry was incorrect until
they were finished entering it. So, you can make this trigger work for you in
another way. You’ll add a Button control to your form, which will act as a
submit button. (Although you’re not actually submitting any data, you’re just
learning how to build a UI to do so.)

Adding a Button to the form in Design mode will again wrap the Button in
a FormItem container, which is used for field labels and proper alignment
of fields in Form containers. While the FormItem helps align the Button,
it doesn’t make much sense to have a label for the FormItem, because the
Button has a perfectly good one all its own. So, you can simply enter an empty
string for the FormItem’s label. While you’re at it, give the Button an id of
submitButton.

Now you’ll change the trigger of the EmailValidator to point this button.
Because you want the validation to fire when the Button is clicked, you set
triggerEvent to click:

LearningFlex3_book.indb 127 5/27/08 1:53:23 PM

Learning Flex 3128

Validating Data

<mx:EmailValidator id="emailValidator"
 source="{emailTextInput}"
 property="text"
 requiredFieldError="Please enter your email.I promise not to

send spam."
 trigger="{submitButton}"
 triggerEvent="click" />

What will now happen is when someone clicks the submitButton, validation
will trigger on the email address field. Validation will no longer happen when
focusing out of the field; it happens only when the submitButton is clicked,
because you have overridden the default behavior of this validator.

If you want even more control over what happens in validation, you can use
the method validate() on a validator’s instance to trigger the validation
yourself at any time. To try this, first remove any changes you’ve made to the
trigger and triggerEvent properties in your code. Then you’ll create a func-
tion that calls the validate() method for the EmailValidator:

private function validateAndSubmit():void
{
 emailValidator.validate();
}

Once you set the click event listener on the submitButton to point to this
function, clicking the button will trigger validation on the email address field.
By applying this technique, validation will occur when someone is filling out
the form, after values are committed. But by adding this functionality, you’re
able to double-check once you attempt to submit any data.

To apply this technique for all validators, you don’t have to call validate()
on each one individually. A helper function called validateAll() is part of
the mx.validators.Validator class (the base class for all validators) and is a
static method, which means the method is attached to the class itself. Instead
of creating an instance of a Validator component and calling the method
from that instance, the method is actually called from the Validator class.
validateAll() takes an array of validators as its only parameter. So, make
sure to import the mx.validators.Validator class, and change your function
to the following:

private function validateAndSubmit():void
{
 var validators:Array = [firstNameValidator, lastNameValidator,

emailValidator, phoneValidator, zipCodeValidator];

 Validator.validateAll(validators);
}

Now validation will trigger for all these validators at once when the
submitButton is clicked.

You can do even more to make this user-friendly. When someone clicks a
Button, they are probably expecting everything is fine with their form. If it’s
not, the red borders around the incorrect form fields may not be as noticeable

Note

Remember to place your ActionScript
code in an <mx:Script/> tag.

LearningFlex3_book.indb 128 5/27/08 1:53:23 PM

Validating Data

Chapter 9, Creating Rich Forms 129

as you’d like. You can use an Alert component that will pop up a message
window to help grab the user’s attention.

To show an Alert, you simply call the static show() method on the Alert class,
which I mentioned in Chapter 6. This method takes two parameters, the first
being the body of the Alert and the second being the text that is shown in the
title of the Alert window. So after importing mx.controls.Alert, you can pop
up an Alert by calling something like Alert.show("Please fix that stuff.",
"There were problems with your form.").

To find out whether you actually have errors, the Validator.validateAll()
method returns an array. Because arrays have a length property that tells
how many items are in them, checking for a length that is greater than zero
is the way to know whether you’ve had any errors. You do this by using a
conditional statement, which checks whether something is true. The if state-
ment is what you want to use. This statement will run certain chunks of
code depending on whether a value passed to it is true. It will run the code
encased in curly braces if the value is true, and it will skip that code if it’s
false. So, to make this code work, you take the array that is returned from the
Validator.validateAll() method and then see whether its length is greater
than 1. If so, you pop up an Alert.

private function validateAndSubmit():void
{
 var validators:Array = [firstNameValidator, lastNameValidator,

 emailValidator, phoneValidator, zipCodeValidator];

 var errors:Array = Validator.validateAll(validators);

 if(errors.length > 0)
 {
 Alert.show("Please fix that stuff.",

 "There were problems with your form.");
 }

}

If you’re grasping this all right, you can add one more level of complexity to
your function. Instead of simply displaying an Alert that says something is
wrong, you’ll display details about the error in the form submission.

To accomplish this, you’ll need to learn one more ActionScript technique,
loops. Looping lets you run a piece of code repeatedly until certain condi-
tions are met. One of the basic statements for looping is the for each...in
statement. This calls a chunk of code once for each item in an array (or other
object), and it passes that item to the block of code. You can loop through
the errors array, which is an array of ValidationResultEvents, using the fol-
lowing code:

for each (var error:ValidationResultEvent in errors)
{
 Alert.show(error.message, "There were problems with your form.");
}

Note

You’re diving into some real scripting, so
if it doesn’t all make sense to you now,
you can always return to it later. You’ve
already learned a great deal about vali-
dation, and simply using MXML valida-
tion tags can get you pretty far.

LearningFlex3_book.indb 129 5/27/08 1:53:24 PM

Learning Flex 3130

Validating Data

This would display an Alert for each error. Note that the message property
of the ValidationResultEvent is a string of text that corresponds to the error
message of the field. The problem with this approach is that too many Alerts
will pop up if multiple errors occur. So, you’ll finish your validation scheme
by storing all the error messages first and then displaying them all at once
in a single Alert. You can do so by creating an Array called errorMessages
and then adding error messages to the Array. You can add items to an Array
using the Array’s push() method. Then, outside the for each...in loop, you
pop up the Alert. The final function should look like the following:

<mx:Script>
 <![CDATA[
 import mx.validators.Validator;
 import mx.validators.ZipCodeValidatorDomainType;
 import mx.events.ValidationResultEvent;
 import mx.controls.Alert;

 private function validateAndSubmit():void
 {
 var validators:Array = [firstNameValidator,

 lastNameValidator, emailValidator,
 phoneValidator, zipCodeValidator];

 var errors:Array = Validator.validateAll(validators);
 var errorMessages:Array = [];

 if(errors.length > 0)
 {

 for each (var error:ValidationResultEvent in errors)
 {
 var errorField:String = FormItem(

 error.currentTarget.source.parent).label;
 errorMessages.push(errorField + ": " +

error.message);
 }

 Alert.show(errorMessages.join("\n\n"),

 "There were problems with your form.");
 }

 //Here we could invoke other validators, or submit to

//a server
 }

]]>
</mx:Script>

Now the form is looking pretty solid, as shown in Figure 9-9. The next task
you can accomplish is limiting what kinds of values can be entered in the
TextInputs.

LearningFlex3_book.indb 130 5/27/08 1:53:24 PM

Restricting Input

Chapter 9, Creating Rich Forms 131

Figure 9-9. An advanced validation scheme

Restricting Input
I don’t happen to know anyone with a name like 7*%32$, so why allow some-
one to enter such characters? Well, you can actually restrict the allowable
characters in a TextInput, preventing people from entering certain numbers
or symbols in a field. You can do this, surprisingly enough, by using the
restrict property. Changing your firstNameTextInput to the following tag,
you allow only lowercase and uppercase letters to be entered, from A to Z.

<mx:TextInput id="firstNameTextInput"
 restrict="a-z - A-Z"/>

However, you’ve missed one thing. What if someone has a hyphenated first or
last name, such as Day-Lewis, or a name that includes an apostrophe, such as
O’Reilly? You’ll need to add a few more characters to the restrict property.
The problem is, the hyphen is a special character used by the property to
show a range, so how do you let Flex Builder know that you actually want
a hyphen? You can use a backslash (\) in front of a hyphen to show that you
want the hyphen literally:

<mx:TextInput id="firstNameTextInput"
 restrict="a-z A-Z ' \-"/>

While you’re at it, you can apply this new restrict property to the first and last
name fields. Now the fields prevent people from typing unwanted characters.

You can use this same idea for the phone number field if you want, restrict-
ing it to just numbers, parentheses, hyphens, and so on. You might want to

Note

Restricting allowable characters in a
TextInput also prevents special characters
from being used, such as those in non-
English languages. To get around this, you
can use functionality of the restrict
property, which lets you specify which
characters you don’t want to be entered,
instead of specifying what characters
you will allow. You do this by prepending
the sequence with a caret (^). For exam-
ple, to exclude only numbers from your
TextInput, you could change the property
to restrict="^0-9", allowing anything
to be entered except 0–9. This is actually
regular expression syntax, which you can
learn more about by searching this topic
in the Flex documentation.

LearningFlex3_book.indb 131 5/27/08 1:53:25 PM

Learning Flex 3132

Formatting Data for Display

restrict input on the zip code field as well, limiting input to only digits and
hyphens. However, Canadian zip codes use letters as well as numbers, so
you’ll want to keep things flexible.

Formatting Data for Display
Flex comes with built-in formatters for the most common types of data. Using
formatters, you can keep your data in a raw form and modify it as necessary.
Say you have some prices of products stored away in a database or an XML
file. It’s nice to be able to keep them stored as numbers so you can manipulate
them (adding discounts, changing currencies, and so on). But you also want to
show the prices as dollars for people using your application—complete with
a dollar sign, comma separators for the thousands place, and rounded to two
decimal points. This is way most people expect to see a price in U.S. dollars.

Formatters can take care of all this. Formatters exist for the most common
types of data, such as currencies, dates, numbers, phone numbers, and zip
codes. Like validators, these are nonvisual components. To use them, you cre-
ate a tag for the formatter you want. You don’t point the formatter itself to a
piece of data but instead use its format() function, which returns a string of
text. For example, you could declare a CurrencyFormatter tag:

 <mx:CurrencyFormatter id="priceFormatter"/>

You later would call its format function, passing in a number: priceFormatter.
format(10243). This would return the string “$10,243.” Notice that there’s even
a comma added. This comma separator is a default of the CurrencyFormatter,
which you can change with the property useThousandsSeparator; just set it
to false if you don’t want it displayed. Particularly useful for formatters are
bindings. In Flex you can also bind to the return value of a function, so the
following code would place that same string as a TextInput’s text:

 <mx:CurrencyFormatter id="priceFormatter"/>
 <mx:TextInput text="{priceFormatter.format(10243)}"/>

Of course, you can change many other options for a CurrencyFormatter; one
of them is whether to round up or down (rounding), and another is how many
decimal places to display (precision). Say your price is in another currency
such as euros, and you wanted to round cents up to the nearest whole number.
It’s easy if you know which options to modify. In this case, you’d just want to
change currencySymbol from its default ($) to euros (€). You could also tell it
to round up to the nearest whole number and display two decimal places:

<mx:CurrencyFormatter id="priceFormatter"
 currencySymbol="€"
 rounding="up"
 precision="2"/>

This would output “ 10,243.00.”

Of course, other formatters exist for dates, phone numbers, zip codes, and
other typical form information. Like in the previous example, you could use

Note

You might be curious as to why I haven’t
shown how to create a way for such
fields as the phone number to be input
in a way that formats as you type. For
instance, inputting into the phone num-
ber field could automatically add paren-
theses to the area code or add hyphens
after the first three digits of the phone
number. That’s generally referred to as
masking an input field. Flex doesn’t come
with a way to do this out of the box, but
some third-party components can easily
provide such functionality.

LearningFlex3_book.indb 132 5/27/08 1:53:25 PM

Formatting Data for Display

Chapter 9, Creating Rich Forms 133

a PhoneFormatter tag to format a value into a phone number in the (###)
###-#### format:

<mx:PhoneFormatter id="phoneFormatter"/>
<mx:TextInput text="{phoneFormatter.format('4795558273')}"/>

This would output “(479) 555-8273.”

You’ll now continue with the ContactManager application by reconstituting
the Contact Details panel and adding some formatters. Add a couple right
now, PhoneFormatter and DateFormatter. Place them right below your set
of validators in the ContactManager.mxml file. Again, you don’t have to place
them here, but it’s convenient to do so.

<mx:PhoneFormatter id="phoneFormatter"/>

<mx:DateFormatter id="dateFormatter"/>

Then you’ll take advantage of them by adding a Panel with a number of Label
controls, bound to the formatters:

<mx:Panel id="contactDetails"
 x="346"
 y="10"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 title="Contact Details">
 <mx:Label
 text="Name:"
 fontWeight="bold"/>
 <mx:Label
 text="{firstNameTextInput.text} {lastNameTextInput.text}"/>
 <mx:Label
 text="Phone Number ({phoneRadioButtonGroup.selectedValue})"
 fontWeight="bold"/>
 <mx:Label
 text="{phoneFormatter.format(phoneTextInput.text)}"/>
 <mx:Label
 text="Birthday:"
 fontWeight="bold"/>
 <mx:Label
 text="{dateFormatter.format(birthdayDateField.selectedDate)}"/>
 <mx:Label
 text="Company:"
 fontWeight="bold"/>
 <mx:Label
 text="{companyCheckBox.selected}"/>
 <mx:Label
 text="Favorite Color:"
 fontWeight="bold"/>
 <mx:Canvas
 width="60"
 height="60"
 backgroundColor="{favoriteColorPicker.selectedColor}"/>

</mx:Panel>

LearningFlex3_book.indb 133 5/27/08 1:53:25 PM

Learning Flex 3134

Formatting Data for Display

A couple of things are worth noticing in this code. One is the use of the
selectedValue property on the RadioButtonGroup phoneRadioButtonGroup.
This gives you the value of the selected RadioButton (either mobile, home,
or other). Also worth noting is the binding to the DateField’s selectedDate
property. The DateFormatter is passed this value in its format function, and
it returns a String that has a nicely formatted date. Without this, the default
presentation of the selectedDate would be a fairly cryptic-looking string,
complete with time values as well. You’re not concerned with the actual time
of someone’s birth, so it’s good to use the formatter.

You could go further than simply showing the birthday, however. You could
actually calculate a person’s age. You can do so using some of the methods of
the Date class and a little elbow grease. Take a look at the following function,
which takes a Date object as a parameter and returns an age:

private function calculateAge(birthDate:Date):Number
{
 var today:Date = new Date();
 var ageDate:Date = new Date(today.time – birthDate.time);
 var age:Number = ageDate.fullYear – 1970;

 return age;
}

This function creates a new Date, which defaults to the current date and
time. To get the person’s age, the difference between the date of their birth
and the current date is calculated. Note that you can’t subtract one Date from
another. However, the Date does provide a time property, which is a numeri-
cal representation of a date on which you can perform calculations. So, in
order to calculate the difference between today and the birth date, you take
the time value of the birth date and subtract it from time value of today’s date.
That value is then converted into the number of years since birth by using
the fullYear property. (Because a Date object’s standard point of reference is
1970, 1970 must be subtracted to get the final age.)

You can then bind this function’s return value to a Label’s text. You do this
by passing in the DateField’s selectedDate to the calculateAge() function
and tacking on the string “years old”. When the DateField changes value, the
Label will be updated with the calculated age. Important to note here is that
the initial value of this Label’s text will be an empty string. It will not display
anything when the application first runs, not until a value has been selected
in the DateField. Flex realizes that no date is selected on the DateField, so it
doesn’t run the binding. This is great because the Label won’t display the odd
text “ years old” but will wait until the DateField has a value. Any time the
DateField changes, the function will be called, and the binding will update.

<mx:Label
 text="{calculateAge(birthdayDateField.selectedDate)} years old"/>

If you’ve added this code to your application and you run it, you may notice
something strange. Because the age that you calculated may be a fractional

Note

A Date object’s time property is actually
the number of milliseconds since mid-
night on January 1st, 1970. This is how
Date objects store their value internally.

LearningFlex3_book.indb 134 5/27/08 1:53:26 PM

Formatting Data for Display

Chapter 9, Creating Rich Forms 135

number (with decimal places), a long age value may display, such as “28.662405
years old.” That’s hardly what you want. Again, formatters come to the rescue.

The final addition to the application for this chapter is to add a
NumberFormatter that formats the age. Using the NumberFormatter’s
rounding property, you can make it round numbers down to the nearest
whole number, as shown in the following tag:

<mx:NumberFormatter id="numberFormatter"
 rounding="down"/>

Then you can just pass the calculateAge() function’s return value to the
format() function of this NumberFormatter, as shown in the following code:

<mx:Label
 text="{numberFormatter.format(calculateAge(birthdayDateField.

selectedDate))} years old"/>

Now, the age displays perfectly. Figure 9-10 shows an example of how your
application will look.

Figure 9-10. Formatters at work in the Contact Details panel

The final code for the Contact Details panel follows:

<mx:Panel id="contactDetails"
 layout="vertical"
 x="346"
 y="10"
 paddingLeft="5"
 paddingRight="5"

Note

The Math class has a number of meth-
ods for performing calculations and
rounding. The method Math.floor()
can accomplish the same effect as round-
ing down. For example, instead of using a
NumberFormatter, the calculateAge()
function could perform the rounding. For
the last line of the calculateAge() func-
tion, you would simply change return
age; to return Math.floor(age);.

LearningFlex3_book.indb 135 5/27/08 1:53:26 PM

Learning Flex 3136

Summary

 paddingTop="5"
 paddingBottom="5"
 title="Contact Details">
 <mx:Label
 text="Name:"
 fontWeight="bold"/>
 <mx:Label
 text="{firstNameTextInput.text} {lastNameTextInput.text}"/>
 <mx:Label
 text="Phone Number ({phoneRadioButtonGroup.selectedValue}):"
 fontWeight="bold"/>
 <mx:Label
 text="{phoneFormatter.format(phoneTextInput.text)}"/>
 <mx:Label
 text="Birthday:"
 fontWeight="bold"/>
 <mx:Label
 text="{dateFormatter.format(birthdayDateField.selectedDate)}"/>
 <mx:Label
 text="Age:"
 fontWeight="bold"/>
 <mx:Label
 text="{numberFormatter.format(calculateAge(birthdayDateField.

selectedDate))} years old"/>
 <mx:Label
 text="Company:"
 fontWeight="bold"/>
 <mx:Label
 text="{companyCheckBox.selected}"/>
 <mx:Label
 text="Favorite Color:"
 fontWeight="bold"/>
 <mx:Canvas
 width="60"
 height="60"
 backgroundColor="{favoriteColorPicker.selectedColor}"/>

</mx:Panel>

Summary
In this chapter, you learned how to use validation techniques from the very
simple to the fairly advanced. You learned to use a variety of validators and
even created a robust validation scheme in ActionScript. You also saw how
to restrict input fields, limiting the type of characters that are allowed, and
learned to use a few new controls such as RadioButtons and DateFields.

This chapter also introduced some basic programming techniques, such
as conditionals and loops. You learned how to format your data in detail,
even creating a real application that uses the various formatter classes. You
also learned to perform calculations on dates and times. All of this, used in
conjunction with your new form layout, gives you a way to provide very rich
forms in your applications.

LearningFlex3_book.indb 136 5/27/08 1:53:27 PM

137

CHAPTER10

IN THIS CHAPTER

Using List Controls

Using XML Data

Implementing List Selection

Connecting to Search
Results

Dragging and Dropping in
Lists

Using Inline Item Renderers

Exploring Other Types of
Service Components

Summary

Few applications are complete without using some form of data. That is espe-
cially true with the advent of web applications. Just think of the web applica-
tions you may be using frequently. How many of them would serve you any
purpose if they did not access some form of data? It is the ability to seam-
lessly connect to information that has really made the web what it is today.

Whether the information you send and receive is stored in an XML file, stored
in a database, or gathered from one of the many Web services available, you
can be sure that, with Flex, connecting to and displaying data is straight-
forward and simple.

Using List Controls
Flex offers a number of controls known as list controls, which make display-
ing a list of items very easy. All list controls have the ability to accept either
a simple list of data or complex, structured data, and they have a number
of features that help keep them customizable and reusable. Each list control
provides scroll bars if the items cannot be viewed all at once at their current
size. A few frequently used controls fall into the list category:

List

This is the backbone of all list controls. It orders its items in a vertical
layout.

HorizontalList

This is a list control that arranges its items horizontally.

TileList

This list arranges its items in a tiled pattern.

ComboBox

This is similar to a TextInput, but it provides a drop-down list of possible
values for filling the input field. This is similar to the HTML <select/> tag.

GATHERING AND
DISPLAYING DATA

LearningFlex3_book.indb 137 5/27/08 1:53:27 PM

Learning Flex 3138

Using List Controls

DataGrid

This is an advanced list control that can show multiple sets of data
arranged in a table. Rows can be sorted, and columns can be resized and
even rearranged by dragging and dropping.

Lists of Simple Data
The first piece of data you’ll use in this chapter is a simple list of color names.
You’ll use an Array to store this, which is the standard way to store a list of
information.

In MXML, you can create an Array using the <mx:Array/> tag and fill it with
values using a list of tags, such as an <mx:String/> tag. For a list of colors, you
could use an <mx:String/> tag pair, containing a color name:

<mx:Array>
 <mx:String>red</mx:String>
 <mx:String>green</mx:String>
 <mx:String>blue</mx:String>
</mx:Array>

In ActionScript, you create an array by writing a list of items separated by
commas and wrapped in square brackets ([and]). So, you can create the
previous MXML list of colors like this in ActionScript:

var colors:Array = ["red","green","blue"];

Now that you know how to create simple lists of data, you’ll learn how to
display that data in a list control. To populate a List control with data, you
use the dataProvider property, passing it an Array. For example, to give a list
of color names, you could bind the List’s dataProvider property to an Array,
such as the following:

<mx:List
width="150"
 dataProvider="{['Red','Orange','Yellow','Green','Blue','Indigo',

'Violet']}" />

This would create a list that looks like Figure 10-1.

As you know, you can write a property for a component both as an XML attri-
bute and as a child tag. So, you can create this same list with an array of items
using just tags, populating its dataProvider by using the <mx:dataProvider/>
child tag:

<mx:List
 width="150">

 <mx:dataProvider>

 <mx:Array>
 <mx:String>Red</mx:String>
 <mx:String>Orange</mx:String>
 <mx:String>Yellow</mx:String>
 <mx:String>Green</mx:String>
 <mx:String>Blue</mx:String>

Figure 10-1. A colorful list

Note

For any component in the Flex frame-
work that uses a list of items, the prop-
erty to remember is dataProvider.

LearningFlex3_book.indb 138 5/27/08 1:53:28 PM

Using List Controls

Chapter 10, Gathering and Displaying Data 139

 <mx:String>Indigo</mx:String>
 <mx:String>Violet</mx:String>
 </mx:Array>

 </mx:dataProvider>

</mx:List>

You set the dataProvider with a child tag, which you then fill with an array
of colors, just like the array you created earlier in MXML.

Such a tag-based dataProvider is great for short lists of values, but it can get
pretty verbose for more than a few items. Generally, you’ll get larger sets of
data from a separate file that you load in or from a data service on the web.

Lists of Complex Data
In the previous two examples, a list has taken an array of strings as a data
provider. A list control can take an array of any arbitrary data. Consider a
scenario in which you have a list of your favorite songs. Of course, you could
list just the song names. However, you might want some additional informa-
tion such as the artist or the album name that the song is on. In that case, you
might want to use not an array of strings but an array of objects. An object is
just a convenient container for multiple pieces of information, because it can
have any properties you want. For this example, the properties artist, album,
and song are useful:

<mx:List
 width="150">

 <mx:dataProvider>

 <mx:Array>

 <mx:Object
 song="In My Secret Life"
 album="Ten New Songs"
 artist="Leonard Cohen"/>
 <mx:Object
 song="Phantom Limb"
 album="Wincing the Night Away"
 artist="The Shins"/>
 <mx:Object
 song="Tinfoil"
 album="Live at Schuba's Tavern"
 artist="The Handsome Family"/>
 <mx:Object
 song="Highway 253"
 album="Extra Solar Sunrise"
 artist="The Saturn V"/>
 <mx:Object
 song="Junk Bond Trader"
 album="Figure 8"
 artist="Elliott Smith"/>
 <mx:Object
 song="Stalled"

Note

Notice that the <mx:dataProvider/>
tag must still use the mx namespace.

Note

List controls also have the rowCount
property, which is a way to set the num-
ber of visible items.

LearningFlex3_book.indb 139 5/27/08 1:53:28 PM

Learning Flex 3140

Using List Controls

 album="Through the Trees"
 artist="The Handsome Family"/>
 <mx:Object
 song="Every Dull Moment"
 album="Bring on the Snakes"
 artist="Crooked Fingers"/>

 </mx:Array>

 </mx:dataProvider>

</mx:List>

Now you have a list populated by an array of objects, each with their own
properties. But take a look at Figure 10-2 to see what this list looks like.

That’s probably not the look you want. So, what happened? Because you
had an array of objects instead of simple strings, the list wasn’t sure which
one to display. Because a regular object has a default string representation of
“[object Object],” that’s what the list displayed as its labels.

Custom label fields
Luckily, the List control has a property called labelField, which takes the
name of the property you want displayed if your list is filled with complex
data. Because you want to display the song names in the list, just set the List
control’s labelField to song. Figure 10-3 shows what the list looks like when
displaying the song property as its labelField.

A List control’s default labelField is set to label, so there’s another way you
could accomplish the same thing—changing the song property on your array
of objects to the property label would also cause the list to display correctly,
because it looks for a label property. However, this isn’t the recommended
way to go: you don’t need to modify your data to work with the list, because
it should be the list’s responsibility to work with your data!

Advanced lists
What if you wanted to display more than one property at a time? A great
control that’s built for just that is the DataGrid. It lets you specify multiple
columns, each mapping to a property in the array of objects you passed to it.
Essentially, it’s a table, similar to a spreadsheet or HTML table.

An easy way to create a DataGrid is using Flex Builder’s Design mode. When
you drag and drop a DataGrid on the stage, Flex Builder writes the necessary
code for you, which you can easily modify to suit your needs. Dropping a
DataGrid onto the stage gives you the following MXML:

<mx:DataGrid>
 <mx:columns>
 <mx:DataGridColumn headerText="Column 1" dataField="col1"/>
 <mx:DataGridColumn headerText="Column 2" dataField="col2"/>
 <mx:DataGridColumn headerText="Column 3" dataField="col3"/>
 </mx:columns>
</mx:DataGrid>

Figure 10-2. A list of objects, literally

Figure 10-3. A list of objects, displaying
the song names

LearningFlex3_book.indb 140 5/27/08 1:53:29 PM

Using List Controls

Chapter 10, Gathering and Displaying Data 141

Because a DataGrid can display multiple columns, you have to specify this
via its columns property, which takes an array of DataGridColumns. It’s on
the individual DataGridColumn that you’ll specify which property the col-
umn should display. You do this on the columns’ dataField property. The
headerText property specifies what to display as the column header. It’s
optional, because it will default to the name of the property specified in the
dataField. However, you’ll often want to modify it so you can display more
descriptive text.

DataGrids, like all list controls, take a dataProvider to populate them. So, to
create a DataGrid of songs, you could use the following code, pretty much
copying and pasting the dataProvider property from the previous songs
example:

<mx:DataGrid>

 <mx:columns>
 <mx:DataGridColumn headerText="Track Name" dataField="song"/>
 <mx:DataGridColumn headerText="Artist" dataField="artist"/>
 <mx:DataGridColumn headerText="Album Name" dataField="album"/>
 </mx:columns>

 <mx:dataProvider>
 <mx:Array>
 <mx:Object
 song="In My Secret Life"
 album="Ten New Songs"
 artist="Leonard Cohen"/>
 <mx:Object
 song="Phantom Limb"
 album="Wincing the Night Away"
 artist="The Shins"/>
 <mx:Object
 song="Tinfoil"
 album="Live at Schuba's Tavern"
 artist="The Handsome Family"/>
 <mx:Object
 song="Highway 253"
 album="Extra Solar Sunrise"
 artist="The Saturn V"/>
 <mx:Object
 song="Junk Bond Trader"
 album="Figure 8"
 artist="Elliott Smith"/>
 <mx:Object
 song="Stalled"
 album="Through the Trees"
 artist="The Handsome Family"/>
 <mx:Object
 song="Every Dull Moment"
 album="Bring on the Snakes"
 artist="Crooked Fingers"/>
 </mx:Array>
 </mx:dataProvider>

</mx:DataGrid>

LearningFlex3_book.indb 141 5/27/08 1:53:29 PM

Learning Flex 3142

Using XML Data

This displays the list shown in Figure 10-4.

Figure 10-4. A DataGrid displaying those same old songs

Using XML Data
So, you’ve seen a few examples of using simple arrays and arrays of objects
to populate list controls. But these controls can also handle another type of
data: XML.

To help understand XML data, you’ll jump back into the ContactManager
application. You’ll want to create a list of contacts in XML. To do so, you
have to think about what fields you want to store. That’s easy, because you’ve
already created a UI expecting certain fields. A skeleton for the XML could
be the following:

<contacts>
 <contact id="">
 <firstName/>
 <lastName/>
 <email/>
 <phone/>
 <phoneType/>
 <address/>
 <zip/>
 <birthday/>
 <color/>
 <company/>
 </contact>
</contacts>

This starts with a <contacts/> tag, which is the root of the XML document,
the main tag that all valid XML needs to have. Then you can have any num-
ber of <contact/> tags, each of which has an attribute called id that can
serve as a numerical identifier for that contact. Each <contact/> tag also has
any number of child tags corresponding to the different properties of that
contact. These properties could just as well be expressed as attributes, but it’s
always a safe bet to use child tags. That’s because you may later decide to add
properties to that child tag, or you may want to include other, more complex
content in that child tag.

For the example, you’re welcome to create your own list of contacts using this
template or to use the list provided next.

Note

The DataGridColumn has lots of other
properties that help you customize a
particular column. For instance, to set
the width of a particular column, you use
that DataGridColumn’s width property.

Note

The id attribute that’s being placed on
these XML tags has no relationship to
the id attribute for Flex components.
This is an arbitrary name you’re using
as an XML attribute, and you could use
any name as a substitute, such as “name”
or “number.”

LearningFlex3_book.indb 142 5/27/08 1:53:30 PM

Using XML Data

Chapter 10, Gathering and Displaying Data 143

One way to use XML data in your Flex applications is by using the <mx:XML/>
tag. Inside that tag, try adding some contact data to your ContactManager
application by adding the following MXML to it.

<mx:XML id="contactsXML" xmlns="" >
 <contacts>
 <contact id="0">
 <firstName>Alaric</firstName>
 <lastName>Cole</lastName>
 <email>alaric@oreilly.com</email>
 <phone>4155558273</phone>
 <phoneType>mobile</phoneType>
 <address>555 Green St</address>
 <zip>94001</zip>
 <birthday>07/20/1979</birthday>
 <color>0x00FF00</color>
 <company>false</company>
 </contact>
 <contact id="1">
 <firstName>O'Reilly</firstName>
 <lastName>Media</lastName>
 <email>booktech@oreilly.com</email>
 <phone>7078277000</phone>
 <phoneType>home</phoneType>
 <address>1005 Gravenstein Highway North, Sebastopol, CA

 </address>
 <zip>95472</zip>
 <birthday>07/20/1978</birthday>
 <color>0x009999</color>
 <company>true</company>
 </contact>
 <contact id="2">
 <firstName>Crystal</firstName>
 <lastName>Clear</lastName>
 <email>crystal4354@hotmail.com</email>
 <phone>5015556492</phone>
 <phoneType>mobile</phoneType>
 <address>555 Lakeview Dr</address>
 <zip>94001</zip>
 <birthday>3/6/1975</birthday>
 <color>0xFF66CC</color>
 <company>false</company>
 </contact>
 <contact id="3">
 <firstName>Google</firstName>
 <email>google@gmail.com</email>
 <phone>6502530000</phone>
 <phoneType>home</phoneType>
 <address>1600 Amphitheatre Parkway, Mountain View, CA

 </address>
 <zip>94043</zip>
 <color>0xFF0000</color>
 <company>true</company>
 </contact>
 <contact id="4">
 <firstName>Yahoo!</firstName>
 <email>yahoo@yahoo.com</email>
 <phone>4083493300</phone>
 <phoneType>home</phoneType>
 <address>701 First Avenue, Sunnyvale CA</address>

LearningFlex3_book.indb 143 5/27/08 1:53:30 PM

Learning Flex 3144

Using XML Data

 <zip>94089</zip>
 <color>0x9900FF</color>
 <company>true</company>
 </contact>
 <contact id="5">
 <firstName>Whatcha</firstName>
 <lastName>McCollum</lastName>
 <email>w.mccollum@fakeemail.com</email>
 <phone>3149884735</phone>
 <phoneType>other</phoneType>
 <color>0xFFFF00</color>
 <company>false</company>
 </contact>
 </contacts>
</mx:XML>

In this code, you’ve given the <mx:XML/> tag an id of contactsXML, and
you’ve additionally given it a blank namespace. When typing an <mx:XML/>
tag in Flex Builder’s Source mode, code completion may insert this blank
namespace for you. It’s not necessary for simple XML, but it doesn’t hurt.

Now that you have the information available, you’ll create a DataGrid to dis-
play it in your application. If you want, rearrange your application to give some
space for the component, and then drag and drop a DataGrid onto your appli-
cation in Design mode. Give it an id of contactsDataGrid. Then go into Source
mode, and modify the dataProvider and columns to match the following:

<mx:DataGrid id="contactsDataGrid"
 dataProvider="{contactsXML.contact}">
 <mx:columns>
 <mx:DataGridColumn headerText="ID" dataField="@id"/>
 <mx:DataGridColumn headerText="First" dataField="firstName"/>
 <mx:DataGridColumn headerText="Last" dataField="lastName"/>
 </mx:columns>
</mx:DataGrid>

Again, you’re using curly braces to bind the dataProvider of the DataGrid to
the contactsXML XML you created. However, you’ll notice that you don’t bind
to contactsXML directly but to contactsXML.contact. If you were to create a
DataGrid like the following, it wouldn’t display any data:

<mx:DataGrid id="contactsDataGrid"
 dataProvider="{contactsXML}"/>

That’s because the XML itself isn’t a list of data, and list controls want a list
of items. In this case, contactsXML refers to the top-level node of the XML,
<contacts/>. The DataGrid would think you were binding to that one node,
which isn’t a list of items but a single entity, and it would not display correctly.
You get a list by using the expression contactsXML.contact, which points to
the list of <contact/> tags you have.

Notice the first column in the DataGrid. There you’ve set the dataField
to @id, not id. This is because the id is an attribute of the XML, not a child
tag. Conversely, both firstName and lastName are child tags in the XML, so
you can refer to them without the @ sign. The @ sign is a convenient way
to show that you’re wanting an attribute—because XML can have both

Note

Remember that valid XML must always
contain a root tag. Therefore, in this
example, you must wrap the list of
contacts in the root tag <contacts>
</contacts>. You can actually call this
tag anything you want, because it isn’t
going to be referenced anywhere—in the
application, you simply reference the id
of your <mx:XML/> tag, and that points
to the root.

Note

Why the @ sign? Well, say it out loud: “the
‘at’ sign.” We’re dealing with “at”-tributes,
so it made sense to use that symbol.

LearningFlex3_book.indb 144 5/27/08 1:53:31 PM

Using XML Data

Chapter 10, Gathering and Displaying Data 145

 attributes and child tags, you want the ability to choose which. Figure 10-5
shows the results of the DataGrid using XML data.

Figure 10-5. A DataGrid displaying a list of contacts from XML

You might not have realized you were doing it, but you’ve just learned a
new technique, E4X. While it looks like the typical dot notation you’re used
to in ActionScript, it’s actually not the same. E4X has a number of great
features such as filtering and the ability to read and write XML through an
improved API.

Actually, now that you’ve learned a bit about E4X, you can remove that first
DataGridColumn, because it’s not necessary to display the contact’s id in
the user interface. It just helps to know it’s there and that you can access it
with E4X.

Loading External Data at Compile Time
Now you’re using XML data within your Flex application, and you’re starting
to fill out this application. However, by looking at the source code, you might
think it’s a bit sloppy. That is to say, with all this XML data, the source code is
long and more difficult to navigate and read. (Imagine if, instead of just a few,
you had an XML list of 200 contacts.) That’s why there’s a convenient way to
separate this XML into an external file and load it directly. The <mx:XML/> tag
has a source property, and you can use that to point to a file.

First, create a blank XML file by choosing File→New→File. Choose the loca-
tion corresponding to the source folder of this ContactManager project (the
src folder), and enter a filename of contacts.xml (as shown in Figure 10-6).
This creates a blank .xml file into which you can place the contents of
the <mx:XML/> tag. (You can easily copy and paste everything between the
<mx:XML> opening tag and the </mx:XML> closing tag into this new file.) Then,
set the source property on the <mx:XML/> tag to point to that file:

<mx:XML id="contactsXML" xmlns="" source="contacts.xml" >

</mx:XML>

To save space and make your code cleaner, you can close the <mx:XML/> tag
like this:

<mx:XML id="contactsXML" xmlns="" source="contacts.xml" />

Note

E4X stands for “ECMAScript for XML.”
ECMAScript is the language on which
ActionScript is based. For details about
its features and usage, consult the Flex
documentation.

Figure 10-6. The New File dialog box

LearningFlex3_book.indb 145 5/27/08 1:53:31 PM

Learning Flex 3146

Using XML Data

Now the XML data is conveniently located outside the main source code.
However, even though the XML file is pulled from another location, it is still
compiled into the Flex application. It would be useful to pull such data at
runtime, meaning you load the application and gather the XML after your
application loads. This allows the file to be changed and ensures that you
always load the latest version. To do so, you’ll be using your first data service
component, HTTPService.

Loading External Data at Runtime
The <mx:HTTPService/> tag is a quick and easy way to get text or XML con-
tent over the web using standard HTTP (see the “Into the Bin” box). This
means you can load information from websites in HTML, or even sites cre-
ated in PHP, ASP, or other web servers that generate HTML content.

The HTTPService component takes a url property, which points to the loca-
tion of the file you want to load. If you’ve ever used HTML or dealt with
HTTP in other ways, you know you can either specify an absolute URL, like
http://www.oreilly.com, or specify a relative URL, which is relative to your
server, like images/someimage.jpg.

Because you’re going to be loading the XML file from within your project,
you’ll be using a relative URL in this example.

Into the Bin
When a Flex application is run in Flex Builder for a project deployed to the web, an
HTML file is opened, and it has a compiled version of the application embedded within
it. More is going on at compile time than simply a SWF file being created. Any files you
have placed in your source folder are
automatically copied to a folder called
bin-debug. In the case of the contacts.
xml file for ContactManager, a copy of
that file is placed in bin-debug, as
shown in Figure 10-7. That means when
you run the application, it is the copy of
the file in the bin-debug folder that gets
pulled into the application. This works
the same way with any media you may
have in your Flex application, which I
will talk about a little later in the book.

If you edit any of the files in the
bin-debug folder, they will just get
overwritten, so be sure to modify
only the original version, located in
the src folder.

Figure 10-7. How extra files are copied to
the bin-debug folder

Place the following code where your previous <mx:XML/> tag was:

<mx:HTTPService id="contactsService"
 resultFormat="e4x"
 url="contacts.xml"/>

Note

When you load an external file, there is
always the possibility that it has been
cached by the browser. See the box
“Browser Cache and Loading Progress”
in Chapter 11 for more information.

HTTP
HTTP stands for Hypertext Transfer
Protocol, and it’s a standard for
transferring information across the
Internet. This protocol is used when
opening a web page in a browser—it
sends all the text and images you see
displayed in your browser.

When you type an address in your
browser to go to a web page,
you may have typed http:// at the
beginning of the address. (If you
didn’t, the browser will automatically
add http:// to the front of the URL for
you). The http:// part simply means
“use the HTTP protocol.”

Note

For a Flex application deployed in a web
browser, a relative URL is relative to the
HTML page that loads the application.

LearningFlex3_book.indb 146 5/27/08 1:53:32 PM

Using XML Data

Chapter 10, Gathering and Displaying Data 147

This creates an HTTPService component, points it to the contacts.xml file
you created earlier, and lets the service know you’re loading XML data. If you
don’t set the resultFormat property, it will default to object, which makes the
HTTPService component convert whatever data it receives into regular objects.
This would make E4X unusable. To tell it you want to be able to use E4X and
that the data you’re loading is XML, set the resultFormat property to e4x.

The next step is to change your DataGrid’s dataProvider. You’re getting rid of
the <mx:XML/> tag, so you need to update the DataGrid. To point it to the ser-
vice’s data, you use a property of the service called lastResult which holds
the result of the most recent invocation of this service:

<mx:DataGrid id="contactsDataGrid"
 dataProvider="{contactsService.lastResult.contact}">
 <mx:columns>
 <mx:DataGridColumn headerText="First" dataField="firstName"/>
 <mx:DataGridColumn headerText="Last" dataField="lastName"/>
 </mx:columns>
</mx:DataGrid>

You know that contactsService.lastResult is the actual data that is
returned from the service, which is going to be XML—but, again, you need
to set the dataProvider to the list of contacts. So, the dataProvider should be
contactsService.lastResult.contact.

However, there’s one more step to getting this to work. The service component
doesn’t get invoked automatically. To invoke it, you call its send() method.
So, set up a listener on your <mx:Application/> tag for the event called
applicationComplete. This event fires when the application is fully loaded
and ready and will then cause the send() method to be called. The start of
your tag may now look like this:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"

 applicationComplete="contactsService.send()">

Now the service will be invoked when the application is opened, the data will
be pulled in, and the binding will connect that data to your DataGrid. How’s
that for service?

It’s Not Your Fault
When using an HTTPService, the data that is returned is reliant upon the remote
server. Just like a web browser, it’s using the HTTP protocol. Have you ever tried to
go to a website and the page wouldn't load? This can happen with the HTTPService
component as well.

When a web server has a problem, you may get what is called a fault. This means
there’s a problem: it may be that the information or file you’re requesting no
longer exists, or that the web server went down. If the server has such an error, the
lastResult property will not be updated as expected. By default, Flex will pop up
an alert informing you of the problem. If you’d like a custom response, you can listen
for such errors by using the fault event. This event fires whenever a fault occurs.

Note

The method to invoke the service is
called send() because you’re sending a
request.

LearningFlex3_book.indb 147 5/27/08 1:53:32 PM

Learning Flex 3148

Using XML Data

Of course, you can take this skill of connecting to remote data and apply that
to data elsewhere on the web. For a quick example, instead of using the local
contacts.xml file, use an XML file residing on a remote web server, located
at http://greenlike.com/flex/learning/projects/contactmanager/contacts.xml—in
place of the contacts.xml file you’re using locally. To do so, simply change the
url property of the service to point to the remote file:

<mx:HTTPService id="contactsService"
 resultFormat="e4x"
 url="http://greenlike.com/flex/learning/projects/contactmanager/

contacts.xml" />

Now the application loads an XML file, not from your local disk, but across
the web. You might notice a bit of latency when loading the application
now, because this XML file is larger, and of course the file is traveling on the
Internet. By default, Flex service components will display a pinwheel-style
status indicator, or “busy cursor,” to let you know that data is being down-
loaded. If you want to remove this, set the service’s showBusyCursor to false.

Playing Nice in the Sandbox
When talking about Flash, or computer security in general, you’re going to hear the
term sandbox a lot. A sandbox is a secure spot for a program (such as Flash Player)
to run in and do what it likes. It is a restrictive space in which the program isn’t
allowed to break away from and to which other programs may have limited access.
You can think of a parent taking their kids to the park to play in an actual sandbox—
a place where the child is free to play without the parents worrying too much about
their safety.

In terms of Flash Player, a very secure sandbox can prevent Flash applications
deployed on the web from accessing the user’s filesystem, or gathering and
manipulating data from a remote website that doesn’t allow it. (However, for AIR
applications, this sandbox is expanded.) The first and most prevalent of sandbox
restrictions you’re likely to encounter is when accessing remote data.

Simply put, a Flex application that will be deployed on the web isn’t allowed to access
data outside the domain to which the application is deployed—unless the owner of
that website specifically allows it. Permission is given through the use of an .xml file
called crossdomain.xml, placed on the root of the website.

This file lets the owner explicitly allow certain other domains to access the data or
allow everyone access. To allow you to access the contacts.xml file on the website,
I had to create a cross-domain file, granting access to everyone. You can view this
cross-domain file at http://greenlike.com/crossdomain.xml. It looks like the following:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/

dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" />
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

If the cross-domain file wasn’t there or didn’t allow everyone access, trying to
download the contacts.xml file in your Flex application would result in an error, and
you wouldn’t get the data.

Note

Remote data is not accessible to a Flex
application unless the remote site has
enabled access via special policy file. See
the box “Playing Nice in the Sandbox”
for more information.

Note

Notice that for an absolute URL, you
must use the http:// protocol designation.

LearningFlex3_book.indb 148 5/27/08 1:53:33 PM

Implementing List Selection

Chapter 10, Gathering and Displaying Data 149

Now that you’ve learned how to connect to remote XML data and the
ContactManager application is filled with actual contacts, you can continue
building the interface.

Implementing List Selection
A List or list-based control not only shows a list of items but deals with
selection as well. This means that items can be selected in the list and that
information can be bound to the List control’s selectedItem property.

You can take advantage of this as you continue with the ContactManager
application. For now, remove what you have for the Contact Details section,
and replace it with the following code:

<mx:Panel id="contactDetails"
 layout="vertical"
 x="400"
 y="10"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 width="400"
 title="Contact Details">

 <mx:HBox>
 <mx:Label id="nameLabel"
 text="{contactsDataGrid.selectedItem.firstName}
 {contactsDataGrid.selectedItem.lastName}"
 fontWeight="bold"
 fontSize="14"/>

 <mx:Label id="emailLabel"
 text="Email: {contactsDataGrid.selectedItem.email}"/>

 <mx:Label id="phoneLabel"
 text="{contactsDataGrid.selectedItem.phoneType}:
 {phoneFormatter.format(

contactsDataGrid.selectedItem.phone)}" />

 <mx:Text id="addressText"
 text="Address: {contactsDataGrid.selectedItem.address}" />

 <mx:Label id="zipLabel"
 text="Zip Code: {contactsDataGrid.selectedItem.zip}" />

 <mx:Canvas
 width="60"
 height="60"
 backgroundColor="{contactsDataGrid.selectedItem.color}" />

</mx:Panel>

This code binds a few Label controls to the selectedItem property of the
DataGrid. (Previously you had fields bound to the input controls, but you’re
going to create a view mode and an edit mode for your application, so for

LearningFlex3_book.indb 149 5/27/08 1:53:33 PM

Learning Flex 3150

Connecting to Search Results

now you’ll separate them.) The selectedItem is a specific item from the list
of items that fills the DataGrid. You can bind to this via contactsDataGrid.
selectedItem. For this example, the selectedItem is actually a <contact/>
node and has properties such as firstName, lastName, phone, phoneType,
and so on. In this case, you’ve bound Labels to specific properties of this
selectedItem, as seen in Figure 10-8.

Figure 10-8. How a selectedItem works

Another aspect to notice is the use of a control called Text. This control
takes a text property and will resize itself to fit its contents. In a way, it works
like a Label control, except it can render multiline text. It’s a good control to
use when you want to display a small chunk of text that you don’t expect
to need scrolling. For longer text that may need to be scrolled, a TextArea
control is best.

Connecting to Search Results
Another, very powerful example of remote data is connecting to search
results. For a nice real-world example I’ll have you begin a new Flex project
called Search. You can refer to Chapter 2 if you need a refresher on how to
create a new project.

While Google also offers a public API that grants access to Flash and Flex
applications, it requires the developer to know and parse the XML data it
returns. I built an easy-to-use Yahoo! search component that makes it simple
to place this data in a Flex application. To follow along with the next example,
you need the ActionScript 3 Search API. Go to http://developer.yahoo.com/
flash/astra-webapis/, and download the Yahoo! ASTRA Web APIs library.

Note

All list controls also have a property
called allowMultipleSelection
which, when set to true, allows you to
select more than one item at a time. To
access the selected items, you use the
selectedItems property instead, which
is an Array of items.

LearningFlex3_book.indb 150 5/27/08 1:53:34 PM

Connecting to Search Results

Chapter 10, Gathering and Displaying Data 151

You’ll get a .zip file that, once extracted, will have a few folders that are pretty
standard for Flex or ActionScript libraries: Build, Documentation, Examples,
and Source. While the source code is available in the Source folder, look in
the Build folder for a SWC file named AstraWebAPIs.swc.

Simply add this SWC file to the libs folder of your Search project, and you’ll
instantly have the SearchService component available in your application.

Now, how do you use this component? First, I’ll recap the concept of
namespaces. As you might remember, a namespace, in terms of Flex, is a way
to distinguish groups of related components. You’re going to be using a com-
ponent called SearchService, but this component, of course, isn’t part of the
default Flex framework, and it’s not going to use the namespace mx. Instead,
it will be using a namespace called yahoo. However, as you’ve learned, typing
the namespace in Flex Builder’s Source mode isn’t necessary if utilizing code
completion, so when you want to add the SearchService component, you can
start typing <SearchService and, if you allow code completion to complete
your tag, the namespace will be inserted automatically. (If not, you can see
how to add the namespace manually in the following example code.)

The SearchService component needs just one property to make it work: a
string that is the criteria to search for, easily specified by the query attribute
on the tag. You can bind this query property to a TextInput (queryTextInput
is a good id), and clicking a Button can call the send() method of the
SearchService.

While the SearchService component isn’t related to the HTTPService compo-
nent, it does have similar internals to make it work. It uses a method called
send() and a property called lastResult as a way to make it easy for a Flex
developer to get started.

You can build your very simple Search application with the following code:

<mx:Application
 layout="absolute"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:yahoo="http://www.yahoo.com/astra/2006/mxml">

 <yahoo:SearchService id="searchService"
 applicationId="YahooDemo"
 query="{queryTextInput.text}"/>

 <mx:HBox
 defaultButton="{searchButton}"
 y="10"
 x="10">

 <mx:FormItem
 label="Query:">
 <mx:TextInput id="queryTextInput"/>
 </mx:FormItem>

 <mx:Button id="searchButton"
 label="Search"
 click="searchService.send()"/>

SWC Files
A SWC file (usually pronounced “swik”)
is a compiled form for components
and is convenient for three reasons.
First, it’s a single file that is easy to
distribute compared to source code.
Second, if you create components
and don’t want to distribute source
code, a SWC gives you a certain
degree of protection for your code,
because it is highly inconvenient to
get to the source code—it requires
a decompilation tool. Third, because
SWC files are precompiled, using
them in your applications provides
faster compile times.

In fact, the Flex framework you’ve
been using is contained in a few
separate SWC files.

LearningFlex3_book.indb 151 5/27/08 1:53:34 PM

Learning Flex 3152

Connecting to Search Results

 </mx:HBox>

 <!-- The results as a List -->
 <mx:List id="resultsList"
 dataProvider="{searchService.lastResult}"
 left="10"
 right="10"
 top="75"
 bottom="10"
 showDataTips="true"
 labelField="name"/>

</mx:Application>

You might have noticed the use of a FormItem container in this code, outside a
Form control. I personally use FormItem containers as a means of providing
a label for form fields, although you could have just as easily accomplished
this with a Label control inside an HBox.

You’ll also see a new property of the HBox (and containers in general) called
defaultButton. This property points to a Button control and makes it fire a
click event when the Enter (Return on a Mac) key is pressed. Most people
expect to be able to press the Enter (Return) key to submit a form, and this
property takes care of that. It also provides a visual cue by highlighting the
default button.

When you run the application, you can enter a search term, click the Button
(or press the Enter/Return key), and submit your query. Assuming every-
thing works as expected, data returns from Yahoo! search, and the results
will appear in the list. By default, the list displays the title of the page (but
I’ll show you how to modify that in a moment). Running the application,
you’ll see something like Figure 10-9. Notice what happens when hovering

Figure 10-9. A simple but powerful search application

LearningFlex3_book.indb 152 5/27/08 1:53:35 PM

Dragging and Dropping in Lists

Chapter 10, Gathering and Displaying Data 153

over an item in a list that has had its label clipped (from being too long to
display in the available width of the list). A tooltip appears with the full text.
This is called a dataTip in Flex, and it appears because you set the property
showDataTips to true on the list.

How cool is that? You just built a powerful Yahoo! search application. Next,
you’ll learn how to make it even better.

Dragging and Dropping in Lists
Built into Flex’s list controls is the ability to easily drag and drop data. No
complex code is necessary to be able to drag an item from one list and drop
it into another. All of this is built into the list controls, and you can turn it on
by enabling two properties, dragEnabled and dropEnabled.

For an example, add another List control to the search application, setting
its labelField to the same as the resultsList. Then, set this new List’s
dropEnabled property to true. This allows other List controls to drop items
into it. Then, on the resultsList, set the property dragEnabled to true. This
tells it to let people drag its items.

Now when you run the application, you can simply drag a favorite search
result from the resultsList and drop it into the adjacent list! The following
code shows the dragEnabled property added to the resultsList and adds a
Panel and another List into which you can drop items. See Figure 10-10 for an
example of how this works.

<mx:List id="resultsList"
 dataProvider="{searchService.lastResult}"
 left="10"
 right="318"
 top="74"
 bottom="47"
 showDataTips="true"
 labelField="name"
 dragEnabled="true" />

<mx:Panel
 layout="vertical"
 title="Favorites"
 right="10"
 top="74"
 bottom="47"
 width="300">
 <mx:List
 dropEnabled="true"
 labelField="name"
 width="100%"
 height="100%"/>
</mx:Panel>

LearningFlex3_book.indb 153 5/27/08 1:53:35 PM

Learning Flex 3154

Using Inline Item Renderers

Figure 10-10. Dragging from one List into another

Why do you need to set the labelField on the new List (the one in which
items can be dragged into)? Well, what is actually happening here is an item
is being copied from the data provider of one List and is added to the data
provider of another. If the new List did not have a labelField set, it would
display [object Object] as its label, not knowing what to display.

Dragging and dropping works with other list controls as well, such as TileList
and DataGrid. For example, you could replace the new List with a DataGrid;
then if you dragged an item into the DataGrid, you would see every property
of the search result item displayed as a column.

Using Inline Item Renderers
To easily customize the display of List controls, you’re able to create your own
content that the List will use to display its items. By default, the List creates a
label field for each item, and the display (as you’ve learned) shows the prop-
erty designated by a labelField. This label that a List control creates is called
its itemRenderer, and you can create your own easily.

Consider the following code, which creates a special itemRenderer for the list
in the Search example:

<mx:List id="resultsList"
 dataProvider="{searchService.lastResult}"
 left="10"
 right="10"
 top="74"
 bottom="10">

 <mx:itemRenderer>
 <mx:Component>
 <mx:Label
 text="{data.name}"
 fontWeight="bold"/>
 </mx:Component>

Note

By default, dragging and dropping
from one list to another will copy the
data. There is also a property called
 dragMoveEnabled which lets you move
items from one list control to another.

LearningFlex3_book.indb 154 5/27/08 1:53:36 PM

Using Inline Item Renderers

Chapter 10, Gathering and Displaying Data 155

 </mx:itemRenderer>

</mx:List>

This code forgoes the labelField property in lieu of a more custom display.
You’ll need to look at a few aspects of this code to understand what’s hap-
pening. One is the <mx:Component/> tag. This tag wraps the MXML content
for your itemRenderer; it tells Flex to create a component behind the scenes
and reuse it for each item in the list. This is extremely powerful functionality,
letting a developer create components right within the property of another
component. That makes it quick to create item renderers, without having to
create your own components. (However, creating your own component has a
few benefits such as reusability.)

Inside the <mx:Component/> tag is the actual code for creating the itemRenderer.
Notice that there is a single Label control. This will create a Label for each
item in the List’s data provider.

Instead of using a labelField property, you are telling the Label control what
to display by a binding to the data property. The data property is a refer-
ence to a specific item in the List’s dataProvider. Just as you specified name
as the labelField, which told the list to use that property of each item, here
you specify data.name to accomplish the same thing.

Because this List is populated with web search results, there is other informa-
tion such as the textual summary of the page or the URL of the page that we
can display. For instance, to show the summary of the page, you can instead
bind to the data.summary property. However, this property may contain a lot
of text, so a Label control isn’t the most fitting. Instead, you can add a Text
control, and bind its text property to data.summary. Text controls are great at
displaying multiple lines of text. To allow both the Label and the Text control
to be displayed, wrap them in a VBox, as displayed below.

<mx:List id="resultsList"
 dataProvider="{searchService.lastResult}"
 left="10"
 right="10"
 top="74"
 bottom="10">

 <mx:itemRenderer>
 <mx:Component>
 <mx:VBox
 width="100%" >
 <mx:Label
 text="{data.name}"
 fontWeight="bold"/>
 <mx:Text
 width="100%"
 text="{data.summary}"/>
 </mx:VBox>
 </mx:Component>
 </mx:itemRenderer>

</mx:List>

Note

The content in an <mx:itemRenderer/>
tag isn’t displayed in Design mode.

Note

Each of these results is actually a class
called WebSearchResult, which is includ-
ed as part of the ASTRA Web APIs
library. It contains properties such as
name, summary, and clickURL. If you
would like to learn more about this
class, consult the documentation that
came with the Yahoo! ASTRA Web APIs
library.

LearningFlex3_book.indb 155 5/27/08 1:53:36 PM

Learning Flex 3156

Exploring Other Types of Service Components

If you like, you can set the variableRowHeight property on the List. While a
standard List control will make each of its rows the same height, setting this
to true allows the list to vary in the row heights. With items such as the page
summary being taller in one row than the next, the List can adjust accord-
ingly and therefore maximize viewable content.

To see what your Search application looks like with a custom itemRenderer,
see Figure 10-11.

Figure 10-11. A custom itemRenderer in use in the Search application

Exploring Other Types of
Service Components
It is outside the scope of this book to go over such services in detail, but I
want to make sure you know what’s available. While the HTTPService com-
ponent is probably the most common service component you’ll use, you may
find the additional benefits of the RemoteObject component useful for your
particular application, or you may need to access Web services, which you can
do by using the WebService component.

LearningFlex3_book.indb 156 5/27/08 1:53:37 PM

Exploring Other Types of Service Components

Chapter 10, Gathering and Displaying Data 157

WebService
The HTTPService component lets you access services that have a URL—data
that presumably can be viewed in a browser such as HTML or XML.
However, a number of Web services exist, which are accessible only through
an XML standard called SOAP. While a bit heavier than other services, they
are particularly prevalent in business-to-business applications, and you may
find it necessary to connect to a SOAP Web service in Flex.

To easily access SOAP Web services, you can use the WebService component.
You may also find a new feature of Flex Builder 3, the Import Web Services
command, very useful. This command can point to a WSDL URL and create
a good deal of code for you.

To access this command, select Data→Import Web Service (WSDL). From
there you’ll be prompted with a dialog box that asks you where you’d like to
place the code that’s generated, and for a URL to a WSDL description file. Flex
Builder will generate the code needed to more easily access the Web service.

RemoteObject
A very powerful data access component is the RemoteObject component,
which lets you easily connect to server-side Java (Java EE or J2EE) or
ColdFusion. You gain a number of benefits by using remote objects, which are
maps to Java objects and ActionScript objects. This means actual data types
such as Number or Date can be transferred across the wire intact. Another
huge benefit of remote objects is that data can be compressed over the wire.
That results in speedier access to large amounts of data. You also have the
ability to use, among other benefits, data push, which allows you to listen for
data changes on a remote server and get that new data automatically. (Think
of an email application that didn’t require you to manually get new mail, but
would show you new mail as soon as it arrived.)

To use RemoteObject component, you must set up your application to use
remote object access on a specific web server. This is typically done when
creating a new Flex project. Under the New Flex Project dialog (Figure 10-12),
the final section is called Server technology. Here you can choose a server
type of ColdFusion or J2EE. You must select the “Use remote object access
service” checkbox. If you are using ColdFusion, you may choose whether to
use Flash Remoting or LiveCycle Data Services, while for J2EE applications
you can only use LiveCycle Data Services.

WarNiNg

SOAP Web services can be complex to
use, and I recommend only using them if
you have no other alternative.

Note

WSDL stands for Web Services Descrip-
tion Language, and is a common lan-
guage model for describing Web services.
It specifies what operations are available
for a service and the format of the ser-
vice’s response.

Note

For a directory of Web services that you
can use, check out www.xmethods.net.

Note

Java EE stands for Java Enterprise
Edition, and is a version of the Java
platform made for server-side processing.
ColdFusion is actually a Java EE appli-
cation, enabling you to create server code
in a markup language.

LearningFlex3_book.indb 157 5/27/08 1:53:37 PM

Learning Flex 3158

Summary

Figure 10-12. A new project being set up for ColdFusion Flash Remoting

To use this functionality, you’ll also need to configure a web server based on one
of these technologies. This requires more explanation than possible with this
book. I recommend the Flex help article located at http://livedocs.adobe.com/
flex/3/html/data_intro_2.html to help get you started.

Summary
You’ve taken a giant leap in creating full-featured rich Internet applications
and accessing data. In this chapter, you discovered how to use data that’s cre-
ated within your MXML code, or even data that’s spread across the web. You
learned some basics of working with XML data. You also learned a great deal
about using list controls to display lists of data and even used an advanced
list component, the DataGrid, within your ContactManager application.

Going much further, you saw how to add third-party components to supple-
ment the standard Flex components, which opens up a huge number of
excellent controls and containers you can take advantage of. You built a
simple search application using Yahoo! search and used inline item renderers
and a new Text control to create a rich display for the search data.

With these skills, you can take advantage of the incredible amount of data
that exists on the web. In the next few chapters, you’ll create richer, more
powerful user interfaces that will really help your applications shine.

Creating an
Application from a

Database
If you’re using ColdFusion, PHP,
J2EE, or ASP.NET, you’re in luck. Flex
Builder can actually generate server-
side code for you, letting you easily
connect to data in a database, and
even modify that data. You supply
the database, and all the necessary
code for creating, reading, updating,
and deleting records will be written
for you, even the UI!

For PHP, J2EE, or ASP.NET applications,
you must have a database and a
web server set up using one of these
technologies. Then, all you need to
do is go to Data→Create Application
from Database and follow the dialog
boxes. An actual Flex application will
be created, containing user interface
elements and service methods for
accessing this data. You can use this
as a foundation for creating your
application.

To use this functionality with
ColdFusion, you’ll first need to set
up a ColdFusion server and install
the ColdFusion extensions for Flex
Builder. While you had the option
to install these extensions when
you installed Flex Builder, you can
always add them later. See the
article located at http://livedocs.
adobe.com/coldfusion/8/htmldocs/
othertechnologies_11.html for
instructions on how to install these
extensions.

LearningFlex3_book.indb 158 5/27/08 1:53:37 PM

159

CHAPTER11

IN THIS CHAPTER

Controlling Visibility

Navigation Components

Creating a Photo Gallery
Application

Summary

One of the cool features of Flex is the ability to make a dynamic interface that
is more reminiscent of desktop applications than most web-based applica-
tions. One of the tasks it can do out of the box is let you control the visibility
of entire parts of your application. This is helpful when dealing with an
application that may consist of different sections, not all of which should be
visible at one time. With some of the standard Flex controls, you can partition
your application into different views, even allowing people to customize the
way they want to see a certain section.

Controlling Visibility
Every visual component in Flex has the ability to turn its visibility off and
on. You control this with the visible property, which is true by default. This
applies to all visual controls that Flex has, but it also applies to containers. As
you have learned, containers are great tools not just for helping to align and
lay out your application but also for structuring the different parts of your
application. Because containers are visual components, they inherit such
properties as visibility. This means you can set an entire container’s visibility,
and that property will propagate to the container’s children.

Setting visible to false makes a component invisible, but it continues to
take up its allotted space. For example, you may have a row of three but-
tons aligned horizontally inside an HBox. Turning the middle button’s vis-
ibility off still allows it to take up space so that the first and third buttons
are separated by the same distance as if it were visible. To make it so that
the middle button doesn’t take up space in its parent container, you set its
includeInLayout property to false. See Figure 11-1 through Figure 11-4 for a
visual explanation.

CONTROLLING FLOW
AND VISIBILITY

LearningFlex3_book.indb 159 5/27/08 1:53:38 PM

Learning Flex 3160

Navigation Components

Figure 11-1. Three Button controls in an
HBox, all visible

Figure 11-2. Three Button controls in an
HBox; Button Two has visible set to
false

Figure 11-3. Three Button controls in an
HBox; Button Two has includeInLayout
set to false but visible set to true
(Button Three overlays it)

Figure 11-4. Three Button controls in an
HBox; Button Two has both visible and
includeInLayout set to false (Button
Three takes its place)

Navigation Components
There may not be space on the screen for everything you want to display
in your application. You might need to control what is visible at what time
or provide a choice of views of a particular application. Consider preference
dialog boxes in most desktop applications or the operating system’s settings
or control panel. These types of dialog boxes have a lot of options, and not
all of them need to be visible at a time. Typically, they are organized in such a
way that you can switch between groups of options—often with tabs that are
suggestive of the way a group of files are organized in a file cabinet or the way
a three-ring binder is divided into sections for each class, for instance.

Flex comes with a standard set of components that let you easily control the
flow of your application or let you structure the visible elements into dif-
ferent views. These are referred to as navigator containers, and they provide
a way to switch between their children. Instead of laying out their children
in a vertical or horizontal (or other) fashion, the navigator containers show
one child at a time, turning off the visibility of the others, and may provide
controls like tabs that let you switch between the different views.

The TabNavigator is one of the most common navigator controls, so I’ll talk
about it first. The TabNavigator takes any number of child containers and
provides a tab for each. Like all navigator containers, the TabNavigator’s chil-
dren must be containers. This is because containers, as stated earlier, provide
a way of grouping other elements into a single entity. All containers also
have a label property, and this is what is used to display the label of its cor-
responding tab. The TabNavigator doesn’t want an array of labels or anything

LearningFlex3_book.indb 160 5/27/08 1:53:39 PM

Navigation Components

Chapter 11, Controlling Flow and Visibility 161

like that to display tabs; it simply wants a group of containers that have a
label property. Consider the following code, which creates a set of three tabs
that you can select to switch between three Canvas containers, each having a
different background color. Figure 11-5 displays the output of this code.

<mx:TabNavigator id="view"
 width="200"
 height="200">

 <mx:Canvas id="redBox"
 label="Red"
 backgroundColor="#FF0000"/>
 <mx:Canvas id="greenBox"
 label="Green"
 backgroundColor="#00FF00"/>
 <mx:Canvas id="blueBox"
 label="Blue"
 backgroundColor="#0000FF"/>

</mx:TabNavigator>

Figure 11-5. Three Canvas containers in a TabNavigator, creating three tabs

What is happening behind the scenes is the TabNavigator places the three
containers (Canvas containers in this case) one on top of the other but sets
only one to visible—the one whose tab is selected. When another tab is
selected, only that particular container becomes visible, with the rest set to
invisible. In this way, the TabNavigator, and all other navigator containers,
provide a simple method of controlling the view, or a particular set of ele-
ments that should be visible.

The TabNavigator inherits its features from the aptly named ViewStack
navigator container. The ViewStack is the workhorse behind the func-
tionality of switching views, but it doesn’t come with any visual means of
switching views. For that, you can pair it with a navigation control such as a
LinkBar, ToggleButtonBar, or TabBar. To implement similar functionality in
a TabNavigator, you can use a ViewStack and connect it to a TabBar, placing
both within a vertical layout:

Note

Remember that to change the label of
any individual tab in a TabNavigator,
you change the label of the correspond-
ing container.

Note

A Panel container’s title property isn’t
the same as its label property. Its label
property is, like all other containers, the
text that displays in a navigator con-
tainer, while its title is the text that
displays in its title bar.

LearningFlex3_book.indb 161 5/27/08 1:53:40 PM

Learning Flex 3162

Navigation Components

<mx:VBox>

 <mx:TabBar
 dataProvider="{view}"/>

 <mx:ViewStack
 id="view"
 width="200"
 height="200">
 <mx:Canvas id="redBox"
 label="Red"
 backgroundColor="#FF0000"/>
 <mx:Canvas id="greenBox"
 label="Green"
 backgroundColor="#00FF00"/>
 <mx:Canvas id="blueBox"
 label="Blue"
 backgroundColor="#0000FF"/>
 </mx:ViewStack>

</mx:VBox>

The TabBar, like other navigation controls, takes a dataProvider property,
which you bind to an instance of a ViewStack. The TabBar looks at the child
containers of the ViewStack and renders tabs with the proper labels, just like
a TabNavigator would do on its own.

So, why would you ever want to use a ViewStack paired with a navigation
control if there’s a perfectly good TabNavigator you could use? Well, different
navigation controls exist, so separating a ViewStack and its visual control
gives you the ability to switch those navigation controls to your liking. For
instance, you may want functionality similar to the tabs but don’t want a “tab”
look. In that case, you can use a ToggleButtonBar in place of the TabBar:

<mx:VBox>

 <mx:ToggleButonBar
 dataProvider="{view}"/>

 <mx:ViewStack
 id="view"
 width="200"
 height="200">
 <mx:Canvas id="redBox"”
 label="Red"
 backgroundColor="#FF0000"/>
 <mx:Canvas id="greenBox"
 label="Green"
 backgroundColor="#00FF00"/>
 <mx:Canvas id="blueBox"
 label="Blue"
 backgroundColor="#0000FF"/>
 </mx:ViewStack>

</mx:VBox>

LearningFlex3_book.indb 162 5/27/08 1:53:40 PM

Navigation Components

Chapter 11, Controlling Flow and Visibility 163

This code takes the same dataProvider but gives a different look. Another
choice is the LinkBar control, which creates a set of buttons with a special
look and feel, reminiscent of hyperlinks.

Another reason to use a ViewStack is that you may not want the person using
your application to directly control the view at all, instead choosing to control
it yourself in code. Luckily, it’s easy to control the currently selected view in a
ViewStack or other navigator container. Each has a selectedIndex property,
which you can set to an integer (zero-based) corresponding to a view. For
example, to set the Green Canvas container in the previous code as the cur-
rently selected view, you could use the ActionScript view.selectedIndex = 1.
For the Red one, you’d say view.selectedIndex = 0. Binding the selectedIndex
properties of a List control and a navigator container, you could even allow a
List to control the selected view of a ViewStack or other navigator container.
Another way of setting the selected view is by using the selectedChild prop-
erty. You can use this property to set a particular view by using the id of that
container. In this way, you don’t have to worry about the order of views, but
you can concentrate on a particular view by its id. Consider the following
code, which sets the Green view to visible when a Button control is clicked:

<mx:ViewStack
 id="view"
 width="200"
 height="200">
 <mx:Canvas id="”redBox"
 label="Red"
 backgroundColor="#FF0000"/>
 <mx:Canvas id="greenBox"
 label="Green"
 backgroundColor="#00FF00"/>
 <mx:Canvas id="blueBox"
 label="Blue"
 backgroundColor="#0000FF"/>
</mx:ViewStack>

<mx:Button
 label="Make Green"
 click="view.selectedChild = greenBox"/>

This ability can be useful in rich forms, where you have structured your
forms by category and want only one visible at a time. In this way, you can
direct the people using your application, providing them with a multistep
process to fill out the forms, which can make them less daunting. Who wants
to see a huge scrolling form? It’s much better to partition it so that it not only
looks smaller at first glance but also gives people a sense of direction—“I’ve
finished parts one and two of three…nearly done!”

To do this, you can provide a Next button that, when clicked, sets the
selectedIndex or selectedChild of a ViewStack that holds your various forms.
See the “Using the Back Button: History Management” box later in this chapter
for details on how you can even use the browser’s forward and back buttons,
letting people navigate the form in a way they’re probably most familiar with.

Note

It’s good to know that navigation controls
don’t have to be tied to a ViewStack in
order to work. If you want multiple ways
of switching views in a TabNavigator
(which already has a set of tabs to control
it), you can connect a navigation con-
trol such as a LinkBar in the same way,
by setting the LinkBar’s dataProvider
to the id of the TabNavigator. Both the
TabNavigator’s tabs and the LinkBar’s
buttons will be in sync with each other.

Note

For all navigator containers, the
selectedIndex default value is 0, and
the selectedChild default is the first
child.

LearningFlex3_book.indb 163 5/27/08 1:53:41 PM

Learning Flex 3164

Creating a Photo Gallery Application

Creating a Photo Gallery Application
You’ll now put some new navigation components to good use. One way in
which you’ve probably used views is when looking at photos on a computer.
Most modern programs that display photos allow them to be viewed in mul-
tiple ways, such as in a tile, a horizontal list, or a basic vertical list. You can
create something like that very easily, and along the way, you’ll learn how to
display images in Flex. So, create a new project called PhotoGallery so you can
get started creating a simple gallery of images, complete with multiple views.

Adding Multiple Views
For the first step, drag and drop a TabNavigator component onto the stage
of your new application in Design mode in Flex Builder. This automatically
creates a TabNavigator control with a single Canvas as its child.

When you select the TabNavigator, a pop-up toolbar will display at the top
with a gripper or anchor handle and a plus and minus sign. The gripper
provides a means of moving the TabNavigator around, while the plus and
minus signs let you easily add and remove containers. Clicking the plus sign
will open a dialog box asking you which type of container you want to add
(Canvas, VBox, Panel, and so on), while also providing a quick way to add the
label. So, using this dialog box or going into Source mode, make sure there
are two Canvas children in the TabNavigator, with the labels “List View” and
“Tile View.”

Selecting Navigator Containers
in Design Mode

When using navigation components, it can be challenging at first to understand
whether you’re selecting the navigation component or its children containers or the
children. You may remember using Outline view or the Show Surrounding Containers
option (as discussed in Chapter 8 in the “Visualizing the Structure of Your Application”
section). These can be helpful when dealing with selection, but there’s another way
when using these components. To select the TabNavigator, you can click the gripper
next to the plus and minus signs. This selects the TabNavigator, but it also allows you
to move the navigator around by clicking and dragging this gripper. Double-clicking
a tab also selects the parent TabNavigator.

Into the new containers, add a List control and TileList control, respectively,
and set the sizes of the controls and the parent Canvas containers to take up
all available space by setting their width and height properties to 100 percent.
Your code should look like the following:

<mx:TabNavigator
 width="200"
 left="10"
 top="10"
 bottom="10" >

LearningFlex3_book.indb 164 5/27/08 1:53:41 PM

Creating a Photo Gallery Application

Chapter 11, Controlling Flow and Visibility 165

 <mx:Canvas
 label="List View"
 width="100%"
 height="100%">
 <mx:List id="photosList"
 width="100%"
 height="100%"/>
 </mx:Canvas>

 <mx:Canvas
 label="Tile View"
 width="100%"
 height="100%">
 <mx:TileList id="photosTileList"
 width="100%"
 height="100%"
 </mx:TileList>
 </mx:Canvas>

</mx:TabNavigator>

Populating the Gallery via XML
With your TabNavigator filled with a couple of views, each showing a differ-
ent kind of list (a basic List control and a TileList control), you can now add
some data to fill the lists. Because this is a photo gallery, it makes sense that
your data will be a list of images. So, keep it simple and use some data via
XML. I’ll provide you with a simple list of images in XML. If you prefer to
use another data source and feel comfortable designing the application that
way, feel free to do so. Just make sure either you use the same structure as
this or you modify your application accordingly to use a different structure
(different attribute names, for example).

You can use the following XML, placing it in a file called photos.xml in your
PhotoGallery application’s source folder (usually named src—the same loca-
tion as your PhotoGallery.mxml file). You will again use an HTTPService
component to connect to this file.

<photos>
 <photo
 title="Yawning Camel"
 thumb="http://www.greenlike.com/photogallery/camel_thumb.jpg"
 image="http://www.greenlike.com/photogallery/camel.jpg" />
 <photo
 title="Crowdy Head Lighthouse"
 thumb="http://www.greenlike.com/photogallery/lighthouse_thumb.jpg"
 image="http://www.greenlike.com/photogallery/lighthouse.jpg" />
 <photo
 title="Sun Shade"
 thumb="http://www.greenlike.com/photogallery/sunshade_thumb.jpg"
 image="http://www.greenlike.com/photogallery/sunshade.jpg" />
 <photo
 title="Uluru"
 thumb="http://www.greenlike.com/photogallery/uluru_thumb.jpg"
 image="http://www.greenlike.com/photogallery/uluru.jpg" />

LearningFlex3_book.indb 165 5/27/08 1:53:41 PM

Learning Flex 3166

Creating a Photo Gallery Application

 <photo
 title="Devil's Marbles"
 thumb="http://www.greenlike.com/photogallery/marble_thumb.jpg"
 image="http://www.greenlike.com/photogallery/marble.jpg" />
 <photo
 title="Mother and Child"
 thumb="http://www.greenlike.com/photogallery/mother_thumb.jpg"
 image="http://www.greenlike.com/photogallery/mother.jpg" />
 <photo
 title="Karnak Temple"
 thumb="http://www.greenlike.com/photogallery/temple_thumb.jpg"
 image="http://www.greenlike.com/photogallery/temple.jpg" />
 <photo
 title="Contemplating the Purchase"
 thumb="http://www.greenlike.com/photogallery/purchase_thumb.jpg"
 image="http://www.greenlike.com/photogallery/purchase.jpg" />
</photos>

This code is a simple list of photo nodes, each having a title attribute, a
thumb attribute, and an image attribute. The title attribute is the title of the
image, while the image attribute contains a URL for the full image. The thumb
attribute is a URL for a smaller, thumbnail representation of the image.

To connect to this file, add an <mx:HTTPService/> tag, giving it the following
properties:

<mx:HTTPService id="service"
 url="photos.xml"
 resultFormat="e4x" />

Be sure to call the service’s send() method within the applicationComplete
event listener in your Application so that the service is called when the appli-
cation loads.

Now that you have data, you need to connect it to the two lists. If you remem-
ber from the previous chapter, when using XML data, the dataProvider of a
List control needs a list of items. You’re providing this here by binding it to
service.lastResult.photo, because this points to the actual list of <photo/>
nodes in the returned XML file. So, bind each of the List controls this way,
and they will be populated at startup.

For the first List control (photosList), set its labelField to @title. Because
the title of the image is placed as an attribute in XML, it must be accessed
by the E4X expression @title, not simply title. So, you must change the
labelField to reflect this, so that the List knows what to display.

Displaying External Images
The next step is to display the images. That’s really easy to do, because the
Image control was designed just for this purpose. Simply placing an Image
control in your application and setting its source property to a URL will
cause it to load the image. Any time its source property is changed, such as
what occurs during a data binding, the image will reload.

Note

Alternatively, you can use the XML file
on a server, located at http://greenlike.
com/flex/learning/projects/photogallery/
photos.xml, pointing the HTTPService’s
URL to this instead.

If you have your own images you want
to use in this application, place them in
the PhotoGallery application’s source
folder, and change the URLs in the XML
file to point to your images. For instance,
if you have an image named whitedog.jpg
placed in a folder called myphotos, one of
the photo node’s image attributes could
point to “myphotos/whitedog.jpg”.

As you saw in the previous chapter, any
files you place in your source folder will
be automatically copied to the output
directory (called bin-debug by default)
when the application is built. So if you
place a folder of images, they will be cop-
ied there, and your application will load
the images from there when run.

LearningFlex3_book.indb 166 5/27/08 1:53:41 PM

Creating a Photo Gallery Application

Chapter 11, Controlling Flow and Visibility 167

So, place an Image control in your application, give it an id of image, and set
its source property to the binding photosList.selectedItem.@image. This
will bind the source to the image URL attribute of the particular XML node
that is currently selected in the List control. Now, clicking the different items
in the first List causes the Image control to load that image. Go ahead and
run the application to see this. It should look like Figure 11-6.

Figure 11-6. The photo gallery in a List view

If no size is set on the Image control, it will resize itself to the actual size of
the source image. So if the image or photo loaded is 300 pixels wide and 100
pixels tall, the Image will set its own width to 300 and its height to 100. While
this may be the desired behavior in some applications, it’s often best to know
in advance the size of the Image control so you can plan your layout better.
Setting an explicit size on the Image control will cause it to scale the loaded
photo to fit within its bounds. So, you can set the Image control to an explicit
height and width or, better yet, use constraints to anchor it to the edges of the
application, letting the photo resize to take up available space. Doing so lets
people resize their application, and the Image control scales its source.

You’ll also want to set the horizontalAlign of the Image control to center,
because this causes the source image to center itself within the Image control’s
bounds. This is useful when an image is loaded in portrait fashion—with the
height being larger than the width—where the centering (or lack of) would
be most noticeable.

Monitoring Loading Progress of Images
You may have noticed that it takes a moment to load the image. Especially if
the connection is slow, this can be confusing to some people, because they
may expect to click the item in the list and see the image load immediately. If
it takes a while because of latency, someone may be tempted to click another
item, assuming something is wrong. This, of course, only makes matters
worse because the loading process has to begin all over again.

LearningFlex3_book.indb 167 5/27/08 1:53:42 PM

Learning Flex 3168

Creating a Photo Gallery Application

To provide better feedback in your application, you can use a ProgressBar
control to monitor the loading process of these images. You can use the
ProgressBar for many purposes, but it works surprisingly well with the Image
control. All you have to do is set the source property of the ProgressBar to the
id of the Image control you want to monitor, and it will just work.

So, to provide a better application, add a ProgressBar control with an id of
progressBar to your application. Place it right on top of the Image control you
just added, and set the ProgressBar’s source to that image. Now, when an item
is selected in the list, the image will begin loading, and the progress bar will
display how much is remaining.

Browser Cache and Loading Progress
If you already loaded an image when you tried the PhotoGallery application or if
you are using local images that you supplied yourself, you won’t see the ProgressBar
change from anything other than 100 percent. This is because that image is either
local or has been cached, meaning a copy of the image file has been copied from its
location to your machine for faster retrieval. It’s therefore instantly loaded, and the
ProgressBar doesn’t display any progress because there isn’t any—either it’s loaded
or it’s not.

The browser is responsible for caching, and it does so in a similar fashion to when
documents or images from an HTML page are loaded. In fact, the browser can cache
.swf files. You’ll notice this if you use Flex applications on the web—the first time you
load the application, the default Flex application progress bar will show and it will take
a moment to load, but the next time you visit the application it will load instantly.

Caching is usually the desired behavior, because it helps everything load more
quickly. Most browsers provide a means of disabling or emptying the cache, which
can be very helpful to developers. If you were to empty your cache and try loading
the PhotoGallery images again, you would see the progress bar monitoring the
loading process again.

Note that clearing your browser’s cache may have adverse affects—you may see a
noticeable decrease in speed when browsing sites you frequent, because the assets
are no longer cached. When developing, you may find it most useful if you use one
browser for daily activities and another browser for development, letting you clear
the cache as necessary.

Once the image is fully loaded, the progress bar remains. That’s not the
desired behavior, because once the image loads, it’s no longer necessary to
see the progress bar. It would be best if the progress bar appeared when
needed and disappeared when not. That’s easy to do by using the visible
property and a couple of events from the Image control.

The Image control has two events that are of interest, open and complete. The
open event is fired when something begins to load, and the complete event
fires when the loading is complete. Use those events to control the ProgressBar
control’s visibility.

First, set the ProgressBar to initially invisible by setting its visible property
to false within the ProgressBar tag. Then, add a couple of event listeners

LearningFlex3_book.indb 168 5/27/08 1:53:42 PM

Creating a Photo Gallery Application

Chapter 11, Controlling Flow and Visibility 169

to the Image control, toggling the ProgressBar’s visibility. On the open event,
set the ProgressBar to visible, and on complete set it to invisible. The code for
these two controls may look like the following:

<mx:Image id="image"
 source="{photosList.selectedItem.@image}"
 left="270"
 top="10"
 bottom="10"
 right="10"
 horizontalAlign="center"
 open="progressBar.visible = true"
 complete="progressBar.visible = false"/>

<mx:ProgressBar id="progressBar"
 x="270"
 y="10"
 source="{image}"
 visible="false" />

Now you have a more responsive application, because it informs people that
their clicks are actually doing something. A little feedback goes a long way
when creating rich applications!

Customizing the TileList
Run the application and play around with it. You’ve probably noticed that
Tile view is still incomplete. While for the List control, setting the labelField
was enough to get it going, for the TileList you want to display more than
the name of the image—a thumbnail representation would be great. To do
that, you’ll need to create an itemRenderer for the TileList and use another
Image control.

For this Image control, you’ll set its source to the thumb attribute of the data
object it gets passed. You’ll want to set the Image’s horizontalAlign to center
here again, because this will make the individual thumbnails look better,
centering themselves in their spaces. (This centering is particularly important
when a thumbnail is selected or hovered over, because of the highlight that
the TileList creates; it won’t look so good if the Image is aligned to the left of
its space, because the highlight will be uneven on both sides.)

You can also use a toolTip on that Image to show the title of the loaded
image. It will be the same property as what’s used to set the other List’s label-
Field, but here you’ll use it to create a pop-up tooltip when someone hovers
the mouse over the image and pauses momentarily. Your TileList control code
should now be the following:

<mx:TileList id="photosTileList"
 dataProvider="{service.lastResult.photo}"
 width="100%"
 height="100%"
 <mx:itemRenderer>
 <mx:Component>
 <mx:Image

Note

If you’re looking for a great way to con-
nect to all kinds of photos, you can use
the ActionScript 3.0 API available from
Adobe that lets you interact with Flickr,
the popular photo sharing site. This API
includes features for not only search-
ing for and displaying photos, but even
uploading them and tagging them. This
API requires a good deal of ActionScript
knowledge to use it, but if you’re inter-
ested in taking your PhotoGallery
application to the next level, be sure to
get the code at http://code.google.com/p/
as3flickrlib.

LearningFlex3_book.indb 169 5/27/08 1:53:42 PM

Learning Flex 3170

Creating a Photo Gallery Application

 horizontalAlign="center"
 source="{data.@thumb}"
 toolTip="{data.@title}"
 width="100"
 height="60" />
 </mx:Component>
 </mx:itemRenderer>
</mx:TileList>

Notice that the Image control has a width of 100 and a height of 60. This just
ensures that, even if the thumbnail is very small or very large, it at least scales
itself to be 100 pixels wide and 60 pixels tall. (This helps with the perfor-
mance of the TileList as well, because it can rely on each item being a specific
height and width instead of trying to calculate varying heights and widths.)
Now when you run the application, the Tile View tab will display a nice tiled
list of thumbnails. But, clicking the thumbnails won’t do anything yet.

Syncing Two Lists
You can make the TileList set the larger Image control’s source in a couple of
ways. One option is to use <mx:Binding/> tags to create a multisource binding
for the large Image control. Doing this, you could bind the Image to both list
controls—then when either the photosList or photosTileList has a selec-
tion change, the Image will update itself. However, this isn’t the best scenario,
because when someone switches between the two views, each list might have
a different selection. For example, if you clicked the third item in the TileList
and that image loaded and then switched to List View, that list might have a
different item selected. In other words, the two lists would be out of sync.

Instead of binding the large Image control to both lists, you can just leave it
bound to the photosList. To sync the two lists, you can add an event listener
to each of them for a change event. For the TileList, you tell it to update the
List whenever the TileList changes, and you tell the List to change the TileList
whenever the List changes. Now, when the TileList’s selection changes, it will
cause the other List to mimic that selection, and that will in turn cause the
Image control to update its source.

However, this method has one limitation because of the way navigator con-
tainers create their children. To make the application initialize more quickly,
all views are not created all at once. That is to say, in the case of your two tabs,
only the first tab’s content is actually initialized at application startup, while
the other tab’s content isn’t created until you navigate to that view. (This may
seem unnecessary for your set of two views, but for an application with, say
10 different views, the initial startup would be degraded without this feature.)
For this application, this means the selections won’t sync properly until the
second view is initialized (by the person selecting that view). This is because
the first list’s change event would fire and attempt to update the TileList, but
since the TileList isn’t yet created, nothing would happen.

To get around this problem, navigator containers have a property that
lets you modify when different views get created. The property is called

Note

You should be able to simply bind the
TileList’s selectedIndex to the List’s
selectedIndex, and vice versa, creating
a two-way binding. However, doing so
can create a recursion problem, caus-
ing your application’s performance to
degrade substantially.

LearningFlex3_book.indb 170 5/27/08 1:53:43 PM

Creating a Photo Gallery Application

Chapter 11, Controlling Flow and Visibility 171

creationPolicy, because it is a guideline set up to control the creation of
controls. This property can accept one of four values: all, auto, queued, or
none. The default is auto, which does as explained earlier, only creating the
initial views. Setting creationPolicy to all creates all views at once, while
setting it to queued creates all child containers and then the child contain-
ers’ children in a sequence. The policy none simply prevents any views from
being created—this is an advanced policy, requiring the developer to initialize
views themselves. To fix the problem at hand, set the creationPolicy prop-
erty of the TabNavigator to all. This makes sure both views are ready at
startup and the selections sync as expected.

Your final application’s code should look like the following code and may
look like Figure 11-7:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 applicationComplete="service.send()">

 <mx:HTTPService id="service"
 url="photos.xml"
 resultFormat="e4x" />

 <mx:TabNavigator
 width="250"
 left="10"
 top="10"
 bottom="10"
 creationPolicy="all">
 <mx:Canvas
 label="List View"
 width="100%"
 height="100%">
 <mx:List id="photosList"
 dataProvider="{service.lastResult.photo}"
 width="100%"
 height="100%"
 labelField="@title"
 change="photosTileList.selectedIndex=photosList.

 selectedIndex"/>
 </mx:Canvas>

 <mx:Canvas
 label="Tile View"
 width="100%"
 height="100%">
 <mx:TileList id="photosTileList"
 dataProvider="{service.lastResult.photo}"
 width="100%"
 height="100%"
 change="photosList.selectedIndex=photosTileList.

 selectedIndex" >
 <mx:itemRenderer>
 <mx:Component>
 <mx:Image
 horizontalAlign="center"
 source="{data.@thumb}"
 toolTip="{data.@title}"

Note

The default creation policy setting of
auto is generally your best bet for per-
formance reasons, as it creates its views
as necessary.

LearningFlex3_book.indb 171 5/27/08 1:53:43 PM

Learning Flex 3172

Creating a Photo Gallery Application

 width="100"
 height="60" />
 </mx:Component>
 </mx:itemRenderer>
 </mx:TileList>
 </mx:Canvas>

 </mx:TabNavigator>

 <mx:Image id="image"
 source="{photosList.selectedItem.@image}"
 left="270"
 top="10"
 bottom="10"
 right="10"
 horizontalAlign="center"
 open="progressBar.visible = true"
 complete="progressBar.visible = false"/>

 <mx:ProgressBar id="progressBar"
 x="270"
 y="10"
 source="{image}"
 visible="false" />

</mx:Application>

Figure 11-7. The photo gallery application in Tile View

Now that you’ve successfully created a simple photo gallery and learned
about navigator containers, feel free to modify the application to try the dif-
ferent types of navigation controls and containers. For instance, try changing
the tag from <mx:TabNavigator/> to <mx:Accordion/> and see how it looks.
The Accordion component stacks its children vertically and is useful for mul-
tisection forms, because it can give people a sense of sequence and order—
think of a checkout form where you have to enter shipping information and
then enter your payment information. The Accordion also has a nice default
effect when changing views. You’ll learn how to easily add your own effects
like this to other navigator containers in Chapter 13.

LearningFlex3_book.indb 172 5/27/08 1:53:44 PM

Creating a Photo Gallery Application

Chapter 11, Controlling Flow and Visibility 173

Using the Back Button: History Management
By default, the TabNavigator has a cool feature that just screams RIA: the ability to
use the browser’s back button. Actually, it can use the browser’s forward button as
well. The point is it can work with the browser’s history. When you select, for instance,
the second tab in the PhotoGallery application, notice that your browser’s back
button, when clicked, will change the view back to the first tab, as you can see in the
sequence of screens in Figure 11-8. This is because this component is talking with
JavaScript in the browser, letting it manipulate the function of the forward and back
buttons. You might have noticed a history folder, containing some JavaScript and
other files, in the bin-debug folder of your Flex applications. This folder contains the
necessary files to allow history management to work.

Figure 11-8. Using the back button to change the selected view
This is a useful feature, especially when working with rich forms or other applications,
because it lets people do what they’ve learned they could do from experience with
web pages. You can change this functionality via the historyManagementEnabled
property of navigator containers. It’s turned on by default with the TabNavigator and
Accordion containers but is off by default with the ViewStack container.

In addition, you can use the class mx.managers.BrowserManager to provide
custom history management for other controls—or any purpose, really. This requires
some advanced scripting, so if you’re interested, consult the Flex documentation.

The application in List View

User selects Tile View, and the
back button becomes active

User clicks the back button,
returning to the previous view

LearningFlex3_book.indb 173 5/27/08 1:53:45 PM

Learning Flex 3174

Summary

Summary
In this chapter, you discovered how easy it is to structure your application
by providing a set of user-selectable views. This lets you use your screen real
estate in the most effective way. It can really help with organizing different
parts of an application, such as rich forms or a dialog box with many options,
because it prevents people from being overwhelmed. It also prevents hav-
ing everything visible at once, which may cause the application to require
scroll bars.

You used new navigation components to create customized views of a
photo gallery application, providing both a simple text list and a tiled list of
thumbnails to help people select their image. You also discovered how to load
images from a local file or from the web and even found a way to monitor
loading progress. This chapter also reaffirmed some important concepts, like
using item renderers and loading external data, with an application that you
can customize with your own photos.

While controlling visibility and using navigation controls is very powerful,
there’s another way to organize the views of your application that makes fluid
interfaces very easy to implement called view states. In the following chapter,
you’ll see just how powerful Flex can be.

LearningFlex3_book.indb 174 5/27/08 1:53:45 PM

175

CHAPTER12

IN THIS CHAPTER

Scenarios for States

Creating New States

Modifying State Properties,
Styles, and Events

Adding Components

Putting States to the Test

Summary

View states are among the most powerful features for building a dynamic,
flexible user interface. They allow you to specify different arrangements of
your application at a specific time for a specific purpose. Consider a web
application that has both a login page and a user preferences page—you can
think of these two pages as the HTML equivalent of view states in Flex.

States provide a way to group a set of changes to the UI into understandable
chunks—essentially, a state is a collection of changes to properties, styles, or
behaviors of a component. While a developer could do this through sets of
functions that make a batch of changes to the UI, the MXML that Flex states
use is much more readable and easier to write—and with Flex Builder, it can
all be created in a natural, visual way.

Scenarios for States
Think about the search application you built in Chapter 8. In that example,
the person using your application sees a results list and a search field when
they load the application. That’s all fine and good, but it doesn’t make sense
to show a results list until there are actual results to view.

Of course, you could set the results list to initially invisible and then set it
back to visible once there are results. However, you might want more changes
to occur in the UI when results appear. For instance, it would be nice if when
the application starts, the search fields are large and are the only user inter-
face elements showing. To help direct the person using your application, it
would make the most sense if the search fields appeared in the center of the
application instead of on the top, drawing even more attention to themselves
(see Figure 12-1). Then, once someone submits a search, the search fields can
move to the top, making room for the list of results (see Figure 12-2). Not
only would this scenario look cool and dynamic, but it would help guide
people through the application, showing them only what is necessary at any
given time.

WORKING WITH
VIEW STATES

LearningFlex3_book.indb 175 5/27/08 1:53:46 PM

Learning Flex 3176

Creating New States

Figure 12-1. The Search application in its initial state, showing
only the search fields

Figure 12-2. The Search application in an additional state; the
search fields decrease in size and move to the top, while a list of
results is added

States provide more flexibility than navigator containers in most
cases. This is because, with states, different components can be
reused between the states. That is to say, a Button control in one
state can continue to exist in another state, just perhaps with
modified properties. In fact, that same Button could even appear
in a different part of the application, such as being moved from
a Panel into a Form container. For navigator containers, you
would have to re-create a different Button if you wanted it to
appear in two different views.

You can also use states to build upon one another in a way
that navigator containers cannot. Because of the way in which

one state can be based upon another, you can provide your
application with a cascading set of views, each dependent upon
the other. For ViewStacks or other navigator containers, each
view must be independent of the others.

However, this isn’t to say that view states are always the right
choice. As we have seen, ViewStacks, TabNavigators, and naviga-
tion controls have their uses. They’re great for when part of the
application needs to be structured into separate, independent
parts. Also, navigation controls and the TabNavigator’s tabbed
interface provide easy and automatic switching between views,
which would be more complicated to implement in states.

States vs. Navigator Containers

I’ll start by explaining states hands-on, using Flex Builder’s Design mode,
and then I’ll show you how to integrate this powerful functionality into your
own applications. If you want to follow along, create a new project. In this
example, you’ll make an application with two states, one with a Button on the
left of the screen and another with it placed on the right.

Creating New States
First, simply place a Button control on the stage on the left part of your
application. Then, you’ll use the States panel to create a new state. If the States
panel isn’t visible, you can show it by selecting Window→States. In the States
panel, you’ll see what is called a base state. All applications are considered
to have a least one state, which is their base state. You can create a new state
based upon this base state by clicking the first button in the States panel’s
toolbar, as shown in Figure 12-3.

Figure 12-3. Creating a new state in the
States panel

LearningFlex3_book.indb 176 5/27/08 1:53:47 PM

Modifying State Properties, Styles, and Events

Chapter 12, Working with View States 177

Clicking the New State button prompts you with a dialog box asking for
information about the new state, as shown in Figure 12-4. You can give the
state any name you want, but it’s best—as always—to be as descriptive as
possible. For this simple example, just call the state stageRight because all
this state will do is move a Button to the right.

Modifying State Properties,
Styles, and Events
Now that you’ve created a new state, that new state will be selected in the
States panel. This is your cue that whatever you modify in Design mode will
be applied to this new state. Now you can simply drag the Button to the right
of the stage. Once you’ve done that, switch between the two different states
(the base state and this new stageRight state) in the States panel. You’ll see
that Design mode updates and shows the Button in its original location in
the base state and moved to the right in the stageRight state. Note that you
can also switch between different states using the States drop-down list in the
Design mode toolbar (Figure 12-5).

Figure 12-5. The Design mode State drop-down list

In the background, Design mode is generating some special MXML code for
you. Every Flex application (and component, as you’ll see later in the book)
has a states property. This is its list of potential states, which are specified
by the <mx:State/> tag. That tag takes a name property, which is the name of
that particular state. Within that tag are a few different types of tags, each
corresponding to different kinds of changes. Check out the code that might
be created for this simple two-state example:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:states>

 <mx:State name="stageRight">
 <mx:SetProperty
 target="{button1}"
 name="x"
 value="570"/>
 </mx:State>

 </mx:states>

 <mx:Button id="button1"
 x="10"
 y="10"

Figure 12-4. The New State dialog box

State drop-down list

LearningFlex3_book.indb 177 5/27/08 1:53:48 PM

Learning Flex 3178

Modifying State Properties, Styles, and Events

 label="Click to move"
 click="currentState='stageRight'"/>

</mx:Application>

Notice the typical Button component near the bottom of the code—you can
think of this as the component in its base state. Then within a <mx:states>
</mx:states> tag, there’s a single <mx:State/> tag with a name of "stageRight".
Within this tag are the actual changes that will occur. In this example, the
change is a property change, modifying the Button’s x property from its origi-
nal 10 to a larger 570. This happens through the <mx:SetProperty/> tag, which
takes three properties: a target, which is the id of the component that will be
changed; a name property, which is the name of the property to change; and a
value property, which is the new value it will have in this state.

To switch states, you use the currentState property of the application. In this
case, the Button will change the application to the stageRight state when the
Button is clicked.

Of course, different types of changes can occur in states other than simply
modifying a component’s properties. You can also set style properties and
even change event listeners for a component. Take, for example, the old col-
ored boxes routine from Chapter 8. The following code creates a single Canvas
container with an initial background color of red. Then, two additional states
are created called green and blue, which set the Canvas’s backgroundColor to
green and blue, respectively.

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:states>

 <mx:State name="green">
 <mx:SetStyle
 target="{canvas}"
 name="backgroundColor"
 value="#00FF00"/>

 </mx:State>

 <mx:State name="blue">
 <mx:SetStyle
 target="{canvas}"
 name="backgroundColor"
 value="#0000FF"/>
 </mx:State>

 </mx:states>

 <mx:Canvas id="canvas"
 width="200"
 height="200"
 backgroundColor="#FF0000"/>

</mx:Application>

Note

By default, the currentState of an
application is set to an empty String, "",
and you can always switch back to the
base state by setting currentState="".

LearningFlex3_book.indb 178 5/27/08 1:53:48 PM

Adding Components

Chapter 12, Working with View States 179

Because a style property is different from a regular property, it requires the
use of a <mx:SetStyle/> tag instead of a <mx:SetProperty/> tag. Besides this,
however, its usage is the same.

For setting event handlers, one more type of tag exists, aptly named
<mx:SetEventHandler/>. This is almost the same as the other two tags, except it
takes a handler property instead of a value property. For the previous example
that moved a Button to the right, you could change the click handler in the
stageRight state so that clicking it returns the application to the base state.

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

 <mx:states>
 <mx:State name="stageRight">

 <mx:SetProperty
 target="{button1}"
 name="x"
 value="570"/>

 <mx:SetEventHandler
 target="{button1}"
 name="click"
 handler=" currentState='' "/>

 </mx:State>
 </mx:states>

 <mx:Button id="button1"
 x="10"
 y="10"
 label="Click to move"
 click="currentState='stageRight'"/>

</mx:Application>

In this code, you’ll now see a second child tag of the stageRight state that sets
the click handler of the Button, making it return to the base state.

Adding Components
You can also add or remove components within states. This means you can
rework entire chunks of your application with simple MXML. Consider the
example of a login form, common to many web applications. You may have
often encountered a form on a website that asks for your username and pass-
word. However, if you don’t have a username and password for that site, you
might click a link taking you to a different page—a registration page. And on
that registration page, you’ll be prompted for information such as your full
name—and of course your choice of username and password. Wouldn’t it
be nice if you could stay on the same page with the extra fields popping up
as needed? I’ll show you how in the following example, which you can see
working in Figure 12-6.

Note

If you’re using Flex Builder’s Design
mode, you may never have to write your
own state code. Using the States panel, all
the hard work is done for you. However, it
always helps to understand what the code
is doing in case you need to tweak it.

LearningFlex3_book.indb 179 5/27/08 1:53:49 PM

Learning Flex 3180

Adding Components

Figure 12-6. A login form in its original state

This first bit of code shows a Form container inside a Panel, populated with
a username field and a password field. This is pretty standard stuff for you.
See Figure 12-6 for how this looks.

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 verticalAlign="middle">

 <mx:Panel id="loginPanel"
 title="Returning Users Sign In"
 horizontalAlign="right"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5">

 <mx:Form id="loginForm">
 <mx:FormItem id="usernameFormItem"
 label="Username:" >
 <mx:TextInput/>
 </mx:FormItem>

 <mx:FormItem id="passwordFormItem"
 label="Password:" >
 <mx:TextInput
 displayAsPassword="true"/>
 </mx:FormItem>
 </mx:Form>

 <mx:Button id="submitButton"
 label="Sign in"/>

 <mx:ControlBar
 horizontalAlign="right">

 <!-- This LinkButton will change the state when clicked -->
 <mx:LinkButton id="registerLink"

LearningFlex3_book.indb 180 5/27/08 1:53:49 PM

Adding Components

Chapter 12, Working with View States 181

 label="Don't have an account yet?"
 color="#1B337B"
 click="currentState='registration'" />

 </mx:ControlBar>

 </mx:Panel>

</mx:Application>

However, you could then create a “registration” state, adding a couple of fields
to the Form and changing a few properties to reflect this registration state.
That would allow you to reuse existing components, building upon the UI in
subsequent states. You could add the following code to the application, creat-
ing this additional state with extra fields, as seen in Figure 12-7.

 <mx:states>

 <mx:State name="registration">
 <!-- Set properties on the Panel container -->
 <mx:SetProperty
 target="{loginPanel}"
 name="title"
 value="New User Registration"/>

 <!-- Set properties on the Button -->
 <mx:SetProperty
 target="{submitButton}"
 name="label"
 value="Register"/>

 <!-- Modify the LinkButton control's label -->
 <mx:SetProperty
 target="{registerLink}"
 name="label"
 value="Already have an account with us?"/>

 <!-- Modify the LinkButton to change back to the sign in
form -->

 <mx:SetEventHandler
 target="{registerLink}"
 name="click"
 handler="currentState=''"/>

 <!-- Add a Full Name field to the Form -->
 <mx:AddChild
 relativeTo="{loginForm}"
 position="firstChild">
 <mx:FormItem id="fullNameFormItem"
 label="Full Name:">
 <mx:TextInput/>
 </mx:FormItem>
 </mx:AddChild>

 <!-- Add a password confirmation field to the Form -->
 <mx:AddChild
 relativeTo="{loginForm}"
 position="lastChild">
 <mx:FormItem id="confirmPasswordFormItem"

LearningFlex3_book.indb 181 5/27/08 1:53:50 PM

Learning Flex 3182

Adding Components

 label="Confirm Password:">
 <mx:TextInput
 displayAsPassword="true"/>
 </mx:FormItem>
 </mx:AddChild>

 </mx:State>

 </mx:states>

The first four nodes of the <mx:State/> tag in the code change properties of
the application, but the final two are different. They are <mx:AddChild/> tags,
and they’re used to add components.

The <mx:AddChild/> tag simply takes as child tags the regular old MXML
you’re used to using. It also takes a couple of important properties that tell
it where to place the new component. The property relativeTo takes an
instance of another existing component. In the previous example, relativeTo
is set to the loginForm through the use of curly braces. The other property is
position, which stipulates where to place the new component in relation to
the component specified by the relativeTo property.

In the example above, position is set to firstChild for the fullNameFormItem
component; this means that the added component should be made as
the first child of the container loginForm, meaning it is at the bottom
of the display list of that container, and the first item created within it. For
confirmPasswordFormItem, its position is set to lastChild, meaning it will
be created as the last child of the loginForm container. (Other possible val-
ues are before and after, and these let you create a component relative to a
 sibling component instead of a parent—either right before it on the display
list or right after it.)

Figure 12-7. A login form in an additional state, with two new fields, a different title for
the Panel, and a different label for the Button

Note

When a child is added in one state, it
may be removed when switching out
of this state. There is a corresponding
tag, <mx:RemoveChild/> used to remove
children, and is explained shortly.

Note

Design mode makes modifying properties
of components easy, but it really shines
when using multiple states. You can select
a component in Design mode in one state,
and once you switch states, that same
component will be selected in the new
state. Then you can change properties,
styles, or events of that component in the
Flex Properties panel, and Flex Builder
will write the proper code for you—all
you have to think about is what you
want to change.

Note

I’ll show you how to make these state
changes more noticeable in the next
chapter, by using transitions and effects.

LearningFlex3_book.indb 182 5/27/08 1:53:50 PM

Putting States to the Test

Chapter 12, Working with View States 183

Putting States to the Test
Now that you understand a few things about states, you can take advantage
of them in your projects.

The Search Application
Return to the Search application you created in Chapter 10. Open that project
so you can make a few changes to the UI to take advantage of states, like I
mentioned earlier in this chapter. While it would be great to have planned the
application around states and to have developed it with them in mind, you
won’t have to rebuild it from scratch. You’ll want your initial state to have only
a search field, which means the results list shouldn’t be there. But it’s already
there in the base state. Luckily, you can take advantage of the ability to both
add and remove components via states, and I’ll show you how.

Removing components
Open the main application (Search.mxml) in Design mode, and add a new
state called search. You’re going to be working backward in a sense, because
the “results” state will actually be the base state you’ve already created—the
application as is. Making sure you’ve selected this search state, you can now
select and then delete the resultsList List control. Don’t worry, it’s still there
in the base state—you can switch back, and you’ll see it. You’re just remov-
ing it in the search state, because you don’t want it taking up space when
it’s not populated with anything. Now, since your application has all this
free space, you can adjust the placement of the search fields, putting them
more in the center. Using constraints, you can set the horizontalCenter and
verticalCenter style properties of the HBox, letting it place itself in the cen-
ter of the application. You may also want to change the font size of the fields,
making them more prominent and easier to read. The code that Design mode
generates for the states may look like this:

<mx:states>
 <mx:State name="search">
 <mx:RemoveChild
 target="{resultsList}"/>
 <mx:SetProperty
 target="{hbox1}"
 name="x"/>
 <mx:SetProperty
 target="{hbox1}"
 name="y"/>
 <mx:SetStyle
 target="{hbox1}"
 name="horizontalCenter"
 value="0"/>
 <mx:SetStyle
 target="{hbox1}"
 name="verticalCenter"
 value="-30"/>
 <mx:SetStyle

LearningFlex3_book.indb 183 5/27/08 1:53:51 PM

Learning Flex 3184

Putting States to the Test

 target="{hbox1}"
 name="fontSize"
 value="18"/>
 </mx:State>

Note the tag <mx:RemoveChild/>. This tag takes a target (the results list in
this case) and removes it. In the previous examples, you were always adding
components, but in this example, because the base state contains a results
list that you don’t want, you simply remove it with this tag. Also notice a few
properties and styles are set on a component called hbox1. This is actually
the HBox that contains the search field and search Button. An id wasn’t set
on it, so Flex Builder generated one so it could reference the instance in the
state’s code. (It’s not a particularly descriptive name, so that’s another reason
to always give your components an id.) Because you want to place the HBox
in the center of the application, it makes sense that the horizontalCenter and
verticalCenter styles are set here. However, you may notice that the first two
<mx:SetProperty/> tags contain a target property and a name property, but
not a value. This is because they aren’t setting new values but instead actually
removing that property from the component. (In ActionScript, the equivalent
would be setting the properties to null.)

Setting the initial state
Now you’ve created this new state, but if you run the application, it will of
course remain in the base state, which contains the results list and the previ-
ous layout. In this case, you want to set the initial state of your application to
something other than the base state. To do so, double-click the search state
in the States panel. This opens the Edit State Properties dialog box, which
looks a lot like the New State dialog box. In this dialog box, you’ll see a “Set
as start state” checkbox. Checking this box sets the search state to the initial
state when the application runs. What it actually does is set the currentState
attribute on the <mx:Application/> tag.

The final task you’ll want to do is to set the currentState back to the base
state, showing the results list, once you have results to display. One way to do
this would be by adding a click event handler to the search Button. Another,
better way would be to listen for the result event of the searchService:

<yahoo:SearchService id="searchService"
 query="{queryTextInput.text}"
 result="currentState = ''" />

Now, when the searchService component gets a result, it fires the result
event, which sets the application back to its base state. The full code for
the Search application follows, and the results should look like Figures 12-1
and 12-2.

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:yahoo="http://www.yahoo.com/astra/2006/mxml"
 layout="absolute"
 currentState="search">

Note

If you want to find and replace the hbox1
id and all references to it in your code,
you can use the Find and Replace fea-
ture of Flex Builder. Select Edit→Find/
Replace to open a Find/Replace dialog
box, where you can easily search for and
replace text. Especially useful is that
the text you have selected in your code
when you invoke this dialog box will
automatically populate the Find field in
the dialog box.

LearningFlex3_book.indb 184 5/27/08 1:53:51 PM

Putting States to the Test

Chapter 12, Working with View States 185

 <mx:states>
 <mx:State name="search">
 <mx:RemoveChild
 target="{resultsList}"/>
 <mx:SetProperty
 target="{hbox1}"
 name="x"/>
 <mx:SetProperty
 target="{hbox1}"
 name="y"/>
 <mx:SetStyle
 target="{hbox1}"
 name="horizontalCenter"
 value="0"/>
 <mx:SetStyle
 target="{hbox1}"
 name="verticalCenter"
 value="-30"/>
 <mx:SetStyle
 target="{hbox1}"
 name="fontSize"
 value="18"/>
 </mx:State>
 </mx:states>

 <yahoo:SearchService id="searchService"
 query="{queryTextInput.text}"
 result="currentState = ''" />

 <mx:HBox id="hbox1"
 verticalAlign="middle"
 defaultButton="{searchButton}"
 y="10"
 x="10" >

 <mx:FormItem
 label="Query:">
 <mx:TextInput id="queryTextInput"/>
 </mx:FormItem>

 <mx:Button id="searchButton"
 label="Search"
 click="searchService.send()"/>

 </mx:HBox>

 <!-- The results as a List -->
 <mx:List id="resultsList"
 dataProvider="{searchService.lastResult}"
 left="10"
 right="10"
 top="74"
 bottom="10"
 variableRowHeight="true">

 <mx:itemRenderer>
 <mx:Component>
 <mx:VBox
 width="100%" >
 <mx:Label

LearningFlex3_book.indb 185 5/27/08 1:53:51 PM

Learning Flex 3186

Putting States to the Test

 text="{data.name}"
 fontWeight="bold"/>
 <mx:Text
 width="100%"
 text="{data.summary}"/>
 </mx:VBox>
 </mx:Component>
 </mx:itemRenderer>

 </mx:List>
</mx:Application>

The ContactManager Application
To really understand how powerful states can be, let’s return to the tried-
and-true ContactManager application you last worked on in Chapter 10. As it
currently stands, you’ll see a list of contacts, the read-only view of the contact
details (the Contact Details panel), and an editable view of the contact details
(the Contact Editor panel). Obviously, this could stand to be enhanced, and
states are the way to go.

For this application, consider two possible states:

A read-only view of the contact details, shown when a contact is selected•	

An editable view of the contact details, shown when someone edits a •	
contact

You could implement this by creating a couple of states in the ContactManager
application. However, you can create these states in another way—not in the
application itself but in a custom component. In the following pages, you’ll
learn how to modularize this application by creating your first component.
While it may sound difficult, it’s really easy using MXML.

Making the application modular
Creating a component can be as simple as placing your current MXML code
into a separate file. In Flex, it’s easy to create composite components, which
just means you’re creating one component by mixing others together. This is
typically done by creating a separate .mxml file, using a container, and plac-
ing the desired components within it. Then you reference this component in
your main application using an MXML tag, just like the default Flex com-
ponents you’re used to using or the Yahoo! Search component you’ve used in
the Search application.

If you look at it one way, the Contact Details panel and the Contact Editor
form are almost the same, but one uses Labels to just display the information,
while the other uses TextInput and other controls to let you manipulate the
information. It might have occurred to you that they could just be two differ-
ent views of the same data. To do this, you could create a component called
ContactViewer that will have two states, a base state and an edit state.

Note

When planning an application, states
can be very helpful in storyboarding, or
designing your application flow. Because
states can be cascading, meaning they
can build upon other states, you can cre-
ate them at any time, even at the begin-
ning of your application development.
Then, when changes occur in a parent
state, those changes will be propagated to
the child states automatically.

Note

You’re used to having a main .mxml file
in your project’s source folder, which
is your application’s source code. You
may also know that you can have
more than one application in a proj-
ect, with different .mxml files that con-
tain <mx:Application/> tags and their
own code. You can also have other .mxml
files in your source directory that can be
custom components.

LearningFlex3_book.indb 186 5/27/08 1:53:52 PM

Putting States to the Test

Chapter 12, Working with View States 187

To create a component in Flex Builder, you can use the New MXML
Component dialog box. So, to start creating your custom component, select
your project in the Flex Navigator and then select File→New→MXML
Component. This opens the dialog box shown in Figure 12-8.

Figure 12-8. The New MXML Component dialog box

Here you can give the component a descriptive filename and choose what
the component is based on. The filename will actually be the name of the
component—and therefore the name of the MXML tag you’ll use in your
application—so it can’t contain any spaces or start with anything other than
a letter. Like all components, it’s good to use camel case, which means sepa-
rating words using an initial capital letter (presumably like the humps of a
camel), and starting the name with a capital letter.

The component it’s “based on” means the other component that this will
extend, or inherit the properties and methods of another component and
build upon them. When creating custom MXML components, you’ll typi-
cally extend another visual component, adding features to it. It’s usually a
container, because containers let you easily add controls to them and provide
a simple way to encapsulate functionality. Your component’s name should be
ContactViewer, and the component it should be based on is Panel.

Once you create the file, you should see it open in either Design mode or
Source mode, and the code should be as follows:

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="verical"
 width="400"
 height="300">
</mx:Panel>

LearningFlex3_book.indb 187 5/27/08 1:53:52 PM

Learning Flex 3188

Putting States to the Test

Notice the namespace that is placed here, just as it is for the <mx:Application/>
tag. That’s a necessary part of making this a component. Now whatever you
place inside this tag will be part of the component. That’s what you’ll be
doing next: cutting and pasting some of the code from your ContactManager
application and placing it in here.

Cutting and pasting code
First, go to the ContactManager application and, while in Source mode, select
the contents of the Contact Details panel. In other words, select everything
between the opening and closing <mx:Panel></mx:Panel> tags. Then, select
Edit→Cut to cut this code. Next, you will paste it inside the new ContactViewer
component. So, switch to ContactViewer, and in Source mode paste this code
in the component (Edit→Paste) between the opening and closing <mx:Panel>
</mx:Panel> tags.

You’ll also want to copy any attributes you’ve placed on the Contact Details
panel and place them on the new ContactView component. However, you
won’t want to place the id attribute. That’s because an MXML component
cannot have an id placed within its definition. An id is something you give
to a specific reference to a component, not within the definition.

Now you have the UI for the base state of this ContactViewer component.
Next, create a new state within it called edit. Then, while in this new state in
Design mode, delete the contents of the component—all the controls inside it
will be deleted. This will remove all of these “read-only” components from the
edit state, though they’ll still exist in the base state. You’ll replace them with
the Form from the Contact Details panel in the ContactManager application.
Simply cut and paste this Form into the empty ContactViewer Panel in its edit
state. The easiest way is to select the Form while in Design mode in your main
application and cut it from there. Then, in Design mode in the ContactViewer
component, simply paste it. Alternatively, you could cut the code in Source
view, add your own <mx:AddChild/> tag, and paste it within this tag.

After that, change the title of the Panel from Contact Details to Contact
Editor in the edit state. Now you’ll have the two modes you need, all within
a single component.

However, you have to do a bit more to make this work. You’ll notice that the
new component has references to properties of the contactsDataGrid, as well
as references to functions that don’t exist in this component. Though it’s in
the same project, it doesn’t actually know anything about any of the code in
the ContactManager application. So, you’ll have to do two things: give it the
code it needs to work, and pass it the information it needs to display. I’ll focus
on the former now, and once I show you a new trick, I’ll return to the latter.

First, cut the entire <mx:Script/> tag from the ContactManager application and
all the ActionScript code within it. Then paste this into the ContactViewer
component, right after the opening <mx:Panel/> tag. Just like an Application,

Note

Flex Builder lets you cut and paste
entire containers or other components in
Design mode as well. To select multiple
items at a time, click the stage and drag
the mouse over the items while holding
down the mouse button.

Note

It’s not necessary to follow along with all
of the cutting and pasting of code here.
You’re welcome to get the source code for
this chapter and simply refer to this to
understand what happened. As with all
of the projects for this book, you can get
the source at www.greenlike.com/flex/
learning.

Note

Now that you have learned how to use
the Image control from Chapter 11, you
might want to add one to this application.
You could add a node to each contact in
the contacts.xml file that stipulates an
image for that contact. Then, in this
application, add an Image control that is
bound to that field in the XML.

LearningFlex3_book.indb 188 5/27/08 1:53:53 PM

Putting States to the Test

Chapter 12, Working with View States 189

an MXML component can have an <mx:Script/> tag and ActionScript code.
Because this code is all for validation and data massaging, it makes sense to
have it encapsulated within this component and not in the main application.

Creating component properties
Now, you’ll want to create a variable in the ContactViewer component called
contact and make it of type Object. You can create it in ActionScript or with
an <mx:Object/> tag. It will need to be bindable, so if you use ActionScript,
be sure to place a [Bindable] metadata tag above the variable declaration
(as discussed in Chapter 7). This creates a property on the ContactViewer
component called contact. This contact property will be the data for this
component, and you will pass it the selectedItem of the contactsDataGrid
in the main application in a moment. First, however, replace all references to
contactsDataGrid.selectedItem with this contact property. For instance, you
would want to replace this:

<mx:Label id="emailLabel"
 text="Email: {contactsDataGrid.selectedItem.email}"/>

with this:

<mx:Label id="emailLabel"
 text="Email: {contact.email}"/>

An easy way to do this is by using Find and Replace (Edit→Find/Replace).
After replacing these references, save the component, and make sure there
aren’t any errors. If there are, it should be easy to find out what is wrong and
fix the problem. It may be that you forgot to close a tag or you pasted the code
in the wrong place. Flex Builder has great error checking and will usually give
you a detailed explanation of what it thinks is wrong.

Using custom components
After saving your new component, it’s now time to put it to use. In the
ContactManager application, remove any references to Contact Editor or
Contact Details. Then, add your new ContactViewer component. You can do
this easily in Design mode by using the Components panel. At the very top
of this panel you’ll see a Custom item, as shown in Figure 12-9. This is where
your custom components for this project are placed. Under this item you
should see your ContactViewer component. You can drag and drop it onto
the application, just like any other component.

Organizing custom components with packages
Once you’ve placed the custom component in your application in Design
mode, check out the code created by switching back to Source mode. You’ll
probably see something like this:

<ns1:ContactViewer
 x="318"
 y="10">
</ns1:ContactViewer>

Note

While you can’t do so in a compo-
nent in an application, you can place
<mx:Script/> tags in a custom com-
ponent’s source file. This is how you
give your custom component scripting
functionality.

Note

While it’s frustrating if you save the
ContactViewer component and see all
the errors that occur, it’s a good thing to
make this component free from any ref-
erences to a specific application. Having
accomplished this bit of work, you can
even reuse it in other applications with-
out worry.

Figure 12-9. A custom component in the
Components panel

LearningFlex3_book.indb 189 5/27/08 1:53:53 PM

Learning Flex 3190

Putting States to the Test

That’s your component, in its own namespace, ns1. Because your component
isn’t part of the Flex SDK (it’s just using it and extending it), it needs its own
namespace to distinguish itself. Flex Builder adds this automatically for
you—look back at the <mx:Application/> tag to see the namespace definition
that was added to it:

xmlns:ns1="*"

This means, “Create a namespace named ns1 and make it point to the appli-
cation’s source directory.” The asterisk (*) character means the namespace is
referring to everything in the current project directory.

You might find the name of the namespace to be a bit vague. As usual, Flex
Builder will name things for you with an index-based name, as in ns1, ns2,
ns3, and so on. You can easily change this (as discussed in Chapter 4), and
you’ll do that in a moment.

The standard practice is to place components into a folder or subfolder to
organize them. Up until now you’ve placed your component without any
organization for the sake of brevity, but it’s usually best to organize them. This
is because as you continue developing in Flex, you’ll probably find yourself
creating a number of components, and organization is key as your library
grows. Placing your components in different packages, or folders and subfold-
ers, based on what they do, is a great way to accomplish this. For instance,
you may have a few controls that you’ve created and want to place them in a
folder called controls; you may also have created some layout container com-
ponents and might place them in a folder called containers. This helps you
differentiate various components based on what they do.

The standard naming scheme for packages is using what is called reverse
domain naming. A domain is something like adobe.com or oreilly.com, so a
reverse domain would be com.adobe or com.oreilly. Say you work at O’Reilly,
and you created a new Flex control. You could place that control in the com.
oreilly.controls package. What this actually means is that you would place
your component in a directory with the structure com/oreilly/controls. If you
have a website, you can use your domain name for your package structure. If
you don’t, you can simply use your name or nickname to create the package.

Placing components in particular folder is called packaging because it groups
related components, like the way you might package similar items in boxes
when you’re moving into a new home. You could label your boxes “dishes” or
“toys” so that you know what they contain at a glance. The same works for
components—keeping them organized by their types lets you quickly know
how they’re used. Also, as mentioned, organizing your code like this prevents
naming collisions, letting you more freely name your components without
worrying that a name is already taken by another component. This is because
a component’s package can become its namespace. If you create a component
called Button, placing it in a package will distinguish it from the default Flex
Button when you use it in your code.

LearningFlex3_book.indb 190 5/27/08 1:53:53 PM

Putting States to the Test

Chapter 12, Working with View States 191

To understand this, you’ll create a package for your ContactViewer component.
This is really easy to do. First, you can just remove the <ns1:ContactViewer/>
tag from your application and remove its namespace declaration from the
<mx:Application/> tag, because you’ll be replacing them.

Next, you’ll need to create the package by creating an empty set of folders in
your project. Go to the Flex Navigator panel, and select your ContactManager
project’s source folder (ContactManager/src). Then select File→New→Folder
to create the folders. You’re free to create any package structure you desire,
but for this example you could use the structure com/oreilly/view, because
the component is used as a way to view part of the application. While you
can create one folder at a time, the New Folder dialog box lets you create a
hierarchical structure of folders by entering a path with folders separated by
forward slashes (/). So, the easiest way is to enter com/oreilly/view in the
Folder name field and click Finish (see Figure 12-10).

Figure 12-10. The New Folder dialog box

Once the folders are created, making your ContactViewer component part of
the com.oreilly.view package is as easy as dragging and dropping it into the
view folder.

Alternatively, you can create the folders using your operating system’s file
system, such as Windows Explorer or Mac’s Finder. Navigate to where your
projects files are stored, which is usually /Users/yourusername/Documents/
Flex Builder 3/ on a Mac and C:\Documents and Settings\yourusername\
My Documents\Flex Builder 3\ in Windows. From there, you can add folders.
Once you return to Flex Builder, the new folders should show automatically.
If they don’t, you can select your project in the Flex Navigator and select
File→Refresh to refresh the folder list.

Note

If you’ve just placed the component in
Design mode, you can probably undo the
addition of both the component tag and
the namespace declaration by selecting
Edit→Undo.

Note

It’s best to keep package names in low-
ercase, as this is a commonly accepted
standard. Because class names are typi-
cally capitalized, keeping package names
in lowercase helps to distinguish them.
Also, be sure not to use any special char-
acters in the package names, because
these are not allowed.

LearningFlex3_book.indb 191 5/27/08 1:53:54 PM

Learning Flex 3192

Putting States to the Test

Figure 12-11 shows the way your project’s folders should be structured, with
the ContactViewer component placed in the new package.

Now that you have the component in its new location, you can drag the new
version onto your application in Design mode, just like you did by using
the Components panel. Switching to Source mode to view the code, the new
namespace created in the <mx:Application/> tag now looks like this:

xmlns:ns1="com.oreilly.view.*"

Previously the ContactViewer component was in the base directory (*),
it’s now located under this new namespace. You might want to give the
namespace a more descriptive name, such as view:

xmlns:view="com.oreilly.view.*"

Of course, if you change the name of the namespace, you’ll need to update it
for the component’s tag as well:

<view:ContactViewer
 x="318"
 y="10">
</view:ContactViewer>

Getting to the Source (Files)
You might have wondered why your custom components get placed in a namespace
like com.oreilly.view, while the default Flex components have a namespace like
http://www.adobe.com/2006/mxml. Adobe does this when it distributes the Flex
components by bundling them into a .swc file through a special process.

Actually, all Flex components are organized into packages. You can see this by
viewing the source for the components, which is located in a special directory on
your file system. If you’ve installed Flex Builder, the source files for most of the Flex
framework is shown as follows (assuming you’ve installed in the default locations):

Mac: •	 /Applications/Adobe Flex Builder 3/sdks/3.0.0/frameworks/projects/
framework/src/mx
Windows: •	 C:\Program Files\Adobe\Flex Builder 3\sdks\3.0.0\frameworks\projects\
framework\src\mx

There you’ll see a number of folders such as controls, core, effects, utils, and so on.
Adobe’s process creates a more complex namespace that actually aggregates these
various packages. This is because a namespace isn’t limited to a single package but
can actually span multiple packages.

For general development, pointing a namespace to a single package is sufficient.
If you find that you’re creating a large library and want to create your own unique
namespace for all your custom components, you can create your own SWC using
a Flex Library project, which is a special type of project just for creating compiled
libraries of custom components. The process requires the use of a file called
manifest.xml, which stipulates each of your components and registers them with a
namespace of your choice. To learn more about this advanced process, check the Flex
documentation for component libraries.

Figure 12-11. The package structure of a
custom component

LearningFlex3_book.indb 192 5/27/08 1:53:54 PM

Putting States to the Test

Chapter 12, Working with View States 193

Using custom component properties
Now that you have your component all packaged up, the next step is to
hook it into the selectedItem of the contactsDataGrid so that it can become
populated with contact data again. You’ll be able to easily do this by setting
its contact property with a binding:

<view:ContactViewer
 contact="{contactsDataGrid.selectedItem}"
 x="318"
 y="10">
</view:ContactViewer>

Now, whenever the selectedItem changes, that information will be passed to
this contact object that you created, updating the view accordingly.

While you’ll be able to see the different states of the ContactViewer by switch-
ing between them in Flex Builder’s States panel, the application doesn’t have a
way to switch those states yet. Now you’ll need to set up controls for allowing
people to switch between the base state and the edit state at runtime.

To do so, you’ll use a Button. First, however, add a new container called
ControlBar to the bottom of the ContactViewer in its base state. ControlBar
is a special container that works only with Panel (and TitleWindow, which is
an extension of Panel). It attaches itself to the very bottom of the Panel, giv-
ing it a new look. The ControlBar container works essentially like an HBox,
laying out controls in a horizontal fashion. It’s just a nice way to add Buttons
and other controls to the bottom of Panel, as it will automatically attach
itself to the bottom of the Panel, and give it a rounded look. Now, within
this ControlBar, place a single Button and give it the label “Edit.” Also, give
it an id of editAndSaveButton. (As you might notice from its id, this Button
is going to be used for multiple purposes, changing its functionality based
on the state.) Finally, set a click handler for the Button that changes the
currentState to edit.

Next, switch to the edit state in Design mode and select this same Button.
Change the label of the Button to “Save,” and change its click handler to
revert to the base state via the ActionScript currentState="". This way, the
person using your application will first see an Edit button; once clicked, the
button will change the details panel to an edit panel. The Edit button will in
turn change into a Save button that returns this component to its base state
when clicked. (Note that the Save button does not actually save the changes
to the contacts.)

As a final touch, you’ll want to set the contactsDataGrid to have its first
item selected. This is because right now the ContactViewer will display
itself whether or not it has any contact data, and if it doesn’t have any, it
just displays an ugly blank panel. This is an easy one to fix, because you can
just set the DataGrid’s selectedIndex to 0. Once the contact data loads and
populates this grid, the initial item will be selected, and it will display in the
ContactViewer.

Note

When using Flex Builder’s Design mode
for modifying view states, pay particular
attention to which state you’re working
in. If you don’t, you may inadvertently
modify a property of a component within
a different state than you had planned—
and this could cause you a lot of frustra-
tion trying to trace down your error. For
instance, if you were in the edit state
when adding a Button, it would not be
created in the base state—and because
this is the Button that makes the appli-
cation switch to the edit state, it would
never show up when the application
was run.

LearningFlex3_book.indb 193 5/27/08 1:53:55 PM

Learning Flex 3194

Putting States to the Test

If you prefer not to have the first item in the DataGrid selected and instead
prefer to hide the ContactViewer until someone selects an item, that’s easy to
accomplish as well. Simply set the ContactViewer’s visible property to the
selectedItem of the contactsDataGrid:

visible="{ contactsDataGrid.selectedItem }"

What this means is “If the contactsDataGrid has an item selected, set the vis-
ible property to true, otherwise make it false.” This way, when the applica-
tion loads, only the DataGrid of contacts will display. Upon selecting an item
in the DataGrid, the contact details will appear. (Then, after clicking the Edit
button, the Contact Editor will show up as usual.)

That’s all there is to the core functionality of the ContactManager application,
as you can see in Figure 12-12 and Figure 12-13. Now, the complete code for
the ContactsViewer component is a bit large, so you’ll want to check out the
source code by downloading it from the companion site. Because most of the
logic of this application is now in the ContactViewer component, the main
application is now very small:

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:view="com.oreilly.view.*"
 layout="absolute"
 applicationComplete="contactsService.send()" >

 <mx:HTTPService id="contactsService"
 resultFormat="e4x"
 url="contacts.xml" />

 <mx:DataGrid id="contactsDataGrid"
 dataProvider="{contactsService.lastResult.contact}"
 selectedIndex="0"
 left="10"
 top="10"
 bottom="10"
 width="300">
 <mx:columns>
 <mx:DataGridColumn headerText="First"

 dataField="firstName"/>
 <mx:DataGridColumn headerText="Last" dataField="lastName"/>
 </mx:columns>
 </mx:DataGrid>

 <view:ContactViewer
 contact="{contactsDataGrid.selectedItem}"
 x="318" y="10">
 </view:ContactViewer>

</mx:Application>

Note

The contactsDataGrid.selectedItem
property, which is an Object, can be
evaluated to a Boolean (true/false) in
a binding. The rules is: If the Object is
null, convert to false, otherwise, convert
to true. So, if the contactsDataGrid
does not have a selectedItem set, that
selectedItem is considered null and
evaluates to false in the binding to the
visible property.

LearningFlex3_book.indb 194 5/27/08 1:53:55 PM

Putting States to the Test

Chapter 12, Working with View States 195

Figure 12-12. The ContactManager application, with ContactViewer in its base state

Figure 12-13. The ContactManager application, with ContactViewer in its edit state

LearningFlex3_book.indb 195 5/27/08 1:53:56 PM

Learning Flex 3196

Summary

Another great feature that you can use with states or navigator
containers—but one that requires a good knowledge of
ActionScript and a little JavaScript—is deep linking. This lets you
save the state of your application, or a currently selected tab
in a TabNavigator, in the URL of the deployed Flex application.
This means people can bookmark a specific view of your
application, and you can share a link that takes people to a
specific state in your application.

Deep linking provides a way for you to specify a parameter
of a URL that points to a particular state. You have probably
encountered these URL parameters if you’ve ever paid attention
to the address bar of your browser when visiting websites—
they’re the part after the main address, and they give additional
information to the server. If you’ve ever used Yahoo! search, you
might have seen a URL in your address bar like the following:

http://search.yahoo.com/search?p=flex
In this case, http://search.yahoo.com/search is the base URL,
and p=flex is a single parameter p set to flex. (The question

mark [?] is simply a cue to the server that whatever comes after
it is a parameter.)

Sometimes on a website you’ll see a hyperlink that links to
another part of the same HTML document. This is accomplished
through an anchor, a special hyperlink that contains a hash (#)
followed by the name of the section of that document, like the
following:

http://en.wikipedia.org/wiki/Anchor_tag#Links_and_anchors
In the previous URL, #Links_and_anchors is the anchor, and it
points to a specific part of the page at http://en.wikipedia.org/
wiki/Anchor_tag.

Deep linking in Flex uses a similar paradigm, where you can
create anchors or URL parameters that will link to specific points
in your application.

Check out the Flex documentation on deep linking for more
information on how to use this powerful feature.

Deep Linking

Summary
Now you’ve encountered the most common features of Flex development,
empowering you to create your own rich Internet applications. In this chapter,
you discovered the concept of view states, which let you easily design the flow
of your applications. Adding this to your knowledge of navigator containers
and navigation components, you’re ready to build advanced interfaces for any
type of application. In fact, you’ve already used these concepts in applications
that you built yourself—a search application, a photo gallery, and a contact
manager application.

You also learned a very important concept: how to use MXML components.
Creating your own component, you made the ContactManager application
more modular and cleaner. This simple exercise has given you the informa-
tion you need to create your own reusable MXML components that you can
share across your own applications and even share with other developers.

You’ve made it far, and have just finished one of the more technical parts of
the book. To celebrate, I’ll cover what may be the most fun and expressive
part of Flex in the next chapter, adding effects and filters.

LearningFlex3_book.indb 196 5/27/08 1:53:56 PM

197

CHAPTER13

IN THIS CHAPTER

Behaviors

Common Effects and Their
Properties

Sound Effects

States Made More
Interesting

Filters

Summary

Now that you’ve learned all of the most important skills for building applica-
tions in Flex, it’s time to have some fun. All Flex visual components have a
standard set of graphic filters and effects that let you create really expressive
applications with minimal effort. Effects are auditory or visual changes to
components, typically an animation of some form. Filters are static visual
changes such as blurring or drop-shadows. In this chapter, you’ll discover
how incredibly easy it is to apply visual effects to your components with
simple MXML.

Behaviors
All Flex visual components have a special set of behaviors built in. These
behaviors let you easily add effects to your components, making really expres-
sive applications quick and easy. They’re essentially limitless, but the most
common effects create functionality like fading a component’s visibility in
or out or showing the movement of a component from one place to another
with an animation. Other common effects are sound effects, which are noises
that can be played for certain events or actions.

Behaviors are really just an effect paired with a trigger, or an action that
occurs in the application. This is typically from an event such as a mouse
click, a mouse rollover, or some other event that a component dispatches, like
when it’s created for the first time or when it’s hidden or shown.

Using Common Effects
To show how behaviors are implemented, let’s start with the PhotoGallery
application you last worked with in Chapter 11. Open that project’s main appli-
cation file, because you’ll be working on it, adding some cool new effects to it.

In this application, photos are loaded in response to items being selected in a
list. Also, a ProgressBar shows up when needed and becomes invisible when
not in use. Effects can be used to make these actions—changing photos and
hiding and showing a ProgressBar—smoother and more elegant.

APPLYING BEHAVIORS,
TRANSITIONS, AND FILTERS

LearningFlex3_book.indb 197 5/27/08 1:53:57 PM

Learning Flex 3198

Behaviors

Because behaviors are effects matched with triggers, if you’re familiar with the
events that a component fires, chances are that there’s an effect that is trig-
gered by that event. (See Table 13-1 for a list of common behaviors and their
corresponding events.)

Table 13-1. The most common behaviors and associated trigger events

Behavior Name
Corresponding Name
of the Event Trigger Description of the Event Trigger

addedEffect add The component is added to the display list.

removedEffect remove The component is removed from the display list.

creationCompleteEffect creationComplete The component is created.

focusInEffect focusIn The component gains keyboard focus.

focusOutEffect focusOut The component loses keyboard focus.

showEffect show The component’s visible property is changed from false to
true.

hideEffect hide The component’s visible property is changed from true to
false.

moveEffect move The component’s x and/or y properties are modified.

resizeEffect resize The component’s width or height is changed.

mouseDownEffect show The mouse button is pressed while the mouse pointer is over the
component.

mouseUpEffect mouseUp The mouse button is released while the mouse pointer is over the
component.

rollOverEffect rollOver The mouse pointer rolls over the component.

rollOutEffect rollOut The mouse pointer rolls off the component.

Consider the case of the Image component used in the PhotoGallery applica-
tion. It fires a complete event when its source finishes loading. You’ve already
used this event to change the visibility of the ProgressBar. It also has a style
property called completeEffect, which lets you specify an effect that will play
when the complete event fires.

To see what happens, add a Fade effect to the large Image component that
loads the photos. The quickest way to do this is by setting the value of
completeEffect to Fade, which tells Flex to create a standard fade effect:

<mx:Image id="image"
 source="{photosList.selectedItem.@image}"
 left="270"
 top="10"
 bottom="10"
 right="10"
 horizontalAlign="center"
 open="progressBar.visible = true"
 complete="progressBar.visible = false"
 completeEffect="Fade"/>

Note

While the behaviors listed in Table 13-1
are the most common ones in visual com-
ponents, other component-specific effects
also exist, such as the completeEffect
of the Image control. To check the pos-
sible effects for a component, either check
its documentation or use the Category
view of the Flex Properties panel to see
potential effects.

LearningFlex3_book.indb 198 5/27/08 1:53:58 PM

Behaviors

Chapter 13, Applying Behaviors, Transitions, and Filters 199

Now, when you run the application and load a photo, the Image component
will slowly fade in. What is happening is that once the complete event occurs
and before the Image is shown, the Fade effect sets the Image’s alpha value
to 0 and then progressively increases it until it becomes fully opaque. This is
called, in Flash terminology, a tween, because it’s an animation in between
two properties or states. Most of the common visual effects are using a tween-
ing mechanism of some kind.

The addition of this effect makes the appearance of the photo less startling
and can be very pleasant for anyone using your application. Instead of the
photos immediately changing, the Fade effect creates an obvious visual cue
that a new image is appearing, and it just looks great.

The ProgressBar could use an effect to show its appearance and disappear-
ance, because it tends to show and hide itself suddenly. Luckily, all visual
components have both a showEffect and a hideEffect, which are behaviors
that can play an effect when the component is shown or hidden. You’ll use
both of them, providing a fade-in when the ProgressBar shows and a fade-out
when it’s hidden.

<mx:ProgressBar id="progressBar"
 x="270"
 y="10"
 source="{image}"
 visible="false"
 showEffect="Fade"
 hideEffect="Fade"/>

Now when the ProgressBar shows up, it will fade in nicely, and when it’s hid-
den, it will fade out. This is much preferable to the way it was before, suddenly
appearing and disappearing.

However, you might notice that after running the application, the default
label of the ProgressBar isn’t fading with the rest of it. While the graphics of
the ProgressBar fade in and out nicely, this text doesn’t seem to follow along.
This is because in the default setup of a Flex application, you are using device
fonts, or fonts that are loaded from the user’s system, to display text. Because
of a current Flash Player limitation, device fonts aren’t able to have an alpha
value of less than 1, which means fade effects don’t work with them. They are
also not able to be rotated or changed by any other graphical manipulation,
which does limit the types of effects that can be used with them.

To get around this issue, you have a couple of options. One is to embed fonts,
which is a special way to include specific fonts of your choice compiled in the
application (more on this in the next chapter). This allows the alpha value to
be set on the text, which means the fades will work properly. Another option

Note

Setting an effect has no impact on the
effect’s corresponding events. For instance,
the completeEffect uses the complete
event to trigger its playing, but it doesn’t
matter whether you’ve specified a listener
for the complete event. They will work
independently of one another.

Note

To see a list of common effects, see
the section “Common Effects and Their
Properties” later in this chapter.

Note

By setting a show or hide effect to a Fade,
the proper animation will automatically
display. When the component is shown,
it will fade in, and when it is hidden, it
will fade out.

Note

While effects that manipulate alpha
(Fades) or rotation (Rotate) cannot be
used with device fonts, other effects will
work fine.

LearningFlex3_book.indb 199 5/27/08 1:53:58 PM

Learning Flex 3200

Behaviors

is to just get rid of the label altogether. Because the ProgressBar shows up
only temporarily and already gives its information without a label, you can
just remove the label by setting it to an empty string:

<mx:ProgressBar id="progressBar"
 x="270"
 y="10"
 source="{image}"
 visible="false"
 showEffect="Fade"
 hideEffect="Fade"
 label=""/>

Applying Effects to Navigator Containers
Because navigator containers set the visibility of their children, hideEffect
and showEffect will work for their children. In the PhotoGallery application,
we have a TabNavigator with two Canvas containers, each holding a different
type of list control. Instead of the views switching abruptly as they currently
do, you could add some of these fade effects to the Canvas containers. Simply
add a showEffect of Fade to each of the two Canvas containers, and when the
views are switched, they will fade in nicely—that is, except for the first one.

You might notice that while the fade works great for the Tile view, which
has a TileList filled with image thumbnails, the first List view doesn’t show
the fade properly. Again, the problem is with device fonts being used by the
List control’s labels. However, you can easily fix this with an alternative effect
called Dissolve. The Dissolve effect gets around the issue by drawing a white
rectangle layered over the List control and then applying a fade-out on that
rectangle. The result is what appears to be a perfect fade-in for the List con-
trol. So, just replace the showEffect of the List view Canvas with a Dissolve,
and it will work fine:

<mx:TabNavigator
 width="250"
 left="10"
 top="10"
 bottom="10"
 creationPolicy="all">
 <mx:Canvas
 label="List View"
 width="100%"
 height="100%"
 showEffect="Dissolve">
 <mx:List id="photosList"
 dataProvider="{service.lastResult.photo}"
 width="100%"
 height="100%"
 labelField="@title"
 change="photosTileList.selectedIndex = photosList.

selectedIndex">
 </mx:List>
 </mx:Canvas>

LearningFlex3_book.indb 200 5/27/08 1:53:58 PM

Behaviors

Chapter 13, Applying Behaviors, Transitions, and Filters 201

 <mx:Canvas
 label="Tile View"
 width="100%"
 height="100%"
 showEffect="Fade">
 <mx:TileList id="photosTileList"
 dataProvider="{service.lastResult.photo}"
 width="100%"
 height="100%"
 change="photosList.selectedIndex =

 photosTileList.selectedIndex" >
 <mx:itemRenderer>
 <mx:Component>
 <mx:Image
 horizontalAlign="center"
 source="{data.@thumb}"
 toolTip="{data.@title}"
 width="100"
 height="60"/>
 </mx:Component>
 </mx:itemRenderer>
 </mx:TileList>
 </mx:Canvas>

</mx:TabNavigator>

Now your PhotoGallery application has a much nicer look and feel, and all it
took was a few minutes and a few lines of MXML to make it happen!

Exploring More Effects
Another common effect is Resize, which animates a component’s size change.
One of your applications, ContactManager, could benefit from a Resize effect.
In this application, the ContactViewer component changes its size based
upon its contents and its state. While the component’s size change is obvi-
ous, a Resize effect could really make the abrupt change smoother. Even more
important, at the bottom of this component is a Button control that works as
either an edit button or a save button. When the ContactViewer’s size changes,
this Button’s location is changed quickly. A Resize effect could help to ease the
size change and keep this Button from changing its position too quickly.

Open the ContactManager application, and add a resizeEffect of Resize to
the ContactViewer instance:

<view:ContactViewer id="contactViewer"
 contact="{contactsDataGrid.selectedItem}"
 x="318"
 y="10"
 resizeEffect="Resize">
</view:ContactViewer>

Now, when you run the application, you will see that the size change is
animated nicely. Clicking the edit button, the ContactViewer switches to its
edit state, adjusting its size to accommodate the extra controls inside, so this
transition is more obvious thanks to a nice animation.

Note

Another common behavior you can
implement for this application is
creationCompleteEffect. This effect
plays when a component is first created.

LearningFlex3_book.indb 201 5/27/08 1:53:59 PM

Learning Flex 3202

Behaviors

However, the scroll bars appearing and disappearing during the size change
causes a bit of an issue. You might notice this when the application loads and
the first resize occurs. This is because as the component goes from small to
larger, its animation clips the contents momentarily, and the container decides
to add scroll bars. This isn’t a big deal, but if you want to get rid of this, it’s
easy to do. Every component has two properties that control the appearance
of scroll bars: horizontalScrollPolicy and verticalScrollPolicy. These two
properties help the component decide whether scroll bars appear horizontal-
ly or vertically, respectively. By default the properties are set to auto, meaning
they will appear when needed. You can set this to on if you want scroll bars
to always appear, or in this case you can set them both to off. This prevents
them from ever showing up.

<view:ContactViewer id="contactViewer"
 contact="{contactsDataGrid.selectedItem}"
 x="318" y="10"
 resizeEffect="Resize"
 horizontalScrollPolicy="off"
 verticalScrollPolicy="off">
</view:ContactViewer>

So far you’ve use a Fade effect for when a component changes its visibility and
a Resize effect for the resizeEffect behavior. However, it’s good to note that a
behavior and an effect are interchangeable. That is to say, a resizeEffect
behavior doesn’t always have to use a Resize effect—it can use any other
effect, such as a Fade or a Wipe. However, in many cases, each behavior has
one effect that is the most useful.

Customizing Effects
So far you’ve set behaviors using a default effect. That is, you’ve named an
effect class such as Fade or Resize as the value of a behavior. This is very con-
venient, but you may find that you want more control over your effect prop-
erties. To do this, you can declare an effect instance using the corresponding
MXML tag somewhere in your application. This lets you specify, for example,
multiple types of Fade effects from which you can choose.

Add an <mx:Resize/> tag to your ContactManager application, and give it an
id of fastResize. This creates a specific instance of a Resize, which you can
customize. Give this instance a duration of 300. The duration property is a
standard property of all effects and lets you stipulate the length of time, in
milliseconds, that the effect should play. Three hundred milliseconds is about
a third of a second, so this effect will be pretty zippy:

<mx:Resize id="fastResize" duration="300"/>

Now you’ve declared a Resize effect and given it an id that lets you refer
to it in your code. Next, you can replace the current resizeEffect of the
ContactViewer with this particular instance. Instead of passing in Resize, giv-
ing it a standard Resize effect, you can pass in a custom effect, fastResize:

Note

While setting horizontalScrollPolicy
and verticalScrollPolicy to off
solves a little Resize effect glitch, it pre-
vents scroll bars from showing if they are
really needed.

Note

While I’m showing you real-world uses
of the more common effects, you can
experiment with a number of others. Feel
free to create a new project and just have
fun with them.

Note

Like with all nonvisual components,
you shouldn’t place effects inside a
container tag other than the top-level
<mx:Application/> tag (or within a
custom component’s root tag). It’s best to
place the tags somewhere at the top of
your application or component.

LearningFlex3_book.indb 202 5/27/08 1:53:59 PM

Behaviors

Chapter 13, Applying Behaviors, Transitions, and Filters 203

<view:ContactViewer id="contactViewer"
 contact="{contactsDataGrid.selectedItem}"
 x="318"
 y="10"
 resizeEffect="{fastResize}"
 horizontalScrollPolicy="off"
 verticalScrollPolicy="off">
</view:ContactViewer>

Run this application again to see the customized the effect. Notice how it
changes the feel of the application because the Resize effect happens a bit
more quickly.

Using Composite Effects
This Resize effect works great when the ContactViewer grows as a result of
changing from its details mode to its edit mode. However, you could do even
more to show the change than just animating a resize. One way to accomplish
this is by using a Dissolve effect on the ContactViewer, which could create a
nice fade from one mode to the next. But you’ve already set up a Resize effect
to occur, so how can you make this happen?

Parallel
You don’t have to replace your existing Resize effect, because you can actually
just add a Dissolve. You can play multiple effects at once using a special effect
tag called Parallel. The <mx:Parallel/> tag wraps other effect tags, group-
ing them and letting them play simultaneously. This lets you create custom
composite effects.

Because you want both a Dissolve effect and a Resize effect to play simultane-
ously, replace your previous Resize effect with the following code:

<mx:Parallel id="fadeAndResize">

 <mx:Dissolve/>

 <mx:Resize id="fastResize" duration="300"/>

</mx:Parallel>

Now you can replace the resizeEffect of your ContactViewer with a binding
to fadeAndResize. This causes the new composite effect to play whenever the
component changes its size. Both a Dissolve and a Resize will play at the same
time, preventing the ugly clipping that occurs with a typical Resize effect. This
fade-and-resize effect will look great and inform people of the mode change
that is occurring.

Sequence
Another special type of effects tag is <mx:Sequence/>. This tag lets you specify
effects that will play in sequence. Like Parallel, Sequence lets you group
 multiple effects together. However, unlike Parallel, it plays each effect one after

Note

When using custom effect instances, you
need to use curly braces to signify a
binding.

Note

Setting a duration on a Parallel effect
will typically set the duration on the
internal effects, if they don’t already have
a duration set.

Note

When using Sequence effects, a useful tag
to know is <mx:Pause/>. This tag has a
duration property that lets you specify
a period of time to pause the sequence.

LearningFlex3_book.indb 203 5/27/08 1:53:59 PM

Learning Flex 3204

Common Effects and Their Properties

the other instead of all at once. You could try replacing the <mx:Parallel/>
tag in the previous code with an <mx:Sequence/> tag to see the difference.

Common Effects and Their Properties
In addition to duration, all effects have special properties that you can use to
configure them. They have properties that define starting and ending infor-
mation for the target of the effect, allowing you to customize it. For a Resize,
this would be the starting and ending values for width and height, while for
a Move effect this would be starting and ending values for x and y.

It’s not usually necessary to stipulate such properties, because Flex can set the
values for you based upon the starting and ending values of a component’s
changed properties. For instance, if you change a Panel’s x from 0 to 100 and
you specify a Move effect for that Panel, Flex will automatically place the
Move’s xFrom property to 0 and its xTo property to 100.

If no explicit values are set for an effect and Flex can’t determine the proper
ones from the starting or ending property of a component, the effect will use
its own default values.

The following sections discuss the standard effects and their most important
properties.

Blur
A Blur effect softens the details of an image, like an unfocused lens.

The Blur effect has the following properties that you can adjust:

blurXFrom

Sets the initial amount of horizontal blurring.

blurXTo

Sets the final amount of horizontal blurring.

blurYFrom

Sets the initial amount of vertical blurring.

blurYTo

Sets the final amount of vertical blurring.

Blurs are useful for showing movement and can be coupled with Move effects.
A very strong Blur effect (a property value of 20 or greater) can produce an
interesting morphing look.

Dissolve
A Dissolve effect modifies the alpha property of a rectangular overlay, letting
the target component under it appear or disappear gradually.

Note

To see live examples of each of these
effects, point your browser to the Flex 3
Component Explorer at http://examples.
adobe.com/flex3/componentexplorer/
explorer.html. Here you’ll find a sec-
tion called “Effects, View States, and
Transitions” that will give you real-
world examples of every effect, complete
with code you can use in your own
applications.

LearningFlex3_book.indb 204 5/27/08 1:54:00 PM

Common Effects and Their Properties

Chapter 13, Applying Behaviors, Transitions, and Filters 205

The Dissolve effect has the following properties that you can adjust:

alphaFrom

Sets the initial alpha value.

alphaTo

Sets the final alpha value.

color

Sets the color of the overlay rectangle that the effect will display over the
target component. The default value is the color specified by the target
component’s backgroundColor style property, so you won’t usually need to
set this. If no backgroundColor is set, it defaults to white (0xFFFFFF).

Dissolves are a great substitute for Fade effects when using device fonts.

Fade
This effect animates the alpha property of a component, letting it change
gradually from transparent to opaque or from opaque to transparent.

The Fade effect has the following properties that you can adjust:

alphaFrom

Sets the initial alpha value.

alphaTo

Sets the final alpha value.

Glow
This effect applies a glow to a component, animating a lighting effect that
makes it look like light is coming from inside the component.

The Glow effect has the following properties that you can adjust:

alphaFrom

Sets the initial alpha value.

alphaTo

Sets the final alpha value.

blurXFrom

Sets the initial amount of horizontal blurring for the glow.

blurXTo

Sets the final amount of horizontal blurring for the glow.

blurYFrom

Sets the initial amount of vertical blurring for the glow.

Note

For a Dissolve effect, if the target is a
container, only the children of the con-
tainer will be affected by the fade. In the
case of a Panel container, the borders and
title bar of the Panel will not fade; just its
contents will fade.

LearningFlex3_book.indb 205 5/27/08 1:54:00 PM

Learning Flex 3206

Common Effects and Their Properties

blurYTo

Sets the final amount of vertical blurring for the glow.

color

Sets the color of the glow.

inner

Specifies whether the glow is an inner glow or an outer glow. The default
is false, giving it an outer glow.

knockout

Specifies whether the object has a knockout effect, making its fill color
more transparent and revealing the background color of the target. The
default value is false.

Iris
This effect animates an expanding or contracting rectangular mask centered
on the target, like the iris of a camera lens. The effect can be used to expose
the target or to hide the component. Think of old movies that use this effect
at the end.

The Iris effect has the following properties that you can adjust:

showTarget

Specifies whether the Iris exposes the target (true) or hides it (false,
which is the default)

Move
This effect gradually changes the position of a component.

The Move effect has the following properties that you can adjust:

xFrom

Sets the initial horizontal position of the component.

xTo

Sets the final horizontal position of the component.

yFrom

Sets the initial vertical position of the component.

yTo

Sets the final vertical position of the component.

xBy

Sets the number of pixels to move the component in the horizontal direc-
tion. You can use this instead of an xFrom or xTo to specify the amount to

Note

If you apply a Move effect to a target
inside a container with a relative layout,
such as a VBox or Panel with a layout
other than absolute, the effect will not
work properly. This is because while a
Move will occur, the position of the target
will immediately be changed back by the
container.

LearningFlex3_book.indb 206 5/27/08 1:54:00 PM

Common Effects and Their Properties

Chapter 13, Applying Behaviors, Transitions, and Filters 207

move instead of the initial or final x position. This property is ignored if
both xFrom and xTo are specified.

yBy

Sets the number of pixels to move the component in the vertical direction.
You can use this instead of a yFrom or yTo to specify the amount to move
instead of the initial or final y position. This property is ignored if both
yFrom and yTo are specified.

Resize
This effect changes the width and height of a component over a specified
time interval, animating the change in size.

The Resize effect has the following properties that you can adjust:

widthFrom

Sets the initial width of the component.

widthTo

Sets the final width of the component.

heightFrom

Sets the initial height of the component.

heightTo

Sets the final height of the component.

widthBy

Sets the number of pixels to change the component’s width. You can use
this instead of a widthFrom or widthTo to specify the amount to resize
instead of the initial or final width. This property is ignored if both
widthFrom and widthTo are specified.

heightBy

Sets the number of pixels to change the component’s height. You can use
this instead of a heightFrom or heightTo to specify the amount to resize
instead of the initial or final height. This property is ignored if both
heightFrom and heightTo are specified.

hideChildrenTargets

This property is used just with Panel containers, hiding the contents of
the Panel while the Resize in taking place. This property takes an array
of Panels.

When you apply a Resize effect on a component when other components
base their size on that component, their size will appear to animate as well.
This happens when other components use constraints based on the size of
the affected target or are sharing the space of a relative layout container.

LearningFlex3_book.indb 207 5/27/08 1:54:01 PM

Learning Flex 3208

Common Effects and Their Properties

Rotate
This effect rotates a component around a point, which is by default the top-
left corner. You specify the origin of the rotation so that a component can
rotate around a different point, such as its center. You also set the starting and
ending angles of rotation, based on 360 degrees. If a number is greater than
360, this effect will set it to 360.

The Resize effect has the following properties:

angleFrom

Sets the initial rotation.

angleTo

Sets the final rotation.

originX

Sets the center point of the rotation horizontally, in regard to the compo-
nent to which the effect is applied. The default is 0.

originY

Sets the center point of the rotation vertically, in regard to the component
to which the effect is applied. The default is 0.

WipeLeft, WipeRight, WipeUp,
and WipeDown
The wipe effects are used to set the visibility of components, exposing or hid-
ing the component as if an invisible rectangle were moving over it.

These effects have the following property that you can adjust:

showTarget

Specifies whether the wipe exposes the target (true) or hides it (false,
which is the default)

Zoom
This effect zooms a component in or out, like a camera lens. This can make
the component appear to be either farther away or closer, scaling its target.

The Zoom effect has the following properties that you can adjust:

zoomHeightFrom

Sets the initial scale of the component vertically. The default is 1. Setting
this to 2 doubles the component’s size, scaling accordingly. Setting this
to 3 triples the size, and so on.

zoomHeightTo

Sets the final scale of the component vertically.

Note

The Wipe and Iris effects work by mask-
ing, or clipping the visible area via anoth-
er graphic. In the case of an Iris effect,
the mask is a circle that changes size,
while a Wipe uses a rectangle.

LearningFlex3_book.indb 208 5/27/08 1:54:01 PM

Sound Effects

Chapter 13, Applying Behaviors, Transitions, and Filters 209

zoomWidthFrom

Sets the initial scale of the component horizontally.

zoomWidthTo

Sets the final scale of the component horizontally.

originX

Sets the center point of the zoom horizontally. The default is the center
of the component.

originY

Sets the center point of the zoom vertically. The default is the center of
the component.

AnimateProperty
The AnimateProperty effect is a very customizable effect. It lets you animate
(create a tween for) any numeric property of a component.

The AnimateProperty effect has the following properties that you can adjust:

property

Sets the name of the property you want you modify. You set this as a
string.

fromValue

Sets the initial value of the property.

toValue

Sets the final value of the property.

For instance, to simulate a Resize effect just for the height of a Panel, you could
specify height for property and give the effect a fromValue and a toValue.

Sound Effects
Just like you can add visual effects, you can add sound effects to your appli-
cations. Such sound effects can be useful for notifying people when a dialog
box pops up, like an alarm sound in a calendaring application. If you find
yourself developing games in Flex, sound effects can be an easy way to add
sounds based upon some triggering event in your game.

To create a sound effect, you must use the <mx:SoundEffect/> tag. The
SoundEffect class takes a source property, which you can set to an MP3
file. Then, once you have an instance of a SoundEffect with an id, you can
refer to this effect through any of the component behaviors, like showEffect,
resizeEffect, mouseDownEffect, and so on. Although it’s not a visual effect,
you use it just like the other effects you’ve learned.

Note

Flex doesn’t come with any sounds built
in, so you must provide your own.

LearningFlex3_book.indb 209 5/27/08 1:54:01 PM

Learning Flex 3210

Sound Effects

For example, imagine you have an MP3 of the clicking of a camera shutter
and you want to play this sound in your PhotoGallery application every time
a photo loads. Using the completeEffect of the Image control, you could
attach this sound effect.

Your effect tag may look like this, placed somewhere at the top level of your
application:

<mx:SoundEffect id="shutterSound"
 source="camera_shutter.mp3"/>

And your Image control may use the effect as follows:

<mx:Image id="image"
 source="{photosList.selectedItem.@image}"
 left="270"
 top="10"
 bottom="10"
 right="10"
 horizontalAlign="center"
 open="progressBar.visible = true"
 complete="progressBar.visible = false"
 completeEffect="{shutterSound}"/>

Keeping Effects Effective
When starting out with effects and behaviors, it’s easy to get carried away. Effects are
so easy to add and so much fun that you may want to add them in every possible
situation. You should have fun with effects, of course. But when you’re adding an
effect, it’s good to think about why you’re adding it. Is it just because it looks cool,
or is it because it serves a purpose? Looking cool can definitely be a purpose—and
after all, this is Flash—but overusing effects can become tiring for people using your
application, especially if it slows them down. The old adage “less is more” is good
advice to follow when it comes to using effects and behaviors.

Think about the duration of the effect, because this can really change the way
someone perceives the speed of the application. An effect with a very long duration
may make the application feel sluggish, while a slightly shorter one makes it feel
snappy. Try adjusting the duration of your effects to see what feeling it imparts.
Remember that the first time someone sees an effect, it may be perfect—but if they
have to see the same one a dozen times, it might not be so great.

When using sound effects, you must be careful. Some people enjoy the additional
feedback that sound can give, but many prefer not to have their computer make
any sounds at all. If your application uses sound effects, it’s good practice to provide
people with a choice, letting them turn sound effects on or off.

It’s usually best to use an effect when it provides information about the application.
For instance, when a Panel is moved from one part of the application to another,
people may not notice the movement if the Panel simply disappears from one place
and pops up in another immediately (“Hey, where’d that Panel go?”). Using a Move
effect would make the change more obvious, saying that the Panel has moved.
Effects can make the experience of an application more human, and that’s always a
great thing.

Note

You will need to use very small sound
files when using them as sound effects.
This is because the sound must be down-
loaded before it becomes available for use,
and this may cause unwanted latency
with large files. I’ll discuss an alterna-
tive to downloading sounds at runtime
in the next chapter when I show you
how to embed assets in your compiled
 application.

LearningFlex3_book.indb 210 5/27/08 1:54:01 PM

States Made More Interesting

Chapter 13, Applying Behaviors, Transitions, and Filters 211

States Made More Interesting
While you can always apply behaviors to specific component instances, you
can specify particular effects when changing view states. Using transitions,
you specify an effect or group of effects to play on multiple components
whenever state changes occur.

Let’s return to the Search application you built using view states in the last
chapter. In this application, a search field is first made large and placed in the
center, and once search results are retrieved, the field shrinks and moves to
the top left of the screen. Currently, this movement is immediate and jumpy,
and it may take someone a moment to realize that the search fields were
moved. You can add a transition that will make this movement more natural
and understandable.

You apply transitions via the transitions property of an Application or custom
component. Typically you’ll set these using a child tag of the <mx:Application/>
tag, because it will hold complex content. Just as the states property of the
Application accepts an array of <mx:State/> tags, the transitions property
accepts one or more <mx:Transition/> tags. Each of these <mx:Transition/>
tags accepts an effect instance. In this case, you want to specify one transition:
a Parallel effect that will both move and resize.

So, open your Search project, and place the following MMXL code some-
where under the root <mx:Application/> tag in the Search.mxml application.
(I like to place my transitions code next to my view state code.)

<mx:transitions>
 <mx:Transition>

 <mx:Parallel target="{hbox1}">
 <mx:Move />
 <mx:Resize />
 </mx:Parallel>

 </mx:Transition>
</mx:transitions>

Notice in this code that a single transition with a Parallel effect targets
hbox1, which is the HBox container that holds the search input fields for this
application. Because the HBox doesn’t have any behaviors applied, such as
moveEffect or resizeEffect, the target property is the way to tell the effect
what to attach itself to.

This code stipulates that whenever a state change occurs, a Parallel effect
should play for the hbox1 component.

This begs the question, why not just apply a moveEffect and a resizeEffect to
the HBox? That would be fine, of course, but transitions let you set effects
to play based upon state changes. Applying a moveEffect and resizeEffect

Note

You use a binding to specify the instance
name (id) of the component you want
the effect to target. If you want to spec-
ify more than one target, you can use
the targets property, which takes an
array. For example, to specify a Move
effect that targets two Buttons named
submitButton and resetButton, you’d
use the following code:

<mx:Move targets="{ [submitButton,
resetButton] }" />

LearningFlex3_book.indb 211 5/27/08 1:54:02 PM

Learning Flex 3212

States Made More Interesting

to the HBox would have it play the effects any time it’s moved or resized,
while transitions let you to specify an effect to play only upon certain state
changes.

If you run this code, you’ll notice that the HBox (with its search input fields
and Button) will fly in from the top left at first. This is because the applica-
tion actually has a starting state different from its base state—the original
position of the HBox is the top left of the screen, but you’ve specified that its
currentState should change when the application begins. Because the HBox
is therefore considered to have changed its size and location, the effects play.
That’s probably not what you had planned to occur, so I’ll show you how to
fix it.

One of the huge benefits of transitions is that they let you easily specify
which state changes should play them. You can change your transition’s code
to the following to cause the effect to play when only changing from the
search state:

<mx:transitions>
 <mx:Transition fromState="search">

 <mx:Parallel target="{hbox1}">
 <mx:Move />
 <mx:Resize />
 </mx:Parallel>

 </mx:Transition>
</mx:transitions>

The transition has a property called fromState, and this code uses this prop-
erty to tell it to play the effect only when changing from the search state
to another state. Now when you run the application, the effect doesn’t play
when the Search application first loads, but only when a search is invoked.
This is because, at first, the application switches from the base state to the
search state; then, once a search is invoked, it switches back to the base state
from the search state.

Using Action Effects
You’re close to finishing up this transition, but you may have noticed it doesn’t
work perfectly yet. Because of the resultsList being added back to the dis-
play list when you have search results (and therefore the state is changed back
to the base state), it interrupts the Move and Resize effects on the HBox. What
you want it to do is finish playing the effects and then add the List.

The way to do this is using an <mx:Sequence/> tag coupled with another special
effect tag called <mx:AddChildAction/>. Wrap your previous <mx:Parallel/>
tag in an <mx:Sequence/> tag, and then add the <mx:AddChildAction/> tag to
the end:

Note

You can also declare effects and play them
programmatically. Instead of relying on
state transitions or behaviors to play the
effects, you can call the play() method
of any effect (visual or sound) to have
complete control. For this to work, either
the effect must have a target set already
or you can specify a target in the play()
method. For instance, to play a Dissolve
effect you declared called fastDissolve
on a List called shortList, you would
call fastDissolve,play(shortList).

Note

The Transition class also has a prop-
erty called toState, which lets you tell
it to play when changing to certain states.
Depending upon your requirements, you
can set a fromState, a toState, or both.
By default, a transition will play for all
state changes unless they are specified.

LearningFlex3_book.indb 212 5/27/08 1:54:02 PM

States Made More Interesting

Chapter 13, Applying Behaviors, Transitions, and Filters 213

<mx:transitions>
 <mx:Transition fromState="search">

 <mx:Sequence>
 <mx:Parallel target="{hbox1}">
 <mx:Move />
 <mx:Resize />
 </mx:Parallel>

 <mx:AddChildAction target="{resultsList}"/>
 </mx:Sequence>

 </mx:Transition>
</mx:transitions>

The <mx:AddChildAction/> tag is a way to specify when you want a child
added to the display list. Because you want to play the Move/Resize effect
for the HBox first and then add the resultsList, you place this special
<mx:AddChildAction/> tag after the <mx:Parallel/> tag within the Sequence.
Then, once the Move/Resize effect finishes, the resultsList will be added,
and your effect will look and work as expected.

This is called an action effect, because it doesn’t actually draw any animation
but applies the change specified by a corresponding state tag. You can use
four different action effects, which correspond to a state change tag with a
similar name:

SetPropertyAction

Sets a property on a component. This corresponds to an <mx:SetProperty/>
tag within a state.

SetStyleAction

Sets a style property on a component. This corresponds to an
<mx:SetStyle/> tag within a state.

AddChildAction

Adds a component to the display list. This corresponds to an
<mx:AddChild/> tag within a state.

RemoveChildAction

Removes a component from the display list. This corresponds to an
<mx:RemoveChild/> tag within a state.

You can never be too sure when an action will occur in a state change, so
it’s good practice to use these special action effects when you can. To be sure
that an action occurs at the right time, you’ll typically use these action effects
inside a Sequence right before the visual effect tag, giving you complete con-
trol over when properties are assigned or children are added and removed
and ensuring the effect works as desired.

LearningFlex3_book.indb 213 5/27/08 1:54:02 PM

Learning Flex 3214

States Made More Interesting

More on Action Effects
Using action effects properly can take a little experience. Having such control over
your transitions may require you to really think about what you want to happen. It
can be useful for you to create a simple timeline of any transition, helping you to
decide on what should happen when. Once you do that, you can place action effect
tags as necessary, ensuring your effects always work perfectly.

For another example of action effects, in your applications you may want
to use a Dissolve effect on a component that is added to an application
via an <mx:AddChild/> tag in a state. In this case, you want to place an
<mx:AddChildAction/> tag right before the <mx:Dissolve/> tag within a
Sequence. This will ensure that first the child is added and available, and then
the Dissolve effect will play. Without this, the effect might play first, making your
component fade in. Then the component would immediately disappear until a
moment later, when the “AddChild” happens. This would result in an untimely
Dissolve and a funky blinking component.

The following code fades in two Button components, one after the other. The Button
named button1 is faded in before the Button named button2:

<mx:Sequence targets="{[button1, button2]}">

 <mx:AddChildAction target="{button1}"/>
 <mx:Dissolve target="{button1}"/>

 <mx:AddChildAction target="{button2}"/>
 <mx:Dissolve target="{button2}"/>

</mx:Sequence>

Filtering Effect Targets
When using transitions, you can apply effects conditionally. Using something
called target filters, you can specify that an effect play for certain components
that meet the criteria. To use these filters, you must first specify all the pos-
sible targets you think you’ll want to play the effect on. Then, you specify the
filter criteria using the filter property of the effect.

The following are the possible criteria filters:

add

Plays the effect on any component that is added to the display list

remove

Plays the effect on components that are removed from the display list

show

Plays the effect on components whose visible property changes from
false to true

LearningFlex3_book.indb 214 5/27/08 1:54:02 PM

Filters

Chapter 13, Applying Behaviors, Transitions, and Filters 215

hide

Plays the effect on components whose visible property changes from
true to false

move

Plays the effect on components whose x or y property changes

resize

Plays the effect on components whose width or height changes

Using target filters, you could change the transition in your Search applica-
tion to the following:

<mx:transitions>
 <mx:Transition fromState="search">

 <mx:Sequence targets="{[hbox1, resultsList]}">
 <mx:Parallel>
 <mx:Move filter="move" />
 <mx:Resize filter="resize" />
 </mx:Parallel>

 <mx:AddChildAction filter="add" />

 </mx:Sequence>

 </mx:Transition>
</mx:transitions>

Now, instead of specifying a target for each effect instance, you can list all pos-
sible targets for the transition as a whole and then filter each particular effect
by type. In the previous example, the search fields and the list of results are
both specified as potential targets for the transition. Then any of the targets
that are moving will have a Move effect applied, and any that resize will have
a Resize applied; finally, any components that are set to be added will then
be added.

Filters
Have you ever used Photoshop or a similar graphics application to create
interesting visual effects on your photos? Using what are commonly known
as filters, you can manipulate static images in many fun ways.

Because many of the effects actually use these filters, you may already have a
good idea of what each accomplishes. Also, the properties of these filters are
closely matched with the available properties of their corresponding effects,
so if you know one, you can easily learn the other.

The following list discusses the most common filters.

Note

Setting a container as the target of an
effect doesn’t set that container’s children
as a target of the effect for the pur-
poses of effect filters. While targeting a
Dissolve effect on a Panel will of course
affect that Panel’s children, trying to
dissolve a specific TextInput within that
container will not.

LearningFlex3_book.indb 215 5/27/08 1:54:03 PM

Learning Flex 3216

Filters

BevelFilter and GradientBevelFilter

Bevels are commonly used to give a three-dimensional, chiseled look to
a component (see Figure 13-1). The GradientBevelFilter uses a gradient
color on its bevel, which improves the realism of the filter.

BlurFilter

Like the Blur effect that uses this filter, a blur provides an out-of-focus
look to a component. See Figure 13-2 for an example.

DropShadowFilter

This filter lets you easily add a drop shadow to any component, giving
your application more depth with the illusion that the component is
raised up off the application. See Figure 13-4 for an example.

GlowFilter and GradientGlowFilter

These two filters provide an edge glowing effect on any component to
which they are applied. See Figure 13-3 for an example.

ColorMatrixFilter, ConvolutionFilter, and DisplacementMapFilter

These three filters are much more complex than the other filters in the
way their properties are set. If you want to learn more about them, check
out the documentation for ColorMatrixFilter, ConvolutionFilter, and
DisplacementMapFilter. These are very powerful filters that can dramati-
cally change the look of your components. The DisplacementMapFilter
could even be used to warp your entire application into a sphere!

Applying Filters
To apply filters, you use the filters property of a component. This accepts
an array of filters, meaning you can apply multiple filters at a time to get the
look you want. The easiest way to add filters is by using an <mx:filters/> tag
for your component and placing individual filter tags within that tag.

Note

While filters can be used to give your
components a custom appearance, they’re
also useful as a convenient way to get a
certain user interface look. For instance,
to give a Button a more classic look, you
can apply a bevel filter to it. To give it a
more pronounced highlight, you could
apply a GlowFilter on rollOver (and
remove it on rollOut).

Figure 13-1. A BevelFilter applied
to a gray box

Figure 13-2. A BlurFilter applied to
a gray box

Figure 13-3. A red GlowFilter applied
to a gray box

LearningFlex3_book.indb 216 5/27/08 1:54:04 PM

Filters

Chapter 13, Applying Behaviors, Transitions, and Filters 217

To try filters, open the PhotoGallery application again. Here, you could apply
a DropShadowFilter to the main Image, giving it more depth:

<mx:Image id="image"
 source="{photosList.selectedItem.@image}"
 left="270"
 top="10"
 bottom="10"
 right="10"
 horizontalAlign="center"
 open="progressBar.visible = true"
 complete="progressBar.visible = false"
 completeEffect="Fade" >
 <mx:filters>
 <mx:DropShadowFilter distance="10"/>
 </mx:filters>
</mx:Image>

Figure 13-4 shows how the PhotoGallery looks after applying this filter.

Like everything else in Flex, you can apply filters both in MXML and in
ActionScript. For instance, to create the previous DropShadowFilter and
apply it to the Image control in ActionScript instead of MXML, the syntax
would be as follows, placed in a function that is called some time after the
Image control is available, such as on its creationComplete event:

var dropShadowFilter:DropShadowFilter = new DropShadowFilter();
dropShadowFilter.distance = 10;

image.filters = [dropShadowFilter];

Using ActionScript and filters, you can apply filters dynamically at runtime. In
fact, with a little work, you could turn the PhotoGallery application into a little
photo-editing application, letting people apply their own filters to the images.

Figure 13-4. The PhotoGallery, with a DropShadowFilter applied to the photo

Note

Some controls and containers, such
as Panel, have a dropShadowEnabled
property. This lets you quickly apply
a drop shadow without having to use
the DropShadowFilter.

Note

For a great example of the power of
Flex, take a look at www.photoshop.com/
express. This is a free version of Adobe
Photoshop, which uses (among other
things) filters to apply effects to images.

LearningFlex3_book.indb 217 5/27/08 1:54:05 PM

Learning Flex 3218

Summary

Tricks of the Trade
While it’s true that many effects will not display correctly because of the way device
fonts are rendered, you can use a cool trick to get around this issue. All you have
to do is apply a filter to a component, and it will render device fonts in a way that
effects will work. What actually happens is that text with a filter applied is rendered
by Flash Player as a graphic, which then allows even device fonts to be manipulated
with effects.

If you don’t want the filter to actually manipulate the way your components display,
you can simply set the values of that filter in a way that it won’t show. For instance,
I often set a BlurFilter with a blurX and blurY of 0 on text components if their
effects don’t render properly. This applies a filter for the purposes of making the effect
work but doesn’t actually change the look of the component, because the actual
blurring is 0.

<mx:Button
 label="Fancy Button Text" >
 <mx:filters>
 <mx:BlurFilter blurX="0" blurY="0"/>
 </mx:filters>
</mx:Button>

With this simple trick, you can apply any effect you want without worrying about
device fonts getting in the way.

Summary
In this chapter, you discovered that Flex provides a number of great ways to
create interesting audible and visual effects for your application, right out of
the box. You enhanced your applications to use some of these new effects,
providing a rich user experience with very little code. Feel free to have fun
with the applications you’ve built, because they’re yours. Up next, you’ll dis-
cover how to customize every visual aspect of your Flex applications, making
your applications truly custom and unique.

LearningFlex3_book.indb 218 5/27/08 1:54:05 PM

219

CHAPTER14

IN THIS CHAPTER

Using Inline Styles

Using Style Sheets

Embedding Assets

Skinning

Using Themes

Summary

Flex comes with a powerful and extensible framework of components. The
framework isn’t bound to any one style or look. The Flex components do
come with a default look and feel, but you can easily change them using
styles. You have the ability to quickly modify specific style properties of
individual components or even create styles that can be applied to all compo-
nents. Using Cascading Style Sheets (CSS), you can create reusable styles that
let you make major changes to the look of your applications. You can even
use custom graphics such as .jpg and .gif files to entirely replace the look of
components.

Using Inline Styles
You can apply styles to a component in a couple of ways. You’ve already been
using a few style properties in the applications you’ve built. You’ve used prop-
erties like fontWeight, fontSize, and backgroundColor in the ContactManager
application to customize controls. You applied them using inline styles, mean-
ing you applied the styles inside the MXML tag of a component.

The easiest way to apply these styles is by using Flex Builder’s Design mode.
In this mode, the Standard view in the Flex Properties panel gives you the
most common style properties for a particular component. For applying
complex styles like gradient fills, this panel is a lifesaver. You don’t have to
worry about the specifics; you simply select colors with the drop-down color
picker or apply font styles and other properties with simple text input fields
and drop-down lists. Remember that style properties, while set the same way
in MXML, are inherently different than regular properties. You must use the
setStyle() and getStyle() methods to apply them in ActionScript.

Take a look at Figure 14-1 for an overview of the most common style proper-
ties. While these are different for each component, getting acquainted with
these basic styles will take you a long way.

STYLING
APPLICATIONS

LearningFlex3_book.indb 219 5/27/08 1:54:06 PM

Learning Flex 3220

Using Inline Styles

Figure 14-1. The Flex Properties panel Style section

You’ll use the PhotoGallery application you’ve been working on to give an
application a new look. Open the main PhotoGallery application file, and go
to Flex Builder’s Design mode where you can quickly modify styles.

You’ll be giving this application a darker look. The first step is to change
the background color of the Application. While the Application does have a
backgroundColor style property, it also has a backgroundGradientColors prop-
erty, which lets you create a gradient, or smooth transition between multiple
colors, instead of a flat color. You can set this most easily by using the Fill
section of the Flex Properties panel. You can choose a couple of colors using
the drop-down color pickers, and Flex will create an array of the proper colors
for you in code.

Use the Fill color fields to apply a gradient going from black (#000000) to dark
gray (#999999). Doing so will create the proper backgroundGradientColors
attribute for the <mx:Application/> tag. Also included is a setting called
backgroundGradientAlphas, which sets the alpha transparency values on the
gradients. This is useful if you want to have one part of the gradient with a
different transparency value from the other. You can adjust this setting using
the Fill alpha pop-up sliders in this same Fill section.

Your <mx:Application/> tag should look like the following code, and you can
see the result in Figure 14-2:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 applicationComplete="service.send()"
 backgroundGradientAlphas="[1.0, 1.0]"
 backgroundGradientColors="[#000000, #999999]">

Style Name

Font Size

Text Align

Border Thickness

Alpha

Fill Alpha

Rollover / Selection Color

Convert to CSS Button

Font Family

Font Color

Border Color

Corner Radius

Background Color

Border Style

LearningFlex3_book.indb 220 5/27/08 1:54:06 PM

Using Inline Styles

Chapter 14, Styling Applications 221

Figure 14-2. The PhotoGallery, with a dark gradient background

The next step is to make the TabNavigator and its lists match this new color
scheme. Using the Background color picker in the Flex Properties panel,
apply a black (#000000) background color to the TabNavigator and both
list controls. These components do not accept gradients, only a flat color.
You’ll need to set the background color to black for both the controls and the
TabNavigator, because they both have a default backgroundColor of white.

Once you’ve applied this dark background color, you’ll quickly notice that the
color of the text is still dark, making it now difficult to read. To fix this, you’ll
want to lighten the color of the text. You can set the color of text on most
controls by using the Font color field in the Flex Properties panel, which has
an icon that looks like a letter A with a bar of colors beneath it. Setting the
color through this sets the style property called color.

Now your PhotoGallery application has a very different look, just by chang-
ing a few colors, as shown in Figure 14-3.

Figure 14-3. The PhotoGallery, getting darker

The highlight colors of the list and the focus colors of the application com-
ponents are still the default blue. You can change this to your liking as well.

Cascading Styles
The style color, as well as many
other styles, will “cascade” down to
child components. This is called CSS
inheritance, and it means that if you
set this style on a container tag (or
the Application), it will propagate
to the children of that container,
setting their text to that same color.
So, taking advantage of this, you
can easily set the text color of most
components by setting the color
style on the Application.

Note

To find out whether a style property
cascades to the child component, check
the documentation for the particular
style in the Flex Adobe Flex 3 Language
Reference.

LearningFlex3_book.indb 221 5/27/08 1:54:07 PM

Learning Flex 3222

Using Inline Styles

While the list controls could have their selectionColor styles changed, which
affects the color of just the selected items, you can create a more efficient
change using the themeColor style of the Application. The themeColor prop-
erty accepts any color and can dramatically change the look and feel of your
application. This property will set the selectionColor of list controls as well
as the focus and highlight color of all components. This property cascades so
many levels, it will even change the color of the ProgressBar’s fill. So for this
one, choose your color wisely, and enjoy. You can see a themeColor of green
in Figure 14-4.

Figure 14-4. The PhotoGallery with a green theme color

Color Names
You know that usually you must specify colors using a hexadecimal value, but you
can use an actual color name instead in the case of a few colors. For instance, when
setting backgroundColor as an attribute of an MXML tag, you could specify black in
either of two ways:

backgroundColor="0x000000"

or

backgroundColor="black"

While this can be convenient for basic colors such as red, green, blue, white, and
black—okay, so maybe black isn’t a color—unless you’re very good with colors, using
a color picker and specifying a hexadecimal value is best. The possible color name
values you can use in Flex are "black", "blue", "green", "gray", "silver",
"lime", "olive", "white", "yellow", "maroon", "navy", "red", "purple",
"teal", "fuchsia", "aqua", "magenta", and "cyan".

In addition to these, there are four special colors in Flex, called "haloOrange",
"haloBlue", "haloSilver", and "haloGreen".

LearningFlex3_book.indb 222 5/27/08 1:54:08 PM

Using Style Sheets

Chapter 14, Styling Applications 223

Using Style Sheets
You can apply styles in another way: by using an <mx:Style/> tag. The
<mx:Style/> tag lets you store your styles into a central location. Instead of
setting a style for each component inline, you can use CSS to create style defi-
nitions that can be reused across multiple components. This is akin to using
styles in word processing programs—instead of having to set, for example,
the font size and color of each heading in a document individually, you can
create a style that applies to all headings. If you’ve used styling in word pro-
cessing programs, you also know that it can save you a lot of time if you ever
decide to change a particular style, because you can change it once, and all
text that uses that style is automatically updated. For Flex, this means you can
define style properties such as font color, background color, font size, corner
radius, and others in one place and reuse them across your application.

You can define CSS in an application by placing it within an <mx:Style/>
tag. Alternatively, you can place it in an external .css file (discussed in the
“External Style Sheets” section).

CSS Syntax
CSS syntax is, at its most basic, a style rule using a style name followed by
opening and closing curly braces, between which are placed individual dec-
larations for that style rule. You make the declarations by specifying a style
property followed by a colon, after which you place the value for that prop-
erty. You separate each declaration with a semicolon, and typically you make
only one declaration per line, as shown in Figure 14-5.

.someStyleRule
{

 someColorProperty : #FFFFFF;
 someNumberProperty : 18;

}

style rule

property value

Figure 14-5. CSS syntax

You can create style declarations in CSS using three major methods: class
selectors, type selectors, and global styles.

Class selector styles
Class selectors are style rules that are created by name, which can then be
used by any component. This lets you group style properties and assign them
to components all at once. For instance, you could create a style rule with
a font color of white and a font size of 18 and call it greatWhite. For class

Note

CSS is a separate language from MXML
and ActionScript and is a standard way
to create style sheets. It isn’t the goal of
this book to make you an expert in CSS,
but I will go over some basics so you can
get going with it in your applications.

Note

While the use of curly braces may look
similar to ActionScript, CSS is an entirely
different language (for one, it’s declara-
tive like MXML, not procedural like
ActionScript). Note, for instance, the use
of a colon (:) instead of an equal sign (=)
to assign a property to a value.

LearningFlex3_book.indb 223 5/27/08 1:54:08 PM

Learning Flex 3224

Using Style Sheets

 selector rules in CSS, you use a period to precede the name. The CSS for this
rule would look like the following:

<mx:Style>
.greatWhite
{
 color: #FFFFFF;
 fontSize: 18;
}
</mx:Style>

To use this style on a component, you would set that component’s styleName
property to the name of the style, but without the preceding period. For
example, to apply the greatWhite style to a Button instance, you could use
the following MXML:

<mx:Button styleName="greatWhite" />

When a style sheet is defined for an application, you can easily set the
styleName property of a component in Design mode using the Style drop-
down list, located in the Style section of the Flex Properties panel, as shown
in Figure 14-1.

Style Property Names in CSS
In this chapter, you’re seeing CSS style names that match the inline style property
names of components. For instance, you can set the style for font size for a Button
inline with the attribute fontSize="14" or with the following CSS:

Button
{
 fontSize: 14;
}

However, actually two naming schemes are used in Flex CSS. The one used in this
chapter uses camel case, such as the previous code. However, standard CSS, such as
that used in web pages, has a different naming scheme, which separates words via
hyphens instead of capital letters.

Thus, the following CSS is also valid:

Button
{
 font-size: 14;
 font-weight: bold;
 corner-radius: 7;
}

You can use either naming scheme in your CSS style sheets, but you must use camel
case for inline style attributes.

Type selector styles
Type selectors work differently than class selectors. Type selectors let you
actually set all instances of a component to a specific style. This means, for
example, that you could specify a set of styles that you want on all instances

Note

If you’ve been using CSS in HTML,
you may have noticed that the HTML
attribute to apply class selector styles is
called class, while in Flex it’s known as
styleName.

LearningFlex3_book.indb 224 5/27/08 1:54:08 PM

Using Style Sheets

Chapter 14, Styling Applications 225

of a Button, or all instances of a Panel, in your application. To use type selec-
tors, you create a style definition using the component’s name:

<mx:Style>
Button
{
 color: #FFFFFF;
 fontSize: 18;
}
</mx:Style>

This code would make all Button components be white with a font size of 18,
without the need to specify any style properties on the Buttons themselves.

Global styles
Global styles are a way to apply certain styles to everything in your appli-
cation. While applying type selector styles to the Application means com-
ponents can inherit many styles (see the box “Cascading Styles” for more
information), not all of them will. Using a global style will ensure that the
style propagates to everything in your application.

To use global styles, you use the word global as the name of the style rule. The
following code shows a font color and font size that will affect everything:

<mx:Style>
global
{
 color: #FFFFFF;
 fontSize: 18;
}
</mx:Style>

External Style Sheets
You can create an external style sheet (CSS) file and include it with your Flex
application. You do this by using the source property of an <mx:Style/> tag.
This lets you separate your styles from the main application, which helps
with two things. First, it lets you quickly switch out .css files, enabling you to
change the entire look and feel of your applications with one file. This means
you can create one or more external style sheets and easily change them,
enabling you to change your entire application with one line of MXML.
Second, if you’re working in a team environment, separating the styles into a
separate file allows a designer to keep their work apart from yours. A designer
can work with the .css file, while a developer works on the main application.

Using this new concept, you can change your ContactManager application to
take advantage of the <mx:Style/> tag and CSS.

I’ve created a .css file that you can use with this application to drop in a
new look. You can get this file at www.greenlike.com/flex/learning/projects/
contactmanager/styles.css and place it in the ContactManager’s source folder.

Note

Because Flex inherits many (but not all)
of the CSS attributes that HTML can
use, you can even reuse style sheets that
were created for web pages in your Flex
applications.

LearningFlex3_book.indb 225 5/27/08 1:54:09 PM

Learning Flex 3226

Using Style Sheets

Once you’ve done this, you can add an <mx:Style/> tag to the main applica-
tion that will import this style sheet:

<mx:Style source="styles.css"/>

The .css file loaded via an <mx:Style/> tag is actually compiled into the Flex
application at build time. This is different from HTML, which loads its exter-
nal .css files when the page loads. In other words, when you deploy your Flex
application, changing the .css file with another on the server won’t make any
difference—if you make changes to the .css file, you need to recompile your
Flex application. However, Flex does come with the ability to load styles at
runtime by compiling style sheets into a .swf file and loading it at runtime.
For more information on this feature, search the Flex documentation for
runtime styles.

Creating a Blank CSS File
If you’re handy with CSS or feel like starting from scratch, you can create a blank
.css file and have it immediately available for your Flex application. You can create
a new .css file by first selecting the project in Flex Navigator and then selecting
File→New→CSS File. A dialog box will appear that lets you input a filename. (See
Figure 14-6.)

Figure 14-6. The New CSS File dialog box

Once you click Finish, this blank .css file will open in Flex Builder, where you can edit
the CSS directly or use the advanced Design mode features to change it visually.

Add the <mx:Style/> tag somewhere in the top-level tag, like you would do
with <mx:Script/> tags and effect tags. This will cause the application to
import this .css file. You can see this change directly in Design mode. Running
the ContactManager, it should now look like Figure 14-7.

LearningFlex3_book.indb 226 5/27/08 1:54:09 PM

Using Style Sheets

Chapter 14, Styling Applications 227

Figure 14-7. The ContactManager application with a new style sheet

Now you’ve witnessed the power of using external CSS style sheets, because
you changed the entire look of the application with essentially a single line of
code. You can use this concept over and over again, switching this style sheet
with another that you’ve found on the Web or one you’ve created yourself.

The contents of the styles.css file are as follows:

global
{
 backgroundAlpha: .7;
 fontSize: 14;
}

Application
{
 backgroundColor: haloSilver;
 themeColor: #69a6fa;
}

DataGrid
{
 alternatingItemColors: #F7F7F7, #E2E8F4;
 backgroundDisabledColor: #C4DFF4;
 dropShadowEnabled: true;
 headerColors: #96BEF4, #C7DCF9;
 headerStyleName: dataGridHeader;
 horizontalGridLines: false;
 verticalGridLines: false;
}

.dataGridHeader
{
 fontSize: 12;
 color: #474545;
}

Panel
{
 backgroundAlpha: 1.0;
 backgroundColor: #6B9BC8;

LearningFlex3_book.indb 227 5/27/08 1:54:10 PM

Learning Flex 3228

Using Style Sheets

 borderAlpha: 1.0;
 borderColor: #6B9BC8;
 controlBarStyleName: panelControlBar;
 cornerRadius: 3;
 dropShadowEnabled: true;
 titleStyleName: panelTitle;
}

.panelControlBar
{
 horizontalAlign: right;
}

.panelTitle
{
 color: #FFFFFF;
 fontWeight: bold;
 fontSize: 18;
}

TextInput
{
 cornerRadius: 7;
 borderStyle: solid;
 backgroundAlpha: 0.8;
}

The styles.css style sheet uses both class and type selectors to apply its styles.
Type selectors are the most prevalent, because the purpose of this style sheet
is to change the application as a whole without any changes required in the
MXML code other than attaching the style sheet. However, class selectors are
there as well. They’re used for certain style properties of components, because
these properties require complex styles. For instance, the Panel has a style
property called titleStyleName, which controls the style of the text in the
title bar. Because the title’s style may need multiple style definitions such as
font size and color, a class selector style rule named .panelTitle is created,
and the titleStyleName points to this style.

Now that you have an external style sheet, you can take advantage of a great
feature of Flex Builder. A .css file, like an .mxml file, can be modified visually
in Flex Builder’s Design mode. Try it—open the styles.css file, and make sure
you’re in Design mode. In the toolbar next to the Source/Design mode button
and the Design mode Refresh button, you’ll see a few new buttons, as shown
in Figure 14-8.

Figure 14-8. The toolbar for a .css file in Design mode

With these buttons, you can select, create, and remove styles. Try selecting
the Panel rule from the Style drop-down list, and notice how it displays an

LearningFlex3_book.indb 228 5/27/08 1:54:10 PM

Using Style Sheets

Chapter 14, Styling Applications 229

 example Panel graphic. This graphic will update automatically when its styles
are changed, allowing you to quickly make the right style changes visually.

The Flex Properties panel for style sheets is similar to the one for .mxml files,
just much more complete. In Standard view, nearly every available style prop-
erty is at your fingertips. For some styles that require their own style rule,
such as a Panel’s titleStyleName style, an Edit button is available that will let
you modify that particular rule.

Using CSS Design mode, you don’t need to know much about CSS at all,
because you can accomplish a great deal visually. Have fun with this style
sheet, modifying properties to your liking. Then switch back to Source
mode to see the CSS that is written for your changes; this is a great way to
learn CSS.

If you’re using inline styles with an application, you always have
the option of converting the styles to an external style sheet.
Just select a styled component in Design mode, and within
the Style section of the Flex Properties panel you will see a
Convert to CSS button (see Figure 14-1). Clicking this button will
prompt you with a New Style Rule dialog box (see Figure 14-9),
which lets you attach a new style sheet and add style rules to
it. (If Flex Builder prompts you to save the application before
continuing, go ahead and save it.)

Figure 14-9. The New Style Rule dialog box, asking
for a CSS file
If you don’t have an external .css style sheet defined for
this application, the dialog box will have a warning that
“A CSS file must be specified.” No problem, because you

can create one here using the New button on the top right.

Clicking the New button will open the New CSS File dialog box,
which lets you create a .css file, as shown in Figure 14-6. Once
you’ve created a new .css file, the New Style Rule dialog box will
be populated with this file, as shown in Figure 14-10.

Figure 14-10. The New Style Rule dialog box, creating
a type selector for the Button component
You have a few choices here for the type of style you want
to create. For instance, to create a type selector to modify all
Buttons that use this style sheet, choose “Specific component”
as the selector type. To create a class selector, choose “All
Components with style name.” Clicking Finish will create the CSS
rule and open the new .css file.

Converting Inline Styles to CSS

Note

To create a new style rule, you can use
the toolbar button New Style (see Fig-
ure 14-8). This will prompt you with the
New Style Rule dialog box. Creating
new style rules is discussed in the box
“Converting Inline Styles to CSS.”

LearningFlex3_book.indb 229 5/27/08 1:54:11 PM

Learning Flex 3230

Embedding Assets

Style Precedence
You can apply styles in many ways, and some take precedence over others (see
Figure 14-11). Inline styles take the lead, so even if a style is set for a component using
a class or type selector, the inline style will always override them. As for class and
type selectors, class selectors will take precedence. This means that if a Button’s style
has been set using a type selector, applying a style to all Button instances, a specific
Button that has a styleName property set will override the type selector.

Figure 14-11. Style precedence in Flex
The easiest way to remember this is that setting styles on a specific instance of a
component will always prevail and that specific style properties will always beat a
more generic styleName.

Embedding Assets
Next, you’ll open the Search application to learn about embedding assets,
and you’ll apply some new styles to this application as well. Open the Search.
mxml file in Design mode, and switch to the base state. Once you’re there,
select the Application (by clicking the background in Design mode), and
modify its styles using the Flex Properties panel, giving it a new background
gradient. For this application, a grayscale look might be nice, so you could
give it a background gradient of white to gray. (0xFFFFFF to 0xA1A1A1
would work nicely.) Also, setting the themeColor of the application to a gray
or silver color would be a suitable look.

Embedding Icons
One of the styles that some Flex components can use is displaying an icon.
Buttons use the icon style property to display an icon inside of them, which
by default is on their left side. However, to apply an icon to a Button control
or other component that uses them, you must embed the graphic in your
application, because the icon isn’t downloaded at runtime. Embedding assets
requires a special compiler command, and the easiest way to do this is by
using the Flex Properties panel in Design mode.

Note

For a quick and fun way to get CSS
code for your components by using a
visual tool, check out the Flex Style
Explorer online at http://examples.adobe.
com/f lex3/consulting/styleexplorer/
Flex3StyleExplorer.html. While Flex
Builder has the most extensive toolset,
this can be a real time-saver and a useful
tool if you’re not using Flex Builder.

LearningFlex3_book.indb 230 5/27/08 1:54:12 PM

Embedding Assets

Chapter 14, Styling Applications 231

Because adding an icon requires a graphic file, you can either find your own
favorite icon or get one from my website. I’ve created a magnifying glass icon
that you can download from www.greenlike.com/flex/learning/projects/search/
search_icon.png. Whether you use mine or your own, be sure to place the
graphic in the Search project’s source folder.

With the search Button selected, the Flex Properties panel will display an Icon
field under the Common section, where you can modify the most common
properties. To easily add the proper code for embedding the icon, click the
folder icon to the right of this field. This displays an Open dialog box, where
you can point to a graphic to embed. Navigate the folder structure to select
search_icon.png or your preferred graphic. Once you’ve finished with the dia-
log box, Flex Builder refreshes and should display the icon on the Button in
Design mode (see Figure 14-12).

Figure 14-12. The Search application, showing an icon

Looking at the code that was generated by adding the icon in Design mode,
you should see a new statement, @Embed, followed by parentheses and the
source for the embedded icon:

icon="@Embed(source='search_icon.png')"

This is the way you can embed assets inline in MXML, and you can use this
same syntax to embed other media assets.

Embedding Sounds
Just as you can embed graphics to make them immediately available for use
for such things as icons, you can embed sounds in your applications. In the
previous chapter, I showed you how to use sound effects, and I mentioned
that some latency may occur when downloading large sound files at runtime.
To get around this issue, you can embed your MP3s in the Flex application.

Note

The TabNavigator can also display icons
on its tabs. To add icons there, you actu-
ally set the icon property of the contain-
er inside the TabNavigator. This is the
same concept as setting the container’s
label for display in the tab.

LearningFlex3_book.indb 231 5/27/08 1:54:12 PM

Learning Flex 3232

Embedding Assets

For an example of how to embed sounds for a sound effect, you can add one
to the Search application. Go into Source mode to see the code for the transi-
tions that you created earlier. In this code you’ll see a Parallel effect that has
a Move effect and a Resize effect. You can add a sound effect here to play a
sound as the other two visual effects play.

To do so, you’ll need an .mp3 file. Again, you can use your own favorite or get
one from my site at www.greenlike.com/flex/learning/projects/search/whoosh.
mp3. Place the .mp3 file in the project’s source folder. The <mx:SoundEffect/>
tag takes a source property, which you can use to place a similar @Embed
statement to a Button’s icon property. You can give it a sound using the fol-
lowing code:

<mx:Transition fromState="search">

 <mx:Sequence targets="{[frm, queryTextInput, searchButton,hbox1,
 resultsList]}">

 <mx:Parallel>
 <mx:Move filter="move" />
 <mx:Resize filter="resize" />
 <mx:SoundEffect source="@Embed(source='whoosh.mp3')"/>
 </mx:Parallel>

 <mx:AddChildAction filter="add"/>

 </mx:Sequence>

</mx:Transition>

This should play the sound effect while moving the search fields in the transi-
tion from the search state back to the base state.

Embedding Fonts
In the previous chapter, I mentioned the concept of embedding fonts. While
Flex uses system (or device) fonts by default, it’s possible to include your
own fonts. The easiest way to embed fonts is by using a CSS declaration, and
the simplest way to do this is by using Design mode. If you want to embed a
font, I recommend creating an external style sheet and using Design mode to
create the code for you.

The embed code that would be created for the Arial font might be like the
following code, using an @font-face declaration inside a style sheet:

@font-face
{
 src:local("Arial");
 fontFamily: myEmbeddedFont;
}

This code embeds the Arial font from the developer’s system and makes it
available for use via the myEmbeddedFont font name. This font name can then
be used as the fontFamily style for a component. The following CSS would use
this embedded font and make it the default font for the entire application:

Note

The sound effect will play only as long
as the Sequence is playing, and the
Sequence may have a shorter duration
than you need. The sound effect doesn’t
automatically set its duration to the
length of the .mp3 file, so when using
sound effects, it’s a good idea to manually
set the duration to the actual length of
the embedded sound (in milliseconds).

Note

Many fonts do not allow redistribution,
such as embedding in a Flex applica-
tion, as part of their license. Always
check the license of a particular font
before you decide to embed it in an appli-
cation you plan to distribute.

Note

Using embedded fonts has a few limita-
tions such as increasing file size and leg-
ibility problems at font sizes, so I recom-
mend them only if it’s absolutely necessary
for your applications. Such cases might be
if you’re using a number of effects that
require embedded fonts or if the font
you’re using is necessary to the look and
feel of the application but is unlikely to be
installed on a user’s machine.

LearningFlex3_book.indb 232 5/27/08 1:54:12 PM

Skinning

Chapter 14, Styling Applications 233

Application
{
 fontFamily: myEmbeddedFont;
}

Skinning
The Flex style system is very powerful and customizable, but you may find
that it just isn’t enough. For instance, if you want a CheckBox control to look
like a light switch or you want a Button to have an irregular shape, styling
won’t cut it. You may find that you have graphical assets and you want to use
them for your components.

Every Flex visual component has the ability to accept a graphic to modify
its appearance. This is called skinning, because it’s just replacing the skin of a
component—the core functionality remains intact. Graphical skinning lets
you drop in graphics to change the outward appearance of a component.

Most components have more than one skin, representing the different parts
of the component or different states that a component can be in. These are
specified as style properties, usually with the word Skin at the end of the
property name. For example, a Panel has both a borderSkin that accepts a
graphic for the display of its border and a titleBackgroundSkin that shows as
its title bar. A Button control has an upSkin for its normal up state, as well
as a downSkin for when it’s pressed, an overSkin for when the mouse rolls over
it, and a disabledSkin to display when its enabled property is set to false.

For example, a Button could be skinned with four .png graphics for four of
its states. If you had four .png files named up.png, over.png, down.png, and
disabled.png, you could skin a Button control like the following:

<mx:Button
 upSkin="@Embed(source='up.png')"
 overSkin="@Embed(source='over.png')"
 downSkin="@Embed(source='down.png')"
 disabledSkin="@Embed(source='disabled.png')" />

This code uses the same @Embed statement that is used to embed other media,
such as sounds and icons.

When you skin a component, it’s a good idea to set skins for each of these
states so that you can customize each aspect of the component. If you were
to set only the upSkin of a Button to a custom graphic, then once someone
rolled the mouse over the Button, the default Button look would appear, and
this wouldn’t look very nice if the two graphics didn’t match.

You can easily get a list of the available skin properties by looking at the
Category view of the Flex Properties panel for a particular component.
However, the easiest way to skin components is by using an external style
sheet, because you can take advantage of the additional features of the Skin
section of the CSS Design mode. When you’ve selected a style rule in CSS

Note

The Button control also has a skin prop-
erty, which applies the same graphic skin
to all states of the Button.

LearningFlex3_book.indb 233 5/27/08 1:54:13 PM

Learning Flex 3234

Skinning

Design mode, notice the Style/Skin toggle bar in the upper-right section of
the Flex Properties panel (shown in Figure 14-13). This will show a Skin sec-
tion, where you can easily embed graphic assets via a Skin drop-down list.

Figure 14-13. The Flex Properties panel in CSS Design mode

You can choose whether to import graphics from a typical file, such as a
.png, .gif, or .jpg. You also have the option of using assets from a compiled
.swf or .swc file. This way, you can use graphics you’ve created from a variety
of sources. When you choose a type of graphic from the list, you will see a
dialog box with a list of all the possible skins. From this dialog box, you can
point to a file or Flash symbol that you want to import, and all the embed
code will be written for you. You will also be able to see the skins displayed
in Design mode. For components such as Button, which have multiple skin
states, you will see them as well, as shown in Figure 14-14.

Figure 14-14. A skinned Button in CSS Design mode

Style / Skin Toggle Bar

Graphic Skin Selection

LearningFlex3_book.indb 234 5/27/08 1:54:14 PM

Using Themes

Chapter 14, Styling Applications 235

Scaling Skins
Design mode for CSS has another great feature, which lets you edit the scaling
grid for your components. The scaling grid is an invisible grid that controls
which parts of a graphic skin should scale when the component is resized
and which parts should not. For instance, if you have a Button skin with
rounded corners, you wouldn’t want the corners to scale themselves when the
Button was resized to a larger width; you would just want the skin’s interior
to scale. That’s what the scale grid allows (see Figure 14-15 and Figure 14-16).
Everything within the square that is created by four imaginary lines will scale,
and everything outside it will not. See Figure 14-17 for a screen shot of the
scale grid editor.

Figure 14-17. The scale grid editor for a Button skins

Using Themes
You have the ability to not only change certain parts of your application, but
the application as a whole using CSS. You can achieve this through style prop-
erties, the skinning of components, or often both. When you group styles
and/or skins in a separate style sheet, you are creating an application theme.

Once you create such themes, you can share them among your projects or dis-
tribute them on the Web for others. You may also find some useful themes for
your applications online. Because such themes use external assets, they often
include both a .css file as well as graphics such as a .png file or a .swf file. To
use them in your application, you would copy the files to your project’s source
folder and add an <mx:Style/> tag to your application, pointing its source to
the .css file for that theme.

Figure 14-15. A button skin, resized
horizontally (without a scale grid set)

Figure 14-16. A button skin, resized
horizontally (with a scale grid set)

Note

Just as you can set a skin for each state
of a Button control, you can set a dif-
ferent icon for each state. While setting
the icon style property will apply a
single icon for all states, you can use CSS
Design mode to specify icons for the up,
over, and disabled states of a Button, for
instance.

LearningFlex3_book.indb 235 5/27/08 1:54:15 PM

Learning Flex 3236

Using Themes

For ease of distribution, some themes are packaged as a single .swc file,
which is a compiled file that includes both the necessary .css file and the
external assets inside it. To use these theme files in your application, you
must use a special compiler option. To do so, select your project, and select
Project→Properties. From there, choose the Flex Compiler item in the list
at the left of the dialog box, which will take you to the options for the Flex
compiler. In this section, you’ll see a field labeled “Additional compiler argu-
ments,” and in this field you can place the argument –theme followed by the
name of your theme .swc file (see Figure 14-18).

Figure 14-18. The Flex compiler options dialog box

For instance, Flex Builder comes with a theme called Halo Classic, which is
available at the following locations:

Mac:

/Mac/Applications/Adobe Flex Builder 3/sdks/3.0.0/frameworks/themes/
HaloClassic/haloclassic.swc

Windows:

C:\Program Files\Adobe Flex Builder 3\sdks\3.0.0\frameworks\themes\
HaloClassic\haloclassic.swc

You can copy this SWC into your project and point the compiler –theme
 argument to this file, and your applications will use this theme.

LearningFlex3_book.indb 236 5/27/08 1:54:15 PM

Using Themes

Chapter 14, Styling Applications 237

The Default Theme
Flex comes with a built-in theme called Halo Aeon. This theme is built using program-
matic skinning, which means the skins are created from drawing in ActionScript, not
from graphics files like .jpg or .png files. This is actually what enables the standard Flex
components to support many style properties like cornerRadius, borderStyle,
and backgroundColor. Because the programmatic skinning draws in script, these
style properties can work.

Flex applications actually use a .css file to apply the default theme, and you can find it
at the following locations for a typical Flex Builder installation:

Mac
 /Mac/Applications/Adobe Flex Builder 3/sdks/3.0.0/frameworks/projects/

framework/defaults.css

Windows
 C:\Program Files\Adobe Flex Builder 3\sdks\3.0.0\frameworks\projects\framework\

defaults.css

If you’re interested, you should take a look at this file to understand how CSS is used
for Flex components.

Also, your Flex Builder installation comes with an alternative, graphical default theme.
It uses a .css file to apply graphic skins, which are available as a .fla (Flash IDE) file. If
you have a copy of the Flash IDE and want to take a look, you can find the graphical
theme at the following locations:

Mac
 /Mac/Applications/Adobe Flex Builder 3/sdks/3.0.0/frameworks/themes/

AeonGraphical/src

Windows
 C:\Program Files\Adobe Flex Builder 3\sdks\3.0.0\frameworks\themes\

AeonGraphical\src

Note

To learn the basics of drawing in Flash
Player, check out the documentation for
the Drawing API. This will let you draw
anything you like using vector commands
and can even give you the skills to create
your own programmatic skins.

For an example of how applications can change their look with a new theme,
see Figure 14-19, Figure 14-20, and Figure 14-21.

Figure 14-19. The ContactManager application with the Flekscribble theme
(authored by Ralf Sczepan) applied

Note

If you want to easily change your applica-
tions to a completely new look, grab some
themes online at www.scalenine.com.

LearningFlex3_book.indb 237 5/27/08 1:54:16 PM

Learning Flex 3238

Summary

Figure 14-20. The PhotoGallery application with an overlapping tabs theme
(authored by Juan Sanchez) applied

Figure 14-21. The Search application with Yahoo! theme applied, available at
http://developer.yahoo.com/flash/articles/yahoo-flex-skin.html

Summary
In this chapter, you went beyond building Flex applications to customizing
the look and feel of them. You learned that you can change the styles of your
components in a few ways, by using inline style properties or CSS style sheets
and even by dropping in external graphics. While you can master CSS your-
self, you can also rely on the power of Flex Builder to visually design your
components.

You may find that you need to tweak the look of only a few components, or you
may decide that you want an entirely new look that you create yourself. The
look and feel of your Flex application is limited only by your imagination.

This chapter took you through the final set of skills for developing applica-
tions in Flex. In the next, final chapter, you will learn how you can take your
applications and show them to the world.

LearningFlex3_book.indb 238 5/27/08 1:54:17 PM

239

CHAPTER15

IN THIS CHAPTER

Deploying to the Web

Deploying to the Desktop

Summary

In this final chapter, I’ll cover the required steps for sharing your application
with the world. Whether you choose to deploy your application on the Web,
on the desktop, or on both, I’ll show you how.

Each deployment has its pros and cons. Web applications are accessible by
going to a web page that hosts the application. This is very convenient to
many people, because the application can be used on any computer and is
available as long as the computer has access to the Internet. However, some
people may not have an Internet connection available at all times or may
want to use the application offline.

Desktop applications are always available, because they are installed on each
person’s computer. Such applications are more traditional, opened by going
to the Windows Start menu, to the Mac OS X Dock, or by other means.
They are available without using a browser, because they run in their own
window. Desktop applications also provide the ability to drag and drop from
other applications, and they can read and write to a computer’s filesystem.
However, they also must be installed on each computer on which they’re
going to be used.

Whichever method you choose, you can be assured that your application
will work on any major operating system. This means you can write a Flex
application once and make it available to anyone, regardless of what operat-
ing system they prefer.

Deploying to the Web
You’ve primarily been developing and testing the Flex applications in this
book in a browser. When you created the ContactManager, PhotoGallery, and
Search applications, you specified in the New Flex Project dialog box that
you planned to deploy each one as a web application. This doesn’t limit your
application to being deployed on the Web only, though, because you can
always migrate a web application to the desktop. While I’ll show you how to
do just that in the later section “Deploying to the Desktop,” in this section, I’ll
cover the process of deploying to the Web.

DEPLOYING YOUR
APPLICATION

LearningFlex3_book.indb 239 5/27/08 1:54:18 PM

Learning Flex 3240

Deploying to the Web

The first step in deploying your web application is building a release version.
When you’ve been developing your application, you’ve seen that the com-
piled version is placed in an output directory called bin-debug by default.
This is a build that contains debugging information for use with the debug
version of Flash Player. This is what Flex Builder uses for its Debugger and
Profiler (you’ll learn more about Profiler in the box “Tweaking Performance”).
This is great for when you’re developing, but when you’re ready to deploy, it’s
good to create a release build that doesn’t include this debugging informa-
tion, because the resulting .swf file will be smaller.

I’ll show you how to create a release build for the PhotoGallery application,
so open that project now. Before you create the build, it’s a good idea to check
your settings for your build. This will actually affect the release build as well
as the debug build, so it’s a good idea to be familiar with this process.

Modifying Build Settings
You can check your build settings by selecting the project in the Flex navi-
gator and selecting Project→Properties. In the Properties dialog box, select
the Flex Compiler item from the list at the left (see Figure 15-1). This opens the
Flex Compiler properties, allowing you to modify options for your build.

Figure 15-1. The Flex Compiler Properties dialog

LearningFlex3_book.indb 240 5/27/08 1:54:18 PM

Deploying to the Web

Chapter 15, Deploying Your Application 241

Flex SDK version
The first section of options in this dialog box sets the Flex SDK version. By
default, the Flex 3 SDK is used, so you don’t have to worry about this one
unless you want to develop for an older version of the SDK. For instance, if
you’ve ever used previous versions of Flex, you may have code that uses an
older SDK (such as Flex 2.0). Because some of the API will change from one
version to the next, the “Use a specific SDK” option lets you set which you’ll
use. For this application, you can leave the default.

Non-embedded files
The setting, “Copy non-embedded files to output folder,” specifies whether
to include extra files such as .xml files or graphical assets in the build. Leave
this item turned on to copy the necessary files such as photos.xml which the
PhotoGallery application needs to run. If you prefer to manually copy the
necessary files, you can turn off this item—but beware, any time you change
a source file, you’ll need to manually copy the file to the output directory.

Accessibility
The next item concerns accessibility. Accessibility is everyone’s “ability to
access” your application, and the term typically applies to users with impaired
vision, hearing impairments, or mobility or cognitive impairments. The
option “Generate accessible SWF file” is referring specifically to the use of a
screen reader, a special application that can read the contents of a computer
screen to a user with impaired vision. This option is turned off by default,
because a bit of extra code will be included in the compiled version of your
application to enable it to communicate with a screen reader. Unless you
never expect your users to require a screen reader—such as when you’re
developing an application for a specific known group of users—it’s a good
idea to turn on this checkbox. (For example, if you turn on accessibility for
the compiled .swf file for the PhotoGallery application, you’ll see the file is
318KB. Compare this to the compiled version without accessibility enabled,
which is 328KB.) However, there is much more to creating accessible applica-
tions than simply turning on a checkbox. For more information on this, see
the box “Designing Accessible Applications.”

Note

When a public building is erected, it must
have ramps and other structures to make
accessing the building possible for every-
one. So too should a public application be
made accessible to all.

LearningFlex3_book.indb 241 5/27/08 1:54:19 PM

Learning Flex 3242

Deploying to the Web

While turning on the compiler option “Generate accessible
SWF file” is a great step toward making your applications more
accessible, it’s not a complete solution. You may not have
thought about it at this point, but lots of folks with impairments
or disabilities exist who probably want to use your application.

Often, users who have low or no vision would like to access
your application. While this may not seem to make sense with
an application used to view photos, accessibility does apply
to these applications. For instance, a user may not be blind
but simply have color-blindness or low vision. In this case, it’s
important to make sure your application doesn’t rely on color
differentiation and that the colors of your application don’t
interfere with readability. Also, make sure your application can
be viewed at lower screen resolutions, because many users with
vision impairments will use lower resolutions. Even for those
who can’t see at all, they should—at the very least—be able to
interact with your application enough to know that it’s a photo-
viewing application. While blind users will not be able to see the
images, they may still want to know about the photos, such as
their descriptions or other content.

To help keep your applications accessible, be careful using audio.
A user may find that sounds interfere with their ability to under-
stand their screen reader, so always provide an easy way to turn
off sounds or music, if your application includes them. Also, make
sure that any audio content you have has captioning available.

In addition, always ensure that the components you use don’t
require the use of a mouse—in other words, the full use of the
application should be possible through keyboard navigation
alone. Some people may not be able to use a mouse, but
this shouldn’t keep them from being able to experience your
application. All standard Flex components have keyboard

navigation built-in, so this is not usually a problem. However,
there may be other aspects of your application that require a
mouse, such as a context menu or command that is available
only through a double-click action. A good rule of thumb is
to provide multiple ways to accomplish a task, so if you have
something accessible through the mouse, also provide an
obvious way to access this through the keyboard.

Further, pay attention to the tab index, or the order in which the
focus changes when the Tab key is pressed. Typically Flex will
provide a logical tab index based on the placement of controls
on the screen. However, it’s a good idea to always test the tab
index with the keyboard, especially if you’re using a custom tab
index. In fact, one of the best ways to ensure you’ve designed an
accessible application is to test it with a keyboard alone. Drop
the mouse for a few minutes, and see how well you can use
your own application.

Finally, make certain your application is easy to understand
and navigate. Also, provide icons and other graphics that
enhance the application, but don’t rely on icons alone to
convey meaning. For instance, in the Search application, you’ll
see a magnifying glass icon on the search button that helps
to communicate that clicking the button will begin a search.
However, a label on that button still reads “Search,” because the
icon alone doesn’t suffice. (Such an icon could also mean “zoom
in,” for instance.)

Making your applications accessible often makes your
applications cleaner, simpler, and easier to use for all your users,
not just those with impairments. So, follow these simple rules
every time, and you’ll ensure you’re creating not only accessible
applications but also well-designed applications. Making your
application easier to understand and use is always a good thing.

Designing Accessible Applications

Compiler warnings
The next couple of options are whether to enable strict type checking and
warnings. It’s a good idea to leave both of these turned on, because this will
output useful notifications in the Problems panel, which will help to keep
your applications performing well.

HTML wrapper
The HTML wrapper is the .html file that is generated for your Flex applica-
tion. This file will be output to PhotoGallery.html in the output directories,
and it includes code to embed the PhotoGallery.swf file in a web page. Unless
you have written your own, leave Generate HTML wrapper file turned on
so you’ll have a page that will load in web browsers. (For more information
on the generated .html file and how to customize it, see the box “Customizing
the HTML Wrapper.”)

LearningFlex3_book.indb 242 5/27/08 1:54:19 PM

Deploying to the Web

Chapter 15, Deploying Your Application 243

While the generated HTML file may be fine for many developers,
you may want to modify the template for the HTML wrapper or
even create your own HTML file. If you want to customize it, it
helps to understand what’s going on inside the file.

The HTML template is located under your project’s root folder in
a folder called html-template. This directory contains additional
files that may be copied into your output folder, but the main
file is called index.template.html. This is not the final .html file
that will be output, but a template that is read by the Flex
compiler. After adding certain information, a final .html file is
output that embeds the Flex application.

Table 15-1. HTML wrapper token list

Token Name Description

${application} This option sets the id of the embedded SWF file. This allows it to be accessed by JavaScript or
other browser scripting languages.

${bgcolor} This is the background color of the HTML file. While a Flex application typically takes up the entire
browser window and therefore doesn’t display this color, it’s viewable when the user resizes the
application or when the Flex application doesn’t take up the entire window. Note that you can also
set this using the SWF metadata tag as described in Chapter 14, “Styling Applications.”

${height} This is the height of the application, set by the <mx:Application/> tag’s height property.

${swf} This token sets the full path of the compiled application’s .swf file.

${title} This is the title of the HTML page, which displays in the title bar of the browser. By default, this is
the name of the Flex application, such as PhotoGallery.

${version_major} This is the required major version number of Flash Player, for example, 9. This token appears only in
wrappers with Flash Player version detection code, as set in the HTML wrapper compiler options.

${version_minor} This is the required minor version number of Flash Player, as set in the HTML wrapper compiler
options.

${version_revision} This is the required revision version number of Flash Player, as set in the HTML wrapper compiler
options.

${width} This is the width of the application, set by the <mx:Application/> tag’s width property.

The template contains variables, or tokens, such as ${title},
which are special placeholders that the Flex compiler will
replace with actual text values. Table 15-1 lists the available
tokens. While the default value of these tokens is generally fine,
you may need to modify some of them, such as ${title},
which is the text that displays as the HTML page’s title.

You can also modify other parts of this file, such as the content
that displays if a user doesn’t have Flash Player installed. You can
find this content by looking through the file for a variable called
alternateContent.

Customizing the HTML Wrapper

Flash Player version
The next item in the Flex Compiler options is whether to include code in
this HTML wrapper for checking the version of the Flash Player plug-in.
Because different versions of Flex components, or your own ActionScript
code, may require specific versions of Flash Player, you can leave the defaults
here. The option Use Express Install will enable the application to request
that people update their versions of Flash Player if they don’t currently
have the required version. Turning on this box will include a .swf file called
playerProductInstall.swf, along with some extra code in the HTML wrapper,
in the output directory for your application.

LearningFlex3_book.indb 243 5/27/08 1:54:19 PM

Learning Flex 3244

Deploying to the Web

Browser navigation integration
The final item in this dialog box is “Enable integration with browser naviga-
tion.” Turning on this item outputs the necessary files (in the history folder
of your project) that make history management work for your application,
such as the ability to use the browser’s Back and Forward buttons. (This was
explained in more detail in Chapter 11.) The PhotoGallery application doesn’t
use history management, so it’s fine to turn off this feature.

Exporting a Release Build
Now that you’ve finalized the options for your build, it’s time to create a
release version. You can create a release version by selecting the project in the
Flex Navigator and selecting Project→Export Release Build. This will display
the dialog box shown in Figure 15-2.

Figure 15-2. The Export Release Build dialog box

Because you selected the project in the Flex Navigator, the first option for this
dialog box, Project, is filled in for you. The next option, Application, lets you
export a release build for different applications, if you have more than one
in a project. For the PhotoGallery project, as well as the other projects you’ve
created using this book, you have only one application per project, so you
don’t need to worry about this one.

Note

You may have multiple applications in a
single project. This can be useful if you
require the same assets, components,
and/or settings for multiple applications
and would like to keep them in the same
project.

LearningFlex3_book.indb 244 5/27/08 1:54:20 PM

Deploying to the Web

Chapter 15, Deploying Your Application 245

Sharing Source Code
The next section in the Export Release Build dialog box is the “View source”
section. Turning on the “Enable view source” checkbox will create a folder
in the final build that contains a web page with your source code. This page
will contain a list of the individual files for your application and a custom
viewer that lets users instantly view your source code (see Figure 15-5 for an
example). The page will also contain a link to download the source code as
a .zip file. If you feel comfortable sharing your code with the world, turn on
this checkbox. Sharing source code is a great way to help others learn Flex. It’s
also a way to give tech-savvy users access to the internals of your application
so that if they find problems, they can give you specific information about
what went wrong.

If you choose to turn on the ability to view the source files, you may not
want to include all of the files. If you want to pick and choose certain files,
click the Choose Source Files button. This opens a dialog box shown in
Figure 15-3, which contains a tree list of your source files. In this case, I’ve
chosen to include only the code under the src directory, and not to include
files from the HTML wrapper source (the html-template folder) or the empty
libs folder. You can also change the name of the directory to which the source
code will be output.

Figure 15-3. The Publish Application Source dialog box

If you’ve enabled the ability to view the source files, the <mx:Application/>
tag for your PhotoGallery.mxml application will have a new attribute added
called viewSourceURL that points to the directory for your source code. This
attribute causes the Application to create a context menu item called View
Source, which users of your application will see when they right-click the

LearningFlex3_book.indb 245 5/27/08 1:54:21 PM

Learning Flex 3246

Deploying to the Web

application in a web browser (see Figure 15-4). Selecting this menu item will
open the source view, as shown in Figure 15-5.

Figure 15-4. The PhotoGallery application, showing the context menu

Figure 15-5. The source view for the PhotoGallery application

Setting Where to Export Files
The final option of the Export Release Build dialog box is the “Export to
folder” option, which lets you modify the location and name of the folder
that will contain the files for the release build. Accepting the default is fine,
unless you prefer a different name or want to automatically place the build
in another directory on your computer or on a networked drive. For now,
just accept the default of bin-release and then click the Finish button. A
release build will be placed in a new folder in the PhotoGallery project called
bin-release, as shown in Figure 15-6. This folder contains only the files neces-
sary for the application to run in a web browser.

WarNiNg

If you’re developing an application for a
company that doesn’t want to release its
source code, be sure to disable the ability
to view source for the application. Also,
be certain if you’ve previously turned
on “Enable view source” that the source
files don’t remain in the output directory.
Even if you disable source view for the
application, if you have uploaded the
source output files to a web server, they
are still accessible.

LearningFlex3_book.indb 246 5/27/08 1:54:22 PM

Deploying to the Web

Chapter 15, Deploying Your Application 247

Figure 15-6. The release build folder structure for PhotoGallery

Decreasing Download Time
Flex applications are incredibly small considering their rich features. The final
size of your application is determined by a few factors, such as the amount of
code the application contains and the number of components used. Because
only the code necessary for the application to run is included in the final
compiled .swf file, the more components you use in your application, the
larger it will be. Because applications deployed on the Web will be accessed
in a web browser and must be downloaded in order to be viewed, it makes
sense to want to keep your applications as small as possible, because this will
decrease the amount of time people have to wait to view and access it.

A typical Flex application, using a few standard components such as Button
controls, List controls, and a few containers, is about 300KB. However, you
can decrease the impact of the Flex components on the size of your appli-
cation. One of the very cool features of Flex is the ability to dramatically
decrease application size by keeping the standard Flex component frame-
work cached on people’s machines so they don’t have to download it for each
Flex application they view.

Flex separates the framework code into a separate file. When someone first
views a Flex application, they will download this framework and cache the
file on their machine. The next time they view that Flex application, or any
other Flex application that enables this framework caching, they won’t have
to download the framework again—they’ll be able to use the cached version
on the local machine.

What this means in practice is an initial, larger download for people using
an application with framework caching. However, after this initial download,
subsequent downloads will be faster. See Table 15-2 and Table 15-3 for a
comparison of the impact of the framework cache for the PhotoGallery appli-
cation. The total initial download for this application, when using frame-
work caching, is 639KB, which is much larger. However, on every download

Files for source view
(if enabled) JavaScript for

embedding .swf

SWF used to update
Flash Player (if necessary)

HTML wrapper

External asset for
this application

The compiled SWF
application

Note

Also, a Flex feature called modules lets
you modularize parts of your application
into individually downloaded pieces. This
is useful for larger applications that have
many views or parts. If you think this is a
feature that could help your application,
check the documentation for the Module
component.

Note

Due to the way most browsers work, any
Flex application that you view in a web
page should be cached by the browser
itself. This means, whether you’re using
framework caching or not, the applica-
tion will load immediately. Framework
caching’s real benefit is with multiple
applications, or applications which have
been cleared from the browser’s cache

LearningFlex3_book.indb 247 5/27/08 1:54:22 PM

Learning Flex 3248

Deploying to the Web

 thereafter, the size is only 101KB. Compare this to the application when not
using framework caching, where it is 318KB every time.

Table 15-2. PhotoGallery size at initial download

Framework Cache
Used

Framework Cache
Not Used

PhotoGallery.swf 101KB 318KB

External Framework SWF
(Downloaded Only Once)

538KB —

Total Download 639KB 318KB

Table 15-3. PhotoGallery size on each subsequent download

Framework Cache
Used

Framework Cache
Not Used

PhotoGallery.swf 101KB 318KB

External Framework SWF
(Downloaded Only Once)

— (cached) —

Total Download 101KB 318KB

If you find the framework cache feature to be a good bet for your applica-
tion, here’s how to enable it: First, select your project in the Flex Navigator,
and select Project→Properties. In this Properties dialog box, select the Flex
Build Path item in the list at the left (see Figure 15-7). This displays the

Figure 15-7. The Flex Build Path options for PhotoGallery

Note

The framework cache feature doesn’t work
for third-party components; it works only
with the standard Flex component set.

LearningFlex3_book.indb 248 5/27/08 1:54:23 PM

Deploying to the Web

Chapter 15, Deploying Your Application 249

Flex Build Path dialog box, which has two sections you can switch between
using the toggle bar: “Source path,” where you can modify the source path
and output path locations, and “Library path,” where you can specify exter-
nal libraries to which you want to connect your project.

By default, a Flex application will use the Flex 3 SDK, and this is the first
item in the “Build path libraries” list for the “Library path” section. You’ll
want to change the Framework linkage, which is “Merged into code” by
default, meaning the Flex SDK is compiled into your application’s final .swf
file. Change this to “Runtime shared library (RSL),” and the Flex framework
components will be exported as separate .swf files.

This means your final application .swf will be much smaller but will include
a couple of larger .swf files that will be downloaded in the background
separately—but downloaded only once and cached forevermore. In the case
of PhotoGallery, two extra files are exported to the release version, although
they’re essentially the same. One is an unsigned version used in older versions
of Flash Player, and the other is a more secure, signed version that the current
Flash Player version uses. See Figure 15-8 for how the PhotoGallery release
build looks when using the framework cache feature.

Figure 15-8. The release build folder structure for PhotoGallery, when using framework
caching

Hosting Your Application
Now that you have a release build, you’ll want to place it on a server to
make it available to the public. If you don’t currently have access to a web
host, such as one you pay for or one provided by your work or school, you
might try signing up for one of the free hosts such as Yahoo! Geocities
(http://geocities.yahoo.com). If you’re serious about your application, however,
you’ll eventually want to get a web host that you can have full control over.
Choosing a host can be an overwhelming process, because you have to con-
sider a number of options to get the best bang for your buck, but luckily they
are getting cheaper every day.

Note

If you’re planning to use a server technol-
ogy for your Flex application, such as
ColdFusion or PHP, you’ll want to make
sure your host has these capabilities.

LearningFlex3_book.indb 249 5/27/08 1:54:24 PM

Learning Flex 3250

Deploying to the Web

Once you have a web server/host, you can copy the contents of the release
build into the appropriate directory on your server. Depending upon the
domain name and folder structure of your host, the URL to access your
application will change. For example, you can see the final version of the
PhotoGallery application on my site at www.greenlike.com/flex/learning/
projects/photogallery/PhotoGallery.html, because I placed the contents of the
release build into the flex/learning/projects/photogallery directory for my
web server, located at greenlike.com. You can see the final result in Figure 15-9
or by navigating to that URL in your web browser.

Figure 15-9. The PhotoGallery deployed as a web application, viewed in a browser

Tweaking Performance
One of the steps in application development is checking for performance. While
you should always be aware of performance as you write code, some feel it’s a good
idea to wait until core development is finished before you get too concerned with
“tweaking” your application.

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

—Donald Knuth
If you really want to work on performance, one tool you have at your disposal is
Flex Builder’s Profiler, included with Flex Builder Professional edition. Accessible by
selecting the Run→Profile command or by clicking the Profiler toolbar button (see
Figure 15-10), the Profiler checks your application for performance bottlenecks. It
does so by taking samples of how long different
parts of your application take to finish, such as a
method call you’ve created. This lets you see, at
a glance, what methods in your application are
most important to performance. You can use
this information to take steps to optimize your
application.

Figure 15-10. The Profiler toolbar
button

Profiler

Note

You can change the name of the exported
.html file to create an easier URL for
people to point to in their browsers. If
you change the name to index.html, most
web servers will automatically load the
file when navigating to the file’s direc-
tory. For example, if I change the name
of PhotoGallery.html to index.html, you
could access the application by going
to www.greenlike.com/flex/learning/
projects/photogallery/ instead of www.
greenlike.com/f lex/learning/projects/
photogallery/PhotoGallery.html.

LearningFlex3_book.indb 250 5/27/08 1:54:24 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 251

Deploying to the Desktop
Flex is more than just a tool to create web applications. Flex is a great frame-
work for creating “traditional” desktop applications as well. Using Adobe
AIR, you can easily create applications that people can download and install
on their local machines and use any time, whether or not they are connected
to the Internet. While this doesn’t make sense for all applications, some appli-
cations work best on the desktop. Others work great both on the Web and on
the desktop. The choice is yours as a Flex developer, because you can easily
migrate applications from one platform to the other and even create a code
base that can work in either platform.

User (or Friend) Testing
The best way to ensure that your application is usable, or user-friendly, is by getting
comments from others. Watching how people interact with your application is
invaluable in understanding how to streamline and perfect the user experience.
Because you may spend so much time with an application as you’re developing it,
even bad interactions may make perfect sense to you. But a new user, who has never
seen your application, may use it entirely differently.

If you don’t have a user experience lab or a budget to get one, a few friends will
work in a pinch. Just hand your application over to a pal or two, and watch how they
use it. Don’t explain the application to them or answer questions as they are using
it—just sit back and watch them squirm with delight, or frustration. Remember, you
won’t always be there to help the average user, so don’t cheat by giving your buddy
privileged information.

Try to listen to their comments and remain patient, even if you don’t always agree
with them. Chances are, you’ll elicit some great feedback that will help you perfect
your application.

When you create a new Flex project, you’re given the option of deploying
to the Web or to the desktop. When beginning a new project, you may not
know where the end result will be, or you may want to deploy to both. No
big deal, because creating a new project is easy. While it may have been
some time since you created a Flex project, try making a new one, this time
with a deployment to the desktop. In the next section, you’ll be porting the
ContactManager application to the desktop by creating a new project with its
deployment type for the desktop and copying some of the code.

Creating an Adobe AIR Project
Create a new Flex project named AddressBook by selecting New→Flex Project.
In the New Flex Project dialog box, under the “Application type” section,
choose “Desktop application (runs in Adobe AIR),” as shown in Figure 15-11.

Note

The more diverse the testers of your appli-
cation, the better. If your testers are from
the same background, a lot of potential
information could be overlooked.

LearningFlex3_book.indb 251 5/27/08 1:54:25 PM

Learning Flex 3252

Deploying to the Desktop

Figure 15-11. A new Flex project, using Adobe AIR

Once you click Finish, a new Adobe AIR project will be created. You might
notice that the project in the Flex Navigator has a different icon and includes
an XML file called AddressBook-app.xml. This XML file contains the settings
for the desktop application, such as the window title—more on that in a
moment.

The main application file that opens also has a small difference: instead
of an <mx:Application/> tag at the application root, you’ll see an
<mx:WindowedApplication/> tag. The WindowedApplication is just like the
Application component but contains additional functionality to help your
Flex application work well on the desktop. Your new AddressBook.mxml file
should look like the following:

<mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

</mx:WindowedApplication>

Now you have a new AIR project, and all you need to do is copy the code
from the ContactManager application and place it in the AddressBook applica-
tion. To do this, you can copy the files in the ContactManager’s source direc-
tory and paste them into the AddressBook’s source folder. Copy all files except
the main application (ContactManager.mxml). Doing this makes the support-
ing style sheet, the external XML file, and the ContactViewer component
available to the AIR application.

LearningFlex3_book.indb 252 5/27/08 1:54:25 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 253

The next step is to copy the MXML code from ContactManager.mxml into
AddressBook.mxml. One way to accomplish this is to copy all the code between
the opening and closing <mx:Application/> tags in ContactManager.mxml and
place that code between the opening and closing <mx:WindowedApplication/>
tags in AddressBook.mxml. Then, in a separate operation, you can copy
the attributes from the <mx:Application/> tag and paste them into the
<mx:WindowedApplication/> tag.

Alternatively, you can copy and paste the entire contents of ContactManager.
mxml into AddressBook.mxml and then change the <mx:Application/> tag to
<mx:WindowedApplication/>.

The contents of the AddressBook.mxml file should then look like the following:

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:view="com.oreilly.view.*"
 layout="absolute"
 applicationComplete="contactsService.send()"
 viewSourceURL="srcview/index.html">

 <mx:Style source="styles.css"/>

 <mx:HTTPService id="contactsService"
 resultFormat="e4x"
 url="contacts.xml" />

 <mx:Parallel id="fadeAndResize">
 <mx:Dissolve id="dissolve"/>
 <mx:Resize id="fastResize" duration="300"/>
 </mx:Parallel>

 <mx:DataGrid id="contactsDataGrid"
 dataProvider="{contactsService.lastResult.contact}"
 selectedIndex="0"
 left="10"
 top="10"
 bottom="10"
 width="300"
 change="contactViewer.currentState = ''">
 <mx:columns>
 <mx:DataGridColumn headerText="First"

 dataField="firstName"/>
 <mx:DataGridColumn headerText="Last" dataField="lastName"/>
 </mx:columns>
 </mx:DataGrid>

 <view:ContactViewer id="contactViewer"
 contact="{contactsDataGrid.selectedItem}"
 x="318"
 y="10"
 resizeEffect="{fadeAndResize}"
 horizontalScrollPolicy="off"
 verticalScrollPolicy="off">
 </view:ContactViewer>

</mx:WindowedApplication>

Note

An AIR application requires an
<mx:WindowedApplication/> at its
root in order to run properly.

LearningFlex3_book.indb 253 5/27/08 1:54:26 PM

Learning Flex 3254

Deploying to the Desktop

Once you have that in place, you now have an Adobe AIR application. To
see it, you can run it just like any other Flex application in Flex Builder, by
selecting Run→Run AddressBook or by clicking the green Run button in the
toolbar. The AddressBook application will run, and you’ll see it in a native
operating system window, as displayed in Figure 15-12 and Figure 15-13.
Additionally, for Mac OS X you’ll see an icon in the Dock, and for Windows
you’ll see an item in the taskbar.

Figure 15-12. The AddressBook application running on the desktop in Mac OS X

Figure 15-13. The AddressBook application running on the desktop in Windows Vista

LearningFlex3_book.indb 254 5/27/08 1:54:27 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 255

Customizing the Application
The icon that displays in the Dock or taskbar is just an AIR default. To replace
this with a custom icon for deployment, you’ll want to open the AddressBook-
app.xml file. This file is the AIR application descriptor file template. Similar to
the html-template folder used in Flex web applications, this file is a template
for adjusting how your application will look. This file lets you adjust features
like the words displayed in the window title bar, the look of the window, and
the icon that’s displayed in the taskbar or Dock.

You can easily figure out what options are available by reading the comments
in the XML file. Many options are also commented out, and you can uncom-
ment these and make changes as needed. For example, you can replace the
default icon that your application displays. First, create a PNG graphic with a
size of 128 pixels × 128 pixels, or download one I’ve created at www.greenlike.
com/flex/learning/projects/addressbook/address_icon.png. Then, replace the
following section of the descriptor file:

<!-- The icon the system uses for the application. For at least one
resolution,

 specify the path to a PNG file included in the AIR package.
Optional. -->

<!-- <icon>
 <image16x16></image16x16>
 <image32x32></image32x32>
 <image48x48></image48x48>
 <image128x128></image128x128>
 </icon> -->

with the following:

<!-- The icon the system uses for the application. For at least one
resolution,

 specify the path to a PNG file included in the AIR package.
Optional. -->

<icon>
 <image128x128>address_icon.png</image128x128>
</icon>

This enables (uncomments) the icon property and creates a single 128-pixel ×
128-pixel icon that your application will use. Smaller versions of the icon will
be automatically created for smaller sizes by scaling this largest image, but for
the best results, you can create your own versions in a 48-pixels × 48-pixels
size, 32-pixels × 32-pixels size, and 16-pixels × 16-pixels size.

Note

While you can set the height and width
of the window for your AIR application
in the application descriptor file, you can
also set a default height and width using
the height and width properties of the
WindowedApplication.

LearningFlex3_book.indb 255 5/27/08 1:54:27 PM

Learning Flex 3256

Deploying to the Desktop

Exporting an Installer
To export an installer for your application, you’ll use the same command as
for a web application, Project→Export Release Build. This opens the Export
Release Build dialog box, just like if you were to export a release for a web
application (see Figure 15-14).

Figure 15-14. Exporting an AIR application: Step 1

However, unlike the export dialog box for a web application, the AIR export
dialog box requires some additional information. Specifically, an AIR appli-
cation, because it’s installed as a desktop application, requires a digital
signature. Click Next in the Export Release Build dialog box, and you’ll see
the Digital Signature page, as shown in Figure 15-15. A digital certificate is a
security measure, put in place to make certain that your application comes
from you and wasn’t modified by anyone else. For the install to work correctly,
you’ll need to select the first option, “Export and sign an AIR file with a digi-
tal certificate.” This gives you the option to include a digital certificate you’ve
procured from one of the various certificate sites or gives you the option to
create your own. Unless you’ve gone through the process of obtaining a secu-
rity certificate, you’ll want to create your own by clicking the Create button.

LearningFlex3_book.indb 256 5/27/08 1:54:28 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 257

Figure 15-15. Exporting an AIR application: Step 2

About Digital Certificates
A digital certificate is a way to verify that a desktop application was not altered since
the time it was signed. This certificate is in place as a security measure, and it’s also
used to verify the application publisher’s identity.

When an AIR file is signed with a “self-signed” digital certificate, the publisher
information can’t be verified. Adobe AIR can tell that the installation has not been
altered since it was signed, but you have no way to prove the identity of the
publisher who signed the file. Because of this, the publisher will be displayed as
“UNKNOWN” in the installation dialog box, as shown in Figure 15-21.

To learn about getting a certificate from one of the trusted authorities, check the
following websites:

Thawte: www.thawte.com
Verisign: www.verisign.com
Microsoft Authenticode: http://msdn2.microsoft.com/en-us/library/ms537364.aspx

This prompts you with the dialog box shown in Figure 15-16, which lets you
create a certificate for your application. All that is required is a publisher
name and a password, as well as the certificate name. In this case, I’ve given
the certificate a name of addressbook.certificate, though the name doesn’t
really matter. Be sure to remember this password, because you’ll be required
to enter it any time you use the certificate you’re creating.

LearningFlex3_book.indb 257 5/27/08 1:54:29 PM

Learning Flex 3258

Deploying to the Desktop

Figure 15-16. Exporting an AIR application: Step 3

Once you create your certificate, you’ll return to the Export Release Build
dialog box, where you’ll be prompted to enter the password for your certifi-
cate again (see Figure 15-17). Once you’ve entered it, you’ll continue to the last
step of the process.

Figure 15-17. Exporting an AIR application: Step 4

LearningFlex3_book.indb 258 5/27/08 1:54:30 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 259

The final step in creating an installer for your application is specifying
the files you want to include (Figure 15-18). You’ll want to ensure that you
include all the necessary files for the application to run, but nothing extra-
neous. The compiled .swf file and the application descriptor file are always
required, because these two files are necessary for the application to run.
For the AddressBook application, you’ll also need the contacts.xml file and
the addressbook_icon.png file or other custom icon you choose to include. If
you’ve chosen to include the source code, a directory for this code will also
be included (typically called srcview).

Figure 15-18. Exporting an AIR application: Step 5

Once you click Finish, a file called AddressBook.air will be created in the top
level of the project. This is your installation file for distributing your applica-
tion, similar to a .dmg file for a Mac or an .exe file for Windows.

This installation file will work if the machine has Adobe AIR installed.
However, if it doesn’t have AIR installed, the file won’t do anything useful.
Because of this limitation, you’ll probably want to provide a more seamless
installation process for people using your application. The easiest way to
handle this is by using the Adobe AIR install badge, which is a convenient
way to install your application using a simple, integrated dialog box (called a
badge) on a web page. When people don’t have Adobe AIR installed, they will
be prompted to download and install it right from within the badge, making
it a simple solution for people wanting to access your application.

LearningFlex3_book.indb 259 5/27/08 1:54:30 PM

Learning Flex 3260

Deploying to the Desktop

Creating a Seamless Install
To create an installation badge, you’ll need to get the necessary files. Luckily,
a lot of code needed to enable this badge to work has been written for you.
You can access these files at the following locations, assuming you’ve installed
Flex Builder at the default location:

Mac: /Mac/Applications/Adobe Flex Builder 3/sdks/3.0.0/samples/badge

Windows: C:\Program Files\Adobe Flex Builder 3\sdks\3.0.0\samples\badge

The badge directories contain several files, but the ones to concern yourself
with are the following:

AC_RunActiveContent.js: This is a JavaScript file that is used for automati-
cally upgrading Flash Player.

badge.swf: This file contains the necessary code to enable the automatic
installation of Adobe AIR if the client doesn’t have it installed.

default_badge.html: This is a basic .html file that displays a badge for a
seamless install of Adobe AIR.

test.jpg: This is a graphic that displays as a representation of the applica-
tion in default_badge.html.

The other files included in this directory are for building your own badge.swf
file, although that isn’t typically necessary, and isn’t needed for this example.

The default_badge.html file is a template you can use to create your own
install badge on a website. You can test it by loading it in a browser. This .html
file will load the image test.jpg, creating an Install Now button that a user can
click to install the application—and Adobe AIR if that is not installed.

Remember that this set of files is just a template for you to use for your own
application. You’ll want replace this image with a screenshot of your own
application so it gives the user an idea of what they should expect. You’ll
also want to have the page to install your .air file. Because this is just a
placeholder, the default_badge.html file has a reference to a myapp.air file that
doesn’t actually exist. Just replace every reference of myapp.air with your own
application’s .air file, such as AddressBook.air. Also, be sure to replace every
instance of the words “My Application” with the name of your application,
because this will display in a message under the badge if Adobe AIR is not
installed. (By default this message will read “In order to run My Application,
this installer will also set up Adobe AIR.”)

Ultimately, you’ll probably want to integrate this sample badge code into your
own website, although you can simply provide a link to the default_badge.
html file.

WarNiNg

Note the instance of the string My%20
Application, which is a URL-encoded
string. Replace this with your application
name—and if you have an application
name that includes spaces, it will need to
be URL-encoded as well, replacing any
spaces with the characters %20.

Note

While this may seem like a lot of trouble
to create the installation badge, remem-
ber that this is a cross-platform solution.
If you were to create a desktop applica-
tion using other means, you would—
at the very least—be required to cre-
ate a separate installation file for Mac,
Windows, and Linux. Creating an instal-
lation badge is a comparatively simple
process that lets you create one installa-
tion for all platforms.

LearningFlex3_book.indb 260 5/27/08 1:54:31 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 261

When you’ve finished editing the default_badge.html file, just place these
files on your server along with the AddressBook.air installation file. When
someone loads this .html file in a browser, the install badge will display as in
Figure 15-19. I’ve posted this file at www.greenlike.com/flex/learning/projects/
addressbook/install/default_badge.html. The process for installation is out-
lined in Figure 15-20 through Figure 15-24.

Figure 15-19. The install badge as shown in a web browser

Figure 15-20. Installing an AIR application: Step 1

LearningFlex3_book.indb 261 5/27/08 1:54:31 PM

Learning Flex 3262

Deploying to the Desktop

Figure 15-21. Installing an AIR application: Step 2

Figure 15-22. Installing an AIR application: Step 3

LearningFlex3_book.indb 262 5/27/08 1:54:32 PM

Deploying to the Desktop

Chapter 15, Deploying Your Application 263

Figure 15-23. Installing an AIR application: Step 4

Figure 15-24. Installing an AIR application: Step 5

Adobe AIR can open up advanced functionality to your RIAs, including drag-
and-drop to and from the desktop, local data storage in a database, and so on.
The great thing is, all your current knowledge about developing Flex applica-
tions for the Web is not lost—you can apply everything you’ve learned in this
book to AIR applications. If you plan to develop primarily for the desktop, I
recommend getting a book focused on AIR development using Flex, because
the features are too extensive to be covered in this book alone.

Note

To see more samples of Adobe AIR appli-
cations, point your browser to http://labs.
adobe.com/technologies/air/samples.

LearningFlex3_book.indb 263 5/27/08 1:54:33 PM

Learning Flex 3264

Summary

Now You’re Cooking
You’ve come a long way. Once you start coding your own Flex applications, you may
find you need a little help. Need a quick and dirty solution? Try the Flex Cookbook
online at www.adobe.com/go/flex_cookbook. You don’t have to be an expert to
get the job done—here you can search for and grab snippets of code to solve your
problems (at least those dealing with Flex). You’ll also learn a lot along the way.

If you’d like a more tangible reference, grab a copy of the Flex 3 Cookbook (O’Reilly).

Summary
Congratulations are in order! You’ve now completed the final step in
developing rich Internet applications in Adobe Flex. You’ve gone from get-
ting acquainted with Flex and Flex Builder to learning about MXML and
ActionScript, and you’ve acquired the skills necessary to develop complete
applications such as connecting to data and building a flexible user interface.
You’ve learned to customize your applications using filters, transitions, and
CSS. Finally, in this chapter, you gained the skills to deploy your applications
on the Web and the desktop. I hope you’ve enjoyed the book, and I hope to
see some of the great applications you’ll no doubt create with this powerful—
and fun—technology.

LearningFlex3_book.indb 264 5/27/08 1:54:33 PM

A
absolute positioning, 93–94

absolute URLs, 148

AC_RunActiveContent.js file, 260

access

child containers, 96

to functions, 51

accessible applications

build options, 241

designing, 242

Accordion navigator, 27, 172–173

action effects, 213–214

Action Message Format (AMF), 8

ActionScript, 47–48

assignment, 49–50

bindings, 85–86

classes, 56–57

comments, 61

data types, 53–55

debugging, 71–76

dot notation, 48–49

events. See events

functions, 50–53

as imperative language, 45

inline, 48

and MXML, 57–60

objects, 55–56

variables, 53

Add Block Comment option, 61

add filters, 214

addChild method and tag, 45–46, 53, 188

action effects, 213–214

properties, 182

working with, 96–99

AddChildAction tag, 212–214

addedEffect behavior, 198

addEventListener method, 53, 60

AddressBook application

creating, 251–254

customizing, 255

exporting installers, 256–259

seamless installs, 260–263

Adobe Integrated Runtime (AIR) projects, 4, 21

creating, 251–254

customizing, 255

exporting installers, 256–259

seamless installs, 260–263

Aero theme, 2

Ajax, 10

Alert class, 68, 129

alerts, 68–70

alignment, 108

allowMultipleSelection property, 150

alpha channels, 32–33

alpha property

Dissolve, 204

overview, 32–33

Alphabetical view, 29

alphaFrom properties, 205

A add filters, 214

INDEX

LearningFlex3_book.indb 265 5/27/08 1:54:34 PM

Index266

arrays

colors, 138, 220

error messages, 129–130

filters, 216

lists, 43, 138–141, 150

validators, 128–129

ASP.NET applications, 158

assets, embedding, 230–233

assignment, 49–50

asterisks (*)

comments, 61

namespaces, 190

ASTRA Web APIs library, 150, 155

attributes and properties, 58–59

autocompletion, 40

common, 29–34

components, 189, 193–195

effects, 204–209

as event listeners, 60

extending, 187

names, 224

Properties panel, 28–29

state, 178

static, 68

and styles, 59–60, 179

tags, 42–43

autocompletion feature, 40

B
back button for browsers, 173

backgroundColor property

Application, 220–222

Canvas, 89–90, 99, 178

Dissolve, 205

backgroundGradientAlphas property, 220

backgroundGradientColors property, 220

backslashes (\) for literal characters, 131

badge.swf file, 260

base states, 176

alphaTo properties, 205

Alt key for snapping, 24

Always save resources before launching option, 36

AMF (Action Message Format), 8

AMFPHP, 8

anchors

component, 108–110, 112–115

image, 167

link, 196

angle brackets (<>) in XML, 41–42

angleFrom property, 208

angleTo property, 208

AnimateProperty effect, 209

animations, 11

APIs (application programming interfaces), 30

Application containers, 26

Application tag

background color, 220

binding with, 89–90

child tags, 211

currentState attribute, 184

effects in, 202

layout attribute, 93

multiple, 186

namespace definitions, 190–192

as root tag, 38

source files, 245

Application type section, 20–21

applicationComplete events, 53, 147

applications

customizing, 255

from databases, 158

deploying. See desktop deployment; Web deployment

hosting, 249–250

modular, 186–188

multiple, 78, 186

RIAs, 1, 5–6

structure, 108

user-friendly, 251

applying filters, 216–217

archives, importing, 16–17

LearningFlex3_book.indb 266 5/27/08 1:54:34 PM

Index 267

browsers

back button, 173

caching, 168

navigation integration, 244

bugs. See debugging

build settings, 240–244

busy cursors, 148

buttons and Button tag, 25

adding, 39

listeners, 60

skins, 235

C
C languages, 9–10

caching

framework, 247–249

images, 168

calculateAge function, 134–135

calling functions, 51

camel case names, 187

canvas and Canvas containers, 23–24, 27

absolute layout, 94

color, 89, 95–97

TabNavigator, 161

CAPS_LOCK constant, 67

Car class, 56–57

carets (^) with restrict, 131

Cartesian coordinate system, 39

cascading style sheets (CSS), 219, 223

class selectors, 223–224

converting inline styles to, 229

external, 225–230

global styles, 225

inheritance, 221

syntax, 223–225

type selectors, 224–225

case-sensitivity in XML, 42

casting, 69

Category view, 29

CDATA tag, 50

behaviors, 197

common effects, 197–200

composite effects, 203–204

customizing effects, 202–203

navigator container effects, 200–201

BevelFilter, 216

bevels, 216

bin folder, 21

bin-debug folder, 146, 166

bin-release folder, 246

binding. See data binding

Binding tag, 81–82, 170

BindingUtils class, 83

blank CSS files, 226

block comments, 61

Blur effect, 204

BlurFilter, 216

blurXFrom property

Blur, 204

Glow, 205

blurXTo property

Blur, 204

Glow, 205

blurYFrom property

Blur, 204

Glow, 205

blurYTo property

Blur, 204

Glow, 206

Boolean type, 54

borderSkin property, 233

bottom property, 110, 113

braces ({})

CSS, 223

data binding, 78–82

functions, 51

XML data, 144

brackets (<> [])

arrays, 138

XML, 41

breakpoints, 73–74

LearningFlex3_book.indb 267 5/27/08 1:54:35 PM

Index268

colSpan property, 104

columns

constraints-based layout, 113–115

DataGrid, 43, 141

columns property, 43, 141

ComboBox controls, 25, 137

comma separators, 132

command-line compiler, 14

commas (,) for arrays, 138

comments, 61

common effects

properties, 204–209

working with, 197–200

common properties, 29–34

compile time, loading external data at, 145–146

compilers, 71

build settings, 240–244

command-line, 14

themes, 236

warnings, 242

complete events

Image, 168–169

PhotoGallery, 198–199

completeEffect property, 198–199

complex data

list controls, 139–142

storing, 83–85

components and Component tag, 155

adding, 24

controls, 25–26

custom, 189–192

layout containers, 26–27

moving, 24

names, 48

navigation, 27–28, 160–163

properties, 189, 193–195

removing, 183–184

sizing, 99–101

skinning, 233–235

source files, 192

center alignment, 108

certificates, 257–258

change events, 64–65, 70–71

character references, 121

CheckBox controls, 25

labels, 38

resizing, 102

selected property, 49

children

accessing, 96

adding and removing, 96–97

positioning, 94

rearranging, 98–99

chrome, 99

class selectors in CSS, 223–224

classes, 56–57

constructors, 59

methods, 52–53

tags as, 58

click attribute, assignments in, 49–50

click events, 60, 65

clickURL property, 155

clipping, 99

closing tags, 41–42

code completion, 40

coercion, 69, 91

ColdFusion application, 157–158

colons (:)

CSS, 223

data typing, 54

color and color property

Application, 220–222

array lists for, 138

Canvas, 89–90, 99, 178

Dissolve, 205

Glow, 206

names, 222

representing, 88

color style, 221

ColorMatrixFilter, 216

ColorPicker, 89

LearningFlex3_book.indb 268 5/27/08 1:54:35 PM

Index 269

contactsDataGrid, 188

selectedIndex property, 193–194

selectedItem property, 150, 189

ContactView components, 188

ContactViewer components, 189, 191–192

containers, 94–96, 103

divided boxes, 103

Form, 104–106

Grid, 104

layout, 26–27

navigator, 160, 200–201

options, 101–102

tiles, 103–104

visibility, 159

content in tags, 42

context menus, 18

controls

layout, 106–108

types, 25–26

conversion

with data binding, 91

inline styles to CSS, 229

variables, 69

ConvolutionFilter, 216

coordinates, 39, 93

Copy projects into workspace option, 20

Create a Simple RIA tab, 16

Create Application from Database option, 158

createBoxes function, 96–97

creationComplete events, 63, 65

creationCompleteEffect behavior, 198, 201

creationPolicy property, 171

CreditCardValidators, 126

crossdomain.xml file, 148

CSS. See cascading style sheets (CSS)

curly braces ({})

CSS, 223

data binding, 78–82

functions, 51

XML data, 144

CurrencyFormatter tag, 132

source mode, 39

third-party, 45

view states, 179–182

visibility, 159–160

Components panel, 23–24, 192

composite components, 186

composite effects, 203–204

concatenation, 68, 80

conditional statements, 129

Confirm Perspective Switch dialog box, 74

Confirm Project Delete dialog box, 18

confirmPasswordFormItem property, 182

connecting to search results, 150–153

Console output for debugging, 71–72

constants for events, 67

constraintColumn tag, 114

constraintRow tag, 114

constraints-based layout

rows and columns, 113–115

usage, 109–113

constructors, 59

Contact Editor, 89, 117–118

contact property, 189

ContactManager application

component properties, 189, 193–195

composite effects, 203–204

custom components, 189–192

custom effects, 202–203

cutting and pasting code, 188–189

data bindings, 87–90

external style sheets, 225–230

formatting display data, 132–136

forms, 105–106

modularizing, 186–188

preparing, 117–120

resizing, 201–204

restricting input, 131–132

themes, 237

validating data. See validating data

view states, 186–195

XML data, 142–145

LearningFlex3_book.indb 269 5/27/08 1:54:35 PM

Index270

databases, applications from, 158

dataField property, 141

DataGrid controls, 138

columns property, 43

creating, 140–142

XML data, 144–145

DataGridColumn controls, 141–142

dataProvider property

DataGrid, 141, 147

LinkBar, 163

List, 138–139, 155

TabBar, 162–163

dataTips, 153

Date class, 120, 134

Date type, 120

DateField controls, 117, 119–120, 134

DateFormatter, 133–134

DateValidator class, 125–126

Debug panel, 76

debugging, 71

breakpoints, 73–74

Console output for, 71–72

ending, 76

event parameters, 72–73

perspective, 74–75

declarations

metadata, 86

MXML, 45–46

XML, 38, 42

deep linking, 196

default_badge.html file, 260–261

defaultButton property, 152

defaults

applications, 78

namespaces, 44

positioning, 95

themes, 237

deleting projects, 18

deployment, 239

to desktop. See desktop deployment

to Web. See Web deployment

currencySymbol option, 132

CurrencyValidators, 126

currentState property

applications, 178, 184

HBox, 212

currentTarget property, 73

custom components

creating, 189–192

properties, 193–195

customizing

applications, 255

effects, 202–203

HTML wrappers, 243

TileLists, 169–170

cutting code, 188–189

D
data

formatting, 132–136

types, 53–55

validating. See validating data

XML, 142–149

data binding, 64, 77

basic usage, 78–79

Binding tag, 81–82

coercion with, 91

concatenation, 80

curly braces, 81

layout, 113

limitations, 86

multiple destinations, 79

multiple sources, 81–82

storing complex data, 83–85

two-way, 83

variables, 85–86

working with, 87–90

data massaging, 85

data models, 83–85

data property, 155

data transmission, 8

LearningFlex3_book.indb 270 5/27/08 1:54:35 PM

Index 271

download time issues, 247–249

downSkin property, 233

dragEnabled property, 153

dragging and dropping in lists, 153–154

dragMoveEnabled property, 154

dropEnabled property, 153

dropShadowEnabled property, 217

DropShadowFilter filter, 216

duration property, 202–203, 232

E
E4X technique, 145, 147

Eclipse editor, 13

Eclipse plug-ins, 14–16, 24

ECMAScript language, 145

Edit State Properties dialog box, 184

editable property, 117

effects

action, 213–214

common, 197–200

composite, 203–204

customizing, 202–203

effective, 210

navigator containers, 200–201

properties, 204–209

sound, 209–210

target filters, 214–215

EmailValidators, 122–123

embedding

assets, 230–233

fonts, 199–200

Enable integration with browser navigation option, 244

Enable snapping option, 24

Enable view source option, 245–246

enabled property, 33

equal signs (=) for assignment, 49

error messages for validators, 120–126

errorString property, 126

escape characters, 80

Event class, 67

event listeners, 60

Design mode, 17, 23

adding components, 24

canvas, 23

controls, 25–26

CSS files, 228–229

events, 65

layout containers, 26–27

moving components, 24

MXML code, 37

navigators, 27–28, 164

properties, 28–36

user interface, 35–36

desktop deployment, 6, 239, 251

creating projects, 251–254

customizing applications, 255

exporting installers, 256–259

seamless installs, 260–263

destinations in data binding, 79

development speed, 6

device fonts, 199

digital certificates, 257–258

disabledSkin property, 233

dispatched events, 63

DisplacementMapFilter, 216

display formatting, 132–136

display lists, 95

accessing children, 96

adding and removing children, 96–97

operation, 95–96

rearranging children, 98–99

displaying external images, 166–167

displayName property, 85

Dissolve effect, 200, 203–205, 214

divided boxes, 103

documentation, 66

domain property, 124

doSomeMath function, 55

dot notation, 48–49

double quotes (")

for attributes, 49

in curly braces, 80

LearningFlex3_book.indb 271 5/27/08 1:54:36 PM

Index272

FlashDevelop editor, 14

Flekscribble theme, 237

Flex Build Path dialog box, 248–249

Flex Builder environment, 3, 9, 14

alternatives, 13–14

importing archived projects, 16–17

importing existing projects, 19

installation, 15–16

new projects, 20

opening sample applications, 17–18

panels, 16

project overview, 18–19

project structure, 21

versions, 15

Flex Charting, 8

Flex Compiler Properties dialog box, 240

Flex Component Explorer, 28

Flex Navigator, 16–17

Flex overview, 1–2

AIR, 4

benefits, 6–8

and Flash, 2–3

limitations, 11–12

vs. other technologies, 8–11

RIAs, 5–6

SDK, 3

Flex Properties panel

color pickers, 87–88

skinning, 233–234

styles, 219–221, 224, 229

views, 28–29

Flex Start Page, 15–16

floor method, 135

focusInEffect behavior, 198

focusOutEffect behavior, 198

folders

packages, 190–191

PhotoGallery, 246–247

fontFamily style, 232

fonts, 199–200, 232–233

fontWeight property, 38

events, 63

change, 70–71

constants, 67

fault, 147

handlers, 63

inline, 64–65

parameters, 72–73

validation, 127

existing projects, importing, 19

Existing Projects into Workspace option, 19

explicit sizing, 99

Export Release Build dialog box, 244–246, 256–259

exporting

files, 246–247

installers, 256–259

release builds, 244–246

extending properties, 187

Extensible Markup Language. See XML (Extensible
Markup Language)

external data, loading

at compile time, 145–146

at run time, 146–149

external image display, 166–167

external style sheets, 225–230

F
Fade effect, 199, 205

fault events, 147

Fill color settings, 220

filters, 197

applying, 216–217

effect targets, 214–215

guidelines, 218

types, 215–216

filters property and tag, 216

Find in Language Reference option, 65–66

Find/Replace dialog box, 184

fired events, 63

Flash Player and platform, 2–3

IDE, 9

version build options, 243

LearningFlex3_book.indb 272 5/27/08 1:54:36 PM

Index 273

Grid containers, 104

GridItem containers, 104

GridRow containers, 104

grippers, 164

groupName property, 118

guides, 24

gutter area, 74

H
Halo Aeon theme, 237

Halo Classic theme, 236

handler property, 179

HBox containers, 27

defaultButton property, 152

effects, 211

layout, 94–95

sizing in, 100

spacers for, 106

visibility, 159–160

HDividedBox containers, 103

headerText property, 141

height property and height

binding, 113

components, 99

effects, 204

List and TileList controls, 164

minimum and maximum, 100–101

WindowedApplication, 255

heightBy property, 207

heightFrom property, 207

heightTo property, 207

HelloWorld application, 47–48

creating, 20–21

input, 67–71

user interface, 35–36

Help Contents option, 66

hex triplets, 88

hexadecimal numbers for color, 88

hide filters, 215

hideChildrenTargets property, 207

format function, 132, 134–135

formatString property, 119

formatting display data, 132–136

FormHeading containers, 105

FormItem containers, 27, 104–105, 152

forms and Form containers, 27

creating, 104–106, 117–120

formatting display data, 132–136

restricting input, 131–132

validating data. See validating data

forward slashes (/)

comments, 61

tags, 41

framework caching, 247–249

friend testing, 251

fromState property, 212

fromValue property, 209

fullNameFormItem components, 182

function keyword, 50

functions, 50

access, 51

creating, 50–51

methods, 52–53

parameters, 51–52

placement, 50

G
gaps, 101–102

Generate accessible SWF file option, 242

generated folder, 60

getChild method, 98

getChildAt method, 96

getStyle method, 59–60, 219

global styles, 225

Glow effect, 205–206

GlowFilters, 216

GradientBevelFilters, 216

GradientGlowFilters, 216

gradients, 220–221

greeting property, 85

LearningFlex3_book.indb 273 5/27/08 1:54:36 PM

Index274

Import dialog box, 19–20

Import Flex Project Archive dialog box, 16–17

import statement, 59, 68

Import Web Service (WSDL) option, 157

importing

existing projects, 19

project archives, 16–17

skins, 234

includeInLayout property, 31, 159–160

index.template.html file, 243

indexes for containers, 95–96

inheritance in CSS, 221

initial states, 184–186

inline ActionScript, 48

inline events, 64–65

inline list item renderers, 154–156

inline styles, 219–222, 229

inner property, 206

input

events. See events

restricting, 131–132

validating. See validating data

Insert Radio Button Group dialog box, 118

install badge, 259–261

installers, exporting, 256–259

installs, seamless, 260–263

instances of classes, 56

int type, 54

integrated development environments (IDEs), 9, 14

interactivity, 6

internal modifier, 51

invalidDomainError message, 122

Iris effect, 206

itemRenderer labels and tag, 154–156

J
J2EE applications, 158

Java platform, 10, 157

Javascript, 10

hideEffect behavior, 198–200

hierarchy in XML, 41

history management, 173

historyManagementEnabled property, 173

HistoryManager class, 173

horizontal alignment, 108, 167, 169

horizontal layout, 94

horizontalAlign property, 108, 167, 169

horizontalCenter constraints, 112–113

horizontalCenter style, 184

horizontalGap property, 101

HorizontalList controls, 137

horizontalScrollPolicy property, 202

hosting applications, 249–250

HRule controls, 107, 114–115

HTML (Hypertext Markup Language), 10

documents, 5

wrappers, 242–243

html-template folder, 21, 243

HTTP (Hypertext Transfer Protocol), 146

HTTPService component and tag, 146–147, 151, 156–157,
166

hybrid containers, 95

I
icon property, 230, 235

icons, embedding, 230–231

id property, 188

data binding, 79

NumericStepper, 67

overview, 30

SoundEffect, 209

XML, 142, 144

IDEs (integrated development environments), 9, 14

image attribute, 166

images and Image controls, 25

displaying, 166–167

loading progress, 167–169

imperative languages, 45

implicit conversion, 69

LearningFlex3_book.indb 274 5/27/08 1:54:36 PM

Index 275

inline item renderers, 154–156

label fields, 140

PhotoGallery, 164

selections, 149–150

simple data, 138–139

syncing, 170–172

LiveCycle Data Services, 157

loading external data

at compile time, 145–146

at run time, 146–149

loginForm containers, 182

loops, 129

M
manifest.xml file, 192

Math class, 67

math operations with curly braces, 81

maxHeight property, 100

maximum property, 67

maximum widths and heights, 100–101

maxWidth property, 100

menu bars, 18

message property, 130

metadata declarations, 86

methods

overview, 52–53

static, 68

Microsoft Visual Studio IDE, 14

minHeight property, 101

minimum property, 67

minimum widths and heights, 100–101

minLength property, 121

minWidth property, 101

missingAtSignError message, 122

Model tag, 83–86

Model-View-Controller (MVC) design pattern, 7

modifyBackgroundColor function, 90

modifying

build settings, 240–244

view states, 177–179

K
knockout property, 206

L
label property

containers, 160–161

FormItem, 27, 105

List controls, 140

overview, 32

Panel, 161

labelField property, 140, 155, 169

labels and Label tag, 25, 38, 78–79

Language Reference documentation, 66

lastResult property, 147, 151

layout, 93

absolute positioning, 93–94

advanced containers, 103–106

alignment, 108

constraints-based, 109–115

container options, 101–102

container types, 26–27

controls, 106–108

data bindings, 113

display lists, 95–99

padding, 101

planning, 107

process, 102

relative positioning, 94–95

sizing, 99–101

layout property, 38–39, 93

left constraint, 111, 113

“less is more” adage, 210

libs folder, 21

LinkBar controls, 161, 163

linking, deep, 196

listeners, 60, 63

lists and list controls, 25, 137–138

complex data, 139–142

dragging and dropping in, 153–154

LearningFlex3_book.indb 275 5/27/08 1:54:37 PM

Index276

namespaces

MXML, 43–45

in nested properties, 43

packages, 190–192

SearchService, 151

navigation components, 27–28, 160–163

navigator containers, 160

in Design Mode, 164

effects, 200–201

vs. states, 176

nested properties, 43

nested tags, 42

New CSS File dialog box, 226, 229

New File dialog box, 145

New Flex Project dialog box, 157, 239, 251–252

New Folder dialog box, 191

New MXML Component dialog box, 187

New Project dialog box, 21

new projects, 20

New State dialog box, 177, 184

new statement, 59

New Style Rule dialog box, 229

non-embedded files options, 241

non-visual components in Design mode, 28

Number type, 54

NumberFormatter tag, 135

NumberValidators, 126

NumericStepper controls and tag, 67–69, 91

O
object-oriented programming languages, 55

Object tag, 189

objects, 55–56

Open dialog box, 231

open events, 168–169

open source software, 7

opening sample applications, 17

OpenLaszlo, 11

Option key for snapping, 24

origin for coordinates, 39

modular applications, 186–188

modules, 248

monitoring image loading progress, 167–169

MOUSE_LEAVE constant, 67

mouseDown events, 65

mouseDownEffect behavior, 198

mouseUp events, 65

mouseUpEffect behavior, 198

Move effect, 206–207

move filters, 215

moveEffect behavior, 198, 211

moveUp function, 98

moving components, 24

multilevel bindings, 84–85

multiple applications in projects, 78

multiple destinations in data binding, 79

multiple sources in data binding, 81–82

multiple views in PhotoGallery, 164–165

MVC (Model-View-Controller) design pattern, 7

.mxml files, 37

MXML language, 1, 9–11

and ActionScript, 57–60

declarations, 45–46

Design mode, 37

namespaces, 43–45

tags, 42–43

XML in, 40–42

N
\n escape character, 121

names and name property

camel case, 187

color, 222

components, 48

data, 155

packages, 190–191

projects, 20

properties, 224

SetProperty, 178, 184

State, 177

LearningFlex3_book.indb 276 5/27/08 1:54:37 PM

Index 277

folder structure, 246–247

framework caching, 247–249

history management, 173

hosting, 249–250

inline styles, 220–222

monitoring image loading progress, 167–169

multiple views, 164–165

populating, 165–166

source files, 246

syncing lists, 170–172

themes, 238

TileLists, 169–170

photos.xml file, 165

PHP applications, 158

PI property, 67

pixels, 99

planning layout, 107

play method, 212

plus signs (+) for concatenation, 68–69, 80

pop-up alerts, 68–70

populating PhotoGallery, 165–166

position property, 182

positioning

absolute, 93–94

child components, 182

relative, 94–95

precedence, styles, 230

precision option, 132

private modifier, 51

Problems panel, 16

Profiler, 250

ProgressBar controls, 26

effects for, 197, 199–200

visibility, 168–169

Project location section, 20

projects, 18–19

AIR. See Adobe Integrated Runtime (AIR) projects

archives, 16–17

creating, 20

importing, 16–17, 19

multiple applications in, 78

originX property

Rotate, 208

Zoom, 209

originY property

Rotate, 208

Zoom, 209

Outline panel, 16, 108

overSkin property, 233

P
packages, 189–192

padding layout, 101

paddingBottom property, 101

paddingLeft property, 39, 101

paddingRight property, 101

paddingTop property, 101

Panel containers, 16, 27, 161

Panel tag, 38–39, 94, 188

Parallel tag, 203–204, 212–213

parameters

event, 72–73

functions, 51–52

parent containers, 94

parentheses () for functions, 51–52

passing function parameters, 52

passwords for digital certificates, 257

pasting code, 188–189

Pause tag, 203

percentage-based sizing, 100

percentHeight property, 100

percentWidth property, 100

performance, tweaking, 250

periods (.)

CSS, 224

dot notation, 48–49

Person class, 57

PhoneNumberValidators, 123–124

PhotoGallery application, 164

displaying external images, 166–167

filters, 216–217

LearningFlex3_book.indb 277 5/27/08 1:54:37 PM

Index278

removeChild method, 97–99

RemoveChild tag, 182, 184, 213

RemoveChildAction effect, 213

removedEffect behavior, 198

removing

children, 96–97

components, 183–184

required property, 118, 121

requiredFieldError property, 121–122

Resize effect, 207, 215

Resize tag, 202

resizeEffect behavior, 198, 201–204, 211

resizing

CheckBoxes, 102

ContactManager, 201–204

events, 65

restrict property, 131

restricting input, 131–132

result event, 184

return keyword, 54

reusability, functions for, 50

reverse domain naming, 190

rich forms

creating, 117–120

formatting display data, 132–136

restricting input, 131–132

validating data. See validating data

rich Internet applications (RIAs), 1, 5–6

right property, 110, 113

rollOut events, 65

rollOutEffect behavior, 198

rollOver events, 65

rollOverEffect behavior, 198

root tags, 38, 42, 142, 144

Rotate effect, 208

rounding property

CurrencyFormatter, 132

NumberFormatter, 135

rowCount property, 139

rows in constraints-based layout, 113–115

rowSpan property, 104

projects (continued)

saving, 36

structure, 21

properties. See attributes and properties

Properties panel

color pickers, 87–88

skinning, 233–234

styles, 219–221, 224, 229

views, 28–29

property attribute

AnimateProperty, 209

StringValidator, 120

public modifier, 51

Publish Application Source dialog box, 245

push method, 130

pushing data, 157

Q
query property, 151

" character, 80

quotes (")

for attributes, 42, 49

in curly braces, 80

R
RadioButton tag, 118

RadioButtons, 26

readability, formatting for, 87

rearranging children, 98–99

RegExpValidators, 126

registration state, 179–181

regular expressions, 126

relative positioning, 94–95

relative sizing, 100

relativeTo property, 182

release builds, exporting, 244–246

remote objects, 157

RemoteObject components, 156–157

remove filters, 214

LearningFlex3_book.indb 278 5/27/08 1:54:37 PM

Index 279

selectedValue property, 134

selectionColor property, 222

selections in lists, 149–150

selectors in CSS, 223–225

self-signed digital certificates, 257–258

semicolons (;)

assignments, 49

CSS, 223

send method, 147

applicationComplete, 166

HTTPService, 151

Sequence tag, 203–204, 212–213

Server technology section, 20–21

Set as start state option, 184

SetEventHandler tag, 179

setFocus method, 53

setForm function, 50–52, 55, 69

setForm method, 53

SetProperty tag, 178–179, 184, 213

SetPropertyAction effect, 213

setStyle method, 59–60, 89–90, 102, 219

SetStyle tag, 179, 213

SetStyleAction effect, 213

sharing source code, 245–246

show filters, 214

Show Inherited Events option, 66

show method, 68–69, 129

Show Surrounding Containers feature, 108, 164

showBusyCursor property, 148

showDataTips property, 153

showEffect behavior, 198–200

showInfo function, 68–72

showTarget property

Iris, 206

Wipe effects, 208

Silverlight, 10–11

simple data in list controls, 138–139

single quotes (')

attributes, 49

in curly braces, 80

Run SimpleFlexExample option, 17–18

run time, loading external data at, 146–149

S
sample applications, 17–18

sandbox, 148

Save and Launch dialog box, 36

saving projects, 36

Scalable Vector Graphics (SVG), 11

scaling skins, 235

screen readers, 241

Script tag, 50, 188–189, 226

scripts. See ActionScript

scroll bars, 202

SDK (software development kit), 3

compiler options, 241

defined, 30

seamless installs, 260–263

Search application

icons, 231

sound, 232

themes, 238

transitions, 211–212

view states, 183–186

search results, connecting to, 150–153

SearchService components, 151

selected property

buttons, 25

CheckBoxes, 49

RadioButtons, 118

selectedChild property, 163

selectedDate property, 120, 134

selectedIndex property

ComboBoxes, 25

contactsDataGrid, 193–194

TileLists, 170

ViewStacks, 163

selectedItem property

ComboBoxes, 25

contactsDatagrid, 189

Lists, 149–150

LearningFlex3_book.indb 279 5/27/08 1:54:38 PM

Index280

spaces in project names, 20

speed, Flex, 6–7

square brackets ([]) for arrays, 138

src folder, 21

stage. See canvas and Canvas containers

stand-alone Flex Builder, 15

standard Flex Builder, 15

Standard view, 28

State tag, 177–178, 182, 211

states. See view states

States panel, 176–177

States tag, 178

static methods and properties, 68

status property, 38

storing complex data, 83–85

String tag, 79–81, 138

String type

concatenating, 80

constants, 67

converting, 69

description, 54

StringValidators, 120–122

strongly typed properties, 57

structure

applications, 108

folders, 246–247

projects, 21

XML, 41

Style tag, 223–226, 236

styleName property, 224

styles, 219

attributes as, 59–60

embedding assets, 230–233

inline, 219–222

precedence, 230

properties, 179

skinning, 233–235

style sheets. See cascading style sheets (CSS)

themes, 235–238

styles.css file, 227–228

submitButtons, 128

size, 99

CheckBoxes, 102

explicit, 99

minimum and maximum, 100–101

relative and percentage-based, 100

skinning, 233–235

slashes (/)

comments, 61

tags, 41

smart guides, 24

snapping, 24

SOAP Web services, 157

SocialSecurityValidators, 126

Software Development Kit (SDK), 3

compiler options, 241

defined, 30

sound

embedding, 231–232

sound effects, 209–210

SoundEffect class and tag, 209, 232

Source/Design tab, 17

source files

components, 192

sharing, 245–246

Source mode, 17

code completion, 40

components, 39

documentation, 66

events, 65

example application in, 37–39

MXML, 40–46

source property

data binding, 81–82

Images, 25, 166–167

overview, 34

ProgressBars, 26, 168

SoundEffect, 209, 232

StringValidator, 120

Style, 225, 236

XML, 145

Spacer control, 106

LearningFlex3_book.indb 280 5/27/08 1:54:38 PM

Index 281

themes, 235–238

third-party components, 45

thumb attribute

Image, 169

photo node, 166

Tile containers, 103–104

tileHeight property, 103

TileList controls, 137

customizing, 169–170

PhotoGallery, 164

tileWidth property, 103

time property, 134

title property

panels, 38, 161

photo node, 166

titleBackgroundSkin property, 233

titleStyleName property, 228–229

toggle property, 25

ToggleButtonBar controls, 161–162

tokens for HTTP wrappers, 243

toolTip property

Image, 169

overview, 31

tooShortError property, 122

top constraint, 111, 113

toState property, 212

toString method, 69, 91

toValue property, 209

trace method, 71–72

Transition class and tag, 211–212

transitions property, 211–212

transparency, alpha channels for, 32–33

trigger property, 128

triggerEvent property, 127–128

triggers

behaviors, 197–198

validation, 127

tutorials, 16

tweaking performance, 250

tweens, 199

two-way data bindings, 83

summary property, 155

SVG (Scalable Vector Graphics), 11

swapChildren method, 98

SWC files, 2, 151

Switch Workspace option, 19

syncing lists, 170–172

T
tab index, 106, 242

TabBar controls, 161–162

tabbing form fields, 106, 242

tabIndex property, 106

TabNavigator components, 27

background color, 221

deep linking with, 196

icons, 231

overview, 160–162

PhotoGallery, 164–165, 172

tags

autocompletion, 40

as classes, 58

parts, 42–43

XML, 41

target filters, 214–215

target property

effects, 211

SetProperty, 178, 184

test.jpg file, 260

Text controls, 26

characteristics, 150

maximum line length, 69

text property

labels, 38, 78

overview, 32

Text, 150

TextInput, 79

TextArea controls, 26, 150

TextInput controls and tag, 26, 38, 79, 94, 151

TextMate editor, 14

TextPad editor, 14

themeColor property, 222

LearningFlex3_book.indb 281 5/27/08 1:54:38 PM

Index282

VDividedBox containers, 103

vertical alignment, 108

vertical layout, 94

verticalAlign property, 108

verticalCenter constraints, 112–113

verticalCenter style, 184

verticalGap property, 101

verticalScrollPolicy property, 202

view states, 175

components, 179–182

ContactManager, 186–195

creating, 176–177

deep linking, 196

modifying, 177–179

vs. navigator containers, 176

scenarios, 175–176

Search, 183–186

transitions, 211–212

views

Flex Properties panel, 28–29

PhotoGallery, 164–165

viewSourceURL attribute, 245

ViewStack navigator, 161–163

visible property, 159–160

Image, 168

overview, 31

ProgressBar, 168–169

void type, 54

VRule controls, 107, 114–115

W
warnings, compiler, 242

Web deployment, 6, 239–240

build settings, 240–244

download time concerns, 247–249

exporting files, 246–247

exporting release builds, 244

hosting applications, 249–250

sharing source code, 245–246

Web Services Description Language (WSDL), 157

type selectors in CSS, 224–225

typecasting, 69

typing, 53–55

U
UIComponent components, 29, 66

uint type, 54

upSkin property, 233

url property, 146, 148

URLs, absolute, 148

Use Express Install option, 243

Use remote object access service option, 157

user-friendly applications, 251

user interface (UI). See Design mode

UTF-B characters, 35

V
validate method, 128

validateAll method, 128–129

validateAndSubmit function, 128–130

validating data, 120

EmailValidators, 122–123

miscellaneous validators, 125–126

PhoneNumberValidators, 123–124

StringValidators, 120–122

techniques, 127–131

ZipCodeValidators, 124–125

ValidationResultEvent, 130

Validator class, 128

value property

NumericStepper, 68–69, 91

SetProperty, 178

valueCommit event, 127

var statement, 53

variableRowHeight property, 156

variables, 53

bindable, 85–86

converting, 69

debugging, 75

VBox containers, 27, 94–95

LearningFlex3_book.indb 282 5/27/08 1:54:38 PM

Index 283

XAML, 10–11

xBy property, 206–207

XCode IDE, 14

xFrom property, 204, 206

XML (Extensible Markup Language), 1

data loading, 142–149

declarations, 38, 42

in MXML, 40–42

populating PhotoGallery via, 165–166

XML tag, 144–145

xTo property, 204, 206–207

Y
y property, 30

yahoo namespace, 151

yBy property, 207

yFrom property, 206–207

yTo property, 206

Z
ZipCodeValidatorDomainType class, 124

ZipCodeValidators, 124–125

Zoom effect, 208–209

zoomHeightFrom property, 208

zoomHeightTo property, 208

zoomWidthFrom property, 209

zoomWidthTo property, 209

WebService components, 156

whitespace

with curly braces, 80

XML, 42

width property and width

binding, 113

button controls, 29

components, 99

DataGridColumn, 142

effects, 204

List and TileList controls, 164

minimum and maximum, 100–101

WindowedApplication, 255

widthBy property, 207

widthFrom property, 207

widthTo property, 207

WindowedApplication tag, 38, 252–253, 255

WipeDown effect, 208

WipeLeft effect, 208

WipeRight effect, 208

WipeUp effect, 208

workspaces, 19

wrappers, HTML, 242–243

WSDL (Web Services Description Language), 157

X
x property, 30

x,y coordinates, 39, 93, 109–110

LearningFlex3_book.indb 283 5/27/08 1:54:39 PM

	Learning Flex 3
	CONTENTS
	PREFACE
	Who This Book Is For
	How This Book Is Organized
	What This Book Covers
	Companion Website
	Typographical Conventions Used in This Book
	Using the Code Examples
	We’d Like to Hear from You
	Acknowledgments

	1: GETTING UP TO SPEED
	What Is Flex?
	Flex Is a Modern, Hybrid Language
	Flex Is Flash
	Flex Is the Flex SDK

	What about AIR?
	Where Flex Fits
	Why Use Flex?
	Flex Is for Applications
	For Easy Interactivity
	For Development Speed
	For Speed All Around
	Because It’s Clean
	Because It’s Free
	Because It’s Open
	For Data (and Fast)
	Because It’s Beautiful

	How Flex Compares to Other Technologies
	Flash IDE
	C Languages
	Java/Java FX
	HTML/JavaScript/Ajax
	Silverlight/XAML
	OpenLaszlo

	When Not to Use Flex
	Summary

	2: SETTING UP YOUR ENVIRONMENT
	Using Alternatives to Flex Builder
	Introducing Flex Builder and Eclipse
	Flex Flavors
	Flex Builder Installation
	Your Editor at a Glance

	Running Your First Application
	Importing a Project Archive
	Opening a Sample Application
	The Little Green Button: Running the Application

	Everything Is a Project
	Importing an Existing Project
	Cooking from Scratch: Creating a New Flex Project
	The Structure of a Flex Project

	Summary

	3: USING DESIGN MODE
	A Blank Slate: Your Canvas
	Adding Components to the Application
	Moving Components Around
	Exploring Common Components
	Controls
	Layout Containers
	Navigators

	Modifying Properties Directly
	Everything at Your Fingertips: The Properties Panel
	Standard View
	Category View
	Alphabetical View

	Common Properties
	Building a User Interface

	Summary

	4: USING SOURCE MODE
	What Design Mode Does
	Anatomy of a Flex Application
	Components Added in Source Mode
	Code Completion
	MXML in Depth
	The XML in MXML
	It’s all about structure
	A few ground rules

	The Anatomy of a Tag
	The MX in MXML: Namespaces Explained
	I Do Declare

	Summary

	5: LEARNING THE BASICS OF SCRIPTING
	Getting Ready
	Inline ActionScript
	Dot Notation
	Assignment
	Functions
	Where to Place a Function
	How to Create a Function
	Function Access
	Function Parameters
	Methods

	Variables
	Data Types
	Objects
	Classes
	MXML and ActionScript Work Together
	ActionScript’s Relationship with MXML
	MXML = ActionScript
	Tags Are Classes
	Attributes Are Properties
	Attributes Are Styles
	Attributes Are Event Listeners, Too

	Comments?
	Summary

	6: ADDING INTERACTIVITY WITH ACTIONSCRIPT
	Understanding Events
	Handling Events Inline
	Using Event Constants
	Making Things Happen
	Using Pop-up Alerts to Display Information
	Using Change Events

	Debugging for Kicks
	Outputting Information to the Console
	Using Event Parameters in Debugging
	Using Breakpoints
	Seeing a New Perspective
	Ending Your Debug Session

	Summary

	7: USING DATA BINDING
	What Is Data Binding?
	How to Use It
	Basic Usage
	Multiple Destinations
	Concatenation
	More Uses for Curly Braces
	The <mx:Binding/> Tag
	Basic usage
	Multiple sources

	Binding Tags vs. Curly Brace Syntax

	Implementing Two-Way Bindings
	Storing Complex Data
	Basic Usage
	Multilevel Bindings

	Creating Bindable Variables in ActionScript
	Determining When Data Binding Isn’t Appropriate
	Putting Data Binding to Work for You
	Summary

	8: LAYING OUT YOUR APPLICATIONS
	Types of Layouts
	Absolute Positioning
	Relative Positioning

	The Display List
	How It Works
	Accessing Children
	Adding and Removing Children
	Rearranging Children

	Sizing
	Explicit Sizing
	Relative or Percentage-Based Sizing
	Minimum and Maximum Sizes

	Layout Container Options
	Padding Layout
	Gaps

	Advanced Containers
	Divided Boxes
	Tiles
	Grid
	Form

	Layout Controls
	Spacer
	HRule and VRule

	Alignment
	Constraints-Based Layout
	Typical Usage
	Constraint Rows and Columns

	Summary

	9: CREATING RICH FORMS
	Preparing the Application
	Validating Data
	Using Validators
	StringValidator
	EmailValidator
	PhoneNumberValidator
	ZipCodeValidator
	Other available validators

	Custom Validation Techniques

	Restricting Input
	Formatting Data for Display
	Summary

	10: GATHERING AND DISPLAYING DATA
	Using List Controls
	Lists of Simple Data
	Lists of Complex Data
	Custom label fields
	Advanced lists

	Using XML Data
	Loading External Data at Compile Time
	Loading External Data at Runtime

	Implementing List Selection
	Connecting to Search Results
	Dragging and Dropping in Lists
	Using Inline Item Renderers
	Exploring Other Types of Service Components
	WebService
	RemoteObject

	Summary

	11: CONTROLLING FLOW AND VISIBILITY
	Controlling Visibility
	Navigation Components
	Creating a Photo Gallery Application
	Adding Multiple Views
	Populating the Gallery via XML
	Displaying External Images
	Monitoring Loading Progress of Images
	Customizing the TileList
	Syncing Two Lists

	Summary

	12: WORKING WITH VIEW STATES
	Scenarios for States
	Creating New States
	Modifying State Properties, Styles, and Events
	Adding Components
	Putting States to the Test
	The Search Application
	Removing components
	Setting the initial state

	The ContactManager Application
	Making the application modular
	Cutting and pasting code
	Creating component properties
	Using custom components
	Organizing custom components with packages
	Using custom component properties

	Summary

	13: APPLYING BEHAVIORS, TRANSITIONS, AND FILTERS
	Behaviors
	Using Common Effects
	Applying Effects to Navigator Containers
	Exploring More Effects
	Customizing Effects
	Using Composite Effects
	Parallel
	Sequence

	Common Effects and Their Properties
	Blur
	Dissolve
	Fade
	Glow
	Iris
	Move
	Resize
	Rotate
	WipeLeft, WipeRight, WipeUp, and WipeDown
	Zoom
	AnimateProperty

	Sound Effects
	States Made More Interesting
	Using Action Effects
	Filtering Effect Targets

	Filters
	Applying Filters

	Summary

	14: STYLING APPLICATIONS
	Using Inline Styles
	Using Style Sheets
	CSS Syntax
	Class selector styles
	Type selector styles
	Global styles

	External Style Sheets

	Embedding Assets
	Embedding Icons
	Embedding Sounds
	Embedding Fonts

	Skinning
	Scaling Skins

	Using Themes
	Summary

	15: DEPLOYING YOUR APPLICATION
	Deploying to the Web
	Modifying Build Settings
	Flex SDK version
	Non-embedded files
	Accessibility
	Compiler warnings
	HTML wrapper
	Flash Player version
	Browser navigation integration

	Exporting a Release Build
	Sharing Source Code
	Setting Where to Export Files
	Decreasing Download Time
	Hosting Your Application

	Deploying to the Desktop
	Creating an Adobe AIR Project
	Customizing the Application
	Exporting an Installer
	Creating a Seamless Install

	Summary

	INDEX

