/THEORY/IN/PRACTICE

The Art of

James Shore & Shane Warden

O'REILLY*

Praise for The Art of Agile Development

“Jim Shore and Shane Warden expertly explain the practices and benefits of Extreme
Programming. They offer advice from their real-world experiences in leading teams.
They answer questions about the practices and show contraindications—ways that a
practice may be misapplied. They offer alternatives you can try if there are impediments
to applying a practice, such as the lack of an on-site customer.

“The explanations do not stop with just the practices. Discussion of people-related issues,
such as strategies for creating trust and team cohesiveness, rounds out the book.”

— Ken Pugh, author of the Jolt-Award-winning book, Prefactoring

“I will leave a copy of this book with every team I visit.”

— Brian Marick, Exampler Consulting

The Art of Agile Development

Other resources from O'Reilly

Related titles
oreilly.com

? FOREILLY
j NETWORK,

Conferences

O’REILLY N_EJ’WORK
Safari
Bookshelf.

Beautiful Code Prefactoring

Extreme Programming Pocket ~ Applied Software Project
Guide Management

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

The Art of Agile Development

James Shore and Shane Warden

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Paris - Sebastopol - Taipei - Tokyo

The Art of Agile Development
by James Shore and Shane Warden

Copyright © 2008 O’Reilly Media, Inc., Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary O’Brien Indexer: Joe Wizda

Copy Editor: Sarah Schneider Cover Designer: Karen Montgomery
Production Editor: Sarah Schneider Interior Designer: David Futato
Proofreader: Sada Preisch Illustrator: Robert Romano

Printing History:
October 2007: First Edition.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. The Theory in Practice series designations,
The Art of Agile Development, and related trade dress are trademarks of O'Reilly Media, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

RepKover.
[
=== This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52767-5
ISBN-13: 978-0-596-52767-9

[C]

http://safari.oreilly.com

To our families.

Table of Contents

Preface Xiii

Partl. Getting Started

1o WRYAGIIE? .o 3
Understanding Success 4
Beyond Deadlines 4
The Importance of Organizational Success 5
Enter Agility 6

2. HowtoBeAgile 9
Agile Methods 9
Don’t Make Your Own Method 10
The Road to Mastery 11
Find a Mentor 12

3. Understanding XP i 15
The XP Lifecycle 18
The XP Team 27
XP Concepts 39

4., Adopting XP 43
Is XP Right for Us? 43
Go! 51
Assess Your Agility 62

Partll. Practicing XP

5. ThINKING 69
Pair Programming 71
Energized Work 79
Informative Workspace 83

Root-Cause Analysis 88

Retrospectives 91
6. Collaborating 99
Trust 102
Sit Together 112
Real Customer Involvement 120
Ubiquitous Language 124
Stand-Up Meetings 129
Coding Standards 133
Iteration Demo 138
Reporting 144
7. Releasingo 153
“Done Done” 156
No Bugs 160
Version Control 169
Ten-Minute Build 177
Continuous Integration 183
Collective Code Ownership 191
Documentation 195
8. Planning 199
Vision 201
Release Planning 206
The Planning Game 219
Risk Management 224
Iteration Planning 233
Slack 246
Stories 253
Estimating 260
9. Developingcouiiii e 271
Incremental Requirements 273
Customer Tests 278
Test-Driven Development 285
Refactoring 303
Simple Design 314
Incremental Design and Architecture 321
Spike Solutions 331
Performance Optimization 335
Exploratory Testing 341

X TABLE OF CONTENTS

Part lll. Mastering Agility

10.

11.

12.

13.

14.

15.

References

Values and Principles

Commonalities
About Values, Principles, and Practices
Further Reading

Improve the Process

Understand Your Project
Tune and Adapt
Break the Rules

RelyonPeople

Build Effective Relationships
Let the Right People Do the Right Things
Build the Process for the People

Eliminate Waste

Work in Small, Reversible Steps
Fail Fast

Maximize Work Not Done
Pursue Throughput

DeliverValue

Exploit Your Agility

Only Releasable Code Has Value
Deliver Business Results

Deliver Frequently

Seek Technical Excellence

Software Doesn’t Exist
Design Is for Understanding
Design Trade-offs

Quality with a Name

Great Design

Universal Design Principles
Principles in Practice
Pursue Mastery

TABLE OF CONTENTS X1

Preface

Q: How do you get to Carnegie Hall?
A: Practice, man, practice!
We want to help you master the art of agile development.

Agile development, like any approach to team-based software development, is a fundamentally
human art, one subject to the vagaries of individuals and their interactions. To master agile development,
you must learn to evaluate myriad possibilities, moment to moment, and intuitively pick the best course
of action.

How can you possibly learn such a difficult skill? Practice!

First and foremost, this book is a detailed description of one way to practice agile development: Extreme
Programming (XP). It’s a practical guide that, if followed mindfully, will allow you to successfully bring
agile development in the form of XP to your team—or will help you decide that it’s not a good choice
in your situation.

Our second purpose is to help you master the art of agile development. Mastering agility means going
beyond our cookbook of practices. Agile development is too context-sensitive for one approach to be

entirely appropriate, and too nuanced for any book to teach you how to master it. Mastery comes from
within: from experience and from an intuitive understanding of ripples caused by the pebble of a choice.

We can’t teach you how your choices will ripple throughout your organization. We don’t try. You must
provide the nuance and understanding. This is the only way to master the art. Follow the practices.
Watch what happens. Think about why they worked... or didn’t work. Then do them again. What was
the same? What was different? Why? Then do it again. And again.

At first, you may struggle to understand how to do each practice. They may look easy on paper, but
putting some practices into action may be difficult. Keep practicing until they’re easy.

As XP gets easier, you will discover that some of our rules don’t work for you. In the beginning, you
won't be able to tell if the problem is in our rules or in the way you're following them. Keep practicing
until you're certain. When you are, break the rules. Modify our guidance to work better for your specific
situation.

Parts I and II of this book contain our approach to XP. Part I helps you get started with Extreme
Programming; Part IT provides detailed guidance for each of XP’s practices. Parts I and II should keep
you occupied for many months.

Xl

When you're ready to break the rules, turn to Part III. A word of warning: there is nothing in Part IIT
that will help you practice XP. Instead, it’s full of ideas that will help you understand XP and agile
development more deeply.

One day you’ll discover that rules no longer hold any interest for you. After all, XP and agile
development aren’t about following rules. “It’s about simplicity and feedback, communication and
trust,” you'll think. “It’s about delivering value—and having the courage to do the right thing at the
right time.” You’ll evaluate myriad possibilities, moment to moment, and intuitively pick the best course
of action.

When you do, pass this book on to someone else, dog-eared and ragged though it may be, so that they
too can master the art of agile development.

For the Pragmatists

What if you don’t want to master a so-called art? What if you just want to develop good software?

Don’t worry—this book is for you, too. Parts I and II are just what you need. We took our years of
experience with agile development and Extreme Programming and distilled them into a single, clearly
defined, comprehensive approach.

This approach allows us to use plain, straightforward language without caveats or digressions. We get
to include a lot of practical tips. We candidly describe when our approach won’t work and what
alternatives to consider when it doesn’t.

There’s a downside to discussing just one approach: no single methodology is appropriate for everyone.
Our advice may not be appropriate for your team or situation. Be sure to read Chapter 4 before putting
our advice into practice.

You may be able to adopt part of XP even if you can’t adopt all of it. The “Contraindications” section of
each practice in Part II describes when a practice is inappropriate. If this applies to your situation, the
“Alternatives” section will help you decide what to do instead.

Don’t go too far and automatically assume that a particular practice won’t work for you. Some of the
ideas in this book are counterintuitive or just don’t sound like fun. Most of them work best in concert
with the others. If you can, try the practices as written for a few months, gain some real-world
experience on how they work in your environment, and then change them.

We've been putting these ideas into practice for years. In the right environment, they really work. Agile
development has been more fun, and more successful, than any other approach to team software
development we’ve tried. Come join the ride.

Who Should Read This Book

This book is for anyone who is, will be, or wants to be part of an agile team. That includes programmers,
of course, but it also includes domain experts, testers, projects managers, architects, designers, and
business analysts. Agile teams are cross-functional; this book reflects that fact.

If you're a leader or you're interested in bringing agile development to your team or organization, you
should read the whole book from cover to cover. Part I introduces agile concepts and describes how to
adopt XP. Part II describes each of XP’s practices in detail. Part III goes beyond XP, looking at the

principles that allow you to create your own agile method by customizing XP to your particular situation.

Xiv PREFACE

If you just want to learn enough to do your job, you can focus primarily on Part II. Start with
Chapter 3 in Part I to get an overview, then read through the practices in Part II that apply to your work.
Each practice starts with a description of the audience it applies to, such as “Programmers,” “Customers,”
or “Testers.”

If you're merely curious about agile development, start by reading Part I. Again, Chapter 3 provides a
good introduction. Afterwards, take a look at the practices in Part II. Start with the ones that look most
interesting; you can read them in any order.

About the Etudes

Have you ever heard a musician playing scales? That’s an étude (if a boring one). An étude teaches
mastery through precise and careful repetition. Eventually, the étude is abandoned, but the skills
remain.

Extreme Programming is our étude for software development. We hope that practicing Extreme
Programming week after week will help you master agile development. Eventually, you’ll change your
practices, but the underlying principles will remain.

Besides the overarching étude of Extreme Programming, we’ve included a mini-étude for each major
theme of agile development. Beginning agile teams can use the études to refine their practice of agile
development. As you gain experience, look deeper; use the études to help connect Part II's detailed
practices to Part III's general principles.

NOTE
These études are also useful for teams not currently practicing XP.

Either way, the études require thought to be effective. Each étude provides information, but it doesn’t
tell you how to act on that information. Think about it. What did you learn from the étude? What was
frustrating or exciting? How does that information affect your work? What will you do about it? Without
attention and reflection—that is, mindfulness—the études are just games.

NOTE
It’s no coincidence that you need mindfulness to master the art of agile development
as well. You have to think about more than XP’s practices for it to be effective.

Like musical études, our mini-études work best when you repeat them. We’ve designed them to take
half an hour, so you can (and should) practice them every day for a week or more. Unlike musical
études, these agile exercises work best when you include your whole team. The more you all understand
about the process and where everyone fits in, the better you will work together.

To start, you need a quiet work area capable of holding everyone in your team comfortably. There
should be a whiteboard or wall where you can hang or post index cards between meetings. There must
also be sufficient space to break into groups of two or three people and to talk softly without disturbing
other groups.

We've found it valuable to use a timer, whether a stopwatch or a kitchen timer, to keep the session
moving. Each étude has a few parts of 5 to 10 minutes. Although that time will seem to flow quickly

PREFACE XV

on your first day, respect the time limits. You'll perform the étude again tomorrow, so it’s OK if you
don't finish everything.

Choose one member of your team to facilitate the étude by watching the time (perhaps calling out “one
minute remaining” when appropriate) and promoting discussion. Again, the first session may be hard,
but a good facilitator can encourage everyone to continue.

At the end of each étude, we recommend spending a few minutes debriefing. What did you learn? Are
there questions and ideas you can follow up on during your regular work? If you’'ve been trying this
exercise for more than a week, are you still getting valuable results?

If you're new to XP and agile development, we strongly recommend that you perform each étude while
you study the related chapter as a team. Besides exploring one particular theme in agile development,
each étude can illuminate an aspect of how your team works together on your agile project.

About Pronouns

We speak in first-person singular rather than first-person plural in the rest of this book. (We say “I,”
not “we.”) We include a lot of personal anecdotes and experiences, and the singular form works better
as a result. However, this book is unquestionably the result of a partnership between two authors and
our use of the word “I” is merely a convenience.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission unless you're reproducing
a significant portion of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “The Art of Agile Development by James Shore and Shane Warden.
Copyright 2008 O’Reilly Media, Inc., 978-0-596-52767-9.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

XVi PREFACE

http://safari.oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You
can access this page at:

http://fwww.oreilly.com/catalog/9780596527679
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly Network, see
our web site at:

http://www.oreilly.com

Acknowledgments

We owe a debt of gratitude to Elisabeth Hendrickson for her contribution of the “Exploratory Testing”
section. Her expertise and writing skill made the material sparkle. For more of Elisabeth’s writing, visit
http://www.testobsessed.com/.

We stole good ideas wherever we could find them. Kent Beck, Ron Jeffries, and Ward Cunningham
each had a hand in the ideas that led to XP, and we stole liberally from those. In addition to XP itself,
Kent Beck introduced us to the idea of XP practices as études. Ward Cunningham introduced us to the
notion of technical debt, a concept we use heavily. Brian Marick’s series of essays, “Agile Testing
Directions,”” influenced our thoughts on agile testing and the role of testers on agile teams.

James had the opportunity to work with Joshua Kerievsky on an Industrial XP (IXP)T project for half a
year. He learned a lot from that project; the Vision practice in particular was inspired by IXP’s Project
Chartering practice. David Schwartz and Amy Schwab of True North pgs, Inc.,¥ provided the specific
vision format that we use, as well as the term project community. Their Mastering Projects workshop is
excellent; take it when you have the opportunity.

Thank you to our editor, Mary Treseler O’Brien, for providing vision (where necessary), trust (where
appropriate), and deadlines (where frightening). This book would not be what it is without you gently
nudging us in directions different from our original ideas.

Thanks also to our army of reviewers, who provided over one thousand comments and suggestions on
our mailing list. In particular, thanks to Adrian Howard, Adrian Sutton, Ann Barcomb, Andy Lester,

* http://www.testing.com/cgi-bin/blog/2004/05/26
1 hitp://www.industrialxp.org/

¥ http://www.projectcommunity.com/

PREFACE xvil

http://www.oreilly.com/catalog/9780596527679
http://www.oreilly.com
http://www.testobsessed.com/
http://www.testing.com/cgi-bin/blog/2004/05/26
http://www.industrialxp.org/
http://www.projectcommunity.com/

Anthony Williams, Bas Vodde, Bill Caputo, Bob Corrick, Brad Appleton, Chris Wheeler, Clarke Ching,
Dadi Ing6lfsson, Diana Larsen, Erik Petersen, George Dinwiddie, Ilja Preul3, Jason Yip, Jeff Olfert, Jeffery
Palermo, Jonathan Clarke, Keith Ray, Kevin Rutherford, Kim Grdsman, Lisa Crispin, Mark Waite,
Nicholas Evans, Philippe Antras, Randy Coulman, Robert Schmitt, Ron Jeffries, Shane Duan, Tim
Haughton, and Tony Byrne for their extensive comments. Special thanks to Brian Marick, Ken Pugh,
and Mark Streibeck for their comments on the completed draft.

James Shore

Every work builds on what came before. I was fortunate to have not just one, but many giants to stand
on. Without the inspired work of Kent Beck, Alistair Cockburn,Ward Cunningham, Tom DeMarco,
Martin Fowler, Ron Jeffries, Timothy Lister, Steve McConnell, and Gerald Weinberg, I wouldn’t have
anything close to the understanding of software development I have today. It’s thanks to their example
that this book exists. In particular, thanks to Alistair Cockburn for generously inviting me to his
roundtable and introducing me to the agile community.

If giants enabled me to contribute to this book, then Kim Eaves and the Denali team brought the
stepladder. Without their enthusiastic support, I never would have been able to try that crazy XP thing.
Thanks also to Rob Myers for his ever-friendly consideration of my rants.

I also gratefully acknowledge my coauthor and friend, Shane Warden. This project morphed from a
little 100-page second edition into a 400-page monster. You didn’t complain once. Thanks for putting
up with me. (And hey! Nice book.)

Finally, thank you, Neeru, my loving and patient wife. I used to think authors thanking their families
was cliché. Now I understand. I couldn’t have finished this book without your support.

Shane Warden

Thanks to Jim for arguing with me while writing the first version of this book (it’s better for it) and for
convincing me that the second edition was worth doing.

Thanks to Allison and Andrew for the tools we used to write this book.

Thanks to my family for supporting me (and not grumbling too much while I sat upstairs and wrote
very slowly), and to my friends for dragging me out of my house once in a while.

Thanks also to the other contributors to Parrot and Perl 6 for being unwitting collaborators, examples,
and victims of some of the ideas in this book. The work we do continually amazes me.

Xvill PREFACE

PART I

Getting Started

CHAPTER 1

Why Agile?

Agile development is popular. All the cool kids are doing it: Google, Yahoo, Symantec, Microsoft, and
the list goes on.” I know of one company that has already changed its name to Agili-something in order
to ride the bandwagon. (They called me in to pitch their “agile process,” which, upon further inspection,
was nothing more than outsourced offshore development, done in a different country than usual.) I
fully expect the big consulting companies to start offering Certified Agile Processes and Certified Agile
Consultants—for astronomical fees, of course—any day now.

Please don’t get sucked into that mess.

In 1986, [Brooks] famously predicted that there were no silver bullets: that by 1996, no single
technology or management technique would offer a tenfold increase in productivity, reliability, or
simplicity. None did.

Agile development isn’t a silver bullet, either.

In fact, I don’t recommend adopting agile development solely to increase productivity. Its benefits—
even the ability to release software more frequently—come from working differently, not from working
faster. Although anecdotal evidence indicates that agile teams have above-average productivity,T that
shouldn’t be your primary motivation. Your team will need time to learn agile development. While they
learn—and it will take a quarter or two—they’ll go slower, not faster. In addition, emphasizing
productivity might encourage your team to take shortcuts and to be less rigorous in their work, which
could actually sarm productivity.

Agile development may be the cool thing to do right now, but that’s no reason to use it. When you
consider using agile development, only one question matters.

Will agile development help us be more successful?

* Source: various experience reports at the Extreme Programming and Agile conferences.

T See, for example, [Van Schooenderwoert], [Mah], and [Anderson 2006].

When you can answer that question, you’ll know whether agile development is right for you.

Understanding Success

The traditional idea of success is delivery on time, on budget, and according to specification. [Standish]
provides some classic definitions:

Successful
“Completed on time, on budget, with all features and
functions as originally specified.”

Despite their popularity, there’s
something wrong with these

definitions.

Challenged
“Completed and operational but over budget, over the
time estimate, [with] fewer features and functions than originally specified.”

Impaired
“Cancelled at some point during the development cycle.”

Despite their popularity, there’s something wrong with these definitions. A project can be successful
even if it never makes a dime. It can be challenged even if it delivers millions of dollars in revenue.

CIO Magazine commented on this oddity:

Projects that were found to meet all of the traditional criteria for success—time, budget and
specifications—may still be failures in the end because they fail to appeal to the intended users
or because they ultimately fail to add much value to the business.

... Similarly, projects considered failures according to traditional IT metrics may wind up being
successes because despite cost, time or specification problems, the system is loved by its target
audience or provides unexpected value. For example, at a financial services company, a new
system... was six months late and cost more than twice the original estimate (final cost was
$5.7 million). But the project ultimately created a more adaptive organization (after 13
months) and was judged to be a great success—the company had a $33 million reduction in
write-off accounts, and the reduced time-to-value and increased capacity resulted in a 50
percent increase in the number of concurrent collection strategy tests in production.”

Beyond Deadlines

There has to be more to success than meeting deadlines... but what?

When I was a kid, I was happy just to play around. I loved the challenge of programming. When I got
a program to work, it was a major victory. Back then, even a program that didn’t work was a success
of some sort, as long as I had fun writing it. My definition of success centered on personal rewards.

As I gained experience, my software became more complicated and I often lost track of how it worked.
I had to abandon some programs before they were finished. I began to believe that maintainability was
the key to success—an idea that was confirmed as I entered the workforce and began working with
teams of other programmers. I prided myself on producing elegant, maintainable code. Success meant
technical excellence.

* R. Ryan Nelson, “Applied Insight—Tracks in the Snow,” CIO Magazine, http://www.cio.com/archive/090106/applied.html.

4 CHAPTER 1: WHY AGILE?

http://www.cio.com/archive/090106/applied.html

Organizational
success

Personal
success

Technical
success

Figure 1-1. Types of success

Despite good code, some projects flopped. Even impeccably executed projects could elicit yawns from
users. I came to realize that my project teams were part of a larger ecosystem involving dozens,
hundreds, or even thousands of people. My projects needed to satisfy those people ... particularly the
ones signing my paycheck. In fact, for the people funding the work, the value of the software had to
exceed its cost. Success meant delivering value to the organization.

These definitions aren’t incompatible. All three types of success are important (see Figure 1-1). Without
personal success, you’ll have trouble motivating yourself and employees. Without technical success,
your source code will eventually collapse under its own weight. Without organizational success, your
team may find that they’re no longer wanted in the company.

The Importance of Organizational Success

Organizational success is often neglected by software teams in favor of the more easily achieved technical
and personal successes. Rest assured, however, that even if you 're not taking responsibility for
organizational success, the broader organization is judging your team at this level. Senior
management and executives aren’t likely to care if your software is elegant, maintainable, or even
beloved by its users; they care about results. That’s their return on investment in your project. If you
don’t achieve this sort of success, they’ll take steps to ensure that you do.

Unfortunately, senior managers don’t usually have the time or perspective to apply a nuanced solution
to each project. They wield swords, not scalpels. They rightly expect their project teams to take care of
fine details.

When managers are unhappy with your team’s results, the swords come out. Costs are the most obvious
target. There are two easy ways to cut them: set aggressive deadlines to reduce development time, or
ship the work to a country with a lower cost of labor. Or both.

These are clumsy techniques. Aggressive deadlines end up increasing schedules rather than reducing
them [McConnell 1996] (p. 220), and offshoring has hidden costs [Overby].

Do aggressive deadlines and the threat of offshoring sound familiar? If so, it’s time for your team to take
back responsibility for its success: not just for personal or technical success, but for organizational success
as well.

THE IMPORTANCE OF ORGANIZATIONAL SUCCESS 5

WHAT DO ORGANIZATIONS VALUE?

Although some projects’ value comes directly from sales, there’s more to organizational value than revenue.
Projects provide value in many ways, and you can’t always measure that value in dollars and cents.

Aside from revenue and cost savings, sources of value include:

« Competitive differentiation

« Brand projection

« Enhanced customer loyalty

. Satisfying regulatory requirements
« Original research

« Strategic information

Enter Agility

Will agile development help you be more successful? It might. Agile development focuses on achieving
personal, technical, and organizational successes. If you're having trouble with any of these areas, agile
development might help.

Organizational Success

Agile methods achieve organizational successes by focusing on delivering value and decreasing costs.
This directly translates to increased return on investment. Agile methods also set expectations early in
the project, so if your project won’t be an organizational success, you'll find out early enough to cancel
it before your organization has spent much money.

Specifically, agile teams increase value by including business experts and by focusing development

efforts on the core value that the project provides for the organization. Agile projects release their most
valuable features first and release new versions frequently, which dramatically increases value. When
business needs change or when new information is discovered, agile teams change direction to match.
In fact, an experienced agile team will actually seek out unexpected opportunities to improve its plans.

Agile teams decrease costs as well. They do this partly by technical excellence; the best agile projects
generate only a few bugs per month. They also eliminate waste by cancelling bad projects early and
replacing expensive development practices with simpler ones. Agile teams communicate quickly and
accurately, and they make progress even when key individuals are unavailable. They regularly review
their process and continually improve their code, making the software easier to maintain and enhance
over time.

* Based partly on [Denne & Cleland-Huang].

6 CHAPTER 1: WHY AGILE?

Technical Success

Extreme Programming, the agile method I focus on in this book, is particularly adept at achieving
technical successes. XP programmers work together, which helps them keep track of the nitpicky details
necessary for great work and ensures that at least two people review every piece of code. Programmers
continuously integrate their code, which enables the team to release the software whenever it makes
business sense. The whole team focuses on finishing each feature completely before starting the next,
which prevents unexpected delays before release and allows the team to change direction at will.

In addition to the structure of development, Extreme Programming includes advanced technical
practices that lead to technical excellence. The most well-known practice is test-driven development,
which helps programmers write code that does exactly what they think it will. XP teams also create
simple, ever-evolving designs that are easy to modify when plans change.

Personal Success

Personal success is, well, personal. Agile development may not satisfy all of your requirements for
personal success. However, once you get used to it, you’ll probably find a lot to like about it, no matter
who you are:

Executives and senior management
They will appreciate the team’s focus on providing a solid return on investment and the software’s
longevity.

Users, stakeholders, domain experts, and product managers
They will appreciate their ability to influence the direction of software development, the team’s
focus on delivering useful and valuable software, and increased delivery frequency.

Project and product managers
They will appreciate their ability to change direction as business needs change, the team’s ability
to make and meet commitments, and improved stakeholder satifaction.

Developers
They will appreciate their improved quality of life resulting from increased technical quality, greater
influence over estimates and schedules, and team autonomy.

Testers
They will appreciate their integration as first-class members of the team, their ability to influence
quality at all stages of the project, and more challenging, less repetitious work.

Working on agile teams has provided some of the most enjoyable moments in my career. Imagine the
camaraderie of a team that works together to identify and deliver products of lasting value, with each
team member enthusiastically contributing to a smooth-running whole. Imagine how it feels to take
responsibility for your area of expertise, whether technical, business, or management, with the rest of
the team trusting your professional judgment and ability. Imagine how pleasant it is to address the
frustrations of your project and to see quality improve over time.

Agile development changes the game. Developing and delivering software in a new way will take a lot
of work and thought. Yet if you do it consistently and rigorously, you'll experience amazing things:
you'll ship truly valuable software on a regular basis. You’ll demonstrate progress on a weekly basis.
You'll have the most fun you’ve ever had in software development.

Ready? Let’s go.

ENTER AGILITY 7

CHAPTER 2

How to Be Agile

What does it mean to “be agile”?

The answer is more complicated than you might think. Agile development isn’t a specific process you
can follow. No team practices the Agile method. There’s no such thing.

Agile development is a philosophy. It’s a way of thinking about software development. The canonical
description of this way of thinking is the Agile Manifesto, a collection of 4 values (Figure 2-1) and 12
principles (Figure 2-2).

To “be agile,” you need to put the agile values and principles into practice.

Agile Methods

A method, or process, is a way of working. Whenever you do something, you're following a process. Some
processes are written, as when assembling a piece of furniture; others are ad hoc and informal, as when
I clean my house.

Agile methods are processes that support the agile philosophy. Examples include Extreme Programming
and Scrum.

Agile methods consist of individual elements called practices. Practices include using version control,
setting coding standards, and giving weekly demos to your stakeholders. Most of these practices have
been around for years. Agile methods combine them in unique ways, accentuating those parts that
support the agile philosophy, discarding the rest, and mixing in a few new ideas. The result is a lean,
powerful, self-reinforcing package.

Manifesto for Agile Software Development

We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

. Individuals and interactions over processes and tools
. Working software over comprehensive documentation
. Customer collaboration over contract negotiation

. Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

©2001, the above authors
This declaration may be freely copied in any form,
but only in its entirety through this notice.

Figure 2-1. Agile values

Don’'t Make Your Own Method

Just as established agile methods combine existing practices, you might want to create your own agile
method by mixing together practices from various agile methods. At first glance, this doesn’t seem too
hard. There are scores of good agile practices to choose from.

However, creating a brand-new agile method is a bad idea if you’ve never used agile development
before. Just as there’s more to programming than writing code, there’s more to agile development than
the practices. The practices are an expression of underlying agile principles. (For more on agile principles,
see Part ITI.) Unless you understand those principles intimately—that is, unless you’ve already mastered
the art of agile development—you’re probably not going to choose the right practices. Agile practices
often perform double- and triple-duty, solving multiple software development problems simultaneously
and supporting each other in clever and surprising ways.

10 CHAPTER 2: HOW TO BE AGILE

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily
throughout the project.

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant
pace indefinitely.

Continuous attention to technical excellence and good design
enhances adility.

Simplicity, the art of maximizing the amount of work not done,
is essential.

The best architectures, requirements, and designs emerge from
self-organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Figure 2-2. Agile principles

Every project and situation is unique, of course, so it’s a good idea to have an agile method that’s
customized to your situation. Rather than making an agile method from scratch, start with an existing,
proven method and iteratively refine it. Apply it to your situation, note where it works and doesn’t,
make an educated guess about how to improve, and repeat. That’s what experts do.

The Road to Mastery

The core thesis of this book is that mastering the art of agile development requires real-world experience
using a specific, well-defined agile method. I've chosen Extreme Programming for this purpose. It has
several advantages:

THE ROAD TO MASTERY 11

Of all the agile methods I know, XP is the most complete. It places a strong emphasis on technical
practices in addition to the more common teamwork and structural practices.

XP has undergone intense scrutiny. There are thousands of pages of explanations, experience
reports, and critiques out there. Its capabilities and limitations are very well understood.

I have a lot of experience with XP, which allows me to share insights and practical tips that will
help you apply XP more easily.

To master the art of agile development—or simply to use XP to be more successful—follow these steps:

1.

. Determine whether this book’s approach will work for

Decide why you want to use agile development. Will it
make your team and organization more successful?
How? (For ideas, see “Enter Agility” in Chapter 1.)

Teams new to XP often
underapply its practices.

your team. (See “Is XP Right for Us?” in Chapter 4.)

. Adopt as many of XP’s practices as you can. (See Chapter 4.) XP’s practices are self-reinforcing, so

it works best when you use all of them together.

. Follow the XP practices rigorously and consistently. (See Part II.) If a practice doesn’t work, try

following the book approach more closely. Teams new to XP often underapply its practices. Expect
to take two or three months to start feeling comfortable with the practices and another two to six
months for them to become second nature.

. As you become confident that you are practicing XP correctly—again, give it several months—start

experimenting with changes that aren’t “by the book.” (See Part III.) Each time you make a change,
observe what happens and make further improvements.

Find a Mentor

As you adapt XP to your situation, you're likely to run into problems and challenges. I provide solutions
for a wide variety of common problems, but you're still likely to encounter situations that I don’t cover.
For these situations, you need a mentor: an outside expert who has mastered the art of agile development.

NOTE
If you can get an expert to coach your team directly, that’s even better. However, even
master coaches benefit from an outside perspective when they encounter problems.

The hardest part of finding a mentor is finding someone with enough experience in agile development.
Sources to try include:

12

Other groups practicing XP in your organization
Other companies practicing XP in your area

A local XP/Agile user group

XP/Agile consultants

The XP mailing list: extremeprogramming@yahoogroups.com

CHAPTER 2: HOW TO BE AGILE

I can’t predict every problem you’ll encounter, but I can help you see when things are going wrong.
Throughout this book, I've scattered advice such as: “If you can’t demonstrate progress weekly, it’s a
clear sign that your project is in trouble. Slow down for a week and figure out what’s going wrong. Ask
your mentor for help.”

When I tell you to ask your mentor for help, I mean that the correct solution depends on the details of
your situation. Your mentor can help you troubleshoot the problem and offer situation-specific advice.

FIND A MENTOR 13

CHAPTER 3

Understanding XP

“Welcome to the team, Pat,” said Kim, smiling at the recent graduate. “Let me show you around. As I
said during the interview, we’re an XP shop. You may find that things are a little different here than
you learned in school.”

“I'm eager to get started,” said Pat. “I took a software engineering course in school, and they taught us
about the software development lifecycle. That made a lot of sense. There was a bit about XP, but it
sounded like it was mostly about working in pairs and writing tests first. Is that right?”

“Not exactly,” said Kim. “We do use pair programming, and we do write tests first, but there’s much
more to XP than that. Why don’t you ask me some questions? I'll explain how XP is different than what
you learned.”

Pat thought for a moment. “Well, one thing I know from my course is that all development methods
use the software development lifecycle: analysis, design, coding, and testing [see Figure 3-1]. Which
phase are you in right now? Analysis? Design? Or is it coding or testing?”

“Yes!” Kim grinned. She couldn’t help a bit of showmanship.
“I don’t understand. Which is it?”

“All of them. We're working on analysis, design, coding, and testing. Simultaneously. Oh, and we deploy
the software every week, too.”

Pat looked confused. Was she pulling his leg?
Kim laughed. “You'll see! Let me show you around.

“This is our team room. As you can see, we all sit together in one big workspace. This helps us collaborate
more effectively.”

Kim led Pat over to a big whiteboard where a man stood frowning at dozens of index cards. “Brian, I'd
like you to meet Pat, our new programmer. Brian is our product manager. What are you working on
right now?”

15

(a) Waterfall lifecycle $

Plan Analysis Design Code Test Deploy
B P PP P P PP PP PP PP PP PRRR PP PP 3 =24 Months s+ e rrerrrrsrinini >
(b) Iterative lifecycle $ $ $

g c B > g c N > a c - >
SR B A R e
é [a) © a 5: o © a é o © a
D P 1 — 3 months seeeeeerens P e 1 — 3 months «++weeeeesens P ey 1 — 3 months ++weeseesens 'S

$ = potential release

Figure 3-1. Traditional lifecycles

“I'm trying to figure out how we should modity our release plan based on the teedback from the user
meeting last week. Our users love what we’ve done so far, but they also have some really good
suggestions. I'm trying to decide if their suggestions are worth postponing the feature we were planning
to start next week. Our success has made us visible throughout the company, so requests are starting
to flood in. I need to figure out how to keep us on track without alienating too many people.”

“Sounds tough,” Kim said. “So, would you say that you're working on requirements, then?”
“I'm working on making our stakeholders happy,” Brian shrugged, turning back to the whiteboard.

“Don’t mind him,” Kim whispered to Pat as they walked away. “He’s under a lot of pressure right now.
This whole project was his idea. It’s already saved the company two and a half million dollars, but now
there’s some political stuff going on. Luckily, we programmers don’t have to worry about that. Brian
and Rachel take care of it—Rachel’s our project manager.”

“Wait... I thought Brian was the project manager?”

“No, Brian is the product manager. He’s in charge of deciding what we build, with the help of stakeholders
and other team members, of course. Rachel is the project manager—she helps things run smoothly. She
helps management understand what we're doing and gets us what we need, like when she convinced
Facilities to tear down the cubicle walls and give us this nice open workspace.

“Let me introduce you to some more members of the team,” Kim continued, leading Pat over to two
people sitting at a workstation. “This is Mary and Jeff. Mary is a mechanical engineer. She normally
works in manufacturing, but we asked her to join us as an on-site customer for this project so she can
help us understand the issues they face on the floor. Jeft is one of our testers. He’s particularly good at
finding holes in requirements. Guys, this is Pat, our new programmer.”

Pat nodded hello. “I think I recognize what you’re doing. That looks like a requirements document.”

“Sort of,” Jeff replied. “These are our customer tests for this iteration. They help us know if the software’s
doing what it’s supposed to.”

“Customer tests?” Pat asked.

16 CHAPTER 3: UNDERSTANDING XP

Mary spoke up. “They’re really examples. This particular set focuses on placement of inventory in the
warehouse. We want the most frequently used inventory to be the easiest to access, but there are other
concerns as well. We're putting in examples of different selections of inventory and how they should

be stored.”

“You can see how things are progressing,” Jeff continued. “Here, I'll test these examples.” He pressed a
button on the keyboard, and a copy of the document popped up on the screen. Some sections of the
document were green. Others were red.

“You can see that the early examples are green—that means the programmers have those working.
These later ones are red because they cover special cases that the programmers haven’t coded yet. And
this one here is brand-new. Mary realized there were some edge cases we hadn’t properly considered.
You can see that some of these cases are actually OK—they're green—but some of them need more
work. We're about to tell the programmers about them.”

“Actually, you can go ahead and do that, Jeff,” said Mary, as they heard a muffled curse from the area
of the whiteboard. “It sounds like Brian could use my help with the release plan. Nice to meet you, Pat.”

“Come on,” said Jeff. “Kim and I will introduce you to the other programmers.”

“Sure,” said Pat. “But first—this document you were working on. Is it a requirements document or a
test document?”

“Both,” Jeff said, with a twinkle in his eye. “And neither. It’s a way to make sure that we get the hard
stuff right. Does it really matter what we call it?”

“You seem pretty casual about this,” Pat said. “I did an internship last year and nobody at that company
could even think about coding until the requirements and design plans were signed off. And here you
are, adding features and revising your requirements right in the middle of coding!”

“It’s just crazy enough to work,” said Jeff.

“In other words,” Kim added, “we used to have formal process gates and signoffs, too. We used to spend
days arguing in meetings about the smallest details in our documents. Now, we focus on doing the right
things right, not on what documents we’ve signed off. It takes a lot less work. Because we work on
everything together, from requirements to delivery, we make fewer mistakes and can figure out
problems much more easily.”

“Things were difterent for me,” Jeft added. “I haven’t been here as long as Kim. In my last company,
we didn’t have any structure at all. People just did what they felt was right. That worked OK when we
were starting out, but after a few years we started having terrible problems with quality. We were always
under the gun to meet deadlines, and we were constantly running into surprises that prevented us from
releasing on time. Here, although we’re still able to do what we think is right, there’s enough structure
for everyone to understand what’s going on and make constant progress.”

“It’s made our life easier,” Kim said enthusiastically. “We get a lot more done...”

“...and it’s higher quality,” Jeff finished. “You’ve got to watch out for Kim—she’'ll never stop raving
about how great it is to work together.” He grinned. “She’s right, you know. It is. Now let’s go tell the
other programmers about the new examples Mary and I added.”

UNDERSTANDING XP 17

I EEEEEEEEEEEEEEEEEEEE R EEEEREREEE:

Iteration
Iteration

Iteration
/| Iteration

I
i

, -l $ = Potential release

Analysis
Design
Code
Test

Plan

Figure 3-2. XP lifecycle

The XP Lifecycle

One of the most astonishing premises of XP is that you can eliminate requirements, design, and testing
phases as well as the formal documents that go with them.

This premise is so far off from the way we typically learn to develop software that many people dismiss
it as a delusional fantasy. “These XP folks obviously don’t know what they’re talking about,” they say.
“Just last month I was on a project that failed due to inadequate requirements and design. We need
more requirements, design, and testing, not /less!”

That’s true. Software projects do need more requirements, design, and testing—which is why XP teams
work on these activities every day. Yes, every day.

You see, XP emphasizes face-to-face collaboration. This is so effective in eliminating communication
delays and misunderstandings that the team no longer needs distinct phases. This allows them to work
on all activities every day—with simultaneous phases—as shown in Figure 3-2.

Using simultanous phases, an XP team produces deployable software every week. In each iteration, the
team analyzes, designs, codes, tests, and deploys a subset of features.

Although this approach doesn’t necessarily mean that the team is more productive,” it does mean that
the team gets feedback much more frequently. As a result, the team can easily connect successes and
failures to their underlying causes. The amount of unproven work is very small, which allows the team
to correct some mistakes on the fly, as when coding reveals a design flaw, or when a customer review
reveals that a user interface layout is confusing or ugly.

The tight feedback loop also allows XP teams to refine their plans quickly. It’s much easier for a customer
to refine a feature idea if she can request it and start to explore a working prototype within a few days.
The same principle applies for tests, design, and team policy. Any information you learn in one phase

can change the way you think about the rest of the software. If you find a design defect during coding
or testing, you can use that knowledge as you continue to analyze requirements and design the system
in subsequent iterations.

* Productivity is notoriously difficult to study. I'm not aware of any formal research on XP productivity, although anecdotal evidence
indicates that agile teams are more productive than traditional teams.

18 CHAPTER 3: UNDERSTANDING XP

How It Works

XP teams perform nearly every software development activity simultaneously. Analysis, design, coding,
testing, and even deployment occur with rapid frequency.

That’s a lot to do simultaneously. XP does it by working in iterations: week-long increments of work.
Every week, the team does a bit of release planning, a bit of design, a bit of coding, a bit of testing, and
so forth. They work on stories: very small features, or parts of features, that have customer value. Every
week, the team commits to delivering four to ten stories. Throughout the week, they work on all phases
of development for each story. At the end of the week, they deploy their software for internal review.
(In some cases, they deploy it to actual customers.)

The following sections show how traditional phase-based activities correspond to an XP iteration.

Planning

Every XP team includes several business experts—the on-site customers—who are responsible for making
business decisions. The on-site customers point the project in the right direction by claritying the project
vision, creating stories, constructing a release plan, and managing risks. Programmers provide estimates
and suggestions, which are blended with customer priorities in a process called the planning game.
Together, the team strives to create small, frequent releases that maximize value.

The planning effort is most intense during the first few weeks of the project. During the remainder of
the project, customers continue to review and improve the vision and the release plan to account for
new opportunities and unexpected events.

In addition to the overall release plan, the team creates a detailed plan for the upcoming week at the
beginning of each iteration. The team touches base every day in a brief stand-up meeting, and its
informative workspace keeps everyone informed about the project status.

Analysis

Rather than using an upfront analysis phase to define requirements, on-site customers sit with the team
full-time. On-site customers may or may not be real customers depending on the type of project, but
they are the people best qualified to determine what the software should do.

On-site customers are responsible for figuring out the requirements for the software. To do so, they use
their own knowledge as customers combined with traditional requirements-gathering techniques.
When programmers need information, they simply ask. Customers are responsible for organizing their
work so they are ready when programmers ask for information. They figure out the general
requirements for a story before the programmers estimate it and the detailed requirements before the
programmers implement it.

Some requirements are tricky or difficult to understand. Customers formalize these requirements, with
the assistance of testers, by creating customer tests: detailed, automatically checked examples. Customers
and testers create the customer tests for a story around the same time that programmers implement the
story. To assist in communication, programmers use a ubiquitous language in their design and code.

The user interface (UI) look and feel doesn’t benefit from automated customer tests. For the UI,
customers work with the team to create sketches of the application screens. In some cases, customers
work alongside programmers as they use a UI builder to create a screen. Some teams include an
interaction designer who's responsible for the application’s UL

THE XP LIFECYCLE 19

Design and Coding

XP uses incremental design and architecture to continuously create and improve the design in small
steps. This work is driven by test-driven development (TDD), an activity that inextricably weaves together
testing, coding, design, and architecture. To support this process, programmers work in pairs, which
increases the amount of brainpower brought to bear on each task and ensures that one person in each
pair always has time to think about larger design issues.

Programmers are also responsible for managing their development environment. They use a version
control system for configuration management and maintain their own automated build. Programmers
integrate their code every few hours and ensure that every integration is technically capable of
deployment.

To support this effort, programmers also maintain coding standards and share ownership of the code.
The team shares a joint aesthetic for the code, and everyone is expected to fix problems in the code
regardless of who wrote it.

Testing

XP includes a sophisticated suite of testing practices. Each member of the team—programmers,
customers, and testers—makes his own contribution to software quality. Well-functioning XP teams
produce only a handful of bugs per month in completed work.

Programmers provide the first line of defense with test-driven development. TDD produces automated
unit and integration tests. In some cases, programmers may also create end-to-end tests. These tests
help ensure that the software does what the programmers intended.

Likewise, customer tests help ensure that the programmers’ intent matches customers” expectations.
Customers review work in progress to ensure that the UI works the way they expect. They also produce
examples for programmers to automate that provide examples of tricky business rules.

Finally, testers help the team understand whether their efforts are in fact producing high-quality code.
They use exploratory testing to look for surprises and gaps in the software. When the testers find a bug,
the team conducts root-cause analysis and considers how to improve their process to prevent similar
bugs from occuring in the future. Testers also explore the software’s nonfunctional characteristics, such
as performance and stability. Customers then use this information to decide whether to create additional
stories.

The team doesn 't perform any manual regression testing. TDD and customer testing leads to a
sophisticated suite of automated regression tests. When bugs are found, programmers create automated
tests to show that the bugs have been resolved. This suite is sufficient to prevent regressions. Every time
programmers integrate (once every few hours), they run the entire suite of regression tests to check if
anything has broken.

The team also supports their quality efforts through pair programming, energized work, and iteration
slack. These practices enhance the brainpower that each team member has available for creating high-
quality software.

Deployment

XP teams keep their software ready to deploy at the end of any iteration. They deploy the software to
internal stakeholders every week in preparation for the weekly iteration demo. Deployment to real
customers is scheduled according to business needs.

20 CHAPTER 3: UNDERSTANDING XP

As long as the team is active, it maintains the software it has released. Depending on the organization,
the team may also support its own software (a batman is helpful in this case; see “Iteration Planning”
in Chapter 8). In other cases, a separate support team may take over. Similarly, when the project ends,
the team may hand off maintenance duties to another team. In this case, the team creates
documentation and provides training as necessary during its last few weeks.

XP PRACTICES BY PHASE

The following table shows how XP’s practices correspond to traditional phases. Remember that XP uses
iterations rather than phases; teams perform every one of these activities each week. Most are performed
every day.

Table 3-1. XP Practices by Phase

XP Practices Planning Analysis Design & Coding Testing Deployment
Thinking

Pair Programming v v

Energized Work v v v v
Informative Workspace

Root-Cause Analysis

NEENENEN

Retrospectives

Collaborating

<

Trust
Sit Together v

Real Customer Involvement

AN N N

Ubiquitous Language

Stand-Up Meetings v
Coding Standards v

Iteration Demo v
Reporting v v

Releasing

<
AN
\

“Done Done”

No Bugs

Version Control
Ten-Minute Build

Continuous Integration

NN NENEN

CollectiveCode Ownership
Documentation v

Planning

THE XP LIFECYCLE 21

XP Practices Planning Analysis Design & Coding Testing Deployment
v
v
v

Vision

Release Planning
The Planning Game
Risk Management
[teration Planning
Slack

Stories

NN N N N SR NEN

Estimating

Developing

<

Incremental Requirements v
Customer Tests v v
Test-Driven Development
Refactoring

Simple Design

Incremental Design and Architecture

Spike Solutions

NN NENEN

Performance Optimization

Exploratory Testing v

Our Story Continues

“Hey, guys, I'd like you to meet Pat, our new programmer,” Kim announced. She, Jeff, and Pat had
walked over to a series of large tables. Index cards and pencils were scattered around the tables, and
whiteboards covered the walls. Six programmers were working in pairs at three of the workstations.

“Hi, Pat,” the team chorused. Kim introduced everyone.

“Welcome aboard,” said Justin, one of the programmers. He stood up and grabbed a rubber chicken
from a nearby desk. “Kevin and I are going to integrate our changes now,” he announced to the rest of
the group. A few people nodded abstractly, already intent on their work.

“Mary and I just made some changes to the customer tests,” said Jeff. “Who’s working on the warehouse
story?”

“That’s us,” said Justin. “What’s up?”

“We added some examples to cover some new edge cases. I think they’re pretty straightforward, but if
you have any questions, let us know.”

“Will do,” Justin replied. “We were about to finish off the last of the business logic for that story anyway.
We'll take a look at it as soon as we’ve checked in.”

22 CHAPTER 3: UNDERSTANDING XP

“Thanks!” Jeff went off to meet Mary and Brian at the planning board.

“Before you start on your next task, Justin, do you have a few minutes?” Kim asked.

Justin glanced at his pairing partner, Kevin, who was listening in. He gave Justin a thumbs up.
“Sure. We're just waiting for the build’s tests to finish, anyway.”

“Great,” Kim said. “I'm helping Pat get oriented, and he wanted to know which phase of development
we’re working on. Can you explain what you've been doing?”

Justin flashed Pat a knowing look. “She’s on the "simultaneous phases’ kick, huh? I'm sorry.” He
laughed. “Just kidding, Kim! It is pretty different.

“I'm sure Kim is dying to hear me say this: yes, we're doing testing, design, coding, and integration all
at once. We deploy every week—because we do internal development, we actually deploy to
production—but deployment happens automatically. The real deployment work happens when we
update our deployment scripts, which we do as needed throughout the week.”

“Right now Kevin and I are integrating, which is something everybody does every few hours. Before
that, we were using test-driven development and refactoring to test, code, and design simultaneously.”
Justin pointed to another pair at a workstation. “Jerry and Suri are doing a in-depth review of a story
we finished yesterday. Suri is our other tester—she’s very good at exploratory testing.” He looked at the
third pair, who were talking intensely and sketching on the whiteboard. “And it looks like Mark and
Allison over there are working on a larger design problem. We use incremental design and architecture,
so we're constantly looking for ways to improve our design.”

Allison looked up. “Actually, I think this is something the whole group should see. Can we get
everyone’s attention for a moment?”

“Sure,” said Jerry, pushing away from his desk. He glanced at his partner, who nodded. “We needed a
break anyway.”

As Allison started sketching on the whiteboard, Pat thought about what he’d seen. Brian was working
on planning. Jeff and Mary were working on requirements and tests—no, examples. Kevin and Justin
were integrating, and had been testing, designing, and coding a few minutes earlier. Mark and Allison
were designing. And Jerry and Suri were doing more testing.

Except that it wasn’t quite that simple. Everything seemed fluid; people kept changing what they were
working on. Jetf and Mary had gone backward, from requirements to planning, and all the programmers
had jumped from integration and testing to design. He frowned. How was he going to keep track of it all?

“Don’t worry,” said Kim quietly. She had noticed his discomfort. “It’s not as confusing as it seems. Jeff
has it right: don’t worry about what to call what we're doing. We're all doing the same thing—getting
stuff done. We work together to make it happen, and we jump back and forth between all the normal
development activities as the situation dictates. If you focus on what we're delivering rather than trying
to figure out what phase of development we're in, it will all make sense.”

Pat shook his head. “How do you know what you have to do, though? It looks like chaos.”

Kim pointed at a whiteboard filled with index cards. “There’s our plan for this week. Green are finished
and white are remaining. It’'s Monday morning and we release on Wednesday, so we have about half
a week to go. You tell me; what’s our progress?”

Pat looked at the board. About half the cards had a green circle around them. “About halfway through?”
he guessed.

THE XP LIFECYCLE 23

Kim beamed. “Perfect! We keep those cards up-to-date. Just keep that in mind for the first week or two
and you’ll do fine!”

24

ALITTLE LIE

I've pretended that the only way to do XP is the way I've described it in this book. Actually, that's not really
true. The essence of XP isn’t its practices, but its approach to software development. [Beck 2004] describes XP
as including a philosophy of software development, a body of practices, a set of complementary principles,
and a community. Every experienced XP team will have its own way of practicing XP. As you master the art of
agile development, you will, too.

In Parts I and Il of this book, I'm going to perpetuate the little lie that there’s just one way to do XP. It’s a lot
easier to learn XP that way. As you learn, keep in mind that no practice is set in stone. You're always free to
experiment with changes. See “The Road to Mastery” in Chapter 2 and then turn to Part Il for guidance.

There are a few differences between my approach to XP and what you'll find in other XP books. Most of the
differences are minor stylistic issues, but I've also made a few important changes to XP’s planning and
acceptance testing practices. | made these changes to address common problems | observed when working
with XP teams. Like XP itself, these changes are the result of several years of iterative refinement.

One of the problems I've noticed with XP teams is that the on-site customers often have difficulty with release
planning. XP gives them the freedom to change their mind at will, and they do—too much. They slip into agile
thrashing, which means they overreact to every opportunity, changing direction every time something new
comes up. As a result, the team never finishes anything valuable and has trouble showing progress.

To help prevent this problem, I've added the Vision practice and gone into more detail about appropriate
releaseplanning.'vealsoaddedthe Risk Management practice to helpteams understand howto makereliable
long-term commitments.

I'vealsonoticed thatteams struggle with XP’s automated acceptancetests. Although they areintendedto “allow
the customer to know when the system works and tell the programmers what needs to be done” [Jeffries et
al.], I've found that they’re often too limited to truly fulfill this role. In fact, some customers worry that, by
defining acceptance tests, they’ll be stuck with software that passes the letter of the tests but fails to fulfill the
spirit of their expectations. Worse, most teams implement these tests as system-level tests that take a lot of
work to create and maintain. They run slowly and lead to build and integration problems. In short, I've found
that automated acceptance tests cost more than they’re worth.

In this book, I've replaced automated acceptance tests with customer reviews, customer testing, and
exploratory testing. Customer reviews involve customers throughout the development process, allowing them
to communicate the spirit as well as the letter of their needs. Customer testing is a variant of automated
acceptance testing that focuses on small, targeted tests rather than system-level tests. Its purpose is to
communicate complicated business rules rather than confirming that a story has been completed properly.
Exploratory testing provides an after-the-fact check on the team’s practices. When the team is working well,
they should produce nearly zero bugs. Exploratory testing helps the team have confidence that this is true.

Despite these changes, I've only added three brand-new practices in this book (Table 3-2). None of these
practices are my invention; | adapted them from other methods and have proven them in real-world projects.

CHAPTER 3: UNDERSTANDING XP

Table 3-2. Practices new to XP
New practice Reason
Vision Focuses efforts and helps counteract common “agile thrashing” problem
Risk Management ~ Improves team’s ability to make and meet commitments; reduces costs

Exploratory Testing Improves quality and helps integrate testers

However, there are several practices that mature XP teams practice intuitively, but aren’t explicitly listed as
practices in other XP books. I've added those as well (Table 3-3).

Table 3-3. Clarifying practices
Clarifying practice
Retrospectives
Trust
Ubiquitous Language
Stand-Up Meetings
[teration Demo
Reporting
“Done Done”

No Bugs

Version Control
Documentation
Customer Testing
Spike Solutions

Performance Optimization

There are a few practices in standard XP that I've rarely seen in use and don’t practice myself (Table 3-4). I've
removed them from this book.

Table 3-4. Practices not in this book

Removed practice Reason
Metaphor Replaced with Ubiquitous Language
Shrinking Teams No personal experience; not essential

Negotiated Scope Contract ~ Minimal personal experience; not essential

Pay-Per-Use No personal experience; not essential

Table 3-5 below shows how the practices in this book correspond to Beck’s XP practices. I've also included a
column for Scrum, another popular agile method.

Key: n/a: This practice is not part of the method, although some teams may add it. implied: Although this idea
isn’t a practice in the method, its presence is assumed or described in another way.

THE XP LIFECYCLE 25

26

Table 3-5. Practices cross-reference

This Book

Thinking

Pair Programming
Energized Work
Informative Workspace
Root-Cause Analysis
Retrospectives
Collaborating

Trust

(in Trust)

Sit Together

implied

Real Customer Involvmenet
Ubiquitous Language
Stand-Up Meetings
Coding Standards
Iteration Demo
Reporting

Releasing

“Done Done”

No Bugs

Version Control

(in Version Control)
Ten-Minute Build
Continuous Integration
Collective Code Ownership
Documentation
Planning

Vison

Release Planning

(in Release Planning)
(in Release Planning)
The Planning Game
Risk Management

[teration Planning

2nd Edition XP?

Pair Programming
Energized Work
Informative Workspace
Root-Cause Analysis

implied

implied

Team Continuity

Sit Together

Whole Team

Real Customer Involvement
implied

implied

implied

implied

implied

implied

implied

implied

Single Code Base
Ten-Minute Build
Continuous Integration
Shared Code

implied

n/a

Quarterly Cycle
Incremental Deployment
Daily Deployment
implied

n/a

Weekly Cycle

CHAPTER 3: UNDERSTANDING XP

1st Edition XPP

Pair Programming
40-Hour Week
implied

implied

implied

implied

n/a

implied

On-Site Customer
implied

(replaces Metaphor)
implied

Coding Standards
implied

implied

implied

implied

implied

implied

implied

Continuous Integration
Collective Ownership n/a

implied

n/a

Small Releases
implied

implied

The Planning Game
n/a

implied

Scrum*®

n/a

implied
implied
implied
implied

implied

implied

Open Working Environment
Scrum Team

implied

n/a

Daily Scrum

n/a

Sprint Review

implied

implied
n/a
n/a
n/a
n/a

n/a

implied

implied

Product Backlog
implied

n/a

implied

n/a

Sprints

This Book 2nd Edition XP? 1st Edition XPP Scrum*®

Slack Slack implied implied
Stories Stories implied Backlog ltems
Estimating implied implied Estimating
Developing

Incremental Requirements implied implied implied
Customer Tests implied Testing n/a
Test-Driven Development Test-First Programming Testing n/a
Refactoring implied Refactoring n/a

Simple Design Incremental Design Simple Design n/a
Incremental Design and Architecture Incremental Design Simple Design n/a

Spike Solutions implied implied n/a
Performance Optimization implied implied n/a
Exploratory Testing n/a n/a n/a

(Not in This Book)

n/a Shrinking Teams n/a n/a

n/a Negotiated Scope Contract implied n/a

n/a Pay-Per-Use n/a n/a

implied implied implied Scrum Master
implied implied implied Product Owner
n/a n/a n/a Abnormal Sprint Termination
n/a n/a n/a Sprint Goal

2 [Beck 2004]
b [Beck 1999]
¢ [Schwaber & Beedle]

The XP Team

Working solo on your own project—*“scratching your own itch”—can be a lot of fun. There are no
questions about which features to work on, how things ought to work, if the software works correctly,
or whether stakeholders are happy. All the answers are right there in one brain.

Team software development is different. The same information is spread out among many members of
the team. Different people know:

e How to design and program the software (programmers, designers, and architects)

¢ Why the software is important (product manager)

THE XP TEAM 27

e The rules the software should follow (domain experts)

e How the software should behave (interaction designers)

e How the user interface should look (graphic designers)

o Where defects are likely to hide (testers)

e How to interact with the rest of the company (project manager)

e Where to improve work habits (coach)

All of this knowledge is necessary for success. XP acknowledges this reality by creating cross-functional
teams composed of diverse people who can fulfill all the team’s roles.

The Whole Team

XP teams sit together in an open workspace. At the beginning of each iteration, the team meets for a
series of activities: an iteration demo, a retrospective, and iteration planning. These typically take two
to four hours in total. The team also meets for daily stand-up meetings, which usually take five to ten
minutes each.

Other than these scheduled activities, everyone on the team plans his own work. That doesn’t mean
everybody works independently; they just aren’t on an explicit schedule. Team members work out the
details of each meeting when they need to. Sometimes it’s as informal as somebody standing up and
announcing across the shared workspace that he would like to discuss an issue. This self-organization is
a hallmark of agile teams.

On-Site Customers

On-site customers—often just called customers—are responsible for defining the software the team builds.
The rest of the team can and should contribute suggestions and ideas, but the customers are ultimately
responsible for determining what stakeholders find valuable.

Customers’ most important activity is release planning. This is a multifaceted activity. Customers need
to evangelize the project’s vision; identify features and stories; determine how to group features into
small, frequent releases; manage risks; and create an achievable plan by coordinating with programmers
and playing the planning game.

On-site customers may or may not be real customers, depending on the type of project. Regardless,
customers are responsible for refining their plans by soliciting feedback from real customers and other
stakeholders. One of the venues for this feedback is the weekly iteration demo, which customers lead.

In addition to planning, customers are responsible for providing programmers with requirements details
upon request. XP uses requirements documents only as memory aids for customers. Customers
themselves act as living requirements documents, researching information in time for programmer use
and providing it as needed. Customers also help communicate requirements by creating mock-ups,
reviewing work in progress, and creating detailed customer tests that clarify complex business rules.
The entire team must sit together for this communication to take place effectively.

Typically, product managers, domain experts, interaction designers, and business analysts play the role
of the on-site customer. One of the most difficult aspects of creating a cross-functional team is finding
people qualified and willing to be on-site customers. Don’t neglect this role; it’s essential to increasing
the value of the product you deliver. A great team will produce technically excellent software without

28 CHAPTER 3: UNDERSTANDING XP

on-site customers, but to truly succeed, your software must also bring value to its investors. This requires
the perspective of on-site customers.

NOTE

Include exactly one product manager and enough other on-site customers for them to
stay one step ahead of the programmers. As a rule of thumb, start with two on-site
customers (including the product manager) for every three programmers.

[Coftfin] describes an experience with two nearly identical teams, one that did not have on-site
customers and one that did. The team with no on-site customers took fifteen months to produce a
product with mediocre value.

The total cost of the project exceeded initial expectations and the application under delivered
on the user’s functional expectations for the system... real business value was not delivered
until the second and third [releases] and even then the new system was not perceived as
valuable by its users because it required them to change while providing no significant benefit.

A team composed of many of the same developers, at the same company, using the same process, later
produced a product with compelling value in less than three months.

The first production release was ready after 9 weeks of development... it surpassed scheduling
and functional expectations, while still coming in on-budget.... In the first two months of live
production usage over 25,000 citations were entered using the new system. The application
development team continued to deliver new releases to production approximately every six
weeks thereafter. Every release was an exciting opportunity for the team of developers and
users to provide value to the company and to improve the user’s ability to accomplish their jobs.

One of the primary reasons for this success was customer involvement.

Many of the shortcomings of the [first] system stemmed from a breakdown in the collaborative
atmosphere that was initially established. Had users been more involved throughout the
project, the end result would have been a system that much more closely aligned with their
actual needs. They would have had a greater sense of ownership and communication between
the various groups would have been less tense.

The success of the [second] system caused many people in the organization to take note and
embrace the lessons learned in this project... other projects teams restructured their physical
arrangements into a shared project room as the [second] team had done.

Customer involvement makes a huge difference in product
success. Make an extra effort to include customers. One way If the customers won’t move to
to do so is to move to their offices rather than asking them to the team, move the team to the
move to your office. Make sure the customers agree and that customers.

there’s adequate space available.

THE XP TEAM 29

WHY SO MANY CUSTOMERS?

Two customers for every three programmers seems like a lot, doesn’tit? Initially | started with a much smaller
ratio, but | often observed customers struggling to keep up with the programmers. Eventually | arrived at the
two-to-three ratio after trying different ratios on several successful teams. | also asked other XP coaches about
their experiences. The consensus was that the two-to-three ratio was about right.

Most of those projects involved complex problem domains, so if your software is fairly straightforward, you
may be able to have fewer customers. Keep in mind that customers have a lot of work to do. They need to figure
out what provides the most value, set the appropriate priorities for the work, identify all the details that
programmers will ask about, and fit in time for customer reviews and testing. They need to do all this while
staying one step ahead of the programmers, who are right behind them, crunching through stories like freight
trains. It’s a big job. Don’t underestimate it.

The product manager (aka product owner)

The product manager has only one job on an XP project, but it’s a doozy. That job is to maintain and
promote the product vision. In practice, this means documenting the vision, sharing it with stakeholders,
incorporating feedback, generating features and stories, setting priorities for release planning, providing
direction for the team’s on-site customers, reviewing work in progress, leading iteration demos,
involving real customers, and dealing with organizational politics.

NOTE

In addition to maintaining and promoting the product vision, product managers are
also often responsible for ensuring a successful deployment of the product to market.
That may mean advertising and promotion, setting up training, and so forth. These
ordinary product management responsibilities are out of the scope of this book.

The best product managers have deep understandings of their markets, whether the market is one
organization (as with custom software) or many (as with commercial software). Good product managers
have an intuitive understanding of what the software will provide and why it’s the most important thing
their project teams can do with their time.

A great product manager also has a rare combination of skills. In addition to vision, she must have the
authority to make difficult trade-off decisions about what goes into the product and what stays out. She
must have the political savvy to align diverse stakeholder interests, consolidate them into the product
vision, and effectively say “no” to wishes that can’t be accommodated.

Product managers of this caliber often have a lot of demands on their time. You may have trouble getting
enough attention. Persevere. Theirs is one of the most crucial roles on the team. Enlist the help of your
project manager and remind people that software development is very expensive. If the software isn’t
valuable enough to warrant the time of a good product manager—a product manager who could mean
the ditference between success and failure—perhaps it isn’t worth developing in the first place.

Make sure your product manager is committed to the project full-time. Once a team is running
smoothly, the product manager might start cutting back on his participation. Although domain experts
and other on-site customers can fill in for the product manager for a time, the project is likely to start

30 CHAPTER 3: UNDERSTANDING XP

drifting off-course unless the product manager participates in every iteration. [Rooney] experienced
that problem, with regrettable results:

We weren’t sure what our priorities were. We weren’t exactly sure what to work on next. We
pulled stories from the overall list, but there was precious little from the Customer [product
manager] in terms of what we should be working on. This went on for a few months.

Then, we found out that the Gold Owner [executive sponsor] was pissed—really pissed. We
hadn’t been working on what this person thought we should.

In a predictable environment, and by delegating to a solid set of on-site customers, a product manager
might be able to spend most of his time on other things, but he should still participate in every
retrospective, every iteration demo, and most release planning sessions.

Some companies have a committee play the role of product manager, but I advise against this approach.
The team needs a consistent vision to follow, and I've found that committees have trouble creating
consistent, compelling visions. When I've seen committees succeed, it’s been because one committee
member acted as de facto product manager. I recommend that you explicitly find a product manager.
Her role may be nothing more than consolidating the ideas of the committee into a single vision, and
that’s likely to keep her hands full. Be sure to choose a product manager with plenty of political acumen
in this case.

Domain experts (aka subject matter experts)

Most software operates in a particular industry, such as finance, that has its own specialized rules for
doing business. To succeed in that industry, the software must implement those rules faithfully and
exactly. These rules are domain rules, and knowledge of these rules is domain knowledge.

Most programmers have gaps in their domain knowledge, even if they’ve worked in an industry for
years. In many cases, the industry itself doesn’t clearly define all its rules. The basics may be clear, but
there are nitpicky details where domain rules are implicit or even contradictory.

The team’s domain experts are responsible for figuring out these details and having the answers at their
fingertips. Domain experts, also known as subject matter experts, are experts in their field. Examples include
financial analysts and PhD chemists.

Domain experts spend most of their time with the team, figuring out the details of upcoming stories
and standing ready to answer questions when programmers ask. For complex rules, they create
customer tests (often with the help of testers) to help convey nuances.

NOTE

On small teams, product managers often double as domain experts.

Interaction designers

The user interface is the public face of the product. For many users, the Ul is the product. They judge
the product’s quality solely on their perception of the UI.

Interaction designers help define the product UL Their job focuses on understanding users, their needs,
and how they will interact with the product. They perform such tasks as interviewing users, creating
user personas, reviewing paper prototypes with users, and observing usage of actual software.

THE XP TEAM 31

NOTE
Don’t confuse graphic design with interaction design. Graphic designers convey ideas
and moods via images and layout. Interaction designers focus on the types of people
using the product, their needs, and how the product can most seamlessly meet those
needs.

You may not have a professional interaction designer on staff. Some companies fill this role with a
graphic designer, the product manager, or a programmer.

Interaction designers divide their time between working with the team and working with users. They
contribute to release planning by advising the team on user needs and priorities. During each iteration,
they help the team create mock-ups of UI elements for that iteration’s stories. As each story approaches
completion, they review the look and feel of the UI and confirm that it works as expected.

The fast, iterative, feedback-oriented nature of XP development leads to a different environment than
interaction designers may be used to. Rather than spending time researching users and defining
behaviors before development begins, interaction designers must iteratively refine their models
concurrently with iterative refinement of the program itself.

Although interaction design is ditferent in XP than in other methods, it is not necessarily diminished.
XP produces working software every week, which provides a rich grist for the interaction designer’s
mill. Designers have the opportunity to take real software to users, observe their usage patterns, and
use that feedback to effect changes as soon as one week later.

Business analysts

On nonagile teams, business analysts typically act as liaisons between the customers and developers, by
claritying and refining customer needs into a functional requirements specification.

On an XP team, business analysts augment a team that already contains a product manager and domain
experts. The analyst continues to clarify and refine customer needs, but the analyst does so in support
of the other on-site customers, not as a replacement for them. Analysts help customers think of details
they might otherwise forget and help programmers express technical trade-offs in business terms.

Programmers

A great product vision requires solid execution. The bulk of the XP team consists of software developers
in a variety of specialties. Each of these developers contributes directly to creating working code. To
emphasize this, XP calls all developers programmers.

NOTE

Include between 4 and 10 programmers. In addition to the usual range of expertise,
be sure to include at least one senior programmer, designer, or architect who has
significant design experience and is comfortable working in a hands-on coding
environment. This will help the team succeed at XP’s incremental design and
architecture.

32 CHAPTER 3: UNDERSTANDING XP

If the customers’ job is to maximize the value of the product, then the programmers’ job is to minimize
its cost. Programmers are responsible for finding the most effective way of delivering the stories in the
plan. To this end, programmers provide effort estimates, suggest alternatives, and help customers create
an achievable plan by playing the planning game.

Programmers spend most of their time pair programming. Using test-driven development, they write
tests, implement code, refactor, and incrementally design and architect the application. They pay careful
attention to design quality, and they’re keenly aware of technical debt (for an explanation of technical
debt, see “XP Concepts” later in this chapter) and its impact on development time and future
maintenance costs.

Programmers also ensure that the customers may choose to release the software at the end of any
iteration. With the help of the whole team, the programmers strive to produce no bugs in completed
software. They maintain a ten-minute build that can build a complete release package at any time. They
use version control and practice continuous integration, keeping all but the last few hours” work
integrated and passing its tests.

This work is a joint effort of all the programmers. At the beginning of the project, the programmers
establish coding standards that allow them to collectively share responsibility for the code. Programmers
have the right and the responsibility to fix any problem they see, no matter which part of the application
it touches.

Programmers rely on customers for information about the software to be built. Rather than guessing
when they have a question, they ask one of the on-site customers. To enable these conversations,
programmers build their software to use a ubiquitous language. They assist in customer testing by
automating the customers’ examples.

Finally, programmers help ensure the long-term maintainability of the product by providing
documentation at appropriate times.

Designers and architects

Everybody codes on an XP team, and everybody designs. Test-driven development combines design,
tests, and coding into a single, ongoing activity.

Expert designers and architects are still necessary. They contribute by guiding the team’s incremental
design and architecture efforts and by helping team members see ways of simplifying complex designs.
They act as peers—that is, as programmers—rather than teachers, guiding rather than dictating.

Technical specialists

In addition to the obvious titles (programmer, developer, software engineer), the XP “programmer” role
includes other software development roles. The programmers could include a database designer, a
security expert, or a network architect. XP programmers are generalizing specialists. Although each
person has his own area of expertise, everybody is expected to work on any part of the system that
needs attention. (See “Collective Code Ownership” in Chapter 7 for more.)

THE XP TEAM 33

Testers

Testers help XP teams produce quality results from the beginning. Testers apply their critical thinking
skills to help customers consider all possibilities when envisioning the product. They help customers
identify holes in the requirements and assist in customer testing.”

NOTE
Include enough testers for them to stay one step ahead of the programmers. As a rule
of thumb, start with one tester for every four programmers.

Testers also act as technical investigators for the team. They use exploratory testing to help the team
identify whether it is successfully preventing bugs from reaching finished code. Testers also provide
information about the software’s nonfunctional characteristics, such as performance, scalability, and
stability, by using both exploratory testing and long-running automated tests.

However, testers don 't exhaustively test the software for bugs. Rather than relying on testers to find
bugs for programmers to fix, the team should produce nearly bug-free code on their own. When testers
find bugs, they help the rest of the team figure out what went wrong so that the team as a whole can
prevent those kinds of bugs from occurring in the future.

These responsibilities require creative thinking, flexibility, and experience defining test plans. Because
XP automates repetitive testing rather than performing manual regression testing, testers who are used
to self-directed work are the best fit.

Some XP teams don’t include dedicated testers. If you don’t have testers on your team, programmers
and customers should share this role.

WHY SO FEW TESTERS?

As with the customer ratio, | arrived at the one-to-four tester-to-programmer ratio through trial and error. In
fact, that ratio may be a little high. Successful teams I've worked with have had ratios as low as one tester for
every six programmers, and some XP teams have no testers at all.

Manual script-based testing, particularly regression testing, is extremely labor-intensive and requires high
tester-to-programmer ratios. XP doesn’t use this sort of testing. Furthermore, programmers create most of the
automated tests (during test-driven development), which further reduces the need for testers.

Ifyou’reworkingwith existingcodeandhavetodoalotof manualregressiontesting, yourtester-to-programmer
ratio will probably be higher than I've suggested here.

Coaches

XP teams self-organize, which means each member of the team figures out how he can best help the team
move forward at any given moment. XP teams eschew traditional management roles.

* This disc?
XP doesn’t include testers as a distinct role.

34 CHAPTER 3: UNDERSTANDING XP

Instead, XP leaders lead by example, helping the team reach its potential rather than creating jobs and
assigning tasks. To emphasize this difference, XP leaders are called coaches. Over time, as the team gains
experience and self-organizes, explicit leadership becomes less necessary and leadership roles
dynamically switch from person to person as situations dictate.

A coach’s work is subtle; it enables the team to succeed. Coaches help the team start their process by
arranging for a shared workspace and making sure that the team includes the right people. They help
set up conditions for energized work, and they assist the team in creating an informative workspace.

One of the most important things the coaches can do is to help the team interact with the rest of the
organization. They help the team generate organizational trust and goodwill, and they often take
responsibility for any reporting needed.

Coaches also help the team members maintain their self-discipline, helping them remain in control of
challenging practices such as risk management, test-driven development, slack, and incremental design
and architecture.

NOTE
The coach differs from your mentor (see “Find a Mentor” in Chapter 2). Your mentor
is someone outside the team who you can turn to for advice.

The programmer-coach

Every team needs a programmer-coach to help the other programmers with XP’s technical practices.
Programmer-coaches are often senior developers and may have titles such as “technical lead” or
“architect.” They can even be functional managers. While some programmer-coaches make good all-
around coaches, others require the assistance of a project manager.

Programmer-coaches also act as normal programmers and participate fully in software development.

The project manager

Project managers help the team work with the rest of the organization. They are usually good at coaching
nonprogramming practices. Some functional managers fit into this role as well. However, most project
managers lack the technical expertise to coach XP’s programming practices, which necessitates the
assistance of a programmer-coach.

Project managers may also double as customers.

NOTE

Include a programmer-coach and consider including a project manager.

Other Team Members

The preceding roles are a few of the most common team roles, but this list is by no means comprehensive.
The absence of a role does not mean the expertise is inappropriate for an XP team; an XP team should
include exactly the expertise necessary to complete the project successfully and cost-effectively. For
example, one team I worked with included a technical writer and an ISO 9001 analyst.

THE XP TEAM 35

The Project Community

Projects don’t live in a vaccuum; every team has an ecosystem surrounding it. This ecosystem extends
beyond the team to the project community, which includes everyone who affects or is affected by the
project.” Keep this community in mind as you begin your XP project, as everybody within it can have
an impact on your success.

Two members of your project community that you may forget to consider are your organization’s
Human Resources and Facilities departments. Human Resources often handles performance reviews
and compensation. Their mechanisms may not be compatible with XP’s team-based effort (see “Trust”
in Chapter 6). Similarly, in order to use XP, you’ll need the help of Facilities to create an open workspace
(see “Sit Together” in Chapter 6).

Stakeholders

Stakeholders form a large subset of your project community. Not only are they affected by your project,
they have an active interest in its success. Stakeholders may include end users, purchasers, managers,
and executives. Although they don’t participate in day-to-day development, do invite them to attend
each iteration demo. The on-site customers—particularly the product manager—are responsible for
understanding the needs of your stakeholders, deciding which needs are most important, and knowing
how to best meet those needs.

The executive sponsor

The executive sponsor is particularly important: he holds the purse strings for your project. Take extra
care to identity your executive sponsor and understand what he wants from your project. He’s your
ultimate customer. Be sure to provide him with regular demos and confirm that the project is proceeding
according to his expectations.

XP PRACTICES BY ROLE

The following table shows the practices you should learn to practice XP. You can always learn more, of course!
In particular, if you're in a leadership role (or would like to be), you should study all the practices.

Table 3-6. XP Practices by Role

XP Practices On-Site Customers Programmers Testers Coaches
Thinking

Pair Programming v

Energized Work . . . v
Informative Workspace . . . v
Root-Cause Analysis . . . v

« = You will be involved with this practice. Studying it will be helpful, but not necessary.

v/ =You should study this practice carefully.

* Thanks to David Schmaltz and Amy Schwartz of True North pgs, Inc., for this term.

36 CHAPTER 3: UNDERSTANDING XP

XP Practices On-Site Customers Programmers Testers Coaches

Retrospectives . . . v
Collaborating

Trust . . . v
Sit Together . . . v
Real Customer Involvement . v
Ubiquitous Language v

Stand-Up Meetings . . . v
Coding Standards . v
Iteration Demo v v

Reporting . . . v
Releasing

“Done Done” v v v v
No Bugs . v v v
Version Control v

Ten-Minute Build v

Continuous Integration v

Collective Code Ownership v

Documentation v
Planning

Vision v v
Release Planning v v
The Planning Game . . v
Risk Management v
[teration Planning . v v
Slack . v
Stories v
Estimating v

Developing

Incremental Requirements v v v
Customer Tests v v v

Test-Driven Development v

Refactoring v

Simple Design v

«=You will be involved with this practice. Studying it will be helpful, but not necessary.

v/ =You should study this practice carefully.

THE XP TEAM 37

XP Practices On-Site Customers Programmers Testers Coaches

Incremental Design and Architecture v
Spike Solutions v
Performance Optimization . v
Exploratory Testing v

« = You will be involved with this practice. Studying it will be helpful, but not necessary.

v =You should study this practice carefully.

Filling Roles

The exact structure of your team isn’t that important as long as it has all the knowledge it needs. The
makeup of your team will probably depend more on your organization’s traditions than on anything
else.

In other words, if project managers and testers are typical for your organization, include them. If they’re
not, you don’t necessarily need to hire them. You don’t have to have one person for each role—some
people can fill multiple roles. Just keep in mind that someone has to perform those duties even if no
one has a specific job title saying so.

At a minimum, however, I prefer to see one person clearly designated as “product manager” (who may
do other customer-y things) and one person clearly defined as “programmer-coach” (who also does
programmer-y things).

The other roles may blend together. Product managers are usually domain experts and can often fill the
project manager’s shoes, too. One of the customers may be able to play the role of interaction designer,
possibly with the help of a Ul programmer. On the programming side, many programmers are generalists
and understand a variety of technologies. In the absence of testers, both programmers and customers
should pick up the slack.

Team Size

The guidelines in this book assume teams with 4 to 10 programmers (5 to 20 total team members). For
new teams, four to six programmers is a good starting point.

Applying the staffing guidelines to a team of 6 programmers produces a team that also includes 4
customers, 1 tester, and a project manager, for a total team size of 12 people. Twelve people turns out
to be a natural limit for team collaboration.

XP teams can be as small as one experienced programmer and one product manager, but full XP might
be overkill for such a small team. The smallest team I would use with full XP consists of five people:
four programmers (one acting as coach)and one product manager (who also acts as project manager,
domain expert, and tester). A team of this size might find that the product manager is overburdened; if
so, the programmers will have to pitch in. Adding a domain expert or tester will help.

38 CHAPTER 3: UNDERSTANDING XP

On the other end of the spectrum, starting with 10 programmers produces a 20-person team that
includes 6 customers, 3 testers, and a project manager. You can create even larger XP teams, but they
require special practices that are out of the scope of this book.

Before you scale your team to more than 12 people, however,
remember that large teams incur extra communication and Prefer better to bigger.
process overhead, and thus reduce individual productivity.
The combined overhead might even reduce overall
productivity. If possible, hire more experienced, more productive team members rather than scaling to
a large team.

A 20-person team is advanced XP. Avoid creating a team of this size until your organization has had
extended success with a smaller team. If you're working with a team of this size, continuous review,
adjustment, and an experienced coach are critical.

Full-Time Team Members

All the team members should sit with the team full-time and give the project their complete attention.
This particularly applies to customers, who are often surprised by the level of involvement XP requires
of them.

Some organizations like to assign people to multiple projects simultaneously. This fractional assignment
is particularly common in matrix-managed organizations. (If team members have two managers, one for
their project and one for their function, you are probably in a matrixed organization.)

If your company practices fractional assignment, I have some
good news. You can instantly improve productivity by Fractional assignment is
reassigning people to only one project at a time. Fractional dreadfully counterproductive.
assignment is dreadfully counterproductive: fractional
workers don’t bond with their teams, they often aren’t
around to hear conversations and answer questions, and they must task switch, which incurs a
significant hidden penalty. “[T]he minimum penalty is 15 percent... Fragmented knowledge workers
may look busy, but a lot of their busyness is just thrashing” [DeMarco 2002] (p. 19-20).

NOTE
If your team deals with a lot of ad hoc requests, you may benefit from using a batman,
discussed in “Iteration Planning” in Chapter 8.

That’s not to say everyone needs to work with the team for the entire duration of the project. You can
bring someone in to consult on a problem temporarily. However, while she works with the team, she
should be fully engaged and available.

XP Concepts

As with any specialized field, XP has its own vocabulary. This vocabulary distills several important
concepts into snappy descriptions. Any serious discussion of XP (and of agile in general) uses this
vocabulary. Some of the most common ideas follow.

XP CONCEPTS 39

Refactoring

There are multiple ways of expressing the same concept in source code. Some are better
than others. Refactoring is the process of changing the structure of code—rephrasing it— | Ally

without changing its meaning or behavior. It’s used to improve code quality, to fight | Refactoring (p. 303)
off software’s unavoidable entropy, and to ease adding new features.

Technical Debt

Imagine a customer rushing down the hallway to your desk. “It’s a bug!” she cries, out of breath. “We
have to fix it now.” You can think of two solutions: the right way and the fast way. You just know she’ll
watch over your shoulder until you fix it. So you choose the fast way, ignoring the little itchy feeling
that you're making the code a bit messier.

Technical debt is the total amount of less-than-perfect design and implementation decisions in your
project. This includes quick and dirty hacks intended just to get something working right now! and design
decisions that may no longer apply due to business changes. Technical debt can even come from
development practices such as an unwieldy build process or incomplete test coverage. It lurks in gigantic
methods filled with commented-out code and “TODO: not sure why this works” comments. These dark
corners of poor formatting, unintelligible control flow, and insufficient testing breed bugs like mad.

The bill for this debt often comes in the form of higher maintenance costs. There may not be a single
lump sum to pay, but simple tasks that ought to take minutes may stretch into hours or afternoons. You
might not even notice it except for a looming sense of dread when you read a new bug report and
suspect it’s in that part of the code.

Left unchecked, technical debt grows to overwhelm software projects. Software costs millions of dollars
to develop, and even small projects cost hundreds of thousands. It’s foolish to throw away that
investment and rewrite the software, but it happens all the time. Why? Unchecked technical debt makes
the software more expensive to modify than to reimplement. What a waste.

XP takes a fanatical approach to technical debt. The key to managing it is to be constantly vigilant. Avoid
shortcuts, use simple design, refactor relentlessly... in short, apply XP’s development practices (see
Chapter 9).

Timeboxing

Some activities invariably stretch to fill the available time. There’s always a bit more polish you can put
on a program or a bit more design you can discuss in a meeting. Yet at some point you need to make a
decision. At some point you've identified as many options as you ever will.

Recognizing the point at which you have enough information is not easy. If you use timeboxing, you set
aside a specific block of time for your research or discussion and stop when your time is up, regardless
of your progress.

This is both difficult and valuable. It’s difficult to stop working on a problem when the solution may be
seconds away. However, recognizing when you’ve made as much progress as possible is an important
time-management skill. Timeboxing meetings, for example, can reduce wasted discussion.

40 CHAPTER 3: UNDERSTANDING XP

The Last Responsible Moment

XP views a potential change as an opportunity to exploit; it’s the chance to learn something significant.
This is why XP teams delay commitment until the last responsible moment.”

Note that the phrase is the last responsible moment, not the last possible moment. As [Poppendieck &
Poppendieck] says, make decisions at “the moment at which failing to make a decision eliminates an
important alternative. If commitments are delayed beyond the last responsible moment, then decisions
are made by default, which is generally not a good approach to making decisions.”

By delaying decisions until this crucial point, you increase the accuracy of your decisions, decrease your
workload, and decrease the impact of changes. Why? A delay gives you time to increase the amount of
information you have when you make a decision, which increases the likelihood it is a correct decision.
That, in turn, decreases your workload by reducing the amount of rework that results from incorrect
decisions. Changes are easier because they are less likely to invalidate decisions or incur additional
rework.

See “Release Planning” in Chapter 8 for an example of applying this concept.

Stories

Stories represent self-contained, individual elements of the project. They tend to correspond to individual
features and typically represent one or two days of work.

Stories are customer-centric, describing the results in terms of business results. They’re not
implementation details, nor are they full requirements specifications. They are traditionally just an index
card’s worth of information used for scheduling purposes. See “Stories” in Chapter 8 for more
information.

Iterations

An iteration is the full cycle of design-code-verify-release practiced by XP teams. It’s a timebox that is
usually one to three weeks long. (I recommend one-week iterations for new teams; see “Iteration
Planning” in Chapter 8) Each iteration begins with the customer selecting which stories the team will
implement during the iteration, and it ends with the team producing software that the customer can
install and use.

The beginning of each iteration represents a point at which the customer can change the direction of
the project. Smaller iterations allow more frequent adjustment. Fixed-size iterations provide a well-
timed rhythm of development.

Though it may seem that small and frequent iterations contain a lot of planning overhead, the amount
of planning tends to be proportional to the length of the iteration.

See “Iteration Planning” for more details about XP iterations.

* The Lean Construction Institute coined the term “last responsible moment.” [Poppendieck & Poppendieck] popularized it in
relation to software development.

XP CONCEPTS 41

Velocity

In well-designed systems, programmer estimates of effort tend to be consistent but not accurate.
Programmers also experience interruptions that prevent effort estimates from corresponding to calendar
time. Velocity is a simple way of mapping estimates to the calendar. It’s the total of the estimates for the
stories finished in an iteration.

In general, the team should be able to achieve the same velocity in every iteration. This allows the team
to make iteration commitments and predict release dates. The units measured are deliberately vague;
velocity is a technique for converting effort estimates to calendar time and has no relation to
productivity. See “Velocity” in Chapter 8 for more information.

Theory of Constraints

[Goldratt 1992]’s Theory of Constraints says, in part, that every system has a single constraint that
determines the overall throughput of the system. This book assumes that programmers are the
constraint on your team. Regardless of how much work testers and customers do, many software teams
can only complete their projects as quickly as the programmers can program them. If the rest of the
team outpaces the programmers, the work piles up, falls out of date and needs reworking, and slows
the programmers further.

Therefore, the programmers set the pace, and their estimates are used for planning. As long as the
programmers are the constraint, the customers and testers will have more slack in their schedules, and
they’ll have enough time to get their work done before the programmers need it.

Although this book assumes that programmers are the constraint, they may not be. Legacy projects in
particular sometimes have a constraint of testing, not programming. The responsibility for estimates and
velocity always goes to the constraint: in this case, the testers. Programmers have less to do than testers
and manage their workload so that they are finished by the time testers are ready to test a story.

What should the nonconstraints do in their spare time? Help eliminate the constraint. If testers are the
constraint, programmers might introduce and improve automated tests.

Mindfulness

Agility—the ability to respond effectively to change—requires that everyone pay attention to the process
and practices of development. This is mindfulness.

Sometimes pending changes can be subtle. You may realize your technical debt is starting to grow when
adding a new feature becomes more difficult this week than last week. You may notice the amount and
tone of feedback you receive from your customers change.

XP oftfers plenty of opportunities to collect feedback from the code, from your coworkers, and from
every activity you perform. Take advantage of these. Pay attention. See what changes and what doesn’t,
and discuss the results frequently.

42 CHAPTER 3: UNDERSTANDING XP

CHAPTER 4

Adopting XP

“I can see how XP would work for IT projects, but product development is different.” —a product
development team

“I can see how XP would work for product development, but IT projects are different.” —an
in-house IT development team

Before adopting XP, you need to decide whether it’s appropriate for your situation. Often, people’s
default reaction to hearing about XP is to say, “Well, of course that works for other teams, but it couldn’t
possibly work for us.”

Question that assumption. I've helped a wide variety of teams

adopt XP: 20-person teams and 1-person teams; huge XP’s applicability is based on
corporations and small startups; shrinkwrap, in-house, and organizations and people, not
outsourced software vendors; proprietary and open source types of projects.

developers. Through these experiences, I've learned that

software teams are more similar than they are ditferent. XP’s

applicability has far more to do with your organization and the people involved than with the type of
project you're working on.

Is XP Right for Us?

You can adopt XP in many different conditions, although the practices you use will vary depending on
your situation. The practices in this book were chosen to give you the greatest chance of success. That
leads to some prerequisites and recommendations about your team’s environment. You don’t have meet
these criteria exactly, but it’s worth trying to change your environment so that you do. This will give
you the best chance of succeeding. As Martin Fowler said:”

* http://martinfowler.com/bliki/EnterpriseRails.html.

43

http://martinfowler.com/bliki/EnterpriseRails.html

In this sense I see a startling parallel between DHH [David Heinemeier Hansson, creator of
Ruby on Rails] and Kent Beck. For either of them, if you present them with a constrained
world, they’ll look at constraints we take for granted, consider them to be unessential, and
create a world without them. I don’t have that quality, I tend to try to work within the
constraints gradually pushing at them, while they just stick some intellectual dynamite under
them and move on. That’s why they can create things like Extreme Programming and Rails
which really give the industry a jolt.

In other words, if your organization puts a barrier between your work and success, don’t just put up
with it—find a way to remove it. It’s your best path to success.

Similarly, if you want to practice XP, do everything you can to meet the following prerequisites and
recommendations. This is a lot more effective than working around limitations.

Prerequisite #1: Management Support

It’s very difficult to use XP in the face of opposition from management. Active support is best. To practice
XP as described in this book, you will need the following:
¢ A common workspace with pairing stations. (See “Sit Together” in Chapter 6.)
e Team members solely allocated to the XP project. (See “The XP Team” in Chapter 3.)
¢ A product manager, on-site customers, and integrated testers. (Also discussed in “The XP Team” in
Chapter 3.)

You will often need management’s help to get the previous three items. In addition, the more
management provides the following things, the better:

e Team authority over the entire development process, including builds, database schema, and
version control

e Compensation and review practices that are compatible with team-based etfort

e Acceptance of new ways of demonstrating progress and showing results (see “Reporting” in
Chapter 6)

e Patience with lowered productivity while the team learns

If management isn’t supportive...

If you want management to support your adoption of XP, they need to believe in its benetfits. Think
about what the decision-makers care about. What does an organizational success mean to your
management? What does a personal success mean? How will adopting XP help them achieve those
successes? What are the risks of trying XP, how will you mitigate those risks, and what makes XP worth
the risks? Talk in terms of your managers’ ideas of success, not your own success.

If you have a trusted manager you can turn to, ask for her help and advice. If not, talk to your mentor
(see “Find a Mentor” in Chapter 2). Fearless Change: Patterns for Introducing New Ideas [Manns & Rising]
is another good resource.

If management refuses your overtures, then XP probably isn’t appropriate for your team. You may be
able to demonstrate XP’s value incrementally by adopting some standalone practices (see “Extremities:
Applying Bits and Pieces of XP,” later in this chapter).

4 CHAPTER 4: ADOPTING XP

Prerequisite #2: Team Agreement

Just as important as management support is the team’s agreement to use XP. If team members don’t
want to use XP, it’s not likely to work. XP assumes good faith on the part of team members—there’s no
way to force the process on somebody who's resisting it.

If people resist...

It’s never a good idea to force someone to practice XP against his will. In the best case, he’ll find some
way to leave the team, quitting if necessary. In the worst case, he’ll remain on the team and silently
sabotage your efforts.

Reluctant skeptics are OK. If somebody says, “I don’t want to practice XP, but I see that the rest of you
do, so I'll give it a fair chance for a few months,” that’s fine. She may end up liking it. If not, after a few
months have gone by, you'll have a better idea of what you can do to meet the whole team’s needs.

NOTE

One way to help people agree to try XP is to promise to revisit the decision on a specific
date. (Allow two or three months if you can.) At that point, if the team doesn’t want
to continue using XP, stop.

If only one or two people refuse to use XP, and they’re interested in working on another project, let
them transfer so the rest of the team can use XP. If no such project is available, or if a significant portion
of the team is against using XP, don’t use it.

Prerequisite #3: A Colocated Team

XP relies on fast, high-bandwidth communication for many of its practices. In order to achieve that
communication, your team members needs to sit together in the same room.

If your team isn’t colocated...

Colocation makes a big difference in team effectiveness. Don’t assume that your team can't sit together;
be sure that bringing the team together is your first option.

That said, it’s OK if one or two noncentral team members are off-site some of the time. You’ll be
surprised, though, at how much more difficult it is to interact with them. (Actually, they’re no more
difficult to interact with than before; it’s the rest of the team that’s improved.) Talk with your mentor
(see “Find a Mentor” in Chapter 2) about how to best deal with the problem.

If a lot of people are off-site, if a central figure is often absent, or if your team is split across multiple
locations, you need help beyond this book. You can use XP or another agile method with a distributed
team, but it’s a complicated problem that’s outside the scope of our discussion. Ask your mentor for
help, and see “Sit Together” in Chapter 6 for more ideas.

IS XP RIGHT FOR US? 45

Prerequisite #4: On-Site Customers

On-site customers are critical to the success of an XP team.
They, led by the product manager, determine which features The on-site customers’ decisions
the team will develop. In other words, their decisions determine the value of the
determine the value of the software. software.

Of all the on-site customers, the product manager is likely the
most important. She makes the final determination of value.
A good product manager will choose features that provide value to your organization. A poor product
manager will dither time away on inconsequential features.

Domain experts, and possibly interaction designers, are also important. They take the place of an upfront
requirements phase, sitting with the team to plan upcoming features and answering questions about
what the software needs to do.

If your product manager is too busy to be on-site...

If you have an experienced product manager who makes high-level decisions about features and

priorities, but who isn’t available to sit with the team full-time, you may be able to ask a business analyst
or one of the other on-site customers to act as a proxy. The proxy’s job is to act in the product manager’s
stead to make decisions about details while following the actual product manager’s high-level decisions.

This can work well if your proxy has the authority to act in place of the product manager. If the proxy
is unable to answer questions on his own and needs to confirm every decision with the real product
manager, he will introduce too many delays for this book’s approach to XP to work well.

If your product manager is inexperienced...

This may be OK as long as she has a more experienced colleague she turns to for advice.

If you can’t get a product manager at all...

Although good product managers are in high demand, the absence of a product manager is a big danger
sign. The right person for the job may not have the title of “product manager” (see “Real Customer
Involvement” in Chapter 6), but XP requires that somebody with business expertise take responsibility
for determining and prioritizing features.

Remind your organization of the cost of development (presumably, hundreds of thousands of dollars)
and the value the software will bring to them (hopefully, millions of dollars). That value hinges on the
participation of a good product manager. Is that really something they want to scrimp on?

If you can’t find a product manager, someone from the development team can play the part. However,
this may be a dangerous approach because this person is unlikely to have the business expertise
necessary to deliver an organizational success. If you can’t get a product manager, talk with your mentor
about how to compensate.

If you can’t get other on-site customers...

Because XP doesn’t have an upfront requirements phase, the work of figuring out requirements happens
concurrently with software development. This compresses the overall schedule, and it means that at
least one person—usually several—needs to work on requirements full-time.

46 CHAPTER 4: ADOPTING XP

Unless you have a small team, this work is probably more than a product manager can handle alone.
Typically, the product manager delegates the details to a set of domain experts. In applications that
involve a sophisticated user interface, an interaction designer may be involved as well. This allows the
product manager to focus on coordinating with stakeholders and resolving questions of value and
priorities.

Some business analysts may be domain experts. Be careful of using business analysts that aren’t already
experts in the domain; although they can relay information from true experts, this process invariably
introduces misunderstandings and delays.

As long as somebody is playing the on-site customer role, you can use XP. However, the less expertise
your on-site customers have, the more risk there is to the value of your software.

Prerequisite #5: The Right Team Size

Iwrote this book for teams as large as 20 people and as small as 1 person. For teams new to XP, however,
I recommend 4 to 6 programmers and no more than 12 people on the team (see “The XP Team” in
Chapter 3). I also recommend having an even number of programmers so that everyone can pair
program (see “Pair Programming” in Chapter 5). If you have ongoing support needs, add one more
programmer for a total of five or seven so that the team can have a batman (see “Iteration Planning” in
Chapter 8).

Teams with fewer than four programmers are less likely to have the intellectual diversity they need.
They’ll also have trouble using pair programming, an important support mechanism in XP. Large teams
face coordination challenges. Although experienced teams can handle those challenges smoothly, a new
XP team will struggle.

If you don’t have even pairs...

The easiest solution to this problem is to add or drop one programmer so you have even pairs. If you
can’t do that, the XP practices are still appropriate for you, but try to find useful nonproduction code
work for the programmer who isn’t pairing. This will help the team consistently apply XP’s technical
practices and will improve code quality.

If your team is larger than seven programmers...

The coordination challenges of a large team can make learning XP more difficult. Consider hiring an
experienced XP coach to lead the team through the transition. You may also benefit from hiring another
experienced XP programmer to assist the coach in mentoring the team.

If your team is larger than 10 programmers, you need guidance that’s outside the scope of this book.
Hire a coach with experience in scaling XP to large teams.

If your team is smaller than four programmers...

Most of the XP practices are still appropriate for you, but you probably won’t be able to pair program
much. In this situation, it’s best if your team members are conscientious programmers who are
passionate about producing high-quality code. That passion will help them apply XP’s technical practices
with discipline.

You may also have trouble getting on-site customers to sit with you full-time. Instead, sit close to them
so you can get their attention when you need it.

IS XP RIGHT FOR US? 47

If you have many developers working solo...

Some organizations—particularly IT organizations—have a lot of small projects rather than one big
project. They structure their work to assign one programmer to each project.

Although this approach has the advantage of connecting programmers directly with projects, it has
several disadvantages. It’s high-risk: every project is the responsibility of one programmer, so that any
programmer who leaves orphans a project. Her replacement may have to learn it from first principles.

Code quality can also be a challenge. Projects don’t benefit from peer review, so the code is often
idiosyncratic. Stovepipe systems, in which each programmer solves the same problem in different ways,
appear. Junior programmers, lacking the guidance of their more senior peers, create convoluted,
kludgey systems and have few opportunities to learn better approaches. Senior programmers, not
realizing the inexperience of their more junior peers, create overly sophisticated code that others have
trouble understanding.

You may be able to combine four to seven of these programmers into a single XP team that works on
one project at a time, which allows it to complete projects more quickly (see “Release Planning” in
Chapter 8). By working together, senior developers have the opportunity to mentor junior developers,
and the team can eliminate stovepipe systems.

Combining your programmers into a single team has some drawbacks. The biggest is likely to be a
perceived lack of responsiveness. Although projects will be finished more quickly, customers will no
longer have a dedicated programmer to talk to about the status of their projects. The team will only
work on one project at a time, so other customers may feel they are being ignored.

To resolve these problems, consider dedicating one programmer to deal with customer requests and
minor changes (see “Iteration Planning” in Chapter 8). You'll also need an influential, unbiased business
person to play the product manager role, addressing conflicts between customers and making
prioritization decisions.

Prerequisite #6: Use All the Practices

You may be tempted to ignore or remove some XP practices, particularly ones that make team members
uncomfortable. Be careful of this. XP is designed to have very little waste. Nearly every practice directly
contributes to the production of valuable software.

For example, pair programming supports collective code ownership, which is necessary for refactoring.
Refactoring allows incremental design and architecture. Incremental design and architecture enables
customer-driven planning and frequent releases, which are the key to XP’s ability to increase value and
deliver successful software.

XP doesn’t require perfection—it’s OK if you accidentally misapply a practice from time to time—but it
rarely works well if you arbitrarily remove pieces.

If practices don't fit...

You may think that some XP practices aren’t appropriate for your organization. That may be true, but
it’s possible you just feel uncomfortable or unfamiliar with a practice. Are you sure the practice won't
work, or do you just not want to do it? XP will work much better if you give all the practices a fair
chance rather than picking and choosing the ones you like.

48 CHAPTER 4: ADOPTING XP

If you're sure a practice won’t work, you need to replace it. For example, in order to achieve the benetfits
of collective code ownership without pair programming, you must provide another way for people to
share knowledge about the codebase. (You’ll also have to find ways to replace the other benetfits of
pairing.)

Replacing practices requires continuous refinement and an in-depth understanding of XP. Ask your
mentor for help (see “Find a Mentor” in Chapter 2) and consider hiring an experienced XP coach.

Recommendation #1: A Brand-New Codebase

Easily changed code is vital to XP. If your code is cumbersome to change, you'll have difficulty with XP’s
technical practices, and that difficulty will spill over into XP’s planning practices.

XP teams put a lot of effort into keeping their code clean and easy to change. If you have a brand-new
codebase, this is easy to do. If you have to work with existing code, you can still practice XP, but it will
be more difficult. Even well-maintained code is unlikely to have the simple design and suite of
automated unit tests that XP requires (and produces). New XP teams often experience an epiphany
between the second and fourth months. “This is the best code I've ever worked with!” they say, and
start to see the power of XP.

To understand and appreciate XP’s technical practices fully, you need to experience the practices
meshing together to give you complete confidence in your code, tests, and build. You need to feel the
delight of making big improvements with small changes. You're unlikely to have that experience when
working with existing code. If you can, leave preexisting code to experienced XP teams.

If you have preexisting code...

You can dig your way out of this hole. See “Applying XP to an Existing Project,” later in this chapter.

Recommendation #2: Strong Design Skills

Simple, easily changed design is XP’s core enabler. This means at least one person on the team—
preferably a natural leader—needs to have strong design skills.

It’s hard to tell if somebody has strong design skills unless you have strong design skills yourself. One
clue to look for is an understanding and appreciation of domain-driven design. It requires a crucial shift
in thinking—from imperative procedural design to declarative object-oriented design—that
programmers with poor design skills can have difficulty grasping.

If no one has strong design skills...

Even lacking a person with strong design skills, you’ll probably do as well with XP as you would with
any method—perhaps better, because XP includes specific technology practices and advice. However,

that doesn’t mean you’ll be successtul. Take it slow and steady, and seek out as much experienced help
as you can get.

Meanwhile, start learning! [Evans]” Domain-Driven Design is a good place to start, as is [Fowler 2002a]’s
Patterns of Enterprise Application Architecture. Consider taking a course or hiring somebody to join the team
as amentor. Be careful, though—strong design skills, while essential, are surprisingly rare. Ask someone
with good design skills to help you vet your choice.

IS XP RIGHT FOR US? 49

Recommendation #3: A Language That’s Easy to Refactor

XP relies on refactoring to continuously improve existing designs, so any language that makes
refactoring difficult will make XP difficult. Of the currently popular languages, object-oriented and
dynamic languages with garbage collection are the easiest to refactor. C and C++, for example, are more
difficult to refactor.

If your language is hard to refactor...

You can still use XP, but it’s a good idea to include someone on your team who has experience with
refactoring in your language, if you can.

Recommendation #4: An Experienced Programmer-Coach

Some people are natural leaders. They’re decisive, but appreciate others’ views; competent, but
respectful of others” abilities. Team members respect and trust them. You can recognize a leader by her
influence—regardless of her title, people turn to a leader for advice.

NOTE

Leadership is independent of title or position. You can identify leaders by their
followers, not by their desire to give orders. To identify the real leaders on your team,
look for the people that team members want to follow.

XP relies on self-organizing teams. This kind of team doesn’t have a predefined hierarchy; instead, the
team decides for itself who is in charge of what. These roles are usually informal. In fact, in a mature
XP team, there is no one leader. Team members seamlessly defer leadership responsibilities from one
person to the next, moment to moment, depending on the task at hand and the expertise of those
involved.

When your team first forms, though, it won’t work together so easily. Somebody will need to help the
team remember to follow the XP practices consistently and rigorously. This is particularly important for
programmers, who have the most difficult practices to learn.

In other words, your team needs a coach. The best coaches are natural leaders—people who remind
others to do the right thing by virtue of who they are rather than the orders they give. Your coach also
needs to be an experienced programmer so she can help the team with XP’s technical practices.

If you have no obvious coach...

Explain the situation to the team and ask them to choose a coach by consensus. In other words, ask
them to pick one person that they can all agree would be a good coach.

NOTE

In consensus decisions, everyone has a veto. A quick way to perform a consensus vote
is to ask everyone to hold their thumbs out. Thumbs up means “I agree.” Thumbs
sideways means “I'll go with the team’s decision.” Thumbs down means “I disagree
and want to explain why.”

50 CHAPTER 4: ADOPTING XP

If you can’t pick a coach by consensus, your team may be too fractured to use XP. If there’s someone
you can hire that the team would trust, that may help. Be sure to tell whoever you hire that you weren’t
able to reach consensus on this issue—an experienced XP coach will see it as a danger sign and should
speak to team members before accepting.

If your leaders are inexperienced...

Good leaders aren’t always experienced developers, but a good coach should look for subtle cues that
indicate upcoming problems, which does require experience. An experienced developer is your best
coach.

If your leaders are inexperienced, you may want to try pair coaching. Pick one person who's a good leader
and one person who has a lot of experience. Make sure they get along well. Ask the two coaches to
work together to help the team remember to practice XP consistently and rigorously.

If you're assigned a poor coach...

Your organization may assign somebody to be coach who isn’t a good leader. In this case, if the assigned
coach recognizes the problem, pair coaching may work for you.

If the assigned coach doesn’t recognize the problem and he’s damaging the team’s ability to function,
discuss the situation with your mentor or a manager you trust. This is a delicate situation that requires
context-specific advice.

Recommendation #5: A Friendly and Cohesive Team

XP requires that everybody work together to meet team goals. There’s no provision for someone to work
in isolation, so it’s best if team members enjoy working together.

If your team doesn’t get along...

XP requires people to work together. Combined with the pressure of weekly deliveries, this can help
team members learn to trust and respect each other. However, it’s possible for a team to implode from
the pressure. Try including a team member who is level-headed and has a calming influence.

If team members won't even attempt to work together, don’t use XP. If there’s just one person whose
behavior encourages other people’s bad behavior, you might be able to solve the problem by moving
him to a different team.

Go!

Are you ready to adopt XP? Great! Your first step is to arrange for your open workspace (see “Sit
Together” in Chapter 6). Start solving this problem now. It will probably take longer than you expect.

Next, find an appropriate project for the team to work on. Look for a project that’s valuable, but be wary
of projects that will be under intense scrutiny. You need room to make mistakes as you learn.

GO! 51

NOTE

Avoid taking a project with low value as a “learning opportunity.” You’ll have trouble
involving customers and achieving an organizational success. Your organization could
view the project as a failure even if it’s a technical success.

At the same time, figure out who will be on your team. “The XP Team” in Chapter 3 provides some
suggestions for team structure. Talk with your project’s executive sponsor and other stakeholders about
who to include as your on-site customers. (See “Real Customer Involvement” in Chapter 6 for ideas.)
Be sure your team members want to try XP.

As you're forming your team, consider hiring an experienced XP coach to work with the team full-time.
Although a coach isn’t necessary—I learned XP by reading about it and trying it—a good coach will
make things go more smoothly.

EXTREME SHOPPING

As your project start date draws near, you'll need supplies for the team’s open workspace. The following is a
good shopping list.

Equipment:

Pairing stations (see “Pair Programming” in Chapter 5).
A dedicated build machine (see “Continuous Integration” in Chapter 7).

Noise-dampening partitions to define your team’s workspace and prevent noise pollution (see “Sit
Together” in Chapter 6).

Plenty of wall-mounted whiteboards for discussions and charts (see “Informative Workspace” in
Chapter 5). Ferrous (magnetic) whiteboards are best because you can stick index cards to them with
magnets.

Two big magnetic whiteboards for your release and iteration plans. I like using a two-sided, six-foot
magnetic whiteboard on wheels—it allows me to move the plan into a meeting room. Some teams prefer
corkboards, but | think they make it too hard to slide cards around.

A large plastic perpetual calendar (three months or more) for marking important dates and planned
absences (see “Informative Workspace” in Chapter 5).

A plush toy to act as your integration token (see “Continuous Integration” in Chapter 7).
Miscellaneous toys and conversation pieces to inspire discussion and interaction among team members.

Any other equipment you normally use.

Software:

52

A unit-testing tool such as the xUnit family (see “Test-Driven Development” in Chapter 9).
An automated build tool such as the Ant family (see “Ten-Minute Build” in Chapter 7).

Any other software you normally use.

NOTE

Continuous integration software is not required (see “Continuous Integration” in Chapter 7).

CHAPTER 4: ADOPTING XP

Supplies:

Index cards—start with 5,000 of white and 2,000 of each color you want. Be sure to choose colors that all
members of your team can distinguish (7 to 10 percent of men have a degree of color blindness).

Pencils for index cards. (Don’t use pens; you'll need to make changes from time to time.)
Food (see “Energized Work” in Chapter 5 and “Trust” in Chapter 6).

Flip charts and something sticky but nonmarking (such as blue painters tape or poster tack) for hanging
charts (see “Informative Workspace” in Chapter 5).

Dry-erase markers forwhiteboards, water-based flip-chartmarkers forflip charts, and wet-erase markers
for the perpetual calendar. (Be sure the markers are easily distinguishable!)

Magnets for sticking papers to whiteboards. Office supply stores sell thin, flexible magnets that work well.
Make sure they’re powerful enough to hold an index card or two to the board.

Any other supplies you normally use.

The Challenge of Change

It’s a fact of life: change makes people uncomfortable. XP is probably a big change for your team. If you
previously used a rigid, document-centric process, XP will seem loose and informal. If you previously

had no process, XP will seem strict and disciplined. Either way, expect team members and stakeholders
to be uncomfortable. This discomfort can extend into the larger organization.

Discomfort and a feeling of chaos is normal for any team undergoing change, but that doesn’t make it
less challenging. Expect the chaotic feeling to continue for at least two months. Give yourselves four to
nine months to feel truly comfortable with your new process. If you're adopting XP incrementally, it

will take longer.

To survive the transformation, you need to know why you are making this change. What benetits does

it provide to the organization? To the team? Most importantly, what benefits does it provide to each

individual? As you struggle with the chaos of change, remember these benefits.

A supportive work environment is also important. Team members are likely to experience defense
reactions to the lack of familiar structure. Expect mood swings and erratic behavior. Some team

members may lash out or refuse to cooperate. Acknowledge the discomfort people are experiencing,

and help team members find constructive outlets for their frustration.

NOTE

The Satir Change Model is one way of understanding teams’ reactions to change.
[Smith] has a good article on the Satir model at http://www.stevenmsmith.com/my-
articles/article/the-satir-change-model.html that includes tips for helping team
members through each stage.

* Avoid permanent markers; they bleed through the paper and damage your whiteboard if you use the wrong pen by
mistake.

GO!

53

http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html
http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html

Your stakeholders may be uncomfortable with your team’s new approach to planning and reporting
progress. Managers and executives may see the team’s initial chaos as a sign that XP won’t work. To
help everyone feel more comfortable, consider giving them this pledge:

Our pledge to users, management, and other stakeholders.
We promise to:

e Make steady progress
e Finish the features that you consider most valuable first

¢ Show you working software that reflects our progess every week, on (day of week) at
(time) in (location)

e Be honest and open with you about our successes, challenges, and what we can reasonably
provide

In return, we ask you to be patient with changes in our productivity and understanding of our
mistakes as we learn this new way of working over the next two quarters.

Final Preparation

Before starting XP, it’s a good idea to discuss working agreements—that is, which practices your team will
follow and how your practice of XP will differ from what I describe in this book. (Irecommend following
the book as closely as you can until you’ve had several months of experience.) Discuss your roles and
what you expect from each other. It’s best to hold these conversations as collaborative team discussions.
Try to avoid assigning roles or giving people orders.

In the final weeks before starting your new XP project, review the practices in Part II. Try some of the
practices in your current work and consider taking courses on the practices that seem challenging.

When you've finished these preparations, if you have a greenfield project—meaning your team is creating
a new codebase from scratch—you're ready to go. Review the practices in Part II one more time, take
a deep breath, and start your first iteration.

“Wait!” you may say. “Isn’t there a way we can ease into this?”

Well... yes. You can follow the incremental approach that legacy projects use, but if you have a greenfield
project, it’s actually easier and faster to adopt all the practices at once. It’s the chaos and uncertainty of
change that makes adopting XP difficult, not the practices themselves. If you adopt XP incrementally,

every new practice will disrupt the equilibrium you’ll be fighting to achieve. You’'ll actually extend the

period of chaos and uncertainty, making the transition all the more difficult. In my experience, teams
that adopt XP incrementally make substantial improvements, but it’s the teams that adopt it all at once
that really excel.

Be bold. You have the right people, the right workplace, and the will to succeed. Do it!

SECOND ADOPTER SYNDROME

I've noticed a suprising trend among companies that adopt XP: the first team is often very successful, inspiring
the organization to use XP on more projects, but then this second wave of XP projects struggles.

| call this second adopter syndrome. My theory is that the first XP project gets all the support it needs: eager
participants, organizational patience, outside help, and a valuable but noncritical project.

54 CHAPTER 4: ADOPTING XP

Then, thinking that employees now understand XP, the organization provides little support for the second
wave of projects. They staff the teams with people who don’t want to use XP, provide no outside help, and
impose more schedule pressure.

To avoid second adopter syndrome, remember that success on one team doesn’t automatically guarantee
success on another team. Every team needs support when it adopts XP for the first time.

Applying XP to a Brand-New Project (Recommended)

When starting a brand-new XP project, expect the first three or four weeks to be pretty chaotic as
everyone gets up to speed. During the first month, on-site customers will be working out the release
plan, programmers will be establishing their technical infrastructure, and everyone will be learning how
to work together.

Some people think the best way to overcome this chaos is to

take a week or two at the beginning of the project to work Plan and build infrastructure
on planning and technical infrastructure before starting the incrementally throughout the
first iteration. Although there’s some merit to this idea, an entire project.

XP team should plan and build technical infrastructure
incrementally and continuously throughout the project as
needed. Starting with a real iteration on the first day helps establish this good habit.

Your very first activity is to plan your first iteration. Normally, this involves selecting
stories from the release plan, but you won’t have a release plan yet. Instead, think of | Ally

one feature that will definitely be part of your first release. Brainstorm a few must-have | gejease Planning (p. 206)
stories for that feature. These first few stories should sketch out a “vertical stripe” (see

Figure 8-3) of your application. If the application involves user interaction, create a
story to display the initial screen or web page. If it includes reporting, create a story for a bare-bones
report. If it requires installation, create a story for a bare-bones installer.

Don'’t expect much from these initial stories. The programmers” estimates for them will be fairly high
because they need to establish some technical infrastructure. As a result, the stories should do very little.
The report might display headers and footers, but no line items. The installer might just be a .zip file.
The initial screen might have nothing more than your logo on it.

These basic stories will give you ideas for more stories that will add missing details.

Brainstorm 10 to 20 in the first planning session and have the programmers estimate | Ally

them. These should keep the programmers busy for several iterations. Try to choose Estimating (p. 260)

stories that the programmers already understand well; this will reduce the amount of
time customers need to spend answering programmer questions so they can focus on
creating the release plan.

Iteration planning is a little more difficult during the first iteration because you haven’t

established a velocity yet. Just make your best guess about what your velocity might | Ally

be. (Some teams add up the available programmer-hours and divide by) During the | eration Planning (p. 233)
iteration, work on just one or two stories at a time and check your progress every day.

This will help you deliver completed stories even if your initial plan is wildly inaccurate.

After you've finished planning, programmers should start establishing their technical infrastructure. Set
up an integration machine, create your version control repository, and so forth. (I recommend creating

GO! 55

engineering tasks for these items during iteration planning. See “Iteration Planning” in Chapter 8 for
more about the role of engineering tasks in iteration planning.) Once that’s set up, start working on
your stories.

During the first iteration, it’s a good idea to have all the programmers work on the first few stories as a
group. Set up a projector so the whole team navigates while one person drives. (See “Pair
Programming” in Chapter 5 for an explanation of driving and navigating.) Sometimes individual
programmers (or pairs) peel off to take care of some necessary issue, such as installing a version control
system or setting up the programmers’ workstations, but for the most part you should work as a team.
This reduces the chaos that occurs when multiple people work on a tiny project and allows you to jointly
establish initial conventions, such as project structure, filenames and namespaces, and basic design
choices.

After the first few days, the fundamentals should be well-established and the project

should be large enough for people to work on separate parts without unduly interfering | Ally

with each other. At this point, you can break into pairs and work normally. It’s also @ | coding standards (p. 133)

good time to schedule your first coding standards discussion. For that first meeting, you
can usually just document what you agreed on while working as a group.

While the programmers are working on stories, customers and testers should work on
the vision and release plan. First, work with stakeholders to create the product vision. | Allies

You probably already have an idea what the vision for the project is; now formalize it. | yision (p. 201)

Finalizing the vision can take a few weeks, so while that’s in progress, brainstorm the | gelease Planning (p. 206)

stories for your first feature. Start thinking about other features you want to include,
and pick a date for your first release. Decide on your planning horizons as well. (See
“Release Planning” in Chapter 8 for more about planning horizons.)

Each subsequent iteration will be a little easier to plan. The programmers” estimates will stabilize and

your velocity will become predictable. You'll be able to estimate the scope of your next release and fill
out your planning horizons. The feeling of chaos will subside as the team works in a steady, predictable
rhythm.

Applying XP to an Existing Project

Greenfield projects can adopt all the XP practices at once. You'll experience some bumps along the way,
but youll typically have things figured out in four to nine months.

If you're working with an existing codebase that has no tests, particularly one that’s been around for a
year or more—in other words, if you have a legacy project—you can achieve the same results, but it will
take more time. In this case, adopt XP incrementally.

NOTE

In this discussion, I assume you have a project burdened with a lot of technical debt
and a high bug rate. If your situation isn’t that bad, this process is still appropriate, if
much easier.

The big decision

Other than change itself, the biggest challenge in applying XP to an existing project is not writing tests,
refactoring, or cleaning up your bug database. The biggest challenge is setting aside enough time to pay
down technical debt.

56 CHAPTER 4: ADOPTING XP

If you have a typical legacy project, your current velocity is a polite fiction based on shortcuts. In other
words, you incur new technical debt in order to meet your deadlines. To improve productivity and
reduce bug production, not only do you need to stop incurring new technical debt, you need to set aside
extra slack (see “Slack” in Chapter 8) for paying down the existing debt. This double hit will cause your
velocity to go down. It might go down a lot.

Fortunately, as your technical debt decreases, your velocity will rise again. Eventually it will surpass
your current velocity. This can take a while. Depending on the amount of technical debt you have and
how much slack you set aside for paying it down, expect your velocity to remain low for at least a
quarter, probably more.

NOTE

The more slack you provide for paying down technical debt, the lower your velocity
will be, but the less time it will take for your velocity to rise again. Think of velocity
as cash flow: the more principal you pay on your debt, the less cash you have each
week, but the more quickly you can stop paying interest.

Setting aside slack is a painful decision. However, if you don’t stop accumulating technical debt, your
velocity will continue to decrease and your defect production rate will increase. Eventually, the cost of
development will exceed the value of even simple changes. Your organization will either shelve the
product or rewrite it at great expense.

Product managers, avoid this fate by acting decisively now. This is your best option for turning a debt-
ridden legacy project into a long-term asset.

NOTE

You can also rewrite the project from scratch or stop for several weeks to do nothing
but pay down technical debt. Although these approaches take less effort than
incremental debt paydown, they’re risky. These efforts often take much longer than
expected, and you lose feedback from stakeholders as well as the opportunity to take
advantage of new business opportunities in the meantime.

Bring order to chaos

The first thing you need to do is bring structure to your project. Many legacy projects have a chaotic
approach to planning, even if they started out well.

Start by introducing XP’s structural practices. Move the team, including customers and testers, into a
shared workspace, start pair-programming, conduct iteration planning and retrospectives, and so forth.

Apply:
e All the “Thinking” practices (Chapter 5)
o All the “Collaborating” practices (Chapter 6)
e All the “Planning” practices (Chapter 8)

e Version control, collective code ownership, and “done done” (described in Chapter 7), and customer
reviews (see “Incremental Requirements” in Chapter 9)

GO! 57

Two-, three-, or even four-week iterations may be best for you. Start with two-week iterations. In
particularly challenging environments, you may have trouble making your stories both small and
customer-valued (see “Stories” in Chapter 8). Consider increasing your iteration length, but talk to your
mentor (see “Find a Mentor” in Chapter 2) before doing so.

NOTE
At this point, your method is very similar to the Scrum method. You may find Scrum
courses and reading material useful.

Other than working more closely together, the biggest changes will be to planning. Take your existing
project plan and convert each line item into a story card. If the stories aren’t customer-centric, that’s
OK for now; once the team is used to working in iterations, the customers and the project manager
should start revising the stories to make them more customer-centric.

When you are comfortable with the structural practices, begin introducing technical practices.

Pay down technical debt

The biggest problem facing legacy projects is usually excessive technical debt. You need to stop the
bleeding by preventing more technical debt from occurring. First, create a ten-minute build. Follow up
with continuous integration. Introduce test-driven development.

Meanwhile, reduce existing technical debt by introducing extra slack into your iterations (see “Slack”
in Chapter 8). Use it to pay down technical debt as described in “How to Introduce Slack,” also in
Chapter 8. At first, your clean-up efforts will seem fruitless, but over time, you’ll see greater and greater
benefits to quality and productivity. As your code quality improves, introduce the remaining practices
in Chapter 7 and Chapter 9.

These first steps will allow you to steadily pay down technical debt while continuing to make progress
on new stories. As the bug rate for new code drops, you can start organizing your bug backlog.

Organize your backlog

If your team is like most teams, your bug database is full of to-dos, questions, feature requests, and
genuine defects. Customers and testers, go through the database and eliminate duplicates and
unimportant issues. Close feature requests by turning them into stories or rejecting them. Find another
way to address to-dos and questions. When you're done, the only items remaining should be genuine
defects.

NOTE

If users expect to ask questions through your bug database, consider leaving the
questions in the database. You risk alienating your users by requiring them to use a
different forum.”

Depending on the size of your bug database, you may not be able to do this work in a single session.
Chip away at it every iteration, just as the programmers do with technical debt.

* Thanks to Erik Petersen for this insight.

58 CHAPTER 4: ADOPTING XP

If your bug database is in use by stakeholders, support personnel, or other people outside the team, find
a way to keep new entries clean. You may be able to institute new policies for using the database, but
your best approach is probably to review, clean up, and categorize new entries every day.

Fix important bugs

Either way, as your bug database becomes a reliable bug repository, make a fix or don't fix decision for
each bug. You should probably involve the product manager at some level and you may need the
programmers to estimate the cost of fixing some of the bugs.

Close or defer all the bugs that you decide not to fix in this release. You can revisit them when you plan
the next release. At this point, all that remains in the database is bugs that you will fix. Turn these bugs
into stories, have the programmers estimate any that remain unestimated, and put them in the release
plan.

NOTE

If you have a lot of bugs, consider spreading bug fixes throughout your plan. Although
normally it’s better to fix bugs immediately, spreading out the bugs will allow you to
deliver feature enhancements in each iteration, which may be better for stakeholder
relations.

Over the remainder of the release, fix the bugs and work on preventing their causes as described in
“No Bugs” in Chapter 7. Continue to pay down technical debt and start applying a bit of root-cause
analysis as well.

Move testers forward

When you start this process, your testers will probably spend their time testing each release prior to
delivery. A large part of their workload is likely to be manual regression testing. The programmers’ focus
on test-driven development will slowly create an automated regression suite and reduce the pressure
on the testers.

As time passes, productivity improves, and as programmers have less need to pay down

technical debt, use your iteration slack to automate the remaining manual regression | Ally

tests. You may need to create end-to-end tests at first. Over time, refactor the end-to- | gjack (p. 216)

end tests into more focused unit and integration tests.

With the regression testing burden eliminated and the team producing few new bugs, the testers will
have time available for other work. Take advantage of this opportunity to finish integrating the testers
into the team. Move them forward in the process so that, rather than testing after a development phase,
they help the team produce higher quality code from the beginning. Have them work with customers
to find holes in requirements (see “Customer Tests” in Chapter 9) and begin conducting exploratory
testing (see “Exploratory Testing” in Chapter 9).

Emerge from the darkness

This process will allow you to reduce technical debt, increase code quality, and remove defects. As you
do, productivity will increase. At first, your progress will be imperceptible. Depending on the amount
of technical debt you face, it could take many months to get to the ideal of nearly zero new bugs each

GO! 59

month. It will take months more to finish your regression test suite, eliminate the need for a separate
pre-release testing phase, and integrate your testers.

As long as each iteration has less debt than the previous, however, you will get there. It will take time
and hard work, but it will be well worth it. After the first few months, you should start seeing progress
in the form of more reliable estimates and more enjoyable programming.

NOTE
If you don’t see progress within two months, there may be something wrong. Talk to
your mentor (see “Find a Mentor” in Chapter 2) for advice.

Applying XP in a Phased-Based Organization

XP assumes that you use iterations, not phases, which makes using XP in a phase-based environment
difficult. If your organization uses a phase-based approach to development, you may be able to use the
XP development practices (see Chapter 7 and Chapter 9) even if you can’t use the other practices.

Your organization may want to try XP within your existing phase-based structure. Your best course of
action is to convince your organization to let you try XP’s simultaneous phases. If that doesn’t work,
you may be able to shoehorn XP into a phase-based structure. It’s difficult and the exact approach
depends on your organization. The following suggestions are a starting point; talk to your mentor for
more specific advice.

Mandatory planning phase

Your organization may have a planning phase or planning gate that expects you to deliver a detailed
plan. If you can, allocate a month for the planning phase and use it to run four actual iterations. (You
may be able to combine the planning phase and analysis phase to get more time.) Use the approach
described in “Release Planning” in Chapter 8 to create your release plan during those first iterations.
You’ll end up with a good plan and you will have finished some actual software, too.

If you can’t use this approach, whatever approach your organization currently uses for planning will
be fine, although it probably won't be as accurate as conducting actual iterations.

Mandatory analysis phase

If your organization conducts an upfront analysis phase, you may receive a

requirements document as a fait accompli. In this case, decompose the requirements Ally
document into stories. One starting point is to create a story out of each sentence Stories (p. 253)
including the words “must,” “shall,” or “should.”

If instead you need to create your own requirements document, XP doesn’t have much to add. Use
traditional requirements-gathering techniques in this situation, perhaps using iterations and
requirements-gathering stories for structure.

Requirements documents aren’t a replacement for a good
product manager or on-site customers. Without those Requirements documents can’t
people, you will have difficulty filling in missing details in the replace on-site customers.
requirements documents. You will also have more trouble

making good schedule/scope trade-offs.

60 CHAPTER 4: ADOPTING XP

Mandatory design phase

XP assumes the use of incremental design and architecture that is intimately tied to

programming with test-driven development. An upfront design phase has little to add | Allies

to this approach.

If you can, conduct actual XP iterations during the design phase and work on the first
stories in your release plan. Use the time to create an initial design and architecture

Incremental Design and
Architecture (p. 321)
Simple Design (p. 314)

incrementally. Document the results in your design document.

XP focuses on improving and adapting the design throughout the project. Simple design is central to
doing so. Dedicated design phases often lead to complex designs, so minimize the amount of time you
spend on upfront design if you can.

Mandatory coding phase

XP fits well into the coding phase. Break your coding phase into one-week iterations and conduct XP
as normal.

Mandatory testing phase

XP performs a lot of testing every iteration. A phase-based organization that considers XP to be the
coding phase and expects a long testing phase might schedule too little time for coding and too much
time for testing. However, testing is an important part of XP and should remain integrated.

Mandatory deployment phase
With a good build, you should be ready to deploy at the end of any iteration. You can

schedule XP’s wrap-up activities for the deployment phase. Ally

Ten-Minute Build (p. 177)

Extremities: Applying Bits and Pieces of XP
What if your team doesn’t meet this book’s conditions for using XP? What then?

Although you won't be able to use all the XP practices in this book, you may be able to add some practices
to your existing method. Several practices are easy to adopt and are likely to make an immediate
difference:

Iterations

If you struggle with frequent interruptions, try adopting day-long iterations (see “Iteration Planning”
in Chapter 8). Use the planning game (see “The Planning Game” in Chapter 8) and the team’s measured
velocity (discussed in “Estimating” in Chapter 8) to conduct a joint planning session at the beginning
of each day, then defer all interruptions until the next planning meeting, which will be less than a day
away. Be sure to have programmers estimate their own tasks.

If you aren’t interrupted frequently, but still feel a sense of chaos in your planning, try using weekly
iterations (see “Iterations” in Chapter 3). In this case, you may also benefit from daily stand-up meetings
(see “Stand-Up Meetings” in Chapter 6) and weekly iteration demos (see “Iteration Demo” in
Chapter 6). As time goes on, consider using index cards for planning and a big chart to show upcoming
work, as described in “Release Planning” in Chapter 8.

GO! 61

Retrospectives

Frequent retrospectives (see “Retrospectives” in Chapter 5) are an excellent way for your team to adapt
and improve its process. If your team has the authority to make any improvements to its process, try
scheduling weekly or biweekly retrospectives.

Ten-minute build

A fast, automated build will make a big difference to your quality of life, and it will open up opportunities
for other improvements as well. See “Ten-Minute Build” in Chapter 7 for more.

Continuous integration

Continuous integration not only decreases integration problems, it also drives improvements to your
build and tests. See “Continuous Integration” in Chapter 7 for more.

Test-driven development

Although test-driven development (see “Test-Driven Development” in Chapter 9) isn’t as easy to adopt
as the other practices, it’s very powerful. Test-driven development is the basis for reducing bugs,
increasing development speed, improving your ability to refactor, and decreasing technical debt. It can
take some time to master, so be patient.

Other practices

Other XP practices might help, so review Part II. Many of the practices there require the support of other
practices, so be sure to read each practice’s “Contraindications” section carefully before trying it.

Assess Your Agility

Suppose you've been using XP for a few months. How can you tell if you're doing it properly? The
ultimate measure is the success of your project, but you may wish to review and assess your approach
to XP as well.

To help you do this, I've created a quiz that focuses on five important aspects of agile development. It
explores results rather than specific practices, so you can score well even after customizing XP to your
situation. If you aren’t using XP at all, you can also use this quiz to assess your current approach.

This quiz assesses typical sources of risk. Your goal should be to achieve the maximum score in each
category—which is well within the grasp of experienced XP teams. Any score less than the maximum
indicates risk, and an opportunity for improvement.

To take the quiz, answer the following questions and enter your scores on a photocopy of the blank
radar diagram (Figure 4-2). Don’t give partial credit for any question, and if you aren’t sure of the
answer, give yourself zero points. The result should look something like Figure 4-1. The score of the
lowest spoke identifies your risk, as follows:

e 75 points or less: immediate improvement required (red)

e 75 to 96 points: improvement necessary (yellow)

e 97,98, or 99: improvement possible (green)

e 100: no further improvement needed

62 CHAPTER 4: ADOPTING XP

Thinking
100
99
98
97
96
90
85
80
75

Developing Collaborating

0

Planning Releasing

Figure 4-1. Example assessment

NOTE

The point values for each answer come from an algorithm that ensures correct risk
assessment of the total score.” This leads to some odd variations in scores. Don’t read
too much into the disparities between the values of individual questions.

To see the XP solution for each of these questions, cross-reference the sections listed under “XP Practices”

in Tables 4-1 through 4-5.

Self-Assessment Quiz

Table 4-1. Thinking

Question Yes No XP Practices

Do programmers critique all production code with at least one other programmer? 5 0 Pair Programming

* Each question has a red, yellow, or green risk level. A zero score on any question leads to a total score no better than the
corresponding color. Questions with scores between 25 and 75 are “red” questions, questions with scores between 3 and 22 are
“yellow” questions, and questions with scores of 1 or 2 are “green” questions. Changing the risk level of one question requires
reweighting the remainder: all red questions must total 75 points, all yellow questions must total 22 points, and all green questions
must total 2 points. To preserve proper scoring, there may be no more than three red questions and seven yellow questions.

ASSESS YOUR AGILITY

63

Thinking

Developing

Figure 4-2. Self-assessment chart

Planning Releasing

Collaborating

Question Yes No XP Practices

Do all team members consistently, thoughtfully, and rigorously apply all the practices that 75 0 Pair Programming; Root-Cause

the team has agreed to use? Analysis; Retrospectives

Are team members generally focused and engaged at work? 5 0 Energized Work

Are nearly all team members aware of their progress toward meeting team goals? 4 0 Informative Workspace

Do any problems recur more than once per quarter? 0 5 Root-Cause Analysis;
Retrospectives

Does the team improve its process in some way at least once per month? 5 0 Retrospectives

Table 4-2. Collaborating

Question Yes No XPPractices

Do programmers ever make guesses rather than getting answers to questions? 0 75 TheXPTeam

Are programmers usually able to start getting information (as opposed to sending arequest 4 0 Sit Together

and waiting for a response) as soon as they discover their need for it?

Do team members generally communicate without confusion? 4 0 Sit Together; Ubiquitous

Language
Do nearly all team members trust each other? 4 0 The XP Team; Sit Together
Do team members generally know what other team members are working on? 1 0 Stand-Up Meetings

64 CHAPTER 4: ADOPTING XP

Question Yes No XP Practices
Does the team demonstrate its progress to stakeholders at least once per month? 4 0 Iteration Demo; Reporting
Does the team provide a working installation of its software for stakeholders to try at least 1 0 Iteration Demo
once per month?
Are all important stakeholders currently happy with the team’s progress? 3 0 Reporting; Iteration Demo; Real
Customer Involvement

Do all important stakeholders currently trust the team'’s ability to deliver? 3 0 Trust; Reporting

Table 4-3. Releasing
Question Yes No XPPractices
Can any programmer on the team currently build and test the software, and get an unambiguous 25 0 Ten-Minute Build
success/fail result, using a single command?
(Can any programmer on the team currently build a tested, deployable release using a single 5 0 Ten-Minute Build
command?
Do all team members use version control for all project-related artifacts that aren’t automatically 25 0 Version Control
generated?
Can any programmer build and test the software on any development workstation with nothing 25 0 Version Control
but a clean check-out from version control?
When a programmer gets the latest code, is he nearly always confident that it will build successfully 5 0 Continuous Integration
and pass all its tests?
Do all programmers integrate their work with the main body of code at least once per day? 4 0 Continuous Integration
Does the integration build currently complete in fewer than 10 minutes? 4 0 Ten-Minute Build
Do nearly all programmers share a joint aesthetic for the code? 1 0 Coding Standards
Do programmers usually improve the code when they see opportunities, regardless of who originally 4 0 Collective Code
wrote it? Ownership; Refactoring
Are fewer than five bugs per month discovered in the team’s finished work? 1 0 No Bugs

Table 4-4. Planning
Question Yes No XPPractices
Do nearly all team members understand what they are building, why they're building it, and what 25 0 Vision
stakeholders consider success?
Do all important stakeholders agree on what the team is building, why, and what the stakeholders 25 0 Vision
jointly consider success?
Does the team have a plan for achieving success? 4 0 Release Planning
Does the team regularly seek out new information and use it to improve its plan for success? 2 0 Release Planning
Does the team'’s plan incorporate the expertise of business people as well as programmers, and do 3 0 The Planning Game
nearly all involved agree the plan is achievable?
Are nearly all the line items in the team’s plan customer-centric, results-oriented, and order- 4 0 Stories

independent?

ASSESS YOUR AGILITY

65

Question Yes No XP Practices
Does the team compare its progress to the plan at predefined, timeboxed intervals, no longer than 4 0 Iterations
one month apart, and revise its plan accordingly?
Does the team make delivery commitments prior to each timeboxed interval, then nearly always 4 0 Iterations; “Done
deliver on those commitments? Done”; Slack;
Estimating
After a line item in the plan is marked “complete,” do team members later perform unexpected 0 25 “Done Done”
additional work, such as bug fixes or release polish, to finish it?
Does the team nearly always deliver on its release commitments? 3 0 Risk Management
Table 4-5. Developing
Question Yes No XPPractices
Are programmers nearly always confident that the code they've written recently does what 25 0 Test-Driven Development
they intended it to?
Are all programmers comfortable making changes to the code? 25 0 Test-Driven Development
Do programmers have more than one debug session per week that exceeds 10 minutes? 0 3 Test-Driven Development
Do all programmers agree that the code is at least slightly better each week thanit wasthe 25 0 Refactoring; Incremental Design
week before? and Architecture
Does the team deliver customer-valued stories every iteration? 3 0 Iterations; Incremental Design
and Architecture
Do unexpected design changes require difficult or costly changes to existing code? 0 3 Simple Design
Do programmers use working code to give them information about technical problems? 1 0 Spike Solutions
Do any programmers optimize code without conducting performance tests first? 0 3 Performance Optimization
Do programmers ever spend more than an hour optimizing code without customers’ 0 3 Performance Optimization
approval?
Are on-site customers rarely surprised by the behavior of the software at the end of an 4 0 Incremental Requirements
iteration?
Is there more than one bug per month in the business logic of completed stories? 0 3 Customer Tests
Are any team members unsure about the quality of the software the team is producing? 0 1 Exploratory Testing; Iteration

Demo; Real Customer
Involvement

66 CHAPTER 4: ADOPTING XP

PART Il

Practicing XP

CHAPTER 5

Thinking

What’s wrong with this sentence?
What we really need is more keyboards cranking out code.

That’s a quote from a manager I once worked with. In a way, he was right: you will never give your
customer what she wants without typing on a keyboard.

But that wasn’t our problem. I later realized our progress had a single bottleneck: the availability of our
staging environment. More keyboards wouldn’t have helped, even if we had more programmers sitting
at them. If we had realized this sooner, we would have been much more productive.

Sometimes the biggest gains in productivity come from stopping to think about what you’re doing,
why you're doing it, and whether it’s a good idea. The best developers don’t just find something that
works and use it; they also question why it works, try to understand it, and then improve it.

XP doesn’t require experts. It does require a habit of mindfulness. This chapter contains five practices to
help mindful developers excel:

e Pair programming doubles the brainpower available during coding, and gives one person in each
pair the opportunity to think about strategic, long-term issues.

e Energized work acknowledges that developers do their best, most productive work when they’re
energized and motivated.

e An informative workspace gives the whole team more opportunities to notice what’s working well
and what isn't.

e Root-cause analysis is a useful tool for identifying the underlying causes of your problems.

e Retrospectives provide a way to analyze and improve the entire development process.

69

70

“THINKING” MINI-ETUDE

The purpose of this étude is to practice mindfulness. If you’re new to agile development, you may use itto help
you understand the XP practices, even if you're not currently using XP. If you're an experienced agile
practitioner, review Chapter 11 and use this étude to consider how you can go beyond the practices in this book.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline atfirst. If the étude becomes stale, discuss how you can change it to make it interesting again.

Youwill need multiple copies of this book (if you don’thave enough copies on hand, you can make photocopies
of specific practices for the purpose of this exercise), paper, and writing implements.

Step 1. Start by forming pairs. Try for heterogeneous pairs—have a programmer work with a customer, a
customer work with a tester, and so forth, rather than pairing by job description. Work with a new partner
every day.

Step 2. (Timebox this step to 15 minutes.) Within your pair, pick one practice from Part Il of this book and discuss
one of the following sets of questions. Pick a practice that neither of you have discussed before, even if you
didn’t get to lead a discussion yesterday. Timebox your discussion to fifteen minutes. It's OK not to finish the
section, particularly if you haven’t read it before. You'll have the chance to read it again.

If you aren’t using the practice:
- What about the practice would be easy to do? What would be hard? What sounds ridiculous or silly?
« How does it differ from your previous experiences?
« What would have to be true in order for you to use the practice exactly as written?
If you are using the practice:
« Whataspects of the practice do you do differently than the book says? (Observations only—no reasons.)

« Ifyou were to follow the practice exactly as written, what would happen?

« What one experimental change could you try that would give you new insight about the practice?
(Experiments to prove that the practice is inappropriate are OK.)

Step 3. (Timebox this step to 15 minutes.) Choose three pairs to lead discussions of their answers. Try to pick
pairs so that, over time, everyone gets to lead equally. Timebox each presentation to five minutes.

CHAPTER 5: THINKING

Pair Programming Audience

Programmers, Whole Team

We help each other succeed.

Do you want somebody to watch over your shoulder all day?
Do you want to waste half your time sitting in sullen silence watching somebody else code?

Of course not. Nobody does—especially not people who pair program.

Pair programming is one of the first things people notice about XP. Two people working at the same
keyboard? It’s weird. It’s also extremely powerful and, once you get used to it, tons of fun. Most
programmers I know who tried pairing for a month find that they prefer it to programming alone.

Why Pair?

This chapter is called Thinking, yet I included pair programming as the first practice. That’s because pair
programming is all about increasing your brainpower.

When you pair, one person codes—the driver. The other person is the navigator, whose job is to think.
As navigator, sometimes you think about what the driver is typing. (Don’t rush to point out missing
semicolons, though. That’s annoying.) Sometimes you think about what tasks to work on next and
sometimes you think about how your work best fits into the overall design.

This arrangement leaves the driver free to work on the tactical challenges of creating rigorous,
syntactically correct code without worrying about the big picture, and it gives the navigator the
opportunity to consider strategic issues without being distracted by the details of coding. Together, the
driver and navigator create higher-quality work more quickly than either could produce on their own.”

Pairing also reinforces good programming habits. XP’s reliance on continuous testing and design
refinement takes a lot of self-discipline. When pairing, you’ll have positive peer pressure to perform
these difficult but crucial tasks. You'll spread coding knowledge and tips throughout the team.

You'll also spend more time in flow—that highly productive state in which you're totally focused on the
code. It’s a different kind of flow than normal because you’'re working with a partner, but it’s far more
resilient to interruptions. To start with, you'll discover that your office mates are far less likely to
interrupt you when you're working with someone. When they do, one person will handle the
interruption while the other continues his train of thought. Further, you’ll find yourself paying more
attention to the conversation with your programming partner than to surrounding noise; it fades into
the background.

If thatisn’t enough, pairing really is a lot of fun. The added brainpower will help you get past roadblocks
more easily. For the most part, you'll be collaborating with smart, like-minded people. Plus, if your
wrists get sore from typing, you can hand off the keyboard to your partner and continue to be
productive.

* One study found that pairing takes about 15 percent more effort than one individual working alone, but produces results more
quickly and with 15 percent fewer defects [Cockburn & Williams]. Every team is different, so take these results with a grain of salt.

PAIR PROGRAMMING 71

How to Pair

I recommend pair programming on all production code. Many teams who pair frequently, but not
exclusively, discover that they find more defects in solo code. A good rule of thumb is to pair on anything
that you need to maintain, which includes tests and the build script.

When you start working on a task, ask another programmer to work with you. If another programmer
asks for help, make yourself available. Never assign partners: pairs are fluid, forming naturally and
shifting throughout the day. Over time, pair with everyone on the team. This will improve team
cohesion and spread design skills and knowledge throughout the team.

When you need a fresh perspective, switch partners. I usually

switch when I'm feeling frustrated or stuck. Have one person Get a fresh perspective by
stay on the task and bring the new partner up to speed. Often, switching partners.
even explaining the problem to someone new will help you

resolve it.

It’s a good idea to switch partners several times per day even if you don’t feel stuck. This will help keep
everyone informed and moving quickly. I switch whenever I finish a task. If I'm working on a big task,
I switch within four hours.

When you sit down to pair together, make sure you're physically comfortable. Position your chairs side
by side, allowing for each other’s personal space, and make sure the monitor is clearly visible. When
you're driving, place the keyboard directly in front of you. Keep an eye out for this one—for some
reason, people pairing tend to contort themselves to reach the keyboard and mouse rather than moving
them closer.

Paired programmers produce code through conversation. As you drive or navigate,

think out loud. Take small, frequent design steps—test-driven development works Ally

best—and talk about your assumptions, short-term goals, general direction, and any Test-Driven Development
relevant history of the feature or project. If you're confused about something, ask (p. 285)

questions. The discussion may enlighten your partner as much as it does you.

NOTE
When a pair goes dark—talks less, lowers their voices, or doesn’t switch off with other
pairs—it’s often a sign of technical difficulty.

Expect to feel tired at the end of the day. Pairs typically feel that they have worked
harder and accomplished more together than when working alone. Practice energized | Ally

work to maintain your ability to pair every day. Energized Work (p. 79)

Driving and Navigating

When you start pairing, expect to feel clumsy and fumble-
fingered as you drive. You may feel that your navigator sees Pairing will feel natural in time.
ideas and problems much more quickly than you do. She

does—navigators have more time to think than drivers do.
The situation will be reversed when you navigate. Pairing will feel natural in time.

When navigating, expect to feel like you want to step in and take the keyboard away from your partner.
Relax; your driver will often communicate an idea with both words and code. He’ll make typos and

72 CHAPTER 5: THINKING

little mistakes—give him time to correct them himself. Use your extra brainpower to think about the
greater picture. What other tests do you need to write? How does this code fit into the rest of the system?
Is there duplication you need to remove? Can the code be more clear? Can the overall design be better?

As navigator, help your driver be more productive. Think about what’s going to happen next and be
prepared with suggestions. When I'm navigating, I like to keep an index card in front of me. Rather
than interrupting the driver when I think of an issue, I write my ideas on the index card and wait for a
break in the action to bring them up. At the end of the pairing session, I tear up the card and throw it

away.

Similarly, when a question arises, take a moment to look up the answer while the driver
continues to work. Some teams keep spare laptops on hand for this purpose. If you
need more than a few minutes, research the solution together. Sometimes the best way
to do this is to split up, pursue parallel lines of inquiry, and come back together to share
what you have learned. Spike solutions are a particularly powerful approach.

Ally

Spike Solutions (p. 331)

As you pair, switch roles frequently—at least every half hour, and possibly every few minutes. If you're
navigating and find yourself telling the driver which keys to press, ask for the keyboard. If you're driving

and need a break, pass the keyboard off to your navigator.

PAIRING TIPS

« Pairon everything you'll need to maintain.

« Allow pairs to form fluidly rather than assigning partners.

- Switch partners when you need a fresh perspective.

« Avoid pairing with the same person for more than a day at a time.
- Sit comfortably, side by side.

« Produce code through conversation. Collaborate, don’t critique.

« Switch driver and navigator roles frequently.

Pairing Stations

To enjoy pair programming, good pairing stations are essential. You need plenty of room for both people
to sit side by side. Typical cubicles, with a workstation located in a corner, won’t work. They’re
uncomfortable and require one person to sit behind another, adding psychological as well as physical

barriers to peer collaboration.

You don’t need fancy furniture to make a good pairing station; the best ones I've seen are just simple
folding tables found at any good office supply store. They should be six feet long, so that two people
can sit comfortably side by side, and at least four feet deep. Each table needs a high-powered
development workstation. I like to plug in two keyboards and mice so each person can have a set.

Splurge on large monitors so that both people can see clearly. Some teams mirror the display onto two
monitors, which makes things a little easier to see, but you may find yourself pointing to the wrong

monitor. Others prefer to spread one desktop across two monitors.

PAIR PROGRAMMING 73

NOTE
For ideas about where to put the pairing stations, see “Sit Together” in Chapter 6.

Challenges

Pairing can be uncomfortable at first, as it may require you to collaborate more than you're used to.
These feelings are natural and typically go away after a month or two, but you have to face some
challenges.

Comfort

It bears repeating: pairing is no fun if you're uncomfortable. When you sit down to pair, adjust your
position and equipment so you can sit comfortably. Clear debris off the desk and make sure there’s room
for your legs, feet, and knees.

Some people (like me) need a lot of personal space. Others like to get up close and personal. When you
start to pair, discuss your personal space needs and ask about your partner’s.

Similarly, while it goes without saying that personal hygiene is critical, remember that strong flavors
such as coffee, garlic, onions, and spicy foods can lead to foul breath. Decide as a team, before any issues
come up, how to notify people of challenging personal habits respectfully.

Mismatched Skills

Pairing is a collaboration between peers, but sometimes a senior developer will pair with a junior
developer. Rather than treating these occasions as student/teacher situations, restore the peer balance
by creating opportunities for both participants to learn. For example, if you know you’ll be pairing with
a junior developer, you can ask him to research a topic that no one else knows, such as the inner
workings of a library that the team depends on. Give everyone a chance to be an expert.

Communication style

New drivers sometimes have difficulty involving their partners; they can take over the

keyboard and shut down communication. To practice communicating and switching Ally

roles while pairing, consider ping-pong pairing. In this exercise, one person writes a test. | Tesi-Driven Development
The other person makes it pass and writes a new test. Then the first person makes it (p. 285)

pass and repeats the process by writing another test.

The flip side of too little communication is too much communication—or rather, too much blunt
communication. Frank criticism of code and design is valuable, but it may be difficult to appreciate at
first. Different people have different thresholds, so pay attention to how your partner receives your
comments. Try transforming declarations (such as “This method is too long”) into questions or
suggestions (“Could we make this method shorter?” or “Should we extract this code block into a new
method?”). Adopt an attitude of collaborative problem solving.

7 CHAPTER 5: THINKING

Tools and keybindings

Even if you don't fall victim to the endless vi versus emacs editor war, you may find

your coworkers’ tool preferences annoying. Try to standardize on a particular toolset. | Ally

Some teams even create a standard image and check it into version control. When you | coding standards (p. 133)

discuss coding standards, discuss these issues as well.

Questions
Isn't it wasteful to have two people do the work of one?

In pair programming, two people aren’t really doing the work of one. Although only one keyboard is
in use, there’s more to programming than that. As Ward Cunningham said, “If you don’t think carefully,
you might think that programming is just typing statements in a programming language.”” In pair
programming, one person is programming and the other is thinking ahead, anticipating problems, and
strategizing.

If you're looking for hard data, [Williams] has a chapter on pairing research. Keep in mind that the
number of variables in software development make it notoriously difficult to conduct large-scale
controlled studies. Sometimes the best way to know whether something will work for your team is just
to try it.

How can I convince my team or organization to try pair programming?

Ask permission to try it as an experiment. Set aside a month in which everyone pairs on all production
code. Be sure to keep going for the entire month, as pair programming may be difficult and
uncomfortable for the first few weeks.

Don't just ask permission of management; be sure your fellow team members are interested in trying
pairing as well. The only programmers I know who tried pairing for a month and didn’t like it are the
ones who were forced to do it against their will.

Do we really have to pair program all the time?

This is a decision that your whole team should make together. Before you decide, try pairing on all
production code (everything you need to maintain) for a month. You may enjoy it more than you
expect.

Regardless of your rule, you will still produce code that you don’t need to maintain. (Spike solutions
are one example.) These may benefit from individual study.

Some production tasks are so repetitive that they don’t

require the extra brainpower a pair provides. Before If you're bored while pairing,
abandoning pairing, however, consider why your design consider how you can make your
requires so much repetition. It could be an indication of a design less repetitive.

design flaw. Use the navigator’s extra time to think about
design improvements and consider discussing it with your

whole team.
Ally

How can I concentrate with someone talking to me?

Simple Design (p. 314)

When you navigate, you shouldn’t have too much trouble staying several steps ahead

* http://en.wikiquote.org/wiki/Ward_Cunningham

PAIR PROGRAMMING 75

http://en.wikiquote.org/wiki/Ward_Cunningham

of your driver. If you do have trouble, ask your driver to think out loud so you can understand her
thought process.

As driver, you may sometimes find that you're having trouble concentrating. Let your navigator know—
she may have a suggestion that will help you get through the roadblock. At other times, you may just
need a few moments of silence to think through the problem.

If you find yourself in this situation a lot, you may be taking

steps that are too large. Use test-driven development and take If you have trouble
very small steps. Rely on your navigator to keep track of what concentrating, try taking smaller
you still need to do (tell him if you have an idea; he’ll write steps.

it down) and focus only on the few lines of code needed to
make the next test pass.

If you are working with a technology you don’t completely understand, consider taking | allies

a few minutes to work on a spike solution. You and your partner can work on this
together or separately. (p. 285)

Test-Driven Development

What if we have an odd number of programmers? Spike Solutions (p. 331)

A programmer flying solo can do productive tasks that don’t involve production code.

She can research new technologies, or learn more about a technology the team is using. She can pair
with a customer or tester to review recent changes, polish the application, or do exploratory testing.
She can be the team’s batman (see “Iteration Planning” in Chapter 8).

Alternatively, a solo programmer may wish to spend some time reviewing the overall design—either to
improve his own understanding, or to come up with ideas for improving problem areas. If a large
refactoring is partially complete, the team may wish to authorize a conscientious programmer to finish
those refactorings.

If your team is on the smaller side, you may run out of useful solo tasks. In this case, consider relaxing
the “no production code” rule or bringing in another programmer.

There are only two (or three) of us. Should we still pair all the time?

Even a saint will get on your nerves if you have to pair with him day-in, day-out. Use your own
judgment about when to pair and when you need time to yourself. If you feel fine but your partner is
getting cranky, don’t escalate; just say you re tired and need a break.

I pair programmed with the same person for three months straight during a two-person project. I think
it helped that we had a large office and a big desk; it gave us room to move around. We also kept a mini-
fridge stocked with goodies.

Even with these comforts, I had my cranky moments. Perhaps the most important factor was that my
partner was a very laid-back, easy-going person who put up with my occasional bad mood.

We get engrossed in our work and forget to switch pairs. How can we encourage more frequent pair switching?

One approach is to remember that you can switch when you feel stuck or frustrated. In fact, that is a
perfect time to switch partners and get a fresh perspective.

Some teams use kitchen timers to switch partners at strictly defined intervals. [Belshee] reports
interesting results from switching every 90 minutes. While this could be a great way to get in the habit
of switching pairs, make sure everybody is willing to try it.

76 CHAPTER 5: THINKING

How can we pair remotely?

You can use a phone headset and a desktop sharing tool such as VNC or NetMeeting to pair remotely.
I have heard of teams who use individual workstations with shared screen sessions and VoIP
applications.

When I tried this, I found it to be a poor substitute for pairing in person. XP teams usually sit together,
SO remote pairing isn’t often necessary.

Results

When you pair program well, you find yourself focusing intently on the code and on your work with
your partner. You experience fewer interruptions and distractions. When interrupted, one person deals
with the problem while the other continues working. Afterward, you slide back into the flow of work
immediately. At the end of the day, you feel tired yet satisfied. You enjoy the intense focus and the
camaraderie of working with your teammates.

The team as a whole enjoys higher quality code. Technical debt decreases. Knowledge travels quickly
through the team, raising everyone’s level of competence and helping to integrate new team members
quickly.

Contraindications

Pairing requires a comfortable work environment (see “Sit Together” in Chapter 6 for design options).
Most offices and cubicles just aren’t set up that way. If your workspace doesn’t allow programmers to
sit side by side comfortably, either change the workspace or don’t pair program.

Similarly, if your team doesn’t sit together, pairing may not work for you. Although you can pair
remotely, it’s not as good as in-person.

Programmer resistance may be another reason to avoid pairing. Pairing is a big change to programmers’
work styles and you may encounter resistance. I usually work around this by asking people to try it for
a month or two before making a final decision. If they still resist, you're probably better off avoiding
pairing rather than forcing anyone to pair against his will.

Alternatives

Pairing is a very powerful tool. It reduces defects, improves design quality, shares knowledge amongst
team members, supports self-discipline, and reduces distractions, all without sacrificing productivity. If
you cannot pair program, you need alternatives.

Formal code inspections can reduce defects, improve quality, and support self-discipline. However, my
experience is that programmers have trouble including inspections in their schedules, even when
they’re in favor of them. Pairing is easier to do consistently, and it provides feedback much more quickly
than scheduled inspections. If you're going to use inspections in place of pairing, add some sort of
support mechanism to help them take place.

Inspections alone are unlikely to share knowledge as thoroughly as collective code ownership requires.
If you cannot pair program, consider avoiding collective ownership, at least at first.

PAIR PROGRAMMING 77

If you'd still like to have collective code ownership, you need an alternative mechanism for sharing
knowledge about the state of the codebase. I've formed regular study groups in which programmers
meet daily for a timeboxed half-hour to review and discuss the design.

I'm not aware of any other tool that helps reduce distractions as well as pair

programming does. However, I find that I succumb to more frequent distractions when | Ally

I'm tired. In the absence of pairing, put more emphasis on energized work. Energized Work (p. 79)

Further Reading

Pair Programming Illuminated [Williams] discusses pair programming in depth.

“The Costs and Benefits of Pair Programming” [Cockburn & Williams] reports on Laurie Williams’ initial
study of pair programming.

“Promiscuous Pairing and Beginner’s Mind: Embrace Inexperience” [Belshee] is an intriguing look at
the benefits of switching pairs at strict intervals.

“Adventures in Promiscuous Pairing: Seeking Beginner’s Mind” [Lacey] explores the costs and
challenges of promiscuous pairing. It’s a must-read if you plan to try Belshee’s approach.

Peer Reviews in Software: A Practical Guide [Wiegers 2001] discusses formal inspections and peer reviews.

78 CHAPTER 5: THINKING

Energized Work Audience

Coaches, Whole Team

We work at a pace that allows us to do our best, most productive work
indefinitely.

I enjoy programming. I enjoy solving problems, writing good code, watching tests pass, and especially
removing code while refactoring. I program in my spare time and sometimes even think about work in
the shower.

In other words, I love my work. Yet put me on a team with unclear goals, little collective responsibility,
and infighting, and I'll wake up dreading going into work. I'll put in my hours at the office, but I'll be
tempted to spend my mornings reading email and my afternoons picking at code while surfing through
marginally related technical web sites.

We’ve all been in this situation. Because we're professionals, we strive to produce quality work even
when we feel demoralized. Still, consider the times of greatest productivity in your career. Do you notice
a big difterence when you wake up and feel blessed to go into work? Isn’t it much more satistying to
leave on time at the end of the day, knowing that you accomplished something solid and useful?

XP’s practice of energized work recognizes that, although professionals can do good work under ditficult
circumstances, they do their best, most productive work when they’re energized and motivated.

How to Be Energized

One of the simplest ways to be energized is to take care of
yourself. Go home on time every day. Spend time with family Go home on time.
and friends and engage in activities that take your mind off
of work. Eat healthy foods, exercise, and get plenty of sleep.
While you're busy with these other things, your brain will turn over the events of the day. You'll often
have new insights in the morning.

If quality time off is the yin of energized work, focused work is the yang. While at work, give it your
full attention. Turn off interruptions such as email and instant messaging. Silence your phones. Ask
your project manager to shield you from unnecessary meetings and organizational politics.

When the yin and yang mesh perfectly, you'll wake up in the morning well-rested and eager to start
your day. At the end of the day, you'll be tired—though not exhausted—and satisfied with the work
you’ve done.

This isn’t easy. Energized work requires a supportive workplace and home life. It’s also a personal choice;
there’s no way to force someone to be energized. However, you can remove roadblocks.

Supporting Energized Work

One of my favorite techniques as a coach is to remind people

to go home on time. Tired people make mistakes and take Stay home when you’re sick.
shortcuts. The resulting errors can end up costing more than You risk getting other people
the work is worth. This is particularly true when someone is sick, too.

sick; in addition to doing poor work, she could infect other

people.

ENERGIZED WORK 79

Pair programming is another way to encourage energized work. It encourages focus
like no other practice I know. After a full day of pairing, you’ll be tired but satisfied. Ally

It’s particularly useful when you're not at your best: pairing with someone who’s alert | pajr programming (p. 71)

can help you stay focused.

It may sound silly, but having healthy food available in the workplace is another good way to support
energized work. Breakfast really is the most important meal of the day. Mid-afternoon lows are also
common. Cereal, milk, vegetables, and energy snacks are a good choice. Donuts and junk food, while
popular, contribute to the mid-afternoon crash.

The nature of the work also makes a difference. [McConnell 1996] reports that software

developers are motivated to do good, intellectually challenging work. Not every project | Ally

can feed the poor or solve NP-complete problems, but a clear, compelling statement of | vjsjon (p. 201)
why the product is important can go a long way. Creating and communicating this

vision is the product manager’s responsibility.

An achievable goal goes hand-in-hand with a compelling vision. Nothing destroys

morale faster than being held accountable for an unachievable goal. The planning game | Ally

addresses this issue by combining customer value with developer estimates to create The Planning Game (p. 219)

achievable plans.

Speaking of plans, every organization has some amount of politics. Sometimes, politics lead to healthy
negotiation and compromising. Other times, they lead to unreasonable demands and blaming. The
project manager should deal with these politics, letting the team know what’s important and shielding
them from what isn't.

The project manager can also help team members do fulfilling work by pushing back

unnecessary meetings and conference calls. Providing an informative workspace and | Allies

appropriate reporting can eliminate the need for status meetings. In an environment
with a lot of external distractions, consider setting aside core hours each day—maybe | g3)
just an hour or two to start—during which everyone agrees not to interrupt the team. | Reporting (p. 144)

Informative Workspace (p.

Finally, jelled teams have a lot of energy. They’re a lot of fun, too. You can recognize

a jelled team by how much its members enjoy spending time together. They go to lunch together, share
in-jokes, and may even socialize outside of work. As with energized work, you can’t force jelling, but
you can encourage it; many of XP’s practices do so. The classic work on this subject, [DeMarco & Lister
1999]’s Peopleware, is well worth reading.

Taking Breaks

When you make more mistakes than progress, it’s time to
take a break. If you're like me, that’s the hardest time to stop. ~ Stop when you're making more
I feel like the solution is just around the corner—even if it’s mistakes than progress.
been just around the corner for the last 45 minutes—and I
don’t want to stop until I find it. That’s why it’s helpful for
someone else to remind me to stop. After a break or a good night’s sleep, I usually see my mistake right
away.

Sometimes a snack or walk around the building is good enough. For programmers, switching pairs can
help. If it’s already the end of the day, though, going home is a good idea.

You can usually tell when somebody needs a break. Angry concentration, cursing at the computer, and
abrupt movements are all signs. In a highly collaborative environment, going dark—not talking—can

80 CHAPTER 5: THINKING

also be a sign that someone needs a break. When I notice a pair of programmers whispering to each
other, I ask how long it’s been since their last passing test. I often get a sheepish reply, and that’s when
I remind them to take a break.

Suggesting a break requires a certain amount of delicacy. If someone respects you as a leader, then you
might be able to just tell him to stop working. Otherwise, get him away from the problem for a minute
so he can clear his head. Try asking him to help you for a moment, or to take a short walk with you to
discuss some issue you're facing.

Questions
What if I'm not ready to check in my code and it’s time to go home?

If you're practicing test-driven development and continuous integration, your code

should be ready to check in every few minutes. If you're struggling with a problem and | Allies

can’t check in, go home anyway. Often the answer will be obvious in the morning. Test-Driven Development
(p. 285)

Continuous Integration (p.
183)

Some teams revert (delete) code that doesn’t pass all its tests at the end of the day. This
sounds harsh, but it’s a good idea: if you can’t easily check in, you’ve gone far off track.
You'll do better work in the morning. If you're practicing continuous integration well,

the loss of code will be minimal and you’ll still have learned from the experience.
Iwork in a startup and 40 hours just isn't enough. Can I work longer hours?

A startup environment often has a lot of excitement and
camaraderie. This leads to more energy and might mean that If you dread going to work in the
you can work long hours and still focus. On the other hand, morning, you aren’t energized.
startups sometimes confuse long work hours with dedication
to the cause. Be careful not to let dedication override your
good judgment about when you're too tired to make useful contributions.

We have an important deadline and there’s no way to make it without putting our heads down and pushing through.
Do we set aside energized work for now?

A sprint to the finish line might boost your energy. There’s nothing quite like a late-night codefest when
the team brings in pizza, everybody works hard, all cylinders fire, and the work comes together at the
last moment. A great sprint can help the team jell, giving it a sense of accomplishment in the face of
adversity. However...

Sprinting to the finish line is one thing; sprinting for miles is
another. Extended overtime will not solve your schedule Extended overtime will not solve
problems. In fact, it has serious negative consequences. your schedule problems.
DeMarco calls extended overtime “an important

productivity-reduction technique,” leading to reduced

quality, personnel burnout, increased turnover of staff, and ineffective use of time during normal hours
[DeMarco 2002] (p. 64).

If you work overtime one week (whatever “overtime” means in your situation), don’t work overtime
again the next week. If I see a team sprinting more than once or twice per quarter, I look for deeper
problems.

ENERGIZED WORK 81

Results

When your team is energized, there’s a sense of excitement and camaraderie. As a group, you pay
attention to detail and look for opportunities to improve your work habits. You make consistent progress
every week and feel able to maintain that progress indefinitely. You value health over short-term
progress and feel productive and successtul.

Contraindications
Energized work is not an excuse to goof off. Generate trust by putting in a fair day’s work.

Some organizations may make energized work difficult. If your organization uses the number of hours
worked as a yardstick to judge dedication, you may be better off sacrificing energized work and working
long hours. The choice between quality of life and career advancement is a personal one that only you
and your family can make.

Alternatives

If your organization makes energized work difficult, mistakes are more likely. Pair
programming can help tired programmers stay focused and catch each other’s errors. | Ally

Additional testing may be necessary to find the extra defects. If you can, add additional | p,jr programming (p. 71)

contingency time to your release plan for fixing them.

The extreme form of this sort of organization is the death march organization, which requires (or
“strongly encourages”) employees to work extensive overtime week after week. Sadly, “Death march
projects are the norm, not the exception” [Yourdon] (p. ix).

To add insult to injury, [DeMarco & Lister 2003] (p. 161) weighs in: “In our experience, the one common
characteristic among death-march projects is low expected value. They are projects aimed at putting
out products of monumental insignificance. The only real justification for the death march is that with
value so minuscule, doing the project at normal cost would clearly result in costs that are greater than
benetits... if the project is so essential, why can’t the company spend the time and money to do it
properly?”

Further Reading

Peopleware [DeMarco & Lister 1999] is a classic work on programmer motivation and productivity. It
should be at the top of every software development manager’s reading list.

Rapid Development [McConnell 1996] has a chapter called “Motivation” with a nice chart comparing
programmer motivations to the motivations of managers and the general population.

Slack [DeMarco 2002] looks at the effects of extended overtime and overscheduling.

Death March [Yourdon] describes how to survive a “death march” project.

82 CHAPTER 5: THINKING

Informative Workspace Audience

Whole Team

We are tuned in to the status of our project.

Your workspace is the cockpit of your development effort. Just
as a pilot surrounds himself with information necessary to fly a plane, arrange your workspace with
information necessary to steer your project: create an informative workspace.

An informative workspace broadcasts information into the room. When people take a break, they will
sometimes wander over and stare at the information surrounding them. Sometimes, that brief zone-
out will result in an aha moment of discovery.

An informative workspace also allows people to sense the state of the project just by walking into the
room. It conveys status information without interrupting team members and helps improve stakeholder
trust.

Subtle Cues

The essence of an informative workspace is information. One

simple source of information is the feel of the room. A Simply poking your head into a
healthy project is energized. There’s a buzz in the air—not project room should give you
tension, but activity. People converse, work together, and information about the project.

make the occasional joke. It’s not rushed or hurried, but it’s

clearly productive. When a pair needs help, other pairs

notice, lend their assistance, then return to their tasks. When a pair completes something well, everyone
celebrates for a moment.

An unhealthy project is quiet and tense. Team members don’t talk much, if at all. It feels drab and bleak.
People live by the clock, punching in and punching out—or worse, watching to see who is the first one
to dare to leave.

Besides the feel of the room, other cues communicate useful information quickly and subconsciously.
If the build token is away from the integration machine, it’s not safe to check out the code right now.
By mid-iteration, unless about half the cards on the iteration plan are done, the team is going faster or
slower than anticipated.

An informative workspace also provides ways for people to
communicate. This usually means plenty of whiteboards You can never have too many
around the walls and stacks of index cards. A collaborative whiteboards.

design sketch on a whiteboard can often communicate an
idea far more quickly and effectively than a half-hour
PowerPoint presentation. Index cards are great for Class-Responsibility Collaboration (CRC) design
sessions, retrospectives, and planning with user stories.

NOTE

Whiteboard design sessions labelled “Do Not Erase” for more than a few days may
indicate a problem. Any programmer on the team should be able to re-create the design
from memory, perhaps with a bit of help from reviewing the source code. If permanent
design diagrams are indispensible, you may benefit from simplifying your design and
sharing code ownership.

INFORMATIVE WORKSPACE 83

Big Visible Charts

An essential aspect of an informative workspace is the big visible chart. The goal of a big visible chart is
to display information so simply and unambiguously that it communicates even from across the room.

The iteration and release planning boards are ubiquitous examples of such a chart. You’ll see variants
of these planning boards in every XP project. For examples, see the release planning board shown in
Figure 8-4 and the iteration planning board shown in Figure 8-9.

Another useful status chart is a team calendar, which shows important dates, iteration numbers, and
when team members will be out of the office (along with contact information, if appropriate). A large
plastic perpetual calendar, available at most office supply stores, works well here.

Hand-Drawn Charts

Avoid the reflexive temptation to computerize your charts.
The benetfits of the informative workspace stem from the Don’t rush to computerize.
information being constantly visible from everywhere in the
room. It’s difficult and expensive for computerized charts to
meet that criterion; you’d have to install plasma screens or projectors everywhere.

Even if you can afford big screens everywhere, you will constantly change the types of charts you
display. This is easier with flip charts and whiteboards than with computers, as creating or modifying a
chart is as simple as drawing with pen and paper. Don't let a spreadsheet or project management
software constrain what you can track.

Process Improvement Charts

One type of big visible chart measures specific issues that the team wants to improve.

Often, the issues come up during a retrospective. Unlike the planning boards or team | Ally

calendar, which stay posted, post these charts only as long as necessary.

Retrospectives (p.91)

Create process improvement charts as a team decision, and maintain them as a team
responsibility. When you agree to create a chart, agree to keep it up-to-date. For some charts, this means
taking 30 seconds to mark the board when the status changes. Each team member should update his
own status. Some charts involve collecting some information at the end of the day. For these, collectively
choose someone to update the chart.

There are many possible types of process improvement charts; they take forms as diverse as the types
of problems that teams experience. The principle behind all of them is the same: they appeal to our
innate desire for improvement. If you show progress toward a mutual goal, people will usually try to
improve their status.

NOTE

I try to create charts in which a line going up or a box filled in indicates improvement.
It’s a small way to improve clarity. Don’t knock yourself out trying to follow this
guideline, though: it’s more important to get back to work than to twist your
measurements to make a line go up rather than down.

84 CHAPTER 5: THINKING

e Goa
T
s
$ 751 _
“
MO g
Js § 5°:]
sw| v/ |/ 3
[.
NS v g %
MV v/ =
SS 4 acs | 11'12'13'14 15'18'19'20'21'22'
MO| JS |SW| NS|MV|SS Date
(a) Pair combinations (b) Tests per second

Figure 5-1. Sample process improvement charts

Consider the problems you're facing and what kind of chart, if any, would help. As an example, XP
teams have successfully used charts to help improve:

¢ Amount of pairing, by tracking the percentage of time spent pairing versus the percentage of time
spent flying solo

e Pair switching, by tracking how many of the possible pairing combinations actually paired during
each iteration (see Figure 5-1)

e Build performance, by tracking the number of tests executed per second

e Support responsiveness, by tracking the age of the oldest support request (an early chart, which
tracked the number of outstanding requests, resulted in hard requests being ignored)

¢ Needless interruptions, by tracking the number of hours spent on nonstory work each iteration

Try not to go overboard with your process improvement charts. If you post too many, they’ll lose their
effectiveness. My maximum is three to five charts. That’s not to say that your only decorations should
be a handful of charts. Team memorabilia, toys, and works in progress are also welcome. Just make sure
the important charts stand out.

Gaming

Although having too many process improvement charts can reduce their impact, a bigger problem
occurs when the team has too much interest in a chart, that is, in improving a number on a chart. They
often start gaming the process. Gaming occurs when people try to improve a number at the expense of
overall progress.

For example, if programmers focus too much on improving the number of tests in the system, they
might be reluctant to remove out-of-date tests, making maintenance more difficult, or they might add
unnecessary or redundant tests. They may not even realize they’re doing so.

To alleviate this problem, use process improvement charts with discretion. Discuss new charts as a team.
Carefully tie charts to the results you want to see. Review their use often and take them down after an
iteration or two. By that time, a chart has either done its job or it isn’t going to help.

INFORMATIVE WORKSPACE 85

Above all, never use workspace charts in performance
evaluations. Don’t report them outside the team. People who =~ Never use workspace charts in a
feel judged according to their performance on a chart are performance evaluation.
much more likely to engage in gaming. See “Reporting” in
Chapter 6 for ideas about what to report instead.

Questions

We need to share status with people who can't or won't visit the team workspace reqularly. How do we do that
without computerized charts?

A digital camera can effectively capture a whiteboard or other chart. You can even point a webcam at
a chart and webcast it. Get creative.

Remember, though, that most information in the team workspace is for the team’s use

only. Reporting team progress outside of the team is a separate issue. Ally

Our charts are constantly out of date. How can 1 get team members to keep them up-to-date? Reporting (p. 1't4)

The first question to ask is, “Did the team really agree to this chart?” An informative

workspace is for the team’s benetit, so if team members aren’t keeping a chart up-to-date, they may not
think that it’s beneficial. It’s possible that the team is passively-aggressively ignoring the chart rather
than telling you that they don’t want it.

I find that when no one updates the charts, it’s because I'm

being too controlling about them. Dialing back the amount If people won't take

of involvement I have with the charts is often enough to get responsibility, perhaps you're
the team to step in. Sometimes that means putting up with being too controlling.
not-quite-perfect charts or sloppy handwriting, but it pays

off.

If all else fails, discuss the issue during the retrospective or a stand-up meeting. Share your frustration,
and ask for the team’s help in resolving the issue. Prepare to abandon some favorite charts if the team
doesn’t need them.

Results

When you have an informative workspace, you have up-to-the-minute information about all the
important issues your team is facing. You know exactly how far you’ve come and how far you have to
go in your current plan, you know whether the team is progressing well or having difficulty, and you
know how well you're solving problems.

Contraindications

If your team doesn't sit together in a shared workspace, you probably won’t be able to create an effective
informative workspace.

86 CHAPTER 5: THINKING

Alternatives

If your team doesn’t sit together, but has adjacent cubicles or offices, you might be able
to achieve some of the benetfits of an informative workspace by posting information in | Ally

the halls or a common area. Teams that are more widely distributed may use electronic

Stand-Up Meetings (p. 129)
tools supplemented with daily stand-up meetings.

A traditional alternative is the weekly status meeting, but I find these dreary wastes of time that delay
and confuse important information.

Further Reading

Agile Software Development [Cockburn] has an interesting section called “Convection Currents of
Information” that describes information as heat and big visible charts as “information radiators.”

INFORMATIVE WORKSPACE 87

Root-Cause Analysis Audience

Whole Team

We prevent mistakes by fixing our process.

When I hear about a serious mistake on my project, my natural
reaction is to get angry or frustrated. I want to blame someone for screwing up.

Unfortunately, this response ignores the reality of Murphy’s Law. If something can go wrong, it will.
People are, well, people. Everybody makes mistakes. I certainly do. Aggressively laying blame might
cause people to hide their mistakes, or to try to pin them on others, but this dysfunctional behavior

won't actually prevent mistakes.

Instead of getting angry, I try to remember Norm Kerth’s Prime Directive: everybody is doing the best
job they can given their abilities and knowledge (see “Retrospectives” later in this chapter for the full
text of the Prime Directive). Rather than blaming people, I blame the process. What is it about the way
we work that allowed this mistake to happen? How can we change the way we work so that it’s harder
for something to go wrong?

This is root-cause analysis.

How to Find the Root Cause
A classic approach to root-cause analysis is to ask “why” five times. Here’s a real-world example.

Problem: When we start working on a new task, we spend a lot of time getting the code into a working
state.

Why? Because the build is often broken in source control.
Why? Because people check in code without running their tests.

It’s easy to stop here and say, “Aha! We found the problem. People need to run their tests before checking
in.” That is a correct answer, as running tests before check-in is part of continuous integration. But it’s
also already part of the process. People know they should run the tests, they just aren’t doing it. Dig
deeper.

Why don’t they run tests before checking in? Because sometimes the tests take longer to run than people
have available.

Why do the tests take so long? Because tests spend a lot of time in database setup and teardown.
Why? Because our design makes it difficult to test business logic without touching the database.

Asking “why” five times reveals a much more interesting answer than “people aren’t running tests.” It
helps you move away from blaming team members and toward identifying an underlying, fixable
problem. In this example, the solution is clear, if not easy: the design needs improvement.

How to Fix the Root Cause

Root-cause analysis is a technique you can use for every problem you encounter, from the trivial to the
significant. You can ask yourself “why” at any time. You can even fix some problems just by improving
your own work habits.

88 CHAPTER 5: THINKING

More often, however, fixing root causes requires other people to cooperate. If your
team has control over the root cause, gather the team members, share your thoughts, | Ally

and ask for their help in solving the problem. A retrospective might be a good time for

Retrospectives (p.91)
this.

If the root cause is outside the team’s control entirely, then solving the problem may be difficult or
impossible. For example, if your problem is “not enough pairing” and you identify the root cause as “we
need more comfortable desks,” your team may need the help of Facilities to fix it.

In this case, solving the problem is a matter of coordinating with the larger organization. Your project
manager should be able to help. In the meantime, consider alternate solutions that are within your
control.

When Not to Fix the Root Cause

When you first start applying root-cause analysis, you'll find many more problems than you can address
simultaneously. Work on a few at a time. I like to chip away at the biggest problem while simultaneously
picking off low-hanging fruit.

Over time, work will go more smoothly. Mistakes will become less severe and less frequent. Eventually
—it can take months or years—mistakes will be notably rare.

At this point, you may face the temptation to over-apply
root-cause analysis. Beware of thinking that you can prevent A mistake-proof process is

all possible mistakes. Fixing a root cause may add overhead neither achievable nor desirable.
to the process. Before changing the process, ask yourself

whether the problem is common enough to warrant the

overhead.

Questions
Who should participate in root-cause analysis?

I usually conduct root-cause analysis in the privacy of my own thoughts, then share my conclusions
and reasoning with others. Include whomever is necessary to fix the root cause.

When should we conduct root-cause analysis?

You can use root-cause analysis any time you notice a problem—when you find a bug, when you notice
a mistake, as you're navigating, and in retrospectives. It need only take a few seconds. Keep your brain
turned on and use root-cause analysis all the time.

We know what our problems are. Why do we need to bother with root-cause analysis?

If you already understand the underlying causes of your problems, and you’re making progress on fixing
them, then you have already conducted root-cause analysis. However, it’s easy to get stuck on a
particular solution. Asking “why” five times may give you new insight.

How do we avoid blaming individuals?

If your root cause points to an individual, ask “why” again. Why did that person do what she did? How
was it possible for her to make that mistake? Keep digging until you learn how to prevent that mistake
in the future.

ROOT-CAUSE ANALYSIS 89

Keep in mind that lectures and punitive approaches are usually ineffective. It’s better to make it difficult
for people to make mistakes than to expect them always to do the right thing.

Results

When root-cause analysis is an instinctive reaction, your team values fixing problems rather than placing
blame. Your first reaction to a problem is to ask how it could have possibly happened. Rather than
feeling threatened by problems and trying to hide them, you raise them publicly and work to solve them.

Contraindications

The primary danger of root-cause analysis is that, ultimately, every problem has a cause outside of your
control.

Don't use this as an excuse not to take action. If a root cause is beyond your control, work with someone
(such as your project manager) who has experience coordinating with other groups. In the meantime,
solve the intermediate problems. Focus on what is in your control.

Although few organizations actively discourage root-cause analysis, you may find that it is socially
unacceptable. If your efforts are called “disruptive” or a “waste of time,” you may be better off avoiding
root-cause analysis.

Alternatives

You can always perform root-cause analysis in the privacy of your thoughts. You'll probably find that
a lot of causes are beyond your control. Try to channel your frustration into energy for fixing processes
that you can influence.

20 CHAPTER 5: THINKING

Retrospectives Audience

Whole Team

We continually improve our work habits.

No process is perfect. Your team is unique, as are the situations
you encounter, and they change all the time. You must continually update your process to match your
changing situations. Retrospectives are a great tool for doing so.

Types of Retrospectives

The most common retrospective, the iteration retrospective, occurs at the end of every iteration.

In addition to iteration retrospectives, you can also conduct longer, more intensive retrospectives at
crucial milestones. These release retrospectives, project retrospectives, and surprise retrospectives (conducted
when an unexpected event changes your situation) give you a chance to reflect more deeply on your
experiences and condense key lessons to share with the rest of the organization.

These other retrospectives are out of the scope of this book. They work best when conducted by neutral
third parties, so consider bringing in an experienced retrospective facilitator. Larger organizations may
have such facilitators on staff (start by asking the HR department), or you can bring in an outside
consultant. If you’d like to conduct them yourself, [Derby & Larsen] and [Kerth] are great resources.

How to Conduct an Iteration Retrospective

Anybody can facilitate an iteration retrospective if the team gets along well. An experienced, neutral
facilitator is best to start with. When the retrospectives run smoothly, give other people a chance to try.

Everyone on the team should participate in each retrospective. In order to give participants a chance to
speak their minds openly, non-team members should not attend.

I timebox my retrospectives to exactly one hour. Your first few retrospectives will probably run long.
Give it an extra half-hour, but don’t be shy about politely wrapping up and moving to the next step.
The whole team will get better with practice, and the next retrospective is only a week away.

I keep the following schedule in mind as I conduct a retrospective. Don’t try to match the schedule
exactly; let events follow their natural pace:

1. Norm Kerth’s Prime Directive

2. Brainstorming (30 minutes)

3. Mute Mapping (10 minutes)

4. Retrospective objective (20 minutes)

After you've acclimated to this format, change it. The retrospective is a great venue for trying new ideas.
[Derby & Larsen] is full of ideas for iteration retrospectives.

Retrospectives are a powerful tool that can actually be damaging when conducted poorly. The process
I describe here skips some important safety exercises for the sake of brevity. Pay particular attention to
the contraindications before trying this practice.

RETROSPECTIVES 91

Step 1: The Prime Directive

In his essay, “The Effective Post-Fire Critique,” New York City Fire Department Chief Frank
Montagna writes:

Firefighters, as all humans, make mistakes. When firefighters make a mistake on the job,
however, it can be life-threatening to themselves, to their coworkers, and to the public they
serve. Nonetheless, firefighters will continue to make mistakes and on occasion will repeat a
mistake.

Everyone makes mistakes, even when lives are on the line.

The retrospective is an opportunity to learn and improve. The Never use a retrospective to
team should never use the retrospective to place blame or place blame or attack
attack individuals. individuals.

As facilitator, it’s your job to nip destructive behavior in the
bud. To this end, I start each retrospective by repeating Norm
Kerth’s Prime Directive. I write it at the top of the whiteboard:

Regardless of what we discover today, we understand and truly believe that everyone did the
best job they could, given what they knew at the time, their skills and abilities, the resources
available, and the situation at hand.

I ask each attendee in turn if he agrees to the Prime Directive and wait for a verbal “yes.” If not, I ask
if he can set aside his skepticism just for this one meeting. If an attendee still won’t agree, I won’t conduct
the retrospective.

NOTE
If someone speaks once during a retrospective, she is more likely to speak again. By
waiting for verbal agreement, you encourage more participation.

Step 2: Brainstorming

If everyone agrees to the Prime Directive, hand out index cards and pencils, then write the following
headings on the whiteboard:

e Enjoyable

e Frustrating

e Puzzling

e Same

* More

e Less
Ask the group to reflect on the events of the iteration and brainstorm ideas that fall into these categories.
Think of events that were enjoyable, frustrating, and puzzling, and consider what you’d like to see

increase, decrease, and remain the same. Write each idea on a separate index card. As facilitator, you
can write down your ideas, too—just be careful not to dominate the discussion.

92 CHAPTER 5: THINKING

NOTE
Ideas that are out of the team’s control are fine.

People can come up with as many ideas as they like. Five to 10 each is typical. There’s no need to have
an idea in each category, or to limit the ideas in a category. Any topic is fair game, from the banal (“more
cookies”) to the taboo (“frustrating: impossible deadline”). If people are reluctant to say what they really
think, try reading the cards anonymously.

Ask people to read out their cards as they finish each one, then hand them in. Stick the cards up on the
board under their headings. If you don’t have a ferrous whiteboard, use sticky notes instead of index
cards.

NOTE

Wait until step 3 to group similar cards. It improves the flow of the restrospective.

If people have trouble getting started, describe what happened during the iteration. (“Wednesday, we
had our planning session....”) This approach takes longer, but it might be a good way to jump-start things
when you first start doing retrospectives.

As people read their cards, others will come up with new ideas. The conversation will feed on itself.
Don’t worry if two people suggest the same idea—just put them all up on the board. Expect several
dozen cards, at least.

As the conversation winds down, check the time. If you have plenty of extra time, let the silences stretch
out. Someone will often say something that he has held back, and this may start a new round of ideas.
If you’re running out of time, however, take advantage of the pause to move on to the next stage.

Step 3: Mute Mapping
Mute mapping is a variant of affinity mapping in which no one speaks. It’s a great way to categorize a lot
of ideas quickly.
You need plenty of space for this. Invite everyone to stand up, go over to the whiteboard, and slide cards
around. There are three rules:

1. Put related cards close together.

2. Put unrelated cards far apart.

3. No talking.

If two people disagree on where to place a card, they have to work out a compromise without talking.

This exercise should take about 10 minutes, depending on the size of the team. As before, when activity
dies down, check the time and either wait for more ideas or move on.

Once mute mapping is complete, there should be clear groups of cards on the whiteboard. Ask everyone
to sit down, then take a marker and draw a circle around each group. Don’t try to identify the groups
yet; just draw the circles. If you have a couple of outlier cards, draw circles around those, too. Each
circle represents a category. You can have as many as you need.

RETROSPECTIVES 93

Once you have circled the categories, read a sampling of cards from each circle and ask the team to
name the category. Don’t try to come up with a perfect name, and don’t move cards between categories.
(There’s always next time.) Help the group move quickly through this step. The names aren’t that
important, and trying for perfection can easily drag this step out.

Finally, after you have circled and named all the categories, vote on which categories should be
improved during the next iteration. I like to hand out little magnetic dots to represent votes; stickers
also work well. Give each person five votes. Participants can put all their votes on one category if they
wish, or spread their votes amongst several categories.

Step 4: Retrospective Objective

After the voting ends, one category should be the clear winner. If not, don’t spend too much time; flip
a coin or something.

Discard the cards from the other categories. If someone wants to take a card to work on individually,
that’s fine, but not necessary. Remember, you’ll do another retrospective next week. Important issues
will recur.

NOTE
Frustrated that your favorite category lost? Wait a month or two. If it’s important, it
will win eventually.

Now that the team has picked a category to focus on, it’s time to come up with options

for improving it. This is a good time to apply your root-cause analysis skills. Read the | Ally

cards in the category again, then brainstorm some ideas. Half a dozen should suffice. | goot-cause Analysis (p. 88)

Don'’t be too detailed when coming up with ideas for improvement. A general direction
is good enough. For example, if “pairing” is the issue, then “switching pairs more often” could be one
suggestion, “ping-pong pairing” could be another, and “switching at specific times” could be a third.

When you have several ideas, ask the group which one they think is best. If there isn’t a clear consensus,
vote.

This final vote is your retrospective objective. Pick just one—it will help you focus. The retrospective
objective is the goal that the whole team will work toward during the next iteration. Figure out how to
keep track of the objective and who should work out the details.

After the Retrospective

The retrospective serves two purposes: sharing ideas gives the team a chance to grow closer, and coming
up with a specific solution gives the team a chance to improve.

The thing I dislike about iteration retrospectives is that they often don’t lead to specific changes. It’s easy
to leave the retrospective and think, “Well, that’s done until next week.” If you're like me, the ensuing
lack of action can be a little frustrating.

To avoid this frustration, make sure someone is responsible for following through on the retrospective
objective. It’s not that person’s job to push or own the objective—that’s for the whole team—but it is
his job to remind people when appropriate.

94 CHAPTER 5: THINKING

To encourage follow-through, make the retrospective objective part of the iteration.
For general behavior changes, such as “switch pairs more often,” consider adding a big | Allies

visible chart to your informative workspace. For specific actions, such as “improve Informative Workspace (p.

database abstraction layer,” create task cards and put them in your iteration plan. 83)

Iteration Planning (p. 233)

Questions
What if management isn't committed to making things better?

Although some ideas may require the assistance of others, if those people can’t or won't help, refocus
your ideas to what you can do. The retrospective is an opportunity for you to decide, as a team, how to
improve your own process, not the processes of others.

Your project manager may be able to help convey your needs to management and other groups.
Despite my best efforts as facilitator, our retrospectives always degenerate into blaming and arguing. What can I do?

This is a tough situation, and there may not be anything you can do. If there are just one or two people
who like to place blame, try talking to them alone beforehand. Describe what you see happening and
your concern that it’s disrupting the retrospective. Rather than adopting a parental attitude, ask for their
help in solving the problem and be open to their concerns.

If a few people constantly argue with each other, talk to them together. Explain that you’re concerned
their arguing is making other people uncomfortable. Again, ask for their help.

If the problem is widespread across the group, the same approach—talking about it—applies. This time,
hold the discussion as part of the retrospective, or even in place of it. Share what you’ve observed, and
ask the group for their observations and ideas about how to solve the problem. Be careful: this discussion
is only helpful if the group can hold it without further arguing.

If all else fails, you may need to stop holding retrospectives for a while. Consider bringing an
organizational development (OD) expert to facilitate your next retrospective.

We come up with good retrospective objectives, but then nothing happens. What are we doing wrong?

Your ideas may be too big. Remember, you only have one week, and you have to do your other work,
too. Try making plans that are smaller scale—perhaps a few hours of work—and follow up every day.

Another possibility is that you don’t have enough slack in your schedule. When you
have a completely full workload, nonessential tasks such as improving your work habits | Ally

go undone. (The sad irony is that improving your work habits will give you more time.) | sjack (p. 216)

Finally, it’s possible that the team doesn’t feel like they truly have a voice in the
retrospective. Take an honest look at the way you conduct it. Are you leading the team by the nose
rather than facilitating? Consider having someone else facilitate the next retrospective.

Some people won't speak up in the retrospective. How can I encourage them to participate?

It’s possible they’re just shy. It's not necessary for everyone to participate all the time. Waiting for a
verbal response to the Prime Directive can help break the ice.

On the other hand, they may have something they want to say but don’t feel safe doing it. [Derby &
Larsen] have some good suggestions about how to incorporate safety exercises into the retrospective.
You can also try talking with them individually outside of the retrospective.

RETROSPECTIVES 95

One group of people (such as testers) always gets outvoted in the retrospective. How can we meet their needs, t00?

Over time, every major issue will get its fair share of attention. Give the retrospectives a few months
before deciding that a particular group is disenfranchised. One team in my experience had a few testers
that felt their issue was being ignored. A month later, after the team had addressed another issue, the
testers’ concern was on the top of everyone’'s list.

If time doesn’t solve the problem—and be patient to start—you can use weighted dot voting, in which
some people get more dot votes than others. If you can do this without recrimination, it may be a good
way to level the playing field.

Another option is for one group to pick a different retrospective objective to focus on in addition to the
general retrospective objective.

Our retrospectives always take too long. How can we go faster?

It’s OK to be decisive about wrapping things up and moving on. There’s always next week. If the group
is taking a long time brainstorming ideas or mute mapping, you might say something like, “OK, we're
running out of time. Take two minutes to write down your final thoughts (or make final changes) and
then we’ll move on.”

That said, I prefer to let a retrospective go long and take its natural course during the first month or so.
This will allow people to get used to the flow of the retrospective without stressing too much about
timelines.

The retrospective takes so much time. Can we do it less often?

It depends on how much your process needs improvement. An established team may not need as many
iteration retrospectives as a new team. I would continue to conduct retrospectives at least every other
week.

If you feel that your retrospective isn’t accomplishing much, perhaps the real problem is that you need
a change of pace. Try a different approach. [Derby & Larsen] has many ideas to try.

Results

When your team conducts retrospectives well, your ability to develop and deliver software steadily
improves. The whole team grows closer and more cohesive, and each group has more respect for the
issues other groups face. You are honest and open about your successes and failures and are more
comfortable with change.

Contraindications

The biggest danger in a retrospective is that it will become a venue for acrimony rather than for
constructive problem solving. A skilled facilitator can help prevent this, but you probably don’t have
such a facilitator on hand. Be very cautious about conducting retrospectives if some team members tend
to lash out, attack, or blame others.

The retrospective recipe described here assumes that your team gets along fairly well. If your team
doesn’t get along well enough to use this recipe, refer to [Derby & Larsen] for more options and consider
bringing in an outside facilitator.

96 CHAPTER 5: THINKING

If only one or two team members are disruptive, and attempts to work the problem through with them
are ineffective, you may be better off removing them from the team. Their antisocial influence probably
extends beyond the retrospective, hurting teamwork and productivity.

Alternatives

There are many ways to conduct retrospectives. See [Derby & Larsen] for ideas.

I'm not aware of any other techniques that allow you to improve your process and team cohesiveness
as well as retrospectives do. Some organizations define organization-wide processes. Others assign
responsibility for the process to a project manager, technical lead, or architect. Although these
approaches might lead to a good initial process, they don’t usually lead to continuous process
improvement, and neither approach fosters team cohesiveness.

Further Reading

Project Retrospectives [Kerth] is the definitive resource for project retrospectives.

Agile Retrospectives [Derby & Larsen] picks up where [Kerth] leaves off, discussing techniques for
conducting all sorts of agile retrospectives.

“The Effective Post-Fire Critique” [Montagna] is a fascinating look at how a life-and-death profession
approaches retrospectives.

RETROSPECTIVES 97

CHAPTER 6

Collaborating

Sometimes I like to imagine software development as a pulsing web of light, with blips of information
flowing along lines from far-tflung points. The information races toward the development team, which
is a brilliant, complex tangle of lines, then funnels into a glowing core of software too bright to look at.

I'm a little weird that way.

There’s truth to the idea, though. Software development is all about information. The more effectively
your programmers can access and understand the information they need, the more effective they will
be at creating software. The better information customers and managers have, the better they can
manage the schedule and provide feedback to the programmers.

Communication in the real world is a lot messier than it is in my image. There are no glowing lines to
sterilely transport information from one brain to another. Instead, people have to work together. They
have to ask questions, discuss ideas, and even disagree.

This chapter contains eight practices to help your team and its stakeholders collaborate efficiently and
effectively:

e Trustis essential for the team to thrive.

e Sitting together leads to fast, accurate communication.

o Real customer involvement helps the team understand what to build.

* A ubiquitous language helps team members understand each other.

o Stand-up meetings keep team members informed.

e Coding standards provide a template for seamlessly joining the team’s work together.

o [teration demos keep the team’s efforts aligned with stakeholder goals.

* Reporting helps reassure the organization that the team is working well.

99

100

TPS Report Zeons
1 I

Zam | They are Zam | They are
Project _:_; TPS Pro 5ra.mmer6:__6-ra.ph/c
manaser | *avditors | desisner

| |
Typical effort=¥S minvtes Typical wait=3 hours
(a) Providing information (b) Requesting information

Figure 6-1. Sample cards

“COLLABORATING” MINI-ETUDE

Thepurposeofthisétudeistoexploretheflowofinformationinyourproject.Ifyou’renewtoagiledevelopment,
you may use it to help you understand how collaboration occurs in your project, even if you're not currently
using XP. If you're an experienced agile practitioner, review Chapter 12 and use this étude to help you modify
your process to remove communication bottlenecks.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

You will need white, red, yellow, and green index cards; an empty table or magnetic whiteboard for your
information flow map; and writing implements for everyone.

Step 1. Start by forming pairs. Try for heterogeneous pairs—have a programmer work with a customer, a
customer work with a tester, and so forth, rather than pairing by job description. Work with a new partner
every day.

Step 2. (Timebox this step to 10 minutes.) Within your pair, discuss the kinds of information that you need in
order to do your job, or that other people need from you in order to do their job. Choose one example that you
have personally observed or experienced. If you can’t think of anything new, pick an existing card and skip to
Step 3.

Information usually flows in both directions. For example, during a customer review, a developer may ask a
customer if the software behaves correctly. Alternatively, a customer may ask a developer to show her what
the software does. Choose just one direction.

Reflect on all the times you remember needing or providing this information. How long did it take? For
information you needed, think of the calendar time needed from the moment you realized you needed the
information to the moment you received it. For information you provided, think of the total effort that you and
other team members spent preparing and providing the information.

Next, think of the typical time required for this piece of information. If the typical time required is less than 10
minutes, take a green index card. If it’s less than a day, take a yellow index card. If it's a day or longer, take a
red index card. Write down the type of information involved, the group that you get it from (or give it to), the
role you play, and the time required, as shown in Figure 6-1.

Step 3. (Timebox this step to 10 minutes.) Within your pair, discuss things that your team can do to reduce or
eliminate the time required to get or provide this information. Pick one and write it on a white card.

CHAPTER 6: COLLABORATING

Step 4. (Timebox this step to 10 minutes.) As a team, discuss all the cards generated by all the pairs. Consider
these questions:

« Where are the bottlenecks in receiving information?

« Which latencies are most painful in your current process?

« Which flow is most important to optimize in your next iteration?

« Whatis the root cause of those latencies?

« What will you do next iteration to improve information flow?
After everyone has had a chance to share their cards, add them to the table. Place colored cards on the table
sothatthe cards visually show information flow. For example, if an interaction designer gets information about

usage from real customers and gives itto the development team, those two cards would be placed side by side.
Place white cards underneath colored cards.

COLLABORATING

101

Tru St Audience

Whole Team, Coaches

We work together effectively and without fear.

When a group of people comes together to work as a team, they

go through a series of group dynamics known as “Forming, Storming, Norming, and

Performing” [Tuckman]. It takes the team some time to get through each of these stages. They make
progress, fall back, bicker, and get along. Over time—often months—and with adequate support and a
bit of luck, they get to know each other and work well together. The team jells. Productivity shoots up.
They do really amazing work.

What does it take to achieve this level of productivity? The team must take joint responsibility for their
work. Team members need to think of the rest of the team as “us,” not “them.” If a team member notices
something that needs doing, she takes responsibility for it, even if it’s not her specialty: she does it, finds
someone to help her do it, or recruits someone else to take care of it.

Conversely, team members must rely on each other for help. When one member of a team encounters
a question that she cannot answer, she doesn’t hesitate to ask someone who does know the answer.
Sometimes these quick questions turn into longer pairing sessions.

Trust is essential for the team to perform this well. You need to trust that taking time to help others
won’t make you look unproductive. You need to trust that you'll be treated with respect when you ask
for help or disagree with someone.

The organization needs to trust the team, too. XP is strange and different at first. It doesn’t provide the
normal indicators of progress that managers are accustomed to seeing. It takes trust to believe that the
team will deliver a success.

Trust doesn’t magically appear—you have to work at it. Here are some strategies for generating trust in
your XP team.

Team Strategy #1: Customer-Programmer Empathy

Many organizations I've worked with have struggled with an “us versus them” attitude between
customers and programmers. Customers often feel that programmers don’t care enough about their
needs and deadlines, some of which, if missed, could cost them their jobs. Programmers often feel forced
into commitments they can’t meet, hurting their health and relationships.

Sometimes the acrimony is so intense that the groups actually start doing what the others fear:
programmers react by inflating estimates and focusing on technical toys at the expense of necessary
features; customers react by ignoring programmer estimates and applying schedule pressure. This
sometimes happens even when there’s no overt face-to-face hostility.

This is a difficult situation with no easy answer. Such badly broken trust takes a long time to heal.
Because neither group can force the other to bridge the gap, you have to focus on changing your own
attitude.

I find that the biggest missing component in this situation is empathy for the other group’s position.
Programmers, remember that customers have corporate masters that demand results. Bonuses, career
advancement, and even job security depend on successful delivery, and the demands aren’t always
reasonable. Customers must deliver results anyway.

102 CHAPTER 6: COLLABORATING

Customers, remember that ignoring or overriding programmers’ professional recommendations about
timelines often leads to serious personal consequences for programmers. “Death march teams are the
norm, not the exception... [These teams] are often found working 13- to 14-hour days, six days a week...
In [“ugly” death march projects], it’s not uncommon to see one or two of the project team members
collapse from exhaustion, suffer ulcers or a nervous breakdown, or experience a divorce” [Yourdon]
(p- ix, p. 4, p. 61). The commonality of these experiences among programmers leads to apathy and
cynicism about schedules and commitments.

Sitting together is the most effective way I know to build empathy. Each group gets to
see that the others are working just as hard. Retrospectives also help, if your team can | Allies

avoid placing blame. Programmers can help by being respectful of customer goals, and | sj Together (p. 112)
customers can help by being respectful of programmer estimates and technical Retrospectives (p. 91)
recommendations. All of this is easier with energized work. Energized Work (p. 79)

Team Strategy #2: Programmer-Tester Empathy

I've also seen “us versus them” attitudes between programmers and testers, although it isn’t quite as
prevalent as customer-programmer discord. When it occurs, programmers tend not to show respect for
the testers’ abilities, and testers see their mission as shooting down the programmers’ work.

As with customer-programmer discord, empathy and respect are the keys to better relations.
Programmers, remember that testing takes skill and careful work, just as programming does. Take
advantage of testers’ abilities to find mistakes you would never consider, and thank them for helping
prevent embarrassing problems from reaching stakeholders and users. Testers, focus on the team’s joint
goal: releasing a great product. When you find a mistake, it’s not an occasion for celebration or gloating.
Remember, too, that everybody makes mistakes, and mistakes aren’t a sign of incompetence or laziness.

Team Strategdy #3: Eat Together

Another good way to improve team cohesiveness is to eat
together. Something about sharing meals breaks down A good way to improve team
barriers and fosters team cohesiveness. Try providing a free cohesiveness is to eat together.
meal once per week. If you have the meal brought into the
office, set a table and serve the food family-style to prevent
people from taking the food back to their desks. If you go to a restaurant, ask for a single long table
rather than separate tables.

Team Strategy #4: Team Continuity

After a project ends, the team typically breaks up. All the wonderful trust and cohesiveness that the
team has formed is lost. The next project starts with a brand-new team, and they have to struggle
through the four phases of team formation all over again.

You can avoid this waste by keeping productive teams together. Most organizations think of people as
the basic “resource” in the company. Instead, think of the feam as the resource. Rather than assigning
people to projects, assign a team to a project. Have people join teams and stick together for multiple
projects.

Some teams will be more effective than others. Take advantage of this by using the most effective teams
as a training ground for other teams. Rotate junior members into those teams so they can learn from

TRUST 103

the best, and rotate experienced team members out to lead teams of their own. If you do this gradually,
the team culture and trust will remain intact.

NOTE

Team continuity is an advanced practice—not because it’s hard to do, but because it
challenges normal organizational structures. While team continuity is valuable, you
don’t need to do it to be successful.

Impressions

I know somebody who worked in a company with two project teams. One used XP, met its
commitments, and delivered regularly. The team next door struggled: it fell behind schedule and didn’t
have any working software to show. Yet when the company downsized, it let the XP team members go
rather than the other team!

Why? When management looked in on the struggling team, they saw programmers working hard, long
hours with their heads down and UML diagrams papering the walls. When they looked in on the XP
team, they saw people talking, laughing, and going home at five with nothing but rough sketches and
charts on the whiteboards.

Like it or not, our projects don’t exist in a vaccuum. XP can seem strange and different to an organization
that hasn’t seen it before. “Are they really working?” outsiders wonder. “It’s noisy and confusing. I don’t
want to work that way. If it succeeds, will they force me to do it, too?”

Ironically, the more successful XP is, the more these worries grow. Alistair Cockburn calls them
organizational antibodies.” f left unchecked, organizational antibodies will overcome and dismantle an
otherwise successful XP team.

No matter how effective you are at meeting your technical commitments, you're in trouble without the
good will of your stakeholders. Yes, meeting schedules and technical expectations helps, but the
nontechnical, interpersonal skills—soft skills—your team practices may be just as important to building
trust in your team.

Does this sound unfair or illogical? Surely your ability to deliver high-quality software is all that really
matters.

It is unfair and illogical. It’s also the way people think—even programmers. If your stakeholders don’t
trust you, they won't participate in your team, which hurts your ability to deliver valuable software.
They might even campaign against you.

Don'’t wait for them to realize how your work can help them. Show them.

Organizational Strategy #1: Show Some Hustle

“Things may come to those who wait, but only the things left by those who hustle.” —Abraham
Lincolnt

Several years ago, I hired a small local moving company to move my belongings from one apartment
to another. When the movers arrived, I was surprised to see them hustle—they moved quickly from the

* Via personal communication.

T Thanks to George Dinwiddie for this quote.

104 CHAPTER 6: COLLABORATING

van to the apartment and back. This was particularly unexpected because I was paying them by the
hour. There was no advantage for them to move so quickly.

Those movers impressed me. I felt that they were dedicated to meeting my needs and respecting my
pocketbook. If T still lived in that city and needed to move again, I would hire them in an instant. They
earned my goodwill—and my trust.

In the case of a software team, hustle is energized, productive work. It’s the sense that

the team is putting in a fair day’s work for a fair day’s pay. Energized work, an Allies

informative workspace, appropriate reporting, and iteration demos all help convey this Energized Work (p. 79)
feeling of productivity. Informative Workspace (p.
83)

Reporting (p. 144)

Organizational Strategy #2: Deliver on Commitments lteration Demo (p. 138)

If your stakeholders have worked with software teams before, they probably have
plenty of war wounds from slipped schedules, unfixed defects, and wasted money. In addition, they
probably don’t know much about software development. That puts them in the uncomfortable position
of relying on your work, having had poor results before, and being unable to tell if your work is any
better.

Meanwhile, your team consumes thousands of dollars every week in salary and support. How do
stakeholders know that you’'re spending their money wisely? How do they know that the team is even
competent?

Stakeholders may not know how to evaluate your process, but they can evaluate results. Two kinds of
results speak particularly clearly to them: working software and delivering on commitments.

Fortunately, XP teams demonstrate both of these results every week. You make a

commitment to deliver working software when you build your iteration and release Allies

plans. You demonstrate that you’'ve met the iteration commitment in the iteration lteration Planning (p. 233)
demo, exactly one week later, and you demonstrate that you've met the release Release Planning (p. 206)

commitment on your predefined release date. Iteration Demo (p. 138)

This week-in, week-out delivery builds stakeholder trust like nothing I've ever seen. Risk Management (p. 221)

It’s extremely powerful. All you have to do is create a plan that you can achieve... and
then achieve it.

Organizational Strategy #3: Manage Problems
Did I say, “All you have to do?” Silly me. It’s not that easy.

First, you need to plan well (see Chapter 8). Second, as the poet said, “The best laid schemes o’ mice
an’ men / Gang aft a-gley.””

In other words, some iterations don’t sail smoothly into port on the last day. What do you do when
your best laid plans gang a-gley?

Actually, that’s your chance to shine. Anyone can look good when life goes according to plan. Your true
character shows when you deal with unexpected problems.

* “To a Mouse,” by renowned Scottish poet Robert Burns. The poem starts, “Wee, sleekit, cow’rin, tim’rous beastie, / O, what a
panic’s in thy breastie!” This reminds me of how I felt when I was asked to integrate a project after a year of unintegrated
development.

TRUST 105

The first thing to do is to limit your exposure to problems. Work on the hardest, most uncertain tasks
early in the iteration. You'll find problems sooner, and you’ll have more time to fix them.

When you encounter a problem, start by letting the whole team know about it. Bring it up by the next
stand-up meeting at the very latest. This gives the entire team a chance to help solve the problem.

If the setback is relatively small, you might be able to absorb it into the iteration by

using some of your iteration slack. Options for absorbing the problem include reducing | Ally

noncritical refactorings, postponing a nonessential meeting, or even (as a team Slack (p. 246)
decision) cancelling research time. I personally volunteer to work an hour or so longer

each day until we have resolved the problem—or the iteration ends, whichever comes
first—as long as my family commitments permit.

Some problems are too big to absorb no matter how much slack you have. If this is the case, get together
as a whole team as soon as possible and replan. You may need to remove an entire story or you might
be able to reduce the scope of some stories. (For more about what to do when things go wrong, see
“Tteration Planning” in Chapter 8.)

When you've identified a problem, let the stakeholders know
about it. They’ll appreciate your professionalism even if they The bigger the problem, the
don’t like the problem. I usually wait until the iteration demo sooner you should disclose it.
to explain problems that we solved on our own, but bring
bigger problems to stakeholders” attentions right away. The
product manager is probably the best person to decide who to talk to and when.

The sooner your stakeholders know about a problem (and believe me, they’ll find out eventually), the
more time they have to work around it. I include an analysis of the possible solutions as well as their
technical costs. It can take a lot of courage to have this discussion—but addressing a problem successfully
can build trust like nothing else.

Be careful, though. It’s easy to focus too much on meeting your commitments in such a way that actually
damages trust. Suppose you need a few more hours in an iteration to finish a particularly valuable story.
A little bit of overtime is fine. Sprinting with a burst of more overtime can even be good for team morale
and cohesiveness under the right conditions (see “Energized Work” in Chapter 5). Relying on overtime
to meet overcommitment saps the team’s energy and reduces your ability to absorb problems. Ironically,
it leads to more missed commitments; you implicitly promise your stakeholders more than you can
deliver for the price they expect to pay in time and resources.

If you find yourself using a lot of overtime, something is
wrong. Most iterations shouldn’t have problems. When a Reliance on overtime indicates a
problem does occur, you should usually be able to solve it by systemic problem.

using slack, not overtime. I look for systemic problems if I see
a team exceeding 10 percent overtime in more than one
iteration per quarter.

Organizational Strategy #4: Respect Customer Goals

When XP teams first form, it usually takes individual members a while to think of themselves as part
of a single team. In the beginning, programmers, testers, and customers often see themselves as separate
groups.

New on-site customers are often particularly skittish. Being part of a development team feels awkward;
they’d rather work in their normal offices with their normal colleagues. Those colleagues are often

106 CHAPTER 6: COLLABORATING

influential members of the company. If the customers are unhappy, those feelings transmit directly back
to stakeholders.

When starting a new XP project, programmers should make an extra effort to welcome the customers.
One particularly effective way to do so is to treat customer goals with respect. This may even mean
suppressing, for a time, cynical programmer jokes about schedules and suits.

Being respectful goes both ways, and customers should also suppress their natural tendencies to
complain about schedules and argue with estimates. I'm emphasizing the programmer’s role here
because it plays such a big part in stakeholder perceptions.

Another way for programmers to take customer goals seriously is to come up with creative alternatives
for meeting those goals. If customers want something that may take a long time or involves tremendous
technical risks, suggest alternate approaches to reach the same underlying goal for less cost. If there’s a
more impressive way of meeting a goal that customers haven’t considered, by all means mention it—
especially if it’s not too hard.

As programmers and customers have these conversations, barriers will be broken and trust will develop.
As stakeholders see that, their trust in the team will blossom as well.

You can also build trust directly with stakeholders. Consider this: the next time a stakeholder stops you
in the hallway with a request, what would happen if you immediately and cheertully took him to a
stack of index cards, helped him write the story, and then brought them both to the attention of the
product manager for scheduling?

This might be a 10-minute interruption for you, but imagine how the stakeholder would feel. You
responded to his concern, helped him express it, and took immediate steps to get it into the plan.

That’s worth infinitely more to him than firing an email into a black hole of your request tracking system.

Organizational Strategdy #5: Promote the Team

You can also promote the team more directly. One team posted pictures and charts on the outer wall
of the workspace that showed what they were working on and how it was progressing. Another invited
anyone and everyone in the company to attend its iteration demos.

Being open about what you're doing will also help people appreciate your team. Other people in the
company are likely to be curious, and a little wary, about your strange new approach to software
development. That curiosity can easily turn to resentment if the team seems insular or stuck-up.

You can be open in many ways. Consider holding brown-bag lunch sessions describing the process,
public code-fests in which you demonstrate your code and XP technical practices, or an “XP open-house
day” in which you invite people to see what you’'re doing and even participate for a little while. If you
like flair, you can even wear buttons or hats around the office that say “Ask me about XP.”

Organizational Strategy #6: Be Honest

In your enthusiasm to demonstrate progress, be careful not to step over the line. Borderline behavior
includes glossing over known defects in an iteration demo, taking credit for stories that are not 100
percent complete, and extending the iteration for a few days in order to finish everything in the plan.

These are minor frauds, yes. You may even think that “fraud” is too strong a word—but all of these
behaviors give stakeholders the impression that you've done more than you actually have.

TRUST 107

There’s a practical reason not to do these things: stakeholders will expect you to complete the remaining
features just as quickly, when in fact you haven’t even finished the first set. You’ll build up a backlog
of work that looks done but isn’t. At some point, you’ll have to finish that backlog, and the resulting
schedule slip will produce confusion, disappointment, and even anger.

Even scrupulously honest teams can run into this problem.
In a desire to look good, teams sometimes sign up for more ~ Only sign up for as many stories
stories than they can implement well. They get the work as the team can reliably
done, but they take shortcuts and don’t do enough design complete.

and refactoring. The design suffers, defects creep in, and the
team finds itself suddenly going much slower while
struggling to improve code quality.

Similarly, don’t yield to the temptation to count stories that aren’t “done done”. If a

story isn’t completely finished, it doesn’t count toward your velocity. Don’t even take | Ally

partial credit for the story. There’s an old programming joke: the first 90 percent takes | «pgne pone” (p. 156)

90 percent of the time... and the last 10 percent takes 90 percent of the time. Until the
story is totally done, it’s impossible to say for certain how much is left.

THE CHALLENGE OF TRUTH-TELLING

The most challenging project I've ever coached had a tight deadline. (Don’t they all?) Our end-customer was a
critical customer: a large institution that represented the majority of our income. If we didn’t satisfy them, we
risked losing a huge chunk of vital business.

Knowing what was at stake, | made a reliable release plan our top priority. Six weeks later, we had not only
implemented the first six weeks of stories, we also had a reliable estimate of our velocity and a complete
estimated list of remaining stories.

It showed us coming in late—very late. We needed to deliver in seven months. According to the release plan,
we would deliver in thirteen.

The project manager and | took the release plan to our director. Things went downhill. He forbade us from
sharing the news with the end-customer. Instead, he ordered us to make the original deadline work any way
we could.

We knew that we couldn’t make the deadline work. We didn’t have enough time to add staff; it would take too
long for them to become familiar with the codebase. We couldn’t cut scope because we wouldn’t admit the
problem to our customer.

Our jobs were on the line and we tried to make it work. We ignored Brooks’ Law,” hired abunch of programmers,
and did everything we could to ramp them up quickly without distracting the productive members of the team.
Despite our best efforts, we shipped defect-ridden software sixmonths late—within afew weeks of our original
prediction. We lost the customer.

We might have lost the customer even if we had told them the truth. It's impossible to say. My experience,
however, is that customers, stakeholders, and executives appreciate being made part of the solution. When
you demonstrate progress on a weekly basis, you establish credibility and trust. With that credibility and trust
in place, stakeholders have a greater interest in working with you to balance trade-offs and achieve their goals.

* “[A]dding manpower to a late software project makes it later” [Brooks] (p. 25).

108 CHAPTER 6: COLLABORATING

I won’t involve myself in hiding information again. Schedules can’t keep secrets; there are no miraculous
turnarounds; the true ship date comes out eventually.

Instead, | o out of my way to present the most accurate picture I can. If a defect must be fixed in this release,
I schedule the fix before new features. If our velocity is lower than | want, | nonetheless report delivery dates
based on our actual velocity. That’s reality, and only by being honest about reality can | effectively manage the
consequences.

Questions
Our team seems to be stuck in the “Storming” stage of team development. How can we advance?

Give it time. Teams don’t always progress through the stages of development in an orderly manner.
One day, everything may seem rosy; the next, calamitous. Storming is necessary for the team to progress:
members need to learn how to disagree with each other. You can help by letting people know that
disagreement is normal and acceptable. Find ways to make it safe to disagree.

If the team seems like it hasn’t made any progress in a month or two, ask for help. Talk to your mentor
(see “Find a Mentor” in Chapter 2) or an organizational development expert. (Your HR department
might have somebody on staff. You can also hire an OD consultant.) If there’s somebody on the team
who is particularly disruptive, consider whether the team would be better off if he moved to a different
project.

Isn’t it more important that we be good rather than look good?
Both are important. Do great work and make sure your organization knows it.
I thought overtime didn’t solve schedule problems. Why did you recommend overtime?

Overtime won 't solve your schedule problems, especially systemic ones, but it might help if you have a
small hiccup to resolve. The key point to remember is that, while overtime can help solve small
problems, it mustn’t be the first or only tool in your Kkit.

Why bring big problems to stakeholders’ attentions before smaller, already-solved problems? That seems backward.

Problems tend to grow over time. The sooner you disclose a problem, the more time you have to solve
it. It reduces panic, too: early in the project, people are less stressed about deadlines and have more
mental energy for problems.

You said programmers should keep jokes about the schedule to themselves. Isn't this just the same as telling
programmers to shut up and meet the schedule, no matter how ridiculous?

Certainly not. Everybody on the team should speak up and tell the truth when they see a problem.
However, there’s a big difference between discussing a real problem and simply being cynical.

Many programmers have cynical tendencies. That’s OK, but be aware that customers’ careers are often
on the line. They may not be able to tell the difference between a real joke and a complaint disguised
as a joke. An inappropriate joke can set their adrenaline pumping just as easily as a real problem can.

Venting is counterproductive when there’s a better way to address the root of the problem.

TRUST 109

What if we "ve committed to finishing a story and then discover that we can't possibly finish it this iteration?

Mistakes happen; it’s inevitable. Perhaps programmers underestimated the technical challenge of a
story. Perhaps customers neglected to mention an important aspect of the story. Either way, finding the
problem early and reworking the plan is your best solution. If you can’t, admit your mistake and make
a better plan for the next iteration. (See “Iteration Planning” in Chapter 8 for more about changing your
plans when something goes wrong.)

Like overtime, reworking the plan shouldn’t happen too often. I look for underlying systemic problems
if it happens more than once per quarter.

Results

When you have a team that works well together, you cooperate to meet your goals and solve your
problems. You collectively decide priorities and collaboratively allocate tasks. The atmosphere in the
team room is busy but relaxed, and you genuinely enjoy working with your teammates.

When you establish trust within your organization and with your stakeholders, you demonstrate the
value of the project and your team. You acknowledge mistakes, challenges, and problems, and you find
solutions instead of trying to hide them until they blow up. You seek solutions instead of blame.

Contraindications

Compensation practices can make teamwork difficult. An XP team produces results through group
effort. If your organization relies on individual task assignment for personnel evaluation, teamwork
may suffer. Similarly, ranking on a curve—in which at least one team member must be marked
unsatisfactory, regardless of performance—has a destructive effect on team cohesion. These practices
can transform your team into a group of competing individuals, which will hurt your ability to practice
XP.

Even without harmful compensation practices, team members may not trust each other. This is a
problem, but itisn’t necessarily debilitating. Team members that must deliver software weekly in pursuit
of a common goal will learn to trust each other... or implode from the pressure. Unfortunately, I can’t
tell you which outcome will happen to your team.

If the team doesn’t sit together, it’s much harder for good teamwork to occur, and if
team members also don’t trust each other, it’s unlikely that trust will ever develop. Be | Ally

careful of using XP if the team doesn’t sit together. Sit Together (p. 112)

Alternatives

Trust is vital for agile projects—perhaps for any project. I'm not sure it’s possible to work on an agile
project without it.

Further Reading

The Wisdom of Teams [Katzenbach & Smith], which organizational development consultant Diana Larsen
describes as “the best book about teams extant.”

“Developmental Sequences in Small Groups” [Tuckman] introduces the team development sequence
of “Forming, Storming, Norming, and Performing.”

110 CHAPTER 6: COLLABORATING

The Trusted Advisor [Maister et al] is a good resource for generating organizational trust.

The Power of a Positive No [Ury] describes how to say no respectfully when it’s necessary while preserving
important relationships. Diana Larsen desribes this ability as “probably more important than any
amount of negotiating skill in building trust.”

TRUST 111

Sit Together Audience

Whole Team, Coaches

We communicate rapidly and accurately.

If you've tried to conduct a team meeting via speakerphone, you

know how much of a difference face-to-face conversations make. Compared to an in-person discussion,
teleconferences are slow and stutter-filled, with uncomfortable gaps in the conversation and people
talking over each other.

What you may not have realized is how much this affects your work.

Imagine you're a programmer on a nonagile team and you need to clarify something in your
requirements document in order to finish an algorithm. You fire off an email to your domain expert,
Mary, then take a break to stretch your legs and get some coffee.

When you get back, Mary still hasn’t responded, so you check out a few technical blogs you've been
meaning to read. Half an hour later, your inbox chimes. Mary has responded.

Uh-oh... it looks like Mary misunderstood your message and answered the wrong question. You send
another query, but you really can’t afford to wait any longer. You take your best guess at the answer—
after all, you’ve been working at this company for a long time, and you know most of the answers—
and get back to work.

A day later, after exchanging a few more emails, you’ve hashed out the correct answer with Mary. It
wasn’t exactly what you thought, but you were pretty close. You go back and fix your code. While
you're in there, you realize there’s an edge case nobody’s handled yet.

You could bug Mary for the answer, but this is a very obscure case. It’s probably never going to happen
in the field. Besides, Mary’s very busy, and you promised you’d have this feature done yesterday. (In
fact, you were done yesterday, except for all these nitpicky little details.) You put in the most likely
answer and move on.

Accommodating Poor Communication

As the distance between people grows, the effectiveness of their communication decreases.
Misunderstandings occur and delays creep in. People start guessing to avoid the hassle of waiting for
answers. Mistakes appear.

To combat this problem, most development methods attempt to reduce the need for direct
communication. It’s a sensible response. If questions lead to delays and errors, reduce the need to ask
questions!

The primary tools teams use to reduce reliance on direct communication are development phases and
work-in-progress documents. For example, in the requirements phase, business analysts talk to
customers and then produce a requirements document. Later, if a programmer has a question, he
doesn’t need to talk to an expert; he can simply look up the answer in the document.

It’s a sensible idea, but it has flaws. The authors of the documents need to anticipate which questions

will come up and write clearly enough to avoid misinterpretations. This is hard to do well. In practice,
it’s impossible to anticipate all possible questions. Also, adding up-front documentation phases stretches
out the development process.

112 CHAPTER 6: COLLABORATING

A Better Way

In XP, the whole team—including experts in business, design, programming, and testing—sits together
in a open workspace. When you have a question, you need only turn your head and ask. You get an
instant response, and if something isn’t clear, you can discuss it at the whiteboard.

Consider the previous story from this new perspective. You're a programmer and you need some
information from your domain expert, Mary, in order to code an algorithm.

This time, rather than sending an email, you turn your head. “Mary, can you clarity something for me?”
Mary says, “Sure. What do you need?”

You explain the problem, and Mary gives her answer. “No, no,” you reply. “That’s a different problem.
Here, let me show you on the whiteboard.”

A few minutes later, you’ve hashed out the issue and you’re back to coding again. Whoops! There’s an
edge case you hadn’t considered. “Wait a second, Mary,” you say. “There’s something we didn’t
consider. What about....”

After some more discussion, the answer is clear. You're a little surprised: Mary’s answer was completely
different than you expected. It’s good that you talked it over. Now, back to work! The code is due today,
and it took 20 whole minutes to figure out this nitpicky little issue.

Exploiting Great Communication

Sitting together eliminates the waste caused by waiting for an answer, which dramatically improves
productivity. In a field study of six colocated teams, [Teasley et al.] found that sitting together doubled
productivity and cut time to market to almost one-third of the company baseline.

Those results are worth repeating: the teams delivered software in one-third their normal time. After the
pilot study, 11 more teams achieved the same result. This success led the company to invest heavily in
open workspaces, by building a new facility in the U.S. that supports 112 such teams and making plans
for similar sites in Europe.

How can sitting together yield such impressive results? Communication.

Although programming is the emblematic activity of software development, communication is the real
key to software success. As [Teasley et al.] report, “Past studies have indicated that less than 30 percent
of a programmer’s time is spent on traditional programming tasks and less than 20 percent of the time
is spent on coding. The rest of the time is spent on meetings, problem resolution with the team, resolving
issues with customers, product testing, etc.”

My experience is that programmers on XP teams spend a far greater percentage of their time
programming. I attribute that to the increased communication effectiveness of sitting together. Rather
than sitting in hour-long meetings, conversations last only as long as needed and involve only the people
necessary.

Teams that sit together not only get rapid answers to their questions, they experience what [Cockburn]
calls osmotic communication. Have you ever been talking with someone in a crowded room and then heard
your name out of the blue? Even though you were focusing on your conversation, your brain was

paying attention to all the other conversations in the room. When it heard your name, it replayed the

SIT TOGETHER 113

sounds into your conscious mind. You not only hear your name, you hear a bit of the conversation
around it, too, in a phenomenon known as the cocktail party effect.”

Imagine a team that sits together. Team members are concentrating on their work and talking quietly
with their partners. Then somebody mentions something about managing database connections, and
another programmer perks up. “Oh, Tom and I refactored the database connection pool last week. You
don’t need to manage the connections manually anymore.” When team members are comfortable
speaking up like this, it happens often (at least once per day) and saves time and money every time.

There’s another hidden benefit to sitting together: it helps

teams jell and breaks down us-versus-them attitudes When I see an adversarial
between groups. In contrast, distance seems to encourage relationship between separate
adversarial relationships and blaming “those people.” groups in a team, I suggest that

Whenever I see this (for example, between programmers and
testers), I suggest that they sit together. This helps the groups
interact socially and gain respect for each other
professionally.

they sit together.

Secrets of Sitting Together

To get the most out of sitting together, be sure you have a complete team (see “The XP Team” in
Chapter 3). It’s important that people be physically present to answer questions. If someone must be
absent often—product managers tend to fall into this category—make sure that someone else on the
team can answer the same questions. A domain expert is often a good backup for a traveling product
manager.

Similarly, sit close enough to each other that you can have a quick discussion without getting up from
your desk or shouting. This will also help encourage osmotic communication, which relies on team
members overhearing conversations.

Available instant help doesn’t do any good if you don’t ask
for it. Many organizations discourage interruptions, but I Ask for help when you’re stuck.
encourage them on my XP teams. There’s no sense in banging
your head against a wall when the person with the answer is
right across the room. To support this attitude, many teams have a rule: “We must always help when
asked.”

Interruptions disrupt flow and ruin productivity, so this rule may sound foolish. It takes a programmer
15 minutes or more to get back into flow after an interruption [DeMarco & Lister 1999].

Fortunately, with pair programming, flow works differently. The delay doesn’t seem

to occur. One programmer answers the question and the other keeps thinking about | Ally

the problem at hand. When the interruption is over, a quick “Where were we?” gets | pajr programming (p. 71)
work moving again.

Pairing helps in a few other ways, too. Osmotic communication depends on a buzz of conversation in
the room. If people aren’t pairing, there’s less talking. Pairing also makes it easier for programmers to
ignore irrelevant background conversations.

* The best layman’s description of the cocktail party effect I've seen is on Wikipedia: http://en.wikipedia.org/wiki/Cocktail_party_effect.

114 CHAPTER 6: COLLABORATING

http://en.wikipedia.org/wiki/Cocktail_party_effect

Making Room

Sitting together is one of those things that’s easy to say and hard to do. It’s not that the act itself is
difficult—the real problem is finding space.

NOTE

Start arranging for a shared workspace now.

A team that sits in adjacent cubicles can convert them into an adequate shared workspace, but even
with cubicles, it takes time and money to hire people to rearrange the walls.

When I say “time,” I mean weeks or even months.

In a smaller company, you might be able to take matters (and screwdrivers) into your own hands. In a
larger company, you could run afoul of Facilities if you do that. That may be a worthwhile cost, but talk
to your project manager first. She should have some insight on the best way to get a shared workspace.

While you're waiting for construction on your dream workspace to finish, a big conference room is a
good alternative. One team I worked with set up shop in the company boardroom for six weeks while
they waited for their workspace to be ready.

Designing Your Workspace

Your team will produce a buzz of conversation in its workspace. Because they’ll be working together,
this buzz won'’t be too distracting for team members. For people outside the team, however, it can be
very distracting. Make sure there’s good sound insulation between your team and the rest of the
organization.

Within the workspace, group people according to the conversations they most need to overhear.
Programmers should all sit next to each other because they collaborate moment-to-moment. Testers
should be nearby so programmers can overhear them talk about issues. Domain experts and interaction
designers don’t need to be quite so close, but should be close enough to answer questions without
shouting.

The product manager and project manager are most likely to have conversations that would distract the
team. They should sit close enough to be part of the buzz but not so close that their conversations are
distracting.

An open workspace doesn’t leave much room for privacy,
and pair programming stations aren’t very personal. Thisloss ~ Leave room for individuality in
of individuality can make people uncomfortable. Be sure that your workspace.

everyone has a space they can call their own. You also need
an additional enclosed room with a door, or cubes away from
the open workspace, so people can have privacy for personal phone calls and individual meetings.

As you design your workspace, be sure to include plenty of whiteboards and wall space

for an informative workspace. Try to have at least 24 linear feet of whiteboard space, | Ally

magnetic if possible. You can never have too many whiteboards. Informative Workspace (p.

83)

Some teams include a projector in their workspace. This is a great idea, as it allows the

team to collaborate on a problem without moving to a conference room.

SIT TOGETHER 115

L1 I ©»°I1 ©°TJ @1

S

)

i
4L i
o

Figure 6-2. A sample workspace

Finally, the center of an XP workspace is typically a set of pairing stations. I like to have the stations
facing each other so people can see each other easily. A hollow triangle, square, or oval setup works
well. Provide a few more pairing stations than there are programming pairs. This allows testers and
customers to pair as well (either with each other or with programmers), and it provides programmers
with space to work solo when they need to.

NOTE
For information on building a good pairing station, see “Pair Programming” in
Chapter 6.

Sample Workspaces

The sample workspace in Figure 6-2 was designed for a team of 13. They had six programmers, six
pairing stations, and a series of cubbies for personal effects. Nonprogrammers worked close to the pairing
stations so they could be part of the conversation even when they weren’t pairing. Programmers’ cubbies
were at the far end because they typically sat at the pairing stations. For privacy, people adjourned to
the far end of the workspace or went to one of the small conference rooms down the hall.

In addition to the pairing stations, everybody had a laptop for personal work and email. The pairing
stations all used a group login so any team member could work at them.

Before creating this workspace, the team had been sitting in cubicles in the same part of the office. To
create the workspace, they reconfigured the inner walls.

This workspace was good, but not perfect. It didn’t have nearly enough wall space for charts and
whiteboards and nonprogrammers didn’t have enough desk space. On the plus side, there was plenty
of room to accommodate people at the pairing stations, which meant that customers paired with
programmers frequently, and there were also extra cubbies for bringing people into the team
temporarily.

116 CHAPTER 6: COLLABORATING

oot

Whiteboard

A

i —]

Figure 6-3. A small workspace

A small workspace

The small workspace in Figure 6-3 was created by an up-and-coming startup when they moved into
new offices. They were still pretty small so they couldn’t create a fancy workspace. They had a team of
seven: six programmers and a product manager.

This team arranged its five pairing stations along a long wall. They had a table on the side for meetings,
and charts and whiteboards on dividers surrounded them. The programmers had a pod of half-cubicles
on the other side for personal effects, and there were small conference rooms close by for privacy.

This was a great workspace with one serious problem: the product manager wasn’t in earshot and didn’t
participate in team discussion. The team couldn’t get ready answers to its questions and often struggled
with requirements.

Adopting an Open Workspace

Some team members may resist moving to an open workspace. Common concerns include loss of
individuality and privacy, implied reduction in status from losing a private office, and managers not
recognizing individual contributions. Team members may also mention worries about distractions and
noise, but I find that this is usually a cover for one of the other concerns.

As with pair programming, most people come to enjoy the benetfits that sitting together provides, but
it can take a few months. In [Teasley et al.]’s study, team members initially preferred cubicles to the
open workspace, but by the end of the study, they preferred the open workspace.

However, forcing people to sit together in hopes that they’ll
come to like it is a bad idea. When I've forced team members Don’t force people to sit together
to do so, they’ve invariably found a way to leave the team, against their will.

even if it meant quitting the company. Instead, talk with the

team about their concerns and the trade-offs of moving to an

SIT TOGETHER 117

open workspace. Discuss how team members will be evaluated in the new system and what provisions
for privacy you can make. You may be able to address some concerns by providing a shared workspace
in addition to existing offices and cubicles.

If a large portion of the team is against the open workspace, sitting together is probably not a good
choice. If you only have one or two adamant objectors and the rest of the team wants to sit together,
you may wish to sit together anyway and allow the objectors to move to a different team.

Questions
How can I concentrate with all that background noise?

A team that’s working together in a shared workspace produces a busy hum of activity. This can be
distracting at first, but most people get used to it in time.

For programmers, pair programming is an excellent way to focus your attention away
from the background noise. You won't notice it if you're pairing. Nonprogrammers can | Ally

work in pairs, too.

Pair Programming (p. 71)

If you work alone and find the background noise distracting, put on headphones, wear
earplugs, or sit further away from the team for a time. You’ll miss out on osmotic communication, but
at least you'll be able to concentrate.

Sometimes, the team gets a little noisy and rambunctious. It’s

OK to ask for quiet—the sound in the team room should be Pairing makes background
a hum, not a full-throated chorus. Some teams have a bell for conversations fade away.
team members to ring when they want the team to be more

quiet.

When one person is interrupted, the whole team stops what they ‘re doing to listen. What can we do to prevent people
from being distracted so easily?

Especially in the beginning of the project, it’s possible that the whole team really does need to hear these
conversations. As time goes on, team members will learn which conversations they can comfortably
ignore.

If this is a continuing problem, try stepping a little further away from the pairing stations when a
conversation lasts more than a few minutes. Interested team members can join the conversation, and
the rest of the team can continue working.

What if I need privacy for phone calls?

Some people, particularly customers and project managers, need to take a lot of calls as they work.
Either situate them further away from the rest of the team or arrange for an enclosed office with a door.
Keep the door open as often as possible to allow information to flow smoothly.

Results

When your team sits together, communication is much more effective. You stop guessing at answers
and ask more questions. You overhear other people’s conversations and contribute answers you may
not expect. Team members spontaneously form cross-functional groups to solve problems. There’s a
sense of camaraderie and mutual respect.

118 CHAPTER 6: COLLABORATING

Contraindications

The hardest part about sitting together is finding room for the open workspace. Cubicles, even adjacent
cubicles, won’t provide the benefits that an open workspace does. Start working on this problem now
as it can take months to resolve.

Don’t force the team to sit together against their will. Adamant objectors will find a way to leave the
team, and possibly the company.

Be careful about sitting together if programmers don’t pair program. Solitary programming requires a
quiet workspace. Pair programming, on the other hand, enables programmers to ignore the noise.

Alternatives

Sitting together is one of the most powerful practices in XP. It’s important for communication and team
dynamics. Sitting apart tends to fray fragile relationships, particularly between different functional
groups, and puts your team at a disadvantage. If your team is in a single location, you're better off
figuring out how to sit together.

If you have a multisite team, consider turning each site into
its own team. For example, if programmers are in one site Multisite teams are difficult and
and customers are in another, the programmers may engage expensive.

some business analysts to act as proxy customers. In this

scenario, the customers and development team should still

work together, face-to-face, for several weeks at the beginning of each release.

If you have multiple teams of programmers, consider separating their responsibilities so that each works
on entirely different codebases. [Evans] has an excellent discussion of the options for doing so.

You can practice XP with a single multisite team, but it requires a lot of travel. [Yap] has a good
experience report describing how her team made this work 24 hours a day across 3 time zones. She
focused on maximizing communication by regularly flying team members to a single location for several
weeks at a time. They also conducted daily phone calls between locations.

If your whole team cannot sit together and you still wish to
practice XP, talk to your mentor (see “Find a Mentor” in If you can't sit together, talk to
Chapter 2) about your options and hire experienced XP your mentor about your options.
coaches for each site.

Further Reading

Agile Software Development [Cockburn] has an excellent chapter on communication. Chapter 3,
“Communicating, Cooperating Teams,” discusses information radiators, communication quality, and
many other concepts related to sitting together.

If you can’t sit together, “Follow the Sun: Distributed Extreme Programming Development” [Yap] is an
interesting experience report describing a single XP team divided into three locations, each eight hours
apart.

Similarly, Domain-Driven Design [Evans] has an excellent discussion of coordinating multiple
development teams in Chapter 14, “Maintaining Model Integrity.” While the book’s focus is object-
oriented domain models, this chapter is applicable to many design paradigms.

SIT TOGETHER 119

Real Customer Involvement Audience

Coaches, Customers

We understand the goals and frustrations of our customers and end-
users.

An XP team I worked with included a chemist whose previous job involved the software that the team
was working to replace. She was an invaluable resource, full of insight about what did and didn’t work
with the old product. We were lucky to have her as one of our on-site customers—thanks to her, we
created a more valuable product.

In an XP team, on-site customers are responsible for choosing and prioritizing features. The value of the
project is in their hands. This is a big responsibility—as an on-site customer, how do you know which
features to choose?

Some of that knowledge comes from your expertise in the problem domain and with previous versions
of the software. You can’t think of everything, though. Your daily involvement with the project,
although crucial, includes the risk of tunnel vision—you can get so caught up in the daily details of the
project that you lose track of your real customers’ interests.

To widen your perspective, you need to involve real customers. The best approach to doing so depends
on who you’re building your software for.

Personal Development

In personal development, the development team is its own customer. They're developing the software for
their own use. As a result, there’s no need to involve external customers—the team is the real customer.

NOTE

I include this type of development primarily for completeness. Most personal
development is for small, throwaway applications that don’t involve a full-blown XP
team.

In-House Custom Development

In-house custom development occurs when your organization asks your team to build something for the
organization’s own use. This is classic IT development. It may include writing software to streamline
operations, automation for the company’s factories, or producing reports for accounting.

In this environment, the team has multiple customers to serve: the executive sponsor who pays for the
software and the end-users who use the software. Their goals may not be in alignment. In the worst
case, you may have a committee of sponsors and multiple user groups to satisty.

Despite this challenge, in-house custom development makes it easy to involve real customers because
they’re easily accessible. The best approach is to bring your customers onto the team—to turn your
real customers into on-site customers.

To do so, recruit your executive sponsor or one of his trusted lieutenants to be your product manager.
He will make decisions about priorities, reflecting the desire of the executive sponsor to create software
that provides value to the organization.

120 CHAPTER 6: COLLABORATING

Also recruit some end-users of the software to act as domain experts. As with the chemist mentioned
in the introduction, they will provide valuable information about how real people use the software.

They will reflect the end-users’ desire to use software that makes their jobs better.

NOTE
If your software has multiple sponsors or user groups, use the ideas in “Vertical-
Market Software,” later in this chapter.

To avoid tunnel vision, the product manager and other on-site customers should solicit
feedback from their colleagues by demonstrating some of the builds created for the
iteration demo and discussing their plans for the future.

Outsourced Custom Development

Ally

Iteration Demo (p. 138)

Outsourced custom development is similar to in-house development, but you may not have the connections
that an in-house team does. As a result, you may not be able to recruit real customers to act as the

team’s on-site customers.

Still, you should try. One way to recruit real customers is to move your team to your customer’s offices

rather than asking them to join you at yours.

If you can’t bring real customers onto the team, make an extra effort to involve them.
Meet in person with your real customers for the first week or two of the project so you
can discuss the project vision and initial release plan. If you're located near each other,
meet again for each iteration demo, retrospective, and planning session.

If you're far enough apart that regular visits aren’t feasible, stay in touch via instant

Allies

Vision (p.201)
Release Planning (p. 206)

messaging and phone conferences. Try to meet face-to-face at least once per month to discuss plans. If
you are so far apart that monthly meetings aren’t feasible, meet at least once per release.

Vertical-Market Software

Unlike custom development, vertical-market software is developed for many organizations. Like custom
development, however, it’s built for a particular industry and it’s often customized for each customer.

Because vertical-market software has multiple customers,

each with customized needs, you have to be careful about Be careful about giving real
giving real customers too much control over the direction of customers too much control over
the product. You could end up making a product that, while vertical-market software.

fitting your on-site customer’s needs perfectly, alienates your

remaining customers.

Instead, your organization should appoint a product manager who understands the
needs of your real customers impeccably. His job—and it’s a tough one—is to take into
account all your real customers’ needs and combine them into a single, compelling
vision.

Rather than involving real customers as members of the team, create opportunities to

Allies

Vision (p.201)
Iteration Demo (p. 138)

solicit their feedback. Some companies create a customer review board filled with their most important
customers. They share their release plans with these customers and—on a rotating basis—provide

installable iteration demo releases for customers to try.

REAL CUSTOMER INVOLVEMENT 121

Depending on your relationship with your customers, you may be able to ask your customers to donate
real end-users to join the team as on-site domain experts. Alternatively, as with the chemist in the
introduction, you may wish to hire previous end-users to be your domain experts.

In addition to the close relationship with your customer review board, you may also solicit feedback
through trade shows and other traditional sources.

Horizontal-Market Software

Horizontal-market software is the visible tip of the software development iceberg: software that’s intended
to be used across a wide range of industries. The rows of shrinkwrapped software boxes at your local
electronics store are a good example of horizontal-market software. So are many web sites.

As with vertical-market software, it’s probably better to set limits on the control that real customers
have over the direction of horizontal-market software. Horizontal-market software needs to appeal to
a wide audience, and real customers aren’t likely to have that perspective. Again, an in-house product
manager who creates a compelling vision based on all customers” needs is a better choice.

As a horizontal-market developer, your organization may not have the close ties with customers that
vertical-market developers do. Thus, a customer review board may not be a good option for you. Instead,
find other ways to involve customers: focus groups, user experience testing, community previews, beta
releases, and so forth.

NOTE

Web-based software, with its invisible deployment, offers a powerful option for
involving real customers. You can roll out minimalist features, mark them “beta,” and
watch customer reactions. Another option, reportedly used by Amazon, is to deploy
changes to a small percentage of visitors and observe how their usage patterns change.

Questions
Who should we use as on-site customers when we can't include real customers on the team?

You organization should supply a product manager and domain experts. See “The XP Team” in
Chapter 3.

We're creating a web site for our marketing department. What kind of development is that?

At first glance, this may seem like custom development, but because the actual audience for the web
site is the outside world, it’s closer to vertical-market or horizontal-market development. The product
manager should come from the marketing department, if possible, but you should also solicit the input
of people who will be visiting the site.

Results

When you include real customers, you improve your knowledge about how they use the software in
practice. You have a better understanding of their goals and frustrations, and you use that knowledge
to revise what you produce. You increase your chances of delivering a truly useful and thus successtul
product.

122 CHAPTER 6: COLLABORATING

Contraindications

One danger of involving real customers is that they won’t necessarily reflect the needs
of all your customers. Be careful that they don’t steer you toward creating software Ally

that’s only useful for them. Your project should remain based on a compelling vision. | yision (p.201)
Customer desires inform the vision and may even change it, but ultimately the product

manager holds final responsibility for product direction.

End-users often think in terms of improving their existing way of working, rather than in terms of
finding completely new ways of working. This is another reason why end-users should be involved but
not in control. If innovation is important to your project, give innovative thinkers—such as a visionary
product manager or interaction designer—a prominent role on your team.

Alternatives

Real customer involvement is helpful but not crucial. Sometimes the best software comes from people
who have a strong vision and pursue it vigorously. The resulting software tends to be either completely
new or a strong rethinking of existing products.

In the absence of real customer involvement, be sure to have a visionary product manager. It’s best if
this person understands the domain well, but you can also hire domain experts to join the team.

Still, feedback from real customers is always informative, even if you choose to ignore it. It’s especially
useful when you’ve deployed software to them; their reaction to working software gives you valuable
information about how likely you are to reach the greatest levels of success.

REAL CUSTOMER INVOLVEMENT 123

Ubiquitous Language Audience

We understand each other. Programmers

Try describing the business logic in your current system to a

nonprogrammer domain expert. Are you able to explain how the system works in terms the domain
expert understands? Can you avoid programmer jargon, such as the names of design patterns or coding
styles? Is your domain expert able to identify potential problems in your business logic?

If not, you need a ubiquitous language.

The Domain Expertise Conundrum

One of the challenges of professional software development is that programmers aren’t necessarily
experts in the areas for which they write software. For example, I've helped write software that controls
factory robots, directs complex financial transactions, and analyzes data from scientific instruments.
When I started on these projects, I knew nothing about those things.

It’s a conundrum. The people who are experts in the problem domain—the domain experts—are rarely
qualified to write software. The people who are qualified to write software—the programmers—don’t
always understand the problem domain.

NOTE

Hiring programmers with expertise in a particular domain will reduce this problem,
but it won'’t eliminate it. In addition, given the choice between a great programmer
with no domain experience and a poor programmer with lots of domain experience, I
would choose the better programmer.

Overcoming this challenge is, fundamentally, an issue of communication. Domain experts communicate
their expertise to programmers, who in turn encode that knowledge in software. The challenge is
communicating that information clearly and accurately.

Two Languages

Imagine for a moment that you're driving to a job interview. You forgot your map, so you're getting
directions from a friend on your cell phone (hands free, of course!).

“I just passed a gas station on the right,” you say. “That was a major intersection.”

“Wait...” says your friend, as he puzzles over a map. “What street are you on? Which direction
are you going?”

“I can’t tell!” you yelp, slamming on the brakes as a bright yellow sports car cuts you off. “Uh...
sorry. It’s a pretty twisty road—does that help? Wait... I just passed Hanover.”

“Hanover Street or Hanover Loop?” asks your friend.

The problem in this scenario is that you and your friend are speaking two different languages. You're
talking about what you see on the road and your friend is talking about what he sees on his map. You

124 CHAPTER 6: COLLABORATING

need to translate between the two, and that adds delay and error. You’ll get to your job interview
eventually, but you'll probably miss a few turns along the way and you might not get there on time.

A similar problem occurs between programmers and domain experts. Programmers program in the
language of technology: classes, methods, algorithms, and databases. Domain experts talk in the
language of their domain: financial models, chip fabrication plants, and the like.

You could try to translate between the two languages, but it will add delays and errors. You’d produce
some software eventually, but you’d probably introduce some bugs along the way. Instead, pick just
one language for the whole team to use—a ubiquitous language.

How to Speak the Same Language

Programmers should speak the language of their domain experts, not the other way around.

Imagine you're creating a piece of software for typesetting musical scores. The publishing house you’'re
working for provides an XML description of the music, and you need to render it properly. This is a
difficult task, filled with seemingly minor stylistic choices that are vitally important to your customers.

In this situation, you could focus on XML elements, parents, children, and attributes. You could talk
about device contexts, bitmaps, and glyphs. If you did, your conversation might sound something like
this:

Programmer: “We were wondering how we should render this clef element. For example, if
the element’s first child is G and the second child is 2, but the octave-change element is -1,
which glyph should we use? Is it a treble clef?”

Domain expert: (Thinking, “I have no idea what these guys are talking about. But if I admit it, they’ll
respond with something even more confusing. 1'd better fake it.”) “Um... sure, G, that’s treble. Good
work.”

Instead, focus on domain terms rather than technical terms.

Programmer: “We were wondering how we should print this G clef. It’s on the second line of
the staff but one octave lower. Is that a treble clef?”

Domain expert: (Thinking, “An easy one. Good.”) “That’s often used for tenor parts in choral
music. It’s a treble clef, yes, but because it’s an octave lower we use two symbols rather than
one. Here, I'll show you an example.”

The domain expert’s answer is different in the second example because he understands the question.
The conversation in the first example would have led to a bug.

Ubiquitous Language in Code

As a programmer, you might have trouble speaking the language of your domain experts. When you’re
working on a tough problem, it’s difficult to make the mental translation from the language of code to
the language of the domain.

A better approach is to design your code to use the language of the domain. You can name your classes,
methods, and variables anything. Why not use the terms that your domain experts use?

UBIQUITOUS LANGUAGE 125

| |1Parent
Entity L = Attribute Score L ~ Measure

child*

]-"*
Staff

Note

XML-centric design (simplified) Domain-centric design (simplified)

Figure 6-4. XML and domain-centric design

This is more than learning the domain to write the software;
this is reflecting in code how the users of the software think Reflect how the users think and
and speak about their work. By encoding your understanding speak about their work.

of the domain, you refine your knowledge and—due to
code’s uncompromising need for precision—expose gaps in
your knowledge that would otherwise result in bugs.

To continue the example, a program to typeset a musical score based on XML input could be designed
around XML concepts. A better approach, though, would be to design it around domain concepts, as
shown in Figure 6-4.

One powerful way to design your application to speak the language of the domain is to create a domain
model. This process deserves its own book; [Evans] and [Wirfs-Brock & McKean] are two worthy
examples.

NOTE

The process of creating a domain-centric design is domain-driven design or domain
modelling. Some people consider it synonymous with object-oriented design. In this
case, domain-centric design is sometimes called “rue” object-oriented design in order
to contrast it with object-oriented designs that don’t emphasize domain concepts.

Refining the Ubiquitous Language

The ubiquitous language informs programmers, but the programmers’ need for rigorous formalization
also informs the rest of the team. I often see situations in which programmers ask a question—inspired
by a coding problem—that in turn causes domain experts to question some of their assumptions.

Your ubiquitous language, therefore, is a living language. It’s only as good as its ability to reflect reality.
As you learn new things, improve the language as well. There are three caveats about doing this,
however.

First, ensure that the whole team—especially the domain experts—understands and agrees with the
changes you're proposing. This will probably require a conversation to resolve any conflicts. Embrace
that!

126 CHAPTER 6: COLLABORATING

Second, check that the changes clarify your understanding of the business requirements. It may seem
clearer to make a change, but the language must still reflect what the users need to accomplish with
the software. Keep out programmer jargon—you can help domain experts refine their understanding
of complicated corner cases, but don’t replace their language with your own.

Third, update the design of the software with the change. The model and the ubiquitous language must
always stay in sync. A change to the language implies a change to the model. Yes, this does mean that
you should refactor the code when your understanding of the domain changes. Delaying these changes
introduces an insidious type of technical debt: a mismatch between your design and reality, which will
lead to ugly kludges and bugs.

Questions

Should we avoid the use of technical terms altogether? Our business domain doesn't mention anything about GUI
widgets or a database.

It’s OK to use technical language in areas that are unrelated to the domain. For example, it’s probably
best to call a database connection a “connection” and a button a “button.” However, you should typically
encapsulate these technical details behind a domain-centric face.

Results

When you share a common language between customers and programmers, you reduce the risk of
miscommunication. When you use this common language within the design and implementation of
the software, you produce code that’s easier to understand and moditfy.

When the whole team uses the ubiquitous language while sitting together, everyone can overhear
domain discussions, especially during pairing sessions. Team members overhear domain and
implementation discussions and join in the conversation to resolve questions and expose hidden
assumptions.

Contraindications

If you don’t have any domain experts sitting with your team, you may have trouble

understanding the domain experts’ thought process deeply enough to have a Allies

ubiquitous language. Attempting a ubiquitous language is even more important in this | gea| customer Involvement
situation, though, as it will allow you to communicate more effectively with domain (p. 120)

experts when you do have the opportunity to speak with them. Sit Together (p. 112)

On the other hand, some problems are so technical they don’t involve non-programmer

domain knowledge at all. Compilers and web servers are examples of this category. If you're building
this sort of software, the language of technology is the language of the domain. You’ll still have a
ubiquitous language, but that language will be technical.

Some teams have no experience creating domain-centric designs. If this is true of your team, proceed
with caution. Domain-centric designs require a shift in thinking that can be difficult. See “Further
Reading” at the end of this section to get started, and consider hiring a programmer with experience in
this area to help you learn.

UBIQUITOUS LANGUAGE 127

Alternatives

It’s always a good idea to speak the language of your domain experts. However, avoiding a domain-
centric design can lead to simpler designs in small, technology-centric projects involving trivial business
rules. Be careful, though: this design approach leads to defects and complex, unmaintainable designs in
larger projects. See [Fowler 2002a] for further discussion of this trade-off.

NOTE

Even small XP projects typically involve four programmers working for several
months, so most XP projects are big enough to need a domain-centric design. Talk to
your mentor (see “Find a Mentor” in Chapter 2) before deciding to use another
approach.

Further Reading

Domain-Driven Design [Evans] is an excellent and thorough discussion of how to create a domain-centric
design.

Object Design [Wirfs-Brock & McKean] discusses roles, responsibilities, and behaviors in the context of
modelling applications.

Patterns of Enterprise Application Architecture [Fowler 2002a] has a good discussion of the trade-offs
between domain models and other architectural approaches.

128 CHAPTER 6: COLLABORATING

Stand-Up Meetings Audience

We know what our teammates are doing. Whole Team

I have a special antipathy for status meetings. You know—a

manager reads a list of tasks and asks about each one in turn. They seem to go on forever, although my
part in them is typically only five minutes. I learn something new in perhaps 10 of the other minutes.
The remaining 45 minutes are pure waste.

There’s a good reason that organizations hold status meetings: people need to know

what’s going on. XP projects have a more effective mechanism: informative workspaces | Ally

and the daily stand-up meeting. Informative Workspace (p.

83)

How to Hold a Daily Stand-Up Meeting

A stand-up meeting is very simple. At a pre-set time every day, the whole team stands in a circle. One at
a time, each person briefly describes new information that the team should know.

NOTE

1 prefer to stand in an empty area of the team room rather than around a table—it feels
a little more friendly that way. If you have room near the planning boards, that’s a
particularly good spot for the stand-up.

Some teams use a formal variant of the stand-up called the Daily Scrum [Schwaber & Beedle]. It comes
from an agile process also called Scrum. In the Daily Scrum, participants specifically answer three
questions:

1. What did I do yesterday?

2. What will I do today?

3. What problems are preventing me from making progress?

Iprefer a more informal approach, but both styles are valid. Try both and use whichever approach works
best for you.

One problem with stand-up meetings is that they interrupt
the day. This is a particular problem for morning stand-ups;
because team members know the meeting will interrupt their start your day.
work, they sometimes wait for the stand-up to end before
starting to work. If people arrive at different times, early
arrivals sometimes just waste time until the stand-up starts. You can reduce this problem by moving
the stand-up to later in the day, such as just before lunch.

Don’t wait for the stand-up to

Be Brief

The purpose of a stand-up meeting is to give everybody a rough idea of where the team is. It’s not to
give a complete inventory of everything happening in the project. The primary virtue of the stand-up
meeting is brevity. That’s why we stand: our tired feet remind us to keep the meeting short.

STAND-UP MEETINGS 129

Each person usually only needs to say a few sentences about
her status. Thirty seconds per person is usually enough. More Thirty seconds per person is
detailed discussions should take place in smaller meetings usually enough.

with only the people involved. Here are some examples:

A programmer:

Yesterday, Bob and I refactored the database pooling logic. Check it out—we made some nice
simplifications to the way you connect to the database. I'm open today, and I'd enjoy doing
something GUI-related.

The product manager:

As you know, I've been away at the trade show for the last week, getting some great feedback
on the user interface and where we're going with the product. We need to make a few changes
to the release plan; I'll be working with the other customers today to work out the details. I
can give a lunch-and-learn in a day or two if you want to know more. [Several team members
express enthusiasm.]

A domain expert:

After you guys [nodding to the programmers] asked us about that financial rule yesterday, I
talked it over with Chris and there was more to it than we originally thought. I have some
updates to our customer tests that I'd like to go over with somebody.

A programmer responds:
I've been working in that area; I can pair with you any time today.

If the stand-up lasts longer than 10 minutes—15 at the very most—it’s taking too long. If people typically
speak for 30 seconds each, then a team of 10 should be able to have a 5-minute stand-up meeting on
most days.

Brevity is a tough art to master. To practice, try writing your statement on an index card in advance,
then read from the card during the stand-up.

Another approach is to timebox the stand-up. Set a timer for 5 or 10 minutes, depending on the size of
the team. When the timer goes off, the meeting is over, even if there are some people who haven’t
spoken yet. At first, you'll find that the meeting is cut off prematurely, but the feedback should help
people learn to speak more briefly after a week or two.

If you're tactful, you can also interrupt extended reports or conversations and ask that people hold the
discussion in a smaller group after the stand-up.

Questions
Can people outside the team attend the stand-up?

Yes; I ask that outsiders stand outside the circle and not speak unless they have something brief and
relevant to add.

130 CHAPTER 6: COLLABORATING

Some people, due to their position or personality, disrupt the smooth flow of the stand-
up. If they’re not members of the team, I prefer to use other mechanisms to keep them | Allies

up-to-date, such as the informative workspace, reports, and iteration demos. The Informative Workspace (p.
product manager or project manager are probably the best people to manage this 83)
relationship. Reporting (p. 144)

Participants are being too brief. What should we do?

Iteration Demo (p. 138)

If they rush to finish quickly, participants might devolve into
no-content statements like “same as yesterday” or “nothing Combine brevity with an
new.” If this happens a lot, gently remind participants to go
into a bit more detail.

unhurried calm.

People are always late to the stand-up. Can we treat them to parking-
lot therapy?

I've been tempted to introduce Mr. Laggard to Mr. Baseball Bat myself. Keep in mind that this is illegal
in most countries and tough on team cohesiveness.

Instead, the most effective way I know of combatting this problem is to start and end meetings on time
even if people are absent.

We don't sit together. Can we still have stand-up meetings?

Yes; you can either convene in a common location, or you can use speakerphones and a teleconference.
If you can possibly stand together, do—stand-up meetings by teleconference are a lot less effective. I
find that people tend to ramble.

You can improve a teleconference stand-up by investing in good phone equipment, reminding people
to stand up even when they’re off-site, and being diligent about taking conversations offline.

Results

When you conduct daily stand-up meetings, the whole team is aware of issues and challenges that other
team members face, and it takes action to remove them. Everyone knows the project’s current status
and what the other team members are working on.

Contraindications

Don’t let the daily stand-up stifle communication. Some
teams find themselves waiting for the stand-up rather than Communicate issues as soon as
going over and talking to someone when they need to. If you they come up.

find this happening, eliminating the stand-up for a little while
may actually improve communication.

Beware of leaders who dominate the stand-up. As reviewer Jonathan Clarke so aptly put it, the ideal
leader is “a charismatic but impatient colleague who will hurry and curtail speakers.” The stand-up is a
meeting of equals—no one person should dominate.

STAND-UP MEETINGS 131

Alternatives

If you can’t conduct a daily stand-up meeting, you need to stay in touch in some other way. If your
team sits together, the resulting natural communication may actually be sufficient. Watch for unpleasant
surprises that more communication can prevent.

Another alternative is the traditional weekly status meeting. I find these more effective when team
members submit their statuses to a single moderator who can present collated information in 10 or 15
minutes. However, I've also seen this approach fall apart quickly.

Further Reading

“It’s Not Just Standing Up: Patterns for Daily Stand-up Meetings” [Yip], at http.//www.martinfowler.com/
articles/itsNotJustStandingUp.html, is a nice collection of patterns for stand-up meetings.

“Stand-Up Meeting Antipatterns” [Miller], at http://fishbowl.pastiche.org/2003/11/19/
standup_meeting_antipatterns, takes the opposite approach and describes common antipatterns and their
solutions.

132 CHAPTER 6: COLLABORATING

http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://fishbowl.pastiche.org/2003/11/19/standup_meeting_antipatterns
http://fishbowl.pastiche.org/2003/11/19/standup_meeting_antipatterns

Coding Standards Audience

Programmers

We embrace a joint aesthetic.

Back in the days of the telegraph, as the story goes, telegraph

operators could recognize each other on the basis of how they keyed their dots and dashes. Each operator
had a unique style, or fist, that experts could recognize easily. Programmers have style, too. We each
have our own way of producing code. We refine our style over years until we think it’s the most
readable, the most compact, or the most informative it can be.

Individual style is great when you're working alone. In team software development, however, the goal
is to create a collective work that is greater than any individual could create on his own. Arguing about
whose style is best gets in the way; it’s easier to work together in a single style.

XP suggests creating a coding standard: guidelines to which all developers agree to adhere when
programming.

Beyond Formatting

I once led a team of four programmers who had widely ditfering approaches to formatting. When we

discussed coding standards, I catalogued three different approaches to braces and tabs. Each approach
had its own vigorous defender. I didn’t want us to get bogged down in arguments, so I said that people
could use whatever brace style they wanted.

The result was predictable: we had three different approaches to formatting in our code. I even saw two
different ways of indenting within a single, short method.

You know what surprised me? It wasn’t that bad. Sure, the layout was ugly, and I would have preferred
consistency, but the code was still readable. In the end, the rest of our coding standard mattered much
more than formatting.

We all agreed that clearly named variables and short methods were important. We agreed to use
assertions to make our code fail fast, not to optimize without measurements, and never to pass null
references between objects. We agreed on how we should and shouldn’t handle exceptions, what to do
about debugging code, and when and where to log events. These standards helped us far more than a
consistent formatting style would have because each one had a concrete benefit. Perhaps that’s why we
were able to agree on them when we couldn’t agree on formatting styles.

Don’t get me wrong: a consistent formatting standard is good. If you can agree on one, do! However,
when you're putting together your coding standard, don’t fall into the trap of arguing about formatting.
There are more important issues.

How to Create a Coding Standard

Creating a coding standard is an exercise in building
consensus. It may be one of the first things that programmers The most important thing you
do as a team. Over time, you’ll amend and improve the will learn is how to disagree.
standards. The most important thing you may learn from

creating the coding standard is how to disagree

constructively.

CODING STANDARDS 133

To that end, I recommend applying two guidelines:

1. Create the minimal set of standards you can live with.

2. Focus on consistency and consensus over perfection.

Hold your first discussion of coding standards during the first iteration. The project will typically start
out with some discussion of stories and vision, then some release planning and iteration planning (see
“Go!” in Chapter 4). After iteration planning, customers and testers will continue working on the release

plan. That’s a great time for programmers to talk about coding standards.

The best way to start your coding standard is often to select an industry-standard style guide for your
language. This will take care of formatting questions and allow you to focus on design-related questions.

If you’'re not sure what it should encompass, starting points include:

e Development practices (start with the practices in Chapter 9 and Chapter 7)
e Tools, keybindings, and IDE

¢ File and directory layout

e Build conventions

¢ Error handling and assertions

e Approach to events and logging

¢ Design conventions (such as how to deal with null references)

Limit your initial discussion to just one hour. Write down
what you agree on. If you disagree about something, move
on. You can come back to it later.

Focus on agreements.

NOTE

1 like to write each item that we agree upon on a flip chart so we can tape it to a wall
in our open workspace. If you can find a neutral observer to take notes (such as your

project manager), so much the better.

If you have trouble, take a step back and talk about your goals for the software and the results you
would like to see. Agree about these issues first, even if you disagree about specific approaches. You will
have many opportunities to improve your standard. Make the most important decisions now, and move

on.

Depending on your team, this may be a contentious discussion. If that’s the case, consider bringing in
a professional facilitator to redirect the discussion to your team goals when the things get heated. Your
HR department might be able to provide someone, or you can use an outside consultant.

Plan to hold another one-hour coding standard meeting a few days later, and another one a few weeks
after that. The long break will allow you to learn to work together and to try out your ideas in practice.
If there’s still disagreement, experiment with one approach or the other, then revisit the issue.

Hold these initial meetings as often as they’re useful. After that, change the standard
at any time. Just stand up, announce your intention to the team, and, if everybody
agrees, change the flip chart. Retrospectives are another good time to discuss changes
to the coding standard.

134 CHAPTER 6: COLLABORATING

Ally

Retrospectives (p.91)

NOTE

The thumb vote is a quick way to check for consensus. Someone asks a question and
everyone holds their thumb up (meaning “I agree”), sideways (“I'll go along with the
group”), or down (“I disagree and want to explain why”).

Over time, some of the items in the standard will become second nature. Cross them off to make room
for more important issues. As you work together, you will recognize ways in which new standards can
help. Add these new standards to the list in the same way as before, as long as everybody agrees to try
them.

No matter what standards you choose, someone will be probably unhappy with some guideline even
with a consensus-based approach. You'll probably find some practices jarring and grating at first. Over
time, you’ll get used to it. Coding standards are, in many ways, an aesthetic choice: it doesn’t really
matter what the standard is, as long as it’s consistent and thoughtful. One of the marks of a professional
is the willingness to put aside personal aesthetics for a team aesthetic.

Dealing with Disagreement

It’s possible to pressure a dissenter into accepting a coding standard she doesn’t agree with, but it’s
probably not a good idea. Doing so is a good way to create resentment and discord.

Instead, remember that few decisions are irrevocable in agile development; mistakes are opportunities
to learn and improve. Ward Cunninghman put it well:"

It was a turning point in my programming career when I realized that I didn’t have to win
every argument. I'd be talking about code with someone, and I'd say, “I think the best way to
do itis A.” And they’d say, “I think the best way to do it is B.” I'd say, “Well no, it’s really A.”
And they’d say, “Well, we want to do B.” It was a turning point for me when I could say, “Fine.
Do B. It’s not going to hurt us that much if I'm wrong. It’s not going to hurt us that much if
I'm right and you do B, because, we can correct mistakes. So [let’s] find out if it’s a mistake.”

Go ahead and leave the contested item out of the standard. Maybe lack of standardization in that area
will lead to a mess. If it does, the team will learn from the experience and you can change the standard.

Adhering to the Standard

People make mistakes. Pair programming helps developers catch mistakes and maintain
self-discipline. It provides a way to discuss formatting and coding questions not Allies

addressed by the guidelines. It’s an also an excellent way to improve the standard; it’s | pajr programming (p. 71)
much easier to suggest an improvement when you can talk it over with someone first. | coljective Code Ownership
(p.191)

Collective code ownership also helps people adhere to the standard, because many

different people will edit the same piece of code. Code tends to settle on the standard
as a result.

There are less effective approaches. Some teams use automated tools to check their source code for
adherence to the coding standard. Others program their version control system to reformat files upon

* hittp://en.wikiquote.org/wiki/Ward_Cunningham

CODING STANDARDS 135

http://en.wikiquote.org/wiki/Ward_Cunningham

check-in. I don’t like either approach; to me, the latter says that you don’t trust people to make good
decisions on their own, and the former tends to raise false warnings.

I've also heard of teams who elevate their coding standards
to requirements and punish infractions. The idea of enforcing Assume your colleagues are

a coding standard leaves a bad taste in my mouth. Your professional and well-meaning.
teammates are presumably professionals who pride
themselves on doing good work. No coding standard can
substitute for professional judgment. Try not to get too upset when you see people deviating from the
standard.

Assume your colleagues are professional and well-meaning. If someone is not following the standard,
assume that there’s a good reason—even if all the evidence is to the contrary. Your challenge is to find
that reason and address it. This approach shows respect for others and will improve others’ respect for
you.

NOTE

Before you do anything, ask yourself whether the coding standard was really a team
effort. If everybody agreed to every item, they should have no problem following the
standard.

Start by talking with your colleague alone to see if there’s a disagreement. Take an attitude of
collaborative problem solving: instead of saying, “Why aren’t you propagating exceptions like we
agreed?” ask, “What do you think about the ‘propagate exceptions’ standard we agreed on? Should we
keep it?” Give objections full consideration, raise them with the rest of the team, and consider changing
the standard.

If the objector agrees with the standard but isn’t applying it, it’s possible that the standard isn’t
appropriate in every situation. Ask about specific cases you've noticed. Again, be collaborative, not
confrontational. Say something like, “I think we're on the same page regarding the importance of
propagating exceptions. In that case, can you explain what’s happening in this method? I don't
understand why this code doesn’t propagate the exception here.”

During this discussion, you may learn that the objector doesn’t understand the standard. By this time,
you should be in a good situation to discuss the standard and what it means. If he’s a junior programmer
and needs more help, coordinate with the rest of the team to make sure he gets plenty of pairing time
with experienced developers.

There is another possibility for teams new to XP. Switching to XP is a big change and can make people
feel like they’ve lost control; sometimes they react by picking small things that they refuse to change.
An obstinate desire to stick with a particular coding standard, regardless of the wishes of the rest of the
team, might be a symptom of this reaction.

In this case, your best solution may be to let the infractions slide for several months. Over time, as team
members become more comfortable with the changes in their environment, they’ll relax and be more
willing to compromise.

136 CHAPTER 6: COLLABORATING

Questions
We have legacy code that doesn't fit our standard. Should we fix it?

Leave old code alone if it works and you don’t need to read or touch it otherwise. It’s expensive and
risky to spend a lot of time fixing legacy code upfront. Instead, as you modify and refactor those sections
of code, bring them up to the new coding standards. When you fix a bug, add a feature, or improve
abstraction and factoring, use the new standards on everything you modity.

You can also use an automated tool to perform large-scale formatting changes. Don’t spend too much
time on this, but if you can do it easily, you might as well. I prefer to integrate immediately before and
after such an operation because reformatting changes tend to disguise other changes. Be aware that
making such large-scale changes can render your version control system’s change history much more
difficult to read.

Results

When you agree on coding standards and conventions, you improve the maintainability and readability
of your code. You can take up different tasks in ditferent subsystems with greater ease. Pair programming
moves much more smoothly, and you look for ways to improve the expressability and robustness of
your code as you write it.

Contraindications

Don'’t allow coding standards to become a divisive issue for your team.

Alternatives

Some teams work together so well that they don’t need a written coding standard; their coding standard
is implicit.

If you have a new team, however, create a written coding standard even if everybody gets along well.
New teams often go through an initial honeymoon period in which team members are reluctant to

disagree with each other. Eventually, disagreements will come out. It's much better to create a standard
before problems escalate.

CODING STANDARDS 137

Iteration Demo Audience

Product Manager, Whole Team

We keep it real.

An XP team produces working software every week, starting
with the very first week.

Sound impossible? It’s not. It’s merely difficult. It takes a lot of discipline to keep that pace. Programmers
need discipline to keep the code clean so they can continue to make progress. Customers need discipline
to fully understand and communicate one set of features before starting another. Testers need discipline
to work on software that changes daily.

The rewards for this hard work are significantly reduced risk, a lot of energy and fun, and the satisfaction
of doing great work and seeing progress. The biggest challenge is keeping your momentum.

The iteration demo is a powerful way to do so. First, it’s a concrete demonstration of the team’s progress.
The team is proud to show off its work, and stakeholders are happy to see progress.

Second, the demos help the team be honest about its
progress. Iteration demos are open to all stakeholders, and Iteration demos help keep the
some companies even invite external customers to attend. It’s team honest.

harder to succumb to the temptation to push an iteration
deadline “just one day” when stakeholders expect a demo.

Finally, the demo is an opportunity to solicit regular feedback from the customers. Nothing speaks more
clearly to stakeholders than working, usable software. Demonstrating your project makes it and your
progress immediately visible and concrete. It gives stakeholders an opportunity to understand what
they're getting and to change direction if they need to.

Regular delivery is central to successful XP. The iteration demo is a concrete indication of that progress.
When schedule problems occur (they always do), an iteration demo makes it harder to avoid reality—
and facing reality gives you the opportunity to manage it.

How to Conduct an Iteration Demo

Anybody on the team can conduct the iteration demo, but I recommend that the product manager do
so. He has the best understanding of the stakeholders’ point of view and speaks their language. His
leadership also emphasizes the role of the product manager in steering the product.

Invite anybody who's interested. The whole team, key stakeholders, and the executive sponsor should
attend as often as possible. Include real customers when appropriate. Other teams working nearby and
people who are curious about the XP process are welcome as well. If you can’t get everyone in a room,
use a teleconference and desktop-sharing software.

NOTE

If you have a particularly large audience, you may need to set some ground rules about
questions and interruptions to prevent the demo from taking too long. I tell attendees
that the product manager will be available for further discussion after the meeting.

138 CHAPTER 6: COLLABORATING

The entire demo should take about 10 minutes. (After all, it’s only been a week since the last one.) If
it runs long, I look for ways to bring it to a close before it reaches half an hour.

Because this meeting is so short, I highly recommend starting on time, even if some people aren’t
present. This will send the message that you value attendees’ time as well as the available time to work
on the project. Both the product manager and the demo should be available for further discussion and
exploration after the meeting.

Once everyone is together, briefly describe the features
scheduled for the iteration and their value to the project. If Calmly describe problems and
the plan changed during the middle of the iteration, explain how you handled them.

what happened. Don’t sugarcoat or gloss over problems. Full

disclosure will raise your credibility. By neither simplifying

nor exaggerating problems, you demonstrate your team’s ability to deal with problems professionally.
Here is an example:

Last week, we scheduled five stories in the area of online bookings. These stories revolved
around adding polish to our flight reservation system. That system was already functionally
complete, but we want it to be more impressive and usable for our customers.

We finished all the stories we had planned, but we had to change the itinerary story, as I'll
show you in a moment. It turned out to have some performance problems, so we had to find
another solution. It’s not exactly what we had planned, but we're happy with the result and
we don’t intend to spend any more time on it.

After your introduction, go through the list of stories one at a time. Read the story, add

any necessary explanation, and demonstrate that the story is finished. Use customer Ally

tests to demonstrate stories without a user interface. Customer Tests (p. 278)

Demonstrator: Our first story was to automatically fill in the user’s billing
information if they put in their frequent flyer number. First, I'll bring up the front page... click
“reservations”... type in our test frequent flyer number... and there, you can see that the billing
information fills in automatically.

Audience member: What if they fill in the billing information first?
Demonstrator: In that case, the billing information is left unchanged. [Demonstrates.]

If you come to a story that didn’t work out as planned, provide a straightforward explanation. Don’t be
defensive; simply explain what happened.

Demonstrator: Our next story involves the itinerary. As I mentioned, we had to change this
story. You may remember that our original story was to show flight segments on an animated
globe. The programmers had some concerns about performance, so they did a test and it turned
out that rendering the globe would double our datacenter costs.

Audience member: Why is it so expensive?

Programmer: Many animations are unique, and we have to render them on the server. As a
result, the server has to render a custom animated .GIF for each person. Because it’s 3-D, it
takes a lot of CPU, which means we would need more powerful hardware in the datacenter.
We might be able to cache some of the .GIFs, but we’d need to take a close look at usage stats
before we could say whether that would work.

Demonstrator: We didn’t want to spend time on performance optimizations, and the increased
hardware cost wasn’t worth it. None of our competitors have a map of flight segments at all,

ITERATION DEMO 139

so we decided a simpler 2-D map would be good enough. We had already used up some of our
time for this story, though, and we didn’t have enough time left to animate the map. After
seeing the result [demonstrates] we decided it was good enough for now. We intend to move
on to new features rather than spending more time on the itinerary.

Once the demo is complete, tell stakeholders how they can run the software themselves. Make an
installer available on the network, or provide a server for stakeholder use, or something similar. You
can also cut short side discussions by directing people to the sample installation.

Two Key Questions
At the end of the demo, ask your executive sponsor two key questions:”

1. Is our work to date satisfactory?

2. May we continue?

These questions help keep the project on track and remind your sponsor to speak up if she’s unhappy.
You should be communicating well enough with your sponsor that her answers are never a surprise.

NOTE

Your sponsor isn’t likely to attend all the demos, although that’s preferable. You can
increase the likelihood of her attending by keeping the demo short. If she doesn’t come
at all, the product manager should conduct a private demo—and ask the two key
questions—at least once per month.

Sometimes, she may answer “no” to the first question, or she may answer “yes” but be clearly reluctant.
These are early indicators that something is going wrong. After the demo, talk with your sponsor and
find out what she’s unhappy about. Take immediate action to correct the problem.

NOTE

Sometimes your sponsor will be unhappy because she wants the team to go faster. See
“Estimating” in Chapter 8 for a discussion of how to improve your velocity. “Risk
Management,” also in Chapter 8, has a discussion of what to do when you can’t meet
your sponsor’s expectations.

In rare cases, the executive sponsor will answer “no” to the second question. You should never hear
this answer—it indicates a serious breakdown in communication.

If you do hear this answer, you're done. Meet with your sponsor after the demo and confirm that she
wants the team to stop. Let her know that you're prepared to ship what was demonstrated today and
you’d like one final week to wrap things up. Try to find out what went wrong, and include your sponsor
in the project retrospective, if possible.

* Thanks to Joshua Kerievsky of Industrial Logic for introducing me to this technique.

140 CHAPTER 6: COLLABORATING

Weekly Deployment Is Essential

The iteration demo isn’t just a dog and pony show; it’s a way to prove that you're making real progress
every iteration. Always provide an actual release that stakeholders can try for themselves after the demo.
Even if they are not interested in trying a demo release, create it anyway; with a good automated build,
it takes only a moment. If you can’t create a release, your project may be in trouble.

One of the biggest schedule risks in software is the hidden time between “we’re done” and “we’ve
shipped.” Teams often have to spend several extra weeks (or months) after the end of the planned
schedule to make their product buildable and shippable. Releasing a usable demo every iteration
mitigates this risk.

If you're starting a new codebase, be sure that the code is deployable every iteration. This will help stave
off technical debt. The weekly rhythm of iteration demos and stakeholder releases is an excellent way
to keep the code releasable. Chapter 7 describes how to do so.

If you're working on a legacy codebase, weekly deployment may not yet be possible. Your build system
may be incomplete, you may not have an adequate demo environment, or the installer may not yet be
written. If so, this indicates a large chunk of technical debt. See “Applying XP to an Existing Project” in
Chapter 4 for suggestions on how to address this problem while continuing to satisfy stakeholders.

Questions
What do we do if the stakeholders keep interrupting and asking questions during the demo?

A certain number of questions is normal, particularly when you start giving demos. Over time, as
stakeholders adapt to the weekly rhythm, you should see fewer interruptions.

For the first month or so, you can establish goodwill by ignoring the half-hour guideline and answering
every question. After the first month, the product manager can politely ask stakeholders to direct further
questions to him after the meeting.

What do we do if stakeholders keep nitpicking our choices?

Nitpicking is also normal, particularly in the beginning. It’s usually a sign of genuine interest in the
product, so don’t take it too personally. Write the ideas down on cards, as with any story, and have the
product manager prioritize them after the meeting. Resist the temptation to address, prioritize, or begin
designing solutions in the meeting. Not only does this extend the meeting, it reduces the discipline of
the normal planning practices.

If nitpicking continues after the first month, it may be a sign that the on-site customers

are missing something. Take a closer look at the complaints to see if there’s a deeper Ally

problem. Root-cause analysis may help. Root-Cause Analysis (p. 88)

The stakeholders are excited by what they see and want to add a bunch of features. They 're good
ideas, but we don’t have time for them—we need to move on to another part of the product. What should we do?

Don't say “no” during the iteration demo. Don’t say “yes,” either. Simply thank the stakeholders for
their suggestions, and write them down as stories. After the demo is over, the product manager should
take a close look at the suggestions and their value relative to the overall vision. If they don't fit into
the schedule, she should make that decision and communicate it to the stakeholders.

ITERATION DEMO 141

We completely blew this iteration and don’t have anything to show. What do we do?

It will be hard, but you need to be honest about what happened. Take responsibility as a team (rather
than blaming individuals or functional groups), try not to be defensive, and let stakeholders know what
you're doing to prevent the same thing from happening again. Here is an example:

This week, I'm afraid we have nothing to show. We planned to work on flight tracking this
week, but we underestimated the difficulty of interfacing with the backend airline systems.
We discovered that we need our own test environment for the systems because our suppliers’
systems are unreliable.

We identified this problem early in the iteration, and we thought we could work around it.
We did, but not in time to finish any stories. We should have replanned the iteration and
created smaller stories that we could finish as soon as we encountered this issue. Now we know,
and we’ll be more proactive about replanning next time.

The problems with interfacing with the airlines’ systems will affect many of our stories. To
prevent further surprises, we’ve revised our estimates. This pushes our best-case release date
out by three weeks, which uses up most of our risk buffer. We’'re still on target for our scheduled
release, but we’ll have to cut features if we encounter any other major problems between now
and then.

I'm sorry for the bad news and welcome any suggestions. We can take a few questions now,
and I'll be available for further discussion after we finish planning the upcoming iteration.

Results

When you conduct a weekly iteration demo and demo release, you instill trust in stakeholders, and the
team is confident in its ability to deliver. You share problems forthrightly, which allows you to manage
them and helps prevent them from ballooning out of control.

Contraindications

Because the iteration demo is highly visible, you may be tempted to fake a demo. You might show a
user interface that doesn’t have any logic behind it, or purposetfully avoid showing an action that has a
significant defect.

Instead, be clear about the software’s limitations and what
you intend to do about them. Faking progress leads Inability to demo is a clear
stakeholders to believe that you have greater capacity than danger sign.

you actually do. They’ll expect you to continue at the inflated

rate, and you’ll steadily fall behind. For more on the dangers

of overpromoting, see “Organizational Strategy #6: Be Honest,” earlier in this chapter.

If you can’t demonstrate progress weekly, it’s a clear sign that your project is in trouble. Slow down for
a week, and figure out what’s going wrong. Ask your mentor for help. The problem may be as simple
as trying to do too much work.

142 CHAPTER 6: COLLABORATING

Some teams hold a demo every week but can’t actually deploy software for stakeholder
use every week. This is a common indicator of technical debt. It reflects a deficiency in
the team’s build process and its ability to get stories “done done.”

Alternatives

Allies

Ten-Minute Build (p. 177)
“Done Done” (p. 156)

The iteration demo is a clear indication of your ability to deliver: either you have the ability to
demonstrate new features every week, or you don’t. Your executive sponsor either gives you permission
to continue, or he doesn’t. I'm not aware of any alternatives that provide such valuable feedback.

Some teams conduct real releases at the end of each iteration rather than a demo. This is a great addition

to the practice, if you can do it.

ITERATION DEMO 143

Reporting Audience

We inspire trust in the team’s decisions. Coaches, Upper Management

You're part of a whole team. Everybody sits together. An
informative workspace clearly tracks your progress. All the information you need is at your fingertips.
Why do you need reports?

Actually, you don’t need them. The people who aren’t on your team, particularly upper management
and stakeholders, do. They have a big investment in you and the project, and they want to know how
well it’s working.

Types of Reports

Progress reports are exactly that: reports on the progress of the team, such as an iteration demo or a release
plan. Although progress reports seem to exist so that stakeholders can monitor and correct the team’s
direction, that’s not their purpose. Instead, good progress reports allow stakeholders to trust the team’s
decisions.

Management reports are for upper management. They provide high-level information that allows
management to analyze trends and set goals. It’s not information you can pick up by casually lingering
in an open workspace for an hour or two every month; it includes trends in throughput or defect rates.

What kinds of reports do you need to build trust and satisty strategic needs? It depends on the
stakeholders. Some stakeholders are hands-off and just want to see progress toward a goal; others want
to know more details so they can build broader knowledge. You may need to produce a variety of reports
for ditferent audiences.

Be careful, though—reports take time and energy away from development, so don’t produce every
report you can imagine. Provide just enough reporting to satisfy key stakeholders. The project manager
and product manager should combine their knowledge of stakeholders to gauge the proper level of
reporting. The best way to know, of course, is to ask.

The range of reports you can produce is as broad as your imagination. The following sections list some
that I've found particularly useful or, contrarily, common and unhelpful. The first set of reports are a
normal byproduct of the whole team’s work. The rest are usually the project manager’s responsibility,
though they depend on some input from the rest of the team.

Progress Reports to Provide

XP teams have a pronounced advantage when it comes to reporting progress: they make observable
progress every week, which removes the need for guesswork. Furthermore, XP teams create several
progress reports as a normal byproduct of their work.

Useful and free? There’s little not to like about these four reports.

144 CHAPTER 6: COLLABORATING

Vision statement

Your on-site customers should create and update a vision statement that describes what

you're doing, why you’re doing it, and how you’ll know if you're successful. This Ally

provides important context for other reports. Post it prominently and reference it in Vision (p. 201)
conversation.

Weekly demo

Nothing is as powerful at demonstrating progress as working software. Invite

stakeholders to the weekly iteration demo. They probably won’t attend every week, Ally

but the mere fact that you hold weekly demos will build confidence in your work. Iteration Demo (p. 138)

Release and iteration plans

The release and iteration planning boards already posted in your workspace provide great detail about
progress. (See Figure 8-4, a release planning board, and Figure 8-9, an iteration planning board.) Invite
stakeholders to look at them any time they want detailed status information.

For off-site stakeholders, consider using a webcam or regularly posted digital photos to broadcast the
plans.

Burn-up chart

A burn-up chart is an excellent way to get a bird’s-eye view of the project (see Figure 8-7). It shows
progress and predicts a completion date. Most teams produce a burn-up chart when they update their
release plan.

Progress Reports to Consider

If your stakeholders want more information, consider
providing one or more of the following reports. Avoid Only produce reports that are
providing them by default; each takes time that you could strictly necessary.

spend on development instead.

Roadmap

Some stakeholders may want more detail than the vision statement provides, but not the overwhelming
detail of the release and iteration plans. For these stakeholders, consider maintaining a document or
slide deck that summarizes planned releases and the significant features in each one.

Status email

A weekly status email can supplement the iteration demo. I like to include a list of the stories completed
for each iteration and their value. I also include our current range of probable completion scope and
dates, and I explain any changes from the previous report.

If you added or removed stories from the schedule, explain that here, too. An honest appraisal of your
work is part of an accurate status report.

REPORTING 145

Management Reports to Consider

Whereas progress reports demonstrate that the team will meet its goals, management reports
demonstrate that the team is working well. As with progress reports, report only what you must.

Productivity

Software development productivity is notoriously difficult to measure [Fowler 2003]. It sounds simple—
productivity is the amount of production over time—but in software, we don’t have an objective way
to measure production. What's the size of a feature?

NOTE
We can measure the software’s size by counting function points or lines of code, but
that’s akin to measuring cell phone features in cubic inches.

Instead of trying to measure features, measure the team’s impact on the business. Create an objective
measure of value, such as return on investment. You can base it on revenue, cost savings, or some other
valuable result.

Coming up with an objective measure of value is the most difficult part of reporting productivity. I can’t
provide specific guidance because the metric depends on what’s important to your business. Your
product manager and upper management should be able to help create this measure.

Once you have a measure, track its value every iteration. Until the team releases software to production,
this number will trend downward, below zero. The team will be incurring costs but not generating value.
After a release, the trend should turn upward.

The primary complaint I hear about this metric is that it’s partially outside of the team’s control. What
if the sales staff doesn’t sell the software? What if the business users aren’t interested in the software?

These are valid concerns, but they ignore the reality of organizational success. For your team to achieve
an organizational success, not just a technical success, your software must provide business value. This
productivity metric reflects that fact.

To score well on this metric, you should have a team that includes on-site customers.

These customers will figure out what customers or users want and show key Ally

stakeholders how to sell or use the software. By doing so, they will help turn technically | peal customer Involvement
excellent software into truly valuable software. (p. 120)

Throughput

Throughput is the number of features the team can develop in a particular amount of time. To avoid
difficult questions such as “What'’s a feature?,” measure the amount of time between the moment the
team agrees to develop some idea and the moment that idea is in production and available for general
use. The less time, the better.

Defects

Anyone can produce software quickly if it doesn’t have to work. Consider counterbalancing your
throughput report with defect counts.

146 CHAPTER 6: COLLABORATING

¥ —>/3-:30 378
1002830 -3§ ¢35
800> 1300 ¢

FYSE—> SIS /5
350

Figure 6-5. Time tracking example

One of the biggest challenges of counting defects is figuring out the difference between a defect and
intentional behavior. Decide who will arbitrate these discussions early so you can avoid arguments.

When you count the defects is just as important as zow you count them. On an XP team,

finding and fixing defects is a normal part of the process. To avoid overcounting defects, | Ally
wait until you have marked a story as “done done” and completed its iteration before | «pgne pone” (p. 156)

marking something as a defect.

Time usage

If the project is under time pressure—and projects usually are—stakeholders may want to know that
the team is using its time wisely. Often, when the team mentions its velocity, stakeholders question it.
“Why does it take 6 programmers a week to finish 12 days of work? Shouldn’t they finish 30 days of
work in that time?”

Although I prefer that stakeholders trust the team to schedule its tasks wisely, that trust takes time to
develop. In the beginning, I often produce a report that shows how the programmers are using their
time. This report requires that programmers track their time in detail, so I stop producing it as soon as
possible, typically after a month or two. To keep the burden low, I ask programmers to write their times
on the back of each iteration task card (see Figure 6-5) and hand them in to the project manager for
collating into these categories:

Unaccounted and nonproject work (time spent on other projects, administration, company-wide
meetings, etc.)

Out of office (vacation and sick days)
Improving skills (training, research time, etc.)
Planning (time spent in planning activities, including the retrospective and iteration demo)

Developing (time spent testing, coding, refactoring, and designing)

Graph the total time in each category in an area chart with “Developing” on the bottom and
“Unaccounted” on top. I mark the bottom three categories green; the fourth yellow; and the top white
(see Figure 6-6).

REPORTING 147

Time usage

D Unaccounted
[out of office
D Improving skills
. Planning

. Developing

Hours

2 3 % 5

Iteration

Figure 6-6. Time usage report

Once the report is in place, stakeholders may still wonder why velocity doesn’t match effort. Explain
that velocity includes a scaling factor to account for estimate error and overhead. See “Explaining
Estimates” in Chapter 8 for more ideas.

Reports to Avoid

Some reports, although common, don’t provide useful information. “Estimating” in Chapter 8 provides
suggestions for explaining your estimates and velocity.

NOTE
If a stakeholder asks you for one of these reports, don’t flatly refuse. Instead, find out
why she wants the report and see if there’s a better way to meet her need.

Source lines of code (SLOC) and function points

Source lines of code (SLOC) and its language-independent cousin, function points, are common approaches
to measuring software size. Unfortunately, they’re also used for measuring productivity. As with a fancy
cell phone, however, software’s size does not necessarily correlate to features or value.

Well-designed code is modular; it supports multiple features without duplication. The better the design,
the less duplication, and thus the fewer lines of code. This sort of careful design takes time and effort,
but results in fewer bugs and software that’s easier to change.

Reporting SLOC (or function points) encourages your team
to produce more lines of code per day. Rather than increasing Reporting SLOC encourages
its productivity, your team is most likely to spend less time defects and high costs.
on design quality. SLOC production will go up, true, but
design quality will go down. Research shows that the more
lines of code a program has, the more defects it is likely to have and the more it will cost to develop.

148 CHAPTER 6: COLLABORATING

All in all, SLOC and function points are flawed productivity metrics. They can be useful for end-of-
project comparisons to industry averages, but avoid using it in a weekly report.

Number of stories

Some people think they can use the number of stories delivered each iteration as a measure of
productivity. Don’t do that. Stories have nothing to do with productivity.

A normal-sized team will typically work on 4 to 10 stories every iteration. To achieve this goal, they
combine and split stories as needed. A team doing this job well will deliver a consistent number of stories
each iteration regardless of its productivity.

Velocity

If a team estimates its stories in advance, an improvement in

velocity may result from an improvement in productivity. Never compare velocity across
Unfortunately, there’s no way to differentiate between teams.

productivity changes and inconsistent estimates. Because
you can artificially improve velocity by incurring technical
debt, I strongly recommend against using velocity as a measure of productivity.

Above all, never compare velocity across teams. Different teams will have different ways of estimating.
Their velocities have nothing in common.

NOTE

Measuring the variationin velocity may produce interesting information for discussion
in the retrospective (see “Retrospectives” in Chapter 5), but the information is too
ambiguous to report outside the team.

Code quality

There’s no substitute for developer expertise in the area of code quality. The available code quality
metrics, such as cyclomatic code complexity, all require expert interpretation. There is no single set of
metrics that clearly shows design or code quality. The metrics merely recommend areas that deserve
further investigation.

Avoid reporting code quality metrics. They are a useful tool for developers but they’re too ambiguous
for reporting to stakeholders.

Questions

What do you mean, “Progress reports are for stakeholder trust”? Shouldn't we also report when we need help with
something?

Absolutely. However, progress reports are for status; you shouldn’t assume that anyone actually reads
them. Sometimes their existence is enough to satisfy stakeholders that you're on track.

When you need a stakeholder’s help, whether to learn more

about the business priorities or to overcome a hurdle, ask for Talk to stakeholders directly
it. Don’t rely on stakeholders to notice something in the when you need their help.
reports.

REPORTING 149

What if some of our stakeholders want to micromanage us?

The product manager and project manager should manage the stakeholders. They should give them
what they need while shielding the team from their micromanagement. They need to be tactful, yet firm.

Isn’t this just busywork? We have an informative workspace, stand-up meetings, and iteration demos. Stakeholders
and managers can visit any time. Why do they need reports?

Ifyour stakeholders attend your meetings and get sufficient value out of them, you probably don’t need
reports. In that case, the project manager should talk to stakeholders about cancelling unnecessary
reports.

Until you reach that point, don’t assume that writing solid code, delivering working software, and
meeting real business needs will make everyone realize your value as a team. Sometimes you just need
to staple a cover page to your TPS report in order to fit in.

What if programmers don’t want to track their time for the time usage report? They say they have better things to do.

They're right—tracking time is a wasteful activity. However, the team has to balance the need to satisfy
stakeholders with the need to use its time wisely.

You can make this decision easier to swallow in two ways. First, don’t mandate the report unilaterally.
Instead, discuss the reasons to produce reports as a team and come to a joint conclusion about which
reports to provide. Keep in mind that some team members have greater practical insight about the
consequences of reporting, or of not reporting, than others.

Second, do everything you can to keep the time-tracking burden low. When it’s time to produce the
report, the project manager should collate the data rather than asking programmers to do so.

Why should the project manager do all the grunt work for the reports? Shouldn't he delegate that work?

The project manager’s job is to help the team work smoothly. He should never add to the workload of
the people on the critical path. Instead, he should remove roadblocks from the path, and reports are
one of those roadblocks.

Our organization measures employees individually based on the contents of certain reports. What do we do?

XP teams produce work as a team, not individually, so this is a difficult situation. First, the project
manager should review the evaluation policy with HR and upper management. If there is any flexibility
in the process, take advantage of it.

If there’s no flexibility, work within the review process as much as you can. Highlight teamwork
wherever possible. When the team implements a particularly valuable feature, be sure to mention
everyone’s contribution.

Results

Appropriate reporting will help stakeholders trust that your team is doing good work. Over time, the
need for reports will decrease, and you will be able to report less information less frequently.

Contraindications

Time spent on reports is time not spent developing. Technically speaking, reports are wasteful because
they don’t contribute to development progress. As a result, I prefer to produce as few reports as possible.

150 CHAPTER 6: COLLABORATING

Computerized planning may seem to make reporting easier.

Unfortunately, it tends to do so at the expense of Don't let reporting compromise
collaborative, dynamic planning (see “The Planning Game” the benefits of card-based
in Chapter 8), and an informative workspace. That’s planning.

backward: it optimizes a wasteful activity at the expense of
productive activities.

To avoid creating reports manually, I use the iteration demo, planning boards, and the burn-up chart
as my only reports whenever I can. They are a normal part of the process and require no extra effort to
produce. I use webcams or a digital camera to broadcast the boards if necessary.

I prefer not to report time usage, as it’s time-consuming to produce and programmers don’t like to collect
the data, but I usually have to. While I only report it when I sense concern from important stakeholders
about the team’s velocity, that concern is typical for companies new to XP. Reevaluate this need about
once a month, and stop producing the time usage report as soon as you can.

Alternatives

Frequent communication can sometimes take the place of formal reporting. If this option is available to
you, it’s a better option.

Further Reading

Why Does Software Cost So Much? [DeMarco 1995] contains an essay titled “Mad About Measurement”
that discusses challenges of measuring performance, and includes a brief investigation into the results
of reporting cyclomatic code complexity.

“Cannot Measure Productivity” [Fowler 2003] discusses the challenges of measuring software
development productivity in more detail than I do here. http.//www.martinfowler.com/bliki/
CannotMeasureProductivity. html.

REPORTING 151

http://www.martinfowler.com/bliki/CannotMeasureProductivity.html
http://www.martinfowler.com/bliki/CannotMeasureProductivity.html

CHAPTER 7

Releasing

What is the value of code? Agile developers value “working software over comprehensive
documentation.”” Does that mean a requirements document has no value? Does it mean unfinished
code has no value?

Like a rock at the top of a hill, code has potential—potential energy for the rock and potential value for
the code. It takes a push to realize that potential. The rock has to be pushed onto a slope in order to
gain kinetic energy; the software has to be pushed into production in order to gain value.

It’s easy to tell how much you need to push a rock. Big rock? Big push. Little rock? Little push. Software
isn’t so simple—it often looks ready to ship long before it’s actually done. It’s my experience that teams
underestimate how hard it will be to push their software into production.

To make things more difficult, software’s potential value changes. If nothing ever pushes that rock, it
will sit on top of its hill forever; its potential energy won’t change. Software, alas, sits on a hill that
undulates. You can usually tell when your hill is becoming a valley, but if you need weeks or months
to get your software rolling, it might be sitting in a ditch by the time you're ready to push.

In order to meet commitments and take advantage of opportunities, you must be able to push your
software into production within minutes. This chapter contains 6 practices that give you leverage to
turn your big release push into a 10-minute tap:

e "done done" ensures that completed work is ready to release.

* No bugs allows you to release your software without a separate testing phase.

e Version control allows team members to work together without stepping on each other’s toes.

o A ten-minute build builds a tested release package in under 10 minutes.

e Continuous integration prevents a long, risky integration phase.

e Collective code ownership allows the team to solve problems no matter where they may lie.

* The Agile Manifesto, http.//www.agilemanifesto.org/.

153

http://www.agilemanifesto.org/

Pre-release testing & fixes

> =18 weeks, € avs.

Figure 7-1. A sample card

Post-hoc documentation decreases the cost of documentation and increases its accuracy.

“RELEASING” MINI-ETUDE

The purpose of this étude is to examine pushing software into production. If you’re new to agile development,
you may use itto create a map of all the steps involved in releasing software, even if you're not currently using
XP. If you're an experienced agile practitioner, review Chapter 13 and use this étude to help you modify your
process to remove communication bottlenecks.

Conduct this étude for a timeboxed half-hour every day for as long as it is useful. Expect to feel rushed by the
deadline at first. If the étude becomes stale, discuss how you can change it to make it interesting again.

You will need red and green index cards, an empty table or magnetic whiteboard for your value stream
map, and writing implements for everyone.

Step 1. Start by forming heterogeneous pairs—have a programmer work with a customer, a customer work
with a tester, and so forth, rather than pairing by job description. Work with a new partner every day.

Step 2. (Timebox this step to 10 minutes.) Within pairs, consider all the activities that have to happen between
the time someone has an idea and when you can release it to real users or customers. Count an iteration as
one activity, and group together any activities that take less than a day. Consider time spent waiting as an
activity, too. If you can’t think of anything new, pick an existing card and skip to Step 3.

Choose at least one task, and write it on a red card. Reflect on all the times you have performed this activity. If
you have released software, use your experience; do not speculate. How long did it take? Think in terms of
calendar time, not effort. Write three times down on the card: the shortest time you can remember, the
longest time you can remember, and the typical time required. (See Figure 7-1.)

Step 3. (Timebox this step to 10 minutes.) Discuss things that your team can do to reduce the time required for
this activity or to eliminate it entirely. Choose just one idea and write it on a ¢reen card.

Step 4. (Timeboxthis stepto 15minutes.) Asateam,discuss your cards and placethemonthetable or whiteboard
in a value stream map. Place activities (red cards) that must happen first before activities that can happen
afterward. (See Figure 7-2.) If you're using a whiteboard, draw arrows between the cards to make the flow of
work more clear. Place green cards underneath red cards.

Consider these discussion questions:

* The value stream map was inspired by [Poppendieck & Poppendieck].

154

CHAPTER 7: RELEASING

Wait for other

Product stories in Fhis
manager release to finish
approves

i —
v Iteration \4
On-site customers |] =4 System testing
decide requirements |.{" with hardware
details
| E— Y
\4
Field test »| Customer trials

Figure 7-2. A sample value stream map

At which step does work pile up?

Which results surprise you?

v

General
release!

Whois the constraintin the overall system? How can you improve the performance of the overall system?

Are there green cards with ideas you can adopt now?

RELEASING

155

«“ Done Done" Audience

We're done when we’re production-ready. Whole Team

“Hey, Liz!” Rebecca sticks her head into Liz’s office. “Did you
finish that new feature yet?”

Liz nods. “Hold on a sec,” she says, without pausing in her typing. A flurry of keystrokes crescendos and
then ends with a flourish. “Done!” She swivels around to look at Rebecca. “It only took me half a day,
t00.”

“Wow, that’s impressive,” says Rebecca. “We figured it would take at least a day, probably two. Can I
look at it now?”

“Well, not quite,” says Liz. “I haven’t integrated the new code yet.”

“OK,” Rebecca says. “But once you do that, I can look at it, right? I'm eager to show it to our new clients.
They picked us precisely because of this feature. I'm going to install the new build on their test bed so
they can play with it.”

Liz frowns. “Well, I wouldn’t show it to anybody. I haven’t tested it yet. And you can’t install it
anywhere—I haven’t updated the installer or the database schema generator.”

“T don’t understand,” Rebecca grumbles. “I thought you said you were done!”

“T am,” insists Liz. “I finished coding just as you walked in. Here, I'll show you.”

“No, no, I don’t need to see the code,” Rebecca says. “I need to be able to show this to our customers.
I need it to be finished. Really finished.”

“Well, why didn’t you say so?” says Liz. “This feature is done—it’s all coded up. It’s just not done done.
Give me a few more days.”

Production-Ready Software

Wouldn't it be nice if, once you finished a story, you never
had to come back to it? That’s the idea behind “done done.” A You should able to deploy the
completed story isn’t a lump of unintegrated, untested code. software at the end of any

It’s ready to deploy. iteration.

Partially finished stories result in hidden costs to your project.
When it’s time to release, you have to complete an
unpredictable amount of work. This destabilizes your release planning efforts and prevents you from
meeting your commitments.

To avoid this problem, make sure all of your planned stories are “done done” at the end of each iteration.
You should be able to deploy the software at the end of any iteration, although normally you'll wait
until more features have been developed.

What does it take for software to be “done done”? That depends on your organization. I often explain
that a story is only complete when the customers can use it as they intended. Create a checklist that
shows the story completion criteria. I write mine on the iteration planning board:

156 CHAPTER 7: RELEASING

e Tested (all unit, integration, and customer tests finished)
e Coded (all code written)
¢ Designed (code refactored to the team’s satisfaction)

¢ Integrated (the story works from end to end—typically, Ul to database—and fits into the rest of the
software)

e Builds (the build script includes any new modules)
¢ Installs (the build script includes the story in the automated installer)

e Migrates (the build script updates database schema if necessary; the installer migrates data when
appropriate)

e Reviewed (customers have reviewed the story and confirmed that it meets their expectations)
¢ Fixed (all known bugs have been fixed or scheduled as their own stories)

e Accepted (customers agree that the story is finished)

Some teams add “Documented” to this list, meaning that the story has documentation
and help text. This is most appropriate when you have a technical writer as part of your | Al
team. The Whole Team (p. 28)

Other teams include “Performance” and “Scalability” in their “done done” list, but these
can lead to premature optimization. I prefer to schedule performance, scalability, and similar issues with
dedicated stories (see “Performance Optimization” in Chapter 9).

How to Be “Done Done”

XP works best when you make a little progress on every
aspect of your work every day, rather than reserving the last ~ Make a little progress on every
few days of your iteration for getting stories “done done.” aspect of your work every day.
This is an easier way to work, once you get used to it, and it

reduces the risk of finding unfinished work at the end of the

iteration.

Use test-driven development to combine testing, coding, and designing. When working

on an engineering task, make sure it integrates with the existing code. Use continuous | Allies

integration and keep the 10-minute build up-to-date. Create an engineering task (se¢ | fest-priven Development
“Incremental Requirements” in Chapter 9 for more discussion of customer reviews) for | (p. 285)

updating the installer, and have one pair work on it in parallel with the other tasks for | continuous Integration (p.
the story. 183)

Ten-Minute Build (p. 177)

Just as importantly, include your on-site customers in your work. As you work on a

Ul task, show an on-site customer what the screen will look like, even if it doesn’t work

yet (see “Customer review” in Chapter 9). Customers often want to tweak a Ul when they see it for the
first time. This can lead to a surprising amount of last-minute work if you delay any demos to the end
of the iteration.

Similarly, as you integrate various pieces, run the software to make sure the pieces all
work together. While this shouldn’t take the place of testing, it’s a good check to help | Ally

prevent you from missing anything. Enlist the help of the testers on occasion, and ask
them to show you exploratory testing techniques. (Again, this review doesn’t replace

Exploratory Testing (p. 341)

real exploratory testing.)

“DONE DONE” 157

Throughout this process, you may find mistakes, errors, or outright bugs. When you
do, fix them right away—then improve your work habits to prevent that kind of error | Ally

from occurring again. No Bugs (p. 160)

When you believe the story is “done done,” show it to your customers for final
acceptance review. Because you reviewed your progress with customers throughout the iteration, this
should only take a few minutes.

Making Time

This may seem like an impossibly large amount of work to do in just one week. It’s easier to do if you
work on it throughout the iteration rather than saving it up for the last day or two. The real secret,
though, is to make your stories small enough that you can completely finish them all in a single week.

Many teams new to XP create stories that are too large to get “done done.” They finish all the coding,
but they don’t have enough time to completely finish the story—perhaps the Ul is a little off, or a bug
snuck through the cracks.

Remember, you are in control of your schedule. You decide how many stories to sign up for and how
big they are. Make any story smaller by splitting it into multiple parts (see “Stories” in Chapter 8) and
only working on one of the pieces this iteration.

Creating large stories is a natural mistake, but some teams compound the problem by thinking, “Well,
we really did finish the story, except for that one little bug.” They give themselves credit for the story,
which inflates their velocity and perpetuates the problem.

If you have trouble getting your stories “done done,” don’t
count those stories toward your velocity (see “Velocity” in If a story isn’t “done done,” don’t
Chapter 8). Even if the story only has a few minor UI bugs, count it toward your velocity.
count it as a zero when calculating your velocity. This will
lower your velocity, which will help you choose a more
manageable amount of work in your next iteration. (“Estimating” in Chapter 8 has more details about
using velocity to balance your workload.)

You may find this lowers your velocity so much that you can only schedule one or two stories in an
iteration. This means that your stories were too large to begin with. Split the stories you have, and work
on making future stories smaller.

Questions
How does testers’ work fit into “done done”?

In addition to helping customers and programmers, testers are responsible for

nonfunctional testing and exploratory testing. Typically, they do these only after stories | Ally

are “done done.” They may perform some nonfunctional tests, however, in the context | gypioratory Testing (p. 341)

of a specific performance story.

Regardless, the testers are part of the team, and everyone on the team is responsible for helping the
team meet its commitment to deliver “done done” stories at the end of the iteration. Practically speaking,
this usually means that testers help customers with customer testing, and they may help programmers
and customers review the work in progress.

158 CHAPTER 7: RELEASING

What if we release a story we think is “done done,” but then we find a bug or stakeholders tell us they want changes?

If you can absorb the change with your iteration slack, go ahead and make the change.

Turn larger changes into new stories. Ally

This sort of feedback is normal—expect it. The product manager should decide whether | Slack (p.246)

the changes are appropriate, and if they are, he should modify the release plan. If you
are constantly surprised by stakeholder changes, consider whether your on-site customers truly reflect
your stakeholder community.

Results

When your stories are “done done,” you avoid unexpected batches of work and spread wrap-up and
polish work throughout the iteration. Customers and testers have a steady workload through the entire
iteration. The final customer acceptance demonstration takes only a few minutes. At the end of each
iteration, your software is ready to demonstrate to stakeholders with the scheduled stories working to
their satisfaction.

Contraindications

This practice may seem advanced. It’s not, but it does require self-discipline. To be

“done done” every week, you must also work in iterations and use small, customer- Allies

centric stories. Iterations (p. 41)

In addition, you need a whole team—one that includes customers and testers (and Stories (p. 253)

perhaps a technical writer) in addition to programmers. The whole team must sit SitTogether (p. 112)
together. If they don’t, the programmers won't be able to get the feedback they need | Incremental Design and
in order to finish the stories in time. Architecture (p. 321)

Finally, you need incremental design and architecture and test-driven developmentin | (p.285)

Test-Driven Development

order to test, code, and design each story in such a short timeframe.

Alternatives

This practice is the cornerstone of XP planning. If you aren’t “done done” at every iteration, your velocity
will be unreliable. You won’t be able to ship at any time. This will disrupt your release planning and
prevent you from meeting your commitments, which will in turn damage stakeholder trust. It will
probably lead to increased stress and pressure on the team, hurt team morale, and damage the team’s
capacity for energized work.

The alternative to being “done done” is to fill the end of your schedule with make-up work. You will
end up with an indeterminate amount of work to fix bugs, polish the UI, create an installer, and so
forth. Although many teams operate this way, it will damage your credibility and your ability to deliver.
I don’t recommend it.

“DONE DONE” 159

No Bugs Audience

We confidently release without a dedicated testing phase. Whole Team

Let’s cook up a bug pie. First, start with a nice, challenging
language. How about C? We'll season it with a dash of assembly.

Next, add extra bugs by mixing in concurrent programming. Our old friends Safety and Liveness are
happy to fight each other over who provides the most bugs. They supplied the Java multithreading
library with bugs for years!

Now we need a really difficult problem domain. How about real-time embedded systems?

To top off this disaster recipe, we need the right kind of programmers. Let’s see... experts... no... senior
developers... no... aha! Novices! Just what we need.

Take your ingredients—C, real-time embedded systems, multitasking, and don’t forget the novices—
add a little assembly for seasoning, shake well, and bake for three years. (I do love me a bug pie.)

Here’s how it turns out:

The GMS team delivered this product after three years of development [60,638 lines of code],
having encountered a total of 51 defects during that time. The open bug list never had more
than two items at a time. Productivity was measured at almost three times the level for
comparable embedded software teams. The first field test units were delivered after
approximately six months into development. After that point, the software team supported
the other engineering disciplines while continuing to do software enhancements.”

These folks had everything stacked against them—except their coach and her approach to software
development. If they can do it, so can you.

How Is This Possible?

If you're on a team with a bug count in the hundreds, the idea of “no bugs” probably sounds ridiculous.
I'll admit: “no bugs” is an ideal to strive for, not something your team will necessarily achieve.

However, XP teams can achieve dramatically lower bug rates. [Van Schooenderwoert]’s team averaged
one and a half bugs per month in a very difficult domain. In an independent analysis of a company
practicing a variant of XP, QSM Associates reported an average reduction from 2,270 defects to 381
defects [Mah].

You might think improvements like this are terribly expensive. They’re not. In fact, agile teams tend to
have above-average productivity.t

Evidence for these results is as yet anecdotal. Scientific studies of complete software development
methodologies are rare due to the large number of variables involved. While there are organizations
that draw performance conclusions by aggregating hundreds of projects, none that I am aware of have
enough data to draw conclusions on agile projects in general, let alone XP specifically. (QSM Associates

* “Embedded Agile Project by the Numbers with Newbies” [Van Schooenderwoert].

T See, for example, [Van Schooenderwoert], [Mah], and [Anderson 2006].

160 CHAPTER 7: RELEASING

is a well-regarded example of such an organization; as of June 2006, they only had data from a few
agile projects.”)

In the absence of conclusive proof, how can you know if your team will achieve these results? There’s
only one way to know for sure: try it and see. It doesn’t take superpowers. Teams of novices coached
by an experienced developer have done it. All you need is commitment to follow the XP practices
rigorously and support from your organization to do so.

How to Achieve Nearly Zero Bugs

Many approaches to improving software quality revolve around finding and removing more defectst
through traditional testing, inspection, and automated analysis.

The agile approach is to generate fewer defects. This isn’t a matter of finding defects earlier; it’s a question
of not generating them at all.

For example, [Van Schooenderwoert] delivered 21 bugs to customers. Working from Capers Jones’ data,
Van Schooenderwoert says that a “best in class” team building their software would have generated 460
defects, found 95 percent of them, and delivered 23 to their customer.* In contrast, Van
Schooenderwoert’s team generated 51 defects, found 59 percent of them, and delivered 21 to their
customer. At 0.22 defects per function point, this result far exceeds Capers Jones’ best-in-class
expectation of two defects per function point.

To achieve these results, XP uses a potent cocktail of techniques:

1. Write fewer bugs by using a wide variety of technical and organizational practices.
2. Eliminate bug breeding grounds by refactoring poorly designed code.

3. Fix bugs quickly to reduce their impact, write tests to prevent them from reoccurring, then fix the
associated design flaws that are likely to breed more bugs.

4. Test your process by using exploratory testing to expose systemic problems and hidden assumptions.
5. Fix your process by uncovering categories of mistakes and making those mistakes impossible.
This may seem like a lot to do, but most of it comes naturally as part of the XP process. Most of these
activities improve productivity by increasing code quality or by removing obstacles. If you do them as
part of XP, you won't have to do many of the other more expensive activities that other teams perform,

such as an exhaustive upfront requirements gathering phase, disruptive code inspections, or a separate
bug-fixing phase.

Ingredient #1: Write Fewer Bugs

Don’t worry—I'm not going to wave my hands and say, “Too many bugs? No problem! Just write fewer
bugs!” To stop writing bugs, you have to take a rigorous, thoughtful approach to software development.

* Personal communication with Michael Mah of QSM Associates.
1 I use “defect” synonymously with “bug.”

t An “average” team would have generated 1,035, found 80 percent, and delivered 207.

NO BUGS 161

Start with test-driven development (TDD), which is a proven technique for reducing
the number of defects you generate [Janzen & Saiedian]. It leads to a comprehensive
suite of unit and integration tests, and perhaps more importantly, it structures your
work into small, easily verifiable steps. Teams using TDD report that they rarely need
to use a debugger.

To enhance the benefits of test-driven development, work sensible hours and program
all production code in pairs. This improves your brainpower, which helps you make
fewer mistakes and allows you to see mistakes more quickly. Pair programming also
provides positive peer pressure, which helps you maintain the self-discipline you need
to follow defect-reduction practices.

Test-driven development helps you eliminate coding defects, but code isn’t your only
source of defects. You can also produce good code that does the wrong thing. To prevent
these requirements-oriented defects, work closely with your stakeholders. Enlist on-

Allies

Test-Driven Development
(p. 285)

Energized Work (p. 79)
Pair Programming (p. 71)
Sit Together (p. 112)
Customer Tests (p. 278)
Exploratory Testing (p. 341)
Iteration Demo (p. 138)
Coding Standards (p. 133)
“Done Done” (p. 156)

site customers to sit with your team. Use customer tests to help communicate complicated domain rules.
Have testers work with customers to find and fix g