Making Easy Things Fasy & Heard Things Possible (.g
&&

&o
2

Learning

O’RE"_LY’ Randal L. Schuwartz & Tom Phoenix

L earning Perl,
3rd edition

Randal L. Schwartz, Tom Phoenix
Publisher: O'Reilly
Third Edition July 2001
ISBN: 0-596-00132-0, 330 pages

If you ask Perl programmers today what book they relied on most when they were
learning Perl, you'll find that an overwhelming majority will name Learning Perl--also
known affectionately as "the Llama." The first edition of Learning Perl appeared in
1993 and has been a bestseller ever since. Written by two of the most prominent and
active members of the Perl community, this book is the quintessential tutorial for the
Perl programming language.

Perl began as a tool for Unix system administrators, used for countless small tasks
throughout the workday. It has since blossomed into a full-featured programming
language on practically every computing platform, and is used for web programming,
database manipulation, XML processing, and (of course) system administration--all
this while still remaining the perfect tool for the small daily tasks it was designed for.
Perl is quick, fun, and eminently useful. Many people start using Perl because they
need it, but they continue to use Perl because they loveit.

The third edition of Learning Perl has not only been updated for Perl 5.6, but has also
been rewritten from the ground up to reflect the needs of programmers learning Perl
today. Informed by their years of success at teaching Perl as consultants, the authors
have re-engineered the book to better match the pace and scope appropriate for readers
trying to get started with Perl, while retaining the detailed discussion, thorough
examples, and eclectic wit for which the book is famous.

This edition of the Llama includes an expanded and more gently-paced introduction to
regular expressions, new exercises and solutions designed so readers can practice what
they've learned while it's still fresh in their minds, and an overall reworking to bring
Learning Perl into the new millennium.

Perl is alanguage for getting your job done. Other books may teach you to program in
Perl, but this book will turn you into a Perl programmer.

Table of Contents

Typographical Conventions
How to Contact Us
COOE EXBIMPIES......eeeeeseiaiseie sttt s8R Rttt bbbt
ACKNOWIEUGIMENES ...ttt ettt bbb s bbb 48R £ £ Rt b bbbttt n e

Chapter L. INtrOQUCTION......ccoiiierieeieieteeeeer sttt ettt bbbt et e e e e
1.1 Questions and ANSWESS........cccveneeerereneennens
1.2 What Does"Perl" Stand For?.................
1.3How Can | Get Perl?.....ccvveeeeieeciinns
1.4 How Do | Make a Perl Program?........
1.5 A Whirlwind Tour of Perl....................
IR S (ot =SOSR

Chapter 2. SCAlAI DALAc.cueueiiirerererirerise ettt bbbttt b ettt b bbbttt se e snenas 21
2. LWL IS SCAlAN DAA?.......cuceeeiecieiiisinisissesesetessesessssssssessssss e sesessssssssssssssesesssssesesesassasessssesesassnsesassssesasssssnsnssssesesnssssasesasnnsasesas 21
2.2 Numbers......ocveueeee
SRS 111010 TN
2.4 Perl's Built-in Warnings...
2.5 Scalar Variables.....
2.6 Output with print...........
2.7 Theif Control Structure...
2.8 Getting User Input.........
2.9 The chomp Operator
2.10 The while Control Structure
2.11 The undef Vaue
2.12 The defined Function..
2. LS EXEICISES ... eutueuereeeteesessteesesssessss e ssasss e se s et e s et ae e s et e s se e se b e s e s e Rt e s e R £ e R s e AR e AR eSS SR AR E e e ARt e e R s et s Rt s R s

Chapter 3. ListSand AlTayS......ccccceeririnerererisienesesesesesesie e sesesenes
3.1 Accessing Elements of an Array
3.2 Special Array INdiCES.......ocvveevereererierennn.
3.3 List Literals......c.........
3.4 List Assignment
3.5 Interpolating Arrays into Strings
3.6 Theforeach Control Structure.................

3.7 Perl's Favorite Default: $_....coovevveceneneen.

B8 SCAE BN LIS CONEXL ...uvuieeaeeieeseereieietse sttt bbb bbbt
3.9 SSTDIN IN LIS COMEXE c.uevuvereereeriseieerisei s sesesseses st sses s b sese s ese s s bbb st bbb
B0 EXEICISES ..vvicetiiecteiiesie it sttt ae b st E e AR AR SRR R A et b et ettt

Chapter 4. SUDI OULINES.........ciiiiererrrrr sttt bbbttt se et
4.1 System and User Functions...............c.....
4.2 Defining a Subrouting...........coocccveeeenee
4.3 Invoking a Subrouting...........cocceevveeee
AARUNNVaAUES......ccereeerereeeieisinens
4.5 ArQUMENES.....oeeieeciereeserseeseseeseeseeseeeens
4.6 Private Variablesin Subroutines.............
4.7 Thelocal Operator.........coveereererernieeeenn.
4.8 Variable-length Parameter Lists..........
4.9 Noteson Lexica (my) Variables
4,10 TNE USE SITICE PTBOMEL.vvuvieiieeieeeieee st sese it es bbb s bbb bbb
. L1 TRETEIUIN OPEIBLOT ... ceveeeaeseeeeseereaees e eebeee e sess b ese e s e s e ea 4R E b s bbb bbbttt
A 12 EXEICISES ..uvirieeeeeiesteesissessseetsssssssesessssssasesassesssssessssssssassssssssesssssssassssnsesssesesassssesassssesassssesssesesassssssetessnssnsesasasnssansasasansnsesnns

CRAPLEN B. 170 BASICS......cuierirererieieteieiettstre sttt sttt e bbb bbbt bbb ettt ss bbbt enenis
6.1 Input from Standard Input
6.2 INPUL FrOm the DIiamONG OPEIELONc.ieeurereieereirieeeertieeseie ettt b bbbt se bt st 76
6.3 THE INVOCAL ON ATGUITIENES.....c..cuetriaetrisciisessesesseseeeesese et sese bbb ses bbb bbbt
6.4 Output to Standard OutpLLt............ccceenee.

6.5 Formatted Output with printf
5.6 EXEITISES. ... euvueeeeieeei ettt bbb R bR e

Chapter 7. Concepts of Regular EXPrESSIONS........ccvreicieieueieieieeresisisieieieseeese s sesesesssssnes 85
7.1 What Are REQUIBT EXPrESSIONS?.......c.cucuieeiteeiieeetisiseestiessetsase s bbb bbbttt 85
7.2 Using Simple Patterns..........c.coveeveneen.

7.3 A Pattern Test Program.
A = (o =TT

Chapter 8. More About Regular Expressions.
8.1 CharaCter ClasseS.......cccovreniririnseiniisisssessssessssessssssssesssssesens
8.2 General Quantifiers...
8.3Anchors.......ccccvuvrunne
8.4 MEMOTY ParEINESESouevieiieriecisiee ettt bbb bbb bbbttt
LSR5 o= 0 (= 3ot
BB EXEICISES. .. ueuuettiriietetsesissss ettt et b e b b e s e bt e e e R b E e ee R e A e R b S e AR e AR b e e ARt e Rttt en

Chapter 9. USINg ReQUIAI EXPIESSIONS.....c.coriririririrerieesietet sttt st ssssssesesesensnness
9.1 MacheSWIth MY/ccvieeeriseee s
9.2 Option Modifiers...........
9.3 The Binding Operator, =~....
9.4 Interpolating into Patterns....
9.5 The Match Variables............
9.6 Substitutionswith §///....
9.7 The split Operator......
9.8 Thejoin Function.......

Chapter 10. More Control Structures.
10.1 The unless Control Structure.................
10.2 The until Control Structure................
10.3 Expression Modifiers.........cccovenivrennnnes
10.4 The Naked Block Control Structure..
10.5 Theelsif Clause........occeeveerverevenennns
10.6 Autoincrement and Autodecrement.......
10.7 Thefor Control Structure.............c..c......
10.8 LOOP CONtrOlS.....ouverereerereerereinieeineeeenenes
10.9 L OGICA OPEIGLOS.cucereeerieeesirreseseaestaseseeseesesessessesessesessssesessesstsessssesstsesaese s s st ses et ses et b e bbb e e b e e s bt bbb aeb b ne bbb nnsenas
O (O = (o7 = OO

11.2 Opening aFilehandle.........c..ccvvunnee.
11.3 Fatal Errorswith die.........c.ccoecurieenee.
11.4 Using Filehandles..........cccovuernirrencrnennnnes
11.5 Reopening a Standard Filehandle
116 FleTeStS. o

L1, 7 EXEICISES euverereueeressseesisesetsesessssssstesessessseses e esesesessssesesesssns et e s e sa s e s e s e s e b e s ee s e R e s e e s s e e e s s e e e s S e A et et e e s e b et s e e st e s s ne e s Rt en

Chapter 12. DireCtory OPer AliONS.......cccorrrererieieieieiesieieieiereiesesesese st sesss et s sesssss bbb sesssesesens 142
12.1 MoVving Around the DIFECLONY TTEEc.cuuuuiureueeeereseirisesressesesstssessess s eses s bbb ss s bbbt bbbt eb b sen s enais
12.2 GIobBING ...
12.3 An Alternate Syntax for Globbing....
12.4 Directory Handl€s.........ccooeverrinennee
12.5 Recursive Directory Listingc.c.....
12,6 EXEICISES c.vvvvreeirereaieisese et ettt s bbb R AR AR bbb

Chapter 13. Manipulating Filesand Dir €CLONES.........courrriririeieeiieieie e 147
13.1 Removing Files
13,2 RENAMING FIIES.......ouitiiictricts ettt bbb st s
L3.3 LINKS @NA FIIES ...ttt bbb bbb bbbt s
13.4 Making and Removing Directories
13.5 Modifying PEermissions..............ccveeunee
13.6 Changing Ownership
13.7 Changing Timestamps
13.8 Using Simple Modules...
LBL9 EXEICISES .. vrereeireeeaetesese s s eae bbb bbb s h R E AR AR bbb R

Chapter 14. Process ManagQEMENTccvrrriririeieieiinieie ettt s sssesesens
141 THE SYSEEIM FUNCLIONcveteiceeiceeitie ittt b bbb bbb
I I T Y= ol o o o o OO
14.3 The Environment Variables...................
14.4 Using Backquotes to Capture Output ...
14.5 ProCeSSES @S FIENANAIES.........c.ciiiicieisiceis ettt bbb s s e s et s st ten
14.6 Getting DOWN and Dirty WIth FOTKcciriiiicii et
14.7 Sending and Receiving Signals
LA B EXEICISES . ..uvuvreuereeessseesissseesesnsstsssstesassesesesessesesesesessesesesesssss et e s e se b e s e s e s e b s ae s e s et e e s s e e e s s e s e s s e a et et e e e s e b et s ae e be b e b s ne e e st et en

Chapter 15. StringSand SOMTiNGcccorrrririeieieiieieieeieieerese st 174
15.1 Finding & SUDSEING WITh INAEX «.....cueuieieiicireieireicereisee ettt 174
15.2 Manipulating @ SUBSENG WIth SUDSEEc..ciiiiiii ettt 175
15.3 Formatting Data with sprintf
15.4 Advanced Sorting........c.ccveeerneeeencenennnne
L. 5 EEXEICISES . vrvreeeiseresetesese et e ese bbb s R E AR AR bbbt

Chapter 16. SIMPIEDALADASES........c.ceiirtrerirerieieieerer et
16.1 DBM Filesand DBM Hashes........c.cccccvununene
16.2 Manipulating Data with pack and unpack
16.3 Fixed-length Random-access Databases.......
16.4 Variable-1ength (TEXE) DEIBDASESc.cueuriueeriieereieieinie ettt bbb
L85 EEXEICISES ... vvvreeireeeaitesese s et es et bbb R e R R AR bR

Chapter 17. Some Advanced Perl Techniques
17.1 Trapping Errorswith eval ...
17.2 Picking Itemsfrom aList with grep..........
17.3 Transforming Items from a List with map....
17.4 Unquoted Hash Keys........ccveeuneeeneeceneene
17.5 More Powerful Regular Expressions....
17.6 SHCES..coveeeeririeireeiree e
177 EXEICISB et ertreseireaetreie ittt h bR AR A bR h et 205

APPENTIX A, EXEI CISE ANSIWET Sttt ettt bbbttt s e e e bbb b b e se e e rees 206

Appendix B. Beyond thELIAMA ..ot
B.1 Further Documentationccoueeeeenennen.
B.2 Regular eXpressions..........cueeveeeneeeenenns

B.4 Extending Perl's Functiondity.............
B.5 Some Important Modules....................

B.8 Other Operators and Functions
B.9 MathematiCs.......coceuerneeeerrereereseieeneinenns

BLLO0 LISIS @MU ATTAYS. ...ereuereeeirieeieeeieseesessesesessssessesessessessssess s st essessssesses e s s eesssseses s es s e es b ee b ae st ae s et s bbb bes b s b assesanaesas
BL11 BitS@NU PIECES.......cieeieeicecieieiseeie ettt ssse s s sttt b e s b s et s b £ e b bbbt R et e Rt e ettt en
B.12 Formats.........cooeeveenenee
B.13 Networking and IPC...
B 12 SECUNTY ..vuvueeeereeeeseireseireseeseies s es bbb ses bR A8 R 4ot bbb
B .15 DEOUGGING. - tereerereereserisetresesniessesessesesseseseesesessesessessesessesessesstsssssssesessesses sasssesessessssssesssssssssessssssasaesssesnssesnssessssesssssssesssesans
B.16 The Common Gateway Interface (CGl)...
B.17 Command-Line Options..........c.cceneereeennee.
B.18 Builtin Variables........c.cccovernirenirninnnes
B.19 Syntax EXtENSIONS.........ccoveernieerrerrenenns
B.20 REFEENCES........coervvreeicrrereeerenecreereeienas
B.21 Tied Variables.......coeverveeninecrenins
B.22 Operator Overloading..........cocveeenee.
B.23 Dynamic Loading.........coecevreverrieennees
B.24 EMbedding.......coceuerneeeeneeneereseieeneinenns
B.25 Converting Other Languagesto Perl
B.26 Converting find Command Linesto Perl.....
B.27 Command-line Optionsin Y our Programs
B.28 EMDEAUEA DOCUMENTALION.......uevueeereereseirieseseineseesese st seee s seses s bbb bbbttt s s et
B.29 More Waysto Open Filehandles......

B.30 Localesand Unicode...........oocereunnee

B.31 Threads and Forking..........c..cccveeeenee.

B.32 Graphica User Interfaces (GUIs)
(ST IC T AN 4 o 1Yo PO TR 252

COIOPNON .. bbb bbbt b bbb 253

Learning Perl, 3rd edition

Preface

Welcome to the third edition of Learning Perl.

If you're looking for the best way to spend your first 30 to 45 hours with the Perl programming
language, look no further. In the pages that follow, you'll find a carefully paced introduction to the
language that remains the workhorse of the Internet, as well as the language of choice for system
administrators, web hackers, and casual programmers around the world.

We can't give you al of Perl in just afew hours. The books that promise that are probably fibbing
abit. Instead, we've carefully selected a complete and useful subset of Perl for you to learn, good
for programs from one to 128 lines long, which end up being about 90% of the programsin use out
there. And when you're ready to go on, we've included a number of pointers for further education.

Each chapter is small enough to be read in an hour or two. Each chapter ends with a series of
exercises to help you practice what you've just learned, with the answers in Appendix A for your
reference. Thus, this book is ideally suited for a classroom "introduction to Perl" course. We
know this directly, because the material for this book was lifted aimost word-for-word from our
flagship "Learning Perl" course, delivered to thousands of students around the world. However,
we've designed the book for self-study aswell.

Although Perl lives as the "toolbox for Unix," you don't have to be a Unix guru, or even a Unix
user, to use this book. Unless otherwise noted, everything we're saying applies equally well to
Windows ActivePerl from ActiveState, as well as to the later releases of MacPerl for the
Macintosh and pretty much every other modern implementation of Perl.

Although you don't need to know a single bit about Perl to begin reading this book, we do
recommend that you already have familiarity with basic programming concepts such as variables,
loops, subroutines, and arrays, and the all-important "editing a source code file with your favorite
text editor.” We won't spend any time trying to explain those concepts. Although we're pleased
that we've had many reports of people successfully picking up Learning Perl and grasping Perl as
their first programming language, of course we can't promise the same results for everyone.

Typographical Conventions

The following font conventions are used in this book:
Constant w dth

is used for method names, function names, variables, and attributes. It is also used for code
examples.

Constant w dth bold

is used to indicate user input.
Constant width italic

is used to indicate a replaceable item in code (e.g., fil ename, where you are supposed to
substitute an actua filename).

Italic

is used for filenames, URLS, hosthames, commands in text, important words on first mention,
and emphasis.

Learning Perl, 3rd edition

Footnotes

are used to attach parenthetical notes that you should not read on your first (or perhaps second
or third) reading of this book. Sometimes lies are spoken to simplify the presentation, and the
footnotes restore the lie to truth. Often the material in the footnote will be advanced material
not even discussed anywhere elsein the book.

How to Contact Us

We have tested and verified al the information in this book to the best of our abilities, but you may
find that features have changed or that we have let errors slip through the production of the book.
Please let us know of any errors that you find, as well as suggestions for future editions, by writing
to:

O'Reilly & Associates, Inc.

101 Morris St.

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can aso send messages electronically. To be put on our mailing list or to request a catalog,
send email to:

info@oreilly.com
To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. It also offers a downloadable set of text files (and a couple of Perl programs) which are
useful, but not required, when doing some of the exercises. Y ou can access this page at:

http://www.oreilly.com/catal og/I per| 3/
For more information about this book and others, see the O'Reilly web site:
http://www.oreilly.com

Code Examples

You are invited to copy the code in the book and adapt it for your own needs. Rather than copying
by hand, however, we encourage you to download the code from
http://www.oreilly.com/catal og/l perl 3/.

History of This Book

For the curious, here's how Randal tells the story of how this book came about:

After | had finished the first Programming Perl book with Larry Wall (in 1991), | was approached
by Taos Mountain Software in Silicon Valley to produce a training course. This included having
me deliver the first dozen or so courses and train their staff to continue offering the course. | wrote
the course for them' and delivered it for them as promised.

Y Inthe contract, | retained the rights to the exercises, hoping someday to reuse themin some other way, like in the magazine
columns | waswriting at thetime. The exercises are the only things that lept from the Taos cour se to the book.

http://www.oreilly.com/catalog/lperl3/
http://www.oreilly.com
http://www.oreilly.com/catalog/lperl3/

Learning Perl, 3rd edition

On the third or fourth delivery of that course (in late 1991), someone came up to me and said, "you
know, | realy like Programming Perl, but the way the material is presented in this course is so
much easier to follow - you oughta write a book like this course.” It sounded like an opportunity to
me, so | started thinking about it.

| wrote to Tim O'Reilly with a proposal based on an outline that was similar to the course | was
presenting for Taos - athough | had rearranged and modified a few of the chapters based on
observations in the classroom. | think that was my fastest proposal acceptance in history - | got a
message from Tim within fifteen minutes saying "we've been waiting for you to pitch a second
book - Programming Perl is selling like gangbusters.” That started the effort over the next eighteen
months to finish thefirst edition of Learning Perl.

During that time, | was starting to see an opportunity to teach Perl classes outside Silicon Valley?,
s0 | created a class based on the text | was writing for Learning Perl. | gave a dozen classes for
various clients (including my primary contractor, Intel Oregon), and used the feedback to fine-tune
the book draft even further.

The first edition hit the streets on the first day of November, 1993° and became a smashing
success, frequently even outpacing Programming Perl book sales.

The back-cover jacket of the first book said "written by aleading Perl trainer.” Well, that became a
sdlf-fulfilling prophesy. Within afew months, | was starting to get email from all over the United
States from people asking to have me teach at their site. In the following seven years, my
company became the leading worldwide on-site Perl training company, and | had personally
racked up (literally) a million frequent-flier miles. It didn't hurt that the Web started taking off
about then, and the webmasters and webmistresses picked Perl as the language of choice for
content management, interaction through CGI, and maintenance.

For the past two years, |'ve been working closely with Tom Phoenix in his role as lead trainer and
content manager for Stonehenge, giving him charter to experiment with the "Llama" course by
moving things around and breaking things up. When we had come up with what we thought was
the best mgjor revision of the course, | contacted O'Reilly and said "it's time for a new book!" And
now you're reading it.

Some of the differences you may notice from prior editions:

Thetext is completely new. Rather than simply copy-and-paste from previous editions, we
have derived the text from our Stonehenge "Learning Perl" courseware and the instructor
notes we've created and road-tested. (Some of the exercises are similar to the originals
simply because we were using the prior editions as our textbook until recently. But even
those have mutated during the rewrites.)

We've broken the hard-to-swallow-all-at-once regular expressions section into three easily
digestible sections.

We've created exercises with both Unix and Windows in mind.

2 My Taos contract had a no-compete clause, so | had to stay out of Silicon Valley with any similar courses, which | respected for
many years.

3| remember that date very well, because it was also the day | was arrested at my home for computer-related-activities around
my Intel contract, a series of felony charges for which | was later convicted. The appeals battle continues - see

http: //Amww.lightlink.com/forg/for details.

http://www.lightlink.com/fors/for

Learning Perl, 3rd edition

We got rid of the artificial "control structures' chapter, moving thewhi 1 e andi f statement
earlier, and the foreach and for loops later. This gives us more useful examples and
exercises for the scalars chapter, for example.

We moved subroutines much earlier to permit subsequent exercises to use subroutines for
the questions and answers.

We now teach element syntax before the aggregate syntax for both arrays and hashes. This
has worked a bit of a miracle in the classrooms, since it nearly always keeps beginners
from the all-too-common mistake of writing a slice where they mean an element. At the
risk of hubris, well admit that we expect other Perl instructors and books to follow our
lead here.

The exercises are more real-world and better paced.

We've included information on use strict, warnings, and modules, athough mostly as
pointers for further information.

We've made the book much less addressed to the Unix system administrator, and much
more to the genera programmer. The phrase "like C" has been nearly completely
eliminated.

The jokes are better. (We're constantly improvising jokes in the classroom, and some of
these end up as part of the standard Stonehenge script. The best of those ended up here.
Y ou should see what didn't make the cut!)

We deeply regret that this edition lacks the wonderfully witty Foreword, written by Larry
Wall, who was busy defining Perl 6 as we went to press. Larry is aways supportive of our
efforts, and we know that he's still part of the book in spirit, if not in word, to wish you the
best as you start your holiday in the lustrous land of Perl.

Acknowledgments

From Randal. | want to thank the Stonehenge trainers past and present (Joseph Hall, Tom
Phoenix, Chip Salzenberg, Brian d Foy, and Tad McClellan) for their willingness to go out and
teach in front of classrooms week after week and to come back with their notes about what's
working (and what's not) so we could fine-tune the material for this book. | especialy want to
single out my co-author and business associate, Tom Phoenix, for having spent many, many hours
working to improve Stonehenge's Llama course and to provide the wonderful core text for most of
this book.

| also want to thank everyone at O'Reilly, especially our very encouraging and patient editor, Linda
Mui, and Tim O'Reilly himself for taking a chance on me in the first place with the Camel and
Llama books.

| am aso absolutely indebted to the thousands of people who have purchased the past editions of
the Llama so that | could use the money to stay "off the streets and out of jail," and to those
students in my classrooms who have trained me to be a better trainer, and to the stunning array of
Fortune 1000 clients who have purchased our classes in the past and will continue to do so into the
future.

As aways, a specia thanks to Lyle and Jack, for teaching me nearly everything | know about
writing. | won't ever forget you guys.

Learning Perl, 3rd edition

From Tom. I've got to echo Randal's thanks to our editor, Linda Mui, for her patience in pointing
out which jokes and footnotes were most excessive, while pointing out that she is in no way to
blame for the ones that remain. Both she and Randal have guided me through the process of
writing, and | am grateful.

And another echo with regard to Randal and the other Stonehenge trainers, who hardly ever
complained when | unexpectedly updated the course materials to try out a new teaching technique.
You folks have contributed many different viewpoints on teaching methods that 1 would never
have seen.

For many years, | worked at the Oregon Museum of Science and Industry (OMS!), and I'd like to
thank the folks there for letting me hone my teaching skills as | learned to build ajoke or two into
every activity, explosion, or dissection.

To the many folks on Usenet who have given me your appreciation and encouragement for my
contributions there, thanks. Asaways, | hope this helps.

Of course, deep thanks are due especialy to my co-author, Randal, for giving me the freedom to
try various ways of presenting the materia both in the classroom and here in the book, as well as
for the push to make this material into a book in the first place. And without fail, | must say that |
am indeed inspired by your on-going work to ensure that no one else becomes ensnared by the
legal troubles that have stolen so much of your time and energy; you're afine example.

From Both of Us. Thanks to our reviewers (Elaine Ashton, Kevin Bingham, Jarkko Hietaniemi,
Joe Johnston, and Ben Tilly) for providing comments on the draft of this book.

Thanks also to our many students who have let us know what parts of the course material have
needed improvement over the years. It's because of you that we're both so proud of it today.

Thanks to the many Perl Mongers who have made us feel at home as we've visited your cities.
Let'sdo it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to share his realy
cool and powerful toys with the rest of the world so that we can all get our work done just a little
bit faster, easier, and with more fun.

Learning Perl, 3rd edition

Chapter 1. Introduction

Welcometo the LIama book!

This is the third edition of a book that has been enjoyed by half a million readers since 1993. At
least, we hope they've enjoyed it. It's asure thing that we've enjoyed writing it.*

1.1 Questions and Answers

Y ou probably have some questions about Perl, and maybe even some about this book; especidly if
you've dready flipped through the book to see what's coming. So we'll use this chapter to answer
them.

1.1.11s This the Right Book for You?

If you're anything like us, you're probably standing in a bookstore right now,> wondering whether
you should get this Llama book and learn Perl, or maybe that book over there and learn some
language named after a snake, or a beverage, or a letter of the alphabet.® You've got about two
minutes before the bookstore manager comes over to tell you that thisisn't alibrary,” and you need
to buy something or get out. Maybe you want to use these two minutes to see a quick Perl
program, so you'll know something about how powerful Perl is and what it can do. In that case,
you should check out the whirlwind tour of Perl, later in this chapter.

1.1.2 Why Are There So Many Footnotes?

Thank you for noticing. There are a lot of footnotes in this book. Ignore them. They're needed
because Perl is chock-full of exceptions to its rules. Thisis agood thing, as rea life is chock-full
of exceptionsto rules.

But it means that we can't honestly say, "The fizzbin operator frobnicates the hoozistatic variables'
without a footnote giving the exceptions.® We're pretty honest, so we have to write the footnotes.
But you can be honest without reading them. (It's funny how that works out.)

Many of the exceptions have to do with portability. Perl began on Unix systems, and it till has
deep roots in Unix. But wherever possible, we've tried to show when something may behave
unexpectedly, whether that's because it's running on a non-Unix system, or for another reason. We
hope that readers who know nothing about Unix will nevertheless find this book a good
introduction to Perl. (And they'll learn alittle about Unix along the way, at no extra charge.)

*To be sure, thefirst edition was written by Randal L. Schwartz, the second by Randal L. Schwartz and Tom Christiansen, and
thisone by Randal L. Schwartz and Tom Phoenix. So, whenever we say "we" in this edition, we mean those last two. Now, if
you're wondering how we can say that we've enjoyed writing it (in the past tense) when we're still on thefirst page, that's easy:
we started at the end, and worked our way backwards. It soundslike a strange way to do it, we know. But, honestly, once we
finished writing the index, the rest was hardly any trouble at all.

® Actually, if you're like us, you're standing in a library, not a bookstore. But we're tightwads.

® Before you write to tell us that it's a comedy troupe, not a snake, we should really explain that we're dyslexically thinking of
CORBA.

"Unlessitis.

8 Except on Tuesdays, during a power outage, when you hold your elbow at a funny angle during the equinox, or whenuse

i nt eger isin effect inside a loop block being called by a prototyped subroutine prior to Perl version 5.6.

Learning Perl, 3rd edition

And many of the other exceptions have to do with the old "80/20" rule. By that we mean that 80%
of the behavior of Perl can be described in 20% of the documentation, and the other 20 percent of
the behavior takes up the other 80% of the documentation. So to keep this book small, well talk
about the most common, easy-to-tak-about behavior in the main text, and hint in the direction of
the other stuff in the footnotes (which arein asmaller font, so we can say morein less space).’

Once you've read the book all the way through without reading the footnotes, you'll probably want
to look back at some sections for reference. At that point, or if you become unbearably curious
along the way, go ahead and read the notes. A lot of them are just computer jokes anyway.

1.1.3 What About the Exercises and Their Answers?

The exercises are at the end of each chapter because, between the two of us, we've presented this
same course material to severa thousand students.® We have carefully crafted these exercises to
give you the chance to make mistakes aswell.

It's not that we want you to make mistakes, but you need to have the chance. That's because you
are going to make most of these mistakes during your Perl programming career, and it may as well
be now. Any mistake that you make while reading this book you won't make again when you're
writing a program on a deadline. And we're always here to help you out if something goes wrong,
in the form of Appendix A, which has our answer for each exercise and a little text to go with it,
explaining the mistakes you made and a few you didn't. Check out the answers when you're done
with the exercises.

Try not to peek at the answer until you've given the problem a good try, though. You'll learn better
if you figure it out rather than if you read about it. Even if you never make any mistakes, you
should look at the answers when you're done; the accompanying text will point out some details of
the program that might not be obvious at first.

1.1.4 What Do Those Numbers Mean at the Start of the Exercise?

Each exercise has a number in square brackets in front of the exercise text, looking something like
this:

1. [2] What doesthe 2 inside square brackets mean, when it appears at the start of an exercise'stext?

That number is our (very rough) estimate of how many minutes you can expect to spend on that
particular exercise. It's rough, so don't be too surprised if you're al done (with writing, testing, and
debugging) in half that time, or not done in twice that long. On the other hand, if you're redly
stuck, we won't tell anyone that you peeked at Appendix A to see what our answer looked like.

1.1.5 What If I'm a Perl Course Instructor?

If you're a Perl instructor who has decided to use this as your textbook (as many have over the
years), you should know that we've tried to make each set of exercises short enough that most
students could do the whole set in 45 minutes to an hour, with a little time left over for a break.

Some chapters exercises should be quicker, and some may take longer. That's because, once we
had written all of those little numbers in square brackets, we discovered that we don't know how to
add.

® We even discussed doing the entire book as a footnote to save the pagecount, but footnotes on footnotes started to get a bit
crazy.
O Not all at once.

Learning Perl, 3rd edition

1.2 What Does "Perl" Stand For?

Perl is short for " Practical Extraction and Report Language,” athough it has also been caled a
"Pathologically Eclectic Rubbish Lister," among other expansions.™* There's no point in arguing
which expansion is correct, because both of those are endorsed by Larry Wall, Perl's creator and
chief architect, implementor, and maintainer. He created Perl in the mid-1980s when he was trying
to produce some reports from a Usenet-news-like hierarchy of files for a bug-reporting system, and
awk ran out of steam. Larry, being the lazy programmer that he is"* decided to overkill the
problem with a general-purpose tool that he could use in at least one other place. The result was
Perl version zero.

1.2.1 Why Didn't Larry Just Use Some Other Language?

There's no shortage of computer languages, is there? But, at the time, Larry didn't see anything
that really met his needs. If one of the other languages of today had been available back then,
perhaps Larry would have used one of those. He needed something with the quickness of coding
available in shell or awk programming, and with some of the power of more advanced tools like
grep, cut, sort, and sed,” without having to resort to alanguage like C.

Perl tries to fill the gap between low-level programming (such as in C or C++ or assembly) and
high-level programming (such as "shell" programming). Low-level programming is usualy hard
to write and ugly, but fast and unlimited; it's hard to beat the speed of a well-written low-level
program on a given machine. And there's not much you can't do there. High-level programming,
a the other extreme, tends to be slow, hard, ugly, and limited; there are many things you can't do at
all with the shell, if there's no command on your system that provides the needed functionality.
Perl is easy, nearly unlimited, mostly fast, and kind of ugly.

L et'stake another look at those four claims we just made about Perl:

First, Perl is easy. As youll see, though, this means it's easy to use. It's not especialy easy to
learn. If you drive a car, you spent many weeks or months learning that, and now it's easy to
drive. When you've been programming Perl for about as many hours as it took you to learn to
drive, Perl will be easy for you.*

Perl is nearly unlimited. There are very few things you can't do with Perl. You wouldn't want to
write a interrupt-microkernel-level device driver in Perl (even though that's been done), but most
things that ordinary folks need most of the time are good tasks for Perl, from quick little one-off
programs to major industrial-strength applications.

Perl is mostly fast. That's because nobody is developing Perl who doesn't also use it - so we al
want it to be fast. If someone wants to add a feature that would be really cool, but which would
slow down other programs, Larry is amost certain to refuse the new feature until we find away to
make it quick enough.

1 |t'sactually a retronym, not an acronym. That is, Larry came up with the name first, and the expansion later. That'swhy
"Perl|" isn'tinall caps.

2\We're not insulting Larry by saying he'slazy; lazinessis a virtue. The wheelbarrow was invented by someone who was too
lazy to carry things; writing was invented by someone who was too lazy to memorize; Per| was invented by someone who was too
lazy to get the job done without inventing a whole new computer language.

B Don't worry if you don't know what these are. All that mattersis that they were the programs Larry had in his Unix toolbox,
but they weren't up to the tasks at hand.

14 But we hope you'll crash less often with the car.

Learning Perl, 3rd edition

Perl iskind of ugly. Thisistrue. The symbol of Perl has become the camel, from the cover of the
venerable Camel book (also known as Programming Perl), asister to this one. Camels are kind of
ugly, too. But they work hard, even in tough conditions. Camels are there to get the job done
despite al difficulties, even when they look bad and smell worse and sometimes spit at you. Perl
isalittle like that.

1.2.2 Is Perl Easy or Hard?

It's easy to use, but sometimes hard to learn. This is a generalization, of course. But in designing
Perl, Larry has had to make many trade-offs. When he's had the chance to make something easier
for the programmer at the expense of being more difficult for the student, he's decided in the
programmer's favor nearly every time. That's because you'll learn Perl only once, but you'll use it
again and again.”

Perl has any number of conveniences that let the programmer save time. For example, most
functions will have a default; frequently, the default is the way that you'll want to use the function.
So you'll seelines of Perl code like these:™®
while (<>) {

chonp;

print join("\t", (split /:/)[0, 2, 1, 5]), "\n";

Written out in full, without using Perl's defaults and shortcuts, that snippet would be roughly ten or
twelve times longer, so it would take much longer to read and write. It would be harder to
maintain and debug, too, with more variables. If you aready know some Perl, and you don't see
the variables in that code, that's part of the point. They're al being used by default. But to have
this ease at the programmer's tasks means paying the price when you're learning; you have to learn
those defaults and shortcuts.

Once you become familiar with Perl, you may find yourself spending less time trying to get shell
quoting (or C declarations) right, and more time surfing the Web, because Perl is a great tool for
leverage. Perl's concise constructs allow you to create (with minimal fuss) some very cool one-up
solutions or general tools. Also, you can drag those tools aong to your next job, because Perl is
highly portable and readily available, so you'll have even more time to surf.

Perl is avery high-level language. That means that the code is quite dense; a Perl program may be
around 30% to 70% as long as the corresponding program in C. This makes Perl faster to write,
faster to read, faster to debug, and faster to maintain. It doesn't take much programming before
you realize that, when the entire subroutine is small enough to fit onscreen al at once, you don't
have to keep scrolling back and forth to see what's going on. Also, since the number of bugsin a
program is roughly proportional to the length of the source code® (rather than being proportional
to the program's functionality), the shorter sourcein Perl will mean fewer bugs on average.

3 |f you're going to use a programming language for only a few minutes each week or month, you'd prefer onethat is easier to
learn, since you'll have forgotten nearly all of it from one use to the next. Perl isfor people who are programmersfor at least
twenty minutes per day, and probably most of that in Perl.

18 We won't explainit all here, but this example pulls some data from an input file or filesin one format and writes some of it out
in another format. All of its features are covered in this book.

7 With a sharp jump when any one section of the program exceeds the size of your screen.

Learning Perl, 3rd edition

Like any language, Perl can be "write-only" - it's possible to write programs that are impossible to
read. But with proper care, you can avoid this common accusation. Yes, sometimes Perl looks
like line-noise to the uninitiated, but to the seasoned Perl programmer, it looks like checksummed
line-noise with a mission in life. If you follow the guidelines of this book, your programs should
be easy to read and easy to maintain, and they probably won't win The Obfuscated Perl Contest.”®

1.2.3 How Did Perl Get to Be So Popular?

After playing with Perl a bit, adding stuff here and there, Larry released it to the community of
Usenet readers, commonly known as "the Net." The users on this ragtag fugitive fleet of systems
around the world (tens of thousands of them) gave him feedback, asking for ways to do this, that,
or the other thing, many of which Larry had never envisioned hislittle Perl handling.

But as a result, Perl grew, and grew, and grew. It grew in features. It grew in portability. What
was once a little language available on only a couple of Unix systems has now grown to have
thousands of pages of free online documentation, dozens of books, several mainstream Usenet
newsgroups (and a dozen newsgroups and mailing lists outside the mainstream) with an
uncountable number of readers, and implementations on nearly every system in use today - and
don't forget this Llamabook as well.

1.2.4 What's Happening with Perl Now?

Larry is ill in charge of Perl, athough the Perl development team is now made up of
approximately thirty key people and a few hundred others from around the world. And Perl is till
growing.

These days, Perl is still free for you to use. In fact, Larry promisesthat it will always be free. (He's
areally nice guy; you'd like him.) So go ahead and write code in Perl today, without worrying that
there will be alicensing fee on your program tomorrow.

So, if Perl is free, who pays Larry and the other Perl developers? Well, the majority of us
contribute to Perl as alabor of love; Perl helps us, and we help Perl. (If you ever see some way in
which you could improve Perl, we encourage you to send in your contributions, t0o.) In some
cases, though, a person or firm has paid someone to do some development work. This may be
because they needed some new functionaity badly enough to pay for it, or because they wanted to
make the world a better place.

Larry doesn't write all of the code these days, but he still guides the development and makes the
big decisions. One of the most important rules he's given us is this one: "Common things should
be easy; advanced things should at |east be possible.”

Because of that rule, you can be sure that anything that you need to do frequently will have a
shortcut in Perl. In fact, by the end of this book, you'll probably be using at least ten shortcutsin a
typical ten-line program. That is the sort of thing that makes Perl easier to use, at the price of
being harder to learn.

18 An actual annual event sponsored by the Perl Journal (at http: //ww.tpj.conv).

10

http://www.tpj.com/

Learning Perl, 3rd edition

1.2.5 What's Perl Really Good For?

Perl is good for quick-and-dirty programs that you whip up in three minutes. Perl is also good for
long-and-extensive programs that will take a dozen programmers three years to finish. Of course,
you'll probably find yourself writing many programs that take you less than an hour to complete,
from theinitial plan to the fully tested code.

Perl is optimized for problems which are about 90% working with text and about 10% everything
else. That description seems to fit most programming tasks that pop up these days. In a perfect
world, every programmer could know every language; you'd always be able to choose the best
language for each project. Most of the time, you'd choose Perl.*®

Although the Web wasn't even atwinkle in Tim Berners-Le€'s eye when Larry created Pexl, it was
a marriage made on the Net. Some claim that the deployment of Perl in the early 1990s permitted
lots of content to be moved into HTML format very rapidly, and the Web couldn't exist without
content. Of course, Perl is the darling language for small CGI scripting (programs run by a web
server) aswell - so much so that many of the uninformed still make statements like "Isn't CGI just
Perl?' or "Why would you use Perl other than for CGI?' We find those statements amusing.

1.2.6 What Is Perl Not Good For?

So, if it's good for so many things, what is Perl not good for? Well, you shouldn't choose Perl if
you're trying to make an opaque binary. That's a program that you could give away or sell to
someone who then can't see your secret algorithms in the source, and thus can't help you to
maintain or debug your code either. When you give someone your Perl program, you'll normally
be giving them the source, not an opague binary.

If you're wishing for an opague binary, though, we have to tell you that they don't exist. If
someone can install and run your program, they can turn it back into source code. Granted, this
won't necessarily be the same source that you started with, but it will be some kind of source code.
The real way to keep your secret algorithm a secret is, aas, to apply the proper number of
attorneys, they can write a license that says "you can do this with the code, but you can't do that.
And if you break our rules, we've got the proper number of attorneysto ensure that you'll regret it."

If you think you really want to compile your Perl code to make a binary, though, see Section 1.4.3
later in this chapter.

1.3 How Can | Get Perl?

You probably already have it. At least, we find Perl wherever we go. It ships with many systems,
and system administrators often install it on every machine at their site.®® But if you can't find it
already on your system, you can still get it for free.

Perl is distributed under two different licenses. For most people, since you'll merely be using it,
either license is as good as the other. If you'll be modifying Perl, however, you'll want to read the
licenses more closely, because they put some small restrictions on distributing the modified code.

For people who won't modify Perl, the licenses essentially say "it'sfree - have fun with it."

¥ Don't just take our word for it, though. If you want to know whether Per| is better than language X, learn them both and try
them both, then see which one you use most often. That'sthe one that's best for you. In the end, you'll understand Per| better
because of your study of language X, and vice versa, so it will be time well spent.

2\W\ell, each machine that is made for programming, at least.

11

Learning Perl, 3rd edition

In fact, it's not only free, but it runs rather nicely on nearly everything that calsitself Unix and has
a C compiler. You download it, type a command or two, and it starts configuring and building
itself. Or, better yet, you get your system administrator to type those two commands and install it
for you.”

Besides Unix and Unix-like systems, people have also been addicted enough to Perl to port it to
other systems, like the Macintosh,”? VMS, 0S/2, even MS/DOS and every modern species of
Windows - and probably even more by the time you read this** Many of these ports of Perl come
with an installation program that's even easier to use than the process for installing Perl on Unix.
Check for linksin the "ports" section on CPAN.

1.3.1 What Is CPAN?

CPAN is the Comprehensive Perl Archive Network, your one-stop shopping for Perl. It has the
source code for Perl itself, ready-to-install ports of Perl to all sorts of non-Unix systems?
examples, documentation, extensions to Perl, and archives of messages about Perl. In short, CPAN
is comprehensive.

CPAN is replicated on hundreds of mirror machines around the world; start at
http://www.cpan.org/ to find one near you. Most of the time, you can also simply visit
http: //COUNTRYCODE.cpan.or g/ where COUNTRYCODE is your two-letter official country code (like on
the end of your national domain names). Or, if you don't have access to the Net, you might find a
CD-ROM or DVD-ROM with al of the useful parts of CPAN on it; check with your loca
technical bookstore. Look for a recently minted archive, though; since CPAN changes daily, an
archive from two years ago is an antique. (Better yet, get akind friend with Net access to burn you
one with today's CPAN.)

CPAN s pretty-well organized; most of the time, you should find what you want with just a few
clicks of the mouse. But there's dso a couple of nice search interfaces on the Web at
http://search.cpan.org/ and http://kobesearch.cpan.org/,which are especialy helpful when you're
looking for an extension to Perl.

1.3.2 How Can | Get Support for Perl?
WEll, you get the complete source - so you get to fix the bugs yourself!

That doesn't sound so good, does it? But it really is a good thing. Since there's no "source code
escrow” on Perl, anyone can fix a bug - in fact, by the time you've found and verified a bug,
someone else has probably aready got afix for it. There are thousands of people around the world
who help to maintain Perl.

Now, we're not saying that Perl has a lot of bugs. But it's a program, and every program has at
least one bug.”

2| system administrators can't install software, what good arethey? If you have trouble convincing your admin to install Perl,
offer to buy a pizza. We've never met a sys admin who could say no to a free pizza, or at least counter-offer with something just
as easy to get.

2 MacPer| runs under the "classic” Mac OS. If you have Mac OS X, which is a Unix-based system, you have mainstream Perl.
2 And no, as we write this, it won't fit in your Palm handheld - it's just too darn big, even stripped down.

2| t's nearly always better to compile Perl from the source on Unix systems. Other systems may not have a C compiler and other
tools needed for compilation, so CPAN has binaries for these.

% Programmers also know that every program has at least one line of unnecessary source code. By combining these two rules
and using logical induction, it's a simple matter to prove that any program could be reduced to a single line of code with a bug.

12

http://www.cpan.org/
http://COUNTRYCODE.cpan.org/
http://search.cpan.org/
http://kobesearch.cpan.org/,which

Learning Perl, 3rd edition

To see why it's so useful to have the source to Perl, imagine that instead of using Perl, you licensed
a programming language called Forehead from a giant, powerful corporation owned by a
Zillionaire with a bad haircut. (This is al hypothetical. Everyone knows there's no such
programming language as Forehead.) Now think of what you can do when you find a bug in
Forehead. First, you can report it; second, you can hope - hope that they fix the bug, hope that they
fix it soon, hope that they won't charge too much for the new version. Y ou can hope that the new
version doesn't add new features with new bugs, and hope that the giant company doesn't get
broken up in an anti-trust lawsuit.

But with Perl, you've got the source. In the rare and unlikely event that you can't get a bug fixed
any other way, you can hire a programmer or ten and get to work. For that matter, if you buy a
new machine that Perl doesn't yet run on, you can port it yourself. Or if you need a feature that
doesn't yet exist, well, you know what to do.

1.3.3 Are There Any Other Kinds of Support?

Sure; one of our favorites is the Perl Mongers. This is a worldwide association of Perl users
groups; see http://www.pm.org/ for more information. There's probably a group near you with an
expert or someone who knows an expert. If there's no group, you can easily start one.

Of course, for the first line of support, you shouldn't neglect the documentation. Besides the
manpages” themselves, Perl's documentation includes the voluminous FAQ (Frequently Asked
Questions) and many tutorials.

Another authoritative source is the book Programming Perl , commonly known as "the Camel
book" because of its cover animal (just as this book has come to be known as "the L1ama book™).
The Camel book contains the complete reference information, some tutoria stuff, and a bunch of
miscellaneous information about Perl. There's also a separate pocket-sized quick reference to Perl
(by Johan Vromans) that's handy to keep at hand (or in your pocket).

If you need to ask a question of someone, there are newsgroups on Usenet and any number of
mailing lists®” At any hour of the day or night, there's a Perl expert awake in some timezone
answering questions on Usenet's Perl newsgroups - the sun never sets on the Perl empire. This
means that if you ask a question, you'll often get an answer within minutes. 1f you didn't check the
documentation and FAQ first, you'll get flamed within minutes.

We generally recommend the newsgroup comp.lang.perl.moderated , where (as the name implies)
a moderator will check over your question before posting it. If there's something wrong with your
question, you'll still get flamed of course, but it's a small, private flame in email rather than a big
public one in a newsgroup.”? But for most questions, you'll get an answer back within the hour.
Just try getting that level of support from your favorite software vendor for free!

The official Perl newsgroups on Usenet are located in the comp.lang.perl.* part of the hierarchy.
As of thiswriting, there are five of them, but they change from time to time. Y ou (or whoever isin
charge of Perl at your site) should generally subscribe to comp.lang.perl.announce, which is alow-

% The term manpagesis a Unix-ism meaning documentation. If you're not on a Unix system, the manpages for Per| should be

available via your system's native documentation system. If you can't find them anywhere else, the manpages are available
directly on CPAN.

2" Many mailing lists are listed at http:/lists.perl.org.

2 Of course, we'rejoking here. Unless you've done something amazingly boneheaded, the moderators are all kind, polite,

helpful folks, who will gently point you in the direction of the information you need, with just enough flame to remind you to be

more careful next time. Don't be afraid to ask.

13

http://www.pm.org/
http://lists.perl.org

Learning Perl, 3rd edition

volume newsgroup just for important announcements about Perl, including especially any security-
related announcements. Ask your local expert if you need help with Usenet.

Also, a few web communities have sprung up around Perl discussions. One very popular one,
known as The Perl Monastery (http://www.perlmonks.org) has seen quite a bit of participation
from many Perl book and column authors, including at least one of the authors of this book.

If you find yourself needing a support contract for Perl, there are a number of firms who are
willing to charge as much as you'd like. In most cases, these other support avenues will take care
of you for free.

1.3.4 What If | Find a Bug in Perl?

The first thing to do when you find a bug is to check the documentation® again.* Perl has so many
specia features and exceptions to rules that you may have discovered a feature, not a bug. Also,
check that you don't have an older version of Perl; maybe you found something that's been fixed in
amore recent version.

Once you're 99% certain that you've found a real bug, ask around. Ask someone at work, at your
local Perl Mongers meeting, or at a Perl conference. Chances are, it's still afeature, not a bug.

Once you're 100% certain that you've found areal bug, cook up atest case (if you haven't done so
already). Theideal test caseisatiny self-contained program that any Perl user could run to see the
same (mis-)behavior as you've found. Once you've got a test case that clearly shows the bug, use
the perlbug utility (which comes with Perl) to report the bug. That will normally send email from
you to the Perl developers, so don't use perlbug until you've got your test case ready.

Once you've sent off your bug report, if you've done everything right, it's not unusua to get a
response within minutes. Typically, you can apply a simple patch and get right back to work. Of
course, you may (at worst) get no response a all; the Perl developers are under no obligation to
even read your bug reports. But all of uslove Perl, so nobody likesto let a bug escape our notice.

1.4 How Do | Make a Perl Program?

It's about time you asked (even if you didn't). Perl programs are text files; you can create and edit
them with your favorite text editor. (You dont need any specia development environment,
although there are some commercia ones available from various vendors. We've never used any
of these enough to recommend them.)

You should generally use a programmers' text editor, rather than an ordinary editor. What's the
difference? Well, a programmers' text editor will let you do things that programmers need, like to
indent or unindent a block of code, or to find the matching closing curly brace for a given opening
curly brace. On Unix systems, the two most popular programmers editors are emacs and vi (and
their variants and clones). Both of these have been ported to several non-Unix systems, and many
systems today offer a graphical editor (which uses a pointing device like a mouse). In fact, there
are even versions of vi and emacs that offer a graphical interface. Ask your local expert about text
editors on your system.

® Even Larry admits to consulting the documentation from time to time.
% Maybe even twice or threetimes. Many times, we've gone into the documentation looking to explain a particular unexpected
behavior and found some new little nuance that ends up on a slide or in a column.

14

http://www.perlmonks.org

Learning Perl, 3rd edition

For the simple programs you'll be writing for the exercises in this book, none of which will need to
be more than about twenty or thirty lines of code, any text editor will be fine.

A few beginners try to use a word processor instead of atext editor. We recommend against this -
it's inconvenient at best and impossible at worst. But we won't try to stop you. Be sureto tell the
word processor to save your file as "text only"; the word processor's own format will amost
certainly be unusable.

In some cases, you may need to compose the program on one machine, then transfer it to another
to be run. If you do this, be sure that the transfer uses " text" or " ASCII" mode, and not " binary"
mode. This step is needed because of the different text formats on different machines. Without
that, you may get inconsistent results - some versions of Perl actually abort when they detect a
mismatch in the line endings.

1.4.1 A Simple Program

According to the oldest rule in the book, any book about a computer language that has Unix-like
roots has to start with showing the "Hello, world" program. So, hereitisin Perl:

#!/usr/ bi n/ perl

print "Hello, world!\n";

Let's imagine that you've typed that into your text editor. (Don't worry yet about what the parts
mean and how it works. We'l see about those in a moment.) Y ou can generally save that program
under any name you wish. Perl doesn't require any specia kind of filename or extension, and it's
better to use no extension at all.** But some non-Unix systems may require an extension like .plx
(meaning PerL eXecutable); see your system's rel ease notes for more information.

Y ou will aso need to do something so that your system knows that it's an executable program (that
is, acommand). What you'll do depends upon your system; maybe you won't have to do anything
more than to save the program in a certain place. (Your current directory will generally be fine.)
On Unix systems, you mark a program as being executable by using the chmod command, perhaps
likethis:

$ chnod a+x my_program
The dollar sign (and space) at the start of the line represents the shell prompt, which will probably
look different on your system. If you're used to using chmod with a number like 755 instead of a

symbolic parameter like a+x, that's fine too, of course. Either way, it tells the system that this file
iS now a program.

Now you'reready to run it:
$./ny_program

The dot and slash at the start of this command mean to find the program in the current working
directory. That's not needed in al cases, but you should use it at the start of each command
invocation until you fully understand what it's doing.*

S \Why isit better to have no extension? Imagine that you've written a programto calculate bowling scores and you've told all of
your friends that it's called bowling.plx. One day you decide to rewriteitin C. Do you still call it by the same name, implying
that it's till writtenin Perl? Or do you tell everyonethat it has a new name? (And don't call it bowling.c, please!) The answer is
that it's none of their business what language it'swritten in, if they're merely using it. So it should have simply been called
bowling in thefirst place.

% |n short, it's preventing your shell from running another program (or shell builtin) of the same name. A common mistake
among beginnersisto nametheir first programt est . Many systems already have a program (or shell builtin) with that name;
that's what the beginners run instead of their program.

15

Learning Perl, 3rd edition

If everything worked, it'samiracle. More often, you'll find that your program has a bug. Edit and
try again - but you don't need to use chmod each time, since that should "stick” to the file. (Of
course, if the bug is that you didn't use chmod correctly, you'll probably get a "permission denied"
message from your shell.)

1.4.2 What's Inside That Program?

Like other "free-form" languages, Perl generally lets you use insignificant whitespace (like spaces,
tabs, and newlines) at will to make your program easier to read. Most Perl programs use a fairly
standard format, though, much like most of what we show here. We strongly encourage you to
properly indent your programs, since that makes your program easier to read; a good text editor
will do most of the work for you. Good comments also make a program easier to read. In Perl,
comments run from a pound sign (#) to the end of the line. (There are no " block comments” in
Perl.*®) We don't use many comments in the programs in this book, because the surrounding text
explains their workings, but you should use comments as heeded in your own programs.

So another way (a very strange way, it must be said) to write that same "Hello, world" program
might be like this:
#!/usr/ bi n/ perl

print # This is a comment

"Hell o, world!\n"
; # Don't wite your Perl code |ike thisl!

That first line is actually a very specia comment. On Unix systems® if the very first two
characters on the first line of atext fileare"#! ", then what follows is the name of the program that
actually executesthe rest of thefile. Inthis case, the program is stored in the file /usr/bin/perl.

This #! line is actualy the least portable part of a Perl program, because you'll need to find out
what goes there for each machine. Fortunately, it's amost aways either /usr/bin/perl or
{usr/local/bin/perl . If you find that it's not, you can cast a magic spdl on your system
administrator to fix things. Just say "You know, | read in a book that both /usr/bin/perl and
{usr/local/bin/per! should be symbolic links to the true Perl binary,” and under the influence of
your spell the admin will make everything work. All of the example programs you're likely to find
on the Net and el sewhere will begin with one of those two forms.

On non-Unix systems, it's traditional (and even useful) to make the first line say #! perl . If
nothing elsg, it tells your maintenance programmer as soon as he or she gets ready to fix it that it's
aPerl program.

If that #!' line is wrong, you'll generally get an error from your shell. This may be something
unexpected, like "file not found." It's not your program that's not found, though; it's /usr/bin/per|
that wasn't where it should have been. We'd make the message clearer, but it's not coming from
Perl; it's the shell that's complaining. (By the way, you should be careful to spell it usr and not
user - the folks who invented Unix were lazy typists, so they omitted alot of |etters.)

Another problem you could have is if your system doesn't support the #! line at al. In that case,
your shell (or whatever your system uses) will probably try to run your program al by itself, with
results that may disappoint or astonish you. If you can't figure out what some strange error
message istelling you, search for it in the perldiag manpage.

33 But there are a number of ways to fake them. See the FAQ (accessible with perldocperlfaq on most installations).
3 Most modern ones, anyway. The"sh-bang" mechanismwas introduced somewherein the mid-1980s, and that's pretty ancient,
even on the extensively long Unix timeline.

16

Learning Perl, 3rd edition

The "main” program consists of al of the ordinary Perl statements (not including anything in
subroutines, which we'll see later). There's no "main” routine, as there is in languages like C or
Java. In fact, many programs don't even have routines (in the form of subroutines).

There's also no required variable declaration section, as there is in some other languages. If you've
always had to declare your variables, you may be startled or unsettled by this at first. But it allows
us to write "quick-and-dirty" Perl programs. If your program is only two lineslong, you don't want
to have to use one of those lines just to declare your variables. If you realy want to declare your
variables, that's a good thing; we'll see how to do that in Chapter 4.

Most statements are an expression followed by a semicolon. Here's the one we've seen a few times
sofar:

print "Hello, world!\n";

As you may have guessed by now, this line prints the message Hel | o, wor | d! At the end of that
message is the shortcut \ n , which is probably familiar to you if you've used another language like
C, C++, or Java; it means a newline character. When that's printed after the message, the print
position drops down to the start of the next line, allowing the following shell prompt to appear on a
line of its own, rather than being atached to the message. Every line of output should end with a
newline character. Well see more about the newline shortcut and other so-called backsash
escapes in the next chapter.

1.4.3 But How Do | Compile Perl?

You may be surprised to learn that all you have to do to compile Perl isto run it. When you run
your program, Perl's internal compiler first runs through your entire source, turning it into internal
bytecodes (an internal data structure representing the program); then Perl's bytecode engine
actually runsthem.*

o, if there's a syntax error on line 200, you'll get that error message before you start running line
two.® If you have a loop that runs 5000 times, it's compiled just once; the actual loop can then run
at top speed. And there's no runtime penalty for using as many comments and as much whitespace
as you need to make your program easy to understand. You can even use calculations involving
only constants, and the result is a constant computed once as the program is beginning - not each
time through aloop.

To be sure, this compilation does take time - it's inefficient to have a voluminous Perl program that
does one small quick task (out of many potential tasks, say) and then exits, because the runtime for
the program will be dwarfed by the compile time. But the compiler is very fast; normally the
compilation will be atiny percentage of the runtime.

An exception might be if you were writing a program to be run over the Web, where it may be
called hundreds or thousands of times every minute. (This is a very high usage rate. If it were
called afew hundreds or thousands of times per day, like most programs on the Web, we probably
wouldn't worry too much about it.) Many of these programs have very short runtimes, so the issue
of recompilation may become significant. If thisis an issue for you, you'll want to find a way to
keep your program resident in memory between invocations (whether it's written in Perl or not);
see the documentation for your web server and ask your local expert for help with this*’

% Asusual, there's more to the story than what we say here. But this should be close enough for all but the technically advanced
folks, and they already know about this.

% Unless line two happens to be a compile-time operation, like a BEG N block or a use invocation.

37 point your local expert to http://per|.apache.orgfor one possible solution.

17

http://perl.apache.orgfor

Learning Perl, 3rd edition

What if you could save the compiled bytecodes to avoid the overhead of compilation? Or, even
better, what if you could turn the bytecodes into another language, like C, and then compile that?
Wéll, both of these things are possible (although beyond the scope of this book), although they
won't make most programs any easier to use, maintain, debug, or install, and they may (for
somewhat technical reasons) make your program even slower.® We don't know anyone who has
ever needed to compile a Perl program (except for experimental purposes), and we doubt you ever
will ever meet one, either.

1.5 A Whirlwind Tour of Perl

So, you want to see a rea Perl program with some meat? (If you don't, just play along for now.)
Hereyou are:

#!/usr/ bi n/ perl
@ines = "perldoc -u -f atan2’;

foreach (@ines) {

s/\w<([7~>] +) >/ \ U1/ g;

print;
}
Now, the first time you see Perl code like this, it can seem pretty strange. (In fact, every time you
see Perl code like this, it can seem pretty strange.) But let's take it line by line, and see what this
example does. (These explanations are very brief; thisis a whirlwind tour, after al. We'll see al
of this program's features in more detail during the rest of this book. You're not really supposed to
understand the whole thing until later.)

Thefirst lineisthe #! line, as we saw before. Y ou might need to change that line for your system,
aswe discussed earlier.

The second line runs an external command, named within backquotes ("> ~"). (The backquote key
is often found next to the number 1 on full-sized American keyboards. Be sure not to confuse the
backquote with the single quote, ™ ".) The command we're using is perldoc -u -f atan2; try typing
that at your command line to see what its output looks like.

The perldoc command is used on most systems to read and display the documentation for Perl and
its associated extensions and utilities, so it should normally be available.® This command tells you
something about the trigonometric function at an2; we're using it here just as an example of an
external command whose output we wish to process.

The output of that command in the backticks is saved in an array variable called @i nes . The next
line of code starts a loop that will process each one of those lines. Inside the loop, the statements
areindented. Although Perl doesn't require this, good programmers do.

% On many (perhaps most) systems where you might want to compile a Per| program, the per| binary (the program that executes
your Perl programs) is always in use by some process, so it's always resident in memory. A "compiled Perl" programwill take
timeto load into memory. Ifit'sasmall program, it would probably compile at least asfast asit takes to loada compiled
executable. If it'salarge one, compilation is probably an insignificant part of its runtime anyway.

%1 perldoc is not available, that probably means that your system doesn't have a command-line interface, and your Per| can't
run commands (like perldoc) in backticks or via the piped-open, which we'll seein Chapter 14. Inthat case, you should simply
skip the exercises that use perldoc.

18

Learning Perl, 3rd edition

The first line inside the loop body is the scariest one; it says s/ \ w<([*>] +) >/\ U$1/ g; . Without
going into too much detail, well just say that this can change any line that has a special marker
made with angle brackets (< >), and there should be at least one of those in the output of the
perldoc command.

The next line, in a surprise move, prints out each (possibly modified) line. The resulting output
should be similar to what perldoc -u -f atan2 would do on its own, but there will be achange where
any of those markers appears.

Thus, in the span of a few lines, we've run another program, saved its output in memory, updated
the memory items, and printed them out. This kind of program is a fairly common use of Perl,
where one type of datais converted to another.

19

Learning Perl, 3rd edition

1.6 Exercises

Normally, each chapter will end with some exercises, with the answersin Appendix A. But in this
chapter, the answers were aready provided.

If you can't get these exercises to work on your machine, double-check your work and then consult
your local expert. Remember that you may need to change each program a little, as described in
the text.

1. [7] Type in the "Hello, world" program and get it to work! (You may name it anything
you wish, but a good name might be ex1- 1, for smplicity, since it's exercise 1 in Chapter
1)

2. [5] Type the command perldoc -u -f atan2 at a command prompt and note its output. If
you can't get that to work, then find out from a local administrator or the documentation
for your version of Perl about how to invoke perldoc or its equivalent. (You'll need this
for the next exercise anyway.)

3. [6] Type in the second example program (from the previous section) and see what it
prints. (Hint: Be careful to type those punctuation marks exactly as shown!) Do you see
how it changed the output of the command?

20

Learning Perl, 3rd edition

Chapter 2. Scalar Data
2.1 What Is Scalar Data?

In English, as in many other spoken languages, we're used to distinguishing between singular and
plural. As a computer language designed by a human linguist, Perl is similar. As a genera rule,
when Perl has just one of something, that's ascalar.”

A scalar isthe simplest kind of data that Perl manipulates. Most scalars are either a number (like
255 or 3.25e20) or a string of characters (like hel | o* or the Gettysburg Address). Although you
may think of numbers and strings as very different things, Perl uses them nearly interchangeably.

A scalar value can be acted upon with operators (like addition or concatenate), generally yielding a
scalar result. A scalar value can be stored into ascalar variable. Scalars can be read from files and
devices, and can be written out aswell.

2.2 Numbers

Although a scalar is most often either a number or a string, it's useful to look at numbers and
strings separately for the moment. Welll cover numbersfirst, and then move on to strings.

2.2.1 All Numbers Are the Same Format Internally

Asyou'll seein the next few paragraphs, you can specify both integers (whole numbers, like 255 or
2001) and floating-point numbers (real numbers with decimal points, like 3.14159, or 1.35 x
1025). But internally, Perl computes with double-precision floating-point values.” This means
that there are no integer values internal to Perl - an integer constant in the program is treated as the
equivalent floating-point value.® You probably won't notice the conversion (or care much), but
you should stop looking for distinct integer operations (as opposed to floating-point operations),
because there aren't any.*

2.2.2 Floating-Point Literals

A literal is the way a value is represented in the source code of the Perl program. A literal is not
the result of acalculation or an I/O operation; it's data written directly into the source code.

Perl's floating-point literals should look familiar to you. Numbers with and without decimal points
are dlowed (including an optional plus or minus prefix), as well as tacking on a power-of-10
indicator (exponential notation) with E notation.

“ This has little to do with the similar term from mathematics or physicsin that a scalar isa single thing; there are no "vectors'

in Perl.

“! |f you have been using other programming languages, you may think of hel | o asa collection of five characters, rather than
asasinglething. Butin Perl, astringisasingle scalar value. Of course, we can access the individual characters when we need

to; we'll see how to do that in later chapters.

“2 A double-precision floating-point value is whatever the C compiler that compiled Per| used for adoubl e declaration. While

the size may vary from machine to machine, most modern systems use | EEE floating-point formats, which suggest 15 digits of

precision and arange of at least 1e- 100 to 1e100.

“B\Well, Perl will sometimes useinternal integersin waysthat are not visible to the programmer. That is, the only difference you

should generally be able to seeisthat your programruns faster. And who could complain about that?

“ Okay, thereisthei nt eger pragma. But using that is beyond the scope of this book. And yes, some operations force an

integer to be computed from a given floating-point number, aswe'll seelater. But that's not what we're talking about here.

21

Learning Perl, 3rd edition

For example:

1.25
255. 000
255.0
7.25e45 # 7.25 tinmes 10 to the 45th power (a big nunber)
-6.5e24 # negative 6.5 tines 10 to the 24th
(a big negative nunber)
-12e-24 # negative 12 tinmes 10 to the -24th
(a very small negative numnber)
-1.2E-23 # another way to say that - the E may be uppercase

2.2.3 Integer Literals

Integer literals are also straightforward, asin:

0

2001

-40

255
61298040283768

That last one is a little hard to read. Perl allows underscores for clarity within integer literals, so
we can a so write that number like this:

61_298 040 283_768

It's the same valuge; it merely looks different to us human beings. You might have thought that
commas should be used for this purpose, but commas are aready used for a more-important
purposein Perl (aswe'll seein the next chapter).

2.2.4 Nondecimal Integer Literals

Like many other programming languages, Perl alows you to specify numbers in other than base 10
(decimal). Octal (base 8) literas start with a leading 0, hexadecimal (base 16) literas start with a
leading 0x, and binary (base 2) literals start with a leading ob.™ The hex digits A through F (or a
through f) represent the conventional digit values of ten through fifteen. For example:

0377 # 377 octal, same as 255 deci mal

Oxf f # FF hex, also 255 deci nal
Ob11111111 # al so 255 decimal (available in version 5.6 and |ater)

Although these values look different to us humans, they're al three the same number to Perl. It
makes no difference to Perl whether you write 0xFF or 255. 000, SO choose the representation that
makes the most sense to you and your maintenance programmer (by which we mean the poor chap
who gets stuck trying to figure out what you meant when you wrote your code. Most often, this
poor chap isyou, and you can't recall whay you did what you did three months ago).

When a non-decimal literal is more than about four characters long, it may be hard to read. For
this reason, starting in version 5.6, Perl allows underscoresfor clarity within theseliterals:

0x1377_0b77
0x50_65_72_7C

> The"leading zero" indicator works only for literals - not for automatic string-to-number conversion, which we'll seelater in
thischapter. You can convert a data string that looks like an octal or hex value into a number withoct () or hex() . Although
there'sno "bi n" function for converting binary values, oct () can do that for strings beginning with Ob.

22

Learning Perl, 3rd edition

2.2.5 Numeric Operators

Perl provides the typical ordinary addition, subtraction, multiplication, and division operators, and
so on. For example:

2 +3 # 2 plus 3, or 5

51 - 2.4 #5 1 mnus 2.4, or 2.7

3 * 12 # 3 times 12 = 36

14/ 2 # 14 divided by 2, or 7

10.2 / 0.3 # 10.2 divided by 0.3, or 34

10/ 3 # always fl oating-point divide, so 3.3333333...

Perl also supports a modulus operator (%9. The value of the expression 10 % 3 is the remainder
when ten is divided by three, which is one. Both values are first reduced to their integer values, so
10.5 % 3. 2 iscomputed as10 % 3.

Additionally, Perl provides the FORTRAN-like exponentiation operator, which many have
yearned for in Pascal and C. The operator is represented by the double asterisk, such as 2** 3,
which istwo to the third power, or eight.”

In addition, there are other numeric operators, which well introduce as we need them.
2.3 Strings

Strings are sequences of characters (like hel | 0). Strings may contain any combination of any
characters.®

The shortest possible string has no characters. The longest string fills al of your available memory
(although you wouldn't be able to do much with that). Thisis in accordance with the principle of
"no built-in limits" that Perl follows at every opportunity. Typical strings are printable sequences
of letters and digits and punctuation in the ASCII 32 to ASCII 126 range. However, the ability to
have any character in a string means you can create, scan, and manipulate raw binary data as
strings - something with which many other utilities would have great difficulty. For example, you
could update a graphica image or compiled program by reading it into a Perl string, making the
change, and writing the result back ouit.

Like numbers, strings have a literal representation, which is the way you represent the string in a
Perl program. Literal strings come in two different flavors: single-quoted string literals and
double-quoted string literals.

2.3.1 Single-Quoted String Literals

A single-quoted string literal is a sequence of characters enclosed in single quotes. The single
guotes are not part of the string itself - they're just there to let Perl identify the beginning and the
ending of the string. Any character other than a single quote or a backslash between the quote
marks (including newline characters, if the string continues onto successive lines) stands for itself
inside a string. To get a backslash, put two backslashes in arow, and to get a single quote, put a
backslash followed by a single quote.

% The result of a modul us operator when a negative number (or two) isinvolved can vary between Per| implementations.
Beware.

4" You can't normally raise a negative number to a noninteger exponent. Math geeks know that the result would be a complex

number. To make that possible, you'll need the help of the Mat h: : Conpl ex module.

8 Unlike C or C++, there's nothing special about the NUL character in Perl, because Per| uses length counting, not a null byte,

to determine the end of the string.

23

Learning Perl, 3rd edition

In other words:

"fred # those four characters: f, r, e, and d
"barney' # those six characters

e # the null string (no characters)

"Don\'t let an apostrophe end this string prematurely!"’
"the last character of this string is a backslash: \\'
"hello\n" # hello followed by backslash followed by n

"hello
t here’ # hello, newine, there (11 characters total)
AR # single quote foll owed by backsl ash

Note that the \ n within a single-quoted string is not interpreted as a newline, but as the two
characters backdlash and n. Only when the backslash is followed by another backslash or asingle
guote doesit have special meaning.

2.3.2 Double-Quoted String Literals

A double-quoted string literal is similar to the strings you may have seen in other languages. Once
again, it's a sequence of characters, although this time enclosed in double quotes. But now the
backslash takes on its full power to specify certain control characters, or even any character at al
through octal and hex representations. Here are some double-quoted strings:

"bar ney" # just the same as 'barney’

"hello world\n" # hello world, and a new ine

"The | ast character of this string is a quote mark: \""

"coke\tsprite" # coke, a tab, and sprite

Note that the double-quoted literal string " bar ney” means the same six-character string to Perl as
does the single-quoted literal string ' bar ney' . It's like what we saw with numeric literals, where
we saw that 0377 was another way to write 255. 0. Perl lets you write the litera in the way that
makes more sense to you. Of course, if you wish to use a backslash escape (like \ n to mean a
newline character), you'll need to use the double quotes.

The backdash can precede many different characters to mean different things (generally called a

backslash escape). The nearly complete™ list of double-quoted string escapes is given in Table 2-

1.
Table 2-1, Double-quoted string backslash escapes
Construct Meaning
\n Newline
\r Return
\t Tab
\ f Formfeed
\b Backspace

9 Recent versions of Per| have introduced "Unicode" escapes, which we aren't going to be talking about here.

Learning Perl, 3rd edition

Construct Meaning
\a Bell
\e Escape (ASCI| escape character)
\ 007 Any octal ASCII value (here, 007 = bell)
\ x7f Any hex ASCII value (here, 7f = delete)
\cC A "control" character (here, Ctrl-C)
\\ Backslash
\" Double quote
\1 Lowercase next |etter
\L Lowercase al following letters until \ E
\u Uppercase next |etter
\U Uppercase al following letters until \ E
\Q Quote non-word characters by adding a backslash until \ E
\E Terminate\ L,\ U, 0r\ Q

Another feature of double-quoted strings is that they are variable interpolated, meaning that some
variable names within the string are replaced with their current values when the strings are used.
We haven't formally been introduced to what a variable looks like yet, so we'll get back to this later
in this chapter.

2.3.3 String Operators

String values can be concatenated with the . operator. (Yes, that's a single period.) This does not
alter either string, any more than 2+3 alters either 2 or 3. The resulting (longer) string is then
available for further computation or to be stored into avariable. For example:

"hello" . "world" # sane as "hel | owor| d"
"hello" . " ' . "world" # sane as 'hello world'
"hello world" . "\n" # sanme as "hello world\n"

Note that the concatenation must be explicitly requested with the . operator, unlike in some other
languages where you merely have to stick the two values next to each other.

25

Learning Perl, 3rd edition

A special string operator is the string repetition operator, consisting of the single lowercase letter
x. This operator takes its left operand (a string) and makes as many concatenated copies of that
string as indicated by itsright operand (a number).

For example:

"fred" x 3 # is "fredfredfred"

"barney" x (4+1) # is "barney" x 5, or "barneybarneybarneybar neybarney"
5x 4 #is really "5" x 4, which is "5555"

That last example is worth spelling out slowly. The string repetition operator wants a string for a
left operand, so the number 5 is converted to the string " 5" (using rules described in detail later),
giving a one-character string. This new string is then copied four times, yielding the four-character
string 5555. Note that if we had reversed the order of the operands, as4 x 5, we would have made
five copies of the string 4, yielding 44444. Thisshowsthat string repetition is not commutative.

The copy count (the right operand) is first truncated to an integer value (4.8 becomes 4) before
being used. A copy count of lessthan one resultsin an empty (zero-length) string.

2.3.4 Automatic Conversion Between Numbers and Strings

For the most part, Perl automatically converts between numbers to strings as needed. How does it
know whether a number or a string is needed? It all depends upon the operator being used on the
scalar value. If an operator expects a number (like + does), Perl will see the value as a number. If
an operator expects astring (like . does), Perl will see the value as a string. So you don't need to
worry about the difference between numbers and strings; just use the proper operators, and Perl
will makeit al work.

When a string value is used where an operator needs a number (say, for multiplication), Perl
automatically converts the string to its equivalent numeric value, as if it had been entered as a
decimal floating-point value.® So "12" * "3" gives the value 36. Trailing nonnumber stuff and
leading whitespace are discarded, so "12fred34" * " 3" will aso give 36 without any
complaints.® At the extreme end of this, something that isn't a number at all convertsto zero. This
would happen if you used the string " f r ed" as a number.

Likewise, if a numeric value is given when a string value is needed (say, for string concatenation),
the numeric value is expanded into whatever string would have been printed for that number. For
example, if you want to concatenate the string z followed by the result of 5 multiplied by 7, you
can say thissimply as:

"Z' . 5* 7 # sane as "Z" . 35, or "Z35"

In other words, you don't really have to worry about whether you have a number or a string (most
of the time). Perl performs al the conversions for you.”® And if you're worried about efficiency,
don't be. Perl generally remembers the result of a conversion so that it's done only once.

% The trick of using a leading zero to mean a nondecimal value works for literals, but never for automatic conversion. Use
hex () or oct (') to convert those kinds of strings.

! Unless you request warnings, which we'll discussin a moment.

*2\\e'll see about precedence and parentheses shortly.

%3 |t's usually not an issue, but these conversions can cause small round-off errors. That is, if you start with a number, convert it

to a string, then convert that string back to a number, the result may not be the same number as you started with. It's not just

Perl that does this; it's a consequence of the conversion process, so it happens to any powerful programming language.

26

Learning Perl, 3rd edition

2.4 Perl's Built-in Warnings

Perl can be told to warn you when it sees something suspicious going on in your program. To run
your program with warnings turned on, use the - w option on the command line:

$ perl -w ny_program
Or, if you always want warnings, you may request them onthe#! line:
#!/usr/bin/perl -w

That works even on non-Unix systems, where it's traditional to write something like this, since the
path to Perl doesn't generally matter:

#l perl -w
Now, Perl will warnyou if you use* 12fred34' asif it were anumber:
Argunent "12fred34" isn't nuneric

Of course, warnings are generally meant for programmers, not for end-users. If the warning won't
be seen by a programmer, it probably won't do any good. And warnings won't change the behavior
of your program, except that now it will emit gripes once in awhile. If you get a warning message
you don't understand, ook for its explanation in the perldiag manpage.

Warnings change from one version of Perl to the next. This may mean that your well-tuned
program runs silently when warnings are on today, but not when it's used with a newer (or older)
version of Perl. To help with this situation, version 5.6 of Perl introduces lexical warnings. These
are warnings that may be turned on or off in different sections of code, providing more detailed
control than the single - w switch could. See the perllexwarn manpage for more information on
these warnings.

As we run across situations in which Perl will usually be able to warn you about a mistake in your
code, we'll point them out. But you shouldn't count on the text or behavior of any warning staying
exactly the samein future Perl releases.

2.5 Scalar Variables

A variable is a name for a container that holds one or more values.® The name of the variable
stays the same throughout the program, but the value or values contained in that variable typically
change over and over again throughout the execution of the program.

A scalar variable holds a single scalar value, as you'd expect. Scalar variable names begin with a
dollar sign followed by what we'll call a Perl identifier: a letter or underscore, and then possibly
more letters, or digits, or underscores. Another way to think of it is that it's made up of
alphanumerics and underscores, but can't start with a digit. Uppercase and lowercase letters are
distinct: the variable $Fred is a different variable from $fred. And al of the letters, digits, and
underscores are significant, so:

$a_very_long_variable_that_ends_in_1

isdifferent from:
$a_very_long_variable_that_ends_in_2

% Aswe'll see, a scalar variable can hold only one value. But other types of variables, such asarrays and hashes, may hold many
values.

27

Learning Perl, 3rd edition

Scalar variables in Perl are always referenced with the leading $. In the shell, you use $ to get the
value, but leave the $ off to assign a new value. In awk or C, you leave the $ off entirely. If you
bounce back and forth a lot, you'll find yourself typing the wrong things occasionally. This is
expected. (Most Perl programmers would recommend that you stop writing shell, awk, and C
programs, but that may not work for you.)

2.5.1 Choosing Good Variable Names

You should generally select variable names that mean something regarding the purpose of the
variable. For example, $r is probably not very descriptive but $1 i ne_I engt h is. A variable used
for only two or three lines close together may be called something simple, like $n, but a variable
used throughout a program should probably have a more descriptive name.

Similarly, properly placed underscores can make a hame easier to read and understand, especially
if your maintenance programmer has a different spoken language background than you have. For
example, $super_bow is a better name than $super bow , since that last one might look like
$superb_ow . Does $st opi d mean $st o_pi d (storing a process-ID of some kind?) or $s_t o_pi d
(converting something to a process-1ID?) or $st op_i d (the ID for some kind of "stop” object?) or is
it just astopid mispelling?

Most variable names in our Perl programs are al lowercase, like most of the ones we'll see in this
book. In afew special cases, capitalization is used. Using al-caps (like $ARGV) generally indicates
that there's something special about that variable. (But you can get into an al-out brawl if you
choose sides on the $under scores_are_cool versusthe $gi veMel ni ti al Caps argument. So be
careful.)

Of course, choosing good or poor names makes no difference to Perl. You could name your
program's three most-important variables $000000000, $00000000, and $C00C00C0C00 and Perl
wouldn't be bothered - but in that case, please, don't ask us to maintain your code.

2.5.2 Scalar Assignment

The most common operation on a scalar variable is assignment , which is the way to give avalue
to a variable. The Perl assignment operator is the equals sign (much like other languages), which
takes a variable name on the left side, and gives it the value of the expression on the right. For
example:

$fred = 17; # give $fred the value of 17

$barney = 'hello'; # give $barney the five-character string 'hello'
$barney = $fred + 3; # give $barney the current value of $fred plus 3 (20)
$barney = $barney * 2; # $barney is now $barney nultiplied by 2 (40)

Notice that last line uses the $bar ney variable twice: once to get its value (on the right side of the
equals sign), and once to define where to put the computed expression (on the left side of the
equals sign). Thisislega, safe, and in fact, rather common. In fact, it's so common that we can
write it using a convenient shorthand, as we'll see in the next section.

2.5.3 Binary Assignment Operators

Expressions like sfred = $fred + 5 (where the same variable appears on both sides of an
assignment) occur frequently enough that Perl (like C and Java) has a shorthand for the operation
of atering avariable - the binary assignment operator . Nearly all binary operators that compute a
value have a corresponding binary assignment form with an appended equals sign.

28

Learning Perl, 3rd edition

For example, the following two lines are equivalent:

$fred = $fred + 5; # without the binary assi gnnent operator
$fred += 5; # with the binary assi gnnent operator

These are a'so equivalent:

$barney = $barney * 3;
$barney *= 3;

In each case, the operator causes the existing value of the variable to be atered in some way, rather
than simply overwriting the value with the result of some new expression.

Another common assignment operator is the string concatenate operator (.); this gives us an
append operator (. =):

$str = $str . " "; # append a space to Pstr
$str .= " " # same thing with assignnent operator

Nearly al binary operators are valid this way. For example, a raise to the power of operator is
written as**=. S0, $fred **= 3 means "raise the number in $f r ed to the third power, placing the
result back in$f red".

2.6 Output with print

It's generally a good idea to have your program produce some output; otherwise, someone may
think it didn't do anything. The pri nt () operator makes this possible. It takes a scalar argument
and puts it out without any embellishment onto standard output. Unless you've done something
odd, thiswill be your terminal display. For example:

print "hello world\n"; # say hello world, followed by a newine

print "The answer is "

print 6 * 7,

print ".\n";

You can actually givepri nt aseriesof values, separated by commas.
print "The answer is ", 6 * 7, ".\n";

Thisisactualy alist, but we haven't talked about lists yet, so welll put that off for later.
2.6.1 Interpolation of Scalar Variables into Strings

When a string literal is double-quoted, it is subject to variable interpolation > (besides being
checked for backslash escapes). This means that any scalar variable® name in the string is
replaced with its current value. For example:

$nmeal = "brontosaurus steak";
$barney = "fred ate a $neal "; # $barney is now "fred ate a brontosaurus steak"
$barney = 'fred ate a ' . $neal; # another way to wite that

As you see on the last line above, you can get the same results without the double quotes. But the
double-quoted string is often the more convenient way to writeit.

If the scalar variable has never been given avalue,” the empty string is used instead:
$barney = "fred ate a $neat”; # $barney is now "fred ate a "

% This has nothing to do with mathematical or statistical interpolation.

% And some other variable types, but we won't see those until later.

" Thisis actually the special undefined value, undef , which well seea little later in this chapter. If warnings are turned on,
Perl will complain about interpolating the undefined value.

29

Learning Perl, 3rd edition

Don't bother with interpolating if you have just the one lone variable:

print "$fred"; # unneeded quote marks
print $fred; # better style

There's nothing really wrong with putting quote marks around a lone variable, but the other
programmers will laugh at you behind your back.>®

Variable interpolation is aso known as double-quote interpolation , because it happens when
double-quote marks (but not single quotes) are used. It happens for some other strings in Perl,
which we'll mention as we get to them.

To put a rea dollar sign into a double-quoted string, precede the dollar sign with a backslash,
which turns off the dollar sign's special significance:
$fred = "hello';

print "The name is \$fred.\n"; # prints a dollar sign
print 'The nane is $fred” . "\n"; # so does this

The variable name will be the longest possible variable name that makes sense at that part of the
string. This can be a problem if you want to follow the replaced value immediately with some
constant text that begins with a letter, digit, or underscore.® As Perl scans for variable names, it
would consider those characters to be additional name characters, which is not what you want.
Perl provides a delimiter for the variable name in a manner similar to the shell. Simply enclose the
name of the variable in a pair of curly braces. Or, you can end that part of the string and start
another part of the string with a concatenation operator:

$what = "brontosaurus steak";

$n = 3;

print "fred ate $n $whats.\n"; # not the steaks, but the value of $whats
print "fred ate $n ${what}s.\n"; # now uses $what

print "fred ate $n $what" . "s.\n"; # another way to do it

print 'fred ate ' . $n . ' ' . $what . "s.\n"; # an especially difficult way

2.6.2 Operator Precedence and Associativity

Operator precedence determines which operations in a complex group of operations happen first.

For example, in the expression 2+3* 4, do we perform the addition first or the multiplication first?
If we did the addition first, we'd get 5* 4, or 20. But if we did the multiplication first (as we were
taught in math class), we'd get 2+12, or 14. Fortunately, Perl chooses the common mathematical
definition, performing the multiplication first. Because of this, we say multiplication has a higher
precedence than addition.

You can override the default precedence order by using parentheses. Anything in parentheses is
completely computed before the operator outside of the parentheses is applied (just like you
learned in math class). So if | really want the addition before the multiplication, | can say
(2+3) *4, yidding 20. Also, if | wanted to demonstrate that multiplication is performed before
addition, | could add a decorative but unnecessary set of parentheses, asin 2+(3*4) .

B \Well, it may force a value to beinterpreted as a string, rather than a number. In a few rare cases that may be needed, but
nearly alwaysit's just a waste of typing.

% There are some other characters that may be a problemas well. If you need a |eft square bracket or a left curly brace just after
ascalar variable's name, precede it with a backslash. You may also do that if the variable's nameis followed by an apostrophe
or a pair of colons, or you could use the curly-brace method described in the main text

30

Learning Perl, 3rd edition

While precedence is simple for addition and multiplication, we start running into problems when
faced with, say, string concatenation compared with exponentiation. The proper way to resolve
this is to consult the official, accept-no-substitutes Perl operator precedence chart, shown in Table
2-1.% (Note that some of the operators have not yet been described, and in fact, may not even
appear anywhere in this book, but don't let that scare you from reading about them in the perlop
manpage.)

In the chart, any given operator has higher precedence than all of the operators listed below it, and
lower precedence than al of the operators listed above it. Operators at the same precedence level
resolve according to rules of associativity instead.

Just like precedence, associativity resolves the order of operations when two operators of the same
precedence compete for three operands:

4 *x 3 *¥* 2 # 4 ** (3 ** 2), or 4 ** 9 (right associative)
72 1 12 | 3 # (721 12) | 3, or 6/3, or 2 (left associative)
36/ 6 * 3 # (36/6)*3, or 18

In the first case, the ** operator has right associativity, so the parentheses are implied on the right.

Comparatively, the * and / operators have left associativity, yielding a set of implied parentheses
on the left.

So should you just memorize the precedence chart? No! Nobody actually does that. Instead, just
use parentheses when you don't remember the order of operations, or when you're too busy to look
in the chart. After al, if you can't remember it without the parentheses, your maintenance
programmer is going to have the sametrouble. So be nice to your maintenance programmer.

Table 2-2, Associativity and precedence of operators (highest to lowest)

Associativity Operators
left parentheses and arguments to list operators
left ->

++ - - (autoincrement and autodecrement)

right o

right \ | ~+- (unary operators)
left =1~

left * | %X

left + - . (binary operators)
left << >>

% C programmers: Rejoice! The operatorsthat are available in both Perl and C have the same precedence and associativity in
both.

31

Learning Perl, 3rd edition

Associativity Operators
named unary operators (- X filetests, r and)
<<=>>=|t | e gt ge (the"unequa" ones)
==1=<=>eq ne cnp (the "equal" ones)
left &
left |~
left &&
left [
right ?: (ternary)
right = +=- = = (and similar assignment operators)
left , =
list operators (rightward)
right not
left and
| eft or xor

2.6.3 Comparison Operators

For comparing numbers, Perl has the logical comparison operators that remind you of algebra: <
<= == >= > | =, Each of thesereturnsatrue or false value. We'l find out more about those return
values in the next section. Some of these may be different than you'd use in other languages. For
example, == is used for equality, not a single = sign, because that's used for another purpose in
Perl. And ! = is used for inequality testing, because <> is used for another purpose in Perl. And
you'll need >= and not => for "greater than or equal to", because the latter is used for another
purposein Perl. Infact, nearly every sequence of punctuation is used for something in Perl.

For comparing strings, Perl has an equivalent set of string comparison operators which look like
funny little words: I't 1 e eq ge gt ne. These compare two strings character by character to see
whether they're the same, or whether one comes first in standard string sorting order. (In ASCII,
the capital letters come before the lowercase letters, so beware))

Learning Perl, 3rd edition

The comparison operators (for both numbers and strings) are given in Table 2-3.

Table 2-3, Numeric and string comparison operators

Comparison Numeric String

Equal == eq

Not equal = ne

Lessthan < I't

Greater than > gt

Lessthan or equal to <= le

Greater than or equal to >= ge

Here are some exampl e expressions using these comparison operators:

35 1=30 +5 # fal se

35 == 35.0 # true

'35 eq '35.0 # fal se (conparing as strings)
"fred' It 'barney' # fal se

"fred It 'free' # true

"fred eq "fred" # true

"fred' eq 'Fred # fal se

ttogt # true

2.7 The if Control Structure

Once you can compare two values, you'll probably want your program to make decisions based
upon that comparison. Likeall similar languages, Perl hasani f control structure:

if ($nane gt '"fred') {
print "'$nane' cones after 'fred" in sorted order.\n"
}

If you need an alternative choice, the el se keyword provides that as well:

if ($nane gt '"fred') {

print "'$name' cones after 'fred" in sorted order.\n"
} else {

print "'$nane' does not cone after 'fred .\n"

print "Maybe it's the sane string, in fact.\n"

}

Unlike in C, those block curly braces are required around the conditional code. It's agood ideato
indent the contents of the blocks of code as we show here; that makes it easier to see what's going
on. If you're using a programmers text editor (as discussed in Chapter 1), it'll do most of the work
for you.

33

Learning Perl, 3rd edition

2.7.1 Boolean Values

You may actually use any scalar value as the conditional of the i f control structure. That's handy
if you want to store atrue or false value into avariable, like this:

$i s_bigger = $nane gt 'fred;

if ($is_bigger) { ... }

But how does Perl decide whether a given value is true or false? Perl doesn't have a separate
Boolean data type, like some languages have. Instead, it uses afew simplerules:

1. Thespecial valueundef isfase. (Well seethisalittlelater in this section.)
2. Zeroisfase; all other numbersaretrue.
3. Theempty string (' ') isfalse; al other strings are normally true.

4. The one exception: since numbers and strings are equivalent, the string form of zero, ' o',
has the same value as its numeric form: false.

o, if your scalar valueisundef,0,' ', 0or' 0', it'sfase. All other scalars aretrue - including all of
the types of scalarsthat we haven't told you about yet.

If you need to get the opposite of any Boolean value, use the unary not operator, ! . If what follows
itisatruevalue, it returnsfase; if what followsisfase, it returnstrue:
if (! $is_bigger) {
Do sonet hing when $is_bigger is not true
}

2.8 Getting User Input

At this point, you're probably wondering how to get a value from the keyboard into a Perl
program. Here's the simplest way: use the line-input operator, <sTDI N> .** Each time you use
<STDI N> in a place where a scalar value is expected, Perl reads the next complete text line from
standard input (up to the first newline), and uses that string as the value of <STDI N>. Standard
input can mean many things, but unless you do something uncommon, it means the keyboard of
the user who invoked your program (probably you). If there's nothing waiting to be read (typicaly
the case, unless you type ahead a complete line), the Perl program will stop and wait for you to
enter some characters followed by anewline (return).*

® Thisis actually a lineinput operator working on the filehandle STDI N, but we can't tell you about that until we get to
filehandles (in Chapter 11).

2 To be honest, it's normally your system that waits for the input; Per| waits for your system. Although the details depend upon
your system and its configuration, you can generally correct your mistyping with a backspace key before you press return - your
system handles that, not Perl itself. If you need more control over the input, get the Ter m : ReadLi ne module from CPAN.

34

Learning Perl, 3rd edition

The string value of <STDI N> typically has a newline character on the end of it.°* So you could do
something like this:
$line = <STDI N>;
if ($line eq "\n") {
print "That was just a blank [inel\n";

} else {
print "That line of input was: $line";

}
But in practice, you don't often want to keep the newline, so you need the chonp operator.

2.9 The chomp Operator

The first time you read about the chonp operator, it seems terribly overspecialized. It works on a
variable. The variable has to hold a string. And if the string ends in a newline character, chorp
can get rid of the newline. That's (nearly) all it does. For example:

$text = "a line of text\n"; # O the sanme thing from <STDl N>
chonp($text); # Cets rid of the newline character

But it turns out to be so useful, you'll put it into nearly every program you write. Asyou seg, it's
the best way to remove atrailing newline from a string in avariable. In fact, there's an easier way
to use chonp, because of a simple rule: any time that you need a variable in Perl, you can use an
assignment instead. First, Perl does the assignment. Then it uses the variable in whatever way you
requested. So the most common use of chonp looks like this:

chonp($text = <STDIN>); # Read the text, w thout the new ine character

$text = <STDI N>; # Do the sane thing...
chonmp($text); # ...but in tw steps

At first glance, the combined chorp may not seem to be the easy way, especialy if it seems more
complex! If you think of it as two operations - read aline, then chonp it - then it's more natural to
write it as two statements. But if you think of it as one operation - read just the text, not the
newline - it's more natural to write the one statement. And since most other Perl programmers are
going to write it that way, you may aswell get used to it now.

chonp is actualy afunction. Asafunction, it has areturn value, which is the number of characters
removed. Thisnumber ishardly ever useful:

$f ood = <STDI N>;
$betty = chonp $food; # gets the value 1 - but we knew that!

As you see, you may write chonp with or without the parentheses. Thisis another genera rulein
Perl: except in cases where it changes the meaning to remove them, parentheses are aways
optional.

If aline ends with two or more newlines,* chonp removes only one. If there's no newline, it does
nothing, and returns zero.

If you work with older Perl programs, you may run across the chop operator. It's similar, but
removes any trailing character, not just a trailing newline. Since that could accidentally turn
pebbl es into pebbl e, it'susualy not what you want.

% The exception isif the standard input stream somehow runs out in the middle of a line. But that's not a proper text file, of
course!

8 This situation can't arise if we're reading a line at a time, but it certainly can when we have set the input separator ($/) to
something other than newline, or usether ead function, or perhaps have glued some strings together ourselves.

35

Learning Perl, 3rd edition

2.10 The while Control Structure

Like most agorithmic programming languages, Perl has a number of looping structures.® The
whi | e loop repeats a block of code aslong as a condition is true:

$count = O;

while ($count < 10) {

$count += 1;
print "count is now $count\n"; # G ves values from1 to 10

}

As always in Perl, the truth value here works like the truth value in the i f test. Also like thei f
control structure, the block curly braces are required. The conditional expression is evaluated
before the first iteration, so the loop may be skipped completely, if the conditionisinitially false.

2.11 The undef Value

What happens if you use a scalar variable before you give it a value? Nothing serious, and
definitely nothing fatal. Variables have the special undef value before they are first assigned,
which isjust Perl's way of saying "nothing here to look at - move along, move along.” If you try to
use this "nothing" as a "numeric something," it acts like 0. If you try to use it as a "string
something,” it acts like the empty string. But undef is neither a number nor a string; it's an entirely
separate kind of scalar value.

Because undef automatically acts like zero when used as a number, it's easy to make an numeric
accumulator that starts out empty:
Add up sone odd nunbers
$n = 1,
while ($n < 10) {
$sum += $n;
$n += 2; # On to the next odd nunber

print "The total was $sum\n";

This works properly when $sumwas undef before the loop started. Thefirst time through the loop,
$n isone, so thefirst line inside the loop adds one to $sum That's like adding one to a variabl e that
already holds zero (because we're using undef asif it were a number). So now it has the value 1.
After that, sinceit's been initialized, adding works in the traditional way.

Similarly, you could have a string accumulator that starts out empty:

$string .= "nore text\n";

If $string isundef, thiswill act asif it already held the empty string, putting "nore text\n" into
that variable. Butif it already holds a string, the new text is simply appended.

Perl programmers frequently use a new variable in this way, letting it act as either zero or the
empty string as needed.

% Every programmer eventually creates an infinite loop by accident. If your program keeps running and running, though, you
can generally stop it in the same way you'd stop any other programon your system. Often, typing Control-C will stop a runaway
program; check with your system's documentation to be sure.

36

Learning Perl, 3rd edition

Many operators return undef when the arguments are out of range or don't make sense. If you
don't do anything special, you'll get a zero or a null string without major conseguences. In
practice, thisis hardly a problem. In fact, most programmers will rely upon this behavior. But you
should know that when warnings are turned on, Perl will typically warn about unusual uses of the
undefined value, since that may indicate a bug. For example, simply copying undef from one
variable into another isn't aproblem, but trying to pri nt it would generally cause awarning.

2.12 The defined Function

One operator that can return undef isthe line-input operator, <STDI N> . Normally, it will return a
line of text. But if thereis no moreinput, such as at end-of-file, it returns undef to signal this.® To
tell whether a value is undef and not the empty string, use the def i ned function, which returns
fasefor undef, and true for everything else:
$madonna = <STDI N>;
if (defined($madonna)) {

print "The input was $madonna";

} else {
print "No input avail ablel\n";

}
If you'd like to make your own undef values, you can use the obscurely named undef operator:
$madonna = undef; # As if it had never been touched

% Normally, there's no "end-of-file" when the input comes from the keyboard, but input may have been redirected to come froma
file. Or the user may have pressed the key that the system recognizes to indicate end-of-file.

37

Learning Perl, 3rd edition

2.13 Exercises

See Section A.1 for answersto the following exercises:

1.

[5] Write a program that computes the circumference of a circle with a radius of 12.5.
Circumference is 2 x Pi times the radius (approximately 2 times 3.141592654). The
answer you get should be about 78.5.

[4] Moadify the program from the previous exercise to prompt for and accept a radius from
the person running the program. So, if the user enters 12.5 for the radius, she should get
the same number as in the previous exercise.

[4] Modify the program from the previous exercise so that, if the user enters a number less
than zero, the reported circumference will be zero, rather than negative.

[8] Write a program that prompts for and reads two numbers (on separate lines of input)
and prints out the product of the two numbers multiplied together.

[8] Write a program that prompts for and reads a string and a number (on separate lines of
input) and prints out the string the number of times indicated by the number on separate
lines. (Hint: Use the "Xx" operator.) If the user enters "fred" and "3," the output should be
three lines, each saying "fred". If the user enters "fred" and "299792," there may be alot
of output.

38

Learning Perl, 3rd edition

Chapter 3. Lists and Arrays

If a scalar was the "singular” in Perl, as we described them at the beginning of Chapter 2, the
"plura” in Perl isrepresented by lists and arrays.

A list isan ordered collection of scalars. An array isavariablethat containsalist. In Perl, the two
terms are often used as if they're interchangeable. But, to be accurate, the list is the data, and the
array isthe variable. You can have alist value that isn't in an array, but every array variable holds
alist (athough that list may be empty). Figure 3-1 represents alist, whether it's stored in an array
or not.

Figure 3-1. A list with five elements

5
12.4
“helle™

1.72e30
nﬁhj‘a\'u

e Ly R — D

Each element of an array or list is a separate scalar variable with an independent scalar value.
These values are ordered - that is, they have a particular sequence from the first to the last
element. The elements of an array or list are indexed by small integers starting at zero® and
counting by ones, so thefirst element of any array or list is aways element zero.

Since each element is an independent scalar value, alist or array may hold numbers, strings, undef
values, or any mixture of different scalar values. Nevertheless, it's most common to have all
elements of the same type, such asalist of book titles (all strings) or alist of cosines (all numbers).

Arrays and lists can have any number of elements. The smallest one has no elements, while the
largest can fill al of available memory. Once again, thisisin keeping with Perl's philosophy of "no
unnecessary limits."

3.1 Accessing Elements of an Array

If you've used arrays in another language, you won't be surprised to find that Perl provides a way
to subscript an array in order to refer to an element by a numeric index.

The array elements are numbered using sequential integers, beginning at zero and increasing by
one for each element, like this:

$fred[0] = "yabba";
$fred[1] = "dabba";
$fred[2] = "doo";

8 Array and list indices always start at zero in Per!, unlike in some other languages. In early Perl, it was possible to change the
starting number of array and list indexing (not for just one array or list, but for all of themat once!). Larry later realized that
this was a misfeature, and its (ab)use is now strongly discouraged. But, if you're terminally curious, look up the $[variablein
the perlvarmanpage.

39

Learning Perl, 3rd edition

The array name itself (in this case, "fred") isfrom a completely separate namespace than scalars
use; you could have a scalar variable named $f r ed in the same program, and Perl will treat them as
different things, and wouldn't be confused.® (Y our maintenance programmer might be confused,
though, so don't capriciously make all of your variable names the same!)

You can use an array element like $f r ed[2] in every place® where you could use any other scalar
variable like $fred. For example, you can get the value from an array element or change that
value by the same sorts of expressions we used in the previous chapter:

print $fred[O0];

$fred[2] = "diddley";

$fred[1] .= "whatsis";

Of course, the subscript may be any expression that gives a numeric value. If it's not an integer
aready, it'll automatically be truncated to the next lower integer:

$nunber = 2.71828;

print $fred[$nunber - 1]; # Sanme as printing $fred[1]

If the subscript indicates an element that would be beyond the end of the array, the corresponding
value will be undef . Thisis just as with ordinary scalars; if you've never stored a vaue into the
variable, it'sundef .

$bl ank
$bl anc

$fred[142_857]; # unused array el ement gives undef
$nel ; # unused scal ar $nmel al so gi ves undef

3.2 Special Array Indices

If you store into an array element that is beyond the end of the array, the array is automatically
extended as needed - there's no limit on its length, as long as there's available memory for Perl to
use. If intervening elements need to be created, they'll be created asundef values.

$rocks[0] = 'bedrock'; # One el enent. ..

$rocks[1] = 'slate'; # anot her. ..

$rocks[2] = 'lava'; # and anot her. ..

$rocks[3] = 'crushed rock'; # and another. ..

$rocks[99] = 'schist'; # now there are 95 undef el enents

Sometimes, you need to find out the last element index in an array. For the array of rocks that
we've just been using, the last element index is $#r ocks.” That's not the same as the number of
elements, though, because there's an element number zero. As seen in the code snippet below, it's
actually 7|?ossi ble to assign to this value to change the size of the array, although this is rare in
practice.

$end = $#rocks; # 99, which is the last elenent's index

$nunber _of _rocks = $end + 1; # okay, but we'll see a better way |ater

$#rocks = 2; # Forget all rocks after 'lava'

$#rocks = 99; # add 97 undef elenents (the forgotten rocks are
gone forever)

$rocks[$#rocks] = "hard rock'; # the last rock

% The syntax is always unambiguous - tricky perhaps, but unambiguous.

®\Well, almost. The most notable exception is that the control variable of af or each loop, which we'll see later in this chapter,

must be a simple scalar. And there are others, like the "indirect object slot' and "indirect filehandle slot" for pri nt and
printf.
© Blame this ugly syntax on the C shell. Fortunately, we don't have to |ook at this very often in the real world.

" Thisis very infrequently doneto "pre-size" an array, so that Perl won't need to allocate memory in many small chunks as an

array grows. Seethe Perl documentation for more information, in the unlikely case that you need this.

40

Learning Perl, 3rd edition

Using the s#nanme value as an index, like that last example, happens often enough that Larry has
provided a shortcut: negative array indices count from the end of the array. But don't get the idea
that these indices "wrap around.” If you've got three elements in the array, the valid negative
indices are - 1 (the last element), - 2 (the middle element), and - 3 (the first element). In the real
world, nobody seems to use any of these except - 1, though.

$rocks[-1] = "hard rock'; # easier way to do that |ast exanple above
$dead_rock = $rocks[-100]; # gets 'bedrock
$rocks[-200] = 'crystal'; # fatal error!

3.3 List Literals

A list literal (the way you represent a list value within your program) is alist of comma-separated
values enclosed in parentheses. These values form the elements of thelist. For example:

(1, 2, 3) # list of three values 1, 2, and 3

(1, 2, 3,) # the sanme three values (the trailing conma is ignored)
("fred", 4.5) # two values, "fred" and 4.5

() # enpty list - zero elenents

(1..100) # list of 100 integers

That last one usesthe .. range operator, which is seen here for the first time. That operator creates
alist of values by counting from the left scalar up to the right scalar by ones. For example:

(1..5) # same as (1, 2, 3, 4, 5)

(1.7..5.7) # sane thing - both values are truncated

(5..1) # enpty list - .. only counts "uphill"

(0, 2..6, 10, 12) # same as (0, 2, 3, 4, 5, 6, 10, 12)

($a.. $b) # range determned by current values of $a and $b

(0. . $#rocks) # the indices of the rocks array fromthe previous section

As you can see from those last two items, the elements of an array are not necessarily constants -
they can be expressions that will be newly evaluated each time the literal isused. For example:

($%a, 17) # two values: the current value of $a, and 17
($b+$c, $d+%e) # two val ues

Of course, alist may have any scalar values, like thistypical list of strings:
("fred", "barney", "betty", "wilm", "dino")

3.3.1 The gw Shortcut

It turns out that lists of simple words (like the previous example) are frequently needed in Perl
programs. The qw shortcut makes it easy to generate them without typing a lot of extra quote
marks:

gw fred barney betty wilma dino / # sane as above, but |ess typing

gw stands for "quoted words" or "quoted by whitespace," depending upon whom you ask. Either
way, Perl treats it like a single-quoted string (so, you can't use \ n or $f red inside a qw list as you
would in a double-quoted string). The whitespace (characters like spaces, tabs, and newlines) will
be discarded, and whatever is left becomes the list of items. Since whitespace is discarded, here's
another (but unusual) way to write that same list:

gqw fred

bar ney betty
wi | ma di no/ # same as above, but pretty strange whitespace

Sincegwis aform of quoting, though, you can't put commentsinside aqwlist.

41

Learning Perl, 3rd edition

The previous two examples have used forward slashes as the delimiter, but Perl actually lets you
choose any punctuation character asthe delimiter. Here are some of the common ones:

gw fred barney betty wilnma dino !
gw# fred barney betty wilma dino # # like in a conment!
gw fred barney betty wilma dino)
gw fred barney betty wilnma dino }
gwW fred barney betty wilma dino]
gw< fred barney betty wilma dino >

As those last four show, sometimes the two delimiters can be different. If the opening delimiter is
one of those "left" characters, the corresponding "right” character is the proper closing delimiter.
Other delimiters use the same character for start and finish.

If you need to include the closing delimiter within the string as one of the characters, you probably
picked the wrong delimeter. But even if you can't or don't want to change the delimiter, you can
still include the character using the backslash:

gwt yahoo\! google excite lycos ! # include yahoo! as an el ement

As in single-quoted strings, two consecutive backslashes contribute one single backslash to the
item.

Now, athough the Perl motto is "There's More Than One Way To Do It,” you may well wonder
why anyone would need all of those different ways! Well, we'll see later that there are other kinds
of quoting where Perl uses this same rule, and it can come in handy in many of those. But even
here, it could be useful if you were to need alist of Unix filenames:

/usr/dict/words

/ hore/ r oot beer/ . ispel |l _english
}
That list would be quite inconvenient to read, write, and maintain if the sash were the only
delimiter available.

3.4 List Assignment

In much the same way as scalar values may be assigned to variables, list values may also be
assigned to variables:

($fred, $barney, $dino) = ("flintstone", "rubble", undef);

All three variables in the list on the left get new vaues, just as if we did three separate
assignments. Since the list is built up before the assignment starts, this makes it easy to swap two
variables vauesin Perl:"

($fred, $barney) = ($barney, $fred); # swap those val ues

($betty[0], $betty[1]) = ($betty[1l], $betty[0]);

But what happens if the number of variables (on the left side of the equals sign) isn't the same as
the number of values (from the right side)? In alist assignment, extra values are silently ignored -
Perl figures that if you wanted those values stored somewhere, you would have told it where to
store them.

"2 As opposed to in languages like C, which has no easy way to do thisin general. C programmers usually resort to some kind of
macro to do this, or use a variable to temporarily hold the value.

42

Learning Perl, 3rd edition

Alternatively, if you have too many variables, the extras get the value undef .”

($fred, $barney) = gw< flintstone rubble slate granite > # two ignored itens
($wi Il ma, $dino) = gwflintstone]; # $di no gets undef

Now that we can assign lists, you could build up an array of strings with aline of code like this;"
($rocks[0], S$rocks[1l], $rocks[2], $rocks[3]) = gwtalc mca feldspar quartz/;
But when you wish to refer to an entire array, Perl has a simpler notation. Just use the at-sign (@
before the name of the array (and no index brackets after it) to refer to the entire array at once.

You can read this as "al of the," so @ ocks is"all of the rocks."” This works on either side of the
assignment operator:

@ocks = gqw bedrock slate |ava /;

@iny = (); # the enpty list

@i ant = 1..1le5; # a list with 100,000 el ements
@tuff = (@iant, undef, @iant); # a list with 200,001 el enents
$dino = "granite";

@uarry = (@ocks, "crushed rock", @iny, $dino);

That last assignment gives @uarry the five-element list (bedrock, slate, |ava, crushed
rock, granite),since@iny contributes zero elementsto the list. (In particular, it doesn't put an
undef item into the list - but we could do that explicitly, as we did with @t uf f earlier.) It's also
worth noting that an array name is replaced by the list it contains. An array doesn't become an
element in the list, because these arrays can contain only scalars, not other arrays.”

The value of an array variable that has not yet been assigned is (), the empty list. Just as new,
empty scalars start out with undef , new, empty arrays start out with the empty list.

It's worth noting that when an array is copied to another array, it's till alist assignment. The lists
aresimply stored in arrays. For example:

@opy = @uarry; # copy a list fromone array to another

3.4.1 The pop and push Operators

You could add new items to the end of an array by simply storing them into elements with new,
larger indices. But real Perl programmers don't use indices.”” So in the next few sections, welll
present some ways to work with an array without using indices.

\Well, that'strue for scalar variables. Array variablesget an empty list, aswe'll seein a moment.

" \We're cheating by assuming that the r ocks array is empty before this statement. If there werea valuein$r ocks[7] , say,
this assignment wouldn't affect that element.

5 Larry claims that he chose the dollar and at-sign because they can beread as$cal ar (scalar) and @ r ay (array). If you
don't get that, or remember it that way, no big deal.

"6 But when you get into more advanced Perl, you'll learn about a special kind of scalar called areference. That lets us make
what areinformally called "lists of lists", among other interesting and useful structures. But in that case, you're still not really
storing alist into alist; you're storing a referenceto an array.

" Of course, we'rejoking. But there'sa kernel of truthin thisjoke. Indexing into arraysis not using Perl's strengths. If you use
the pop, push, and similar operatorsthat avoid using indexing, your codewill generally be faster than if you use many indices,
aswell asbeing more likely to avoid "off-by-one" errors, often called "fencepost” errors. Occasionally, a beginning Per|
programmer (wanting to see how Perl's speed comparesto C's) will take, say, a sorting algorithm optimized for C (with many
array index operations), rewrite it straightforward in Perl (again, with many index operations) and wonder why it'sso slow. The
answer isthat using a Sradivarius violin to pound nails should not be considered a sound construction technique.

43

Learning Perl, 3rd edition

One common use of an array is as a stack of information, where new values are added to and
removed from the right-hand side of the list. (This is the end with the "last" itemsin the array, the
end with the highest index values.) These operations occur often enough to have their own special
functions.

The pop operator takes the last element off of an array, and returnsiit:

@rray = 5..09;

$fred = pop(@rray); # $fred gets 9, @rray now has (5, 6, 7, 8)

$barney = pop @rray; # $barney gets 8, @rray now has (5, 6, 7)

pop @rray; # @rray now has (5, 6). (The 7 is discarded.)

That last example uses pop "in avoid context,” which is merely a fancy way of saying the return
value isn't going anywhere. There's nothing wrong with using pop in this way, if that's what you
want.

If the array is empty, pop will leave it alone (since there is no element to remove), and it will return
undef .

You may have noticed that pop may be used with or without parentheses. Thisis agenera rulein
Perl: aslong as the meaning isn't changed by removing the parentheses, they're optional.”

The converse operation is push , which adds an element (or a list of elements) to the end of an
array:

push(@rray, 0); # @rray now has (5, 6, 0)
push @rray, 8; # @rray now has (5, 6, 0, 8)
push @rray, 1..10; # @rray now has those ten new el enents

@thers =gw 902 10 /;
push @rray, @thers; # @rray now has those five new elenents (19 total)

Note that the first argument to push or the only argument for pop must be an array variable -
pushing and popping would not make sense on aliteral list.

3.4.2 The shift and unshift Operators

The push and pop operators do things to the end of an array (or the right side of an array, or the
portion with the highest subscripts, depending upon how you like to think of it). Similarly, the
unshi ft and shi ft operators perform the corresponding actions on the "start" of the array (or the
"left" side of an array, or the portion with the lowest subscripts). Here are afew examples:

@rray = gw#t dino fred barney #;

$a = shift(@rray); $a gets "dino", @rray now has ("fred", "barney")
$b = shift @rray; $b gets "fred", @rray now has ("barney")

shift @rray; @rray is now enpty

$c = shift @rray; $c gets undef, @rray is still enpty
unshift(@rray, 5); @rray now has the one-elenment list (5)

unshift @rray, 4, @rray now has (4, 5);

@t hers = 1..3;

unshift @rray, @thers; # @rray now has (1, 2, 3, 4, 5)

HHHFHHHE

Analogousto pop, shi ft returnsundef if given an empty array variable.

"8 A reader fromthe educated class will recognize that thisis a tautology.

Learning Perl, 3rd edition

3.5 Interpolating Arrays into Strings

Like scalars, array values may be interpolated into a double-quoted string. Elements of an array
are automatically separated by spaces” upon interpolation:

@ocks = gw{ flintstone slate rubble };

print "quartz @ocks linestone\n"; # prints five rocks separated by spaces
There are no extra spaces added before or after an interpolated array; if you want those, you'll have
to put them in yourself:

print "Three rocks are: @ocks.\n";
print "There's nothing in the parens (@npty) here.\n";

If you forget that arrays interpolate like this, you'll be surprised when you put an email address into
adouble-quoted string. For historical reasons,” thisis afatal error at compile time:

$emai | = "fred@edrock. edu"; # WRONG Tries to interpolate @edrock
$emai | = "fred\ @edrock. edu"; # Correct
$emai|l = 'fred@edrock.edu'; # Another way to do that

A single element of an array will be replaced by its value, just as you'd expect:
@red = g hello dolly);

$y = 2;
$x = "This is $fred[1]'s place"; # "This is dolly's place"
$x = "This is $fred[$y-1]'s place"; # same thing

Note that the index expression is evaluated as an ordinary expression, asif it were outside a string.

It is not variable-interpolated first. In other words, if $y contains the string "2*4", were till
talking about element 1, not element 7, because " 2*4" as a number (the value of $y used in a
numeric expression) isjust plain 2%

If you want to follow a simple scalar variable with a left square bracket, you need to delimit the
square bracket so that it isn't considered part of an array reference, asfollows:

@red gw(eating rocks is wong);

$fred "right"; # we are trying to say "this is right[3]"
print "this is $fred[3]\n"; # prints "wong" using $fred[3]

print "this is ${fred}[3]\n"; # prints "right" (protected by braces)
print "this is $fred"."[3]\n"; # right again (different string)

print "this is $fred\[3]\n"; # right again (backslash hides it)

. n
]
3
\
3.6 The foreach Control Structure

It's handy to be able to process an entire array or list, so Perl provides a control structure to do just
that. The foreach loop steps through a list of values, executing one iteration (time through the
loop) for each value:

foreach $rock (gw bedrock slate lava /) {
print "One rock is $rock.\n"; # Prints nanes of three rocks

}

The control variable ($r ock in that example) takes on a new value from the list for each iteration.
Thefirst time through the loop, it's " bedr ock” ; the third time, it's" | ava" .

™ Actually, the separator is the value of the special $" variable, which is a space by default.

% Snce you asked: Before version 5, Perl would silently leave uninterpolated an unused array's name in a double-quoted string.

So,"fred@edr ock. edu” might bea string containing an email address. This attempt to Do What | Mean will backfire

when someone adds a variable named @edr ock to the program - now the string becomes” f r ed. edu” or worse.
8 Of course, if you've got warnings turned on, Perl islikely to remind you that " 2* 4" is a pretty funny-looking number.

45

Learning Perl, 3rd edition

The control variable is not a copy of the list element - it actually isthe list element. That is, if you
modify the control variable inside the loop, you'll be modifying the element itself, as shown in the
following code snippet. This is useful, and supported, but it would surprise you if you weren't
expecting it.

@ocks = gqw bedrock slate |ava /;

foreach $rock (@ ocks) {

$rock = "\t $rock"; # put a tab in front of each el ement of @ ocks
$rock .= "\n"; # put a newline on the end of each

print "The rocks are:\n", @ocks; # Each one is indented, on its own |line

What is the value of the control variable after the loop has finished? It's the same as it was before
the loop started. The value of the control variable of a f or each loop is automatically saved and
restored by Perl. While the loop is running, there's no way to access or alter that saved value. So
after the loop is done, the variable has the value it had before the loop, or undef if it hadn't had a
value. That means that if you want to name your loop control variable "$r ock", you don't have to
worry that maybe you've aready used that name for another variable.*

3.7 Perl's Favorite Default: $

If you omit the control variable from the beginning of the f oreach loop, Perl uses its favorite
default variable, $_. This is (mostly) just like any other scalar variable, except for its unusua
name. For example:

foreach (1..10) { print "I can count to $_!'\n"; }

Although this isn't Perl's only default by a long shot, it's Perl's most common default. Well see
many other cases in which Perl will automatically use $_ when you don't tell it to use some other
variable or value, thereby saving the programmer from the heavy labor of having to think up and
type a new variable name. So as not to keep you in suspense, one of those cases is pri nt, which
will print $_ if given no other argument:

$_ = "Yabba dabba doo\n";
print; # prints $_ by default

3.7.1 The reverse Operator

Therever se operator takes alist of values (which may come from an array) and returns the list in
the opposite order. So if you were disappointed that the range gperator, . . , only counts upwards,
thisistheway tofix it:

@red = 6..10;

@arney = reverse(@red); # gets 10, 9, 8, 7, 6

@vlm = reverse 6..10; # gets the sane thing, without the other array

@red = reverse @red, # puts the result back into the original array

The last line is noteworthy because it uses @red twice. Perl always calculates the value being
assigned (on the right) before it begins the actual assignment.

Remember that r ever se returns the reversed list; it doesn't affect its arguments. If the return value
isn't assigned anywhere, it's useless:

reverse @red; # WRONG - doesn't change @red
@red = reverse @red; # that's better

8 Unless the variable name has been declared as a lexical in the current scope, in which case you get a lexically local variable
instead of a package local variable - more on thisin Chapter 4.

46

Learning Perl, 3rd edition

3.7.2 The sort Operator

The sort operator takes a list of vaues (which may come from an array) and sorts them in the
internal character ordering. For ASCII strings, that would be ASClibetical order. Of course,
ASCII is a strange place where all of the capital letters come before all of the lowercase letters,
where the numbers come before the letters, and the punctuation marks - well, those are here, there,
and everywhere. But sorting in ASCII order is just the default behavior; welll seein Chapter 15,
Strings and Sorting, how to sort in whatever order you'd like:

@ocks = gqw bedrock slate rubble granite /;

@orted = sort (@ ocks); # gets bedrock, granite, rubble, slate
@ack = reverse sort @ocks; # these go fromslate to bedrock
@ocks = sort @ ocks; # puts sorted result back into @ocks
@unbers = sort 97..102; # gets 100, 101, 102, 97, 98, 99

Asyou can see from that last example, sorting numbers as if they were strings may not give useful
results. But, of course, any string that starts with 1 has to sort before any string that starts with 9,
according to the default sorting rules. And like what happened with reverse, the arguments
themselves aren't affected. |f you want to sort an array, you must store the result back into that
array:

sort @ ocks; # WRONG, doesn't nodify @ ocks

@ocks = sort @ocks; # Now the rock collection is in order

3.8 Scalar and List Context

This is the most important section in this chapter. In fact, it's the most important section in the
entire book. In fact, it wouldn't be an exaggeration to say that your entire career in using Perl will
depend upon understanding this section. So if you've gotten away with skimming the text up to
this point, thisiswhere you should really pay attention.

That's not to say that this section isin any way difficult to understand. It's actually asimpleidea: a
given expression may mean different things depending upon where it appears. Thisis nothing new
to you; it happens al the time in natural languages. For example, in English,® suppose someone
asked you what the word "read"® means. It has different meanings depending on how it's used.
Y ou can't identify the meaning, until you know the context.

The context refers to where an expression is found. As Perl is parsing your expressions, it aways
expects either a scalar value or a list value® What Perl expects is caled the context of the
expression.®

5 + sonething # The sonething nust be a scal ar

sort something # The something nust be a |ist

Even if something is the exact same sequence of characters, in one case it may give asingle, scalar
value, while in the other, it may give alist.”’

8 f you aren't a native speaker of English, this analogy may not be obvious to you. But context sensitivity happensin every
spoken language, so you may be able to think of an example in your own language.

8 Or maybe they were asking what the word "red" means, if they were speaking rather than writing a book. It's ambiguous
either way. As Douglas Hofstadter said, no language can express every thought unambiguously, especially this one.

8 Unless, of course, Perl is expecting something else entirely. There are other contexts that aren't covered here. In fact, nobody
knows how many contexts Perl uses; the biggest brainsin all of Perl haven't agreed on an answer to that yet.

% Thisis no different than what you're used to in human languages. If | make a grammatical mistake, you noticeit right away,
because you expect certain words in places certain. Eventually, you'll read Per| thisway, too, but at first you have to think about
it.

8 The list may be just one element long, of course. It could also be empty, or it could have any number of elements.

47

Learning Perl, 3rd edition

Expressions in Perl always return the appropriate value for their context. For example, how about

the "name"® of an array. In alist context, it gives the list of elements. But in a scalar context, it

returns the number of elementsin the array:

@eople = g fred barney betty);
@orted = sort @eople; # list context: barney, betty, fred
$nunber = 5 + @eople; # scalar context: 5 + 3 gives 8

Even ordinary assignment (to ascalar or alist) causes different contexts:

@ist = @eople; # a list of three people

$n = @eopl e; # the nunmber 3

But please don't jump to the conclusion that scalar context always gives the number of elements
that would have been returned in list context. Most list-producing expressions™ return something
much more interesting than that.

3.8.1 Using List-Producing Expressions in Scalar Context

There are many expressions that would typically be used to produce a list. If you use one in a
scalar context, what do you get? See what the author of that operation says about it. Usually, that
person is Larry, and usually the documentation gives the whole story. In fact, a big part of learning
Perl is actually learning how Larry thinks.® Therefore, once you can think like Larry does, you
know what Perl should do. But while you're learning, you'll probably need to look into the
documentation.

Some expressions don't have a scalar-context value at all. For example, what should sort returnin
a scalar context? You wouldn't need to sort a list to count its elements, so until someone
implements something else, sort in ascalar context always returnsundef .

Another exampleisreverse. Inalist context, it givesareversed list. Inascalar context, it returns
areversed string (or reversing the result of concatenating al the strings of alist, if given one):
@ackwards = reverse gqw yabba dabba doo /;

gi ves doo, dabba, yabba

$backwards = reverse qw yabba dabba doo /;
gi ves oodabbadabbay

At first, it's not always obvious whether an expression is being used in a scalar or alist context.
But, trust us, it will get to be second nature for you eventually.

Here are some common contexts to start you off:

$fred = sonet hing; # scal ar cont ext
@ebbl es = sonet hi ng; # |list context

($wil ma, $betty) = something; # |ist context

($di no) = sonething; # still list context!

Don't be fooled by the one-element list; that last one is a list context, not a scalar one. If you're
assigning to alist (no matter the number of elements), it's a list context. If you're assigning to an
array, it'salist context.

8 \W\ell, the true name of the array @eopl e isjust peopl e. The @signisjust a qualifier.

8 But with regard to the point of this section, there's no difference between a "list-producing” expression and a "scalar-
producing” one; any expression can produce a list or a scalar, depending upon context. So when we say "list-producing
expressions,” we mean expressions that are typically used in a list context and that therefore might surprise you when they're
used unexpectedly in a scalar context (liker ever se or @ r ed) .

% Thisisonly fair, since while writing Per| hetried to think like you do to predict what you would want!

48

Learning Perl, 3rd edition

Here are some other expressions we've seen, and the contexts they provide. First, some that
provide scalar context to something:

$fred = sonet hi ng;

$fred[3] = sonet hing;

123 + sonet hi ng

somet hing + 654

if (sonething) { ... }

while (sonmething) { ... }

$fred[sonet hi ng] = sonet hi ng;

And here are some that provide alist context:

@red = sonething;

($fred, $barney) = sonething;
($fred) = sonething;

push @red, sonething;

foreach $fred (sonmething) { ... }
sort something

reverse sonet hing

print sonething

3.8.2 Using Scalar-Producing Expressions in List Context

Going this direction is straightforward: if an expression doesn't normaly have a list value, the
scalar valueis automatically promoted to make a one-element list:

@red =6 * 7, # gets the one-element list (42)
@arney = "hello" . " ' . "world";

WEll, there's one possible catch:

@il ma = undef; # OOPS! Cets the one-elenent |ist (undef)
which is not the sane as this:
@etty = (); # A correct way to enpty an array

Since undef isascaar value, assigning undef to an array doesn't clear the array. The better way
to do that isto assign an empty list.”

3.8.3 Forcing Scalar Context

On occasion, you may need to force scalar context where Perl is expecting alist. In that case, you
can use the fake function scal ar. It's not a true function, because it just tells Perl to provide a
scalar context:

@ocks = gwm talc quartz jade obsidian);

print "How many rocks do you have?\n";

print "I have ", @ocks, " rocks!\n"; # WRONG, prints names of rocks
print "I have ", scalar @ocks, " rocks!\n"; # Correct, gives a nunber

Oddly enough, there's no corresponding function to force list context. It turns out never to be
needed. Trust uson this, too.

L \Well, in most real-world algorithms, if the variable is declared in the proper scope, it will never need to be explicitly emptied.
So thistype of assignment israre in well-written Perl programs. We'll learn about scoping in the next chapter.

49

Learning Perl, 3rd edition

3.9 <STDIN> in List Context

One previously seen operator that returns a different value in an array context is the line-input
operator, <STDI N> . Asdescribed earlier, <STDI N> returns the next line of input in ascalar context.
Now, in list context, this operator returns all of the remaining lines up to the end of file. Eachline
isreturned as a separate element of thelist. For example:

@ines = <STDIN>; # read standard input in |[ist context

When the input is coming from a file, this will read the rest of the file. But how can there be an
end-of-file when the input comes from the keyboard? On Unix and similar systems, including
Linux and Mac OS X, you'll normally type a Control-D* to indicate to the system that there's no
more input; the specia character itself is never seen by Perl,* even though it may be echoed to the
screen. On DOS/Windows systems, use Ctrl-Z instead.* You'll need to check the documentation
for your system or ask your local expert, if it's different from these.

If the person running the program types three lines, then presses the proper keys needed to indicate
end-of-file, the array ends up with three elements. Each element will be a string that ends in a
newline, corresponding to the three newline-terminated lines entered.

Wouldn't it be nice if, having read those lines, you could chonp the newlines all at once? It turns
out that if you give chonp alist of lines, it will remove the newlines from each item in the list. For
example:

@ines = <STDIN>; # Read all the lines
chonmp(@i nes); # discard all the newline characters

But the more common way to write that iswith code similar to what we used earlier:
chomp(@ines = <STDIN>); # Read the lines, not the new ines

Although you're welcome to write your code either way in the privacy of your own cubicle, most
Perl programmers will expect the second, more compact, notation.

It may be obvious to you (but it's not obvious to everyone) that once these lines of input have been
read, they can't be re-read.® Once you've reached end-of-file, there's no more input out there to
read.

And what happens if the input is coming from a 400MB log file? The line input operator reads all
of the lines, gobbling up lots of memory.® Perl tries not to limit you in what you can do, but the
other users of your system (not to mention your system administrator) are likely to object. If the
input data is large, you should generally find a way to dea with it without reading it al into
memory at once.

2 Thisis merely the default; it can be changed by the st t y command. But it's pretty dependable - we've never seen a Unix

emwhere a different character was used to mean end-of-file from the keyboard.

% |t'sthe OSthat "sees" the control key and reports "end of file" to the application.

% There's a bug affecting some ports of Per| for DOSWindows where the first line of output to the terminal following the use of

Control-Z is obscured. On these systems, you can work around this problem by simply printing a blank line ("\ n") after
reading the input.

% \Well, yes, if the input is from a source upon which you cans eek, then you'll be ableto go back and read again. But that's not

what we're talking about here.

% Typically, that's much more memory than the size of thefile, too. That is, a 400MB file will typically take up at least a full
gigabyte of memory when read into an array. Thisisbecause Per| will generally waste memory to savetime. Thisisa good

tradeoff; if you're short of memory, you can buy more; if you're short on time, you're hosed.

50

Learning Perl, 3rd edition

3.10 Exercises

See Section A.2 for answersto the following exercises:

1.

[6] Write a program that reads a list of strings on separate lines until end-of-input and
prints out the list in reverse order. If the input comes from the keyboard, you'll probably
need to signal the end of the input by pressing Control-D on Unix, or Control-Z on
Windows.

[12] Write a program that reads a list of numbers (on separate lines) until end-of-input and
then prints for each number the corresponding person's name from the list shown below.
(Hardcode this list of namesinto your program. That is, it should appear in your program's
source code.) For example, if the input nhumbers were 1, 2, 4, and 2, the output names
would befred, betty, di no, and bet ty.

fred betty barney dino wilm pebbles bamm bamm

[8] Write a program that reads alist of strings (on separate lines) until end-of-input. Then
it should print the strings in ASClIbetical order. That is, if you enter the strings f r ed,
bar ney, wi | m, bet t y, the output should show barney betty fred wil ma. Areadl of the
strings on one line in the output, or on separate lines? Could you make the output appear
in either style?

51

Learning Perl, 3rd edition

Chapter 4. Subroutines

4.1 System and User Functions

We've already seen and used some of the builtin system functions, such aschonp, reverse, pri nt,
and so on. But, as other languages do, Perl has the ability to make subroutines, which are user-
defined functions.”” These let us recycle one chunk of code many timesin one program.®

The name of a subroutine is another Perl identifier (letters, digits, and underscores, but can't start
with a digit) with a sometimes-optional ampersand (&) in front. There's a rule about when you can
omit the ampersand and when you cannot; we'll see that rule by the end of the chapter. For now,
we'll just use it every time that it's not forbidden, which is always a safe rule. And we'll tell you
every place whereit's forbidden, of course.

That subroutine name comes from a separate namespace, so Perl won't be confused if you have a
subroutine called &f r ed and a scalar called $f r ed in the same program - although there's no reason
to do that under normal circumstances.

4.2 Defining a Subroutine

To define your own subroutine, use the keyword sub , the name of the subroutine (without the
ampersand), then the indented® block of code (in curly braces) which makes up the body of the
subroutine, something like this:

sub marine {

$n += 1; # dobal variable $n
print "Hello, sailor nunber $n!\n";

}

Subroutine definitions can be anywhere in your program text, but programmers who come from a
background of languages like C or Pascal like to put them at the start of the file. Others may prefer
to put them at the end of the file, so that the main part of the program appears at the beginning. It's
up to you. In any case, you don't normally need any kind of forward declaration.'®

Subroutine definitions are global; without some powerful trickiness, there are no private
subroutines.!™ If you have two subroutine definitions with the same name, the later one overwrites
the earlier one.'® That's generally considered bad form, or the sign of a confused maintenance
programmer.

% In Perl, we don't generally make the distinction that Pascal programmers are used to, between functions, which return a value,
and procedures, which don't. But a subroutine is always user-defined, while a function may or may not be. That is, the word
function may be used as a synonymfor subroutine, or it may mean one of Perl's builtin functions. That'swhy this chapter istitled
Subroutines, because it's about the ones you can define, not the builtins. Mostly.

%8 The code examples used in this book are recycled from at least 40% post-consumer programming, and are at least 75%
recyclableinto your programs when properly decomposed.

® Okay, purists, we admit it: the curly braces are part of the block, properly speaking. And Per| doesn't require the indentation
of the block - but your maintenance programmer will. So please be stylish.

1% Unless your subroutine is being particularly tricky and declares a "prototype,” which dictates how a compiler will parse and
interpret itsinvocation arguments. Thisisrare - see the perlsub manpage for more information.

191 | £ you wish to be powerfully tricky, read the Perl documentation about coderefs stored in private (lexical) variables.

192 A war nable offense, however.

52

Learning Perl, 3rd edition

As you may have noticed in the previous example, you may use any global variables within the
subroutine body. In fact, all of the variables we've seen so far are globals; that is, they are
accessible from every part of your program. This horrifies linguistic purists, but the Perl
development team formed an angry mob with torches and ran them out of town years ago. Well
see how to make private variables in the section "Private Variables in Subroutines® later in this
chapter.

4.3 Invoking a Subroutine

Invoke a subroutine from within any expression by using the subroutine name (with the
ampersand):'®

&marine; # says Hello, sailor nunber 1!
&marine; # says Hello, sailor nunber 2!
&marine; # says Hello, sailor nunber 3!
&marine; # says Hello, sailor nunber 4!

Sometimes, we refer to the invocation as calling the subroutine.
4.4 Return Values

The subroutine is always invoked as part of an expression, even if the result of the expression isn't
being used. When we invoked &nari ne earlier, we were calculating the value of the expression
containing the invocation, but then throwing away the resuilt.

Many times, well call a subroutine and actually do something with the result. This means that
welll be paying attention to the return value of the subroutine. All Perl subroutines have a return
value - there's no distinction between those that return values and those that don't. Not all Perl
subroutines have a useful return value, however.

Since al Perl subroutines can be called in away that needs a return value, it'd be a bit wasteful to
have to declare special syntax to "return” a particular value for the mgjority of the cases. So Larry
made it simple. Every subroutine is chugging along, calculating values as part of its series of
actions. Whatever calculation is last performed in a subroutine is automatically also the return
value.

For example, let's define this subroutine:

sub sum of _fred_and_barney {
print "Hey, you called the sumof _fred_and_barney subroutinel\n";
$fred + $barney; # That's the return value

}

The last expression evaluated in the body of this subroutine is the sum of $fred and $bar ney, so
the sum of $f r ed and $bar ney will be the return value. Here'sthat in action:

$fred = 3;

$barney = 4;

$c = &um of _fred_and_barney; # $c gets 7
print "\$c is $c.\n";

$d = 3 * &um of _fred_and_barney; # $d gets 21
print "\$d is $d.\n";

1% And frequently a pair of parentheses, even if empty. Aswritten, the subroutine inherits the caller's @ value, which we'll be
discussing shortly. So don't stop reading here, or you'll be writing code with unintended effects!

Learning Perl, 3rd edition

That code will produce this output:
Hey, you called the sum of _fred_and_barney subroutine!

$c is 7.
Hey, you called the sum of _fred_and_barney subroutine!
$d is 21.

That print statement is just a debugging aid, so that we can see that we called the subroutine.
You'd take it out when the program is finished. But suppose you added another line to the end of
the code, likethis:
sub sum of _fred_and_barney {

print "Hey, you called the sumof_fred_and_barney subroutinel\n";

$fred + $barney; # That's not really the return val ue!

print "Hey, I"'mreturning a value nowi\n"; # CQops!

}

In this example, the last expression evaluated is not the addition; it's the print statement. Its
return value will normally be 1, meaning "printing was successful,"** but that's not the return
value we actually wanted. So be careful when adding additional code to a subroutine to ensure that
the last expression evaluated will be the desired return value.

So, what happened to the sum of $fred and $barney in that subroutine? We didn't put it
anywhere, so Perl discarded it. If you had requested warnings, Perl (noticing that there's nothing
useful about adding two variables and discarding the result) would likely warn you about
something like "a useless use of addition in avoid context.” The term void context isjust afancy of
saying that the answer isn't being stored in avariable or used by another function.

"The last expression evaluated" really means the last expression evaluated, rather than the last line
of text. For example, this subroutine returnsthe larger value of $f r ed or $bar ney:
sub |l arger_of _fred_or_barney {

if ($fred > $barney) { $fred; }

el se { $barney; }

}

The last expression evaluated is the single $f r ed or $bar ney, which becomes the return value. We
won't know whether the return value will be $f red or $bar ney until we see what those variables
hold at runtime.

A subroutine can also return a list of values when evaluated in a list context.'® Suppose you
wanted to get a range of numbers (as from the range operator, . .), except that you want to be able
to count down aswell as up. The range operator only counts upwards, but that's easily fixed:

sub list_fromfred_to_barney {
if ($fred < $barney) ({ # Count upwards from $fred to $barney
$fred. . $bar ney;
} else { # Count downwards from $fred to $barney
reverse $barney. . $fred;
}

}

$fred = 11;

$barney = 6;

@ = &ist_fromfred_to_barney; # @ gets (11, 10, 9, 8, 7, 6)

% Thereturnvalue of pri nt istruefor a successful operation and false for a failure. We'll see how to determine the kind of
failure later in Chapter 11.

1% vou can detect whether a subroutineis being evaluated in a scalar or list context using the want ar r ay function, which lets
you easily write subroutines with specific list or scalar context values.

54

Learning Perl, 3rd edition

In this case, the range operator gives us thelist from 6 to 11, then r ever se reverses the list, so that
it goesfrom $f r ed (11) to $bar ney (6), just as we wanted.

These are al rather trivial examples. It gets better when we can pass values that are different for
each invocation into a subroutine instead of relying on global variables. In fact, that's coming right

up.
4.5 Arguments

That subroutine called | arger _of fred_or_bar ney would be much more useful if it didn't force
us to use the global variables $fred and $bar ney. That's because, if we wanted to get the larger
value from $wi | ma and $bet t y, we currently have to copy those into $f r ed and $bar ney beforewe
can use | arger _of _fred_or_barney. And if we had something useful in those variables, we'd
have to first copy those to other variables, say $save_fred and $save_bar ney. And then, when
we're done with the subroutine, we'd have to copy those back to $f r ed and $bar ney again.

Luckily, Perl has subroutine arguments. To pass an argument list to the subroutine, simply place
thelist expression, in parentheses, after the subroutine invocation, like this:

$n = &max(10, 15); # This sub call has two paraneters

That list is passed to the subroutine; that is, it's made available for the subroutine to use however it
needs to. Of course, this list has to be stored into a variable, so the parameter list (another name
for the argument list) is automatically assigned to a special array variable named @ for the
duration of the subroutine. The subroutine can access this variable to determine both the number
of arguments and the value of those arguments.

So, that means that the first subroutine parameter is stored in $_[0], the second one is stored in
$_[1], and so on. But - and here's an important note - these variables have nothing whatsoever to
do with the $_ variable, any more than $di no[3] (an element of the @i no array) has to do with
$di no (a completely distinct scalar variable). It's just that the parameter list must be stored into
some array variable for the subroutine to use it, and Perl usesthe array @ for this purpose.

Now, you could write the subroutine &max to look a little like the subroutine
&l arger _of _fred_or_bar ney, but instead of using $a you could use the first subroutine parameter
($_[0]), and instead of using $b, you could use the second subroutine parameter ($_[1]). And so
you could end up with code something like this:

sub max {
Conpare this to & arger_of _fred_or_barney
if ($_[0] >$_[1])

{
$_[0];

el se {
$_[1];
}

WEell, as we said, you could do that. But it's pretty ugly with all of those subscripts, and hard to
read, write, check, and debug, too. Well see a better way in amoment.

There's another problem with this subroutine. The name &max is nice and short, but it doesn't
remind us that this subroutine works properly only if called with exactly two parameters:

$n = &max(10, 15, 27); # Oops!

Learning Perl, 3rd edition

Excess parameters are ignored - since the subroutine never looks at $_[2], Perl doesn't care
whether there's something in there or not. And insufficient parameters are also ignored - you
simply get undef if you look beyond the end of the @ array, as with any other array. We'l see
how to make a better &rax, which works with any number of parameters, later in this chapter.

The @ variableislocal to the subrouting;'® if there's aglobal vauein @, it is saved away before

the subroutine is invoked and restored to its previous value upon return from the subroutine.’®’
This al'so means that a subroutine can pass arguments to another subroutine without fear of losing
itsown @ variable - the nested subroutine invocation getsits own @ in the same way. Even if the
subroutine calls itself recursively, each invocation getsanew @, SO @ is always the parameter list
for the current subroutine invocation.

4.6 Private Variables in Subroutines

But if Perl can give usanew @ for every invocation, can't it give us variables for our own use as
well? Of courseit can.

By default, al variables in Perl are global variables; that is, they are accessable from every part of
the program. But you can create private variables called lexical variablesat any time with the ny
operator:

sub max {
ny($a, $b); # new, private variables for this block
(%a, $b) = @; # give nanes to the paraneters

if ($a > $b) { $a } else { $b }
}
These variables are private (or scoped) to the enclosing block; any other $a or $b is totally
unaffected by these two. And that goes the other way, too - no other code can access or modify
these private variables, by accident or design."® So, we could drop this subroutine into any Perl
program in the world and know that we wouldn't mess up that program's $a and $b (if any).'®

It's also worth pointing out that, inside the i f 's blocks, there's no semicolon needed after the return
value expression. Although Perl alows for the last semicolon in a block to be omitted, in practice
that's omitted only when the code is so simple that the block is written in a single line, like the
previous ones.

The subroutine in the previous example could be made even simpler. Did you notice that the list
($a, $b) waswritten twice? That ny operator can also be applied to alist of variables enclosed in
parentheses, so it's more customary to combine those first two statements in the subroutine:

ny($a, $b) = @; # Nane the subroutine paraneters

That one statement creates the private variables and sets their values, so the first parameter now
has the easier-to-use name $a and the second has $b. Nearly every subroutine will start with aline
much like that one, naming its parameters. When you see that line, you'll know that the subroutine
expects two scalar parameters, which we'll call $a and $b inside the subroutine.

1% Unless there's an ampersand in front of the name for the invocation, and no parentheses (or arguments) afterward, in which
casethe @ arrayisinherited fromthe caller's context. That's generally a bad idea, but is occasionally useful.

197 you might recognize that this is the same mechanism as used with the control variable of the f or each loop, as seenin the
previous chapter. In either case, the variable's value is saved and automatically restored by Perl. We'll see this again with the

| ocal operator later in thischapter.

1% Advanced programmerswill realize that a lexical variable may be accessible by reference from outside its scope, but never by
name.

1% Of course, if that program already had a subroutine called &vax, we'd mess that up.

56

Learning Perl, 3rd edition

4.7 The local Operator

You might consider this next section a giant footnote, but then we couldn't have footnotes on
footnotes, so we decided to put it up in the main text. Skip over this text on first reading, and pop
right on down to Section 4.8. You won't need any of it to do the exercises or write Perl code for a
long time. But someone invariably asks us in class something like "What isthat | ocal thing | see
in some programs?' so were including what we normally say as an aside in class for your
enjoyment and edification.

Occasionaly, mostly in older code or older Perl books, you'll see thel ocal operator used instead
of my. It often looks much the same asny:
sub max {

local ($a, $b) = @; # looks a lot like ny

if ($a > $b) { $a } else { $b }
}
But | ocal ismisnamed, or at least misleadingly named. Our friend Chip Salzenberg saysthat if he
ever gets a chance to go back in a time machine to 1986 and give Larry one piece of advice, he'd
tell Larry to call | ocal by the name "save" instead.™® That's because | ocal actually will save the
given global variable's value away, so it will later automatically be restored to the global variable.
(That's right: these so-called "l ocal " variables are actually globalsl) This save-and-restore
mechanism is the same one we've already seen twice now, in the control variable of afor each
loop, and inthe @ array of subroutine parameters.

What | ocal actually does, then, is to save away a copy of the variable's value in a secret place
(called the stack). That value can't be accessed, modified, or deleted™ while it is saved. Then
| ocal sets the variable to an empty value (undef for scalars, or empty list for arrays), or to
whatever value is being assigned. When Perl returns from the subroutine,™ the variable is
automatically restored to its original vaue. In effect, the variable was borrowed for a time and
given back (hopefully) before anyone noticed that it was borrowed.

4.7.1 The Difference Between local and my

But what if the subroutine called another subroutine, one that did notice that the variable was being
borrowed by | ocal ? For example:

$office = "global"; # dobal $office

&say(); # says "global", accessing $office
directly

& red(); # says "fred", dynam c scope,

because fred's local $office hides the global

&barney(); # says "global", |exical scope;
barney's $office is visible only in that block

sub say { print "$office\n"; } # print the currently visible $office
sub fred { local ($office) = "fred"; &say(); }
sub barney { ny($office) = "barney"; &say(); }

19 We would tell Larry to buy stock in Yahoo!, but Chip is more idealistic than we are.

1 Or damaged, defiled, read, checked, touched, seen, changed, or printed, for that matter. There's no way fromwithin Perl to
get at the saved value.

12 Or when it finishes execution of the smallest enclosing block or file, to be more precise.

57

Learning Perl, 3rd edition

First, we call the subroutine &say, which tells us which $of fi ce it sees - the global $offi ce.
That's normal.

But then we call Fred's subroutine. Fred has made his own | ocal $of fi ce, s0 he has actually
changed the behavior of the &say subroutine; now it tells uswhat'sin Fred's $of f i ce. We can't tell
whether that's what Fred wanted to do or not without understanding the meaning of his code. But
it'salittle odd.

Barney, however, is a little smarter, as well as being shorter, so he uses the shorter (and smarter)
operator, ny. Barney's variable $of f i ce is private, and Barney's private $of f i ce can't be accessed
from outside his subroutine, so the &say subroutine is back to normal; it can see only the global
$of fi ce. Barney didn't change the way &say works, which is more like what most programmers
would want and expect.

Now, if you're confused about these two operators at this point, that's to be expected. But any time
that you see | ocal , think "save," and that may help. In any new code, just use ny, since ny
variables (lexical variables) are faster than globals - remember, so-called | ocal variablesareredly
globals - and they'll work more like the traditional variables in other modern programming
languages. But when you're maintaining someone else's old code, you can't necessarily change
every | ocal to my without checking upon whether the programmer was using that save-and-restore
functionality.

4.8 Variable-length Parameter Lists

In rea-world Perl code, subroutines are often given parameter lists of arbitrary length. That's
because of Perl's "no unnecessary limits' philosophy that we've already seen. Of course, this is
unlike many traditional programming languages, which require every subroutine to be strictly
typed; that is, to permit only a certain, predefined number of parameters of predefined types. It's
nice that Perl is so flexible, but (as we saw with the &rax routine earlier) that may cause problems
when a subroutine is called with a different number of arguments than the author expected.

Of course, the subroutine can easily check that it has the right number of arguments by examining
the @ array. For example, we could have written &rax to check its argument list like this:™®
sub max {
if (@ !'=2) {
print "WARNI NG &max shoul d get exactly two argunents!\n";
}

continue as before...

.
That i f -test uses the "name" of the array in a scalar context to find out the number of array
elements, aswe saw in Chapter 3.

But in real-world Perl programming, this sort of check is hardly ever used; it's better to make the
subroutine adapt to the parameters.

113 As soon as you learn about war n (in Chapter 11), you'll seethat you can useit to turn improper usage like thisinto a proper

warning. Or perhapsyou'll decide that this caseis severe enough to warrant using di e, described in the same chapter.

58

Learning Perl, 3rd edition

4.8.1 A Better &max Routine

S0 let's rewrite &vax to allow for any number of arguments:
$maxi mum = &max(3, 5, 10, 4, 6);

sub max {
ny($max_so_far) = shift @; # the first one is the |argest yet seen
foreach (@) { # | ook at the remaining argunents

if ($_ > $max_so_far) { # could this one be bigger yet?
$max_so_far = $_;
}
}

$max_so_far;
}
This code uses what has often been called the "high-water mark™" algorithm; after a flood, when the
waters have surged and receded for the last time, the high-water mark shows where the highest
water was seen. In this routine, $max_so_far keeps track of our high-water mark, the largest
number yet seen.

The first line sets $max_so_far to 3 (the first parameter in the example code) by shifting that
parameter from the parameter array, @. So @ now holds (5, 10, 4, 6), since the 3 has been
shifted off. And the largest number yet seen isthe only one yet seen: 3, the first parameter.

Now, the f or each loop will step through the remaining values in the parameter list, from @ . The
control variable of the loop is, by default, $_. (But, remember, there's no automatic connection
between @ and $_; it's just a coincidence that they have such similar names.) The first time
through the loop, $_is5. Theif test seesthat it islarger than $max_so_f ar, SO $max_so_far is
set to 5 - the new high-water mark.

The next time through the loop, $_ is 10. That's a new record high, so it's stored in $max_so_f ar
aswell.

Thenexttime, $_is4. Theif test fals, since that's no larger than $max_so_f ar, which is 10, so
the body of thei f is skipped.

The next time, $_ is 6, and the body of the i f is skipped again. And that was the last time through
the loop, so the loop is done.

Now, $max_so_f ar becomes the return value. It's the largest number we've seen, and we've seen
them all, so it must be the largest from thelist: 10.

4.8.2 Empty Parameter Lists

That improved &max algorithm works fine now, even if there are more than two parameters. But
what happensiif there are none?

At first, it may seem too esoteric to worry about. After all, why would someone call &rax without
giving it any parameters? But maybe someone wrote aline like this one:

$maxi mum = &max(@wunbers) ;

And the array @unber s might sometimes be an empty list; perhaps it was read in from afile that
turned out to be empty, for example. So what does &rax do in that case?

59

Learning Perl, 3rd edition

Thefirst line of the subroutine sets $max_so_f ar by using shi ft on @, the (now empty) parameter
array. That's harmless; the array isleft empty, andshi ft returnsundef to $max_so_far.

Now the f or each loop wants to iterate over @ , but since that's empty, the loop body is executed
zero times.

So in short order, Perl returns the value of $nax_so_far - undef - as the return value of the
subroutine. In some sense, that's the right answer, because there is no largest value in an empty
list.

Of course, whoever is calling this subroutine should be aware that the return value may be undef -
or they could simply ensure that the parameter list is never empty.

4.9 Notes on Lexical (my) Variables

Those lexical variables can actually be used in any block, not merely in a subroutine's block. For
example, they can be used in the block of ani f, whi | e, or f or each:
foreach (1..10) {

ny($square) = $_* $; # private variable in this |oop

print "$_ squared is $square.\n";

}

The variable $squar e is private to the enclosing block; in this case, that's the block of the f or each
loop. If there's no block, the variable is private to the entire source file. For now, your programs
aren't going to use more than one source file, so this isn't an issue. But the important concept is
that the scope of alexical variable's name is limited to the smallest enclosing block or file. The
only code that can say $squar e and mean that variable is the code inside that textual scope. Thisis
a big win for maintainability - if the wrong value is found in $squar e, the culprit will be found
within alimited amount of source code. As experienced programmers have learned (often the hard
way), limiting the scope of a variable to a page of code, or even to a few lines of code, really
speeds aong the devel opment and testing cycle.

Note also that the ny operator doesn't change the context of an assignment:

ny ($num @; # list context, sanme as ($nun) = @;
ny $num @; # scalar context, same as $num= @;

In the first one, $numgets the first parameter, as a list-context assignment; in the second, it gets the
number of parameters, in a scalar context. Either line of code could be what the programmer
wanted; we can't tell from that one line aone, and so Perl can't warn you if you use the wrong one.
(Of course, you wouldn't have both of those lines in the same subroutine, since you can't have two
lexical variables with the same name declared in the same scope; thisis just an example.) So, when
reading code like this, you can always tell the context of the assignment by seeing what the context
would be without the word ny .

Of course, you can use ny to create new, private arrays aswell:*

ny @hone_nunber ;
Any new variablewill start out empty - undef for scalars, or the empty list for arrays.

14 Or hashes, which we'll see in the next chapter.

60

Learning Perl, 3rd edition

4.10 The use strict Pragma

Perl tends to be a pretty permissive language. But maybe you want Perl to impose a little
discipline; that can be arranged with theuse strict pragma

A pragma is ahint to acompiler, telling it something about the code. In thiscase, theuse strict
pragma tells Perl's internal compiler that it should enforce some good programming rules for the
rest of this block or sourcefile.

Why would this be important? Well, imagine that you're composing your program, and you type a
line like this one:

$bamm bamm = 3; # Perl creates that variable automatically

Now, you keep typing for a while. After that line has scrolled off the top of the screen, you type
thisline to increment the variable:

$bambamm += 1; # Oops!

Since Perl sees a new variable name (the underscore is significant in a variable name), it creates a
new variable and increments that one. If you're lucky and smart, you've turned on warnings, and
Perl can tell you that you used one or both of those global variable names only once in your

program. But if you're merely smart, you used each name more than once, and Perl won't be able to
warn youl.

To tell Perl that you're ready to be more restrictive, put the use strict pragmaat the top of your
program (or in any block or file where you want to enforce these rules):

use strict; # Enforce sone good progranmm ng rul es
Now, among other restrictions,"> Perl will insist that you declare every new variable with my ;'
ny $bamm banm = 3; # New | exical variable

Now if you try to spell it the other way, Perl can complain that you haven't declared any variable
called sbambanm S0 your mistake is automatically caught at compile time.

$bambamm += 1; # No such variable: Conpile tinme error

Of course, this applies only to new variables; Perl's builtin variables, such as$_ and @ never need
to be declared.™"’

If you add use strict to an aready-written program, you'll generaly get a flood of warning
messages, o it's better to use it from the start, when it's needed.

Most people recommend that programs that are longer than a screenful of text generally need use
strict. Andweagree.

15 To learn about the other restrictions, see the documentation for st r i ct . The documentation for any pragma is filed under
that pragma’s name, so the command perldoc strict(or your system's native documentation method) should find it for you. In
brief, the other restrictions require that strings be quoted in most cases, and that references be true (hard) references. Neither of
these restrictions should affect beginnersin Perl.

118 There are some other waysto declare variables, too.

17 And, at least in some circumstances, $a and $b won't need to be declared, because they're used internally by sor t . Soif
you're testing this feature, use other variable names than thosetwo. Thefact that use stri ct doesn't forbid thesetwo isone
of the most frequently reported non-bugsin Perl.

61

Learning Perl, 3rd edition

From here on, most (but not all) of our examples will be written asif use strict isin effect, even
where we don't show it. That is, well generally declare variables with ny where it's appropriate.
But, even though we don't always do so here, we encourage you to include use strict inyour
programs as often as possible.

4.11 The return Operator

Ther et ur n operator immediately returns a value from a subroutine:

ny @anes = qw fred barney betty dino wilnm pebbles banm banm /;
ny $result = &which_el ement _i s("dino", @anes);

sub which_elenment _is {
my($what, @ist) = @;
foreach (0..$#list) { # indices of @ist's elenents
if ($what eq $list[$_]) {
return $_; # return early once found
}

}

-1 # elenment not found (return is optional here)

}

This subroutine is being used to find the index of "dino" in the array @anes. First, the ny
declaration names the parameters: there's $what , which is what we're searching for, and @i st, a
list of values to search within. That's a copy of the array @anes, in this case. The f or each loop
steps through the indices of @i st (the first index is 0, and the last one is $#l i st , aswe saw in
Chapter 3).

Each time through the f or each loop, we check to see whether the string in $what is equal™® to the
element from @i st at the current index. If it's equal, we return that index at once. Thisis the
most common use of the keyword return in Perl - to return a value immediately, without
executing the rest of the subroutine.

But what if we never found that element? In that case, the author of this subroutine has chosen to
return - 1 as a "value not found" code. It would be more Perlish, perhaps, to return undef in that
case, but this programmer used - 1. Saying return -1 on that last line would be correct, but the
word r et ur n isn't really needed.

Some programmers like to use return every time there's a return value, as a means of
documenting that it is areturn value. For example, you might user et ur n when the return value is
not the last line of the subroutine, such asin the subroutine & i st _from fred_t o_bar ney, earlier
in this chapter. It's not realy needed, but it doesn't hurt anything. However, many Perl
programmers believe it's just an extra seven characters of typing. So you'll need to be able to read
code written by both kinds of programmers.

If ret ur n is used with no expression, that will return an empty value - undef inascaar context, or
an empty listinalist context. return () doesthe same, in case you want to be explicit.

118 You noticed that we used the string equality test, eq, instead of the numeric equality test, ==, didn't you?

62

Learning Perl, 3rd edition

4.11.1 Omitting the Ampersand

As promised, now we'll tell you the rule for when a subroutine call can omit the ampersand. If the
compiler sees the subroutine definition before invocation, or if Perl can tell from the syntax that it's
a subroutine call, the subroutine can be called without an ampersand, just like a builtin function.
(But there's a catch hidden in that rule, aswe'll seein amoment.)

This means that if Perl can see that it's a subroutine call without the ampersand, from the syntax
alone, that's generally fine. That is, if you've got the parameter list in parentheses, it's got to be a
function™™ call:

ny @ards = shuffle(@eck_of _cards); # No & necessary on &shuffle

Or if Perl's internal compiler has aready seen the subroutine definition, that's generally okay, too;
in that case, you can even omit the parentheses around the argument list:
sub division {
$ [0] / $_[1]; # Divide first param by second
}

ny $quotient = division 355, 113; # Uses &division

This works because of the rule that parentheses may aways be omitted, except when doing so
would change the meaning of the code.

But don't put that subroutine declaration after the invocation, or the compiler won't know what the

attempted invocation of di vi si on is @l about. The compiler has to see the definition before the
invocation in order to use the subroutine cal asif it were abuiltin.

That's not the catch, though. The catch is this: if the subroutine has the same name as a Perl
builtin, you must use the ampersand to call it. With an ampersand, you're sure to call the
subroutine; without it, you can get the subroutine only if there's no builtin with the same name:
sub chomp {

print "Miunch, nunch!";

}

&chonp; # That anpersand is not optional!

Without the ampersand, we'd be calling the builtin chonp, even though weve defined the
subroutine &honp. So, the real rule to use is this one: until you know the names of all of Perl's
builtin functions, always use the ampersand on function calls. That means that you will use it for
your first hundred programs or so. But when you see someone else has omitted the ampersand in
their own code, it's not necessarily a mistake; perhaps they simply know that Perl has no builtin
with that name.®

When programmers plan to call their subroutines as if they were calling Perl's builtins, often when
writing modules , they often use prototypes to tell Perl about the parameters to expect. Making
modules is an advanced topic, though; when you're ready for that, see Perl's documentation (in
particular, the perlmod and perlsub documents) for more information about subroutine prototypes
and making modules.

9 |n this case, the function isthe subroutine & huf f | e. But it may be a built-in function, aswe'll seein a moment.
120 Then again, maybe it is a mistake; you can search the per | f unc and per | op manpages for that name, though, to see
whether it'sthe same asa builtin. And Perl will usually be able to warn you about this, when you have warnings turned on.

Learning Perl, 3rd edition

4.12 Exercises

See Section A.3 for answersto the following exercises:

1.

[12] Write a subroutine, called &t ot al , which returns the total of alist of numbers. Hint:
the subroutine should not perform any 1/O; it should simply process its parameters and
return a value to its caller. Try it out in this sample program, which merely exercises the
subroutine to see that it works. Thefirst group of numbers should add up to 25.

ny @red =gw 1357 9 };

ny $fred_total = & otal (@red);

print "The total of \@red is $fred_total.\n";

print "Enter sone nunbers on separate |ines:

ny $user_total = &otal (<STDI N>);
print "The total of those nunbers is $user_total.\n";

[5] Using the subroutine from the previous problem, make a program to calculate the sum
of the numbersfrom 1 to 1000.

64

Learning Perl, 3rd edition

Chapter 5. Hashes

In this chapter, we will see one of Perl's features that makes Perl one of the world's truly great
programming languages - hashes."”* Although hashes are a powerful and useful feature, you may
have used other powerful languages for years without ever hearing of hashes. But you'll use
hashesin nearly every Perl program you'll write from now on; they're that important.

5.1 What Is a Hash?

A hash is a data structure, not unlike an array in that it can hold any number of values and retrieve
them at will. But instead of indexing the values by number, as we did with arrays, we'll look up
the values by name. That is, the indices (here, we'll call them keys) aren't numbers, but instead
they are arbitrary unique strings (see Figure 5-1).

Figure 5-1. Hash keys and values

“foo" 35
“bar" 124
“15" “hella”
“wiilma™ 1.72e30
“hetty” "byen”

The keys are strings, first of all, so instead of getting element number 3 from an array, we'lll be
accessing the hash element named wi | na.

These keys are arbitrary strings - you can use any string expression for a hash key. And they are
unique strings - just as there's only one array element numbered 3, there's only one hash element
named wi | ma.

Another way to think of a hash isthat it's like a barrel of data, where each piece of data has atag
attached. Y ou can reach into the barrel and pull out any tag and see what piece of data is attached.
But there's no "first" item in the barrel; it's just a jumble. In an array, we'd start with element 0,
then element 1, then element 2, and so on. But in a hash, there's no fixed order, no first element.
It'sjust acollection of key-value pairs.

The keys and values are both arbitrary scalars, but the keys are always converted to strings. So, if
you used the numeric expression 50/ 20 as the key,'* it would be turned into the three-character
string " 2. 5", which is one of the keys shown in the diagram above.

2L |n the olden days, we called these " associative arrays." But the Perl community decided in about 1995 this wastoo many
letters to type and too many syllables to say, so we changed the name to "hashes."

122 That's a numeric expression, not the five-character string” 50/ 20" . If we used that five-character string as a hash key, it
would stay the same five-character string, of course.

65

Learning Perl, 3rd edition

As usual, Perl's no-unnecessary-limits philosophy applies. a hash may be of any size, from an
empty hash with zero key-value pairs, up to whatever fills up your memory.

Some implementations of hashes (such as in the origina awk language, from where Larry
borrowed the idea) slow down as the hashes get larger and larger. Thisis not the case in Perl - it
has a good, efficient, scalable algorithm.”” So, if a hash has only three key-value pairs, it's very
quick to "reach into the barrel" and pull out any one of those. If the hash has three million key-
value pairs, it should be just about as quick to pull out any one of those. A big hash is nhothing to
fear.

It's worth mentioning again that the keys are aways unique, athough the values may be
duplicated. The values of a hash may be all numbers, all strings, undef values, or amixture.”” But
thekeysare al arbitrary, unique strings.

5.1.1 Why Use a Hash?

When you first hear about hashes, especialy if you've lived a long and productive life as a
programmer using other languages that don't have hashes, you may wonder why anyone would
want one of these strange beasts. Well, the general ideais that you'll have one set of data "related
to" another set of data. For example, here are some hashes you might find in typical applications of
Perl:

Given name, family name

The given name (first name) is the key, and the family name is the value. This requires
unique given names, of courseg; if there were two people named r andal , this wouldn't work.
With this hash, you can look up anyone's given name, and find the corresponding family
name. If you usethekey t om you get the value phoeni x.

Host name, | P address

You may know that each computer on the Internet has both a host name (like
www.stonehenge.com) and an IP address number (like 123.45.67.89). That's because
machines like working with the numbers, but we humans have an easier time remembering the
names. The host names are unique strings, so they can be used to make this hash. With this
hash, you could look up a host name and find the corresponding IP address number.

| P address, host name

Or you could go in the opposite direction. We generally think of the IP address as a number,
but it can also be a unique string, so it's suitable for use as a hash key. In this hash, we can
look up the IP address number to determine the corresponding host name. Note that thisis not
the same hash as the previous example: hashes are a one-way street, running from key to
value; there's no way to look up a value in a hash and find the corresponding key! So these
two are a pair of hashes, one for storing |P addresses, one for host names. It's easy enough to
create one of these given the other, though, as we'll see below.

128 Technically, Per| rebuilds the hash table as needed for larger hashes. In fact, the term "hashes" comes fromthe fact that a
hash table is used for implementing them.
124 Or, in fact, any scalar values, including other scalar types than the oneswe'll seein this book.

Learning Perl, 3rd edition

Word, count of number of times that word appears

The idea here is that you want to know how often each word appears in a given document.
Perhaps you're building an index to a number of documents, so that when a user searches for
fred, you'll know that a certain document mentions f r ed five times, another mentions f r ed
seven times, and yet another doesn't mention f r ed at al - so you'll know which documentsthe
user is likely to want. As the index-making program reads through a given document, each
time it sees amention of f r ed, it adds one to the value filed under the key of fred. Thatis, if
we had seen fred twice aready in this document, the value would be 2, but now well
increment it to 3. If we had never seen fred before, we'd change the value from undef (the
implicit, default value) to 1.

Username, number of disk blocks they are using [wasting]

System administrators like this one: the usernames on a given system are all unique strings, so
they can be used as keysin a hash to look up information about that user.

Driver'slicense number, name

There may be many, many people named John Smith, but we hope that each one has a
different driver's license number. That number makes for a unique key, and the person's name
isthevalue.

So, yet another way to think of a hash is as a very simple database, in which just one piece of data
may be filed under each key. In fact, if your task description includes phrases like "finding
duplicates,” "unique," "cross-reference,” or "lookup table," it's likely that a hash will be useful in
the implementation.

5.2 Hash Element Access

To access an element of a hash, use syntax that looks like this:
$hash{ $sone_key}

This is similar to what we used for array access, but here we use curly braces instead of sguare
brackets around the subscript (key)."® And that key expression is now a string, rather than a
number:

$fam |y _name{"fred"} = "flintstone";
$fam | y_nane{"barney"} = "rubble";

Figure 5-2 shows how the resulting hash keys are assigned.

Figure 5-2. Assigned hash keys

fred flintstone

barney rubble

125 Here's a peek into the mind of Larry Wall: Larry says that we use curly braces instead of square brackets because we're doing
something fancier than ordinary array access, so we should use fancier punctuation.

67

Learning Perl, 3rd edition

Thislets us use code like this:

foreach $person (qw< barney fred >) {

print "I've heard of $person $fam |y _nane{$person}.\n";
}
The name of the hash is like any other Perl identifier (Ietters, digits, and underscores, but can't start
with a digit). And it's from a separate namespace; that is, there's no connection between the hash
element $f ami | y_nane{"fred"} and asubroutine &f ani | y_nane, for example. Of course, there's
no reason to confuse everyone by giving everything the same name. But Perl won't mind if you
also have a scalar caled $f ami | y_nanme and array elements like $f ami | y_nane[5] . We humans
will have to do as Perl does; that is, we'll have to look to see what punctuation appears before and
after the identifier to see what it means. When there is a dollar sign in front of the name and curly
braces afterwards, it's a hash element that's being accessed.

When choosing the name of a hash, it's often nice to think of the word "of" between the name of
the hash and the key. Asin, "the fani | y_name of fred isflintstone ". So the hash is named
fam | y_name. Then it becomes clear what the relationship is between the keys and their values.

Of course, the hash key may be any expression, not just the literal strings and simple scalar
variables that we're showing here:

$foo = "bar";
print $famly_nane{ $foo . "ney" }; # prints "rubble"

When you store something into an existing hash element, that overwrites the previous value:

$fam |y _nane{"fred"} = "astaire"; # gives new value to existing el ement
$bedrock = $fam|ly_nane{"fred"}; # gets "astaire"; old value is |ost

That's analogous to what happens with arrays and scalars,; if you store something new into
$pebbl es[17] or $dino, the old value is replaced. If you store something new into
$fanmi|y_name{"fred"}, theold valueisreplaced aswell.

Hash elements will spring into existence by assignment:

$fam ly_name{"wilma"} = "flintstone"; # adds a new key (and val ue)
$fam |y _nanme{"betty"} .= $fam |y _nane{"barney"}; # creates the elenent if needed

That's also just like what happens with arrays and scalars; if you didn't have $pebbl es[17] or
$di no before, you will have it after you assign to it. If you didn't have $f ani | y_nane{"betty"}
before, you do now.

And accessing outside the hash gives undef :
$granite = $fanmly_nane{"larry"}; # No larry here: undef

Once again, this is just like what happens with arrays and scalars; if there's nothing yet stored in
$pebbl es[17] or $di no, accessing them will yield undef. If there's nothing yet stored in
$fanily_name{"larry"}, accessing it will yield undef .

5.2.1 The Hash as a Whole

To refer to the entire hash, use the percent sign ("%') as a prefix. So, the hash we've been using for
the last few pagesis actually called % ami | y_nane.

68

Learning Perl, 3rd edition

For convenience, a hash may be converted into a list, and back again. Assigning to a hash (in this
case, 1tzrge one from Figure 5-1) is a list-context assignment, where the list is made of key-value
pairs.

%one_hash = ("foo", 35, "bar", 12.4, 2.5, "hello",
"wilma", 1.72e30, "betty", "bye\n");

The vaue of the hash (in alist context) isasimplelist of key-value pairs:
@ny_array = %sone_hash;

We call this unwinding the hash; turning it back into alist of key-value pairs. Of course, the pairs
won't necessarily be in the same order asthe original list:
print "@ny_array\n";

mght give sonething like this:

Dbetty bye (and a newline) wilma 1.72e+30 foo 35 2.5 hello bar 12.4
The order is jumbled because Perl keeps the key-value pairs in an order that's convenient for Perl,
so that it can look up any item quickly. So you'd normally use a hash either when you don't care
what order theitems are in, or when you have an easy way to put them into the order you want.

Of course, even though the order of the key-value pairs is jumbled, each key "sticks' with its
corresponding value in the resulting list. So, even though we don't know where the key f oo will
appear in thelist, we know that its value, 35, will beright after it.

5.2.2 Hash Assignment

It'srare to do so, but a hash may be copied using the obvious syntax:
%mew_hash = %l d_hash;

This is actually more work for Perl than meets the eye. Unlike what happens in languages like
Pascal or C, where such an operation would be a smple matter of copying a block of memory,
Perl's data structures are more complex. So, that line of code tells Perl to unwind the %! d_hash
into alist of key-value pairs, then assign those to %mew_hash, building it up one key-value pair at a
time.

It's more common to transform the hash in some way, though. For example, we could make an
inverse hash:

% nver se_hash = reverse %any_hash;

This takes vany_hash and unwinds it into alist of key-value pairs, making alist like (key, value,
key, value, key, value, ...). Then reverse turns that list end-for-end, making a list like (value,
key, value, key, value, key, ...) . Now the keys are where the values used to be, and the values are
where the keys used to be. When that's stored into % nver se_hash, well be able to look up a
string that was a value in ¥any_hash - it's now akey of % nver se_hash. And the value well find
is one that was one of the keys from vany_hash. So, we have away to look up a "value" (now a
key), and find a"key" (now avalue).

Of course, you might guess (or determine from scientific principles, if you're clever) that this will
work properly only if the values in the original hash were unique - otherwise we'd have duplicate
keys in the new hash, and keys are always unique. Here's the rule that Perl uses: the last one in
wins. That is, the later itemsin the list overwrite any earlier ones.

125 Although any list expression may be used, it must have an even number of elements, because the hash is made of key-value
pairs. An odd element will likely do something unreliable, although it's a warnable offense.

Learning Perl, 3rd edition

Of course, we don't know what order the key-value pairs will have in this list, so there's no telling
which ones would win. You'd use this technique only if you know there are no duplicates among
the original values.”®” But that's the case for the | P address and host name examples given earlier:

% p_address = reverse %host_nane;

Now we can look up a host name or IP address with equal ease, to find the corresponding IP
address or host name.

5.2.3 The Big Arrow

When assigning a list to a hash, sometimes it's not obvious which elements are keys and which are
values. For example, in this assignment (which we saw earlier), we humans have to count through
thelist, saying, "key, value, key, value... ", in order to determine whether 2. 5 isakey or avalue:

%one_hash = ("foo", 35, "bar", 12.4, 2.5, "hello",
"wilma", 1.72e30, "betty", "bye\n");

Wouldn't it be nice if Perl gave us away to pair up keys and valuesin that kind of alist, so that it
would be easy to see which ones were which? Larry thought so, too, which is why he invented the
big arrow, (=>)."® To Perl, it's just a different way to "spell" a comma. That is, in the Perl
tgraFl;nerng any time that you need a comma (,), you can use the big arrow instead; it's all the same
o Perl.

So here's another way to set up the hash of last names:

ny % ast_name = (# a hash may be a |lexical variable

"fred" => "flintstone",

"di no" => undef,

"barney" => "rubble",

"betty" => "rubble",
)
Here, it's easy (or perhaps at |east easier) to see whose name pairs with which value, even if we end
up putting many pairs on one line. And notice that there's an extra comma at the end of the list.
As we saw earlier, this is harmless, but convenient; if we need to add additional people to this
hash, we'll simply make sure that each line has a key-value pair and atrailing comma. Perl will see
that there is a comma between each item and the next, and one extra (harmless) comma at the end
of thelist.

5.3 Hash Functions

Naturally, there are some useful functions that can work on an entire hash at once.

27 Or if you don't care that there are duplicates. For example, we could invert the % ani | y_name hash (in which the keysare
people's given names and values are their family names) to make it easy to determine whether thereisor is not anyone with a
given family name in the group. Thus, in the inverted hash, if there'sno key of sl at e, we'd know that there's no one with that
name in the original hash.

128 Yes, there'salso alittle arrow, (- >). It's used with references, which are an advanced topic; see the per|reftutand
perlrefmanpage when you're ready for that.

129 \Well, there's one technical difference: any bareword (a sequence of nothing but |etters, digits, and underscores not starting
with a digit) to the left of the big arrow isimplicitly quoted. So you can leave off the quote marks on a bareword to theleft of the
big arrow. You may also omit the quote marks if there's nothing but a bareword as a key inside the curly braces of a hash.

70

Learning Perl, 3rd edition

5.3.1 The keys and values Functions

Thekeys functionyields alist of al the current keysin a hash, while the val ues function givesthe
corresponding values. If there are no elements to the hash, then either function returns an empty
list:

ny %ash = ("a" => 1, "b" => 2, "c¢" => 3);

ny @ keys %hash;

ny @ val ues %ash;

So, @ will contain"a","b",and "c", and @ will contain 1, 2, and 3 - in some order. Remember,
Perl doesn't maintain the order of elements in a hash. But, whatever order the keys are in, the
values will be in the corresponding order: If "b" islast in the keys, 2 will be last in the values; if
"c" is the first key, 3 will be the first value. That's true as long as you don't modify the hash
between the request for the keys and the one for the values. If you add elements to the hash, Perl
reserves the right to rearrange it as needed, to keep the access quick.™®

In a scalar context, these functions give the number of elements (key-value pairs) in the hash.
They do this quite efficiently, without having to visit each element of the hash:

ny $count = keys %ash; # gets 3, neaning three key-value pairs

Oncein along while, you'll see that someone has used a hash as a Boolean (true/false) expression,
something like this:
if (%hash) {

print "That was a true value!\n";
}
That will be true if (and only if) the hash has at least one key-value pair.”*" So, it's just saying, "if
the hash isnot empty... ". But thisis a pretty rare construct, as such things go.

5.3.2 The each Function

If you wish to iterate over (that is, examine every element of) an entire hash, one of the usua ways
is to use the each function, which returns a key-value pair as a two-element list."** On each
evaluation of this function for the same array, the next successive key-value pair is returned, until
all the elements have been accessed. When there are no more pairs, each returns an empty list.

In practice, the only way to use each isin awhi | e loop, something like this:

while (($key, $value) = each %hash) {
print "$key => $val ue\ n";

}

There's a lot going on here. First, each %ash returns a key-value pair from the hash, as a two-
element list; let's say that the key is"c" and thevalueis 3, so thelistis ("c", 3). Thatlistis
assigned to thelist ($key, $val ue), SO $key becomes” c", and $val ue becomess.

10 Of course, if you started adding elements to the hash between keys and val ues, your list of values (or keys, whichever you
did second) would have additional items, which would be tough to match up with thefirst list. So no normal programmer would
do that.

B The actual result is an internal debugging string useful to the people who maintain Perl. It |ooks something like "4/16", but
the valueis guaranteed to be true when the hash is non-empty, and false when it's empty, so the rest of us can still useit for that.
32 The other usual way to iterate over an entire hash isto use f or each onalist of keys fromthe hash; we'll see that by the end
of this section.

71

Learning Perl, 3rd edition

But that list assignment is happening in the conditional expression of the whi | e loop, which is a
scalar context. (Specificaly, it's a Boolean context, looking for a true/false value; and a Boolean
context is a particular kind of scalar context.) The value of alist assignment in a scalar context is
the number of elementsin the source list - 2, in this case. Since 2 isatrue value, we enter the body
of theloop and print the messagec => 3.

The next time through the loop, each 9hash givesanew key-value pair; let'ssay it's("a", 1) this
time. (It knows to return a different pair than previously because it keeps track of where it is; in
technical jargon, there's an iterator stored in with each hash.*®) Those two items are stored into
($key, $val ue). Since the number of elements in the source list was again 2, atrue value, the
whi | e condition istrue, and the loop body runs again, tellingusa => 1.

We go one more time through the loop, and by now we know what to expect, so it's no surprise to
seeb => 2 appear in the output.

But we knew it couldn't go on forever. Now, when Perl evaluates each 9hash, there are no more
key-value pairs available. So, each has to return an empty list."* The empty list is assigned to
($key, $val ue), SO $key getsundef , and $val ue also getsundef .

But that hardly matters, because the whole thing is being evaluated in the conditional expression of
the whi | e loop. The value of alist assignment in a scalar context is the number of elementsin the
source list - in this case, that's 0. Since 0 is a false value, the whi | e loop is done, and execution
continues with the rest of the program.

Of course, each returns the key-value pairs in a jumbled order. (It's the same order as keys and
val ues would give, incidentally; the "natura” order of the hash.) If you need to go through the
hash in order, ssmply sort the keys, perhaps something like this:
foreach $key (sort keys 9%ash) ({

$val ue = $hash{$key};

print "$key => $val ue\n";

O, we could have avoided the extra $val ue vari abl e:

print "$key => $hash{$key}\n";
}

Well see more about sorting hashesin
5.4 Typical Use of a Hash
At this point, you may find it helpful to see amore concrete example.

The Bedrock library uses a Perl program in which a hash keeps track of how many books each
person has checked out, among other information:

$books{"fred"} = 3;
$books{"w I ma"} = 1;

138 9nce each hash hasits own private iterator, loops usingeach may be nested, aslong asthey areiterating over different
hashes. And, aslong aswe're already in a footnote, we may as well tell you: it's unlikely you'll ever need to do so, but you may
reset theiterator of a hash by usingthekeys or val ues function on the hash. Theiterator isalso automatically reset if a new
list isstored into the entire hash, or if each hasiterated through all of the itemsto the "end" of the hash. On the other hand,
adding new key-value pairsto the hash whileiterating over it is generally a bad idea, since that won't necessarily reset the
iterator. That'slikely to confuse you, your maintenance programmer, andeach aswell.

33 |t'sbeing used in list context, so it can't returnundef to signal failure; that would be the one-element list (undef) instead
of the empty (zero-element) list () .

72

Learning Perl, 3rd edition

It's easy to see whether an elemenet of the hash istrue or false, do this:
if ($books{$sonmeone}) { print "$soneone has at |east one book checked out.\n"; }
But there are some elements of the hash that aren't true:

$books{"barney"} = 0; # no books currently checked out
$books{" pebbl es"} = undef; # no books EVER checked out - a new library card

Since Pebbles has never checked out any books, her entry has the value of undef , rather than o.

There's akey in the hash for everyone who has alibrary card. For each key (that is, for each library
patron), there's a value that is either a number of books checked out, or undef if that person's
library card has never been used.

5.4.1 The exists Function

To see whether akey existsin the hash, (that is, whether someone has alibrary card or not), use the
exi sts function, which returns a true value if the given key exists in the hash, whether the
corresponding valueis true or not:

if (exists $books{"dino"}) { print "Hey, there's a library card for dino!'\n"; }

That isto say, exi sts $books{"dino"} will return atrue value if (and only if) di no isfound in
thelist of keysfromkeys 9%ooks.

5.4.2 The delete Function

The del et e function removes the given key (and its corresponding value) from the hash. (If
there's no such key, itswork is done; there's no warning or error in that case.)

ny $person = "betty";
del et e $books{$person}; # Revoke the library card for $person

Note that this is not the same as storing undef into that hash element - in fact, it's precisely the
opposite! Checking exi st s($books{"betty"}) will give opposite resultsin these two cases; after
adel et e, thekey can't exist in the hash, but after storing undef , the key must exist.

5.4.3 Hash Element Interpolation

Y ou can interpolate a single hash element into a double-quoted string just as you'd expect:

foreach $person (sort keys %books) { # for each library patron,in order
i f ($books{$person}) ({
print "$person has $books{$person} itens\n"; # fred has 3 itens
}
}

But there's no support for entire hash interpolation; "%ooks" is just the six chararcters of
(literally) %books.™* So we've seen all of the magical characters that need backslashing in double
guotes: $ and @ because they introduce a variable to be interpolated; ", since that's the quoting
character that would otherwise end the double-quoted string; and \ , the backslash itself. Any other
charactersin a double-quoted string are non-magical and should simply stand for themselves."*®

35 Well, it couldn't really be anything else; if we tried to print out the entire hash, as a series of key-value pairs, that would be
nearly usdess. And, aswe'll seein Chapter 6, the percent signisfrequently usedinpri nt f format strings; giving it another
meaning here would be terribly inconvenient.

136 But do beware of the apostrophe ('), left square bracket ([), left curly brace ({), the small arrow (- >), or double-colon (: :)
following a variable name in a double-quoted string, as they could perhaps mean something you didn't intend.

73

5.5 Exercises

See Section A.4 for answers to the following exercises:

Learning Perl, 3rd edition

1. [7] Write a program that will ask the user for a given name and report the corresponding

family name. Use the names of people you know, or (if you spend so much time on the

computer that you don't know any actual people) use the following table:

I nput Output
fred flintstone
bar ney rubbl e
wi | ma flintstone

2. [15] Write a program that reads a series of words (with one word per line

3% until end-of-

input, then prints a summary of how many times each word was seen. (Hint: remember
that when an undefined value is used as if it were a number, Perl automatically converts it
to 0. It may help to look back at the earlier exercise that kept a running total.) So, if the
input wordsweref r ed, bar ney, fred, di no, wi | m, f r ed (all on separate lines), the output
should tell us that fred was seen 3 times. For extra credit, sort the summary words in

ASCII order in the output.

37|t has to be one word per line, because we still haven't shown you how to extract individual words froma line of input.

74

Learning Perl, 3rd edition

Chapter 6. 1/0 Basics

We've aready seen how to do some input/output (1/0O), in order to make some of the earlier
exercises possible. But now well learn a little more about those operations. As the title of this
chapter implies, there will be more about Perl's 1/0O operationsin Chapter 11.

6.1 Input from Standard Input

Reading from the standard input stream is easy."*® We've been doing it aready with the <sTDI N>
operator.™ Evaluating this operator in ascalar context gives you the next line of input:

$line = <STDI N>; # read the next |ine
chonp($line); # and chonp it
chonp($line = <STDI N>); # same thing, nore idiomatically

Since the line-input operator will return undef when you reach end-of-file, this is handy for
dropping out of loops:
whil e (defined($line = <STDIN>)) {

print "I saw $line";
{
There's a lot going on in that first line: we're reading the input into a variable, checking that it's
defined, and if it is (meaning that we havent reached the end of the input) we're running the body
of the while loop. So, inside the body of the loop, well see each line, one after another, in
$l i ne." This is something you'll want to do fairly often, so naturally Perl has a shortcut for it.
The shortcut looks like this:
whil e (<STDI N>) {

print "I saw $_";
}
Now, to make this shortcut, Larry chose some useless syntax. That is, this is literally saying,
"Read a line of input, and see if it's true. (Normally it is.) And if it is true, enter the whi | e loop,
but throw away that line of input!" Larry knew that it was a useless thing to do; nobody should
ever need to do that in areal Perl program. So, Larry took this useless syntax and made it useful.

What thisis actually saying is that Perl should do the same thing as we saw in our earlier loop: it
tells Perl to read the input into a variable, and (as long as the result was defined, so we haven't
reached end-of file) then enter the whi | e loop. However, instead of storing the input into $1 i ne,
Perl will useitsfavorite default variable, $_, just asif you had written this:
whil e (defined($_ = <STDIN>)) {

print "I saw $_";

}

38 |f you're already familiar with the workings of standard input, output, and error streams, you're ahead of the game. If not,
we'll get you caught up when we get to Chapter 14. For now, just think of "standard input" as being "the keyboard," and
"standard output” as being "the display screen.”

39 What we're calling the line-input operator here, <STDI N>, is actually a line-input operator (represented by the angle
brackets) around a filehandle. We'll learn about filehandlesin Chapter 11.

10 You probably noticed that we never chomped that input. In thiskind of a loop, you can't really put chonp into the
conditional expression, so it's often thefirst itemin the loop body, when it's needed. We'll see examples of that in the next
section.

Learning Perl, 3rd edition

Now, before we go any further, we must be very clear about something: this shortcut works only if
you write it just as we did. If you put a line-input operator anywhere else (in particular, as a
statement all on its own) it won't read alineinto $_ by default. 1t worksonly if there's nothing but
the line-input operator in the conditional of a whil e loop.* If you put anything else into the
conditional expression, this shortcut won't apply.

There's no connection between the line-input operator (<STDI N>) and Perl's favorite default
variable ($_). Inthiscase, though, it just happensthat the input is being stored in that variable.

On the other hand, evaluating the line-input operator in a list context gives you al of the
(remaining) lines of input asalist - each element of thelist isoneline:
foreach (<STDIN>) {

print "I saw $_";
}
Once again, there's no connection between the line-input operator and Perl's favorite default
variable. In this case, though, the default control variable for f oreach is$_. Soin thisloop, well
see each line of input in$_, one after the other.

That may sound familiar, and for good reason: That's the same behavior as the whi | e loop would
do. Isntit?

The difference is under the hood. In the whi | e loop, Perl reads a line of input, puts it into a
variable, and runs the body of the loop. Then, it goes back to find another line of input. But in the
f or each loop, the line-input operator is being used in alist context (since f or each needs alist to
iterate through). So it hasto read al of the input before the loop can start running. That difference
will become apparent when the input is coming from your 400MB web server log file! It's
generally best to use code like the whi | e loop's shortcut, which will process input aline at atime,
whenever possible.

6.2 Input from the Diamond Operator

Another way to read input is with the diamond* operator: <>. Thisis useful for making programs

that work like standard Unix** utilities, with respect to the invocation arguments (which we'll see
in a moment). If you want to make a Perl program that can be used like the utilities cat, sed, awk,
sort, grep, lpr, and many others, the diamond operator will be your friend. If you want to make
anything else, the diamond operator probably won't help.

The invocation arguments to a program are normally a number of "words" on the command line
after the name of the program.” In this case, they give the names of a number of files to be
processed in sequence:

$./ny_program fred barney betty

“L\ell, okay, the conditional of af or loopisjust awhi | e conditional in disguise, so it works there, too.

142 The diamond operator was named by Larry's daughter, Heidi, when Randal went over to Larry's house one day to show off
the new training materials he'd been writing, and complained that there was no spoken name for "that thing". Larry didn't have
anamefor it, either. Heidi (eight yearsold at the time) quickly chimed in, "That's a diamond, Daddy." So the name stuck.
Thanks, Heidi!

1% But not just on Unix systems. Many other systems have adopted this way of using invocation arguments.

¥ \Whenever a programis started, it has a list of zero or more invocation arguments, supplied by whatever programis starting
it. Often thisisthe shell, which makes up the list depending upon what you type on the command line. But we'll seein a later
chapter that you can invoke a program with pretty much any strings as the invocation arguments. Because they often come from
the shell's command line, they are sometimes called " command-line arguments” aswell.

76

Learning Perl, 3rd edition

That command means to run the command my_program (which will be found in the current
directory), and that it should process filefred, followed by file barney, followed by file betty.

If you give no invocation arguments, the program should process the standard input stream. Or, as
a special case, if you give just a hyphen as one of the arguments, that means standard input as
well.* So, if the invocation arguments had been fred - betty, that would have meant that the
program should processfile fred, followed by the standard input stream, followed by file betty.

The benefit of making your programs work like this is that you may choose where the program
getsitsinput a run time; for example, you won't have to rewrite the program to use it in a pipeline
(which we'll discuss more later). Larry put this feature into Perl because he wanted to make it easy
for you to write your own programs that work like standard Unix utilities - even on non-Unix
machines. Actualy, he did it so he could make his own programs work like standard Unix utilities;
since some vendors' utilities don't work just like others, Larry could make his own utilities, deploy
them on a number of machines, and know that they'd all have the same behavior. Of course, this
meant porting Perl to every machine he could find.

The diamond operator is actually a special kind of line-input operator. But instead of getting the
input from the keyboard, it comes from the user's choice of input:**
whil e (defined($line = <>)) {

chonp($line);
print "It was $line that | saw\n";

}

So, if we run this program with the invocation arguments f r ed, bar ney, and betty, it will say
something like: "It was [a line from file fred] that | saw!", "It was [another line from file fred] that
| saw!", on and on until it reaches the end of file fred. Then, it will automatically go on to file
bar ney, printing out one line after another, and then ontofilebet ty.

Note that there's no break when we go from one file to another; when you use the diamond, it's as
if the input files have been merged into one big file."*” The diamond will return undef (and well
drop out of the whi | e loop) only at the end of al of theinput.

Infact, sincethisisjust a specia kind of line-input operator, we may use the same shortcut we saw
earlier, to read theinput into $_ by default:
while (<>) {

chonp;

print "It was $_ that | saw\n";
}
This works like the loop above, but with less typing. And you may have noticed that we're using
the default for chonp; without an argument, chonp will work on $_. Every little bit of saved typing
helps!

5 Here's a possibly unfamilar Unix fact: most of those standard utilities, like cat and sed use this same convention, where a

hyphen stands for the standard input stream.

1% \Which may or may not include getting input from the keyboard.

14711 it mattersto you, or even if it doesn't, the current file's name is kept in Perl's special variable $ARGV . This name may be
" instead of areal filenameif the input is coming from the standard input stream, though.

77

Learning Perl, 3rd edition

Since the diamond operator is generaly being used to process al of the input, it's typically a
mistake to use it in more than one place in your program. If you find yourself putting two
diamonds into the same program, especially using the second diamond inside the whi | e loop that is
reading from the first one, it's amost certainly not going to do what you would like.**® In our
experience, when beginners put a second diamond into a program, they meant to use $_ instead.
Remember, the diamond operator reads the input, but the input itself is (generaly, by default)
foundins._.

If the diamond operator can't open one of the files and read from it, it'll print an alegedly helpful
diagnostic message, such as.

can't open wima: No such file or directory

The diamond operator will then go on to the next file automatically, much like what you'd expect
from cat or another standard utility.

6.3 The Invocation Arguments

Technically, the diamond operator isn't looking literaly at the invocation arguments - it works
from the @RGV array. Thisarray is aspecia array that is preset by the Perl interpreter to be alist of
the invocation arguments. In other words, thisis just like any other array, (except for its funny, all-
caps name), but when your program starts, @\RGV is aready stuffed full of the list of invocation
arguments.**

You can use @RGV just like any other array; you could shi ft items off of it, perhaps, or use
f or each to iterate over it. You could even check to see if any arguments start with a hyphen, so
that you could process them as invocation options (like Perl does with its own - w option).™

Thisis how the diamond operator knows what filenames it should use: it looksin @Racv. If it finds
an empty list, it uses the standard input stream; otherwise it uses the list of files that it finds. This
means that after your program starts and before you start using the diamond, you've got a chance to
tinker with @RGv. For example, here we can process three specific files, regardless of what the
user chose on the command line;

@\RGV = gw# larry noe curly #; # force these three files to be read

while (<>) {

chonp;
print "It was $_ that | saw in sone stooge-like file!\n";

}
In Chapter 11, well see how to open and close specific filenames at specific times. But this
technique will suffice for the next few chapters.

8 |£ you re-initialize @GARGV before using the second diamond, then you're on solid ground. We'll see GARGV in the next
section.

1 C programmers may be wondering about ar gc (thereisn't onein Perl), and what happened to the program's own name

(that'sfound in Perl's special variable $0 , not GARGV). Also, depending upon how you've invoked your program, there may be

a little more happening than we say here. See the perlrunmanpage for the full details.

1%0 | f you need more than just one or two such options, you should almost certainly use a module to process themin a standard
way. Seethe documentation for theGet opt : : Long and Get opt : : St d modules, which arepart of the standard distribution.

78

Learning Perl, 3rd edition

6.4 Output to Standard Output

The pri nt operator takes a list of values and sends each item (as a string, of course) to standard
output in turn, one after another. It doesn't add any extra characters before, after, or in between the
items;™" if you want spaces between items and a newline at the end, you have to say so:

$name = "Larry Wall";
print "Hello there, $nane, did you know that 3+4 is ", 3+4, "?2\n";

Of course, that means that there's a difference between printing an array and interpolating an array:

print @rray,; # print alist of itens

print "@rray"; # print a string (containing an interpol ated array)

That first pri nt statement will print alist of items, one after another, with no spaces in between.

The second one will print exactly one item, which is the string you get by interpolating @ r ay into
the empty string - that is, it prints the contents of @rr ay, separated by spaces.”™ So, if @rray
holdsqw fred barney betty /" thefirst one prints f r edbar neybet t y, while the second prints
fredbarney betty separated by spaces.

But before you decide to always use the second form, imagine that @r r ay is alist of unchomped
lines of input. That is, imagine that each of its strings has a trailing newline character. Now, the
first pri nt statement prints f r ed, bar ney, and bet t y on three separate lines. But the second one
printsthis:

fred

bar ney
betty

Do you see where the spaces come from? Perl is interpolating an array, so it puts spaces between
the elements. So, we get the first element of the array (f r ed and a newline character), then a space,
then the next element of the array (bar ney and a newline character), then a space, then the last
element of the array (betty and a newline character). The result is that the lines seem to have
become indented, except for the first one. Every week or two, a message appears on the
newsgroup comp.lang.perl.misc with a subject line something like:

Perl indents everything after thefirst line

Without even reading the message, we can immediately see that the program used double quotes
around an array containing unchomped strings. "Did you perhaps put an array of unchomped
strings inside double quotes?’ we ask, and the answer is always yes.

Generdly, if your strings contain newlines, you simply want to print them, after all:
print @rray,;

But if they don't contain newlines, you'll generally want to add one at the end:
print "@rray\n";

So, if you're using the quote marks, you'll be (generally) adding the \ n at the end of the string
anyway; this should help you to remember which iswhich.

BLwell, it doesn't add anything extra by default, but this default (like so many othersin Perl) may be changed. Changing these
defaultswill likely confuse your maintenance programmer, though, so avoid doing so except in small, quick-and-dirty programs,
or (rarely) in a small section of a normal program. See the perlvarmanpage to learnabout changing the defaullts.

152 Yes, the spaces are another default; see the perlvarmanpage again.

158 You know that we mean a three-element list here, right? Thisisjust Perl notation.

79

Learning Perl, 3rd edition

It's normal for your program's output to be buffered . That is, instead of sending out every little bit
of output at once, it'll be saved until there's enough to bother with. That's because if (for example)
the output were going to be saved on disk, it would be (relatively) slow and inefficient to spin the
disk every time that one or two characters need to be added to the file. Generally, then, the output
will go into a buffer that is flushed (that is, actualy written to disk, or wherever) only when the
buffer gets full, or when the output is otherwise finished (such as at the end of runtime). Usually,
that's what you want.

But if you (or a program) may be waiting impatiently for the output, you may wish to take that
performance hit and flush the output buffer each time you pri nt. See the Perl manpages for more
information on controlling buffering in that case.

Since print islooking for alist of strings to print, its arguments are evaluated in list context.
Since the diamond operator (as a special kind of line-input operator) will return alist of linesin a
list context, these can work well together:

print <>; # source code for 'cat’
print sort <> # source code for 'sort'

Weéll, to be fair, the standard Unix commands cat and sort do have some additional functionality
that these replacements lack. But you can't beat them for the price! Y ou can now re-implement all
of your standard Unix utilities in Perl, and painlessy port them to any machine that has Perl,
whether that machine is running Unix or not. And you can be sure that the programs on every
different type of machine will nevertheless have the same behavior.™

What might not be obvious is that print has optional parentheses, which can sometimes cause
confusion. Remember the rule that parentheses in Perl may aways be omitted, except when doing
so would change the meaning of a statement. So, here are two ways to print the same thing:
print("Hello, world!\n");

print "Hello, world!\n";

So far, so good. But another rulein Perl isthat if the invocation of pri nt lookslike afunction call,
then it is a function call. It's a simple rule, but what does it mean for something to look like a
function call?

In a function cal, there's a function name immediately™ followed by parentheses around the
function's arguments, like this:

print (2+3);
That looks like afunction call, so it isafunction cal. It prints5s, but then it returns avalue like any
other function. The return value of print is a true or false value, indicating the success of the

print. It nearly aways succeeds, unless you get some 1/O error, so the $resul t in the following
statement will normally be 1:

$result = print("hello world!'\n");

% | n fact, there was even an endeavor started, called the PPT (Perl Power Tools) project, whose goal isto implement all of the
classic Unix utilitiesin Perl. They actually completed nearly all the utilities (and most of the games!), but got bogged down when
they got to reimplementing the shell. The PPT project has been hd pful because it has made these standard utilities available on

many non-Unix machines.
%5 \We say "immediately" here because Per| won't permit a newline character between the function name and the opening

parenthesisin thiskind of function call. If thereisa newline there, Perl sees your code as making a list operator, rather than a

function call. Thisisthekind of piddling technical detail that we mention only for completeness. If you'reterminally curious,

see the full story in the manpages.

80

Learning Perl, 3rd edition

But what if you used the result in some other way? Let's suppose you decide to multiply the return
value times four:

print (2+3)*4; # Oops!

When Perl sees this line of code, it prints 5, just as you asked. Then it takes the return value from
print, which is 1, and multiplies that times 4. It then throws away the product, wondering why
you didn't tell it to do something else with it. And at this point, someone looking over your
shoulder says, "Hey, Perl can't do math! That should have printed 20, rather than5!"

This is the problem with allowing the parentheses to be optional; sometimes we humans forget
where the parentheses really belong. When there are no parentheses, print is a list operator,
printing all of the items in the following list; that's generally what you'd expect. But when the first
thing after print isaleft parenthess, print isafunction call, and it will print only what's found
inside the parentheses. Since that line had parentheses, it's the sameto Perl asif you'd said this:

(print(2+3)) * 4; # Oops!

Fortunately, Perl itself can amost aways help you with this, if you ask for warnings - so use - w, at
least during program development and debugging.

Actudly, this rule - "If it looks like a function call, it is a function cal" - applies to al list
functions'™ in Perl, not just to print. It's just that you're most likely to notice it with print. If
print (or another function name) is followed by an open parenthesis, make sure that the
corresponding close parenthesis comes after all of the arguments to that function.

6.5 Formatted Output with printf

Y ou may wish to have alittle more control with your output than pri nt provides. In fact, you may
be accustomed to the formatted output of C's printf function. Fear not - Perl provides a
comparabl e operation with the same name.

Theprintf operator takes aformat string followed by alist of thingsto print. The format™’

isafill-in-the-blanks template showing the desired form of the output:

printf "Hello, %; your password expires in % days!\n",
$user, $days_to_die;

string

The format string holds a number of so-called conversions; each conversion begins with a percent
sign (%9 and ends with aletter. (Aswell seein a moment, there may be significant extra characters
between these two symbols.) There should be the same number of items in the following list as
there are conversions; if these don't match up, it won't work correctly. In the example above, there
are two items and two conversions, so the output might look something like this:

Hel l o, nerlyn; your password expires in 3 days!

There are many possible printf conversions, so we'll take time here to describe just the most
common ones. Of course, the full details are available in the per | f unc manpage.

%6 Functions that take zero or one arguments don't suffer fromthis problem.

57 Here, we're using "format” in the generic sense. Perl has a report-generating feature called "formats’ that we won't even be
mentioning (except in this footnote) until Appendix B, and then only to say that we really aren't going to talk about them. So,
you're on your own there. Just wanted to keep you from getting lost.

81

Learning Perl, 3rd edition

To print a number in what's generally a good way, use % ,"® which automatically chooses
floating-point, integer, or even exponential notation as needed:

printf "o%g % %\n", 5/2, 51/17, 51 ** 17, # 2.5 3 1.0683e+29

The % format means a decimal™ integer, truncated as needed:

printf "in % days!\n", 17.85;, # in 17 days!

Note that thisis truncated, not rounded; we'll see how to round off a number in a moment.

In Perl, printf is most often used for columnar data, since most formats accept a field width. If
the datawon't fit, the field will generally be expanded as needed:

printf "9®d\n", 42; # output like """ 42 (the ° synbol stands for a space)
printf "oRd\n", 2e3 + 1.95; # 2001

The s conversion means a string, so it effectively interpolates the given value as a string, but with
agiven field width:

printf "%0s\n", "wilm"; # |ooks |ike wi | ma
A negative field width isleft-justified (in any of these conversions):
printf "% 15s\n", "flintstone"; # looks like flintstone ~~"°°

The 9% conversion (floating-point) rounds off its output as needed, and even lets you request a
certain number of digits after the decimal point:

printf "%d2f\n", 6 * 7 + 2/3; # looks like """ 42.666667
printf "9d2.3f\n", 6 * 7 + 2/3; # looks like """ """ 42.667
printf "9d2.0f\n", 6 * 7 + 2/3; # looks like ****""""""° 43

To print areal percent sign, use %84 which is special in that it uses no element from the list:'®

printf "Monthly interest rate: % 2f %4 n",
5.25/12; # the value | ooks |ike "0.44%

6.5.1 Arrays and printf

Generally, you won't use an array as an argument to pri nt f. That's because an array may hold any
number of items, and a given format string will work with only a certain fixed number of items: if
there are three conversions in the format, there must be exactly threeitems.

But there's no reason you can't whip up aformat string on the fly, since it may be any expression.
This can be tricky to get right, though, so it may be handy (especially when debugging) to store the
format into avariable:

ny @tens = gM w | ma dino pebbles);

ny $format = "The itens are:\n" . ("%0s\n" x @tens);

print "the format is <<$fornmat>>\n"; # for debuggi ng
printf $format, @tens;

156 " General" numeric conversion. Or maybe a " Good conversion for this number" or "Guess what | want the output to look
like"

% There's also %« for hexadecimal and %o for octal, if you need those. But we really say "decimal” here asa memory aid: %
for Decimal integer.

1% Maybe you thought you could simply put a backslash in front of the percent sign. Nicetry, but no. The reason that won't
work isthat the format is an expression, and the expression "\ % means the one-character string’ % . Evenif wegot a
backslash into the format string, pri nt f wouldn't know what to dowith it. Besides, C programmersareused topr i nt f
working likethis.

82

Learning Perl, 3rd edition

This uses the x operator (which we learned about in Chapter 2) to replicate the given string a
number of times given by @t ens (which is being used in a scalar context). In this case, that's 3,
since there are three items, so the resulting format string is the same as if we had written it as" The
items are:\n%0s\n%0s\n%d0s\n." And the output prints each item on its own line, right-
justified in a ten-character column, under a heading line. Pretty cool, huh? But not cool enough,
because you can even combine these:

printf "The itenms are:\n".("%0s\n" x @tens), @tens;

Note that here we have @t ens being used once in a scalar context, to get its length, and oncein a
list context, to get its contents. Context isimportant.

83

Learning Perl, 3rd edition

6.6 Exercises

See Section A.5 for answersto the following exercises:

1.

[7] Write a program that acts like cat, but reverses the order of the output lines. (Some
systems have a utility like this named tac.) If you run yours as ./tac fred barney
betty, the output should be al of file betty from last line to first, then barney and then
fred, aso from last line to first. (Be sureto usethe ./ inyour program's invocation if you
call it tac, so that you don't get the system's utility instead!)

[8] Write a program that asks the user to enter a list of strings on separate lines, printing
each string in aright-justified 20-character column. To be certain that the output isin the
proper columns, print a "ruler line" of digits as well. (This is simply a debugging aid.)
Make sure that you're not using a 19-character column by mistake! For example, entering
hel I o, good- bye should give output something like this:
123456789012345678901234567890123456789012345678901234567890
hel |l o

good- bye
[8] Modify the previous program to let the user choose the column width, so that entering
30, hel | o, good- bye (on separate lines) would put the strings at the 30th column. (Hint:
see the section Section 2.6.1 in Chapter 2 about controlling variable interpolation.) For
extra credit, make the ruler linelonger when the selected width islarger.

84

Learning Perl, 3rd edition

Chapter 7. Concepts of Regular Expressions

Perl has many features that set it apart from other languages. Of all those features, one of the most
important is its strong support for regular expressions. These allow fast, flexible, and reliable
string handling.

But that power comes at a price. Regular expressions are actually tiny programs in their own
special language, built inside Perl. (Yes, you're about to learn another programming language! ™
Fortunately it's a simple one.) So for the next two chapters, well be learning that language; then
welll take what we've learned back to the world of Perl in Chapter 9.

Regular expressions aren't merely part of Perl; they're aso found in sed and awk, procmail, grep,
most programmers text editors like vi and emacs, and even in more esoteric places. If you've seen
some of these already, you're ahead of the game. Keep watching, and you'll see many more tools
that use or support regular expressions, such as search engines on the Web (often written in Perl),
email clients, and others.

7.1 What Are Regular Expressions?

A regular expression, often called a pattern in Perl, is a template that either matches or doesn't
match a given string.’® That is, there are an infinite number of possible text strings; a given pattern
divides that infinite set into two groups:. the ones that match, and the ones that don't. There's never
any kinda-sorta-al most-up-to-here wishy-washy matching: either it matches or it doesn't. A pattern
may match just one possible string, or just two or three, or a dozen, or a hundred, or an infinite
number.leg)r it may match all strings except for one, or except for some, or except for an infinite
number.

We dready referred to regular expressions as being little programs in their own simple
programming language. It's a simple language because the programs have just one task: to look at
astring and say "it matches" or "it doesn't match".** That's all they do.

One of the places you're likely to have seen regular expressions is in the Unix grep command,
which prints out text lines matching a given pattern. For example, if you wanted to see which lines
in a given file mention f1int and, somewhere later on the same line, stone, you might do
something like this, with the Unix grep command:

$ grep 'flint.*stone' sone_file

a piece of flint, a stone which may be used to start a fire by striking

found obsidian, flint, granite, and small stones of basaltic rock, which
a flintlock rifle in poor condition. The sandstone mantle held several

Now, if you've used regular expressions somewhere else, that's good, because you have a head start
on these three chapters. But Perl's regular expressions have somewhat different syntax than most
other implementations; in fact, everybody's regular expressions are alittle different.

151 Some might argue that regular expressions are not a complete programming language. We won't argue.

182 pyrists would ask for a more rigorous definition. But then again, purists say that Perl's patterns aren't really regular
expressions. If you're serious about regular expressions, we highly recommend the book Mastering Regular Expressions by
Jeffrey Friedl (O'Reilly & Associates, Inc.).

188 And as we'll see, you could have a pattern that always matches or that never does. In rare cases, even these may be useful.
Generally, though, they're mistakes.

1% The programs also pass back some information that Per| can use later. One such piece of information is the "regular
expressions memories' that we'll learn about a little later.

85

Learning Perl, 3rd edition

So, if you needed to use a backslash to do something in another implementation, maybe you'll need
to leave it off in Perl, or maybe vice versa.

Don't confuse regular expressions with shell filename-matching patterns, called globs. A typical
glob is what you use when you type *. pmto the Unix shell to match al filenamesthat end in . pm

Globs use alot of the same characters that we use in regular expressions, but those characters are
used in totally different ways.'® Well visit globs later, in Chapter 12, but for now try to put them
totally out of your mind.

7.2 Using Simple Patterns

To compare a pattern (regular expression) to the contents of $_, simply put the pattern between a
pair of forward slashes (/), like we do here:
$_ = "yabba dabba doo";
if (/abbal/) {
print "It matched!\n";

}

The expression / abba/ looks for that four-letter string in $_; if it findsit, it returns atrue value. In
this case, it's found more than once, but that doesn't make any difference. If it'sfound at dll, it'sa
match; if it'snot in there at al, it fails.

Because the pattern match is generally being used to return atrue or false value, it is almost always
found in the conditional expression of i f or whi | e.

All of the usual backslash escapes that you can put into double-quoted strings are available in
patterns, so you could use the pattern / coke\t sprit e/ to match the eleven characters of coke, a
tab, andsprite.

7.2.1 About Metacharacters

Of coursg, if patterns matched only simple literal strings, they wouldn't be very useful. That's why
there are a number of special characters, called metacharacters , that have special meanings in
regular expressions.

For example, the dot (.) is awildcard character - it matches any single character except a newline
(which is represented by "\ n"). So, the pattern / bet . y/ would match betty. Or it would match
bet sy, OrF bet =y, Or bet . y, Or any other string that has bet , followed by any one character (except
a newline), followed by y. It wouldn't match bety or bet sey, though, since those don't have
exactly one character between thet and they. The dot always matches exactly one character.

So, if you wanted to match a period in the string, you could use the dot. But that would match any
possible character (except a newling), which might be more than you wanted. If you wanted the
dot to match just a period, you can simply backslash it. In fact, that rule goes for al of Perl's
regular expression metacharacters. a backslash in front of any metacharacter makes it nonspecial.

So, the pattern/ 3\ . 14159/ doesn't have awildcard character.

So the backslash is our second metacharacter. If you mean areal backslash, just use a pair of them
- arulethat appliesjust aswell everywhere elsein Perl.

1% Globs are al'so (alas) sometimes called patterns. What's worse, though, is that some bad Unix books for beginners (and
possibly written by beginners) have taken to calling globs "regular expressions’, which they certainly are not. This confuses
many folks at the start of their work with Unix.

Learning Perl, 3rd edition

7.2.2 Simple Quantifiers

It often happens that you'll need to repeat something in a pattern. The star (*) means to match the
preceding item zero or more times. So, / fred\ t *bar ney/ matches any number of tab characters
between fred and barney. That is, it matches "fred\tbarney" with one tab, or
"fred\t\tbarney" withtwotabs, or"fred\t\t\tbarney" withthreetabs, or even"fredbar ney"
with nothing in between at all. That's because the star means "zero or more" - so you could even
have hundreds of tab characters in between, but nothing other than tabs. Y ou may find it helpful to
think of star as saying, "that previous thing, any number of times, even zero times."

What if you wanted to allow something besides tab characters? The dot matches any character'®,
so . * will match any character, any number of times. That meansthat the pattern/ f r ed. * bar ney/
matches "any old junk" between f red and bar ney. Any line that mentions f r ed and (somewhere
later) bar ney will match that pattern. We often cal . * the "any old junk” pattern, because it can
match any old junk in your strings.

The star is formally called a quantifier , meaning that it specifies a quantity of the preceding item.
But it's not the only quantifier; the plus ("+") is another. The plus means to match the preceding
item one or moretimes: / fred +bar ney/ matchesif fred andbar ney are separated by spaces and
only spaces. (The space is not a metacharacter.) This won't match f r edbar ney, since the plus
means that there must be one or more spaces between the two names, so at least one space is
required. It may be helpful to think of the plus as saying, "that last thing, plus any number more of
the samething."

There's a third quantifier like the star and plus, but more limited. It's the question mark ("?"),
which means that the preceding item is optional. That is, the preceding item may occur once or not
a al. Like the other two quantifiers, the question mark means that the preceding item appears a
certain number of times. It'sjust that in this case the item may match one time (if it's there) or zero
times (if it's not). There aren't any other possibilities. So, / barm ?barmm matches either spelling:
banm banmor barmbanm This is easy to remember, since it's saying "that last thing, maybe? Or
maybe not?"

All three of these quantifiers must follow something, since they tell how many times the previous
item may repeat.

7.2.3 Grouping in Patterns

As in mathematics, parentheses ("()") may be used for grouping. So, parentheses are aso
metacharacters. As an example, the pattern /fred+/ matches strings like f reddddddddd, but
strings like that don't show up often in real life. But the pattern / (fred) +/ matches strings like
fredfredfred, which is more likely to be what you wanted. And what about the pattern
/ (fred)*/ ? That matches stringslikehel I o, wor | d.*®’

1% Except newline. But we're going to stop reminding you of that so often, because you know it by now. Most of thetimeit

doesn't matter, anyway, because your strings will most-often not have newlines. But don't forget this detail, because someday a

newline will sneak into your string and you'll need to remember that the dot doesn't match newline.
187 The star means to match zero or more repetitions of f r ed. When you're willing to settle for zero, it's hard to be
disappointed! That pattern will match any string, even the empty string.

87

Learning Perl, 3rd edition

7.2.4 Alternatives

The vertical bar (|), often pronounced "or" in this usage, means that either the left side may match,
or theright side. That is, if the part of the pattern on the left of the bar fails, the part on the right
gets a chance to match. So, / fred| bar ney| bet t y/ will match any string that mentions f r ed, or
bar ney, Or betty.

Now we can make patterns like / fred(|\t) +barney/, which matches if fred and barney are
separated by spaces, tabs, or a mixture of the two. The plus means to repeat one or more times;
each time it repeats, the (| \ t) has the chance to match either a space or a tab.'® There must be at
least one character between the two names.

If you wanted the characters between f r ed and bar ney to al be the same, you could rewrite that
pattern as/ fred(+| \ t +) bar ney/ . Inthiscase, the separators must be all spaces, or al tabs.

The pattern /fred (and| or) barney/ matches any string containing either of the two possible
strings: fred and barney, or fred or barney."® We could match the same two strings with the
pattern /fred and barney|fred or barney/, but that would be too much typing. It would
probably also be less efficient, depending upon what optimizations are built into the regular
expression engine.

7.3 A Pattern Test Program

When in the course of Perl events it becomes necessary for a programmer to write a regular
expression, it may be difficult to tell just what the pattern will do. It's normal to find that a pattern
matches more than you expected, or less. Or it may match earlier in the string than you expected,
or later, or not at all.

This program is useful to test out a pattern on some strings and see just what it matches, and
where:
#!' [usr/ bin/ perl
while (<>) { # take one input line at a tinme
chonp;
i f (/YOUR PATTERN GOES HERE/) {
print "Matched: |$ <$&$' |\n"; # Mystery code! See the text.
} else {
print "No match.\n";

}

}

This pattern test program is written for programmers to use, not endusers; you can tell because it
doesn't have any prompts or usage information. It will take any number of input lines and check
each one against the pattern that you'll put in place of the string saying YOUR_PATTERN_GOES_HERE.
For each line that matches, the line with "mystery code" will be run. We'l learn about what that
lineisrealy doing in Chapter 9. But what you'll seeisthis: if the patternis/ mat ch/ and the input
iSbef or emat chaf t er, the output will say "| bef or e<mat ch>af t er | ", using angle brackets to show
you just what part of the string was matched by your pattern. Try it and see! If you pattern
matches something you didn't expect, you'll be able to see that right away.

188 This particular match would normally be done more efficiently with a character class, aswe'll seein the next chapter.
1% Note that thewords and and or are not operatorsin regular expressions! They are shown herein a fixed-width typeface
because they're part of the strings.

Learning Perl, 3rd edition

7.4 Exercises
See Section A.6 for answers to the following exercises:

Remember, it's normal to be surprised by some of the things that regular expressions do; that's one
reason that the exercises in this chapter are even more important than the others. Expect the
unexpected.

Several of these exercises ask you to use the test program from this chapter. Y ou could manually
type up this program, taking great care to get all of the odd punctuation marks correct.” But you'll
probably find it faster and easier to simply download the program and some other goodies from the
ORellly website, as we mentioned in the Preface. Youll find this program under the name
pattern_test.'™

1. [6] Use the test program to make and test a pattern that matches any string containing
fred. Doesit matchif your stringisFred, f rederi ck, or Al fred?

2. [6] Use the test program to make and test a pattern that matches any string containing at
least one a followed by any number of b's. Remember that "any number" might be zero.
Doesit match if your string isbar ney, f r ed, abba, Of di nosaur ?

3. [5] Usethe test program to make and test a pattern that matches any string containing any
number of backslashes followed by any number of asterisks. Does it match if your string
iS** fred,barney *** or*wi | ma\ ? (Note the typography; those are four separate
test strings.)

4. [6] Write a new program (not the test program) that prints out any input line that mentions
wi | ma. (Any other lines should simply be skipped.) For extra credit, alow it to match
W | ma with a capital waswell.

5. [8] Extra credit exercise: write a program that prints out any input line that mentions both
wi | ma and fred.

0 |£ you do type it up on your own, remember that the backtick character (*) is not the same as the apostrophe (*). On most
full-sized computer keyboards these days (in the U.S, at least), the backtick is found on a key immediately to the left of the 1 key.
Try out the programwith the pattern/ mat ch/ and the stringbef or emat chaf t er , asthetext describes, and see that it

works correctly before you do the exercises.
' Don't be surprised if the program you download is a little fancier than what we have in the book. The commented-out extra
features you seewill comein handy in later exercises.

89

Learning Perl, 3rd edition

Chapter 8. More About Regular Expressions

In the previous chapter, we saw the beginnings of what regular expressions can do. Here well see
some of their other common features.

8.1 Character Classes

A character class, a list of possible characters inside square brackets ([1), matches any single
character from within the class. It matches just one single character, but that one character may be
any of the oneslisted.

For example, the character class [abcwxyz] may match any one of those seven characters. For
convenience, you may specify a range of characters with a hyphen (-), so that class may also be
written as [a- cwz] . That didn't save much typing, but it's more usual to make a character class
like [a- zA- 7] , to match any one letter out of that set of 52." You may use the same character
shortcuts as in any double-quotish string to define a character, so the class [\ 000-\ 177] matches
any seven-bit ASCI| character.'”

Of course, a character class will be just part of afull pattern; it will never stand on its own in Perl.
For example, you might see code that says something like this:
$_ = "The HAL-9000 requires authorization to continue.";
if (/HAL-[0-9]+/) {

print "The string nmentions sone nodel of HAL computer.\n";
}
Sometimes, it's easier to specify the characters left out, rather than the ones within the character
class. A caret ("~") at the start of the character class negates it. That is, [~def] will match any
single character except one of those three. And [~n\-z] matches any character except for n,
hyphen, or z. (Note that the hyphen is backslashed, because it's special inside a character class.
But the first hyphen in / HAL-[0- 9] +/ doesn't need a backslash, because hyphens aren't special
outside a character class.)

8.1.1 Character Class Shortcuts

Some character classes appear so frequently that they have shortcuts. For example, the character
class for any digit, [0- 9], may be abbreviated as\ d . Thus, the pattern from the example about
HAL could be written/ HAL-\ d+/ instead.

The shortcut \ w is a so-called "word" character: [A-za-z0-9_]. If your "words' are made up of
ordinary letters, digits, and underscores, you'll be happy with this. Most of the rest of us have
words made up of ordinary letters, hyphens, and apostrophes,*™ and we'd like to change this. As
of this writing, the Perl developers are working on it, but it's not available yet."” So use this one
only when you want ordinary letters, digits, and underscores.

172 Notice that those 52 don't include letters like A and E and | and @ and U. But when Unicode processing is available, that
particular character rangeis noticed and enhanced to automatically do the right thing.

17 At least, if you use ASCII and not EBCDIC.

17 pt least, in usual English wedo. In other languages, you may have different components of words. And when looking at
ASClI-encoded English text, we have the problem that the single quote and the apostrophe are the same character, so it's not
possibleinisolation to tell whether cat s’ isaword with an apostrophe or a word at the end of a quotation. Thisis probably
one reason that computers haven't been able to take over the world yet.

1% Except to a limited (but nevertheless useful) extent in connection with locales; see the perllocale manpage.

0

Learning Perl, 3rd edition

Of course, \ w doesn't match a "word"; it merely matches a single "word" character. To match an
entire word, though, the plus modifier is handy. A pattern like /fred \w+ barney/ will match
f r ed and a space, then a"word", then a space and bar ney. That is, it'll match if there's one word*"®
between f r ed and bar ney, set off by single spaces.

As you may have noticed in that previous example, it might be handy to be able to match spaces
more flexibly. The\ s shortcut is good for whitespace; it'sthesameas[\f\t\n\r]. Thatis, it's
the same as a class containing the five whitespace characters form-feed, tab, newline, carriage
return, and the space character itself. These are the characters that merely move the printing
position around; they don't use any ink. Still, like the other shortcuts we've just seen, \ s matches
just a single character from the class, so it's usua to use either \ s* for any amount of whitespace
(including none at al), or \ s+ for one or more whitespace characters. (In fact, it's rare to see\s
without one of those quantifiers.) Since all of those whitespace characters look about the same to
us humans, we can treat them all in the same way with this shortcut.

8.1.2 Negating the Shortcuts

Sometimes you may want the opposite of one of these three shortcuts. That is, you may want
[~M\d], ["\w, or [*\s], meaning a nondigit character, a nonword character, or a nonwhitespace
character. That's easy enough to accomplish by using their uppercase counterparts: \D,\ W, or \' s
. These match any character that their counterpart would not match.

Any of these shortcuts will work either in place of a character class (standing on their own in a
pattern), or inside the square brackets of a larger character class. That means that you could now
use / [\ dA- Fa-f]+/ to match hexadecimal (base 16) numbers, which use letters ABCDEF (or the
same lettersin lowercase) as additional digits.

Another compound character class is [\ d\ D] , which means any digit, or any non-digit. That isto
say, any character at al! This is a common way to match any character, even a newline. (As
opposed to . , which matches any character except a newline.) And then there's the totally useless
[~\ d\ D] , which matches anything that's not either adigit or anon-digit. Right - nothing!

8.2 General Quantifiers

A quantifier in a pattern means to repeat the preceding item a certain number of times. Weve
already seen three quantifiers: *, +, and 2. But if none of those three suits your needs, just use a
comma-separated pair of numbers inside curly braces ({}) to specify exactly how few and how
many repetitions are allowed.

So the pattern / a{ 5, 15}/ will match from five to fifteen repetitions of the letter a. If thea appears
three times, that's too few, so it won't match. If it appears five times, it's amatch. If it appearsten
times, that's still amatch. If it appears twenty times, just the first fifteen will match, since that's the
upper limit.

If you omit the second number (but include the comma), there's no upper limit to the number of
times the item will match. So, / (fred){3,}/ will match if there are three or more instances of
fred in arow (with no extra characters, like spaces, allowed between each fred and the next).
There's no upper limit, so that would match eighty-eight instances of f r ed, if you had a string with
that many.

176 We're going to stop saying "word" in quotes so much; you know by now that these |etter-digit-under score words are the ones
we mean.

91

Learning Perl, 3rd edition

If you omit the comma as well as the upper bound, the number given is an exact count: /\ w{ 8} /
will match exactly eight word characters (occuring as part of alarger string, perhaps).

In fact, the three quantifier characters that we saw earlier are just common shortcuts. The star is
the same as the quantifier { 0, } , meaning zero or more. The plusisthe sameas{1, }, meaning one
or more. And the question mark could be written as {0, 1}. In practice, it's unusual to need any
curly-brace quantifiers, since the three shortcut characters are nearly always the only ones needed.

8.3 Anchors

By default, if a pattern doesn't match at the start of the string, it can "float" on down the string,
trying to match somewhere else. But there are a number of anchors that may be used to hold the
pattern at a particular point in a string.

The caret™ anchor (~) marks the beginning of the string, while the dollar sign ($) marks the end.*®
So the pattern / ~fred/ will match fred only at the start of the string; it wouldn't match manf r ed
mann. And /rock$/ will match rock only a the end of the string; it wouldn't match knut e
rockne.

Sometimes, you'll want to use both of these anchors, to ensure that the pattern matches an entire
string. A common example is / "\ s*$/, which matches a blank line. But this "blank” line may
include some whitespace characters, like tabs and spaces, which are invisible to you and me. Any
line that matches that pattern looks just like any other one on paper, so this pattern treats all blank
lines as equivalent. Without the anchors, it would match nonblank lines as well.

8.3.1 Word Anchors

Anchors aren't just at the ends of the string. The word-boundary anchor, \ b , matches at either end
of aword."™® Sowe can use/\ bf r ed\ b/ to match theword f r ed but not f r ederi ck or al f red or
manfred mann. This is similar to the feature often called something like "match whole words
only" in aword processor's search command.

Alas, these aren't words as you and | are likely to think of them; they're those \ w-type words made
up of ordinary letters, digits, and underscores. The\ b anchor matches at the start or end of a group
of \ w characters.

In Figure 8-1 , there's a grey underline under each "word," and the arrows show the corresponding
places where \ b could match. There are aways an even number of word boundaries in a given
string, since there's an end-of-word for every start-of-word.

The "words" are sequences of letters, digits, and underscores; that is, aword in this sense is what's
matched by /\w+/ . There are five words in that sentence: That, s, a, word, and boundary."®

77 Yes, you've seen that caret is already used in another way in patterns. Asthefirst character of a character class, it negates
the class. But outside of a character class, it's a metacharacter in a different way, being the start-of-string anchor. Thereare
only so many characters, so we have to use some of them twice.

18 Actually, it matches either the end of the string, or at a newline at the end of the string. That's so that you can match the end
of the string whether it has a trailing newline or not. Most folks don't worry about this distinction much, but oncein a long while
it'simportant to remember that / ~f r ed$/ will match either " f r ed" or " f r ed\ n" with equal ease.

17 Some regular expression implementations have one anchor for start-of-word and another for end-of-word, but Per| uses\ b
for both.

180 you can see why we wish that we could change the definition of "word"; That ' s should be one word, not two wordswith an
apostrophe in-between. And even in text that may be mostly ordinary English, it's normal to find a soupgon of other characters
spicing things up.

92

Learning Perl, 3rd edition

Notice that the quote marks around wor d don't change the word boundaries; these words are made
of \ w characters.

Each arrow points to the beginning or the end of one of the grey underlines, since the word
boundary anchor \ b matches only at the beginning or the end of a group of word characters.

Figure 8-1. Word-boundary matches with \b
That ' = a “word" boundary!

The word-boundary anchor is useful to ensure that we don't accidentally find cat in
del i cat essen, dog in boondoggl e, Or fish in sel fi shness. Sometimes you'll want just one
word-boundary anchor, as when using / \ bhunt / to match words like hunt or hunti ng or hunter,
but not shunt, or when using / st one\ b/ to match words like sandst one or f1i nt st one but not
capstones.

The nonword-boundary anchor is\ B ; it matches at any point where \ b would not match. So the
pattern /\bsearch\ B/ will match searches, searching, and searched, but not search or
resear chi ng.

8.4 Memory Parentheses

Y ou remember that parentheses ("() ") may be used for grouping together parts of a pattern. They
also have a second function: they tell the regular expression engine to remember what was in the
substring matched by the pattern in the parentheses. That isto say, it doesn't remember what was
in the pattern itself; it remembers what was in the corresponding part of the string. Whenever you
use parentheses for grouping, they automatically work as memory parentheses as well.

So, if youuse/ ./, you'll match any single character (except newline); if youuse/ (.)/, you'll till
match any single character, but now it will be kept in a regular expression memory. For each pair
of parenthesesin the pattern, you'll have one regular expression memory.

8.4.1 Backreferences

A backreference refers back to amemory that was saved earlier in the current pattern's processing.

Backreferences are made with a backslash, which is easy to remember. For example, \ 1 contains
the first regular expression memory (that is, the part of the string matched by the first pair of
parentheses).

Backreferences are used to go back and match the exact same™" string that was matched earlier in

the pattern. So, /(.)\ 1/ means to match any one character, remember it as memory one, then
match memory one again. In other words, match any character, followed by the same character.
So, this pattern will match strings with doubled-letters, asin banm bammand bet ty. Of course, the
dot will match characters other than letters, so if a string has two spaces in a row, two tabs in a
row, or two asterisksin arow, it will match.

L \Well, if the pattern is case-insensitive, aswe'll learn in the next chapter, the capitalization doesn't have to match. Other than
that, though, the string must be the same.

93

Learning Perl, 3rd edition

That's not the same as the pattern /. . /, which will match any character followed by any character -
those two could be the same, or they could be different. / (.)\ 1/ means to match any character
followed by the same character.

A typical usage of these memories might be if you have some HTML-like'® text to process. For
example, maybe you want to match a tag like these two, which may use either single quotes or
double quotes:

<i mage source='fred. png' >

<i mage source="fred' s-birthday. png">

The tag may have either single quotes or double quotes, since the quoted data may include the
other kind of mark (as with the apostrophe in the second example tag). So the pattern might look
likethis: / <i mage source=(['"]).*\1>/. That saysthat the opening quote mark may be of either
type, but there must be amatching mark at the end of the quote.’®

If you have more sets of parentheses, you can have more backreferences. Asyou might guess, \ 17
is the contents of the seventeenth regular expression memory, if you have at least that many sets of
parentheses.'®

In numbering backreferences, you can just count the left (opening) parentheses. The
pattern/ ((fred|wil ma) (flintstone)) \1/ saysto match stringslikefred flintstone fred
f1intstone, since the first opening parenthesis and its corresponding closing parenthesis hold a
pattern that matchesfred flintstone.’®

If we wrote /((fred/wilma) (flintstone)) \2/ instead, we would match strings like fred
flintstone fred; memory two is the choice of fred or wi | ma. (Notice that it wouldn't match
fred flintsone w | ma, Sincethe backreference can match only the same name that was matched
earlier: either fred or wi | ma. But it could match wi | ma f1intstone w | ma, since that one uses
the same name.) And the pattern / ((fred|wi | ma) (flintstone)) \3/ would match strings like
fred flintstone flintstone. It's uncommon to have a literal string like f1intstone in
memory parentheses, though; we did that one just to have athird example.

18 These examples are intentionally not HTML, because there are too many tricky things that crop up in real HTML, or any
similar markup language like XML or SGML. If you need to work with HTML, don't use simple patternslike these. Get a robust
module from CPAN, so that you can start with code that's already written and debugged. If you don't, we promise that you'll be
sorry. Don't say we didn't warn you.

183 |f you realize that there may be problems with using this pattern on a markup language like HTML, that's okay. Therearelots
of problemswith that! Thisisjust an exampletoillustrate a use of a backreference. You shouldn't use simple patternsto parse
anything as complex as HTML anyway.

18 |£ you don't have that many sets of parentheses before that point in the pattern, backreferences\ 10 and beyond will be
treated as octal character escapes. To keep an octal character escapelike\ 12 from accidentally meaning a backreference, just
usealeading zero: \ 012 isalwaysa character, never a backreference.

18 This pattern would also matchwi | ma f1i ntstone wilnma flintstone.

94

Learning Perl, 3rd edition

8.4.2 Memory Variables

When we get to the next chapter and back into the world of Perl, we'll see that the contents of these
regular expression memories are available to us in special variables like $1 after the pattern match
is done. We mention this here just so you'll know that the memories aren't merely used for
backreferences; if you see what seem to be unnecessary parentheses in a pattern, they may actually
be setting up those memories.

8.5 Precedence

With al of these metacharacters in regular expressions, you may feel that you can't keep track of
the players without a scorecard. That's the precedence chart, which shows us which parts of the
pattern "stick together" the most tightly. Unlike the precedence chart for operators, the regular
expression precedence chart is simple, with only four levels. As a bonus, this section will review
all of the metacharacters that Perl usesin patterns.

1. At the top of the precedence chart are the parentheses, ("()"), used for grouping and
memory. Anything in parentheses will "stick together" more tightly than anything el se.

2. The second level is the quantifiers. These are the repeat operators - star (*), plus (+), and
guestion mark (?) - as well as the quantifiers made with curly braces, like {5, 15}, {3, },
and {5} . These aways stick to the item they're following.

3. The third level of the precedence chart holds anchors and sequence. The anchors are the
caret (») start-of-string anchor, the dollar-sign ($) end-of-string anchor, the \ b word-
boundary anchor, and the \ B nonword-boundary anchor. Sequence (putting one item after
another) is actually an operator, even though it doesn't use a metacharacter. That means
that lettersin aword will stick together just astightly asthe anchors stick to the letters.

4. The lowest level of precedence is the vertical bar (|) of alternation. Since thisis at the
bottom of the chart, it effectively cuts the pattern into pieces. It's at the bottom of the chart
because we want the letters in the words in / f r ed| bar ney/ to stick together more tightly
than the alternation. If aternation were higher priority than sequence, that pattern would
mean to match fr e, followed by a choice of d or b, followed by arney. So, alternation is
at the bottom of the chart, and the letters within the names stick together.

Besides the precedence chart, there are the so-called atoms that make up the most basic pieces of
the pattern. These aretheindividual characters, character classes, and backreferences.

8.5.1 Examples of Precedence

When you need to decipher a complex regular expression, you'll need to do as Perl does, and use
the precedence chart to see what's really going on.

For example, / ~f r ed| bar ney$/ isprobably not what the programmer intended. That's because the
vertical bar of aternation is very low precedence; it cuts the pattern in two. That pattern matches
either fred a the beginning of the string or barney at the end. It's much more likely that the
programmer wanted / ~(f r ed| bar ney) $/ , which will match if the whole line has nothing but f r ed,
or nothing but bar ney .*®

18 And, perhaps, a newline at the end of the string, as we mentioned earlier in connection with the $ anchor.

95

Learning Perl, 3rd edition

And what will /(wil ma| pebbl es?)/ match? The question mark applies to the previous
character,” so that will match either wi | ma or pebbl es or pebbl e, perhaps as part of a larger
string (since there are no anchors).

The pattern / ~(\ w+) \ s+(\ w+) $/ matches lines that have a "word," some required whitespace, and
another "word," with nothing else before or after. That might be used to match lines like f r ed
flintstone, for example. The parentheses around the words aren't needed for grouping, so they
may be intended to save those substrings into the regular expression memories, which we'll see
more about in the next chapter.

When you're trying to understand a complex pattern, it may be helpful to add parentheses to clarify
the precedence. That's okay, but remember that grouping parentheses are also automatically
memory parentheses; you may need to change the numbering of other memories when you add the
parentheses.'®®

8.5.2 And There's More

Although we've covered all of the regular expression features that most people are likely to need
for everyday programming, there are more features being added all the time. Check the perire,
perlrequick, and per|retut manpages for the latest news about what patternsin Perl can do.'®

187 Because a quantifier sticksto the letter s moretightly than the s sticksto the other lettersin pebbl es.
18 But look in the perlre manpage for information about nonmemory parentheses, which are used for grouping without memory.
189 And check out YAPE: : Regexp: : Expl ai nin CPAN as a regular-expression-to-English translator.

96

Learning Perl, 3rd edition

8.6 Exercises

See Section A.7 for answers to the following exercises. These exercises are among the most
challenging in the entire book. But don't get too discouraged! The following chapters will actually
be easier, partly because you'll have the power of regular expressionsto help you.

1.

[4] Using the test program from the previous chapter, make a pattern that matches only
lines containing either the word f r ed or wi | ma, followed by some whitespace, and then the
word f1intstone. S0 it should match the string1 am fred flintstone (with one or
more spaces or tabs between the names).

[10] Here, we give you the answer; you decide what problem it's trying to solve. What do
these real-world patterns match? What might they be used for?

()t

/70?[0-3]?[0-7]1{1, 2} $/

/™M b[\w.]{1, 12}\ b$/
Try each of them in the test program. It may help to find some strings that match (and that
fail to match) each one.

[8] Make a pattern that will match a string containing nothing but a scalar variable's name
(not its value!), like $f r ed, $bar ney, or $_ (but you shouldn't match special variables like
$0). Thatis, if the line of input has the six characters $wi | ma, the pattern should match. If
the input sayswi | ma, it should not match.

[12] Make a pattern that matches any line of input that has the same word repeated two or
more timesin arow. Words in this problem can be considered to be sequences of lettersa
to z or A to z, digits, and underscores. Whitespace between words may differ. For
example, the classic observation-test string Paris in the the spring should match,
since it has a doubled word. Also, | thought that that was the problemshould
match, even though that may be a correct use of a doubled word. Does your pattern match
al three words in I thought that that that was the probl em(with extra spaces
between only some of the words)? Does it match This is a test? How about This
shoul dn't match, according to the theory of regular expressions?

97

Learning Perl, 3rd edition

Chapter 9. Using Regular Expressions

Now that we've seen what goes inside a regular expression, let's take what we've learned back into
Perl.

9.1 Matches with m//

We've been writing patterns in pairs of forward slashes, like / fr ed/ . But thisis actually a shortcut
for the m / (pattern match) operator. Aswe saw with the qw / operator, you may choose any pair
of delimiters to quote the contents. So, we could write that same expression asn{(f r ed) , nxf r ed>,
m{fred}, or n{ fred] using those paired delimiters, or as mfred,, m fred!, ntfred”, or many
other ways using nonpaired delimiters.**

The shortcut is that if you choose the forward slash as the delimiter, you may omit the initial m
Since Perl folks love to avoid typing extra characters, you'll see most pattern matches written using
slashes, asin/fred/.

Of course, you should wisely choose a delimiter that doesn't appear in your pattern.* If you
wanted to make a pattern to match the beginning of an ordinary web URL, you might start to write
/~http:\/\// tomatchtheinitial "http://". But that's easier to read, write, maintain, and debug
if you use a better choice of delimiter: meht t p: / / %'

It's common to use curly braces as the delimiter. If you use a programmers' text editor, it probably
has the ability to jump from an opening curly brace to the corresponding closing one, which can be
handy in maintaining code.

9.2 Option Modifiers

There are several option modifier letters, sometimes called flags , which may be appended as a
group right after the ending delimiter of a regular expression to change its behavior from the
default.

9.2.1 Case-insensitive Matching with /i

To make a case-insensitive pattern match, so that you can match FRED as easily as fred or Fr ed,
usethe/i modifier:

print "Wuld you like to play a gane? "
chonp($_ = <STDI N>);
if (/\byes\b/i) { # case-insensitive match
print "In that case, | recommend that you go bow ing.\n";

}

1% Nonpaired delimiters are the ones that don't have a different "left* and "right" variety; the same punctuation mark is used for
both ends.

191 |f you're using paired delimiters, you shouldn't generally have to worry about using the delimiter inside the pattern, since that
delimiter will generally be paired inside your pattern. Thatis, m(fred(. *) barney) andm{\wW{2,}} andniwi | ma[\ n
\t] +bet ty] areall fine, even though the pattern contains the quoting character, since each "left" has a corresponding
"right". But the angle brackets ("<" and ">") aren't regular expression metacharacters, so they may not be paired; if the pattern
wererm{ (\ d+) \ s*>=?\'s*(\ d+) }, quoting it with angle brackets would mean having to backslash the greater-than sign so
that it wouldn't prematurely end the pattern.

192 Remember, the forward slash is not a metacharacter, so it doesn't need to be backslashed when it's not the delimiter.

98

http:\/\//to

Learning Perl, 3rd edition

9.2.2 Matching Any Character with /s

Do you ever fed frustrated that the dot (.) won't match newline? If you might have newlines in
your strings, and you want the dot to be able to match them, the /s modifier will do the job. It
changes every dot'*® in the pattern to act like the character class [\ d\ D] does, which is to match
any character, even if it isanewline. Of course, you have to have a string with newlines for this to
make a difference:

$_ = "1 saw Barney\ndown at the bowling alley\nw th Fred\nl ast night.\n";

if (/\bBarney\b.*\bFred\b/s) {
print "That string nentions Fred after Barney!\n";

}
Without the/ s modifier, that match would fail, since the two names aren't on the same line.

9.2.3 Combining Option Modifiers

If you have more than one option modifier to use on the same pattern, they may be used one after
the other; their order isn't significant:
if (/\bbarney\b.*\bfred\b/si) { # both /s and /i

print "That string nentions Fred after Barney!\n";

}
9.2.4 Other Options

There are many other option modifiers available. We'll cover those as we get to them, or you can
read about them in the perlop manpage and in the descriptions of m'/ and the other regular
expression operators that we'll see later in this chapter.

9.3 The Binding Operator, =~

Matching against $_ is merely the default; the binding operator (=~) tells Perl to match the pattern
on the right against the string on the left, instead of matching against $_."*' For example:
ny $sone_other = "I dream of betty rubble.";

if ($sone_other =~ /\brub/) {
print "Aye, there's the rub.\n";

}

The first time you see it, the binding operator looks like some kind of assignment operator. But it's
no such thing! It is simply saying, "this pattern match which would attach to $_ by default - make
it work with this string on the left instead.” If there's no binding operator, the expression is using
$_ by defaullt.

In the (somewhat unusua) example below, $1i kes_per| is set to a Boolean value according to
what the user typed at the prompt. Thisis alittle on the quick-and-dirty side, because the line of
input itself is discarded. This code reads the line of input, tests that string against the pattern, then
discards the line of input.*® It doesn't use or change $_ at all.

193

If you wish to change just some of them, and not all, you'll probably want to replace just those few with [\ d\ D] .

1% The binding operator is also used with some other operations besides the pattern match, as we'll seelater.
1% Remember, the line of input is not automatically stored into $_unless the line-input operator (<STDI N>) isall alonein the
conditional expression of awhi | e loop.

99

Learning Perl, 3rd edition

print "Do you |ike Perl? ";
ny $likes_perl = (<STDIN> =~ /\byes\b/i);
... # Tinme passes...
if ($likes_perl) {
print "You said earlier that you like Perl, so...\n";

}

The parentheses around the pattern-test expression aren't required, so the following line does the
same thing as the one above - it stores the result of the test (and not the line of input) into the
variable:

ny $likes perl = <STDIN> =~ /\byes\b/i;

9.4 Interpolating into Patterns

The regular expression is double-quote interpolated, just asif it were a double-quoted string. This
allows usto write aquick grep -like program like this:

#!/usr/bin/perl -w
ny $what = "larry";

while (<) {
if (/~"($what)/) { # pattern is anchored at begi nning of string
print "W saw $what in beginning of $_";
}

}

The pattern will be built up out of whatever's in $what when we run the pattern match. In this
case, it'sthe same asif we had written/ ~ (1 arry)/, looking for | ar ry at the start of each line.

But we didn't have to get the value of $what from aliteral string; we could have gotten it instead
from the command-line arguments in GARGV:

ny $what = shift @ARGV;

Now, if the firs¢ command-line argument were fred|barney, the pattern becomes
/ ~(fred| barney)/, looking for f red or bar ney at the start of each line."® The parentheses (which
weren't really necessary when searching for | ar ry) are important, now, because without them we'd
be matching f r ed at the start or bar ney anywhere in the string.

With that line changed to get the pattern from @RGv, this program resembles the Unix grep
command. But we have to watch out for metacharacters in the string. If $what contains
' fred(barney', the pattern would look like / ~(fred(barney)/, and you know that can't work
right - it'll crash your program with an invalid regular expression error. With some advanced
techniques,™®’ you can trap this kind of error (or prevent the magic of the metacharactersin the first
place) so that it won't crash your program. But for now, just know that if you give your users the
power of regular expressions, they'll also need the responsibility to use them correctly.

1% The astute reader will know that you can't generally type f r ed| bar ney as an argument at the command line because the
vertical bar isa shell metacharacter. See the documentation to your shell to learn about how to quote command-line arguments.
197 | n this case, you would use aneval block to trap the error, or you would quote the interpolated text usingquot enet a (or
its\ Qequivalent form) so that it's no longer treated as a regular expression.

100

Learning Perl, 3rd edition

9.5 The Match Variables

Do you remember the regular expression memories, which we used with backreferences in the
previous chapter? Those memories are also available after the pattern match is done, after we
return to Perl. They're strings, so they are kept in scalar variables with names like $1 and $2. There
are as many of these variables as there are pairs of memory parentheses in the pattern. As you'd
expect, $4 means the string matched by the fourth set of parentheses. Thisis the same string that
\ 4 referred to inside the pattern match.

Why are there two different ways to refer to that same string? They're not really referring to the
same string at the same time; $4 means the fourth memory of an already completed pattern match,
while\ 4 is a backreference referring back to the fourth memory of the currently matching regular
expression. Besides, backreferences work inside regular expressions only; once we're back in the
world of Perl, well use $4.

These match variables are a big part of the power of regular expressions, because they let us pull
out the parts of astring:

$_ = "Hello there, neighbor";
it (/\s(\wt),/) { # menorize the word between space and conmma
print "the word was $1\n"; # the word was there

}
Or you could use more than one memory at once:
$ = "Hello there, neighbor";
if (J(\S+) (\S+), (\SH)/) {

print "words were $1 $2 $3\n";
}
That tells us that the words were Hel |l o there nei ghbor. Notice that there's no commain the
output (because the comma is outside of the memory parentheses). That leaves the comma out of
memory two. Using this technique, we can choose exactly what we want in the memories, as well
as what we want to leave out.

You could even have an empty match variable,"® if that part of the pattern might be empty. That
is, amatch variable may contain the empty string:

ny $dino = "I fear that 1'll be extinct after 1000 years.";
if ($dino =~ /(\d*) years/) {

print "That said '$1' years.\n"; # 1000
}

$dino = "I fear that I'Il be extinct after a fewmllion years.";
if ($dino =~ /(\d*) years/) {

print "That said '$1' years.\n"; # enpty string
}

1% As opposed to an undefined one. If you have three or fewer sets of parenthesesin the pattern, $4 will beundef .

101

Learning Perl, 3rd edition

9.5.1 The Persistence of Memory

These match variables generally stay around until the next successful pattern match.'* That is, an
unsuccessful match leaves the previous memories intact, but a successful one resets them all. But
this correctly implies that you shouldn't use these match variables unless the match succeeded;
otherwise, you could be seeing a memory from some previous pattern. The following (bad)
example is supposed to print a word matched from $_. But if the match fails, it's using whatever
leftover string happensto be found in $1:
$wilma =~ /(\w+)/; # BAD! Untested match result
print "WIlnma's word was $1... or was it?\n";
This is another reason that a pattern match is amost always found in the conditional expression of
anif orwhile:
if ($wilm =~ /(\w)/) {

print "WIm's word was $1.\n";

} else {
print "WI|nma doesn't have a word.\n";

}
Since these memories don't stay around forever, you shouldn't use a match variable like $1 more
than a few lines after its pattern match. If your maintenance programmer adds a new regular
expression between your regular expression and your use of $1, you'll be getting the value of $1 for
the second match, rather than the first. For this reason, if you need a memory for more than afew
lines, it's generally best to copy it into an ordinary variable. Doing this helps make the code more
readable at the same time:
if ($wilm =~ /(\w)/) {

ny $wil ma_word = $1;

}

Later, in Chapter 14, we'll see how to get the memory value directly into the variable at the same
time as the pattern match happens, without having to use $1 explicitly.

9.5.2 The Automatic Match Variables

There are three more match variables that you get for free,® whether the pattern has memory
parentheses or not. That's the good news; the bad news s that these variables have weird names.

Now, Larry probably would have been happy enough to call these by dightly-less-weird names,
like perhaps $gazoo or $oznodi ar . But those are names that you just might want to use in your
own code.

To keep ordinary Perl programmers from having to memorize the names of all of Perl's special
variables before choosing their first variable namesiin their first programs®*

% The actual scoping ruleis much more complex (see the documentation if you need it), but aslong as you don't expect the
match variables to be untouched many lines after a pattern match, you shouldn't have problems.

20 Yeah, right. There's no such thing as a free match. Theseare "free" only in the sense that they don't require match
parentheses. Don't worry; we'll mention their real cost a little later, though.

2 you should still avoid a few classical variable names like SARGV, but these few are all in all-caps. All of Perl's builtin
variables are documented in the perlvar manpage.

102

Learning Perl, 3rd edition

Larry has given strange names to many of Perl's builtin variables, names that "break the rules." In
this case, the names are punctuation marks: $&, $°, and $' . They're strange, ugly, and weird, but
those are their names.*”

The part of the string that actually matched the pattern is automatically stored in $& :

if ("Hello there, neighbor" =~ /\s(\w+),/) {
print "That actually matched '$& .\ n";
}

That tells us that the part that matched was " there," (with a space, a word, and a comma).
Memory one, in$1, hasjust the five-letter word t her e, but $& has the entire matched section.

Whatever came before the matched section isin $° , and whatever was after itisin $' . Another
way to say that isthat $° holds whatever the regular expression engine had to skip over before it
found the match, and $' has the remainder of the gring that the pattern never got to. If you glue
these three strings together in order, you'll always get back the original string:
if ("Hello there, neighbor" =~ /\s(\w+),/) {

print "That was ($)($& ($').\n";
}
The message shows the string as (Hel | o) (t here,) (nei ghbor), showing the three automatic
match variables in action. This may seem familiar, and for good reason: These automatic memory
variables are what the pattern test program (from Chapter 7) was using in its line of "mystery”
code, to show what part of the string was being matched by the pattern:

print "Matched: |$ <$&$'|\n"; # The three autonmatic nmatch vari abl es

Any or al of these three automatic match variables may be empty, of course, just like the
numbered match variables. And they have the same scope as the numbered match variables.
Generdly, that means that they'll stay around until the next successful pattern match.

Now, we said earlier that these three are "free." Well, freedom has its price. In this case, the price
is that once you use any one of these automatic match variables anywhere in your entire program,
other regular expressions will run a little more slowly. Now, this isn't a giant slowdown, but it's
enough of a worry that many Perl programmers will simply never use these automatic match
variables® Instead, they'll use a workaround. For example, if the only one you need is $&, just
put parentheses around the whole pattern and use $1 instead (you may need to renumber the
pattern's memories, of course).

Match variables (both the automatic ones and the numbered ones) are most often used in
substitutions, which are the topic of the next section.

22 | you really can't stand these names, check out the Engl i sh module, which attemptsto give all of Perl's strangest variables
nearly normal names. But the use of this module has never really caught on; instead, Perl programmers have grown to love the

b

nctuation-mark variable names, strange asthey are.
Most of these folks haven't actually benchmarked their programs to see whether their workarounds actually save time,

though; it's as though these variables were poisonous or something. But we can't blame them for not benchmarking - many
programs that could benefit from these three variables take up only a few minutes of CPU time in a week, so benchmarking and
optimizing would be a waste of time. But in that case, why fear a possible extra millisscond? By the way, the Per| developers
are working on this problem, but there will probably be no solution before Perl 6.

103

Learning Perl, 3rd edition

9.6 Substitutions with s///

If you think of the n'/ pattern match as being like your word processor's "search" feature, the
"search and replace” feature would have to be Perl's s/// substitution operator. This simply
replaces whatever part of a variable® matches a pattern with a replacement string:

$ = "He's out bow ing with Barney tonight.";
s/ Barney/ Fred/; # Replace Barney with Fred
print "$_\n";

If the match fails, nothing happens, and the variable is untouched:

Continuing fromabove; $ has "He's out bowing with Fred tonight."
s/WIlma/Betty/; # Replace Wlnma with Betty (fails)

Of course, both the pattern and the replacement string could be more complex. Here, the
replacement string uses the first memory variable, which is set by the pattern match:

s/with (\w+)/agai nst $1/;

print "$ \n"; # says "He's out bow ing against Fred tonight."

Here are some other possible substitutions. (These are here only as samples; in the real world, it
would not be typical to do so many unrelated substitutionsin arow.)

$ = "green scaly dinosaur";

s/ (\w+) (\w+)/$2, $1/; # Now it's "scaly, green dinosaur"

s/~ huge, /; # Now it's "huge, scaly, green dinosaur"
s/,.*eenl//; # Enpty replacenent: Now it's "huge di nosaur"”
s/ green/red/; # Failed match: still "huge di nosaur™

s/I\w+$/ ($7!) $& ; # Now it's "huge (huge !)di nosaur"”
s/\s+('\WH)/$1 /; # Now it's "huge (huge!) dinosaur"”

s/ huge/ gi ganti c/; # Now it's "gigantic (huge!) dinosaur"”

There'sareturn valuefrom s/ // ; it'strueif a substitution was successful; otherwise it's false:

$ = "fred flintstone";
if (s/fred/wilm/) {
print "Successfully replaced fred with wilml!\n";

}

9.6.1 Global Replacements with /g

As you may have noticed in a previous example, s/// will make just one replacement, even if
others are possible. Of course, that's just the default. The /g modifier tells s/// to make al
possi ble nonoverl apping™ replacements:

$_ = "honme, sweet hone!";

s/ hone/ cave/ g;

print "$ \n"; # "cave, sweet cave!"

A fairly common use of aglobal replacement is to collapse whitespace; that is, to turn any arbitrary
whitespace into asingle space:

$_ = "lnput data\t may have extra whitespace.";

s/\s+/ /g; # Nowit says "lnput data nmay have extra whitespace."

24 Unlike mf / , which can match against any string expression, s/ / / is modifying data that must ther efore be contained in
what's known asan lvalue. Thisisnearly always a variable, although it could actually be anything that could be used on the left
side of an assignment operator.

25 |'s nonover|apping because each new match starts looking just beyond the latest replacement.

104

Learning Perl, 3rd edition

Once we show collapsing whitespace, everyone wants to know about stripping leading and trailing
whitespace. That's easy enough, in two steps:”®

s/™\s+//; # Replace |eading whitespace wth nothing
s/\s+$//; # Replace trailing whitespace with nothing

9.6.2 Different Delimiters

Just as we did with i/ and qw/ / , we can change the delimitersfor s/ // . But the substitution uses
three delimiter characters, so things are alittle different.

With ordinary (non-paired) characters, which don't have a left and right variety, just use three of
them, aswe did with the forward slash. Here, we've chosen the pound sign®’ aSs the delimiter:

s# https: //#http:/]#
But if you use paired characters, which have aleft and right variety, you have to use two pairs. one
to hold the pattern and one to hold the replacement string. In this case, the delimiters don't have to

be the same kind around the string as they are around the pattern. In fact, the delimiters of the
string could even be non-paired. These are all the same:

s{fred}{barney};
s[fred] (barney);
s<fred>#bar ney#;

9.6.3 Option Modifiers

In addition to the / g modifier,®® substitutions may use the /i and /s modifiers that we saw in
ordinary pattern matching. The order of modifiersisn't significant.

s#wW | ma#W | ma#gi; # replace every WLmMA or WLMA with Wi nm
s{__END_ _.*}{}s; # chop off the end marker and all follow ng |ines

9.6.4 The Binding Operator

Just as we saw with mi / , we can choose a different target for s/ / / by using the binding operator:
$file_name =~ s# . */##s; # In $file_nanme, renpve any Unix-style path

9.6.5 Case Shifting

It often happens in a substitution that you'll want to make sure that a replacement word is properly
capitalized (or not, as the case may be). That's easy to accomplish with Perl, by using some
backslash escapes. The\ U escape forces what follows to all uppercase:

$ ="l1 saw Barney with Fred.";
s/ (fred| barney)/\U$1/gi; # $_is now "l saw BARNEY with FRED."

Similarly, the\ L escape forces lowercase. Continuing from the previous code:
s/ (fred| barney)/\L$1/gi; # $_is now"l saw barney with fred."

25 |t could be done in one step, but thisway is better.

27 \with apologies to our British friends, to whom the pound sign is something else! Although the pound sign is generally the
start of a comment in Perl, it won't start a comment when the parser knows to expect a delimiter - in this case, immediately after
the s that starts the substitution.

28 \\e speak of the modifierswith nameslike"/ i ", even if the delimiter is something different than a slash.

105

Learning Perl, 3rd edition

By default, these affect the rest of the (replacement) string; or you can turn off case shifting with
\E:

s/ (\wt) with (\w+)/\U$2\E with $1/i; # $_ is now "l saw FRED with barney."
When written in lowercase (\ 1 and\ u), they affect only the next character:
s/ (fred|barney)/\u$l/ig; # $_is now "l saw FRED with Barney."

You can even stack them up. Using \u with \L means "al lower case, but capitalize the first
|etter":*®

s/ (fred|barney)/\u\L$1l/ig; # $_is now "l saw Fred with Barney."

Asit happens, athough we're covering case shifting in relation to substitutions, it's available in any
double-quotish string:

print "Hello, \L\u$nane\E, would you like to play a game?\n";

9.7 The split Operator

Another operator that uses regular expressions is spl i t , which breaks up a string according to a
separator. This is useful for tab-separated data, or colon-separated, whitespace-separated, or
anything-separated data, really.”® So long as you can specify the separator with a regular
expression (and generaly, it'sasimple regular expression), you can usespl i t. It lookslikethis:
@ields = split /separator/, $string;

Thespl i t operator™™ drags the pattern through a string and returns alist of fields (substrings) that
were separated by the separators. Whenever the pattern matches, that's the end of one field and the
start of the next. So, anything that matches the pattern will never show up in the returned fields.
Here'satypica spl it pattern, splitting on colons:

@ields = split /:/, "abc:def:g:h"; # gives ("abc", "def", "g", "h")

Y ou could even have an empty field, if there were two delimiters together:

@ields = split /:/, "abc:def::g:h"; # gives ("abc", "def", "", "g", "h")

Here's arule that seems odd at first, but it rarely causes problems: Leading empty fields are aways
returned, but trailing empty fields are discarded:*

@ields = split /:/, ":::a:b:c:::"; # gives ("™, "", "", "a", "b", "c")

It's also common to split on whitespace, using /\s+/ as the pattern. Under that pattern, all
whitespace runs are equivalent to a single space:

ny $sone_input = "This is a \t test.\n";
ny @rgs = split /\s+/, $sone_input; # ("This", "is", "a", "test.")

The default for spl i t isto break up$_ on whitespace:
ny @ields = split; # like split /\s+/, $_;

2 The\ L and\ u may appear together in either order. Larry realized that people would sometimes get those two backwards, so
he made Per| figure out that you want just thefirst letter capitalized and therest lowercase. Larry isa pretty nice guy.

210 Except "comma-separated values,” normally called CSV files. Thosearea painto dowithspl i t ; you're better off getting
the Text : : CSV module from CPAN.

21 |t's an operator, even though it acts a ot like a function, and everyone generally callsit a function. But the technical details
of the difference are beyond the scope of this book.

22 Thisis merely the default. It'sthisway for efficiency. If you worry about losing trailing empty fields, use- 1 asathird
argumenttospl i t and they'll be kept; see the perlfunc manpage.

106

Learning Perl, 3rd edition

This is amost the same as using /\s+/ as the pattern, except that a leading empty field is
suppressed - so, if the line starts with whitespace, you won't see an empty field at the start of the
list. (If you'd like to get the same behavior when splitting another string on whitespace, just use a
single space in place of the pattern: split ' ', $other_string. Using a space instead of the
pattern is a special kind of split.)

Generally, the patterns used for split are as simple as the ones you see here. But if the pattern
becomes more complex, be sure to avoid using memory parentheses in the pattern; see the
per | f unc manpage for more information.”

9.8 The join Function

Thej oi n function doesn't use patterns. So why isit in this chapter? It's here because, in a sense,
j oi n performs the opposite function of split : split breaks up astring into a number of pieces,
and j oi n glues together a bunch of pieces to make a single string. The j oi n function looks like
this.

ny $result = join $glue, @ieces;

The first argument to j oi n is the glue, which may be any string. The remaining arguments are a
list of pieces. j oi n puts the glue string between the pieces and returns the resulting string:

ny $x = join ":", 4, 6, 8, 10, 12; # $x is "4:6:8:10:12"

In that example, we had five items, so there are only four colons. That is, there are four pieces of

glue. The glue shows up only between the pieces, never before or after them. So, there will be one
fewer piece of glue than the number of itemsin thelist.

This means that there may be no glue at all, if the list doesn't have at |east two elements:

ny $y = join "foo", "bar"; # gives just "bar", since no fooglue is needed
ny @npty; # enpty array

ny $enpty = join "baz", @npty; # no items, so it's an enpty string

Using $x from above, we can break up a string and put it back together with a different delimiter:
ny @alues = split /:/, $x; # @alues is (4, 6, 8, 10, 12)

ny $z = join "-", @al ues; # $z is "4-6-8-10-12"

Although spl it andj oi n work well together, don't forget that the first argument to j oi n is aways
astring, not a pattern.

23 And you might want to check out the nonmemory grouping-only parenthesis notation aswell, in the perlre manpage.

107

Learning Perl, 3rd edition

9.9 Exercises

See Section A.8 for answers to the following exercises:

1.

[7] Make a pattern that will match three consecutive copies of whatever is currently
contained in $what . That is, if $what isfred, your pattern should match f r edf r edf r ed.
If $what iSfred| bar ney, your pattern should matchf r edf r edbar ney or bar neyf r edf r ed
or bar neybar neybar ney or many other variations. (Hint: You should set $what at the top
of the pattern test program with astatement like ny $what = ' fred| barney' ;.)

[15] Write a program that looks through the per | f unc. pod file for lines that start with
=i t em and some whitespace, followed by a Perl identifier name (made of letters, digits,
and underscores, but never starting with a digit), like the lines below. (There may be more
text on the line after the identifier name; just ignore it.) You can locate the per | f unc. pod
file on your system with the command perl doc -1 perlfunc, or ask your local expert.
(Hint: You'll need the diamond operator to open this file. How will it get the filename?)
Have the program print each identifier name as it finds it; there will be hundreds of them,
and many will appear more than oncein thefile.

As an example, the following lines of input resemble what you'll find in per| func. pod.
For the first line, the program should print wi | ma. For the second, it should print fred
(ignoring theword f 1 i nt st one, Since we're interested only in the identifier name):
Sitemw |l ma
=itemfred flintstone

[10] Modify the previous program to list only the identifier names that appear more than
twice on those =i t emlines, and tell how many times each one appeared. (That is, we want
to know which identifier names appear on at least three separate =i t emlines in the file))
There should be a couple of dozen, depending upon your version of Perl.

108

Learning Perl, 3rd edition

Chapter 10. More Control Structures

In this chapter, well see some dternative ways to write Perl code. For the most part, these
techniques don't make the language more powerful, but they make it easier or more convenient to
get the job done. Y ou don't have to use these techniques in your own code, but don't be tempted to
skip this chapter - you're certain to see these control structures in other peopl€e's code, sooner or
later (in fact, you're absolutely certain to see these things in use by the time you finish reading this
book).

10.1 The unless Control Structure

Inanif control structure, the block of code is executed only when the conditional expression is
true. If you want a block of code to be executed only when the conditional is false, change i f to
unl ess :

unl ess ($fred =~ /"NA-Z_ J\wS$/i) {
print "The value of \$fred doesn't look like a Perl identifier nane.\n"

}

Using unl ess saysto run the block of code unless this condition is true. It'sjust likeusing an i f

test with the opposite condition. Another way to say it isthat it's like having the el se clause on its
own. That is, whenever you see an unl ess that you don't understand, you can rewrite it (either in
your head or in reality) tobeani f test:

if ($fred =~ /A[A-Z]\w$/i) { # Do nothing

} else {
print "The value of \$fred doesn't look like a Perl identifier nane.\n"

}

It's no more or less efficient, and it should compile to the same internal byte codes. Or, another
way to rewrite it would be to negate the conditional expression by using the negation operator (!):
if (! ($fred =~ /A[AZ]\wS$/i)) {

print "The value of \$fred doesn't look like a Perl identifier nane.\n"

}

Generally, you should pick the way of writing code that makes the most sense to you, since that
will probably make the most sense to your maintenance programmer. If it makes the most sense to
write i f with a negation, do that. More often, however, you'll probably find it natural to use
unl ess.

10.1.1 The else Clause with unless

You could even have an el se clause with an unl ess. While this syntax is supported, it's
potentially confusing:

unl ess ($nmon =~ /~(Feb)/) { print "This nonth has at least thirty days.\n"; }
else { print "Do you see what's going on here?\n"; }

Some people may wish to use this, especially when the first clause is very short (perhaps only one
line) and the second is several lines of code. But we'd make this one a negated i f, or maybe
simply swap the clausesto makeanormal i f :
if ($mon =~ /~(Feb)/) {

print "Do you see what's going on here?\n";
} else {

print "This nonth has at least thirty days.\n";

}

109

Learning Perl, 3rd edition

It's important to remember that you're always writing code for two readers. the computer that will
run the code and the human being who has to keep the code working. If the human can't
understand what you've written, pretty soon the computer won't be doing the right thing either.

10.2 The until Control Structure

Sometimes you'll want to reverse the condition of awhi | e loop. To do that, just useunti | :
until ($] > $i) {

$j *= 2;
}
This loop runs until the conditional expression returns true. But it's really just a whil e loop in
disguise, except that this one repeats as long as the conditional is false, rather than true. The
conditional expression is evaluated before the first iteration, so this is till a zero-or-more-times
loop, just like the whi | e loop.”**

Aswithi f and unl ess, you could rewrite any unt i I loop to become awhi | e loop by negating the
condition. But generaly, you'll find it simple and natural to use unt i | from timeto time.

10.3 Expression Modifiers

In order to have a more compact notation, an expression may be followed by a modifier that
controlsit. For example, thei f modifier worksin away analogousto ani f block:

print "$n is a negative nunmber.\n" if $n < O;

That gives exactly the same result asif we had used this code, except that we saved some typing by
leaving out the parentheses and curly braces:
if ($n < 0) {

print "$n is a negative nunber.\n";
}
Aswe've said, Perl folks generally like to avoid typing. And the shorter form reads like in English:
print this message, if $n islessthan zero.

Notice that the conditional expression is still evaluated first, even though it's written at the end.

This is backwards from the usual left-to-right ordering; in understanding Perl code, well have to
do as Perl'sinternal compiler does, and read to the end of the statement before we can tell what it's
really doing.

There are other modifiers aswell:

&error("Invalid input") unless &valid($input);
$i *= 2 until $i > $j;

print " ", ($n += 2) while $n < 10;

&greet ($_) foreach @erson;

These al work just as (we hope) you would expect. That is, each one could be rewritten in a
similar way to rewriting thei f -modifier example earlier. Hereisone:

while ($n < 10) {
print " ", ($n += 2);
}

24 pascal programmers, take note: in Pascal, the repeat-until always runs at least oneiteration, but anunt i | loop in Perl may
not run at all, if the conditional expression istrue before the loop starts.

215 \We also left out the line breaks. But we should mention that the curly-brace form does create a new scope. In the rare case
that you need the full details, check the documentation.

110

Learning Perl, 3rd edition

The expression in parentheses inside the pri nt argument list is noteworthy because it adds two to
$n, storing the result back into $n. Then it returns that new value, which will be printed.

These shorter forms read amost like a natural language: cal the &greet subroutine for each
@er son inthelist. Doublesi until it'slarger than $j .

One of the common uses of these modifiersisin astatement like this one:
print "fred is '$fred', barney is '$barney'\n" if $I _amcurious

By writing the code "in reverse” like this, you can put the important part of the statement at the
beginning. The point of that statement is to monitor some variables; the point is not to check
whether you're curious®” Some people prefer to write the whole statement on one line, perhaps
with some tab characters before the i f, to move it over toward the right margin, as we showed in
the previous example, while others put thei f modifier indented on anew line:

print "fred is '$fred', barney is '$barney'\n" if $l _amcurious;

Although you can rewrite any of these expressions with modifiers as a block (the "old-fashioned"
way), the converse isn't necessarily true. Only a single expression is alowed on either side of the
modifier. So you can't write something i f something whi | e something unti | something unl ess
something f or each something, which would just be too confusing. And you can't put multiple
statements on the left of the modifier. 1f you need more than just a simple expression on each side,
just write the code the old-fashioned way, with the parentheses and curly braces.

As we mentioned in relation to the i f modifier, the control expression (on the right) is dways
evaluated firgt, just asit would be in the old-fashioned form.

With the f or each modifier, there's no way to choose a different control variable - it's always $_.
Usually, that's no problem, but if you want to use a different variable, you'll need to rewrite it asa
traditional f or each loop.

10.4 The Naked Block Control Structure

The so-called " naked" block is one without a keyword or condition. That is, suppose you start
with awhi | e loop, which looks something like this:

while (condition) {
body;
body;
body;

}

Now, take away thewhi | e keyword and the conditional expression, and you'll have a naked block:

{
body;
body;
body;
}

The naked block is like a whi | e or foreach loop, except that it doesn't loop; it just executes the
body of the loop once, and it's done. It's an un-loop!

28 \Well, it helps us to think of them like that.
27 Of course, we made up thename $1 _am cur i ous; it'snot a builtin Perl variable. Generally, folks who use this technique
will either call their variable STRACI NG, or will use a constant declared with the const ant pragma.

111

Learning Perl, 3rd edition

WeEell see in awhile that there are other uses for the naked block, but one of its features is that it
provides a scope for temporary lexical variables:
{

print "Please enter a nunber:

chonp(ny $n = <STDI N>);

ny $root = sqrt $n; # calculate the square root
print "The square root of $n is $root.\n";

}

In this block, $n and $r oot are temporary variables scoped to the block. Asagenera guideline, al
variables should be declared in the smallest scope available. If you need a variable for just a few
lines of code, you can put those lines into a naked block and declare the variable inside that block.

Of course, if we would need the value of either $n or $root later, we would need to declare them
inalarger scope.

You may have noticed the sqrt function in that code and wondered about it - yes, it's a function
we haven't shown before. Perl has many builtin functions that are beyond the scope of this book.
When you're ready, check the perlfunc manpage to learn about more of them.

10.5 The elsif Clause

Every so often, you may need to check a number of conditional expressions, one after another, to
see which one of them is true. This can be done with the i f control structure's el si f clause, asin
this example:
if (! defined $dino) {
print "The value is undef.\n";
} elsif ($dino =~ /A-2\d+\.28$/) {
print "The value is an integer.\n";
} elsif ($dino =~ /A-2\d*\.\d+$/) {
print "The value is a _sinple_ floating-point nunber.\n";
} elsif ($dino eq '') {
print "The value is the enpty string.\n";
} else {
print "The value is the string '$dino' .\n";

}

Perl will test the conditional expressions one after another. When one succeeds, the corresponding
block of code is executed, and then the whole control structure is done,**® and execution goes on to
the rest of the program. If none has succeeded, the el se block at the end is executed. (Of course,
theel se clauseis till optional, although in this case it's often agood ideato includeit.)

There's no limit to the number of el si f clauses, but remember that Perl has to evaluate the first
ninety-nine tests before it can get to the hundredth. If you'll have more than half a dozen el si f s,
you should consider whether there's a more efficient way to write it. The Perl FAQ (see the
per | f aqg manpage) has a number of suggestions for emulating the "case" or "switch" statements of
other languages. Y ou may have noticed by this point that the keyword is spelled el si f, with only
one e. If you write it as "elsalf", with a second e, Perl will tell you that it is not the correct
spelling. Why not? Because Larry says s0.*

28 There's no "fall-through" to the next block, asin the "switch" structure of languages like C.

29 | n fact, he resists any suggestion that it even be permitted as a valid alternative spelling. "If you want to spell it with a second
e, it'ssmple. Sep 1- Make up your own language. Step 2 - Make it popular.” When you make your own programming
language, you can spell the keywords in any way you'd like. We hope that you will decide that yours shouldn't be thefirst to have
an "elseunless’.

112

Learning Perl, 3rd edition

10.6 Autoincrement and Autodecrement

You'll often want a scalar variable to count up or down by one. Since these are frequent
constructs, there are shortcuts for them, like nearly everything else we do frequently.

The autoincrement operator ("++") adds one to a scalar variable, like the same operator in C and
similar languages.

ny $bedrock = 42;
$bedrock++; # add one to $bedrock; it's now 43

Just like other ways of adding oneto avariable, the scalar will be created if necessary:

ny @eople = g fred barney fred wilnma dino barney fred pebbles };
ny %ount; # new enpty hash
$count {$_} ++ foreach @eople; # creates new keys and val ues as needed

The first time through that f or each loop, $count {$_} isincremented. That's $count{"fred"},
which thus goes from undef (since it didn't previously exist in the hash) up to 1. The next time
through the loop, $count {"barney"} becomes 1; after that, $count {"fred"} becomes 2. Each
time through the loop, one element in % ount is incremented, and possibly created as well. After

that loop is done, $count{"fred"} is3. This provides a quick and easy way to see which items
arein alist and how many times each one appears.

Similarly, the autodecrement operator ("- -) subtracts one from a scalar variable:
$bedrock--; # subtract one from $bedrock; it's 42 again

10.6.1 The Value of Autoincrement

Y ou can fetch the value of a variable and change that value at the same time. Put the ++ operator
in front of the variable name to increment the variable first and then fetch its value. Thisis a
preincrement :

my $a = 5;

ny $b = ++$a; # increnment $a to 6, and put that value into $b

Or put the - - operator in front to decrement the variable first and then fetch its value. Thisisa
predecrement:

ny $¢ = --%a; # decrenent $a to 5, and put that value into $c

Here's the tricky part. Put the variable name first to fetch the value first, and then do the increment
or decrement. Thisis caled a postincrement or postdecrement:

my $d
ny $e
It's tricky because we're doing two things at once. We're fetching the value, and we're changing it
in the same expression. If the operator isfirst, we increment (or decrement) first, then use the new
value. If the variable is first, we return its (old) vaue first, then do the increment or decrement.
Another way to say it is that these operators return a value, but they also have the side effect of
modifying the variable's value.

$a++; # $d gets the old value (5), then increnment $a to 6
$a--; # $e gets the old value (6), then decrenent $a to 5

113

Learning Perl, 3rd edition

If you write these in an expression of their own,” not using the value but only the side effect,

there's no difference®™ whether you put the operator before or after the variable:

$bedrock++; # adds one to $bedrock
++$bedrock; # just the sane; adds one to $bedrock

A common use of these operators is in connection with a hash, to identify when an item has been
seen before:

ny @eople = g fred barney bamm bamm wi | ma di no barney betty pebbles };
nmy %een;

foreach (@eople) {
print "I've seen you sonmewhere before, $!\n"
if $seen{$_}++;
}

When bar ney shows up for the first time, the value of $seen{$_} ++ isfase, since it's the value of
$seen{$_}, whichis$seen{"barney"}, whichisundef. But that expression has the side effect of
incrementing $seen{ " barney"}. When bar ney shows up again, $seen{"barney"} isnow atrue
value, so the message is printed.

10.7 The for Control Structure

Perl's f or control structure is like the common f or control structure you may have seen in other
languages such as C. It lookslike this:
for (initialization; test; increnment) {
body;
body;
}
To Perl, though, this kind of loop isreally awhi | e loop in disguise, something like this:*
initialization;
while (test) {
body;

body;
increment;

}
The most common use of the f or loop, by far, isfor making computed iterations:

for ($i =1; $i <= 10; $i++) { # count from1 to 10

print "I can count to $i!\n";
}
When you've seen these before, you'll know what the first line is saying even before you read the
comment. Before the loop starts, the control variable, $i, is set to 1. Then, the loop is redlly a
whi | e loop in disguise, looping while $i islessthan or equal to 10. Between each iteration and the
next is the increment, which hereis aliteral increment, adding one to the control variable, which is
$i.

20 That is, in a void context.

21 programmers who get inside the implementations of languages may expect that postincrement and postdecrement would be

less efficient than their counterparts, but Perl's not like that. Perl automatically optimizes the post- forms when they're used in a
void context.

22 pctually, the increment happensin acont i nue block, which is beyond the scope of this book. See the perlsyn manpage for
the truth.

114

Learning Perl, 3rd edition

So, the first time through this loop, $i is 1. Since that's less than or equal to 10, we see the
message. Although the increment is written at the top of the loop, it logically happens at the
bottom of the loop, after printing the message. So, $i becomes 2, which islessthan or equal to 10,
so we print the message again, and $i isincremented to 3, which isless than or equal to 10, and so
on.

Eventually, we print the message that our program can count to 9. Then $i isincremented to 10,
which is less than or equal to 10, so we run the loop one last time and print that our program can
count to 10. Finaly, $i isincremented for the last time, to 11, which is not less than or equal to
10. So control drops out of the loop, and we're on to the rest of the program.

All three parts are together at the top of the loop so that it's easy for an experienced programmer to
read that first line and say, "Ah, it'saloop that counts $i from oneto ten."

Note that after the loop is done, the control variable has a value "after” the loop. That is, in this
case, the control variable has gone all theway to 11. 2%

This loop is a very versatile loop, since you can make it count in al sorts of ways. This loop
counts from - 150 to 1000 by threes:*
for ($i = -150; $i <= 1000; $i += 3) {

print "$i\n";
}
In fact, you could make any of the three control parts (initialization, test, or increment) empty, if
you wish, but you still need the two semicolons. In this (quite unusual) example, the test is a
substitution, and the increment is empty:

for ($_ = "bedrock™; s/(.)//;) { # loops while the s/// is successful
print "One character is: $1\n";

}

The test expression (in the implied whi | e loop) is the substitution, which will return atrue vaue if
it succeeded. In this case, the first time through the loop, the substitution will remove the b from
bedr ock. Each iteration will remove another letter. When the string is empty, the substitution will
fail, and the loop is done.

If the test expression (the one between the two semicolons) is empty, it's automaticaly true,
making an infinite loop. But don't make an infinite loop like this until you see how to break out of
such aloop, which we'll discuss later in this chapter:
for (55) {

print "It's an infinite [oop!\n";
}
A more Perl-like way to write an intentional infinite loop, when you really want one,® is with
whi | e:
while (1) {

print "lIt's another infinite |oop!\n";

}

23 Opligatory Thisis Spinal Tap outdated pop-culture reference.
24 Of course, it never getsto 1000 exactly. Thelast iteration uses 999, since each value of $i isa multiple of three.

25 | you somehow made an infinite loop that's gotten away from you, see whether Control-C will halt it. It's possible that you'll

get alot of output even after typing Control-C, depending upon your system's I/O and other factors. Hey, we warned you.

115

Learning Perl, 3rd edition

Although C programmers are familiar with the first way, even a beginning Perl programmer should
recognize that 1 is aways true, making an intentiona infinite loop, so the second is generaly a
better way to write it. Perl is smart enough to recognize a constant expression like that and
optimize it away, so there's no difference in efficiency.

10.7.1 The Secret Connection Between foreach and for

It turns out that, inside the Perl grammar, the keyword foreach is exactly equivalent to the
keyword f or . That is, any time Perl sees one of them, it's the same as if you had typed the other.
Perl can tell which you meant by looking inside the parentheses. If you've got the two semicolons,
it'sacomputed f or loop (like we've just been talking about). If you don't have the semicolons, it's
realy af or each loop:

for (1..10) { # Really a foreach loop from1 to 10
print "I can count to $_!\n";

}

That's really a f oreach loop, but it's written f or . Except for that one example, al through this
book, well spell out f oreach wherever it appears. But in the real world, do you think that Perl
folks will type those extra four letters?*® Excepting only beginners code, it's always written f or,
and you'll have to do as Perl does and look for the semicolonsto tell which kind of loop it is.

In Perl, the true f or each loop is amost always a better choice. Inthe f or each loop (written f or)
in that previous example, it's easy to see at a glance that the loop will go from 1 to 10. But do you
see what's wrong with this computed loop that's trying to do the same thing? Don't peek at the

answer in the footnote until you think you've found what's wrong:*’

for ($i =1; $i < 10; $i++) { # Oops! Sonething is wong here!
print "I can count to $_!\n";

}
10.8 Loop Controls

Asyou've surely noticed by now, Perl is one of the so-called "structured" programming languages.

In particular, there's just one entrance to any block of code, which is at the top of that block. But
there are times when you may need more control or versatility than what we've shown so far. For
example, you may need to make a loop like a whi | e loop, but one that always runs at least once.

Or maybe you need to occasionally exit ablock of code early. Perl has three loop-control operators
you can usein loop blocks to make the loop do al sorts of tricks.

10.8.1 The last Operator

The ast operator immediately ends execution of the loop. (If you've used the "break™ operator in
C or a similar language, it's like that.) It's the "emergency exit" for loop blocks. When you hit
| ast , theloop is done.

25| you think that, you haven't been paying attention. Among programmers, especially Per| programmers, lazinessis one of the
classical virtues. If you don't believe us, ask someone at the next Perl Mongers' meeting.

27 There are two and one-half bugs. First, the conditional uses a less-than sign, so the loop will run nine times, instead of ten.
It's easy to get a so-called "fencepost” bug with thiskind of loop, like what happened when the rancher needed enough fenceposts
to make a 30-meter-long fence with a post every three meters. (The answer is not ten fenceposts.) Second, the control variableis
$i , but theloop body isusing$_. And second and a half, it'sa lot more work to read, write, maintain, and debug this type of
loop, which iswhy we say that thetrue f or each isgenerally a better choicein Perl.

116

Learning Perl, 3rd edition

For example:

Print all input [ines nmentioning fred, until the _ END _ marker
while (<STDI N>) {
if (/__END_ /) {
No nore input on or after this marker |ine
| ast;
} elsif (/fred/) {
print;
}

}

| ast conmes here

Once an input line hasthe __END__ marker, that loop is done. Of course, that comment line at the
end is merely a comment - it's not required in any way. We just threw that in to make it clearer
what's happening.

There are five kinds of loop blocksin Perl. These are the blocks of f or, f or each, whi | e, unti |, or
the naked block.”® The curly braces of an i f block or subroutine don't qualify. As you may
have noticed in the example above, the | ast operator applied to the entire loop block.

Thel ast operator will apply to the innermost currently running loop block. To jump out of outer
blocks, stay tuned; that's coming up in alittle bit.

10.8.2 The next Operator

Sometimes you're not ready for the loop to finish, but you're done with the current iteration. That's
what the next operator is good for. It jumps to the inside of the bottom of the current loop
block.?® After next , control continues with the next iteration of the loop (much like the "continue"
operator in C or asimilar language):

Anal yze words in the input file or files

while (<>) {
foreach (split) { # break $_ into words, assign each to $_ in turn
$t ot al ++;
next if /\W; # strange words skip the remai nder of the | oop
$val i d++;
$count { $_} ++; # count each separate word

next conmes here

}
}

print "total things = $total, valid words = $valid\n";
foreach $word (sort keys % ount) {

print "$word was seen $count{$word} tines.\n";
}
This oneis alittle more complex than most of our examples up to this point, so let's take it step by
step. The whi | e loop is reading lines of input from the diamond operator, one after another, into
$_; we've seen that before. Each time through that loop, another line of input will bein$_.

28 Yes, you can use | ast to jump out of a naked block. Be sure to check your local laws before doing so.

23 |t's probably not a good idea, but you could use these loop control operators frominside a subroutine to control aloop that is
outside the subroutine. That is, if a subroutineiscalled in aloop block, and the subroutine executes | ast when there's no loop
block running inside the subroutine, the flow of control will jump to just after the loop block in the main code. Thisability to use
loop control fromwithin a subroutine may go away in a future version of Perl, and no oneislikely to missit.

20 Thisis another of our many lies. Intruth, next jumpsto the start of the (usually omitted) cont i nue block for theloop. See
the perlsyn manpage for the full details.

117

Learning Perl, 3rd edition

Inside that loop, the f or each loop isiterating over the return value spl i t. Do you remember the
default for spl it with no arguments?™" That splits $_ on whitespace, in effect breaking $_ into a
list of words. Since the f oreach loop doesn't mention some other control variable, the control
variable will be$_. So, we'll see oneword after anotherin$_.

But didn't we just say that $_ holds one line of input after another? Well, in the outer loop, that's
what it is. But inside the f or each loop, it holds one word after another. It's no problem for Perl to
reuses_ for anew purpose; this happens all the time.

Now, inside the f or each loop, we're seeing one word at atimein $_. $t ot al isincremented, so it
must be the total number of words. But the next line (which is the point of this example) checks to
see whether the word has any nonword characters - anything but letters, digits, and underscores.

So, if thewordisTom s, or if itisful | -si zed, or if it has an adjoining comma, quote mark, or any
other strange character, it will match that pattern and we'll skip the rest of the loop, going on to the
next word.

But let's say that it's an ordinary word, like fred. In that case, we count $val i d up by one, and
also scount {$_}, keeping a count for each different word. So, when we finish the two loops,
we've counted every word in every line of input from every file the user wanted usto use.

We're not going to explain the last few lines. By now, we hope you've got stuff like that down

already.

Likel ast, next may be used in any of the five kinds of loop blocks: f or, f or each, whi | e, unti |,
or the naked block. Also, if loop blocks are nested, next works with the innermost one. We'll see
how to change that at the end of this section.

10.8.3 The redo Operator

The third member of the loop control triad isr edo . It saysto go back to the top of the current loop
block, without testing any conditional expression or advancing to the next iteration. (If you've
used C or a similar language, you've never seen this one before. Those languages don't have this
kind of operator.) Here's an example:

Typing test
ny @wrds = qw{ fred barney pebbles dino wilma betty };
ny $errors = 0;

foreach (@wrds) {
redo comes here
print "Type the word '$_':
chonmp(ny $try = <STDI N>);
if ($try ne $_) {
print "Sorry - That's not right.\n\n";
$errors++;
redo; # junp back up to the top of the |oop
}
}

print "You' ve conpleted the test, with $errors errors.\n";

Like the other two operators, r edo will work with any of the five kinds of loop blocks, and it will
work with the innermost loop block when they're nested.

2L | you don't remember it, don't worry too much. Don't waste any brain cells remembering things that you can look up with
perldoc.

118

Learning Perl, 3rd edition

The big difference between next and r edo isthat next will advance to the next iteration, but r edo
will redo the current iteration. Here's an example program that you can play with to get a feel for
how these three operators work: >
foreach (1..10) {

print "lteration nunber $_.\n\n";

print "Please choose: |ast, next, redo, or none of the above? "
chonp(ny $choice = <STDI N>);

print "\n";

|ast if $choice =~ /last/i;

next if $choice =~ /next/i;

redo if $choice =~ /redo/i;

print "That wasn't any of the choices... onward!'\n\n";

}
print "That's all, folks!\n";

If you just press return without typing anything (try it two or three times), the loop counts along
from one number to the next. If you choose | ast when you get to humber four, the loop is done,
and you won't go on to number five. If you choose next when you're on four, you're on to number
five without printing the "onward" message. And if you choose r edo when you're on four, you're
back to doing number four all over again.

10.8.4 Labeled Blocks

When you need to work with aloop block that's not the innermost one, use alabel. Labelsin Perl
are like other identifiers - made of letters, digits, and underscores, but they can't start with a digit -
however, since they have no prefix character, labels could be confused with the names of builtin
function names, or even with your own subroutines names. So, it would be a poor choice to make
alabel called print orif. Because of that, Larry recommends that they be all uppercase. That not
only ensures that the label won't conflict with another identifier but it also makes it easy to spot the
label in the code. In any case, labels are rare, only showing up in a small percentage of Perl
programs.

To label aloop block, just put the label and a colon in front of the loop. Then, inside the loop, you
may usethe label after | ast , next , or r edo as needed:
LINE: while (<>) {

foreach (split) {
last LINEif /_ _END_ _/; # bail out of the LINE |oop

.
}

For readability, it's generally nice to put the label at the left margin, even if the current codeisat a
higher indentation. Notice that the label names the entire block; it's not marking a target point in
the code.”

In that previous snippet of sample code, the special __END__ token marks the end of al input.
Once that token shows up, the program will ignore any remaining lines (even from other files).

22 | you've downl oaded the example files from the O'Reilly website (as described in the Preface), you'll find this program called
Inr-example.
28 Thisisn't got o, after all.

119

Learning Perl, 3rd edition

It often makes sense to choose a noun as the name of the loop.” That is, the outer loop is
processing aline at atime, so we called it LI NE. If we had to name the inner loop, we would have
called it WORD, since it processes a word at a time. That makes it convenient to say things like
"(move on to the) next WORD" or "r edo (the current) LI NE".

10.9 Logical Operators

As you might expect, Perl has al of the necessary logical operators needed to work with Boolean
(trueffalse) values. For example, it's often useful to combine logical tests by using the logical
AND operator (&&) and the logical OR operator (| |):

if ($dessert{' cake'} && $dessert{'ice creanm}) {

Both are true
print "Hooray! Cake and ice cream\n";

} elsif ($dessert{' cake'} || $dessert{'ice cream}) {
At |east one is true
print "That's still good...\n";

} else {
Neither is true - do nothing (we're sad)

}

There may be a shortcut. If the left side of a logical AND operation is fase, the whole thing is
false, since logica AND needs both sides to be true in order to return true. In that case, there's no
reason to check the right side, so it will not even be evaluated. Consider what happens in this
exampleif $hour is3:
if ((9 <= $hour) && ($hour < 17)) {

print "Aren't you supposed to be at work...?\n";

}

Similarly, if the left side of a logica OR operation is true, the right side will not be evaluated.
Consider what happens hereif $nane isfred:
if (($nane eq 'fred') || ($nanme eq 'barney')) {

print "You're ny kind of guy!\n";
}
Because of this behavior, these operators are called "short-circuit” logical operators. They take a
short circuit to the result whenever they can. In fact, it's fairly common to rely upon this short-
circuit behavior. Suppose you need to calculate an average:
if (($n !=0) & ($total/$n < 5)) {

print "The average is below five.\n";
}
In that example, the right side will be evaluated only if the |eft side is true, so we can't accidentally
divide by zero and crash the program.

10.9.1 The Value of a Short-Circuit Operator

Unlike what happens in C (and similar languages), the value of a short-circuit logical operator is
the last part evaluated, not just a Boolean value. This provides the same result, in that the last part
evaluated is always true when the whole thing should be true, and it's dways false when the whole
thing should be false.

% That is, it makes more sense to do that than not to do that. Perl doesn't care if you call your loop labels things like XYZZY or
PLUGH. However, unless you were friendly with the Colossal Cave in the 70's, you might not get the reference.

120

Learning Perl, 3rd edition

But it's a much more useful return value. Among other things, the logical OR operator is quite
handy for selecting a default value:

ny $l ast_nane = $l ast_nanme{$soneone} || '(No last nane)';

If $sonmeone is ot listed in the hash, the left side will be undef , which isfase. So, the logical OR
will have to look to the right side for the value, making the right side the default.>** We'll see other
uses for this behavior later.

10.9.2 The Ternary Operator, ?:

When Larry was deciding which operators to make available in Perl, he didn't want former C
programmers to be left wishing for something that C had and Perl didn't, so he brought over all of
C's operators to Perl.”® That meant bringing over C's most confusing operator: the ternary 2:
operator. Whileit may be confusing, it can also be quite useful.

The ternary operator is like an if-then-else test, all rolled into an expression. It iscalled a"ternary"
operator because it takes three operands. It looks like this:

expression ? if_true_expr : if_false_expr

First, the expression is evaluated to see whether it'strue or false. If it's true, the second expression
is used; otherwise, the third expression is used. Every time, one of the two expressions on the right
is evaluated, and one isignored. That is, if the first expression is true, then the second expression
isevaluated, and the third isignored. If the first expression isfalse, then the second isignored, and
the third is evaluated as the value of the whole thing.

In this example, the result of the subroutine & s_weekend determines which string expression will
be assigned to the variable:

ny $l ocation = & s_weekend($day) ? "home" : "work";
And here, we calculate and print out an average - or just a placeholder line of hyphens, if there's no
average available:

ny $average = $n ? (Stotal/$n) : "----- "
print "Average: $average\n";

You could always rewrite any use of the ?: operator as an if structure, often much less
conveniently and less concisely:

ny $aver age;
if ($n) { $average = $total / $n; }
el se { $average = "----- "y

print "Average: $average\n";

Here'satrick you might see, used to code up a nice multiway branch:

ny $size =
($wi dth < 10) ? "small"
($width < 20) ? "nmediunt :
($width < 50) ? "large"
"extra-large"; # default

25 But do note that in this idiom thedefault value won't merely replace undef ; it would replace any false value equally well.
That's fine for most names, but don't forget that zero and the empty string are useful valuesthat are neverthelessfalse. This
idiom should be used only when you're willing to replace any fal se value with the expression on the right.

25 \Well, to be sure, he did leave out the ones that have no usein Perl, such as the operator that turns a number into the memory
address of a variable. And he added several operators (like the string concatenation operator), which make C folks jeal ous of
Perl.

121

Learning Perl, 3rd edition

That isreally just three nested ?: operators, and it works quite well, once you get the hang of it.

Of course, you're not obliged to use this operator. Beginners may wish to avoid it. But you'll seeit
in others' code, sooner or later, and we hope that one day you'll find a good reason to use it in your
own programs.

10.9.3 Control Structures Using Partial-Evaluation Operators

These three operators that we've just seen - &&, | | , and ?: - all share a peculiar property: depending
upon whether the value on the left side is true or fase, they may or may not evaluate an
expression. Sometimes the expression is evaluated, and sometimes it isn't. For that reason, these
are sometimes called partial-evaluation operators, since they may not evaluate al of the
expressions around them. And partial-eval uation operators are automatically control structures.”’

It's not as if Larry felt a burning need to add more control structures to Perl. But once he had
decided to put these partial-evaluation operators into Perl, they automatically became control
structures as well. After al, anything that can activate and deactivate a chunk of code is a control
structure.

Fortunately, you'll notice this only when the controlled expression has side effects, like atering a
variable's value or causing some output. For example, suppose you ran across thisline of code:

($a < $b) && ($a = $b);

Right away, you should notice that the result of the logical AND isn't being assigned anywhere.”®
Why not?

If $a isredly lessthan $b, the left sideis true, so the right side will be evaluated, thereby doing the
assignment. But if $a is not lessthan $b, the left side will be false, and thus the right side would be
skipped. So that line of code would do essentially the same thing as this one, which is easier to
understand:

if ($a < $b) { $a = $b; }

Or maybe you'll be maintaining a program, and you'll see aline like this one:

($a > 10) || print "why is it not greater?\n";

If $a isreally greater than ten, the left side is true, and the logical OR is done. But if it's not, the

left side is false, and this will go on to print the message. Once again, this could (and probably
should) be written in the traditional way, probably withi f or unl ess.

If you have a particularly twisted brain, you might even learn to read these lines as if they were
written in English. For example: check that $a islessthan $b, and if it is, then do the assignment.
Check that $a ismore than ten, or if it's not, then print the message.

It's generally former C programmers or old-time Perl programmers who most often use these ways
of writing control structures. Why do they do it? Some have the mistaken idea that these are more
efficient. Some think these tricks make their code cooler. Some are merely copying what they saw
someone el se do.

27 5ome of you were wondering why these logical operators are being covered in this chapter, weren't you?
28 Byt don't forget to consider that it might be a return value, as the last expression in a subroutine.

122

Learning Perl, 3rd edition

In the same way, the ternary operator may be used for control. In this case, we want to assign $c to
the smaller of two variables:

($a < $b) ? ($a = $c) : ($b = $c);
If $a issmaller, it getssc. Otherwise, $b does.

There is another way to write the logical AND and logical OR operators. You may wish to write
them out as words. and and or .** These word-operators have the same behaviors as the ones
written with punctuation, but the words are much lower on the precedence chart. Since the words
don't "stick" so tightly to the nearby parts of the expression, they may need fewer parentheses:

$a < $b and $a = $b; # but better witten as the corresponding if

Then again, you may need more parentheses. Precedence is a bugaboo. Be sure to use parentheses
to say what you mean, unless you're sure of the precedence. Nevertheless, since the word forms
are very low precedence, you can generally understand that they cut the expression into big pieces,
doing everything on the left first, and then (if needed) everything on the right.

Despite the fact that using logical operators as control structures can be confusing, sometimes
they're the accepted way to write code. Well see a common use of the or operator starting in the
next chapter.

So, using these operators as control structures is part of idiomatic Perl - Perl as she is spoken.
Used properly, they can make your code more powerful; otherwise they can make your code
unmaintainable. Don't overuse them.?*

2 There are also the low-precedence not (like the logical-negation operator, ! *) and the rare xor .
20 Ysing these weird forms more than once per month counts as overuse.

123

Learning Perl, 3rd edition

10.10 Exercise

See Section A.9 for an answer to the following exercise:

1. [25] Make a program that will repeatedly ask the user to guess a secret number from 1 to
100 until the user guesses the secret number. Your program should pick the number at
random by using the magical formulaint(1 + rand 100).** When the user guesses
wrong, the program should respond "Too high" or "Too low". If the user enters the word
quit or exit, orif the user enters a blank line, the program should quit. Of course, if the
user guesses correctly, the program should quit then as well!

21 gee what the per|func manpage says about i nt andr and if you're curious about these functions.

124

Learning Perl, 3rd edition

Chapter 11. Filehandles and File Tests
11.1 What Is a Filehandle?

A filehandle isthe namein a Perl program for an I/O connection between your Perl process and the
outside world. That is, it's the name of aconnection, not necessarily the name of afile.

Filehandles are named like other Perl identifiers (letters, digits, and underscores, but they can't start
with a digit), but since they don't have any prefix character, they might be confused with present or
future reserved words, as we saw with labels. Once again, as with labels, the recommendation
from Larry is that you use all uppercase letters in the name of your filehandle - not only will it
stand out better, but it will also guarantee that your program won't fail when a future (lowercase)
reserved word is introduced.

But there are also six special filehandle names that Perl already uses for its own purposes. STDI N,
STDOUT, STDERR, DATA, ARGV, and ARGVOUT.** Although you may choose any filehandle name you'd
like, you shouldn't choose one of those six unless you intend to use that one's special properties.®®

Maybe you recognized some of those names already. When your program starts, STDI N is the
filehandle naming the connection between the Perl process and wherever the program should get
its input, known as the standard input stream. This is generally the user's keyboard unless the
user asked for something else to be the source of input, such as reading the input from a file or
reading the output of another program through a pipe.**

There's also the standard output stream, which is STDOUT . By default, this one goes to the user's
display screen, but the user may send the output to a file or to another program, as we'll see
shortly. These standard streams come to us from the Unix "standard I/O" library, but they work in
much the same way on most modern operating systems.** The general idea is that your program
should blindly read from STDI N and blindly write to STDOUT, trusting in the user (or generaly
whichever program is starting your program) to have set those up. In that way, the user can type a
command like this one at the shell prompt:

$./your_program <di no >wi | ma
That command tells the shell that the program's input should be read from the file dino, and the
output should go to the file wilma. As long as the program blindly reads its input from STDI N,

processes it (in whatever way we need), and blindly writes its output to STDOUT, this will work just
fine.

%2 3pme people hate typing in all-caps, even for a moment, and will try spelling thesein lowercase, like st di n. Perl may even
let you get away with that fromtime to time, but not always. The details of when these work and when they fail are beyond the
scope of thisbook. But theimportant thing is that programs that rely upon this kindness will one day break, soiit is best to avoid
lowercase here.

3 |n some cases, you could (re-)use these names without a problem. But your maintenance programmer may think that you're
using the name for its builtin features, and thus may be confused.

24 The defaults we speak of in this chapter for the three main 1/O streams are what the Unix shells do by default. But it's not just
shells that launch programs, of course. We'll seein Chapter 14 what happens when you launch another program from Perl.

#5 £ you're not already familiar with how your non-Unix system provides standard input and output, see the per|port manpage
and the documentation for that system's equivalent to the Unix shell (the program that runs programs based upon your keyboard
input).

125

Learning Perl, 3rd edition

And at no extra charge, the program will work in a pipeline. Thisis another concept from Unix,
which lets us write command lineslike this one;

$ cat fred barney | sort | ./your_program| grep sonething | |pr

Now, if you're not familiar with these Unix commands, that's okay. This line says that the cat
command should print out al of the lines of file fred followed by all of the lines of file barney.
Then that output should be the input of the sort command, which sorts those lines and passes them
on to your_program. After it has doneits processing, your_programwill send the data on to grep,
which discards certain lines in the data, sending the others on to the Ipr command, which should
print everything that it gets on aprinter. Whew!

But pipelines like that are common in Unix and many other systems today because they let you put
together a powerful, complex command out of simple, standard building blocks.

There's one more standard 1/O stream. If (in the previous example) your_program had to emit any
warnings or other diagnostic messages, those shouldn't go down the pipeline. The grep command
is set to discard anything that it hasn't specifically been told to look for, and so it will most likely
discard the warnings. Even if it did keep the warnings, we probably don't want those to be passed
downstream to the other programs in the pipeline. So that's why there's also the standard error
stream: STDERR . Even if the standard output is going to another program or file, the errors will go
to wherever the user desires. By default, the errors will generally go to the user's display screen,®
but the user may send the errorsto afile with a shell command like this one:

$ netstat | ./your_program 2>/tnp/ my_errors

11.2 Opening a Filehandle

So we see that Perl provides three filehandles - STDIN, STDOUT, and STDERR - which are
automatically open to files or devices established by the program's parent process (probably the
shell). When you need other filehandles, use the open operator to tell Perl to ask the operating
system to open the connection between your program and the outside world. Here are some
examples:

open CONFI G "dino",

open CONFI G "<dino";

open BEDROCK, ">fred";

open LOG, ">>|ogfile";

The first one opens afilehandle called CONFI Gto afile called dino. That is, the (existing) file dino
will be opened and whatever it holds will come into our program through the filehandle named
CONFI G. This is similar to the way that data from a file could come in through STDI N if the
command line had a shell redirection like <di no.

28 Also, generally, errorsaren't buffered. That meansthat if the standard error and standard output streams are both going to
the same place (such as the monitor), the errors may appear earlier than the normal output. For example, if your program prints
aline of ordinary text, then tries to divide by zero, the output may show the message about dividing by zero first, and the
ordinary text second.

126

Learning Perl, 3rd edition

In fact, the second example uses exactly that sequence. The second does the same as the first, but
the lessthan sign explicitly says "this filename is to be used for input,” even though that's the
default.*

Although you don't have to use the less-than sign to open afile for input, we include that because,
as you can see in the third example, a greater-than sign means to create a new file for output. This
opens the filehandle BEDROCK for output to the new file fred. Just as when the greater-then sign is
used in shell redirection, we're sending the output to a new file called fred. If there's aready afile
of that name, we're asking to wipe it out and replace it with this new one.

The fourth example shows how two greater-than signs may be used (again, as the shell does) to
open afile for appending. That is, if the file already exists, we will add new data at the end. If it
doesn't exist, it will be created in much the same way as if we had used just one greater-than sign.

Thisis handy for log files; your program could write a few lines to the end of alog file each time
it'srun. So that'swhy the fourth example names the filehandle LoG and the file logfile.

You can use any scalar expression in place of the filename specifier, although typically you'll want
to be explicit about the direction specification:

ny $sel ected_output = "ny_output”;
open LOG, "> $sel ected_out put";

Note the space after the greater-than. Perl ignores this,*® but it keeps unexpected things from
happening if $sel ect ed_out put were ">passwd” for example (which would make an append
instead of awrite).

WEe'll see how to use these filehandles later in this chapter.
11.2.1 Closing a Filehandle

When you are finished with afilehandle, you may close it with the cI ose operator likethis:
cl ose BEDROCK;

Closing afilehandle tells Perl to inform the operating system that we're al done with the given data
stream, so any last output data should be written to disk in case someone iswaiting for it.%*

%7 This may beimportant for security reasons. Aswe'll seeinamoment (and in further detail in Chapter 14), thereare a
number of magical charactersthat may be used in filenames. If $nane holds a user-chosen filename, simply opening $nane
will allow any of these magical charactersto comeinto play. This could be a convenience tn the user, or it could be a security
hole. But opening" <$nane" ismuch safer, sinceit explicitly says to open the given name for input. Sll, this doesn't prevent
all possible mischief. For more information on different ways of opening files, especially when security may be a concern, see
the perlopentut manpage.

8 Yes, this meansthat if your filename were to have leading whitespace, that would also be ignored by Perl. See perlfunc and
?erlopentut if you'reworried about this.

“% | you know much about 1/0 systems, you'll know there's more to the story. Generally, though, when a filehandle s closed,
here'swhat happens. If there'sinput remaining in afile, it'signored. If there'sinput remaining in a pipeline, the writing
program may get a signal that the pipelineis closed. If there's output going to afile or pipeline, the buffer isflushed (that is,
pending output is sent on itsway). If thefilehandle had alock, the lock isreleased. See your system's |/O documentation for
further details.

127

Learning Perl, 3rd edition

Perl will automatically close a filehandle if you reopen it (that is, if you reuse the filehandle name
in a new open) or if you exit the program.” Because of this, many simple Perl programs don't
bother with cl ose. But it'sthereif you want to be tidy, with one cl ose for every open. Ingenerd,
it's best to close each filehandle soon after you're done with it, though the end of the program often
arrives soon enough.”*

11.2.2 Bad Filehandles

Perl can't actualy open afile dl by itself. Like any other programming language, Perl can merely
ask the operating system to let us open afile. Of course, the operating system may refuse, because
of permission settings, an incorrect filename, or other reasons.

If you try to read from a bad filehandle (that is, a filehandle that isn't properly open), you'll see an
immediate end-of-file. (With the 1/O methods we'll see in this chapter, end-of-file will be indicated
by undef in a scalar context or an empty list in a list context.) If you try to write to a bad
filehandle, the datais silently discarded.

Fortunately, these dire consequences are easy to avoid. First of dl, if we ask for warnings with - w,
Perl will generally be able to tell us with a warning when it sees that we're using a bad filehandle.
But even before that, open always tells usiif it succeeded or failed, by returning true for success or
falsefor failure. So you could write codelike this:

ny $success = open LOG ">>logfile"; # capture the return value

unl ess ($success) {
The open failed

}
WEll, you could do it like that, but there's another way that we'll see in the next section.

11.3 Fatal Errors with die

Let's step aside for a moment. We need some stuff that isn't directly related to (or limited to)
filehandles, but is more about getting out of a program earlier than normal.

When afatal error happens inside Perl (for example, if you divide by zero, use an invalid regular
expression, or call a subroutine that hasn't been declared) your program stops with an error
message telling why.” But this functionality is available to us with the di e function, so we can
make our own fatal errors.

The di e function prints out the message you give it (to the standard error stream, where such
messages should go) and makes sure that your program exits with a nonzero exit status.

0 Any exit fromthe programwill close all filehandles, but if Per| itself breaks, pending output buffers won't get flushed. That is
to say, if you accidentally crash your program by dividing by zero, for example, Perl itself isstill running. Perl will ensure that
data you've written actually gets output in that case. But if Perl itself can't run (because you ran out of memory or caught an
unexpected signal), the last few pieces of output may not be written to disk. Usually, thisisn't abig issue.

31 Closing a filehandle will flush any output buffers and release any locks on thefile. Since someone else may be waiting for
those things, a long-running program should generally close each filehandle as soon as possible. But many of our programswill
take only one or two seconds to run to completion, so this may not matter. Closing a filehandle also releases possibly limited
resources, so it's more than just being tidy.

%2 \Well, it does this by default, but errors may be trapped with aneval block, aswe'll seein Chapter 17.

128

Learning Perl, 3rd edition

You may not have known it, but every program that runs on Unix (and many other modern
operating systems) has an exit status, telling whether it was successful or not. Programs that run
other programs (like the make utility program) look at that exit status to see that everything is
running correctly. The exit status is just a single byte, so it can't say much; traditionally, it is zero
for success and a nonzero value for failure.

Perhaps one means a syntax error in the command arguments, while two means that something
went wrong during processing and three means the configuration file couldn't be found; the details
differ from one command to the next. But zero aways means that everything worked. When the
exit status shows failure, a program like make knows not to go on to the next step.

So we could rewrite the previous example, perhaps something like this:

unl ess (open LOG, ">>logfile") {
die "Cannot create logfile: $!";

}

If the open fails, di e will terminate the program and tell us that it cannot create the logfile. But
what's that $! in the message? That's the human-readable complaint from the system. In generd,
when the system refuses to do something we've requested (like opening a file), it will give us a
reason (perhaps "permission denied" or "file not found," in this case). Thisis the string that you
may have obtained with per r or in C or asimilar language.

This human-readable complaint message will be available in Perl's special variable $! . It's a
good ideato include $! in the message when it could help the user to figure out what he or she did
wrong. But if you use di e to indicate an error that is not the failure of a system request, don't
include $!, since it will generally hold an unrelated message left over from something Perl did
internally. It will hold a useful value only immediately after a failed system request. A successful
request won't leave anything useful there.

There's one more thing that di e will do for you: it will automatically append the Perl program
name and line number™ to the end of the message, so you can easily identify which di e in your
program is responsible for the untimely exit. The error message from the previous code might look
likethis, if $! contained the message per ni ssi on deni ed:

Cannot create |ogfile: perm ssion denied at your_programline 1234.

That's pretty helpful - in fact, we always seem to want more information in our error messages than
we put in the first time around. If you don't want the line number and file revealed, make sure that
the dying words have a newline on the end. That is, another way you could use di e isin alinelike
this, with atrailing newline:

die "Not enough argunments\n" if @RGV < 2;

If there aren't at least two command-line arguments, that program will say so and quit. It won't
include the program name and line number, since the line number is of no use to the user; thisis
the user's error, after all.

%3 On some non-Unix operating systems, $! may say something likeer r or nunber 7, leaving it up to the user to look that
one up in the documentation. On Windows and VMS, the variable $" E may have additional diagnostic information.

%4 |f the error happened while reading from afile, the error message will include the " chunk number" (usually the line number)
from the file and the name of the filehandle as well, since those are often useful in tracking down a bug.

129

Learning Perl, 3rd edition

As arule of thumb, put the newline on messages that indicate a usage error and leave it off when it
the error might be something you want to track down during debugging.”

When opening a file fails, though, there's an easier and more common way instead of the unl ess
block:

open LOG, ">>logfile"

or die "Cannot create logfile: $!'";

This uses the low-precedence short-circuit or operator that we saw in Chapter 10. If the open
succeeds, it returns true, and the or isdone. If the open fails, it returns false, and the short-circuit
or goes on to the right side and dies with the message. You can read this as if it were English:
"Open thisfile, or die!" It may not be the battle cry that will win awar, but it's a good way to write
code.

Y ou should always check the return value of open, since the rest of the program is relying upon its
success. That's why we say that thisis really the only way to write open - with or di e after it.”®
Until you're ready to be extra tricky, you should simply think of this as the syntax for open.

Typing or di e and a message takes only a moment when you're writing the program, but it can
save hours, or possibly days of debugging time when something goes wrong.

11.3.1 Warning Messages with warn

Just as di e can indicate afatal error that acts like one of Perl's builtin errors (like dividing by zero),
you can use the war n function to cause a warning that acts like one of Perl's builtin warnings (like
using an undef valueasif it were defined, when warnings are enabled).

The war n function works just like di e does, except for that last step - it doesn't actually quit the
program. But it adds the program name and line number if needed, and it prints the message to
standard error, just asdi e would.’

And having talked about death and dire warnings, we now return you to your regularly scheduled
filehandleinstructional material. Read on.

%5 The program's name isin Per|'s special variable $0 , so you may wish to include that in the string: " $0: Not enough

ar gunent s\ n". Thisisuseful if the program may be used in a pipeline or shell script, for example, where it's not obvious
which command is complaining. $0 can be changed during the execution of the program, however. You might also want to look
intothe special __FI LE__and __LI NE__tokens (or thecal | er function) to get the information that is being |eft out by
adding the newline, so you can print it in your own choice of format.

%8 Older code may use the higher-precedence | | operator instead. The only differenceisthe precedence, but it'sa big one! If
the open iswritten without parentheses, the higher-precedence operator will bind to the filename argument, not to the return
value - so thereturn value of open isn't being checked after all. If youusethe| | , be sureto usethe parentheses. Better yet,
just use the low-precedence or as we've shown here whenever you'rewritingor di e.

37 \Warnings can't be trapped with aneval block, likefatal errorscan. But see the documentation for the_ WARN__ pseudo-
signal (inthe perlvar manpage) if you need to trap a warning.

130

Learning Perl, 3rd edition

11.4 Using Filehandles

Once a filehandle is open for reading, you can read lines from it just like you can read from
standard input with STDI N. So, for example, to read lines from the Unix password file:

open PASSWD, "/etc/passwd"
or die "How did you get logged in? ($!)";

whil e (<PASSWD>) {

chonp;
if (/~root:/) { # found root entry...

}
}
In this example, the di e message uses parentheses around $!. Those are merely parentheses
around the message in the output. (Sometimes a punctuation mark is just a punctuation mark.) As
you can see, what we've been calling the " line-input operator” is really made of two components;
the angle brackets (the real line-input operator) are around an input filehandle. Each line of input
isthen tested to seeif it beginswithr oot followed by acolon, triggering unseen actions.

A filehandle open for writing or appending may be used with print or printf , appearing
immediately after the keyword but before the list of arguments:

print LOG "Captain's |log, stardate 3.14159\n"; # output goes to LOG

printf STDERR "% percent conplete.\n", $done/ $total * 100;

Did you notice that there's no comma between the filehandle and the items to be printed?*® This
looks especialy weird if you use parentheses. Either of these formsis correct:

printf (STDERR "%l percent conplete.\n", $done/$total * 100);
printf STDERR ("%l percent conplete.\n", $done/$total * 100);

11.4.1 Changing the Default Output Filehandle

By default, if you don't give afilehandle to print (or to printf, as everything we say here about
one applies equally well to the other), the output will go to STDOUT . But that default may be
changed with the sel ect operator. Here we'll send some output lines to BEDROCK:

sel ect BEDROCK;

print "I hope M. Slate doesn't find out about this.\n";

print "Wl ma!\n";

Once you've selected a filehandle as the default for output, it will stay that way. But it's generally
a bad idea to confuse the rest of the program, so you should generally set it back to STDOUT when
you're done.

Also by default, the output to each filehandle is buffered. Setting the special $| variable to 1 will
set the currently selected filehandle (that is, the one selected at the time that the variable is
modified) to always flush the buffer after each output operation.

38 |f you got straight A'sin freshman English or Linguistics, when we say that thisis called "indirect object syntax," you may say
"Ah, of course! | seewhy ther€'s no comma after the filehandle name - it's an indirect object!" We didn't get straight A's; we
don't understand why ther€e's no comma; we merely omit it because Larry told us that we should omit the comma.

%9 |n the unlikely case that STDOUT might not be the selected filehandle, you could save and restore the filehandle, using the
technique shown in the documentation for sel ect inthe perlfunc manpage. And aslongaswe're sending you to that manpage,
we may as well tell you that there are actually two builtin functionsin Perl namedsel ect , and both covered in the perlfunc
manpage. Theother sel ect always has four arguments, so it's sometimes called "four-argument sel ect .

131

Learning Perl, 3rd edition

So if you wanted to be sure that the logfile gets its entries at once, in case you might be reading the
log to monitor progress of your long-running program, you could use something like this:

sel ect LOG

$| =1, # don't keep LOG entries sitting in the buffer

sel ect STDOUT;

... time passes, babies learn to walk, tectonic plates shift, and then...
print LOG "This gets witten to the LOG at once!\n";

11.5 Reopening a Standard Filehandle

We mentioned earlier that if you were to reopen a filehandle (that is, if you were to open a
filehandle FRED when you've already got an open filehandle named FRED, say), the old one would
be closed for you automatically. And we said that you shouldn't reuse one of the six standard
filehandle names unless you intended to get that one's special features. And we aso said that the
messages from di e and war n, dong with Perl's internaly generated complaints, go automatically
to STDERR . If you put those three pieces of information together, you now have an idea about how
you could send error messages to afile, rather than to your program's standard error stream:*®

Send errors to ny private error |og

open STDERR, ">>/hone/ barney/.error_|og"
or die "Can't open error log for append: $!'";

After reopening STDERR, any error messages from Perl will go into the new file. But what happens
if the or die part is executed - where will that message go, if the new file couldn't be opened to
accept the messages?

The answer is that if one of the three system filehandles - STDI N, STDOUT, or STDERR - fails to be
reopened, Perl kindly restores the original one.”® That is, Perl closes the original one (of those
three) only when it sees that opening the new connection is successful. Thus, this technique could
be used to redirect any (or all) of those three system filehandles from inside your program,®
almost asif the program had been run with that 1/O redirection from the shell in the first place.

11.6 File Tests

Now you know how to open a filehandle for output. Normally, that will create a new file, wiping
out any existing file with the same name. Perhaps you want to check that there isn't afile by that
name. Perhaps you need to know how old a given fileis. Or perhaps you want to go through alist
of files to find which ones are larger than a certain number of bytes and not accessed for a certain
amount of time. Perl has a complete set of tests you can use to find out information about files.

Let's try that first example, where we need to check that a given file doesn't exist, so that we don't
accidentally overwrite a vital spreadsheet data file, or that important birthday calendar. For this,
we need the - e file test, testing for existence:

die "Cops! Afile called '$filenane' already exists.\n"
if -e $fil enane;

20 pon't do thiswithout a reason. It's nearly always better to let the user set up redirection when launching your program,

rather than have redirection hardcoded. But thisis handy in cases where your programis being run automatically by another
program (say, by a web server or a scheduling utility likecr on or at). Another reason might be that your programis going to

start another process (probably with syst emor exec, which we'll seein Chapter 14), and you need that processto have
different I/O connections.

%L At least, thisistrueif you haven't changed Perl's special $” F variable, which tells Per| that only those three are special like

this. But you'd never change that.
%2 Bt don't open STDI Nfor output or the others for input. Just thinking about that makes our heads hurt.

132

Learning Perl, 3rd edition

Notice that we don't include $! in this di e message, since we're not reporting that the system
refused a request in this case. Here's an example of checking whether a file is being kept up-to-
date. Let's say that our program's configuration file should be updated every week or two. (Maybe
it's checking for computer viruses, say.) If the file hasn't been modified in the past 28 days, then
something iswrong:

warn "Config file is looking pretty old!'\n" if -MCONFIG > 28;

The third example is more complex. Here, let's say that disk spaceisfilling up and rather than buy
more disks, we've decided to move any large, useless files to the backup tapes. So let's go through
our list of files®® to see which of them are larger than 100 K. But even if afile is large, we
shouldn't move it to the backup tapes unless it hasn't been accessed in the last 90 days (so we know
that it's not used too often):***
ny @riginal _files = qw fred barney betty w | ma pebbles di no bamm bamm /;
ny @ig_old_files; # The ones we want to put on backup tapes
foreach nmy $filename (@riginal _files) {

push @ig old files, $_

if -s $filenanme > 100_000 and -A $filenane > 90;

}

This is the first time that we've seen it, so maybe you noticed that the control variable of the
foreach loop isamy variable. That declaresit to have the scope of the loop itself, so this example
should work under use strict. Without the ny keyword, this would be using the global
$fi |l enane.

The file tests all look like a hyphen and a letter, which is the name of the test, followed by either a
filename or a filehandle to be tested. Many of them return a true/false value, but severa give
something more interesting. See Table 11-1 for the complete list, and then read the following
discussion to learn more about the special cases.

Table 11-1, File tests and their meanings

Filetest Meaning
-r File or directory isreadable by this (effective) user or group
-w File or directory iswritable by this (effective) user or group
- X File or directory is executable by this (effective) user or group
-0 File or directory is owned by this (effective) user
-R File or directory isreadable by thisrea user or group
-W File or directory iswritable by this real user or group

%3 |#smore likely that, instead of having the list of filesin an array, as our example shows, you'll read it directly fromthe

filesystemusing a glob or directory handle, as shown in Chapter 12. Since we haven't seen that yet, we'll just start with the list

and go fromthere.
%4 There's a way to make this example more efficient, aswe'll see by the end of the chapter.

133

Learning Perl, 3rd edition

Filetest Meaning
- X File or directory is executable by thisreal user or group
-0 File or directory is owned by this real user
-e File or directory name exists
-z File exists and has zero size (always fa se for directories)
-s File or directory exists and has nonzero size (the value isthe size in bytes)
- f Entry isaplainfile
-d Entry isadirectory
-1 Entry isasymbolic link
-S Entry isasocket
-p Entry isanamed pipe (a"fifo")
-b Entry isablock-specid file (like amountable disk)
-C Entry is acharacter-special file (like an I/O device)
-u File or directory is setuid
-g Fileor directory is setgid
-k File or directory has the sticky bit set
-t ThefilehandleisaTTY (asreported by thei satty() System function)
-T Filelookslike a"text" file
-B Filelookslike a"binary" file
-M Modification age (measured in days)
-A Access age (measured in days)
-C Inode-modification age (measured in days)

134

Learning Perl, 3rd edition

Thetests-r, -w, -x, and - o tell whether the given attribute is true for the effective user or group
ID,” which essentially refers to the person who is "in charge of" running the program.”® These
tests look at the "permission hits* on the file to see what is permitted. |f your system uses Access
Control Lists (ACLS), the tests will use those as well. These tests generally tell whether the system
would try to permit something, but it doesn't mean that it really would be possible. For example, -
w may be true for afile on a CD-ROM, even though you can't write to it, or - x may be true on an
empty file, which can't truly be executed.

The - s test does return true if the file is nonempty, but it's a specia kind of true. It's the length of
the file, measured in bytes, which evaluates astrue for a nonzero number.

On a Unix filesystem,”” there are just seven types of items, represented by the seven filetests - , -

d, -1, -S, -p, -b, and -c. Any item should be one of those. But if you have a symbolic link
pointing to a file, that will report true for both - and -1. So if you want to know whether
something is a symbolic link, you should generally test that first. (We'll learn more about symbolic
links in Chapter 13.)

The age tests, - M - A, and - C (yes, they're uppercase), return the number of days since the file was
last modified, accessed, or had its inode changed.®® (The inode contains al of the information
about the file except for its contents - see the st at system call manpage or a good book on Unix
internals for details.) This age value is a full floating-point number, so you might get a value of
2. 00001 if afile were modified two days and one second ago. (These "days’ aren't necessarily the
same as a human would count; for example, if it's one thirty in the morning when you check afile
modified at about an hour before midnight, the value of - Mmfor this file would be around 0. 1, even
though it was modified "yesterday.")

When checking the age of afile, you might even get a negative value like - 1. 2, which means that
the file's last-access timestamp is set at about thirty hours in the future! The zero point on this
timescale is the moment your program started running,”® so that value might mean that a long-
running program was looking at a file that had just been accessed. Or a timestamp could be set
(accidentaly or intentionally) to atime in the future.

Thetests- T and - B take atry at telling whether afileistext or binary. But people who know alot
about filesystems know that there's no hit (at least in Unix-like operating systems) to indicate that a
fileisabinary or text file - so how can Perl tell? The answer is that Perl cheats: it opens the file,
looks at the first few thousand bytes, and makes an educated guess. If it sees alot of null bytes,
unusual control characters, and bytes with the high bit set, then that looks like a binary file. If
there's not much weird stuff then it looks like text.

%5 The - 0 and - Otests relate only to the user 1D and not to the group ID.

%5 Note for advanced students: the corresponding- R, - W- X, and - Otests use the real user or group 1D, which becomes
important if your program may be running set-ID; in that case, it's generally the 1D of the person who requested running it. See
any good book about advanced Unix programming for a discussion of set-ID programs.

%7 Thisis the case on many non-Unix filesystems, but not all of the file tests are meaningful everywhere. For example, you aren't
likely to have block special files on your non-Unix system.

%8 This information will be somewhat different on non-Unix systems, since not all keep track of the same times that Unix does.
For example, on some systems, the ctime field (which the - C test looks at) is the file creation time (which Unix doesn't keep track
of), rather than the inode change time; see the perlport manpage.

29 psrecorded in the $” T variable, which you could update (with a statement like$2 T = ti ne;) if you needed to get the ages
relative to a different starting time.

135

Learning Perl, 3rd edition

As you might guess, it sometimes guesses wrong. If a text file has a lot of Swedish or French
words (which may have characters represented with the high bit set, as some 1 SO-8859-something
variant, or perhaps even a Unicode version), it may fool Perl into declaring it binary. So it's not
perfect, but if you just need to separate your source code from compiled files, or HTML files from
PNGs, these tests should do the trick.

You'd think that - T and - B would always disagree, since atext fileisn't abinary and vice versa, but
there are two specia cases where they're in complete agreement. If the file doesn't exist, both are
fase, sinceit's neither atext file nor a binary. Alternatively, if the file is empty, it's an empty text
file and an empty binary file at the same time, so they're both true.

The -t file test returns true if the given filehandleisa TTY - in short, if it's able to be interactive
because it's not a simple file or pipe. When -t STDI N returns true, it generally means that you can
interactively ask the user questions. If it's false, your program is probably getting input from afile
or pipe, rather than a keyboard.

Don't worry if you don't know what some of the other file tests mean - if you've never heard of
them, you won't be needing them. But if you're curious, get a good book about programming for
Unix. (On non-Unix systems, these tests all try to give results analogous to what they do on Unix.
Usually you'll be able to guess correctly what they'll do.)

If you omit the filename or filehandle parameter to afile test (that is, if you have just - r or just - s,
say), the default operand is the file named in $_.2"° So, to test a list of filenames to see which ones
are readable, you simply type

foreach (@ots_of _fil enames) {
print "$_ is readable\n" if -r; # sane as -r $_
}

But if you omit the parameter, be careful that whatever follows the file test doesn't look like it
could be a parameter. For example, if you wanted to find out the size of afilein K rather than in
bytes, you might be tempted to divide the result of - s by 1000 (or 1024), like this:

The filename is in $_
ny $size_in K = -s / 1000; # Qops!

When the Perl parser sees the dlash, it doesn't think about division; since it's looking for the
optional operand for - s, it sees what looks like the start of aregular expression in forward slashes.
One simple way to prevent this kind of confusion isto put parentheses around thefile test:

ny $size_in_k = (-s) / 1024; # Uses $_ by default
Of coursg, it's always safe to explicitly give afile test a parameter.

11.6.1 The stat and Istat Functions

While these file tests are fine for testing various attributes regarding a particular file or filehandle,
they don't tell the whole story. For example, there's no file test that returns the number of linksto a
file or the owner's user-1D (uid).

0 The-t filetest isan exception; sincethat test isn't useful with filenames (they're never TTYs). By default it tests STDI N.

136

Learning Perl, 3rd edition

To get at the remaining information about a file, merely cal the st at function, which returns
pretty much everything that the stat Unix system call returns (hopefully more than you need!).”"

The operand to st at isafilehandle, or an expression that evaluatesto afilename. Thereturn value
is either the empty list, indicating that the st at failed (usually because the file doesn't exist), or a
13-element list of numbers, most easily described using the following list of scalar variables:
ny($dev, $ino, $node, $nlink, $uid, gid, Srdev, $size, $atine, $ntine, S$ctine,
$bl ksi ze, $bl ocks) = stat($fil enane);

The names here refer to the parts of the stat structure, described in detail in the stat(2) manpage.
Y ou should probably look there for the detailed descriptions. But in short, here's a quick summary
of the important ones:

$dev and $i no

The device number and inode number of the file. Together they make up a"license plate” for
the file. Even if it has more than one name (hard link), the combination of device and inode
numbers should aways be unique.

$node

The set of permission bits for the file, and some other hits. If you've ever used the Unix
command Is -| to get adetailed (long) file listing, you'll see that each line of output starts with
something like - r wxr - xr - x. The nine letters and hyphens of file permissions™ correspond to
the nine least-significant bits of $node, which would in this case give the octal number 0755.
The other bits, beyond the lowest nine, indicate other details about the file. So if you need to
work with the mode, you'll generally want to use the bitwise operators (covered later on).

$nl i nk
The number of (hard) links to the file or directory. Thisis the number of true names that the
item has. This number is always 2 or more for directories and (usualy) 1 for files. Well see
more about this when we talk about creating links to filesin Chapter 13. Inthelisting from Is
-1, thisis the number just after the permission-bits string.

$ui d and $gi d
The numeric user-ID and group-1D showing the file's ownership.

$si ze
The size in bytes, as returned by the - s file test.

$atime,$ntine,andS$ctine

The three timestamps, but here they're represented in the system's timestamp format: a 32-bit
number telling how many seconds have passed since the Epoch, an arbitrary starting point for
measuring system time. On Unix systems and some others, the Epoch is the beginning of
1970 at midnight Universal Time, but the Epoch is different on some machines. There's more
information later in this chapter on turning that timestamp number into something useful.

2L On a non-Unix system, both st at and | st at , aswell asthefile tests, should return "the closest thing available." For

example, a system that doesn't have user IDs (that is, a system that has just one "user," in the Unix sense) might return zero for
the user and group IDs, asif the one and only user isthe systemadministrator. If st at or | st at fails, it will return an empty

list. If the system call underlying afile test fails (or isn't available on the given system), that test will generally returnundef .

See the perlport manpage for the latest about what to expect on different systems.
22 Thefirst character in that string isn't a permission bit; it indicates the type of entry: a hyphen for an ordinary file, d for

directory, or | for symbolic link, among others. Thels command determines this from the other bits past the least-significant

nine.

137

Learning Perl, 3rd edition

Invoking st at on the name of a symboalic link returns information on what the symbolic link points
a, not information about the symbolic link itself (unless the link just happens to be pointing at
nothing currently accessible). If you need the (mostly useless) information about the symbolic link
itself, use | st at rather than stat (which returns the same information in the same order). If the
operand isn't asymboliclink, | st at returnsthe same thingsthat st at would.

Like the file tests, the operand of stat or | stat defaultsto $_, meaning that the underlying stat
system call will be performed on the file named by the scalar variable $_.

11.6.2 The localtime Function

When you have a timestamp number (such as the ones from st at), it will typically look something
like 1080630098. That's not very useful for most humans, unless you need to compare two
timestamps by subtracting. You may need to convert it to something human-readable, such as a
string like "Tue Mar 30 07:01:38 2004". Perl can do that with the | ocal ti me function in a
scalar context:

ny $tinmestanp = 1080630098;
ny $date = localtine $tinmestanp;

Inalist context, | ocal ti me returns alist of numbers, several of which may not be quite what you'd
expect:
ny($sec, min, Shour, $day, $non, $year, $wday, $yday, $isdst)

= localtinme $tinestanp;
The $non is a month number, ranging from 0 to 11, which is handy as an index into an array of
month names. The s$year isthe number of years since 1900, oddly enough, so add 1900 to get the

real year number. The $wday ranges from 0 (for Sunday) through 6 (for Saturday), and the $yday
isthe day-of-the-year (ranging from O for January 1, through 364 or 365 for December 31).

There are two related functions that you'll also find useful. The gnt i me function is just the same as
| ocal tine, except that it returns the time in Universal Time (what we once called Greenwich
Mean Time). If you need the current timestamp number from the system clock, just use the ti me
function. Both | ocal ti me and gnt i me default to using the current t i me valueif you don't supply a
parameter:

ny $now = gntine; # Get the current universal tinestanp as a string

For more information on manipulating date and time information, see the information about some
useful modulesin Appendix B.

11.6.3 Bitwise Operators

When you need to work with numbers bit-by-bit, as when working with the mode bits returned by
st at, you'll need to use the bitwise operators. The bitwise-and operator (&) reports which bits are
set in the left argument and in the right argument. For example, the expression 10 & 12 hasthe
value 8. The bitwise-and needs to have a one-hit in both operands to produce a one-bit in the
result. That means that the logical-and operation on ten (which is 1010 in binary) and twelve
(which is 1100) gives eight (which is 1000, with a one-bit only where the |eft operand has a one-bit
and the right operand & so has a one-bit). See Figure 11-1.

138

Learning Perl, 3rd edition

Figure 11-1. Bitwise-and addition
1010
& 1100

1000

The different bitwise operators and their meanings are shown in this table:

Expression Meaning
10 & 12 Bitwise-and - which bits are true in both operands (this givess)
10 | 12 Bitwise-or - which bits are true in one operand or the other (thisgives14)
10 ~ 12 Bitwise-xor - which bits are true in one operand or the other but not both (this gives6)
6 << 2 Bitwise shift Ieft_— shift the.l eft operand the_ nu_mber of bits shoyvn py the right operand,
adding zero-bits at the | east-significant places (this gives 24)
25 >> 2 Bitwise shift right - shift the left operand the number of bits shown by the right operand,
discarding the least-significant bits (this gives 6)
- 10 Bitwise negation, also called unary bit complement - return the number with the opposite bit

for each bit in the operand (this gives 0x FFFFFFF5, but see the text)

So, here's an example of some things you could do with the $node returned by st at . The results of
these bit manipulations could be useful with chnod, which we'll seein Chapter 13:

$node is the node value returned froma stat of CONFIG
warn "Hey, the configuration file is world-witablel\n"

if $node & 0002; # configuration security problem
ny $cl assical _node = 0777 & $node; # mask of f extra high-bits
ny $u_plus_x = $classical _node | 0100; # turn one bit on
ny $go_m nus_r = $cl assical _node & (~ 0044); # turn two bits off

11.6.4 Using Bitstrings

All of the bitwise operators can work with bitstrings, as well as with integers. If the operands are
integers, the result will be an integer. (The integer will be at least a 32-bit integer, but may be
larger if your machine supportsthat. That is, if you have a 64-bit machine, ~10 may give the 64-bit
result 0x FFFFFFFFFFFFFFF5, rather than the 32-bit result 0x FFFFFFF5.)

But if any operand of a bitwise operator is a string, Perl will perform the operation on that
bitstring. That is, "\ xAA" | "\ x55" will givethe string"\ xFF". Note that these values are single-
byte strings; the result is abyte with all eight bits set. Bitstrings may be arbitrarily long.

This is one of the very few places where Perl distinguishes between strings and numbers. See the
perlop manpage for more information on using bitwise operators on strings.

139

Learning Perl, 3rd edition

11.6.5 Using the Special Underscore Filehandle

Every timeyou use st at, | st at, or afile test in a program, Perl has to go out to the system to ask
for a stat buffer on the file (that is, the return buffer from the stat system call). That meansif you
want to know whether a file is both readable and writable, you've essentialy asked the system
twice for the same information (which isn't likely to change in afairly nonhostile environment).

This looks like a waste of time,”” and in fact, it can be avoided. Doing afiletest, stat , or | st at
on the specia _ filehandle (that is, the operand is nothing but a single underscore) tells Perl to use
whatever happened to be lounging around in memory from the previous file test, stat , or | st at
function, rather than going out to the operating system again. Sometimes this is dangerous. a
subroutine call can invoke st at without your knowledge, blowing your buffer away. But if you're
careful, you can save yourself a few unneeded system cals, thereby making your program
considerably faster. Here's that example of finding files to put on the backup tapes again, using the
new tricks we've learned:

ny @riginal _files = qw fred barney betty w | ma pebbles di no bamm bamm /;

ny @ig_old_files; # The ones we want to put on backup

t apes

foreach (@riginal _files) {

push @ig old files, $_
if (-s) > 100_000 and -A _ > 90; # More efficient than before
}

Note that we used the default of $_ for the first test - thisis no more efficient (except perhaps for
the programmer), but it gets the data from the operating system. The second test uses the magic _
filehandle; for this test, the data left around after getting the file's size is used, which is exactly
what we want.

Note that testing the _ filehandle is not the same as allowing the operand of afile test, st at, or
| stat to default totesting $_; using $_ would be afresh test each time on the current file named by
the contents of $_, but using _ saves the trouble of calling the system again. Here is another case
where similar names were chosen for radically different functions. By now, you are probably used
toit.

2 Becauseit is. Asking the system for information is relatively slow.

140

Learning Perl, 3rd edition

11.7 Exercises

See Section A.10 for answers to the following exercises:

1.

[20] Make a program which asks the user for a source file name, a destination file name, a
search pattern, and a replacement string. (Be sure to ask the user interactively for these;
don't get them from the command-line arguments.) Y our program should read the source
file and write it out as the destination file, replacing the search pattern with the
replacement string wherever it appears. That is, the destination file will be a modified
duplicate of the source file. Can you overwrite an existing file (not the same as the input
file)? Can you use regular expression metacharacters in the search pattern? (That is, can
you enter (fred| wi | ma) flintstone tosearch for either name?) Can you use the memory
variables and backslash escapes in the replacement string? (That is, can you use\ u\ L$1\ E
Flintstone as the replacement string to properly capitalize the names of Fred and
Wilma?) Don't worry if you can't accomplish each of these things; it's more important
simply to see what happens when you try.

[15] Make a program which takes alist of files named on the command line and reports for
each one whether it's readable, writable, executable, or doesn't exist. (Hint: It may be
helpful to have a function which will do al of the file tests for one file at a time.) What
does it report about a file which has been chmod'ed to 0?7 (That is, if you're on a Unix
system, use the command chmod O some_file to mark that file as neither being readable,
writable, nor executable.) In most shells, use a star as the argument to mean all of the
normal filesin the current directory. That is, you could type something like . / ex11-2 * to
ask the program for the attributes of many files at once.

[10] Make a program to identify the oldest file named on the command line and report its
agein days. What doesit do if thelist is empty? (That is, if no files are mentioned on the
command line))

141

Learning Perl, 3rd edition

Chapter 12. Directory Operations

The files we created in the previous chapter were generally in the same place as our program. But
modern operating systems let us organize files into directories, allowing us to keep our Beatles
MP3s away from our important LIama book chapter sources so that we don't accidentally send an
MP3 file to the publisher. Perl lets you manipulate these directories directly, in ways that are even
fairly portable from one operating system to another.

12.1 Moving Around the Directory Tree

Y our program runs with a "working directory," which is the starting point for relative pathnames.
That is, if you refer to thefilef r ed, that means "f r ed in the current working directory."

Thechdi r operator changes the working directory. It's just like the Unix shell'scd command:
chdir "/etc" or die "cannot chdir to /etc: $!'";

Because this is a system request, the value of $! will be set if an error occurs. You should
normally check $! when afalse value is returned from chdi r, since that indicates that something
has not gone as requested.

The working directory is inherited by al processes that Perl starts (we'll talk more about that in
Chapter 14). However, the change in working directory cannot affect the process that invoked Perl,
such as the shell.””* So you can't make a Perl program to replace your shell's cd command.

If you omit the parameter, Perl determines your home directory as best as possible and attempts to
set the working directory to your home directory, similar to using the cd command at the shell
without aparameter. Thisisone of the few places where omitting the parameter doesn't use$_.

Some shells permit you to use atilde-prefixed path with cd to use another user's home directory as
a starting point (like cd ~nmerlyn). Thisis afunction of the shell, not the operating system, and
Perl is calling the operating system directly. Thus, atilde-prefix will not work with chdi r.

12.2 Globbing

Normally, the shell expands any filename patterns on each command line into the matching
filenames. Thisiscaled globbing. For example, if you give afilename pattern of *. pmto the echo
command, the shell expandsthislist to alist of names that match:

$ echo *.pm
bar ney. pm di no. pm fred. pm w | ma. pm

The echo command doesn't have to know anything about expanding *. pm because the shell has
already expanded it. Thisworks even for your Perl programs:

$ cat >show-args
foreach $arg (@RGV) {
print "one arg is $arg\n";

}
"D

74 Thisisn't a limitation on Perl's part; it's actually a feature of Unix, Windows, and other systems. If you really need to change
the shell'sworking directory, see the documentation of your shell.

142

Learning Perl, 3rd edition

$ perl showargs *.pm

one arg i s barney.pm

one arg is dino.pm

one arg is fred.pm

one arg is wilma. pm

$

Note that show-args didn't need to know anything about globbing - the names were aready
expanded in @RGV.

But sometimes we end up with a pattern like *. pminside our Perl program. Can we expand this
pattern into the matching filenames without working very hard? Sure - just use the gl ob operator:
ny @l _files = glob "*";

ny @mfiles = glob "*.pnt;

Here, @l | _fil es getsal the filesin the current directory, alphabetically sorted, and not including
the files beginning with a period, just like the shell. And @m fil es gets the same list as we got
before by using *. pmon the command line.

In fact, anything you can say on the command line, you can also put as the (single) argument to
gl ob, including multiple patterns separated by spaces:

my @l _files_ including dot = glob ".* *";

Here, we've included an additional "dot star” parameter to get the filenames that begin with adot as
well as the ones that don't. Please note that the space between these two items inside the quoted
string is significant, as it separates two different items to be globbed.””

The reason this works exactly as the shell worksisthat prior to Perl Version 5.6, the gl ob operator
simply called /bin/csh?” behind the scenes to perform the expansion. Because of this, globs were
time-consuming and could break in large directories, or in some other cases. Conscientious Perl
hackers avoided globbing in favor of directory handles, which will be discussed in Section 12.4
later in this chapter. However, if you're using a modern version of Perl, you should no longer be
concerned about such things.

12.3 An Alternate Syntax for Globbing

Although we use the term globbing freely, and we talk about the gl ob operator, you might not see
the word gl ob in very many of the programs that use globbing. Why not? Well, most legacy code
was written before the gl ob operator was given a name. Instead, it was called up by the angle-
bracket syntax, similar to reading from afilehandle:

ny @ll _files = <*>; ## exactly the same as ny @l | _files = glob "*";

The value between the angle brackets is interpolated similar to a double-quoted string, which
means that Perl variables are expanded to their current Perl values before being globbed:

ny $dir = "/etc";

ny @ir_files = <$dir/* $dir/.*>;

Here, we've fetched all the non-dot and dot files from the designated directory, because $di r has
been expanded to its current value.

25 \Windows users may be accustomed to using a glob of * .* to mean "all files". But that actually means "all fileswith a dot in
their names," even in Perl on Windows.
28 Or it will call a valid substitute if a C-shell wasn't available.

143

Learning Perl, 3rd edition

So, if using angle brackets means both filehandle reading and globbing, how does Perl decide
which of the two operators to use? Well, a filehandle has to be a Perl identifier. So if the item
between the angle brackets is strictly a Perl identifier, it's a filehandle read; otherwisg, it's a
globbing operation. For example:

my @iles = <FRED/ *>; ## a glob

ny @ines <FRED>; ## a fil ehandl e read

ny $name = "FRED';

ny @iles = <$nane/*>; ## a glob

The one exception isif the contents are a simple scalar variable (not an element of a hash or array),
then it's an indirect filehandle read?”” where the variable contents give the name of the filehandle
to be read:

ny $name = "FRED';

ny @ines = <$nane>; ## an indirect filehandl e read of FRED handl e

Determining whether it's a glob or a filehandle read is made at compile time, and thus it is
independent of the content of the variables.

If you want, you can get the operation of an indirect filehandle read using the readline
operator,”® which also makesit clearer:
ny $nane = "FRED';

ny @ines readl i ne FRED;, ## read from FRED
ny @ines readl i ne $nane; ## read from FRED

But the readl i ne operator is rarely used, as indirect filehandle reads are uncommon and are
generally performed against a simple scalar variable anyway.

12.4 Directory Handles

Another way to get alist of names from a given directory is with a directory handle. A directory
handle looks and acts like afilehandle. Y ou open it (with opendi r instead of open), you read from
it (with readdir instead of readl i ne), and you close it (with cl osedir instead of cl ose). But
instead of reading the contents of a file, you're reading the names of files (and other things) in a
directory. For example:

ny $dir_to_process = "/etc";

opendir DH, $dir or die "Cannot open $dir: $!'";

foreach $file (readdir DH) {
print "one file in $dir is $file\n";

cl osedir DH;

Like filehandles, directory handles are automatically closed at the end of the program or if the
directory handle is reopened onto another directory.

Unlike globbing, which in older versions of Perl fired off a separate process, a directory handle
never fires off another process. So it makes them more efficient for applications that demand
every ounce of power from the machine. However, it's also a lower-level operation, meaning that
we have to do more of the work ourselves.

27 |f the indirect handleis a text string, then it's subject to the "symbolic reference” test that is forbidden under use stri ct.
However, the indirect handle might also be a typeglob or reference to an 10 object, and then it would work even under use
strict.

28 | you're using Per| 5.005 or |ater.

144

Learning Perl, 3rd edition

For example, the names are returned in no particular order.?” And the list includes all files, not just
those matching a particular pattern (like *. pmfrom our globbing examples). And the list includes
all files, especially the dot files, and particularly the dot and dot-dot entries.”

So, if wewanted only the pm-ending files, we could use a skip-over function inside the loop:

while ($nane = readdir DIR) {
next unless $nane =~ /\.pn®/;
nore processing ...
}

Note here that the syntax is that of a regular expression, not aglob. And if we wanted all the non-
dot files, we could say that:

next if $name =~ /"\./;

Or if we wanted everything but the common dot (current directory) and dot-dot (parent directory)
entries, we could explicitly say that:

next if $name eq "." or $nane eq "

Now we'll ook at the part that gets most people mixed up, so pay close attention. The filenames
returned by the readdi r operator have no pathname component. It's just the name within the
directory. So, we're not looking at /etc/passwd, we're just looking at passwd. (And because thisis
another difference from the globbing operation, it's easy to see how people get confused.)

So you'll need to patch up the name to get the full name:

opendir SOMEDI R, $dirnane or die "Cannot open $dirnanme: $!'";
while (my $nane = readdir SOVEDIR) {

next if $name =~ /™\./; # skip over dot files

$nane = "$di rnane/ $nane"; # patch up the path

next unless -f $nane and -r $nanme; # only readable files

L

Without the patch, the file tests would have been checking files in the current directory, rather than
in the directory named in $dirname. This is the single most-common mistake when using
directory handles.

12.5 Recursive Directory Listing

You probably won't need recursive directory access for the first few dozen hours of your Perl
programming career. So rather than distract you with the possibility of replacing all those ugly
find scripts with Perl right now, welll simply entice you by saying that Perl comes with a nice
library called Fi | e: : Fi nd, which you can use for nifty recursive directory processing. We're aso
saying this to keep you from writing your own routines, which everyone seems to want to do after
those first few dozen hours of programming, and then getting puzzled about things like "local
directory handles' and "how do | change my directory back?' So, when you're ready, the
knowledge will come, but stay with us to learn about Manipulating Files and Directories (in the
next chapter) instead, right after you finish these exercises.

29 |¢'s actually the unsorted order of the directory entries, similar to the order you get from|Is-f or find.

20 Do not make the mistake of many old Unix programs and presume that dot and dot-dot are always returned as the first two
entries (sorted or not). If that hadn't even occurred to you, pretend we never said it, becauseit's a false presumption. In fact,
we're now sorry for even bringing it up.

145

Learning Perl, 3rd edition

12.6 Exercises
See Section A.11 for answers to the following exercises.

1. [12] Write a program to ask the user for a directory name, then change to that directory. If
the user enters a line with nothing but whitespace, change to his or her home directory as a
default. After changing, list the ordinary directory contents (not the items whose names
begin with a dot) in alphabetical order. (Hint: Will that be easier to do with a directory
handle or with a glob?) If the directory change doesn't succeed, just alert the user - but
don't try show the contents.

2. [4] Modify the program to include al files, not just the ones that don't begin with adot.

3. [5] If you used a directory handle for the previous exercise, rewrite it to use aglob. Or if
you used aglob, try it now with adirectory handle.

146

Learning Perl, 3rd edition

Chapter 13. Manipulating Files and Directories

Perl is commonly used to wrangle files and directories. Because Perl grew up in a Unix
environment and still spends most of its time there, most of the description in this chapter may
seem Unix-centric. But the nice thing is that to whatever degree possible, Perl works exactly the
same way on non-Unix systems.

And now a word of warning - some cultures consider the number "13" to be very unlucky. We
deliberately placed this material as Chapter 13 of this book, since we're about to do some pretty
dangerous things if bugs creep into the code (like remove files without a chance of recovery), so be
very careful when you're playing with the exercises.

13.1 Removing Files

Most of the time, we make files so that the data can stay around for awhile. But when the data has
outlived its life, it's time to make the file go away. At the Unix shell level, wed type an rm
command to remove afile or files:

$ rmslate bedrock |ava

In Perl, we use the unl i nk operator:

unlink "slate", "bedrock", "lava";

This sends the three named files away to bit heaven, never to be seen again.

Now, since unl i nk takes a list, and the gl ob function (described in Chapter 12) returns a list, we
can combine the two to delete many files at once:

unlink glob "*.0";

Thisissimilar to rm *. o at the shell, except that we didn't have to fire off a separate rm process.
So we can make those important files go away that much faster!

The return value from unl i nk tells us how many files have been successfully deleted. So, back to
the first example, we can check its success:

ny $successful = unlink "slate", "bedrock", "lava";

print "I deleted $successful file(s) just nown";

Sure, if thisnumber is 3, we know it removed al of thefiles, and if it's0, then we removed none of
them. But what if it's 1 or 2? Well, there's no clue which ones were removed. If you need to
know, do them one at atimein aloop:

foreach ny $file (gwslate bedrock lava)) {
unlink $file or warn "failed on $file: $'\n";

}

Here, each file being deleted one at a time means the return value will be 0 (failed) or 1
(succeeded), which happens to look like a nice Boolean value, controlling the execution of war n.
Using or warn issimilartoor die, except that it's not fatal, of course (as we said back in Chapter
11). Inthis case, we put the newline on the end of the message to warn, because it's not a bug in
our program that causes the message.

When a particular unl i nk fails, the $! variable is set to something related to the operating system
error, which we've included in the message. This makes sense to use only when doing one filename
at atime, because the next operating system failed request resets the variable.

147

Learning Perl, 3rd edition

You can't remove a directory with unl i nk (just like you can't remove a directory with the simple
rminvocation either). Look for ther ndi r function coming up shortly for that.

Now, here's alittle-known Unix fact. It turns out that you can have afile that you can't read, you
can't write, you can't execute, maybe you don't even own the file - that is, it's somebody else's file
altogether - but you can still delete the file. That's because the permission to unlink a file doesn't
depend upon the permission bits on the file itself; it's the permission bits on the directory that
contains the file that matter.

We mention this because it's normal for a beginning Perl programmer, in the course of trying out
unl i nk, to make a file, to chmod it to 0 (so that it's not readable or writable), and then to see
whether this makes unl i nk fail. But instead it vanishes without so much as a whimper.® If you
really want to see afailed unl i nk, though, just try to remove /etc/passwd or a similar sg/stem file

Since that's afile controlled by the system administrator, you won't be able to removeit.

282

13.2 Renaming Files

Giving an existing file anew name is simple with ther enane function:
rename "ol d", "new',

Thisis similar to the Unix mv command, taking a file named old and giving it the name new in the
same directory. Y ou can even move things around:

renane "over _there/ sone/ pl ace/ sone_file", "some_file";

This moves afile called sone_fi | e from another directory into the current directory, provided the
user running the program has the appropriate permissions.”

Like most functions that request something of the operating system, r enane returns faseiif it fails,
and sets $! with the operating system error, so you can (and often should) use or di e (or or war n)
to report thisto the user.

One frequent®™ question in the Unix shell-usage newsgroups is how to rename everything that
endswith". ol d " to the same name with ". new'. Here'show to do it in Perl nicely:

foreach nmy $file (glob "*.old") {

ny $newfile = $file;
$newfile =~ s/\.ol d$/. new ;
if (-e $newfile) {
warn "can't renane $file to $newfile: $newfile exists\n";
} elsif (rename $file, $newfile) {
success, do nothing
} else {
warn "renanme $file to $newfile failed: $!'\n";
}

%1 5ome of these folks know that rmwould generally ask before deleting such afile. But rmisa command, andunl i nk isa
2%stem(:aJl. System calls never ask permission, and they never say they're sorry.

Of

coursg, if you're silly enough to try this kind of thing when you are logged in as the system administrator, you deserve what

you get.

%8 And the files must reside on the same filesystem. We'll seewhy thisrule exists a little later in this chapter.

% Thisisn't just any old frequent question; the question of renaming a batch of files at once is the mostfrequent question asked in
these newsgroups. And that's why it's the first question answered in the FAQs for those newsgroups. And yet, it staysin first

place.

Hmmm.

148

Learning Perl, 3rd edition

The check for the existence of $newf i | e is needed because r enane will happily rename afile right
over the top of an existing file, presuming the user has permission to remove the destination
filename. We put the check in so that it's less likely that well lose information this way. Of
coursg, if you wanted to replace existing files like wilma.new, you wouldn't bother testing with - e
first.

Thosefirst two lines inside the loop can be combined (and often are) to simply be:
(my $newfile = $file) =~ s/\.old$/. new ;

This works to declare $newfil e, copy its initial value from $fil e, then select $newfil e to be
modified by the substitution. You can read this as "transform $file to $newfile using this
replacement on theright." And yes, because of precedence, those parentheses are required.

Also, some programmers seeing this substitution for the first time wonder why the backslash is
needed on the left, but not on the right. The two sides aren't symmeltrical: the left part of a
substitution is a regular expression, and the right part is a double-quotish string. So we use the
pattern /\ . ol d$/ to mean ". ol d anchored at the end of the string" (anchored at the end, because
we don't want to rename the first occurrance of . ol d in afile called betty.old.old), but on the right
we can simply write. newto make the replacement.

13.3 Links and Files

To understand more about what's going on with files and directories, it helps to understand the
Unix model of files and directories, even if your non-Unix system doesn't work in exactly this
way. As usual, there's more to the story than we're able to explain here, so check any good book
on Unix internal detailsif you need the full story.

A mounted volume is a hard disk drive (or something else that works more-or-less like that, such as
adisk partition, a floppy disk, a CD-ROM, or a DVD-ROM). It may contain any number of files
and directories. Each file is stored in a numbered inode , which we can think of as a particular
piece of disk real estate. One file might be stored in inode 613, while another isin inode 7033.

To locate a particular file, though, we'll have to look it up in a directory. A directory is a specia
kind of file, maintained by the system. Essentialy, it is a table of filenames and their inode
numbers.® Along with the other things in the directory, there are always two special directory
entries. Oneis. (called " dot"), which is the name of that very directory; and the other is. . ("dot-
dot"), which is the directory one step higher in the hierarchy (i.e, the directory's parent
directory).®®

Figure 13-1 provides an illustration of two inodes. One is for afile called chicken, and the other is
Barney's directory of poems, /home/barney/poems, which contains that file. The file is stored in
inode 613, while the directory is stored in inode 919. (The directory's own name, poems, doesn't
appear in the illustration, because that's stored in another directory.) The directory contains entries
for three files (including chicken) and two directories (one of which is the reference back to the
directory itself, in inode 919), along with each item's inode number.

%5 On Unix systems (others don't generally haveinodes, hard links, and such), you can use the |s command's-i option to seefiles

inode numbers. Try a command like Is -ail. When two or more inode numbers are the same for multiple items on a given
filesystem, there'sreally just one file involved, one piece of the disk.

%6 The Unix system root directory has no parent. In that directory, . . isthe samedirectory as. , which is the systemroot
directory itsdlf.

149

Learning Perl, 3rd edition

Figure 13-1. The chicken before the egg

inode 613 inode 919
& Jurassic chicken named Meg . 619
With twa beaks, three wings, and ane leg, i g0o?
ks her thied eye she winked, dodgson 7033
Quoth "Il s00n go exfinc, chicken 613
But I'll lay first o cubicol egg.” obows 11320

When it's time to make a new file in a given directory, the system adds an entry with the file's
name and the number of a new inode. How can the system tell that a particular inode is available,
though? Each inode holds a number called its link count . The link count is always zero if the
inode isn't listed in any directory, so any inode with a link count of zero is available for new file
storage. When the inode is added to a directory, the link count is incremented; when the listing is
removed, the link count is decremented. For the file chicken as illustrated above, the inode count
of 1isshown in the box above the inode's data.

But some inodes have more than one listing. For example, we've aready seen that each directory
entry includes . , which points back to that directory's own inode. So the link count for a directory
should always be at least two: its listing in its parent directory and its listing in itself. In addition,
if it has subdirectories, each of those will add a link, since each will contain . . .*" In Figure 13-1 ,
the directory's inode count of 2 is shown in the box above its data. A link count is the number of
true names for the inode.?®®

Could an ordinary file inode have more than one listing in the directory? It certainly could.
Suppose that, working in the directory shown above, Barney uses the Perl's | i nk function to create
anew link:

link "chicken", "egg"

or warn "can't link chicken to egg: $!'";

Thisis similar to typing "I n chi cken egg" at the Unix shell prompt. If I'i nk succeeds, it returns
true. If it fails, it returns false and sets $!, which Barney is checking in the error message. After
this runs, the name egg is another name for the file chicken, and vice versa; neither name is "more
real" than the other, and (as you may have guessed) it would take some detective work to find out
which came first. Figure 13-2 shows a picture of the new situation, where there are two links to
inode 613.

These two filenames are thus talking about the same place on the disk. If the file chicken holds
200 bytes of data, egg holds the same 200 bytes, for atotal of 200 bytes (since it's really just one
file with two names). If Barney appends a new line of text to file egg, that line will also appear at
the end of chicken.®®

% Thisimplies that the link count of a directory is always equal to two plus the number of directoriesit contains. On some
systems that's true, in fact, but some other systems work differently.

28 | n the traditional output of Is -, the number of hard links to the item appears just to the right of the permission flags (like "-

r wxr - xr - x"). Now you know why this number is more than one for directories and nearly always 1 for ordinary files.

29 | you experiment with making links and changing text files, be aware that most text editors don't edit thefile "in place" but
instead save a modified copy. If Barney wereto edit egg with a text editor, he'd most likely end up with a new file called egg and
the old file called chicken - two separatefiles, rather than two links to the same file.

150

Learning Perl, 3rd edition

Figure 13-2. The egg is linked to the chicken

inode 613 inode 919

A Jurassic chicken named Meg ; :53;

With twa beaks, three wings, and ane leg, dodgson 7033
hs her third eye she winked, chicken 613
Quoth "1 soon go extinel, abocus 11320

Bui I'll lay first o cubicol egg.” b §13

Now, if Barney were to accidentally (or intentionally) delete chicken, that data will not be lost -
it's still available under the name egg. And vice versa if he were to delete egg, he'd till have
chicken. Of course, if he deletes both of them, the datawill be lost.”®

There's another rule about the links in directory listings: the inode numbers in a given directory
listing all refer to inodes on that same mounted volume.”* This rule ensures that if the physical
medium (the diskette, perhaps) is moved to another machine, all of the directories stick together
with their files. That's why you can use r enane to move afile from one directory to another, but
only if both directories are on the same filesystem (mounted volume). If they were on different
disks, the inode's data would have to be relocated, which is too complex an operation for a simple
system call.

And yet another restriction on links is that they can't make new names for directories. That's
because the directories are arranged in a hierarchy. If you were able to change that, utility
programs like find and pwd could easily become lost trying to find their way around the filesystem.

So, links can't be added to directories, and they can't cross from one mounted volume to another.

Fortunately, there's a way to get around these restrictions on links, by using a new and different
kind of link: a symbolic link.** A symbolic link (also called a soft link to distinguish it from the
true or hard links that we've been talking about up to now) isa specia entry in adirectory that tells
the system to look elsewhere. Let's say that Barney (working in the same directory of poems as
before) creates a symbolic link with Perl'ssyni i nk function, like this:

sym i nk "dodgson", "carroll"
or warn "can't symink dodgson to carroll: $!";

Thisis similar to what would happen if Barney used the command "In -s dodgson carroll” from the
shell. Figure 13-3 shows a picture of the result, including the poem in inode 7033.

Now if Barney chooses to read /home/barney/poems/carroll, he gets the same data as if he had
opened /home/barney/poems/dodgson, because the system follows the symbolic link
automatically. But that new name isn't the "real” name of the file, because (as you can see in the
diagram) the link count on inode 7033 is still just one. That's because the symbolic link simply
tells the system, "If you got here looking for carroll, now you want to go off to find something
called dodgson instead."

20 Although the systemwon't necessarily overwrite thisinode right away, there's no easy way in general to get the data back
once thelink count has gone to zero. Have you made a backup recently?

L The one exception isthe special . . entry in the volume's root directory, which refersto the directory in which that volume is
mounted.

%2 5pme veryold Unix systems don't support symlinks, but those are pretty rare nowadays.

151

Learning Perl, 3rd edition

Figure 13-3. A symlink to inode 7033

inode 7033 inode 919

Yet what are ol such guieties to me : 919

Whose thoughts are full of indices i ao02

and surds? dodgzon 7033
chicken 613

%47k 453 obacus 11320
£qQ 613

=11/3 carroll -> dodgsan

A symboalic link can freely cross mounted filesystems or provide a new name for a directory,
unlike a hard link. In fact, a symbolic link could point to any filename, one in this directory or in
another one - or even to afile that doesn't exist! But that also means that a soft link can't keep data
from being lost as a hard link can, since the symlink doesn't contribute to the link count. If Barney
were to delete dodgson, the system would no longer be able to follow the soft link.*® Even though
there would till be an entry called carrall, trying to read from it would give an error likefil e not

found. Thefiletest -1 'carrol ' would report true, but -e ' carrol|' would be fase it's a
symlink, but it doesn't exist.

Since a soft link could point to a file that doesn't yet exist, it could be used when creating a file as
well. Barney has most of hisfilesin his home directory, /home/barney, but he aso needs frequent
access to a directory with a long name that is difficult to type: /usr/local/opt/systenvhttpd/root-
dev/user s/staging/barney/cgi-bin. So he sets up a symlink named /home/barney/my_stuff, which
points to that long name, and now it's easy for him to get to it. If he creates a file (from his home
directory) caled my_stuff/fbowling, that file's real name is /usr/local/opt/systenvhttpd/root-
dev/user s/staging/bar ney/cgi-bin/bowling. Next week, when the system administrator moves these
files of Barney'sto/usr/local/opt/inter nal/httpd/www-dev/user /staging/bar ney/cgi-bin, Barney just
repoints the one symlink, and now he and all of his programs can still find hisfiles with ease.

It's normal for either /usr/bin/perl or /usr/local/bin/per| (or both) to be symboalic links to the true
Perl binary on your system. This makes it easy to switch to a new version of Perl. Say you're the
system administrator, and you've built the new Perl. Of course, your older version is still running,
and you don't want to disrupt anything. When you're ready for the switch, you simply move a
symlink or two, and now every program that begins with #! / usr/ bi n/ per1 will automatically use
the new version. In the unlikely case that there's some praoblem, it's a simple thing to replace the
old symlinks and have the older Perl running the show again. (But, like any good admin, you
notified your users to test their code with the new /usr/bin/perl-7.2 well in advance of the switch,
and you told them that they can keep using the older one during the next month's grace period by
changing their programs first linesto #! / usr/ bi n/ per| - 6. 1, if they need to.)

Perhaps suprisingly, both hard and soft links are very useful. Many non-Unix operating systems
have neither, and the lack is sorely felt. On some non-Unix systems, symbolic links may be
implemented as a"shortcut” or an "alias' - check the perlport manpage for the latest details.

8 Deleting carroll would merely remove the symlink, of course.

152

Learning Perl, 3rd edition

To find out where a symbolic link is pointing, use the r eadl i nk function. Thiswill tell you where
the symlink leads, or it will return undef if its argument wasn't a symlink:

ny $where = readlink "carroll"; # G ves "dodgson”

ny $perl = readlink "/usr/local/bin/perl"; # Maybe tells where perl is

You can remove either kind of link with unl i nk - and now you see where that operation gets its

name. unlink simply removes the directory entry associated with the given filename,
decrementing the link count and thus possibly freeing the inode.

13.4 Making and Removing Directories

Making adirectory inside an existing directory iseasy. Just invoke the nkdi r function:
nkdir "fred", 0755 or warn "Cannot neke fred directory: $!'";

Again, true means success, and $! is set on failure.

But what's that second parameter, 0755? That's the initial permission setting™ on the newly
created directory (you can always change it later). The vaue here is specified as an octal value
because the value will be interpreted as a Unix permission value, which has a meaning based on
groups of three bits each, and octal values represent that nicely. Yes, even on Windows or
MacPerl, you still need to know a little about Unix permissions values to use the nkdi r function.

Mode 0755 is a good one to use, because it gives you full permission, but lets everyone else have
read access but no permission to change anything.

Thenkdi r function doesn't require you to specify thisvaluein octal - it's just looking for a numeric
value (either alitera or a calculation). But unless you can quickly can figure that 0755 octal is493
decimal in your head, it's probably easier to let Perl calculate that. And if you accidentally leave
off the leading zero, you get 755 decimal, which is 1363 octal, a strange permission combination
indeed.

As we saw earlier (in Chapter 2), a string value being used as a number is never interpreted as
octal, even if it startswith aleading 0. So this doesn't work:

ny $nane = "fred";

ny $perm ssions = "0755"; # danger... this isn't working

nkdi r $nanme, $pern ssions;

Oops, we just created a directory with that bizarre 01363 permissions, because 0755 was treated as
decimal. To fix that, use the oct function, which forces octal interpretation of a string whether or
not there's aleading zero:

nkdi r $name, oct ($perm ssions);

Of course, if you are specifying the permission value directly within the program, just use a
number instead of a string. The need for the extra oct function shows up most often when the
value comes from user input. For example, suppose we take the arguments from the command
line:

ny ($nane, $perm) = @ARGV; # first two args are nane, perm ssions
nkdi r $nanme, oct($pern) or die "cannot create $nane: $!";

The value here for $per misinterpreted as a string initially, and thus the oct function interprets the
common octal representation properly.

2 The permission value is modified by the umask value in the usual way. Seeunmsk(2) for further information.

153

Learning Perl, 3rd edition

To remove empty directories, usether ndi r function in amanner similar to the unl i nk function:
rodir glob "fred/*"; # renove all enpty directories bel ow fred/

foreach my $dir (gw(fred barney betty)) {
rnmdir $dir or warn "cannot rndir $dir: $!'\n";

}
As with unl i nk, rmdi r returns the number of directories removed, and if invoked with a single
name, sets$! in areasonable manner on afailure.

The r mdi r operator fails for non-empty directories. As afirst pass, you can attempt to delete the
contents of the directory with unl i nk, then try to remove what should now be an empty directory.
For example, suppose we need a place to write many temporary files during the execution of a
program:

ny $tenp_dir = "/tnp/scratch_$$"; # based on process |ID; see the text
nkdir $tenp_dir, 0700 or die "cannot create $tenp_dir: $'";

use $tenp_dir as location of all tenporary files

unlink glob "$tenp_dir/* $tenmp_dir/.*"; # delete contents of $tenp_dir

rdir $tenp_dir; # del ete nowenpty directory

The initial temporary directory name includes the current process ID, which is unique for every
running process and is accessed with the $$ variable (similar to the shell). We do this to avoid
colliding with any other processes, as long as they aso include their process ID as part of their
pathname as well. (In fact, it's common to use the program's name as well as the process ID, so if
the program is called quar r y, the directory would probably be something like/ t np/ quarry_$$.)

At the end of the program, that last unl i nk should remove al the filesin this temporary directory,
and then the rndi r function can delete the then-empty directory. However, if weve created
subdirectories under that directory, the unl i nk operator fails on those, and the r ndi r also fails.
For a more robust solution, check out the r nt r ee function provided by the Fi | e: : Pat h module of
the standard distribution.

13.5 Modifying Permissions

The Unix chmod command changes the permissions on afile or directory. Similarly, Perl has the
chnod function to perform this task:

chnod 0755, "fred", "barney";

As with many of the operating system interface functions, chnod returns the number of items
successfully altered, and when used with a single argument, sets $! in a sensible way for error
messages when it fails. The first parameter is the Unix permission value (even for non-Unix
versions of Perl). For the same reasons we presented earlier in describing nkdi r, this value is
usually specified in octal.

Symbolic permissions (like +x or go=u-w) accepted by the Unix chmod command are not valid for
the chnod function.”®

25 Unlessyou'veinstalled and invokethe Fi | e: : chrod module from CPAN, which can apparently upgrade the chmod
operator to understand symbolic mode values.

Learning Perl, 3rd edition

13.6 Changing Ownership

If the operating system permits it, you may change the ownership and group membership of alist
of fileswith the chown function. The user and group are both changed at once, and both have to be
the numeric user-ID and group-1D values. For example:

ny $user = 1004;

my $group = 100;

chown $user, $group, glob "*.0";

What if you have a username like ner | yn instead of the number? Simple. Just call the get pwnam
function to trandate the name into a number, and the corresponding get gr nanf®® to trandate the
group name into its number:

defined(my $user = getpwnam "nerlyn") or die "bad user";

defined(ny $group = getgrnam "users") or die "bad group";

chown $user, $group, glob "/hone/nerlyn/*";

The defined function verifies that the return value is not undef, which will be returned if the
requested user or group is not valid.

The chown function returns the number of files affected, and it sets$! on error.

13.7 Changing Timestamps

In those rare cases when you want to lie to other programs about when a file was most recently
modified or accessed, you can use the uti me function to fudge the books a bit. The first two
arguments give the new access time and modification time, while the remaining arguments are the
list of filenames to alter to those timestamps. The times are specified in internal timestamp format
(the same type of values returned from the st at function that we mentioned in Chapter 12).

One convenient value to use for the timestampsis "right now", returned in the proper format by the
ti me function. So to update all the files in the current directory to look like they were modified a
day ago, but accessed just now, we could simply do this:

ny $now = tine;

ny $ago = $now - 24 * 60 * 60; # seconds per day

utime $now, $ago, glob "*"; # set access to now, nbd to a day ago

Of course, nothing stops you from creating a file that is arbitrarily stamped far in the future or past
(within the limits of the Unix timestamp values of 1970 to 2038, or whatever your non-Unix
system uses, until we get 64-bit timestamps). Maybe you could use this to create a directory where
you keep your notes for that time-travel novel you're writing.

The third timestamp (the ctime vaue) is always set to "now" whenever anything alters a file, so
there's no way to set it (it would have to be reset to "now" after you set it) with the ut i me function.
That's because it's primary purpose is for incremental backups: if the file's ctime is newer than the
date on the backup tape, it's time to back it up again.

2% These two are among the ugliest function names known to mankind. But don't blame Larry for them; he'sjust giving themthe
same names that the folks at Berkeley did.

155

Learning Perl, 3rd edition

13.8 Using Simple Modules

Suppose that you've got a long filename like /usr/local/bin/perl in your program, and you need to
find out the basename. That's easy enough, since the basename is everything after the last dlash (it's
just "perl™ in this case):

ny $name = "/usr/local/bin/perl";

(ny $basenane = $name) =~ s#.*/##;, # QOops!

As we saw earlier, first Perl will do the assignment inside the parentheses, then it will do the
substitution. The substitution is supposed to replace any string ending with a slash (that is, the
directory name portion) with an empty string, leaving just the basename.

Andif you try this, it seemsto work. Well, it seemsto, but actualy, there are three problems.

First, a Unix file or directory name could contain a newline character. (It's not something that's
likely to happen by accident, but it's permitted.) So, since the regular expression dot (. ") can't
match a newline, a filename like the string "/ hone/ fred/ f 1 i nt st one\ n/ br ont osaur us" won't
work right - that code would think the basename is "f i nt st one\ n/ br ont osaurus" . You could
fix that with the/ s option to the pattern (if you remembered about this subtle and infrequent case),

making the substitution look likethis: s#. */ ##s

The second problem is that this is Unix-specific. It assumes that the forward slash will aways be
the directory separator, asit ison Unix, and not the backslash or colon that some systems use.

And the third (and biggest) problem with this is that we're trying to solve a problem that someone
else has aready solved. Perl comes with a number of modules, which are smart extensions to Perl
that add to its functionality. And if those aren't enough, there are many other useful modules
available on CPAN, with new ones being added every week. You (or, better yet, your system
administrator) can install them if you need their functionality.

In the rest of this section, we'll show you how to use some of the features of a couple of simple
modules that come with Perl. (There's more that these modules can do; this is just an overview to
illustrate the genera principles of how to use asimple module.)

Alas, we can't show you everything you'd need to know about using modules in general, since
you'd have to understand advanced topics like references and objects in order to use some
modules® But this section should prepare you for using many simple modules. Further
information on some interesting and useful modulesisincluded in Appendix B.

13.8.1 The File::Basename Module

In the previous example, we found the basename of a filename in a way that's not portable. We
showed that something that seemed straightforward was susceptible to subtle mistaken
assumptions (here, the assumption was that newlines would never appear in file or directory
names). And we were re-inventing the wheel, solving a problem that others have solved (and
debugged) many times before us.

27 pswe'll seein the next few pages, though, you may be able to use a module that uses objects and references without having to
understand those advanced topics.

156

Learning Perl, 3rd edition

Here's a better way to extract the basename of a filename. Perl comes with a module called
File::Basename. With the command perldoc File::Basename, or with your system's
documentation system, you can read about what it does. That's the first step when using a new
module. (It's often the third and fifth step, aswell.)

Soon you're ready to useit, so you declare it with ause directive near the top of your program:*®
use Fil e:: Basenane;

During compilation, Perl sees that line and loads up the module. Now, it's asif Perl has some new
functions that you may use in the remainder of your program.”® The one we wanted in the earlier
example isthe basenane function itself:

ny $name = "/usr/local/bin/perl";

my $basenane = basename $name; # gives 'perl’

Well, that worked for Unix. What if our program were running on MacPerl or Windows or VMS,
to name afew? There's no problem - this module can tell which kind of machine you're using, and
it uses that machine's filename rules by default. (Of course, you'd have that machine's kind of
filename string in $nane, in that case.)

There are some related functions also provided by this module. One is the di r name function,
which pulls the directory name from afull filename. The module aso lets you separate a filename
from its extension, or change the default set of filename rules>®

13.8.2 Using Only Some Functions from a Module

Suppose you discovered that when you went to add the Fi | e: : Basename module to your existing
program, you aready have a subroutine called &di r nane - that is, you aready have a subroutine
with the same name as one of the module's functions®* Now there's trouble, because the new
di r narre isalso implemented as a Perl subroutine (inside the module). What do you do?

Simply give Fil e:: Basenane, in your use declaration, an import list showing exactly which
function names it should give you, and it'll supply those and no others. Here, we'll get nothing but
basenane:

use Fil e::Basenane qw basenane /;

And here, we'll ask for no new functionsat all:

use Fil e::Basenane qw /;

Why would you want to do that? Well, this directive tells Perl to load up Fi | e: : Basenane, just as

before, but not to import any function names. Importing lets us use the short, simple function
names like basename and di r nane.

28 |¢'straditional to declare modules near the top of the file, since that makesit easy for the maintenance programmer to see

which modules you'll be using. That greatly simplifies matterswhen it'stime to install your program on a new machine, for
example.

2 You guessed it: there's more to the story, having to do with packages and fully qualified names. When your programs are

growing beyond a few hundred lines in the main program (not counting code in modules), whichis quite large in Perl, you

should probably read up about these advanced features. Sart with the perlmod manpage.

% You might need to change the filename rules if you were trying to work with a Unix machine's filenames from a Windows

machine - perhaps while sending commands over an FTP connection, for example.

%L \Well, it's not likely that you would already have a&di r nane subroutine that you use for another purpose, but thisisjust an

example. Some modules offer hundreds (really!) of new functions, making a name collision that much more frequent.

157

Learning Perl, 3rd edition

But even if we don't import those names, we can dtill use the functions. When they're not
imported, though, we have to call them by their full names:

use File::Basenane qw /; # inport no function nanes

ny $betty = &dirnanme($w | na); # uses our own subroutine &dirnane
(not shown)

ny $name = "/usr/local/bin/perl";

ny $di rname = Fil e::Basenane:: dirnane $nane; # dirnanme fromthe nodul e

As you see, the full name of the dirname function from the module is
Fi | e: : Basenane: : di rnane. We can aways use the function's full name (once we've loaded the
module) whether we've imported the short name di r nane or not.

Most of the time, you'll want to use a module's default import list. But you can always override
that with alist of your own, if you want to leave out some of the default items. Another reason to
supply your own list would be if you wanted to import some function not on the default list, since
most modules include some (infrequently needed) functions that are not on the default import list.

As you'd guess, some modules will, by default, import more symbols than others. Each modul€'s
documentation should make it clear which symbols it imports, if any, but you are always free to
override the default import list by specifying one of your own, just as we did with
Fi | e:: Basenanme. Supplying an empty list imports no symbols.

13.8.3 The File::Spec Module

Now you can find out a file's basename. That's useful, but you'll often want to put that together
with a directory name to get a full filename. For example, here we want to take a filename like
/home/rootbeer/ice-2.1.txt and add a prefix to the basename:

use Fil e::Basenane;

print "Please enter a filenanme
chonp(ny $ol d_nanme = <STDI N>);

ny $di rnanme = dirnane $ol d_nane;
ny $basenane = basenane $ol d_nane;

$basenane =~ s/~/ not/; # Add a prefix to the basenane
ny $new_nane = "$di r nane/ $hasenane”;

renane($ol d_nane, $new_nane)
or warn "Can't renane '$old_nane' to '$new nane': $!";

Do you see the problem here? Once again, we're making the assumption that filenames will follow
the Unix conventions and use a forward slash between the directory name and the basename.
Fortunately, Perl comes with amodule to help with this problem, too.

TheFi | e: : Spec moduleis used for manipulating file specifications , which are the names of files,
directories, and the other things that are stored on filesystems. Like File:: Basenane, it
understands what kind of system it's running on, and it chooses the right set of rules every time.
But unlikeFi | e: : Basenane, Fi | e: : Spec isan object-oriented (often abbreviated "OO") module.

If you've never caught the fever of OO, don't let that bother you. If you understand objects, that's
great; you can use this OO module. If you don't understand objects, that's okay, too. You just type
the symbols as we show you, and it worksjust asif you knew what you were doing.

158

Learning Perl, 3rd edition

In this case, we learn from reading the documentation for Fil e: : Spec that we want to use a
method called catfile. What's a method? It's just a different kind of function, as far as were
concerned here. The difference is that you'll always call the methods from Fi | e: : Spec with their
full names, likethis:

use File:: Spec;
Get the values for $dirnane and $basenane as above

ny $new _nanme = File:: Spec->catfil e($di rnane, $basenane);

renane($ol d_nane, $new_nane)

or warn "Can't renane '$old_nane' to '$new nane': $!";
Asyou can see, the full name of a method is the name of the module (called a class, here), a small
arrow, and the short name of the method. It is important to use the small arrow, rather than the
double-colon that we used with Fi | e: : Basenane.

Since we're calling the method by its full name, though, what symbols does the module import?
None of them. That's norma for OO modules. So you don't have to worry about having a
subroutine with the same name as one of the many methods of Fi | e: : Spec.

Should you bother using modules like these? It's up to you, as always. If you're sure your program
will never be run anywhere but on a Unix machine, say, and you're sure you completely understand
the rules for filenames on Unix, then you may prefer to hardcode your assumptions into your
programs. But these modules give you an easy way to make your programs more robust in less
time - and more portable at no extra charge.

%2 |£ you didn't know that filenames and directory names could contain newline characters, as we mentioned earlier in this
section, then you don't know all the rules, do you?

159

Learning Perl, 3rd edition

13.9 Exercises

The programs here are potentially dangerous! Be careful to test them in a mostly empty directory
to make it difficult to accidentally delete something useful.

See Section A.12 for answers to the following exercises.

1.

[6] Write a program that works like rm, deleting any files named on the command line.
(You don't need to handle any of the options of rm.)

[10] Write a program that works like mv, renaming the first command-line argument to the
second command-line argument. (You don't need to handle any of the options of mv or
additional arguments.) Remember to alow for the destination to be a directory; if it is, use
the same original basename in the new directory.

[7] If your operating system supports it, write a program that works like In, making a hard
link from the first command-line argument to the second. (You don't need to handle
options of In or more arguments.) If your system doesn't have hard links, just print out a
message telling what operation you would perform if it were available. Hint: This
program has something in common with the previous one - recognizing that could save
you timein coding.

[7] If your operating system supports it, fix up the program from the previous exercise to
allow an optional -s switch before the other arguments to indicate that you want to make a
soft link instead of a hard link. (Even if you don't have hard links, see whether you can at
least make soft links with this program.)

[7] If your operating system supports it, write a program to find any symbolic links in the
current directory and print out their values (likels -I would: nare - > val ue).

160

Learning Perl, 3rd edition

Chapter 14. Process Management

One of the best parts of being a programmer is launching someone else's code so that you don't
have to write it yourself. It's time to learn how to manage your children®® by launching other
programs directly from Perl.

And like everything else in Perl, There's More Than One Way To Do It, with lots of overlap,
variations, and special features. So if you don't like the first way, just read on for another page or
two for a solution more to your liking.

Perl is very portable; most of the rest of this book doesn't need many notes saying that it works this
way on Unix systems and that way on Windows and the other way on VMS. But when you're
starting other programs on your machine, different programs are available on a Macintosh than
you'l likely find on a Cray. The examples in this chapter are primarily Unix-based; if you have a
non-Unix system, you can expect to see some differences.

14.1 The system Function

The simplest way to launch a child process in Perl to run a program is the syst emfunction. For
example, to invoke the Unix date command from within Perl, it looks like:

system "date";

The child process runs the date command, which inherits Perl's standard input, standard output,
and standard error. This mean that the normal short date-and-time string generated by date ends up
wherever Perl's STDOUT was aready going.

The parameter to the system function is generally whatever you'd normally type at the shell. So if
it were a more complicated command, like "Is -l $HOME ", we'd just have put al that into the
parameter:

system'ls -1 $HOWE ;

Note that we had to switch here from double quotes to single quotes, since $HOMVE is the shell's
variable. Otherwise, the shell would never have seen the dollar sign, since that's also an indicator
for Perl to interpolate. Alternatively, we could write:

system"ls -1 \$HOWE";

But that can get quickly unwieldly.

Now, the date command is output-only, but let's say it had been a chatty command, asking first
"for which time zone do you want the time?"** That'll end up on standard output, and then the
program will listen on standard input (inherited from Perl's STDI N) for the response. You'll see the
guestion, and type in the answer (like "Zimbabwe time"), and then date will finish its duty.

While the child processis running, Perl is patiently waiting for it to finish. So if the date command
took 37 seconds, then Perl is paused for those 37 seconds.

% Child processes, that is.
%4 Asfar aswe know, no one has made a date command that works like this.

161

Learning Perl, 3rd edition

Y ou can use the shell's facility to launch a background process,*® however:
system "l ong_runni ng_command w th paraneters &";

Here, the shell gets launched, which then notices the ampersand at the end of the command line,
causing the long_running_command to be made into a background process. And then the shell
exits rather quickly, which Perl notices and moves on. In this case, the long_running_command is
really agrandchild of the Perl process, to which Perl really has no direct access or knowledge.

When the command is "simple enough,” no shell gets involved, so for the date and Is commands
earlier, the requested command is launched directly by Perl, which searches the inherited PATH®
to find the command, if necessary. But if there's anything weird in the string (such as shell
metacharacters like the dollar sign, semicolon, or vertical bar), then the standard Bourne Shell
(/bin/sh®) gets invoked to work through the complicated stuff. In that case, the shell is the child
process, and the requested commands are grandchildren (or further offspring). For example, you
can write an entire little shell script in the argument:

system'for in *; do echo == $i ==; cat $i; done';

Here again, we're using single quotes, because the dollar signs here are meant for the shell and not
for Perl. Double quotes would have permitted Perl to expand $i to its current Perl value, and not
let the shell expand it to its own value.*® By the way, that little shell script goes through al of the
norma files in the current directory, printing out each one's name and contents; you can try it out
yoursdlf if you don't believe us.

14.1.1 Avoiding the Shell

The system operator may also be invoked with more than one argument,*® in which case a shell

doesn't get involved, no matter how complicated the text:

ny $tarfile = "sonmethi ng*w cked.tar";
ny @irs = gw(fred|flintstone <barney& ubbl e> betty);
system"tar", "cvf", $tarfile, @irs;

In this case, the first parameter ("tar" here) gives the name of a command found in the normal
PATH-searching way, while the remaining arguments are passed, one by one, directly to that
command. Even if the arguments have shell-significant characters, such asthe namein starfile
or the directory names in @li r s, the shell never gets a chance to mangle the string. So that t ar
command will get precisaly five parameters. Compare thiswith:

system "tar cvf $tarfile @irs"; # Qops!

Here, we've now piped a bunch of stuff into a flintstone command and put it into the background,
and opened betty for output.

% See what we mean about this depending upon your system? The Unix shell (/bin/sh) letsyou use the ampersand on thiskind of
command to make a background process. If your non-Unix systemdoesn't support thisway to launch a background process, then
you can't do it thisway, that's all.
%% The PATH can be changed by adjusting $ENV{ * PATH } at any time. Initially, thisis the environment variable inherited
fromthe parent process (usually the shell). Changing this value affects new child processes, but cannot affect any preceding
parent processes. The PATH isthelist of directories where executable programs (commands) are found, even on some non-Unix
ems

" Or whatever was determined when Perl was built. Practically always, thisisjust /bin/sh on Unix-like systers.
%® Of course, ifyouset $i = ' $i ', then it would work anyway, until a maintenance programmer came along and "fixed" that
line out of existence.
3® Or with a parameter in theindirect-object dot, likesystem { 'fred' } 'barney';,whichrunstheprogram
bar ney, butliestoit soit thinksthat it'scalled’ f r ed' . Seethe perlfunc manpage.

162

Learning Perl, 3rd edition

And that's a bit scary,*™ especially if those variables are from user input - such as from aweb form
or something. So, if you can arrange things so that you can use the multiple-argument version of
syst em you probably should use that way to launch your subprocess. (You'll have to give up the
ability to have the shell do the work for you to set up /O redirection, background processes, and
thelike, though. There's no such thing as afree launch.)

Note that redundantly, a single argument invocation of syst emis nearly equivaent to the proper
multiple-argument version of syst ent

system $conmand_| i ne;
system "/bin/sh", "-c", $commnd_l|i ne;

But nobody writes the latter, unless you want things to be processed by a different shell, like the C-
shell:

system "/bin/csh", "-fc", $command_|ine;

Even this is pretty rare, since the One True Shell*"

for scripted items.

seems to have alot more flexibility, especially

The return value of the system operator is based upon the exit status of the child command®?. In
Unix, an exit value of 0 means that everything is OK, and a non-zero exit value usually indicates
that something went wrong:
unl ess (system "date") {

Return was zero - neani ng success

print "We gave you a date, OKI\n";
}
Note that this is backward from the normal "true is good - false is bad" strategy for most of the
operators, so to write atypica "do this or die" style, we'll need to flip false and true. The easiest
way isto simply prefix the syst emoperator with a bang (the logical-not operator):

Isystem"rm-rf files_to_delete" or die "sonething went wong";

In this case, including $! in the error message would not be appropriate, because the failure is most
likely somewhere within the experience of the rm command, and it's not a system-call related error
within Perl that $! can reveal.

14.2 The exec Function

Everything we've just said about syst emsyntax and semanticsis also true about the exec function,
except for one (very important) thing. The syst em function creates a child process, which then
scurries off to perform the requested action while Perl naps. The exec function causes the Perl
process itself to perform the requested action. Think of it as more like a "goto" than a subroutine
cdl.

For example, suppose we wanted to run the bedrock command in the /tmp directory, passing it
arguments of -0 argsl followed by whatever arguments our own program was invoked with.

0 Unless you're using taint checking and have done all the right things to prescan your data to ensure that the user isn't trying

to pull a fast one on you.

3 That's /bin/sh, or whatever your Unix system hasinstalled as the most Bournelike shell. If you don't have a One True Shell,

Per| figures out how to invoke some other command-line interpreter, with notable consequences - noted, that is, in the
documentation for that Per| port.

%22 |t's actually the "wait" status, which is the child exit code times 256, plus 128 if core was dumped, plus the signal number

triggering termination, if any. But we rarely check the specifics of that, and a simple true/fal se value suffices for nearly all
applications.

163

Learning Perl, 3rd edition

That'd look likethis:

chdir "/tnp" or die "Cannot chdir /tnp: $!'";
exec "bedrock", "-0", "argsl"', @A\RGVY,

When we reach the exec operation, Perl locates bedrock, and "jumpsinto it." At that point, thereis
no Perl process any more,® just the process running the bedrock command. When bedrock is
finished, there's no Perl to come back to, so we'd get a prompt back if we invoked this program
from the command line.

Why is this useful? Well, if the purpose of this Perl program were to set up a particular
environment to run another program, the purpose is fulfilled as soon as the other program has
started. If weld used system instead of exec, wed have a Perl program just standing around
tapping its toes waiting for the other program to complete, just so Perl could finaly immediately
exit aswell, and that's a wasted resource.

Having said that, it's actually quite rare to use exec, except in combination with f or k (which well
see later). If you are puzzling over syst em versus exec, just pick system and nearly al of the
time, you'll be just fine.

Because Perl is no longer in control once the requested command has started, it doesn't make any
sense to have any Perl code following the exec, except for handling the error when the requested
command cannot be started:

exec "date";
die "date couldn't run: $!'";

In fact, if you have warnings turned on, and if you have any code after the exec other than adi e,
you'll get notified.

14.3 The Environment Variables

When you're starting another process (with any of the methods discussed here), you may need to
set up its environment in one way or another. Aswe mentioned earlier, you could start the process
with a certain working directory, which it inherits from your process. Another common
configuration detail isthe environment variables.

The best-known environment variable is PATH . (If you've never heard of it, you probably haven't
used a system that has environment variables.) On Unix and similar systems, PATH is a colon-
separated list of directories that may hold programs. When you type a command like rm fred, the
system will look for the rm command in that list of directories, in order. Perl (or your system) will
use PATH whenever it needs to find the program to run. If the program in turn runs other programs,
those may aso be found along the PATH. (Of course, if you give a complete name for a command,
such as/bin/echo, there's no need to search PATH. But that's generally much less convenient.)

In Perl, the environment variables are available via the special “ENV hash; each key in this hash
represents one environment variable. At the start of your program's execution, 9&NV holds values it
has inherited from its parent process (generaly the shell). Modifying this hash changes the
environment variables, which will then be inherited by new processes and possibly used by Perl as
wall.

33 Actually, it's the same process, having performed the Unix exec(2) systemcall (or equivalent). The process |D remainsthe

same.
4 Or exit. Or ifit'sat the end of a block. This may changein a new release of Perl, too.

164

Learning Perl, 3rd edition

For example, suppose you wished to run the system's make utility (which typically runs other
programs), and you want to use a private directory as the first place to look for commands
(including make itself). And let's say that you don't want the | FS environment variable to be set
when you run the command, because that might cause make or some subcommand do the wrong
thing. Herewe go:

SENV{' PATH } = "/hone/root beer/bin: $ENV{' PATH }";

del ete $ENV{' I FS };
ny $nmake_result = system "make";

Newly created processes will generaly inherit from their parent the environment variables, the
current working directory, the standard input, output, and error streams, and a few more-esoteric
items. See the documentation about programming on your system for more details. (But your
program can't change the environment for the shell or other parent process that started it, on most
systems.)

14.4 Using Backquotes to Capture Output

With both syst emand exec, the output of the launched command ends up wherever Perl's standard
output is going. Sometimes, it's interesting to capture that output as a string value to perform
further processing. And that's done simply by creating a string using backquotes instead of single
or double quotes:

ny $now = “date’; # grab the output of date

print "The tinme is now $now'; # newl ine already present

Normally, this date command spits out a string approximately 30 characters long to its standard
output, giving the current date and time followed by a newline. When we've placed date between
backqguotes, Perl executes the date command, arranging for its standard output to be captured as a
string value, and in this case assigned to the $now variable.

Thisis very similar to the Unix shell's meaning for backquotes. However, the shell also performs
the additional job of ripping off the final end-of-line to make it easier to use the value as part of
other things. Perl is honest; it gives the real output. To get the same result in Perl, we can simply
add an additional chonp operation on the result:

chonp(nmy $no_newl i ne_now = “date’);

print "A nonent ago, it was $no_newline_now, | think.\n";

The value beween backquotes is just like the single-argument form of system,*” and is interpreted
as a double-quoted string, meaning that backslash-escapes and variables are expanded
appropriately.®™ For example, to fetch the Perl documentation on alist of Perl functions, we might
invoke the perldoc command repeatedly, each time with a different argument:

ny @unctions = gw{ int rand sleep Il ength hex eof not exit sqrt umask };
ny %about ;

foreach (@unctions) {

$about{$ } = “perldoc -t -f $_°;
}
Note that $_ will be a different value for each invocation, letting us grab the output of a different
command varying only in one of its parameters. Also note that if you haven't seen some of these
functionsyet, it might be useful to look them up in the documentation to see what they do!

%5 That is, it's also always interpreted by the One True Shell (/bin/sh) or alternative, aswithsyst em
36 50, if you want to pass a real backslash to the shell, you'll need to use two. I you need to pass two (which happens frequently
on Windows systems), you'll need to use four.

165

Learning Perl, 3rd edition

There's no easy equivalent of single quotes for backquotes™’; variable references and backslash
items are aways expanded. Also, there's no easy equivalent of the multiple-argument version of
system (where a shell is never involved). If the command inside the backquotes is complex
enough, a Unix Bourne Shell (or whatever your system uses instead) is invoked to interpret the
command automatically.

At the risk of actually introducing the behavior by demonstrating how not to do it, we'd aso like to
suggest that you avoid using backquotes in a place where the value isn't being captured.*® For
example:

print "Starting the frobnitzigator:\n";

“frobnitz -enable’; # please don't do this!

print "Done!\n";

The problem is that Perl has to work a bit harder to capture the output of this command, even when
you're just throwing it away, and then you also lose the option to use multiple argumentsto syst em
to precisely control the argument list. So from both a security standpoint and an efficiency
viewpoint, just use syst eminstead, please.

Standard error of a backquoted command is inherited from Perl's current standard error output. If
the command spits out error messages to standard error, you'll probably see them on the terminal,
which could be confusing to the user who hasn't personally invoked the frobnitz command. If you
want to capture error messages with standard output, you can use the shell's norma "merge
standard error to the current standard output,” which is spelled 2>&1 in the normal Unix shell:

ny $output_with _errors = “frobnitz -enable 2>&1°;

Note that this will make the standard error output intermingled with the standard output, much asiit
appears on the terminal (although possibly in a dightly different sequence because of buffering).
If you need the output and the error output separated, there are many harder-to-type solutions.*

Similarly, standard input is inherited from Perl's current standard input. Most commands we
typically use with backquotes do not read standard input, so that's rarely a problem. However, let's
say the date command asked which time zone (as we imagined earlier). That'll be a problem,
because the prompt for "which time zone" will be sent to standard output, which is being captured
as part of the value, and then the date command will start trying to read from standard input. But
since the user has never seen the prompt, he or she doesn't know to be typing anything! Pretty
soon, the user calls you up and tells you that your program is stuck.

So, stay away from commands that read standard input. If you're not sure whether something reads
from standard input, then add a redirection from /dev/null for input, like this:

ny $result = “sonme_questionabl e_command arg arg argh </dev/null’;

Then the child shell will redirect input from /dev/null, and the grandchild questionable command
will a worst try to read and immediately get an end of file.

37 For a couple of harder ways, you can place your stringinsideqgx’ ... ' delimiters, or you can put it all in a variable using

a single-quoted string, then interpolate that string into a backquoted string, since the interpolation will be only one level.
%18 Thisis called a "void" context.
¥ qichas!| PC: : Open3 in the standard Perl library, or writing your own forking code, aswe will see later.

166

Learning Perl, 3rd edition

14.4.1 Using Backquotes in a List Context

If the output from a command has multiple lines, the scalar use of backquotes returnsit asasingle
long string containing newline characters. However, using the same backquoted string in a list
context yields alist containing oneline of output per el ement.

For example, the Unix who command normally spits out aline of text for each current login on the
system asfollows:

merlyn tty/ 42 Dec 7 19:41
r oot beer consol e Dec 2 14:15
r oot beer tty/ 12 Dec 6 23:00

The left column is the username, the middle column is the tty name (that is, the name of the user's
connection to the machine), and the rest of the line is the date and time of login (and possibly
remote login information, but not in this example). In a scalar context, we get al that at once,
which we would then need to split up:

my $who_text = “who’;
But in alist context, we automatically get the data broken up by lines:
ny @ho_lines = "who;

WEe'll have a number of separate elementsin @ho_I i nes, each one terminated by a newline. Of
course, adding a chonp around the outside of that will rip off those newlines, but let's go a different
direction. If we put that as part of the value for a foreach, well iterate over the lines
automatically, placing eachoneins_:

foreach (“who') {

ny($user, $tty, $date) = /(\S+)\s+(\S+)\s+(.*)/;
$ttys{Suser} .= "$tty at $date\n";

This loop will iterate three times for the data above. (Your system will probably have more than
three active logins at any given time.) Notice that we've got a regular expression match, and in the
absence of the binding operator ("=~"), that's matching against $_, which is good because that's
wherethe datais.

Also notice the regular expression is looking for a nonblank word, some whitespace, a nonblank
word, some whitespace, and then the rest of the line up to, but not including, the newline (since dot
doesn't match newline by default).* That's also good, because that's what the data looks like each
time in $_. That'll make $1 be "nerlyn", $2 be "tty/ 42", and $3 be "Dec 7 19:41", as a
successful match on the first time through the loop.

However, this regular expression match isin alist context, so instead of returning back a true/false
value (as when you have a regular expression match in a scalar context), we take the memory
variables and bundle them up in sequence as alist. In this case, theright side of that assignment is
thus a three-element list, which happens to correspond to the three elements of the literal list on the
left, and we get those nice corresponding assignments. So, $user ends up being " mer | yn", and so
on.

The second statement inside the loop simply stores away the tty and date information, appending to
a (possibly undef) value in the hash, because a user might be logged in more than once, as user
"r oot beer" wasin our example.

20 Now you can see why dot doesn't match newline by default. It makesit easy to write patterns like this one, in which we don't
have to worry about a newline at the end of the string.

167

Learning Perl, 3rd edition

14.5 Processes as Filehandles

So far, we've been looking at ways to dea with synchronous processes, where Perl staysin charge,
launches a command, (usually) waits for it to finish, then possibly grabs its output. But Perl can
also launch a child process that stays alive, communicating™ to Perl on an ongoing basis until the
task is complete.

The syntax for launching a concurrent (parallel) child process is to put the command as the
"filename" for an open call, and either precede the command or follow the command with a
vertical bar, which isthe"pipe" character. For that reason, thisis often called apiped open:

open DATE, "date|" or die "cannot pipe fromdate: $'";

open MAIL, "|nmail merlyn" or die "cannot pipe to mail: $!"

In the first example, with the vertical bar on the right, the command is launched with its standard
output connected to the DATE filehandle opened for reading, similar to the way that the command
date | your_program would work from the shell. In the second example, with the vertical bar on
the left, the command's standard input is connected to the MAI L filehandle opened for writing,
similar to what happens with the command your_program | mail merlyn. In either case, the
command is now launched and continues independently of the Perl process.*?

The open fails if the child process cannot be created. If the command itself does not exist or exits
erroneoudly, this will (generally) not be seen as an error when opening, but as an error when
closing. We'll get to that in amoment.

For all intents and purposes, the rest of the program doesn't know, doesn't care, and would have to
work pretty hard to figure out that thisis a filehandle opened on a process rather than on afile. So,
to get data from afilehandle opened for reading, we'll just do the normal read:

ny $now = <DATE>;

And to send data to the mail process (waiting for the body of a message to deliver to merlyn on
standard input), a simple print-with-a-filehandle will do:

print MAIL "The tinme is now $now'; # presune $now ends in new ine

In short, you can pretend that these filehandles are hooked up to magical files, one that contains the
output of the date command, and one that will automatically be mailed by the mail command.

If a process is connected to a filehandle that is open for reading, and then exits, the filehandle
returns end-of-file, just like reading up to the end of a normal file. When you close a filehandle
open for writing to a process, the process will see end-of-file. So, to finish sending the email, close
the handle:

cl ose MAIL;
die "mail: non-zero exit of $?" if $?;

%2 viia pipes, or whatever your operating system provides for simple interprocess communication.
%22 |f the Per| process exits before the command is complete, a command that's been reading will see end-of-file, while a
command that's been writing will get a "broken pipe" error signal on the next write, by default.

168

Learning Perl, 3rd edition

Closing afilehandle attached to a process waits for the process to complete, so that Perl can get the
process's exit status. The exit status is then available in the $? variable (reminiscent of the same
variable in the Bourne Shell), and is the same kind of humber as the value returned by the syst em
function: zero for success, nonzero for failure. Each new exited process overwrites the previous
value though, so save it quickly if you want it. (The $? variable also holds the exit status of the
most recent syst emor backquoted command, if you're curious.)

The processes are synchronized just like a pipelined command. If you try to read and no data is
available, the process is suspended (without consuming additional CPU time) until the sending
program has started speaking again. Similarly, if a writing process gets ahead of the reading
process, the writing process is slowed down until the reader starts to catch up. There's a buffer
(usualy 4K bytes or so) in between so they don't haveto stay precisely inlock step.

Why use processes as filehandles? Well, it's the only easy way to write to a process based on the
results of a computation. But if you're just reading, backquotes are often much easier to manage,
unless you want to have the results asthey comein.

For example, the Unix find command locates files based on their attributes, and it can take quite a
while if used on afairly large number of files (such as starting from the root directory). You can
put afind command inside backquotes, but it's often nicer to see the results as they are found:
open F, "find / -atinme +90 -size +1000 -print|" or die "fork: $!'";
while (<F>) {

chonp;

printf "% size %K | ast accessed on %\n",

$_, (1023 + -s $_)/1024, -A $_;

}

The find command here is looking for all the files that were not accessed within the past 90 days
and that are larger than 1000 blocks. (These are good candidates to be moved off to longer-term
storage.) While find is searching and searching, Perl can wait. As each fileisfound, Perl responds
to the incoming name and displays some information about that file for further research. Had this
been written with backquotes, we'd not see any output until the find commmand had finished, and
it's comforting to see that it's actually doing the job even before it's done.

14.6 Getting Down and Dirty with Fork

In addition to the high-level interfaces already described, Perl provides nearly direct access to the
low-level process management system calls of Unix and some other systems. If you've never done
this before,* you will probably want to skip this section. While it's a bit much to cover al that
stuff in achapter likethis, let's at least look at a quick reimplementation of this:

system "date";

Let'slook at how that would be done using the low-level system calls:

defined(nmy $pid = fork) or die "Cannot fork: $!'";
unl ess ($pid) {
Child process is here
exec "date";
die "cannot exec date: $'";
}
Parent process is here
wai t pi d($pid, 0);

%3 Or you're not running on a systemthat has support for forking. But the Per| developers are working hard to add forking even
on systems whose underlying process model is very different than the onein Unix.

169

Learning Perl, 3rd edition

Here, we've checked the return value from f or k, which will be undef if it failed. Usualy it will
succeed, causing two separate processes to continue to the next line, but only the parent process
has a nonzero value in $pi d, so only the child process executes the exec function. The parent
process skips over that and executes the wai t pi d function, waiting for that particular child to finish
(if others finish in the meantime, they are ignored). If that al sounds like gobbledygook, just
remember that you can continue to use the syst em function without being laughed at by your
friends.

When you go to this extra trouble, you aso have full control over arbitary pipe creation,
rearranging filehandles, and noticing your process ID and your parent's process ID (if knowable).
But again, that's al a bit complicated for this chapter, so see the details in the perlipc manpage
(and in any good book on application programming on your system) for further information.

14.7 Sending and Receiving Signals

A Unix signal is atiny message sent to a process. It can't say much; it's like a car horn honking -
does that honk you hear mean "look out - the bridge collapsed” or "the light has changed - get
going" or "stop driving - you've got a baby on the roof" or "hello, world"? Well, fortunately, Unix
signals are a little easier to interpret than that, because there's a different one for each of these
situations.®*

Different signals are identified by a name (such as SI G NT , meaning "interrupt signal") and a
corresponding small integer (in the range from 1 to 16, 1 to 32, or 1 to 63, depending on your Unix
flavor). Signals are typically sent when a significant event happens, such as pressing the interrupt
character (typically Control-C) on the terminal, which sends a Sl G NT to all the processes attached
to that terminal.** Some signal's are sent automatically by the system, but they can also come from
another process.

Y ou can send signals from your Perl process to another process, but you have to know the target's
process |D number. How to figure that out is a bit complicated,®® but let's say you know that you
want to send a sl G NT to process 4201. That's easy enough:

kill 2, 4201 or die "Cannot signal 4201 with SIGNT: $!";

It's named "kill" because one of the primary purposes of signalsis to stop a process that's gone on
long enough. You can also usethe string ' I NT' in place of the 2 there, because signal number 2 is
SI G NT. If the process no longer exists, ™ you'll get a false return value, so you can aso use this
technique to see whether a process is till alive. A specia signal number of 0 says "just check to
see whether | could send a signa if | wanted to, but | don't want to, so don't actually send
anything." So a process probe might look like:

unless (kill 0, $pid) {

warn "$pid has gone away!";

}

24 \Well, not exactly these situations, but anal ogous Unix-like ones. For these, the signalsare SI GHUP, SI GCONT, SI GI NT,
and the fake SI GZERO (signal number zero).

5 And you thought that pressing Control-C stopped your program. Actually, it simply sendsthe SI G NT signal, and that stops
the program by default. Aswe'll seelater in this chapter, you can make a program that does something different when SI GI NT
comesin, rather than stopping at once.

2 Usually you have the process ID because it's a child process you produced withf or k, or you found it in a file or froman
external program. Using an external program can be difficult and problematic, which iswhy many long-running programs save
their own current process ID into afile, usually described in the program's documentation.

%7 Sending a signal will also fail if you're not the superuser and it's someoneelse'sprocess. It would be rudeto sendSI GI NT to
someone else's programs, anyway.

170

Learning Perl, 3rd edition

Perhaps a little more interesting than sending signals is catching signals. Why might you want to
do this? Well, suppose you have a program that creates files in /tmp, and you normally delete
those files at the end of the program. If someone presses Control-C during the execution, that
leavestrash in /tmp, a very unpolite thing to do. To fix this, create a signal handler that takes care
of the cleanup:

ny $tenp_directory = "/tnp/nyprog. $$"; # create files bel ow here
nkdir $tenp_directory, 0700 or die "Cannot create $tenp_directory: $!'";

sub clean_up {
unlink glob "$tenp_directory/*";
rndir $tenp_directory;

}

sub my_int_handl er {
&cl ean_up;
die "interrupted, exiting...\n";

}
$SIG'INT'} = "ny_int_handler';

Time passes, the programruns, creates sone tenporary
files in the tenp directory, maybe sonpbne presses Control -C

Now it's the end of normal execution
&cl ean_up;

The assignment into the special 81 G hash activates the handler (until revoked). The key is the
name of the signal (without the constant SIG prefix), and the value is a string™ naming the
subroutine, without the ampersand. From then on, if a SI G NT comes along, Perl stops whatever
it's doing and jumps immediately to the subroutine. Our subroutine cleans up the temp files and
then exits. (And if nobody presses Control-C, welll till call &cl ean_up at the end of normal
execution.)

If the subroutine returns rather than exiting, execution resumes right where it was interrupted. This
can be useful if the interrupt needs to actually interrupt something rather than causing it to stop.
For example, suppose processing each line of afile takes a few seconds, which is pretty slow, and
you want to abort the overall processing when an interrupt is processed, but not in the middie of
processing a line. Just set a flag in the interrupt procedure, and check it at the end of each line's
processing:

ny $int_count;

sub nmy_int_handler { $int_count++ }

$SIG'INT'} = "ny_int_handler';

$int _count = 0;
whi | e (<SOVEFILE>) {
... some processing that takes a few seconds ...
if ($int_count) {
interrupt was seen!
print "[processing interrupted...]\n";
| ast;
}
}

Now as each line is processed, the value of $i nt _count will be 0 if no one has pressed Control-C,
and so the loop continues to the next item. However, if an interrupt comes in, the interrupt handler
incrementsthe $i nt _count flag, breaking out of the loop when checked at the end.

2 The value can also be a subroutine reference, but we're not doing those here.

171

Learning Perl, 3rd edition

So, you can either set aflag or break out of the program, and that covers most of what you'll need
from catching signals. The current implementation of signal handlers is not entirely without
faults**® however, so keep the stuff you're doing in there to an absolute minimum, or your program
may end up blowing up sometime when you least expect it.

3 Thisis one of the top items on the Per| developers list of things to be fixed, so we expect reliable signal handling to be one of
thefirst items on the new featurelist for Perl 6. The problemisthat a signal may comein at any time, even when Perl isn't ready
for one. If Perl is (for example) in the middle of allocating some memory when a signal comesin, the signal handler can
accidentally try to allocate some memory and- your programis dead. You can't control when your Perl code will allocate
memory, but XSUB code (usually writtenin C) can safely handle signals. Seethe Perl documentation for moreinformation about
this advanced topic.

172

Learning Perl, 3rd edition

14.8 Exercises

See Section A.13 for answers to the following exercises:

1.

[6] Write a program that changes to some particular (hardcoded) directory, like the
system's root directory, then executes the Is -1 command to get a long-format directory
listing in that directory. (If you use a non-Unix system, use your own system's command
to get a detailed directory listing.)

[10] Modify the previous program to send the output of the command to afile called Is.out
in the current directory. The error output should go to afile caled Is.err. (You don't need
to do anything special about the fact that either of these files may end up being empty.)

[8] Write a program to parse the output of the date command to determine the current day
of the week. If the day of the week is a weekday, print get to work, otherwise print go
pl ay. The output of the date command begins with Mon on a Monday.** If you don't have
a date command on your non-Unix system, make a fake little program that simply prints a
string like date might print. Well even give you this two-line program if you promise not
to ask us how it works:

#1/ usr/ bi n/ perl
print localtime() . "\n";

0 At least when the days of the week are being given in English. You might have to adjust accordingly if that's not the case on

your system.

173

Learning Perl, 3rd edition

Chapter 15. Strings and Sorting

As we mentioned near the beginning of this book, Perl is designed to be good at solving
programming problems that are about 90% working with text and 10% everything dse. Soit'sno
surprise that Perl has strong text processing abilities, including al that we've done with regular
expressions. But sometimes the regular expression engine is too fancy, and you'll need a ssimpler
way of working with astring, aswelll seein this chapter.

15.1 Finding a Substring with index

Finding a substring depends on where you have lost it. If you happen to have lost it within a
bigger string, you'rein luck, because thei ndex function can help you out. Here's how it looks:

$where = index($big, $small);

Perl locates the first occurrence of the small string within the big string, returning an integer
location of the first character. The character position returned is a zero-based value - if the
substring is found at the very beginning of the string, i ndex returns 0. If it's one character |ater,
the return value is 1, and so on. If the substring can't be found at all, the return value is - 1 to
indicate that.**" In this example, $wher e gets6:

"Howdy world!";
i ndex($stuff, "wor");

nmy $stuff
nmy $where

Another way you could think of the position number is the number of characters to skip over
before getting to the substring. Since $wher e is 6, we know that we have to skip over the first six
characters of $st uf f before we find wor .

The i ndex function will aways report the location of the first found occurrence of the substring.
But you can tell it to start searching at alater point than the start of the string by using the optional
third parameter, which tellsi ndex to start at that position:

ny $stuff = "Howdy world!";

ny $wherel = index($stuff, "w'); # $wherel gets 2

ny $where2 = index($stuff, "w', $wherel + 1); # $where2 gets 6

ny $where3d = index($stuff, "w', $where2 + 1); # $where3d gets -1 (not found)

(Of course, you wouldn't normally search repeatedly for a substring without using a loop.) That
third parameter is effectively giving a minimum value for the return value; if the substring can't be
found at that position or later, the return value will be - 1.

Oncein awhile, you might prefer to have the last found occurrence of the substring.** Y ou can get
that with the ri ndex function. In this example, we can find the last slash, which turns out to be at
position 4 in astring:

ny $l ast_slash = rindex("/etc/passwd", "/"); # value is 4

1 Former C programmerswill recognize this as being like C's index function. Current C programmers ought to recognize it as
well - but by this point in the book, you should really be a former C programmer.

32 Well, it's not really the last one found - Per| cleverly starts searching fromthe other end of the string, and then returns the
first location it finds, which amounts to the same result. Of course, the return value is the same zero-based number aswe always
use for describing locations of substrings.

174

Learning Perl, 3rd edition

The ri ndex function also has an optional third parameter, but in this case it effectively gives the
maximum permitted return value:

ny $fred = "Yabba dabba doo!";

ny $wherel = rindex($fred, "abba"); # $wherel gets 7
ny $where2 = rindex($fred, "abba", $wherel - 1); # $where2 gets 1
ny $where3 = rindex($fred, "abba", $where2 - 1); # $where3 gets -1

15.2 Manipulating a Substring with substr

Thesubst r operator works with only a part of alarger string. It looks like this:
$part = substr($string, $initial_position, $length);

It takes three arguments. a string value, a zero-based initial position (like the return value of
i ndex), and alength for the substring. The return value is the substring:

ny $mneral = substr("Fred J. Flintstone", 8, 5); # gets "Flint"

ny $rock = substr "Fred J. Flintstone", 13, 1000; # gets "stone"

As you may have noticed in the previous example, if the requested length (1000 characters, in this
case) would go past the end of the string, there's no complaint from Perl, but you simply get a
shorter string than you might have. But if you want to be sure to go to the end of the string,
however long or short it may be, just omit that third parameter (the length), like this:

ny $pebble = substr "Fred J. Flintstone", 13; # gets "stone"

The initial position of the substring in the larger string can be negative, counting from the end of
the string (that is, position -1 is the last character).* In this example, position - 3 is three
characters from the end of the string, which isthe location of theletter i :

ny $out = substr("sone very long string", -3, 2); # $out gets "in"

As you might expect, i ndex and substr work well together. In this example, we can extract a
substring that starts at the location of the letter | :

ny $long = "sone very very long string";

ny $right = substr($long, index($long, "I"));

Now here's something really cool: The selected portion of the string can be changed if the string is
avariable™

ny $string = "Hello, world!";

substr($string, 0, 5) = "Goodbye"; # $string is now "Goodbye, world!"

As you see, the assigned (sub)string doesn't have to be the same length as the substring it's
replacing. The string's length is adjusted to fit. Or if that wasn't cool enough to impress you, you
could use the binding operator (=~) to restrict an operation to work with just part of a string. This
example replaces f r ed with bar ney wherever possible within just the last twenty characters of a
string:

substr($string, -20) =~ s/fred/barney/g;

To be completely honest, we've never actually needed that functionality in any of our own code,
and chances are that you'll never need it either. But it's nice to know that Perl can do more than
you'll ever need, isn't it?

2 Thisis analogous to what we saw with array indices in Chapter 3. Just as arrays may beindexed either fromO (thefirst
element) upwards or from- 1 (the last element) downwards, substring locations may be indexed from position O (at the first
character) upwards or from position - 1 (at the last character) downwards.

34 Well, technically, it can be any lvalue. What that term means precisely is beyond the scope of this book, but you can think of it
as anything that can be put on the left side of theequals sign (=) in a scalar assignment. That's usually a variable, but it can (as
you see here) even be an invocation of the subst r - operator.

175

Learning Perl, 3rd edition

Much of the work that substr and i ndex do could be done with regular expressions. Use those
where they're appropriate. But substr and i ndex can often be faster, since they don't have the
overhead of the regular expression engine: they're never case-insenstive, they have no
metacharacters to worry about, and they don't set any of the memory variables.

Besides assigning to the subst r function (which looks a little weird at first glance, perhaps), you
can also use substr in a sightly more traditional manner®™ with the four-argument version, in
which the fourth argument is the replacement substring:

ny $previous_value = substr($string, 0, 5, "Goodbye");

The previous value comes back as the return value, although as always, you can use this function
inavoid context to simply discard it.

15.3 Formatting Data with sprintf

The sprintf function takes the same arguments as pri nt f (except for the optional filehandle, of
course), but it returns the requested string instead of printing it. Thisis handy if you want to store a
formatted string into a variable for later use, or if you want more control over the result than
printf alonewould provide:
ny $date_tag = sprintf

"o4d/ %92d/ 992d 9Rd: %02d: %92d",

$yr, $no, $da, $h, $m $s;
In that example, $dat e_t ag gets something like " 2038/ 01/ 19 3: 00: 08". The format string (the
first argument to sprintf) used a leading zero on some of the format number, which we didn't
mention when we talked about printf formats in Chapter 6. The leading zero on the format
number means to use leading zeroes as needed to make the number as wide as requested. Without
a leading zero in the formats, the resulting date-and-time string would have unwanted leading
spaces instead of zeroes, looking like" 2038/ 1/19 3: 0: 8".

15.3.1 Using sprintf with "Money Numbers"

One popular use for sprintf iswhen a number needs to be rendered with a certain number of
places after the decimal point, such as when an amount of money needs to be shown as 2. 50 and
not 2. 5 - and certainly not as 2. 49997! That's easy to accomplish with the" % 2f * format:

ny $noney = sprintf "%2f", 2.49997;

The full implications of rounding are numerous and subtle, but in most cases you should keep
numbersin memory with all of the available accuracy, rounding off only for output.

If you have a "money number" that may be large enough to need commas to show its size, you
might find it handy to use a subroutine like this one.**®

5 By traditional we mean in the "function invocation" sense, but not the " Per|" sense, since this feature was introduced to Per|
relatively recently.

3% Yes, we know that not everywhere in the world are commas used to separate groups of digits, not everywhere are the digits
grouped by threes, and not everywhere the currency symbol appears asit doesfor U.S. dollars. But thisisa good example
anyway, so there!

176

Learning Perl, 3rd edition

sub bi g_noney {
ny $nunmber = sprintf "% 2f", shift @;
Add one commma each tine through the do-nothing | oop
1 while $nunber =~ s/"(-?\d+)(\d\d\d)/$1, $2/;
Put the dollar sign in the right place
$nunber =~ s/"(-?)/$1\ $/;
$nunber ;
}

This subroutine uses some techniques you haven't seen yet, but they logicaly follow from what
we've shown you. The first line of the subroutine formats the first (and only) parameter to have
exactly two digits after the decimal point. That is, if the parameter were the number 12345678. 9,
now our $nunber isthestring" 12345678. 90" .

The next line of code uses a whi | e modifier. Aswe mentioned when we covered that modifier in
Chapter 10, that can always be rewritten as atraditional whi | e loop:
whil e ($nunmber =~ s/~(-?\d+) (\d\d\d)/$1,$2/) {

1;
}
What does that say to do? It says that, as long as the substitution returns a true value (signifying
success), the loop body should run. But the loop body does nothing! That's okay with Perl, but it
tells us that the purpose of that statement is to do the conditiona expression (the substitution),
rather than the useless loop body. The value 1 is traditionally used as this kind of a placeholder,
athough any other value would be equally useful.*” Thisworks just as well as the loop above:

"keep | ooping' while $nunber =~ s/~(-?2\d+)(\d\d\d)/$1, $2/;

So, now we know that the substitution is the real purpose of the loop. But what is the substitution
doing? Remember that $nunber will be some string like" 12345678. 90" at this point. The pattern
will match the first part of the string, but it can't get past the decimal point. (Do you see why it
can't?) Memory $1 will get " 12345" , and $2 will get " 678", so the substitution will make $nunber
into " 12345, 678. 90" (remember, it couldn't match the decimal point, so the last part of the string
isleft untouched).

Do you see what the dash is doing near the start of that pattern? (Hint: The dash is allowed at only
one placein the string.) Well tell you at the end of this section, in case you haven't figured it out.

We're not done with that substitution statement yet. Since the substitution succeeded, the do-
nothing loop goes back to try again. This time, the pattern can't match anything from the comma
onward, so $nunber becomes "12, 345, 678. 90". The substitution thus adds a comma to the
number each time through the loop.

Speaking of the loop, it's still not done. Since the previous substitution was a success, we're back
around the loop to try again. But this time, the pattern can't match at all, since it has to match at
least four digits at the start of the string, so now that isthe end of the loop.

7 \Which isto say, useless. By the way, in case you're wondering, Per| optimizes away the constant expression so it doesn't even
take up any runtime.

177

Learning Perl, 3rd edition

Why couldn't we have simply used the / g modifier to do a"globa" search-and-replace, to save the
trouble and confusion of the 1 whi | e? We couldn't use that because we're working backwards
from the decima point, rather than forward from the start of the string. Putting the commas in a
number like this can't be done simply with the s/ / / g substitution alone.®®

So, did you figure out the dash? It's allowing for a possible minus-sign at the start of the string.
The next line of code makes the same allowance, putting the dollar-sign in the right place so that
$number is something like " $12, 345, 678. 90", or perhaps " - $12, 345, 678. 90" if it's negative.
Note that the dollar sign isn't necessarily the first character in the string, or that line would be a lot
simpler. Finaly, the last line of code returns our nicely formatted "money number," ready to be
printed in the annual report.

15.4 Advanced Sorting

Earlier, in Chapter 3, we showed that you could sort a list in ascending ASClIbetical order by
using the builtin sort operator. What if you want a numeric sort? Or a case-insensitive sort? Or
maybe you want to sort items according to information stored in a hash. Well, Perl lets you sort a
list in whatever order you'd need; we'll see all of those examples by the end of the chapter.

You'll tell Perl what order you want by making a sort-definition subroutine, or sort subroutine for
short. Now, when you first hear the term "sort subroutine,” if you've been through any computer
science courses, visions of bubble sort and shell sort and quick sort race through your head, and
you say, "No, never again!" Don't worry; it's not that bad. In fact, it's pretty smple. Perl already
knows how to sort a list of items; it merely doesn't know which order you want. So the sort-
definition subroutine simply tellsit the order.

Why is this necessary? Waell, if you think about it, sorting is putting a bunch of things in order by
comparing them all. Since you can't compare them all at once, you need to compare two at atime,
eventually using what you find out about each pair's order to put the whole kit'n‘caboodle in line.

Perl already understands all of those steps except for the part about how you'd like to compare the
items, so that's all you have to write.

This means that the sort subroutine doesn't need to sort many items after al. It merely has to be
able to compare two items. If it can put two items in the proper order, Perl will be able to tell (by
repeatedly consulting the sort subroutine) what order you want for your data.

The sort subroutine is defined like an ordinary subroutine (well, almost). This routine will be
called repeatedly, each time checking on a pair of elements from the list to be sorted.

Now, if you were writing a subroutine that's expecting to get two parameters that need sorting, you
might write something like this to start:

sub any_sort_sub { # It doesn't really work this way
ny($a, $b) = @; # Get and nane the two paraneters
start conparing $a and $b here

-

38 At least, it can't be done without some more-advanced regular expression techniques than we've shown you so far. Those darn
Per| developers keep making it harder and harder to write Perl books that use the word "can't."

178

Learning Perl, 3rd edition

But the sort subroutine will be caled again and again, often hundreds or thousands of times.
Declaring the variables $a and $b and assigning them values at the top of the subroutine will take
just alittle time, but multiply that by the thousands of times that the routine will be called, and you
can seethat it contributes significantly to the overall execution speed.

We don't do it like that. (In fact, if you did it that way, it wouldn't work.) Instead, it is as if Perl
has done this for us, before our subroutine's code has even started.**® Youll redly write a sort
subroutine without that first line; both $a and $b have been assigned for you. When the sort
subroutine starts running, $a and $b are two elements from the original list.

The subroutine returns a coded value describing how the elements compare (like C's gsort (3)
does, but it's Perl's own internal sort implementation). If $a should appear before $b in the final
list, the sort subroutine returns- 1 to say so. If $b should appear before $a, it returns 1.

If the order of $a and $b doesn't matter, the subroutine returns 0. Why would it not matter?
Perhaps you're doing a case-insensitive sort and the two strings are fred and Fred. Or perhaps
you're doing a numeric sort, and the two numbers are equal.

We could now write a numeric sort subroutine like this:

sub by_number {
a sort subroutine, expect $a and $b
if ($a <$h) { -1} elsif ($a > $b) { 1} else { 0}
}
To use the sort subroutine, just put its name (without an ampersand) between the keyword sort
and thelist to be sorted. This example puts a numerically sorted list of numbersinto @ esul t :

ny @esult = sort by_nunmber @ome_nunbers;

We called the subroutine by _nunber because that describes how it's sorting. But more importantly,
you can read the line of code that uses it with sort as saying "sort by number," as you would in
English. Many sort-subroutine names begin with by_ to describe how they sort. Or we could have
caled this one nuneri cal |y, for asimilar reason, but that's more typing and more chance to mess
something up.

Notice that we don't have to do anything in the sort subroutine to declare $a and $b, and to set their
values - and if we did, the subroutine wouldn't work right. We just let Perl set up $a and $b for us,
and so all we need to write is the comparison.

In fact, we can make it even simpler (and more efficient). Since this kind of three-way comparison
is frequent, Perl has a convenient shortcut to use to write it. In this case, we use the spaceship
operator (<=>).°

9 T0 be honest, it's closer to being asif Perl hasused| ocal ($a, $b) inaprivateblock around thesort invocation,
because these variables arereally globalsrather than lexical variables. (Unlessyou do something unusual, though, you can't tell
the difference inside the sort subroutine; you can pretend these areny variables. use stri ct makesa special exception for
these two globals, so you don't need to declare themin any way.) This meansthat if your program already hasitsown $a or $b,
you won't be able to access those while Perl is sorting the list. Also, be sure to note that the two items to be sorted are not passed
invia@_ (unlessyou use a subroutine prototype, which we won't cover in this book, but see the documentation for the full
details). Insidethe sort subroutine, just use $a and $b, and try not to worry too much about where they came from. And asiif
that wasn't enough, if there'salexical $a or $b somewherein scope, the subroutine definition doesn't work either. Whew!

0 We call it that because it looks like one of the Tie-fighters from Star Wars. Well, it looks like that to us, anyway.

179

Learning Perl, 3rd edition

This operator compares two numbers and returns - 1, 0, or 1 as needed to sort them numerically.
So we could have written that sort subroutine better, like this:

sub by_nunber { $a <=> $b }

Since the spaceship compares numbers, you may have guessed that there's a corresponding three-
way string-comparison operator: cnp. These two are easy to remember and keep straight. The
spaceship has a family resemblance to the numeric comparison operators like >=, but it's three
characters long instead of two because it has three possible return values instead of two. And cnp
has a family resemblance to the string comparison operators like ge, but it's three characters long
instead of two because it also has three possible return valuesinstead of two.*"

Of course, cnp by itself provides the same order as the default sort. Y ou'd never need to write this
subroutine, which yields merely the default sort order:**

sub ASCl Il betically { $a cnp $b }
ny @trings = sort ASCllbetically @ny_strings;

But you can use crp to build a more complex sort order, like a case-insensitive sort:

sub case_insensitive { "\L$a" cnmp "\L$b" }

In this case, we're comparing the string from $a (forced to lowercase) against the string from $b
(forced to lowercase), giving a case-insensitive sort order.

Note that we're not modifying the elements themselves, we're merely using their values. That's
actually important: for efficiency reasons, $a and $b aren't copies of the data items. They're
actually new, temporary aliases for elements of the original list, so if we changed them we'd be
mangling the original data. Don't do that - it's neither supported nor recommended.

When your sort subroutine is as simple as the ones we show here (and most of the time, it is), you
can make the code even simpler yet, by replacing the name of the sort routine with the entire sort
routine "in ling," like so:

ny @unbers = sort { $a <=> $b } @one_nunbers;

In fact, in modern Perl, you'll hardly ever see a separate sort subroutine; you'll frequently find sort
routines written inline as we've done here.

Suppose you want to sort in descending numeric order. That's easy enough to do with the help of
reverse .

ny @escending = reverse sort { $a <=> $b } @one_nunbers;

But here's a neat trick. The comparison operators (<=> and cnp) are very nearsighted; that is, they
can't see which operand is $a and which is $b, but only which value is on the left and which is on
the right. So if $a and $b were to swap places, the comparison operator would get the results
backwards every time. That means that thisis another way to get areversed numeric sort:

ny @lescending = sort { $b <=> $a } @one_nunbers;

You can (with a little practice) read this at a glance. It's a descending-order comparison (because
$b comes before $a, which is descending order), and it's a numeric comparison (because it uses the
spaceship instead of cnp). So, it's sorting numbersin reverse order.

%! Thisis no accident. Larry doesthings like this on purpose, to make Per| easier to learn and remember. Remember, he'sa
linguist at heart, so he's studied how people think of languages.
%2 You'd never need to write this unless, of course, you were writing an introductory Perl book and needed it for an example.

180

Learning Perl, 3rd edition

15.4.1 Sorting a Hash by Value

Once you've been sorting lists happily for awhile you'll run into a situation where you want to sort
a hash by value. For example, three of our characters went out bowling last night, and we've got
their bowling scores in the following hash. We want to be able to print out the list in the proper
order, with the game winner at the top, so we want to sort the hash by score:

ny %score = ("barney" => 195, "fred" => 205, "dino" => 30);

nmy @i nners = sort by_score keys %score;

Of course, we aren't really going to be able to sort the hash by score; that's just a verbal shortcut.

You can't sort a hash! But when we've used sort with hashes before now, we've been sorting the
keys of the hash (in ASClIbetical order). Now, we're till going to be sorting the keys of the hash,
but the order is now defined by their corresponding values from the hash. In this case, the result
should be alist of our three characters names, in order according to their bowling scores.

Writing this sort subroutine is fairly easy. What we want is to use a numeric comparison on the
scores, rather than the names. That is, instead of comparing $a and $b (the players names), we
want to compare $scor e{ $a} and $scor e{ $b} (their scores). If you think of it that way, it almost
writesitself, asin:

sub by score { $score{$b} <=> $score{$a} }

Let's step through this and see how it works. Let'simagine that the first timeit's called, Perl has set
$a to barney and $b to fred. So the comparison is $score{"fred"} <=> $score{"barney"},
which (as we can see by consulting the hash) is 205 <=> 195. Remember, now, the spaceship is
nearsighted, so when it sees 205 before 195, it says, in effect: "No, that's not the right humeric
order; $b should come before $a." So it tells Perl that f r ed should come before bar ney.

Maybe the next time the routine is called, $a isbar ney again but $b isnow di no. The nearsighted
numeric comparison sees 30 <=> 195 thistime, so it reports that that they're in the right order; $a
does indeed sort in front of $b. That is, bar ney comes before di no. At this point, Perl has enough
information to put thelist in order: f r ed isthe winner, thenbar ney in second place, then di no.

Why did the comparison use the $scor e{ $b} before the $score{ $a}, instead of the other way
around? That's because we want bowling scores arranged in descending order, from the highest
score of the winner down. So you can (again, after alittle practice) read this one at sight as well:
$score{$b} <=> $score{$a} meansto sort according to the scores, in reversed numeric order.

15.4.2 Sorting by Multiple Keys

We forgot to mention that there was a fourth player bowling last night with the other three, so the
hash really looked like this:
ny %score = (

"barney" => 195, "fred" => 205,
"dino" => 30, "banm bammi => 195,

)

Now, as you can see, bamm banm has the same score as bar ney. So which one will be first in the
sorted list of players? There's no telling, because the comparison operator (seeing the same score
on both sides) will have to return zero when checking those two.

Maybe that doesn't matter, but we generaly prefer to have a well-defined sort. If several players
have the same score, we want them to be together in the list, of course. But within that group, the
names should bein ASClIbetical order. But how can we write the sort subroutine to say that?

181

Learning Perl, 3rd edition

Again, thisturns out to be pretty easy:
ny @i nners = sort by _score_and_nanme keys %score;

sub by_score_and_name {
$score{$b} <=> $score{$a} # by descendi ng nuneric score
or
$a cnp $b # ASCl | betically by name
}

How does this work? Wéll, if the spaceship sees two different scores, that's the comparison we
want to use. It returns-1 or 1, atrue value, so the low-precedence short-circuit or will mean that
the rest of the expression will be skipped, and the comparison we want is returned. (Remember,
the short-circuit or returns the last expression evaluated.) But if the spaceship sees two identical
scores, it returns 0, a false value, and thus the cnp operator gets its turn at bat, returning an
appropriate ordering value considering the keys as strings. That is, if the scores are the same, the
string-order comparison breaks the tie.

We know that when we usethe by _score_and_nane sort subroutine like this, it will never return o.
(Do you see why it won't? The answer is in the footnote.**®) So we know that the sort order is
always well-defined; that is, we know that the result today will be the same as the result with the
same data tomorrow.

There's no reason that your sort subroutine has to be limited to two levels of sorting, of course.
Here the Bedrock library program puts a list of patron ID numbers in order according to a five-
level sort.** This example sorts according to the amount of each patron's outstanding fines (as
calculated by a subroutine &f i nes, not shown here), the number of items they currently have
checked out (from % t ens), their name (in order by family name, then by personal name, both
from hashes), and finally by the patron's ID number, in case everything elseisthe same:
@atron_IDs = sort {

&f i nes($b) <=> &fines($a) or

$i tems{ $b} <=> S$itens{S$a} or

$fam | y_nane{$a} cnp $fam |y_nanme{$a} or

$personal _nane{$a} cnp $fam | y_nanme{$b} or

$a <=> $b
} @atron_| Ds;

33 The only way it could return O would be if the two strings were identical, and (since the strings are keys of a hash) we already
know that they're different. Of course, if you passed a list with duplicate (identical) stringstosor t , it would return O when
comparing those, but we're passing a list of hash keys.

¥4 |t'snot unusual in the modern world to need a five-level sort like this, although it was quite infrequent in prehistoric times.

182

Learning Perl, 3rd edition

15.5 Exercises

See Section A.14 for answers to the following exercises:

1.

[10] Write a program to read in a list of numbers and sort them numericaly, printing out
the resulting list in a right-justified column. Try it out on this sample data, or use the file
numbers, from the O'Reilly web site (see the Preface):

17 1000 04 1.50 3.14159 -10 1.5 4 2001 90210 666

[15] Make a program that will print the following hash's data sorted in case-insensitive
alphabetical order by last name. When the last names are the same, sort those by first
name (again, without regard for case). That is, the first name in the output should be
Fred's, while the last one should be Betty's. All of the people with the same family name
should be grouped together. Don't ater the data. The names should be printed with the
same capitalization as shown here. (You can find the source code to create a hash like this
inthefile sortable_hash with the other downloaded files.)
ny % ast_name = gw
fred flintstone Wl nma Flintstone Barney Rubble
betty rubbl e Bamm Bamm Rubbl e PEBBLES FLI NTSTONE

b
[15] Make a program that looks through a given string for every occurrence of a given
substring, printing out the positions where the substring is found. For example, given the
input string " This is a test." andthesubstring "i s", it should report positions 2 and
5. If thesubstring were" a", it should report 8. What doesit report if the substring is"t " ?

183

Learning Perl, 3rd edition

Chapter 16. Simple Databases

Databases permit us to allow data to persist beyond the end of our program. The kinds of
databases we're talking about in this chapter are merely simple ones; how to use full-featured
database implementations (Oracle, Sybase, Informix, mySQL, and others) is a topic that could fill
an entire book, and usually does. The databases in this chapter are those that are simple enough to
implement that you don't need to know about modules to use them.**

16.1 DBM Files and DBM Hashes

Every system thas has Perl aso has a simple database already available in the form of DBM files.
This lets your program store data for quick lookup in afile or in a pair of files. When two filesare
used, one holds the data and the other holds a table of contents, but you don't need to know that in
order to use DBM files. We're intentionally being a little vague about the exact implementation,
because that will vary depending upon your machine and configuration; see the AnyDBM fil e
manpage for more information. Also, among the downloadable files from the O'Reilly website is a
utility called which_dbm, which tries to tell you which implementation you're using, how many
filesthere are, and what extensions they use, if any.

Some DBM file implementations (we'll call it "afile," even though it may be two actua files) have
a limit of around 1000 bytes for each key and value in the file. Your actual limit may be larger or
smaller than this number, but as long as you aren't trying to store gigantic text strings in the file, it
shouldn't be a problem. There's no limit to the number of individual dataitems in the file, as long
as you have enough disk space.

In Perl, we can access the DBM file as a special kind of hash called a DBM hash. This is a
powerful concept, aswelll see.

16.1.1 Opening and Closing DBM Hashes

To associate a DBM database with a DBM hash (that is, to open it), use the dbropen function,**®
which looks similar to open, in away:
dbnmopen(%DATA, "ny_dat abase", 0644)

or die "Cannot create ny_database: $!";
The first parameter is the name of a Perl hash. (If this hash aready has vaues, the values are
inaccessible while the DBM file is open.) This hash becomes connected to the DBM database
whose name was given as the second parameter, often stored on disk as a pair of files with the
extensions . dir and . pag. (The filename as given in the second parameter shouldn't include either
extension, though; the extensions will be automatically added as needed.) In this case, the files
might be called my_database.dir and my_database.pag.

Any legal hash name may be used as the name of the DBM hash, athough uppercase-only hash
names are traditional because their resemblance to filehandles reminds us that the hash is
connected to a file. The hash name isn't stored anywhere in the file, so you can call it whatever
you'd like.

5 To be sure, on some of these, the core of Per| will load a modulefor you. But you don't need to know anything about modules
to use these databases.

8 Here we depart from other beginner documentation, which claimsthat dbnopen isdeprecated and suggests that you usethe
more complicatedt i e interfaceinstead. We disagree, sincedbnopen worksjust fine, and it keeps you from having to think
harder about what you're doing. Keep the common tasks simple!

184

Learning Perl, 3rd edition

If the file doesn't exist, it will be created and given a permission mode based upon the value in the
third parameter.®*’ The number is typically specified in octal; the frequently used value of 0644
gives read-only permission to everyone but the owner, who gets read/write permission. If you're
trying to open an existing file, you'd probably rather have the dbrmopen fail if the fileisn't found, so
just useundef asthethird parameter.

The return value from the dbropen is true if the database could be opened or created, and false
otherwise, just like open. You should generally use or di e in the same spirit asopen.

The DBM hash typically stays open throughout the program. When the program terminates, the
association is terminated. You can also break the association in a manner similar to closing a
filehandle, by usingdbntl ose :

dbntl ose(YDATA) ;
16.1.2 Using a DBM Hash

Here's the beauty of the DBM hash: it works just like the hashes you aready understand! To read
from the file, look at an element of the hash. To write to the file, store something into the hash. In
short, it's like any other hash, but instead of being stored in memory, it's stored on disk. And thus,
when your program opens it up again, the hash is aready stuffed full of the data from the previous
invocation.

All of the normal hash operations are available:

$DATA{"fred"} = "bedrock"; # create (or update) an el ement
del et e $DATA{"barney"}; # renove an el enent of the database

foreach ny $key (keys YATA) { # step through all val ues
print "$key has val ue of $DATA{ $key}\n";

}

That last loop could have a problem, since keys has to traverse the entire hash, possibly producing
a very large list of keys. If you are scanning through a DBM hash, it's generally more memory-
efficient to use the each function:

while (nmy($key, $value) = each(YATA)) {
print "$key has val ue of $val ue\n";

}

If you are accessing DBM files that are maintained by C programs, you should be aware that C
programs generally tack on atrailing NUL ("\ 0") character to the end of their strings, for reasons
known only to Kernighan and Ritchie.*® The DBM library routines do not need this NUL (they
handle binary data using a byte count, not a NUL-terminated string), and so the NUL is stored as
part of the data.

To cooperate with these programs, you must therefore append a NUL character to the end of your
keys and values, and discard the NUL from the end of the returned values to have the data make
sense. For example, to ook up merlyn in the sendmail aliases database on a Unix system, you
might do something like this:

dbrmopen(ny %ALI, "/etc/aliases", undef) or die "no aliases?";

ny $value = $ALI{"nerlyn\0"}; # note appended NUL
$val ue =~ s/\0%$//; # renmove trailing NUL
print "Randal's nmil is headed for: $value\n"; # show result

*7 The actual mode will be modified by the umask; see the perlfuncmanpage for more information.
8 \Well, they're not the only ones: it's because C uses the NUL byte as the end-of-string marker.

185

Learning Perl, 3rd edition

If your DBM files may be concurrently accessed by more than one process (for example if they're
being updated over the Web), you'll generally need to use an auxiliary lock file. The details of this
are beyond the scope of this book; see The Perl Cookbook by Tom Chrisitansen and Nathan
Torkington (O'Reilly & Associates, Inc.).

16.2 Manipulating Data with pack and unpack

When storing data into a DBM file (or in one of the other types of databases we'll see in this
chapter), you may need to store more than one item under asingle key. And sometimes you'll need
to be able to prepare some information to be sent over a network connection or to a system-level
function, or to decodeit upon arrival. That'swhy Perl hasthe pack and unpack functions.

The pack function takes aformat string and alist of arguments and packs the arguments together to
make a string. Here, we can pack three numbers of varying sizes into a seven-byte string using the
formatsc, s, and | (these might remind some folks of the words "char”, "short", and "long"). The
first number gets packed into one byte, the second into two bytes, and the third into four bytes,
which explains why we say this is a seven-byte string:

ny $buffer = pack("c s I", 31, 4159, 265359);

When you want the original list of items back, you can use the same format string with the unpack
function:

my($char, $short, $long) = unpack("c s |", $buffer);

There are many different format Ietters available; some of these are the same on every machine (so
they're useful for sending data over a network), while others depend upon how your machine likes
to work with data (these are useful for interacting with your system's own data). Seethe per | f unc
manpage for the latest list of format letters, as new ones are being added in every new version of
Perl.

Whitespace may be used at will in aformat string to improve readability, as we did in the previous
example. For most format letters, you can follow the format letter with a number to indicate a
number of times; that is, aformat of "ccccccc” may be written more compactly as " c7". Instead
of a number, you may follow the last format letter with a star (*), which means to use that format
as many times as needed to use up the remaining items in the list (in pack) or to use up the rest of
the string (in unpack). So aformat of "c*" will either unpack a string into a list of small integers,
or pack up those small integers to make a string. For some format letters, such as a, the number is
not a repeat count; "a20" is a twenty-character ASCII string, padded with NUL characters as
needed.

16.3 Fixed-length Random-access Databases

Anocther form of persistent data is the fixed-length, record-oriented disk file** In this scheme, the
data consists of a number of records of identical length. The numbering of the records is either not
important or determined by some indexing scheme.

For example, we might want to store some information about each bowler at Bedrock Lanes. Let's
say we decide to have a series of records, one per bowler, in which the data holds the player's
name, age, last five bowling scores, and the time and date of hislast game.

9 By "fixed-length," we don't mean that the fileitself is of a fixed length; it's each individual record that is of a fixed length. In
this section, we'll use an example file in which every record is 55 bytes long.

186

Learning Perl, 3rd edition

We need to decide upon a suitable format for this data. Let's say that after studying the available
formats in the documentation for pack, we decide to use 40 characters for the player's name, a one-
byte integer for his age,*® five two-byte integers for his last five scores,™ and a four-byte integer
for the timestamp of his most-recent game,™ giving a format string of "a40 C 15 L". Each
record is thus 55 byteslong. If we were reading all of the data in the database, we'd read chunks of
55 bytes until we got to the end. If we wanted to go to the fifth record, we'd skip ahead 4 x 55
bytes (220 bytes) and read the fifth record directly.

Perl supports programs that use such a disk file. In order to do so, however, you need to learn a
few more things, including how to:

1. Openadisk filefor both reading and writing

2. Movearoundinthisfileto an arbitrary position

3. Fetch databy alength rather than up to the next newline
4. Write datadown in fixed-length blocks

The open function has an additional mode we haven't shown yet. If you use " +<" at the front of
the filename parameter's string, that is similar to using " <" to open the existing file for reading,
except that it also asks for write permission on the file. Thus you can have read/write access to the
file:

open(FRED, "<fred"); # open file fred for reading (error if file absent)
open(FRED, "+<fred"); # open file fred read/wite (error if file absent)

Similarly, " +>" saysto create a new file (as " >" would), but to have read access to it as well, thus
also giving read/write access:

open(WLMA, ">wilma"); # make new file wilma (w ping out existing file)
open(WLMA, "+>wilnma"); # make new file wilnma, but also with read access

Do you see the important difference between the two new modes? Both give read/write accessto a
file. But "+<" lets you work with an existing file; it doesn't create it. The second mode, " +>" isn't
often useful, because it gives read/write access to a new, empty file that it has just created. That's
mostly used for temporary (scratch) files.

Once we've got the file open, we need to move around init. Y ou do thiswith the seek function:
seek(FRED, 55 * $n, 0); # seek to start of record $n

The first parameter to seek is afilehandle, the second parameter gives the offset in bytes from the
start of the file, and the third parameter is zero.*® To get to a certain record in our file of bowling
data, you'll need to skip over some other records. Since each record is 55 bytes long, well
multiply $n times 55 to find out which byte position we want. (Note that the record numbers are
thus zero-based; record zero is at the beginning of thefile.)

0 gnce one byte may have 256 different values, thiswill hold ages from 0 to 255 with ease. If Methuselah comes to bowl in
Bedrock, we'll have to redesign the database.

31 \We can't use one-byte integers for the scores, because a bowling score can be as high as 300. Two-byte integers can hold
values from 0 to 65535 (if unsigned) or -32768 to 32767 (if signed). We can use some of these extra values as special codes; for
example, if a player has only three games on record, the other scores could be set to 9999 to indicate this.

%2 The standard Unix timestamp format (and the time value used by many other systems) is a 32-bit integer, which fitsinto four
bytes, of course. You'll probably find it handy to use a module to manipul ate time and date formats.

3 Actually, the third parameter isthe "whence" parameter. You can use a different value than zero if you want to seek to a
position relative to the current position, or relative to the end of the file; see the perlfuncmanpage for more information. Most
people will simply want to use zero here.

187

Learning Perl, 3rd edition

Once the file pointer has been positioned with seek, the next input or output operation will start at
that position.

When we're ready to read from the file, we can't use the ordinary line-input operator because that's
made to read lines, not 55-byte records. There may not be a newline character in this entire file, or
it may appear in packed datain the middle of arecord. Instead, welll usether ead function:

ny $buf; # The input buffer variable
ny $nunber _read = read(FRED, $buf, 55);

As you can see, the first parameter to read is the filehandle. The second parameter is a buffer
variable; the data read will be placed into this variable. (Yes, thisis an odd way to get the result.)
The third parameter is the number of bytes to read; here we've asked for 55 bytes, since that's the
size of our record. Normally, you can expect the length of $buf to be the specified number of
bytes, and you can expect that the return value (in $nunber _r ead) to be the same. But if your
current position in the file is only five bytes from the end when you request 55 bytes, you'll get
only five. Under normal circumstances, you'll get as many bytes as you ask for.

Once you've got those 55 bytes, what can you do with them? You can unpack them (using the
format we previously designed) to get the bowler's name and other information, of course:
ny($name, $age, $score_1, $score_2, $score_3, $score_4, $score_5, $when)

= unpack "a40 C 15 L", $buf;
Since we can read the information from the file with r ead, can you guess how we can write it back
into the file? Sorry, it's not write; that was a trick question.** You already know the correct
function, which is pri nt . But you have to be sure that the data string is exactly the right size; if
it'stoo large, you'll overwrite the next record's data, but if it's too small, Ieftover datain the current
record may be mixed with the new data. To ensure that the length is correct, well use pack. Let's
say that Wilma has just bowled a game and her new scoreisin $new_scor e. That will be the first
of the five most-recent scores we keep for her ($scor e_5, as the oldest one, will be discarded), and
in place of $when (the timestamp of her previous game), well store the current time from the ti me
function:
print FRED pack("a40 C 15 L", $nane, $age, $new score, $score_1, $score_2,

$score_3, $score_4, tinme);

On some systems, you'll have to use seek whenever you switch from reading to writing, even if the
current position in the file is already correct. It's not a bad idea, then, to always use seek right
before reading or printing.

Rather than use the two constant values "a40 C 15 L" and 55 throughout the program, as we've
done here, it would generally be better to define them just once near the top of the code. That way,
if we ever need to change the database format, we don't have to go searching through our code for
places where the number 55 appears. Here's one way you might define both of those values, using
the | engt h function to determine the length of a string so you won't have to count bytes:

"a40 C 15 L";
| engt h pack($pack _format, "dummy data", 0, 1, 2, 3, 4, 5, 6);

ny $pack_f or mat
ny $pack_| ength

4 Per| actually doeshave awr i t e function, but that is used with formats, which are beyond the scope of this book. Seethe
perlformmanpage.

188

Learning Perl, 3rd edition

16.4 Variable-length (Text) Databases

Many simple databases are merely text files written in a format that allows a program to read and
maintain them. For example, a configuration file for some program might be a text file, with one
configuration parameter being set on each line. Or maybe the file is a mailing list, with one name
and address on each line (probably with the components of the name and address separated by tab
characters).

Updating text files is more difficult than it probably seems at first. But that's only because we're
used to seeing text files rendered as pages (or screens) of text. If you could see the file as it is
written in the filesystem, the difficulty is more apparent. Since we can't show you the file asiit's
actually written without opening up adisk drive, here's our rendition of apiece of atext file®™:

He had bought a large map representing the sea,\n Wthout the | east vestige of
| and: \ nAnd the crew were nuch pl eased when they found it to be\n A map they cou
Id all understand.\n\n"Wat's the good of Mercator's North Poles and Equators,\n

Tropi cs, Zones, and Meridian Lines?"\nSo the Bellman would cry: and the crew w
ould reply\n "They are nerely conventional signs!\n\n"Qher maps are such shape
s, with their islands and capes!\n But we've got our brave Captain to thank:"\n
(So the crew would protest) "that he's bought us the best-\n A perfect and abso
[ute blank!"\n\n

If you had this file open in your text editor, it would be easy to change aword, add a comma, or fix
amisspelling. If your editor is powerful enough, in fact, you could change the indentation of each
line with a single command. But the text file is a stream of bytes; if you wanted to add even a
single comma, the remainder of the text file (possibly thousands or millions of bytes) would have
to move over to make room. Nearly every tiny change would mean lots of slow copying
operations on the file. So how can we edit the file efficiently? The most common way of
programmatically updating a text file is by writing an entirely new file that looks similar to the old
one, but making whatever changes we need as we go along. As you'll see, this technique gives
nearly the same result as updating the file itself, but it has some beneficia side effects aswell.

In this example, we've got hundreds of files with a similar format. One of them is fred03.dat, and
it'sfull of lines like these:

Program name: granite
Aut hor: G | bert Bates
Conpany: RockSof t
Departnent: R&D

Phone: +1 503 555-0095
Date: Tues March 9, 1999
Version: 2.1

Size: 21k

Status: Final beta

We need to fix this file so that it has some different information. Here's roughly what this one
should look like when we're done:

Program nanme: granite

Aut hor: Randal L. Schwartz
Conmpany: RockSof t
Departnent: R&D

Date: June 12, 2002 6:38 pm
Version: 2.1

Size: 21k

Status: Final beta

%5 Of course, the real file wouldn't have lines at all; it's one long stream of text. And the newline character should really be a
single-character code. But these differences don't hurt this as an example.

189

Learning Perl, 3rd edition

In short, we need to make three changes. The name of the Aut hor should be changed; the Dat e
should be updated to today's date, and the Phone should be removed completely. And we have to
make these changesin hundreds of similar files aswell.

Perl supports a way of in-place editing of files with a little extra help from the diamond operator
("<>"). Here's a program to do what we want, although it may not be obvious how it works at
first. This program's only new feature is the specia variable $1; ignore that for now, and well
come back toit:

#!/usr/bin/perl -w
use strict;

chonmp(ny $date = “date’);
@\RGV = glob "fred*.dat" or die "no files found";
$7 = ", bak";

while (<>) {

s/ MAut hor:.*/ Aut hor: Randal L. Schwartz/;

s/ ~Phone: . *\'n//;

s/~Date:.*/Date: $date/;

print;
}
Since we need today's date, the program starts by using the system date command. A better way to
get the date (in a dightly different format) would almost surely be to use Perl's own | ocal ti ne
function in ascalar context:

ny $date = localtineg;

To get the list of files for the diamond operator, we read them from a glob. The next line sets $/1,
but keep ignoring that for the moment.

The main loop reads, updates, and prints one line at a time. (With what you know so far, that
means that all of the files newly modified contents will be dumped to your terminal, scrolling
furioudly past your eyes, without the files being changed at all. But stick with us.) Note that the
second substitution can replace the entire line containing the phone number with an empty string -
leaving not even a newline - so when that's printed, nothing comes out, and it's as if the Phone
never existed. Most input lines won't match any of the three patterns, and those will be unchanged
in the output.

So this result is close to what we want, except that we haven't shown you how the updated
information gets back out on to the disk. The answer isin the variable $~1 . By default it's undef,
and everything is normal. But when it's set to some string, it makes the diamond operator (*'<>"
even more magical than usual.

We dready know about much of the diamond's magic - it will automatically open and close a
series of files for you, or read from the standard-input stream if there aren't any filenames given.
But when there's a string in $/1 , that string is used as a backup filename's extension. Let's see that
in action.

Let's say it's time for the diamond to open our file fred03.dat. It opens it like before, but now it
renamesiit, calling it fred03.dat.bak.>*® We've still got the same file open, but now it has a different
name on the disk.

%6 Some of the details of this procedure will vary on non-Unix systems, but the end result should be nearly the same. Seethe
release notes for your port of Perl.

190

Learning Perl, 3rd edition

Next, the diamond creates a new file and gives it the name fred03.dat. That's okay; we weren't
using that name any more. And now the diamond selects the new file as the default for output, so
that anything that we print will go into that file.*’

So now the whi | e loop will read a line from the old file, update that, and print it out to the new
file. This program can update hundreds of files in a few seconds on a typical machine. Pretty
powerful, huh?

Once the program has finished, what does the user see? The user says, "Ah, | see what happened!
Perl edited my file fred03.dat, making the changes | needed, and saved me a copy of the original in
the backup file fred03.dat.bak just to be helpful!" But we now know the truth: Perl didn't really
edit any file. It made a modified copy, said "Abracadabral”, and switched the files around while
we were watching sparks come out of the magic wand. Tricky.

Some folks use atilde ("~") as the value for $71, since that resembles what emacs does for backup
files. Another possible value for $~1 isthe empty string. This enablesin-place editing, but doesn't
save the origina data in a backup file. But since a small typo in your pattern could wipe out all of
the old data, using the empty string is recommended only if you want to find out how good your
backup tapes are. It's easy enough to delete the backup files when you're done. And when
something goes wrong and you need to rename the backup files to their original names, you'll be
glad that you know how to use Perl to do that (see the multiple-file rename example in Chapter
13).

16.4.1 In-place Editing from the Command Line

A program like the example from the previous section is fairly easy to write. But Larry decided it
wasn't easy enough.

Imagine that you need to update hundreds of files that have the misspelling Randal | instead of the
one-l name Randal . You could write a program like the one in the previous section. Or you could
do it al with aone-line program, right on the command line:

$ perl -p -i.bak -w -e 's/Randal |/ Randal /g' fred*. dat

Perl has a whole dew of command-line options that can be used to build a complete program in a
few keystrokes.*® Let's see what these few do.

Starting the command with per | does something like putting #! / usr/ bi n/ per | at the top of afile
does: it saysto use the program perl to process what follows.

The - p option tells Perl to write a program for you. It's not much of a program, though; it looks
something like this:>*

while (<>) { print; }.
If you want even less, you could use - n instead; that leaves out the pri nt statement. (Fans of awk

will recognize - p and - n.) Again, it's not much of a program, but it's pretty good for the price of a
few keystrokes.

%7 The diamond also tries to duplicate the original file's permission and ownership settings as much aspossible; for example, if
the old one was world-readable, the new one should be, as well.

38 See the perlrunmanpage for the complete list.

9 Actually, thepri nt occursinacont i nue block. Seethe perlsynand perlrunmanpages for more information.

191

Learning Perl, 3rd edition

The next optionis -i . bak , which you might have guessed sets $~1 to . bak" before the program
starts. If you don't want a backup file, you can use-i alone, with no extension.

We've seen - w before - it turns on warnings.

The - e option says "executable code follows." That means that the s/ Randal | / Randal / g string is
treated as Perl code. Since we've aready got a whi | e loop (from the - p option), this code is put
inside the loop, before the print. For technical reasons, the last semicolon in the -e code is
optional. But if you have more than one - e, and thus more than one chunk of code, only the
semicolon at the end of the last one may safely be omitted.

The last command-line parameter is fred*. dat , which says that @Rrcv should hold the list of
filenames that match that glob. Put the pieces all together, and it's as if we had written a program
likethis:

#!/usr/bin/perl -w

@\RGV = glob "fred*.dat";
$Mo= "L bak";

while (<>) {
s/ Randal | / Randal / g;
print;

}

Compare this program to the one we used in the previous section. It's pretty similar. These
command-line options are pretty handy, aren't they?

192

Learning Perl, 3rd edition

16.5 Exercises

These exercises are al related; it may be helpful to see what the second and third should do before
starting on the first. See Section A.15 for answers.

1.

[15] Make a program that will read through the perlfunc.pod file looking for identifier
names on =i t emlines (as in the similar exercise at the end of Chapter 9). The program
should write a database showing the first line number on which each identifier appears.
That is, if f r ed was mentioned on lines 23, 29, and 54, the value stored under the key f r ed
would be 23. (Hint: the specia $. variable gives the line number of the line that was just
read.)

[10] Make a program that will take a Perl function name on the command line, and report
what =i t emline of the perlfunc.pod file first mentions that function. Y our program should
not have to read through along file to get this answer. What should your program do if the
function name isn't found?

[10] (Extra credit exercise.) Modify the program from the previous exercise so that when
the function is found in the database, your program will launch your favorite pager
program to view the perlfunc.pod file at that line. (Hint: many programs that can be used
for viewing text files work like less does, with acommand linelike | ess +1234 fi | enanme
to start viewing the file at line 1234. Your favorite text editor may also support this
convention, which isaso used by more, pico, vi, emacs, and view.)

193

Learning Perl, 3rd edition

Chapter 17. Some Advanced Perl Techniques

What we've put in the rest of this book is the core of Perl, the part that every Perl user should
understand. But there are a few other techniques that, while not obligatory, are still valuable tools
to have in your toolbox. We've gathered the most important of those for this chapter.

Don't be misled by the title of the chapter, though; the techniques here aren't especialy more
difficult to understand than what we have elsewhere. They are "advanced" merely in the sense that
they aren't necessary for beginners. The first time you read this book, you may want to skip (or
skim) this chapter so you can get right to using Perl. Come back to it a month or two later, when
you're ready to get even more out of Perl. Consider this entire chapter a huge footnote®.

17.1 Trapping Errors with eval

Sometimes, your ordinary, everyday code can cause a fatal error in your program. Each of these
typical statements could crash a program:

$barney = $fred / $dino;
di vide-by-zero error?

print "match\n" if /~($wilm)/;
illegal regular expression error?

open CAVEMAN, $fred or die "Can't open file '"$fred" for input: $!'";

user-generated error fromdie?
Y ou could go to some trouble to catch some of these, but it's hard to get them all. (How could you
check the string $wi | ma from that example to ensure that it makes a valid regular expression?)
Fortunately, Perl provides asimple way to catch fatal errors: wrap the code in an eval block:

eval { $barney = $fred / $dino } ;

Now, even if $di no is zero, that line won't crash the program. The eval is actually an expression
(not a control structure, like whi | e or f oreach) so that semicolon is required at the end of the
block.

When a normally fatal error happens during the execution of an eval block, the block is done
running, but the program doesn't crash. So that means that right after an eval finishes, you'll be
wanting to know whether it exited normally or whether it caught a fatal error for you. The answer
is in the special s@variable. If the eval caught afatal error, $@will hold what would have been
the program's dying words, perhaps something like: 111 egal division by zero at ny_program
line 12. If there was no error, s@will be empty. Of course, that means that $s@is a useful
Boolean (true/false) value, true if there was an error, so you'll sometimes see code like this after an
eval block:

print "An error occurred: $@ if $@
The eval block isatrue block, so it makes a new scope for lexical (my) variables. This piece of a
program shows an eval block hard at work:

foreach nmy $person (gw fred wilnm betty barney dino pebbles /) {
eval {
open FILE, "<$person"
or die "Can't open file '$person' : $!'";

3% \We contemplated doing that in one of the drafts, but got firmly rejected by O'Reilly's editors.

194

Learning Perl, 3rd edition

ny($total, $count);

while (<FILE>) {
$total += $_;
$count ++;

}

ny $average = $total / $count;
print "Average for file $person was $average\n";

&do_sonet hi ng($person, $average);

b
if (3@ {

print "An error occurred ($@, continuing\n";
}

}

How many possible fatal errors are being trapped here? If thereis an error in opening the file, that
error istrapped. Calculating the average may divide by zero, so that error is trapped. Even the call
to the mysteriousy named &do_sonet hi ng subroutine will be protected against fatal errors,
because an eval block traps any otherwise-fatal errors that occur during the time that it's active.
(Thisfeatureis handy if you have to call a subroutine written by someone else, and you don't know
whether they've coded defensively enough to avoid crashing your program.)

If an error occurs during the processing of one of the files, we'll get an error message, but the
program will go on to the next file without further complaint.

You can nest eval blocks inside other eval blocks. The inner one traps errors while it runs,
keeping them from reaching the outer blocks. (Of course, after the inner eval finishes, if it caught
an error, you may wish to re-post the error by using di e, thereby letting the outer eval catch it.)
An eval block traps any errors that occur during its execution, including errors that happen during
subroutine cals (as we saw in the example earlier).

We mentioned earlier that the eval isan expression, which iswhy the trailing semicolon is needed
after the closing curly brace. But since it's an expression, it has a return value. If there's no error,
it's like a subroutine: the return value is the last expression evaluated, or it's returned early with an
optional return keyword. Here's another way to do the math without having to worry about
divide-by-zero:

ny $barney = eval { $fred / $dino };

If theeval trapsafatal error, the return valueis either undef or an empty list, depending upon the
context. So in the previous example, $barney is either the correct result from dividing, or it's
undef; we don't really need to check $@ (although it's probably a good idea to check
def i ned($bar ney) beforewe useit further).

There are four kinds of problems that eval can't trap. The first group are the very serious errors
that crash Perl itself, such as running out of memory or getting an untrapped signal. Since Perl
itself isn't running, there's no way it can trap these errors.®*

Of course, syntax errors inside the eval block are caught at compile time - they're never returned
ins@

%1 Some of these errors are listed with an (X) code on the per|diag manpage, if you're curious.

195

Learning Perl, 3rd edition

The exi t operator terminates the program at once, even if it's called from a subroutine inside an
eval block. (This correctly implies that when writing a subroutine, you should use di e rather than
exi t to signa when something goeswrong.)

The fourth and final kind of problem that an eval block can't trap are warnings, either user-
generated ones (from warn) or Perl's internally generated warnings (requested with the -w
command-line option or the use war ni ngs pragma). There's a separate mechanism from eval for
trapping warnings; see the discussion of the __ WARN__ pseudosignal in the Perl documentation for
the details.

We should also mention that there's another form of eval that can be dangerous if it's mishandled.

In fact, you'll sometimes run across someone who will say that you shouldn't use eval inyour code
for security reasons. They're (mostly) right that eval should be used only with great care, but
they're talking about the other form of eval , sometimes called "eval of astring". If the keyword
eval isfollowed directly by a block of codein curly braces, as we're doing here, there's no need to
worry - that's the safe kind of eval .

17.2 Picking Items from a List with grep

Sometimes you'll want only certain items from a list. Maybe it's only the odd numbers selected
from alist of numbers, or maybe it's only the lines mentioning Fr ed from afile of text. Aswell
seein this section, picking someitems from alist can be done simply with thegr ep operator.

Let's try that first one and get the odd numbers from a large list of numbers. We don't need
anything new to do that:

ny @dd_nunbers;

foreach (1..1000) {

push @dd_nunbers, $_ if $_ % 2;
}
That code uses the modulus operator (%9, which we saw in Chapter 2. If a number is even, that
number "mod two" gives zero, which is false. But an odd number will give one; since that's true,
only the odd numbers will be pushed onto the array.

Now, there's nothing wrong with that code as it stands - except that it's a little longer to write and
slower to run than it might be, since Perl providesthe gr ep operator:

ny @dd_nunbers = grep { $_ %2 } 1..1000;

That line gets a list of 500 odd numbers in one quick line of code. How does it work? The first
argument to grep is a block that uses $_ as a placeholder for each item in the list, and returns a
Boolean (true/false) value. The remaining arguments are the list of items to search through. The
grep operator will evaluate the expression once for each item in the list, much as our origina
f oreach loop did. For the ones where the last expression of the block returns a true value, that
dement isincluded in the list that results from gr ep.

While the grep is running, $_ is aliased to one element of the list after another. We've seen this
behavior before, in the foreach loop. It's generadly a bad idea to modify $_ inside the grep
expression, because thiswill damage the original data.

The gr ep operator shares its name with a classic Unix utility that picks matching lines from a file
by using regular expressions. We can do that with Perl'sgr ep, which is much more powerful.

196

Learning Perl, 3rd edition

Herewe pull only the lines mentioning f r ed from afile:
ny @matching_lines = grep { /\bfred\b/i } <FILE>;

There's a simpler syntax for grep, too. If al you need for the selector is a simple expression
(rather than awhole block), you can just use that expression, followed by a comma, in place of the
block. Here'sthe simpler way to write that latest example:

ny @matching_lines = grep /\bfred\b/i, <FILE>

17.3 Transforming Items from a List with map

Another common task is transforming items from a list. For example, suppose you have alist of
numbers that should be formatted as "money numbers' for output, as with the subroutine
&bi g_noney (from Chapter 15). But we don't want to modify the original data; we need a modified
copy of thelist just for output. Here's one way to do that:

ny @ata = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
ny @ornmatted_dat a;

foreach (@ata) {
push @ormatted_data, &big_noney($);
}
That looks similar in form to the example code used at the beginning of the section on gr ep,
doesn't it? So it may not surprise you that the replacement code resembles the first gr ep example:

ny @ata = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
ny @ormatted_data = map { &big_noney($_) } @lata;

The map operator looks much like gr ep because it has the same kind of arguments: a block that
uses $_, and alist of items to process. And it operatesin asimilar way, evaluating the block once
for each item in the list, with $_ aliased to a different original list element each time. But the last
expression of the block is used differently; instead of giving a Boolean value, the final value
actually becomes part of the resulting list.

Any grep or map statement could be rewritten as a f or each loop pushing items onto a temporary
array. But the shorter way is typically more efficient and more convenient. Since the result of nap
or grep is a ligt, it can be passed directly to another function. Here we can print that list of
formatted "money numbers’ as an indented list under a heading:
print "The noney nunbers are:\n",

map { sprintf("%®5s\n", $_) } @ornutted_data;
Of course, we could have done that processing all at once, without even the temporary array
@ ormatted_dat a:
ny @ata = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
print "The noney nunbers are:\n",

map { sprintf("9%®5s\n", &big noney($)) } @lata;
As we saw with grep, there's also a simpler syntax for nap. If al you need for the selector is a
simple expression (rather than a whole block), you can just use that expression, followed by a
comma, in place of the block:

print "Sonme powers of two are:\n",
mp "\t" . (2** %) . "\n", 0..15;

%2 One other important difference is that the expression used by nap is evaluated in a list context and may return any number of
items, not necessarily one each time.

197

Learning Perl, 3rd edition

17.4 Unquoted Hash Keys

Perl offers many shortcuts that can help the programmer. Here's a handy one: you may omit the
quote marks on some hash keys.

Of course, you can't omit the quote marks on just any key, since a hash key may be any arbitrary
string. But keys are often simple. If the hash key is made up of nothing but letters, digits, and
underscores without starting with a digit, you may be able to omit the quote marks. This kind of
simple string without quote marksis called abareword , since it stands alone without quotes.

One place you are permitted to use this shortcut is the most common place a hash key appears. in
the curly braces of a hash element reference. For example, instead of $score{"fred"}, you could
writesimply $scor e{fred}. Since many hash keys are ssimple like this, not using quotes is a red
convenience. But beware; if there's anything inside the curly braces besides a bareword, Perl will
interpret it as an expression.

Another place where hash keys appear is when assigning an entire hash using a list of key-value
pairs. The big arrow (=>) is especially useful between a key and a value, because (again, only if
the key is abareword) the big arrow quotesit for you:
Hash contai ning bow ing scores
ny %score = (

bar ney => 195,

fred => 205,

di no => 30,
)
This is the one important difference between the big arrow and a comma; a bareword to the left of
the big arrow is implicitly quoted. (Whatever is on the right is left alone, though.) This feature of
the big arrow doesn't have to be used only for hashes, although that's the most frequent use.

17.5 More Powerful Regular Expressions

After already reading three chapters about regular expressions, you know that they're a powerful
feature in the core of Perl. But there are even more features that the Perl developers have added;
we'll see some of the most important ones in this section. At the same time, you'll see alittle more
about the internal operation of the regular expression engine.

17.5.1 Non-greedy Quantifiers

The four quantifiers we've already seen (in Chapter 8) are all greedy. That means that they match
as much as they can, only to reluctantly give some back if that's necessary to alow the overall
pattern to succeed. Here's an example: Suppose you're using the pattern / f r ed. +bar ney/ on the
string fred and barney went bow ing |ast night. Of course, we know that the regular
expression will match that string, but let's see how it goes about it.**

First, of course, the subpattern fred matches the identical literal string. The next part of the
pattern is the . +, which matches any character except newline, at least one time. But the plus
guantifier is greedy; it prefers to match as much as possible. So it immediately matches all of the
rest of the string, including the word ni ght . (Thismay surprise you, but the story isn't over yet.)

%3 The regular expression engine makes a few optimizations that make the true story different than we tell it here, and those
optimizations change from one rel ease of Perl to the next. You shouldn't be able to tell fromthe functionality that it's not doing
as we say, though. If you want to know how it really works, you should read the latest source code. Be sure to submit patches
for any bugs you find.

198

Learning Perl, 3rd edition

Now the subpattern bar ney would like to match, but it can't - we're at the end of the string. But
since the . + could still be successful even if it matched one fewer character, it reluctantly gives
back the letter t at the end of the string. (It's greedy, but it wants the whol e pattern to succeed even
more than it wants to match everything all by itself.)

The subpattern bar ney tries again to match, and still can't. So the . + gives back the letter h and
lets it try again. One character after another, the . + gives back what it matched until finaly it
givesup all of the letters of bar ney. Now, finally, the subpattern bar ney can match, and the overal
match succeeds.

Regular expression engines do alot of backtracking like that, trying every different way of fitting
the pattern to the string until one of them succeeds, or until none of them has.*** But as you could
see from this example, that can involve alot of backtracking, as the quantifier gobbles up too much
of the string and has to be forced to return some of it.

For each of the greedy quantifiers, though, there's also a non-greedy quantifier available. Instead
of the plus (+), we can use the non-greedy quantifier +2, which matches one or more times (just as
the plus does), except that it prefers to match as few times as possible, rather than as many as
possible. Let's see how that new quantifier works when the pattern is rewritten as
/fred. +?bar ney/ .

Once again, fred matchesright at the start. But thistime the next part of the patternis. +?, which
would prefer to match no more than one character, so it matches just the space after fred. The
next subpattern is bar ney, but that can't match here (since the string at the current position begins
with and barney...). Sothe. +? reluctantly matchesthe a and lets the rest of the pattern try again.
Once again, bar ney can't match, so the . +? accepts the letter n and so on. Once the . +? has
matched five characters, bar ney can match, and the pattern is a success.

There was still some backtracking, but since the engine had to go back and try again just a few
times, it should be a big improvement in speed. Well, it's an improvement if you'll generally find
barney near fred. If your data often had f r ed near the start of the string and bar ney only at the
end, the greedy quantifier might be a faster choice. In the end, the speed of the regular expression
depends upon the data.

But the non-greedy quantifiers aren't just about efficiency. Although they'll always match (or fail
to match) the same strings as their greedy counterparts, they may match different amounts of the
strings. For example, suppose you had some HTML-like* text, and you want to remove al of the
tags <BOLD> and </ BOLD>, leaving their contents intact. Here's the text:

I"mtal king about the cartoon with Fred and <BOLD>W | na</ BOLD>!
And here's a substitution to remove those tags. But what's wrong with it?
S#<BOLD>(. *) </ BOLD>#$1#g;

%4 |n fact, some regular expression enginestry every different way, even continuing on after they find one that fits. But Perl's
regular expression engineis primarily interested in whether the pattern can or cannot match, so finding even one match means
that the engine'swork is done. Again, see Jeffrey Friedl's Mastering Regular Expressions.

%5 Once again, we aren't using real HTML because you can't correctly parse HTML with simple regular expressions. If you
really need to work with HTML or a similar markup language, use a module that's made to handle the complexities.

199

Learning Perl, 3rd edition

The problem is that the star is greedy.*® What if the text had said this instead?
I thought you said Fred and <BOLD>Vel ma</ BOLD>, not <BOLD>W | ma</ BOLD>

In that case, the pattern would match from the first <BOLD> to the last </ BOLD>, leaving intact the
ones in the middle of the line. Oops! Instead, we want a non-greedy quantifier. The non-greedy
form of star is* 2, so the substitution now looks like this:

SH#<BOLD>(. *?) </ BOLD>#$1#g;
And it does the right thing.

Since the non-greedy form of the plus was +? and the non-greedy form of the star was * 2, you've
probably realized that the other two quantifiers look similar. The non-greedy form of any curly-
brace quantifier looks the same, but with a question mark after the closing brace, like {5, 10} ? or
{8,12.%" And even the question-mark quantifier has a non-greedy form: 2?. That matches either
once or not at al, but it prefers not to match anything.

17.5.2 Matching Multiple-line Text

Classic regular expressions were used to match just single lines of text. But since Perl can work
with strings of any length, Perl's patterns can match multiple lines of text as easily as single lines.
Of course, you have to include an expression that holds more than one line of text. Here's a string
that's four lineslong:

$_ = "I"mnuch better\nthan Barney is\nat bow ing, \nWI na.\n";

Now, the anchors ~ and $ are normally anchors for the start and end of the whole string (see
Section 8.3 in Chapter 8). But the / m regular expression option lets them match at internal
newlines aswell (think mfor multiple lines). This makes them anchors for the start and end of each
line, rather than the whole string. So this pattern can match:

print "Found 'wilma' at start of line\n" if /”wilma\b/im
Similarly, you could do a substitution on each line in a multiline string. Here, we read an entire
fileinto one variable,*® then add the file's name as a prefix at the start of each line;

open FILE, $filenanme
or die "Can't open '$filenanme': $!'"

ny $lines = join '', <FILE>
$lines =~ s/*/$filenane: /gm
17.6 Slices

It often happens that we need to work with only afew elements from agiven list. For example, the
Bedrock Library keeps information about their patrons in a large file>® Each line in the file
describes one patron with six colon-separated fields: a person's name, library card number, home
address, home phone number, work phone number, and number of items currently checked out.

%6 There's another possible problem: we should have used the/ s modifier aswell, since the end tag may be on a different line
than the start tag. It'sa good thing that thisisjust an example; if we were writing something like this for real, we would have
taken our own advice and used a well-written module.

%7 | n theory, there's also a non-greedy quantifier form that specifies an exact number, like{ 3} ?. But since that saysto match
exactly three of the preceding item, it has no flexibility to be either greedy or non-greedy.

%8 Hopeit'sa small one. Thefile, that is, not the variable.

39 |t should really be a full-featured database rather than a flat file. They plan to upgrade their system, right after the next Ice
Age.

200

Learning Perl, 3rd edition

A little bit of the file looks something like this:

fred flintstone: 2168: 301 Cobbl est one Way: 555-1212: 555-2121: 3
barney rubbl e: 709918: 3128 Granite Bl vd: 555-3333: 555-3438: 0

One of the library's applications needs only the card numbers and number of items checked out; it
doesn't use any of the other data. It could use code something like this to get only the fields it
needs:
while (<FILE>) {

chonp;

my @tens = split /:/;

nmy($card_num S$count) = (S$itens[1l], S$itens[5]);

. # now work with those two vari abl es
}

But the array @t ens isn't needed for anything else; it seems like a waste.
better to assign theresult of spl it toalist of scalars, like this:

ny($nane, $card_num $addr, $hone, $work, S$Scount) = split /:/;

Well, that avoids the unneeded array @t ens - but now we have four scalar variables that we didn't
really need. For this situation, some people used to make up a number of dummy variable names,
like $dumy_1, that showed that they really didn't care about that element from the split. But
Larry thought that that was too much trouble, so he added a special use of undef . If anitemina
list being assigned to is undef, that means simply to ignore the corresponding element of the
source list:

ny(undef, $card_num undef, undef, undef, $count) = split /:/;

Isthis any better? Well, it has an advantage that there aren't any unneeded variables. But it hasthe
disadvantage that you have to count undef s to tell which element is $count . And this becomes
quite unwieldy if there are more elements in the list. For example, some people who wanted just
the mtime value from st at were writing code like this:

ny(undef, undef, undef, undef, undef, undef, undef,
undef, undef, $ntine) = stat $sone_file;

370

Maybe it would be

If you use the wrong number of undef s, you'll get the atime or ctime by mistake, and that's a tough
one to debug. There's a better way: Perl can index into alist as if it were an array. Thisisalist
slice. Here, sincethemtimeisitem 9 in thelist returned by st at ,*"* we can get it with a subscript:

my $ntinme = (stat $some_file)[9];

Those parentheses are required around the list of items (in this case, the return value from st at).
If you wrote it like this, it wouldn't work:

ny $ntime = stat($sonme_file)[9]; # Syntax error!

A list dice has to have a subscript expression in sguare brackets after a list in parentheses. The
parentheses holding the arguments to afunction call don't count.

Going back to the Bedrock Library, the list we're working with is the return value from spl i t . We
can now use adliceto pull out item 1 and item 5 with subscripts:

nmy $card_num = (split /:/)[1];
ny $count = (split /:/)[5];

370 |¢'s not much of a waste, really. But stay with us. All of these technicues are used by programmers who don't understand
dlices, so it'sworthwhile to see all of them here.

37 | t's the tenth item, but the index number is 9, since thefirst itemisat index 0. Thisisthe same kind of zero-based indexing
that we've used already with arrays.

201

Learning Perl, 3rd edition

Using a scalar-context dlice like this (pulling just a single element from the list) isn't bad, but it
would be more efficient and simpler if we didn't have to do the spl it twice. So let's not do it
twice; let's get both values at once by using alist dlicein list context:

ny($card_num S$count) = (split /:/)[1, 5];
The indices pull out element 1 and element 5 from the list, returning those as a two-element list.

When that's assigned to the two ny variables, we get exactly what we wanted. We do the sl i ce
just once, and we set the two variables with a simple notation.

A dliceis often the simplest way to pull afew items from alist. Here, we can pull just the first and
last items from alist, using the fact that index - 1 means the last element:*

ny($first, $last) = (sort @anes)[0, -1];

The subscripts of adlice may be in any order and may even repeat values. This example pullsfive
itemsfrom alist of ten:

ny @anes = qW{ zero one two three four five six seven eight nine };
ny @unbers = (@anes)[9, 0, 2, 1, 0];
print "Bedrock @unbers\n"; # says Bedrock nine zero two one zero

17.6.1 Array Slice

That previous example could be made even simpler. When dlicing elements from an array (as
opposed to alist), the parentheses aren't needed. So we could have donethe dlice like this:

ny @unbers = @uanes[9, 0, 2, 1, 0];

This isn't merely a matter of omitting the parentheses; this is actually a different notation for
accessing array elements: an array slice. Earlier (in Chapter 3), we said that the at-sign on @anres
meant "all of the elements.” Actually, in alinguistic sensg, it's more like a plural marker, much like
the letter "s' in words like "cats' and "dogs." In Perl, the dollar sign means there's just one of
something, but the at-sign means there'salist of items.

Figure 17-1. Array slices versus single elements
just one element
Snames [...]
from an oreay
@names [...]
o fist of elements
A diceis aways alist, so the array dice notation uses an at-sign to indicate that. When you see

something like @ames[... 1 inaPerl program, you'll need to do just as Perl does and look at the
at-sign at the beginning as well as the square brackets at the end.

372 Sorting a list merely to find the extreme elementsisn't likely to be the most efficient way. But Perl's sort is fast enough that
thisis generally acceptable, aslong asthelist doesn't have more than a few hundred elements.

202

Learning Perl, 3rd edition

The square brackets mean that you're indexing into an array, and the at-sign means that you're
getting a whole list®” of elements, not just a single one (which is what the dollar sign would
mean). SeeFigure 17-1.

The punctuation mark at the front of the variable reference (either the dollar sign or at-sign)
determines the context of the subscript expression. If there's a dollar sign in front, the subscript
expression is evaluated in a scalar context to get an index. But if there's an at-sign in front, the
subscript expression is evaluated in alist context to get alist of indices.

So we see that @anes[2, 5] means the same list as ($nanes[2], $names[5]) does. If you
want that list of values, you can ssimply use the array slice notation. Any place you might want to
write thelist, you can instead use the ssimpler array dlice.

But the dlice can be used in one place where the list can't: a slice may be interpolated directly into a
string:

ny @anes = qW{ zero one two three four five six seven eight nine };

print "Bedrock @anes[9, 0, 2, 1, 0]\n";

If we were to interpolate @anes, that would give al of the items from the array, separated by
spaces. If instead we interpolate @anes[9, 0, 2, 1, 0], that givesjust those items from the
array, separated by spaces.®”*

Let's go back to the Bedrock Library for a moment. Maybe now our program is updating Mr.
Slate's address and phone number in the patron file, because he just moved into a large new place
in the Hollyrock hills. If weve got a list of information about him in @tens, we could do
something like thisto update just those two elements of the array:

ny $new_hone_phone = "555-6099";

ny $new _address = "99380 Red Rock West";

@tens[2, 3] = ($new_address, $new_hone_phone);

Once again, the array slice makes a more compact notation for alist of elements. In this case, that
last line is the same as an assignment to ($itens[2], $itens[3]), but more compact and
efficient.

17.6.2 Hash Slice

In away exactly analogousto an array dlice, we can also slice some elements from a hash in a hash
slice. Remember when three of our characters went bowling, and we kept their bowling scoresin
the vscor e hash? We could pull those scores with alist of hash elements or with a slice. These
two techniques are equivalent, although the second is more concise and efficient:

ny @hree_scores = ($score{"barney"}, $score{"fred"}, $score{"dino"});

ny @hree_scores = @core{ qw barney fred dino/ };

37 Of course, when we say "awholelist,” that doesn't necessarily mean more elements than one - the list could be empty, after

all.

374 More accurately, the items of the list are separated by the contents of Perl's$" variable, whose default isa space. This

should not normally be changed. When interpolating a list of values, Perl internally doesj oi n $",

standsin for thelist expression.

@i st,where@i st

203

Learning Perl, 3rd edition

A dice is aways alist, so the hash slice notation uses an at-sign to indicate that.* When you see
something like @core{ ... } inaPerl program, you'll need to do just as Perl does and ook at the
at-sign at the beginning as well as the curly braces at the end. The curly braces mean that you're
indexing into a hash; the at-sign means that you're getting awhole list of elements, not just asingle
one (which iswhat the dollar sign would mean). See Figure 17-2 .

Figure 17-2. Hash slices versus single elements

just one element
$score[...]
from @ hash

@score[...]

a list of elements

As we saw with the array dlice, the punctuation mark at the front of the variable reference (either
the dollar sign or at-sign) determines the context of the subscript expression. If there'sadollar sign
in front, the subscript expression is evaluated in a scalar context to get asingle key.*”® But if there's
an at-sign in front, the subscript expression is evaluated in alist context to get alist of keys.

It's normal at this point to wonder why there's no percent sign ("%') here, when we're talking about
a hash. That's the marker that means there's a whole hash; a hash dice (like any other dice) is
dways a list, not a hash.*”” In Perl, the dollar sign means there's just one of something, but the at-
sign meansthere'salist of items, and the percent sign means there's an entire hash.

As we saw with array dlices, a hash slice may be used instead of the corresponding list of elements
from the hash, anywhere within Perl. So we can set our friends bowling scores in the hash (without
disturbing any other elements in the hash) in this simple way:

ny @l ayers = qw barney fred dino /;

ny @ow ing_scores = (195, 205, 30);

@core{ @l ayers } = @ow ing_scores;

That last line does the same thing as if we had assigned to the three-edlement list
($score{"barney"}, $score{"fred"}, $score{"dino"}).

A hash slice may be interpolated, too. Here, we print out the scores for our favorite bowlers:

print "Tonight's players were: @layers\n";
print "Their scores were: @core{@l ayers}\n";

37 |t it sounds asif we're repeating ourselves here, it's because we want to emphasize that hash slices are analogous to array
dices. If it sounds asif we're not repeating ourselves here, it's because we want to emphasize that hash slices are analogous to
array dices.

%% There's an exception you're not likely to run across, sinceit isn't used much in modern Perl code. Seetheentry for $; inthe
?erlvar manpage.

7" Ahash sliceisa slice (not a hash) in the same way that a housefireisa fire (not a house), while a fire house is a house (not a
fire). Moreor less.

204

Learning Perl, 3rd edition

17.7 Exercise
See Section A.16 for an answer to the following exercise:

1. [30] Make a program that reads a list of strings from a file, one string per line, and then
lets the user interactively enter patterns that may match some of the strings. For each
pattern, the program should tell how many grings from the file matched, then which ones
those were. Don't re-read the file for each new pattern; keep the strings in memory. The
filename may be hard-coded in the file. If a pattern is invalid (for example, if it has
unmatched parentheses), the program should simply report that error and let the user
continue trying patterns. When the user enters a blank line instead of a pattern, the
program should quit. (If you need afile full of interesting strings to try matching, try the
file sample_text in the files you've surely downloaded by now from the O'Reilly website;
see the Preface.)

205

Learning Perl, 3rd edition

Appendix A. Exercise Answers

This appendix contains the answers to the excerses that appear throughout the book.
A.1 Answers to Chapter 2 Exercises

1. Heresonewaytodoit:

#!/usr/bin/perl -w

$pi = 3.141592654;

$circ =2 * $pi * 12.5;

print "The circunference of a circle of radius 12.5 is $circ.\n";
Asyou see, we started this program with atypical #! line; your path to Perl may vary. We
also turned on warnings.

The first real line of code sets the value of $pi to our value of Pi. There are several
reasons a good programmer will prefer to use a constant®® value like this: it takes time to
type 3. 141592654 into your program if you ever need it more than once. It may be a
mathematical bug if you accidentally used 3. 141592654 in one place and 3. 14159 in
another. There's only one line to check on to make sure you didn't accidentaly type
3. 141952654 and send your space praobe to the wrong planet. It's easier to type $pi than
Pi, especidly if you don't have Unicode. And it will be easy to maintain the program in
case the value of Pi ever changes.*”

Next we calculate the circumference, storing it into $ci rc, and we print it out in a nice
message. The message ends with a newline character, because every line of a good
program's output should end with a newline. Without it, you might end up with output
looking something like this, depending upon your shell's prompt:

The circunference of a circle of radius 12.5 is
78.53981635. bash-2. 019%[]

The box represents the input cursor, blinking at the end of the line, and that's the shell's
prompt a the end of the message®® Since the circumference isnt redly
78.53981635. bash- 2. 01$, this should probably be construed as a bug. So use \ n at the
end of each line of outpuit.

2. Herésoneway todoit:

#!/usr/bin/perl -w

$pi = 3.141592654;

print "What is the radius? ";

chonp($radi us = <STDI N>) ;

$circ = 2 * $pi * Pradius;

print "The circunference of a circle of radius $radius is "
"$circ.\n";

Thisis just like the last one, except that now we ask the user for the radius, and then we
use $radi us in every place where we previously used the hard-coded value 12. 5. If we
had written the first program with more foresight, in fact, we would have had a variable
named $r adi us inthat one aswell.

3% | you'd prefer a more formal sort of constants, the const ant pragma may be what you're looking for.
39 |t nearly did change by a legislative act in the state of Indiana. http://mww.urbanlegends.com/legal/pi_indiana.html
0 \We asked O'Reilly to spend the extra money to print the input cursor with blinking ink, but they wouldn't do it for us.

206

http://www.urbanlegends.com/legal/pi_indiana.html

Learning Perl, 3rd edition

Note that we chonped the line of input. If we hadn't, the mathematical formula would still
have worked, because a string like " 12. 5\ n" is converted to the number 12. 5 without any
problem. But when we print out the message, it would look like this:

The circunference of a circle of radius 12.5
is 78.53981635.

Notice that the newline character is till in $radi us, even though we've used that variable
as a number. Since we had a space between $radi us and the word "i s" in the pri nt
statement, there's a space at the beginning of the second line of output. The moral of the
story is: chonp your input unless you have areason not to do that.

Heresoneway to do it:

#!/usr/ bin/perl -w
$pi = 3.141592654;
print "What is the radius? ";
chonp($radi us = <STDI N>) ;
$circ = 2 * $pi * $radius;
if ($radius < 0) {

$circ = 0;

print "The circunference of a circle of radius $radius is "
"$circ.\n";

Here we added the check for a bogus radius. Even if the given radius was impossible, the
returned circumference will at least be nonnegative. You could have changed the given
radius to be zero, and then calculated the circumference, too; there's more than one way to
do it. In fact, that's the Perl motto: There Is More Than One Way To Do It. And that's
why each exercise answer startswith "Here's oneway to do it.”

Heresoneway todo it:

print "Enter first nunber:
chonp($one = <STDI N>);

print "Enter second nunber:
chonp($two = <STDI N>) ;

$result = $one * $two;

print "The result is $result.\n";

Notice that we've left off the #! line for this answer. In fact, from here on, well assume
that you know it's there, so you don't need to read it each time.

Perhaps those are poor choices for variable names. In a large program, a maintenance
programmer might think that $t wo should have the value of 2. In this short program, it
probably doesn't matter, but in a large one we could have called them something more
descriptive, with nameslike $first _response.

In this program, it wouldn't make any difference if we forgot to chonp the two variables
$one and $t wo, Since we never use them as strings once they've been set. But if next week
our maintenance programmer edits the program to print a message like: The result of
mul tiplying $one by $two is $result.\n, those pesky newlines will come back to
haunt us. Once again, chonp unless you have a reason not to chonp®' - like in the next
exercise.

%1 Chomping is like chewing - not always needed, but most of the time it doesn't hurt.

207

Learning Perl, 3rd edition

5. Heresoneway todoit:

print "Enter a string:

$str = <STDI N>;

print "Enter a nunber of tines:

chonmp($num = <STDI N>) ;

$result = $str x $num

print "The result is:\n$result"”;
This program is almost the same as the last one, in a sense. We're "multiplying” a string by
a number of times. So we've kept the structure of the previous exercise. In this case,
though, we didn't want to chonp the first input item - the string - because the exercise
asked for the strings to appear on separate lines. So, if the user entered f r ed and anewline
for the string, and 3 for the number, we'd get a newline after eachf r ed just as we wanted.

Inthe print statement at the end, we put the newline before $resul t because we wanted
to have thefirst fred, printed on aline of itsown. That is, we didn't want output like this,
with only two of the threef r edsaligned in acolumn:

The result is: fred

fred

fred
At the same time, we didn't need to put another newline at the end of the pri nt output
because $resul t should aready end with a newline.

In most cases, Perl won't mind where you put spaces in your program; you can put in
spaces or leave them out. But it's important not to accidentally spell the wrong thing! If
the x runs up against the preceding variable name $st r, Perl will see $st r x, which won't
work.

208

Learning Perl, 3rd edition

A.2 Answers to Chapter 3 Exercises

1. Heresonewaytodoit:

print "Enter sonme lines, then press Cirl-D\n"; # or maybe Crl-2Z
@i nes = <STDI N>;

@everse_lines = reverse @ines;

print @everse_|ines;

... or, even more simply:
print "Enter some lines, then press Crl-D\n";
print reverse <STDI N>;

Most Perl programmers would prefer the second one, as long as you don't need to keep the
list of linesaround for later use.

2. Herésoneway todoit:

@anmes = gw fred betty barney dino w | ma pebbles bamm bamm/;
print "Enter some nunmbers from1l to 7, one per line, then press".
" Crl-Di\n";
chonmp(@wunbers = <STDI N>) ;
foreach (@unbers) {
print "$nanes[$_ - 1]\n";

}
We have to subtract one from the index number so that the user can count from 1 to 7 even
though the array isindexed from O to 6.

Another way to accomplish this would be to have a dummy item in the @anes array, like
this:

@ames = gw dunmmy_itemfred betty barney dino w | m pebbles
bamm banm /;

Give yourself extra credit if you checked to make sure that the user's choice of index was
infactintherange1to 7.

3. Heresoneway todoit, if you want the output al on oneline:

chomp(@i nes = <STDI N>) ;
@orted = sort @i nes;
print "@orted\n";

... Or, to get the output on separate lines:
print sort <STDI N>;

209

Learning Perl, 3rd edition

A.3 Answers to Chapter 4 Exercises

1. Heresonewaytodoit:

sub total {
ny $sum # private variable

foreach (@) {

$sum += $_;

}
$sum

}
This subroutine uses $sumto keep a running total. At the start of the subroutine, $sumis
undef, since it's a new variable. Then, the f or each loop steps through the parameter list
(from @), using $_ as the control variable. (Note: once again, there's no automatic
connection between @, the parameter array, and $_, the default variable for the f or each
loop.)

The first time through the f or each loop, the first number (in $_) is added to $sum Of
course, $sumis undef , Since nothing has been stored in there. But since were using it asa
number, which Perl sees because of the numeric operator +=, Perl acts as if it's aready
initialized to 0. Perl thus adds the first parameter to 0, and puts the total back into $sum

Next time through the loop, the next parameter is added to $sum which isno longer undef .
The sum is placed back into $sum and on through the rest of the parameters. Finaly, the
last line returns $sumto the caller.

There's a potential bug in this subroutine, depending upon how you think of things.
Suppose that this subroutine was called with an empty parameter list (as we considered
with the rewritten subroutine &mrax in the chapter text). In that case, $sumwould be undef ,
and that would be the return value. But in this subroutine, it would probably be "more
correct” to return 0 as the sum of the empty list, rather than undef. (Of course, if you
wished to distinguish the sum of an empty list from the sum of, say, (3, -5, 2), returning
undef would be the right thing to do.)

If you don't want a possibly undefined return value, though, it's easy to remedy: simply
initialize $sumto zero rather than using the default of undef :

ny $sum = 0;
Now the subroutine will always return a number, even if the parameter list were empty.

2. Herésoneway todoit:

Renmenber to include & otal from previous exercise!
print "The nunbers from1 to 1000 add up to ",
& otal (1..1000), ".\n";

Note that we can't call the subroutine from inside the double-quoted string** so the
subroutine call is another separate item being passed to print. The total should be

500500, a nice round number. And it shouldn't take any noticeable time at al to run this
program; passing a parameter list of 1000 valuesis an everyday task for Perl.

2 \We can't do this without advanced trickiness, that is. It'srare to find anything that you absolutely can't do in Perl.

210

Learning Perl, 3rd edition

A.4 Answers to Chapter 5 Exercises

1. Heresonewaytodoit:

ny % ast_name = gqw
fred flintstone
barney rubbl e
wilma flintstone

p’ri nt "Please enter a first nane:

chonmp(ny $nanme = <STDI N>);

print "That's $nane $l ast _nane{$nane}.\n";
In this one, we used aqw / list (with curly braces as the delimiter) to initialize the hash.
That's fine for this simple data set, and it's easy to maintain because each data item is a
simple given name and simple family name, with nothing tricky. But if your data might
contain spaces - for example, if robert de niro ormary kay pl ace wereto visit Bedrock
- this simple method wouldn't work so well.

Y ou might have chosen to assign each key/value pair separately, something like this:

ny 9% ast _nane;

$l ast _nanme{"fred"} = "flintstone";

$l ast _nanme{"barney"} = "rubble";

$l ast _nanme{"wi I ma"} = "flintstone";
Note that (if you chose to declare the hash with ny, perhaps because use strict wasin
effect), you must declare the hash before assigning any elements. Y ou can't use ny on only
part of avariable, like this:

ny $last_name{"fred"} = "flintstone"; # Oops!

The ny operator works only with entire variables, never with just one element of an array
or hash. Speaking of lexical variables, you may have noticed that the lexical variable
$name is being declared inside of the chonp function call; it is fairly common to declare
each ny variable asit is needed, like this.

This is another case where chonp is vital. If someone enters the five-character string
"fred\ n" and we fail to chonp it, we'll be looking for " f red\ n" as an element of the hash
- and it's not there. Of course, chonp aone won't make this bulletproof; if someone enters
"fred \n" (with atrailing space), we don't have a way with what we've seen so far to tell
that they meant f r ed.

If you added a check whether the given key exi st s in the hash, so that you'll give the user
an explanatory message when they misspell aname, give yourself extra points for that.

2. Heresoneway todoit:
ny(@wrds, %ount, $word); # (optionally) declare our variables
chonmp(@wrds = <STDI N>);

foreach $word (@wrds) {
$count { $wor d} += 1; # or $count {$word} = $count{$word} + 1;

foreach $word (keys %ount) { # or sort keys %ount
print "$word was seen $count{$word} tines.\n";

}

211

Learning Perl, 3rd edition

In this one, we declared all of the variables at the top. People who come to Perl from a
background in languages like Pascal (where variables are always declared "at the top")
may find that way more familiar than declaring variables as they are needed. Of course,
we're declaring these because we're pretending that use strict may be in effect; by
default, Perl won't require such declarations.

Next, we use the line-input operator, <STDI N>, in alist context to read all of the input lines
into @wr ds, and then we chonp those al at once. So @wr ds is our list of words from the
input (if the words were all on separate lines, as they should have been, of course).

Now, the first foreach loop goes through all of the words. That loop contains the most
important statement of the entire program, the statement that says to add one to
$count { $wor d}, and put the result back into $count { $wor d} . Although you could write it
either the short way (with the += operator) or the long way, the short way isjust alittle bit
more efficient, since Perl hasto ook up $wor d in the hash just once.®®

For each word in the first f or each loop, we add one to $count { $wor d} . So, if the first
word isfred, we add oneto $count {"fred"}. Of course, since thisisthefirst time weve
seen $count{"fred"}, it's undef. But since were treating it as a number (with the
numeric += operator, or with +, if you wrote it the long way), Perl converts undef to 0 for
us, automatically. Thetotal is1, whichisthen stored back into $count {"fred"}.

The next time through that f or each loop, let's say the word is bar ney. So, we add one to
$count {"bar ney"}, bumping it up from undef to1, aswell.

Now let's say the next word isf r ed again. When we add one to $count {"fred"}, whichis
aready 1, we get 2. This goes back into $count {"fred"}, meaning that we've now seen
fredtwice

When we finish the first f or each loop, then, we've counted how many times each word
has appeared. The hash has a key for each (unique) word from the input, and the
corresponding valueis the number of times that word appeared.

So now, the second f or each loop goes through the keys of the hash, which are the unique
words from the input. In thisloop, we'll see each different word once. For each one, it says
something like"fred was seen 3 tines."

If you want the extra credit on this problem, you could put sort before keys to print out
the keys in order. If there will be more than a dozen itemsin an output list, it's generally a
good idea for them to be sorted, so that a human being who is trying to debug the program
will fairly quickly be ableto find the item he or she wants.

83 Also, at |east in some versions of Perl, the shorter way will avoid a warning about using an undefined value that may crop up
with the longer one. The warning may also be avoided by using the ++ operator to increment the variable, although we haven't
shown you that operator yet.

212

A.5 Answers to Chapter 6 Exercises

1. Heresonewaytodoit:

Learning Perl, 3rd edition

print reverse <>,

Well, that's pretty simple! But it works because pri nt islooking for a list of strings to
print, which it gets by calling rever se in alist context. And reverse islooking for alist
of strings to reverse, which it gets by using the diamond operator in list context. So, the
diamond returns a list of al of the lines from al of the files of the user's choice. That list
of linesisjust what cat would print out. Now r ever se reversesthelist of lines, and pri nt
prints them ouit.

Heresoneway to do it:

print "Enter some lines, then press Cirl-D:\n"; # or Crl-2Z
chomp(ny @ines = <STDI N>);

print "1234567890" x 7, "12345\n"; # ruler line to colum 75

foreach (@ines) {
printf "o®20s\n", $_;

}
Here, we start by reading in and chomping al of the lines of text. Then we print the ruler
line. Since that's a debugging aid, we'd generally comment-out that line when the program
isdone. We could have typed " 1234567890" again and again, or even used copy-and-paste
to make aruler line as long as we needed, but we chose to do it this way because it's kind
of coal.

Now, the f oreach loop iterates over the list of lines, printing each one with the %20s
conversion. If you chose to do so, you could have created a format to print the list all at
once, without the loop:

ny $format = "9%R20s\n" x @i nes;

printf $format, @i nes;
It's a common mistake to get 19-character columns. That happens when you say to
yoursalf,® "Hey, why do we chonp the input if we're only going to add the newlines back
on later?' So you leave out the chonp and use a format of " o%20s" (without a newline).*®
And now, mysteriously, the output is off by one space. So, what went wrong?

The problem happens when Perl tries to count the spaces needed to make the right number
of columns. If the user enters hel | o and a newline, Perl sees six characters, not five, since
newline is a character. So it prints fourteen spaces and a six-character string, sure that it
gives the twenty characters you asked for in " 920s". Oops.

Of course, Perl isn't looking at the contents of the string to determine the width; it merely
checks the raw number of characters. A newline (or another special character, such as a
tab or anull character) will throw things off.*®

®4 Or to Larry, if he's standing nearby.
% Unless Larry told you not to do that.
%6 As Larry should have explained to you by now.

213

Learning Perl, 3rd edition

3. Herésoneway todoit:

print "Wat colum wi dth would you like? "
chonmp(ny $wi dth = <STDI N>);

print "Enter sonme lines, then press Cirl-D:\n"; # or Crl-2Z
chomp(ny @ines = <STDI N>);

print "1234567890" x (($w dth+9)/10), "\n"; # ruler line as needed

foreach (@ines) {
printf "o${w dth}s\n", $_;

This is much like the previous one, but we ask for a column width first. We ask for that
first because we can't ask for more input after the end-of-file indicator, at least on some
systems. Of courseg, in the real world, you'll generally have a better end-of-input indicator
when getting input from the user, aswe'll seein later chapters.

Another change from the previous exercise's answer is the ruler line. We used some math
to cook up aruler line that's at least as long as we need, as suggested as an "extra credit”
part of the exercise. Proving that our math is correct is an additional challenge. (Hint:
Consider possible widths of 50 and 51, and remember that the right side operand to x is
truncated, not rounded.)

To generate the format this time, we used the expression "%&%{wi dt h}s\n", which
interpolates $wi dt h. The curly braces are required to "insulate" the name from the
following s; without the curly braces, we'd be interpolating $wi dt hs, the wrong variable.
If you forgot how to use curly braces to do this, though, you could have written an
expressionlike' % . $width . "s\n" toget the sameformat string.

The value of $wi dth brings up another case where chonp is vital. If the width isn't
chomped, the resulting format string would resemble " 80\ ns\ n". That's not useful.

People who have seen printf before may have thought of another solution. Because
printf comes to us from C, which doesn't have string interpolation, we can use the same
trick that C programmers use. If an asterisk ("*") appears in place of a numeric field width
in aconversion, avalue from the list of parameters will be used:

printf "9%s\n", $width, $_;

214

Learning Perl, 3rd edition

A.6 Answers to Chapter 7 Exercises

1.

Heresoneway to do it:
[fred/

Of course, you have to put that into the test program! This is pretty simple. The more
important part of this exerciseistrying it out on the sample strings. It doesn't match Fr ed,
showing that regular expressions are case-sensitive. (We'll see how to change that later.) It
does match f rederi ck and Al f r ed, since both of those strings contain the four-letter string
fred.. (Matching whole words only, so that frederick and Al fred wouldn't match, is
another feature we'll seelater.)

If the test program is working correctly,® it should show those two matches as something
like | <fred>erick| and | Al <fred>|, using the angle brackets to show where f r ed was
found inside each string.

Heresoneway to do it:
 a+b*/

That matches the letter a one or more times (that's the plus), followed by b zero or more
times (that's the star). Well, that's what the exercise asked for, but you may have come up
with something different. After al, if you're looking for any number of b's, you know
you'll always find what you're looking for. So you could have written / a+/ instead, and
matched the same strings.®*®

For that matter, when you want to match one or more a's, you know that the match will
succeed when you find even the first one. So, / a/ will match the same set of strings as the
first two. The description "any string containing at least one a followed by any number of
b's" means the exact same thing as "any string containing a." Of the sample strings, this
matches all of them except r ed.

There are even more ways to make this pattern than we show here. Often, in trying to write
a pattern, you will need to decide which one of many possible patterns best suits your
needs.

Heresoneway to do it:
JANNF\ %%
That's what the text asked for: a backslash (typed twice, since we mean areal backslash®)

zero or more times (that's the first star), followed by an asterisk (backslashed, since star is
ametacharacter) zero or moretimes (that'sthe last star). Whew!

%7 |f the test program didn't work correctly, you probably didn't download it as we suggested. And you probably didn't test what
you typed, aswe also suggested. But in that case, you probably didn't do the exercises either; you're just reading these answers
in the back of the book, and so the test program (which you didn't actually run) performed flawlessly. In that case, this footnote

is pointless.

8 To be sure, you'll match different parts of the strings. But any string that matches/ a+b*/ will also match/ a+/ , and vice

versa.

3 \Whenever you mean a real backslash in Perl, type two of them. A lone backslash may try to do something magical, but two of
themwill always mean a real backslash.

215

Learning Perl, 3rd edition

And what about the sample strings? Did it match any of them? You bet: it matches all of
them! It's because the backslashes and asterisks aren't required in the pattern; that is, this
pattern can match the empty string.

Here's a rule you can rely upon: when a pattern may freely match the empty string, it'l
always match, since the empty string can be found in any string. In fact, it'll always match
in thefirst place that you look.

S0, this pattern matches all four charactersin\\ **, as you'd expect. It matches the empty
string at the beginning of f r ed, which you may not have expected. In the gring bar ney
\\\ x| it matches the empty string at the beginning. Y ou might wish it would hunt down
the backslashes and stars at the end of that string, but it doesn't bother. It looks at the
beginning, sees zero backslashes followed by zero asterisks, declares the match a success,
and goes home to watch television. And in *wi | ma\, it matches just the star at the
beginning; as you see, this pattern never gets away from the beginning of the string, since
it aways matches at the first opportunity.

Now, if someone asked you for a pattern to match any number of backslashes followed by
any number of asterisks, you'd be technically correct to give them this one. But chances
are, that's not what they really wanted. Spoken languages like English may be ambiguous
and not say exactly what they mean, but regular expressions aways mean exactly what

they say they mean.

In this case, maybe the person who asked for the pattern forgot to say that he or she always
wants to match at least one character, when the pattern matches at all. We can do that. If
there's at least one backslash, /\\ +\ **/ will match. (That's just like what we had before,
but there's a plus in place of the first star, meaning one or more backslashes.) If there's not
at least one backslash, then in order to match at least one character, we'll need at least one
asterisk, sowewant/\ *+/ . When you put those two possibilities together, you get:

TN FH 4]

Ugly, isn'tit? Regular expressions are powerful but not beautiful. And they've contributed
to Perl being maligned as a "write-only language." To be sure that no one criticizes your
code in that way, though, it's kind to put an explanatory comment near any pattern that's
not obvious. On the other hand, when you've been using these for a year, you will have a
different definition of "obvious' than you have today.

How does this new pattern work with the sample strings? With \\ ** | it matches all four
characters, just like the last one. It won't match f r ed, which is probably the right behavior
given the problem description. For barney *** it matches the six characters at the
end, asyou hoped. And for *wi | ma\ , it matches the asterisk at the beginning.

216

Learning Perl, 3rd edition

4. Herésoneway todoit:
while (<>) {
if (/wilma/) { print; }

}
This is a grep-like program. For each line of text (contained in $_), we check to see
whether the pattern matches. If it matches, we print it. This program usespri nt 's default:
if you don't tell it to print something else, it prints $_. So we have written a program that
uses $_ al the way through, but never mentions it anywhere. Perl folks love to use the
defaults and save time typing, so you'll see alot of programs that do this.

And if, for extra credit, you wanted to match a capitalized W | ma aswell, / wi | ma| W | ma/
would do the job. Or, more simply, you could have written / (W Wi | ma/ . People who
have used other regular expression implementations and aready know about character
classes, which well discuss in the next chapter, could make that last one even shorter (and
more efficient).**

5. Herésoneway todoit:
while (<>) {
if (/wilm/) {
if (/fred/) {
print;
}
}
}

This tests / fred/ only after we find / wi | ma/ matches, but fred could appear before or
after wi | ma in theline; each test isindependent of the other.

If you wanted to avoid the extra nested i f test, you might have written something like

this:>*
while (<>) {
if (/wilm. *fred|fred.*wilm/) {
print;
}
}

This works because we'll either have wi | na before f red, or fred beforewi | ra. If we had
written just /wi | ma. *fred/, that wouldn't have matched a line like fred and wilma
f1i nt st one, even though that line mentions both of them.

We made this an extra-credit exercise because many folks have a mental block here. We
showed you an "or" operation (with the vertical bar, "| "), but we never showed you an
"and" operation. That's because there isn't one in regular expressions.®* If you want to
know whether one pattern and another are both successful, just test both of them.

| you made the whole pattern case-insensitive, shame on you. We haven't learned that yet. Besides, that would match

W LMA, which shouldn't match, according to the exer cise description.

*1 Folks who know about the logical-and operator, which we saw in Chapter 10, could do bothtests/ f r ed/ and/ wi | ma/ in
thesamei f conditional. That's more efficient, more scalable, and an all-around better way than the ones given here. But we
haven't seen |logical-and yet.

%2 But there are some tricky and advanced ways of doing what some folks would call an "and" operation. These are generally
less efficient than using Perl'slogical -and, though, depending upon what optimizations Per| and its regular expression engine
can make.

217

Learning Perl, 3rd edition

A.7 Answers to Chapter 8 Exercises

1. Heresonewaytodoit:
/\b(fred|w |l m)\s+flintstone\b/

If you forgot to use the \ b word-boundary anchors, take off half a point; without those, this
would mistakenly match strings like al fred f i ntst ones. The exercise description said
to match words.

2. The point of this exercise may not be obvious, but in the real world, you'll often have to do
something similar. Someday, you'll be unlucky enough to have a confusing program to
maintain, and you'll wonder what the author was trying to accomplish.*®

/" ([~"1*)"/ matches a simple string in double quotes. By a "simple" string, we don't
mean one like Perl's double-quoted strings, which could contain a backslashed double-
guote mark or other backslash magic. This matches just a double-quote mark, the contents
of the string (which can't contain a double quote), and a closing quote mark. The contents
may be empty. The parentheses aren't needed for grouping, so they seem to be memory
parentheses; as we'll see in the next chapter, this regular expression memory, which holds
the quoted substring, is probably being saved for some later use. Perhaps this pattern
would be used in reading a configuration file with quoted strings, athough in that case it
should probably use anchors.

/~0?[0-3]?[0-7]{1, 2}$/ matchesif the string has nothing but an octal number (perhaps
with a leading zero) in the range from 0 through 0377. Note that this one is anchored at
both ends, so it doesn't allow anything else in the string before or after the number. (The
previous pattern wasn't anchored; it could match anywhere in the string.)

/™ b[\w.] {1, 12}\ b$/ matches strings made up of nothing but letters, digits, underscores,
and dots, but never starting or ending with a dot. Also, the strings are limited to a
maximum of 12 characters. You may have noticed that the dot inside the character classis
not special, so it doesn't need to be backslashed. That makes the character class match
ordinary letters, digits, and underscores, and also dots.

The way we can be sure that this one won't allow a string to start or end with adot isthat it
has both a word-boundary anchor and a start-of-string or end-of-string anchor at each end
of the string. The word-boundary anchor can match only if there's a "word" starting or
ending there, and adot can't be part of aword.

So, this would match strings like perl.tar. gz, but not perl.tar. or .profile or
some_excessivel y_|ong_filenane or ...*" This pattern could be useful for validating
user-chosen filenames.

3. Heresoneway todoit:
I™MS$[A Za-z_ 1\ w3/

The dollar sign at the start has to be backslashed to mean areal dollar sign. What follows
must be aletter or underscore, then zero or more letters, digits, or underscores.

% | you're especially unlucky, this happens when you look at your own code ten minutes after writing it.
%4 You may know that file and directory names beginning with a dot are not displayed by default on Unix systems, and that the
special directory name. . always means the directory one level higher in the hierarchy.

218

Learning Perl, 3rd edition

4. Thispatternissurprisingly tricky to get right. Here's how we construct it, step by step.

We start out by needing to match aword, so that's/\ w+/ . Of course, we want to remember
that word for later, so we add parentheses: / (\w+) /. And we want to match it when it
occurs two or more times, so that's / (\ w+)\ 1+/ . (The plus sign at the end means one or
more times - but that'sin addition to the one time that the word occurred originally.)

But were not done yet. Now we need to alow for the whitespace which may come
between the words. We don't want to memorize the whitespace (since it may vary), so
we'll put it outside the parentheses: / (\ w+)\ s\ 1+/ . Oh, but there could be any number of
whitespace characters, so long as there's at least one, so we'll add a plus sign. So now we
have/ (\w)\'s+\ 14/,

But that's not right; the final plus sign is modifying the backreference alone. We need it to
apply to both the backreference (that is, our repeated word) and the whitespace in front of
it /(\w+) (\s+\ 1)+ . So, nhow we can match a triple word. First, the part in the first
parenthesis pair matches the first occurrence, then the part in the second parenthesis pair
can twice match some whitespace followed by that same word. When we try it out, it
matches al of our sentences with doubled words, so we happily put it into our program
and move on to the next project.

Then, the next week, we get a bug report! The pattern reports a match on the sentence
This is a test, even though there's clearly no doubled word there. In moments, we've
fired up the pattern test program® to see what part of the string is matching: | Th<i s i s>
a test|. Thereitis, adoubled wordi s, hidden in an ordinary string.

Clearly, this is a job for a word boundary anchor; we can't have our word start in the
middle of another word. So we fix the program to use /\ b(\ w+) (\ s+\ 1) +/ , and sit back,
confident that we've got it right thistime.

And then, just when you got started on another project, another bug report comesin. This
time, we've matched the doubled word t he in the phrase t he t heory. Yes, we need a
word boundary at the end of the pattern to keep from matching a partial word there:
I\ b(\w+) (\s+\ 1) +\ b/ . Now wevefinaly gotten it right.

What you've just read is a true story. The regular expression has been changed, but the
bug reports are real. It does happen, more often than we'd like to admit, that even after
you've been writing these patterns for years, you can make a pattern which has a bug, you
can test it with a number of test cases, you can put it into along-running program, the Perl
documentation, or even a best-selling Perl book, and not realize that the bug is there until
much later.

The moral of the story is that regular expressions can be challenging. If you're serious
about learning about regular expressions, though (and al Perl programmers should be), we
highly recommend the book Mastering Regular Expressions, by Jeffry Friedl (O'Reilly &
Associates, Inc.).

% We told you that it would come in handy, and we weren't kidding.

219

Learning Perl, 3rd edition

A.8 Answers to Chapter 9 Exercises

1. Heresonewaytodoit:
/ ($what) {3}/
Once swhat has been interpolated, this gives a pattern resembling / (f r ed| bar ney) {3}/ .

Without the parentheses, the pattern would be something like/ f r ed| bar ney{ 3}/, whichis
thesame as/ f red| bar neyyy/ . S0, the parentheses are required.

2. Herésoneway todoit:
@\RGV = '/[path/to/perlfunc.pod ; # or nentioned on the commandline

while (<>) {
if (/r=items+([a-z_]\w)/i) {
print "$1\n"; # print out that identifier nane
}
}

With what we've shown you so far, the only way to open an arbitrary file for input is to use
the diamond operator (or to use input redirection, perhaps). So we put the path to
per | f unc. pod iNt0 @GARGV.

The heart of this program is the pattern, which looks for an identifier name on an =i t em
line. The exercise description was ambiguous, in that it didn't say whether =i t emhad to be
in lower case; the author of this pattern seems to have decided that it should be a case-
insensitive pattern. If you interpreted it otherwise, you could have used the pattern
I"=items+([a-zA-Z_]\w) /.

3. Heresoneway todoit:
@\RGV = '/path/to/perlfunc.pod ; # or nentioned on the commandline

ny %een; # (optionally) declaring the hash
while (<>) {
if (/"=items+([a-z_]\w)/i) {
$seen{ $1} += 1; # a tally for each item

foreach (sort keys %seen) {
if ($seen{$_} > 2) { # nore than tw ce
print "$_ was seen $seen{$_} tinmes.\n";

}
}

This one starts out much like the previous one, but declares the hash %seen (in case use
strict might bein effect). Thisis called ¥seen because it tells us which identifier names
we've seen so far in the program, and how many times. This is a common use of a hash.

The first loop now counts each identifier name, as an entry in %seen, instead of printing it
out. The second loop goes through the keys of %seen, which are the different identifier
names we've seen. It sorts the list, which is a courtesy to the user, who might otherwise
have to search for the desired itemin along list.

Although it may not be obvious, this program is pretty close to a real-world problem that
most of us are likely to see. Imagine that your webserver's 400-megabyte logfile has some
information you need. There's no way you're going to read that file on your own; you'll
want a program to match the information you need (with a pattern) and then print it out in
some nice report format. Perl is good for putting together quick programs to do that sort of
thing.

220

Learning Perl, 3rd edition

A.9 Answer to Chapter 10 Exercise

1. Heresonewaytodoit:

ny $secret = int(1 + rand 100);
This next |ine may be un-comented during debuggi ng
print "Don't tell anyone, but the secret nunber is $secret.\n";

while (1) {
print "Please enter a guess from1 to 100:
chonp(ny $guess = <STDI N>);
if ($guess =~ /quit|exit| \s*$/i) {
print "Sorry you gave up. The nunber was $secret.\n";
| ast;
} elsif ($guess < Psecret) {
print "Too small. Try again!\n";
} elsif ($guess == $secret) {
print "That was it!\n";
| ast;
} else {
print "Too large. Try again!\n";
}

}

The first line picks out our secret number from 1 to 100. Here's how it works. First, r and
is Perl's random number function, so rand 100 gives us a random number in the range
from zero up to (but not including) 100. That is, the largest possible value of that
expression is something like 99. 999.* Adding one gives a number from 1 to 100. 999,
then thei nt function truncates that, giving aresult from 1 to 100, as we needed.

The commented-out line can be helpful during development and debugging, or if you like
to cheat. The main body of this program is the infinite whi | e loop. That will keep asking
for guesses until we executel ast .

It's important that we test the possible strings before the numbers. If we didn't, do you see
what would happen when the user types quit ? That would be interpreted as a number
(probably giving a warning message, if warnings were turned on), and since the value as a
number would be zero, the poor user would get the message that their guess was too
small. We might never get to the string tests, in that case.

Another way to make the infinite loop here would be to use a naked block with r edo. It's
no more or less efficient; merely another way to write it. Generaly, if you expect to
mostly loop, it's good to write whi | e, since that loops by default. If looping will be the
exception, anaked block may be a better choice.

% The actual largest possible val ue depends upon your system; see http://www.cpan.org/doc/FMTEYEWTK/randomif you really
need to know.

221

http://www.cpan.org/doc/FMTEYEWTK/random

Learning Perl, 3rd edition

A.10 Answers to Chapter 11 Exercises

1. Heresonewaytodoit:

sub get _line {
pronpts for, reads, chonps, and returns a |line of input
print $_[0];
chomp(ny $line = <STDI N>) ;
$l i ne;

}

ny $source = &get _|ine("Wiich source file? ");
open IN, $source
or die "Can't open '$source' for input: $!";

ny $dest = &get _line("What destination file? ");
die "Wn't overwite existing file"

if -e $dest; # optional safety test
open QUT, ">$dest"

or die "Can't open '$dest' for output: $!'";

nmy $pattern
ny $repl ace

&get _line("Wat search pattern: ");
&get _line("Wat replacenent string: ");

while (<IN>) {

s/ $pattern/ $repl ace/ g;

print OUT $_;

}

This one needs to ask the user for severa things, so we decided to make a subroutine to
take care of some of the work. The subroutine prints out the prompt, which is the first
(and only) parameter to the subroutine. Then it reads aline of input, chompsit, and returns
it. That makesit easy to ask for each parameter, one after the other.

Once we know what the user wants for the source file, we try opening it. An earlier
version of this program asked for all of the parameters first, but if the source file name is
incorrect, there's no point in having the user type more parameters. This way can save the
user some time and trouble. Note that the die message reports the file name inside quote
marks; this can be helpful in diagnosing a problem when a string has whitespace
characters. If you opened " <$source" instead of just plain $source, that's fine, too.

(There's no reason to worry that the user of this program will do something nefarious,
since anything they can do with this program, they could accomplish just as well without
it. If this program were made to run over the web, to give one example, we'd need to be
much more cautious about opening the user's choice of file))

As we hope you discovered when you tried it, it's easy to overwrite an existing file smply
by opening it for output. So we put in a safety test using the -e file test. The
corresponding die message doesn't include $! because we're not reporting a failed request
of the system. By the way, this test for overwrite is fine here, but it would be insufficient
in an environment where many copies of the same program (or different programs all
working with the same files) might be running a once. This typicaly happens with
programs on the web: Two processes check the same filename for existence at
approximately the same time, and both see that it doesn't exist. So one of them creates the
file, and an instant later the other one overwrites it with a file of its own. This kind of
concurrency problem can't be solved with the - e file test; some kind of file locking (which
is beyond the scope of this book) is needed.

222

Learning Perl, 3rd edition

With that safety test, the user won't accidentally overwrite an existing file. Is that test a
good idea? Wadll, if the user comes to see you next week and says, "Golly, I'm glad you
put in that safety test. It kept me from accidentally overwriting my filel", then you know
that it was the right thing to do. But if the user says, "Dagnabit, your program is hard to
use! | told it what filename | wanted to use for output, and it wouldn't let me use it until |
first deleted that file!", then it was the wrong thing to do. Making decisions like this is
often the toughest part of a programmer's job. Perhaps we should make the program ask
something like, "Are you sure you want to overwrite the existing file “barney'?" by default,
but have a command-line option for the power user that says to overwrite without asking.
Next version.

Once we've asked for everything and opened the files, the rest of the program is pretty
simple. The heart of the program is the loop at the end, which reads lines, updates them,
and prints them out. Note that the substitution usesthe / g option - if you left that out, your
program is broken, since the exercise asked that the program replace every occurrence of
the search pattern, not just the first one on each line.

Were you able to use regular expression metacharacters in the search pattern? Sure; the
substitution interpolates $pattern to make the search pattern. Were you able to use
memory variables and backslash escapes in the replacement string? Nope; $repl ace is
interpolated to make the replacement string, but it's not re-interpolated to interpret any
magical characters. If $repl ace holds $1, that's a dollar sign and a numeral one in the
replacement string. If Perl aways kept re-interpolating, you could never put a dollar sign
or backslash into the replacement string, since they'd always make something magical
happen. (Actually, though, if you need one additional level of interpolation, it is possible.
Seetheper | f ag manpages for some suggestions on how to do this.)

Heresoneway to do it:

foreach ny $file (@RGV) {
ny $attribs = &attributes($file);
print ""$file' $attribs.\n";

}

sub attributes {
report the attributes of a given file
ny $file = shift @;
return "does not exist" unless -e $file;

nmy @ttrib;

push @ttrib, "readable" if -r $file;

push @ttrib, "witable" if -w $file;

push @ttrib, "executable" if -x $file;

return "exists" unless @ttrib;

'is' . join " and ", @ttrib; # return value

}
In this one, once again it's convenient to use a subroutine. The main loop prints one line of
attributes for each file, perhaps telling us that ' cereal -killer' is executabl e or that
'sasquat ch' does not exist.

The subroutine tells us the attributes of the given filename. Of coursg, if the file doesn't
even exist, there's no need for the other tests, so we test for that first. If there's no file,
we'll return early.

223

Learning Perl, 3rd edition

If the file does exist, welll build alist of attributes. (Give yourself extra credit pointsif you
used the specia _ filehandle instead of $file on these tests, to keep from calling the
system separately for each new attribute.) 1t would be easy to add additional tests like the
three we show here. But what happens if none of the attributes is true? Well, if we can't
say anything else, at least we can say that the file exists, so we do. Theunl ess clause uses
the fact that @t tri b will be true (in a Boolean context, which is a special case of a scalar
context) if it's got any elements.

But if we've got some attributes, we'll join them with " and " and put "i s " in front, to
make a description like i s readabl e and writabl e. Thisisn't perfect however; if there
are three attributes, it says that the fileis readable and writable and executabl e,
which has too many ands, but we can get away with it. If you wanted to add more
attributes to the ones this program checks for, you should probably fix it to say something
likei s readable, witable, executable, and nonenpty. Ifthat mattersto you.

Note that if you somehow didn't put any filenames on the command line, this produces no
output. This makes sense; if you ask for information on zero files, you should get zero
lines of output. But let's compare that to what the next program does in a similar case, in
the discussion below.

Heresoneway to do it:

die "No file nanmes supplied!'\n" unless @RGY;
ny $ol dest _nanme = shift @ARGY,
ny $ol dest _age = - M $ol dest _nane;

foreach (@\RGV) {
ny $age = -M
($ol dest _name, $ol dest_age) = ($_, $age)
if $age > $ol dest_age;
}

printf "The oldest file was %, and it was % 1f days old.\n",
$ol dest _nane, $ol dest _age;
This one starts right out by complaining if it didn't get any filenames on the command
line. That's because it's supposed to tell us the oldest filename - and there ain't one if there
aren't any filesto check.

Once again, we're using the "high-water-mark™ agorithm. The first file is certainly the
oldest one seen so far. We have to keep track of its age aswell, so that'sin $ol dest _age.

For each of the remaining files, welll determine the age with the - mfile test, just as we did
for the first one (except that here, we'll use the default argument of $_ for the file test).
The last-modified time is generally what people mean by the "age" of afile, although you
could make a case for using a different one. If the age is more than $ol dest _age, well
use a list assignment to update both the name and age. We didn't have to use a list
assignment, but it's a convenient way to update several variables at once.

We stored the age from - Minto the temporary variable $age. What would have happened
if we had ssimply used - M each time, rather than using a variable? Well, first, unless we
used the specia _ filehandle, we would have been asking the operating system for the age
of the file each time, a potentially slow operation (not that you'd notice unless you have
hundreds or thousands of files, and maybe not even then). More importantly, though, we
should consider what would happen if someone updated a file while we're checking it.

224

Learning Perl, 3rd edition

That is, first we see the age of some file, and it's the oldest one seen so far. But before we
can get back to use - Ma second time, someone modifies the file and resets the timestamp
to the current time. Now the age that we save into $ol dest _age is actually the youngest
age possible. The result would be that we'd get the oldest file among the files tested from
that point on, rather than the oldest overall; this would be a tough problem to debug!

Finally, at the end of the program, we use printf to print out the name and age, with the
age rounded off to the nearest tenth of aday. Give yoursdlf extra credit if you went to the
trouble to convert the age to a number of days, hours, and minutes.

225

Learning Perl, 3rd edition

A.11 Answers to Chapter 12 Exercises

1. Here'soneway to doit, with aglob:

print "Wich directory? (Default is your home directory) "
chomp(ny $dir = <STDI N>);

if ($dir =~ /™MNs*$/) { # A blank line

chdir or die "Can't chdir to your hone directory: $!";
} else {

chdir $dir or die "Can't chdir to "$dir': $!'"
}

ny @iles = <*>;
foreach (@iles) {
print "$_\n";
}
First, we show a ssimple prompt, and read the desired directory, chomping it as needed.
(Without a chomp, we'd be trying to head for a directory that ends in a newline - legal in
Unix, and therefore cannot be presumed to simply be extraneous by thechdi r function.)

Then, if the directory name is nonempty, well change to that directory, aborting on a
failure. If empty, the home directory is selected instead. Finaly, a glob on "star" pulls up
all the names in the (new) working directory, automatically sorted to aphabetical order,
and they're printed one at atime.

2. Herésoneway todoit:

print "Wich directory? (Default is your home directory) "
chonp(ny $dir = <STDI N>);

if ($dir =~ /™Ms*$/) { # A blank |ine
chdir or die "Can't chdir to your hone directory:\n$!'";
} else {

chdir $dir or die "Can't chdir to "$dir': $!"

ny @iles = <.* *>; ## now i ncludes .*

foreach (sort @iles) { ## now sorts
print "$_\n";

}

Two differences from previous one: first, the glob now includes "dot star", which matches
all the names that do begin with a dot. And second, we now must sort the resulting list,
because some of the names that begin with a dot must be interleaved appropriately either
before or after the list of things without a beginning dot.

3. Heresoneway todoit:

print "Wich directory? (Default is your home directory) "
chomp(ny $dir = <STDI N>);
if ($dir =~ /™MNs*$/) { # A bl ank line

chdir or die "Can't chdir to your hone directory:\n$!'";
} else {

chdir $dir or die "Can't chdir to "$dir': $!"
}

opendir DOT, "." or die "Can't opendir dot: $!'";
foreach (sort readdir DOT) {
next if /™ML, ## if we were skipping dot files
print "$_\n";
}

226

Learning Perl, 3rd edition

Again, same structure as the previous two programs, but now we've chosen to open a
directory handle. Once we've changed the working directory, we want to open the current
directory, and we've shown that as the Dot directory handle.

Why DOT? Well, if the user asks for an absolute directory name, like / et c, there's no
problem opening it. But if the name is relative, like fr ed, let's see what would happen.
First, we chdir tofred, and then we want to use opendi r to open it. But that would open
fred in the new directory, not fred in the original directory. The only name we can be
sure will mean "the current directory” is". ", which aways has that meaning (on Unix and
similar systems, at least).

The readdi r function pulls up al the names of the directory, which are then sorted, and
displayed. If we had done the first exercise this way, we would have skipped over the dot
files, and that's handled by the uncommenting the commented-out line in the f or each
loop.

You may find yourself asking, "Why did we chdir first? You can use readdir and
friends on any directory, not merely on the current directory.” Primarily, we wanted to give
the user the convenience of being able to get to their home directory with a single
keystroke. But this could be the start of a generd file-management utility program; maybe
the next step would be to ask the user which of the files in this directory should be moved
to offline tape storage, say.

227

Learning Perl, 3rd edition

A.12 Answers to Chapter 13 Exercises

1. Heresonewaytodoit:
unl i nk @ARGV;
... or, if you want to warn the user of any problems:
foreach (@\RGV) {

unlink $_ or warn "Can't unlink "$_': $!, continuing...\n";
}
Here, each item from the command-invocation line is placed individually into $_, which is

then used as the argument to unl i nk. If something goes wrong, the warning gives the clue
about why.

2. Herésoneway todoit:

use Fil e:: Basenane;
use File:: Spec;

ny($source, $dest) = @ARGY;

if (-d $dest) {
ny $basename = basenane $source;
$dest = File::Spec->catfil e($dest, $basenane);

}

rename $source, $dest
or die "Can't rename '$source' to '$dest': $!\n";
The workhorse in this program is the last statement, but the remainder of the program is
necessary when we are renaming into a directory. First, after declaring the modules we're
using, we name the command-line arguments sensibly. If $dest isadirectory, we need to
extract the basename from the $sour ce name and append it to the directory ($dest).
Finally, once $dest is patched up if needed, the r enanme does the deed.

3. Heresoneway todoit:
use Fil e:: Basenane;
use File:: Spec;
ny($source, $dest) = @ARGY,

if (-d $dest) {
ny $basenane = basenane $source;
$dest = File::Spec->catfil e($dest, $basenane);

}

l'ink $source, $dest
or die "Can't link '$source' to '$dest': $!'\n";
As the hint in the exercise description said, this program is much like the previous one.
The difference is that we'll 1i nk rather than renane. |f your system doesn't support hard
links, you might have written this asthelast line:

print "Whuld link '$source' to '$dest'.\n";

228

Learning Perl, 3rd edition

4. Here'soneway todoit:

use Fil e:: Basenane;
use File:: Spec;

nmy $symink = $ARGV[0] eq '-s';
shift @RGV if $synlink;

nmy($source, $dest) = @ARGY,
if (-d $dest) {
ny $basenane = basenane $source;
$dest = File::Spec->catfil e($dest, $basenane);

}

if ($symink) {
sym i nk $source, $dest
or die "Can't make soft link from'$source' to '$dest': $!'\n";
} else {
|l ink $source, $dest
or die "Can't make hard link from'$source' to '$dest': $!'\n";
}

The first few lines of code (after the two use declarations) look at the first command-line
argument, and if it's"-s", we're making a symbolic link, so we note that as atrue value for
$synlink. If we saw that "-s", we then need to get rid of it (in the next line). The next
few lines are cut-and-pasted from the previous exercise answers. Finaly, based on the
truth of $syni i nk, we'lll choose either to create a symbolic link or a hard link. We also
updated the dying words to make it clear which kind of link we were attempting.

5. Heresoneway todoit:

foreach (<.* *>) {
ny $dest = readlink $_;
print "$_-> $dest\n" if defined $dest;

}
Each item resulting from the glob ends up in $_ one by one. If theitem isasymboalic link,
then readl i nk returns a defined value, and the location is displayed. If not, then the
condition fails, and we skip over it.

229

Learning Perl, 3rd edition

A.13 Answers to Chapter 14 Exercises

1. Heresonewaytodoit:

chdir "/" or die "Can't chdir to root directory: $!";

exec "Is", "-1" or die "Can't exec Is: $'";
The first line changes the current working directory to the root directory, as our particular
hard-coded directory. The second line uses the multiple-argument exec function to send
the result to standard output. We could have used the single-argument form just as well,
but it doesn't hurt to do it thisway.

2. Herésoneway todoit:

open STDOUT, ">Is.out" or die "Can't wite to Is.out: $'";

open STDERR, ">Is.err" or die "Can't wite to Is.err: $'";

chdir "/" or die "Can't chdir to root directory: $!";

exec "Is", "-1" or die "Can't exec Is: $'";
The first and second lines reopen STDOUT and STDERR to a file in the current directory
(before we change directories). Then, after the directory change, the directory listing
command executes, sending the data back to the files opened in the original directory.

Where would the message from the last di e go? Why, it would go into Is.err, of course,
since that's where STDERR is going at that point. The di e from chdi r would go there, too.
But where would the message go if we can't re-open STDERR on the second line? It goes to
the old STDERR. For the three standard filehandles, STDI N, STDOUT, and STDERR, if re-
opening them fails, the old filehandle is still open.

3. Heresoneway todoit:

if (‘date =~ /78/) {
print "go play!\n";

} else {
print "get to work!\n";

}

WEll, since both Saturday and Sunday start with an S, and the day of the week is the first
part of the output of the date command, thisis pretty ssimple. Just check the output of the
date command to see if it starts with S. There are many harder ways to do this program,
and we've seen most of them in our classes.

If we had to use this in a real-world program, though, we'd probably use the pattern
/~(Ssat|Sun)/. It'satiny bit less efficient, but that hardly matters; besides, it's so much
easier for the maintenance programmer to understand.

230

Learning Perl, 3rd edition

A.14 Answers to Chapter 15 Exercises

1. Heresonewaytodoit:

ny @unbers;
push @unbers, split while <>;
foreach (sort { $a <=> $b } @wunbers) { printf "9%®0g\n", $_; }

That second line of code is too confusing, isn't it? Well, we did that on purpose. Although
we recommend that you write clear code, some people like writing code that's as hard to

understand as possible,*’ so we want you to be prepared for the worst. Someday, you'l
need to maintain confusing code like this.

Since that line uses the whi | e modifier, it'sthe same asif it were written in aloop like this:
while (<>) { push @unbers, split; }

That's better, but maybe it's still a little unclear. (Nevertheless, we don't have a quibble
about writing it thisway. This oneis on the correct side of the "too hard to understand at a
glance" line.) Thewhi | e loop is reading the input aline at atime (from the user's choice of
input sources, as shown by the diamond operator), and spl it is, by default, splitting that
on whitespace to make a list of words - or, in this case, alist of numbers. The input is just
a stream of numbers separated by whitespace, after al. Either way that you write it, then,
that whi | e loop will put al of the numbersfrom the input into @unbers.

The f or each loop takes the sorted list and prints each one on its own line, using the %20g
numeric format to put them in a right-justified column. You could have used %20s
instead. What difference would that make? Well, that's a string format, so it would have
left the strings untouched in the output. Did you natice that our sample data included both
1.50 and 1. 5, and both 04 and 4? If you printed those as strings, the extra zero characters
will gtill be in the output; but 920g is a numeric format, so equal numbers will appear
identically in the output. Either format could potentially be correct, depending upon what
you're trying to do.

2. Herésoneway todoit:

don't forget to incorporate the hash % ast_nane,
either fromthe exercise text or the downl oaded file

nmy @eys = sort {
"\L$l ast _nane{$a}" cnp "\L$l ast _nane{$b}" # by |ast nane
or
"\L$a" cnp "\LS$b" # by first nane
} keys % ast _nane;

foreach (@eys) {
print "$last_nanme{$_}, $_\n"; # Rubbl e, Banm Bamm

}

There's not much to say about this one; we put the keys in order as needed, then print them
out. We chose to print them in last-name-comma-first-name order just for fun; the
exercise description | eft that up to you.

%7 \Well, we don't recommend it for normal coding purposes, but it can be a fun game to write confusing code, and it can be
educational to take someone el se's obfuscated code examples and spend a weekend or two figuring out just what they do. If you
want to see some fun snippets of such code and maybe get a little help with decoding them, ask around at the next Perl Mongers
meeting. Or search for JAPHs on the Web, or see how well you can decipher the example obfuscated code block near the end of
this chapter's answers.

231

Learning Perl, 3rd edition

3. Heresoneway todoit:

print "Please enter a string:
chonmp(ny $string = <STDI N>);
print "Please enter a substring:
chonmp(ny $sub = <STDI N>);

ny @l aces;

for (ny $pos = -1; ;) { # tricky use of three-part for |oop
$pos = index($string, $sub, $pos + 1); # find next position
last if $pos == -1;

push @l aces, $pos;

print "Locations of '"$sub' in '$string' were: @l aces\n";

This one starts out simply enough, asking the user for the strings and declaring an array to
hold the list of substring positions. But once again, as we see in the f or loop, the code
seems to have been "optimized for cleverness’, which should be done only for fun, never
in production code. But this actualy shows a valid technique which could be useful in
some cases, so let's see how it works.

The ny variable $pos is declared private to the scope of the f or loop, and it starts with a
value of - 1. So as not to keep you in suspense about this variable, we'll tell you right now
that it's going to hold a position of the substring in the larger string. The test and
increment sections of the f or loop are empty, so this is an infinite loop. (Of course, welll
eventually break out of it, in this case with| ast).

The first statement of the loop body looks for the first occurrence of the substring at or
after position $pos + 1. That means that on the first iteration, when $pos is still - 1, the
search will start at position 0, the start of the string. The location of the substring is stored
back into $pos. Now, if that was - 1, we're done with the f or loop, so | ast breaks out of
the loop in that case. If it wasn't - 1, then we save the position into @! aces and go around
the loop again. This time, $pos + 1 means that we'll start looking for the substring just
after the previous place where we found it. And so we get the answers we wanted and the
world is once again a happy place.

If you didn't want that tricky use of the f or loop, you could accomplish the same result as
shown here:

{
ny $p
whi | e
.
}
The naked block on the outside restricts the scope of $pos. You don't have to do that, but
it's often a good idea to declare each variable in the smallest possible scope. This means
we have fewer variables "alive" at any given point in the program, making it less likely
that we'll accidentally reuse the name $pos for some new purpose. For the same reason, if
you don't declare a variable in a small scope, you should generally give it a longer name
that's thereby less likely to be reused by accident. Maybe something like
$substring_positi on would be appropriatein this case.

os = -1;

s
(1) {
Same | oop body as the for |oop used above

232

Learning Perl, 3rd edition

On the other hand, if you were trying to obfuscate your code (shame on you!), you could
create amonster like this (shame on ug!):
for (ny $pos = -1; -1 1!I=
($pos = index

+$string,

+$sub,

+$pos

+1

)
push @l aces, ((((+$pos))))) {
"for ($pos !'= 1; # ;$pos++) {
print "position $pos\n";#;';# } pop @l aces;

}
That even trickier code works in place of the original tricky f or loop. By now, you should
know enough to be able to decipher that one on your own, or to obfuscate code in order to
amaze your friends and confound your enemies. Be sure to use these powers only for
good, never for evil.

Oh, and what did you get when you searched for t inThis is a test.? It'sat positions

10 and 13. It's not a position 0; since the capitalization doesn't match, the substring
doesn't match.

233

Learning Perl, 3rd edition

A.15 Answers to Chapter 16 Exercises

1. Heresonewaytodoit:

open PF, '/path/to/perlfunc. pod
or die "Can't open perlfunc.pod: $!"
dbrmopen ny %OB, "pf_data", 0644
or die "Can't create dbmfile: $!'";

YDB = (); # wipe existing data, if any

while (<PF>) {
if (/~=items+([a-z_]\w)/i) {
$DB{$1} = $DB{$1} || $.;
}
}

print "Done!\n";
This one is similar to the previous ones with perlfunc.pod. Here, though, we open a DBM
file called pf_data as the DBM hash 9©B. In case that file had any leftover data, we set the
hash to an empty list. That's normally arare thing to do, but we want to wipe out the entire
database, in case a previous run of this program left incorrect or out-of-date datain thefile.
(After dl, there'sanew perlfunc.pod with each new release of Perl.)

When we find an identifier, we need to store its line number (from $.) into the database.
The statement that does that uses the high-precedence short-circuit | | operator. If the
database entry already has a value, that value is true, so the old value is used. If the
database entry is empty, that's false, so the value on the right ($.) is used instead. We
could have written that linein a shorter way, like this:

$DB{$1} ||=$.;

When the program is done, it says so. That's not required by the exercise description, but
it lets us know that the program did something; without that line, there would be no output
at all. But how can wetell that it worked correctly? That's the next exercise.

2. Herésoneway todoit:

dbnopen ny %OB, "pf_data", undef or die "Can't open dbmfile: $!'";

ny $line = $DB{$ARGV[0]} || "not found";

print "$ARGV[O0]: $line\n";
Once we have the database, it's simple to look something up in it. Note that in this
program, the third argument to dbnopen is undef, since that file must already exist for this
program to work.

If the entry for $ARGV[0] (the first command-line parameter) isn't found in the database,
we'll say it'snot f ound, using the high-precedence short-circuit | | .

3. Heresoneway todoit:

dbnopen ny %OB, "pf_data", undef or die "Can't open domfile: $'";
if (ny $line = $DB{$ARGV[0]}) {
exec 'less', "+$line", '/path/to/perlfunc.pod
or die "Can't exec pager: $!";
} else { die "Entry unknown: '$ARGV[O]'.\n"; }

This starts out like the previous one, but uses exec to start up apager program if it can, and
diesif it can't.

234

Learning Perl, 3rd edition

A.16 Answer to Chapter 17 Exercises

1. Heresoneway todoit:

ny $filename = 'path/to/sanple_text';
open FILE, $filenane

or die "Can't open '$filenane': $!"
chomp(ny @trings = <FILE>);
while (1) {

print "Please enter a pattern:

chomp(ny $pattern = <STDI N>);

last if $pattern =~ /MNs*$/;

my @mtches = eval {

grep / $pattern/, @trings;

b
if (3@ {
print "Error: $@;
} else {
ny $count = @mt ches;
print "There were $count matching strings:\n",
map "$_\n", @nmtches;
}

print "\n";
}

This one uses an eval block to trap any failure that might occur when using the regular
expression. Inside that block, agr ep pullsthe matching strings from thelist of strings.

Once the eval is finished, we can report either the error message or the matching strings.
Note that we "unchomped" the strings for output by using map to add a newline to each
string .

235

Learning Perl, 3rd edition

Appendix B. Beyond the Llama

We've covered a lot in this book, but there's even more. In this appendix, we'll tell about a little
more of what Perl can do, and give some references on where to learn the details. Some of what
we mention here is on the bleeding edge and may have changed by the time that you're reading this
book, which is one reason why we freguently send you to the documentation for the full story. We
don't expect many readers to read every word of this appendix, but we hope you'll at least skim the
headings so that you'll be prepared to fight back when someone tells you "You just can't use Perl
for project X, because Perl can'tdo Y."

B.1 Further Documentation

The documentation that comes with Perl may seem overwhelming at first. Fortunately, you can
use your computer to search for keywords in the documentation. When searching for a particular
topic, it's often good to start with the perltoc (table of contents) and perlfaq (frequently asked
guestions) sections. On most systems, the perldoc command should be able to track down the
documentation for Perl, installed modules, and related programs (including perldoc itself).

B.2 Regular expressions

Yes, thereé's even more about regular expressons than we mentioned. Mastering Regular
Expressions by Jeffrey Friedl is one of the best technical books we've ever read.>® It's half about
regular expressions in general, and half about Perl's regular expressions. It goes into good detall
about how the regular expression engine works internaly, and why one way of writing a pattern
may be much more efficient than another. Anyone who is serious about Perl should read this
book. Also see the perlre manpage (and its companion perlretut and perlrequick manpages in
newer versions of Perl).

B.3 Packages

Packages™ alow you to compartmentalize the namespaces. Imagine that you have ten
programmers all working on one big project. If you use the global names $f r ed, @ar ney, %betty,
and &wi | ma in your part of the project, what happens when | accidentally use one of those same
names in my part? Packages let us keep these separate; | can access your $fred, and you can
access mine, but not by accident. Packages are needed to make Perl scalable, so that we can
manage large programs.

B.4 Extending Perl's Functionality

One of the most common pieces of good advice heard in the Perl discussion forums is that you
shouldn't reinvent the wheel. Other folks have written code that you can put to use. The most
frequent way to add to what Perl can do is by using alibrary or module. Many of these come with
Perl, while others are available from CPAN. Of course, you can even write your own libraries and
modules.

% And we're not just saying that because it's also published by O'Reilly & Associates, Inc. It'sreally a great book.

*® The name "package" is perhaps an unfortunate choice, in that it makes many people think of a packaged-up chunk of code (in
Perl, that'samodule or alibrary). All that a package doesis define a namespace (a collection of global symbol names, like
$fred or &wi | ma). A namespace is not a chunk of code.

236

Learning Perl, 3rd edition

B.4.1 Libraries

Many programming languages offer support for libraries much as Perl does. Libraries are
collections of (mostly) subroutines for a given purpose. In modern Perl, though, it's more common
to use modules than libraries.

B.4.2 Modules

A module is a"smart library”. A module will typically offer a collection of subroutines that act as
if they were built in functions, for the most part. Modules are smart in that they keep their details
in a separate package, only importing what you request. This keeps a module from stomping on
your code's symboals.

Although many useful modules are written in pure Perl, others are written using a language like C.
For example, the MD5 algorithm is sort of like a high-powered checksum.*® It uses a lot of low-
level bit-twiddling that could be done in Perl, but hundreds of times more sowly;*" it's an
algorithm that was designed to be efficiently implemented in C. So, the Di gest : : MD5 module is
made to use the compiled C code. When you use that module, it's as if your Perl had a built in
function to calculate MD5 digests.

B.4.3 Finding and Installing Modules

Maybe your system already has the module you need. But how can you find out which modules
are installed? You can use the program inside, which should be available for download from
CPAN in the directory http://www.cpan.org/authors/id/P/PH/PHOENI X/.

If none of the modules aready available on your system suits your needs, you can search for Perl
modules on CPAN at http://search.cpan.org/. To install a module on your system, see the
per | nodi nstal | manpage.

When using a module, you'll generaly put the required use directives at the top of your program.
That makes it easy for someone who isinstalling your program on a new system to see at a glance
which modulesit needs.

B.4.4 Writing Your Own Modules

In the rare case that there's no module to do what you need, an advanced programmer can write a
new one, either in Perl or in another language (often C). See the perl nod and perl nodlib
manpages for more information.

“® |t's not really a checksum, but that's good enough for this explanation.

“L The module Di gest : : Per | : : MD5 isapure Perl implementation of the MDS5 algorithm. Although your mileage may vary,
we found it to be about 280 times slower than the Di gest : : MD5 module on one sample dataset. Remember that many of the
bit-twiddling operationsin the C algorithm compile down to a single machineinstruction; thus, entire lines of code can take a
mere handful of clock cyclesto run. Perl isfast, but let's not be unrealistic.

237

http://www.cpan.org/authors/id/P/PH/PHOENIX/
http://search.cpan.org/

Learning Perl, 3rd edition

B.5 Some Important Modules

We describe some of the most important features'® of the most important modules™ in this
section. These modules that we discuss here should generally be found on every machine that has
Perl, except where mentioned. Y ou can always get the latest ones from CPAN.

B.5.1 The CGIl and CGI_Lite Modules

Many people use Perl to write programs that a web server will run, generally called CGI
programs. The ca module comes with Perl, while the cG _Li t e module is available separately
from CPAN. See Section B.16 later in this appendix.

B.5.2 The Cwd Module

Sometimes you need to know what the current working directory's nameis. (Well, you could often
use". ", but maybe you need to save the name so that you can change back to this directory later.)
The owd module, which comes with Perl, provides the cwd function, which you can use to
determine the current working directory.

use Owd;

ny $directory = cwd;

B.5.3 The Fatal Module

If you get tired of writing "or di e" after every invacation of open or chdi r, then maybe the Fat al
module is for you. Just tell it which functions to work with, and those will be automatically
checked for failure, asif you'd written "or di e" and a suitable message after each one. Thiswon't
affect such calls in someone else's package (that is, code contained within a module you're using,
for example), so don't use this to fix up poorly written code. It'sjust atimesaver, mostly for smple
programs in which you don't need direct control over the error message itself. For example:

use Fatal gw open chdir /;

chdir '/home/merlyn'; # "or die" is now supplied automatically

B.5.4 The File::Basename Module

We covered this module in Chapter 13. It's primary uses are to portably pull the basename or
directory name from afull filename:

use Fil e::Basenane;

for (@ARGV) {

ny $basename = basenane $_;
ny $dirname = dirnane $_;
print "That's file $basenanme in directory $dirnane.\n";

}

“% \We'reincluding here merely the most important features of each module; see the module's own documentation to learn more.
“% To be sure, there are other important modules whose use is too complex for most readers of this book, typically because using
the module requires under standing Per's references or objects.

238

Learning Perl, 3rd edition

B.5.5 The File::Copy Module

When you need to copy or move files, the Fi | e: : Copy module is for you. (It's often tempting to
simply call a system program to do these things, but that's not portable.) This module provides the
functions nove and copy, which may be used much as the corresponding system programs would
be used:

use Fil e:: Copy;

copy("source", "destination")
or die "Can't copy 'source' to 'destination': $!'"

B.5.6 The File::Spec Module

When you need to manipulate a filename (more formally called a " file specification"), it's
generally more portable and reliable to use the Fi | e: : Spec module than to do the work yourself
from Perl. For example, you can use the cat fi | e function to put together a directory name and a
filename to produce a long filename (as we saw in Chapter 13), but you don't have to know
whether the system your program is running on uses a forward slash or some other character to
separate those. Or you could use the cur di r function to get the name of the current directory (. ",
on Unix systems).

TheFi | e: : Spec module is object-oriented, but you don't need to understand objects to use it. Just
call each function ("method", really) by using Fi | e: : Spec and a small arrow before the function's
name, likethis:

use Fil e:: Spec;

ny $current _directory = File::Spec->curdir;
opendir DOT, $current_directory
or die "Can't open current directory '$current_directory': $!'"

B.5.7 The Image::Size Module

When you have an image file, you'll often want to know what its height and width are. (Thisis
handy for making programs that write HTML, if you wish for an IMG tag to indicate the image's
dimensions.) The | mage: : Si ze module, which is available from CPAN, understands the common
GIF, JFIF (JPEG), and PNG image types, and some others. For example:

use | mage:: Si ze;

Get the size of fred.png
ny($fred_height, $fred_wi dth) = ingsize("fred.png");
die "Couldn't get the size of the inage"

unl ess defined $fred_hei ght;

B.5.8 The Net::SMTP Module

If you want your program to be able to send email through an SMTP server (which is the way most
of us send email these days, whether you knew that or not), you may use the Net : : SMrP module to
do the work.*® This module, which is available from CPAN, is object-oriented, but you may
simply follow the syntax to useit.

“04 Yes, this means that you are now able to use Per| to send spam. Please don't.

239

Learning Perl, 3rd edition

Y ou will need to change the name of your SMTP host and the other items to make this work on
your system. Y our system administrator or local expert cantell you what to use. For example:

use Net::SMIP;

my $from = ' YOUR ADDRESS GCES HERE' ; # maybe fred@edrock. edu
my $site = ' YOUR SI TE_NAME_GOES HERE'; # maybe bedrock. edu

my $sntp_host = ' YOUR SMIP_HOST_GOES HERE'; # naybe nmmil or nmmil host
ny $to = 'president @hitehouse. gov';

my $sntp = Net::SMIP->new($sntp_host, Hello => $site);

$snt p- >mai | ($fron);
$snt p- >t o($t 0) ;
$snt p->data();

$snt p- >dat asend(" To: $to\n");

$snt p- >dat asend(" Subj ect: A nessage fromny Perl program\n");

$snt p- >dat asend("\n");

$snt p- >dat asend("This is just to |let you know, \n");

$snt p- >dat asend("| don't care what those other people say about you,\n");
$snt p- >dat asend("l still think you' re doing a great job.\n");

$snt p- >dat asend("\n");

$snt p- >dat asend(" Have you consi dered enacting a | aw naming Perl \n");
$snt p- >dat asend("t he national progranm ng | anguage?\n");

$snt p- >dat aend(); # Not dat asend!
$snt p- >qui t;

B.5.9 The POSIX Module

If you need access to the POSIX (IEEE Std 1003.1) functions, the Posi X module is for you. It
provides many functions that C programmers may be used to, such as trigonometric functions
(asin, cosh), general mathematical functions (f | oor, frexp), character-identification functions
(i supper, i sal pha), low-level 1O functions (cr eat, open), and some others (ascti ne, cl ock).
You'll probably want to call each of these with its "full* name; that is, with Posi X and a pair of
colons as a prefix to the function's name:

use PCSI X;

print "Please enter a nunber:
chomp(ny $str = <STDI N>);

$! = 0; # Clear out the error indicator
ny($num $leftover) = POSI X :strtod($str);

if ($str eq'') {
print "That string was enpty!\n";
} elsif ($leftover) {
ny $renmi nder = substr $str, -$leftover;
print "The string '$renmainder' was |eft after the nunber $num\n";

}oelsif ($!) {

print "The conversion function conplained: $'\n";
} else {

print "The seem ngly-valid nunber was $num\n";
}

240

Learning Perl, 3rd edition

B.5.10 The Sys::Hostname Module

The Sys: : Host namre module provides the host nanme function, which will be the network name of
your machine, if that can be determined. (If it can't be determined, perhaps because your machine
is not on the Internet or not properly configured, the function will die automatically; there's no
pointinusingor di e here.) For example:

use Sys:: Host nane;

ny $host = host nane;
print "This machine is known as '$host'.\n";

B.5.11 The Text::Wrap Module

The Text:: wap module supplies the wrap function, which lets you implement simple word-
wrapping. The first two parameters specify the indentation of the first line and the others,
respectively; the remaining parameters make up the paragraph’s text:

use Text:: W ap;

ny $nessage = "This is sone sanple text which may be |onger "
"than the width of your output device, so it needs to "
"be wapped to fit properly as a paragraph.

$nmessage x= 5;

print wap("\t", "", "$nessage\n");

B.5.12 The Time::Local Module

If you have a time (for example, from the ti ne function) that needs to be converted to a list of
year, month, day, hour, minute, and second values, you can do that with Perl's built-in 1 ocal ti me
function in a list context.*® (In a scalar context, that gives a nicely formatted string representing
the time, which is more often what you'd want.) But if you need to go in the other direction, you
may usetheti mel ocal functionfromthe Ti ne: : Local moduleinstead. It'simportant to note that
the value of $non and $year for January 2004 are not 1 and 2004 as you might expect, so be sureto
read the documentation before you use this module. For example:

use Tine:: Local;
ny $tinme = tinelocal ($sec, $min, $hr, $day, non, Syear);

B.6 Pragmas

Pragmas are special modules that come with each release of Perl and tell Perl's internal compiler
something about your code. You've already used the strict pragma The pragmas available for
your release of Perl should belisted in the per | nodl i b manpage.

Y ou use pragmas much like you'd use ordinary modules, with a use directive. Some pragmas are
lexically scoped, like lexical ("my") variables are, and they therefore apply to the smallest enclosing
block or file. Others may apply to the entire program or to the current package. (If you don't use
any packages, the pragmas apply to your entire program.) Pragmas should generally appear near
the top of your source code. The documentation for each pragma should tell you how it's scoped.

“® The actual return valueof | ocal t i me inalist context isa little different than you might expect; see the documentation.

241

Learning Perl, 3rd edition

B.6.1 The constant Pragma

If you've used other languages, you've probably seen the ability to declare constants in one way or
another. Constants are handy for making a setting just once, near the beginning of a program, but
that can be easily updated if the need arises. Perl can do this with the package-scoped const ant

pragma, which tells the compiler that a given identifier has a constant value, which may thus be
optimized wherever it appears. For example:

use constant DEBUGE NG => O0;
use constant ONE_YEAR => 365.2425 * 24 * 60 * 60;

i f (DEBUGGE NG {
This code will be optimzed away unless DEBUGG NG i s turned on

L

B.6.2 The diagnostics Pragma

Perl's diagnostic messages often seem somewhat cryptic, at least the first time you see them. But
you can always look them up in the per | di ag manpage to find out what they mean, and often a
little about what's likely to be the problem and how to fix it. But you can save yourself the trouble
of searching that manpage if you use the di agnost i cs pragma, which tells Perl to track down and
print out the related information for any message. Unlike most pragmas, though, this one is not
intended for everyday use, as it makes your program read the entire per | di ag manpage just to get
started. (Thisis potentially a significant amount of overhead, both in terms of time and memory.)
Use this pragma only when you're debugging and expecting to get error message you don't yet
understand. It affects your entire program. The syntax is:

use di agnosti cs;

B.6.3 The lib Pragma

It's nearly always best to install modules in the standard directories, so that they're available for
everyone, but only the system administrator can do that. If you install your own modules, you'll
have to store them in your own directories - so, how will Perl know where to find them? That's
what the I'i b pragmais al about. It tells Perl that the given directory is the first place to look for
modules. (That means that it's also useful for trying out a new release of a given module) It
affects all modulesloaded from this point on. The syntax is:

use |ib '/hone/rootbeer/experinental";
Be sure to use a nonrelative pathname as the argument, since there's no telling what will be the

current working directory when your program is run. This is especially important for CGlI
programs (that is, programs run by aweb server).

B.6.4 The strict Pragma

You've been using use strict for a while already without having to understand that it's a
pragma. It's lexically scoped, and it enforces some good programming rules. See its
documentation to learn what restrictions are available in your release of Perl.

242

Learning Perl, 3rd edition

B.6.5 The vars Pragma

In the rare case that you truly need a global variable while use strict isin effect, you may
declare it with the vars pragma’® This package-scoped pragma tells Perl that you are
intentionally using one or more global variables:

use strict;
use vars qw $fred $barney /;

$fred = "This is a global variable, but that's all right.\n";

B.6.6 The warnings Pragma

Starting in Perl version 5.6, you may choose to have lexically scoped warnings with the war ni ngs
pragma.””’ That is, rather than using the - w option crudely to turn warnings on or off for the entire
program at once, you may specify that you want no warnings about undefined values in just one
section of code, while other warnings should be available. This also serves as a signa to the
maintenance programmer that says, "I know that this code would produce warnings, but | know
what I'm doing anyway." See the documentation for this pragma to learn about the categories of
warnings available in your release of Perl.

B.7 Databases

If you've got a database, Perl can work with it. This section describes some of the common types
of databases.

B.7.1 Direct System Database Access

Perl can directly access some system databases, sometimes with the help of a module. These are
databases like the Windows Registry (which holds machine-level settings), or the Unix password
database (which lists which username corresponds to which number, and related information), as
well as the domain-name database (which lets you translate an 1P number into a machine name,
and vice versa).

B.7.2 Flat-file Database Access

If you'd like to access your own flat-file databases from Perl, there are modules to help you with
doing that (seemingly a new one every month or two, so any list here would be out of date). You
can even do quite a bit without a module, with what we give in Chapter 16.

B.7.3 Relational Database Access

Relational databases include Sybase, Oracle, Informix, mysgl, and others. These are complex
enough that you generally do need to know about modules to use them. But if you use the DBI
module, whose name stands for "database-independent,” you can minimize your dependence upon
any one type of database - then, if you have to move from mysgl to Oracle, say, you might not
even need to change anything at all in your program.

“% |£ your programwill never be used with a version of Perl prior to 5.6, you should use the our keyword instead of thevar s
pragma.
“O7 | f your program may be used with a version of Per| prior to 5.6, you should not use thewar ni ngs pragma.

243

Learning Perl, 3rd edition

B.8 Other Operators and Functions

Y es, there are more operators and functions than we can fit here, from the scalar . . operator to the
scalar , operator, from want ar r ay to got o(!), from cal | er to chr. See the perlop and perlfunc
manpages.

B.8.1 Transliteration with tr///

Thetr/// operator looks like a regular expression, but it's really for trandliterating one group of
charactersinto another. It can also efficiently count selected characters. See the perlop manpage.

B.8.2 Here documents

Here documents are a useful form of multiline string quoting; see the perldata manpage.
B.9 Mathematics

Perl can do just about any kind of mathematics you can dream up.

B.9.1 Advanced Math Functions

All of the basic mathematical functions (square root, cosine, logarithm, absolute value, and many
others) are available as built in functions; see the perlfunc manpage for details. Some others (like
tangent or base-10 logarithm) are omitted, but those may be easily created from the basic ones, or
loaded from a simple module that does so. (See the PosI X module for many common math
functions.)

B.9.2 Imaginary and Complex Numbers

Although the core of Perl doesn't directly support them, there are modules available for working
with complex numbers. These overload the normal operators and functions, so that you can still
multiply with * and get a square root with sqrt, even when using complex numbers. See the
Mat h: : Conpl ex module.

B.9.3 Large and High-Precision Numbers

You can do math with arbitrarily large numbers with an arbitrary number of digits of accuracy.
For example, you could calculate the factorial of two thousand, or determine Pi to ten-thousand
digits. Seethe Mat h: : Bi gl nt and Mat h: : Bi gFl oat modules.

B.10 Lists and Arrays
Perl has a number of features that make it easy to manipulate an entirelist or array.
B.10.1 map and grep

We mentioned (in Chapter 17) the map and gr ep list-processing operators. They can do more than
we could include here; see the perlfunc manpage for more information and examples.

244

Learning Perl, 3rd edition

B.10.2 The splice Operator

With the spl i ce operator, you can add items to the middle of an array, or remove them, letting the
array grow or shrink as needed. (Roughly, this islike what subst r lets you do with strings.) This
effectively eliminates the need for linked listsin Perl. See the perlfunc manpage.

B.11 Bits and Pieces

You can work with an array of bits (a bitstring) with the vec operator, setting bit number 123,
clearing bit number 456, and checking to see the state of bit 789. Bitstrings may be of arbitrary
size. The vec operator can also work with chunks of other sizes, as long as the size is a small
power of two, so it's useful if you need to view a string as a compact array of nybbles, say. Seethe
perlfunc manpage.

B.12 Formats

Perl's formats are an easy way to make fixed-format template-driven reports with automatic page
headers. In fact, they are one of the main reasons Larry developed Perl in the first place, as a
Practical Extraction and Report Language. But, aas, they're limited. The heartbreak of formats
happens when someone discovers that he or she needs a little more than what formats provide.

This usually means ripping out the program's entire output section and replacing it with code that
doesn't use formats. Still, if you're sure that formats do what you need, all that you'll need, and all
that you'll ever need, they are pretty cool. See the perlform manpage.

B.13 Networking and IPC

If there's a way that programs on your machine can talk with others, Perl can probably do it. This
section shows some common way's.

B.13.1 System V IPC

The standard functions for System V |PC (interprocess communication) are all supported by Perl,
SO you can use message queues, semaphores, and shared memory. Of course, an array in Perl isn't
stored in a chunk of memory in the same way*® that an array is stored in C, so shared memory
can't share Perl data as-is. But there are modules that will translate data, so that you can pretend
that your Perl dataisin shared memory. Seethe perlfunc manpage and the perlipc module.

B.13.2 Sockets

Perl has full support for TCP/IP sockets, which means that you could write a web server in Perl, or
a web browser, Usenet news server or client, finger daemon or client, FTP daemon or client,
SMTP or POP or SOAP server or client, or either end of pretty much any other kind of protocol in
use on the Internet. Of course, there's no need to get into the low-level details yourself; there are
modules available for al of the common protocols.

“% | n fact, it would generally be a lieto say that a Perl array is stored in "a chunk of memory" at all, asit's almost certainly
spread among many separate chunks.

245

Learning Perl, 3rd edition

For example, you can make a web server or client with the Lwp module and one or two lines of
additional code.”® The Lwe module (actually, a tightly integrated set of modules, which together
implement nearly everything that happens on the Web) is also a great example of high-quality Perl
code, if youd like to copy from the best. For other protocols, search for a module with the
protocol's name.

B.14 Security

Perl has a number of strong security-related features that can make a program written in Perl more
secure than the corresponding program written in C. Probably the most important of these is data-
flow analysis, better known as taint checking . When this is enabled, Perl keeps track of which
pieces of data seem to have come from the user or environment (and are therefore untrustworthy).

Generdly, if any such piece of so-called "tainted" data is used to affect another process, file, or
directory, Perl will prohibit the operation and abort the program. It's not perfect, but it's a powerful
way to prevent some security-related mistakes. There's more to the story; see the perlsec manpage.

B.15 Debugging

There's a very good debugger that comes with Perl and supports breakpoints, watchpoints, single-
stepping, and generaly everything you'd want in a command-line Perl debugger. It's actualy
written in Perl (so, if there are bugs in the debugger, we're not sure how they get those out). But
that means that, in addition to all of the usual debugger commands, you can actually run Perl code
from the debugger - calling your subroutines, changing variables, even redefining subroutines -
while your program is running. See the perldebug manpage for the latest details.

Another debugging tactic is to use the B: : Li nt module, which is ill preliminary as of this
writing.

B.16 The Common Gateway Interface (CGI)

One of the most popular uses for Perl on the Web isin writing CGI programs. These run on aweb
server to process the results of a form, perform a search, produce dynamic web content, or count
the number of accessesto aweb page.

The ca module, which comes with Perl, provides an easy way to access the form parameters and
to generate some HTML in responses. (If you don't want the overhead of the full cG module, the
CG _Li t e module provides access to the form parameters without all the rest.) It may be tempting
to skip the module and simply copy-and-paste one of the sni pg)ets of code that purport to give
access to the form parameters, but nearly all of these are buggy. ™

“® Although L\WP makes it easy to make a simple "web browser" that pulls down a page or image, actually rendering that to the
user isanother problem. You can drive an X11 display with Tk or Gtk widgets though, or use cursesto draw on a character
terminal. It'sall a matter of downloading and installing the right modules from CPAN.

“° There are some details of the interface that these snippets don't support. Trust us; it's better to use a module.

246

Learning Perl, 3rd edition

When writing CGI programs, though, there are several big issues to keep in mind. These make this
topic one too broad to fully include in this book:**

Security, security, security

We can't overemphasize security. Somewhere around half of the successful attacks on
computers around the world involve a security-related bug in a CGl program.

Concurrency issues

It's easy to have severa processes that are concurrently trying to access a single file or
resource.

Standards compliance

No matter how hard you try, you probably won't be able to test your program thoroughly with
more than about 1 or 2% of the web browsers and servers that are in use today.** That's
because there are literally thousands of different programs available, with new ones popping
up evf,rlsy week. The solution is to follow the standards, so your program will work with al of
them.

Troubleshooting and debugging

Since the CGI program runs in a different environment than you're likely to be able to access
directly, you'll have to learn new techniques for troubleshooting and debugging.

Security, security, security!

There, we've said it again. Don't forget security - it's the first and last thing to think about
when your program is going to be available to everyone in the world who wants to try
breskingit.

And that list didn't even mention URI-encoding, HTML entities, HTTP and response codes, Secure
Sockets Layer (SSL), Server-side Includes (SSI), here documents, creating graphics on the fly,
programmatically generating HTML tables, forms, and widgets, hidden form elements, getting and
setting cookies, path info, error trapping, redirection, taint checking, internationalization and
localization, embedding Perl into HTML (or the other way around), working with Apache and
mod_per |, and using the Lwp module.*** Most or al of those topics should be covered in any good
book on using Perl with the Web. CGI Programming with Perl by Scott Guelich, et al. (O'Reilly
& Associates, Inc.) is mighty nice here, as is Lincoln Stein's Network Programming with Perl
(Addison-Wedley).

B.17 Command-Line Options

There are many different command-line options available in Perl; many let you write useful
programs directly from the command line. See the perIrun manpage.

“I Saveral of the reviewerswho looked over a draft of this book for us wished we could cover more about CGI programming.

We agree, but it wouldn't be fair to the reader to give just enough knowledge to be dangerous. A proper discussion of the
problemsinherent in CGI programming would probably add at |east 50% to the size (and cost) of this book.
12 Remember that every new release of each brand of browser on each different platform counts as a new one that you're

probably not going to be able to test. We really chuckle when we hear someone tested a web site with "both browsers" or when

they say "I don't know if it works with the other one."
“3 At the very least, following the standards lets you put the blame squarely on the other programmer, who didn't.
“ Do you see why we didn't try to fit all of that into this book?

247

Learning Perl, 3rd edition

B.18 Built in Variables

Perl has dozens of built-in variables (like @RGv and $0), which provide useful information or
control the operation of Perl itself. See the perlvar manpage.

B.19 Syntax Extensions

There are more tricks you could do with Perl syntax, including the cont i nue block and the BEG N
block. Seethe perlsyn and perlmod manpages.

B.20 References

Perl's references are similar to C's pointers, but in operation, they're more like what you have in
Pascal or Ada. A reference "points’ to a memory location, but because there's no pointer
arithmetic or direct memory alocation and deallocation, you can be sure that any reference you
have is a valid one. References allow object-oriented programming and complex data structures,
among other nifty tricks. Seethe perlreftut and perlref manpages.

B.20.1 Complex Data Structures

References allow us to make complex data structures in Perl. For example, suppose you want a
two-dimensional array? You can do that,* or you can do something much more interesting, like
have an array of hashes, a hash of hashes, or a hash of arrays of hashes.*® See the perldsc (data-
structures cookbook) and perllol (lists of lists) manpages.

B.20.2 Object-Oriented Programming

Yes, Perl has objects; it's buzzword-compatible with al of those other languages. Object-oriented
(O0) programming lets you create your own user-defined datatypes with associated abilities, using
inheritance, overriding, and dynamic method |ookup.*’

Unlike some object-oriented languages, though, Perl doesn't force you to use objects. (Even many
object-oriented modules can be used without understanding objects.) But if your program is going
to be larger than N lines of code, it may be more efficient for the programmer (if atiny bit slower
a runtime) to make it object-oriented. No one knows the precise value of N, but we estimate it's
around a few thousand or so. See the perl obj and per | boot manpages for a start, and Damian
Conway's excellent Object-Oriented Perl (Manning Press) for more advanced information.

B.20.3 Anonymous Subroutines and Closures

Odd as it may sound at first, it can be useful to have a subroutine without a name. Such
subroutines can be passed as parameters to other subroutines, or they can be accessed via arrays or
hashes to make jump tables.

Closures are a powerful concept that comes to Perl from the world of Lisp. A closureis (roughly
speaking) an anonymous subroutine with its own private data.

“B\well, not really, but you can fake it so well that you'll hardly remember that there's a difference.

18 Actually, you can't make any of these things; these are just verbal shorthands for what's really happening. What we call "an
array of arrays' in Perl isreally an array of referencesto arrays.

“7 00 hasits own set of jargon words. In fact, the terms used in any one OO language aren't even the same onesthat are
typically used in another.

248

Learning Perl, 3rd edition

B.21 Tied Variables

Do you remember how the DBM hash (in Chapter 16) is "magically" connected to afile, so that
accesses to the hash are really working with the corresponding DBM file? Y ou can actually make
any variable magical in that way. A tied variable may be accessed like any other, but using your
own code behind the scenes. So you could make a scalar that is really stored on a remote machine,
or an array that always stays sorted. See the perltie manpage.

B.22 Operator Overloading

Y ou can redefine operators like addition, concatenation, comparison, or even the implicit string-to-
number conversion with the overl oad module. This is how a module implementing complex
numbers (for example) can let you multiply a complex number by 8 to get a complex humber as a
resullt.

B.23 Dynamic Loading

The basic idea of dynamic loading is that your program decides at runtime that it needs more
functionality than what's currently available, so it loads it up and keeps running. You can aways
dynamicaly load Perl code, but it's even more interesting to dynamically load a binary
extension.*® Thisis how non-Perl modules are made.

B.24 Embedding
The reverse of dynamic loading (in a sense) is embedding.

Suppose you want to make a really cool word processor, and you start writing it in (say) C++.*°
Now, you decide you want the users to be able to use Perl's regular expressions for an extra-
powerful search-and-replace feature, so you embed Perl into your program. Then you realize that
you could open up some of the power of Perl to your users. A power user could write a subroutine
in Perl that could become a menu item in your program. Users can customize the operation of your
word processor by writing a little Perl. Now you open up a little space on your website where
users can share and exchange these Perl snippets, and you've got thousands of new programmers
extending what your program can do at no extra cost to your company. And how much do you
have to pay Larry for al this? Nothing - see the licenses that come with Perl. Larry isareally nice
guy. You should at least send him athank-you note.

Although we don't know of such a word processor, some folks have already used this technique to
make other powerful programs. One such example is Apache's mod_per | , which embeds Perl into
an already-powerful web server. If you're thinking about embedding Perl, you should check out
mod_per | ; sinceit'sal open source, you can see just how it works.

“8 Dynamic loading of binary extensionsis generally available if your system supportsthat. If it doesn't, you can compilethe
extensions statically - that is, you can make a Per| binary with the extension built in, ready for use.

“9 That's probably the language we'd use for writing a word processor. Hey, we love Perl, but we didn't swear an oath in blood
to use no other language. When language X is the best choice, use language X. But often, X equals Perl.

249

Learning Perl, 3rd edition

B.25 Converting Other Languages to Perl

If you've got old sed and awk programs that you wish were written in Perl, you'rein luck. Not only
can Perl do everything that those can do, there's aso a conversion program available, and it's
probably already installed on your system. Check the documentation for s2p (for converting from
sed) or a2p (for converting from awk).* Since programs don't write programs as well as people
do, the results won't necessarily be the best Perl - but it's a start, and it's easy to tweak. The
translated program may be faster or slower than the original, too. But after you've fixed up any
grossinefficiencies in the machine-written Perl code, it should be comparable.

Do you have C agorithms you want to use from Perl? Well, you've still got some luck on your
side; it's not too hard to put C code into a compiled module that can be used from Perl. In fact, any
language that compiles to make object code can generally be used to make a module. See the
perIxs manpage, and the | nl i ne module, aswell as the SWIG system.

Do you have a shell script that you want to convert to Perl? Your luck just ran out. There's no
automatic way to convert shell to Perl. That's because the shell hardly does anything by itself; it
spends all of its time running other programs. Sure, we could make a program that would mostly
just call syst emfor each line of the shell, but that would be much slower than just letting the shell
do things in the first place. It realy takes a human-level of intelligence to see how the shell's use
of cut, rm, sed, awk, and grep can be turned into efficient Perl code. It's better to rewrite the shell
script from scratch.

B.26 Converting find Command Lines to Perl

A common task for a system administrator is to recursively search the directory tree for certain
items. On Unix, thisis typically done with the find command. We can do that directly from Perl,
too.

The find2perl command, which comes with Perl, takes the same arguments that find does. Instead
of finding the requested items, however, the output of find2perl is a Perl program that finds them.
Since it's a program, you can edit it for your own needs. (The program is written in a somewhat
odd style.)

One useful argument that's available in find2per| but not in the standard find isthe - eval option.
This says that what follows it is actual Perl code that should be run each time that afile is found.
When it's run, the current directory will be the directory in which some item is found, and $_ will
contain the item’s name.

Here's an example of how you might use find2perl. Suppose that you're a system administrator on
aUnix machine, and you want to find and remove all of the old files in the /tmp directory.”* Here's
the command that writes the program to do that:

$ find2perl /tnp -atinme +14 -eval unlink >Perl-program

“20 | you're using gawk or nawk or some other variant, a2p may not be able to convert it. Both of these conversion programs
were written long ago and have had few updates except when needed to keep working with new releases of Perl.
“21 Thisis a task typically done by a cron job at some early-morning hour each day.

250

Learning Perl, 3rd edition

That command says to search in /tmp (and recursively in subdirectories) for items whose atime
(last access time) is at least 14 days ago. For each item, the program should run the Perl code
unl i nk, which will use $_ by default as the name of afile to remove. The output (redirected to go
into the file Perl-program) is the program that does al of this. Now you merely need to arrange
for it to be run as needed.

B.27 Command-line Options in Your Programs

If you'd like to make programs that take command-line options (like Perl's own - w for warnings,
for example), there are modules that let you do this in a standard way. See the documentation for
the Get opt : : Long and Get opt : : St d modules.

B.28 Embedded Documentation

Perl's own documentation is written in pod (plain-old documentation) format. Y ou can embed this
documentation in your own programs, and it can then be translated to text, HTML, or many other
formats as needed. See the perlpod manpage.

B.29 More Ways to Open Filehandles

There are other modes to use in opening afilehandle; see the perlopentut manpage.

B.30 Locales and Unicode

It's a small world, after al. In order to work properly in places where even the aphabet is
different, Perl has support for locales and Unicode.

Locales tell Perl how things are done locally. For example, does the character sesort at the end of
the alphabet, or between & and & And what's the local name for the third month? See the
perllocale manpage (not to be confused with the perllocal manpage).

See the perlunicode manpage for the latest on how your version of Perl deals with Unicode. As of
this writing, each new release of Perl has many new Unicode-related changes, but we hope things
will settle down soon.

B.31 Threads and Forking

Perl now has support for threads. Although this is experimenta (as of this writing), it can be a
useful tool for some applications. Using for k (where it's available) is better supported; see the
perlfork and perlthrtut manpages.

B.32 Graphical User Interfaces (GUIs)

A large and powerful module set is Tk , which lets you make on screen interfaces that work on
more than one platform. See Learning Perl/Tk by Nancy Walsh or the upcoming Mastering
Perl/Tk by Nancy Walsh and Steve Lidie (O'Reilly & Associates, Inc.).

251

Learning Perl, 3rd edition

B.33 And More...

If you check out the module list on CPAN, you'll find modules for even more purposes, from
generating graphs and other images to downloading email, from figuring the amortization of aloan
to figuring the time of sunset. New modules are added all the time, so Perl is even more powerful
today than it was when we wrote this book. We can't keep up with it al, so we'll stop here.

Larry himself says he no longer keeps up with all of the development of Perl, because the Perl
universe is big and keeps expanding. And he can't get bored with Perl, because he can always find
another corner of this ever-expanding universe. And we suspect, neither will we. Thank you,
Larry!

252

Learning Perl, 3rd edition

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal featured on the cover of Learning Perl, Third Edition, is the llama, a relation of the
camel native to the Andean range. Also included in this llamoid group is the domestic alpaca and
their wild ancestors, the guanaco and the vicuna. Bones found in ancient human settlements
suggest that domestication of the alpaca and |lama dates back 4,500 years. In 1531, when Spanish
conquistadors overran the Inca Empire in the high Andes, they found both animals present in great
numbers. These Ilamas are suited for high mountain life; their hemoglobin can take in more
oxygen than that of other mammals.

Llamas can weigh up to 300 pounds and are mainly used as beasts of burden. A packtrain may
contain several hundred animals and can travel up to twenty miles per day. Llamas will carry
loads up to fifty pounds, but have a tendency to be short-tempered and resort to spitting and biting
to demonstrate displeasure. To the people of the Andes, Ilamas also provide meat, wool for
clothing, hides for leather, and fat for candles. Their wool can also be braided into rope and rugs,
and their dried dung is used for fuel.

Sarah Jane Shangraw and Ann Schirmer were the production editors for Learning Perl, Third
Edition. Nicole Arigo copyedited the text. Sarah Jane Shangraw, Ann Schirmer, and Claire
Cloutier provided quality control. Kimo Carter, Claire Cloutier, Ann Schirmer, and Sarah Jane
Shangraw did interior page composition. Brenda Miller wrote the index.

Edie Freedman designed the cover of thisbook. The cover image is a 19th-century engraving from
the Dover Pictorial Archive. Emma Colby produced the cover layout with Quark™XPress 4.1
using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. The text and
heading fonts are ITC Garamond Light and Garamond Book; the code font is Constant Willison.
The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read
using Macromedia FreeHand 9 and Adobe Photoshop 6.

253

	Table of Contents
	Preface
	Typographical Conventions
	How to Contact Us
	Code Examples
	History of This Book
	Acknowledgments

	1. Introduction
	1.1 Questions and Answers
	1.2 What Does "Perl" Stand For?
	1.3 How Can I Get Perl?
	1.4 How Do I Make a Perl Program?
	1.5 A Whirlwind Tour of Perl
	1.6 Exercises

	2. Scalar Data
	2.1 What Is Scalar Data?
	2.2 Numbers
	2.3 Strings
	2.4 Perl's Built-in Warnings
	2.5 Scalar Variables
	2.6 Output with print
	2.7 The if Control Structure
	2.8 Getting User Input
	2.9 The chomp Operator
	2.10 The while Control Structure
	2.11 The undef Value
	2.12 The defined Function
	2.13 Exercises

	3. Lists and Arrays
	3.1 Accessing Elements of an Array
	3.2 Special Array Indices
	3.3 List Literals
	3.4 List Assignment
	3.5 Interpolating Arrays into Strings
	3.6 The foreach Control Structure
	3.7 Perl's Favorite Default: $_
	3.8 Scalar and List Context
	3.9 <STDIN> in List Context
	3.10 Exercises

	4. Subroutines
	4.1 System and User Functions
	4.2 Defining a Subroutine
	4.3 Invoking a Subroutine
	4.4 Return Values
	4.5 Arguments
	4.6 Private Variables in Subroutines
	4.7 The local Operator
	4.8 Variable-length Parameter Lists
	4.9 Notes on Lexical (my) Variables
	4.10 The use strict Pragma
	4.11 The return Operator
	4.12 Exercises

	5. Hashes
	5.1 What Is a Hash?
	5.2 Hash Element Access
	5.1 What Is a Hash?
	5.3 Hash Functions
	5.4 Typical Use of a Hash
	5.5 Exercises

	6. I/O Basics
	6.1 Input from Standard Input
	6.2 Input from the Diamond Operator
	6.3 The Invocation Arguments
	6.4 Output to Standard Output
	6.5 Formatted Output with printf
	6.6 Exercises

	7. Concepts of Regular Expressions
	7.1 What Are Regular Expressions?
	7.2 Using Simple Patterns
	7.3 A Pattern Test Program
	7.4 Exercises

	8. More About Regular Expressions
	8.1 Character Classes
	8.2 General Quantifiers
	8.3 Anchors
	8.4 Memory Parentheses
	8.5 Precedence
	8.6 Exercises

	9. Using Regular Expressions
	9.1 Matches with m//
	9.2 Option Modifiers
	9.3 The Binding Operator, =~

	9.4 Interpolating into Patterns
	9.5 The Match Variables
	9.6 Substitutions with s///
	9.7 The split Operator
	9.8 The join Function
	9.9 Exercises

	10. More Control Structures
	10.1 The unless Control Structure
	10.2 The until Control Structure
	10.3 Expression Modifiers
	10.4 The Naked Block Control Structure
	10.5 The elsif Clause
	10.6 Autoincrement and Autodecrement
	10.7 The for Control Structure
	10.8 Loop Controls
	10.9 Logical Operators
	10.10 Exercise

	11. Filehandles and File Tests
	11.1 What Is a Filehandle?
	11.2 Opening a Filehandle
	11.3 Fatal Errors with die
	11.4 Using Filehandles
	11.5 Reopening a Standard Filehandle
	11.6 File Tests
	11.7 Exercises

	12. Directory Operations
	12.1 Moving Around the Directory Tree
	12.2 Globbing
	12.3 An Alternate Syntax for Globbing
	12.4 Directory Handles
	12.5 Recursive Directory Listing
	12.6 Exercises

	13. Manipulating Files and Directories
	13.1 Removing Files
	13.2 Renaming Files
	13.3 Links and Files
	13.4 Making and Removing Directories
	13.5 Modifying Permissions
	13.6 Changing Ownership
	13.7 Changing Timestamps
	13.8 Using Simple Modules
	13.9 Exercises

	14. Process Management
	14.1 The system Function
	14.2 The exec Function
	14.3 The Environment Variables
	14.4 Using Backquotes to Capture Output
	14.5 Processes as Filehandles
	14.6 Getting Down and Dirty with Fork
	14.7 Sending and Receiving Signals
	14.8 Exercises

	15. Strings and Sorting
	15.1 Finding a Substring with index
	15.2 Manipulating a Substring with substr
	15.3 Formatting Data with sprintf
	15.4 Advanced Sorting
	15.5 Exercises

	16. Simple Databases
	16.1 DBM Files and DBM Hashes
	16.2 Manipulating Data with pack and unpack
	16.3 Fixed-length Random-access Databases
	16.4 Variable-length (Text) Databases
	16.5 Exercises

	17. Some Advanced Perl Techniques
	17.1 Trapping Errors with eval
	17.2 Picking Items from a List with grep
	17.3 Transforming Items from a List with map
	17.4 Unquoted Hash Keys
	17.5 More Powerful Regular Expressions
	17.6 Slices
	17.7 Exercise

	Appendix A. Exercise Answers
	Appendix B. Beyond the Llama
	B.1 Further Documentation
	B.2 Regular expressions
	B.3 Packages
	B.4 Extending Perl's Functionality
	B.5 Some Important Modules
	B.6 Pragmas
	B.7 Databases
	B.8 Other Operators and Functions
	B.9 Mathematics
	B.10 Lists and Arrays
	B.11 Bits and Pieces
	B.12 Formats
	B.13 Networking and IPC
	B.14 Security
	B.15 Debugging
	B.16 The Common Gateway Interface (CGI)
	B.17 Command-Line Options
	B.18 Built in Variables
	B.19 Syntax Extensions
	B.20 References
	B.21 Tied Variables
	B.22 Operator Overloading
	B.23 Dynamic Loading
	B.24 Embedding
	B.25 Converting Other Languages to Perl
	B.26 Converting find Command Lines to Perl
	B.27 Command-line Options in Your Programs
	B.28 Embedded Documentation
	B.29 More Ways to Open Filehandles
	B.30 Locales and Unicode
	B.31 Threads and Forking
	B.32 Graphical User Interfaces (GUIs)
	B.33 And More...

	Colophon

