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Foreword 

In the broad area of data and knowledge engineering — and including dis­
ciplines like databases, semantic web, knowledge representation as well as 
overlapping areas such as computational linguistics, artificial intelligence or 
information management — one may recognize some grand challenges that 
puzzle many researchers and practitioners alike: 

1. Combining statistics and logics; 
2. Scaling towards large complex systems; 
3. Turning what still often remains an art into a science and/or an engineer­

ing discipline. 

This book responds to these challenges by moving ontology learning and pop­
ulation forward a very large step. 

From Statistics to Semantics. 

Access to information on the Web or in large enterprise information repos­
itories is mostly restricted to statistics-based keyword search. Even though 
keyword search is often successful on the Web for general purpose queries, it 
often remains unsatisfying for the professional user who searches more than 
an address, more than a document and less than one million answers. 

Statistics will certainly remain the major ingredient for finding informa­
tion. Nevertheless, statistics need to be augmented by semantics such as 
described in conceptual models, e.g. in ontologies. The volume of informa­
tion generally accessible makes it highly improbable that ontologies would 
be constructed for very many domains, if it were not for the statistics them­
selves to jump in and facilitate and partially automate the construction of 
the very same ontologies. Thus, the statistics about information lead to se­
mantic descriptions of textual as well as other information resources in a way 
that makes searching more powerful (e.g., because it integrates unstructured, 
semi-structured and fully structured information sources) and more rewarding 
(e.g., because it offers a semantically guided dialog between the search engine 
and its users). 



xvi Foreword 

This book proposes new paradigms to derive semantics from statistics. In 
doing so, it also gives a comprehensive account of which statistical methods 
complemented by means of computational linguistics and knowledge repre­
sentation serve the purposes of ontology learning and population. 

From Small Scale to Large Scale. 

If previous work has focused on the bridge between statistical and conceptual 
knowledge (e.g. machine learning), it has restricted itself to small scale with 
what regards the conceptual knowledge, i.e. at most a couple of concepts which 
were to be distinguished. 

This book tackles scaling into large conceptual spaces. Working with hun­
dreds of target concepts it scales the richness of textual information not only 
towards Gigabytes of ASCII text, but also towards real-world sized ontologies 
instead of toy domains. 

From Art to Science and Engineering. 

Finally, ontology learning and — to lesser extent — population has remained 
an art rather than a discipline within science and/or engineering. The basis 
for making ontology learning a scientific discipline lies in measuring appropri­
ateness of learned concept definitions. 

This book gives a precise and comprehensive evaluation of ontology 
learning and population measures. It gives evaluation procedures for closed 
world settings by gold standards and appropriate measures. It also gives 
evaluations that consider the open world nature of ontologies, i.e. that 
consider the fact that it is hard, if not even impossible, to draw an exact 
line around which concepts should and which should not be included in a 
particular ontology. Hence, never before has a book in this area given such 
precise and comprehensive evaluations that moreover are accessible to the 
general public.^ 

Koblenz, June 2006 Steffen Staab 

of. http://www.cimiano.de/olp/ 



Preface 

In recent years, there has been a surge in research on knowledge acquisition 
from text and other sources, which is to a great extent due to a renewed 
interest in knowledge-based techniques in the context of the Semantic Web 
endeavor. A crucial question, however, still remains: where is the necessary 
knowledge supposed to come from? How will we feed machines with the rel­
evant knowledge, that is, how will we deal with the so called knowledge ac­
quisition bottleneck? The formalisms for knowledge representation are now 
in place. The Semantic Web community has developed, actually building on 
decades of research in knowledge representation, standard ontology languages 
such as RDFS or OWL to represent knowledge in a way which is understand­
able by machines. But again, how will we acquire all the knowledge available 
in people's head to feed our machines with? 

Natural language is THE means of communication for humans, and con­
sequently texts are nowadays massively available on the Web: terabytes and 
terabytes of texts containing opinions, ideas, facts and information of all sorts 
waiting to be extracted or mined to find interesting patterns and relationships 
or used to annotate the corresponding documents to facilitate their retrieval. 
Let me thus dare to say that a semantic web which ignores the massive amount 
of information encoded in texts, might actually be a semantic, but not a really 
very useful web. Knowledge acquisition from text has to be in fact regarded 
as a crucial step within the vision of a semantic web. 

Looking at the history of knowledge acquisition from text, let me highlight 
three, possibly arbitrary, snapshots. First of all, there has been extensive re­
search in the 80s and early 90s on extracting knowledge from machine read­
able dictionaries. This research showed that it is in fact possible to extract 
knowledge from text with a more or less regular structure. Such approaches 
will probably become fashionable again in the context of currently emerg­
ing large online dictionaries such as WikiPedia^. Second, the seminal work 
of Grefenstette which found its way into his book Explorations in Automatic 

http://en.wikipedia.org/wiki/Main_Page 
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Thesaurus Construction, showed that we can move from regular to free text 
and use syntactic or distributional similarity as a guiding principle for knowl­
edge acquisition from text. Third, the recent work of Madche and Staab in 
Karlsruhe, which ultimately lead to the book Ontology Learning for the Se­
mantic Web, brought knowledge acquisition from texts into renewed interest 
by connecting it with research on the Semantic Web. Madche's work addressed 
in particular methodological aspects related to the creation of a usable on­
tology learning framework which eases the application of ontology learning 
techniques for ontology engineers. 

The present book can be seen as a follow-up to Alexander Madche's work, 
taking up his basic framework, but focusing on algorithms and their evalua­
tion. In fact, the book is largely influenced by hands-on experience with diverse 
datasets and algorithms. Originally, the aim was to investigate in much more 
depth the relation between natural language, lexica and ontologies, but this 
aim had to stand back in favor of the necessity to develop practical algorithms 
in the context of the projects that I have been involved in. Thus, I have to 
confess that I have neither found a satisfactory definition of what a concept is 
supposed to be nor what the relation between language, the mind and ontol­
ogy actually is. Thus, there is little I have to say about the relation between 
lexical semantics and ontologies because, if there is an answer, it is definitely 
out of the scope of the work presented in this book. 

The work described in the present book is thus of a pragmatic nature and 
driven by practical needs for supporting the ontology learning process. I have 
attempted to provide a reasonable trade-off between breadth and depth, pro­
viding in-depth empirical analysis of certain techniques, but also covering a 
wide range of ontology learning aspects. Here and there, the methods used 
might seem a bit adhoc, for example the named entity recognition, anaphora 
resolution or morphology components used. Ontology learning builds on a lot 
of natural language processing and machine learning techniques, and, in the 
case such techniques are not available off-the-shelf, they need to be imple­
mented in a way which is good enough to allow for the proof-of-concept of 
some method. It is obviously out of the scope of a book on ontology learning 
to implement the state-of-the-art in other fields. 

I have devoted a considerable amount of work to the evaluation of the al­
gorithms and methods presented. Evaluation is a very problematic endeavor 
because, on the one hand, it is very time intensive and involves twiddling 
around with tiny details, and, on the other hand, bullet-proof evaluations 
hardly exist. Nevertheless I am convinced that evaluation is an absolutely 
necessary part of research in computer science. The amount of publications 
is constantly increasing and the time for reviewing is decreasing at the same 
pace. Sometimes, a good evaluation is at least a guarantee that the method 
has been actually implemented and thus a good indicator of feasibility. I sup­
port formal theories and novel ideas, but algorithms and approaches need to 
be evaluated on real datasets to demonstrate their benefits. Only then can 
meaningful comparisons between approaches be drawn, allowing the 'fittest' 
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approaches to survive. In this sense I adhere to what we could call the 'prin­
ciple of natural selection' in computer science. 

Finally, let me say a bit about the book in general. I have attempted to 
create a book useful for novices and for experts in the field, with introduc­
tory material and a lot of related work on the one hand, but also detailed 
descriptions of algorithms, evaluation procedures etc. on the other. I have 
also attempted to give a broad and systematic overview of ontology learning 
in general. The aim has also been to make each section of this book as self-
contained as possible to allow for selective reading. Let me conclude saying 
that, though many researchers might disagree with the views put forth in this 
book, as well as with the algorithms and evaluation procedures described, at 
least I hope they will find the overview provided in this book of value. 

The views on ontologies contained in this book have been largely shaped 
by the Knowledge Management group at the University of Karlsruhe. The 
views on ontology learning have been influenced by comments and fruitful 
discussion with other researchers. I am in fact indebted to a lot of people 
which have either contributed to this work directly or helped to shape many 
of the ideas expressed herein. However, I am the only one to blame for errors 
and inaccuracies which have made it into the book as you find it here in 
front of you. I am always happy to receive comments, feedback, criticism 
on this material, so don't hesitate to contact me. Eventually, your comment 
might be considered for a revised version of this book at some stage. Finally, 
as a lot of people drop me emails asking for datasets and algorithms, I have 
decided to create a website in which a lot of the material presented in this 
book can be downloaded for a hands-on experience^. This material is of a 
highly experimental nature, but hopefully useful for research purposes. 

I hope you enjoy the book. 

Karlsruhe, June 2006 Philipp Cimiano 

See http://www.cimiano.de/olp 
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Preliminaries 



Introduction 

A crucial characteristic of human inteUigence is its adaptive behavior. In fact, 
humans can easily adapt to new situations by drawing on their earlier experi­
ences and previous knowledge. Assume a child learns that Yoyo is a cat, that 
cats are animals and that animals are not to be hurt. The child will certainly 
be able to apply this knowledge to infer that in particular Yoyo should not be 
hurt. Since the late 1950s, Artificial Intelligence (AI) has devoted enormous 
efforts to developing computer systems able to mimic human intelligence. The 
first definition of artificial intelligence in fact goes back to Alan Turing. Tur­
ing defined a test, widely known as the Turing-test, according to which a 
machine would merit to be called intelligent if a human interacting with it 
as well as with a human counterpart would not be able to keep both apart 
[Turing, 1950, Shieber, 2004]. 

Much research in artificial intelligence (AI) has in fact been devoted to 
building systems incorporating knowledge about a certain domain in order to 
reason on the basis of this knowledge and solve problems which were not en­
countered before. Such knowledge-based systems have been applied to a variety 
of problems requiring some sort of intelligent behavior like planning, support­
ing humans in decision making or natural language processing. An early plan­
ning system was for example STRIPS [Fikes et al., 1972] in which goals as 
well as the preconditions and effects of actions were specified in a declarative 
fashion using a logical formalism. A prominent example of an expert sys­
tem applied to support humans in decision making is Mycin [Shortliffe, 1976]. 
Mycin was an expert system developed at Stanford in the 1970s. Its goal 
was to support doctors in the diagnosis and recommendation of treatment 
for certain blood infections. An early natural language system making use of 
a logical representation of the domain in question was the JANUS system 
[Weischedel, 1989]. Further details about the history, methods and applica­
tions of AI can be found in the early handbook of Cohen and Feigenbaum 
[Cohen and Feigenbaum, 1981] and in the more recent introductory book of 
Russel and Norvig [Russel and Norvig, 2003]. 
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Common to all the above mentioned systems is an explicit and symbolic 
representation of knowledge about a certain domain. Such a symbolic repre­
sentation of knowledge has the advantage that it can be separated from pro­
cedural aspects related to its apphcation and can in principle be reused across 
systems. Computers are essentially symbol-manipulating machines, and they 
need clear instructions about how to manipulate these symbols in a mean­
ingful way. For this reason, knowledge is represented using some logic with 
model-theoretic semantics as well as with a syntactic procedure for verify­
ing semantic validity which is executable by a computer. When representing 
knowledge symbolically in such a way that a computer can process it, the 
question arises which symbols to use and what they stand for. Thus, an on­
tology as model of the domain in question is needed. Such an ontology would 
state which things are important to the domain in question as well as define 
their relationships. In the context of knowledge-based systems, an underlying 
ontology would essentially tell us which symbols are needed and how they are 
supposed to be interpreted. At the logical level, the interpretation can then 
be constrained according to the ontology by appropriately axiomatizing the 
symbols. 

Knowledge representation and ontologies have actually gained impor­
tance in the last decade. Nowadays, ontologies are applied for agent com­
munication [Finin et al., 1994], information integration [Wiederhold, 1994, 
Alexiev et al., 2005], web service discovery [Paolucci et al., 2002] as well as 
composition [Sirin et al., 2002], description of content to facilitate its retrieval 
[Guarino et al., 1999, Welty and Ide, 1999], and natural language processing 
[Nirenburg and Raskin, 2004]. This surge of interest in ontologies has even 
been carried over to industry, where providers of semantic technologies such 
as ontoprise GmbH^ are cooperating with large companies such as Audi^ or 
Deutsche Telekom^. 

Though ontologies can provide potential benefits for a lot of applica­
tions, it is well known that their construction is costly [Ratsch et al., 2003, 
Pinto and Martins, 2004]. This problem is typically referred to as 
the knowledge acquisition bottleneck and is witnessed by the large 
amount of publications on methodologies for ontology engineering 
(compare [Uschold, 1996, Fernandez et al., 1997, Holsapple and Joshi, 2002, 
Sure, 2003, Pinto et al., 2004]). The modeling of a non-trivial domain is in 
fact a difficult and time-consuming task. The main difficulty lies in the fact 
that the ontology is supposed to have a significant coverage of the domain 
and to foster the conciseness of the model by determining meaningful and 
consistent generalizations at the same time. The trade-off between modeling 
a large amount of knowledge and providing as many abstractions as possible 
to keep the model concise makes ontology engineering indeed a challenging 

' http://www.ontoprise.de/content/index.html 

^ http://www.ontoprise.de/content/e212/e52/e320/index_ger.html 

* http://www.ontoprise.de/content/e212/e52/e304/index_ger.html 



enterprise. Further, as ontologies are typically shared by a group of people or 
a community, their construction is additionally complicated due to the fact 
that different parties have to agree on certain design choices. 

An ideal solution to this problem would be an approach to automatically 
learn ontologies from data. Such an approach would indeed dramatically re­
duce the costs for building an ontology. As text documents are and will always 
be massively available, many researchers have attempted to learn ontologies 
from textual resources. Given a certain critical amount of texts, we would 
expect such methods to provide a reasonable coverage of the domain. The 
bottleneck of such methods lies in the fact that correctness and consistency 
of the model can not be guaranteed, thus making human postprocessing def­
initely necessary. Assuming that the documents in the text collections stem 
from different authors, the resulting ontologies can to some extent even be re­
garded as shared, thus overcoming problems inherent in the agreement process 
between different parties. 

The aim of this book is to investigate methods for automatically learning 
ontologies from domain-specific text collections. The main contributions are: 

• the formal definition of the ontologies to be learned as well as of the tasks 
addressed in order to foster consensus within the ontology learning com­
munity, 

• the development of novel algorithms with the aim of learning ontologies 
from textual data, 

• the comparison of different m,ethods in order to provide guidelines for on­
tology engineers, 

• the description of measures and methodologies for the evaluation of the 
learned ontologies, providing a basis to compare different approaches, 

• an analysis of the impact of ontology learning for certain applications. 

The challenge in ontology learning from text is certainly to derive mean­
ingful concepts on the basis of the usage of certain symbols, i.e. words or terms 
appearing in the text. It is in particular challenging to learn what the cru­
cial characteristics of these concepts are and in how far they differ from each 
other in line with Aristotle's notion of differentiae. Such a characterization 
of concepts is typically referred to as their intension. However, concepts can 
also be defined extensionally by enumerating all the entities which share the 
concept's characteristics. To foster economy of representation in a knowledge 
base, it is also important to have an underlying hierarchical organization of 
concepts, semantically interpreted as subsumption of extension. Such a con­
cept hierarchy fosters economy of representation in the sense that it allows 
to represent relations, rules, etc. at the appropriate level of generalization 
for which they hold, thus eliminating the necessity of representing each case 
explicitly. Besides deriving a concept hierarchy, we are also interested in dis­
covering relations among concepts. Such relations will in fact provide a basis 
to constrain the interpretation of concepts by explicitly stating their relation 
to other concepts in form of logical axioms. 
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The challenge in ontology learning is thus one of bridging the gap between 
the world of symbols, e.g. words used in natural language, and the world of 
concepts, which in essence can be seen as abstractions of human thought. 
It should already become clear that ontology learning from text is a highly 
error-prone endeavor. The automatically learned ontologies will thus need to 
be inspected, validated and modified by humans before they can be applied 
for applications relying on crisp logical reasoning. However, there are a 
number of applications in text mining and information retrieval for which 
the automatically derived ontologies can be applied as such. In fact, while 
the benefit of explicit knowledge representation in form of ontologies for text 
mining applications still remains unclear today, the assumption of this book 
is that the real benefit will only be unveiled once the knowledge-acquisition-
bottleneck has been overcome, i.e. once we have algorithms and tools to 
automatically derive knowledge from domain-specific text collections. This 
would allow to perform large-scale experiments on different domains and 
datasets and thus to draw definite conclusions. The research presented in this 
book can be understood as a step in this direction. 

The structure of the book is as follows: 

The first part of the book continues in Chapter 2 with a formal and math­
ematical definition of an ontology which will provide the basis for the 
formalization of ontology learning tasks as well as of the evaluation mea­
sures used throughout the book. Prom the description of this chapter it 
will also be clear which are the ontological structures we aim to learn. 
In Chapter 3 we present in more detail the field of ontology learning from 
textual data, in particular describing its history as well as the main learn­
ing paradigms exploited. In this chapter, we will also come back to the 
issues which make ontology learning especially challenging. 
Chapter 4 then introduces the basics necessary to understand the remain­
ing chapters of the book. In particular, it introduces fundamental tech­
niques of natural language processing as well as inductive learning. 
In Chapter 5 we describe the datasets used in the diverse experiments 
presented in this book. 
In the main part of the book, i.e. Methods and Applications, we present the 
algorithms and approaches developed. In Chapter 6 we present algorithms 
to learn concept hierarchies, which can be seen as the backbone of an 
ontology, fostering economy of representation as described above. 
In Chapter 7 we turn to the issue of learning relations between concepts 
and present three approaches addressing different aspects of the task of 
learning ontological relations. 
In Chapter 8 we address the important issue of populating an ontology 
with instances, i.e. learning the extension of concepts. The latter three 
chapters represent the main contribution of the book to the field of on-



tology learning from textual data. Besides presenting the algorithms and 
evaluation methods developed, each chapter describes related work, sum­
marizes the main contributions and discusses open issues. The aim here 
has been to make each section as self-contained as possible in order to 
allow for selective reading. 
Chapter 9 discusses applications for ontology learning methods and 
presents some results on document clustering and classification as well 
as on an information retrieval task. 
Finally, in the last part Conclusion, Chapter 10 summarizes the main 
contributions of the book and discusses open issues and further work. 
Chapter 11 concludes the book with a few remarks. 



Ontologies 

In this chapter, we introduce our formal ontology model. The model presented 
will provide a basis for the formalization of ontology learning tasks in Chapter 
3 as well as for the evaluation measures used throughout the remainder of the 
book. 

The term ontology comes from the Greek ontologia and means "talking" (-
logia) about "being" (on / onto-). Ontology is a philosophical discipline which 
can be described as the science of existence or the study of being. Platon 
(427 - 347 BC) was one of the first philosophers to explicitly mention the 
world of ideas or forms in contrast to the real or observed objects, which 
according to his view are only imperfect realizations (or shadows) of the ideas 
(compare [Annas, 1981]). In fact, Platon raised ideas, forms or abstractions 
to entities which one can talk about, thus laying the foundations for ontology. 
Later his student Aristotle (384 - 322 BC) shaped the logical background 
of ontologies and introduced notions such as category, subsumption as well 
as the superconcept/subconcept distinction which he actually referred to as 
genus and subspecies. With differentiae he referred to characteristics which 
distinguish different objects of one genus and allow to formally classify them 
into different categories, thus leading to subspecies. This is the principle on 
which the modern notions of ontological concept and inheritance are based 
upon. In fact, Aristotle can be regarded as the founder of taxonomy, i.e. the 
science of classifying things. Aristotle's ideas represent the foundation for 
object-oriented systems as used today. Furthermore, he introduced a number 
of inference rules, called syllogisms, such as those used in modern logic-based 
reasoning systems [Sowa, 2000a]. 

In modern computer science parlance, one does not talk anymore about 
'ontology' as the science of existence, but of 'ontologies' as formal specifica­
tions of a conceptualization in the sense of Gruber [Gruber, 1993]. So, whereas 
'ontology' was originally a science, 'ontologies' have received the status of re­
sources representing the conceptual model underlying a certain domain, de­
scribing it in a declarative fashion and thus cleanly separating it from proce­
dural aspects. 
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Whereas the number of apphcations for ontologies in computer science is 
steadily growing, the necessity for a clear and formal definition of an ontology 
arises at the same time. In the past, there have been many proposals for an on­
tology language with a well-defined syntax and formal semantics, especially in 
the context of the Semantic Web, such as OIL [Horrocks et al., 2000], RDFS 
[Brickley and Guha, 2002] or OWL [Bechhofer et al., 2004]. In the context of 
this book, we will however stick to a more mathematical definition of ontolo­
gies in line with Stumme et al. [Stumme et al., 2003]. Our definitions are to 
a great extent borrowed from there. However, we take the freedom to modify 
the definitions for our purposes. Furthermore, we illustrate the definition with 
a running example. 

Definition 1 (Ontology) An ontology is a structure 

O -.^ {C,<c,R,(TR,<R,A,aA,T) 

consisting of 

• four disjoint sets C, R, A and T whose elements are called concept identi­
fiers, relation identifiers, attribute identifiers and data types, respectively, 

• a semi-upper lattice <c on C with top element rootc, called concept hi­
erarchy or taxonomy, 

• a function an: R-> C"*" called relation signature, 
• a partial order <u on R, called relation hierarchy, where r\ < « r^ implies 

Wniri)] = |o-fl(r2)| and TTi{aR{ri)) <c 7rj(o-fl(r2)), for each 1 < i < 
Wniri)], and 

• a function CT^ : .4 —>• C x T, called attribute signature, 
• asetT of datatypes such as strings, integers, etc. 

Hereby, ni{t) is the i-th component of tuple t. In some cases, when it is clear 
from the context whether we are referring to a relation or an attribute, we 
will simply use a. 

Further, a semi-upper lattice < fulfills the following conditions: 

yx X < X (reflexive) (2.1) 

\/x\/y ix<yAy<x-^x = y) (anti-symmetric) (2.2) 

VarVj/V ;̂ ix<yAy<z->x<z) (transitive) (2.3) 

Va; a; < top (top element) (2.4) 

yx\/y3z{z>xAz>yA'yw{w>xAw>y->w>z)) (2.5) 

(supremum) 

So every two elements have a unique most specific supremum. In the con­
text of ontologies, we will refer to this element as the least common subsumer. 
It is obviously defined as follows: 
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height (m) J length (km]. . ' -.̂ ^ <fowlthrough * • - . . 

-£ ^ ' *•*, located in ' 

2 9 6 2 3 6 7 1low_through Stuttgart Berlin 

Fig. 2.1. Example ontology 

lcs{a,b) :— z such that z > aAz > b and\/w {w > a Aw > b -^ w > z) (2.6) 

Often we will call concept identifiers and relation identifiers just concepts 
and relations, respectively, for the sake of simplicity. For binary relations, we 
define their domain and their range as follows: 

Definition 2 (Domain and Range) For a relation r £ R with \(7{r)\ = 
2, we define its domain and range by dom(r) := 7ri((T(r)) and range(r) := 
7r2 (<T(r)). 

If ci <c C2, for ci, C2 € C, then ci is a subconcept of C2, and C2 is a superconcept 
of ci. If r i <R r2, for r i , r2 6 R, then ri is a subrelation of r2, and r2 is a 
superrelation of r i . 

If ci <c C2 and there is no C3 £ C with ci < c C3 < c C2, then ci is a direci 
subconcept of C2, and C2 is a rfireci superconcept of Ci. We note this by ci -< C2. 
Direct superrelations and direct subrelations are defined analogously. 

Let us illustrate all the above definitions on the basis of a simple ex­
ample ontology graphically depicted in Figure 2.1. The set C of concepts 
is C :={GE, Natural GE, Inhabited GE, mountain, river, country, city, cap­
ital}, where GE stands for geographical entity. The set R of relations is: 
R :={locatedjn, flow.through, capitaLof}. Further, we have two attributes, 
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i.e. A := {length (km), height (m)}. According to the direct superconcept re­
lation we have, from left to right: mountain -< Natural GE, river -< Natural GE, 
Natural GE -< GE, country -< Inhabited GE, city -< Inhabited GE, capital -< city 
and Inhabited GE -< GE. The partial order <c is then <c'-—^ U {(mountain, 
GE),(river, GE),(ecuntry,GE),(city, GE),(capital. Inhabited GE),(capital, GE)}. 

In our example, the top element of the concept upper semi-lattice is 
rootc :=GE. Further, /cs(country, city) is for example Inhabited GE, whereas 
/cs(city,capital) is city and /cs(mountain,city) is GE. 

For the relations and attributes in the example ontology we have the 
following signatures: 

(7ij(flow_through) = (river, GE) 
(Tfl(capitaLof) = (city, country) 
(T/j(locatedJn) = (city, country) 
CT^(length (km)) = (river, integer) 
(T^(height (m)) = (mountain, integer) 

The relation hierarchy could further include capitaLof <R located_in, 
i.e. if X is capital of y, then x is also located in y. 

Having defined the basic elements of a core ontology, we now define an 
axiom system for it. Though we are not directly concerned with learning 
axioms, we introduce an axiom system for the sake of completeness. 

Definition 3 (£-Axiom System) Let C be a logical language. A C-axiom 
system for an ontology O := (C, <c, R, CR, <R, A, UA, T) is a triple 

S:^iAS,a,C) 

where 

AS is a set whose elements are called axiom schemata and 
a: AS -> ASc is a mapping from AS to axiom schemata defined over C. 

An ontology with an C-axiom system is a pair 

iO,S) 

where O is an ontology and S is an C-axiom system for O. 

We will formalize these axiom schemata using the untyped lambda calculus 
(compare [Barendregt, 1984]) originally introduced by Church [Church, 1936]. 
The lambda calculus essentially provides a means to describe arbitrary un­
named functions. A lambda expression consists of a variable which we abstract 
over - the argument of the function - and which is bound by the A operator. 
A function f{x) = x^ can thus be written in the lambda calculus notation as 
Xx.x^, where the dot (.) separates the lambda operator from the actual body 
of the function. In what follows, we will regard the standard lambda calculus 
notation as equivalent to the uncurried notation in which lists of A-bound 
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variables are used. Thus, Ax. (Xy. {x + y)) will be written in the more handy 
form: ^Xx,y. x + y, omitting the parenthesis by assuming that the A-operator 
binds the variables in the list until the end of the whole expression. 

For example, one axiom schema could be XP, Q. disjoint{P, Q) which is 
mapped by o; to a first-order logic schema as 

XP,Q.\/x {P{x)-^^Q{x)). 

a{disjoint){river) {mountain) would thus yield: 

Va; {river{x) -^ -'Tnountain{x)). 

The obvious benefit of such an £-axiom system is that by being indepen­
dent of some concrete knowledge representation formalism, the axioms formu­
lated can be translated into a variety of different languages. This is important 
for ontology learning as the statements learned from textual data have in fact 
an intuitive interpretation independent of any knowledge representation for­
malism. The learned statements can then get assigned a specific interpretation 
with respect to a concrete KR formalism via the a mapping. Axiom schemata 
capture frequently occurring patterns used in ontology engineering (compare 
[Staab et al., 2001]). In addition to instantiations of these axiom schemata, 
other general axioms have to be added to the logical theory. The difference 
between axiom schemata and general axioms is thus only a pragmatic one, i.e. 
it depends on the fact whether a type of general a;xiom occurs often enough 
to deserve the status of an axiom schema. For example, we will assume the 
following two axioms as being part of our logical theory: 

Va; {country{x) -> 3y capitaljof{y,x) A\/z{capitaljof{z,x) -^ z = y)) 

Vx {capital{x) f> 3y capital JO f{x,y) A country{y)) 

The first axiom states that every country has a unique capital, while the 
second defines the concept capital as equivalent to saying that there is a coun­
try which stands in a capitaLof relation with the corresponding city. Depending 
on the view adopted and if axioms as the above occur frequently, one could 
introduce the following axiom schema: 

ACi, C2, -R. Ci = 3R.C2 

which would be mapped to the following first-order axiom schema: 

XCi,C2,R.^x {Ci{x)^3y AR{x,y) AC2{y)) 

The instantiation XCi,C2,R- Ci = 3i?.C2(capital)(country)(capitaLof) 
would then be mapped to the following first-order formula: 
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Va; {capital{x) <-> 3y A capitaljof{x,y) A country{y)) 

The crucial question here certainly is whether the corresponding axiom 
occurs frequently enough to be lifted to the status of an axiom schema. 

In what follows, we also define what a lexicon for an ontology is: 

Definition 4 (Lexicon) A lexicon for an ontology 

O := {C,<c,R,aR,<R,A,(7A,T) 

is a structure 

consisting of 

Lex := {Sc, SR, SA, Refc, Ref ji,JR,ef _^) 

• three sets Sc, SR and SA whose elements are called signs for concepts, 
relations and attributes, respectively, 

• a relation Ref^ C So x C called lexical reference for concepts, 
• a relation Ref R C SR X R called lexical reference for relations, and 
• a relation Ref A Q SA X A called lexical reference for attributes. 

Based on Ref^, we define, for s e Sc, 

Refc{B):={ceC\{s,c)eRefc} 

and, for c € C, 

RefcHc):={seSc\is,c)eRefc}. 

Ref R and Ref^ as well as Ref A and Ref^ are defined analogously. 

An ontology with lexicon is a pair 

{0,Lex), 

where O is an ontology and Lex is a lexicon for O. 

For our example ontology, we could for instance specify that both 
nation and country refer to the concept country, i.e. i2e/^^ (country) — 
{nation, country]. 

It is important to mention that the above definition accommodates a great 
variety of lexical structures to which concepts and relations can refer, depend­
ing how the sets Sc, SR and SA are defined. In fact, they could merely contain 
labels, i.e. plain strings for the concepts and relations as typically assumed, 
but also highly structured objects (compare [Buitelaar et al., 2006]). 

Whereas ontologies formally specify the conceptualization of a domain, the 
extensional part is provided by a knowledge base which contains assertions 
about instances of the concepts and relations. 
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Definition 5 (Knowledge Base (KB)) A knowledge base for an ontology 
O := (C, <c, R, o-R, <R, A, a A, T) is a structure 

KB := ( / . tctfi .M) 

consisting of 

• a set I whose elements are called instance identifiers (or instances or 
objects for short), 

• a function ic'C^2^ called concept instantiation, 
• a function LR: R -^ 2' with ifl(r) C ni<j<|<7(r)|'C'('''«('''('')))' /<"̂  "•^^ 

r e R. The function LR is called relation instlintiation, and 
• a function tj,: A ^ I y. UtgrW '^^^^ M ( ^ ) Q ''c(7ri(cr(a))) x [7r2(o'(a))J, 

where \t\ are the values of datatype t G T- The function L^. is called 
attribute instantiation. 

In our example ontology, we have for instance: / := 
{Zugspitze, Neckar, Germany, Stuttgart, Berlin}. Further, we have the fol­
lowing instantiation relations: 

ic(nnountain) := {Zugspitze} 
ic(i'iver) := {IMeckar} 
ic(country) := {Germany} 
(-c(city) := {Stuttgart, Berlin} 
tfl(flow-through) := {(Neckar, Germany),(Neckar, Stuttgart)} 
tfl(located-in) := {(Stuttgart, Germany)} 
(-ij(capitaI-of) :— {(Berlin, Germany)} 
M(length (km)) := {(Neckar, 367)} 
M(height (m)) := {(Zugspitze, 2962)} 

As for concepts and relations, we also provide names for instances. 

Definition 6 (Instance Lexicon) An instance lexicon for a knowledge base 
KB := (/, ic, i-R, I'A) is a pair 

IL:={Si,Ri) 

consisting of 

• a set SI whose elements are called signs for instances, 
• a relation Rj C Si x I called lexical reference for instances. 

A knowledge base with lexicon is a pair 

{KB,IL) 

where KB is a knowledge base and IL is an instance lexicon for KB. 

When a knowledge base is given, we can derive the extensions of the con­
cepts and relations of the ontology based on the concept instantiation and the 
relation instantiation. 



16 Ontologies 

Definition 7 (Extension) Let KB := (/, to, LR, L^) be a knowledge base for 
an ontology O := (C, <c,R, <^R-, <R, A, (TA,T). The extension \C\KB C / of a 
concept c E C is recursively defined by the following rules: 

• 14 KB <- Lcic) 
• MKB •«- 14KB U {c'JKB, for c' <c c. 
• instantiations of axiom schemata in S (ifO is an ontology with C-axioms), 
• other general axioms contained in the logical theory. 

The extension [rjifs C /+ of a relation r E. R is recursively defined by the 
following rules: 

• MKB <*- iR{r) 
• MKB ^ frJKB U fr'JKB, for r' <R r. 
• instantiations of axiom schemata in S (ifO is an ontology with C-axioms), 
• other general axioms contained in the logical theory. 

The extension H K B C / X | T | of an attribute a £ A is defined as: 

• {aJKB -f- M ( « ) 
• general axioms contained in the logical theory. 

If the reference to the knowledge base is clear from the context, we also write 
|c], | r | and |aj instead of [cj/fs, [rj/fs and |O]KB- Given our example, we 
get in particular (taking into account the relation hierarchy and our general 
axioms defining capitals and their relation to countries): 

[mountain] := {Zugspitze} 
[river] := {Neckar} 
[country] := {Germany} 
[city] := {Stuttgart, Berlin} 
[capital] := {Berlin} 
[Natural GE] := {Zugspitze, Neckar} 
[Inhabited GE] := {Germany, Berlin, Stuttgart} 
[GE] := {Germany, Berlin, Stuttgart, Zugspitze, Neckar} 
[flow-through] := {(Neckar, Germany), (Neckar, Stuttgart)} 
[locatedJn] := {(Stuttgart, Germany), (Berlin, Germany)} 
[capitaLof] := {(Berlin, Germany)} 

Finally, what is missing is a definition of the intension of a certain concept or 
relation. We extend the definitions of Stumme et al. [Stumme et al., 2003] to 
also accommodate the intension of concepts and relations as follows: 

Definition 8 (Intension) A structure 

3 := {Ci,ic,iR,iA) 

is called the intension of an ontology O := (C, <c,-R, 0-^, < / j , ^ , ( T ^ , T ) and 
consists of: 
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• a language Cj capturing intensions of concepts, relations and attributes, 
respectively, 

• three mappings ic, in and i^ with ic '• C ^ Ci, IR : R ^ Ci and i_A '• 
A—^JCI, mapping concepts, relations and attributes to their corresponding 
intensions. 

We interpret the intension as a non-extensional definition of a certain con­
cept or relation. The above definition also accommodates different languages 
for expressing the intension of concepts and relations. The intension, for 
example, could be represented through differentiae in the sense of Aristotle 
explaining why a certain concept is different from others and thus merits a 
status on its own. In this line, the language could consist of sets of attributes 
describing a concept in line with the theory of Formal Concept Analysis (see 
Section 4.2). However, the language could consist of strings describing the in­
tuitive meaning of a concept in natural language such as done with the glosses 
of the WordNet lexical resource [Fellbaum, 1998] (compare Section 4.1.8). 
In this line, in our example the intension for capital could be ic(capital) :— 
'town or city that is the center of government of a country, state or province'. 
Having outlined our formal ontology model, the next chapter introduces the 
core topic of the book, i.e. ontology learning from text. 



Ontology Learning from Text 

In this section, we introduce ontology learning and in particular ontology learn­
ing from text. Further, we systematically organize the different ontology learn­
ing tasks in several layers and formally define them with respect to the on­
tology model presented in Chapter 2. After giving a short overview of the 
state-of-the-art with respect to the different tasks, we describe the structure 
and scope of this book. 

Whereas ontologies formally specify a domain model, the extensional part 
is provided by a knowledge base that contains assertions about instances of 
concepts and relations as defined by the ontology (compare Section 2). The 
(semi-) automatic support in constructing an ontology is typically referred to 
as ontology learning. 

The term ontology learning was originally coined by Alexander Madche 
and Steffen Staab [Madche and Staab, 2001] and can be described as the ac­
quisition of a domain model from data. It is historically connected to the 
Semantic Web, which builds on ontology models or logic formalism restricted 
to decidable fragments of first-order logic, in particular description logics 
[Staab and Studer, 2004]. Thus, the domain models to be learned are also 
restricted in their complexity and expressivity. 

Obviously, ontology learning needs input data from which to learn the 
concepts relevant for a given domain, their definitions as well as the relations 
holding between them. One crucial requirement is thus that the input data is 
representative for the domain one aims to learn an ontology for. Input data can 
be schemata such as XML-DTDs, UML diagrams or database schemata. We 
call this sort of ontology learning lifting [Volz et al., 2003] as it mainly consists 
of 'lifting' or mapping definitions from the schema to corresponding ontological 
definitions. Ontology learning can also be performed on the basis of semi-
structured sources such as XML or HTML documents or tabular structures 
(compare [Pivk et al., 2005]). In case ontology learning is performed on the 
basis of unstructured textual resources, we will speak of ontology learning 
from text. 
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/ ^ , 

Fig. 3.1. Ontology learning from text as a reverse engineering task 

Ontology learning can be regarded to some extent as a process of reverse 
engineering (compare Figure 3.1). The author of a certain text or document 
has a world or domain model in mind which he shares to some extent with 
other authors writing texts about the same domain. This implicit domain 
model, among many other factors such as the intended message, shapes the 
content of the resulting text. The task of reconstructing the world model of 
the author or even of the model shared by different authors can thus be seen 
as one of reverse engineering. The task is inherently complex and challenging 
mainly due to two reasons. First of all, there is typically only a small part 
of the authors' domain knowledge involved in the creation process, such that 
the process of reverse engineering can, at best, only partially reconstruct the 
authors' model. Second, and much more important, world knowledge - unless 
we are considering a text book or dictionary - is rarely mentioned explicitly. 
Brewster et al. [Brewster et al., 2003], for example, have argued that text 
writing and reading is in fact a process of background knowledge maintenance 
in the sense that basic domain knowledge is assumed, and only the relevant 
part of knowledge which is the issue of the text or article is mentioned in a 
more or less explicit way. In fact, world knowledge is typically contained only 
implicitly in texts in the way certain words or linguistic structures are used 
by the writers. 

This is very related to the principle underlying the so called meaning 
triangle, which illustrates that in every language (formal or natural) there 
are symbols which need to be interpreted as evoking some concept as well as 
referring to some concrete individual in the world. The meaning triangle in 
Figure 3.2 is derived from Sowa [Sowa, 2000b] and illustrates this principle 
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Concept 

Yojo 
Object Symbol 

Fig. 3.2. Meaning triangle taken from Sowa [Sowa, 2000b] 

with the string Yojo. For persons with the appropriate contextual information, 
this string evokes the concept of a cat and furthermore denotes a specific cat 
in the world. This corresponds to the sense (Sinn) and reference (Bedeutung) 
distinction introduced by Prege [Prege, 1892]. Ontology learning from text 
thus deals with uninterpreted symbols or signs for which the appropriate sense 
needs to be identified as some sort of reverse engineering, i.e. contrary to the 
direction by which these symbols are produced. 

The process of learning the extensions for concepts and relations is com­
monly referred to as ontology population. Further, we will speak of knowledge 
markup or annotation if the population is done by selecting text fragments 
from a document and assigning them to ontological concepts such as in the 
OntoMat Annotizer framework [Handschuh et al., 2001]. 

A large collection of methods for ontology learning from text have been de­
veloped over recent years. Unfortunately, there is not much consensus within 
the ontology learning community on the concrete tasks, which makes a com­
parison of approaches difficult. It is therefore one goal of this book to con­
tribute to a better understanding of the ontology learning tasks and help to 
develop metrics and benchmarks to compare research in this field. 

In order to discuss the state-of-the-art in ontology learning, we first need 
to establish the subtasks that together constitute the complex task of ontology 
development (either manual or with any level of automatic support). Ontol­
ogy development is primarily concerned with axiomatizing the definition of 
concepts as well as the relationships between them. For some applications of 
ontologies in text mining or natural language processing as well as for the 
purpose of human readability, it is also important to connect concepts and 
relations to the symbols that are used to refer to them. In our case this im­
plies the acquisition of linguistic knowledge about the terms that are used to 
refer to a specific concept and potential synonyms of these terms. An ontol­
ogy further consists of a concept hierarchy as well as other, non-hierarchical 
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relations. In order to constrain the interpretation of concepts and relations, 
axiom schemata such as disjointness for concepts as well as symmetry, reflex-
ivity, transitivity, etc. for relations can be instantiated. Finally, one is also 
interested in using an ontology to derive facts that are not explicitly modeled 
in the knowledge base but can be derived from it. For this purpose, logical 
axioms modeling implications between concepts and relations can be defined. 
All the above described ontological primitives can be organized in a layer cake 
according to the increasingly complex subtasks within ontology learning to ac­
quire them. This layer is shown in Figure 3.3. We will refer to this layer cake 
as the ontology learning layer cake. The layer shows the different subtasks of 
learning an ontology, i.e. 

• acquisition of the relevant terminology, 
• identification of synonym terms / linguistic variants (possibly across lan­

guages), 
• formation of concepts, 
• hierarchical organization of the concepts (concept hierarchy), 
• learning relations, properties or attributes, together with the appropriate 

domain and range, 
• hierarchical organization of the relations (relation hierarchy), 
• instantiation of axiom schemata, 
• definition of arbitrary axioms. 

In most cases, the layers conceptually build one upon another in the sense 
that the processes within higher layers rely on the output of processes situated 
at lower layers, i.e. concepts can only be ordered hierarchically if appropriate 
concepts have already been formed. However, from a processing point of view, 
the tasks within different layers can be grouped together and performed by 
one and the same algorithm. As we will see in later chapters of the book, there 
are algorithms such as Formal Concept Analysis which discover concepts and 
order them hierarchically at the same time. 

For illustration purposes. Figure 3.3 includes some concrete examples from 
the domain of geography on the left of each layer. Within the terminology 
acquisition step, we would find relevant terms such as river, country, na­
tion, city, capital. At the synonym discovery step, we might group together 
nation and country as in certain contexts they are synonyms. This group 
of synonyms might then provide the lexicon Refc for the concept country 
:=< i(country),|country],i?e/c(country) > with an intension z(country) and 
its extension [country]. The intension might for example be specified as 'area 
of land that forms a politically independent unit'. Further, we could learn a 
concept hierarchy between the concepts acquired. For the geographical do­
main, we might learn that capital <c city, city <c Inhabited GE, etc. In addi­
tion, we might learn relations together with their domain and range such as 
the flow-through relation between a river and a GE. As defined in our ontology 
model, relations can also be ordered hierarchically. We might for example learn 
that the capitaLof relation is a specialization of the located_in relation. At the 
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Vx (countiy(x) -> 3y capitaLof(y,x) A Vz(capital_of(z,x) ^ y = z)) ! General AxiomS 

disjoint(nver,mountain) Axiom Schemata 

capitaLof <^ locatedJn Relation Hierarchy 

now_through(dom: river, range: GE) Relations 

capital <c city, city <<, Inhabited GE Concept Hierarchy 

c := country := (i(c), j|c|, Ref̂  (c)) Concepts 

{country, nation} i Synonyms 

river, country, nation, city, capital,... i Terms 

Fig. 3.3. Ontology learning layer cake 

axiom schema instantiation level, we might derive that river and mountain are 
disjoint concepts. Finally, we also might derive more complex relationships 
between concepts and relations in the form of axioms. The rule in Figure 3.3, 
for example, says that every country has a unique capital. 

As mentioned at the beginning, one aim of this chapter is to provide a 
systematic organization and formalization of ontology learning subtasks with 
respect to our ontology model. In what follows, we provide such a formalization 
which will serve as the basis for the definition of ontology learning evaluation 
measures in the rest of the book. 

3.1 Ontology Learning Tasks 

In this section, we describe the different ontology learning subtasks along the 
lines of the ontology learning layer cake. 

3.1.1 Terms 

Term extraction is a prerequisite for all aspects of ontology learning from 
text. Terms are linguistic realizations of domain-specific concepts and are 
therefore central to further, more complex tasks. The task here is to find 
a set of relevant terms or signs for concepts and relations, i.e. Sc and SR 
which are characteristic for the domain as represented in the underlying text 
collection and which will provide the basis in order to define a lexicon for an 
ontology as described in Section 2. From a linguistic point of view, terms are 
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either single words or multi-word compounds with a very specific, possibly 
technical meaning in a given context or domain. Our definition of term is 
slightly more general in the sense that we will refer to any single word or 
multi-word compound relevant for the domain in question as a term. Thus, 
the input to this task is a collection of documents representing the domain of 
interest, while output is a set of strings Sc and SR representing terms which 
will be used as signs for concepts and relations, respectively. 

3.1.2 Synonyms 

The task of synonym discovery consists in finding words which denote the 
same concept and which thus appear in the same set Refcic) for a given 
concept c. To some extent, these elements can be regarded as synonyms. It 
is well known that real synonyms hardly exist, as there are subtle differences 
even between words which are commonly considered as such. Thus, our defini­
tion of synonymy is less strict. We will regard two words as synonyms if they 
share a common meaning which can be used as a basis to form a concept rel­
evant for the domain in question. This definition corresponds to the synsets 
in WordNet [Fellbaum, 1998]. Note that there is thus a significant overlap 
between our definition of synonymy and the lexical relation of cohyponymy. 
Cohyponymy is typically defined as the relation between hyponyms of a com­
mon hypernym, i.e. the descendants of a word in a thesaurus. It is important 
to mention that synonymy, cohyponymy, hypernymy as well as hyponymy are 
lexical relations which can not be seen as equivalent to the notions of equality, 
sibling, superconcept and subconcept relations between concepts, which are 
defined extensionally. Lexical relations are defined on the level of words. For 
a more detailed definition of these lexical relations consult Section 4.1.8. 

3.1.3 Concepts 

In our view, concept formation should ideally provide (i) an intensional defini­
tion of concepts, (ii) their extension and (iii) the lexical signs which are used to 
refer to them [Buitelaar et al., 2006]. Thus, for the purpose of ontology learn­
ing we define a concept as a triple < i(c), |c|,i?e/c?(c) > where i{c) is the 
intension of the concept, |c] its extension and Refc describes its lexical real­
ization in a corpus. The lexicon can also contain more complex structures en­
riched with statistical information as described by Buitelaar [Buitelaar, 2000] 
or even parse trees, subcategorization frames, etc. Though there is no ex­
plicit definition of an intension within the model described in Section 2, we 
will assume an intension to be a natural language description of the intuitive 
meaning of a concept in line with the glosses in WordNet [Fellbaum, 1998] or 
a collection of attributes in line with the theory of Formal Concept Analysis 
(see Section 4.2). 
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3.1.4 Concept Hierarchies 

In what follows, we present tasks related to inducing, extending and refining 
the ontology's backbone, i.e. its concept hierarchy. 

Definition 9 (Concept Hierarchy Induction) We define concept hierar­
chy induction as the task of, given a set of concepts C, typically together with 
their lexical realization Refc, learning pairs (cj, Cj) where Ci, Cj 6 C such that 
<c= [Jij{{ci,Cj)} forms a semi-upper lattice. The task here is thus to induce 
a concept hierarchy from scratch. 

Starting from a set of concepts C :={city, mountain, river, country, capital, 
. . .} , the task here would be to derive a relation <c mirroring, for example, 
the concept hierarchy depicted in Figure 2.1. 

Definition 10 (Refinement) We define concept hierarchy refinement as 
the task of, given a set of concepts C as well as a semi-upper lattice <c on 
C, learning pairs {ci,c) such that c e C. The refined hierarchy C := C\J^Ci 
and <G'—<c UUi{(c8,c)} should still form a semi-upper lattice iC',<c'). 
The task here is to extend the existing concept hierarchy with additional sub-
concepts of already existing concepts, thus refining the hierarchy. Note that 
refinement is defined monotonically here. 

As a result of a refinement, we could, for example, add the tuple (valley, 
Natural GE) to the concept hierarchy <c depicted in Figure 2.1. 

Definition 11 (Lexical Extension) We define lexical extension or lexical 
refinement of a concept hierarchy as the task of, given a concept c together 
with its lexical reference function Refc (c), finding new lexical realizations Si 
of the concept c, thus extending Refc{c), i.e., RefQ{c) := Refc{c) Ui{*«}-

As a result of lexical extension, we would, for example, add the term 'creek' 
to the set i?e/c(river). 

3.1.5 Relations 

In the context of the work described in this book, we will restrict ourselves to 
binary relations and define relation learning as the task of learning relation 
identifiers or labels r as well as their appropriate domain dom(r) and range 
range(r). In fact, the following three tasks can be distinguished here: 

• finding concepts in C standing in some non-taxonomic ontological relation, 
• specifying R, i.e. finding appropriate labels and relation identifiers on the 

basis of the given corpus, 
• given a certain relation r £ R, determining the right level of abstraction 

with respect to the concept hierarchy for the domain and range of the 
relation, 

• learning a hierarchical order <ii between the relations in R. 
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3.1.6 Axiom Schemata Instantiations 

Concerning the axiomatic definition of concepts and relations, the aim of 
ontology learning is not to learn the axiom schemata itself. We assume the 
existence of some £-axiom system, defining axiom schemata which are of­
ten used in ontology engineering and therefore deserve a special status. For 
concepts we have, for example, disjointness or equivalence axioms, while for 
relations we have axioms describing the properties of the relation, i.e. transi­
tivity, symmetry, etc. The task here is thus to learn which concepts, relations 
or pairs of concepts the axioms in our system apply to, i.e. we may want to 
learn which pairs of concepts are disjoint, which relations are symmetric, the 
minimal and maximal cardinality of a relation, etc. However, we will not be 
concerned with this problem in the context of the book. 

3.1.7 General Axioms 

The situation is different for the task of learning general axioms, in which the 
axioms themselves have to be learned and not merely instantiated. Here the 
type of axioms strongly depends on the logical formalism used in the back­
ground. General axioms can be thought of as logical implications constraining 
the interpretation of concepts and relations. They differ from axiom schemata 
in that they do not occur as frequently and therefore deserve no special status. 
The task of learning axioms can thus be understood as consisting in deriving 
more complex relationships and connections between concepts and relations. 
These axioms can then be represented, for example, using the Horn-fragment 
of first-order logic. As we are not concerned with the automatic acquisition 
of general axioms, we will not specify the form of such rules any further as it 
heavily depends on the underlying knowledge representation formalism used. 

3.2 Ontology Population Tasks 

Ontology population consists in learning the extensional aspects of a do­
main. In particular, the aim is to learn instances of concepts as well as re­
lations. Hereby, an instance-of relation is the set-membership relation be­
tween an instance i £ I and the set ic(c) of some concept c, i.e. instance-
of («,c) o J 6 ic(c). A similar definition holds for relation instantiation: 
instance-ofii((ii,i2),r) •H' (ii,«2) € <-fl(r). The tasks within ontology popu­
lation are thus to learn instance-of and instance-ofn relations. More specifi­
cally, if an ontology is populated by (i) keeping a link to the text in which 
the instances were found as well as by (ii) contextualizing the assignment to 
a concept or relation with respect to the context specified by the document 
or text in question, we will speak about knowledge markup or annotation. 
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3.3 The State-of-the-Art 

Given the ontology learning layer cake as discussed above, we can take a closer 
look at the state-of-the-art in this field. We first examine it layer by layer and 
finally draw some general conclusions. 

3.3.1 Terms 

The literature provides many examples of term extraction methods that 
could be used as a first step in ontology learning from text. Most 
of these are based on information retrieval methods for term index­
ing [Salton and Buckley, 1988], but many are inspired by terminology and 
NLP research (see [Prantzi and Ananiadou, 1999], [Borigault et al., 2001], 
[Pantel and Lin, 2001]). 

Term extraction implies more or less advanced levels of linguistic process­
ing, i.e. phrase analysis to identify complex noun phrases that may express 
terms and dependency structure analysis to identify their internal structure. 
As such parsers are not always available, much of the research on this layer 
in ontology learning has remained rather restricted. The state-of-the-art is 
mostly to run a part-of-speech tagger over the domain corpus used for the 
ontology learning task and then to identify possible terms by manually con­
structing ad-hoc patterns. In order to identify only relevant term candidates, 
a statistical processing step may be included that compares the distribution 
of candidates between corpora using for example a x^ test or similar (compare 
Section 4.1.6). 

3.3.2 Synonyms 

Most research has tackled acquisition of synonyms by clustering and re­
lated techniques, in particular exploiting Harris' hypothesis that words 
are semantically similar to the extent to which they share linguistic 
contexts [Harris, 1968]. Examples for such an approach can be found 
in the work of Grefenstette [Grefenstette, 1994]. In very specific do­
mains, some researchers have exploited integrated approaches to word 
sense disambiguation and synonym discovery (compare [Turcato et al., 2000], 
[Buitelaar and Sacaleanu, 2002] and [Navigli and Velardi, 2004]). 

An important technique for synonym discovery is certainly LSI (Latent 
Semantic Indexing) [Landauer and Dumais, 1997], PLSI (Probabilistic Latent 
Semantic Indexing) [Hofmann, 1999] or other variants, which essentially re­
duce the dimension of standard text representation models such as the bag-
of-words-model, thus leading to the discovery of strongly correlated groups of 
terms. 

Currently, there seems to be a trend to use statistical information measures 
defined over the web in order to detect synonyms (compare [Turney, 2001] 
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and [Baroni and Bisi, 2004]). In general, the research on synonym discov­
ery is relatively mature and has been shown to achieve a human com­
parable performance on the TOEFL synonyms selection tasks (compare 
[Landauer and Dumais, 1997] and [Turney, 2001]). 

3.3.3 Concepts 

The extraction of concepts from text is not only a very difficult prob­
lem, but also a very controversial one as it is not clear what con­
cept extraction is supposed to be. Some researchers have addressed 
the question from a clustering perspective and considered clusters of 
related terms as concepts (see [Hindle, 1990], [Lin and Pantel, 2001c], 
[Lin and Pantel, 2002] or [Reinberger and Spyns, 2005]). Again, very promis­
ing in this context seem approaches applying dimension reduction tech­
niques such as described by Schiitze [Schiitze, 1993] or Landauer and Dumais 
[Landauer and Dumais, 1997] and which reveal inherent connections between 
words, thus leading to group formation. In fact, LSI-based techniques are 
especially interesting as they run into fewer data sparseness problems than 
approaches relying on raw data. Actually, there is a great overlap between 
techniques used for synonym and concept detection which is due to the fact 
that both tasks typically aim at discovering semantically similar words which 
share some meaning. In the case of synonym discovery, the semantically sim­
ilar words are regarded as potential candidates for synonyms. In the case of 
concept formation, they provide the basis for creating concepts. 

Other researchers have addressed concept formation from an extensional 
point of view. Evans [Evans, 2003], for example, derives hierarchies of named 
entities from text, thus also discovering concepts from an extensional point 
of view. The Know-It-All system [Etzioni et al., 2004a] also aims at learning 
the extension of given concepts, such as, for example, all the actors appear­
ing on the Web. In the approach of Evans [Evans, 2003], the concepts as 
well as their extensions are thus derived automatically, while Etzioni et al. 
[Etzioni et al., 2004a] essentially learn the extension of existing concepts. 
Finally, other systems learn concepts intensionally. The OntoLearn system 
[Velardi et al., 2005], for example, derives WordNet-like glosses for domain-
specific concepts on the basis of a compositional interpretation of the meaning 
of compounds. 

3.3.4 Concept Hierarchies 

There are currently three main paradigms exploited to induce concept hier­
archies from textual data. The first one is the application of lexico-syntactic 
patterns indicating the relation of interest in line with the seminal work of 
Hearst [Hearst, 1992]. However, it is well known that these patterns occur 
rarely in corpora. Thus, though approaches relying on lexico-syntactic pat­
terns have a reasonable precision, their recall is very low. Other approaches 
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exploit the internal structure of noun phrases to derive taxonomic relations 
[Buitelaar et al., 2004]. 

The second paradigm is based on Harris' distributional hypothe­
sis. In this line, researchers have mainly exploited hierarchical cluster­
ing algorithms to automatically derive concept hierarchies from text (see 
[Faure and Nedellec, 1998], [Bisson et al., 2000] and [Cimiano et al., 2004c]). 
In general, clustering approaches typically accomplish two tasks in one: con­
cept formation and concept hierarchy induction. This is due to the fact that, 
on the one hand, they create clusters or groups of similar words, which can 
be regarded as representing concepts to some extent, and further order these 
clusters hierarchically. 

The third paradigm relies on the analysis of co-occurrence of terms 
in the same sentence, paragraph or document. Sanderson and Croft 
[Sanderson and Croft, 1999], for instance, have presented a document-based 
notion of subsumption according to which a term ti is more specific than a 
term t2 if 2̂ appears in all document in which ii occurs. 

Sections 6.1 and 6.5 contain a much more detailed description of related 
work and the state-of-the-art in the field of automatic concept hierarchy in­
duction from text. We conclude this section by noting that, while a lot of re­
search has been devoted to develop approaches exploiting the different learning 
paradigms, little eflFort has been spent on systematically comparing and eval­
uating different approaches based on one paradigm, as well as on combining 
techniques from different paradigms. 

3.3.5 Relat ions 

There have only been a few approaches addressing the issue of learning on-
tological relations from text. One of the first was the work of Madche and 
Staab [Madche and Staab, 2000], in which a variant of the association rules 
extraction algorithm based on sentence-based term co-occurrence is presented 
(see Section 7.5 for more details). 

The use of syntactic dependencies has been, for example, proposed 
by Gamallo et al. [Gamallo et al., 2002]. To our knowledge, the only ap­
proaches to generalize the relations based on syntactic dependencies with 
respect to an underlying concept hierarchy are the ones of Madche and 
Staab [Madche and Staab, 2000] and more recently also of Ciaramita et 
al. [Ciaramita et al., 2005]. The problem is very related to the task of 
acquiring selectional restrictions for verbs at the right level of abstrac­
tion (compare [Resnik, 1993, Ribas, 1995, Clark and Weir, 2002]). In gen­
eral, it seems that the current approaches to relation extraction, e.g. 
[Madche and Staab, 2000], [Gamallo et al., 2002], [Ciaramita et al., 2005] or 
[Schutz and Buitelaar, 2005] have only scratched at the surface of the prob­
lem. Sections 7.1 and 7.5 discuss the state-of-the-art in learning relations in 
much more detail. 
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3.3.6 Axiom Schemata Instantiation and General Axioms 

Initial blueprints for the task of learning instantiations of axiom schemata can 
be found in the work of Haase and Volker [Haase and Volker, 2005]. They 
present an approach to learn instantiations of the disjointness axiom schema. 
The approach is based on the assumption that, if terms appear coordinated 
in an expression such as 'men and women', they are likely to be disjoint. 

The extraction of general axioms is probably the least researched 
area in the context of ontology learning. Shamsfard and Barforoush 
[Shamsfard and Barforoush, 2004] have suggested deriving axioms from quan­
tified conditional expressions such as 'Every man loves a woman'. With re­
spect to learning implications between relations, which can be used as a basis 
to define general axioms, Lin and Pantel [Lin and Pantel, 2001a] have shown 
that one can also find similar dependency tree paths. Some of the extracted 
similarities correspond to inverse relations such as author.of and written-by, 
which could be used to axiomatize the meaning of some relation. 

The recent PASCAL textual entailment challenge^ represents a very re­
lated problem. In fact, this challenge has strongly increased the awareness 
of the problem of deriving lexical entailment rules and led many researchers 
to address the problem, so that a plethora of approaches to tackle the prob­
lem of learning ontological rules from text corpora can be expected in the 
near future. Provided there would be enough explicitly given training data, 
one could also apply techniques from inductive logic programming (ILP) 
[Lavrac and Dzeroski, 1994] to the task of deriving Horn-like rules from a 
dataset. 

3.3.7 Population 

The task of populating an ontology is very related to the named entity recog­
nition (NER) and information extraction (IE) tasks. 

Information extraction (IE) consists of filling a predefined set of target 
knowledge structures - commonly referred to as templates - by applying nat­
ural language processing techniques. Historically, the information extraction 
task has been linked to the Message Understanding Conferences (MUC) which 
provided datasets based on which different systems can be compared. The task 
in MUC-7 was to spot management succession events in newswire articles, 
for example. Recently, the information extraction community has emphasized 
the adaptivity of systems and focused on the automatic induction of extrac­
tion rules in a supervised manner (compare [Preitag and Kushmerick, 2000, 
Muslea et al., 2001, Ciravegna, 2001, Sigletos et al., 2003]). In general, this 
has led to a simplification of the extraction tasks such as in the so called sem­
inar announcements task, in which the location, speaker, topic, date, start and 
end time of a seminar have to be extracted. In general, many researchers have 

' http://www.pEiscal-network.org/Challenges/RTE/ 
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considered what is now referred to as single-slot information extraction, i.e. 
filling certain attributes of one instance of a given template. These systems 
are neither capable of extracting more than one template type nor several 
instances of the type in question, i.e. they rely on what could be called the 
one-template-type-and-occurrence-per-document assumption. Recently, there 
has been work addressing the learning from relational data, thus leading to 
the possibility of identifying multiple instances of a given relation (compare 
[Iria, 2005]). 

Named entity recognition consists in finding instances of a certain con­
cept in texts, where the set of relevant concepts is typically restricted to 
person, location and organization. However, recently more classes have been 
added in the context of the ACE framework^. Some researchers have fur­
ther considered named entity recognition from a more general perspective. 
Evans [Evans, 2003], for example, considers a totally unsupervised approach 
in which the classes or concepts themselves are derived from the underlying 
text collection. 

In general, research in information extraction and named entity recogni­
tion has been so far limited on a few classes of named entities as well as 
templates consisting of only a few slots. When moving to larger numbers of 
classes or slots to extract as specified by an ontology, current techniques face 
a serious scalability problem. Supervised approaches are especially affected by 
this problem as it is unfeasible to assume training data in the magnitude of 
hundreds of tagged examples. 

3.4 Contribution and Scope of the Book 

After having discussed the current state-of-the-art in ontology learning, we 
will now describe the contribution and scope of the book. But first of all, let 
us take stock and reflect on the current state-of-the-art. We have seen that 
there has already been a lot of work with respect to concept formation and 
concept hierarchy induction. However, on the one hand, we observe that there 
has not been much comparative work systematically analyzing different tech­
niques and algorithms. Such a systematic analysis is however indispensable 
for ontology engineers needing guidelines about what learning techniques to 
apply for which purpose. On the other hand, there is almost no work aiming at 
combining different learning paradigms. However, as ontology learning from 
text is a highly error-prone process, it seems clear that the success of ontology 
learning from text lies exactly in the combination of different techniques to 
compensate for each other's erroneous predictions, thus increasing the overall 
accuracy. We summarize the main contributions and the scope of the book in 
the following. 

^ http://www.itl.nist.gov/iad/894.01/tests/ace/ 
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Comparison and Combination of Techniques 

We address both of the above issues in Chapter 6. Section 6.2 addresses 
the lack of comparative work in the field of concept hierarchy induction by 
defining an evaluation methodology and systematically comparing different 
clustering approaches with respect to the defined methodology. Furthermore, 
the book also presents innovative approaches to combine different learning 
paradigms examining, on the one hand, an approach in which an agglom-
erative clustering algorithm is guided by taxonomic relations extracted by 
other means, for example by applying lexico-syntactic patterns as defined by 
Hearst [Hearst, 1992]. This approach is elaborated in detail in Section 6.3. On 
the other hand, we also exploit a machine-learning approach to weight the 
evidences contributed by different paradigms. This approach is discussed in 
detail in Section 6.4. 

Learning Relations 

Our discussion of the state-of-the-art has also shown that there has not been 
much work on the acquisition of relations. In this book, we advance the state-
of-the-art in three respects by developing novel approaches to learn attributes, 
determining the appropriate domain and range for relations with respect to 
a given concept hierarchy and deriving specific relations frequently occurring 
in any ontology. These approaches are described in Chapter 7. In particular, 
we describe an approach to learn attributes on the basis of the analysis of 
the adjectival modification of nouns (see Chapter 7.2). In Section 7.3, we 
examine different statistical measures for the task of finding the right level of 
abstraction when specifying the domain and range of a relation with respect 
to a given concept hierarchy. In Section 7.4, an approach to automatically 
learning so called qualia structures from the Web is described. This approach 
can be seen as a basis for learning a specific set of relations related to the 
purpose, origin as well as components of a given object. 

Population of Ontologies 

Concerning the population of ontologies, it has become clear from our dis­
cussion of the state-of-the-art that current methods do not scale to large 
numbers of concepts as specified within an ontology. The main aim of this 
book is to tackle this issue and present methods which are able to clas­
sify named entities appearing in texts with respect to hundreds of ontologi-
cal categories. We discuss these approaches in Chapter 8. Two different ap­
proaches addressing this task are presented. Section 8.2 presents an unsuper­
vised corpus-based approach in which instances are assigned to the concept 
sharing the most similar context, thus relying on some sort of memory-based 
learning [Daelemans et al., 1999b]. In particular, the focus is to explore the 
influence of different parameters and further extensions of such a similarity-
based approach. Section 8.3 presents a learning paradigm called Learning by 
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Googling as well as a concrete instantiation of this paradigm called PANKOW 
(Pattern-based Annotation through Knowledge on the Web). The core idea of 
PANKOW is to match lexico-syntactic patterns on the WWW using a stan­
dard search engine. The results of these patterns are then aggregated to find 
an appropriate concept for a given instance. In this way, semantic annota­
tions are approximated by analyzing the occurrences on the Web of certain 
syntactic structures indicating a semantic relation of interest. 

Each of the above described main chapters 6, 7 and 8 are structured in the 
same way, giving first an overview of the common approaches applied to the 
task in question. Then, each chapter presents the methods developed. After 
describing other related approaches, each of these chapters concludes with a 
summary of the contributions and a brief discussion of open issues. 

Applicat ions 

As already mentioned in the introduction, there is also a lack of task-based 
evaluation of ontologies. This lack is even clearer with respect to the evalua­
tion of the benefit of ontology learning techniques for certain applications. In 
fact, it is our belief that the full benefit of ontologies for certain applications 
will only unleash if we have a set of techniques for automatically learning 
ontologies available, allowing to experiment with different parameters and to 
tune the learned ontologies for the application of interest. In this line, we 
address the task-based evaluation of ontologies and discuss applications for 
automatically learned ontologies within document clustering and classification 
tasks in Chapter 9, Section 9.1. We also discuss the application of methods for 
automatically populating an ontology in the context of information retrieval 
tasks (compare Section 9.2). 

Formalizat ion of Tasks 

Last but not least, describing the different approaches and corresponding eval­
uation measures requires a formalization of the ontology model and the dif­
ferent ontology learning tasks. The formalization of the ontology model in 
Chapter 2 and of the ontology learning tasks presented in this chapter also 
represent an important contribution to the field. We hope in this line that our 
formalization might foster agreement within the ontology learning community. 

Scope 

In general, the book is mainly concerned with algorithmic and methodi­
cal aspects of ontology learning as well as with their evaluation and ap­
plication. It completely neglects methodological issues related to the ap­
plication of ontology learning techniques within knowledge acquisition or 
knowledge engineering processes. For this reason, it does not address very 
important conceptual, technical and legal issues involved in the acqui­
sition of relevant documents for a certain domain. It also glosses over 
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methodological aspects concerned with the integration of ontology learn­
ing into a concrete knowledge engineering methodology such as the ones 
presented in [Uschold, 1996], [Holsapple and Joshi, 2002], [Sure, 2003] and 
[Pinto et al., 2004]. Work addressing methodological issues can be found, for 
example, in [Aussenac-Gilles et al., 2000], [Madche, 2002] or [Park, 2004]. 

The book is not concerned with philosophical, psychological or cognitive 
aspects related to knowledge representation, ontologies or ontology learning. 
It is neither concerned with the philosophical, psychological or cognitive issues 
related to the representation, definition or acquisition of concepts or knowl­
edge in general. The interested reader is referred to Fodor [Fodor, 1998]. It 
does neither deal with philosophico-linguistic aspects of ontology learning from 
text nor with the inherent relation between language and ontology. We refer 
the interested reader to the work of Bateman [Bateman, 1995] as a starting 
point for further research. 



Basics 

In this chapter, we review basic formalisms and techniques which are necessary 
for the understanding of the remaining chapters of the book. First, we give an 
overview of the natural language processing techniques applied in the context 
of the experiments reported. In particular, we show how such techniques can 
be applied to extract features on the basis of which to describe and cluster 
words. Second, we introduce the theory of Formal Concept Analysis (FCA), 
which will be applied for different purposes in the remainder of the book. 
Finally, we also give a short description of the machine learning techniques 
used. 

4.1 Natural Language Processing 

Natural language is the primary medium by which humans communicate with 
each other, asking questions, expressing beliefs, desires, attitudes and com­
mands as well as reporting events, actions and states. In general, different 
syntactic categories are used to refer to different types of ontological entities. 
Proper nouns are, for example, typically used to refer to individuals. Verbs in 
general express beliefs, attitudes, events, actions, states or commands, whereas 
nouns can be regarded as referring to classes. Determiners are typically used 
to pick out a set of members of a certain class, which does not always need 
to be concrete. Given a certain noun, say 'man', 'every man' would, for ex­
ample, refer to all the members of the class man, 'a man' would refer to one 
non-specified element, 'some men'would refer to some non-specified subset of 
the class, while 'the man' would refer to one contextually unique man. Ad­
jectives typically modify nouns and in general can be regarded as specifying 
the value of some attribute of the corresponding class. 'Green car', for ex­
ample, states that the value of the attribute color of the car in question is 
'green'. Finally, adverbs modify verbs and describe the manner in which a cer­
tain event, action or state takes place, while prepositions followed by a noun 
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pKrase typically add some spatio-temporal conditions describing the modified 
entity represented by the noun or verb phrase. 

Roughly speaking, we can distinguish between the following syntactic cat­
egories in natural language together with the type of entities they typically 
refer to: 

verbs 
proper nouns 
nouns 
adjectives 
adverbs 
prepositional phrases 

events, states, actions, beliefs, attitudes, etc. 
individuals 
classes 
class attribute values 
description of manner 
spatio-temporal conditions 

It is important to mention that the above classification has to be regarded 
as a very rough one. Indeed, there are many exceptions to all of the above 
prototypical cases. Nouns can, for example, also denote events as in the killing 
of John F. Kennedy. Adjectives can also be non-attributive such as in the 
alleged criminal. However, as a rough approximation the classification can be 
seen as adequate for the purposes of the present work. 

We have mentioned before that nouns can to some extent be seen as refer­
ring to classes of individuals. Therefore, adjectives and prepositional phrases 
modifying them, as well as verbs relating them should tell us something about 
the nature of these classes. Attributive adjectives, for example, tell us about 
which attributes the members of the class represented by the modified noun 
typically have. The expression 'green car', for instance, tells us that the mem­
bers of a class of entities denoted by 'car' have a color. Verbs also tell us 
a lot about the actions which can be performed with certain classes of en­
tities. The sentence 'A man eats a cake', for example, tells us that the ac­
tion denoted by 'eat' can be performed on members of the class denoted by 
'cake' by members of the class denoted by 'man'. This observation corre­
sponds to what computational linguistics have called selectional restrictions 
[Ribas, 1995, Resnik, 1997, Clark and Weir, 2002]. Selectional restrictions can 
be seen as conditions specifying the type of classes to which certain verbs or 
adjectives are applicable. 

We can conclude that certain natural language expressions provide us a 
lot of information about the nature of classes denoted by nouns. In the work 
presented here, we heavily exploit this observation with respect to the task 
of learning and populating ontologies on the basis of textual data. For this 
purpose, we need techniques to automatically process natural language. In the 
work described in this book we mainly make use of shallow text processing 
as well as statistical natural language processing techniques. The techniques 
applied are described in the following sections. For further details, the in­
terested reader is referred to the introductions to natural language process­
ing of Allen [Allen, 1995], Jurafsky and Martin [Jurafsky and Martin, 2000] 
and Carstensen et al. [Carstensen et al., 2004] (in German), as well as to 
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Fig. 4.1. Standard NLP pipeline 

the book on statistical natural language processing by Manning and Schiitze 
[Manning and Schiitze, 1999]. 

4.1.1 Preprocessing 

Natural language processing typically consists of the sequential application of 
different analysis components in a pipeline architecture as depicted in Figure 
4.1. After the so-called preprocessing step, natural language processing systems 
typically produce a syntactic analysis of the input and perform a semantic 
analysis on the basis of the syntactic structure yielding a logical form (LF) of 
the input (compare [Allen, 1995]). The contextual interpretation component 
then interprets the logical form with respect to the context in question and 
taking into account pragmatic factors, that is, factors related to the intended 
meaning of the input. We will understand the preprocessing step rather loosely 
and regard it as consisting of the following substeps (not necessarily applied 
in this order): 

• tokenization and normalization 
• part-of-speech (POS) tagging 
• lemmatization / stemming / morphological analysis 
• named entity recognition (NER) 
• coreference resolution 

The purpose of the tokenization step is to detect sentence as well as word 
boundaries. Problems here are, for example, punctuation signs such as periods, 
which can either denote the end of a sentence, the end of an abbreviation such 
as 'Ltd.', or can be used in the specification of dates, times, telephone numbers, 
ordinal numbers, etc. A further problem is that blanks do not always indicate 
word boundaries as it is the case for many named entities such as New York. 
Thus it would sometimes be useful to apply named entity recognition (see 
below) before actually performing tokenization. 

The normalization step typically consists of finding dates, times, etc. 
and transforming them into a standard format. Sometimes, normalization 
also comprises the expansion of abbreviations, for which a corresponding 
abbreviation lexicon is needed. For more details about tokenization and 
normalization the reader is referred to the book of Manning and Schiitze 
[Manning and Schutze, 1999]. 
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Part-of-speech (POS) tagging is the task of assigning to each token its 
corresponding part-of-speech, i.e. its syntactic word category such as noun, 
adjective, verb, etc. Different tagsets as well as different paradigms have 
been applied to the task. In particular, it is typically distinguished between 
so called rule- or transformation-based approaches (compare [Brill, 1994]) 
and statistical/probabilistic approaches based on Markov Models (compare 
[Jelinek, 1985], [Church, 1988] and [Charniak et al., 1993]). 

In the work presented in this book, we apply two part-of-speech taggers. 
We use TreeTagger [Schmid, 1994], which is based on decision trees (see Sec­
tion 4.3) as well as the Qtag tagger [Tufis and Mason, 1998]. It is interesting 
to note that state-of-the-art taggers such as TreeTagger achieve a tagging ac­
curacy between 95% and 97%, i.e. on average between 95 and 97 words out 
of 100 get assigned the correct syntactic category. 

We also apply a lexicon-based lemmatization approach, i.e. we look up the 
lemma for nouns and verbs in the lexicon provided with the LoPar parser (see 
below). Lemmatization is typically applied as a normalization step, mapping 
morphological variants to their corresponding baseform. In our experiments, 
we neither apply stemming, which totally removes suffixes, nor a deeper mor­
phological analysis unveiling the internal structure of words. 

Named entity recognition (NER) consists of recognizing so called named 
entities, i.e. names referring to unique objects in the world, such as Germany, 
George W. Bush, Mount Everest, Microsoft. Named entity recognition has 
been so far restricted to small numbers of classes, considering in particular 
the classes person, organization, location, date, etc. Named entity recognition 
systems first attempt to recognize and classify named entities appearing in 
a text by a look-up in so called gazetteer lists. These gazetteer lists contain 
names as well as their corresponding type, class or tag. For new named 
entities which do not appear in such gazetteer lists, obviously more sophis­
ticated approaches are needed. For this purpose, mainly supervised systems 
trained on the above mentioned classes have been used in the context of the 
information extraction contests organized under the auspices of the Message 
Understanding Conferences (MUC). We discuss the named entity recognition 
task as well as its relation to ontology population in more detail in Section 8.2. 

Coreference resolution is often also seen as a preprocessing step. However, 
here we are referring to a very simple sort of coreference, i.e. the coreference 
relation between named entities. State-of-the-art systems are for example able 
to recognize that John Adams, J. Adams and Mr. Adams refer to one and 
the same real-world entity. Other sorts of coreference relations discovered 
by anaphora resolution algorithms or complex discourse inferences such as 
described in [Cimiano, 2003, Cimiano et al., 2005d] are typically not regarded 
as a preprocessing task. We do not apply techniques to detect coreferring 
named entities. However, we apply pronoun resolution techniques to increase 
the contextual information about named entities or nouns (compare Section 
8.2). 
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4.1.2 Syntactic Analysis: Chunking 

Chunking, also called shallow or partial parsing, applies shallow processing 
techniques (typically regular expressions and finite automata) to group to­
gether words to larger syntactic and meaning-bearing constituents, typically 
with a head which is modified by other words in the unit. A head is the 
main meaning-bearing unit within a syntactic constituent. The verb is the 
main meaning-bearing unit of a verb phrase and therefore its head. The main 
meaning-bearing word within an English noun phrase is typically the right­
most noun. In 'the exciting modern art museum', 'museum' is certainly the 
main meaning-bearing word of the constituent, while the other words are es­
sentially modifiers with a meaning-restricting function. 

Syntactic units are generally called chunks. Chunks are non-overlapping, 
non-recursive, and non-exhaustive. Non-recursive means that chunks are not 
embedded within other chunks and non-exhaustive means that there may be 
words in a sentence which do not belong to a chunk. Chunkers or shallow 
parsers thus discover islands of words which build a syntactic unit. Typically, 
chunkers apply finite state technologies in so called cascades, where the out­
put of one level forms the input to the next, thus being able to reuse groups 
of words detected in earlier phases. Chunkers typically proceed by first de­
tecting the straightforward units and then proceeding to more complex ones. 
In general, chunkers do not discover grammatical relations such as subject, 
object, complementation or modification. Furthermore, they adopt a conser­
vative strategy and tend to avoid producing errors, so most of the chunkers 
available do not attempt to resolve semantic or syntactic ambiguities. Syntac­
tic ambiguities arise in case there is more than one possible syntactic structure 
for a given sentence. So called PP-attachment ambiguities arise from the fact 
that a prepositional phrase (PP) can either modify the preceding noun phrase 
or verb phrase as in 7 saw the man on the hill with the telescope', in which 'the 
telescope' could either be 'on the hill' or used as instrument for seeing. The 
obvious benefits of chunkers are in fact their robustness as well as efficiency. 
For this purpose, they are predestined for ontology learning tasks as we need 
to process large amounts of texts, and full parses are not as critical as in other 
applications, e.g. Information Extraction (IE), Machine Translation (MT) or 
Question Answering (QA) due to the statistical nature of the techniques ap­
plied. 

In the work presented here, we either use self-created very simple chunkers 
(comprising a set of regular expressions) or use Steven Abney's chunker CASS 
[Abney, 1996]. The results of CASS on the input sentence 'The man caught 
the butterfly with the net'is shown in Figure 4.2. 

It is interesting to see that, while CASS has recognized the noun phrases 
'The man', 'the butterfly' as well as the prepositional phrase 'with the net', it 
has not attempted to resolve the PP-attachment ambiguity by either attaching 
the PP to the noun phrase 'the butterfly'ov the verb phrase. 
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Fig. 4.2. Chunking produced by CASS for The man caught the butterfly with the 
net. 

4.1.3 Syntactic Analysis: Parsing 

Parsing, in contrast to chunking, aims at unveiling the full syntactic struc­
ture of a given input sentence. Syntactic structure is hereby represented us­
ing two main different paradigms: dependency grammars or phrase structure 
grammars. While syntactic dependencies are represented differently in both 
paradigms, they both aim at discovering larger coherent syntactic units of 
words, i.e. phrases, and make their dependency relations explicit. Figure 4.3 
shows a typical parse tree as produced by a phrase structure grammar for 
the sentence 'The man caught the butterfly with the net.' Notice that here the 
prepositional phrase 'with the net' is correctly attached to the verb phrase 
(VP). 

The search space for parsers is typically so large that there is no parser 
which can avoid exploring different alternatives at some stage. Furthermore, 
the larger grammars get, the more ambiguities a parser has to deal with, 
typically leading to an overwhelming number of parses per sentence. This is 
exactly the sort of complexity which is avoided when using chunk parsing. 
Most of the parsers used in the NLP community use a context-free backbone. 
An extension of context-free-grammars are so called unification grammars, 
which allow to model subcategorization as well as gender and number agree­
ment in an elegant way, without leading to the proliferation of grammar rules 
(compare [Kamp and Reyle, 1993]). Another extension are lexicalized gram­
mars, which assume a richly structured lexicon, thus being able to reduce 
the number of grammar rules by modeling certain phenomena in the lexicon. 
Examples for unification-based and lexicalized grammars are Lexical Func-
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The man VBD NP 

caught the butterfly IN NP 

with the net 

Fig. 4.3. Parse tree for The man caught the butterfly with the net. 

tional Grammar (LFG) [Bresnan, 1994] as well as Head-driven Phrase Struc­
ture Grammar (HPSG) [Pollard and Sag, 1994] or Lexicalized Tree-Adjoining 
Grammars [Joshi and Schabes, 1997]. We have used LoPar^, a statistical left-
corner parser [Graham et al., 1980] developed at the Institute for Compu­
tational Linguistics of the University of Stuttgart [Schmid, 2000]. LoPar is 
a parser for probabilistic context-free grammars (PCFGs) a well as head-
lexicalized probabilistic context-free grammars (HPCFGs). In particular, it 
produces a syntax tree corresponding to the most probable parse tree with re­
spect to the probabilities specified in the probabilistic context-free grammar. 
For details about the algorithm the interested reader is referred to Schmid 
[Schmid, 2000]. 

4.1.4 Contextual Features 

For many applications in NLP, it is crucial to represent the context of a certain 
word. This is important for word sense disambiguation, i.e. the task of finding 
the correct meaning of a word given its context (see [Ide and Veronis, 1998] 
for a detailed introduction to word sense disambiguation (WSD)). There are 
for example ambiguous words such as 'bank', which has two meanings: one in 
the sense of financial institute and one in the sense of a river bank. The correct 
meaning of such an ambiguous word can only be determined with respect to a 
certain context. Therefore, it is crucial for word sense disambiguation systems 
to represent the context of a word in some way (compare [Widdows, 2003a]). 

A lot of work has considered word window models, in which n words to 
the left and right of the target word are considered as features to describe the 
context of a term. Though this is a valid approach, it is unclear in how far 
all these words within a window indeed tell us something about the nature 

^ http://www.ims.uni-Stuttgart.de/projekte/gramotron/SOFTWARE/ 
LoPar-en.html 
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of the target word. We have seen above that there are several constructs in 
natural language conveying more information about the arguments or words 
they modify. This is the case of verbs, adjectives and prepositional phrases. 
Instead of using word windows as a basis for extracting contextual features, 
we rely on linguistic processing techniques to identify such constructs and 
transform them into appropriate contextual features describing a term. In 
what follows, we describe two approaches to extract contextual features. The 
first approach relies on a parser to extract syntactic dependencies, while the 
second applies shallow parsing techniques to extract so called pseudo-syntactic 
or surface dependencies. 

4.1.4.1 Syntactic Dependencies 

One possibility for extracting contextual features describing a term is to 
parse the text collection and extract syntactic dependencies between a verb 
and its subject, object and PP-complement from the corresponding parse 
trees by using tgrep^. In essence, tgrep provides support for searching certain 
paths in trees. The verbs can also be lemmatized. As mentioned above, 
lemmatization maps a word to its base form and may be used to normalize 
the text. Consider for instance the following two sentences: 

The museum houses an impressive collection of medieval and modern 
art. The building combines geometric abstraction with classical references 
that allude to the Roman influence on the region. 

After parsing these sentences, we would extract the following syntactic 
dependencies: 

houses_subj(museum) 

houses_obj(collection) 

combines_subj(building) 

combines_obj(abstraction) 

combines_with(references) 

allude_to(influence) 

By the lemmatization step, 'references' is mapped to its base form 'reference' 
and 'combines' and 'houses' to 'combine' and 'house', respectively, resulting 
in: 

house_subj(museum) 
house_obj(col lect ion) 
combine_subj(building) 
combine_obj(abstraction) 
combine_with(reference) 
a l lude_to( inf luence) 

see http://mccawley.cogsci.uiuc.edu/corpora/treebank3.html 
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4.1.4.2 Pseudo-syntact ic Dependencies 

Another approach to extract contextual features is to apply a shallow pars­
ing strategy and match certain regular expressions in the text to extract 
the syntactic dependencies. These dependencies are not really syntactical as 
they are not obtained from parse trees, but with a very shallow and heuris­
tic method consisting of matching certain regular expressions over part-of-
speech tags. The motivation for doing this is the observation of Grefenstette 
[Grefenstette, 1994] that the quaUty of using word windows or syntactic de­
pendencies for distributional analysis depends on the rank or frequency of 
the word in question. Our intention is to make a compromise between using 
word windows and syntactic dependencies extracted from parse trees. Our 
pseudo-syntactic dependencies are surface dependencies extracted by match­
ing regular expressions. In what follows, we list the syntactic expressions we 
use and give examples of object-attribute pairs extracted in predicate nota­
tion a{o), where o is the attribute and o the object: 

• adjective modifiers, i.e. a nice city —> nice(city) 
• prepositional phrase modifiers, i.e. a city near the river -> near-river (city) 

and city .near (river), respectively 
• possessive modifiers, i.e. the city's center —> has_center(city) 
• noun phrases in subject or object position, i.e. the city offers an exciting 

nightlife -> offer .sub j (city) and offer _obj (nightlife) 
• prepositional phrases following a verb, i.e. the river flows through the city 

—> flows_through(city) 
• copula constructs^ i.e. a flamingo is a bird -> is-bird(flamingo) 
• verb phrases with the verb to have, i.e. every country has a capital —^ 

has_capital(country) 

Considering the above example sentences, we would extract the following de­
pendencies: 

house_subj(museum) 
house_obj(collection) 
impressive(collection) 
combine_subj(building) 
combine_obj(abstraction) 
geometric(abstraction) 
combine_with(reference) 
classical(reference) 
allude_to(influence) 
roman(influence) 
influence_on(region) 
on_region(influence) 

3 A copula is a verb which links a subject to an object, an adjective or a constituent 
denoting a property of the subject. 



44 Basics 

Our approach based on syntactic dependencies relies on very simple at­
tachment heuristics and attaches a prepositional phrase to the verb or noun 
phrase immediately preceding it. 

4.1.5 Similarity and the Vector Space Model 

Very important for ontology learning is the fact that context may be used as 
a basis on which to assess the similarity of words. This is formulated by the so 
called distributional hypothesis claiming that words are similar to the extent 
that they share similar context [Harris, 1968]. This hypothesis is also in line 
with Firth's well known statement that 'you shall know a word by the company 
it keeps' [Firth, 1957]. In fact, empirical investigations corroborate the valid­
ity of the above hypothesis. Miller and Charles [Miller and Charles, 1991], for 
example, found in several experiments that humans determine the semantic 
similarity of words on the basis of the similarity of the contexts they are 
used in. Grefenstette [Grefenstette, 1994] further shows that similarity in vec­
tor space correlates well with semantic relatedness of words. The fact that 
semantic similarity of words can be approximated by their contextual similar­
ity is a key assumption for most of the work in ontology learning. A crucial 
question in this respect is how to represent the context of a certain word. 

Context is often represented as vector in high dimensional space E", the di­
mensions corresponding to words found in the context of the word in question. 
This vector-based context representation constitutes the core of the so called 
vector space model used in information retrieval [Salton and McGill, 1983, 
Baeza-Yates and Ribeiro-Neto, 1999]. For further details on the vector-space 
model, the interested reader is referred to the enjoyable and instructive book 
of Widdows [Widdows, 2004], which contains information about the mathe­
matical and historical background of the vector-space model as well as about 
interesting applications for natural language processing and information re­
trieval. 

In general, what exactly is considered as the context of a word is a de­
batable question and can either be the whole document, such as described 
by Lesk or Salton [Lesk, 1969, Salton, 1971], words to the left and right of 
the word within a given window size (compare [Hearst and Schiitze, 1993, 
Yarowsky, 1995, Schiitze and Pedersen, 1997, Widdows, 2003b]), or specific 
grammatical constructs such as appositions, copulas, verb-object, verb-
subject, adjective modifiers, nominal modifiers, etc. as in the work 
of Hindle [Hindle, 1990], Grefenstette [Grefenstette, 1994] or Caraballo 
[Caraballo, 1999]. 

While using words occurring in the same document yields very large 
vectors which are time-intensive to process, using only words with a 
grammatical relation to the target word yields much sparser context vec­
tors which are easier and more efficient to process. Some people have 
also applied dimension reduction techniques like latent semantic index­
ing (LSI) [Landauer and Dumais, 1997], thus yielding smaller vectors which 
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can be processed more efRciently [Schutze, 1993, Hearst and Schiitze, 1993, 
Widdows, 2003b]. 

Context vectors as described above allow for comparing the contexts of 
different words and thus provide a basis for the assessment of the similarity 
or relatedness of two words. Thus, a lot of research in NLP has been de­
voted to the definition and analysis of different similarity measures (compare 
[Lee, 1999]). In the following section, we introduce some of the most common 
similarity measures used in NLP research. We distinguish between measures 
based on binary vectors, geometric measures as well as measures comparing 
probability distributions. 

In what follows, we define what similarity and distance measures are and 
discuss some of their properties: 

Deflnition 12 (Similarity Measure) A similarity measure sim is a func­
tion sim : K" X R" -> [0,1] with the following properties: 

Vvi,V2 e E"szm(vi,V2) = 0 iffvi-V2 = 0 (4.1) 

Vvi,V2 € E"szm(vi,V2) > 0 iff\i-\2 > 0 (4.2) 

Vvsjm(v,v) = l (4.3) 

Translated to a feature-based model, the first condition means that the 
similarity between two vectors is zero in case there is no dimension in which 
both have a non-zero value, i.e. they have no features in common. Conversely, 
the similarity will be greater than zero in case the vectors have at least one 
common feature, i.e. a dimension for which both vectors have non-zero values. 
In addition, a vector is maximally similar to itself. 

It is important to emphasize that not every similarity measure needs to 
be symmetric (c.f. [France, 1994]). We will speak of a symmetric similarity 
measure in case the following condition holds: 

Vvi,V2 sim(vi,V2) = sim(v2,vi) (4.4) 

In what follows, we also consider distance measures. 

Definition 13 (Distance Measure) A distance measure is a function 
dist: E" X R" -> ]R^ with the following property: 

Vv dist{v, v) = 0 i.e. the distance of a vector to itself is 0. 

Definition 14 (Metric) A distance measure is a metric if the following con­
ditions hold: 

Vvi,V2 e M" dist{vi,V2) = 0 -> vi = V2 
Vvi,V2 e E"disf(vi,V2) = disf(v2,vi) (Symmetry) 
Vvi,V2,V3 6 E" dist{vi,V2) +disi(v2,V3) > dist{vi,V3) (Triangle In­

equality) 
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A distance measure dist can be transformed to a similarity measure sim 
by a bijective and monotonic decreasing function f{dist). Examples for such 
functions are: 

sim(x,y) = 77—7 r (4.5) 
^ '^^ l + dist{x,y) ^ ' 

. I - f-/n(d«si(a;,2/)) if disi(a;,y) > 0 ,. „. 
.*m(a:,2/) = | ^^ Mdist{xJ) = ^ ^^'^^ 

sJm(a;,y)=e-***(*'^) (4.7) 

In particular, the transformation function from a distance to a similarity 
measure needs to fulfill the following conditions: 

dist{x, y) = +00 O sim{x, j/) = 0 (4.8) 

dist{x,y) = Q-irf sim{x,y) = 1 (4.9) 

The above definition presupposes the introduction of a special symbol +00. 
Alternatively, we can also rely on the maximal distance maxdist and use the 
following transformation function: 

. dist{x,y) 
stm{x,y)^l ^-—f (4.10) 

maxdist 
Moreover, we can also use the following simple transformation function: 

f{dist{x, y)) = k — dist{x, y) (4.11) 

where k is an appropriate constant. Strictly speaking, the outcome is not 
a similarity measure as it is not bound to the interval [0,1]. However, it often 
suffices for the relative comparison of different similarity values. This simple 
transformation will be used in the experiments described in Chapter 6.2. 

4.1.5.1 Binary Similarity Measures 

One of the most well-known measures for assessing the similarity between 

binary vectors, i.e. containing only the values 0 and 1, are the Dice and Jaccard 

coefficient. The DICE coefficient is defined as: 

or more easily formulated for sets X,Y containing the non-zero dimensions 
of the vectors x and y, respectively: 

DiceiX,Y) = ^^^^^ (4.13) 
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The Jaccard or Tanimoto coefficient is defined as follows: 

(4.14) 
again more easily formulated for sets X,Y containing the non-zero dimen­

sions of the vectors x and y as follows: 

Jaccard{X,Y)=^-^^^ (4.15) 

4.1.5.2 Geometric Similarity Measures 

The most well-known geometric similarity measure is definitely the cosine 
of the angle between two vectors. It ranges from 1 for vectors pointing in 
the same direction, over 0 for orthogonal vectors to —1 for vectors pointing 
in opposite directions. In text mining applications, where the dimensions of 
the vectors correspond to word frequency counts, the vectors never point in 
opposite directions. The cosine is defined as follows: 

En 

cosix,yi = , ,, , = , ^ ' -i , „ == (4.16) 

Furthermore, one can also assess the similarity between vectors as the 
distance between their end points as done by the Lq- or Minkowski-measure: 

i«(x ,y)= I 
N 

Y.\xi-Vi\' (4.17) 
j = l 

In particular, for g = 1 this formula yields the Li-norm, Manhattan or 
Taxicab metric: 

n 

Li{x,y)^^\xi-yi\ (4.18) 

For g = 2 we get the L2-norm or Euclidean distance , i.e. 

I'2(x,y) := | x - y | = . ^ \ x i ~ 2/i|2 (4.19) 
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4.1.5.3 Measures based on Probabi l i ty Dis t r ibut ions 

In this section, we introduce measures based on probability distributions, i.e. 
relative entropy, mutual information, pointwise mutual information as well as 
the Jensen-Shannon (JS) and 5A;ew divergences (SD). But before, we introduce 
basic notions of probability theory. 

Probability theory deals with events as well as the probability that they 
occur. The set of possible events is typically represented as H. This set is 
typically also called event space. The probability that a subset of events of J? 
actually takes place is captured by a probability function F : 2^ -> [0,1]. 

Probability functions obey the following basic rules: 

P{A en)>0 (4.20) 

P{A en)<l (4.21) 

P{n) = 1 (4.22) 

Pi[jAi e i?) = ^ P ( A j ) in case the A\s are disjoint (4.23) 
i i 

Let us consider the rolling of a dice as an example. In particular, we have 
the following event space: /? = {1,2,3,4,5,6}. For each event in this event 
space we have a probability of p = | . Further, the probability of getting an 
odd number is P({1,3, 5}) := P( l ) + P(3) + P(5) = | = | . 

Sometimes we have partial knowledge about the probability of some event 
given that some other event occurs. This is captured by the notion of con­
ditional probability. The conditional probability of an event A given that an 
event B has occurred is: 

P(A|B) = £ ^ (4.24) 

An important theorem in this context is Bayes' theorem which allows to 
swap the order of dependence between events as follows: 

P(r.i,.PiBnA)PiA\B)P{B) 
^ ^ ^ 1 " ^ ^ - P{A) PiA) (^-^^^ 

Instead of using concrete event spaces, often so called random variables 
are used. A random variable is essentially a function X : H —> R and allows 
to talk about probabilities of numerical values related to the event space. A 
discrete random variable is a function x : 0 -^ S, where 5 is a countable 
subset of E. For our dice example we have: X( l )= l , X(2)=2,... X(6)=6. 

The expectation of a random variable distributed according to p is its mean, 
i.e. 

EiX) = '^xpix) (4.26) 
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For our dice example, we get an expectation of E(X) — J2^=i |* — 3.5. 
The variance measures how much in average the variable's mean diverges 

from the expectation: 

Var{X) = E{{X - E{X)f) (4.27) 

The commonly used standard deviation a is the square root of the variance. 
For our dice example, the variance is calculated as follows: 

X 

_ 1 
~ 6 
= 2.92 

^ (2(2.5)2 + 2(1.5)2 + 2 (0.5)2) 

The standard deviation thus is a = 1.71. 
Having defined what a random variable is, we can now define a number of 

measures. 
First of all, entropy, or self-information, of a discrete random variable X 

distributed as the probability function p{X) is its average uncertainty, i.e. 

HiX) = - ^ p{x) log2 p{x) (4.28) 
x€X 

Entropy can be thought of as the average length of the message needed 
to transmit the outcome of that variable. For our dice example, we get in 
particular H{X) = - X]j=i | ^•092 ^ = log^i^) = 2.58. So we need on average 
2.58 bits to encode and transmit the result of rolling a dice. 

Relative Entropy or Kullhack-Leihler divergence is a measure of how differ­
ent two probability distributions (over the same event space) are: 

D{p\\q)=Y,P{^)lo92^-^^ (4.29) 

Relative Entropy measures the average number of bits wasted by encoding 
events from a distribution p with a code based on the distribution q. Relative 
Entropy can thus be seen as a distance measure between p and q. 

The Jensen-Shannon and Skew divergences are defined on the basis of 
relative entropy: 

JS{p,q) = \[Dip II ^^)+Diq \\ ^ ) ] (4.30) 

SDip,q)=Dip\\a-p +il-a)-q) (4.31) 
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The latter is thus an example of an asymmetric distance measure and was 
introduced by Lee [Lee, 1999]. 

Mutual information is the reduction in uncertainty of one random variable 
due to knowing about another, i.e. the amount of information one random 
variable contains about another and is defined in terms of entropy as follows: 

I{X;Y)=H{X)-HiX\Y) 
= H{X) + H{Y)-H{X,Y) 

For a detailed deduction of the above formula, the interested reader is 
referred to Manning and Schiitze [Manning and Schiitze, 1999]. 

Finally, the pointwise mutual information is calculated between two par­
ticular points in those distributions: 

PMI{x, y) = I{x, y) = log f^f'^,\ (4.33) 
p{x)p{y) 

Mutual information and pointwise information can thus be seen as sim­
ilarity measures between two random variables or two particular points, re­
spectively. 

4.1.6 Hypothes is Testing 

Corpus-based co-occurrence counts are often sensitive to the frequency of the 
involved words. Thus, an interesting question in corpus statistics is whether 
two words occur more often together than chance would predict. Typically, 
statistical hypothesis testing is applied to the problem. Hypothesis testing in­
volves formulating two hypotheses: HQ, the so called null hypothesis, and Hi, 
the alternative hypothesis. The null hypothesis typically states that the ob­
served effect (typically difference in mean between two samples) is the result 
of chance. The alternative hypothesis conversely claims that the observations 
show a real effect. A statistical test is then performed to either reject HQ or 
not to reject HQ. The statistical test then returns a p-value corresponding to 
the probability of wrongly rejecting the null hypothesis if it is in fact true. 
The smaller the j>value, the stronger is the evidence against the null hypoth­
esis. The p-value is then compared to an acceptable significance threshold a 
(sometimes called an a-value), li p < a, the observed effect is statistically 
significant, the null hypothesis is ruled out, and the alternative hypothesis is 
valid. When assessing the degree of association between words, the HQ hy­
pothesis assumes that the probability of the two words is independent of each 
other, i.e. 

Piwi,W2) = Piwi) P{w2) (4.34) 
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Table 4.1. Example x^ 2-by-2 table from [Manning and Schiitze, 1999] 
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B=companies 
-iB = -1 companies 

A=ne'w -lA = -1 new 

f{A,B) = 8 f{^A,B)) = 4m7 
f{A,-^B) = 15820 /(-.A,-.5) = 14287173 

The independence hypothesis is rejected in case the observed probability is 
found to significantly differ from P{wi,W2) as defined above. In what follows, 
we briefly describe the two most commonly applied statistical tests applied 
within NLP research, the Student's t-test and the x^-test. 

4.1.6.1 The t-test 

The t-test considers the mean and variance of a sample compared to a dis­
tribution with mean /x representing the null hypothesis. The test then looks 
at the difference between the observed and expected means, scaled by the 
variance of the data, and tells how likely one is to get a sample of that mean 
and variance assuming that the sample is drawn from a normal distribution 
with mean /x. In particular, the t-test calculates the following value: 

t = X - n 

V77 

(4.35) 

where x is the sample mean, s^ is the sample variance, N is the sample size 
and n is the expected mean. It is important to note that the t-test assumes 
normally distributed data. 

4.1.6.2 The x^.test 

An alternative to the t-test, which does not assume normal probability dis­
tributions is Pearson's x^-test. The core of the test is the comparison of the 
observed frequencies in an event table as depicted in Table 4.1. The y^ value 
is now calculated as follows: 

X = E 
« j 

(4.36) 

where i ranges over the rows of the table and j over the columns; Oij is 
the observed value in the cell {i,j) and Eij is the expected value. From table 
4.1, for example, we get: 

Oi,i=f{A,B)=8 
Oi,2 = / ( -A,B))=4667 
02,1 = / ( ^ , ^ S ) = 1 5 8 2 0 
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02,2 = f {-^ A,-^B)=14287173 

£̂ 2,1 = 2 1 ^ 2 ^ • 2^1+22^ = P(A) . P{-.B) 

For the 2-by-2 case, the x^ value can be reduced to (compare 
[Manning and Schiitze, 1999]): 

. ^ NiOl,l02,2- 01,202,1? , . 
^ (Oi,i+Oi,2)(Ol,l+02,l)(Ol,2+C»2,2)(02,l+02,2) ^" ' 

where TV is the number of observed events. 
For our example in Table 4.1 we get for instance: x^ = 1-55 which is not 

above the critical value of 3.841 at a probability level of o: = 0.05; that means, 
the fact that A and B occur jointly in some cases is due to chance with a high 
probability (compare [Manning and Schiitze, 1999]). Though the x^ test does 
not assume normally distributed data, it also underlies some assumptions: 

• The deviation between observed and expected values needs to be normally 
distributed. 

• The sample should have been generated by a random process and be large 
enough (more than 20 or 50 samples). 

• A minimum count in each cell is assumed, typically a minimum of 5. 
• The observations need to be independent and finite; this means that an 

observation can only fall into one of a finite set of categories. 
• Observations must have the same underlying distribution. 

Finally, it is important to mention that x^ can be understood as a negative 
test on the unrelatedness of the variables in question. If the outcome of the 
test is above the critical value, then the hypothesis that the variables are 
unrelated has to be rejected. However, x^ is an undirected test, i.e. say we are 
considering a binary case with two variables A and B, we can neither conclude 
that A causes B nor that B causes A in case the test value is above the critical 
value. 

4.1.7 Term Relevance 

There are a lot of models from information retrieval to weight the relevance 
of a term in a corpus. The simplest way of measuring term relevance is by the 
absolute term frequency tfj of a term i, i.e. the number of times a term occurs 
in a document collection. One refinement is to consider the relative frequency 
instead of the absolute one, i.e. 
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n,r.= ^ (4.38) 

Further, we can also look at how many times a term i occurs in a certain 
document j : 

tfi^j := {n \ i occurs n times in document j} (4.39) 

In information retrieval, one typically also considers the number of docu­
ments df j that term i occurs in. More formally, given a collection of documents 
D, dfj is defined as follows: 

dii '•= \{d e D \ d contains i}\ (4.40) 

The latter is referred to as the so called document frequency on which the 
so called inverse document frequency builds on: 

idii := 1092^-^ (4.41) 
dij 

where \D\ is the number of documents in the collection. The inverse docu­
ment frequency thus penalizes terms which occur in a lot of documents. Term 
frequency and inverse document frequency are often combined by a family 
of measures known as tf.idf. One instance of the i/. id/family is the following 
measure: 

tf.idfi,j := tii,j • idfi (4.42) 

More elaborated and linguistically inspired approaches to discover­
ing terms are, for example, the ones of Borrigault [Borrigault, 1992], 
Dagan and Church [Dagan and Church, 1995], Prantzi and Ananiadou 
[Prantzi and Ananiadou, 1999], Pantel and Lin [Pantel and Lin, 2001] as well 
as Ryu and Choi [Ryu and Choi, 2005]. 

Frantzi et al. [Frantzi and Ananiadou, 1999], for instance, present a 
method for the automatic extraction of multi-term words relying on the so 
called C-value/NC-value method. The method consists of two parts. The first 
part, the C-value method, relies on standard statistical techniques taking into 
particular account the frequencies of nested terms. The C-value method pro­
duces a list of terms ranked according to their 'termhood' as input for the 
second part, the NC-value method, which essentially reranks the terms by 
incorporating context information. In particular, the method aims at finding 
strong indicators for termhood in the context of the terms extracted with the 
C-value method. 

Pantel and Lin [Pantel and Lin, 2001] have proposed a hybrid approach to 
term extraction relying on a combination of the mutual information and log-
likelihood measures. In particular, they first detect two-word term candidates 
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and then extend them with additional terms provided that their measure 
allows this. 

Ryu and Choi [Ryu and Choi, 2005] present an information-theoretic ap­
proach to measure the relative specificity of terms by considering inside and 
outside information. Inside information relies on the mutual information of the 
term components and is used to calculate the relative specificity of two terms, 
of which one is nested in the other, while the outside information takes into 
account words occurring in the context of a term as in the NC-value method. 
A hybrid approach combining both types of information is also presented. 

4.1.8 WordNet 

WordNet [Fellbaum, 1998] is a lexical database for the English language de­
veloped by the Cognitive Science Laboratory in Princeton since 1985. In con­
trast to standard thesauri, WordNet distinguishes between a word form and 
its meaning by introducing so called synsets consisting of words sharing a 
common meaning in some context. WordNet provides information for four 
part-of-speeches: nouns, adjectives, verbs and adverbs. In the work described 
in this book, we only consider the WordNet information for nouns and ad­
jectives. WordNet specifies a number of lexical relations between words and 
synsets. It distinguishes in particular the following relations: 

• Synonyms are words which in a certain context have the same meaning. 
They provide the basis for WordNet's meaning unit, i.e. the synset. 

• The hypernymy relation is defined on synsets. In particular, a synset si is 
a hypernym of S2 if the meaning of si subsumes the one of S2. The inverse 
relation is called hyponymy. 

• The meronymy relation holds between a synset si and a synset S2, i.e. si is 
a meronym of S2 if si denotes a part or member of S2- The inverse relation 
is called holonymy. 

• Antonymy is the relation between synsets which have opposite meaning. 

Further, it distinguishes the following relations between adjectives; 

• Similar to relates adjectives to similar adjectives, e.g. big to great. 
• Attribute relates adjectives to the quality or attribute they describe, e.g 

big to size. 
• By antonymy, adjectives are also related to adjectives with opposite mean­

ing, e.g. big to small. 
• Derivationally related gives words from other parts of speech to which the 

adjective is derivationally related, e.g. big to bigness. 

Table 4.2 gives some examples for relations between nouns as contained 
in WordNet, and Figure 4.4 depicts graphically the structure of WordNet on 
the basis of an example. 

Let us further introduce the following properties of relations: 
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Table 4.2. Examples for lexical relations in WordNet 

Type 

Synonym 

Hypernym 

Hyponym 

Meronym 

Holonym 

Antonym 

Paraphrase 

means the same as 

is the general term for 

is a kind of 

is part 

substance/ 

member of 

has part / 

substance/ 

member 

is the contrary of 

Example 

"illness means the same Eis disease" 
=> synonym(disease,illness) 
"furniture is the general term for chair" 
=> hypernym (furniture, chair) 
"a chair is a kind of furniture" 
=> hyponym(chair, furniture) 
"a branch is a part of a tree" 
=^ meronymfbranch, tree) 
"wood is the substance of a tree" 
=> meronym(wood, tree) 
"a person is member of a group" 
=> meronymfperson, group) 
"a bicycle has a wheel as part" 
=> holonym(bicycle,u)heel) 
"a tree has wood as substance" 
=>• holonym (tree, wood) 
"a group has a person as member" 
=> holonym(group, person) 
"ascent is the contrary of descent" 
=> antonym(ascent, descent) 

• Two relations are reciprocal iff there is an inverse relation between them 
such as for the meronymy and holonymy relations, i.e. meronym(si,S2) <-> 
holonym(s2,Si). 

• A relation r is symmetric iff \/x,y r{x,y) ^ r{y,x). This applies to the 
antonj/mj/relation, for instance, i.e. antonym(si,S2) ^ antonym(s2,si). 

• A relation r is transitive iff Va;, y, z r(x, y) A r{y, z) -> r{x, z)). This is, for 
example, the case of the hyponymy and hypernymy relations. 

WordNet does not only contain synsets and lexical relations defined 
on these, but also a description of the meaning of each synset which is 
called gloss. The glosses can in fact be seen as the intensional descrip­
tion of a concept and have been used for several purposes within NLP 
(compare for example [Agirre and Rigau, 1996], [Resnik, 1997], [Peters, 2002], 
[Banerjee and Pedersen, 2003], [Navigli and Velardi, 2004]). 

For the purposes of the experiments described in this book, we have used 
WordNet version 1.71. This version contains 107930 nouns and 74488 synsets. 
The average polysemy in WordNet is around 1.22, i.e. a word has on average 
1.22 different meanings. 
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B vehicle ihit t ikei people n> Bid [[Dtn 
hoipinli... 

car. auto, automobile. 

^ a nvheeled motoc vehicle; tiiuBlly 

' k propelled bf ... 
1 KIC-propelled wheeJed vehicle... 

car, Tailcar,..., railroad car 

s wheeled vehicle Bdapted to the ... 

wheeled vehicle 

lomethiog that ier»» sf mesni... 

I elf-propel led vehicle 

B wheeled ^et1icleIhBt 
1 meant of pitipuliion 

vehicle 

B conveyance thBt tnnipom people oc • 

conveyance, iranipoit 

lomHhing that nrvei BI meam foe 
tran)poct 

_ . - • - • ' 

' = hypemyln relation 
' = hypooyin relation 

Fig. 4.4. The structure of WordNet 

4.2 Formal Concept Analysis 

In Section 2, we already briefly discussed Aristotle's notion of differentiae^ i.e. 
characteristics which allow to either group objects or distinguish them from 
each other. In fact, Aristotle already noticed the inverse connection between 
objects and their characteristics, namely that the more characteristics we 
require, the less objects will fulfill these, and the more objects we consider, 
the less common characteristics they will share. This intuitive duality has 
been formalized as a so called Galois connection and represents the core of 
Formal Concept Analysis (FCA) (compare [Wille, 1982]). Galois connections 
can in fact be seen as a formalization of Aristotle's notion of differentiae. In the 
theory of Formal Concept Analysis, objects are represented by so called formal 
objects, and their characteristics are represented by formal attributes. The 
information about which attributes hold for each object is then represented 
via a binary relation called the incidence relation. The formal objects and 
attributes as well as the incidence relation then constitute a so called formal 
context. 

Table 4.4 shows an example formal context. Let us suppose that the var­
ious attributes have been automatically extracted from a corpus using the 
syntactic dependency extraction process outhned in Section 4.1.4.1. Let us 
further assume that only verb-object pairs have been considered and that the 
verbs and objects in Table 4.3 have been extracted. 
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Table 4 .3 . Example for verbs and objects extracted from a text corpus 

verb 

book 
rent 
drive 
ride 
join 

objects 

hotel, apartment, car, bike, excursion, trip 
apartment, car, bike 
car, bike 
bike 
excursion, trip 

Table 4.4. Tourism domain knowledge as formal context 

hotel 
apartment 
car 
bike 
excursion 
trip 

bookable 
x 
x 
X 

X 

X 

X 

rentable 

X 

X 

X 

driveable 

X 

X 

rideable 

X 

joinable 

X 

X 

In the formal context shown in Table 4.4 we have further added the suffix 
'able' to each verb thus emphasizing tha t the corresponding a t t r ibute applies 
to objects on which the action denoted by the verb can be carried out. Now 
we can t ry to find closed sets of objects and at t r ibutes . Intuitively speaking, 
a set of objects O and a set of at t r ibutes A are closed with respect to each 
other if the at t r ibutes in A are exactly those tha t are common to all objects in 
O and, conversely, the objects in O are exactly those tha t have all a t t r ibutes 
in A. Let us consider the objects excursion and trip as an example. Both 
share the at t r ibutes bookable and joinable, and the only objects which have 
both these at t r ibutes in common are actually excursion and trip. Therefore, 
the set of objects {excursion, trip} forms a closed set with respect to the 
at t r ibutes {bookable, joinable}. Having described the important notion of a 
closed set with an example, we now turn to a more general description of 
Formal Concept Analysis. Formal Concept Analysis is a method mainly used 
for the analysis of data . In particular, FCA finds closed sets on the basis 
of a formal context, thus leading to creation of coherent groups or formal 
concepts as they are called in FCA. The da ta as given by the formal context 
are hereby structured into units which are formal abstractions of concepts of 
human thought, allowing meaningful comprehensible interpretation (compare 
[Ganter and Wille, 1999]). Thus, FCA can be seen as a conceptual clustering 
technique as it also provides intensional descriptions for the abstract concepts 
or da ta units it produces. 

Central to FCA is the notion of a formal context: 

Def in i t ion 15 (Formal C o n t e x t ) A triple (G,M,1) is called a formal con­
text if G and M are sets and I CO x M is a binary relation between G and 



58 Basics 

M. The elements of G are called objects, those of M attributes and I is the 
incidence relation of the context. 

For O C G, we define: 0 ' := {m € M | Vp S O : {g,m) € / } 

and dually for A C M: A' := {g e G \^m E A : {g, m) E 1} 

Intuitively speaking, 0' is the set of all attributes common to the ob­
jects of O, whereas A' is the set of all objects that have all attributes in A. 
Furthermore, we define what a formal concept is: 

Definition 16 (Formal Concept) A pair (0,A) is a formal concept of 
(G,M,I) if and only ifOCG, ACM, O' = A and 0 = A'. 

In other words, (0,^1) is a formal concept if the set of all attributes shared by 
the objects of O is identical with A, and, on the other hand, O is also the set 
of all objects that have all attributes in A. O is then called the extent and A 
the intent of the formal concept (0,^1). We can now define an order between 
formal concepts as follows: 

{OuAi) < (02, A2) ^ Oi C 02{^ A2 C ^1) (4.43) 

Thus, formal concepts are partially ordered with regard to inclusion of their 
extents or - which is equivalent - to inverse inclusion of their intent. In fact, 
it can be easily shown (c.f. [Ganter and Wille, 1999]) that the subconcept-
superconcept relation forms a complete lattice which will be denoted by 
( © ( C M , / ) , < ) . 

In our example, ({excursion, trip}, {bookable, joinable}) thus represents a 
formal concept. Other concepts are, for example, {{bike}, {rideable, driveable, 
rentable, bookable}) and {{car,bike}, {driveable, rentable, bookable}). Further, 
the formal concept {{bike}, {rideable, driveable, rentable, bookable}) is a sub-
concept of {{car, bike}, {driveable, rentable, bookable}). 

The concept lattice for our example formal context is depicted in Figure 
4.5. Each node in the lattice diagram represents a formal concept. All the 
white boxes below a node together represent the extent of the concept repre­
sented by that node, while the intent consists of all the gray boxes above the 
node. The diagram compactly visualizes the fact that attributes are inherited 
by the intents of all nodes downwards and that objects are also contained in 
the extent of all formal concepts upwards. The lattice in Figure 4.5 is visual­
ized using reduced labeling. Reduced labeling as defined by Ganter and Wille 
[Ganter and Wille, 1999] means that objects are in the extension of the most 
specific concept and attributes conversely in the intension of the most general 
one. This reduced labeling is achieved by introducing functions 7 and /x. The 
name of an object g is attached to the lower half of the corresponding object 
concept, i.e. 7(3) := {{g}", {g}'), while the name of attribute m is located at 
the upper half of the attribute concept, i.e. iJ,{m) := ({m}',{m}"). 

For the sake of completeness, in what follows we present two algorithms for 
computing the formal concepts of a given finite formal context. In particular, 
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Fig. 4.5. The lattice of formal concepts for the tourism formal context 

we will discuss a naive algorithm as well as the widely used algorithm of Ganter 
([Ganter, 1984, Ganter and Reuter, 1991]). But before, we need to introduce 
a number of properties: 

Theorem 1. Let {G,M,I) be a formal context and Oi,02 QG,A C M, then 
the following properties hold (compare [Ganter and Wille, 1999]): 

1- Oi C O2 ^ O^ C 0[ 
2. Ox C O'l 
3. 0[ = O'l' 
i.OiCA'^ACO'^ 

The same relations hold for sets of formal attributes. 
On the basis of this theorem, we can now formulate the naive procedure 

for finding all the formal concepts of a given formal context in Algorithm 
1. The correctness of the algorithm follows from the definition of a formal 
concept and Theorem 1. In particular, a pair {A,B) = {0",0') is a formal 
concept as A' = (0") ' = O' = B and B' = O" = A. Obviously, as the 
algorithm needs to consider all possible subsets of objects or attributes, the 
above algorithm is always exponential in n, where n = mm(|M|, \G\). So its 
time complexity is 0(2") . A widely used algorithm with a better complexity 
is Ganter's algorithm with a time complexity of 0{\G\^ x \M\ x |!8(G, M, / ) | ) . 
This means that Ganter's algorithm is bound by the actual number of formal 
concepts, which can be exponential in the worst case though. The difference 
is that Ganter's algorithm does not require iterating through all the subsets 
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Algorithm 1 Naive FCA Algorithm 

Input: a formal context (G, M, I) 
Output: a set of formal concepts {(Oi, Ai),..., (Oq, Aq)} 

C : = 0 

i f ( |G |< |M|) 
{ 

for each O C G: C := C U {{O", O')} 
} 
else 
{ 

for each ACM: C:=CU {{A', A")} 

} 

return C 

of G or M, but is bound by the actual number of formal concepts. Ganter 
defines a lectic order -< on sets which is based on a total order for the sets G 
and M, i.e. G = {gi,---,gu} with gi < ... < gi„ and M = {mi,...,m„} with 
mi < ... < my. 

The lectic order between sets is now defined as follows: 

Definition 17 (Lectic Order) Given two sets Oi,02 Q G, we say that Oi 
is lectically smaller than O2 (Oi -< O2) if the smallest element in which Oi 
and O2 differ is contained in O2, or more formally 

Oi ^ O2 <4> 3gi e 02\0i such that 

Oi r\{gi,...,gi-i} = 02r\{gi,...,gi-i} 

Oi -<i O2 ''^ gi & 02\0i such that 

Oin{ffi, . . . ,3i_i} = 02n{(/ i , . . . ,5i_i} 

The definition holds analogously for attribute sets Ai, A2 C M. 
Now, the lectic order can be extended to formal concepts: 

Definition 18 Given two formal concepts ci = (Oi, Ai) and C2 = (02,^2), 
we say that ci is lectically smaller than C2, i.e., c\ -< C2, iff Oi -< O2. 

Finally, the following two theorems build the core of Ganter's algorithm: 

Theorem 2. Let ci = {Oi,Ai) and C2 = (02,^2) he two formal concepts. 
Then it holds that ci < C2 <^ ci -<i C2 for some g^ £ G. 

This means in particular that, if ci is lectically smaller than C2, then ci is 
also a subconcept of C2. The proof can be found in the book of Ganter and 
Wille [Ganter and Wille, 1999]. The other crucial theorem is the following: 
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Theorem 3. Given a set of objects Oi C G, the smallest concept extent which 
is lectically greater than Oi is Oi ®gi, where Oi®gi = ((Oi f]{9i, •••9i-i}) U 
{9i})" C'l^d gi is the greatest element in G such that Ox -<i Oi ® gi-

Thus, starting from a given formal concept ci = {Oi,Ai), in order to find 
the next formal concept, we have to iterate over the set of objects in inverse 
order and identify the largest element gi & G such that Oi -<i Oi ® gi holds. 
Oi ®gi is then the extension of the lectically next formal concept. This means 
that the time complexity for finding the next formal concept is 0 ( |Gp x |M|) as 
the operation " has a time complexity ofO( |G|x |M|) , which has to be carried 
out at most \G\ times. Ganter's algorithm obviously starts with the lectically 
smallest formal concept, i.e. (0",0'). The sketch of the procedure, which is 
often referred to as the Next Closure algorithm, is given by the pseudocode 
in Algorithm 2. The implementation of FCA we have used is the concepts 
tool by Christian Lindig^, which basically implements Ganter's Next Closure 
algorithm with the extension of Aloui for computing the covering relation 
described by Godin et al. [Godin et al., 1995]. We apply this algorithm for 
the concept hierarchy induction task as described in Section 6.2. 

Algorithm 2 Ganter's FCA Algorithm 
Input: a formal context (G, M, I) 
Output: a set of formal concepts {{Oi, Ai), ...,{Oq, Aq)} 

o = r 
C:={(0 ,0 ' ) } 
do 
{ 

changed:=false 
for Qi in G (in decreasing order <) 
{ 

\fO<iO®gi AND NOT changed 
{ 

C7:=CU{(Oegi,(O®ff0')} 
O := O ® ffi 
changed = true 

} 
} 

} until NOT changed 
return C 

'' ht tp: //www. St. cs.uni-sb.de/~lindig/src/concepts.html 
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4.3 Machine Learning 

Machine learning is concerned with the automatic recognition and detection 
of certain patterns and regularities within example data. Such patterns can 
be used to understand and describe the data or to make predictions. Machine 
learning is based on induction, i.e. on the idea of making inferences or gen­
eralizations from example data. Therefore, it is crucial for machine learning 
algorithms that examples are represented appropriately. Generally, examples 
are represented by a set of feature-value pairs often formalized in the form 
of a n-dimensional vector in real-valued space. Hereby, each dimension corre­
sponds to one feature. Thus, given a set of examples E, each example e £ E 
is represented by a vector e € K". 

In what follows, we will distinguish two types of inductive learning: super­
vised and unsupervised. They differ in the tasks they are applied to, but also 
in the learning paradigms applied. 

Supervised learning is typically used for predicting the appropriate cate­
gory for an example from a set of categories represented by a set of labels L. 
Provided that we are working on real-valued vector space, we can assume a 
function Z: E" -> L assigning each element a corresponding label. Supervised 
learning algorithms learn from labeled training examples. In addition to ap­
propriate features describing the examples, supervised learning thus requires 
a mapping function /' from the set of training examples to a set of labels L, 
i.e. V : E —^ L. The goal of supervised learning algorithms is now to learn a 
mathematical function on the basis of V approximating the function I. The 
crucial issue here lies in not approximating V itself too closely to allow the 
function to predict the label for new examples. The trade-off between approx­
imating the 'training' function V too closely and thus loosing predictive power 
represents one of the main problems supervised machine learning algorithms 
have to cope with. 

In unsupervised learning, however, there is no such supervision in terms 
of labeled examples. Thus, such algorithms search for common and frequent 
structures within the data. Therefore, unsupervised techniques are typically 
applied for data exploration. 

In what follows, we survey each of these learning approaches. 

4.3.1 Supervised Learning 

The main application of supervised learning is prediction; that means, once a 
mapping is learned, new and unknown examples can be labeled. There are two 
types of prediction: classification and regression. We talk about classification 
when the labels of the training example are different categories or classes. The 
goal is to assign the proper category to a new example. Binary classification 
is the special case in which there are only two different classes. When the 
labels are continuous values, we talk about regression and the task consists in 
a numeric prediction. 
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We will use the following terminology when talking about supervised learn­
ing or machine learning, respectively. The set of training examples provided to 
the learning algorithm for learning is called training set. A training example 
is characterized by a feature vector and is labeled with a target value for the 
target variable, which is an additional feature representing the label of the 
example as described above. 

Table 4.5 shows three training examples taken from an often cited training 
set (see [Witten and Frank, 1999]). The feature vectors contain the feature 
values for the three features: outlook, windy, and temperature. The binary 
target variable indicates whether the person in question would like to play 
outside given the weather conditions specified in the example. 

Table 4.5. Training examples for the target variable play outside 

example 
1 
2 
3 

features 
outlook 
sunny 
rainy 

overcast 

windy 
false 
true 
false 

temperature 
warm 
cold 

warm 

target variable 
play outside ? 

yes 
no 
yes 

A learning algorithm builds a model for the training set, i.e. a mapping 
function between the feature vectors and the target values. Generally, in ma­
chine learning literature the feature vectors are called input data, the corre­
sponding target values are known as output. 

Classification is a supervised task in the sense that labeled training data 
is given and the task is to approximate the function which assigns an example 
to its correct target class. The result of learning this function from labeled 
training data is a classifier which can assign new examples to their class on 
the basis of the model derived from the training data. In order to quantify the 
accuracy of a model, typically a loss function is specified which quantifies the 
cost of misclassifying one example from one class as another. This loss function 
is specified as: / : L x L -> E+. where L is the set of different categories. The 
aim of a classifier is thus to minimze the empirical risk of misclassification 
given by: 

Rnil') = -Tfil'iXi),l{Xi)) 
in. ' ^ 

i=l 

where the examples, I models the correct classification and I' is 
the induced classification function. 

Two well-known problems encountered when training classifiers are over-
fitting and skewed datasets. Overfitting occurs when the learning algorithm 
approximates too closely the function inherent in the training data, thus loos­
ing any generalizing power. For this reason, classifiers are never evaluated on 
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the training dataset itself, but on held-out or test data. Another possibiUty is 
to perform a so called n-fold cross validation in which the data are split into 
n uniform parts and the classifier is trained n times on different subsets con­
sisting of n — 1 parts and evaluated on the remaining part. Cross vahdation is 
a particular type of jackknife, which essentially consists of sampling without 
replacement and is typically used to verify the statistical robustness of some 
model. 

The second problem occurs when certain target classes are much more fre­
quent than others. In that case, the classifier would naturally learn to always 
predict the majority class. For example, a system for credit card fraud detec­
tion [Stolfo et al., 1997] might apply a classifier to detect fraudulent transac­
tions. The classifier will be learned from a training set that mainly consists 
of legitimate transactions and only few fraudulent transactions. Thus, a sim­
ple classifier always predicting 'legitimate' would yield an accuracy of, say, 
99.9%. However, when applying such a system, a false alarm is rather accept­
able, whereas an actual fraud that is not detected by the system has to be 
avoided. 

4.3.1.1 Classifiers 

There are a number of different classification paradigms, i.e. Bayesian Clas­
sifiers, Decision Trees, Instance-Based Learning, Support Vector Machines, 
Artificial Neural Networks, etc. We describe these learning paradigms briefly 
in the following. 

Bayesian Classifiers 

Statistical modeling is often also called Bayesian learning because it is based 
on Bayes' Theorem. Bayesian learners are probabilistic models making the 
simplifying assumption that all features are independent and have the same 
relevance. Because of this assumption, these algorithms are often called naive 
Bayesian learners. But despite their simple design, Bayesian learners outper­
form many more complex approaches when applied to real-world problems. 
Naive Bayesian learners are used for classification. 

The classification with a naive Bayesian model is performed as following: 
Assume X denotes an unlabeled example. Let it have only the feature color 
with the value red. Now we want to classify this example into the categories 
apple or banana. H is the hypothesis that this example belongs to a cer­
tain category C, for example that it is an apple. The conditional probability 
P{H\X) is the probability that our example is an apple given that it is red. 
With Bayes' Theorem we can calculate this probability if we know the prob­
ability that any example is an apple P{H), that an example has the color red 
P{X), and that an example has the color red if it is an apple P{X\H). 

m m = ^VEL£(ffi ,4.44) 
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Fig. 4.6. Example for a decision tree 

A Bayesian learner builds a model by estimating the probabilities P{X), 
P{H), and P{X\H) from the training data. A new example is then classified 
by calculating the conditional probabilities P{H\X) for the different categories 
and choosing the category with the highest probability. The interested reader 
is referred to [Mitchell, 1997] and [John and Langley, 1995] for further details. 
In our experiments, we have used the Naive Bayes implementation of WEKA 
[Witten and Frank, 1999]. 

Decision Trees 

Decision trees are also models for classification. A decision tree compactly 
encodes a sequence of tests on the values of certain features. Each inner node 
of such a tree corresponds to a feature, the edges represent decisions for one 
of the feature's possible values. A leaf represents the predicted value of the 
target variable. Figure 4.6 shows a decision tree for the target variable play 
outside. The models underlying decision trees can essentially be seen as a 
set of Horn-like rules with the target variable as head and conditions on the 
features in the body. 

A decision tree is constructed in an iterative way. In each step, the learning 
algorithm chooses one feature and creates a new branch for each of the pos­
sible feature values. At each branch, one of the remaining features is chosen. 
Thus, the hypothesis space is subsequently divided. The key issue in decision 
tree learning is which feature to chose for the next ramification. The features 
are generally selected by means of statistical tests. The goal is to build a tree 
where the features with higher discriminative power are closer to the root. 
There are many different algorithms for decision tree learning which employ 
diff'erent statistical tests and optimizations. We use the widely applied algo­
rithm C4.5 [Quinlan, 1986] implemented in WEKA [Witten and Prank, 1999] 
in our experiments. 

Instance-Based Learning 

Instance-based learning techniques work essentially by memorizing typical 
examples. To categorize an unlabeled example, the classifier checks which 
of the stored training examples is most similar. Since instance-based learners 
only store some examples, learning is very efficient in contrast to other learning 
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methods that extract general patterns and descriptions from the training set. 
Classification of new examples, however, is slow since the unlabeled example 
has to be compared with all the memorized ones. Hereby, a distance function 
is used to find the training examples that are most similar. 

There are different approaches for instance-based learning, the most 
widely-used is the fc-Nearest Neighbor learning method [Aha et al., 1991]. The 
target value is predicted corresponding to the target values of the k nearest 
neighbors. 

Support Vector Machines 

Support Vector Machines (SVMs) are used for binary classification. They are 
typically based on linear function models. The learning algorithm aims at 
creating the maximum-margin hyperplane that splits the training examples 
into the two classes. This hyperplane is the best discrimination between both 
classes and has the maximal possible distance to the training examples. The 
training examples that are closest to the hyperplane are called support vectors 
- only these are needed to finally define the hyperplane. Finding these support 
vectors and determining the parameters of the hyperplane is what is done by 
the learning algorithm. Figure 4.7 shows such a hyperplane. The training 
examples are represented by circles, the boldly framed ones are the support 
vectors. 

The principle behind Support Vector Machines (SVMs) thus corresponds 
to a non-linear regression. The vector space is mapped into some other 
vector space by a non-linear transformation. A so called kernel function 
which needs to be defined then defines the dot product between vectors 
in the transformed vector space. In the resulting vector space a stan­
dard regression is performed to find the maximum-margin hyperplane (com­
pare [Cristianini and Shawe-Taylor, 2000]). In the experiments described in 
this book, we have used the regression SVMs implemented in TextGarden 
[Grobelnik and Mladenic, 2006]. 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) are inspired in the human brain 
and consist of layers of connected artificial neurons [Rosenblatt, 1959, 
Minsky and Papert, 1969]. Artificial neurons have inputs from other neurons, 
a weighting function which weights the input of each of these neurons and an 
aggregation function combining all the weighted inputs. If the result of this 
combination is over a certain threshold, the neuron is activated and propagates 
the signal to some other neurons. The most well-known network architecture is 
the so called feed forward network (compare Figure 4.8), in which the neurons 
are organized in layers: input, hidden and output. There is no bound on the 
number of hidden layers or on the number of connections between neurons. In 
fact, many networks are indeed fully connected in the sense that each neuron 
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Fig. 4.7. Example for support vectors 

Input Layer Hidden Layer Output Layer 

Input#1 

Output 

Fig. 4.8. Example for an artificial neural network 

is connected to every other neuron in the next layer. The easiest neural net­
work is the so called Perceptron consisting merely of an input and an output 
layer. The model underlying a perceptron is thus a linear one as in the case 
of SVMs (see before). In case there is at least one hidden layer, we talk about 
a Multi-Layer Perceptron (MLPER). In the feed-forward network the input 
signals are passed from one layer to the other to the output neurons. The 
weight of the connection between neurons is typically determined via a learn­
ing process, either supervised as in back propagation [Rumelhart et al., 1986] 
or unsupervised as in Self-Organizing Maps (SOMs) [Kohonen, 1995]. In back 
propagation, a labeled training set is needed, and the error is computed for 
each example in the training set, propagating the error 'backwards' from the 
output to the input layer, adjusting the weights at each layer to minimize this 
error rate (compare [Rumelhart et al., 1986]). In the context of this book, we 
will mainly use the implementation of the back-propagation algorithm avail­
able within WEKA [Witten and Prank, 1999]. 
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4.3.1.2 Imbalanced Datase t s 

Learning in presence of imbalanced data sets is an important issue in machine 
learning. Learning algorithms incorporate the assumption that maximizing 
the (overall) accuracy is the goal [Provost, 2000]. However, this does in many 
cases not meet the goals and requirements of an application and thus results 
in unsatisfactory classifiers. 

A common way to deal with imbalanced data is to artificially change the 
class distribution, i.e. rebalancing the data. Approaches for rebalancing include 
oversampling and undersampling. Oversampling consists in replicating some 
of the training examples of the minority class until the desired class distribu­
tion is reached, while undersampling implies removing some training examples 
of the majority class. There are several techniques for selecting the training 
examples that should be replicated or deleted. The method used most often is 
random selection (sampling with replacement in case of oversampling). Sam­
pling with replacement is also typically called bootstrapping. A lot of research 
has been and is still performed on methods to systematically select examples 
to be replicated or eliminated (see for example [Monard and Batista, 2002]). 

Cost-sensitive learning is another approach to deal with imbalanced data. 
The training examples are assigned relative costs, called misclassification costs 
- high costs for the examples of the minority class, lower costs for the examples 
of the majority class. The learning algorithm's goal is to minimize the total 
costs that would result from classifying the training examples. This approach 
requires a cost-sensitive implementation of a particular learning algorithm. 
However, appropriate oversampling can have the same effect. 

Another method to improve learning in presence of imbalanced data is to 
vary the threshold of the classifier. Internally, learning algorithms estimate 
the probability that an example is assigned to a certain class. This is called 
the class distribution. The class having the highest probability is normally 
assigned. Thus, a binary classifier chooses that class having a probability 
greater than 0.5. If this value is increased for the majority class, the threshold 
to assign the majority class is higher and the classifier will more likely assign 
the minority class. 

Each of the approaches presented before have Umitations and drawbacks. 
Oversampling increases the chances for overfitting when exact copies of the 
training examples are made, undersampling throws away potentially useful 
data, misclassification costs can only be used with cost-sensitive learning al­
gorithms, and the variation of the threshold does not result in better clas­
sifiers for many real-world applications. The question which approach works 
best for which learning algorithm and type of problem is still subject to re­
cent research. For further reading see for example [Kubat and Matwin, 1997], 
[Provost, 2000] and [Monard and Batista, 2002]. 
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4.3.2 Unsupervised Learning 

Unsupervised learning is typically applied for the exploration of data and does 
not need any labeled training data. Examples for unsupervised learning tech­
niques are clustering and algorithms for mining association rules (compare 
[Agrawal and Srikant, 1994]). In the context of this book, we mainly apply 
clustering as unsupervised learning paradigm. Clustering is generally seen as 
the task of finding groups or clusters of similar objects in data. It is an unsu­
pervised approach as no classes are given a priori, and there is no labeled data 
to train from. Clustering approaches can be divided into hierarchical and non-
hierarchical ones. In contrast to non-hierarchical algorithms, which produce 
a set of groups, hierarchical clustering algorithms additionally order these 
groups in a tree structure. Clustering algorithms can be further divided into 
hard and soft ones. When using a hard clustering algorithm, the assignment 
of an element to a cluster is functional, while for soft algorithms this assign­
ment is not functional, i.e. typically elements are assigned to clusters with 
a certain degree of membership. Hierarchical and hard clustering algorithms 
are for example hierarchical agglomerative clustering or Bi-Section-KMeans 
(see below). KMeans is an example for a non-hierarchical clustering algo­
rithm. Pole-based overlapping clustering (PobOC) [Cleuziou et al., 2004] and 
Clustering-By-Committe [Pantel and Lin, 2002a] are examples for soft clus­
tering algorithms. In what follows, we describe different clustering algorithms 
relevant for the work presented in this book in more detail. 

4.3.2.1 KMeans 

KMeans is a non-hierarchical clustering algorithm mainly consisting of a ran­
dom selection of k centroids as initialization and an iteration step in which 
elements are assigned to the centroid which is closest. Then cluster centroids 
are recomputed on the basis of this assignment (compare the pseudocode in 
Algorithm 3). KMeans basically implements a hill-climbing procedure which 
typically ends up in a local optimum. For this reason, KMeans is applied 
iteratively using different random initializations. Different stopping criteria 
can be used in combination with KMeans. On the one hand, we can stop in 
case the centroids or the assignment of elements to centroids do not change 
(both conditions are in fact equivalent). On the other hand, one can deter­
mine a number of iterations beforehand. In practice, both criteria lead to 
a small number of iterations, such that KMeans can be regarded indeed as 
a very efficient clustering algorithm. The inner loop is in fact linear in the 
number of clusters k. For more details the interested reader is referred to 
[Kaufman and Rousseeuw, 1990] or [Duda et al., 2001]. 

4.3.2.2 Hierarchical Clustering 

Given a set of objects X to cluster, hierarchical agglomerative clustering pro­
duces a binary tree (C, E) with the nodes C representing clusters of elements 
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Algorithm 3 KMeans 

Input: a set X = {xi,..., x„} of objects represented by vectors xi,..., Xn € I 
a number of clusters A; < n, cis well as 
a distance measure dist: R™ x R™ -^ R, and 
a function for computing the centroid of a cluster, i.e., /i : 2* ^ R" 

Output: a set K of k cluster centroids 

randomly choose k elements fi,...,fk 
repeat 

assign each element to the closest fi with respect to dist, i.e. 
a := {xj I V/; dist{xj,fi) < dist{xj,fi)} 
recompute the centroids, i.e 
fi ••= M(ci) 

until stopping criterion is true 
return {fi,...fk} 

(subsets of X), and the edges E C C x C representing inclusion relations. 
Such a binary tree has to satisfy the following conditions: 

'icjc' e C {c,c') e E ^ {c\c) ^ E (antisymmetric) (4.45) 

Wee C (c,c) ^ E (non-reflexive) (4.46) 

Vc, c' eC (c, c') eEA (c, c") eE-i-c' ^c" (functional) (4.47) 

\/ceC {c = rV3c' (c,c') e E) (lefl; total) (4.48) 

Vc, c', c" e C ((c', c)eEA (c", c) € E ^ c = c' U c") (union) (4.49) 

^c,c' e {c,c') E E -^ \c'\ > \c\ (strict monotonicity in size) (4.50) 

Vc € C |c| > 0 (no empty clusters) (4-51) 

Vc,c',c" € C ((c',c) € JE; A {c",c) e E-^ c'He" = %) (disjointness){4.52) 

Vc e C(-.3c'(c', c) e £ ) V (3c', c" {c',c)eEA (c", c) e E A c' ^ c" A 

Vc'" (c'", c)eE^ (c'" = c' V c'" = c")) ('ftmar?/ iree; (4.53) 

In particular, axioms antisymmetric and non-reflexive follow from strict mono­
tonicity in size. Finally, the boundary conditions are: 

3ci, . . . ,c„,r e C ci := {a;i} A... Ac„ = {a;„} A r = {xi,...,Xn} 

So each cluster Cj contains exactly the element xi, and there is a root r con­
taining all the elements. The above single-element nodes can not have children 
as their extension would be empty according to axioms strict monotonicity in 
size and no empty clusters. As each cluster besides the root needs to have a 
father according to the left total axiom, and a father has no children or exactly 
two of them according to binary tree, a valid clustering according to the above 
axiomatization will be built merging two disjoint clusters to yield a cluster 
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representing the union of both until one arrives at the universal cluster which 
has no father, i.e. the root node r. 

The above axioms thus define the search space of all possible cluster trees. 
A binary cluster tree with disjoint children for n elements has 2n — 1 nodes 
and 2(n — 1) edges. 

Prom an algorithmic point of view, one can build such a binary cluster 
tree with disjoint children either bottom-up or top-down. In the first case, 
the process is called hierarchical agglomerative clustering. In the second case, 
we talk about divisive clustering. Hierarchical agglomerative (bottom-up) and 
divisive (top-down) clustering are described more in detail in the following. 

Hierarchical Agglomerative (Bottom-Up) Clustering 

Hierarchical agglomerative (bottom-up) clustering (HAC) is initialized by 
creating an own cluster for each element and iterating over the step which 
merges the most similar clusters. Here an important question is i) how sim­
ilarity between elements is computed and ii) how similarity between clus­
ters is computed. Actually, the way the similarity between clusters is com­
puted has a strong effect on the complexity of the algorithm (compare 
[Manning and Schiitze, 1999]). We will mention three ways of computing sim­
ilarity between clusters: 

• Single linkage defines the similarity between two clusters P and Q as 
maxpQP^g^Q sim(p,q), that means, considering the closest pair between 
the two clusters. 

• Complete linkage considers the two most dissimilar terms, i.e. 
mmpeP^g^Qsim{p,q). 

• Finally, average-linkage computes the average similarity of the terms of 
the two clusters, i.e. jp^ Epgp.geQ sim(j),q). 

The hierarchical agglomerative clustering algorithm is formally given by 
the pseudocode in Algorithm 4. The pseudocode suggests that the complexity 
of the algorithm is 0{n^) as the while loop ranges over the size of K, which is 
n at the beginning, and finding the most similar pair takes O^n?). This is in 
fact what we will refer to as the naive implementation of HAC. As shown by 
Manning and Schiitze [Manning and Schutze, 1999], some optimization can 
be done. In particular, the similarities between all the elements can be pre-
computed and stored in a n x n array a in time 0{n'^). Depending on the 
linkage strategy used, the algorithm then differs. 
Let us start our discussion with single linkage. The similarities between the 
n elements in X = {xi, ...,a;„} can actually be stored in a n x n- matrix as 
depicted in Figure 4.9. 

Furthermore, in order to determine the most similar clusters at each step, 
for each element in the matrix we store the most similar element in a Best 
Merges list. The search for the most similar elements in each iteration can 
thus be done in 0{n). 
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Fig. 4.9. Example similarity matrix 

Once the two most similar clusters fc, and kj (or elements at the beginning) 
have been identified, a new cluster hnew — 

ki U kj is built. This cluster needs 
to be added to the similarity matrix, and the similarity to the other clusters 
has to be calculated. This is done in 0{n) according to the following update 
formula: 

sim{ki,knew) = ro.ax.{sim{ki,ki),sim{ki,kj)) (4.54) 

The interesting property of single linkage is that the similarity values in 
the Best Merges list never change. This is due to the fact that the max-
function is monotonic with respect to cluster merge and the similarity thus 
never decreases. This means in particular that if ki or kj was the most sim­
ilar element for some cluster kp, then, after the merge, knew will be the 
most similar element for kp. Thus, the Best Merges list can be updated in 
0(n) by replacing the occurrences of ki and kj by knew • 

The complexity 
of single linkage is thus 0{n^) (see also [Defays, 1977], [Murtagh, 1984] and 
[Manning and Schiitze, 1999]). 

For complete-linkage the situation is different. The cluster update function 
is the following: 

siTn{ki,knew) — mm{sim{ki, ki), sim{ki, kj)) (4.55) 

So, the similarity here is decreasingly monotonic with respect to cluster 
merges, such that the invariant property of the values in the Best Merge list 
is violated and consequently we would need to find the new most similar 
cluster for each element in 0{v?) time, thus leading to an overall complexity 
of 0{n^). The trick here is to sort the similarity values for each element in 
the original matrix in O^ri^logn) time and make a priority queue out of the 
Best Merges list. When a new cluster is formed, the new most similar cluster 
for each cluster can be found in 0{n log n) as finding the next largest value 
in a priority queue takes 0{log n) [Sedgewick, 1984]. Thus, agglomerative 
clustering with complete linkage has a worst-time complexity of 0{n'^log n) 
(compare [Duda et al., 2001])^. 

See also http://www-csli.stanford.edu/~schuetze/ completelink.html on this is­
sue 
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Algorithm 4 Hierarchical Agglomerative (Bottom-Up) Clustering 

Input: a set X = {xi,..., Xn} of objects represented by vectors xi,..., Xn 6 R™ and 
a similarity function sim: K"* x R"" -4 K 

Output: a set K oi 2n — 1 clusters ordered hierarchically 
as a binary tree {K, E) with 2(n — 1) edges and n leaves 

Vi 1 < i < n : ki := {xi} 
K:=K' -.^iku-.^kn] 
J5:=0 
j :=« + ! 
while(|is:'| > 1) do 

{k^i,ky,) := argmaX(j._̂ _i(.„)€K'xK' sim(ku,kv) 

K' -.^ K'\{ku'} 
K' := K'\{k,,} 
K' •.= K'U{kj} 
K:=KD{kj} 
E=^EU{ik^,,kj),ik,,,kj)} 
j:=j+l 

end while 
return (K,E) 

For average-linkage the overall complexity is 0(11?), assuming that the 
similarity measure is the cosine and using a special way of calculating average 
linkage between two clusters (compare [Manning and Schiitze, 1999]). 

Divisive (Top-Down) Clustering 

A binary cluster tree can not only be constructed bottom-up as in hierarchical 
agglomerative clustering, but also top-down by iteratively partitioning clus­
ters, starting with a universal cluster containing all elements. Here the crucial 
questions are i) how to select the next cluster to be spht, and ii) how to ac­
tually split the cluster in two clusters. Concerning the selection of the next 
cluster to be split, one typically defines a coherence function and selects the 
least coherent cluster for splitting. Coherence, for example, can be calculated 
on the basis of the variance in the cluster, thus selecting the cluster with the 
highest variance for splitting. However, it is also possible to simply select the 
largest cluster for splitting. Concerning the splitting of the selected cluster, 
a function split needs to be defined. The splitting task is actually again a 
clustering task consisting of clustering the data points into two clusters. In 
principle, every clustering algorithm could be used for this purpose. We will 
see later that Bi-Section-KMeans uses the KMeans algorithm for this purpose. 
The general algorithm for a top-down clustering is given in Algorithm 5. 
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A l g o r i t h m 5 Top-down hierarchical Clustering 

Input: a set X = {xi, ...,Xn} of objects represented by vectors Xi, ...Xn € i 
a function coh : 2"*" ->• R"", and 
a splitting function split : 2""* -)• 2*"" x 2 * " 

Output: a set K of 2n-l clusters ordered hierarchically 
as a binary tree {K, E) with 2(n — 1) edges and n leaves 

K := K' := {X} 
E:=<1) 

while 3ki 6 K' such that |fcj| > 1 do 
ku := argminj,^g;(-, coh(fc^) 
{kj+i,kj+2) ••= split(ku) 
K':^K'\{ku}U{kj+x,kj+2} 
K:=KU{kj+i,ki+2} 
E:-E\J {{kj+i,ku), {kj+2, ku)} 
3 ••=j + 2 

end while 
return (K, E) 

B i - S e c t i o n K M e a n s 

Bi-Section-KMeans is a bisecting top-down clustering algorithm which uses 
KMeans to part i t ion the cluster selected for splitting into two subclusters 
(compare Algorithm 6). In fact, the core of the Bi-Section KMeans algorithm 
is the KMeans algorithm for fc = 2. The complexity of the inner loop is thus 
0{n) and consequently the complexity of the outer for-loop 0{k n). 
It has often been argued tha t Bi-Section-KMeans is a very efficient clustering 
algorithm. Applications for Bi-Section-KMeans can be found, for example, in 
text clustering [Steinbach et al., 2000]. 
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A l g o r i t h m 6 Bi-Section KMeans 

Input: a set X = {xi, ...Xn} of objects represented by vectors xi , . . . , Xn G R™ and 
a function coh : 2*"" -> R 
a function for computing the centroid of a cluster, i.e., /̂  : 2* —> R'" 

Output: a set K of clusters with \K\ =2n — 1 ordered hierarchically 
as binary tree (K, E) with 2(n — 1) edges and n leaves 

K = K' := {X} 
E:=<1) 
for i= l to n-1 do 

choose the largest or the least coherent cluster fe„ € K', i.e. 
ku = argmaxfc.g^, \ki\ or ku = argminj..g;,-, coh(fci) 
choose two data points / i and /2 of ku as cluster centroids 
repeat 

assign each element in ku to its closest centroid, i.e. 
ci := {x Q ku \ dist{x,fi) < dist{x,f2)} 
C2 := {x e ku \ dist{x, f^) < dist{x, / i )} 
recompute both centroids, i.e. 
fj =Kcj),J€ {1,2} 

until stopping criterion is true 
K' •.= K'\{ku}U{ki,k2} 
K~KU{kuk2} 
E:^EU{{ki,ku),(k2,ku)} 

end for 
return (K, E) 



Datasets 

This chapter deals with the different datasets used within this book for the 
purpose of evaluating the developed algorithms and methods for ontology 
learning. We describe the manually designed ontologies we use to evaluate 
our approaches as well as the corresponding corpora used for learning. 

5.1 Corpora 

This section describes the text corpora used in the diverse experiments con­
ducted. Table 5.1 gives a summary of the main characteristics of the different 
collections, in particular the number of documents and tokens. 

5.1.1 Mecklenburg Vorpommern 

The first document collection was acquired from h t t p : //www. a l l - i n - a l l . de 
and has already been used by Alexander Madche [Madche, 2002]. It contains 
documents describing places, regions, sights, hotels, etc. in Mecklenburg Vor­
pommern, a state in northeast Germany. We will refer to this text collection as 
Corpus Meckienbnrg- It consists of 1047 HTML documents which were converted 
into plain text with about 332.000 tokens. 

5.1.2 Lonely Planet 

The LonelyPlanet corpus^ consists of 1801 HTML documents containing de­
scriptions of countries, cities, etc. from all continents. The HTML documents 
have been converted into a corpus consisting of about a million tokens. This 
corpus has also been used in the experiments conducted by Kavalec and Svatek 
[Kavalec and Svatek, 2005]. We will refer to this collection as Corpus^p. 

^ It was originally downloaded from http: //www. lonelyplanet. com/destinations 
in 2003 by Martin Kavalec from the Knowledge Engineering Group (KEG) at the 
University of Economics, Prague (UEP). 
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Table 5.1. 

Corpus 
Mecklenburg 
Lonely Planet 
BNC 
Reuters 
OHSUMED 
Genia Corpus 
Planet Stories 

Corpus statistics 

Documents 
1.047 
1.801 
4.124 

21.578 
348.556 

2.000 
307 

Tokens 
332.000 

1 Mio. 
100 Mio. 
218 Mio. 
7.6 Mio. 
400.000 

n.a. 

5.1.3 British National Corpus 

The British National Corpus (BNC) is a very large corpus of modern English, 
both spoken and written. The corpus comprises around 100 Mio. words in 
4.124 texts. 

The development of the corpus was carried out and managed by an indus­
trial/academic consortium lead by Oxford University Press. Work on building 
the corpus began in 1991, and it was completed in 1994. The Corpus was de­
signed to cover modern British English as far as possible. The written part 
(90%) includes, for example, extracts from newspapers, periodicals and jour­
nals, academic books and popular fiction, letters, essays etc. 

The British National Corpus has been annotated with part-of-speech tags 
and is widely used within NLP research. We will refer to this corpus simply 
as BNC. 

5.1.4 Tourism 

The above three corpora, i.e. Corpus Mecklenburg, Corpus^p and BNC have 
been merged into a larger tourism corpus we will refer to as Corpus Tourism-
The reason for including the BNC corpus in the Tourism corpus is to reach a 
critical mass of text. 

5.1.5 Reuters-21578 

The documents in the Reuters-21578 collection^ appeared on the Reuters 
newswire in 1987. The documents were assembled and indexed with categories 
by personnel from Reuters Ltd. and Carnegie Group, Inc. in 1987. In 1990, 
the documents were made available by Reuters for research purposes. In the 
context of this book, we have made use of version 1.0 prepared in 1996. In 
particular, we converted all the documents into plain text files, yielding a text 
corpus of about 218 Mio tokens. We will refer to this corpus as Corpus Reuters-

http : / /www .daviddlewis .com/resources/testcollections/reuters21578/ 
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5.1.6 OHSUMED 

The OHSUMED collection, initially compiled by Hersh et al. 
[Hersh et al., 1994], contains a total of 348.566 titles and abstracts from 
270 medical journals over the five-year period from 1987 until 1991. Each 
entry has been manually indexed with a set of descriptors from the MeSH 
thesaurus (see below). We will refer to this collection as COIPUSOHSUMED-

5.1.7 Genia Corpus 

The Genia corpus is developed together with the Genia ontology by Tsuji Labs 
(see the description below). The aim is to create a resource to allow devel­
opment, training, refinement, etc. of natural language processing applications 
for the domain of molecular biology, medicine, etc. The corpus contains an­
notated abstracts taken from the National Library of Medicine's MEDLINE 
database^. The corpus is semantically annotated with respect to categories 
from the Genia ontology. The current version 3.02 consists of 2000 abstracts 
which were selected from MEDLINE search results with the keywords (MeSH 
terms) human, blood cells and transcription factors. The corpus consists of 
about 18.546 sentences and 400.000 tokens. We will refer to this corpus as 
CorpusGenJa. It Can be downloaded at h t tp: / /www-tsuj i i . i s . s .u - tokyo . 
ac.jp/~genia/topics/Corpus/. 

5.1.8 Planet Stories 

The Planet Stories corpus, henceforth Corpusp;anet stories, has been compiled 
in 2004 by Victoria Uren from the Knowledge Media institute* for an informa­
tion retrieval experiment with the aim of retrieving topically similar stories for 
a given story. The Planet Stories repository is a collection of stories written 
by the employees about events, activities or visits at the Knowledge Media 
institute. The collection consists of 307 HTML documents. 

5.2 Concept Hierarchies 

In this section, we describe the diverse concept hierarchies with respect to 
which we will evaluate our ontology learning algorithms. 

5.2.1 Tourism and Finance 

In the context of this book, we will evaluate our taxonomy induction ap­
proaches with respect to two tourism ontologies and one finance ontol­
ogy. The first ontology, Otourism, was developed by an experienced ontol­
ogy engineer in the context of the study conducted by Madche and Staab 

http://www.ncbi.nlm.nih.gov/ 

'^ http: //kmi. open. ac. uk/ 



80 Datasets 

Table 5.2. Ontology statistics 

No. Concepts 
No. Leaves 
Avg. Depth 
Max. Depth 
Max. Children 
Avg. Children 

Otou rism 

293 
236 

3.99 
6 

21 
5.26 

OT ourtam 

969 
796 

5.35 
9 

35 
5.87 

^Finance 

1223 
861 

4.57 
13 
33 

3.5 

[Madche and Staab, 2002]. In this study, they asked one ontology engineer 
as well as four students to model a tourism ontology in order to compare 
the agreement between different subjects on the task of modeling an ontol­
ogy. They also present measures in order to measure the similarity of the 
ontologies at the lexical as well as conceptual level. The second ontology, a 
larger ontology about the tourism domain, i.e. OTourism^, was developed in 
the context of the GETESS project also by an experienced ontology engineer. 
GETESS was a project concerned with information extraction and retrieval 
from the Web [Staab et al., 1999]. In the same project also a finance ontology 
was developed. We will refer to this ontology as OFinance^- The latter two 
ontologies were translated from German into English by the author of the 
present book. Concepts which did not have any direct translation into the 
target language were either rephrased or removed. 

Table 5.2 gives some basic facts about the concept hierarchies of the three 
ontologies. In particular, it shows the number of concepts, the number of leaf 
concepts, the average depth of the tree, i.e. the average length of the paths 
from a leaf to the root, the maximal depth, the average number of children 
for non-leaf concepts as well as the maximal number of children. 

5.2.2 Genia 

The Genia ontology''^ is developed by Tsuji Labs^ and is intended to be a 
formal model of cell signaling reactions in humans. It was designed to be 
used as a basis for the construction of thesauri and semantic dictionaries for 
text processing applications such as information retrieval (IR), information 
extraction (IE), document and term classification, summarization, etc. Fur­
thermore, it is also supposed to provide the basis for an integrated view of 
multiple databases. The current version of the GENIA ontology, a taxonomy 
of some entities involved in signaling, has been developed with the aim of 
semantically annotating the Genia corpus (see Section 5.1). 

^ http://www.aifb.uni-karlsruhe.de/WBS/pci/TourismGoldStandard.isa 
® http:/ /www.aifb.uni-karlsruhe.de/WBS/pci/FinanceGoldStandard.isa 
'' h t t p : / /www-tsuj i i . i s . s .u- tokyo. ac . jp / "gen ia / top ics /Corpus / 

genia-ontology.html 
® ht tp : / / sys .pwr .eng .osaka-u .ac . jp /home.h tml 
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5.2.3 MeSH 

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary 
developed by the National Library of Medicine and it is used for indexing, 
cataloging, and searching for biomedical and health-related information and 
documents. 

It consists of sets of more or less synonymous medical terms arranged 
under so called descriptors, each representing a distinct meaning. The 2004 
edition of MeSH used in the context of this book contains more than 22.000 
descriptors. These are organized in a hierarchical structure known as MeSH 
tree structures. The most general level of the hierarchy consists of 15 general 
descriptors such as anatomy or disease. Each descriptor has attached one or 
more so called tree numbers describing the position of the descriptor within 
the tree structure. More specific descriptors are found at deeper levels of the 
hierarchy. The maximum depth of the hierarchy is 11 levels. As an illustrating 
example, in what follows we give part of the subtree below abnormalities: 

Abnormalities C16.131 
Abnormali t ies , Drug Induced C16.131.42 
Abnormali t ies , Multiple C16.131.77 

Alag i l l e Syndrome C16.131.77.65 
Angelman Syndrome C16.131.77.95 

5.3 Populat ion Gold Standard 

In order to evaluate methods for ontology population on the instance level, 
we created a gold standard as described in what follows. Two subjects were 
asked to annotate 30 texts from Corpusip. They used a pruned version of the 
OTourism ontology. The pruned version consisted of 682 concepts. The subjects 
were told to annotate instances in the text with the appropriate concept from 
the ontology. They used the OntoMat Annotizer tool [Handschuh et al., 2001] 
for this purpose. In what follows, we will refer to these subjects as A and B. 
Subject A actually produced 436 annotations, and subject B produced 392. 
There were 277 instances that were annotated by both subjects. For these 
277 instances, they used 59 different concepts, and the categorial agreement 
on these 277 instances as measured by the Kappa statistic was 63.48% (cf. 
[Carletta, 1996]), which allows to conclude that the annotation task is over­
all well defined but that the agreement between humans is far from perfect. 
Furthermore, they had total agreement on 178 instances. 



Part II 

Methods and Applications 



6 

Concept Hierarchy Induction 

Concept hierarchies allow to structure information into categories thus facil­
itating its search, reuse and understanding. Further, they provide a level of 
generalization which allows to define relationships between data in an abstract 
and concise way, without having to enumerate all the concrete cases for which 
the relation or implication in question holds. They form the backbone of any 
ontology and thus of any knowledge base, allowing to specify axioms, rules 
and implications between facts in a concise way. 

However, as already mentioned in the introduction, it is also well known 
that any knowledge-based system suffers from the so-called knowledge acqui­
sition bottleneck, i.e. the difRculty to actually model the domain in question. 
This applies in particular to the development of concept hierarchies. In order 
to partially overcome this problem, we present in this chapter three different 
methods aiming at acquiring conceptual hierarchies from a text corpus in an 
automatic fashion. According to the definition of ontology learning tasks in 
chapter 3, this chapter thus tackles the concept hierarchy induction task. 

Making explicit the knowledge implicitly contained in texts is a 
great challenge. Actually, knowledge can be found in texts at differ­
ent levels of explicitness. Handbooks, textbooks or dictionaries, for ex­
ample, contain explicit knowledge in form of definitions such as 'a 
tiger is a mammal' or 'mammals such as tigers, lions or elephants'. In 
fact, some researchers have exploited such regular patterns to discover 
taxonomic or part-of relations in machine readable dictionaries (com­
pare [Amsler, 1981, Calzolari, 1984, Alshawi, 1987, Dolan et al., 1993]) or 
texts (see [Hearst, 1992, Charniak and Berland, 1999, Iwanska et al., 2000, 
Ahmad et al., 2003]). However, it seems that the more technical and spe­
cialized the texts are, the less basic knowledge will be found stated in an 
explicit manner. Thus, an interesting alternative is to derive knowledge from 
texts by analyzing how certain terms are used rather than to look for their 
explicit definition. In these lines, the distributional hypothesis [Harris, 1968] 
assumes that terms are similar to the extent to which they share similar lin­
guistic contexts. The distributional hypothesis has been empirically validated 
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in a number of works showing that distributional similarity correlates well 
with semantic similarity (e.g. [Grefenstette, 1995], [Burgess and Lund, 1997], 
[Lin, 1998a]). In the following Section 6.1, we discuss in detail these main 
approaches to learning concept hierarchies. 

6.1 Common Approaches 

In this section, we review the common approaches to learning concept hierar­
chies. In particular, we discuss their strengths and weaknesses. After having 
understood how the common approaches work, the reader should be able to 
understand the contribution of the approaches described in Sections 6.2, 6.3 
and 6.4. We start our overview with methods which have been applied to 
extract concept hierarchies from machine readable dictionaries. Then, we dis­
cuss work related to the application of lexico-syntactic patterns as defined 
by Hearst to the task at hand. Then we introduce approaches based on dis­
tributional similarity, illustrating them with a concrete example. Finally, we 
discuss methods based on co-occurrence analysis. 

6.1.1 Machine Readable Dictionaries 

Early work on extracting taxonomies from machine readable dictionaries 
(MRDs) goes back to the early 80s [Amsler, 1981, Calzolari, 1984]. The 
core idea is to exploit the regularity of dictionary entries to first of all 
find a suitable hypernym for the defined word. In many cases, the head 
of the first NP appearing in the dictionary definition is in fact a hyper­
nym, genus [Calzolari, 1984] or kernel term [Amsler, 1981]. Consider, for 
example, the following definitions taken from Dolan et al. [Dolan et al., 1993]: 

spring "the season between winter and summer and in 
which leaves and flowers appear" 

nectar "the sweet liquid collected by bees from flowers" 

aster "a garden flower with a bright yellow center" 

However, there are also some exceptions to the above rule. On the one 
hand, the hypernym can be preceded by an expression such as 'a kind of, 
'a sort of or 'a type of. Here follow some examples taken from Alshawi 
[Alshawi, 1987]: 

hornbeam "a type of tree with a hard wood, sometimes used in 
hedges" 

roller coaster "a kind of small railway with sharp slopes and curves, 
popular in amusement parks" 

The above problem is easily solved by keeping an exception list with 
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words such as 'kind', 'sort', 'type' and taking the head of the NP following 
the preposition 'of as genus term. 

On the other hand, the word can also be defined in terms of a part-of or 
membership relation as in: 

corolla "the part of a flower formed by the petals, usu. 
brightly colored to attract insects." 

republican "a member of a political party advocating republi­
canism" 

In the above case it is neither possible to derive that is-a(coroUa, part) 
or is-a(repubUcan, member) nor that is-a(corolla, flower) or is-a(republican, 
political party). In fact, in these cases we are not faced with an is-a relation 
but a part-of relation. Another important question when determining the 
genus of a word according to its dictionary entry is what to do with nominal 
modification. Consider the following examples taken again from Alshawi 
[Alshawi, 1987]: 

launch "a large usu. motor-driven boat used for carrying 
people on rivers, lakes, harbors, etc." 

nail "a thin piece of metal with a point at one end and a 
flat head at the other for hammering into a piece of 
wood, usu. to fasten the wood to something else" 

Certainly, we all agree that the adjective modifiers 'large' and 'motor-
driven' are essential for the definition of a 'launch'. In the same vein, the 
adjective modifier 'thin' and the prepositional complement 'of metal' are 
essential characteristics of a 'nail'. However, it is unclear in how far modifiers 
should be regarded as part of the genus term. In any case, the above examples 
also show that we can find a wealth of information other than the genus 
term of the word defined in the entry. In the definitions of 'launch' and 
'nail' we also find information about the purpose of the object in question. 
Alshawi [Alshawi, 1987] as well as Dolan et al. [Dolan et al., 1993] have in 
fact proposed the extraction of richer structures from dictionary entries. 

Alshawi, for example, proposes to extract the foUowing structures for 
'launch' and 'nail': 

(((CLASS BOAT) (PROPERTIES LARGE)) 
(PURPOSE 

(PREDICATION (CLASS CARRY) (OBJECT PEOPLE)))) 

(((CLASS PIECE) (MATERIAL METAL) (PROPERTIES THIN)) 
(HAS-PART ((CLASS POINT)))) 

The above examples suggest that one can extract frame-based or feature­
like structures from dictionaries containing a wealth of semantic relations 
linking the different words together. 
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Of particular interest to our discussion is the work described in 
[Amsler, 1981], [Calzolari, 1984], [Copestake, 1990] and [Dolan et al., 1993]. 
These researchers have attempted to build a large network containing taxo-
nomic links between words denoting hypernymy or hyponymy relations. As 
argued by Dolan et al. [Dolan et al., 1993], such a network has indeed impor­
tant applications in natural language understanding. An important advantage 
of using dictionary definitions for building a taxonomy is that dictionaries sep­
arate different senses of words. Thus, taxonomic relations are learned between 
senses of words rather than between the words themselves. However, this only 
holds if the words used in the definitions of a certain sense of a word are also 
sense-disambiguated. Though this is partially the case for the LDOCE dictio­
nary used in a lot of research on extracting knowledge bases from MRDs, it 
is unfortunately not done consistently (compare [Dolan et al., 1993]). Thus, 
it seems crucial to cope with the ambiguity of words used to define a certain 
word. To some extent this is alleviated by the LDOCE MRD which restricts 
the words used to define an entry to a couple of thousands. In general, ap­
proaches deriving taxonomic relations from MRDs are quite accurate. Dolan 
et al. [Dolan et al., 1993], for example, mention that 87% of the hypernym 
relations they extract are correct. Calzolari [Calzolari, 1984] cites a preci­
sion of more than 90%, while Alshawi mentions a precision of 77%. These 
methods are quite accurate due to the fact that dictionary entries show a reg­
ular structure. Furthermore, the methods are quite robust. Montemagni and 
Vanderwende [Montemagni and Vanderwende, 1992] have even shown that a 
standard parser can be applied to the task of processing dictionary defini­
tions without decreasing parsing accuracy too much. Dictionary definitions 
in fact contain quite explicit knowledge compared to arbitrary text and thus 
provide an interesting basis for ontology learning. We currently see two main 
drawbacks in using a dictionary-based approach to ontology learning. The 
first is related to the fact that the acquired knowledge heavily depends on the 
intrinsic idiosyncrasies related to the writing of the entry. Second, in ontol­
ogy learning we are mostly interested in acquiring domain-specific knowledge. 
However, dictionaries are generally domain independent resources. It is thus 
unclear in how far they could be used to learn a domain-specific ontology. 

6.1.2 Lexico-Syntactic Patterns 

In her seminal work, Hearst [Hearst, 1992] suggested the application of so-
called lexico-syntactic patterns to the task of automatically learning hyponym 
relations from corpora. In particular, Hearst defined a collection of patterns 
indicating hyponymy relations. An example of such a pattern used by Hearst 
is the following: 

such NPo as NPi,...,NPn-i (or|and) other NPn 

where NP stands for a noun phrase. If such a pattern is matched in 
a text, according to Hearst we could derive that for all 0 < z < n 
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hyponym(lemina(head(AfPi)),lemma(head(A^Po)))> i-e. lemma(head(A''Pj)) is 
a hyponym of lemma(head(A''Po))^) where lemma(head(NP)) denotes the 
lemma^ of the nominal heads of NP. For example, from the sentence 
'Such injuries as bruises, wounds and broken bones...', we could derive 
the relations: hyponym(bruise, injury), hyponym(wound, injury) and hy-
ponym(broken bone, injury). 
The patterns used by Hearst are the following: 

Hearstl: NP such as {NP,}* {(and | or)} NP 
Hearst2: such NP as {NP,}* {(and j or)} NP 
HearstS: NP {,NP}* {,} or other NP 
Hearst4: NP {,NP}* {,} and other NP 
HearstS: NP including {NP,}* NP {(and | or)} NP 
Hearst6: NP especially {NP,}* {(and|or)} NP 

According to Hearst, the patterns should satisfy the following require­
ments: 

1. They should occur frequently and in many text genres. 
2. They should accurately indicate the relation of interest. 
3. They should be recognizable with little or no pre-encoded knowledge. 

Hearst mentions that an important issue is how to treat nominal mod­
ification, in particular adjectives prenominally modifying a noun. She does 
not give a definite answer to this problem, but mentions that the choice here 
certainly depends on the application in question. Furthermore, Hearst also 
suggests a procedure in order to acquire such patterns: 

1. Decide on a lexical relation R of interest, e.g. hyponymy/hypernymy. 
2. Gather a list of terms for which this relation is known to hold, e.g. hy-

ponym(car, vehicle). This list can be found automatically using the pat­
terns already learned or by bootstrapping from an existing lexicon or 
knowledge base. 

3. Find expressions in the corpus where these terms occur syntactically near 
one another. 

4. Find the commonalities and generalize the expressions in 3. to yield pat­
terns that indicate the relation of interest. 

5. Once a new pattern has been identified, gather more instances of the 
target relation and go to step 3. 

As mentioned by Hearst, the value of such lexico-syntactic patterns is 
that they can be identified easily and are quite accurate. Hearst, for ex­
ample, showed that, out of 106 relations extracted with her method from 
New York Times texts where the hyponym and hypernym were in Word-
Net, 61 were correct with respect to WordNet. Thus, a lower bound for 

^ Prom a linguistic point of view, a term ti is a hyponym of a term <2 if we can say 
'a ti is a kind ofti'. Correspondingly, (2 is then a hypernym of ti. 

^ The lemma of a word is its base or normal form, i.e., cats - cat, drove - drive, etc. 
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Table 6.1. Tourism domain knowledge as formal context (rep.) 

hotel 
apartment 
car 
bike 
excursion 
trip 

bookable 
X 

X 

X 

X 

X 

X 

rentable 

X 

X 

X 

driveable 

X 

X 

rideable 

X 

joinable 

X 

X 

the accuracy of Hearst patterns is 61/106, i.e. 57.55%. The drawback of 
the patterns is however that they appear rarely and most of the words 
related through an is-a relation do not appear in Hearst-style patterns. 
Thus, one needs to process large corpora to find enough of these patterns. 
For this reason, recently several researchers have attempted to match these 
patterns on the Web as a big corpus using some query engine (compare 
[Markert et al., 2003, Pasca, 2004, Etzioni et al., 2004a]). A further drawback 
of such an approach based on lexico-syntactic patterns is that we learn lexical 
relations between word forms rather than between senses of words or concepts. 
Furthermore, the patterns are typically specified in the form of regular expres­
sions and this imposes limits on the accuracy of the patterns. Given a sentence 
as 'However, the main historic area of Ordino is a charming village' most of 
the approaches based on matching lexico-syntactic patterns would derive: is-
a(Ordino, village), which is definitely not correct, i.e. it is the 'main historic 
area of Ordino' which is a 'charming village', but not Ordino itself. In fact, 
it is language's variety which is difficult to capture merely relying on regular 
expression power. Further work related to the application of lexico-syntactic 
patterns is discussed in Section 6.5. 

6.1.3 Dis t r ibut ional Similarity 

The so called distributional hypothesis claims that words are similar to 
the extent that they share similar context [Harris, 1968]. This hypothesis 
is also in line with Firth's well known statement that 'you shall know a 
word by the company it keeps' [Firth, 1957]. In fact, empirical investiga­
tions corroborate the validity of the above hypothesis. Miller and Charles 
[Miller and Charles, 1991], for example, found in several experiments that hu­
mans determine the semantic similarity of words on the basis of the similar­
ity of the contexts they are used in. Grefenstette [Grefenstette, 1994] further 
showed that similarity in vector space correlates well with semantic relat-
edness of words. We will explain how the distributional hypothesis can be 
exploited to derive concept hierarchies by means of the example formal con­
text already described in Section 4.2 and shown again in Table 6.1 for the 
sake of convenience. 
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Table 6.2. Similarities for tourism example 

hotel 
apartment 
car 
bike 
excursion 
trip 

hotel 
1.0 

apartment 
0.5 
1.0 

car 
0.33 
0.66 
1.0 

bike 
0.25 
0.5 

0.75 
1.0 

excursion 
0.5 

••0.33 
0.25 
0.2 
1.0 

trip 
0.5 
0.33 
0.25 
0.2 
1.0 
1.0 

Fig. 6.1. Cluster tree built by agglomerative hierarchical clustering 

Assuming that each of the objects o in Table 6.1 is represented by a binary 
vector with 5 dimensions corresponding to the attributes given in Table 6.1, we 
can calculate the similarity between the objects, for example by the Jaccard 
coefficient introduced in Section 4.1.5. The similarities are given in Table 6.2. 

Using hierarchical agglomerative clustering, we could now build a cluster 
tree for the objects in Table 6.2. Let us assume we are using single linkage as 
measure of the similarity between clusters. First, we would cluster excursion 
and trip as they have a similarity of 1. We would then cluster bike and car 
as this is the next pair with the highest degree of similarity. Then we would 
build a cluster consisting of bike, car and apartment. Next, we would either 
join the latter cluster with hotel or build a cluster between hotel and the 
already created cluster consisting of excursion and trip. Assuming that we 
traverse the similarity matrix from the upper left corner to the lower right 
one, we would add hotel to the cluster consisting of bike, car and apartment. 
At the top level we would then join the clusters {hotel, apartment, bike, car} 
and {excursion, trip) producing a universal cluster containing all elements. 
The corresponding cluster tree is shown in Figure 6.1. 
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The cluster tree in Figure 6.1 thus bears some similarity with the lattice 
produced by FCA for the same tourism example (shown in Figure 4.5). In 
fact, in the lattice there are corresponding formal concepts with the exten­
sions: {excursion, trip}, {bike, car}, {bike, car, apartment} and {bike, car, 
apartment, hotel, excursion, trip}, respectively. However, there is one crucial 
difference. While the lattice is based on a sound theory of attribute inheritance 
and thus represents a concept hierarchy in which attributes are inherited by 
subconcepts, the cluster tree lacks a clear and formal interpretation. Further­
more, the concept hierarchy produced by FCA also contains an intensional 
description of the concepts in terms of the attributes which they have in 
common and thus allows for distinguishing them from other concepts. The 
cluster tree does not provide such an intensional description of the concepts. 
In general, one encounters several problems when applying similarity-based 
clustering techniques. First of all, some similarities are accidental in the sense 
that they do not correspond to semantic similarities and are due to sparse 
data. Second, as words are grouped according to their similarity, it seems 
difficult to describe the meaning of a group intensionally. Third, though simi­
larity is often assumed to be a homogeneous relation often interpreted in terms 
of equivalence, this is certainly not the case. Nevertheless, the distributional 
similarity hypothesis provides a useful and already successfully applied model 
for ontology learning tasks. 

6.1.4 Co-occurrence Analysis 

Some research has hypothesized that the fact that the occurrence of some 
word implies the occurrence of some other word in the same sentence, para­
graph or document hints at a potential directed relation between both words. 
Directed means for example a sub-topic, is-a or part-of relation. This no­
tion is related to the one of a collocation. We will say that two words form 
a collocation if they occur together in a paragraph, sentence, document or 
next to each other more often than predicted by chance. Sanderson and Croft 
[Sanderson and Croft, 1999] present a document-based definition of subsump-
tion according to which a certain term ti is more special than a term 2̂ if 
2̂ also appears in all the documents in which ti appears. On the basis of 

this document-based definition of subsumption, they automatically induce a 
hierarchy between nouns from a document collection. As shown by Fotzo and 
Gallinari [Fotzo and Gallinari, 2004], Sanderson and Croft's approach can in 
fact be generalized by the following definition: 

Definition 19 (Document-based Subsumption) A term x subsumes a 
term y iff P{x\y) > t and P{y\x) < P{x\y), where 

n{x, y) is the number of documents in which x and y co-occur 
n{y) is the number of documents that contain y 



Common Approaches 93 

In particular, Sanderson and Croft consider the case in which t = 1. 
Though directed co-occurrences seem in fact to indicate some directed relation 
between the involved words, it is unclear which specific relation actually holds 
between these. Some research has suggested that depending on the context 
we consider, i.e. bigrams, sentences, paragraphs or even whole documents, 
we tend to get different types of relations. However, to our knowledge this 
hypothesis has not been empirically analyzed. 

6.1.5 Road Map 

We have seen that there is a wide range of techniques which have been applied 
to the problem of learning concept hierarchies from textual data. As we are 
dealing with learning ontologies from domain-specific corpora, the methods 
based on MRDs are less interesting for our purposes. However, all the other 
learning paradigms will find application in the book. In fact, in the remainder 
of this chapter we will present three methods exploiting the above described 
learning paradigms in some way or the other. 

Section 6.2 describes an approach based on Formal Concept Analysis which 
groups and hierarchically orders words or terms according to their use or 
behavior in a corpus. The set-theoretical method of FCA is compared to 
similarity-based clustering techniques, in particular hierarchical agglomera-
tive clustering as well as Bi-Section-KMeans by comparing the different hier­
archies generated with respect to a reference concept hierarchy on the basis 
of a novel evaluation method. In addition to this quantitative evaluation, we 
also provide a qualitative discussion of the different methods. The contribu­
tion here is, on the one hand, the application of set-theoretical methods such 
as FCA to the problem as well as the systematic comparison of the differ­
ent approaches along several dimensions. This section is partially based on 
material already published in [Cimiano et al., 2003a], [Cimiano et al., 2003b], 
[Cimiano etal . , 2004b], [Cimiano et al., 2004c] and [Cimiano et al., 2005a]. 

However, when applying unsupervised techniques to the generation of 
concept hierarchies, one encounters different problems we already discussed 
above, that is, spurious similarities and lack of infensional descriptions. In 
Section 6.3, we present a novel approach dealing with two problems inherent 
in similarity-based clustering approaches, i.e. accidental similarities and lack 
of intensional labels. The approach addresses both issues by guiding the clus­
tering via an hypernym-oracle constructed by other means. In particular, at 
early phases of the algorithm, words are only clustered if they actually have a 
common hypernym according to the oracle, reducing the number of accidental 
clusterings. By labeling the constructed cluster with the common hypernym, 
the cluster is also described intensionally. This section is partially based on 
material already published in [Cimiano and Staab, 2005]. 

We have seen above that each of the learning paradigms has advantages but 
also disadvantages. Consequently, it is unlikely that one paradigm can produce 
optimal results. Thus, a combination of techniques seems likely to overcome 
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some of the problems inherent in the different approaches. The third approach 
described in this chapter is in fact an attempt to combine different learning 
approaches to increase the quality of the learned taxonomic relations. The 
approach is inspired by the way humans acquire knowledge. We assume here 
that humans do not acquire their knowledge from one single source, but from 
many different sources such as newspapers, text-books, dictionaries, etc. In 
fact, different types of textual resources contain information at varying levels 
of explicitness. Whereas text books, dictionaries and educational resources in 
general may contain very explicit definitions, knowledge can, in most cases, 
only be derived implicitly from the way words are used in conventional texts 
such as newspapers, novels, etc. The approach considers different approaches 
generating evidence for a certain taxonomic relation with different degrees of 
explicitness and combines these evidences in an optimal way. In particular, 
well-known techniques from supervised machine learning are applied to learn 
an optimal combination of the different approaches. The material presented in 
this section is partially based on the work described in [Cimiano et al., 2004d] 
and [Cimiano et al., 2005c]. 

Section 6.5 then presents related work in more detail and Section 6.6 closes 
this chapter by discussing the main contributions as well as some open issues. 

6.2 Learning Concept Hierarchies with FCA 

We have seen in the previous chapter that different types of methods 
have been proposed in the literature to address the problem of (semi-) 
automatically deriving a concept hierarchy from text relying on the dis­
tributional hypothesis. Basically, these methods can be grouped in two 
classes: the similarity-based methods on the one hand, and the set-
theoretical approaches on the other hand. Both methods adopt a vector-
space model and represent a word or term as a vector containing fea­
tures or attributes derived from a corpus. There is certainly a great di­
vergence in which attributes are used for this purpose, but typically some 
sort of syntactic dependencies are used, such as conjunctions, apposi­
tions [Caraballo, 1999] or verb-argument dependencies (see [Hindle, 1990, 
Pereira et al., 1993, Grefenstette, 1994, Faure and Nedellec, 1998]). The first 
type of methods is characterized by the use of a similarity or distance mea­
sure in order to compute the pairwise similarity or distance between vectors 
corresponding to two words or terms in order to decide if they can be clus­
tered or not (compare [Hindle, 1990, Pereira et al., 1993, Grefenstette, 1994, 
Faure and Nedellec, 1998, Caraballo, 1999]. Set-theoretical approaches par­
tially order the objects according to the inclusion relations between their 
attribute sets (compare [Petersen, 2002, Sporleder, 2002, Haav, 2003]). 

In this chapter, we present a set-theoretical approach based on Formal 
Concept Analysis (compare Section 4.2). In order to derive attributes from a 
certain corpus, on the one hand we parse it and extract verb-PP-complement, 
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verb-object and verb-subject dependencies. On the other hand, we also use 
surface dependencies as described in Section 4.1.4. For each noun appearing 
as head of these argument positions, we then use the corresponding verbs as 
attributes for building the formal context and calculate the formal concept 
lattice on its basis. The use of such syntactic dependencies to represent a 
term's context have also been suggested by Grefenstette [Grefenstette, 1994], 
Lin [Lin, 1998a] as well as Gamallo et al. [Gamallo et al., 2005]. 

Though different methods have been explored in the literature, there is ac­
tually a lack of comparative work concerning the task of automatically learn­
ing concept hierarchies by applying clustering techniques. However, ontology 
engineers need guidelines about the effectiveness, efficiency and trade-offs of 
different methods in order to decide which techniques to apply in which set­
tings. Thus, we present a comparison along these lines between our FCA-based 
approach, hierarchical bottom-up (agglomerative) clustering, and Bi-Section-
KMeans as an instance of a divisive algorithm. In particular, we compare the 
learned concept hierarchies with handcrafted reference taxonomies for two 
domains: tourism and finance. In addition, we examine the impact of using 
different information measures to weight the significance of a given object-
attribute pair. Furthermore, we also investigate the use of a smoothing tech­
nique to cope with data sparseness. The remainder of this section is structured 
as follows: In Section 6.2.1, we present the approach in general, whereas in 
Section 6.2.2 we discuss the details related to the automatic construction of 
formal contexts from texts. We present our evaluation measures in Section 
6.2.3 and the concrete results in Section 6.2.4. We summarize the main re­
sults in Section 6.2.5. 

6.2.1 FCA for Concept Hierarchy Induction 

The overall process of automatically deriving concept hierarchies from text 
by FCA is depicted in Figure 6.2. First, the corpus is part-of-speech (POS) 
tagged using TreeTagger [Schmid, 1994] and parsed using LoPar (compare 
Section 4.1). Then, verb-subject, verb-object and verb-prepositional phrase 
(PP) dependencies are extracted from these parse trees. In particular, pairs 
are extracted consisting of the verb and the head of the subject, object or 
prepositional phrase they subcategorize. Then, the verb and the heads are 
lemmatized, i.e. assigned to their base form. In case the word is not in our 
lexicon, it is simply not lemmatized. In order to address data sparseness, 
the collection of pairs is smoothed, i.e. the frequency of pairs which do not 
appear in the corpus is estimated on the basis of the frequency of other pairs. 
The pairs are then weighted according to some statistical measure, and only 
the pairs above a certain threshold are transformed into a formal context to 
which Formal Concept Analysis is appUed. The lattice resulting from this, 
(!B,<), is transformed into a partial order {C,<') which is closer to a concept 
hierarchy in the traditional sense. As FCA typically leads to a proliferation of 
concepts, the partial order is compacted removing abstract concepts, leading 



96 Concept Hierarchy Induction 

•=> 

<i£a 

Parsing ^ 

Lattice 
Compaction 

Dep. 
Extraction 

^ FCA 

^ 

^ 

Lemmatizer 

Pruning 

i ^ 

^ 

Smoothing 

Weighting i" 
Fig. 6.2. Overall process for concept hieraxchy induction with FCA 

to a compacted partial order {C",<") which is the resulting concept hierarchy. 
More formally, the process is described algorithmically by the pseudocode in 
Algorithm 7. 

Algorithm 7 ConstructConceptHierarchy(D,T) 

/* construct a hierarchy for the terms in T on the basis of the documents in D * j 

Parses = parse(POS-tag(D)); 
SynDeps = tgrep(Parses); 
LemmatizedSynDeps = lemmatize(SynDeps); 
StnoothedSynDeps = sniooth(LeniinatizedSynDeps); 
WeightedSynDeps = weigth(SmoothedSynDeps); 
SynDeps' = applyThreshold(WeightedSynDeps); 
K = getFormalContext(T,SynDeps'); 
(05, <) = computeLattice(ii'); 
(C, <') = transform(<8, <); 
(C",<")=compact(C",<'); 
return (C",<"); 

In order to illustrate the whole process, we will discuss the formal context 
already introduced in Section 4.2 which is shown again in Table 6.3 for the sake 
of convenience. The lattice produced by FCA is depicted in Figure 6.3 (left)^. 
It can be transformed into a special type of concept hierarchy as shown in 
Figure 6.3 (right) by removing the bottom element, introducing an ontological 
concept for each formal concept (named with the intent) and introducing a 
subconcept for each element in the extent of the formal concept in question. 
In order to formally define the transformation of the lattice (!8, <) into the 
partial order ( C , <') , we assume that the lattice is represented using reduced 
labeling (compare Section 4.2). Now given a lattice (*B, <) of formal concepts 

* The Concept Explorer software was used to produce this lattice (see h t t p : / / 
sourceforge.net/projects/conexp). 
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Table 6.3. Tourism domain knowledge as formal context (rep.) 

97 

hotel 
apartment 
car 
bike 
excursion 
trip 

bookable 
X 

X 

X 

X 

X 

X 

rentable 

X 

X 

X 

driveable 

X 

X 

rideable 

X 

joinable 

X 

X 

for a formal context K = {G,M,I), we transform it into a partial order 
(C",<') as follows: 

Definition 20 (Transformation of («B, <) to (C",<')) First of all C 
contains objects as well as intents (sets of attributes): 

C ~GU{B I (A,B)e<8} 

Further: 

<•:= {(5,Bi) I 7(5) = (yli ,Si)} U{(Si,i?2) I {AuB,) < {A^^B^)) 

Finally, as FCA typically produces a high number of concepts, we compress 
the resulting hierarchy of ontological concepts by removing any inner node 
the extension of which is the same as the one of its child in terms of leaf nodes 
subsumed. As a result, we create a partial order (C", <Q) as follows: 

Definition 21 (Compacted Concept Hierarchy (C", <")) Assuming 
that lext{c) is the set of leaf nodes dominated by c according to < ^ ; 

C" := {C2 e C" I Vci e C" C2 <'c ci -^ lext{c2) ^ lextici)} 

Further: 

i.e. <Q is the relation <'Q restricted to pairs of elements of C". 

<:C-='^C \C"XC" 

In the case of the hierarchy depicted in Figure 6.3 (right), we would remove 
the rideable concept for example. 

At a first glance, it seems that the hierarchy shown in Figure 6.3 (right) is 
odd due to the fact that the labels of abstract concepts are verbs rather than 
nouns as typically assumed. However, from a formal point of view, concept 
labels have no meaning at all so that we could just as well have named the 
concepts with some other arbitrary symbols. The reason why it is handy to 
introduce 'meaningful' concept identifiers is for the purpose of easier human 
readability. In fact, if we adopt an extensional interpretation of our hierarchy, 
we have no problems asserting that the extension of the concept denoted by 
bike is a subset of the extension of the concept of the rideable objects in our 
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Fig. 6.3. The lattice of formal concepts (left) and the corresponding hierarchy of 
ontological concepts (right) for the tourism example 

world. This view is totally compatible with interpreting the concept hierarchy 
in terms of formal subsumption as given by the logical formula: Va; {bike{x) -> 
rideable{x)). We thus conclude that, from an extensional point of view, the 
verb-like concept identifiers have the same status as any concept identifier 
based on a noun. Prom an intensional point of view, there may not even exist a 
hypernym with the adequate intension to label a certain abstract concept, such 
that using a verb-like identifier may even be the most appropriate choice. For 
example, we could easily replace the identifiers joinable, rideable and driveable 
by activity, two-wheeled vehicle and vehicle, respectively. It is certainly difficult, 
however, to substitute rentable by some appropriate term denoting the same 
extension, i.e. all the things that can be rented. 
It is also important to mention that the learned concept hierarchies represent 
a conceptualization of a domain with respect to a given corpus in the sense 
that they represent the relations between terms as they are used in the text. 
However, corpora represent a very limited view of the world or a certain 
domain due to the the fact that if something is not mentioned, it does not 
mean that it is not relevant, but simply that it is not an issue for the text 
in question. As a result, certain similarities between terms with respect to 
the corpus are actually accidental - in the sense that they do not map to a 
corresponding semantic relation - but are due to the fact that texts represent 
a biased snapshot of a domain. Thus, the learned concept hierarchies have to 
be merely regarded as approximations of the conceptualization of a certain 
domain. 
The task we are now focusing on is: given a certain number of terms referring 
to concepts relevant for the domain in question, can we derive a concept 
hierarchy between them? In terms of FCA, the objects are thus given and we 
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need to find the corresponding attributes in order to build an incidence matrix, 
a lattice and then transform it into a corresponding concept hierarchy. In the 
following section, we describe how we acquire these attributes automatically 
from the underlying text collection. 

6.2.2 Context Construction 

As already mentioned above, in order to derive context attributes describing 
the terms we are interested in, we make use of syntactic dependencies between 
the verbs appearing in the text collection and the heads of the subject, object 
and PP (prepositional phrase)-complements they subcategorize. In fact, in 
previous experiments [Cimiano et al., 2004b] we found that using all these 
dependencies in general leads to better results than any subset of them. In 
order to extract these dependencies automatically, we parse the text with 
LoPar (compare Section 4.1). 

There are three further important issues to consider: 

1. the output of the parser can be erroneous, i.e. not all derived verb-
argument dependencies are correct, 

2. not all the derived dependencies are 'interesting' in the sense that they 
will help to discriminate between the different objects, and 

3. the assumption of completeness of information will never be fulfilled, i.e. 
the text collection will never be big enough to find all the possible occur­
rences (compare [Zipf, 1932]). 

To deal with the first two problems, we weight the object-attribute pairs 
with regard to a certain information measure and consider only those verb-
argument relations for which this measure is above some threshold t. In 
particular, we explore the following three information measures (compare 
[Cimiano et al., 2003a] and [Cimiano et al., 2004b]): 

Ccmditional{n,Varg) = P{n\varg) = , , ' °'̂ f (6.1) 

j{Varg) 

PMIin,Varg)=l092^^^^ (6.2) 

Resnik{n,Varg) = SniVarg) Pin\Varg) (6.3) 

where Snivarg) = En' P{n'Wrg)log^^^. 

Furthermore, f{n,Varg) is the total number of occurrences of a term n 
as argument arg of a verb v, f{varg) is the number of occurrences of verb 
V with a corresponding argument and P{n) is the relative frequency of a 
term n compared to all other terms. The first information measure is simply 
the conditional probability of the term n given the argument arg of a verb 
V. The second measure PMI{n,Varg) is the pointwise mutual information 
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(compare Section 4.1.5) and was used by Hindle [Hindle, 1990] for discovering 
groups of similar terms. The third measure is inspired by the work of Resnik 
[Resnik, 1997] and introduces an additional factor SR{Varg) which takes 
into account all the terms appearing in the argument position arg of the 
verb V in question. In particular, the factor measures the relative entropy of 
the prior and posterior (considering the verb it appears with) distributions 
of n and thus the selectional strength of the verb at a given argument 
position. It is important to mention that in our approach the values of all 
the above measures are normalized into the interval [0,1] by the function 
f(x) = —r-. For illustration purposes, let us discuss the above measures 
on the basis of the example verb-object-occurrence matrix given in Table 
6.4. 

Table 6.4. Occurrences of nouns as objects of verbs 

hotel 
apartment 
car 
bike 
excursion 
trip 

hodkobj 
10 
6 
3 
2 
1 
2 

xentobj 

5 
4 
3 

driveotj 

5 
2 

ride<,6j 

2 

joino6j 

3 
2 

First of all, we have a total number of 50 occurrences of nouns as 
objects of some verbs. Therefore, we get the following prior probabilities 
for the nouns: P(hotel)=i2=0.2, P(apartment)=1^ =0.22 , P(car)=:|§=0.24, 
P(bike)=^=0.18, P(excursion)=^=0.08, P( t r ip)=^=0.08. The posterior 
probabilities, i.e. the probability of a noun given the object position of a 
certain verb, are given in Table 6.5. 

hotel 
apartment 
car 
bike 
excursion 
trip 

Table 6.5. Posterior probabilities 

P(n|booko6j) 
57=0-42 
^ = 0 . 2 5 
1=0.13 
i = 0 . 0 8 
^ = 0 . 0 4 
^ = 0 . 0 8 

P(n|rento6j) 

A=0.45 
^=0 .36 
^ = 0 . 2 7 

P(n|driveo6j) 

1=0.71 
1=0.29 

P(n|rideo6j) 

2=1 

P(n|joino6j) 

1=0.6 
1=0.4 

Now, the PMI of hotel and hodkobj is, for example, PMI{hotel, hookobj) = 
log2 ^ ^ ^ p f f S " ' ' ' = '0^2 %f = 1.07. The selectional strength of bookobj 
should be much lower than the one of driveobj according to our intuitions. 



Learning Concept Hierarchies with FCA 101 

In fact, we get: SRibookotj) = 0.42 • log2{^) + 0.25 • log2{^) + 0.13 • 
lo92{^) + 0.08 • log2{°^) + 0.04 • log2{^) + 0.08 • log2{^) = 0.25, and 
SRidriveobj) = 0.71 • log2{^) + 0.29 • logii^) = 1.31. 

We thus get, for example, Resnik(hotel,bookobj) = 0.42 • 0.25 = 0.11 and 
Resnik{car, driveobj) = 0.71 • 1.31 = 0.93. The above results certainly corre­
spond to our intuitions about the selectional strength of 'book' and 'drive'. 

The third problem mentioned above, i.e. the data sparseness, requires 
smoothing of input data. In fact, when working with text corpora, data sparse­
ness is always an issue [Zipf, 1932]. A typical method to overcome data sparse­
ness is smoothing [Manning and Schutze, 1999], which in essence consists in 
assigning non-zero probabilities to unseen events. For this purpose, we apply 
the technique described in [Cimiano et al., 2003b], in which mutually similar 
terms are clustered with the result that an occurrence of an attribute with one 
term is also counted as an occurrence of that attribute with the other term. 
As similarity measures we examine the Cosine, Jaccard, LI norm as well as 
the Jensen-Shannon and Skew divergence measures analyzed and described 
by Lee [Lee, 1999] (compare also Section 4.1.5.3): 

cos{ti,t2) = I (6.4) 
y ^ E „ „ . , e V ^ ( * l | « a r s ) ^ E „ „ . , e U PihWrgY 

j ^ , . . X _ \{Varg\P{h\Varg) > 0 and P{t2\Varg) > 0} | 
JaCin,T2) \{y^^^lp^t^\Varg) > 0 OV ^ ( i a k a r . ) > 0} | ^''•''' 

LlihM)^ Y, \P{ti\ '^arg )l (6.6) 
Vara 6 V 

JS{h,t2) = ^[DiPiti,V) II avg{h,t2)) + DiP{t2,V) \\ avg{tut2)] (6.7) 

SD{ti,t2) = D{Piti,V)\\a-Pih,V) +{l-a)-P{t2,V)) (6.8) 

where D{Pi{V) || P2{V)) is the Kullback-Leibler divergence introduced in 
Section 4.1.5 and avg{ti,t2) = M'' '")+M*2.")._ JJJ particular, we implemented 
these measures using the variants relying only on the elements Varg common 
to ti and t2 as described by Lee [Lee, 1999]. Strictly speaking, the Jensen-
Shannon as well as the Skew divergence are dissimilarity functions as they 
measure the average information loss when using one distribution instead of 
the other. We transform them into similarity measures as fc — / , where k is an 
appropriate constant and / the dissimilarity function in question. We cluster 
all the terms which are mutually similar with regard to the similarity measure 
in question, counting more attribute-object pairs than are actually found in 
the text and thus obtaining also non-zero frequencies for some attribute-
object pairs that do not appear hterally in the corpus. The overall result is 
consequently a 'smoothing' of the frequency landscape by assigning some non­
zero frequencies to combinations of verbs and objects which were actually not 
found in the corpus. Here follows the formal definition of mutual similarity: 
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Definition 22 (Mutual Similarity) Two terms ni and n-i are mutually 
similar iff n-x = argmaxn' sim{ni,n') and ui = argmaxn' sim{n2,n'). 

According to this definition, two terms rii and n2 are mutually similar if ui 
is the most similar term to n2 with regard to the similarity measure in ques­
tion and the other way round. Similar notions have been proposed by Hindle 
[Hindle, 1990] and Lin [Lin, 1998b], where these pairs are called reciprocally 
similar and Respective Nearest Neighbors, respectively. Figure 6.4 (left) shows 
an example of a lattice which was automatically derived from a set of texts 
acquired from the Lonely Planet as well as the Mecklenburg corpora together. 
We only extracted verb-object pairs for the terms in Table 6.3 and used the 
conditional probability to weight the significance of the pairs. For excursion, 
no dependencies were extracted and therefore it was not considered when 
computing the lattice. The threshold used was t = 0.005. Assuming that car 
and bike are mutually similar, they would be clustered, i.e. car would get 
the attribute startable and bike the attribute needable. Accordingly, the result 
here would be the lattice in Figure 6.4 (right), where car and bike are in the 
extension of one and the same concept. 

Fig. 6.4. Examples of lattices automatically derived from tourism-related texts 
without smoothing (left) and with smoothing (right) 

6.2.3 Evaluation 

In order to evaluate our approach, we need to assess how good the auto­
matically learned ontologies reflect a given domain. One possibility would 
be to compute how many of the direct sub-/superconcept relations in the 
automatically learned ontology are correct. This has been done, for exam­
ple, by Hearst [Hearst, 1992] or CarabaUo [Caraballo, 1999]. However, due to 
the fact that our approach, as well as many others (compare [Hindle, 1990, 
Pereira et al., 1993, Grefenstette, 1994, Faure and Nedellec, 1998]), does not 
produce appropriate labels for the generated concepts, it seems difficult 
to assess the validity of a given sub-/superconcept relation. Another pos­
sibility is to compute how similar the automatically learned concept hi­
erarchy is with respect to a given hierarchy for the domain in question. 
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Here, the crucial question is how to define similarity between concept hi­
erarchies. Though there is a great amount of work in the AI commu­
nity on how to compute the similarity between trees [Zhang et al., 1992, 
Goddard and Swart, 1996], concept lattices [Belohlavek, 2000], conceptual 
graphs [Myaeng and Lopez-Lopez, 1992, Maher, 1993] and conventional 
graphs [Zhang et al., 1996, Chartrand et al., 1998], it is not clear how 
these similarity measures also translate to concept hierarchies. An inter­
esting work in these lines is the one presented by Madche and Staab 
[Madche and Staab, 2002], in which ontologies are compared along different 
levels: semiotic, syntactic and pragmatic. In particular, the authors present 
measures to compare the lexical and taxonomic overlap between two ontolo­
gies. Furthermore, they also present an interesting study in which different 
subjects were asked to model a tourism ontology. The resulting ontologies are 
compared in terms of the defined similarity measures, thus yielding the agree­
ment of different subjects on the task of modeling an ontology. The evaluation 
measures we will use to compare the different automatically derived concept 
hierarchies are inspired by the work of Madche and Staab. In what follows, we 
first present our evaluation measures in Section 6.2.3.1 and then the actual 
results in Sections 6.2.4. 

6.2.3.1 Evaluation Measures 

For the purposes of this section, we will introduce a simplified version of an 
ontology as defined in Section 2 which we will refer to as a core ontology: 

Deflnition 23 (Core Ontology) A core ontology is a structure O :— 
{C,root,<c) consisting of (i) a set C of concept identifiers, (ii) a desig­
nated root element representing the top element of the (Hi) upper semi-lattice 
{C U {root}, <c) called concept hierarchy or taxonomy. 

For the sake of notational simplicity, we adopt the following convention: 
given an ontology Oj, the corresponding set of concepts will be denoted by d 
and the partial order representing the concept hierarchy by <Cj. 
It is important to mention that in the approach presented here, terms are 
directly identified with concepts; that means, we neglect the fact that terms 
can be polysemous. Now, the lexical recall (LR) of two ontologies Oi and O2 
is measured as follows:'* 

LR{0^,0,) = ^ ^ (6.9) 

Take for example the concept hierarchies Oauto and Oref depicted in Figure 
6.5. In this example, the lexical recall is LR{Oauto,Oref) = ^ = 50%. Note 
that the root node has been explicitly excluded from C by Definition 23. This 
holds for the remainder of this section. 
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Fig. 6.5. Example for an automatically acquired concept hierarchy Oauto (left) 
compared to the reference concept hierarchy Ores (right) 

Fig. 6.6. Example for a perfectly learned concept hierarchy Operfect (left) compared 
to the reference concept hierarchy Oref (right) 

In order to compare the taxonomy of two ontologies, we use the seman­
tic cotopy (SC) introduced by Madche and Staab [Madche and Staab, 2002]. 
The semantic cotopy of a concept is defined as the set of all its super- and 
subconcepts: 

SC{c, Oi) := {cj eCi\ c <Ci Cj or Cj <Ci c] (6.10) 

In what follows, we illustrate these and other definitions on the basis of 
several example concept hierarchies. Take for instance the concept hierarchies 
in Figure 6.6. We assume that the left concept hierarchy has been automati­
cally learned with our FCA approach and that the concept hierarchy on the 
right is a handcrafted one. Further, it is important to point out that the left 
ontology is, in terms of the arrangement of the leaf nodes and abstracting 
from the labels of the inner nodes, a perfectly learned concept hierarchy. This 
should thus be reflected by a maximum similarity between both ontologies. 

•* As we assume that the terms to be ordered hierarchically are given, there is no 
need to measure the lexical precision, i.e. the ratio l*̂ ,*̂ ?̂ !. 
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The semantic cotopy of the concept vehicle in the right ontology in Figure 6.6 
is for example {car, bike, two-wheeled vehicle, vehicle, object-to-rent} and the 
semantic cotopy of driveable in the left ontology is {bike, car, rideable, drive-
able, rentable, bookable}. 
It becomes already clear that comparing the cotopies of both concepts will 
not yield the desired results, that is, a maximum similarity between both con­
cepts. Thus, we use a modified version S C of the semantic cotopy in which 
we only consider the concepts common to both concept hierarchies in the se­
mantic cotopy SC (compare [Cimiano et al., 2004b, Cimiano et al., 2004c]), 
i.e. 

SC'icu Oi, O2) := {Cj e Ci n C2 I Cj <ci Ci V Ci <c, Cj] (6.11) 

By using this common semantic cotopy we exclude from the comparison con­
cepts such as runable, offerable, needable, activity, vehicle, etc. which are only 
in one ontology. So, the common semantic cotopy SC of the concepts vehi­
cle and driveable is identical in both ontologies in Figure 6.6, i.e. {bike, car}, 
representing a perfect overlap between both concepts, which certainly corre­
sponds to our intuitions about the similarity of both concepts. However, let 
us now consider the concept hierarchy in Figure 6.7. The common semantic 
cotopy of the concept bike is {bike} in both concept hierarchies. In fact, every 
leaf concept in the left concept hierarchy has a maximum overlap with the 
corresponding concept in the right ontology. Concerning recall, the problem 
is even worse, because every concept in the target ontology O2 will still show 
a reasonable overlap with a corresponding leaf concept in the automatically 
learned ontology. The reason for this is the average depth of the ontologies we 
are considering. The average depth for the tourism ontology is for example 3.99 
(compare Chapter 5). We would still get a recall of about 25% when comparing 
to trivial concept hierarchies. As we are considering only common concepts in 
the semantic cotopy, this situation is even worse as the average number of con­
cepts in the semantic cotopy is lower than the average depth of the ontology. 
This is certainly undesirable and leads to very high baselines when compar­
ing such trivial concept hierarchies with a reference standard (compare our 
earlier results in [Cimiano et al., 2004b] and [Cimiano et al., 2004c]). Thus, 
we introduce a further modification of the semantic cotopy by excluding the 
concept itself from its common semantic cotopy, i.e: 

SC'ici, Oi, 02) := {cj e Ci n C2 I Cj <ci Ci V Ci <c, Cj} (6.12) 

This maintains the perfect overlap between vehicle and driveable in the concept 
hierarchies in Figure 6.6, while yielding empty common cotopies for all the 
leaf concepts in the left ontology of Figure 6.7. Now, according to Madche et 
al. the taxonomic overlap (TO) of two ontologies Oi and O2 is computed as 
follows: 

r O ( O i , O2) = 7 ^ j ; ^ TO(c, Oi, O2) (6.13) 
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Fig. 6.7. Example for a trivial concept hierarchy Otriviai (left) compared to the 
reference concept hierarchy Oref (right) 

where 

TO{c, Oi, O2) - I j .^„(^^ o^ ^ Q^) if ^ ^ ^^ (6.14) 

and TO' and TO" are defined as follows: 

Tn'(rn p^•_l^gg(c.Ol.02)n5C(c,02,Ol)| . . , , . 

rrn"( n n ^ \SC{c,0u02)^SC{c',02,0i)\ , „ , . , 
TO {c,OuO,):=max,^c. \sC{c,0^,0,)iJSC{c!,0„0,)\ ^^'^^^ 

So, TO' gives the similarity between concepts which are in both ontologies 
by comparing their respective semantic cotopies. In contrast, TO" gives the 
similarity between a given concept c S Ci and that concept c' in C2 which 
maximizes the overlap of the respective semantic cotopies, i.e. it makes an 
optimistic estimation assuming an overlap that just does not happen to show 
up at the immediate lexical surface (compare [Madche and Staab, 2002]). The 
taxonomic overlap T0{0i,02) between the two ontologies is then calculated 
by averaging over all the taxonomic overlaps of the concepts in Ci. 

In our case it does not make sense to calculate the semantic cotopy for 
concepts which are in both ontologies, as they will be leaf nodes in our learned 
ontologies and thus their common semantic cotopies SO" are empty. This 
holds only under the assumption that the typical concept labels introduced 
by our FCA-based approach, i.e. ending with 'able', do not appear in our 
reference ontology. This assumption is easy to ensure as we could simply 
introduce a symbol making sure that this will always be the case. We calculate 
the taxonomic overlap between two ontologies as follows: 

T0'{0u02) = r^,\^^ Yl maa;e,6c.u{root}TO"'(c,c', 01,02) (6.17) 

where 
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TO (c, c,0^,0,)- 1^^,,^^^ ^^ ^ ^^^ ^ ^^„^^,^ ^^^ ^^^1 (6.18) 

Finally, as we do not only want to compute the taxonomic overlap in one 
direction, we introduce the precision, recall and an F-measure calculating the 
harmonic mean of both: 

PTO{OI,02) = TWiOu02) (6.19) 

RTo{Oi,02)=TOf{02,Oi) (6.20) 

p (n ^ ^ 2-PToiOi,02)-RTo{Oi,02) . . „ . . 

The importance of balancing recall and precision against each other will 
be clear in the discussion of a few examples below. Let us consider the con­
cept hierarchy Operfect in Figure 6.6, for example. In fact, the four non-leaf 
concepts joinable, rentable, driveable and rideable in the left hierarchy in Fig­
ure 6.6 have the same common semantic cotopy as the concepts activity, ob-
ject_to_rent, vehicle and two-wheeled vehicle in the right hierarchy in Figure 
6.6. For joinable and activity, the common semantic cotopy is {excursion, trip}; 
for rentable and object-tO-rent it is {bike, car, apartment}; for driveable and 
vehicle it is {bike, car}, and for rideable and two-wheeled vehicle it is {bike}, 
respectively. These perfect correspondences lead to a precision and recall of 
100% with respect to the taxonomic overlap. We thus get a precision and a 

recall of PTo{Operfect,Oref) - RTo{Operfect,Oref) = ^+^1"^"''^ = 100% and 
an F-Measure of FTo{Operfect,Oref) = 100%. 

Fig. 6.8. Example for a concept hierarchy with lower recall (O^.^) compared to the 
reference concept hierarchy Oref 
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Fig. 6.9. Example for a concept hierarchy with lower precision (Oip) compared to 
reference concept hierarchy Oref 

In the concept hierarchy 04,^ shown in Figure 6.8, the precision is 
still 100% for the same reasons as above, but due to the fact that the 
rideable concept has been removed there is no corresponding concept for 
two-wheeled-vehicle. The concept maximizing the taxonomic similarity in 
Oref for two-wheeled-vehicle is driveable with a taxonomic overlap of 0.5. The 
recall is thus RTo{0i„,0ref) = TO^{Oref.O^^) = i ± l ± i ± i = 87.5% and 
the F-measure decreases to Fro(04,^,Ore/) = 93.33%. 

In the concept hierarchy of O^p in Figure 6.9, an additional concept plan-
able has been introduced, which reduces the precision to ProiOipfOref) = 

g ^ = 90%, while the recall stays obviously the same at 
RTO{OOI ,Oref) = 100% and thus the F-measure is FroiOipjOref) — 
94.74%. It becomes clear now why it is important to measure the preci­
sion and recall of the automatically learned concept hierarchies and bal­
ance them against each other by the harmonic mean or F-measure. For the 
automatically learned concept hierarchy Oauto in Figure 6.5 the precision 

is ProiOautcOref) = ^+^+^1+1+1 = 62%, the recall RTo{Oauto,Oref) = 

^+^+J+^ = 75% and thus the F-measure FTo{Oauto,Oref) = 67.88%. 
As a comparison, for the trivial concept hierarchy Otriviai in Figure 6.7 
we get ProiOtriviahOref) = 100% (per definition), RroiOtriviahOref) = 

^^^^+^ = 33.33% and FroiOtriviahOref) = 50%. 
It is important to emphasize that, though in our toy examples the difference 
with respect to these measures between the automatically learned concept 
hierarchy Oauto and the trivial concept hierarchy Otriviai is small, when con­
sidering concept hierarchies with a much higher number of concepts it is clear 
that the F-measures for trivial concept hierarchies will be very low (see the 
results in Section 6.2.4). 
Finally, we also calculate the harmonic mean of the lexical recall and the 



Learning Concept Hierarchies with FCA 109 

F-measure as follows: 

^ (^^'^^) - LR{OuO,) + Fro{0^,0,) ^^'^^^ 

The reason is that we do not only want to maximize the taxonomic overlap 
of the learned ontologies but also the lexical recall at the same time. For the 
automatically learned concept hierarchy Oauto we get: 

2-50%-67.88% _ 

The taxonomic overlap thus assesses the global quality of the learned con­
cept hierarchies. However, we are also interested in knowing how good the 
clusters produced actually are. While the taxonomic overlap is a global qual­
ity criterion for the learned concept hierarchies, we will also measure the local 
quality by the local taxonomic overlap. 

In order to introduce the local taxonomic overlap, we will first introduce 
the siblings of a concept: 

Definition 24 (Siblings) 

Sih{c,Oi) := {c' I 3c" c <Ci c" A c' <c, c"} 

In particular, we only compare common siblings, i.e 

Definition 25 (Common Siblings) 

Sih{c,Oi,02) := W € Ci n C2 I 3c" c •<c^ c" A c' ^Ci c"} 

The local taxonomic overlap (LTO) between two concepts is now defined 
as: 

rrpnf n n^ \Sib{c,0u02) n Sib{c',02,0i)\ 
LT0{c,0u02) •.= max, , , . |s.,(c',o.,ooi>i i^-^^^^^i.C^) U 5i6(c' ,O2,O0| 

(6.23) 
The average local taxonomic overlap {LTO) is consequently defined as 

follows: 

(6.24) 
So, we can also compute the local taxonomic overlap in two directions and 

calculate the precision PLTO, recall RLTO and F-measure FLTO-

We evaluate our approach on two domains: tourism and finance. The on­
tology for the tourism domain is the reference ontology of the comparison 
study conducted by Madche and Staab [Madche and Staab, 2002], which was 



110 Concept Hierarchy Induction 

modeled by an experienced ontology engineer. The finance ontology is basi­
cally the one developed within the GETESS project [Staab et al., 1999], i.e. 
OFinance- The tourism domain ontology is the Otourism ontology, consisting 
of 293 concepts. The finance domain ontology is bigger with a total of 1223 
concepts. As domain-specific text collection for the tourism domain we use 
the Tourism corpus consisting of the Mecklenburg, Lonely Planet and BNC 
corpora. Altogether the corpus size is over 100 Milhon tokens. For the finance 
domain we consider the Reuters-21578 corpus with 218 Million tokens (com­
pare Section 5). 

6.2.4 Results 

In what follows, we present the results of comparing the different clustering 
algorithms with respect to the measures defined in this section. Further, in 
Section 6.2.4.2 we discuss the results of using different information measures 
and in Section 6.2.4.3 we describe the impact of our smoothing method. Fi­
nally, in Section 6.2.4.4, we present results of clustering using pseudo-syntactic 
dependencies instead of dependencies extracted from full parses. 

6.2.4.1 Comparison 

The best F-measure for the tourism dataset is p^^A^touHsm^ 40.52% (at 
a threshold of t = 0.005), corresponding to a precision of pPGA,tourism^ 
29.33% and a recall of R^CA,tourism^ 65.49%. For the finance dataset, the 
corresponding values are F^c?yi,/ma„ee^ 33.11%, pP^Ajinance^ 29.93% and 
j^FCAJinance^ 37.05%. 

The lexical recall obviously also decreases with increasing threshold t such that 
overall the F-measure F' also decreases inverse proportionally to t. Overall, 
the best results in terms of F' are F'^CA,tourism^ 44.69% for the tourism 
dataset and ir'i^C'yi./mance., 3385% for the finance dataset. The reason why 
the results on the finance dataset are slightly lower is probably due to the 
more technical nature of the domain (compared to the tourism domain) and 
also to the fact that the concept hierarchy to be learned is bigger. 

In order to evaluate our FCA-based approach, we compare it with hier­
archical agglomerative clustering and Bi-Section-KMeans (compare Section 
4.3.2). In our experiments, we use three different strategies to calculate the 
similarity between clusters: complete, average and sm^/e-linkage (compare Sec­
tion 4.3.2.2). As similarity measure we make use of the cosine measure for all 
the similarity-based clustering algorithms. Further, it is important to men­
tion that in the case of the similarity-based clustering algorithms, we prohibit 
the merging of clusters with similarity 0 and rather order them under a Ac­
tive universal cluster 'root'. This corresponds exactly to the way FCA creates 
and orders objects with no attributes in common. In addition, as Bi-Section-
KMeans is a randomized algorithm, we produce ten runs and average the 
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Fig. 6.10. Results for the FCA-bcised approach: F-measure over lexical recall for 
the tourism and finance domains 

obtained results. 
We compare the different approaches along the lines of the measures described 
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in Section 6.2.3. Figure 6.10 shows the results in terms of F-measure FTO 
over lexical recall for both domains and all the clustering approaches. It can 
be observed that our FCA-based approach performs better than the other 
approaches on both domains. As it can be observed in Figure 6.11, showing 
recall over precision, the main reason for this is that the FCA-based approach 
yields a higher recall than the other approaches, while maintaining the pre­
cision at reasonable levels. All the diagrams presented in this section show 
8 data points corresponding to the thresholds 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 
0.7 and 0.9. First of all, it seems important to discuss the baselines for our 
approach, which are the trivial concept hierarchies which are generated when 
no objects have attributes in common. Such trivial concept hierarchies are 
generated from threshold 0.7 on our datasets and by definition have a pre­
cision of 100% and a recall close to 0. While the baselines for FCA and the 
agglomerative clustering algorithm are the same, Bi-Section-KMeans is pro­
ducing a hierarchy by random binary splits which results in higher F' values. 
These trivial hierarchies represent an absolute baseline in the sense that no 
algorithm could perform worse. 

On the tourism domain, the second best result in terms of F' is achieved 
by the agglomerative algorithm with the single-linkage strategy, followed by 
the ones with average-linkage and complete-linkage (in this order), while the 
worst results are obtained when using Bi-Section-KMeans (compare Table 
6.6). On the finance domain, the second best results are achieved by the 
agglomerative algorithm with the complete-linkage strategy followed by the 
one with the average-linkage strategy, Bi-Section-KMeans and the one with 
the single-linkage strategy (in this order). Overall, it is valid to claim that FCA 
outperforms the other clustering algorithms on both datasets. When having a 
closer look at Table 6.6, the reason for this also becomes clear, i.e. FCA has a 
much higher recall than the other approaches, while the precision is more or 
less comparable. This is due to the fact that FCA generates a higher number 
of concepts than the other clustering algorithms, consequently increasing the 
recall. Interestingly, at the same time, the precision of these concepts remains 
reasonably high thus also yielding higher F-measures FTO and F'. 

An interesting question is therefore how big the produced concept hier­
archies are. Figure 6.12 shows the size of the concept hierarchies in terms 
of number of concepts over the threshold parameter t for the different ap­
proaches on both domains. It is important to explain why the number of 
concepts is different for the different agglomerative algorithms as well as Bi-
Section-KMeans as in principle the size should always be 2n — 1, where n is 
the number of objects to be clustered. However, as objects with no similarity 
to other objects are added directly under the fictive root element, the size of 
the concept hierarchies varies depending on the way the similarities are cal­
culated. In general, the sizes of the agglomerative and divisive approaches are 
similar, while at lower thresholds FCA yields concept hierarchies with much 
more concepts. From threshold 0.3 on, the sizes of the hierarchies produced 
by all the different approaches are quite similar. Table 6.7 shows the results 
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Fig. 6 .11. Results for the FCA-based approach: recall over precision for the tourism 
and finance domains 

for all approaches using the thresholds 0.3 and 0.5. In particular, we can con­
clude tha t FCA also outperforms the other approaches on both domains when 
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Table 6.6. Results of the comparison of different clustering approaches 

Tourism 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

P r o 
29.33% 
34.67% 
35.21% 
34.78% 
32.85% 

RTO 

65.49% 
31.^8% 
31.45% 
28.71% 
28.71% 

F T O 

40.52% 
33.27% 
33.23% 
31.46% 
30.64% 

F ' 

44.69% 
36.85% 
36.55% 
38.57% 
36.42% 

Finance 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

Pro 
29.93% 
24.56% 
29.51% 
25.23% 
34.41% 

R T O 

37.05% 
25.65% 
24.65% 
22.44% 
21.77% 

F T O 

33.11% 
25.09% 
26.86% 
23.75% 
26.67% 

F ' 

38.85% 
33.35% 
32.92% 
32.15% 
32.77% 

producing a similar number of concepts. 
In general, we have not determined the statistical significance of the results 
because FCA, in contrast to Bi-Section-KMeans, is a deterministic algorithm 
which does not depend on any random seeding. Our implementation of ag-
glomerative clustering is also deterministic given a certain order of the terms 
to be clustered. Thus, the only possibility to calculate the significance of our 
results would be to produce different runs by randomly leaving out parts of 
the corpus and calculating a statistical significance over the different runs. We 
have not pursued this direction further as the fact that FCA performs better 
in our setting is clear from the results in Table 6.6. Concerning the results 
in terms of local taxonomic overlap, given in Table 6.8, we can conclude that 
our FCA-based approach also outperforms the other clustering approaches in 
terms of FLTO-

4 0,5 0.6 0.7 0.8 0.9 

threshold I 

Fig. 6.12. Sizes of concept hierarchies for the different approaches on the tourism 
and finance domains: number of concepts over threshold t 
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Table 6.7. Comparison of results at thresholds 0.3 and 0.5 (F') 
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Threshold 
FCA 
Complete Linkage 
Single Linkage 
Average Linkage 
Bi-Section K-Means 

Tourism 
0.3 

37.53% 
36.85% 
29.84% 
35.36% 
31.50% 

0.5 
37.74% 
36.78% 
35.79% 
36.55% 
35.02% 

Finance 
0.3 

37.59% 
33.05% 
29.34% 
32.92% 
32.77% 

0.5 
34.92% 
30.37% 
27.79% 
31.30% 
31.38% 

Table 6.8. Results of the comparison of different clustering approaches (LTO) 

Tourism 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

PLTO 

21.98% 
23.17% 
23.48% 
23.01% 
22.63% 

RLTO 

33.82% 
21.34% 
23.24% 
19.63% 
18.52% 

F i T O 
26.64% 
22.22% 
23.36% 
21.19% 
20.37% 

Finance 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

PLTO 

21.24% 
21.84% 
21.75% 
22.21% 
21.53% 

R L T O 

32.50% 
21.59% 
22.56% 
19.84% 
21.47% 

FLTO 

25.69% 
21.71% 
22.15% 
20.96% 
21.49% 

6.2.4.2 Information Measures 

As already anticipated, the different information measures are also subject 
of our analysis. Table 6.9 gives the best results for the different clustering 
approaches and information measures. It can be concluded from these results 
that using PMI or the Resnik measure produces worse results on the tourism 
dataset, while yielding only slightly better results on the finance dataset for 
the FCA-based approach. It is also interesting to observe that, compared 
to the FCA-based approach, the other clustering approaches are much more 
sensitive to the information measure used. Overall, the use of the conditional 
probability as information measure seems reasonable. For the local taxonomic 
overlap LTO this situation is different. As Table 6.10 shows, the choice of 
the information measure has indeed an influence on the F-measure FITO-

On the finance domain, the best result with FCA is achieved using the Resnik 
measure. In general, the pointwise mutual information seems to produce better 
results in terms of FLTO-
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Table 6.9. Comparison of results for different information measures (F') 

Conditional PMI Resnik 
FCA 

Tourism 
Finance 

44.69% 
38.85% 

44.51% 
38.96% 

43.31% 
38.87 % 

Complete Linkage 
Tourism 
Finance 

36.85% 
33.35% 

27.56% 
22.29% 

23.52% 
22.96% 

Average Linkage 
Tourism 
Finance 

36.55% 
32.92% 

26.90% 
23.78% 

23.93% 
23.26% 

Single Linkage 
Tourism 
Finance 

38.57% 
32.15% 

30.73% 
25.47% 

28.63% 
23.46% 

Bi-Section-KMeans 
Tourism 
Finance 

36.42% 
32.77% 

27.32% 
26.52% 

29.33% 
24.00% 

Table 6.10. Comparison of results for different information measures (FLTO) 

Conditional PMI Resnik 
FCA 

Tourism 
Finance 

26.64% 
25.60% 

26.17% 
25.86% 

26.25% 
27.02% 

Complete Linkage 
Tourism 
Finance 

22.22% 
21.71% 

24.57% 
21.79% 

21.98% 
21.38% 

Average Linkage 
Tourism 
Finance 

23.36% 
22.15% 

23.83% 
23.81% 

21.90% 
21.83% 

Single Linkage 
Tourism 
Finance 

21.19% 
20.96% 

22.46% 
20.23% 

21.62% 
20.65% 

Bi-Section-KMeans 
Tourism 
Finance 

21.52% 
21.49% 

21.83% 
21.58% 

21.76% 
20.99% 

6.2 .4 .3 S m o o t h i n g 

We apply our smoothing metliod described in Section 6.2.2 to both datasets 
in order to find out in how far the clustering of terms as a preprocessing step 
improves the results of the FCA-based approach. As information measure we 
use in this experiment the conditional probability because it was found to per­
form reasonably well (see Section 6.2.4.2). In particular, we use the following 
similarity measures: the cosine measure, the Jaccard coefficient, the LI norm 
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as well as the Jensen-Shannon and the Skew divergences (compare Section 
4.1.5). Table 6.11 shows the impact of this smoothing technique in terms of 
the number of object-attribute terms added to the dataset. The Skew Diver­
gence is excluded because it did not yield any mutually similar terms. It can 
be observed that smoothing by mutual similarity based on the cosine measure 
produces the most previously unseen object-attribute pairs, followed by the 
Jaccard, LI and Jensen-Shannon divergence (in this order). Table 6.12 shows 
the results for the different similarity measures. The tables in sections A.2 and 
A.3 of the appendix list the mutually similar terms for the different domains 
and similarity measures. The results show that our smoothing technique ac­
tually yields worse results on both domains and for all similarity measures 
used. The smoothing method thus seems to be grouping terms which are not 
siblings in our gold standards. We conclude that our smoothing technique did 
not improve the results of the clustering. This does not mean that smooth­
ing in general does not work in our context, but that other more elaborated 
methods should be examined. Actually, when having a close look at the pairs 
shown in Tables A.2 and A.3, it becomes clear that the 'semantic relatedness' 
of the mutually similar pairs is remarkably high. 

Table 6.11. Impact of the smoothing technique in terms of new object-attribute 
pairs 

Tourism 

Finance 

Baseline 
525912 

577607 

Jaccard 
531041 

(-1- 5129) 
599691 

(-1- 22084) 

Cosine 
534709 

(-1- 8797) 
634954 

(-1- 57347) 

LI 
530695 

(-1- 4783) 
584821 

(-1- 7214) 

JS 
528892 

(-1- 2980) 
583526 

(-f- 5919) 

Table 6.12. 

Tourism 
Finance 

Baseline 
44.69% 
38.85% 

Results of smoothing (F') 

Jaccard 
39.54% 
38.63% 

Cosine 
41.81% 
36.69% 

LI 
41.59% 
38.48% 

JS 
42.35% 
38.66% 

6.2.4.4 Pseudo-syntactic Dependencies 

In a further series of experiments, instead of using syntactic dependencies 
extracted with a parser, we also make use of the pseudo-syntactic surface 
dependencies described in Section 4.1.4. 
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We thus extract more dependencies compared to the method pre­
sented above. The dependencies we extract are very much in hue with 
the ones extracted by Grefenstette [Grefenstette, 1994] or Gasperin et al. 
[Gasperin et al., 2001]. The results of repeating our experiments using pseudo-
syntactic surface dependencies are given in Table 6.13 in terms of taxonomic 
overlap and in Table 6.14 in terms of local taxonomic overlap. 

We can observe in Table 6.13 that, on the tourism domain, we yield a 
best F-measure F' of 48.84% which is more than 4 points above the version 
of the FCA-based approach relying on syntactic dependencies extracted from 
parse trees. On the finance domain, we yield a best F-measure of F '= 38.43% 
which is only slightly below the best F-measure of F '= 38.85% obtained us­
ing syntactic dependencies as well as the conditional probability to weight 
the features. In general, it is important to mention that the FCA-based ap­
proach outperforms again all the other clustering approaches. It is also worth 
mentioning that for both domains agglomerative clustering with single-linkage 
yields the second best results. 

Table 6.14 shows the results in terms of local taxonomic overlap. We can 
see that the results for the FCA-based approach are slightly worse for both 
domains compared to using syntactic dependencies (compare table 6.8). How­
ever, it is important to emphasize that for all the agglomerative clustering 
approaches the results are better when using pseudo-syntactic dependencies 
with respect to taxonomic overlap as well as local taxonomic overlap. 

Table 6.13. Results of the comparison of different clustering approaches using 
pseudo-syntactic dependencies (F') 

Tourism 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

Pro 
27.02% 
26.44% 
25.22% 
40.40% 
22.07% 

R-TO 
68.67% 
32.98% 
34.68% 
28.05% 
25.61% 

FTO 

38.78% 
29.35% 
29.20% 
33.08% 
23.66% 

F'TO 

48.82% 
40.60% 
40.72% 
44.85% 
34.72% 

Finance 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

Pro 
23.96% 
20.69% 
19.92% 
26.87% 
20.00% 

R T O 

33.32% 
22.98% 
23.75% 
19.98% 
21.53% 

F T O 

27.88% 
21.77% 
21.66% 
22.92% 
20.72% 

F'TO 

38.43% 
32.59% 
32.47% 
33.86% 
29.53% 
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Table 6.14. Results of the comparison of different clustering approaches using 
pseudo-syntactic dependencies (LTO) 

Tourism 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

P L T O 

19.23% 
23.03% 
22.15% 
23.40% 
19.53% 

R L T O 
36.51% 
25.63% 
26.36% 
24.77% 
19.64% 

FLTO 

25.19% 
24.26% 
24.07% 
24.07% 
19.58% 

Finance 

FCA 
Complete Linkage 
Average Linkage 
Single Linkage 
Bi-Section-KMeans 

PLTO 

20.03% 
22.19% 
22.30% 
22.89% 
20.87% 

RLTO 

35.71% 
23.24% 
25.35% 
20.35% 
21.72% 

F L T O 

25.67% 
22.70% 
23.73% 
21.54% 
21.28% 

6.2.4.5 Discussion 

We have shown that our FCA-based approach is a reasonable alternative 
to similarity-based clustering approaches, even yielding better results on our 
datasets with respect to the F' and FLTO measures defined in Section 6.2.3. 
The main reason for this is that the concept hierarchies produced by FCA 
yield a higher recall due to the higher number of concepts, while maintain­
ing the precision at comparable levels. Furthermore, we have shown that the 
conditional probability performs reasonably well as information measure com­
pared to other more elaborate measures such as PMI or the one introduced by 
Resnik [Resnik, 1997]. Unfortunately, applying a smoothing method based on 
clustering mutually similar terms does not improve the quality of the automat­
ically learned concept hierarchies. Using pseudo-syntactic surface dependen­
cies yields even better results for almost all methods - except for Bi-Section-
KMeans - on the tourism domain as well as comparable results on the finance 
domain with respect to F'. However, with respect to the local taxonomic 
overlap extracting contextual features based on pseudo-syntactic dependen­
cies yields slightly worse results for the FCA-based method and Bi-Section-
KMeans, but better results for the agglomerative clustering algorithms on 
both domains. In general, we conclude that pseudo-syntactic dependencies in­
deed provide a reasonable alternative to extracting contextual features from 
parse trees, even yielding better results in most cases. A comparison of the 
results of the best configuration for each algorithm on both domains can be 
found in Table 6.15. The table in addition highlights the fact that every ap­
proach has its own benefits and drawbacks. The main benefit of using FCA 
is, on the one hand, that on our datasets it performed better than the other 
algorithms, thus producing better concept hierarchies. On the other hand, it 
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does not only generate clusters — formal concepts to be more specific — but 
it also provides an intensional description for these clusters, thus contributing 
to better understanding by the ontology engineer (compare Figure 6.3 (left)). 
This is in contrast to the similarity-based methods, which do not provide the 
same level of traceability due to the fact that it is the numerical value of the 
similarity between two high-dimensional vectors which drives the clustering 
process and which thus remains opaque to the engineer. The agglomerative 
and divisive approach are different in this respect as, in the agglomerative 
paradigm, initial merges of small-size clusters correspond to high degrees of 
similarity and are thus more understandable, while in the divisive paradigm 
the splitting of clusters aims at minimizing the overall cluster variance thus 
being harder to trace. A crucial difference is that, in contrast to the similarity-
based clustering approaches, FCA produces concept hierarchies with a sound 
and formal interpretation in terms of attribute inheritance. A clear disadvan­
tage of FCA is that the size of the lattice can get exponential in the size of the 
context in the worst case, thus resulting in an exponential time complexity 
— compared to O(n^logn) and 0{n^) for agglomerative clustering and Bi-
Section-KMeans, respectively. The implementation of FCA we have used is the 
concepts tool by Christian Lindig^, which basically implements Ganter's Next 
Closure algorithm [Ganter and Reuter, 1991, Ganter and Wille, 1999] as de­
scribed in Section 4.2 with the extension of Aloui for computing the covering 
relation described by Godin et al. [Godin et al., 1995]. Figure 6.13 shows the 
number of seconds over the number of attribute-object pairs it took FCA 
to compute the lattice of formal concepts compared to the time needed by 
a naive 0{n^) implementation of the agglomerative algorithm with complete 
linkage. It can be seen that FCA performs quite efficiently compared to the 
agglomerative clustering algorithm. This is due to the fact that the object-
attribute matrix is sparsely populated. Such observations have already been 
made before. Godin et al. [Godin et al., 1995], for example, suspect that the 
lattice size increases linearly with the number of attributes per object. Lindig 
[Lindig, 2000] presents empirical results analyzing contexts with a fill ratio 
below 0.1 and comes to the conclusion that the lattice size grows quadrati-
cally with respect to the size of the incidence relation / . Similar findings have 
also been reported by Carpineto and Romano [Carpineto and Romano, 1996]. 
Figure 6.14 shows the number of attributes over the terms' rank, where the 
rank is a natural number indicating the position of the word in a list ordered 
by decreasing term frequencies. It can be appreciated that the amount of 
(non-zero) attributes is distributed in a Zipfian way (compare [Zipf, 1932]), 
i.e. a small number of objects have a lot of attributes, while a large number 
of them have just a few. In particular, for the tourism domain, the term with 
most attributes is person with 3077 attributes, while on average a term has 
approx. 178 attributes. The total number of attributes considered is 9738, so 
that we conclude that the object-attribute matrix contains almost 98% zero 

http:/ /www.St.cs.uni-sb.de/"lindig/src/concepts.html 
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values. For the finance domain, the term with highest rank is percent with 
2870 attributes, the average being approx. 202 attributes. The total number 
of attributes is 21542, such that we can state that in this case more than 99% 
of the matrix is populated with zero-values and thus are much sparser than 
the ones considered by Lindig [Lindig, 2000]. These figures explain why FCA 
performs efficiently in our experiments. Concluding, though the worst-time 
complexity is exponential, FCA is much more efficient than the agglomerative 
clustering algorithm in our settings. 
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Table 6.15. Trade-offs between different taxonomy construction methods 

FCA 
Agglomerative: 

Complete 
Average 
Single 

Bi-Section-KMeans 

Effectiveness (F') 
Tourism Finance 
48.82% 

40.60% 
40.72% 
44.85% 
36.42% 

38.85% 

38.43% 
32.92% 
32.47% 
32.77% 

Worst Ccise 
Complexity 

0(2") 

O(n^logn) 
0{v?) 
0{n^) 
0{n') 

Traceability 

Good 

Fair 

Weak 

Size 

Large 

Small 

Small 

6.2.5 Summary 

We have presented a novel approach to automatically acquire concept hierar­
chies from domain-specific texts. In addition, we have compared our approach 
with a hierarchical agglomerative clustering algorithm as well as with Bi-
Section-KMeans and found that our approach produces better results on the 
two datasets considered. We have further examined different ways of extract­
ing syntactic dependencies as contextual features as well as various informa­
tion measures to weight the significance of an attribute-object pair. The main 
conclusions can be summarized as follows: 

• FCA outperforms the similarity-based methods on both domains with re­
spect to global quality of the hierarchies as measured by the taxonomic 
overlap as well as with respect to local coherence of the clusters as mea­
sured by the local taxonomic overlap. 

• FCA is efficient in our setting due to the fact that the formal contexts are 
sparsely populated. 

• The results of the FCA-based approach are more understandable than the 
ones produced by other algorithms. Furthermore, the concept hierarchies 
have a sound logical interpretation in terms of attribute inheritance. 

• The conditional probability yields reasonable results as weighting measure 
compared to other more elaborate measures such as PMI or the one based 
on Resnik's selectional strength. 

• Our smoothing technique based on the notion of mutual similarity in gen­
eral does not improve the results. 

• Pseudo-syntactic dependencies are an interesting alternative to extracting 
dependencies from parse trees, as they can be extracted more efficiently 
using shallow parsing techniques and have yielded better results for our 
FCA-based and the agglomerative clustering approaches on the tourism 
domain and comparable results on the finance domain. 

As mentioned at the beginning of this chapter, two main challenges re­
main when using an unsupervised approach to inducing a concept hierarchy. 
First, as distributional similarity is the criterion driving the clustering pro­
cess, the methods presented in this section are very sensitive to the frequency 



Guided Clustering 123 

of the words. This leads in some cases to the creation of spurious clusters of 
words which appear to be similar according to their behavior in the corpus, 
but are actually not similar from a semantic point of view. To some extent, 
this problem can be addressed by finding a similarity measure which is more 
sensitive to sparse data, but this does not solve the problem in a principled 
way. The second challenge is to find appropriate labels describing the inten­
sion of the cluster. In some sense, the FCA-based clustering presented in this 
section has addressed this issue, but also here we encounter problems. First of 
all, there are a large number of corpus-derived attributes that are considered, 
thus sometimes also leading to large intensions. Second, instead of a whole 
set of attributes characterizing the concept in question, sometimes we would 
like to have one label unambiguously describing the sense or intension of the 
cluster. The following section presents an approach addressing both challenges 
in an algorithmic manner. 

6.3 Guided Clustering 

Most approaches aiming at learning concept hierarchies are based on un­
supervised learning paradigms. These approaches rely on the possibility 
of assessing the semantic similarity between words on the basis of the 
amount of linguistic context they share in a given corpus. In order to in­
duce a hierarchy between concepts, many approaches exploit clustering al­
gorithms such as the approach of Pereira et al. [Pereira et al., 1993], which 
uses a soft clustering method relying on deterministic annealing to find 
lowest distortion sets of clusters. Others use agglomerative clustering (c.f. 
[Faure and Nedellec, 1998, Caraballo, 1999, Bisson et al., 2000]). As shown in 
the previous section, divisive algorithms such as Bi-Section-KMeans or concep­
tual clustering algorithms such as Formal Concept Analysis are also applica­
ble. However, there are two major problems shared by all of these approaches. 
On the one hand, there is the problem of data sparseness leading to the fact 
that certain syntactic similarities with respect to the corpus are spurious and 
due to missing data (cf. [Zipf, 1932]), thus not corresponding to real-world or 
semantic similarities. On the other hand, all the approaches share the problem 
of not being able to appropriately label the produced clusters. In this section, 
we present a new algorithm addressing both issues. The algorithm is a novel 
guided hierarchical agglomerative clustering algorithm exploiting a hypernym 
oracle automatically extracted from different resources in a first step. Though 
there exist approaches making use of hypernyms extracted by other means for 
labeling the concepts as in the approach of Caraballo [Caraballo, 1999], the 
principle difference in the approach presented in this section is that, instead 
of merely post-processing the hierarchy, the hypernyms are directly used to 
guide the clustering algorithm. In fact, in our guided algorithm, two terms 
are only clustered if there is a corresponding common hypernym according to 
the oracle, thus making the clustering less error-prone. We demonstrate this 
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claim by presenting results comparing our approach with Caraballo's algo­
rithm [Caraballo, 1999] on the tourism and finance domains. Further, we also 
present a comparison between our guided algorithm and Caraballo's method 
in terms of a human evaluation of the hierarchies produced for the tourism 
domain. 

6.3.1 Oracle-Guided Agglomerative Clustering 

In this section, we present the guided agglomerative clustering approach for 
learning concept hierarchies. The approach relies on the distributional similar­
ity of terms with respect to an underlying corpus. Furthermore, it is guided in 
the sense that it exploits hypernyms acquired by other means to drive the clus­
tering process. In particular, the approach exploits hypernyms extracted from 
WordNet as well as an approach matching lexico-syntactic patterns indicat­
ing a hypernym-relationship as suggested by Hearst (compare [Hearst, 1992] 
and Section 6.1.2). The clustering algorithm is then driven by these extracted 
hypernyms in the sense that, given two terms which are similar according to 
their corpus behavior, it will either order them as subconcepts, in case one is 
a hypernym of the other, or - in case they have a common hypernym - add 
them as siblings under a concept labeled with that hypernym. Figure 6.15 
gives an overview of the approach. The figure shows in particular that the 
hypernym oracle is constructed using information from WordNet, the Web as 
well as the corpus. The similarity between words is calculated on the basis 
of the corpus. The clustering algorithm then groups words on the basis of 
the computed similarities, using the hypernym oracle as a guide. In a first 
phase, the bottom-up algorithm we present only clusters words which have 
a common hypernym according to the oracle, thus reducing the number of 
accidental clusterings. In what follows, we first describe how the similarity 
between terms is calculated in Section 6.3.1.1. Then we describe our method 
for extracting hypernyms from different resources in Section 6.3.1.2. After 
presenting the actual algorithm in Section 6.3.1.3, we discuss an example for 
illustration purposes in Section 6.3.1.4. 

6.3.1.1 Calculating Term Similarities 

In order to calculate the similarity between terms, we rely on Harris' distribu­
tional hypothesis [Harris, 1968] claiming that terms are semantically similar 
to the extent to which they share similar syntactic contexts. As it is usual, 
we formalize the context of a term as a vector mirroring the pseudo-syntactic 
dependencies automatically extracted from the corpus for the term in ques­
tion (compare Section 4.1.4.2). On the basis of these vectors, we calculate 
the similarity between two terms ti and <2 as the cosine between their corre­
sponding vectors. According to the cosine measure (compare Section 4.1.5.2), 
the following ten pairs of terms are the ten most similar terms of the tourism 
reference taxonomy with respect to our Tourism corpus (compare Section 5): 
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Fig. 6.15. Overview of guided agglomerative clustering (GAC) 

(^1,^2) 

(autumn,summer) 
(autumn,night) 
(summer ,spring) 
(person,living thing) 
(trip,visit) 
(winter jSummer) 
(badminton ,tennis) 
(day,morning) 
(tennis,golf) 
(farm,town) 

Cosine similarity 
0.93 
0.83 
0.72 
0.69 
0.68 
0.66 
0.65 
0.64 
0.64 
0.62 

6.3.1.2 The Hypernym Oracle 

The guided agglomerative clustering algorithm relies on an oracle returning 
possible hypernyms for a given term. Thus, before applying the actual al­
gorithm, the oracle needs to be constructed. In this section, we describe an 
automatic approach to construct such an oracle which in essence is a function 

/ / : 5 i rm5^2^*""»^f^ 

which for a term t returns a set of tuples {h, / ) , where ft is a hypernym and / 
is the number of times the algorithm has found evidence for it. We also define 
the first projection Hi{t) returning the set of hypernyms of t: 

Hi{t):={h\ 3n {h,n) e H{t)} 

In order to find these hypernyms, we make use of three sources: (i) WordNet, 
(ii) Hearst patterns matched in a corpus, and (iii) Hearst patterns matched in 
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the World Wide Web as described in [Cimiano et al., 2005c]. We briefly show 
in the following how these sources are taken into account. 

WordNet 

For each term t, we collect all the hypernyms in the synsets which dominate 
any synset in which t appears. We add these hypernyms to H{t) together 
with the number of times that the corresponding hypernym appears in a 
dominating synset. We are thus ignoring here the different senses of t. 

Hearst Patterns (Corpus) 

Furthermore, we also apply the lexico-syntactic patterns described by Hearst 
[Hearst, 1992] to find hypernyms in the underlying corpus. The following 
patterns we use are in fact taken from Hearst [Hearst, 1992] (compare Section 
6.1.2): 

(1) NPo such as NPi, NP2, ..., NPn-i (and|or) 7VP„ 
(2) such NPo as NPi, NP2, ... NPn-i (and|or) iVP„ 
(3) NPi, NP2, ..., NP„ (and|or) other NPo 
(4) NPo, (including|especially) NPi, NP2, ..., NPn-i (and|or) NPn 

In addition, we also use the following patterns: 

(5) NPi is NPo 
(6) NPi, another NPQ 
(7) NPo like NPi 

Now given two terms ti and t2, we record how many times a Hearst-
pattern indicating an jsa-relation between ti and 2̂ is matched in the corpus. 
In order to match the above patterns, we create regular expressions over part-
of-speech tags to match NP's. In particular, we use the TreeTagger described 
in [Schmid, 1994] and match non-recursive NP's consisting of a determiner, an 
optional sequence of modifying adjectives and a sequence of common nouns 
constituting the head of the NP. 

Hearst Patterns (WWW) 

Additionally, we also follow an approach in which web pages are actually 
downloaded and Hearst patterns are matched offline. For this purpose, we 
assign one or more functions /» : string —> string - which we will refer to 
as clues - to each of the Hearst patterns i to be matched. Given a concept 
of interest c, we instantiate each of the clues and download a number of 
pages (100 in our experiments) matching the query fi{c) using the Google 
API. For example, given the clue f{x) = "such as" © •K{X) and the concept 
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country, we would download the first 100 Google abstracts matching the query 
f(country), i.e. "such as countries".^ For each concept of interest and for each 
of the correspondingly instantiated clues, we then process the downloaded 
documents by matching the corresponding pattern, thus yielding its potential 
superconcepts. The following table gives the clues used as well as the number 
of the corresponding Hearst pattern: 

Clue 
f{x) = "such as" © 7r(a;) 
f{x) = 7r(a;) © "and other" 
f{x) =^TT{X) ®"or other" 
f{x) = " including" ffi7r(a;) 
f{x) = "especially" © n{x) 
fix)=x® "is" 

Hearst pattern 

(1) 
(3) 
(3) 
(4) 
(4) 
(5) 

It is important to notice that no clues have been defined for Hearst patterns 
(2), (6) and (7). Defining a pattern for (2) would require some support for 
querying regular expressions as, sticking to the country example, we would 
need to query for an expression like 'such * as countries'. As Google did 
not provide such a support at the time these experiments were carried out,^, 
no clue has been defined for this pattern. Patterns (6) and (7) were found to 
deliver very noisy results when used on the Web and have not been considered 
therefore. 

The following table shows the results of the above described hypernym 
extraction process for the term summer. In particular, for each resource it 
gives the hypernyms as well as the number of times evidence was found in the 
corresponding resource: 

Hearst Corpus 
is-a(summer,heat) 
is-a(summer,performer) 
is-a(summer,time) 
is-a(summer,mind) 
is-a(summer,tubing) 

Hearst WWW 
is-a(summer,time) 
is-a(summer,vacation) 
is-a(summer,period) 
is-a(summer,season) 
is-a(summer,skill) 

WordNet 
is-a(summer,period) 

Here, ® denotes the concatenation operator defined on two strings and 7r(t) is a 
function returning the correct plural form of t. 

'' Recently, Google has added functionality to issue queries containing wildcards. 



128 Concept Hierarchy Induction 

In this example, the results of the different resources would add up to 4 for the 
hypernym time, 2 for the hypernym vacation and 2 for the hypernym period 
as well as 1 for the rest of the candidate hypernyms in the table. 

6.3 .1 .3 A l g o r i t h m 

In this section, we describe the guided agglomerative clustering algorithm for 
inducing concept hierarchies. The algorithm is specified by the pseudocode in 
Algorithms 8 and 9. 

A l g o r i t h m 8 Guided Clustering Algorithm (GAG) 

1. Input: a list T of A; terms to be ordered hierarchically 
2. Calculate the similarity between each pair of terms {0{n'^)) and sort them from 

highest to lowest (0 (n logn)). 
Initialize the set of clustered terms C, i.e. C := 0 

3. FOREACH pair (<i,<2) in the ordered list representing a potential pair to be 
clustered, if either ti or t2 has NOT been classified as subconcept of some other 
concept: 
a) IF {turn) e HiU) 

i. IF (i2, n) 6 H{t{) and n>m, THEN isa(«i,t2) 
ii. ELSEisa(i2,ti) 

b) ELSE IF (t2,m) e H(t i ) 
i. isa(ti,t2) 

c) ELSE IF {h,n) G H(ti) and (h,m) e H{t2) and there is no h' such that 
{h',p) 6 H{ti) and {h',q) e H{t2) and p + g > m + n 

i. IF isa(fi,t'), i.e t\ is already classified as t' 
A. IF t' = = h, THEN \s&{t2,t') 
B. ELSE IF (h, n) € H{t') and ({t',m) € H{h) -^ m < n) 

IF ta has not yet been classified, THEN isa(t2,*') 
IF t' has not yet been classified, THEN isa{t',h) 

C. ELSE 
IF t2 has not yet been classified THEN isa,{t2,h) 
IF h has not yet been classified, THEN isa(/t, t') 

ii. ELSE IF isa,{t2,t'), i.e. t2 is already classified as t' 
/* (analogous case to 3c i) */ 
A. IF t' = = h, THEN isa(ti,t') 
B. ELSE IF (h,n) 6 H{t') and ({t',m) e H{h) -^ m < n) 

as ti has not yet been classified, THEN isa(ti,t') 
IF t' has not yet been classified, THEN isa(t', h) 

C. ELSE 
as ti has not yet been classified, THEN isa(ti,/i) 
IF h has not yet been classified, THEN isa{h, t') 

iii. ELSE, as neither <i nor <2 have been classified, isa(ti,/i), isa,{t2,h) . 
d) ELSE, as there are no common hypernyms, mark ti and t2 as clustered, i.e. 

C: = C U {(«i,t2)} 
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Algorithm 9 Guided Clustering Algoritiiin (Cont'd) 
4. FOREACH term t eT which has not been processed (because no similar terms 

were found in the corpus), if there is some other term t' such that r-matches(t,t'), 
THEN isa(f',f) 

5. FOREACH (ti.ia) G C 
a) IF there is a t' such that isa(ii,i') AND t2 has not been classified, THEN 

isa(i2,*') 
b) ELSE IF there is a t' such that isa(<2,<') AND ti has not been classified, 

THENisa(ti,t') 
c) ELSE select the pair (t', m) e F(ii) U H{t2) for which there is no (<", n) G 

H{ti)UH{t2) such that n > m and create the following structures: isa(fi,f') 
and isa(t2,*') 

6. FOREACH term t eT which has not been classified, put it directly under the 
root concept, i.e. isa(<,root) 

7. Output: a labeled concept hierarchy for the terms in T 

For each pair (^1,^2), the algorithm thus first consults the hypernym oracle 
to find out if ti is a hypernym of 2̂ or the other way round, creating the 
appropriate subconcept relation (3a and 3b). If this is not the case (3c), it 
consults the oracle for common hypernyms of both terms, selecting the most 
frequent hypernym h and distinguishes three cases. In case none of the terms 
has already been classified (3c iii), it creates a new concept labeled with h 
together with two subconcepts labeled as ti and t2- In case one of the two 
terms, say ti, has already been classified as isa{ti,t'), there are three more 
cases to distinguish. In the first case (3c i.A), if h and t' are identical, the 
algorithm simply puts a concept 2̂ under t' (compare Figure 6.16 (left)). In 
the second case (3c i.B), if, according to the oracle, his a, hypernym of t', it 
creates the structure in Figure 6.16 (middle). In case it is not a hypernym (3c 
i.C), it creates the structure in Figure 6.16 (right). The algorithm proceeds 
analogously in case t2 has already been classified. In case there are no common 
hypernyms, ti and 2̂ are simply marked as clustered for further processing 
(3d). This is done for all the similarity pairs, provided that one of the two 
terms has not been classified yet. 
After this process, the algorithm exploits the 'head'-heuristic used by Velardi 
et al. [Velardi et al., 2001], adding t^ as subconcept oit\, in case ii r-matches 
2̂ in the way 'credit core?'matches 'international credit card' (compare step 4 

of Algorithm 8). More formally, the r-matches relation is defined as follows: 

Definition 26 (r-matches) A term ti r-matches a term 2̂ iffSxxOti = 
<2 where ® is the string concatenating operator. 

The X in the above definition typically represents some adjectival or nominal 
modification of ti. Then, all the pairs {ti,t2) which have been clustered and 
kept for later processing are considered (compare step 5), and if either ti or 
<2 has already been classified (5a and 5b), the other term is added under the 
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ti <2 ti ti 

Fig. 6.16. Structures constructed by Guided Agglomerative Clustering in steps 3c 
i.A and 3c i.B and 3c i.C, respectively 

corresponding superconcept. If this is not the case, both terms are added as 
subconcepts of the most frequent hypernym in H{ti)UH{t2) according to the 
oracle (5c). At the end, every unclassified term is added directly under the 
root concept (6). 
The overall time complexity of the algorithm is thus O(fc^) as steps 2, 3, 4 
and 5 have complexity 0(A;^), and step 6 is even linear in the number of terms 
k = | r | . The algorithm is thus as efficient as agglomerative clustering with 
single linkage or average linkage and more efficient than agglomerative clus­
tering with complete linkage (compare Section 4.3.2.2). In practice, however, 
the algorithm is much more efficient because there is no need to update the 
similarity matrix in each cycle and similarity is always computed between el­
ements and never between clusters. 
As already mentioned in the introduction, this algorithm can be considered as 
guided as it depends on an external hypernym oracle. The obvious benefit is 
that, by only clustering terms at first steps of the algorithm in case they have 
a common hypernym according to the oracle, the clustering process is more 
controlled and less error-prone. This claim is demonstrated experimentally 
in Section 6.3.2. Furthermore, the approach also allows for labeling abstract 
concepts in an appropriate way. 
It is important to emphasize that the outcome of the algorithm does not 
simply mirror the hypernym oracle, but is in fact implicitly performing sense 
disambiguation. Due to the fact that we look up the common hypernym of two 
terms which are similar with respect to the underlying corpus, we are more 
likely to find a hypernym (of the many contained in the oracle for both terms 
separately) which corresponds to the common sense of both terms in the do­
main in question, thus finding more appropriate labels than when processing 
each term separately. 

6.3.1.4 An Example 

In order to illustrate the above algorithm, let us consider again the top ten 
most similar pairs with respect to the Tourism corpus (see section 6.3.2 for 
details about the dataset), together with their common hypernyms as well as 
the corresponding occurrences in Table 6.16. 
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Table 6.16. Common hypernyms with occurrences for the top ten most similar 
pairs of terms 

(<1 ,<2) 

(autumn,summer) 

(autumn,night) 

(summer,spring) 

(person,living thing) 
(trip,visit) 

(winter,summer) 

(badminton,tennis) 

(day,morning) 

(tennis,golf) 

(farm,town) 

Sim 
0.93 

0.83 

0.72 

0.69 
0.68 

0.66 

0.65 

0.64 

0.64 

0.62 

Hypernym 

period 

period 

period 

activity 
event 
travel 
outing 

season 

human activity 
sport 

time 
period 
day 
work 
others 

sport 

area 
place 
entity 
landscape 
unit 
country 
structure 

Count 

3 

5 

3 

23 
10 
3 
2 

3 

2 
2 

10 
9 
4 
4 
2 

2 

15 
9 
6 
6 
5 
2 
2 

After the first three iterations of the FOREACH-loop in step 3 of Al­
gorithm 8, autumn, summer, night and spring are added as subconcepts of a 
concept labeled with period according to steps 3c iii, 3c i.A and 3c i.A, respec­
tively. In the 4th iteration, as living thing is a hypernym of person according 
to our hypernym oracle, person is added as a subconcept of living thing ac­
cording to case 3a of our algorithm. In the 5th iteration, trip and visit are 
added as subconcepts of a concept labeled with activity according to step 3c 
iii. Interesting is the 6th iteration, in which, as season is not a hypernym of 
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period following the oracle, a new concept season, with winter as subconcept is 
created as subconcept of period - according to case 3c ii.B. Then, badminton 
and tennis are added as subconcepts of human activity according to case 3c 
iii. In the 8th iteration, according to case 3c iii. again, a new concept time 
is created with day and morning as subconcepts. Finally, as sport is a human 
activity and not the other way round, golf is added as a subconcept of sport 
according to step 3c i.B; farm and town are added as subconcepts of a new 
concept area according to 3c iii. 
As all pairs have been processed, then, as activity r-matches human activity, 
the latter, following step 4, is added as a subconcept of the former thus yield­
ing at the end the concept hierarchy depicted in Figure 6.17. This hierarchy 
is certainly far from perfect but shows that the results of our algorithm are 
quite reasonable. 

6.3.2 Evaluation 

In order to evaluate the automatically produced concept hierarchies, we com­
pare them to a handcrafted reference concept hierarchy but also present the 
hierarchy to a test person in order to assess its quality more directly. In order 
to compare the automatically learned hierarchies with a reference hierarchy, 
we use the taxonomic overlap measures described in Section 6.2.3. However, 
we make use of the standard definition of the semantic cotopy as proposed 
by Madche and Staab [Madche and Staab, 2002] but with a variant of the 
taxonomic overlap which is defined as follows: 

TO(Oi,02)=|p7T^7T7TT E T0ic,0i,02) (6.25) 

where 

T0{c,0u02) . - [TO"{C,OI,02) if C ^ C 2 \ L ( C 2 ) ^^'^^^ 

and TO' and TO" are defined as follows: 

rn'frn o) \SC{c,0^,02)nSCic,0„0,)\ 

Tn"(.n n\. ^„. |5C(c,Oi,02)n5C(c',02,Oi)| .. „„. 
TO ic,0r,02):=max,,c.\Lic.^ |5C(c,Oi,02) U 5C(c ' ,02,Oi) | ^^'^^^ 

where L{C) are the leaf nodes with respect to the concept hierarchy <c- So we 
are excluding leaf nodes from the taxonomic overlap computation. The reason 
for this is the same as explained in Chapter 6.2; that is, the fact that otherwise 
trivial concept hierarchies having every concept directly subordinated by the 
root node can be rated very highly in terms of taxonomic overlap compared 
to a standard hierarchy, especially in terms of recall. The measures used here 
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Fig. 6.17. Example for an automatically learned concept hierarchy 
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are thus similar to the ones introduced in Section 6.2.3, but do not rely on the 
common semantic cotopy. The reason for introducing the common semantic 
cotopy was the lack of labels of the non-leaf concepts. Guided agglomerative 
clustering is an algorithm specifically designed to overcome the lack of la­
bels. Thus, using the common semantic cotopy would make no sense in these 
settings. Unfortunately, the drawback is that the results can not be directly 
compared. 

Given an automatically learned ontology Oauto and a reference ontology 
Oref, calculating TO{Oauto,Oref) amounts to calculating the precision of 
Oauto with respect to Oref as we calculate the taxonomic overlap for each 
concept in Oauto- In order to assess how satisfactory the coverage of the au­
tomatically learned ontology is with respect to the reference ontology, we 
need to compute the inverse precision or recall, too, i.e. RTo{Oauto-,Oref) = 
ProiOref,Oauto) = TO{Oref, Oauto)- As we want to maximize both recall 
and precision, we evaluate our approach in terms of the F-Measure: 

P en n ^ - 2 T0{0auto,0ref) TO{Oref,Oauto) ff. „„,. 
FroyPauto, Oref) - =^T^ J. \ ^TCiln H ^ ^^^^> 

J 0[Uauto, Oref) + J ^KPref,Oauto) 

To support our claim that our algorithm produces better groupings or clusters 
of terms, we also introduce the notion of sibling overlap (SO) building on the 
notion of sibling as defined in Section 6.2.3. In particular, we only consider 
sets of siblings with at least two elements for the comparison; that is, the 
average sibling overlap is defined as follows: 

S 0 ( 0 i , 0 2 ) : = ^ T ^ E maa;,^gs,,>i SO(ci,C2,Oi,O2)(6.30) 

wr. . n n^._\SiKcuOx)^Sih{c2,02)\ , . 
S0{cuc„0u02) - \sib(c„0^)uSibic„0,)\ ^^'^^^ 

where Sibo^ := {ce Ci : \Sib{c,Oi)\ > 1} The main difference to the sibling 
overlap introduced in Section 6.2.3 is that here we are not relying on common 
siblings for the same reasons as mentioned before concerning the taxonomic 
overlap. We also calculate the F-Measure as follows: 

FsoiOauto, Oref) = ^^^^--to^^-^f^ ^^^ref^Oguto) ĝ 32) 

SO{Oauto,Oref) + SO{Oref, Oauto) 

6.3.2.1 Evaluation with respect to a Gold Standard 

As tourism text collection we use the Lonely Planet as well as Mecklenburg 
corpora together with the British National Corpus (BNC). For the finance do­
main, we use the Reuters-21578 corpus. The reference ontologies are Otourism 
and OFinance, respectively (compare Section 5). 
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In order to evaluate our approach, we implemented the method described 
by Caraballo [Caraballo, 1999], in which first a hierarchy is produced by stan­
dard agglomerative clustering and then hypernyms derived from Hearst pat­
terns are attached to each cluster. The most frequent hypernym is then taken 
as a label for the cluster, provided that it is a valid hypernym for at least two 
elements in the cluster. Finally, the hierarchy is compressed by removing all 
clusters without a label. In our implementation of Caraballo's approach, we 
apply complete linkage as strategy to calculate the similarity between clusters, 
in contrast to Caraballo, who used average linkage. In addition, we employ 
our full hypernym oracle instead of merely the hypernyms derived from Hearst 
patterns. 

Table 6.17 shows the results of comparing the concept hierarchies pro­
duced by our guided agglomerative clustering approach and by Caraballo's 
method with the reference concept hierarchy in terms of the taxonomic over­
lap measures for the tourism and finance domains. In particular, the table 
shows results for different combinations of the resources used for the con­
struction of the oracle. The best result for our method on the tourism domain 
is i?'̂ «J'-««'"'<3^C' ^ 21.40% using evidences derived from WordNet and Hearst 
patterns, compared to a best result of F^^ourism,Carabaiio ^ ^g 29 obtained 
with Caraballo's method, only using Hearst patterns. 

On the finance domain, the guided agglomerative clustering achieves a 
best result of 2?'/^«"ce,Gyic ^ 1351% yging Hearst patterns only, whereas 
Caraballo's method yields a best result of p^^'^^'^^'CarabaUo ^ io.l6%. Our 
method thus outperforms Caraballo's approach on both domains. In general, 
Hearst patterns represent a very reliable resource for the oracle, while using 
WordNet alone does not yield very satisfactory results in most cases. Overall, 
it seems vahd to conclude that using Hearst patterns alone or in combination 
with WordNet or the patterns matched in the WWW represents a good oracle 
configuration. Unfortunately, these observations can not be generalized given 
the experimental results at hand as no general pattern seems to emerge. 

The corresponding results in terms of sibling overlap are given in Table 
6.18. On the tourism domain, the guided agglomerative clustering algorithm 
achieves a best result of J ? | ^ ' - ' » ' " 'G^C ' _ 12.91% relying only on Hearst pat­
terns. This compares to a best result of Fl^^rism^Carabaiio ^ ^^^y^ obtained 
with Caraballo's method relying on WordNet and the patterns matched on 
the WWW. On the finance domain, we get corresponding best results of 
pf^mance,GAC ^ i^Q2% yging Hearst patterns matched in the corpus and on 
the WWW and ir/^»"«'̂ «.c'ora6aHo ^ ^^9^^ ^^^^^ ^^^ ^^^^ ^^^^^^ configura­
tion. Two conclusions can be drawn here: on the one hand, our method clearly 
outperforms Caraballo's method in terms of sibling overlap. This demonstrates 
that our approach is producing better clusters than Caraballo's method. On 
the other hand, we can state that the oracle configuration using Hearst pat­
terns matched in the corpus and on the Web yields quite satisfactory results. 
Using WordNet and the WWW Hearst patterns also yields good results, but 
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using WordNet alone produces very bad results for Caraballo's method. The 
reason is that there are not enough hypernyms, with the result that a lot 
of unlabeled nodes are removed at the compaction step, leading to very flat 
hierarchical structures. 

These results, unfortunately, can not be compared to the results presented 
in Section 6.2 as we have not used the modified semantic cotopy here. 

Table 6.17. Comparison of results for Guided Agglomerative Clustering and Cara­
ballo's method in terms of TO on both domains 

Tourism 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + WWW 
WordNet + Hearst 
WordNet + Hearst-I- WWW 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + WWW 
WordNet + Hearst 
WordNet + Hearst + WWW 

TO(auto,ref) TO(ref,auto) Fro(auto,ref) 
Guided Agglomerative Clustering 

17.10% 
19.46% 
16.72% 
17.76% 
18.24% 
20.48% 
17.05% 

20.54% 
20.94% 
20.43% 
18.52% 
20.72% 
22.41% 
21.02% 

18.67% 
20.18% 
18.39% 
18.13% 
19.40% 

21.40% 
18.83% 

Caraballo's method 
12.09% 
17.65% 
11.89% 
41.47% 
12.07% 

17.5% 
11.93% 

20.25% 
18.99% 
20.50% 
10.03% 
20.18% 
19.02% 
20.46% 

15.14% 
18.29% 
15.05% 
16.15% 
15.10% 
18.23% 
15.07% 

Finance 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + WWW 
WordNet + Hearst 
WordNet + Hearst + WWW 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + WWW 
WordNet + Hearst 
WordNet + Hearst + WWW 

rO(auto,ref) TO(ref,auto) F T O (auto,ref) 
Guided Agglomerative Clustering 

19.46% 
18.94% 
18.54% 
18.21% 
18.12% 

17% 
15.66% 

17.17% 
18.09% 
17.76% 
16.23% 
16.61% 
15.75% 
14.27% 

18.24% 
18.51% 
18.14% 
17.16% 
17.33% 
16.35% 
14.93% 

Caraballo's method 
10% 
9.87 

9.08% 
34.78% 

9.96% 
9.92% 

9.1% 

9.74% 
9.7% 

11.42% 
2.42% 
9.76% 
9.71% 

11.49% 

9.87% 
9.78% 

10.11% 
4.53% 
9.86% 
9.82% 

10.16% 
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Table 6.18. Comparison of results for Guided Agglomerative Clustering and Cara-
ballo's method in terms of SO (in percent) on both domains 

Tourism 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet +WWW 
WordNet + Hearst 
WordNet + Hearst+ WWW 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + W W W 
WordNet + Hearst 
WordNet + Hearst + WWW 

50(auto,ref) 5C>(ref,auto) Fso(auto,ref) 
Guided Agglomerative Clustering 

13.5% 
14.07% 
13.86% 
12.19% 
13.74% 
12.42% 
13.78% 

10.51% 
11.93% 
11.48% 
9.21% 

11.25% 
10.12% 
11.28% 

11.82% 
12.91% 
12.56% 
10.49% 
12.37% 
11.15% 
12.41% 

Caraballo's method 
6.89% 
7.67% 
6.79% 
7.68% 
6.9% 
7.8% 

6.87% 

9.52% 
5.32% 
9.34% 
1.51% 
9.62% 
5.56% 
9.43% 

8% 
6.28% 
7.86% 
2.52% 

8.04% 
6.49% 
7.95% 

Finance 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + WWW 
WordNet + Hearst 
WordNet + Hearst+ WWW 

WWW 
Hearst 
Hearst + WWW 
WordNet 
WordNet + WWW 
WordNet + Hearst 
WordNet + Hearst + WWW 

SO{aMto,Tei) SO(ref,auto) Fso(auto,ref) 
Guided Agglomerative Clustering 

16.62% 
16.35% 
15.96% 
17.66% 
16.64% 

16.1% 
15.52% 

13.3% 
12.36% 
13.48% 
12.21% 
12.79% 

12.4% 
12.8% 

14.77% 
14.08% 

14.62% 
14.44% 
14.47% 
14.01% 
14.03% 

Caraballo's method 
7.87% 

7.4% 
7.26% 
8.67% 
7.88% 
7.28% 
7.21% 

7.12% 
6.1% 

8.41% 
0.4% 

7.11% 
6.01% 
8.39% 

7.47% 
6.68% 

7.79% 
0.76% 
7.48% 
6.58% 
7.76% 

6.3.2.2 Human Assessment 

As Sabou et al. [Sabou, 2005] have shown, using a gold standard for the eval­
uation of automatically constructed ontologies is sometimes problematic and 
may lead to wrong conclusions about the quality of the learned ontologies. 
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This is due to the fact that if the learned ontology does not mirror the gold 
standard, it does not necessarily mean that it is wrong or inappropriate. In 
order to assess the quality of the automatically learned concept hierarchies 
more directly, we asked a student at our institute to validate the learned isa-
relations by assigning credits from 3 (correct), over 2 (almost correct) and 
1 (not completely wrong) to 0 (wrong). Actually, we did not consider those 
jso-relations classifying a concept directly under root as it seems very diffi­
cult to assess what should be directly under root and what not. Then, we 
calculated the precision of the system counting an iso-relation as correct if it 
received three credits (P3), at least two credits (P2) and at least one credit 
(Pi), respectively. The precision for the versions of our approach using differ­
ent combinations of the hypernym resources are given in Table 6.19, showing 
also the number of «5a-relations evaluated. The results corroborate the claim 
that the concept hierarchies produced by our method are quite reasonable 
according to human intuitions. Actually, the fact that 65.66% of the learned 
relations are considered as totally correct by our evaluator is a very impressive 
result. The results of the human evaluation for the hierarchies produced by 
Caraballo's method can also be found in Table 6.19. In general, the results 
are certainly lower. The highest result of 100% is achieved with a hierarchy 
with only 4 non-root taxonomic relations compared to 267 taxonomic rela­
tions with root as superconcept. The results here have thus to be regarded as 
an outlier. The four relations were the following: 

is_a(swinaning,hiunan_activity) 
is_a(camping,human_activity) 
i s _ a ( f e r r y , v e h i c l e ) 
i s_a(bus ,veh ic le ) 

6.3.2.3 Discussion 

Figure 6.18 summarizes the results in terms of Fro for the Guided Agglom-
erative Clustering Algorithm as well as Caraballo's method for both domains. 
While our method in general seems to perform better on the finance domain 
than Caraballo's method, this does not hold for the tourism domain to the 
same extent. However, comparing both algorithms with respect to Fso clearly 
shows that our method performs much better on both domains compared to 
Caraballo's method in terms of local coherence of the clusters (compare Figure 
6.19). The human evaluation conducted on the tourism domain is summa­
rized in Figure 6.20, showing that our method, with the only exception of 
the outlier concept hierarchy, also yields better results with respect to human 
intuitions. An important question to clarify here is why we have not evaluated 
our guided agglomerative clustering approach using the measures described 
in Section 6.2.3.1. The answer is that the ontologies learned with the guided 
agglomerative clustering algorithm have indeed only a few concepts which are 
not contained in the gold standards and the other way round, thus rendering 
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Table 6.19. Results of the human evaluation of the hierarchies produced by our 
guided clustering algorithm and Caraballo's method for the tourism domain 

Guided Agglomerative Clustering 
# Pi P2 Ps 

WordNet 
WordNet 
WordNet 
Hearst + 
WordNet 
Hearst 
WWW 

+ Hearst + WWW 
+ Hearst 
+ WWW 
WWW 

265 
233 
262 
268 
236 
203 
261 

67.17% 
65.24% 
68.32% 
69.03% 
58.90% 
66.50% 
73.18% 

66.04% 
62.23% 
65.65% 
63.43% 
55.51% 
64.04% 
64.37% 

65.66% 
62.23% 
65.65% 
63.43% 
55.08% 
64.04% 
62.07% 

Caraballo's Method 

# Pi P2 Ps 
WordNet 
WordNet 
WordNet 
Hearst + 
WordNet 
Hearst 
WWW 

+ Hearst + WWW 
+ Hearst 
+ WWW 
WWW 

304 
97 
295 
301 
4 
93 
291 

45.40% 
41.24% 
41.02% 
41.20% 
100% 

45.16% 
51.89 

40.46% 
40.21% 
38.64% 
37.54% 
100% 

38.71% 
42.61% 

40.46% 
40.21% 
37.97% 
37.54% 
100% 

38.71% 
41.92% 
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Fig. 6.18. Comparison of guided agglomerative clustering with Caraballo's method 
in terms of FTO on both domains 

meaningless the comparison using the measures introduced in Section 6.2.3.1. 
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Fig. 6.19. Comparison of guided agglomerative clustering with Caraballo's method 
in terms of Fso on both domains 

A further comment seems appropriate about the way WordNet has been ex­
ploited in our approach. The model we have applied to consider WordNet as 
an additional source of evidence is certainly very simplistic. In addition, we 
have neglected the fact that words can be polysemous. An important future 
step would be to include a word sense disambiguation component such as the 
one proposed by Navigli et al. [Navigli and Velardi, 2004] to determine the 
appropriate domain-specific sense of a word. We have not introduced such a 
component into our approach to reduce the complexity of our experiments. 
Our focus has been in fact to examine the proposed combination-based model. 
Given that our combination-based model has shown a clear success, future 
work should definitely improve the different sources of evidence, for exam­
ple by introducing such a word sense disambiguation component. Along these 
lines, it would definitely be interesting to examine the impact of such a com­
ponent on the overall results. Concerning our results, the question certainly 
arises whether we would yield similar results on another dataset and also 
inherently connected the question about the significance of the results. The 
answer is twofold. On the one hand, it has not been possible to determine 
the significance of our results due to the fact that our as well as Caraballo's 
algorithm are deterministic given a certain corpus and order of the terms to 
cluster. As discussed in Section 6.2.4, the only possibility to determine the 
significance of our results would have been to run the algorithm on different 
subsets of the corpus, i.e. performing some sort of bootstrapping. However, 
the introduction of a random factor in this way seems quite artificial given 
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Fig. 6.20. Comparison of the human evaluation of the hierarchies produced by 
guided agglomerative clustering and Caraballo's method on the tourism domain 

that one would never run the algorithm on subsets of the corpus in prac­
tice, but use all the available data. This is different for inherently randomized 
algorithms such as KMeans, in the case of which also in practice we would 
choose different random seeds and then select the best clustering for further 
processing. 

6.3.3 Summary 

We have presented a novel guided agglomerative clustering algorithm with the 
aim of automatically inducing concept hierarchies from a text corpus. The al­
gorithm exploits an external hypernym oracle to drive the clustering process. 
Further, we have also described an automatic method to derive such a hyper­
nym oracle from WordNet, a corpus as well as the WWW. The approach has 
been evaluated by comparing the resulting concept hierarchies with a refer­
ence concept hierarchy for the tourism and finance domains. Our contribution 
and conclusions can be summarized as follows: 

• We have provided an original method combining different paradigms for 
ontology learning. 

• With this method, we have successfully addressed the two problems inher­
ent in unsupervised approaches: lack of labels and spurious similarities. 

• Further, we have provided a method which is much faster in practice than 
agglomerative clustering as the similarities are only calculated between 
single elements and not between clusters. 
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• We have shown that the results of our algorithm are better when compared 
to Caraballo's approach on both domains examined. In particular, we have 
shown that our approach yields much less error-prone clusters. 

• The human assessment of the automatically produced concept hierarchy 
has also shown that the learned relations are reasonably precise. 

Besides overcoming two main problems of unsupervised approaches, i.e. 
accidental clusterings as well as lack of labels, our approach is furthermore 
original in that it successfully combines two main paradigms to ontology learn­
ing: the approaches relying on contextual similarity as well as approaches 
matching lexico-syntactic patterns denoting a certain relation in line with the 
seminal work of Hearst [Hearst, 1992]. 

The combination of different paradigms, however, is to some extent adhoc 
as we have specified procedurally how the information from the hypernym-
oracle is integrated into the agglomerative clustering algorithm. In general, 
it would be desirable to learn a declarative model specifying how to combine 
different resources and paradigms from the data itself. In the next section, 
we present an approach relying on supervised machine learning techniques to 
learn such a combination model directly from our datasets. 

6.4 Learning from Heterogeneous Sources of Evidence 

We have already discussed the major approaches to learning concept hier­
archies in Section 6.1. We have also noted that there has been almost no 
work on combining different learning paradigms. In this section, we present 
an approach which combines different paradigms to learn taxonomic relations. 
The crucial issue herein is to find an optimal combination of the indications 
provided by different approaches. As any manual attempt to combine these 
different approaches would certainly be adhoc, we resort to a supervised sce­
nario in which an optimal combination is learned from the data itself, and 
make use of standard classifiers for this purpose. In fact, we learn classifiers 
which, given two terms as well as the results of all the diflferent approaches 
considered, decide if they stand in a taxonomic relation or not (compare Fig­
ure 6.21). As most of the terms in a given taxonomy do not stand in such 
a relation, we are thus faced with very unbalanced datasets making it neces­
sary to apply strategies to cope with such skewed distributions as described 
in Section 4.3.1.2. 
In this section, we examine the possibility of learning taxonomic relations by 
combining the evidence from different sources and techniques using a classi­
fication approach. We show, on the one hand, how to convert the different 
sources of evidence and results of different approaches into numerical first-
order features which can be used by a classifier. On the other hand, we also 
analyze which classifiers perform best on the task as well as which strate­
gies are most suitable to deal with the unbalanced datasets we consider. The 
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structure of this section is as follows: in Section 6.4.1 we discuss the main 
idea and describe the features used. In Section 6.4.2 we then present a de­
tailed evaluation of the different classifiers and strategies for dealing with 
unbalanced datasets with respect to the task at hand. A summary in Section 
6.4.3 concludes the section. 

6.4.1 Heterogeneous Sources of Evidence 

In this section, we describe the different sources of evidence we aim at combin­
ing via our classification-based approach to learn concept hierarchies. In par­
ticular, we discuss how the various sources can be transformed into first-order 
numerical features which can be used by a classifier. In fact, in this section we 
present a classification-based approach which classifies pairs of words (̂ 1,̂ 2) 
as iso-related or not, given the values of 8 features we describe in the follow­
ing Section 6.4.1.1. The model induced by the classifier contains no domain-
specific information and can, in principle, be applied to other domains. The 
features are based on state-of-the-art approaches to discover isa-relations. In 
what follows, we describe each of the approaches as well as how the numerical 
values are calculated, and give the best results of a naive threshold classifier 
as a baseline. In particular, we give results in terms of precision, recall and 
F-measure calculated with respect to the transitive closure of the relations in 
our gold standard concept hierarchy. It is certainly a difficult question what 
to consider as the set of relations to be learned. This is due to the fact that 
an approach learning taxonomic relations can not be expected to only learn 
direct taxonomic relations, as immediate taxonomic dominance is merely a 
modeling artifact. On the one hand, evaluating our approach with respect to 
the set of immediate relations would thus penaUze our approach for finding 
non-immediate but correct taxonomic relations. On the other hand, evalu­
ating with respect to the transitive closure of the «sa-relations in our target 
ontology will lead to a very low recall as we can not expect our system to 
learn the complete transitive closure. One possibility would be to consider the 
transitive closure up to a certain level, but here again choosing some level 
would represent an adhoc solution and an additional parameter in our exper­
iments. In the approach described in this section, we have simply opted for a 
pragmatic solution and considered the transitive closure as our target set. In 
the following, we discuss in detail the features considered in our approach. All 
the single features are evaluated in terms of precision, recall and F-Measure 
with respect to our target set, i.e. the transitive closure of the isa-relations 
of our reference ontology. For each of these features, we give the results of a 
naive threshold classifier as baseline which classifies a pair as isa-related if the 
corresponding confidence produced by the approach is above some threshold 
t, i.e. 

Definition 27 (Naive Threshold Classifier) Classify an example charac­
terized by a single feature as positive if the value of the feature is above some 
threshold t. 
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For each feature, the threshold has been varied from 0 to 1 in steps of 0.01. 
In what follows, we always report only the best results. The experiments are 
carried out with the Tourism corpus and evaluated with respect to the concept 
hierarchy of the Otourism ontology (compare Section 5). 

Features 

^ yes/n 

Fig. 6.21. Learning from heterogeneous sources of evidence 

6.4.1.1 Hearst Patterns 

Matching Patterns in a Corpus (Feature 1) 

The first source of evidence we consider are lexico-syntactic patterns matched 
in a certain corpus in line with the work of Hearst [Hearst, 1992], where the 
patterns we use are mainly taken from. In particular, here we use the same 
patterns as well as the same technique to match regular expressions defined 
over part-of-speech tags as described in Section 6.3.1.2. Given two terms ti 
and 2̂) we record how many times a Hearst-pattern indicating an iso-relation 
between ii and ig is matched in the corpus. We then normalize this value 
by dividing by the maximum number of Hearst patterns found for i i , i.e. 
isaHearst = ^\pattlmsltul')\' where * stands for any other term. For the confer­
ence concept for example, we find the following candidate isa relations, where 
the number in the second column gives the normalized value as described 
above: 

isaj^earst (conference, event) 0.36 
isaHearst (conference, body) 0.18 
isaijeorst (conference, course) 0.09 
isaifeorst (conference, weekend) 0.09 
isaHeorst(conference, meeting) 0.09 
isaijearst(conference, activity) 0.09 

The first interesting observation here is that despite of using quite a big corpus, 
Hearst patterns appear relatively rarely. With respect to the naive threshold 
classifier we get the best F-measure of F = 10.64% at ^ = 0.03, corresponding 
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to a precision oi P — 25% and a recall oi R = 6.76%. The best precision 
is 60% using a threshold of i = 0.5. In fact, using such a threshold, we can 
reach arbitrarily high precisions at the cost of a very reduced recall. In order 
to address the low recall, we also use two features based on matching Hearst 
patterns on the Web; they are described in the following. 

Matching Patterns on the Web (Feature 2) 

Certainly, when using a corpus we have to cope with typical data sparseness 
problems. However, some researchers have shown that the World Wide Web is 
an attractive way of reducing data sparseness (compare [Grefenstette, 1999, 
Keller et al., 2002, Resnik and Smith, 2003, Markert et al., 2003]). In this 
line, following Markert et al. [Markert et al., 2003], we use the Google API^ 
to count the matches of a certain expression on the Web. In particular, for 
each pair (^1,^2), we generate the following patterns and count the number of 
hits returned by the Google API: 

7r(fi) such as 7r(<2) 
such 7r(fi) as 7r(i2) 
7r(ii), including 7r(f2) 
7r(ti), especially n{t2) 
7r(i2) and other 7r(<i) 
7r(t2) or other 7r(fi) 

where n{t) returns the plural form of t as described in Section 6.3.1.2. 
These patterns are indicators for a corresponding taxonomic relation 
isawwwihth)- Thus, this source of evidence is certainly similar in spirit 
to the Hearst approach described above, but with the main difference that 
there the patterns are matched against a corpus and here for each pair (̂ 1,̂ 2) 
a certain number of patterns are generated and then sent as queries to the 
Google API. The sum of the number of Google hits over all patterns for a 
certain pair {ti, ^2) is then normalized by dividing through the number of hits 
returned for ti. For instance, in what follows we give the top five matches for 
the conference concept and other terms in the tourism concept hierarchy we 
consider; the value in the second column indicates the normalized number of 
hits returned by the Google API: 

isaw'M'w (conference, service) 0.27 
isavf'H/H'(conference, event) 0.25 
isa^/iyvF (conference, area) 0.11 
isaivvFW (conference, organization) 0.05 
isawiyw(conference, information) 0.04 

It is important to note that due to the simple plural formation we have used, 
i.e. adding an 's' at the end of the word, we get no information for nouns 
which do not form their plural regularly, e.g. activity. With respect to the 

http://www.googIe.com/apis/ 
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naive threshold classifier baseline, the best F-measure here is F = 18.84% 
with a precision of P = 15.77% and a recall of 7? = 23.43% when selecting all 
the relations above a threshold of 0.04. So here we yield a greater recall at the 
cost of a lower precision, which is due to the fact that the WWW is a very 
general resource and the pattern-matching approach also yields a considerable 
amount of errors. 

Downloading Web Pages (Feature 3) 

Furthermore, as an alternative to the pattern generation approach described 
above, we also follow an approach in which web pages are actually downloaded 
and Hearst patterns are matched offline, thus overcoming the idiosyncrasies 
with the generation of plural forms and allowing to match expressions with 
a more complex linguistic structure. For this purpose, we assign one or more 
functions fi : string -> string - which we will refer to as clues - to each of the 
Hearst patterns i to be matched. Given a concept of interest c, we instantiate 
each of the clues and download a number of pages matching the query /j(c) 
using the Google API. For example, given the clue f{x) — ^''such as'^ ® •K{X) 
and the concept conference, we would download 100 abstracts matching the 
query f(conference), i.e. "such as conferences". For each concept of interest 
and for each of the correspondingly instantiated clues, we then process the 
downloaded abstracts by matching the corresponding pattern, thus yielding 
its potential superconcepts. As described above, for each pair (̂ 1,̂ 2) we cal­
culate the number of times ti and 2̂ were found to stand in an isa-relation 
divided by the number of times ti was matched in a pattern as subconcept, 

i.e. isawww = ^fpatuZZ^Vlt'u*)! • ̂ '̂ '̂ ^ <̂̂  "̂ *̂  "̂̂ ^ ^^™^ patterns and clues 
as defined in Section 6.3.1.2. The top four pairs for the conference concept are 
in this case: 

(conference, event) 0.27 
isaK'vyw" (conference, activity) 0.17 
isawww (conference, initiative) 0.03 
isaiyWW" (conference, function) 0.03 

Using the naive threshold classifier, we get an F-measure oi F = 17.58% with 
a precision of P = 16.12% and a recall of P = 19.34% at a threshold of t = 0. 

6.4.1.2 WordNet 

As a further source of evidence, we use the hypernymy information from Word-
Net^. Actually, the information contained in WordNet is so general and do­
main independent that when exploiting it in the context of a specific domain, 
it has to be treated as an uncertain source of evidence such as the other 
sources we consider here. 

We have used version 1.7.1 for our experiments. 
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WordNet - All Senses (Feature 4) 

Given two terms ti and ^2, we check if they stand in a hypernym relation with 
regard to WordNet. It is important to note that two terms ii and 2̂ can appear 
in more than one synset and thus there could be more than just one hypernym 
path from the synsets of ti to the synsets of t2 • We normalize the number of hy­
pernym paths by dividing by the number of senses oiti, setting 1 as maximum, 
i.e. we consider the value isawNiti,t2) = mm(J£2*M££j^^y^££p££(*2l^,l). 
Hereby, a path is simply a sequence of edges connecting two synsets. As Word-
Net allows for multiple inheritance, there can even be multiple paths between 
two synsets. Therefore, we set 1 as maximum in the formula above. For ex­
ample, in WordNet there are four such different hypernym paths between 
the synsets of country and the ones of region. Furthermore, as country has 5 
senses, this value would be 0.8. 

WordNet - First Sense (Feature 5) 

Further, we also consider a variant of taking into account the WordNet hier­
archy in which we consider only the first and thus most frequent sense of ti as 
specified by the formula isawN/ir^t — iT^in{\paths{sensei{ti), senses{t2))\, 1). 
This value is obviously 0 or 1. The precision for the isa pairs extracted from 
WordNet is much lower than for the ones from the Hearst patterns. The 
reason is that WordNet contains so much ambiguity and that it is domain 
independent. The precision is in fact around P — 21.6% when considering all 
senses and regarding all relations with a value above 0.2 as correct and around 
P = 30.55% when taking into account only the first sense. While the recall 
is higher than with Hearst's approach, it is still quite low at i? = 7.23% and 
R = 5.19%, respectively. The best F-measure for the feature considering all 
senses is thus F = 10.84% and F = 8.87% for the feature considering only 
the first sense and all the relations with a value over 0 as correct. 
It is important to emphasize that this does not mean that the relations found 
in WordNet are wrong, but that they do not appear in our target ontology. 
After manual inspection of the relations in WordNet and the ones in the target 
ontology, we found that certain terms are modeled in a very different manner, 
which explains why the precision of the relations found in WordNet is so low 
when compared to the target hierarchy. For example, according to WordNet, 
presentation is a human activity (most frequent sense), while according to our 
target ontology, presentation is a business event. Another example here is night, 
which according to WordNet is a period, while according to our target ontol­
ogy it is a time. Further, according to WordNet, price list is an information, 
while according to our target ontology price list is an agreement. 

6.4.1.3 'Head'-Heuristic (Feature 6) 

In order to identify further isa relations, we make use of the /learf-heuristic 
already described in Section 6.3.1.3. Basically, given two terms ti and t2, if 
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ii r-matches ^2, we derive the relation \sa,{t2,ti). As an example, according 
to this heuristic we might derive that ii='conference' and t2='international 
conference' are related by an isa relation, i.e. isa/jead (international confer­
ence, conference). This is similar to the HeadNounToClass.ModToSubClass 
rule used by Buitelaar et al. [Buitelaar et al., 2004]. When evaluating this 
heuristic on our dataset, we get a precision of 50%, a very low recall of 3.77% 
and an F-measure of F = 7.02%. So this heuristic is indeed very accurate at 
the cost of a very low recall. 

6.4.1.4 Corpus-based Subsumption (Feature 7) 

As a further source of evidence, we introduce a corpus-based notion of sub-
sumption and regard a term ti as a subclass of t2 if all the syntactic contexts 
in which ti appears are also shared by ^2- For this purpose, for each term in 
question we extract pseudo-syntactic dependencies from the corpus and con­
struct the corresponding term vectors as described in Section 4.1.4. On the 
basis of these term vectors, we calculate a directed Jaccard coefRcient as fol-
lows: isa,orpusiti,t2) = '^ ' ° ' "7; i l t l r / ;g" | ' ' ' ' ' ' ^^ thus computing the number 
of common features divided by the number of features of term ti. 

So, the measure presented here gives a normalized value within the interval 
[0..1], indicating in how far features{ti) is included in features{t2)-
Here follow the top ten superconcepts for conference according to this method: 

sacorpus(conference, congress) 0.44 
sacorpus (conference, seminar) 0.44 
sacorpus(conference, masseur) 0.43 

corpus (conference, banquet) 0.34 
sacorpus (conference, aerobic) 0.37 

corpus (conference, pilgrimage) 0.33 
sacorpus (conference, elevator) 0.31 
sacorpus (conference, sanatorium) 0.31 
sacorpus (conference, brochure) 0.30 
sacorpus (conference, cabaret) 0.30 

Evaluated on our reference taxonomy, the naive threshold classifier yields a 
relatively high recall of i? = 27.83% but a very low precision and F-measure 
of P = 0.92% and F = 1.78% at a threshold of t = 0.01. 

6.4.1.5 Document-based Subsumption (Feature 8) 

Sanderson and Croft [Sanderson and Croft, 1999] have suggested a document-
based notion of subsumption according to which a term ti is a subclass of term 
2̂ if 2̂ appears in all documents in which ii appears. Instead of computing 

these results with respect to a corpus, we resort once more the World Wide 
Web and use the Google API to calculate the number of documents in which 
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ti and t2 occur, dividing this value by the number of documents in which ii 
occurs. Thus we also yield a value between [0..1]. According to this document 
co-occurrence method, the top ten superconcepts for conference are: 

isacro/t(conference,information) 0.17 
isacro/t (conference,service) 0.17 
isacro/t (conference,day) 0.16 
isacro/t(conference,time) 0.16 
isacro/t(conference,email) 0.15 
isacro/< (conference,event) 0.14 
isac7-o/i(conference,date) 0.14 
isacro/t(conference,area) 0.12 
isacro/t(conference,place) 0.12 
isacro/t(conference,organization) 0.11 

Here the best result of the threshold classifier yields an F-measure of F = 
6.32% at a precision of P = 13.98% and a recall of i? = 4.09% at a relatively 
high threshold of 0.6. 

6.4.2 Evaluation 

Having introduced the different features, we now turn to the description of 
the diverse classifiers applied to the task. As classifiers, we use a Naive Bayes 
(NB) classifier, a C4.5 decision tree classifier, a Perceptron (PER) as well as 
a Multi-layer Perceptron (MLPER) with one hidden layer consisting of as 
many hidden nodes as input nodes, i.e. eight in our case, corresponding to the 
eight features described above. We make use of the version of these algorithms 
implemented in WEKA^°, applying standard settings, and give results aver­
aged over ten runs. In particular, we produce ten runs for each configuration 
of classifier and rebalancing strategy, applying jackknifing to randomly select 
partitions of the dataset with a 60%:40% training/testing ratio. Further, in or­
der to address the problem of the unbalanced dataset, we experiment with the 
following strategies: (i) undersampling, (ii) oversampling, (iii) varying the clas­
sification threshold as well as (iv) introducing a cost matrix (compare Section 
4.3.1.2). Additionally, we report on results of experimenting with one-class 
Support Vector Machines, for which we obviously do not need to worry about 
the unbalanced character of the dataset as they merely make use of positive 
examples for training. The structure of the remainder of this section is as fol­
lows: in Section 6.4.2.1 we discuss the baselines for our approach. In Sections 
6.4.2.2 - 6.4.2.5 we discuss the results of our method with respect to different 
strategies for dealing with the unbalanced character of our dataset. Finally, we 
present results with the one-class Support Vector Machines in Section 6.4.2.6 
and conclude this section with a discussion in Section 6.4.2.7. 

http://www.cs.waikato.ac.nz/~ml/weka/ 
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6.4.2.1 Baselines 

In order to evaluate our machine learning approach, we calculate for each 
feature the results with respect to our dataset of the simple threshold classifier, 
which assigns an example to the isa class if the value of the corresponding 
feature is above a threshold t. For each feature we vary the threshold from 0 
to 1 in steps of 0.01. The F-measure, precision and recall values for the best 
threshold parameter t for each feature are summarized in Table 6.21. As a 
straightforward combination of the features we experiment with two further 
very simple classifiers, assigning an example to the isa class if the average or 
the maximum of the values of features 1-6 is above a threshold t (compare 
the results in Table 6.20)". 

Table 6.20. Results for single features and simple combination strategies 

No. 
1 
2 
3 
4 
5 
6 
7 
8 

Feature 
tSGfjearst 

isawww 

isawN 
isawNfi^.t 
tSdhead 

ISdcorpus 
ISQicroft 
Average(l-6) 
Maximum(l-6) 

t 
0.03 
0.04 

0 
0.2 

0 
0 

0.01 
0.6 

0.02 
0.12 

F 
10.64% 
18.84% 
17.58% 
10.84% 
8.87% 
7.02% 
1.78% 
6.32% 

21.28% 
21% 

P 
25% 

15.77% 
16.12% 
21.60% 
30.55% 

50% 
0.92% 

13.98% 
18.61% 
19.03% 

R 
6.76% 

23.43% 
19.34% 
7.23% 
5.19% 
3.77% 

27.83% 
4.09% 

24.84% 
23.43% 

Table 6.21. Results for single features and naive combination 

6.4.2.2 Undersampling 

Undersampling (compare [Provost, 2000]) consists of removing a number of 
examples of the majority class, in our case the non-isa examples, or which 
is equivalent, to select only a subset of the examples of the majority class 
for training. In our experiments, we randomly select a number of negative 
examples which equals the number of positive examples multiplied by an un­
dersampling factor fu, i.e. |Negatives| = fu * |Positives|. We vary the factor 
fu from 1 to 30. The results for all classifiers are given in Figure 6.22, which 
shows the F-measure over the undersampling factor fu- The best F-measure 
of F = 21.50% is obtained with / j ; = 13 using the Mulitlayer Perceptron 
(MLPER), thus being slightly over the results obtained with the simple aver­
age and maximum strategies (compare Table 6.21). 

^̂  When adding the features 7 and 8 the results are actually worse. Thus, we refrain 
from using these features when calculating the average and maximum. 
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6.4.2.3 Oversampling 

In contrast to undersampling, oversampling consists of adding additional ex­
amples of the minority class (see [Provost, 2000]), in our case the isa class. 
In our experiments, we randomly select a number of positive examples equal 
to the original number of positive examples multiplied with a factor fo, i.e. 
I Positives'I = | Positives | * fo- We vary the oversampling parameter from 0 to 
20 in steps of 1. The corresponding results are depicted in Figure 6.22. With 
this oversampling strategy we get better results than with the undersampling 
strategy, achieving an F-measure of 22.86% using the Multilayer Perceptron 
(MLPER) and an oversampling factor fo = H- These results are only signifi­
cant at a level of 0.17 according to a Student's t-test and compared to the best 
results achieved with undersampling and the MLPER. Unfortunately, for the 
oversampling as well as for the varying cost strategies (see below), we have 
not been able to perform our experiments with C4.5 decision trees as WEKA 
reported not to have enough memory. 

6.4.2.4 Threshold 

Another possibility is to vary the classification threshold of the classifier. All 
classifiers internally compute for each example a probability of belonging to 
each target class, assigning the example to the class with the highest proba­
bility. In our binary case, an example is thus classified as isa if this probability 
is greater than 0.5. We also vary this threshold from 0 to 1 in steps of 0.05. 
The corresponding results for all the classifiers are depicted in Figure 6.23. 
The best F-measure of F = 18.7% is achieved using the Multilayer Perceptron 
(MLPER) and a threshold of 0.1. With this strategy we thus do not improve 
upon the average and maximum strategies (compare Table 6.21). 

6.4.2.5 Cost Matrix 

In WEKA, it is possible to specify a cost matrix indicating the relative cost 
for misclassifying an example. In further experiments we make use of this 
possibility, introducing a factor fc specifying the relative cost of misclassifying 
an isa example as non-isa with respect to misclassifying a non-isa as isa. 
We vary this factor from 1 to 10 in steps of 1. The results in terms of F-
measure over this factor are given in Figure 6.23. Here the best F-measure of 
F=20.09% is achieved when using the Multilayer Perceptron and a relative 
misclassification cost of 6:1. As a result, when using this strategy we do not 
improve upon the average and maximum strategies (compare Table 6.21). 

6.4.2.6 One Class SVMs 

Further, we also experiment with one-class Support Vector Ma­
chines, which only rely on positive examples for training (compare 
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Fig. 6.22. Results for undersampling (left) and oversampling (right) 
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Fig. 6.23. Results for varying the threshold (left) and misclassification cost (right) 

[Grobelnik and Mladenic, 2006]). Thus, the unbalanced character of the 
dataset is not an issue here. In particular, we use the regression SVM im­
plementation of the TextGarden tool suite^^, applying standard settings and 
performing the evaluation with n-fold cross validation, where n is the number 
of data splits. We experiment here with different training/test splits obtain­
ing the best result of F = 32.96% with a split of 2 /1 . Table 6.22 shows the 
F-measure, precision and recall values for the different splits used. 

Table 6.22. Results of one-class SVM for different test/train splits 

Train/Test split 

1/1 
2/1 
3/1 
4/1 

F-measure 
32.72% 
32.96% 
32.38% 
32.91% 

precision 
36.98% 
37.85% 
37.65% 
37.64% 

recall 
29.38% 
29.21% 
28.47% 
29.35% 

http://kt.ijs.si/dunja/TextGarden/ 
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Fig. 6.24. Weight of each feature for the different test/train splits 

6.4.2.7 Discussion 

The best results achieved with the one-class SVM {F = 32.96%) are more 
than 10 points above the baseline classifier taking into account the average 
{F = 21.28%) or the maximum {F = 21%) of the different approaches consid­
ered. Furthermore, the best result is also more than 14 points better than the 
best single-feature classifier using the isawww feature {F = 18.84%). These 
figures show that our supervised approach to combining different indicators 
from multiple and heterogeneous sources indeed yields very promising results. 
The second best results have been achieved using a Multilayer Perceptron as 
well as oversampling and undersampling as strategies to cope with the un­
balanced character of the dataset. However, the results of a Student's t-test 
showed that there is in fact no significant difference between using undersam­
pling or oversampling. As the baseline used is deterministic, it is not possible 
to determine whether the difference to the Multilayer Perceptron results is in­
deed significant. We can thus not claim that the Multilayer Perceptron yields 
indeed better results compared to the baseline. 

Varying the threshold or the misclassification cost does not yield better 
results compared to the baseline. Furthermore, due to the fact that the results 
obtained with the Support Vector Machines are more than 10% over the base­
lines as well as the Multilayer Perceptron classifier, we have not performed a 
significance test as it is obvious that the results are much better. 
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A deeper insight about which features are good predictors of an «sa-relation 
and which ones are not can be gained by a detailed analysis of the weights 
assigned to the different features by the one-class SVM classifier. Figure 6.24 
shows the weight for the different dataset splits used with the SVM classifier. 
The most reliable predictor of an iso-relation is clearly the 'head'-heuristic. 
The second most reliable feature is the approach matching Hearst patterns 
in the corpus. The third best feature is the version of the WordNet approach 
using only the first sense. The version of WordNet using all senses as well 
as both approaches matching Hearst patterns in the Web do not perform so 
well, but still reasonably. The document-based subsumption feature seems to 
behave neutrally. The feature corresponding to the corpus-based subsumption 
seems to be a good negative indicator, which probably indicates that we should 
normalize by dividing by the features of 2̂ instead of ti. In fact, if we normalize 
by dividing by the number of features t2, we get a feature strongly related 
to the notion of subsumption in FCA, as we measure the degree to which ti 
contains the features of its superconcept t2-

We repeat our experiments with two modifications: 

1. We calculated the corpus-based subsumption feature as 

tsUcorpus\l'l,i'2) — \features{t2)\ 
2. For each feature / ( i i , i2) we also add the inverse feature f{t2,ti) to the 

dataset. 

The results are in line with our expectations in the sense that all the 
positive features /(ii,*2) indeed correspond to positive weights in the SVM 
model, whereas the inverse features f{t2,ti) actually yield negative weights. 
Overall, the results in terms of F-measure also improve as shown in Table 
6.23. 

Figure 6.25 indicates the weights for the positive features. Again we ob­
serve that the features based on the 'head'-heuristic, on the first sense of 
WordNet as well as on matching Hearst patterns perform best. The other 
features are not such good predictors of iso-relations. The document-based 
subsumption feature (Croft) seems to be the weakest predictor. 

Further, the one-class SVM has been found to yield the best results. The 
second best results are achieved by the Multi-layer Perceptron using oversam-
pling. This could hint at the fact that the problem we are considering is not 
clearly linearly separable. 

6.4.3 Summary 

We have shown in this section that it is possible and furthermore reasonable 
to combine different approaches as well as resources using a machine-learning 
approach. The benefit of such a machine-learning approach is in fact that 
the weight of the contribution of each approach is not determined in an ad-
hoc manner, but learned from the data itself. The main contributions of our 
approach can be summarized as follows: 



Learning from Heterogeneous Sources of Evidence 155 

Table 6.23. Results of one-class SVM for different train/test splits (mod.) 

Train/Test split 

1/1 
2/1 
3/1 
4/1 

F-measure 
31.23% 
33.71% 
33.52 
33.23% 

precision 
37.41% 
38.82% 
38.21% 
37.84% 

recall 
27.22% 
29.86% 
29.92% 
29.75% 

SWI rrwcfels - feature weights 

I i 
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# 
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Fig. 6.25. Weight of each feature for the different train/test splits (modified version) 

We have shown that combining different approaches indeed pays off, com­
pared to using only single approaches based only on Hearst patterns, dis­
tributional similarity, the 'head'-heuristic, etc. 
We have also shown that the machine-learning based combination per­
forms better compared to a naive combination considering the average or 
maximum of the confidence produced by the single approaches. 
Our experiments demonstrate that the unbalanced character of the dataset 
is actually an issue. In fact, beating the naive average and maximum clas­
sifiers has turned out to be far from straightforward. 
We have further shown that one-class Support Vector Machines, which are 
not affected by the unbalanced dataset, deliver the best results. 
Finally, a detailed analysis of the weights of the different features in the 
models learned with the SVMs have allowed insight in which approaches 
are the most rehable predictors for the task at hand. 
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One drawback of the proposed method is that the computation of some 
of the features is expensive. Further work should clarify if the method actu­
ally scales with respect to the number of concepts. In addition, an important 
question is whether a model trained on one domain, say tourism, can be suc­
cessfully applied to other domains. Further, when integrating information from 
a lexical database such as WordNet, lexical disambiguation should definitely 
be performed. 

6.5 Related Work 

In this section, we discuss work related to the concept formation and con­
cept hierarchy induction tasks. The main paradigm exploited for concept for­
mation is clustering to create groups of words which share some meaning, 
similar in spirit to WordNet's synset. Other approaches such as applied in 
the OntoLearn system [Missikoff et al., 2002] are based on complex linguis­
tic analysis, including word sense disambiguation with respect to an existing 
thesaurus which is exploited to build a domain-specific model. Concerning 
the task of constructing a hierarchy, the main approaches exploited are hi­
erarchical clustering, matching of lexico-syntactic patterns [Hearst, 1992] as 
well as analyzing the co-occurrence of terms within a sentence, paragraph or 
document. The approaches to taxonomy construction and concept formation 
are reviewed in Section 6.5.1. 

Other researchers have addressed the,problem of extending or refining an 
existing taxonomy by either adding new concepts or adding lexical descrip­
tors to existing concepts. Most of these approaches are similarity-based in 
the sense that the distributional similarity between the new concept and the 
concept it is classified to should be maximal. Different algorithms have been 
exploited for this purpose: kNN or memory-based learning, tree-ascending and 
tree-descending algorithms. Section 6.5.2 reviews work related to taxonomy 
refinement. 

6.5.1 Concept Formation and Hierarchy Induction 

In this section, we describe in more detail work related to the tasks of concept 
formation and hierarchy induction. We first discuss related work on lexico-
syntactic patterns. The seminal work of Hearst on lexico-syntactic patterns 
has been very relevant for the approaches presented in this chapter. In our 
work, we have applied Hearst patterns in the approaches presented in Sections 
6.3 and 6.4. We also describe in detail related work relying on clustering ap­
proaches. A quantitative comparison of the different approaches on clustering 
is almost impossible and therefore not the purpose of this section. Researchers 
have presented various types of evaluation on different datasets and used very 
different techniques. Our aim in this section is to provide the interested reader 
with an overview of related work on clustering as well as entry points to the 
relevant literature. 



Related Work 157 

6.5.1.1 Lexico-syntactic patterns 

Hearst's seminal work (compare Section 6.1.2) has been reused and refined 
in a lot of follow-up work as well as applied to different tasks. Iwanska et 
al. [Iwanska et al., 2000], for example, define additional patterns. Poesio et 
al. [Poesio et al., 2002] suggested to exploit Hearst patterns for anaphora res­
olution. Ahmad et al. [Ahmad et al., 2003] applied Hearst patterns to very 
specific domains, in particular applying them to texts surrounding images. 
Recent work such as the one of Etzioni et al. [Etzioni et al., 2004a] and Mark-
ert et al. [Markert et al., 2003] have shown how these patterns can also be 
matched on the WWW by using search engine APIs such as the one of Google. 
Lexico-syntactic patterns have also been applied to the identification of other 
lexical relations such as part-of [Charniak and Berland, 1999] or causal rela­
tions [Girju and Moldovan, 2002, Sanchez-Graillet and Poesio, 2004]. 

Recently, Cederberg and Widdows [Cederberg and Widdows, 2003] have 
shown that the precision of Hearst patterns can be improved by filtering the 
results of the pattern matching using Latent Semantic Analysis. In particu­
lar, the assumption is that hyponyms/hypernyms are typically distribution-
ally similar. The results obtained with Hearst patterns are then post-filtered, 
retaining only those pairs with a similarity over a certain threshold. In their 
experiments, precision is raised from 40% to 58%, which corresponds to a 30% 
reduction in error rate. 

In order to improve the recall of the patterns, Cederberg and Widdows also 
exploit a simple heuristic assuming that if there is a lexico-syntactic pattern 
indicating that A is a hyponym of B and A appears coordinated with C, then 
C is also a hyponym of B. Their method leads to a five-fold increase in the 
number of correct relations extracted at a precision of 46%. Further, they also 
apply the LSA filtering technique to the relations extended by taking into 
account coordination patterns, achieving a precision of 64% corresponding to 
a reduction of the error rate by 33%. 

Some research has aimed at learning the patterns automatically 
(see [Agichtein and Gravano, 2000], [Ravichandran and Hovy, 2002] 
and [Downey et al., 2004]). Morin et al. [Morin and Jacquemin, 1999, 
Finkelstein-Landau and Morin, 1999] have addressed the automatic genera­
tion of patterns via a similarity-based approach in which the patterns are 
represented as vectors and grouped if they are similar enough, thus leading 
to generalization of the patterns. In our work, we have not addressed the 
important issue of learning the patterns themselves, but have compiled a 
library of patterns from the literature, assuming their availability in our 
approaches. 

6.5.1.2 Clustering 

Work on clustering is mainly based on Harris' [Harris, 1968] distributional 
hypothesis, claiming that similar words tend to occur in similar linguistic 



158 Concept Hierarchy Induction 

contexts. Actually, this is the main assumption on which clustering approaches 
build on. In what follows, we will briefly discuss some seminal but also recent 
work in the field of clustering words on the basis of text. 

Hindis 

Hindle [Hindle, 1990] aims at grouping nouns semantically, relying on the 
distributional hypothesis. He uses his own parser Fidditch to derive verb-
subject as well as verb-object dependencies from a 6 million word sample 
of Associated Press news stories. To weight the association between a verb 
and the head of the subject or object it subcategorizes, he makes use of the 
pointwise mutual information: 

In particular, for a verb v and a head noun n he calculates different mutual 
information values for the subject and object position, i.e. I8ubj{n,v) and 
lobji^jV). The similarity measure used is defined as follows: 

{v,ni,n2) := < 

min(Iargiv, n i ) , Iarg{v, n2)) 
if Iarg{Varg,ni) > 0 and Iarg{v,n2) > 0 

abs{max{Iarg{v,ni),Iarg{v,n2))) (6.34) 
if Iarg{v,ni) < 0 and Iarg{v,n2) < 0 

0 otherwise 

Finally, the similarity is calculated by summing up the subject and object 
similarity over all verbs: 

sim{ni,n2) = ^ simsubj{v,ni,n2) + simobj{v,ni,n2) (6.35) 
v€V 

In contrast to the cosine measure, which is length-normalized, the above 
measure is proportional to the number of verbs shared by both nouns. Though 
Hindle does not provide a quantitative evaluation of the clustering, he reports 
that "for many nouns, encouragingly appropriate sets of semantically similar 
nouns are found". Interestingly, he also introduces and analyzes the concept 
of mutually similar nouns - which he calls reciprocally most similar nouns. He 
concludes that considering reciprocally most similar nouns yields quite a good 
set of substitutable words, many of which are near synonyms. Hindle's and 
our approach have in common the use of syntactic dependencies as features 
as well as of an information measure, i.e. PMI, to weight the contribution of 
the features. 
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Pereira et al. 

Pereiraet al. [Pereira et al., 1993] present a top-down soft clustering algorithm 
which uses deterministic annealing to find lowest distortion sets of clusters. 
The algorithm is soft in the sense that an element can appear in different 
clusters, thus allowing to account for multiple meanings of words. They eval­
uate the learned hierarchy in two ways. On the one hand, they present an 
entropy-based evaluation of the clusters (compare Section 9.1.3.2). On the 
other hand, they also test the prediction/generalization power of the cluster 
hierarchy on a decision task, i.e. deciding whether a verb t; or a verb v' is 
more likely to take a noun n as object, where all occurrences {v, n) have been 
removed before from the training set. The task helps thus in evaluating how 
well the learned model allows for reconstructing the verb distribution of n 
from its closest centroids. In contrast to Pereira et al., we have not focused on 
accounting for the different meanings of words in our FCA-based approach. 
However, as FCA supports multiple inheritance, in contrast to the agglom-
erative clustering algorithms, accounting for different meanings of a word is 
actually possible. 

Caraballo 

Caraballo [Caraballo, 1999] presents a bottom-up clustering approach to build 
a hierarchy of nouns. For this purpose, she uses conjunctive and appositive 
constructions for nouns derived from the Wall Street Journal Corpus using 
the parser described in [Caraballo and Charniak, 1998]. In particular, she only 
considers the lemmatized head of the noun phrases in question. As similarity 
measure she uses the cosine measure as well as average hnkage as strategy to 
compute the similarity between clusters Ci and C2, i.e., 

sim{Ci,C2) = \^in \ (6-36) 
|Oi| X 102I 

Using the above similarity measure, Caraballo first clusters the nouns in 
a bottom-up fashion, thus yielding an unlabeled hierarchy of nouns. 

In order to label the inner nodes of the tree, she extracts appropriate 
hypernyms from the corpus using the Hearst pattern 'NP, NP,... and other 
NP'. The hypernyms are added to every leaf node in the tree in form of 
a vector. For each internal node of the tree, the vectors of its children are 
aggregated. Finally, for each node the hypernyms are ranked according to 
frequency, and the best three hypernyms are chosen as cluster label if the 
hypernym subsumes at least two of the elements in the cluster. 

After the clusters have been labeled, the tree is then compressed removing 
i) every inner node which remains unlabeled, as well as ii) every node with 
the same hypernyms as its parent. The children are correspondingly raised 
along the hierarchy to the parent concept. 

Caraballo evaluates her approach by randomly selecting 10 internal nodes 
dominating at least 20 nouns and, for each internal node, randomly selecting 
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20 nouns under that node which were presented together with the three hy-
pernyms to three human judges for evaluation. Additionally, five 'noise' nouns 
selected from elsewhere in the hierarchy were also presented to the judges to 
check that they were not just confirming the results by default. The pairs con­
sisting of the best hypernym of a cluster and some hyponym were accepted 
by the majority of judges in 33% of the cases, 39% of the cases at least by 
one judge. Considering any of the three hypernyms for each cluster, 47.5% 
relations were accepted by the majority, while 60.5% were judged as vahd by 
at least one judge. 

We have compared our guided agglomerative clustering method with Cara-
ballo's clustering approach and experimentally demonstrated that we outper­
form her method with respect to local coherence of clusters as well as with 
respect to human judgements (compare Section 6.3). 

The ASIUM System 

ASIUM [Faure and Nedellec, 1998] implements a bottom-up and breadth-first 
clustering strategy for the purpose of learning a concept hierarchy as well as 
subcategorization frames with generalized selectional restrictions with respect 
to this concept hierarchy at the same time. 

The first step of the algorithm is to build so called basic clusters consisting 
of nouns appearing at a specific position of a certain verb. In particular, the 
authors consider the verb's object, subject as well as prepositional comple­
ments or adjuncts. For example, given the following verb structures found in 
a corpus, 

<to t rave l> <subject: father> <by: car> 
<to t rave l> <subject: neighbor> <by: t r a in> 
<to drive> <subject: friend> <object: car> 
<to drive> <subject: colleague> <object: motorbike> 
<to drive> <subject: friend> <object: motorbike> 

ASIUM would generate the following two verb frames: 

<to t rave l> <subject : -ffatherCl), neighbor( l)}> 
<by: { c a r ( l ) , t r a i n ( l ) } > 

<to drive> <subject : { f r i end(2 ) , colleague(1)}> 
<object: -CcarCl), motorbike (2) }> 

and would create four basic classes: 

Cl={father(l), neighbour(l)} 

C2={car(l), train(l)} 

C3={friend(2), colleague(l)} 

C4={car(l), motorbike(2)} 
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After this first step, the distance between the different clusters is com­
puted. Clusters with a distance under a certain threshold are merged and the 
corresponding selectional restrictions of the verb generalized. 

The distance measure between clusters Ci and C2 is defined as follows 
(slightly reformulated w.r.t. the presentation in [Faure and Nedellec, 1998]): 

distiCx,C,) = l-'- ' ^ ; \ ^ ^ / ? ' - (6-37) 
Ececi ^Ci (c) + EceC2 '^c^ (c) 

where wc{c) is the weight of each element c in the cluster C. 
For example, the distance between C2 and C4 is calculated as follows: 

distiC2, C4) = 1 - - ^ ^ ^ = 1 - ^ = 1 (6-38) 

ASIUM's algorithm is described by the pseudocode in Algorithm 10. Ac­
cording to this algorithm, new clusters are only merged with clusters from 
lower levels. After each level, the user is asked to validate and label the clus­
ters. Thus, clusters are only processed further if they have been validated by 
the user, decreasing the amount of noise produced by the algorithm. Further­
more, the user can not only accept the cluster as a whole, but also split it 
into subclusters or remove some elements. The generalized subcategorization 
frames can also be adjusted by the user in a similar fashion. 
Faure and Nedellec present an evaluation of ASIUM by showing the number 
of correctly generated clusters in dependence of the size of the corpus used. 
The best result is a cluster accuracy of 99.53% using 90% of the corpus with 
an a posteriori evaluation of the clusters by a human judge. This result, for 
example, can not be compared quantitatively to our results as our evaluations 
have always been conducted with respect to a gold standard, thus leading to 
much lower values 

The Mo'K Workbench 

The Mo'K Workbench [Bisson et al., 2000] is a workbench with the aim of 
facilitating the experimentation with bottom-up hierarchical clustering algo­
rithms for the purpose of ontology construction. The workbench allows to 
vary: 

• the representation of the context of a word, i.e verb-object, verb-subject, 
adjectival or nominal modification relations, etc. 

• pruning parameters, i.e. the least number of occurrences of an attribute 
to be taken into account, and 

• the similarity or distance function. 
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Algorithm 10 ASIUM Algorithm 
ClustersToAggregate = BasicClusters; 
NewClusters = BasicClusters; 
Repeat 

CandidateClusters := 0 
for all pairs of clusters {Ci,Cj), Ci 6 NewClusters and 
Cj 6 ClustersToAggregate such that Ci does not subsume Cj 
if dist(Ci,Cj) < Threshold and d i^ Cj then 

Cnew = aggregate(Cs,Cj); 
CandidateClusters = CandidateClusters U Cnew 

endfor 
NewClusters = cooperatively validated CandidateClusters 
ClustersToAggregate = ClustersToAggregate U NewClusters 
level++; 

until NewClusters := 0 

The authors assess the generalization power of the different approaches by 
using part of the corpus as training data to calculate similarities and then eval­
uate newly obtained pairs with respect to the test corpus. The assumption here 
is that if two words are similar with respect to the training corpus, they can be 
exchanged to some extent, and artificially created pairs of verb-noun depen­
dencies can be tested for their appearance in the test corpus. This is certainly 
an interesting form of evaluating the results, which can thus be presented 
in terms of precision and recall, measuring the generalization accuracy and 
coverage of the similarity assessment. Concerning some experiments in which 
different pruning methods were tested, the authors come to the conclusion 
that pruning can have a very strong effect on the results. They demonstrate 
that pruning too much can lead to a considerable reduction in performance in 
terms of precision and recall. Furthermore, they also experiment with three 
different methods of calculating similarity or semantic relatedness, i.e. the 
measure of the ASIUM system as described above, the measure described in 
Dagan et al. [Dagan et al., 1994] as well as a x'^-based measure. They also 
conclude here that the effect of the similarity or distance measure can have a 
strong impact on the results. This has also been corroborated by our exper­
iments with our smoothing technique in Section 6.2. Further, they conclude 
that ASIUM produces more accurate word classes than the competing meth­
ods with respect to a cooking recipe corpus. 

Grefenstette 

Grefenstette [Grefenstette, 1994], like Hindle, aims at the automatic creation 
of groups of semantically related words on the basis of a text corpus. He 
presents the SEXTANT approach, which derives features from text using a 
shallow parsing strategy and calculates the similarity between words using 
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a weighted Jaccard measure. In particular, he presents the probably most 
thorough analysis and discussion of clustering results on a variety of differ­
ent domains and corpora conducted so far. Grefenstette uses the following 
grammatical relations as features: 

• verb-subject (SUBJ) 
• verb-direct object (DOBJ) 
• verb-indirect object (lOBJ) 
• adjectival modification 
• nominal modification 

For example, from the following text: 

It was concluded that carcinoembryonic antigens represent cellular 
constituents which are repressed during the course of differenciation of 
the normal digestive system epithelium and reappear in the corresponding 
malignant cells by a process of derepressive dedifferentiation. 

the following object/attributes are extracted: 

ant igen carcinoembryonic 
ant igen repress-DOBJ 
ant igen represent-SUBJ 
cons t i tuen t c e l l u l a r 
cons t i tuen t represent-DOBJ 
course repress-IOBJ 
course d i f f e r e n t i a t i o n 
d iges t i ve normal 
epi thel ium normal 
system d iges t ive 
epi thel ium d iges t i ve 
epi thel ium system 
d i f f e r e n t i a t i o n epithel ium 
c e l l correspond-SUBJ 
c e l l malignant 
c e l l reappear-IOBJ 
c e l l process 
d e d i f f e r e n t i a t i o n derepress ive 
process d e d i f f e r e n t i a t i o n 

As mentioned above, SEXTANT relies on a weighted Jaccard measure to 
assess the similarity of two words Wi and W2- SEXTANT is evaluated in three 
different ways: 

• Antonym discovery: the task here is to reproduce certain antonym pairs 
- known as Deese antonyms - such as cold/hot, dark/light, passive/active. 
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etc. specified by humans. Grefenstette analyzes the rank at which the cor­
responding antonym appears, concluding that SEXTANT performs suc­
cessfully on the task. 

• Artificial synonyms: for this task, synonyms are artificially created, and 
it is evaluated if SEXTANT can rediscover the artificially created syn­
onyms. In particular, a certain number of occurrences of a given word, say 
'cell', are replaced by the upper-case version of the word, i.e. 'CELL'. If 
the system then lists 'CELL' as the most similar word to 'cell', the task 
is regarded as successful. This is similar to the evaluation of WSD algo­
rithms proposed by Schiitze [Schiitze, 1992]. Grefenstette reports results 
for 20 randomly selected words for each of three different word frequency 
ranges {frequent, common and ordinary). He analyzes the percentage of 
artificially created synonyms appearing at a) the 1st or 2nd, b) 3rd to 
5th, c) 6th to 10th and d) beyond the 10th position. He states the results 
varying the percentage of words changed to upper-case. For the frequent 
words, the results are still reasonable in case 20-50% of the words are 
changed, while the results drop when changing less words. For the com­
mon and ordinary words, the results are much worse. This shows already 
that similarity-based algorithms are very sensitive to the frequency with 
which the words in question occur. 

• Comparison witli an existing tliesaurus: as a further experiment, 
Grefenstette compares SEXTANT'S results with three thesauri: Roget, 
Macquarie and Webster's 7th. Grefenstette evaluates if a noun and the 
corresponding most similar word given by SEXTANT appear under the 
same topics in the Roget and Macquarie thesauri, respectively. The eval­
uation with respect to Webster's 7th is performed slightly differently by 
taking into account the dictionary definition of each of the involved words 
and regarding the pair as correct in case the corresponding dictionary 
definitions share at least two common words. Interestingly, for this task 
Grefenstette compares syntactically motivated features such as used in 
SEXTANT with a technique using nouns, adjectives and verbs appearing 
within a 10 word window before or after the word in question and with­
out trespassing sentence boundaries. Grefenstette concludes that for high 
frequency words, the syntactically motivated features perform best, while 
for low frequency words they do not provide enough contextual material 
for an accurate clustering, thus being outperformed by the window-based 
technique. 

Further, Grefenstette presents four applications of SEXTANT to: 

• Query expansion, reporting an increase in retrieval performance when 
expanding the original query with words found to be similar by SEXTANT. 
This will be discussed in more detail in the applications section (compare 
Section 9). 
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• Thesaurus enrichment, where SEXTANT results are used to find 
the correct place in a thesaurus for a given word once a certain hy-
ponym/hypernym pair has been found by a Hearst-pattern. 

• Word meaning clustering, where meanings are created by grouping 
reciprocally similar words together. 

• Automatic Thesaurus Construction, where definitions for words are 
automatically generated containing the word frequency, the most similar 
words, the most frequent verbs they appear with, etc. 

The work of Grefenstette and ours have in common the extensive eval­
uation of different methods on different datasets as well as the attempt to 
evaluate automatically produced clusters with respect to existing resources, 
e.g. thesauri. 

Gasperin et al. 

Gasperin et al. [Gasperin et al., 2001] present a refinement of Grefenstette's 
work and suggest using more fine-grained syntactic dependencies than those 
used by Grefenstette. In particular, Gasperin et al. criticize that Grefen­
stette does not explicitly distinguish between adjectival, nominal and PP-
complement modification of nouns. They suggest to represent a syntactic 
dependency as a binary relation r(wi,W2) where r is the relation, i.e. a 
preposition, a verb-subject or verb-object relation, etc. Hereby, wi is the 
modified and W2 the modifying word. So, possible cause is represented as 
ADJ(4-cause,tpossible) and death cause as NN(4,cause,tdeath). From a com­
pound as death cause we would yield two features, one for the modified word 
cause, i.e. <tNN,death> indicating that death is the modifier of cause in a 
nominal compound, and one for the modifier death, i.e. <4,NN,cause>. 

For their experiments, Gasperin et al. use the same weighted Jaccard mea­
sure as Grefenstette and a Brazilian Portuguese corpus with 1,4 million word 
occurrences. Though they do not provide any quantitative evaluation, from 
their experiments they conclude that using more fine-grained information 
about prepositions as well as not only 4--features for the modified noun based 
on the modifiers, but also f-features for the modifiers, yields more accurate 
similarity assessments between words. 

Reinberger et al. 

In the context of the Flemish OntoBasis project, Reinberger and colleagues 
have investigated the application of unsupervised learning techniques to the 
problem of deriving clusters of related words given a certain corpus. They em­
phasize that words and concepts should not be collapsed together as concepts 
are language-independent abstractions. 
Their work is based on the DOGMA ontology engineering approach 
[Meersman, 2001]. In the dogma approach, knowledge is represented in form 
of intuitively plausible facts, represented as context-specific conceptual bi­
nary relations, so called lexons. These are formalized as a 6-tuple < 7, A : 
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i i , r , r~^, i2 > where 7 uniquely identifies a certain context and A identifies a 
specific language such that a triple (7, A, t) refers to a unique concept c in the 
context referred to by 7 and lexicaUzed by the term t in the language A. A 
lexon < 7, A : ti,r,r~^,t2 > then specifies a relation r with its inverse r~^ to 
hold between ti and ^2-
The unsupervised approach to word clustering by Reinberger et al. is based on 
the fact that syntactic roles impose selectional restrictions on their arguments. 
If we then group together the words sharing the same syntactic positions, 
this will lead to the formation of groups of words fulfilling similar selectional 
restrictions and thus to a semantically homogeneous group. As a way to ex­
tract syntactic dependencies, Reinberger et al. make use of the memory-based 
shallow parser Timbl [Daelemans et al., 1999a], which in particular outputs 
subject-verb-object relations which can be used as a basis to build lexons. 
Reinberger et al. rank these subject-verb-object dependencies according to 
frequency and consider the n top ranked structures for clustering. In some 
cases, the authors additionally extract NP-P-NP constructs from the corpus. 
In [Reinberger et al., 2004], they use these constructs to filter the subject-
verb-object relations by only considering such a relation if the arguments also 
appear in a NP-P-NP construct. In [Reinberger and Daelemans, 2004] and 
[Reinberger and Spyns, 2004], groups of nouns appearing as head of the first 
NP (before the preposition) as well as head of the second NP are compared 
with the clusters obtained by clustering nouns based on the verb-subj and 
verb-object positions and eventually merged. 

The similarity between two clusters of nouns CI and C2 is calculated in a 
quite adhoc manner on the basis of the number of elements common to both 
clusters as well as on the number of elements in CI not contained in C2 and 
the other way round. In [Reinberger and Daelemans, 2003], for example, two 
classes are clustered if they have more than 2 elements in common and not 
more than 5 different elements. The authors apply their methods to different 
corpora, i.e. Medline [Reinberger and Spyns, 2004, Reinberger et al., 2003, 
Reinberger and Daelemans, 2003], SwissProt [Reinberger et al., 2004] or a 
corpus with EU VAT directives [Reinberger et al., 2004]. The clusters are eval­
uated by comparing their precision and recall with respect to pairs related 
in WordNet by synonymy, hypernymy, hyponymy or meronymy (compare 
[Reinberger and Daelemans, 2003, Reinberger et al., 2003]). In other exper­
iments, the clusters are evaluated with respect to the UMLS thesaurus (com­
pare [Reinberger and Daelemans, 2004] and [Reinberger and Spyns, 2004]). 
In [Reinberger et al., 2003], an alternative qualitative evaluation is presented 
in which experts in the biological domain were asked to rate the clusters. In 
addition, the authors examine the following parameters or variations of their 
approach: 

• Parsing vs. bigrams: in [Reinberger and Daelemans, 2003], the authors 
compare the results when using the shallow parser with considering bi­
grams. Their conclusion is that using the shallow parser yields better re-
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suits both in terms of recall and precision (negative recall) of the produced 
clusters. 

• Hard vs. soft clustering: in [Reinberger et al., 2003], they analyze a 
soft clustering as well as a hard clustering version of their method. The 
soft clustering method groups classes of nouns appearing in certain syn­
tactic positions, thus allowing nouns to appear in different clusters. In 
the hard clustering approach, nouns are clustered in a bottom-up fash­
ion on the basis of the verb-subject and verb-object contexts they share. 
The authors conclude that while the hard clustering method produces less 
clusters, thus yielding a smaller recall than the soft clustering method, it 
is twice as precise as its counterpart. By using an additional version of 
the method in which both techniques are combined by only selecting the 
clusters produced with the soft variant which show a certain degree of 
similarity with clusters built by the hard clustering method, the authors 
demonstrate an improvement over both methods. 

• Weighting measures: in [Reinberger and Daelemans, 2004], the authors 
compare different measures to weight the significance of the verb-object 
and verb-subject relations. They use a simple frequency measure as a 
baseline, as well as the conditional probability, PMI and Resnik measures 
described in Sections 4.1.5 and 6.2.2. They do not provide a definite answer 
to the question which measure performs best due to too much variation 
in the results depending on other parameters. This shows indeed that the 
choice of an appropriate weighting measure is a non-trivial problem. In 
general, it is worth emphasizing that the simple measures did not perform 
notably worse than the PMI or Resnik measures. 

As in our work, the weighting measures are thus also in the focus of exam­
ination in Reinberger et al.'s work. Interestingly, they come to similar conclu­
sions, i.e. that the simple measures do not perform notably worse than more 
elaborated ones. 

Lin et al. 

Lin et al. have addressed the derivation of classes of words from natural lan­
guage texts. For this purpose, Lin has conducted an empirical comparison of 
different similarity measures with respect to the task of finding similar nouns 
(see [Lin, 1998a]). Dependency triples extracted with Minipar [Lin, 1993] are 
used as features. The similarity measures analyzed are: Hindle's measure us­
ing verb-object and verb-subject dependencies as well as the cosine. Dice and 
Jaccard measures (compare Section 4.1.5). Furthermore, an extended version 
of Hindle's measure, which takes into account more syntactic dependencies, is 
also considered. Finally, Lin also introduces an additional similarity measure 
based on the mutual information: 

T,{r,w)eT(wt) I{'f"ur,w) + T,(r,w)€T(w2) 1(^2,r,w) 
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where T{w) returns pairs {r,w') whereby r is a dependency relation by 
which w is related to w'. I{wi,r,W2) is then the pointwise mutual informa­
tion between w and w' with respect to the dependency relation r. For each 
noun, a list with the most similar nouns is produced, which is then evaluated 
by comparing it to lists automatically derived form WordNet and Roget's the­
saurus. For details about how these lists are derived the reader is referred to 
[Lin, 1993]. Lin argues, on the one hand, that the extended Hindle measure 
performs better than the original measure, thus allowing to conclude that 
using more syntactic dependencies yields better results. On the other hand, 
a statistical significance test shows that Lin's measure outperforms the ex­
tended Hindle measure, which in turn is better than the cosine measure. In 
general, the differences between the cosine, Jaccard and Dice measures are 
shown to be very small. 

In further experiments described by Lin and Pantel 
[Lin and Pantel, 2001c], the aim is to discover semantic classes instead 
of merely similar words. For this purpose, the authors present a novel 
algorithm consisting of two main components: the CLIMAX and UNICON 
algorithms. The CLIMAX algorithm has as input a similarity matrix and 
calculates cliques for each element, whereby a clique is a set of words such 
that each element is among the top n most similar words of the other words. 
These cliques are thus very homogeneous groups of words which are then 
fed into the UNICON algorithm. The UNICON algorithm first computes the 
centroid of each clique. Then, CLIMAX is again applied to group the cliques 
themselves into cliques of cliques on the basis of the similarity between their 
centroids. The cliques of cliques are then merged, removing the corresponding 
cliques from the original set of cliques and the whole process iterated. The 
algorithm is described more in detail by the pseudocode in Algorithm 11. 

Algorithm 11 UNICON algorithm in pseudocode 
Input: a collocation database D, a similarity matrix M for a list of words E and a 
natural number n 
1: C <r-CLIMAX{M,E,n) 
2: for each cluster c € C, compute its centroid 
3: compute the similarity matrix M' between all centroids 
4: 5 •(- CLIMAX{M', C, n) where 5 is a set of subsets of C. 
5: for each element in S (i.e., a subset of C), merge the different clusters and remove 

them from C 
6: go to step 2 unless S is empty 
7: compute the centroids of all the clusters in C and add them as pseudo-words in 

D 
8: compute the similarity of the original words in E to the pseudo-words and add 

them to the corresponding clusters 
9: Finally, remove words from clusters for which the similarity is lower than 90% 

of the highest similarity with the other clusters it has been assigned to 
Output: The list C of clusters 
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The approach is evaluated by presenting the learned clusters to human 
judges for two different domains: news and medicine. The judges were asked 
to rate the clusters with a score from 1 to 5. The clusters produced have an 
average score of 4.26 on the news corpus and 3.37 on the MEDLINE corpus. 

Furthermore, Pantel and Lin also tackle the problem of discriminating 
between different senses of a word and present a clustering approach based on 
committees. They present an algorithm called clustering by committees (CBC) 
in which, at a first step, the similarity between elements is calculated using 
an optimized procedure by taking advantage of the fact that the features are 
indexed, thus being able to retrieve elements which share a certain feature. At 
a second step, the elements are first clustered using average-linkage clustering. 
Then the clusters are iteratively added to committees if their similarity to the 
committee is below a certain threshold di- Otherwise a new committee is 
created. Those elements in E for which the similarity to every committee is 
below a threshold 62 are added to a residue list R and the clustering algorithm 
iterated using R instead of E. The crucial step of the algorithm is the one 
in which each element e is assigned to its most similar cluster, removing 
the features from e which overlap with the cluster's centroid. In the next 
iteration, e can then be assigned to another cluster corresponding to another 
meaning. The approach is evaluated by calculating the precision and recall of 
the clusters with respect to WordNet as well as via a manual evaluation. Pantel 
and Lin conclude that CBC outperforms UNICON as well as soft versions 
of Bi-Section-KMeans, KMeans, bucket shot as well as clustering based on 
average linkage. 

Pantel and Lin's CBC algorithm thus focuses on capturing different mean­
ings of words, an aspect which we have neglected in the approaches presented 
in this chapter. 

CobWeb 

Cob Web [Fisher, 1987] is a system for incremental concept formation which 
represents concepts probabilistically. It carries out a hill-climbing search in the 
space of possible concept hierarchies guided by the notion of category utility. 
The concept hierarchy is initialized with a single category representing the 
features of the first instance. For each further instance, the algorithm moves 
through the tree to find its appropriate position. At each level the algorithm 
has to take a decision whether to: 

• classify the new object with respect to the current category. 
• create a new class, 

• merge two existing classes, or 
• split a class into several subclasses. 

Crouch et aL 

Crouch et al. [Crouch, 1988, Crouch and Yang, 1992] present a clustering-
based approach to thesaurus construction. They apply hierarchical agglomer-
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ative clustering with complete linkage to build a cluster tree of documents. 
The intersection of the low-frequency word in every subcluster of a given 
cluster is then used to label it. Crouch et al. present results on an infor­
mation retrieval task in which documents are indexed with respect to the 
learned thesaurus and user queries expanded with respect to it. Crouch and 
Yang [Crouch and Yang, 1992] report results on four different datasets and 
conclude that "the results indicate that the algorithm can be used to produce 
useful thesauri, substantially improving retrieval effectiveness". The crucial 
difference to our clustering approach described in Section 6.2 is that Crouch 
et al. cluster documents instead of words. 

Haav 

Haav has also applied Formal Concept Analysis to the task of automatically 
learning concept hierarchies on the basis of textual input [Haav, 2003]. The 
technique is similar in spirit to our FCA-based approach with the main dif­
ference that (i) the method is applied to small text snippets coming from a 
dictionary or advertisements, ii) all the noun phrases appearing in the snip­
pet are used as attributes, i.e. no syntactic dependencies are used, and (iii) 
no evaluation of the method is presented. 

Curran et al. 

Curran and Moens [Curran and Moens, 2002] have investigated different sim­
ilarity and feature weighting measures on the task of discovering synonyms 
given a certain corpus. The results are evaluated with respect to WordNet. 
The authors' results show that the best similarity measures are the binary 
measures Jaccard and Dice, and the best weighting measure the t-test. Fur­
ther, they suggest an approach for comparing the similarities more efficiently 
by considering only the most interesting k features as well as choosing for 
each element at most p elements for which the full similarity is computed. 
This approximation is demonstrated to be useful as results only decrease by 
3.9%, while the time to compute the similarity is reduced by 89%. 

Further, Curran [Curran, 2002] experiments with a method combining dif­
ferent sources of evidence for the task of finding synonyms. Curran in particu­
lar examines different ways of extracting context features relying on word win­
dows as well as three methods based on syntactic dependencies: one method 
based on MINIPAR, one method using the chunker CASS as well as the SEX­
TANT approach introduced by Grefenstette (see above). The similarities ex­
tracted with the different methods are first evaluated on their own, but also 
combined with the following methods: 

• MEAN: calculating the mean of each term's rank with respect to the 
different extraction methods 

• HARMONIC: calculating the harmonic mean with respect to the differ­
ent extraction methods 
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• MIXTURE: calculating the mean score (non-normalized) 

It is important to mention that the latter method is only applicable if 
all the scores are comparable, that means, if all the methods use the same 
similarity and weighting function. The authors conclude in general that their 
combination method outperforms each single extractor, in particular SEX­
TANT, which was identified to be the best single extractor. Though the task 
is certainly a different one, the combination approach of Curran bears some 
resemblance with our approach presented in Section 6.4. However, we have 
also shown that more sophisticated combination methods than calculating 
the mean can indeed deliver better results. 

Terascale Knowledge Acquisition 

Some researchers have addressed the challenge of ontology learning from very 
large text collections in the magnitude of terabytes, therefore the name teras­
cale. Pantel et al. [Pantel et al., 2004], for example, present an approach to 
learn lexico-syntactic patterns from large text collections relying on a mod­
ified edit distance defined between patterns, which is used as a basis to 
unify them. The edit distance is calculated using different levels of analysis, 
such as surface appearance, part-of-speech tags, etc. The approach is com­
pared to the co-occurrence based approach used by Pantel and Ravichandran 
[Pantel and Ravichandran, 2004] in terms of the ability to generate correct 
hyponymy pairs. The authors find that, whereas the co-occurrence based ap­
proach is more precise given a certain critical mass of text, their pattern-
based approach achieves a six-fold increase in recall on smaller datasets with 
respect to the co-occurrence method. On smaller datasets, the co-occurrence 
based approach has a higher recall but a lower precision. Furthermore, the 
pattern-based approach shows a relatively constant precision, while yielding 
a much higher recall on smaller datasets. Overall, the gain in performance is 
impressive: 47 days of processing for the co-occurrence based method vs. 4 
days for the pattern-based approach on a 6GB text collection. 

Recently, Ravichandran et al. [Ravichandran et al., 2005] have attempted 
to speed up traditional clustering techniques to group similar nouns on the 
basis of very large corpora. They notice that every similarity-based method 
needs at least to build a similarity matrix which takes Olrv^k) time, where n is 
the number of nouns and k is the number of features considered. Thus, if one 
wishes to have an algorithm which is linear in the number of nouns, one has 
to avoid calculating the whole similarity matrix using traditional techniques. 
Ravichandran et al. [Ravichandran et al., 2005] propose to use so called Local­
ity Sensitive Hash (LSH) functions, which are randomized and probabilistic, 
thus optimizing the similarity computation by creating short signatures for 
each vector and comparing their fingerprints. The computation of the sim­
ilarity matrix is thus reduced to 0{nk). In particular, Ravichandran et al. 
[Ravichandran et al., 2005] use a local sensitive hash function approximating 
the cosine similarity measure. Whereas they run their approach on a 138GB 
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corpus, they compare their results with the method of Pantel and Lin (see 
above) to induce lists of similar nouns on a 6GB corpus, concluding that their 
method reproduces 70% of the gold standard similarity list. In our approaches, 
we have glossed over aspects related to efficiency to a large extent The reason 
is that we have used corpora of up two 218 million words only, in contrast to 
big corpora downloaded from the Web as used by Ravichandran et al. 

6.5.1.3 Linguistic Approaches 

The approaches discussed in this section can in fact be called linguistic in 
the sense that they directly exploit linguistic analysis to derive taxonomic 
relations. They differ from the clustering approaches described above in that 
linguistic analysis is not merely exploited for feature extraction, but in a more 
direct manner. 

OntoLT 

OntoLT [Buitelaar et al., 2004] is an ontology learning plugin for the 
Protege^^ ontology editor. The approach is based on performing linguistic 
annotation of part-of-speech, chunks as well as grammatical relations using a 
shallow parser. The annotations can be used to define complex patterns which 
are then mapped to ontological structures. Examples of such mapping rules 
are for instance: 

• HeadNounToClass-ModToSubClass, which maps a common noun to 
a concept or class, creating a subclass by adding nominal modifiers at the 
front. 

• SubjToClass_PredToSlotJDObjToRange, which maps a predicate -
typically a verb - into a relation, setting the head of the subject as domain 
and the direct object as range of the relation. 

OntoLearn 

OntoLearn (compare [Velardi et al., 2001], [Missikoff et al., 2002], 
[Navigli and Velardi, 2004] and [Velardi et al., 2005]) is a system ex­
tracting relevant terminology for a certain domain from a domain-specific 
textual corpus. It is unique due to the fact that it attempts to analyze 
multi-word terms compositionally with respect to an existing semantic 
resource. OntoLearn relies on WordNet and derives the meaning of a complex 
term from the meaning of each of the subterms with respect to WordNet. 
Their approach thus requires disambiguation of terms with respect to 
WordNet. For this purpose, they present an algorithm called SSI (Structural 
Semantic Interconnection), performing word sense disambiguation on the 
basis of patterns representing paths in WordNet (the reader is referred to 

'̂  http://protege.stanford.edu/ 
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[Navigli and Velardi, 2004] for details). In addition, a classification-based 
approach is used to label the relation between the synset corresponding 
to the meaning of each of the subterms. OntoLearn also includes a gloss 
generation component in order to generate natural language descriptions for 
the complex concepts constructed. The generation is performed via a number 
of rules combining the WordNet glosses of the different senses identified for 
a complex term. A detailed evaluation of the system, especially of the word 
sense disambiguation procedure as well as of the gloss generation component 
is presented in [Velardi et al., 2005]. The OntoLearn system is embedded in 
a methodology consisting of i) automatic extraction of knowledge, ii) vali­
dation and iii) maintenance and extension within an ontology management 
system (compare [Missikoffet al., 2002]). OntoLearn is probably the only 
system generating intensional descriptions of concepts in natural language, 
in contrast to the rather formal intension consisting of sets of attributes 
produced by our approach (compare Section 6.2). In general, the approaches 
to concept hierarchy induction presented in this chapter would clearly benefit 
from a word sense disambiguation component as implemented in OntoLearn. 

Morin et al. 

Morin et al. [Morin and Jacquemin, 1999] tackle the problem of projecting 
semantic relations between single terms to multiple terms. For example, one 
would like to project the isa-relation between apple and fruit to an jsa-relation 
between apple juice and fruit juice. Such a projection is called transfer by 
Morin. Specialization is then the inverse relation in which, for example, an 
«sa-relation between apple and fruit is transferred to a relation between dried 
apples and dried fruit. In an empirical evaluation, Morin et al. show that trans­
fer is more frequent than specialization and that the former is more precise 
(P=83.3%) compared to the latter (P=58.4%). 

Sanchez and Moreno 

Sanchez and Moreno present an approach to automatically learn a taxon­
omy from the WWW given a certain seed word [Sanchez and Moreno, 2004b, 
Sanchez and Moreno, 2004a, Sanchez and Moreno, 2005]. Their procedure is 
defined as follows: 

1. Issue the seed word as query to Google and download the first n pages 
returned by Google. 

2. Search the original word in the downloaded pages, process their neighbor­
hood linguistically and extract the adjective or noun to the left and right 
of the seed word. The word to the left is potentially a modifier of the seed 
word and can be used to create a specialized concept by concatenating it 
with the seed word. Let us assume that the seed word is cancer and breast 
is found as the word to the left in one document. Breast is then considered 
as a candidate concept which can be concatenated with cancer to form the 
more special concept breast cancer. 
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3. Apply different statistics to verify that a candidate concept can indeed 
be used as modifier to create a more specialized concept (these statistics 
include computing the number of occurrences as well as the number of 
different pages the potential modifier occurs in, a PMI-like measure of the 
degree of relationship between the seed word and the modifier, etc.) 

4. Iterate this procedure for each valid candidate concept. 

The result of the procedure is a tree in which modifiers are monotonically 
added to the seed word level by level of the taxonomy. Additional heuristics 
are used to (i) detect named entities, (ii) distinguish several senses of the 
seed word by clustering as well as (iii) collapse different classes standing in 
a taxonomic relationship if the corresponding modifiers were retrieved from 
URLs which overlap to a considerable extent. Sanchez and Moreno evaluate 
their approach by comparing their automatically produced taxonomies with 
the web directories of Yahoo, Clasty or AlltheWeb. However, it remains very 
vague how precision and recall are calculated exactly. 

Sabou 

Sabou [Sabou, 2005] has recently applied ontology learning techniques to the 
task of inducing concept hierarchies for the purpose of modeling web services. 
Sabou performs extraction of terms as well as of taxonomic relations. Tax­
onomic relations are extracted relying on the 'head'-heuristic also used by 
OntoLearn [Missikoff et al., 2002] and OntoLT [Buitelaar et al., 2004], which 
is shown to be very reliable. Two case studies are presented: the first on a 
corpus describing RDF(S) storage tools, the second on a corpus consisting 
of descriptions of bioinformatics services. The automatically produced hier­
archies are evaluated by comparing them to hand-crafted concept hierarchies 
for each of the domains. The method is unique in that it applies methods not 
to full text, but to Java-documentation of web services. 

6.5.2 Taxonomy Refinement and Extension 

In this section, we present approaches for the refinement and extension of 
concept hierarchies as defined in Section 3.1. Though refinement has not been 
tackled in the present thesis, we nevertheless provide an overview of relevant 
approaches for the sake of completeness. Further, some of the approaches for 
refinement presented in this Section are highly related to our approach to 
ontology population presented in Section 8.2. 

Most approaches regard the process of refinement as the one of classify­
ing unknown words with respect to the existing concept hierarchy. Such a 
refinement is monotonic in the sense that it adds new concepts, but leaves the 
remaining structure unmodified. The different approaches differ in i) the con­
textual features used, ii) the way the most appropriate position for the new 
term is chosen, and iii) the evaluation method used. Mainly, three different 
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means of evaluating the choice can be distinguished. All approaches evalu­
ate the decision in ternas of accuracy, i.e. the number of times the algorithm 
chooses the position of the new term as specified in a gold standard. Other ap­
proaches report results with respect to a lenient accuracy, which either defines 
a choice as correct if it is validated a posteriori by a human judge as in the 
approach of Alfonseca et al. (see below), or in case the chosen subconcept is 
subsumed - up to a certain level - by the correct concept in the gold standard 
as in the approach of Widdows (see below). Further, some researchers also 
evaluate their approaches with respect to the learning accuracy of Hahn et al. 
[Hahn and Schnattinger, 1998a]. This is the case of the approaches of Alfon­
seca et al. as well as Madche et al. (see below). Besides discussing approaches 
for the refinement of concept hierarchies, we also briefly discuss work related 
to the extension of lexical description of concepts. 

6.5.2.1 Refinement 

We start our discussion of approaches for refining taxonomies by discussing 
the seminal work of Hearst and Schiitze, which relies on the word space ap­
proach described by Schiitze [Schiitze, 1993]. We then discuss the more recent 
extension of this model by Widdows [Widdows, 2003b]. Finally, we also dis­
cuss the related approaches of Madche et al. as well as Alfonseca et al. The 
results of the different algorithms are shown in Table 6.24. Though the results 
are not actually comparable, they clearly show that all the approaches achieve 
between 15% and 17.39% in terms of accuracy. These low values show that 
refinement is in fact a difficult task as the choice of the ideal superconcept in 
the gold standard mirrors subjective choices of the human annotators. Some 
distinctions are probably quite idiosyncratic and thus difficult to account for 
with an automatic approach. 

Hearst and Schiitze 

Hearst and Schiitze [Hearst and Schutze, 1993] rely on the word space method 
introduced by Schutze [Schutze, 1993] consisting in collecting co-occurring 
words for the target word within a given window size. Latent semantic analysis 
(LSA) is used to reduce the dimension of the co-occurrence matrix. Hearst 
and Schiitze use letter fourgrams instead of words as units and derive a 5000-
by-5000 matrix from a corpus consisting of five months of the New York 
Times. The collocation matrix of fourgrams is collected such that the entry 
ttij counts the number of times that fourgram i occurs at most 200 fourgrams 
left of fourgram j . The resulting matrix is densely populated with only 2% 
zero values. LSA is then applied to reduce the matrix dimension from 5000 
to 97. Semantic similarity is calculated as the cosine of the two vectors in 
question. 
At a second step, a further collocation matrix is calculated containing the 
co-occurrence count of 50.000 words from the New York Times with the 5000 
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predefined fourgrams of the first matrix. Co-occurrence between a word and 
the fourgrams was calculated using a window of 1001 fourgrams centered 
around the target word. The context vector of a word is then the sum of all 
the fourgram vectors appearing within 1001 fourgrams. The resulting word 
vectors consequently also have 97 dimensions. This representation is called 
word space by Schiitze [Schiitze, 1993]. 
The procedure to assign a new word to a new category is now as follows: 

For each word w in word space: 
1. collect the 20 nearest neighbors in space using the cosine measure, 
2. compute the score Si of category i for w 

as the number of nearest neighbors that are in i, and 
3. assign w to the highest scoring category. 

In order to test the algorithm, 1000 medium frequency words were se­
lected. When assessing the quality of the results obtained when assigning new 
words to WordNet synsets, Hearst and Schiitze state that 63% of the words 
are assigned correctly, 19% are assigned to related synsets, and 19% are mis-
assigned. 

Table 6.24. Comparison of word classification approaches 

Method 

tree-ascending + kNN (SD) 
Alfonseca at al. 
Hearst and Schiitze 
Widdows 

Strict 
Accuracy 

15.74% 
17.39% 

n.a. 
15% 

Lenient 
Accuracy 

28.26% 
63% 

up to 80.8% 

Learning 
Accuracy 
39.46% 

38% 
n.a. 

Widdows 

Widdows [Widdows, 2003b] extends the method described by Hearst and 
Schiitze [Hearst and Schiitze, 1993], modifying steps 3 and 4 of their algo­
rithm. He aims at finding the place in the given taxonomy where nearest 
neighbors are most concentrated. Thus, the chosen position for the new con­
cept is not necessarily one of the nearest neighbors with respect to word 
space, but can, for example, be a hypernym subsuming all or part of the 
neighbors. Widdows in fact relies on the word space model but uses word co­
occurrence instead of fourgram co-occurrence. In the approach of Widdows 
[Widdows, 2003b], word space is constructed selecting 1000 frequent words 
from the British National Corpus and computing co-occurrence on the ba­
sis of a 15 word window, yielding a sparse matrix to which latent semantic 
analysis is applied. The dimension of the matrix is reduced from 1000 to 100. 
Similarity between words is then defined as the cosine between their vectors 
in word space. The algorithm suggested by Widdows is as follows: 
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• For a target word w, find words from the corpus which are similar to those 
oiw. Consider these corpus-derived neighbors N{w). 

• Map the target word w to the place in the taxonomy where the neighbors 
N{w) are 'most concentrated'. 

Here the crucial question here is to define 'the place where the neighbors 
are most concentrated'. For this purpose, Widdows first introduces the set H 
consisting of all the hypernyms of the neighbors N(w), i.e., 

H^ \J H{w') (6.40) 
tu'ejv(tu) 

where H{w) are all the hypernyms for a word w. The task is now to choose 
the most appropriate synset for the new word w out of the set H. For this 
purpose, Widdows defines a so called affinity function which quantifies the 
trade-off between choosing a too general and a too specific synset: 

where dist{w, h) is a measure of the distance between w and h, f is some 
positive monotonically decreasing function and g is some positive function. 
Intuitively speaking, /(disi(i(;,/i)) is the higher, the closer w and h are with 
respect to the hierarchy, while —g{w, h) subtracts penalty points if h does not 
subsume w. 

Overall, the assignment of the target word to the most appropriate synset 
can be formulated as a maximization problem as given by the equation: 

"•max ^^ fflClXh^H 

Y, <^{w',h) (6.42) 
w'€N(w) 

Widdows in particular uses the following functions / and g: 
1 

/ dist{'w^hY 

g = 0.25 

where dist{w, h) is the number of levels in the taxonomy between h and 
w. The best result of this approach, considering an answer only as correct 
if it exactly reproduces the classification of WordNet, yielded an accuracy of 
15%. This result is achieved with a version considering 3 neighbors and includ­
ing part-of-speech information to distinguish between the different syntactic 
categories of a word. Using a more lenient version of the learning accuracy 
considering a prediction as valid if it is subsumed by the correct concept up to 
a certain number of levels, the approach achieves an accuracy of up to 80.8% 
at a maximal distance of 10 levels. 
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Madche, Pekar and Staab 

Madche, Pekar and Staab [Madche et al., 2002] present a comparison of dif­
ferent approaches for classifying a new word under the correct concept of a 
given concept hierarchy, given distributional data obtained from the corpus. 
They present the following techniques for the classification task: 

• tree-descending, 
• tree-ascending, 
• k-nearest neighbors (kNN), and 
• combination of tree-ascending with kNN. 

The tree descending algorithm consists in starting from the top category 
of the concept hierarchy and moving down to the leaves, always choosing 
that child concept which maximizes the distributional similarity with the 
unknown word. Here, an important question is how the context vectors of 
the inner nodes of the tree are calculated. Madche et al. suggest aggregating 
the vectors of the child nodes until a fixed depth and then either normalizing 
the vector {category-based method) or calculating the centroid by dividing by 
the number of aggregated vectors (centroid-based method). 

The tree ascending method bears some similarity with the method of 
Widdows [Widdows, 2003b] as described above. In fact, the tree ascending 
method also aims at finding the most appropriate superconcept which sub­
sumes all or at least part of the nearest neighbors. The voting of each inner 
node is calculated using the taxonomic similarity as defined by Madche et al. 
[Madche et al., 2002], relying on the notion of the least common superconcept 
of two concepts a and b: 

lcs{a, b) := c such that S{a, c) + S{b, c) -|- S{top, c) is minimal, (6.43) 

where S{a, b) is the distance between a and b in terms of the number of 
edges which need to be traversed. 

Now the taxonomic similarity a between two concepts is defined as: 

6{top, c) + 1 
a{a,b) := 

S{top, c) + d{a, c) + S{b, c) + 1 

where c = lcs{a,b). 

The voting weight for a certain node is then calculated as: 

W{n):= ^ sim{t,h)-a{n,h) (6.44) 
heH(n) 

where t is the target word to be classified and H is the set of hyponyms 
of node n, namely its children. 
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The k-nearest neighbor method consists in calculating the distributional 
similarity of the new word with all the concepts in the hierarchy. The k most 
similar concepts are considered further, letting them vote for the new word 
proportionally to the corresponding similarity. The majority vote then decides 
about which concept the new word is classified to. The obvious drawback of 
such a method is that concepts higher in the hierarchy are chosen rarely. 

Madche et al. experiment with the corpus used in the GETESS project 
[Staab et al., 1999]. As context they use the three stemmed words to the left 
and right of the target word, excluding stopwords and without trespassing 
sentence boundaries. The construction of a hypernym vector is performed by 
aggregating the hyponyms up to three levels. 

Overall, Madche et al. achieve the best results using a combination of the 
tree-descending algorithm to pick out a certain concept and kNN to choose 
one of its subconcepts. They also explore three different similarity measures, 
the Jaccard Coefficient, the LI norm and the Skew divergence, achieving the 
best result of an accuracy of 15.74% as well as a Learning Accuracy as defined 
in [Hahn and Schnattinger, 1998a] of 39.46% using the Skew divergence. 

Alfonseca et aL 

Alfonseca et al. [Alfonseca and Manandhar, 2002] also present an approach 
based on the distributional similarity of words. They consider for each word 
iv the following topic signatures: 

• the topic signature is the list of words that co-occur with the target word 
w in the same sentence, 

• the subject signature is the list of verbs for which w appears as subject, 
• the object signature is the list of verbs and prepositions, for which w ap­

pears as argument, as well as 
• the modifier signature is the list of adjectives and determiners that modify 

tt; in a noun phrase. 

Overall, the procedure to classify a new word w' with respect to WordNet 
is as follows: 

1. Take all the synsets which could be a potential superconcept for w'. 
2. For each synset, aggregate the frequencies of the vectors of all hyponyms 

and smooth the frequencies by adding 1 to every value. 
3. For each synset, use the other synsets as contrast to measure the weight 

of each word in the vector using x^ • 
4. Calculate the similarity between the target word and each synset as the 

dot product of the corresponding vectors. 
5. Assign the new word to the concept maximizing the similarity as calcu­

lated in 4. 

Given a target word w, a similarity is calculated for each concept in the 
ontology with respect to each signature as the dot product, i.e. the cosine 
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measure without normalization by vector length. The result of the similarity 
with respect to the different signatures is then combined in a linear way as 
given by the following formula: 

m 

P{si) = J2wjPsig,isi), (6.45) 
j=o 

where (sj) is a WordNet synset. The authors experiment, on the one hand, 
with a uniform combination using a factor of Wj = ^ , where m is the num­
ber of signatures considered (4 in this case). On the other hand, they also 
determine the factors experimentally using a simulated annealing procedure 
to calculate the weights such that the distance between the final combined 
distribution P and each of the distributions Psig^ is uniform with respect to 
the relative entropy or Kullback-Leibler distance. The weights are initialized 
to Wj = ^ and modified until the relative entropies D{Psigj\\P) converge. The 
authors successfully show that the learned combination of signatures yields 
better results compared to the uniform combination. 
The authors use a variety of measures to report the results, among 
them the strict accuracy, lenient accuracy and the learning accuracy of 
[Hahn and Schnattinger, 1998a]. In terms of direct accuracy, the best result of 
17.39% is achieved using only the object signatures. The best lenient accuracy 
of 28.26% is obtained twice using only object signatures as well as combining 
the topic, subject and object signatures using the entropy-driven simulated 
annealing procedure. The conclusion in this line should thus be that combin­
ing the different methods does not pay off. The authors do also conclude that 
the modifier signature performed very bad in general. 

6.5.2.2 Lexical Extension 

For many applications in natural language processing and information re­
trieval, it is crucial to establish a link between a conceptual model as speci­
fied in an ontology and the way the entities defined in the model appear in a 
corpus. Such approaches aim at establishing a link between a given ontology 
and the symbols used in a corpus to refer to the domain-specific concepts con­
tained therein (compare [Buitelaar et al., 2006]). We discuss in particular the 
work of Agirre et al. on deriving topic signatures, which can be used for many 
applications within NLP (compare [Lin and Hovy, 2000]). We also discuss the 
work of Faatz et al. on enriching a given ontology with lexical descriptors for 
concepts as well as the related work of Turner on finding synonyms. 

Agirre et al. 

Agirre et al. [Agirre et al., 2000] present an approach to automatically derive 
so called topic signatures for the concepts of an ontology. Topic signatures 
can be seen as a collection of words contextually related to a given target 
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word. Agirre et al. [Agirre et al., 2000] define a procedure to download topic 
signatures for WordNet synsets from the World Wide Web using automatically 
created search engine queries. When creating these queries, attention is paid 
to ensure that words of other synsets corresponding to other senses of the 
word in question are excluded. This is done by using the Altavista NOT 
operator in the queries. The downloaded documents then form the basis for the 
generation of topic signatures for each synset, whereby each word is weighted 
using the ^ measure with respect to the document collection for the other 
synsets as a contrastive corpus. The topic signatures derived in this way are 
then successfully used in a word sense disambiguation experiment. It is well 
known though that WordNet suffers from a proliferation of word senses in 
some cases. Thus, in a second experiment, the authors attempt to derive 
more coarse-grained senses for a certain word by hierarchically clustering the 
document collections for each sense of a given word. The idea is then that the 
more abstract clusters represent more coarse-grained sense for the word. In a 
further experiment, the authors perform word sense disambiguation directly 
using the generated cluster tree and achieve better results at all levels: fine, 
medium and coarse sense distinction. 

Faatz and Steinmetz 

Faatz and Steinmetz [Faatz and Steinmetz, 2003] present an approach for en­
richment of ontologies with additional lexical descriptors for its concepts. In­
teresting is the fact that the lexical enrichment of an ontology is seen as 
an optimization problem with the aim of minimizing the difference between 
the corpus-based dissimilarity between two concepts and their corresponding 
distance in the taxonomy. The dissimilarity between two vectors represent­
ing the context of a concept in the corpus is calculated component-wise by 
a function /fc, for which an optimal configuration is searched which mini­
mizes the average squared error with respect to distance in the taxonomy. 
In [Faatz and Steinmetz, 2003] the results of the method are only discussed 
qualitatively, while in [Faatz and Steinmetz, 2005] a more formal evaluation 
framework is presented. 

Turney 

Turney [Turney, 2001] addresses the task of finding synonyms for given words. 
For this purpose, he relies on the pointwise mutual information (PMI) measure 
to discover strongly related words. 

Given a word wx, the score of word 'W2 as synonym is measured as follows: 

scoreiu,,) = log, p g j ^ (6-46) 

As P{wi) is the same for all the different synonyms to be checked, this 
reduces to: 
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P{wi,W2) , _ . „ -
score{w2) = log2 —p-,—r- (6.47) 

Turney computes the PMI between two words wi and •W2 relying on the 
number of pages returned by a search engine such as Altavista for certain 
queries. In order to calculate the PMI, Turner presents different measures 
relying on the NEAR and AND Altavista operators: 

hitsjwi AND W2) . . .„. 

score{w2) 
hitsjwi NEAR W2) 

hits(w2) 

The NEAR operator returns all documents in which wi occurs within a 
distance of up to 10 words to 1112 • Further measures with the aim of ruling out 
antonyms and taking into account context are also presented. The approach 
is evaluated on the TOEFL synonym finding task achieving an accuracy of 
73.75%. He also shows that his method performs better than latent semantic 
analysis using an encyclopedia and calculating similarity between words as 
the cosine between their corresponding context vectors, yielding an accuracy 
of 64.4%. 

6.6 Conclusion and Open Issues 

The present chapter has contributed to the state-of-the-art in concept hierar­
chy induction in several ways. In Section 6.2, we have systematically compared 
different hierarchical clustering approaches with respect to effectiveness, speed 
and traceability by the ontology engineer. The main conclusions here were that 
set-theoretic approaches as FCA can in fact compete and even outperform 
similarity-based approaches in terms of quality of the produced hierarchies, 
speed and traceability. The better quality is mainly due to a higher recall of 
the FCA-based approach. Though FCA is theoretically exponential in the size 
of the formal context, we have shown that in our settings, where the contexts 
are typically sparsely populated, FCA performs quite efficiently compared to 
an agglomerative clustering algorithm. On the other hand, we have also pro­
vided an evaluation method based on Madche's taxonomic overlap, in which 
automatically learned concept hierarchies are evaluated by comparing them 
to a reference concept hierarchy. We have in particular presented measures 
evaluating the global quality of the hierarchy as well as the local quality or 
coherence of the clusters. 

In Section 6.3, we have presented a novel and efficient bottom-up cluster­
ing algorithm exploiting an external hypernym oracle to guide the clustering 
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process. The algorithm is theoretically and practically more efficient than ag-
glomerative clustering as it does not need to update the similarity matrix for 
newly formed clusters, relying only on the similarity of single elements. We 
have shown that, in terms of cluster coherence, our algorithm produces more 
reliable clusters compared to other methods such as the one of Caraballo. As 
a byproduct, the algorithm also automatically labels clusters with the appro­
priate hypernym. A human evaluation of the produced hierarchies has shown 
that the learned iso-relations correspond to human intuitions. 

Finally, we have also addressed the important question of combining dif­
ferent paradigms and approaches to learning taxonomic relations from text 
and presented a novel and unique approach using machine learning techniques 
to derive a model combining the different approaches in an optimal way. We 
have examined different classifiers as well as methods for addressing prob­
lems related to the unbalanced character of our datasets. Our experiments 
have demonstrated that the learned model indeed outperforms all single ap­
proaches considered as well as naive combinations of them. 

Fortunately, there remain a lot of open issues. 
On the one hand, the issue which similarity or weighting measure to choose 

still remains an open problem. To some extent, this question can only be 
answered with respect to a given dataset. For sure, the question can be an­
swered only empirically by comparing different similarity measures and feature 
weighting measures over many different domains. It does also remain an open 
question which features to consider to represent a certain word or term. Our 
results have shown that the more features one considers, the better is the 
quality of the learned concept hierarchies. An interesting question is whether 
features can be aggregated somehow to represent a term at a more abstract 
level. One possibility, for example, would be to map a verb to WordNet top 
levels or to verb classes as described in Levin [Levin, 1993]. Another possibility 
is to also cluster the features themselves, possibly by using co-clustering tech­
niques [Dhillon, 2001]. Dimension reduction techniques could also be applied, 
thus clustering on reduced vectors (compare [Landauer and Dumais, 1997]). 
Again, only the evidence from empirical investigations will shed light on these 
questions. 

On the other hand, there remains the problem of modeling polysemy 
of terms. We have argued that our FCA-based approach supports multi­
ple inheritance and can thus, in principle, represent various meanings of 
a term. However, this should be definitely verified, also using other soft 
clustering techniques such as PoBOC (Pole-Based Overlapping Clustering) 
[Cleuziou et al., 2004] or Clustering-By-Committee [Pantel and Lin, 2002a]. 
The question of how to evaluate if a certain method has captured all the rel­
evant senses for a term in a certain domain is certainly a difficult and open 
question. 

Another important issue seems the automatic induction of lexico-syntactic 
patterns. Though there have already been initial blueprints in the works 
of Agichtein and Gravano [Agichtein and Gravano, 2000], Ravichandran and 
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Hovy [Ravichandran and Hovy, 2002], Snow et al. [Snow et al., 2004] Downey 
et al. [Downey et al., 2004], and recently also Pennacchiotti and Pantel 
[Pennacchiotti and Pantel, 2006], the problem of fully automatic and unsu­
pervised induction of lexico-syntactic patterns conveying a certain relation of 
interest seems still unsolved. 

Finally, though we have provided a first step towards combining different 
approaches in a non-adhoc way, there remains a lot of work for the future. 
On the one hand, other models allowing for combination should be examined. 
On the other hand, a crucial question is how to compute the confidences for 
different approaches. Another important question is whether a model learned 
for a certain domain can be successfully applied to other domains too. Finally, 
we have also argued for the inclusion of a word sense disambiguation compo­
nent when integrating evidence from a lexical resource or thesaurus such as 
WordNet. 



Learning Attributes and Relations 

Besides being described by their position in a taxonomy, concepts are also 
characterized by attributes as well as by relations to other concepts. In the 
context of this book, we will restrict ourselves to binary relations establishing a 
connection between different concepts at the schema level. In order to provide 
useful inferences, these relations need to be further axiomatically defined and 
combined with other relations or concepts in the form of rules. The learning 
of corresponding axioms or rules is, however, out of the scope of this book. 
We will focus on learning relations at the schema level. In what follows, we 
first present the most common approaches to learning relations from text in 
order to situate our work in the context of the state-of-the-art in the field. 

7.1 Common Approaches 

In this section, we first give an overview of the main techniques applied for 
extracting ontological relations from corpora. We first introduce techniques 
based on collocation analysis, which can be understood as producing 'anony­
mous' relations without a label. Second, we will briefly introduce approaches 
relying on syntactic dependencies, especially dependencies between verbs and 
their arguments. Finally, we also discuss approaches based on matching lexico-
syntactic patterns in the tradition of Heart's seminal work [Hearst, 1992]. 

7.1.1 Collocations 

A great amount of work on the topic of extracting relations from text is based 
on the notion of a collocation. Let us recall that a collocation is a pair of words 
which occur together more often than expected by chance within a certain 
boundary, that is, within a certain window of words, a sentence, a paragraph 
or even a document. In order to detect such collocations, researchers have used 
statistical tests such as the Student's t-test or the x^-test (see Section 4.1.5). 
A collocation thus typically reveals a strong but unknown relation between 
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words. Examples for such techniques can be found, for instance, in the work of 
Madche and Staab [Madche and Staab, 2000], Yamaguchi [Yamaguchi, 2001] 
or Heyer et al. [Heyer et al., 2001]. These approaches are discussed in more 
detail in Section 7.5. 

7.1.2 Syntactic Dependencies 

Other research has exploited syntactic dependencies, in particular the de­
pendencies between a verb and its arguments. For example, from a sen­
tence like 'A person works for some employer' we could derive the ex­
istence of a relation work-for between the concept person and the con­
cept employer. This simple idea has been explored by several researchers 
(e.g. [Gamallo et al., 2002, Buitelaar et al., 2004, Kavalec and Svatek, 2005, 
Ciaramita et al., 2005, Schutz and Buitelaar, 2005]). An important issue 
herein is to find the right level of generalization for the verb's arguments 
with respect to a given concept hierarchy. This issue has also received consid­
erable attention in the computational linguistics community in the context of 
the acquisition of so called selectional restrictions [Ribas, 1995, Resnik, 1997, 
Clark and Weir, 2002]. Another important issue is to detect verbs denoting 
the same ontological relation. One possibility here is for example to cluster 
verbs semantically taking into account their arguments. Such an approach is 
pursued by Schulte im Walde [Schulte im Walde, 2000], for example. Finally, 
a further interesting issue is how to order relations hierarchically. Not much 
effort has been devoted to this issue though. 

7.1.3 Lexico-syntactic pa t t e rns 

Lexico-syntactic patterns as originally defined by Hearst [Hearst, 1992] can be 
applied in the context of relation discovery to the task of learning the domain-
specific extension of very specific relations such as part-of, cause, purpose, etc. 
Charniak and Berland have applied, for example, the following patterns to 
discover part-of relations: 

Charniak 1: NN^hoie's{POS} NNpart 
Charniak 2: NNpart of{PREP} ((the\a){DET} {JJ\NN})* NN^hoie 
Charniak 3: NNpart in{PREP} ((the\a){DET} {JJ\NN})*NN^hoie 
Charniak 4: NNpart of{PREP] NN^hoU 
Charniak 5: NNpart in{PREP} NN^hoie 

The above expressions should be interpreted as regular expressions in the 
following way: words are supposed to be matched explicitly in the text in 
the indicated order. A part-of-speech tag in curly brackets ' { ' and ' } ' poses 
the additional constraint that the word preceding it should belong to the 
corresponding syntactic category. Further, as in standard regular expression 
notation, elements are grouped using standard brackets '(' and ') ' , whereas '| ' 
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stands for a disjunction. Further, as usual, + stands for 1 or more occurrences 
and * for none or more. The part-of-speech tags will be hereby expressed 
relying on the frequently used Penn Treebank tagset. The tagset can be found 
in Appendix A.4. 

Other patterns have been applied to derive causation (see 
[Girju and Moldovan, 2002]) or telic (purpose) relations (compare 
[Yamada and Baldwin, 2004]). Research on extraction of lexical knowl­
edge bases from MRDs has also attempted to derive purpose and part-of 
relations using a specific set of patterns. Consult, for example, the structures 
extracted by Alshawi's approach [Alshawi, 1987] in Section 6.1.1. 

7.1.4 Road Map 

We have reviewed the main techniques for deriving relations from text. In the 
remainder of this chapter, we will present three approaches to learning rela­
tions. The first and second approaches are based on learning relations relying 
on syntactic dependencies. The first approach aims at learning attributes re­
lying on the syntactic relation between a noun and its modifying adjectives. 
The second approach follows the tradition of learning relations on the basis 
of verbs and their arguments, focusing specifically on the issue of finding the 
right level of generalization for the arguments given a concept hierarchy. The 
third approach is based on matching lexico-syntactic patterns and aims at 
learning qualia structures for nouns. The remainder of this chapter addresses 
the following issues: 

Learning Attributes 

Section 7.2 presents an approach to derive attributes from a text corpus. In 
particular, we derive attributes with a finite set of values as range consisting of 
adjectives found in the corpus. WordNet is used in order to find an appropriate 
intensional description of the attribute which the different adjectives refer to. 
We present a human evaluation of the automatically learned attributes and 
arrange the concepts in a lattice according to their attributes using FCA. 

Learning the Appropriate Generalization Level for Relations 

In Section 7.3, we present an approach to discover ontological relations from 
text on the basis of verb structures found in the corpus. In particular, the 
focus is on analyzing different statistical measures for the purpose of selecting 
the proper domain and ranges for the relation in question. We restrict our­
selves here to binary relations and make the naive assumption that the domain 
and range of a relation can be generalized independently of each other. Ex­
periments are conducted on the Genia corpus and using the Genia ontology^ 
[Ohta et al., 2002]. The results are evaluated with respect to a gold standard 

http://www-tsuj i i . is .s .u-tokyo.ac. jp/ 'genia/topics/corpus/ 
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provided by a biologist. This section is based on joint work with Matthias 
Hartung and Esther Ratsch, which has been partially previously published in 
[Cimiano et al., 2006]. 

Learning Qualia Structures 

Section 7.4 deals with the acquisition of a well-defined set of relations, i.e. so 
called qualia roles, which typically apply to objects in general. In particular, 
we present an approach to learning qualia structures from the Web. Some of 
these qualia roles correspond to ontological relations which are well under­
stood in artificial intelligence and philosophy, i.e. taxonomic and mereological 
relations. This section is due to joint work with Johanna Wenderoth published 
in [Cimiano and Wenderoth, 2005]. 

7.2 Learning Attributes 

Attributes are defined as relations with a datatype as range. Typical attributes 
are, for example, name or color with a string as range, date with a date as 
range or size with an integer or real as range. In this section, we will deal 
with the issue of acquiring attributes automatically from text. Attributes are 
typically expressed in texts using the preposition of, the verb have or genitive 
constructs, e.g. 

• the color of the car 
• every car has a color 
• the car 's color 
• Peter bought a new car. Its color [...] 

However, we are not only interested in learning the domain (e.g. car) and 
name for an attribute (e.g. color), but also its range. In fact, values of at­
tributes are expressed in texts in quite different ways, for instance using copula 
constructs, adjectives or expressions specific to the attribute in question: 

• the car is red / his name is Peter (copula + value) 
• Peter is 176 cm tall (copula + value -I- adjective) 
• the car is 3 meters long (copula + value + adjective) 
• the red car (adjective) 
• the car is painted red / he is called Peter / the baby weighs 3kg (specific 

expressions) 

In order to systematize the above, in what follows we suggest a classifica­
tion of attributes according to their range. This classification is given in Table 
7.1. We give examples and describe how the attribute and its domain as well 
as the range of the attribute are typically expressed in texts. 

To some extent, the classes are self-explanatory. For the sake of complete­
ness, we will nevertheless give some brief explanations for each class. The 
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Table 7.1. Classification of attributes 

Type 
discrete + finite 
(e.g. gender, legal status) 

discrete + enumerable 
(e.g. name, ssn) 

numeric 
(continuous/discrete) 
(e.g. height, weight, 
size, temperature) 

fuzzy usage 
(e.g. color) 
inherently fuzzy 
(e.g. niceness, 
conventionality) 

Domain + Attribute 
of/have/genetive 

of/have/genetive 

of/have/genetive 

of/have/genetive 

Range 
copula + adj. /adj. mod. 
the man is single 
the single man 
copula / specific 
his ssn is 
he is called Peter 
copula + value / 
copula + value + adj. 
specific 
its height is 5 m 
the car is 3 m long 
the baby weights 3 kg 
copula 4- adj. / adj. mod 
the car is red / the blue sky 
copula + adj /adj. mod 
a nice m,an 
a conventional wedding 

class discrete + finite describes attributes which have a discrete and finite set 
as range. This is the case of gender with the set {male, female} as well as 
legal status with the set {single, married, divorced, widowed} as range. The 
class discrete + enumerable describes attributes which have a discrete, possi­
bly infinite, but enumerable set as range, such as name or ssn. An exception 
is the set of integers, which we assign to the numeric class consisting of at­
tributes with a numeric scale as range, either continuous or discrete. The most 
common sets here are the set of integers or the set of the real values. With 
fuzzified usage we denote continuous variables which are 'fuzzified' in natural 
language such as height, weight, size or temperature for which we typically use 
adjectives such as tall, heavy, big or hot to express their values, respectively, 
as well as attributes which are measured via a numeric and continuous scale, 
but are used exclusively in a fuzzy way by humans. For example, though we 
know that color is not an intrinsic property of objects, but a function of the 
human visual system and can be measured by the amplitude of the light's 
wave, nobody would say something like: 'the color of the car is 580nm\ The 
category inherently fuzzy contains attributes which can not be measured by a 
scale, but are inherently fuzzy. Examples for such attributes are, for instance, 
niceness, conventionality, etc. 

When extracting attributes from text corpora, we are faced with different 
problems which we briefly discuss in the following. 

As discussed by Poesio and Almuhareb [Poesio and Almuhareb, 2005], 
constructs involving the preposition 'of, the verb 'to have' as well as gen­
itive constructs are highly ambiguous, indicating a wide range of semantic 
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relations. In fact, the preposition 'of can relate an attribute to its concepts, 
a part to its whole, an agent to its activity, an activity to its patient or ben­
eficiary, such as in the following examples: 

• the color of the car (attribute) 
• the hood of the car (part-whole) 
• the repairing of the car (activity-patient) 
• the driver of the car (agent-patient) 

On the other hand, some artificial attributes such as niceness are not likely 
to appear in expressions like the above. Certainly, it is a debatable question 
whether we want to consider qualities such as niceness or conventionality as 
attributes (compare the discussion in [Almuhareb and Poesio, 2004]). Our po­
sition here is that niceness and conventionality are perfectly reasonable 'fuzzy' 
attributes with a discrete and finite set as range, which we also aim at acquir­
ing. 

So far, we conclude that expressions like the above are, on the one hand, 
ambiguous with respect to the relation they express. On the other hand, there 
are a lot of 'fuzzy' attributes which are not likely to be mentioned in similar 
constructions, such as niceness or conventionality. Thus, instead of learning 
attributes in an intensional way, in this section we present an approach aiming 
at learning attributes given information about their values in the form of 
adjectives. 

In language, adjectives typically convey qualities of the nouns they modify. 
In particular, they denote the fuzzy values of a certain quality. However, as 
argued by Raskin and Nirenburg [Raskin and Nirenburg, 1996], not all adjec­
tives denote an attribute, a quality or a property of a noun. There are, for 
example, the following exceptions: 

• attitude adjectives, expressing the opinion of the speaker such as in 
'good house', 

• temporal adjectives, such as the 'former president' or the 'occasional 
visitor', 

• membership adjectives, such as the 'alleged criminal', a 'fake cowboy', 
and 

• event-related adjectives, such as 'abusive speech', in which either the 
agent of the speech is abusive or the event itself. 

In our approach, we will find the corresponding intensional description 
for the adjective by looking up its corresponding attribute in WordNet and 
only consider those adjectives which do have such an attribute relation (com­
pare Section 4.1.8), thus decreasing the probability that we are considering 
an adjective which does not denote the value of some attribute, quality or 
property. 

It is important to mention that with our approach, we only yield attributes 
with a finite discrete set of fuzzy values as range as this is the way values of 
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attributes are expressed in natural language through adjectives. We will thus 
in principle not be able to distinguish between the classes discrete+finite, 
fuzzy usage and inherently fuzzy. We draw here the analogy to fuzzy logic, 
where we have so called linguistic variables such as temperature together with 
fuzzy values such as hot, cold, etc. representing a characteristic function of 
a fuzzy set in the sense that membership is measured with a certain degree 
(compare [Zadeh, 1975]). In fact, in natural language the values of an attribute 
or variable such as temperature are expressed in a fuzzy way. The reasons for 
this are obvious; on the one hand, people do often not know the exact value 
of a certain variable such as the temperature and therefore can not express 
it. On the other hand, using a fuzzy value is often totally sufficient for the 
purpose of communicating some message as well as reasoning on the basis of 
known information. 

7.2.1 Approach 

In our approach to learning attributes, we first tokenize and part-of-speech tag 
the corpus using TreeTagger [Schmid, 1994]. Then we apply suitable regular 
expressions to match the following two patterns and extract adjective/noun 
pairs. 

• (\w+{DET})? (\w+{NN})+ is{VBZ} \w+{JJ} 
• (\w+{DET})? \w+{JJ} (\w+{NN})+ 

For the same reasons as described in Section 6.2, these pairs are weighted 
using the conditional probability, i.e. 

Condin,a) := ^ ^ ^ (7.1) 
fin) 

where / (n , a) is the joint frequency of adjective a and noun n and f(n) is 
the frequency of noun n. For the noun car we get, for example, 436 different 
adjectives as modifiers. Using a threshold of 0.01 on the above conditional 
probability, we get the adjectives shown in Table 7.2 from our tourism corpus. 

At a second step, for each of the adjectives we look up the corresponding 
attribute in WordNet, further considering only adjectives which actually have 
an attribute. For car, with our method we get the following attributes and 
ranges (t=0.01): 

car: 
age is one of {new, old} 
value is one of {black} 
numerousness/numerosity/multiplicity is one of {many} 
otherness/distinctness/separateness is one of {other} 
speed/swiftness/fastness is one of {fast} 
size is one of {small, little, big} 
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Table 7.2. Adjectives extracted from the tourism corpus for car with a conditional 
probability above 0.01 

Adjective 
new 
own 
other 
old 
private 
steal 
first 
fast 
small 
big 
little 
many 
unmarked 
second 
red 
black 
diesel 

Cond 
0.11 
0.05 
0.04 
0.03 
0.03 
0.03 
0.03 
0.02 
0.02 
0.02 
0.02 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

In the above example, adjectives such as 'own\ 'private', 'steal', 'first', 
'unmarked', 'second', 'red' and 'diesel' have not been considered as WordNet 
1.7.1 does not specify a corresponding attribute. 

7.2.2 Results 

Our approach to automatically derive attributes from a text corpus has been 
applied to the Tourism corpus and evaluated along the following lines: 

• human evaluation of the produced domain-attribute-value structures, 
• evaluation of taxonomies created on the basis of the attributes in terms 

of TO and LTO compared vî ith the tourism reference ontology in Section 
6.2 when using attributes or adjectives as features, and 

• a qualitative discussion of a lattice automatically derived on the basis of 
the attributes. 

We discuss the results of these evaluations more in detail in the following 
subsections. 

7.2.2.1 Human Evaluation 

In order to evaluate the learned attributes, we presented the different at­
tributes grouped with respect to their domain concepts to a human assessor. 
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We asked this assessor to evaluate for every domain concept (i) its attributes 
and (ii) their corresponding ranges by assigning them a rate from '0' to '3 ' . 
Hereby, '3 ' means that the attribute or its range is totally reasonable and 
correct, while '0' means that the attribute or the range does not make any 
sense. The results of this evaluation are given in Table 7.3 showing for each 
concept in the Otouriam ontology the number of attributes derived as well as 
the average rating of the attribute and its range. We see that on average al­
most 6 attributes have been derived for each concept in the tourism ontology. 
The learned attributes were rated with almost 2 credits on average and their 
ranges with about 2.5 credits on average. The attributes derived thus seem 
indeed reasonable and the corresponding ranges even more. 

Table 7.3. Average credits per attribute 

address 
aerobic 
afternoon 
animation 
autumn 
banquet 
bill 
boolcing 
b u s 
camping 
c a r 
caravan 
castle 
category 
cheque 
contract 
d a y 
drier 
equipment 
ferry 
football 
g y m 
holiday 
i n n 
iron 
journey 
kayak 
kitchenette 
lavr 
lounge 
massage 
menu 
organization 
panorama 
park 
party 
period 
plant 
port 
presentation 
promenade 
region 
rental 
ruin 
sauna 
sight 
spring 
station 
steamer 
swimming 
tennis 
terrace 
t ime 
tree 
vehicle 
view 
wedding 
average 

No. a t t r 
10 

3 
6 
6 
1 
6 
6 
6 
7 
6 
6 

12 
7 
6 
6 

10 
7 
4 
7 

10 
3 
7 
7 
4 

12 
6 
6 
4 
6 
7 

10 
6 
5 
6 
4 
3 
3 
6 
6 
4 

10 
6 
4 
7 

12 
7 
3 
5 
3 
5 

16 
6 
5 
6 
6 
6 
9 

6.82 

Avg. a t t r . credits 
1.1 

2 
1.83 

1.8 
3 

2 . 4 
1.6 
2 . 4 

2.71 
3 
2 

1.92 
2 
2 

2 . 4 
1.7 

1.29 
1.6 

2.29 
2 . 4 

3 
3 

1.71 
3 

1.26 
2.17 

0 .6 
2 . 6 
2 . 6 

2.67 
1.9 

3 
1.8 

2 
2.26 

1 
2 

2 . 2 
2 
3 

2 . 1 
1 
3 

2.29 
1.76 
1.71 
2.33 

1.2 
2 

1.8 
1.67 

2 
0 .6 
2 . 6 

2 
3 

1.67 
1.91 

Avg. value credits 
2 . 7 

3 
2.83 

3 
3 
3 

2 . 5 
3 
3 
3 

2.17 
2 . 6 

2.67 
2 .6 

3 
2 . 4 

1.86 
2.26 
2.14 

3 
3 
3 

2.57 
3 
2 

2.83 
1.17 

3 
3 

2.67 
2 . 7 

3 
2 . 4 

3 
2.26 

2 
2.67 

2 . 4 
2 . 6 

3 
3 

2.17 
3 

2.67 
2.83 
2.67 

3 
2 . 4 

3 
3 

2.47 
2.67 

2 . 4 
2 . 6 
2 . 5 

3 
2.33 
2.62 
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7.2.2.2 Taxonomy Induction 

We create concept hierarchies with our FCA-based method as presented in 
Section 6.2, using the attributes derived with the method described in this 
section, and compare the generated hierarchies with our tourism reference 
hierarchy in terms of taxonomic overlap and local taxonomic overlap. In par­
ticular, we compare using the adjectives themselves as formal attributes with 
respect to using the attributes derived from WordNet. The results are shown 
in Tables 7.4 and 7.5 for different thresholds. The reason why results are 
reported for a threshold from 0.03 on when using attributes is that our com­
paction procedure ended prematurely due to an out-of-memory exception for 
lower thresholds (compare Section 6.2 for details on the lattice compaction 
procedure). From a certain threshold on, no formal attributes remain and 
thus no lattices are constructed, which by definition have a precision of 100% 
and a recall of 0%. When using adjectives as formal attributes, this situation 
is reached at a threshold of 0.7. When using attributes, the corresponding 
threshold is 0.5. 

The results show that using adjectives leads to better results in terms of 
taxonomic overlap compared to using attributes at different thresholds. At 
a threshold oi t = 0.03 the results are comparable though. In general, using 
attributes yields a much higher local taxonomic overlap for different thresh­
olds, but comparable results at a threshold oit = 0.03. Overall, the results on 
the taxonomy induction tasks are worse than the results obtained with FCA 
using syntactic dependencies or pseudo-syntactic surface dependencies. 

7.2.2.3 Qualitative Discussion 

Finally, we discuss our attribute extraction method by highlighting some in­
teresting structures in the concept lattice produced by FCA on the basis of 
the attribute information and using a threshold of 0.04. Figures 7.1 - 7.5 show 
interesting fragments of the generated lattice. In Figure 7.1, it can be appre­
ciated that FCA has grouped together entities having a temperature, such as 
seasons, i.e. summer, spring, winter, but also a whirlpool, a buffet, an iron, 
a shower, etc. Figure 7.2 shows a big cluster of entities which have an age. 
Interesting are the time-related concepts consisting of entities having a cer­
tain regularity, timing or duration/length which are depicted in Figures 7.3, 
7.4 and 7.5, respectively. In general, the formal concepts produced by FCA 
seem indeed reasonable and correspond to our intuitions. 
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Table 7.4. Results of comparison with the tourism reference taxonomy in terms of 
TO 

0.01 
0.02 
0.03 
0.04 
0.05 
0.1 
0.3 
0.5 
0.7 
0.9 

0.03 
0.04 
0.05 
0.1 
0.3 
0.5 
0.7 
0.9 

PTO RTO FTO F' 
Adjectives 

22.74% 
22.32% 
21.19% 
20.40% 
20.67% 
24.06% 
83.33% 
100% 
100% 
100% 

43.35% 
41.07% 
33.70% 
29.64% 
28.06% 
6.50% 
1.36% 
0.69% 

0% 
0% 

29.83% 
28.88% 
25.79% 
23.73% 
22.96% 
9.85% 
2.60% 
1.37% 

0% 
0% 

37.41% 
36.66% 
33.91% 
31.86% 
30.57% 
14.53% 
2.95% 
0.55% 

0% 
0% 

Attributes 
27.00% 
28.90% 
32.94% 
49.17% 
100% 
100% 
100% 
100% 

25.89% 
25.17% 
8.72% 
3.54% 
1.72% 

0% 
0% 
0% 

26.43% 
26.91% 
13.79% 
6.61% 
3.38% 

0% 
0% 
0% 

33.41% 
32.26% 
19.41% 
8.98% 
0.62% 

0% 
0% 
0% 

Fig. 7 .1 . Attribute-based concept lattice: objects with temperature 
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Table 7.5. Results of comparison with the tourism reference taxonomy in terms of 

Wo 

0.01 
0.02 
0.03 
0.04 
0.05 
0.1 
0.3 
0.5 
0.7 
0.9 

0.03 
0.04 
0.05 
0.1 
0.3 
0.5 
0.7 
0.9 

PLTO RLTO FLTO 

Adjectives 
21.54% 
21.37% 
22.55% 
21.99% 
22.44% 
26.00% 

50% 
100% 
100% 
100% 

44.71% 
34.69% 
30.21% 
27.81% 
24.45% 
24.88% 
16.67% 

0% 
0% 
0% 

29.07% 
26.45% 
25.82% 
24.56% 
23.40% 
25.43% 

25% 
0% 
0% 
0% 

Attributes 
23.96% 
22.15% 
25.10% 
32.34% 
100% 
100% 
100% 
100% 

26.95% 
22.25% 
22.52% 
27.27% 

0% 
0% 
0% 
0% 

25.37% 
22.20% 
23.74% 
29.59% 

0% 
0% 
0% 
0% 

nri 
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Fig. 7.2. Attribute-based concept lattice: objects with age 
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Fig. 7.3. Attribute-based concept lattice: objects with regularity 

- " / 

\ \ 

/ 
-JL. 

fme'niiiB] 
5P|iiisJ 

A.. 
/ / , -\ 

Fig. 7.4. Attribute-based concept lattice: objects with timing 
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Fig. 7.5. Attribute-based concept lattice: objects with duration or length 

7.2.3 Summary 

In this section, we have presented a method for automatically deriving at­
tributes from a corpus by extracting adjectives modifying nouns and looking 
up the corresponding intensional description of the attribute in WordNet. The 
main contributions are the following: 

• We have shown by a human evaluation that the extracted attributes are 
reasonable. 

• Further, we have demonstrated that clustering on the basis of the at­
tributes, in contrast to using only adjectives, yields taxonomies with a 
better local taxonomic overlap. 

• However, clustering on the basis of attributes does not yield better tax­
onomies compared to the FCA-based approach relying on syntactic or 
pseudo-syntactic dependencies as described in Section 6.2. 

• A qualitative discussion of the lattice produced by FC A on the basis of the 
attributes as information has furthermore shown that meaningful groups 
indeed emerge when constructing a hierarchy on the basis of the inclusion 
relations between these automatically extracted attributes. 

In the context of ontology learning, however, we are not only interested in 
acquiring attributes, but also in learning general relations between concepts. 
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Whereas quite a lot of work in ontology learning has tackled the problem 
of learning relations based on verb structures found in the corpus, not as 
much research has addressed the question of determining the most appropriate 
domain and range for the extracted relations. We address this issue in the 
following section. 

7.3 Learning Relations from Corpora 

In this section, we tackle the task of learning relations from cor­
pora based on verbal expressions. The approach thus follows the tra­
dition of the works of Gamallo [Gamallo et al., 2002], Buitelaar et al. 
[Buitelaar et al., 2004], Schutz and Buitelaar [Schutz and Buitelaar, 2005] or 
Ciaramita et al. [Ciaramita et al., 2005], but focuses on the appropriate gen­
eralization of the arguments of a relation with respect to a given taxonomy. 
For example, given the relation work-for, while work-for (man,department), 
work.for (employ ee,institute), work.for(woman,store) are certainly valid signa­
tures, from an ontology engineering point of view we are interested in finding 
the most general signature describing all the instances of the relations, possi­
bly work-for (person,organization) in this case. We analyze different statistical 
measures with respect to their generalization behavior. In particular, we ex­
amine the conditional probabihty, the pointwise mutual information (PMI) as 
well as a measure based on the x^-test. We apply our approach to the Ge-
nia corpus using the Genia ontology [Ohta et al., 2002] to generalize the verb 
slots. The different measures are evaluated with respect to a gold standard 
provided by a biologist. The structure of this section is as follows: in Section 
7.3.1, we introduce our approach to extracting binary relations based on verbs 
using shallow linguistic processing as well as to generalizing the domain and 
range with respect to a given concept hierarchy. We present the evaluation of 
the approach in Section 7.3.4, concluding with a summary in Section 7.3.5. 

7.3.1 Approach 

In our approach, verb frames are extracted using Steven Abney's chunker 
CASS [Abney, 1996] (compare Section 4.1.2). From CASS's output, we extract 
tuples NP-V-NP and NP-V-P-NP. We construct binary relations from these 
tuples, using the lemmatized verb V (with the preposition P if applicable) as 
corresponding relation label and the head of the NP phrases as concepts for 
the domain and range of the relation. In particular, we only consider nouns 
as concepts which also appear in the Genia ontology. Our aim is then to 
find the most general and appropriate concept for the domain and range of 
the relation on the basis of the different examples found in the corpus. For 
illustration purposes, let us consider the input sentences marked with (a) and 
the CASS output in (b), and the binary relations we extract relying on the 
corpus annotation in (c): 



200 Learning Attributes and Relations 

Example 1. a. This bipartite motif consists of an N-terminal POU-specific domain. 
b. consist(subj:bipartite motif, of: N-terminal POU-specific domain ) 
c. consist-of(substructure-of_protein,domain-or_region_of_DNA) 

Example 2. a. The virus leads to severe acute disease in macaques. 
b. lead(subj:virus, to:disease, in: macaque) 
c. lead-to(virus,other), leadJn(virus,organism) 

Example 3. a. Lipoarabinomannan releases IL-6 in a dose-response manner. 
b. reIease(subj:Lipoarabinomannan, obj:IL-6, in:dose-response manner) 
c. release(substance,substance) 

While the NP-V-NP pattern can generally be mapped to Subj-V-Obj 
structures without producing too many errors, the NP-V-P-NP pattern gener­
ates substantial noise due to PP-attachment ambiguities. Particularly, CASS 
does not differentiate between PPs functioning as oblique arguments of the 
verb (as in (1) and (2)) and facultative adjuncts (as in (3)). However, we de­
cided to keep this pattern and assume that every PP attaches to the preceding 
verb. For each of these patterns, we then create binary relations labeled with 
the verb V (and the preposition P if applicable), relying on the semantic anno­
tations of the Genia corpus to map the arguments to corresponding concepts 
for the domain and range of the relation. The result of this process are the 
binary relations 1-3 (c). Note that the relation leadJn is a consequence of 
the spurious attachment of in macaques to leads. Further, for example (3) no 
second binary relation has been extracted as dose-response manner does not 
map to any concept in the Genia ontology. 

7.3.2 Generalizing Verb Frames 

Having thus collected a number of labeled relations from the corpus, our aim is 
to find the most appropriate generalization for the concepts within the domain 
and the range of each relation on the basis of the different examples found in 
the corpus. For this purpose, we experiment with three different measures: 

• the conditional probability of a concept given a verb slot, 
• the pointwise mutual information between a concept and a verb slot, 
• a x^-based measure. 

We briefly describe the three measures in the following section and illus­
trate them on the basis of an example. 

7.3.3 Measures 

As an illustrating example, let us consider the object position of the verb 
activate. Let us further assume that the objects appearing in the corpus for 
activate together with their frequencies are the following: 



Learning Relations from Corpora 201 

Fig. 7.6. Part of the Genia ontology 

protein .molecule: 5 
proteinJamily_or_group: 10 
amino-acid: 10 

The above.example reflects the empirically observed frequencies of con­
cepts in the respective argument position before the propagation of frequencies 
along the taxonomy. In order to find the appropriate concept for a certain slot 
with respect to the hierarchy, we examine three measures which are described 
in the following and illustrated according to this example. 

7.3.3.1 Conditional Probability 

The first method examined calculates for a certain slot s of a verb v the 
conditional probability that a concept c appears in this slot, propagating the 
frequencies along the concept hierarchy (see Figure 7.6), and then chooses the 
concept maximizing this value: 

Cy, := argmaxc P{c\vs) 

If there are several concepts with the same value, we choose the most specific 
ones, leaving out the concepts which subsume them. For our example we would 
get: 
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P(protein-molecule | activate-obj) = ^ = 0.2 
P(protein.family_or.group | activate-obj) = i2 = 0.4 
P(protein | activate_obj) = H = 0.6 
P(amino-acid | activate.obj) = | | = 1 
P (organic | activate-obj) 1 
P(compound | activate-obj) = 1 
P (substance | activate_obj) = 1 

So we would choose amino-acid as the appropriate generalization for the ob­
ject position of activate. 

7.3.3.2 Pointwise Mutual Information 

The method based on the mutual information penalizes the conditional prob­
ability value above in case the concept c is very frequent. The underlying 
hypothesis is that a concept occurring very frequently in the context of all 
verbs is not a good generalization candidate for a specific verb. The best 
concept is determined by the following formula: 

Cy^ — argmaxc PMI{c,Vs) 

P{c\vs) 
argmaXc log2 

P{c) 

Now assuming a probability P{amino-acid) = ^ ^ = 0.27 for amino-acid 
occurring as the object of activate and P(protein) = ^ ^ = 0.14 for protein 
(compare Tables 7.6 and 7.7), we would get: 

PMI(protein|activate-obj) = log2§fi = 2.1 
PMI(amino-acid|activate.obj) = log^-^ = 1-89 

According to the PMI-measure, we would thus choose protein as the 
most appropriate generalization. 

7.3.3.3 A x'^-based measure 

The measure based on the x^-test substantially differs from the other measures 
in the sense that it does not compare conditional probabilities but contingen­
cies between two variables. The procedure performs a test whether the two 
variables are statistically independent or not. The null hypothesis HQ thus 
is that both variables are unrelated and the aim is to reject this hypothe­
sis in favor of the hypothesis that they are actually statistically dependent. 
In order to apply the x^ test we assume that the deviations between ob­
served and expected values are normally distributed as well as that both 
variables have the same underlying distribution (compare Section 4.1.6). The 
most critical assumption is certainly the one that the samples are randomly 
generated as we are dealing with textual data which is never generated by a 
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Table 7.6. 2-by-2 x^ table for protein as range of activate 

protein 
-1 protein 

range(activate) range(-i activate) 
15 
35 

400 
2600 

Table 7.7. 2-by-2 x^ table for amino^cid as range of activate 

amino _acid 
-1 amino-acid 

range(activate) range(-i activate) 
25 
25 

800 
2200 

purely random process. However, this assumption is typically made in corpus 
linguistics such that x^ and other hypothesis tests are applicable (compare 
[Manning and Schiitze, 1999]). 

We apply x^ as proposed by Clark and Weir [Clark and Weir, 2002], test­
ing the contingencies between Vg and the concept c as well as its possible 
generalizations c'l, ...c'^ in an iterative manner. The assumption is that we can 
generalize c to c[ if the x^-test reveals Vs and c[ to be statistically dependent. 
A result is considered significant with regard to a significance level a = 0.05 
if the x^ value within our 2 x 2 x^-matrix exceeds the typically assumed 
critical value of 3.84. The generaUzation stops when encountering the first 
significant result. In contrast to the other approaches, when applying the x^-
based generalization we do not yield any ties as we stop when encountering a 
first appropriate generalization. 

The formula used for the x^ test is: 

2 _ V ^ (O j j — hij) E 
i,3 

Er 

where Oij are the so called observed frequencies as calculated on the basis 
of the corpus and given in row i and column j in Tables 7.6 and 7.7 and Eij 
are the expected frequencies calculated under the assumption of independence 
between Vg and c .̂ 

For the 2 x 2 case we have (compare [Manning and Schiitze, 1999]): 

2 _ N(Ou022 - Ol202lf 
"̂  (On + 0i2)(0ii + 02i)(Oi2 + 022)(02i + O22) 

where N is the sum of all the frequencies in the table. For the examples 
in Table 7.6 and 7.7 we thus yield: 
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2/ , .• . ^ . - x 3050(15*2600-400*35)2 , , ^^ 
y(ranqe(activate), protein) = —-—-——————————— = 11.62 
^ ^ ^ ^ ^'^ ' 4 1 5 x 5 0 x 3 0 0 0 x 2 6 3 5 

2, , . s. . .,s 3050(25*2200-800*25)2 , „ , ^ 
X {ran9e{acUvate),armno.acid) = 825 x 50 x 3000 x 2225 = ^^'^^ 

In both cases we get a significant result at a level of a = 0.05. As appro­
priate generalization we would choose protein as it is the first concept yielding 
a significant result. 

The variations in the predicted concept for the range of activate show that 
the measure chosen can indeed have a decisive impact on the results. 

7.3.4 Evaluation 

In order to evaluate the different measures we propose, we applied our prepro­
cessing to the Genia corpus [Ohta et al., 2002]. Overall, the corpus contains 
18.546 sentences with 509.487 words and 51.170 verbs. We use the semantic 
annotations of the Genia corpus to map the subject and object of verb phrases 
to the Genia ontology. The domain and range of the extracted relations are 
then generalized with respect to the Genia ontology using the measures de­
scribed above. For the evaluation of the different measures, a biologist speci­
fied the ideal domain and range for 100 binary relations corresponding to the 
100 most frequent patterns extracted with the approach based on CASS as 
described above. The average frequency of occurrence for the verbs of these 
100 patterns is around 17.51, with a minimum of 3 and a maximum of 148 
occurrences. Out of these 100 relations, 15 were regarded as inappropriate by 
our evaluator, such that the evaluation was carried out on the remaining 85 
relations. 

The biologist specified a number of concepts from the Genia ontology as 
the best generalization for the domain and range of each relation denoted by 
the verb. In some cases, she was also able to specify one single 'best concept' 
out of several possible candidates. In general, however, she specified a set of 
concepts generalizing each argument position. The output of our approach 
is compared with this gold standard using the different measures described 
above in terms of: 

• direct matches for domain and range (DM), 
• average distance in terms of number of edges in the taxonomy between 

correct and predicted concept (AD), and 
• a symmetric variant of the Learning Accuracy (LA) defined by Hahn and 

Schnattinger [Hahn and Schnattinger, 1998b]. 

The different measures are formalized in the following: 
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direct matches for domain + direct matches for range 
_ _ 

Ergi t S{doms{r),dom.G{r)) + S{ranges{r),rangeG{r)) 

2\R\ 

X]^g^£A(rfoms(r),(iomG(r)) + LA{ranges{r),rangeG{r)) 

Here, R denotes the set of relations in the output of our system. Further, 
for r € i? we define doms{r) as the domain produced by our system and 
domair) as the domain as specified in the gold standard; ranges(r) and 
rangeair) are defined analogously. Please note that these functions return 
sets. The system returns more than one concept in case there is a tie, and 
our annotator used more than one concept in most cases, indicating the most 
appropriate wherever possible. We will refer to this most appropriate concept 
for a relation r as dom*Q{r) or rangeQ{r), depending if we are considering the 
domain or range od the relation. 

The reason for measuring the average distance as well as the learning accu­
racy is that, in general, the system can not be expected to predict exactly the 
same concept as specified by the human evaluator. Therefore, we need a mea­
sure to evaluate how good the prediction actually is, given that it is not the 
same as specified in the gold standard. The interpretation of the average dis­
tance is clear, i.e. the lower the average distance, the better are the predictions 
of our system. The learning accuracy LA is inspired by the corresponding mea­
sure introduced by Hahn and Schnattinger [Hahn and Schnattinger, 1998b]. 
However, we consider a slightly different formulation of the learning accuracy 
as defined by Madche and Staab [Madche and Staab, 2000]. The measure of 
Hahn et al. and our learning accuracy measure are not totally equivalent. The 
main difference is that we measure the distance between nodes in terms of 
edges - instead of nodes as in Hahn's version - and we do not need any case 
distinction considering whether the classification was correct or not. Addi­
tionally, in contrast to Hahn's learning accuracy, our measure is symmetric. 
The learning accuracy between two concepts is defined as: 

LA{a,h):= Ktop,c) + l 
6{top, c) + d{a, c) + S{b, c) + l 

where c = lcs{a,b), i.e. c is the least common subsumer of a and b in the 
taxonomy, and 6 measures the distance between two nodes as the number of 
edges between them. In particular, the distance is defined as following: 

S{a, b) := S{a, lcs{a, b)) + S{b, lcs(a, b)) 

where 6 measures the distance in terms of edges and obviously 6{a, a) = 0. 
Due to the fact that our system as well as the annotator specified a set 

of possible concepts as domain and range of the relations, we decided to con­
sider three evaluation modes: i) optimistic, ii) average, and iii) pessimistic. 
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The optimistic version compares that concept our system predicts for a cer­
tain position of a relation with the concept in the gold standard yielding the 
best result with respect to the given evaluation measure. The pessimistic ver­
sion chooses the concepts in the output of the system and the gold standard 
yielding the worst results, whereas the average averages the results of the eval­
uation measures for all combinations of concepts in the system's output and 
the gold standard. In all cases, we will compare to domQ{r) or rangeQ{r) if 
they have been specified. Otherwise we will compare the output of the system 
to the whole set of concepts specified by our annotator. In case of the DM 
measure, we count as a direct match all those cases in which one concept in 
the output of the system is the same as one of the concepts specified by the 
annotator. Table 7.8 summarizes our results. It shows, for each measure, the 
percentage of direct matches, as well as the optimistic, average and pessimistic 
variants of the average distance and learning accuracy. The main conclusion is 
that the conditional probability consistently outperforms all other measures 
with respect to all evaluation modes. 

Table 7.8. Results for the different measures 

Conditional 
PMI 

DM 

33.53% 
13.53% 
26.79% 

AD 
opt. 
1.21 
3.28 
2.63 

avg. 
1.76 
3.76 
3.44 

pass. 
22.22 
4.19 
4.15 

LA 
opt. 

70.40% 
48.65% 
56.71% 

avg. 
60.57% 
43.06% 
46.19% 

pess. 
53.24% 
38.62% 
38.48% 

7.3.5 Summary 

Our results have shown that the conditional probability is a reasonable mea­
sure to find the correct level of generalization with respect to a given concept 
hierarchy for verb-based relations extracted from a corpus. The conditional 
probability, on the one hand, outperforms the other methods in terms of di­
rect matches, average distance and learning accuracy. The x^-based measure, 
on the other hand, outperforms the point-wise mutual similarity measure. An 
important observation is that in many cases our human evaluator has cho­
sen abstract concepts, which are in general disfavored by the PMI-measure. 
This explains why the PMI measure performs so badly. The contribution of 
this section is a systematic analysis of different probabilistic and statistical 
measures for the purpose of finding the appropriate generalization level for on-
tological relations extracted from a corpus with respect to a given taxonomy. 
Our conclusion is that the conditional probability performs better than other 
measures such as PMI or a x^-test. We have so far conducted experiments 
on the Genia corpus and ontology. In general, we have also observed that it 
seems quite difficult to find the appropriate generalization due to the fact that 
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the Genia ontology is very small and lacks a reasonable hierarchical structure. 
Therefore, it remains an open question if our results would transfer to ontolo­
gies with a richer structure. The main drawback of our approach is that it is 
currently restricted to binary relations. Furthermore, the domain and range 
of a relation can actually not be regarded as independent from each other. 
However, according to our current observations, an approach to generalizing 
domain and range dependently could be seriously affected by data sparse-
ness in the Genia corpus. Concerning the approximation of the conditional 
probabilities, some more elaborate linguistic analysis or even smoothing tech­
niques should be explored. Finally, other structures than verb frames could 
be considered for deriving relations. 

7.4 Learning Qualia Structures from the Web 

In this section, we deal with the automatic acquisition of so called qualia 
structures from the Web. Qualia structures are relevant for ontology learning 
as they describe a fixed set of relations which every object possesses. As we 
will see below, qualia structures describe the formal properties of an object, 
its components or parts, its purpose as well as the act of creation by which 
it came into existence. Once we have identified the qualia structure for a 
given object, we have in fact also identified important ontological properties 
of this object. Some of the qualia relations have been extensively studied in 
the artificial intelligence community, especially the part-whole and subclass-of 
relations (compare [Artale et al., 1996, Guarino and Welty, 2000]). 

Qualia structures have been originally introduced by Pustejovsky 
[Pustejovsky, 1991] and are used for a variety of purposes in natural language 
processing such as the analysis of compounds [Johnston and Busa, 1996], 
co-composition and coercion [Pustejovsky, 1991] as well as for bridging ref­
erence resolution [Bos et al., 1995]. Further, it has also been argued that 
qualia structures and lexical semantic relations in general have applications 
in information retrieval [Pustejovsky et al., 1993, Voorhees, 1994]. One ma­
jor bottleneck however is that, currently, qualia structures need to be cre­
ated by hand, which is probably also the reason why there are no practical 
systems using qualia structures, but a lot of systems using publicly avail­
able resources such as WordNet [Fellbaum, 1998] or PrameNet^ as source 
of lexical/world knowledge. The work described in this section addresses 
this issue and presents an approach to automatically learning qualia struc­
tures for nominals from the Web. The approach is inspired in recent work 
on using the Web to identify instances of a relation of interest such as in 
[Markert et al., 2003] and [Cimiano and Staab, 2004]. These approaches are 
in essence a combination of the usage of lexico-syntactic patterns convey­
ing a certain relation of interest [Hearst, 1992, Charniak and Berland, 1999, 

http://framenet.icsi.berkeley.edu/ 
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Iwanska et al., 2000, Poesio et al., 2002] with the idea of using the web as a 
big corpus [Grefenstette, 1999, Keller et al., 2002, Resnik and Smith, 2003]. 
The idea of learning qualia structures from the Web is not only a very prac­
tical, but in fact a principled one. While single lexicographers creating qualia 
structures - or lexicon entries in general - might take very subjective decisions, 
the structures learned from the Web do not mirror the view of a single person, 
but of the whole world as represented on the World Wide Web. Obviously, 
on the other hand, using an automatic web based approach also yields a lot 
of inappropriate results which are due to 1) errors produced by the linguistic 
analysis (e.g. part-of-speech tagging), 2) idiosyncrasies of ranking algorithms 
of search machines, 3) the fact that the Web and especially search engines are 
to a great extent commercially biased, 4) the fact that people also publish er­
roneous information on the Web, and 5) lexical ambiguities. Because of these 
reasons, our aim is in fact not to replace lexicographers, but to support them 
in the task of creating valid qualia structures on the basis of those learned 
automatically. 

This section is structured as follows: Section 7.4.1 introduces qualia struc­
tures and describes the specific qualia structures we aim to acquire. Section 
7.4.2 describes our approach in detail, and Section 7.4.3 presents a quantita­
tive and qualitative evaluation of the approach. 

7.4.1 Qualia S t ruc tures 

According to Aristotle, there are four basic factors or causes by which the 
nature of an object can be described (of. [Kronlid, 2003]): 

• the material cause, i.e. the material an object is made of, 
• the agentive cause, i.e. the source of movement, creation or change, 
• the formal cause, i.e. its form or type, and 
• the final cause, i.e. its purpose, intention or aim. 

In his Generative Lexicon (GL) framework, Pustejovsky 
[Pustejovsky, 1991] reused Aristotle's basic factors for the description 
of the meaning of lexical elements. He introduced so called qualia structures 
by which the meaning of a lexical element is described in terms of four roles: 

• constitutive: describing physical properties of an object, i.e. its weight, ma­
terial as well as parts and components, 

• agentive: describing factors involved in the bringing about of an object, i.e. 
its creator or the causal chain leading to its creation, 

• formal: describing that properties which distinguish an object in a larger 
domain, i.e. orientation, magnitude, shape and dimensionality, and 

• telic: describing the purpose or function of an object. 

Most of the qualia structures described by Pustejovsky 
[Pustejovsky, 1991], however, seem to have a more restricted interpre­
tation. In fact, in most examples the constitutive role seems to describe 
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the parts or components of an object, while the agentive role is typically 
described by a verb denoting an action which typically brings the object 
in question into existence. The formal role normally consists in typing 
information about the object, i.e. its hypernym or superconcept. Finally, the 
telic role describes the purpose or function of an object either by a verb or 
nominal phrase. The qualia structure for 'knife', for example, could look as 
follows (cf. [Johnston and Busa, 1996]): 

Formal: 
Constitutive 
Telic: 
Agentive: 

artifact-tool 
blade,handle,... 
cut .act 
makcact 

Our understanding of qualia structure is in line with this restricted interpreta­
tion of the qualia roles. Our aim is to automatically acquire qualia structures 
from the Web for an arbitrary nominal, looking for (i) nominals describing the 
type of the object, (ii) verbs defining its agentive role, (iii) nominals describ­
ing its parts or components and (iv) nouns or verbs describing its intended 
purpose. The approach is described in detail in what follows. 

7.4.2 Approach 

Our approach to learning qualia structures from the Web is based on the 
assumption that certain semantic relations can be learned by matching certain 
lexico-syntactic patterns more or less reliably conveying the relation of interest 
in line with the seminal work of Hearst [Hearst, 1992] (compare Section 6.1.2). 
However, it is well known that Hearst-style patterns occur rarely, such that it 
seems intuitive to match them on the Web. In our case, we are not only looking 
for the hypernym relation (comparable to the /orma^relation) but for similar 
patterns conveying a constitutive, telic or agentive relation. As currently there 
is no support for searching using regular expressions in standard search engines 
such as Google or Altavista^, our approach consists of 5 phases (compare 
Figure 7.7): 

1. Generate for each qualia role a set of so called clues, i.e. search engine 
queries indicating the relation of interest. 

2. Download the snippets of the 10 first Google hits matching the generated 
clues*. 

3. Part-of-speech-tag the downloaded snippets. 
4. Match regular expressions conveying the qualia role of interest. 

An exception is certainly the Linguist's Search Engine [Resnik and Elkiss, 2003]. 
At the time of writing, Google heis even enhanced search functionality by wild­
cards. 
The reason for using only the 10 first hits is to maintain efficiency. With the 
current settings, the system needs between 3 and 10 minutes to generate the 
qualia structure for a given term 
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5. Weight the returned quaha elements according to some measure. 

The outcome of this process are then so called weighted qualia structures 
(WQSs) in which every qualia element in a certain role is weighted according 
to some measure. The patterns in our pattern library are actually tuples (p, c) 
where p is a regular expression defined over part-of-speech tags and c a func­
tion c : string -> string called the clue. Given a term t and a clue c, the query 
c(t) is sent to the Google API, and we download the abstracts of the first n doc­
uments matching this query and then process the abstracts to find instances 
of the pattern p. For example, given the clue f{x) = "such as " © 7r{x) and 
the concept computer, we would download n abstracts matching the query 
f(computer), i.e. "such as computers". Hereby n{x) is a function returning 
the plural form of x. We implemented this function as a lookup in a lexi­
con in which plural nouns are mapped to their base form. With the use of 
such clues, we download a number of Google-abstracts in which a correspond­
ing pattern will probably be matched, thus restricting the linguistic analysis 
to a few promising pages. The downloaded abstracts are then part-of-speech 
tagged using QTag [Tufis and Mason, 1998]. Then, we match the correspond­
ing pattern p in the downloaded snippets, yielding candidate qualia elements 
as output. In our approach we then calculate the weight of a candidate qualia 
element e for the term t we want to compute the qualia structure for by the 
Jaccard coefficient: 

GoogleHits{e © i) /T ô  
GoogleHits{e) ® GoogleHits{t) - GoogleHits{e ®t) 

Though other more elaborate statistical measures such as PMI as well as 
a t-test or x^-test could have been applied, we have opted here for a measure 
which is easy to implement and efficient to compute to reduce the number 
of queries to the Google API. The result is then a weighted qualia structure 
(WQS) in which for each role the qualia elements are weighted according to 
this Jaccard coefficient. In what follows, we describe in detail the procedure 
for acquiring qualia elements for each qualia role and especially the clues 
and lexico-syntactic patterns used. The patterns have been crafted by hand, 
testing and refining them in an iterative process, paying attention to maximize 
their coverage but also accuracy (compare [Hearst, 1992]). It is important to 
mention that by this approach we are not able to detect and separate multiple 
meanings of words, that means, to handle polysemy, which is appropriately 
accounted for in the framework of the Generative Lexicon [Pustejovsky, 1991]. 

7.4.2.1 The Formal Role 

To derive qualia elements for the formal role, we first download for each of 
the clues in Table 7.9 the first 10 abstracts matching the clue and then pro­
cess them offline matching the patterns defined over part-of-speech-tags, thus 
yielding up to 10 different qualia element candidates per clue. The patterns 
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Word Generate 
Clues 

Download 
Google Abstracts 

POS-tagging 

Match regular 
expressions 

Weighted QS statistical 
Weighting 

Fig. 7.7. General approach for learning qualia structures 

are specified in the form of regular expressions, whereby the part-of-speech 
tags are always given in curly brackets after the token. Besides using the tra­
ditional regular expression operators such as +, * and ?, we also use Perl-like 
symbols such as \w denoting any alphabetic character as well as [a-z] denoting 
the set of all lower case letters. We use the part-of-speech tags of the Penn 
Treebank tagset given in Appendix A.4. 

As there are 4 different clues for the formal role, we thus yield up to 40 
qualia elements as potential candidates to fill the formal role. In general, we 
have paid attention to create clues relying on indefinite articles as we found 
out that they produce more general and reliable results than when using def­
inite articles. In order to choose the correct indefinite article - a or an - or 
even using no article at all, we implemented some ad-hoc heuristics checking 
if the first letter of the term in question is a vowel and checking if the term is 
used more often with an article or without an article on the Web by a set of 
corresponding Google queries. The alternative ' (a/an/?) ' means that we use 
either the indefinite articles 'a' or 'an' or no article at all depending on the 
results of the above mentioned Google queries. 
A general question already raised by Hearst [Hearst, 1992] is how to deal with 
nominal modification. Hearst's conclusion is that this depends on the appli­
cation. In our case, we mainly remove adjective modifiers, keeping only the 
heads of noun phrases as candidate qualia elements. The lemmatized heads of 
the NPi? noun phrase are considered as qualia role candidates for the formal 
role. These candidates are then weighted using the above defined Jaccard co­
efficient measure. Hereby, a noun phrase is an instance matching the following 
regular expression: 

NP:=[a-z]+{DT}? ([a-z]+{JJ})* ([a-z]+{NN(S?)})+, 
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where the head is the underlined expression, which is lemmatized and 
considered as a candidate qualia element. After some initial experiments, we 
decided not to use the patterns 'X is Y' and 'X is a kind of Y' such as in 'a 
book is an item' or 'a book is a kind of publication' as well as the pattern 'Y, 
including X' (compare [Hearst, 1992]) as we found that, in our settings, they 
delivered quite spurious results. 

Table 7.9. Clues and patterns for the formal role 

Clue 
such as 7r(t) 
especially ir{t) 
7r(t) or other 
n{t) and other 

Pattern 
N P F ,? such{DT} as{IN} NP 
N P F ,? especially{RB]} NP 
NP or{CC} other{JJ} NPi. 
NP and{CC} other{JJ} N P F 

7.4.2.2 The Constitutive Role 

The procedure for finding elements of the constitutive role is similar to the 
one described above for the formal role. The corresponding clues and patterns 
are given in Table 7.10. As for the formal role, the candidate quaUa elements 
are the lemmatized heads of the noun phrase NPo. 

Table 7.10. Clues and patterns for the constitutive role 

Clue 
(a/an)? t is made up of 
7r(i) are made up of 
(a/an)? t is made of 
Tf{t) are made of 
(a/an)? t comprises 
n(t) comprise 
(a/an)? t consists of 
7r(t) consist of 

Pattern 
NP is{VBZ} made{VBN} up{RP} of{IN} NPo 
NP are{VBP} made{VBN} up{RP} of{IN} NPo 
NP are{VBP} made{VBN} of{IN} NPc 
NP are{VBP} made{VBN} of{IN} NPc 
NP comprises{VBZ} NPc 
NP comprise{VBP} NPc 
NP consists{VBZ} of{IN} NPc 
NP consist{VBP} of{IN} NPc 

As an additional heuristic, we test if the lemmatized head of NPc is an el­
ement of the following list containing nouns denoting an indication of amount: 
'variety', 'bundle', 'majority', 'thousands', 'million', 'millions', 'hundreds', 
'number', 'numbers', 'set', 'sets', 'series', Van^e'and, furthermore, this NF^ 
is followed by the preposition 'of. In that case we would take the head of 
the noun phrase after the preposition 'of as potential candidate of the con­
stitutive role. For example, when considering 'a conversation is made up of a 
series of observable interpersonal exchanges', we would take 'exchange' as a 
potential qualia element candidate instead of 'series'. 
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7.4.2.3 The Telic Role 

The telic role is in principle acquired in the same way as the formal and 
constitutive roles with the exception that the qualia element is not only the 
head of a noun phrase, but also a verb followed by a noun phrase. Table 7.11 
gives the corresponding clues and patterns. The returned candidate qualia 
elements are the lemmatized underlined expressions in PURP:=\w+{VB} NP 
I NP I bejVB} \w+{VBD}). 

Table 7.11. Clues and patterns for the telic role 

Clue 
purpose of a H s 
purpose of n{t) is 
(a/an)? t is used to 
Tr{t) are used to 

Pattern 
purpose{NN} of{IN} NPo is{[VBZ}] (to{TO})? PURP 
purpose{NN} of{IN} NPo is{VBZ} (to{TO})? PURP 
(A|a|An|an) NPo is{VBZ} used{VBN} to{TO} PURP 
NPo are{VBZ} used{VBN} to{TO} PURP 

7.4.2.4 The Agentive Role 

As discussed by Hearst [Hearst, 1992], it is not always as straightforward to 
find lexico-syntactic patterns reliably conveying a certain relation. In fact, we 
did not find any patterns reliably identifying qualia elements for the agentive 
role. Certainly, it would have been possible to find the source of the creation 
by using patterns such as X is made by F or X is produced by Y. However, 
we found that these patterns do not reliably convey a verb describing how an 
object is brought into existence. The fact that it is far from straightforward 
to find patterns indicating an agentive role is further corroborated by the 
research described by Yamada and Baldwin [Yamada and Baldwin, 2004], in 
which only one pattern indicating an agentive relation is used, namely 'NN BE 
V[+en]' in order to match passive constructions such as 'the book was written'. 
On the other hand, it is clear that constructing a reliable clue for this pattern 
is not straightforward given the current state-of-the-art concerning search 
engine queries. Nevertheless, in order to also get results for the agentive role, 
we apply a different method here. Instead of issuing a query which is used 
to search for possible candidates for the role, we take advantage of the fact 
that the verbs which describe how something comes into being, particularly 
artificial things, are often quite general phrases like 'make', 'produce', 'write', 
'build', etc. So instead of generating clues as above, we calculate the value 

GoogleHits(agentive-verb® "a" ®i) 
GoogleHits(t) ^ ' 

for the term t we want to acquire a qualia structure for as well as the 
following agentive verbs: build, produce, make, write, plant, elect, create, cook. 
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construct and design. If this value is above an experimentally determined 
threshold of 0.0005, we assume that it is a valid filler of the agentive qualia 
role. For example, if we wanted to know how good the agentive verb 'write' is 
for a 'hook', we would issue the queries "write a book" as well as "book" and 
calculate the ratio ^ ' ' t S g L : ^ " ^ -

7.4.3 Evaluation 

We evaluate our approach for the lexical elements 'knife', 'beer' and 'book', 
which are also discussed by Johnston and Busa [Johnston and Busa, 1996] or 
[Pustejovsky, 1991], as well as 'computer', an abstract noun, i.e. 'conversation', 
as well as two very specific multi-term words, i.e. 'natural language processing' 
and 'data mining'. We give the automatically learned weighted qualia struc­
tures for these entries in Figures 7.8, 7.9, 7.10 and 7.11. The evaluation of 
our approach consists, on the one hand, of a discussion of the weighted qualia 
structures, in particular comparing them to the ideal structures from the lit­
erature. On the other hand, we also asked a student at our institute to assign 
credits to each of the qualia elements from 0 (incorrect) to 3 (totally correct), 
whereby 1 credit means 'not totally wrong' and 2 means 'still acceptable'. 

7.4.3.1 Quantitative Evaluation 

The distribution of credits for each qualia role and term is given in Ta­
ble 7.12. It can be observed that, with the three exceptions: beer-^formal, 
beer^ constitutive as well as book-^ agentive, '3 ' is the mark assigned in most 
cases to the automatically learned qualia elements. For almost every term and 
qualia role, at least 50% of the automatically learned quaUa elements have 
a mark of '2' or '3 ' - the only exceptions being beer-^formal with 45.45%, 
hook-^agentive with 33.33% and beer-^constitutive with 28.57%. In general, 
this shows that the automatically learned qualia roles are indeed reasonable. 
Considering the average over all the terms ('All' in the table), we observe that 
the qualia role which is recognized most reliably is the telic one with 73.15% 
assignments of credit '3 ' and 75.93% of credits '2' or '3 ' , followed by the agen­
tive role with 71.43% assignments of credit '3 ' . The results for the formal and 
constitutive role are still reasonable with 62.09% assignments of credit '3 ' and 
65.36% assignments of credits '2' or '3 ' for the formal role; and respectively 
63.64% and 64.65% for the constitutive role. The worst results are achieved 
for the formal role due to the fact that 28.10% of the qualia elements are 
regarded as totally wrong. The results for the constitutive role are not much 
better though. Table 7.13 supports the above claims and shows the average 
credits assigned by the human evaluator per term and role. It shows again that 
the roles with the best results are the agentive and telic roles, whereas the 
formal and constitutive roles are not identified as accurately. This is certainly 
due to the fact that the patterns for the telic role are much less ambiguous 
than the ones for the formal and constitutive roles. 
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Table 7.12. Distribution of credits for each quaha role and term 

Book 
Computer 
Knife 
Beer 
Data Mining 
NLP 
Conversation 
All 

Book 
Computer 
Knife 
Beer 
Data Mining 
NLP 
Conversation 
All 

Book 
Computer 
Knife 
Beer 
Data Mining 
NLP 
Conversation 
All 

Book 
Computer 
Knife 
Beer 
Data Mining 
NLP 
Conversation 
All 

Formal 
0 

2/17 (11.76%) 
8/28 (28.57%) 
3/16 (18.75%) 
12/22 (54.54%) 

6/25 (24%) 
2/15 (13.33%) 
10/30 (33.33%) 

43/153 (28.10%) 

1 
4/17 (23.52%) 
1/28 (3.57%) 

0/16 (0%) 
0/22 (0%) 
0/25 (0%) 

1/15 (6.66%) 
4/30 (13.33%) 
10/153 (6.54%) 

2 
1/17 (5.88%) 
2/28 (7.14%) 

0/16 (0%) 
2/22 (9.09%) 

0/25 (0%) 
0/15 (0%) 
0/30 (0%) 

5/153 (3.27%) 

3 
10/17 (58.82%) 
17/28 (60.71%) 
13/16 (81.25%) 
8/22 (36.36%) 
19/25 (76%) 
12/15 (80%) 

16/30 (53.33%) 
95/153 (62.09%) 

Agentive 
0/3 (0%) 
0/1 (0%) 
0/3 (0%) 
0/3 (0%) 
0/1 (0%) 
0/1 (0%) 
1/2 (50%) 

1/14 (7.14%) 

2/3 (66.66%) 
0/1 (0%) 
0/3 (0%) 

1/3 (33.33%) 
0/1 (0%) 
0/1 (0%) 
0/2 (0%) 

3/14 (21.43%) 

0/3 (0%) 
0/1 (0%) 
0/3 (0%) 
0/3 (0%) 
0/1 (0%) 
0/1 (0%) 
0/2 (0%) 
0/14 (0%) 

1/3 (33.33%) 
1/1 (100%) 
3/3 (100%) 

2/3 (66.66%) 
1/1 (100%) 
1/1 (100%) 
1/2 (50%) 

10/14 (71.43%) 
Constitutive 

8/29 (27.58%) 
6/26 (23.07%) 
4/15 (26.66%) 
5/7 (71.42%) 

0/1 (0%) 
n.a. 

3/21 (14.28%) 
26/99 (26.26%) 

4/29 (13.79%) 
1/26 (3.84%) 

0/15 (0%) 
0/7 (0%) 
0/1 (0%) 

n.a. 
4/21 (19.04%) 

9/99 (9%) 

1/29 (3.44%) 
0/26 (0%) 
0/15 (0%) 
0/7 (0%) 
0/1 (0%) 

n.a. 
0/21 (0%) 

1/99 (1.01%) 

16/29 (55.17%) 
19/26 (73.07%) 
11/15 (73.33%) 
2/7 (28.57%) 
1/1 (100%) 

n.a. 
14/21 (66.66%) 
63/99 (63.64%) 

Telic 
3/22 (13.63%) 

0/27 (0%) 
5/18 (27.77%) 

n.a. 
2/22 (9.09%) 
1/6 (16.66%) 

6/13 (46.15%) 
17/108 (15.74%) 

2/22 (9.09%) 
3/27 (11.11%) 

0/18 (0%) 
n.a. 

4/22 (18.18%) 
0/6 (0%) 

0/13 (0%) 
9/108 (8.33%) 

3/22 (13.63%) 
0/27 (0%) 
0/18 (0%) 

n.a. 
0/22 (0%) 
0/6 (0%) 
0/13 (0%) 

3/108 (2.78%) 

14/22 (63.63%) 
24/27 (88.88%) 
13/18 (72.22%) 

n.a. 
16/22 (72.72%) 
5/6 (83.33%) 

7/13 (53.84%) 
79/108 (73.15%) 

7.4.3.2 Qualitative Evaluation 

In this section, we provide a more subjective evaluation of the automatically 
learned qualia structures by comparing them to ideal qualia structures dis­
cussed in the literature wherever possible. We discuss more in detail the qualia 
structure for 'book', 'knife' and 'beer' and leave the detailed assessment of the 
qualia structures for 'computer', 'natural language processing', 'data mining' 
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Table 7.13. Average credits for each qualia role 

Book 
Computer 
Knife 
Beer 
Data Mining 
Natural Language Processing 
Conversation 
All 

Formal 
2.12 

2 
2.44 
1.27 
2.28 
2.47 
1.73 
1.99 

Agentive 
1.67 

3 
3 

2.33 
3 
3 

1.5 
2.36 

Constitutive 
1.86 
2.23 

2.2 
0.96 

3 
n.a. 
2.19 
2.02 

Telle 
2.27 
2.78 
2.17 
n.a. 
2.36 

2.5 
1.62 
2.33 

and 'conversation' to the interested reader. 
For 'book' (compare Figure 7.9), the first four candidates of the formal role, 
i.e. 'product', 'item', 'publication' and 'document' are very appropriate, but 
allude to the physical object meaning of book as opposed to the meaning in 
the sense of information container (compare [Pustejovsky, 1991]. As candi­
dates for the agentive role we have 'make', 'write' and 'create', which are 
appropriate, 'write' even being the ideal filler of the agentive role according 
to Pustejovsky [Pustejovsky, 1991]. For the constitutive role of 'book' we get -
besides 'it'at the first position, which could be easily filtered out - 'sign' (2nd 
position), 'letter' (3rd position) and 'page' (6th position), which are quite ap­
propriate. The top four candidates for the telic role are 'give', 'select', 'read', 
and 'purchase'. It seems that 'give'is emphasizing the role of a book as a gift, 
'read' is referring to the most obvious purpose of a book as specified in the 
ideal qualia structures of Pustejovsky [Pustejovsky, 1991] as well as Johnston 
and Busa [Johnston and Busa, 1996], and 'pwrcftase' denotes the more general 
purpose of a book, that is, to be bought. 
Unfortunately, the first element of the formal role of 'knife' (compare Figure 
7.8) denotes the material it is typically made of, i.e. 'steel', but the next 5 el­
ements are definitely appropriate: 'weapon', 'item', 'kitchenware', 'object'and 
'instrument'. The ideal element tool (compare [Johnston and Busa, 1996]) can 
be found at the 10th position. The results are interesting in that, on the one 
hand, the most prominent meaning of 'knife' according to the web is the one 
of a weapon. On the other hand, our results are more specific, classifying a 
knife as 'kitchenware' instead of merely as a tool. Very interesting are the 
specific and accurate results at the end of the list. The reason why they ap­
pear at the end is that the Jaccard coefficient ranks them lower because they 
are more specific, thus appearing less frequently. This shows that using some 
other measure less sensitive to frequency could yield more accurate results. 
The fillers of the agentive role 'produce', 'make' and 'create' seem all appropri­
ate, whereby 'make' corresponds exactly to the ideal filler for the agentive role 
as mentioned by Johnston and Busa [Johnston and Busa, 1996]. Not only do 
the results for the constitutive role include parts, but also materials a knife is 
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made of, thus containing more information than the typical qualia structures 
assumed in the literature. The best results are (in this order) 'blade', 'metal', 
'steel', 'wood' and 'handle' at the 6th position. In fact, in the ideal qualia 
structure mentioned by Johnston and Busa [Johnston and Busa, 1996] 'blade' 
and 'handle' are mentioned as fillers of the constitutive role, while there are 
no elements describing the materials which a knife is made of. Finally, the 
top four candidates for the telic role are 'kill', 'slit', 'cut' and 'slice', whereby 
'cMi' corresponds to the ideal filler of the qualia structure for 'knife' (compare 
[Johnston and Busa, 1996]). 
Considering the qualia structure for 'beer' (compare Figure 7.8), it is surpris­
ing that no purpose has been found. The reason is that currently no results 
are returned by Google for the clue 'a beer is used to', and the four snip­
pets returned for 'the purpose of a beer' contain expressions of the form 'the 
purpose of a beer is to drink it', which is not matched by our patterns as 
'it' is a pronoun and not matched by our NP pattern (unless it is matched 
by error as in the qualia structure for 'book' in Figure 7.9). Considering the 
results for the formal role, the elements 'drink' (1st), 'alcohol' (2nd) and 'bev­
erage' (4th) are much more specific than 'liquid' as specified by Pustejovsky 
[Pustejovsky, 1991], while 'thing' at the 3rd position is certainly too general. 
Furthermore, according to the automatically learned qualia structure, 'beer' 
is made of 'rice', 'malt'and 'hop', which are perfectly reasonable results. Very 
interesting are the results 'concoction' and 'libation' for the formal role of 
'beer', which unfortunately were rated low by our evaluator due to the fact 
that English is not her mother tongue and these words seemed odd to her 
(compare Figure 7.8). 
Overall, the discussion has shown that the results produced by our method 
are reasonable when compared to the qualia structures from the literature. 
In general, our method produces in some cases additional qualia candidates, 
such as those describing the material a knife is typically made of. In other 
cases, it discovers more specific candidates, such as for example 'weapon' or 
'kitchenware' as elements of the formal role for 'knife' instead of the general 
term artifact-tool. 
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Knife 

Forma 
steel 
wreapon 
item 
kitchenware 
object 
instrument 
utensil 
court 
equipment 
tool 
action 

cutt ing instrument 
cut t ing ins t ruments 
emergency items 
cut t ing weapons 

Jaccard Eval. 

3.8666 
3.4876 
1.7458 
1.6840 
1.6026 
1.2963 
1.2886 
1.1441 
0.9479 
0.7090 
0.7028 
0.6690 
0.0739 
0.0551 
0.0383 
0.0232 

3 
3 
3 
3 
3 
3 
3 
0 
3 
3 
0 
0 
3 
3 
3 
3 

Agentive 
produce 
make 
create 

3 
3 
3 

Const i tut ive 
blade 
metal 
steel 
wood 
person 
handle 
tang 
gold 
alloy 
dragonfly 
model 
tool 
quality 
group 
rotat ing discs 

6.4618 
6.0206 
3.8666 
2.9699 
2.6829 
1.9223 
1.6784 
1.6609 
1.2466 
0.8742 
0.7613 
0.7090 
0.6676 
0.6764 
0.0062 

3 
3 
3 
3 
0 
3 
3 
0 
3 
3 
3 
0 
3 
0 
3 

Telle 
kill 
slit 
c u t 
slice 
begin 
split 
avoid 
score 
an instrument 
process 
prune 
incise 
cut things 
remove moisture 
add details 
cut a flap 
split a cake 
slit a wide variety 

3.7626 
3.4829 
3.4373 
3.2499 
2.4192 
1.7241 
1.3190 
1.0204 
0.8137 
0.B327 
0.4606 
0.0673 
0.0646 
0.0479 
0.0361 
0.0264 
0.0010 
0.0004 

3 
3 
3 
3 
0 
3 
0 
0 
0 
3 
3 
3 
3 
3 
0 
3 
3 
3 

Beer 

Forn 
drink 
alcohol 
thing 
beverage 
adventure 
mistake 
mat te r 
style 
delight 
people 
creation 
c a n 
list 
product 
refreshment 
concoction 
libation 
summery 
adult beverages 
speciality beers 
looney things 

Agen 
produce 
make 
create 

Constii 
rice 
malt 
h o p 
bot tom 
continuum 
puree 
stone^vare 

Jaccard 
l a l 
9.6677 
4.6006 
4.0028 
3.6182 
3.0826 
2.7014 
2.6633 
2.1683 
1.9198 
1.4466 
1.2201 
0.9433 
0.8432 
0.8224 
0.6328 
0.4861 
0.1147 
0.0872 
0.0848 
0.0269 
0.0002 
i v e 

utive 
2.9871 
2.6724 
2.1744 
2.1179 
0.4808 
0.3563 
0.3326 

Eval. 

3 
3 
3 
3 
0 
0 
0 
0 
3 
0 
0 
3 
0 
3 
3 
0 
0 
0 
2 
2 
0 

3 
3 
1 

0 
3 
3 
0 
0 
0 
0 

Fig. 7.8. Weighted qualia structures for knife and beer 
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Book 
Jaccard Eval. 

Formal 
product 
i tem 
publication 
document 
history 
project 
material 
reader 
resource 
source 
piece 
format 
tool 
object 
specifics 
library materials 
library property 

34.6238 
33.8573 
20.2621 
14.4778 
12.7262 
8.9809 
8.6704 
8.3890 
7.7269 
7.6739 
7.6131 
7.2203 
6.1124 
3.770B 
0.B374 
0.1468 
0.0026 

3 
3 
3 
3 
1 
2 
3 
0 
3 
3 
3 
0 
1 
3 
1 
3 
1 

Agentive 
make 
write 
create 

1 
3 
1 

Const i tut ive 
i t 
sign 
letter 
part 
individual 
page 
collection 
teaching 
language 
period 
paper 
table 
material 
v/ord 
piece 
chapter 
presentation 
detail 
minute 
sheet 
l i e 
ticket 
i n k 
d o t 
leather 
leaf 
t i t le page 
peice 
dedication page 

21.5785 
21.0870 
18.7778 
11.7830 
11.4043 
10.9202 
10.7901 
10.7004 
9.6041 
9.4002 
9.3551 
8.7089 
8.6704 
8.1424 
7.6131 
7.4746 
7.0965 
6.8218 
6.3550 
4.4369 
3.0866 
2.3198 
2.2769 
1.7427 
1.1162 
1.0266 
0.3639 
0.0530 
0.0076 

0 
3 
3 
1 
0 
3 
0 
2 
1 
0 
3 
3 
3 
3 
0 
3 
3 
3 
0 
3 
1 
0 
3 
3 
1 
3 
3 
0 
3 

Telle 
give 
select 
read 
purchase 
support 
identify 
represent 
inspire 
convey 
present information 
provide additional information 
convey information 
filch 
share a story 
commit crime 
contain words 
introduce concepts 
traprock 
stock libraries 
hold a collection 
fund special projects 
support teachings 

14.8964 
12.9694 
12.4937 
9.0372 
8.0204 
7.9388 
5.7829 
1.7292 
1.3940 
0.0728 
0.0368 
0.0260 
0.0101 
0.0081 
0.0061 
0.0055 
0.0038 
0.0016 
0.0009 
0.0008 
0.0007 
0.0001 

1 
0 
3 
3 
3 
1 
2 
3 
3 
3 
3 
3 
3 
3 
0 
3 
2 
0 
3 
3 
2 
3 

Computer 
Jaccard Eval. 

Formal 
technology 
information 
network 
hardware 
service 
office 
equipment 
machine 
item 
device 
medium 
f ix 
piece 
notebook 
circuit 
consumer electronics 
appliance 
t o y 
office equipment 
da tum 
computer clipart 
mentali ty 
netwrork device 
artefact 
data stores 
display screen equipment 
library equipment 
complex computer processes 

20.3667 
20.2418 
14.8062 
14.6639 
13.9161 
12.2881 
7.4694 
7.0099 
6.7469 
6.6259 
4.0603 
3.9188 
3.5898 
2.1126 
1.8663 
1.1544 
1.0048 
0.7934 
0.4055 
0.3262 
0.3156 
0.1158 
0.0343 
0.0339 
0.0133 
0.0042 
0.0037 
0.0001 

3 
0 
3 
3 
3 
0 
2 
3 
3 
3 
3 
0 
3 
3 
0 
0 
3 
3 
3 
0 
1 
0 
3 
3 
3 
2 
3 
0 

Agentive 
build 3 

Const i tut ive 
soft^vare 
hardware 
part 
electronics 
individual 
memory 
m a n 
device 
unit 
component 
s^vitch 
m i x 
string 
circuit 
silicon 
actor 
processing unit 
individual components 
hardware components 
centra 
computer codes 
plastic case 
da ta storage device 
transistors 

26.6230 
14.6639 
14.6224 
9.6139 
9.3791 
8.9683 
5.9684 
6.6269 
6.2078 
4.3808 
4.2169 
3.8996 
1.8896 
1.8663 
1.7717 
1.2127 
0.1444 
0.1122 
0.1087 
0.0630 
0.0463 
0.0167 
0.0077 
0.0022 

3 
3 
1 
3 
0 
3 
0 
3 
3 
3 
3 
0 
3 
0 
3 
0 
3 
3 
3 
0 
3 
3 
3 
3 

Telic 
make 
access 
control 
r u n 
assist 
publish 
solve 
facilitate 
insight 
combine 
calculate 
execute 
t ranslate 
suppose 
provide information 
access data 
imitate 
provide feedback 
human freedom 
teach children 
enable people 
manage information 
process words 
support program goals 
reduce analysis t ime 
perform useful computat ions 

16.9616 
16.5691 
12.2216 
8.6411 
4.1410 
3.0016 
2.9701 
2.8860 
2.2718 
1.9592 
1.2977 
1.2792 
1.2630 
1.1340 
0.8969 
0.1026 
0.0998 
0.0900 
0.0066 
0.0266 
0.0255 
0.0231 
0.0009 
0.0003 
0.0002 
0.0001 

1 
3 
3 
3 
3 
3 
3 
3 
3 
1 
3 
3 
3 
3 
3 
3 
1 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Fig. 7.9. Weighted quaUa structures for book and computer 
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Conversation 
Jaccard Bval. 

Formal 
concept 
expression 
context 
object 
sound 
function 
material 
place 
employee 
skill 
interaction 
communication 
activity 
people 
label 
t ime 
source 
text 
transmission 
information 
contact 
u t terance 
transact ion 
school activities 
da tum 
mannerism 
communication difficulties 
ambient audio 
official forms 
priceless t idbi ts 

6.6834 
6.8487 
6.2338 
4.6343 
4.4566 
4.1414 
4.1324 
3.7806 
3.4710 
3.3323 
3.1092 
3.0006 
2.9859 
2.9027 
2.7427 
2.6158 
1.6782 
1.6877 
1.2251 
1.2182 
1.1309 
0.9499 
0.9412 
0.2094 
0.1462 
0.0636 
0.0412 
0.0148 
0.0140 
0.0002 

3 
3 
3 
0 
0 
0 
0 
0 
0 
3 
3 
3 
3 
0 
3 
1 
0 
1 
3 
3 
3 
1 
3 
3 
3 
0 
1 
3 
3 
0 

Agentive 
make 
create 

3 
0 

Consti tut ive 
relationship 
silence 
answer 
question 
sentence 
story 
laughter 
unit 
tree 
contribution 
world 
sequence 
requests 
repetit ion 
token 
bonus 
pauses 
ut terance 
cliches 
interpersonal exchanges 
brief debates 

6.1848 
5.7213 
6.6866 
4.8714 
4.8663 
4.4669 
3.1766 
2.9359 
2.7633 
2.6421 
2.1804 
1.8986 
1.4969 
1.4267 
1.2746 
1.2166 
1.1568 
0.9499 
0.2556 
0.0082 
0.0003 

3 
3 
3 
3 
3 
3 
1 
1 
0 
3 
0 
3 
3 
3 
1 
1 
3 
0 
3 
3 
3 

Telic 
exchange 
establish 
further 
allo^v 
create 
generate 

«=« gloss 
exchange information 
exchange ideas 
enable people 
pass t ime 
teach skills 

4.2769 
3.3630 
3.2694 
3.2489 
2.7141 
2.0107 
1.9484 
0.4780 
0.2313 
0.1896 
0.1161 
0.0469 
0.0171 

3 
3 
0 
3 
0 
0 
0 
0 
3 
3 
3 
0 
3 

Fig. 7.10. Weighted qualia structure for conversation 
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Data Mining 
Jaccard Eval. 

Formal 
data analysis 
intelligence 
analysis 
tool 
prediction 
approach 
speciality 
system 
application 
functionality 
process 
mechanietn 
type 
practice 
technology 
activity 
employment 
u s e 
name 
area 
da tum 
da ta warehousing technologies 
subject 
information process 
information process techniques 

2.1492 
1.4242 
1.2009 
1.1987 
0.9682 
0.7279 
0.624B 
0.6018 
0.5209 
0.3974 
0.3840 
0.3B03 
0.3372 
0.3310 
0.3240 
0.3207 
0.2B66 
0.2128 
0.1944 
0.1856 
0.1701 
0.1497 
0.1403 
0.0498 
0.0005 

3 
0 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
0 
3 
3 
3 
0 
3 
3 
0 
0 
3 
0 
3 
3 

Agentive 
design 3 

Const i tut ive 
knowledge 0.7062 3 

Telle 
connect 
achieve 
uncover 
research 
answer 
support 
look 
provide information 
search 
tell 
identify pat terns 
discover pat terns 
identify trends 
provide a foundation 
improve services 
gain business intelligence 
explore knowledge 
detect dependencies 
gain business 
analyse large volumes 
find ne^v prospects 
analyze disparate customer da ta 

0.6949 
0.3661 
0.3460 
0.3374 
0.2122 
0.2025 
0.1834 
0.1627 
0.1451 
0.1099 
0.0969 
0.0934 
0.0765 
0.0620 
0.0559 
0.0048 
0.0045 
0.0036 
0.0223 
0.0022 
0.0011 
0.0002 

0 
3 
3 
3 
3 
3 
0 
3 
3 
1 
3 
3 
3 
1 
3 
3 
3 
3 
1 
1 
3 
3 

Natural Language Processing 
Jaccard Eval. 

Formal 
linguistics 
technique 
intelligence 
method 
model 
aspect 
scheme 
system 
research 
application 
science 
technology 
area 
product 
document procese ing applications 

1.0047 
0.4983 
0.3669 
0.2748 
0.1847 
0.1380 
0.1268 
0.0760 
0.0636 
0.0603 
0.0636 
0.0414 
0.0373 
0.0337 
0.0174 

3 
3 
3 
3 
3 
3 
3 
1 
3 
3 
3 
3 
0 
0 
3 

Agentive 
design 3 

Const i tut ive 
Telic 

build 
keep track 
understand 
soften 
provide 
build tailored knowledge base 

0.1037 
0.0820 
0.0662 
0.0601 
0.0384 
0.0008 

3 
3 
3 
0 
3 
3 

Fig. 7.11. Weighted quaUa structure for data mining and NLP 

7.4.4 Summary 

We have presented an approach to automatically learning qualia structures 
from the Web. Such an approach is especially interesting for lexicographers 
aiming at constructing lexicons, but even more for natural language processing 
systems relying on deep lexical knowledge as represented by qualia structures. 
We have in particular shown that the qualia structures learned by our system 
are reasonable. Overall, it is valid to claim that our system is the first one 
automatically producing complete qualia structures for a given term. Such an 
approach is important for ontology learning as it yields ontological relations 
relevant for at least all physical objects. 
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7.5 Related Work 

The problem of learning conceptual relations from text has not been ad­
dressed to the same extent as the problem of learning synonyms, taxonomic or 
meronymic relations. The most prominent approach to learning conceptual re­
lations is the discovery of collocations. These collocations can be based on syn­
tactic dependencies (compare [Madche and Staab, 2000, Gamallo et al., 2002, 
Ciaramita et al., 2005, Schutz and Buitelaar, 2005]), but can also be defined 
on the basis of word windows as well as at the sentence or document-level 
[Sanderson and Croft, 1999]. In what follows, we discuss work related to the 
acquisition of ontological relations from a corpus. We will see that most re­
search has indeed focused on binary relations. We also discuss work related 
to the acquisition of attributes as well as of qualia structures. Finally, some 
preliminary work on defining a calculus to combine ontology learning results 
is also discussed. 

Madche and Staab 

Madche and Staab [Madche and Staab, 2000] present an approach using a 
generalized association rules algorithm [Agrawal and Srikant, 1994] to find 
conceptual relations between words at the appropriate level of abstraction 
with respect to a given taxonomy. In their approach, transactions are defined 
in terms of words occurring together in certain syntactic dependencies. The 
shallow parser SMES is used to extract such syntactic dependencies from the 
German version of the Mecklenburg Vorpommern corpus (compare Section 5). 
The syntactic dependencies are transformed into transactions which serve as 
input for the generalized association rules algorithm. Association rule discov­
ery algorithms have been used especially for data mining of customer behavior 
in supermarkets. The aim here is to find patterns such as 'snacks are purchased 
together with drinks' or 'peanuts are purchased with soda', which describe the 
shopping behavior of customers and can thus be used to optimize product 
placement, advertising or pricing. In order to describe the approach in more 
detail, we first introduce the notions of a transaction, association rule as well 
as confidence and support for such an association rule. 
A transaction ti is a set of items which occur together in some context, i.e. 
ti •= {ai,i--,o-i,m}- Hereby, Madche and Staab [Madche and Staab, 2000] de­
fine transactions over the concepts C of a given ontology. In the following, we 
will assume a set T of transactions T := {ti, ...tn}- An association rule now 
has the form X ^Y, where X and Y are sets of concepts, i.e. X,Y C C and 
furthermore are disjoint -^ H ^ — ^- Now we can compute the support and 
confidence of association rules as follows: 



Related Work 223 

fi^ rvv^ \{ti\XuYCU}\ 

Madche and Staab consider the extension of Srikant and Agrawal 
[Srikant and Agrawal, 1997] to determine the associations at the appropri­
ate level of generalization with respect to a given taxonomy. Each trans­
action ti is extended to include each superconcept of an item Ojj, i.e. 
t[ := ti U {oj,g I ttij <c ai,s and ai^j € ti}. Further, in line with Srikant 
and Agrawal [Srikant and Agrawal, 1997], they exclude rules X ^ Y where 
Y contains a subconcept of some element in X and also eliminate rules X ^Y 
which are subsumed by an 'ancestral' rule X' => Y' in the sense that X' only 
contains superconcepts for all the concepts in X and analogously for Y and 

r. 
Madche and Staab in particular apply the following four steps to derive 

binary conceptual relations using the above generalized rule association algo­
rithm: 
1. Determine binary associations T := {{ai,i,ai,2},-", {an,i,an,2}} where 

there was a syntactic dependency between ai,i and 0̂ ,2 found in the cor­
pus. 

2. Prom the binary transactions ti build a set T" of extended transactions 
using the concept hierarchy as defined above. 

3. Determine the confidence and support for all the association rules X =^Y 
where |X| = | F | = 1. 

4. Output the association rules which exceed a user defined confidence and 
support and which are not subsumed by some rule X' =>Y'. 

The conceptual relations computed in this way are then evaluated in terms 
of precision and recall compared to the relations in a gold standard ontology. 
As the results yielded this way are very coarse, the authors additionally de­
fine the Generic Relation Learning Accuracy (RLA) introducing a gray-scale 
between completely wrong and totally correct. The RLA is computed by av­
eraging over all the discovered relations D, i.e. 

RLA{D, R) = -rLy\ RLA{d, R) (7.6) 

Furthermore, the RLA of a discovered relation d is calculated as follows: 

RLA{d,R) = maXreR max{MA{d,r),MA{d,r'^)) (7.7) 

where r"^ is the inverse relation of r and MA is defined as follows: 

MAiiaua2),ibub2)):=VCmaiJiyCLA{aM (7-8) 

The CLA is defined as: 

CLAia,b):=..^ r f / l ' f i ,, (7.9) 
d[lcs{a,b),top)+ d{a,b) 
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The best results achieved by Madche and Staab are an average generic 
relation learning accuracy of RLA = 0.67, corresponding to a precision P = 
11% and a recall R = 13%. 

Kavalec and Svatek 

Kavalec and Svatek [Kavalec and Svatek, 2005] have recently extended the 
model of Madche and Staab by introducing the 'above expectation' (AE) 
heuristic to measure the association between a verb and a pair of concepts. If 
the measure is above some threshold, the verb is considered a good candidate 
to label the relation between the two concepts. The AE measure suggested by 
Kavelec et al. is defined as 

It computes the ratio between the observed joint frequency of ci and C2 
given the fact that we have seen the verb v and the joint frequency estimated 
under independence assumption. 

Gamallo et al. 

Gamallo et al. [Gamallo et al., 2002] present an approach to map syntactic 
dependencies to semantic relations. As a first step, they use a shallow parser 
together with some basic attachment heuristics to derive syntactic dependen­
cies between words in a corpus. In a second step, different syntactic positions 
are clustered on the basis of the words appearing at this position, thus yield­
ing, on the one hand, classes of similar syntactic positions as well as, on 
the other, classes of similar words which appear at these positions and thus 
fulfill the selectional restrictions of these. The mapping from the syntactic 
to the semantic level is accomplished by a set of interpretation rules which 
map syntactic structures into certain regions in the space of semantic rela­
tions. These semantic relations are for example: agent, theme, cause, mode, 
locator, posessor, possessed, effect, purpose, function, hyponymy, meronymy, 
etc. This mapping remains completely underspecified, underlying some con­
straints. As discussed by Gamallo et al., this mapping is to a great extent 
domain-dependent and can be further constrained by considering the nature 
of the argument appearing at the syntactic position. 

Ciaramita et al. 

Ciaramita et al. [Ciaramita et al., 2005] present an unsupervised approach 
to automatically derive conceptual relations from the GENIA corpus 
[Ohta et al., 2002]. First, a statistical dependency parser [Charniak, 2000] is 
used to extract the following syntactic relations from the corpus: 

• SUBJECT-VERB-DIRECT.OBJECT 
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• SUBJECT-VERB-INDIRECT_ OBJECT 

whereby the indirect and direct object can be additionally modified by 
a noun such as in 'protein molecule stimulation' where stimulation is modi­
fied by 'protein molecule' or by a prepositional phrase as in 'overproduction 
of a protein'. These syntactic collocations are then tested for their signifi­
cance using a x^-test (compare Section 4.1.6), and only the collocations sig­
nificantly occurring more often than by chance are kept. At a further step, 
the arguments of the relations are generalized with respect to the hierarchy 
of the Genia ontology. The authors rely on the approach of Clark and Weir 
[Clark and Weir, 2002] to determine whether using a hypernym instead of the 
hyponym leads to significantly different probabilities. They compare the prob­
ability p{r\c, s) with p{r\c', s) where c' is a superconcept of c. li p{r\c', s) and 
p{r\c, s) do not significantly differ, c' is regarded as an appropriate generaliza­
tion. The authors present a twofold evaluation of their approach. On the one 
hand, they present the learned relations to a biologist for manual validation, 
coming to the conclusion that 83.3% of the learned relations are correct, and 
furthermore 53.1% of the generalized relations have been generalized appro­
priately. On the other hand, they align some top classes of Genia to DOLCE, 
an upper level ontology in order to detect inconsistencies. They conclude that 
the number of inconsistencies is small and consequently the relations learned 
can be regarded as reasonable. To our knowledge, Ciaramita et al.'s as well 
as Madche et al.'s work is in addition to ours the only work aiming at appro­
priately generalizing relations with respect to the underlying taxonomy. 

Heyer et al. 

Heyer et al. [Heyer et al., 2001] suggest an approach relying on the extrac­
tion of collocations from a large text corpus as a basis to derive conceptual 
or ontological relations. Heyer et al. argue that collocations can denote a 
variety of relations (hyponymy, cohyponymy, instance-of, agent/action, etc.) 
with very different properties (symmetry, anti-symmetry, transitivity). Inter­
estingly, they suggest that certain properties of the relation can be identified 
from the organization of collocations. They also examine an iterative approach 
in which the collocations for collocation sets are computed. This is what the 
authors call second-order collocations. In fact, the authors show that calculat­
ing higher-order collocations leads to more homogeneous classes. 
Finally, they also present some very interesting ideas about how to combine 
partial ontology learning results. They suggest the definition of a set of heuris­
tic rules as follows: 

There is a certain relation r between A and B, and 
There is some strong but (unknown) relation between A and B 
(given by collocation computation) 

r holds with more evidence 
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There is a certain relation r between A and B 
B is similar to B' 
There is some strong but unknown relation between A and B' 

There is a relation r between A and B' 

A has a certain important property P 
B is similar to A 

B has the same property p 

Definitely, it is appealing to reason on the basis of different results with 
a calculus as suggested by Heyer et al. However, the rules suggested are def­
initely adhoc and have no clear motivation. In fact, it is our view that such 
rules have to be automatically learned and thus grounded with respect to a 
given dataset. The interesting question then is in how far the automatically 
learned rules correspond to our intuitions. 

Ogata and Collier 

Ogata and Collier [Ogata and Collier, 2004] present a pattern-based approach 
to derive subclass relations from text using similar patterns as used by Hearst 
[Hearst, 1992]. Interestingly, they also present a non-monotonic and 'modal' 
calculus to reason on the extracted results. The rules, for example, look as 
follows: 

must-properSubtype (X, Y) 

properSubtype(X,Y) 

So, if X must be a subclass of Y, then it certainly is. 

evidentiaLproperSubtype(X,Y) 
not(must-properSubtype(Y,X)) 

properSubtype(X,Y) 

Thus, if we have evidence that X is a subclass of Y and no evidence that 
Y must be a subclass of X, then we conclude that X is actually a subclass of Y. 
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may-properSubtype(X,Y) 
not(must_properSubtype(Y,X)) 
not(evidential-properSubtype(Y,X)) 

properSubtype(X,Y) 

Thus, X is a subclass of Y if it may be the case that X is a subclass of Y and 
it is not the case that Y must be a subclass of X nor do we have evidence 
that Y is a subclass of X. 

most(X,Y) 
not(most(Y,X)) 
not(must_properSubtype(Y,X)) 

properSubtype (X, Y) 

So, we have evidence for the fact that X is a subclass of Y if most of the 
elements of X are contained in Y and not the other way round. 

Furthermore, the authors include other more specific and to some extent 
proprietary rules to derive properSubType, may .properSubtype as well as evi-
dentiaLproperSubtype statements. 

Here the interesting questions are how must, may and evidential as well 
as the negation not are interpreted, but, unfortunately, there is no discussion 
in the paper on these issues. The authors do not evaluate the impact of such 
a calculus but only present results of the pattern-matching on biochemical 
texts. In general, the same comments as for Heyer et al.'s approach apply 
here. While the idea of using such a calculus is definitely interesting, the 
rules need to be derived from existing data, for instance by using inductive 
techniques to approximate the target ontology to be learned. 

Yamaguchi 

Yamaguchi [Yamaguchi, 2001], besides addressing the learning of taxonomic 
relations by an algorithm pruning WordNet, also applies Schuetze's word space 
method to find similar terms and suggest potential relations to a user. He 
presents a variant of Schuetze's word space approach using 4-grams, i.e. a four 
word window, instead of four-letter-grams as used by Schiitze [Schiitze, 1993] 
(compare Section 6.5.1). The computation of similarity between words is then 
performed calculating the cosine of the angle between the word vectors. If 
the similarity is above a certain threshold, the system suggests a potential 
(anonymous) conceptual relation between both words. Using a threshold of 
0.9993 on a legal corpus, the approach extracts 90 relations of which 53 are 
judged as correct by a domain expert, while 23 are considered as inappropriate. 
This gives a precision of 53 / 90 = 58.89%. 
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Buitelaar et al. 

Buitelaar et al.'s OntoLT system [Buitelaar et al., 2004] (compare Section 
6.5.1.3) also provides a mapping for the purpose of learning relations, that 
means, slots with their corresponding domain and range. They propose the 
SubjToClass_PredToSlot_DObjToRange rule which maps a subject to 
the domain, the predicate or verb to a slot or relation and the object to its 
range. The method of Buitelaar et al. requires manual inspection and valida­
tion of the generated relations and does not tackle the problem of finding the 
most appropriate and general domain and range with respect to a given con­
cept hierarchy. Recently, Schutz and Buitelaar [Schutz and Buitelaar, 2005] 
have also presented an approach in which they evaluate their approach in 
terms of recall and precision with respect to a gold standard, achieving a 
precision between 9.1% and 11.9%, depending on the evaluation set used. 

Poesio and Almuhareb 

Poesio and Almuhareb [Poesio and Almuhareb, 2005] address the problem of 
classifying attributes into the six categories: quality, part, related-object, ac­
tivity, related-agent and non-attribute. They train a classifier to recognize the 
above categories on the basis of (i) morphological information, (ii) the results 
of clustering the attributes in an unsupervised fashion, (iii) results of issuing 
certain question-like queries to a search engine as well as (iv) certain heuristics 
to distinguish between attributive and conceptual uses. On the one hand, using 
a binary classifier distinguishing attributes from non-attributes, they achieve 
an F-measure of 89.2% for the attribute class and 41.7% for the non-attribute 
class. On the other hand, with a 5-way classifier, they achieve an F-measure 
of 53.8% on the non-attribute class and F-measure between 81-95% on the 
other 4 classes. The reason why five classes are considered is that the part and 
related-object classes have been joined due to the fact that they were found 
difficult to discriminate. Poesio and Almuhareb further show that clustering 
nouns on the basis of their attributes instead of the values of these attributes 
such as specified by adjectives leads in general to more accurate clusters (see 
[Almuhareb and Poesio, 2004] and [Poesio and Almuhareb, 2004]). 

Yamada and Baldwin 

Yamada and Baldwin [Yamada and Baldwin, 2004] present an approach to 
learning telic and agentive relations from corpora analyzing two different ap­
proaches: one relying on matching certain lexico-syntactic patterns as well as 
a second approach consisting in training a maximum entropy model classifier 
on the basis of syntactic dependencies extracted with a dependency parser. 
They evaluate both approaches using 30 nouns as well as 50 verbs as potential 
fillers of a qualia role. The approaches are evaluated by comparing the output 
with two hand-crafted gold standards in terms of a variant of Spearman's rank 
correlation. Their conclusion is that the results produced by the classification 
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approach correlate better with the two gold standards. The patterns used by 
Yamada and Baldwin [Yamada and Baldwin, 2004] differ substantially from 
the ones used in our approach due to the fact that we have been using the 
Web as a corpus with a search engine as interface, not allowing to query for 
regular expressions. 

Claveau et al. 

Claveau et al. [Claveau et al., 2003] use Inductive Logic Programming (ILP) 
[Lavrac and Dzeroski, 1994] to learn whether a given verb is a qualia element 
or not. A supervised approach is presented, which relies on part-of-speech and 
semantic tags for words, but also on information about the relative position 
of the words as features to derive rules indicating a qualia relation between a 
noun and a verb. The outcome is a set of nine rules predicting a corresponding 
qualia relation between a noun and a verb. They present a theoretical, empir­
ical as well as linguistic evaluation of their method. Prom a theoretical point 
of view (actually empirical in our view), the results are evaluated by cross-
validation in terms of precision, recall and Pearson's coefficient with respect 
to the gold standard. Empirically, they present the positive and negative pairs 
to four Generative Lexicon experts for a posteriori evaluation. The results are 
presented in terms of true positives, true negatives, false positives and false 
negatives and in terms of Pearson's coefficient. The method is found to per­
form better than simply using a x^-test assessing the correlation between the 
nouns and verbs as a baseline. From a linguistic point of view, the authors 
conclude that "it appears that the clauses give very general surface clues about 
the structures that are favored in the corpus for the expression of qualia rela­
tions". In general, their approach does not go as far as learning the complete 
qualia structure for a lexical element in an unsupervised way as presented in 
our approach (compare Section 7.4). In fact, in their approach they do not 
distinguish between different qualia roles and restrict themselves to verbs as 
potential fillers of qualia roles. 

Pustejovsky et al. 

Pustejovsky et al. [Pustejovsky et al., 1993] present an interesting framework 
for the acquisition of semantic relations from corpora, not only relying on 
statistics, but guided by theoretical lexicon principles. Their framework is 
embedded in the theory of the Generative Lexicon, and one of their main 
aims is to acquire qualia structures by analyzing machine readable dictionar­
ies as well as corpora. In particular, they suggest combining co-occurrence 
information or collocational analysis as well as linguistic phenomena such as 
metonymy and polysemy for knowledge acquisition of lexical items. 
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7.6 Conclusion and Open Issues 

In this chapter, we have addressed several issues related to the acquisition of 
attributes and relations from a corpus. Concerning the learning of attributes, 
we have presented an approach relying on adjective modification of nouns 
which finds an intensional description of the attribute by resorting to Word-
Net. We have further presented results of a human evaluation and with re­
spect to the concept hierarchy induction task. Further, we have qualitatively 
discussed concept lattices built on the basis of the automatically extracted 
attributes. The different evaluations have shown that the attributes derived 
are indeed reasonable. 

Concerning the discovery of relations, we have on the one hand addressed 
the task of finding the appropriate level of generalization for the slots of prop­
erties derived from the verbal structures appearing in a corpus. Here we have 
shown that the conditional probability works well enough. To some extent, 
this result may be a consequence of the fact that the Genia ontology is very 
shallow. More experiments on different domains and corpora are needed to 
clarify which measure indeed works best. In general, it is important to em­
phasize that there is a substantial difference between a priori and a posteriori 
evaluations. In a priori evaluations, the gold standard is constructed inde­
pendently of the results of the system, and the system is then evaluated with 
respect to the gold standard in a strict way. In a posteriori evaluations, the re­
sults of a system are presented to the evaluator, who then classifies the results 
of the system. In the first case, the system can be penalized still if its results 
are reasonable and just because an answer diverges from the one in the gold 
standard. A posteriori evaluation differs in this respect as the results merely 
depend on how inclined the evaluator is to regard the suggestions of the sys­
tem as correct. The difference between a priori and a posteriori evaluation is 
illustrated by Schutz and Buitelaar, who present their results both in terms 
of a priori as well as a posteriori evaluation. With respect to the a posteriori 
evaluation, they report an average precision between 17.7% and 23.9%, yield­
ing approx. 10% higher results compared to the a priori evaluation. Examples 
for a priori evaluations are those of Madche et al., Schutz and Buitelaar as 
well as ours. Examples for a posteriori evaluations are those of Ciaramita et 
al., Yamaguchi, but also Schutz and Buitelaar. With respect to the directly 
comparable approach of Madche and Staab, our approach gets much higher 
results in terms of precision or direct matches, i.e. 33.53% compared to 11%. 
The best a priori precision of Schutz and Buitelaar (11.9%) is comparable to 
that obtained by Madche et al. However, the focus of the latter approach was 
not on learning the right level of generalization. 

On the other hand, we have also presented an approach to learn specific 
relations typically occurring in ontologies and describing the nature of objects. 
In particular, we have presented an approach to learning qualia structures and 
shown that the results are indeed promising. Our results are not directly com­
parable to the approaches of Poesio et al., Yamada and Baldwin or Claveau 
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et al. as each of the approaches aims at learning different types of relations. 
Nevertheless, it is certainly valid to claim that our approach is the only one 
known to us learning complete qualia structures. 

Future work should address the question whether relations can also be 
learned from non-verbal structures, e.g. from noun phrases. Concerning the 
learning of qualia structures, a few issues remain open. On the one hand, it 
would be important to have a clear interpretation of the different qualia roles. 
It could even be considered to extend the approach to learning other specific 
relations. On the other hand, an important issue is to be able to distinguish 
between different senses of a given word. Finally, in order to improve the 
current approach, a gold standard of qualia structures will definitely need to 
be constructed. 

As mentioned several times in the discussion of related work, a calculus 
being able to reason on partial results from the ontology learning process, 
combining these results into a big picture, is certainly highly appeaUng and 
desirable. In this respect, it would be necessary to define an inductive ap­
proach, possibly using machine learning techniques, to automatically derive 
the rules underlying the calculus from existing data. 

Finally, with respect to learning relations, ontology learning should exploit 
the whole range of lexical semantic theories available to constrain the process 
according to linguistic principles. 



8 

Population 

In this chapter, we address the population of ontologies on the basis of text 
documents. According to the definitions of Section 2, population of an ontol­
ogy involves finding instances of relations as well as of concepts. The problem 
of finding instances of relations is indeed a very difficult one and practically 
requires full understanding of natural language. This is clearly out of the scope 
of this thesis. A more modest target is the extraction of a set of predefined re­
lations. This is the aim of the information extraction task as originally defined 
in the context of the Message Understanding Conferences (MUC). 

In the context of this thesis, we do not deal with the acquisition of in­
stances of relations, but restrict ourselves to the detection of instances of 
concepts. To some extent, this has also been the aim of the named entity 
recognition task, typically considered as a subtask of information extraction. 
Named entity recognition deals with the recognition of named entities in texts 
as well as their classification to the correct class. State-of-the-art named en­
tity recognition systems are characterized by the fact that they typically only 
consider (i) a fixed and (ii) small number of classes. The MUC named entity 
task [Hirschman and Chinchor, 1997], for example, distinguishes three classes: 
person, location and organization, and the CoNLL^ task adds one more: misc, 
while the ACE framework^ adds two more: GPE (Geo-Political-Entity) and 
facility. However, the set of categories still remains fixed and small. 

Some researchers have addressed the challenge of classifying named en­
tities with respect to a larger number of classes. Fleischman and Hovy 
[Fleischman and Hovy, 2002], for example, take into account 8 classes: ath­
lete, politician/government, clergy, businessperson, entertainer/artist, lawyer, 
doctor/scientist and police. Evans [Evans, 2003] considers a totally unsu­
pervised scenario in which the classes themselves are derived from the 
documents. Hahn and Schnattinger [Hahn and Schnattinger, 1998b] con-

' http://cats.uia.ac.be/conll2003/ner/ 

^ http://www.itl.nist.gov/iaui/894.01/tests/ace/phasel/index.htm 
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sider an ontology with 325 concepts, and Alfonseca and Manandhar 
[Alfonseca and Manandhar, 2002] consider 1200 WordNet synsets. 

In this line, we tackle the classification of named entities with regard to 
hundreds of classes as specified within an ontology. The remainder of this 
chapter is structured as follows: in Section 8.1 we first give an overview of the 
main approaches to named entity classification and ontology population. In 
Sections 8.2 and 8.3 we present our own approaches to the task. The chapter 
concludes with a discussion of related work in Section 8.4 as well as with a 
brief summary in Section 8.5. 

8.1 Common Approaches 

In this section, we provide an overview of the main techniques used for popu­
lating an ontology with concept instances. We first, once again, briefly discuss 
approaches based on lexico-syntactic patterns. Then we present similarity or 
memory-based techniques and finally discuss supervised approaches such as 
applied for named entity recognition or information extraction. 

8.1.1 Lexico-syntactic Patterns 

Lexico-syntactic patterns can also be used to extract instance-of relations in 
case we assume that the NP at the hyponym position is actually an instance. 
This straightforward idea is exploited by a number of systems which match 
these patterns on the Web (compare [Evans, 2003, Etzioni et al., 2004a, 
Pasca, 2004]). These approaches are discussed in more detail in Section 8.4, 
but consult also Sections 6.1 and 6.5, where approaches based on lexico-
syntactic patterns are discussed in detail. 

8.1.2 Similarity-based Classification 

Similarity or memory-based approaches typically are based on Harris' dis­
tributional hypothesis and thus in line with other approaches in which 
the context of a phrase is used to disambiguate its sense [Yarowsky, 1995, 
Schiitze, 1998] or class [Lin, 1998c] or to discover other semantically related 
terms [Hindle, 1990]. The basic similarity-based assignment of an instance 
to its concept is formally described in Algorithm 12. The algorithm assigns 
an instance i represented by a certain context vector Vi to that concept c 
maximizing the similarity to the corresponding vector Vc. 

Different formulations of such an algorithm exist. We have seen in Section 
6.5.2 that Widdows rephrases the problem as one of finding the k nearest 
neighbors of the new word in the taxonomy and then choosing the place in 
the taxonomy where these neighbors are 'most concentrated'. The problem is 
formulated in a similar fashion by Madche and Staab [Madche et al., 2002], 
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Algorithm 12 Similarity-based instance classification algorithm 
cl£issify(set of instances / , corpus T, set of concepts C) 
{ 

foreach c in C 
{ 

Vc = getContextVector(c,T); 
doFeatureWeighting(vc) 

} 
foreach i in I 
{ 

vi = getContextVector(i,T); 
class(i)=argmaXj. sim(vc,Vi); 

} 
return class; 

} 

where the fc-nearest neighbors can vote for the new candidate with respect to 
some measure. 

Algorithm 12 is the simplest we can imagine, being quite inefficient at 
the same time, as we have to iterate through all concepts in the ontology 
for each instance. Clever optimizations can be used here. On the one hand, 
one can use feature indexing strategies to retrieve all the examples having at 
least one feature in common with the instance to be classified. On the other 
hand, if the concepts are ordered hierarchically, the search space can be ex­
plored in a more intelligent fashion either traversing the concept hierarchy 
top-down or bottom-up (compare [Madche et al., 2002]). A crucial question 
for such similarity-based approaches is how to define the context of a certain 
word. Though most approaches represent the context of a phrase as a vector, 
there are great differences in which features are used, ranging from simple 
word windows [Yarowsky, 1995, Schiitze, 1998] to syntactic dependencies ex­
tracted with a parser [Hindle, 1990, Pereira et al., 1993, Grefenstette, 1994]. 
A second crucial question is how to construct the context vectors for classes 
by aggregating the vectors of their subclasses. 

The main problem of such similarity-based approaches is, however, data 
sparseness. In fact, the contextual vectors are to some extent idiosyncratic 
representations of the context of a word. In many cases, the similarities in 
vector space thus also correspond to semantic similarities. In other 
higher similarity in vector space has to be regarded as accidental and due to 
sparse data. 

8.1.3 Supervised Approaches 

Supervised approaches predict the category of a certain instance with a model 
induced from training data using machine-learning techniques. Such super-
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vised approaches have been exploited, for example, in the context of the named 
entity recognition (NER) task. Bikel et al. [Bikel et al., 1999] and Zhou and Su 
[Zhou and Su, 2002], for instance, apply Hidden Markov Models, while Borth-
wick et al. [Borthwick et al., 1998] and Chieu and Ng [Chieu and Ng, 2003] 
use a Maximum Entropy-based approach. Sekine et al. [Sekine et al., 1998] 
and Karkaletsis et al. [Karkaletsis et al., 2000] learn a decision tree classi­
fier, while Isozaki and Kazawa [Isozaki and Kazawa, 2002] and Kazama et al. 
[Kazama et al., 2002] present an approach using Support Vector Machines. 
Hendrickx and van den Bosch [Hendrickx and van den Bosch, 2003] make use 
of memory-based learning. However, when considering hundreds of concepts as 
possible tags, a supervised approach requiring thousands of training examples 
seems quite unfeasible. The use of handcrafted resources such as gazetteers 
or pattern libraries (compare [Maynard et al., 2003]) is deemed to be equally 
unfeasible due to the high cost involved in creating and maintaining such 
resources for hundreds of concepts. Interesting and very promising are ap­
proaches which operate in a bootstrapping-like fashion, using a set of seeds 
to derive more training data such as the supervised approach using Hidden 
Markov Models of Niu et al. [Niu et al., 2003] or the unsupervised approach 
of Collins and Singer [Collins and Singer, 1999]. 

The information extraction task can be defined as the one of instantiating 
a set of templates on the basis of text analysis and is thus also very relevant 
to the ontology learning population task. Hereby, templates are predefined 
target knowledge structures to be extracted by the system. Typical target 
knowledge structures have been joint ventures and microelectronics product 
announcements (MUC-5), management succession events (MUC-6) as well as 
airline crashes and launch events (MUC-7). As the early information extrac­
tion systems were customized for a certain domain and typically difficult to 
port to another, recent efforts have concentrated on developing adaptive sys­
tems, usually at the cost of reducing expressiveness of the extraction rules or 
by making strong assumptions, such as what can be called the one-template-
and-occurrence-per-document assumption. In fact, most of the state-of-the-art 
systems are able to extract exactly one instance of a specific template from 
one document. 

Several supervised machine learning based techniques have been pro­
posed to automate the information extraction as well as the annotation pro­
cess of documents (compare [Soderland, 1999, Preitag and Kushmerick, 2000, 
Ciravegna, 2001, Califf and Mooney, 2004]). However, machine learning ap­
proaches inducing extraction rules for each concept from training data do 
typically not scale to large numbers of concepts as ontologies typically con­
sist of. Second, in order to annotate with respect to a few hundred con­
cepts, a training set in the magnitude of thousands of examples needs to 
be provided^, an effort that probably not many people are willing to make. 

^ Our experiences with the Amilcaie system in [Ciravegna, 2001] showed that at 
least ten examples for each concept to be extracted are necessary. 
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Third, machine learning based approaches rely on the assumption that doc­
uments have a similar structure as well as content, an assumption which 
seems quite unrealistic considering the heterogeneity of the current web. 
Thus, several researchers have started to look at totally unsupervised ap­
proaches such as Etzioni et al. [Etzioni et al., 2004a] as well as approaches 
performing a first unsupervised step and then using the results of this 
first step to induce new extraction rules in a bootstrapping manner (see 
[Brin, 1998, Ciravegna et al., 2003, Etzioni et al., 2004b]). Summarizing, the 
obvious drawback of supervised approaches is that one has to provide labeled 
data from which to train. In case we are considering hundreds of possible 
target classes, such an endeavor is deemed to be unfeasible. 

8.1.4 Knowledge-based and Linguistic Approaches 

Some approaches essentially see the population task as a disambiguation prob­
lem and thus as a byproduct of natural language understanding. Hahn et al. 
[Hahn and Schnattinger, 1998b], for example, present an approach in which, 
for each unknown named entity, hypothesis spaces containing the diverse on-
tological categories the entity could belong to are created. The different hy­
potheses are then refined or discarded iteratively while the text is linguis­
tically analyzed. A so called qualification calculus in the background makes 
use of linguistic evidence as well as of a domain-specific ontology to weight, 
discard and refine the different hypotheses in the hypothesis space. We dis­
cuss this approach in more detail in Section 8.4. Another approach heav­
ily relying on linguistic analysis is the one by Shamsfard and Barforoush 
[Shamsfard and Barforoush, 2004]. They present a system called JTi45T/ex­
ploiting a great variety of linguistic expressions to derive ontological relations 
formalized as tuples. Interesting aspects of HASTI are that the system is able 
to reason and detect inconsistencies between already extracted results and 
that it proceeds, similar to Hahn et al.'s system, iteratively, constantly refin­
ing the acquired ontology as more text is processed. The drawback of such 
knowledge-based and linguistic approaches is certainly that either one needs 
a relatively complex knowledge base or ontology as in Hahn et al.'s approach, 
or a set of very accurate tools for linguistic processing, i.e. domain-specific 
POS-taggers, parsers, etc., as in HASTI. 

8.1.5 Road Map 

So far, we have discussed the main approaches to ontology population. We 
conclude that supervised approaches are not a feasible option for the task 
of classifying entities with respect to an ontology consisting of hundreds of 
classes. Though knowledge-based approaches are indeed very interesting and 
promising, it is not our goal to provide our system with a detailed and complex 
ontology beforehand. We thus opt for similarity-based and semi-supervised ap­
proaches. In the remainder of this chapter, we present two different approaches 
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addressing the classification of named entities with respect to an ontology con­
sisting of several hundreds of categories. The task we are addressing is much 
more challenging than the standard named entity recognition task, requir­
ing to scale to large numbers of concepts and thus rendering the task much 
harder. At the same time, the goal is to keep the system portable to another 
domain by allowing to exchange the underlying ontology and corpus. It should 
be clear from this discussion that a supervised system is simply not suitable 
for the task. 

The first approach presented in Section 8.2 is a standard similarity-based 
approach in which a named entity is assigned to that entity showing the 
highest degree of distributional similarity. The approach in itself is certainly 
not novel. The contribution of our analysis lies in the systematic exploration 
of certain parameters as well as techniques by which the performance of such 
a similarity-based approach can be increased. Part of the material has been 
published previously in [Cimiano and Volker, 2005] and constitutes joint work 
with Johanna Volker. 

The second approach described in Section 8.3 is actually semi-supervised 
in the sense that Hearst-style patterns are given as input to the system. 
However, these patterns do not vary from domain to domain so that, from 
the usage point of view, the system is unsupervised as no training data 
needs to be provided to apply the system in a specific domain. This sec­
ond approach, called Learning by Googling, is inspired by novel social stud­
ies showing that collective knowledge is much more powerful than indi­
vidual knowledge (cf. [Surowiecki, 2004]). The approach uses the massive 
amount of implicit knowledge on the Web to derive conclusions about a cer­
tain entity. This material is to a great extent based on the material pre­
viously published in [Cimiano et al., 2004a], [Cimiano and Staab, 2004] and 
[Cimiano et al., 2005b]. 

8.2 Corpus-based Population 

Having briefly discussed the traditional named entity recognition task, in this 
section we propose a more challenging one, the classification of named en­
tities with regard to a large number of classes specified by an ontology or 
more specifically by a concept hierarchy. Our approach aims at being domain 
independent in the sense that the underlying ontology and the corpus can 
be replaced. As already argued above, in our view this aim can only be ac­
complished if one resorts to an unsupervised system, since providing labeled 
training data for a few hundred concepts as we consider in our approach is 
often unfeasible. 

We present an unsupervised approach which - as many others - is based 
on the assumption that words are semantically similar to the extent to which 
they share syntactic contexts (compare Section 6.5). 
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In this section, we explore varying different parameters with respect to 
Algorithm 12. We investigate the impact of using different feature weight­
ing measures and various similarity measures described by Lee [Lee, 1999]. 
Further, to address data sparseness problems, we examine the influence of 
(i) anaphora resolution in the hope that it will yield more context infor­
mation as speculated by Grefenstette [Grefenstette, 1994], (ii) downloading 
additional textual material from the Web as in the approach of Agirre et 
al. [Agirre et al., 2000] and (iii) making use of the structure of the con­
cept hierarchy or taxonomy in calculating the context vectors for the classes 
as in the works of Hearst and Schiitze [Hearst and Schiitze, 1993], Resnik 
[Resnik, 1993] or Pekar and Staab [Pekar and Staab, 2002]. The section is or­
ganized as follows: Section 8.2.1 presents the approach in detail and Section 
8.2.2 describes the evaluation measures. In Section 8.2.3 we present our ex­
periments analyzing the impact of varying the above mentioned parameters 
step by step, starting with a window-based approach as a baseline. A brief 
summary concludes this section. 

8.2.1 Similarity-based Classification of Named Entities 

We examine an approach to named entity classification in line with Algorithm 
12. It is already clear from the description of the algorithm that at least three 
functions need to be specified. First, we need to specify how the context vectors 
are constructed. Second, we need to fix the measure according to which the 
vectors will be weighted. Third, we need to choose some similarity measure. In 
our experiments we examine in fact different context models, different feature 
weighting strategies as well as similarity measures. 

We start our analysis by comparing context extraction techniques relying 
on word windows as well as on pseudo-syntactic dependencies extracted by 
means of regular expressions defined over part-of-speech tags (compare Section 
4.1.4.2). We analyze the impact of different similarity and feature weighting 
measures. As they were found to perform particularly well by Lee [Lee, 1999], 
we use the following similarity measures: the cosine and Jaccard measures, 
the LI norm as well as the Jensen-Shannon and Skew divergences. In order 
to weight the features, we use the following measures: 

Conditimal{n,feat) = P{n\feat) = J!' " (8.1) 

J (jeat) 

PMI{n,feat)^log^^^l^ (8.2) 

Resnik(n,feat) = Snifeat) P{n\feat) (8.3) 
where Snifeat) = Zn' P{n'\feat) log^^^^. 

Further, f{n,feat) is the number of occurrences of a term n with fea­
ture feat, fifeat) is the number of occurrences of the feature feat and P{n) 
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is the relative frequency of a term n compared to all other terms. The PMI 
and Resnik measures have already been described in Section 6.2.2. 

8.2.2 Evaluation 

As mentioned by Collins and Singer [Collins and Singer, 1999], the named 
entity recognition task essentially consists in learning a function from an input 
string (a proper name or named entity) to its class. We evaluate our approach 
on the tourism population dataset described in Section 5.3. Our goal is to 
learn a function fs which approximates the functions /A and / B specified 
by the two annotators. We assume that these functions are given as sets 
Cx := {(e,c)|e G dom{fx)Afxie) = c}. While / ^ and fs are total functions, 
fs is a partial one as our system does not always produce an answer. In fact, 
if the distributional similarity between the entity to be tagged and all the 
concepts in the ontology is minimal, the system will give no answer. Thus, 
it is not only important to measure the recall, but also the precision of the 
system. We evaluate the system with the standard measures of precision, recall 
and F-measure by averaging the results for both annotators: 

p _ \CAnCs\ p _ ICBHCS] P ^ EA+EB. 

^^ ~ \Cs\ ^^ ~ \Cs\ ^ 2 

p . _ 2*PA*RA P„ _ 2*PB*RB P _ FA+FS 
^^ ~ PA+RA ^^ ~ PB+RB ^ ~ 2 

As named entities can be tagged at different levels of detail, and there is 
certainly not only one correct assignment of a concept, we also consider how 
close the assignment of the system is with respect to the assignment of the 
annotator by using the learning accuracy originally introduced by Hahn and 
Schnattinger [Hahn and Schnattinger, 1998b]. However, we consider a slightly 
different formulation of the learning accuracy in line with the measures de­
fined by Madche et al. [Madche et al., 2002]. The measure of Hahn et al. and 
our learning accuracy measure are not totally equivalent. The main difference 
is that we measure the distance between nodes in terms of edges - instead of 
nodes as in Hahn's version - and we do not need any case distinction con­
sidering whether the classification is correct or not. Additionally, in contrast 
to Hahn et al.'s learning accuracy, our measure is symmetric. Section A.l of 
the appendix formally explains the differences between both measures. The 
learning accuracy between two concepts is defined as: 

LA(a, b) := -rj- , \ , ; r - - ^ ; — - (8.4) 
^ ' d{top, c) + S{a, c) + d{b, c) + l ^ ^ 

where c = lcs{a, b), i.e. c is the least common subsumer as defined in Section 
2. 
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8.2.3 Exper iments 

In what follows, the results of our extensive experiments are presented. In 
Section 8.2.3.1 we report about experiments using words appearing within a 
certain window of words from the target word. We then describe the results 
using pseudo-syntactic dependencies as context to build the vectors describ­
ing words in Section 8.2.3.2. We discuss different methods addressing data 
sparseness in Section 8.2.3.3. 

8.2.3.1 Using Word Windows 

In a first experiment, we use the n words to the left and right of a certain 
word of interest excluding so called stopwords and without trespassing 
sentence boundaries. Here n is the so called window size. The advantage of 
such an approach is that no preprocessing is necessary to extract context 
information. However, it also has the drawback that context vectors become 
larger compared to using syntactic dependencies. As a result, the similarity 
calculation becomes less efficient (cf. [Grefenstette, 1994]). Consider, for 
example, the following discourse: 

Mopti is the biggest city along the Niger with one of the most vibrant 
ports and a large bustling market. Mopti has a traditional ambience that other 
towns seem to have lost. It is also the center of the local tourist industry and 
suffers from hard-sell overload. The nearby junction towns of Gao and San 
offer nice views over the Niger's delta. 

Here we would extract the following vectors for concepts when using a 
window-size of 3, excluding stopwords and without trespassing sentence 
boundaries: 

city: biggest(l), Niger(l) 
port: vibrant (1), large(l) 
market: bustling(l), large(l) 
ambience: traditional(l), town(l) 
town: ambience(l), seem(l) 
center: local(l) 
overload: suffer(l), hard-sell(l) 
tourist industry: suffer(l), local(l) 
junction town: nearby(l), Gao(l), San(l) 
view: San(l), offer(l), nice(l), Niger(1) 
delta: Niger(l) 

as well as the following vectors for instances: 
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Table 8.1. Results for different word window sizes (in percent). 

Standard 
F LA 

Conditional 
F LA 

PMI 
F LA 

Resnik 
F LA 

3 Word Window 
Cosine 
JS 
Jaccard 
LI 
Skew 

9.52 
7.27 
1.51 

13.03 
13.53 

53.69 
41.86 
22.51 
62.91 
61.67 

12.78 
6.77 
1.51 

13.53 
12.53 

56.21 
39.66 
22.51 
56.78 

58.2 

11.78 
3.51 

0.5 
11.03 
12.03 

52.57 
30.05 
21.31 

52 
51.88 

9.77 
1.5 
0.5 

9.52 
12.53 

50.11 
25.54 
21.31 
47.55 
54.04 

5 Word Window 
Cosine 
JS 
Jaccard 
LI 
Skew 

13.22 
8.73 

0 
16.21 
16.21 

57.46 
43.24 
22.06 
63.37 
64.16 

16.96 
10.47 

0 
16.96 
16.71 

60.26 
39.76 
22.06 
62.22 
62.13 

13.47 
4.49 

0.5 
13.47 
17.46 

49.41 
23.06 
21.66 
49.29 
56.11 

13.22 
2.74 

0.5 
13.47 

18.2 

48.25 
20.59 
21.66 
49.36 
56.26 

10 Word Window 
Cosine 
JS 
Jaccard 
LI 
Skew 

13.97 
8.98 
0.25 

14.46 
14.96 

57.54 
43.65 
18.23 
63.12 
64.49 

13.97 
7.23 
0.25 

16.21 
16.21 

56.34 
34.75 
18.23 
60.79 
62.78 

11.22 
2 

0.25 
10.97 
17.46 

44.14 
21.7 

17.41 
43.05 
54.18 

13.72 
1 

0.25 
13.72 
19.7 

48.18 
17.61 
17.41 
47.61 

57.78 

Mopti: traditional(l), biggest(1) 
Niger: city(l), delta(l), view(l) 
Gao: San(l), ofFer(l), town(l), junction(l) 
San: offer(l), view(l), Gao(l), nice(l) 

For our example, we would get the following similarities between named 
entity vectors and concept vectors with respect to the Jaccard measure: 

Named Enti ty 
Mopti 

Niger 
Gao 

San 

Concept 
city 
ambience 
n.a. 
view 
ambience 
view 
junction town 

Jaccard Similarity 

0.33 
0.33 
n.a. 
0.33 

0.2 

0.33 
0.14 

These similarities do not correspond to our intuitions and seem in fact quite 
idiosyncratic, hinting at the fact that a context model based on word windows 
is a rather poor one. Of course, if we would compute the vectors for a larger 
corpus and possibly using a window size greater than three, we would yield 
similarities which correspond more to our intuitions. However, the interpre­
tation of a context model based on word windows remains rather unclear. 
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Nevertheless, we implemented this approach as a baseline in order to ver­
ify whether syntactic dependencies actually perform better in our setting. 
We vary the similarity measure, the feature weighting strategy and experi­
ment with the three different window sizes: 3, 5 and 10 words, thus producing 
5 X 4 X 3 = 60 runs of the similarity-based classification algorithm. The results 
of the different runs are given in Table 8.1. The best result is an F-measure of 
19.7% and a learning accuracy of 57.78%. It was achieved when using the Skew 
divergence as similarity measure, the mutual information as feature weighting 
measure and a window size of 10. 

8.2.3.2 Using Pseudo-syntactic Dependencies 

Instead of merely using the words occurring within a given window size before 
and after the word in question, we also experiment with pseudo-syntactic 
dependencies as defined in Section 4.1.4.2. These dependencies are not really 
syntactical as they are not obtained from parse trees, but from a very shallow 
method consisting in matching certain regular expressions over part of speech 
tags. Using pseudo-syntactic dependencies, we would get the following vectors 
for the above discourse: 

city: biggest(1) 
port: vibrant(l) 
market: bustling(l) 
ambience: traditional(l) 
town: seem^ubj(l) 
center: of-touristJndustry(l) 
tourist industry: center_of(l), local(l) 
overload: hard-sell(l) 
junction towns: nearby(l) 
view: nice(l), ofFer_obj(l) 

and the following ones for named entities: 

Mopti: is-city(l), has_ambience(l) 
Niger: has_delta(l) 
Gao: junction.of(l) 
San: offer_subj(l) 

It can be observed clearly that using pseudo-syntactic dependencies in 
general yields smaller vectors. For our example, we would in fact get no 
reasonable similarities for the short^text considered. We need to resort to a 
much bigger text collection to yield similarities corresponding to our intu­
itions. However, the context model based on syntactic relations seems easier 
to interpret. Table 8.2 shows the results for the version of the classification 
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algorithm making use of the pseudo-syntactic dependencies as well as the 
different similarity and feature weighting measures (Standard). The best 
result was an F-measure of 19.58% corresponding to a learning accuracy of 
60.03%. The overall best learning accuracy was 60.44%. Though the results 
are comparable to the version using word windows as context, as the length 
of the vectors is much smaller and thus the computation of the similarities 
is faster, we conclude that using the pseudo-syntactic dependencies is an 
interesting alternative and present the results of further modifications to our 
algorithm with respect to the version using this sort of dependencies. In what 
follows, we present the different methods to address data sparseness. 

8.2.3.3 Dealing with Data Sparseness 

Using Conjunctions 

In order to address the problem of data sparseness, we exploit conjunctions 
of named entities in the sense that if two named entities appear linked by the 
conjunctions 'and' or 'or', we count any occurrence of a feature with one of 
the named entities also as an occurrence of the other. As the results in Ta­
ble 8.2 show (see Conjunctions), this simple heuristic improves the results of 
our approach considerably. The top results are F-measures of 22.8% (Cosine), 
22.57% (LI norm) and 22.57% (Skew divergence) with corresponding learning 
accuracies of 61.23%, 61.4% and 62.7%, respectively. The best overall learn­
ing accuracy was 65.19% obtained with no feature weighting and the Skew 
divergence. 

Exploiting the Taxonomy 

An interesting option discussed by Resnik [Resnik, 1993], Hearst 
and Schiitze [Hearst and Schiitze, 1993] as well as Pekar and Staab 
[Pekar and Staab, 2002] is to take into account the taxonomy of the underly­
ing ontology to compute the context vector of a certain term by considering 
the context vectors of its subconcepts. This is in fact a delicate issue as 
some studies have shown that this does not work, while other have shown 
the contrary. We adopt here a conservative strategy and take only into 
account the context vectors of direct subconcepts to compute the vector of a 
certain term. In fact, the context vector of a concept will be the sum of the 
context vectors of all its direct subconcepts (this version is simply referred 
to as Ontology in Table 8.2). However, the aggregated vectors can also be 
normalized. In fact, we experiment with the two possibilities also discussed 
by Pekar and Staab [Pekar and Staab, 2002]: (i) standard normalization of 
the vector or (ii) calculating its centroid (compare [Pekar and Staab, 2002] 
and [Hearst and Schiitze, 1993]). In the latter case, the only difference is that 
we calculate an average vector by dividing through the number of direct sub-
concepts. As the results in Table 8.2 show, only the version with the centroid 
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Table 8.2. Results for pseudo-syntactic dependencies (in percent) 

No weighting 
F LA 

Conditional PMI 
F LA| F LA 

Resnik 
F LA 

Standard 
Cosine 
JS 
Jaccard 
LI 
Skew 

13.29 
2.56 

L4 
15.62 
14.45 

55.77 
39 

29.99 
59.45 
59.41 

16.78 
6.29 

1.4 
18.65 
17.02 

58.47 
41.86 
29.99 
59.31 
58.71 

19.11 
5.13 

1.4 
17.72 

19.58 

58.93 
40.25 
29.99 
57.29 
60.03 

15.38 
4.9 
1.4 

18.18 
19.35 

56.33 
38.12 
29.99 
58.91 

60.44 
Conjunctions 

Cosine 
JS 
Jaccard 
LI 
Skew 

18.51 
10.16 
11.54 
18.28 
21.9 

61.25 
52.06 
44.22 
63.58 

65.19 

20.77 
11.06 
11.54 
21.9 

22.12 

60.87 
43.46 
44.22 
63.27 
63.41 

22.8 
10.84 
11.54 
22.57 
22.57 

61.23 
42 

44.37 
61.4 
62.7 

21.22 
10.61 
11.54 
22.12 
22.35 

60.32 
43.1 

44.37 
61.71 
62.92 

Conjunctions -|- Ontology 
Cosine 
JS 
Jaccard 
LI 
Skew 

5.42 
10.61 
11.09 
5.42 
5.42 

63.12 
51.18 
44.93 
66.82 
65.82 

5.64 
10.84 
11.09 
5.64 
5.64 

64.04 
46.09 
44.93 
64.46 
64.99 

6.32 
10.61 
11.09 
5.87 
5.87 

64.17 
43.59 
44.81 
63.59 
63.43 

5.42 
11.06 
11.09 
5.87 
5.87 

62.52 
44.88 
44.81 
62.78 
63.39 

Conjunctions H- Ontology (Category) 
Cosine 
JS 
Jaccard 
LI 
Skew 

10.16 
10.61 
11.09 
13.77 
14.67 

47.84 
51.18 
44.93 
55.78 
59.79 

3.16 
10.84 
11.09 
5.42 
6.77 

42.84 
46.09 
44.93 
49.7 

58.04 

5.87 
1.36 

11.09 
9.71 

7.9 

45.76 
38.65 
44.81 
44.03 
53.71 

5.19 
0.9 

11.09 
6.55 
6.32 

43.16 
34.92 
44.81 
49.14 
59.06 

Conjunctions -|- Ontology (Centroid) 
Cosine 
JS 
Jaccard 
LI 
Skew 

22.35 
10.61 
11.09 
23.02 
13.54 

Conjunctions 
Cosine 
JS 
Jaccard 
LI 
Skew 

22.25 
10.11 
10.59 
23.15 
15.28 

63.57 
51.18 
44.93 
63.27 
62.63 

22.12 
10.84 
11.09 
22.8 

23.02 

61.05 
46.09 
44.93 
62.53 
64.11 

22.12 
10.38 
11.09 
22.8 

19.86 

60.66 
42.33 
44.81 
61.72 
63.47 

20.99 
10.61 
11.09 
22.12 

21.9 
-f- Ontology (Centroid) -|- Anaphora Res 

64.8 
49.12 

42.8 
65.45 
65.17 

22.7 
11.01 
10.59 
23.37 

23.82 

62.19 
45.58 

42.8 
63.92 
65.04 

22.92 
11.24 
10.59 
23.6 

18.88 

61.69 
43.6 
43.1 

63.32 
64.49 

22.25 
10.36 
10.59 
23.37 
23.37 

60.62 
43.39 
44.81 
61.89 

64.33 
olution 

61.06 
43.16 

43.1 
63.42 
64.69 

Conjunctions -|- Ontology (Centroid) -|- Web Crawling 
Cosine 
JS 
Jaccard 
LI 
Skew 

25.4 
6.25 
12.1 
24.4 
9.07 

65.43 
45.61 
51.01 
64.22 
64.68 

25.6 
3.63 
12.1 

25.81 
26.21 

64.46 
39.72 
51.01 
64.43 

65.91 

25.6 
3.43 

10.08 
25.81 

12.1 

63.94 
23.63 
50.4 

63.72 
64.31 

24.4 
1.81 

10.08 
24.6 
25.2 

61.9 
20.17 

50.4 
62.41 
65.18 
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method does indeed yield better results, whereas the standard (no vector 
normalization) and the category method (standard vector normalization) 
actually make the results worse. The best result with the centroid method 
is an F-measure of 23.02% and a learning accuracy of 64.11% (using the 
Skew divergence and the conditional probability weighting). The best overall 
learning accuracy of 64.33% is obtained with the weighting based on Resnik's 
measure and the Skew divergence. 

Anaphora Resolution 

As another approach to overcome the problem of data sparseness, we 
explored the impact of anaphora resolution on the task of named entity 
recognition. Based on MINIPAR (cf. [Lin, 1993]) and the work by Lappin 
and Leass [Lappin and Leass, 1994], we implemented an algorithm for 
identifying intra-sentential antecedents of personal pronouns which replaces 
each (non-pleonastic) anaphoric reference by the grammatically correct form 
of the corresponding antecedent as shown in the following example: 

The port capital of Vathy is dominated by its fortified Venetian har­
bor. 

which is converted into: 

The port capital of Vathy is dominated by Vathy's fortified Venetian 
harbor. 

Or the following one: 

Holiday hooligans used to head to nearby Benitses, until it was ruined, 
so now they head north to cut a swathe through the coastline's few remaining 
unspoilt coves and fishing villages. 

which is transformed into: 

Holiday hooligans used to head to nearby Benitses, until Benitses was 
ruined, so now the hooligans head north to cut a swathe through the 
coastline's few remaining unspoilt coves and fishing villages. 

In order to improve the detection of pleonastic occurrences of it, we 
used a modified set of patterns developed by Dimitrov [Dimitrov, 2002]. 
Although our implementation seems to perform a bit worse than the one 
by Lappin and Leass (maybe due to the very noisy data set) the evaluation 
yielded a remarkable precision of about 79% and a recall of approximately 
70%. 

As shown by Table 8.2, the use of anaphora resolution even improves the 
results we obtained by exploiting the taxonomy, leading to an F-measure of 
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23.82% and a learning accuracy of 65.04% (Skew divergence). The overall best 
learning accuracy of 65.45% is obtained with no feature weighting and using 
the LI norm as similarity measure. 

Downloading Documents from the Web 

Since named entities tend to occur less often than common nouns representing 
possible classes, they are to a particularly high degree affected by the problem 
of data sparseness. We address this issue by downloading from the web a set 
of at most 20 additional documents Di for each named entity i. Moreover, 
in order to make sure that each d € Di belongs to the correct sense of i, we 
compare d with all documents in the original corpus containing at least one 
occurrence of i. The decision whether to keep d or not is made by creating 
bag-of-words style vector representations for each of the involved documents, 
computing their cosine and only considering the document if the similarity 
is over an empirically determined threshold of 0.2. Table 8.2 shows that this 
way of extending the corpus with documents from the web notably improves 
all previous results. With the Skew divergence, we achieved an F-measure 
of 26.21% and a learning accuracy of 65.91%, which is also the overall best 
learning accuracy. It is important to emphasize that the anaphora resolution 
component has not been applied to the documents downloaded from the Web, 
so that the results for the Anaphora Resolution (AR) and Web Crawling (WC) 
versions are reported separately in the following. 

8.2.3.4 Post-processing 

Finally, we also examine a post-processing step in which the k best answers of 
the system (ranked according to their corresponding similarities from highest 
to lowest) are checked for their statistical plausibility on the Web. For this 
purpose, inspired by the work of Markert et al. [Markert et al., 2003], for 
each named entity e and the top k answers ci,.., c^ we generate the following 
Hearst-style [Hearst, 1992] pattern strings and count their occurrences on the 
Web by using the Google Web API: 

n{ci) such as e 
e and other 7r(ci) 
e or other 7r(cj) 
7r(ci), especially e 
7r(cj), including e 

where 7r(«;) is the result of looking up the plural form of the word w in 
the lexicon containing word forms delivered with LoPar (see Section 4.1). The 
number of hits of the above pattern strings are normalized by dividing through 
the number of hits of the underlined parts. At the end, that answer of the k 
best is chosen which maximizes the sum of these coefficients. We experimented 
with different values for k, i.e. 3, 5 and 10. This extension is efficient as we only 
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need to generate A; + 1 queries per pattern to the Google Web API for each 
named entity. Table 8.3 gives the results of this step when post-processing the 
results produced with the versions of our system using anaphora resolution 
and crawling documents from the Web. The results show that the F-measures 
increase considerably when using our post-processing step. The best result is 
an F-measure of 32.6% with a precision of 36.82%, a recall of 29.24% and 
a learning accuracy of 69.87% for the version of our system including this 
post-processing step. 

Table 8.3. Results of the post-processing step on the Anaphora Resolution and 
Web Crawling versions (in percent) 

1 F 1 P 1 R 1 LA 
Baseline 

AR (Anaphora Resolution) 23.82 31.55 19.13 
WC (Web Crawling) 26.21 29.68 23.47 

65.04 
65.91 

Post-processing 

AR + Post-processing 
WC -1- Post-processing 

AR -1- Post-processing 
WC + Post-processing 

AR -1- Post-processing 
WC -1- Post-processing 

k=3 
29.15 
30.58 

38.46 
34.54 

23.47 
27.44 

71.04 
67.71 

k=5 
28.7 
30.78 

37.87 
34.77 

23.1 
27.62 

71 
68.52 

k=10 
30.72 
32.6 

40.53 
36.82 

24.73 
29.24 

71.71 
69.87 

8.2.3.5 Discussion 

The best result of our approach is an F-measure of 32.6%, which is more than 
32 points above the naive baseline of F= 0.15%, consisting in randomly assign­
ing a class to an instance. Further, our results are almost 20 points over the 
majority-class-baseline of F=12.64%, calculated assuming that all instances 
are assigned to the class most frequently used by the annotators, i.e. country. 
With respect to the word-window based approach, we have yielded an abso­
lute improvement of 12.9 points. The best version of our approach, crawling 
additional texts from the Web and using the post-processing step achieves a 
precision of 36.82%, a recall of 29.34% as well as a learning accuracy of almost 
70%. Given the difficulty of the task, these results are very encouraging. 
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8.2.4 Summary 

We have addressed the problem of tagging named entities with regard to a 
large set of concepts as specified by a given concept hierarchy. In particular, 
we have presented an approach relying on Harris' distributional hypothesis as 
well as on the vector-space model which assigns a named entity to that concept 
which maximizes the contextual similarity with the named entity in question. 
The aim has not been to present a fully fledged system performing this task, 
but to investigate the impact of varying a number of parameters. In this line 
we have shown that the pseudo-syntactic dependencies we have considered are 
an interesting alternative to window-based approaches as they yield a higher 
learning accuracy and also allow for a more efficient computation of the simi­
larities. To address the typical data sparseness problem one encounters when 
working with corpora, we have examined the impact of (i) exploiting conjunc­
tions, (ii) factoring the underlying taxonomy into the computation of the con­
cept vectors as in the approach of Pekar and Staab [Pekar and Staab, 2002], 
(iii) getting additional context by applying an anaphora resolution algorithm 
developed for this purpose, and (iv) downloading additional documents from 
the World Wide Web as done by Agirre et al. [Agirre et al., 2000], showing 
that with the correct settings, all these techniques improve the results of our 
approach both in terms of F-measure and learning accuracy. Finally, we have 
also presented a post-processing step by which the system's k most highly 
ranked answers are checked for their statistical plausibility on the Web, which 
notably improves the results of the approach. In general, the best results were 
achieved using the conditional probability as feature weighting strategy and 
the Skew divergence as similarity measure, thus confirming the results ob­
tained by Lee [Lee, 1999]. Especially successful has been our post-processing 
step in which certain classification hypotheses are validated with respect to 
their statistical plausibility with respect to the Web. In the following sec­
tion, we present an approach relying on the statistical distribution of lexico-
syntactic patterns matched in the Web with the help of a standard web search 
engine. 

8.3 Learning by Googling 

Inspired by current social studies such as the one of Surowiecki 
[Surowiecki, 2004], in which it is argued that collective knowledge is much 
more powerful than individual knowledge, we present in this section a new 
paradigm of dealing with the problem of automatically populating ontologies. 
In very general terms our paradigm Learning by Googling is based on the idea 
that collective knowledge is gathered as a first step and then as a second step 
filtered, either automatically or manually by a knowledge engineer. In fact, if 
the collective knowledge is presented to a knowledge engineer, he can then ef­
fectively and efficiently customize this collective knowledge with regard to the 
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specific context of interest. In this model, the purpose of general knowledge is 
to compensate the potential lack of knowledge of an individual with respect 
to a certain topic, while the role of the individual is to filter the collective 
knowledge with regard to a specific context. With respect to the task of pop­
ulating ontologies, our Learning by Googling paradigm would collect evidence 
from the Web for the different concepts a given instance could belong to. The 
evidence collected can then be used either to find the concept with the max­
imal evidence automatically, or be presented to a knowledge engineer who 
selects the most appropriate concept given a certain context. This abstract 
model is instantiated by our PANKOW (Pattern-based Annotation through 
Knowledge on the Web) approach [Cimiano et al., 2004a] as well as by its 
successor C-PANKOW [Cimiano et al., 2005b]. The core of PANKOW is a 
pattern generation mechanism which creates pattern strings out of a certain 
pattern schema conveying a specific semantic relation, an instance to be an­
notated and all the concepts from a given ontology. It counts the occurrences 
of these pattern strings on the Web using the Google''*' API. The ontological 
instance in question is then annotated semantically according to what could 
be termed principle of maximal evidence, that means, with the concept having 
the largest number of hits. The approach is in principle semi-supervised as a 
set of patterns is provided. However, these patterns do not vary from domain 
to domain such that from a practical point of view the system is actually 
unsupervised in the sense that it needs no training data to adapt to a new 
domain. 

PANKOW has originally been conceived to support a web-page annotator 
in the task of assigning the instances appearing in a web page to the ap­
propriate concept in a given ontology in line with the CREAM framework 
[Handschuh, 2005]. In particular, PANKOW generates instances of lexico-
syntactic patterns indicating a certain semantic relation and counts their 
occurrences in the World Wide Web using the Google™ API. The statis­
tical distribution of instances of these patterns then constitutes the collective 
knowledge which is taken into account by the annotator to decide which con­
cept to annotate the instance with in the particular context. 

Let us assume, for example, that the string 'Niger' appears on a web page 
and we have no idea about how to annotate it. Figure 8.1 shows the collective 
knowledge about which concept 'Niger' belongs to. This collective knowledge 
is the result of aggregating the counts for different patterns conveying an 
instance-of relation between Niger and the concepts displayed. Intuitively, 
given these figures, we would naturally tend to annotate 'Niger' as a river as 
it seems to be its most prominent meaning on the Web. 

Figure 8.2, for example, shows a screenshot of OntoMat Annotizer 
[Handschuh and Staab, 2002], depicting a dialog in which the user is presented 
with the top 5 suggestions from the collective knowledge about how to anno­
tate the instance Niger, i.e. as a river, as a country, etc. The advantage of such 
an approach combining collective and individual knowledge to overcome the 
knowledge-acquisition bottleneck seems thus obvious: even if the individual 
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Fig. 8.2. PANKOW within an annotation scenario (interactive mode) 

has never heard about the instance in question, together with the collective 
knowledge and the local context in which the instance appears, he might get 
a fairly accurate idea of the concept it belongs to. 
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This illustrates the fact that formal (semantic) annotations can be approx­
imated to a certain extent by considering the statistical distribution of certain 
syntactic structures over the web. In this line, in [Cimiano et al., 2004a] we 
presented our vision of a 'Self-Annotating Web' in which globally available 
syntactic resources are considered to support metadata creation. The main 
idea herein is to approximate semantics by considering information about the 
statistical distribution of certain syntactic structures over the Web. 

However, as Niger can be a country or a river depending on the con­
text in which it appears, the example also shows that ambiguity is an im­
portant problem we need to deal with in such an approach. C-PANKOW 
[Cimiano et al., 2005b], as a further development of PANKOW, tackles — 
among others — the issue of ambiguity by taking into account the page on 
which the entity in question appears as context in order to select its most rel­
evant sense or meaning. Furthermore, it also reduces the querying complexity 
of PANKOW, thus making it scalable to larger ontologies. In the remainder of 
this section, we describe in detail the PANKOW system as well as its extension 
C-PANKOW. 

8.3.1 PANKOW 

PANKOW (Pattern-based ANnotation through Knowledge On the Web) is 
based on the idea that certain lexico-syntactic patterns as defined by Hearst 
can not only be matched in a corpus, but also in the World Wide Web 
as in the approaches of Markert et al. [Markert et al., 2003], Cimiano et 
al. [Cimiano et al., 2004a], Etzioni et al. [Etzioni et al., 2004a] or Cui et al. 
[Cui et al., 2004]. 
For this purpose, PANKOW generates pattern instances out of pattern 
schemata and counts the hits of these pattern instances on the web. For each 
instance or concept of interest, we thus yield the number of times it is related 
to other entities in the specific way indicated by the pattern schema. Thus we 
get a statistical web fingerprint for this object with respect to a given semantic 
relation. In what follows, we first describe the process from a general point of 
view. Then, in Section 8.3.1.2, we describe the patterns we use and finally we 
formally define what a statistical web fingerprint is and how it can be used. 

The approach is novel, combining the idea of using Unguistic patterns to 
identify certain ontological relations as well as the idea of using the Web as a 
big corpus to overcome data sparseness. It is unsupervised as it does not rely 
on any training data annotated by hand, and it is pattern-based in the sense 
that it makes use of linguistically motivated regular expressions to identify 
instance-concept relations in text. The driving principle behind PANKOW 
is that of disambiguation by maximal evidence in the sense that, for a given 
instance, it proposes the concept with the maximal evidence derived from 
Web statistics. This section is structured as follows: Section 8.3.1.1 presents 
the process of PANKOW, which instantiates the abstract model of Learning 
by Googling, in particular describing the pattern library used. Section 8.3.1.3 
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formally introduces statistical web fingerprints as used in PANKOW. Section 
8.3.1.4 describes the evaluation of PANKOW and Section 8.3.3 concludes this 
section with a brief summary. 

8.3.1.1 The Process of PANKOW 

The process of PANKOW, which instantiates our Learning By Googling 
paradigm, consists of three steps: 

Input: a set of entities (instances or concepts) to be classified with regard to 
an ontology. 

Step 1: The system iterates through the set of entities to be classified and 
generates instances of patterns, one for each concept in the ontology. For 
example, the instance South Africa and the concepts country and hotel are 
composed using a pattern schema of our pattern library (see 8.3.1.2) and 
resulting in pattern instances like ' 'South Africa is a country" and ' 'South 
Africa is a hotel" or "countries such as South Africa" and "hotels such 
as South Africa". 

Result 1: A set of pattern instances generated as described above. 
Step 2: Then, Google''*^ is queried for the pattern instances through its Web 

service API. The API delivers as its results: 
Result 2: the counts for each pattern instance. 
Step 3: The system sums up the query results to a total for each concept. 
Result: The statistical web fingerprint for each entity, that is, the results of 

aggregating for each entity the number of Google''" counts for all pattern 
instances conveying the relation of interest. 

The statistical web fingerprint then represents the collective knowledge 
about the potential concepts an instance could belong to or about the po­
tential superconcepts of a certain concept. Given the tasks of (i) classifying 
instances with regard to an ontology or (ii) finding an appropriate supercon-
cept for a new concept, a knowledge engineer could be presented with the 
most relevant view of a statistical web fingerprint in order to take a final de­
cision. 
Figure 8.3 depicts an example of how PANKOW can be employed in an an­
notation scenario. The figure illustrates the principle of disambiguation by 
maximal evidence within an annotation scenario. 

8.3.1.2 The Pattern Library 

In the following, we describe the patterns we use and give a corresponding 
example. It is important to emphasize that the pattern library in the case of 
PANKOW consists of plain strings which are sent to the Google API as search 
queries. 



254 Population 

Niger 
CZ> 

Gotigie 
,,,--— 

rivers such as Niger 

the river Niger 

coyrtlries such as Niger 

the country Niger 
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Fig. 8.3. PANKOW within an annotation scenario (automatic mode) 

Hearst Patterns 

The first four patterns have been used by Hearst to identify isa-relationships 
between the concepts referred to by two words in the text. However, they 
can also be used to spot msfance-o/-relations. In fact, in PANKOW they 
are used as indicating subclass as well as instance-of relations, depending on 
whether the entity to be classified is an instance or a concept. Correspondingly, 
we formulate our patterns using the variable i standing for the name of an 
instance and the variables Csup and Cgub standing for the name of a concept 
from the given ontology. The plural of c is denoted by 7r(c) as usual and is 
generated in the context of these experiments by a simply heuristic, that is, 
adding an 's' at the end of the word. 

The patterns reused from Hearst are: 

HEARSTl: 7r(cs„p) such as [i \ Cgub) 

HEARST2: such 7r(cs„p) as {i \ Cgub) 

HEARSTS: 7r(cs„p), (especially|including) (i | Csub) 

HEARST4: {i \ Csub) (and | or) other 7r(cs„p) 

Depending on whether we are attempting to classify an instance or a con­
cept, we would then either derive: instance-of(i,Cs„p) or subconcept(cg„i,,Cs„p). 
The above patterns would match the following expressions: 

continents such as Asia (HEARSTl) 
vehicles such as cars (HEARSTl) 
such continents as Africa (HEARST2) 
such cars as cabriolets (HEARST2) 
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presidents, especially George Washington (HEARSTS) 
vehicles, especially motor-bikes (HEARSTS) 
the Eiffel Tower and other sights in Paris (HEARST4) 
motor-bikes and other two-wheeled vehicles (HEARST4) 

Definites 

The next patterns are about definites, that means, noun phrases introduced 
by the definite determiner 'the'. Frequently, definites actually refer to some 
entity previously mentioned in the text. In this sense, a phrase like 'the ho­
tel' does not stand for itself, but it points anaphorically to a unique hotel 
occurring in the preceding text. Nevertheless, it has also been shown that 
in common texts more than 50% of all definite expressions are non-referring 
[Poesio and Vieira, 1998], i.e. they exhibit sufficient descriptive content to en­
able the reader to uniquely determine the entity referred to from the global 
context. For example, the definite description 'the Hilton hotel'has sufficient 
descriptive power to uniquely pick-out the corresponding real-world entity for 
most readers. One may deduce that 'Hilton' is the name of the real-world 
entity of type hotel to which the above expression refers. 

Consequently, we apply the following two patterns to categorize an in­
stance by definite expressions: 

DEFINITEl: the i c 

DEFINITE2: the c i 

The first and the second pattern would, for example, match the expressions 
'the Hilton hotel' and 'the hotel Hilton', respectively. It is important to men­
tion that in our approach these patterns are only used to categorize instances 
with respect to the ontology, but not concepts. 

Apposition and Copula 

The following pattern makes use of the fact that certain entities appearing in 
a text are further described in terms of an apposition as in 'Excelsior, a hotel 
in the center of Nancy'. The pattern capturing this intuition looks as follows: 

APPOSITION: {i \ Csub), a c,„p 

The most explicit way of expressing that a certain entity is an instance or a 
subconcept of a certain concept is by the verb 'to be' in a copula construction 
as 'The Excelsior is a nice hotel in the center of Nancy', for example. The 
pattern is defined as follows: 

COPULA: {i \ Csub) is a Csup 
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8.3.1.3 Statist ical Web Fingerpr ints 

Having defined these patterns, one could match them in a corpus and propose 
the corresponding relations. However, it is well known that the above patterns 
occur rarely and consequently one will need a sufficiently big corpus to find a 
significant number of matches. 

Thus, PANKOW resorts to the biggest corpus available: the World Wide 
Web. In fact, several researchers have shown that using the Web as a cor­
pus is an effective way of addressing the typical data sparseness problem 
one encounters when working with corpora (compare [Grefenstette, 1999], 
[Keller et al., 2002], [Markert et al., 2003], [Resnik and Smith, 2003]). We 
subscribe to the principal idea by Markert et al. [Markert et al., 2003] of ex­
ploiting the Google''" API. As in their approach, rather than actually down­
loading web pages for further processing, we just take the number of web 
pages in which a certain pattern appears as an indicator for the strength of 
the pattern. 

Given a candidate entity we want to classify with regard to an existing 
ontology, we instantiate the above patterns with each concept from the given 
ontology. For each pattern instance, we query the Google^" API for the num­
ber of documents that contain it. The function count models this query: 

count: E X C X P -> N (8.5) 

Thereby, E, C and P stand for the set of all entities to be classified, for the 
concepts from a given ontology and for a set of pattern schema, respectively. 
Thus, count (e, c,p) returns the number of hits of pattern schema p instantiated 
with the entity e and the concept c. We define the sum over all the patterns 
conveying a certain relation r: 

countr{e,c) = Y^ count(e,c,p) (8.6) 
pePr 

where Pr is the set of pattern schemata denoting a certain relation r. 
Now we formally define the statistical web fingerprint of an entity e with 

respect to a relation r and a set of concepts C: 

SF{e, r, C) := {(c, n) j c 6 C A n = countr{e, c)} (8.7) 

Instead of considering the complete statistical web fingerprints, we consider 
views of these such as defined by the following formulas. The first formula 
defines a view of the statistical web fingerprint which only contains the concept 
with maximal number of hits: 

SFmaxie,r,C) := {{c,n) \ c := argmaXc'eC countr{e,c') A 

n = countj.{e,c)} (8.8) 
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Here we assume that argmax breaks ties randomly so that SF^ax is a 
singleton set. We extend this to consider the top-m concepts with maximal 
count: 

SFmie,r,C) := {(c,n) | C = {ci,C2, ...,C|c|} A 

countr{e,ci) < ... < countr{e,c^c\) A 

c G {ci, ...,Cm} An = countr{e,c)} ifm< \C\ (8.9) 

Finally, we also define a view that takes into account only those concepts 
having hits over a certain threshold 6: 

SFg(e,r,C) := {(c,n) | countr{e,c) >6An = countr{e,c)} (8.10) 

We can now combine these views by set operations. For example, we yield 
the set of the m top concepts having hits over a threshold 6 as follows: 

SF^,e{e,r,C) = SFmie,r,C)nSFe{e,r,C) (8.11) 

As an example of such a view, let us consider again the visualization of 
the SFQ view of the statistical web fingerprint for Niger with regard to the 
instance-o/relation in Figure 8.1. 

8.3.1.4 Evaluation 

We evaluate our approach with respect to the LonelyPlanet dataset as de­
scribed in Section 5.3. In particular, we compare the answers of our system 
with the reference standards for subjects A and B and also evaluate PANKOW 
using the precision, recall and Fi measure, averaging over both annotators as 
described in 8.2.2. It is important to mention that we only take into account 
the 59 concepts used by the annotators as possible categories. Hereby, / stands 
for the set of instances to be assigned to an appropriate concept. 

As answers Smax,e of the system we consider the following set: 

Smax,e •= {(*,c) I i e -''A {(c,n)} = SFmax,9{i,mstance-of,C)} (8.12) 

where SFmax,e = SF^ax H SFg. 
Precision, recall and Fi-Measure are defined as follows: 

p ^ [correct answers] _ \Smax,e^Cy\ , . 
^ |total answers] \Smax,e\ 

H = [correct answers] _ \Smax,er\Cy\ . 
" [answers in reference standard[ \Cy\ 
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Furthermore, in our experiments we average the results for both annotators 
as given by the following formulas: 

PA±_PB 
2 

Pa., = - ^ - ^ (8.16) 

RA + RB 

T 
Ravg - 7, (8-17) 

•Tl.atJfl - 2 (,».i»j 

To get an upper bound for the task we are looking at, we also calculate 
the Fi-Measure oi Standard A measured against Standards and the other way 
round, yielding Fj =62.09% as average. This value thus represents an upper 
bound for any system attempting to find the correct class for an unknown 
instance. 

Table 8.4 shows the top 50 5Fmax(J,iiistance-of, C) values for different 
instances i. Whereas some classifications are definitely spurious, it can be ap­
preciated in general that the results are quite reasonable. Figure 8.4 shows 
the precision, recall and Fi-Measure values for different thresholds 6 within 
the interval [0..1000], averaged over both reference standards: StandardA and 
Standards • Obviously, the precision increases roughly proportionally to the 
threshold 0, while the recall and Fi-Measure values decrease. It can be ob­
served that P = R = F at 61 = 0. The best Fi^avg-Measure was 28.24% at a 
threshold of ^ = 60, and the best recall (Ravg) was 24.9% at a threshold of 
6 = 0. 

In a second version of the experiment, instead of merely choosing the 
concept with maximal count with respect to the statistical web fingerprint, we 
considered the top 5 concepts, i.e. the view 5^5,61 = SF^nSFe, and considered 
the answer as correct if the annotator's answer was in this view. The results in 
terms of the same measures are given in Figure 8.5. The qualitative behavior 
of the three measures is similar as in the first experiment, but obviously the 
results are much better. The best Fi-Measure of 51.64% was reached at a 
threshold of ^ = 50, corresponding to a precision of 66.01% and a recall of 
42.42%. Concluding, these results mean that in 66% of the cases the correct 
concept for an instance is among the top 5 suggestions and, on the other 
hand, for more than 40% of the instances the system is able to suggest up to 5 
concepts, one of which is the correct one. This is certainly a very satisfactory 
result and a good proof that using our PANKOW methodology to gather 
collective knowledge in the form of statistical web fingerprints and presenting 
certain views of these to a user would drastically help to reduce the time 
taken to annotate a given web page. Though the results seem very promising, 
there are two main drawbacks of the system. On the one hand, the number 
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Table 8.4. Top 50 instance-concept relations 

Instance 
Atlantic 
Bahamas 
USA 
Connecticut 
Caribbean 
Mediterranean 
South Africa 
Canada 
Guatemala 
Africa 
Australia 
Prance 
Germany 
Easter 
St Lawrence 
Commonwealth 
New Zealand 
Adriatic 
Netherlands 
St John 
Belgium 
San Juan 
Mayotte 
EU 
UNESCO 
Austria 
Greece 
Malawi 
Israel 
Perth 
Luxembourg 
Nigeria 
St Croix 
Nakuru 
Kenya 
Benin 
Cape Town 
St Thomas 
Niger 
Christmas Day 
Ghana 
Crete 
Antarctic 
Zimbabwe 
Central America 
Reykjavik 
Greenland 
Cow 
Expo 
Ibiza 

Concept 
city 
island 
country 
state 
sea 
sea 
town 
country 
city 
region 
country 
country 
country 
island 
river 
state 
island 
sea 
country 
church 
country 
island 
island 
country 
organization 
group 
island 
lake 
country 
street 
city 
state 
river 
lake 
country 
city 
city 
church 
river 
day 
country 
island 
continent 
country 
region 
island 
sea 
town 
area 
island 

# Google™ Matches 
1520837 
649166 
582275 
302814 
227279 
212284 
178146 
176783 
174439 
131063 
128607 
125863 
124421 
96585 
65095 
49692 
40711 
39726 
37926 
34021 
33847 
31994 
31540 
28035 
27739 
24266 
23021 
21081 
19732 
17880 
16393 
15650 
14952 
14840 
14382 
14126 
13768 
13554 
13091 
12088 
10398 
9902 
9270 
9224 
8863 
8381 
8043 
7964 
7481 
6788 
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Fig. 8.4. Precision, recall and Fi-Measwce for Smax,e over threshold 6 (instance 
cleissification) 

of queries issued to Google''*' is proportional to the number of concepts in 
the ontology, thus not allowing the system to scale to very large ontologies 
with hundreds of concepts. In our experiments, we have therefore restricted 
the number of possible categories to the 59 used by the annotators. 

On the other hand, the pattern matching is quite limited due to the prob­
lems related to the correct generation of plural forms and the limits of using 
a keyword based search engine for matching the patterns. Recall that the 
patterns used in PANKOW are merely plain strings which are sent to the 
Google API as queries. In particular, no sophisticated linguistic analysis to 
match more complex noun phrases can be performed in these settings. In the 
following section, we present the successor of PANKOW - called C-PANKOW 
- which partially alleviates these problems. 

8.3.2 C-PANKOW 

C-PANKOW [Cimiano et al., 2005b] has been developed to address some of 
the shortcomings of PANKOW. First, due to the restrictions of the pattern 
generation process, a lot of actual instances of the pattern schemata are not 
found. In particular the approach exhibits problems generating the correct 
plural forms of concept labels as well as matching more complex linguistic 
structures such as noun phrases including determiners, noun modifiers, etc. 
We overcome this problem in C-PANKOW by actually downloading the pages, 
analyzing them linguistically and matching the patterns instead of merely 
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Fig. 8.5. Precision, recall and Fi-measure and recall for 55,̂  over threshold 0 (in­
stance classification) 

generating plain strings and counting their Google''" hits. The results of the 
pattern-matching are also linguistically normalized, that means, words are 
mapped to their base forms, thus completely solving the problem with the 
generation of plural forms. 

At the same time, we overcome the second problem in this way, i.e. the 
large number of queries sent to the Google'''^ Web API. In fact, by downloading 
the pages and processing them locally, we reduce network traffic. PANKOW 
issues a number of Google^" queries proportional to the size of the ontol­
ogy considered. PANKOW does therefore not scale to larger ontologies. In 
C-PANKOW, we generate only a constant number of queries per instance to 
classify. As a result, C-PANKOW is able to annotate using very large ontolo­
gies. PANKOW was already able to take into account more concepts than 
standard named entity recognition systems, but C-PANKOW is able to con­
sider even more concepts than PANKOW and furthermore achieves a better 
runtime behavior. 

Third and most importantly, we contextualize the pattern matching by 
distinguishing between relevant and non-relevant pages. Hereby, relevance as­
sessment boils down to calculating the similarity of the involved pages. We 
present an evaluation of our system analyzing the impact of our notion of 
contextual relevance as well as varying the number of pages downloaded. The 
remainder of this section is structured as follows: Section 8.3.2.1 presents the 
process underlying C-PANKOW, which substantially differs from the one of 
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PANKOW. We present in detail the different components of the system as 
well as the new pattern library, which also substantially differs from the one 
used within PANKOW. Further, in Section 8.3.2.2, we discuss some complex­
ity issues, in particular comparing PANKOW with C-PANKOW. In Section 
8.3.2.3 we discuss our evaluation measures, and present the actual results of 
our experiments in Section 8.3.2.4. 

8.3.2.1 C-PANKOW Process 

In the context of C-PANKOW, we are concerned with assigning an instance 
appearing in a web page to its contextually most appropriate concept. In this 
sense, we will say that the instance in question is annotated and refer to this 
process either as population or annotation in this section. The process of C-
PANKOW is schematically described by the pseudocode in Algorithm 13 and 
is summarized in the following. 

1. The web page to be annotated is scanned for candidate instances. This 
process is described in detail below. 

2. Then, for each instance i discovered and for each clue-pattern pair in our 
pattern library P (described in detail below), an automatically generated 
query is issued to Google''*' and the abstracts or snippets of the n first 
hits are downloaded. 

3. Then the similarity between the document to be annotated and the down­
loaded abstract is calculated. If the similarity is above a given threshold 
t, the actual pattern found in the abstract reveals a phrase which may 
possibly describe the concept that the instance belongs to in the context 
in question. The way the similarity is computed is described below. 

4. The pattern matched in a certain Google™ abstract is only considered if 
the similarity between the original page and this abstract is above a given 
threshold. In this way the pattern-matching process is contextualized. 

5. Finally, the instance i is annotated with that concept c having the largest 
number as well as most contextually relevant hits. 

In what follows, we describe in detail every important step of the algo­
rithm, such as the procedure to recognize named entities in web pages as well 
as the process of downloading Google^'^ abstracts. We also describe how the 
similarity is computed as well as our pattern library. Finally, some complexity 
issues are discussed and the whole process is illustrated by means of a running 
example. In particular, all process steps will be discussed with respect to the 
web page depicted in Figure 8.6. 

Instance Recognition 

In order to detect candidate instances in a web page, first the complete HTML 
markup is eliminated and the text body of the page extracted. This step is 
necessary because a part-of-speech tagger is applied to assign word categories 
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Algor i thm 13 C-PANKOW's process in pseudocode 
C-PANKOW(document d, threshold t) 
{ 

/* recognize all the instances in input document */ 
I = recognizelnstances(d); 
foreach i E I 
{ 

foreach (p,c) 6 P 
{ 

/* download the n first Google'"'̂  abstracts 
matching the exact query c(j) */ 
Abstracts = downloadGoogleAbstracts(c(i),n); 
foreach a in Abstracts 
{ 

/* calculate the similarity between the 
document d and the Google'''^ abstract a */ 
sim = calculateSimilarity(a,d); 
if (sim > t) 
{ 

if (p.matches(a)) 
{ 

c = p.getConcept(); 
Hits[c] = Hits[c] + 1; 

} 
} 

} 
} 

} 
annotate(i,maxargc Hits[c]); 

to every token of the extracted text and the tagger is not able to handle 
HTML markup.^ Then the text is split into sentences, and every string which 
matches the following pattern is interpreted as an instance: 

INSTANCE := (\w+{DT})? ([a-z]+{JJ})? PRE (MID POST)? 

PRE := POST :=: (([A-Z][a-z]*){NNS|NNP|NN|NP|JJ|UH})+ 

MID := the{DT} | of{IN} | - { - } | '{POS} | 
(de|la|los|las|del){FW} | [a-z]+{NP|NPS|NN|NNS} 

* We use the QTag part-of-speech tagger in http://web.bham.ac.Uk/0.Mason/ 
software/tagger/. QTag's part-of-speech tagset can be found at http://www. 
ling.Ohio-state.edu/"ntyson/tagset/english-tagset.txt. 
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Fig. 8.6. Lonely Planet destinations description of Andorra from 
http://www.lonelyplanet.com/destinations/europe/andorra/activities.htm 

These expressions are intended to be interpreted as standard regular ex­
pressions over words and their corresponding part-of-speech tags, which are 
indicated in curly brackets. Paraphrasing, INSTANCE matches each optional 
sequence of arbitrary characters (\w+) tagged as a determiner (DT), followed 
optionally by a sequence of small letters ([a-z]+) tagged as an adjective (JJ), 
followed by an expression matching the regular expression denoted by PRE, 
which in turn can be optionally followed by an expression matching the con­
catenation of MID and POST. Thereby, PRE and POST match a sequence of 
tokens in which the first character is capitalized and tagged either as a plural 
proper noun (NPS), a plural common noun (NNS), a common noun (NN), 
a proper noun (NP), an adjective (JJ) or an interjection UH^. MID matches 
a sequence of determiners %e \ prepositions 'of \ the possessive marker ', a 
hyphen '-', a foreign word FW such as ^de\ ^deV, ^las\ 'los\ Has\ a lower 

This is important for processing Asian names which sometimes are tagged a,s 'UH' 
by the part-of-speech tagger. 
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case singular or plural proper and common nouns. For example, the tagged 
sequence Pas{NP} de{FW} la {FW} Casa{NP} (compare Figure 8.6) would 
be recognized as an instance, whereby 'Pas' would match the PRE, 'de la' 
the MIDDLE and 'Cosa'the POST part of the above regular expression. The 
instances discovered this way in our running example web page are given in 
Table 8.5 as a cross 'X' in the S(system) column. 

Downloading Google'^*^ Abstracts 

The patterns in C-PANKOW's pattern library are actually tuples (p, c) where 
p is a regular expression defined over part-of-speech tags as described above, 
and c a function c : string —> string called the clue (compare the approach to 
learning qualia structures described in Section 7.4). Given an instance i G I 
and a clue c, the query c{i) is sent to the Google^'^ API, and the abstracts of 
the first n documents matching this query are downloaded and processed to 
find instances of pattern p. For example, given the clue f{x) = "such as " ©ar 
and the instance Seville, n abstracts matching the query f(Seville), i.e. "such 
as Seville".® would be downloaded. Using such clues, a number of pages are 
downloaded, in which a corresponding pattern will probably be matched, con­
sequently restricting the linguistic analysis to a few promising pages. 

Similarity Assessment 

As described in our pseudocode algorithm in Algorithm 13, the similarity be­
tween each downloaded abstract and the web page in question is calculated. 
For this purpose, stopwords from both documents are first removed and vec­
tors representing the count for each word in the document in line with the 
bag-of-words model [Salton and McGill, 1983] are created. The cosine mea­
sure is used to calculate the similarity between the abstract and the document 
to be annotated. In particular, the similarity between the Google^'^-snippet 
and the document is measured as the cosine of the angle between their vectors 
(compare Section 4.1.5.2). Hereby, only those pages are considered relevant 
for which this similarity is over the threshold t, contextualizing the pattern-
matching process as a result. Therefore, a certain instance can be annotated 
with a different concept in diflFerent contexts, i.e. web pages. In general, the 
intuition behind this is to yield more accurate annotations and to choose the 
contextually most appropriate sense or concept for a given instance in case 
it is ambiguous. As a byproduct, we only need to linguistically analyze those 
Google™ abstracts which seem relevant for the context in question. In Sec­
tion 8.3.2.4, we also present the results of further experiments with different 
threshold values. 

The Pattern Library 

In what follows, we present the pattern library P we use and briefly describe 
the intuition behind each pattern. The patterns are in principle the same 

As usual, ® denotes the concatenation operator defined on two strings. 
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as used in PANKOW (compare Section 8.3.1.2), but they are here extended 
with the corresponding clues. Furthermore, in contrast to PANKOW's pattern 
library, the patterns here are not plain string but tuples {jp, c) where p is a 
regular expression defined over part-of-speech tags and c is a string issued as 
query to Google and used to download a number of snippets in which the 
pattern p is matched oflline. 

Hearst Patterns 

Also in C-PANKOW we reuse the following patterns defined by Marti Hearst 
([Hearst, 1992]): 

HEARST1:= CONCEPT such{DT} as{IN} (INSTANCE ,?)+ 
((and|or){CC} INSTANCE)? 

HEARST2:= CONCEPT ,? especially{RB} 
(INSTANCE ,?)+ ((and|or){CC} INSTANCE)? 

HEARST3:= CONCEPT ,? including{RB} 

(INSTANCE ,?)+ ((and|or){CC} INSTANCE)? 

HEARST4:= (INSTANCE ,?)+ and{CC} other{JJ} CONCEPT 

HEARSTS— (INSTANCE ,?)+ or{CC} other{JJ} CONCEPT 

where CONCEPT := (\w+{DT})? (\w+{JJ})? ([a-z]+{NN(S)?})+, 
and the corresponding clues are: 

clneHEARSTi {x) =" such as" ® x 
clneHEARST2 (x) =" especially" ® x 
clueHBARSTs (x) = " including" © x 
dueHEARSTi{x) = a; © "and other" 
d'^eHEARSTbix) =x® "or other" 

Definites 

The following pattern is used to capture definite expressions: 
DEFINITE: the{DT} (\w+{JJ})? INSTANCE CONCEPT, 

whereby the corresponding clue is clueoEFiNiTEix) = " the" © x. Note 
that we have not applied the dual pattern used in PANKOW (compare 
Section 8.3.1.2) due to the fact that it is difficult to define a reasonable clue 
given the actual search support of web search engines. 
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Copula 

In order to match copula constructs, we use the following pattern: 
INSTANCE \w+{BE(D?)(Z|R)} CONCEPT, 

where is, are, was and were are tagged by the part-of-speech tagger as 
BEZ, BER, BEDZ and BEDR, respectively. The corresponding clue is 
cluecopuLAix) = x® ''is". 

8.3.2.2 Complexity 

The runtime complexity of C-PANKOW is 0{\I\• \P\-n), where | / | is the total 
number of instances to be annotated, \P\ the number of patterns we use and 
n the maximum number of pages downloaded. As \P\ and n are constant and 
a document of size |D| contains at most \D\ instances, the overall complexity 
of C-PANKOW is thus linear in the size of the document, i.e. 0(|£>|). As 
the Google'"'^ API does not allow to retrieve more than 10 documents per 
query, the number of queries sent to the Google'''^ API is \P\ • (n div 10) per 
instance. In our special settings, ( |F| = 7) we thus issue 7n div 10 queries 
per instance independently of how big the ontology actually is. This is an 
important reduction of the number of queries compared to PANKOW, in 
which |P ' |* |C | queries are issued per instance, where \C\ indicates the number 
of concepts the ontology comprises. For a small set of concepts with \C\ = 59 
as well as \P'\ = 10 this meant 590 queries per instance to be annotated. As 
C-PANKOW is independent of the size of the ontology, we can thus consider 
even larger ontologies than PANKOW, which already provided annotation 
based on much larger ontologies than most other approaches. 

8.3.2.3 Evaluation 

C-PANKOW has been evaluated on the same dataset and using the same 
evaluation measures as PANKOW with the crucial difference that the C-
PANKOW system uses the 682 concepts of the pruned Tourism ontology as 
possible tags. For C-PANKOW, we additionally evaluate, on the one hand, 
the accuracy on the task of actually recognizing named entities in HTML 
pages. On the other hand, we also present results with respect to the learning 
accuracy introduced in Section 8.2.2. 

Instance Detection 

In order to detect potential instances in a web page to be annotated, we 
make use of the method described in Section 8.3.2.1. We apply this method 
to the dataset described above and compare the instances discovered by our 
system with the instances annotated by the annotators in terms of precision, 
recall and F-measure. More formally, let lA,d and lB,d be the set of instances 
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annotated by subjects A and B in the document d, and let Is4 be the set 
of instances detected by the system in the same document d, then precision, 
recall and F-measure are defined as follows, where X stands proxy for A or 
B: 

^x,d - — I T — j — {H.iM) 
\iS,d\ 

^x,d - — 1 7 — j — [s.M) 
Ux,d\ 

Fl a = L^' ' '* / ' ' ' (8.21) 

For all measures reported in this section, i.e. precision, recall, F-Measure 
and learning accuracy, we average the results over both annotators, i.e.: 

M. = MM+^^ (8.22) 

In our running example web page, the system detected 11 instances, while 
subject A found 9 and subject B 7 (compare Table 8.5). The system coincided 
with subjects A and B in 6 and 5 instances, respectively. This leads to the 
following results for our running example: P4 d—Vi~ 54.55%, Pg d — ji = 
45.45%, R^d = I = 66.67%, J?^ ^ = | = 71.43% and thus F^^^ = 60%, 
FBA = 55.55%. Thus, P j = 50%,'p^ = 69.05% and Fj = 57.78%. For the 
whole dataset, the system achieved a precision of P^ = 43.75%, a recall of 
R^ = 57.20% and a F-measure of F^ = 48.39%. In order to get an upper limit 
on the task, we also compared the precision, recall and F-measure of subject 
A against subject B and vice versa, yielding F^^^^^^ — 70.61% as human 
performance on the task. While we are still quite far away from the human 
performance on the task, the results are as desired in the sense that we have 
a higher recall at the cost of a lower precision. This is useful as some of the 
spurious instances will be filtered out by the instance classification step due to 
the fact that if no patterns are found, the instance will not be assigned to any 
concept. Thus, the precision can be increased by the instance classification 
step, while the recall needs to be reasonably high as it can not be increased 
later. 

Instance Classification 

We evaluate the approach using the precision, recall and F-measures described 
in Section 8.3.1.4, but restricting the evaluation to the set of instances which 
both annotators annotated. Furthermore, we measure the results in terms of 
the learning accuracy described in Section 8.2.2. 
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Table 8.5. Results of the instance detection algorithm 

Instance 
Andorra 
Andorra Activities Andorra 
Atlantic 
Canillo 
G R l l 
Lonely Planet World 
Major Andorran 
Mediterranean 
Ordino 
Pas de la Casa 
Pyrenees 
Roig 
Soldeu 
Soldeu-El Tarter 
Traveler 

A 
X 

X 
X 
X 

X 
X 
X 
X 

X 

B 
X 

X 
X 

X 
X 

X 

X 

s 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 

To illustrate this measure, let us consider the annotations for Canillo 
and Ordino with respect to our system (S in Table 8.6). Annotator A an­
notated Canillo as a town, while the system proposed the more general 
annotation area. The least common superconcept of town and area is area 
according to the ontology in Figure 8.7. Further, the distance in terms of 
edges between top and area is 5{top,area) — 2, the distance between area 
and area is 5{area,area) = 0, and the distance between town and area is 

2+1 
2+1+0+1 I- 0.75 with respect S{town,area) = 1. Thus, LA{to'wn,area) 

to annotator A. 
For Ordino, A, B and the system produced annotations as region, area and 
valley, respectively. The least upper superconcept of region and valley as well 
for area and valley is in both cases area. Further, the distance between top and 
area is 5{top, area) = 2; the distances between region and area as well as valley 
and area are 6{region, area) = 1 and S{valley,area) = 2, respectively. Thus, 
LA{region, valley) = h+ftl^ — I = 0.5 and LA{area, valley) = 2+1 

2+1+2+1 ~ 6 ~ " • " " " " ^•"•\'^' >'"', ^^-vK.y) — 2+i4_o+2 ~ 

I = 0.6. C-PANKOW's classification of Ordino as valley is consequently bet­
ter with respect to annotator B than to annotator A. On average, we would 
get a learning accuracy of 0.55. 

8.3.2.4 Exper iments 

We conducted experiments varying i) the number of downloaded pages, ii) the 
strategy to choose the most appropriate concept as well as iii) the similarity 
threshold. Three different strategies to choose the most appropriate concept 
for an instance i have been implemented: 
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Fig. 8.7. Small excerpt of the GETESS tourism ontology 

Table 8.6. Annotations by subjects A, B and the system (S) 

Instance 
Andorra 
Atlantic 
Canillo 
G R l l 
Mediterranean 
Ordino 
Pas de la Casa 
Pyrenees 
Roig 
Soldeu 
Traveler 

A 
country 
sea 
town 
walking-trail 
sea 
region 
town 
mountain 

town 

B 
country 
sea 
area 

sea 
area 

mountain 

person 

S 
country 
fish 
area 

valley 

mountain 
family 

• Hits: this strategy chooses the concept with the most hits, i.e. 
maxargc Hits{c) 

• Jaccard: this strategy chooses the concept maximizing the following Jac-

card coefficient, i.e. maxargc GoogieHits{i)+Semulc)®Googiemts{c e i) 
• Combination: this strategy combines the above two methods as follows: 

mn mm GoogleHits(c®i) ^ Hifi(r\ 
maxargc GoogleHits{i)+GoogleHits(c)-GoogleHits(c ® i) * •"*I«l.c; 
The different strategies thus represent different alternatives for the 

annoiate-statement in Algorithm 13. Tables 8.7 and 8.8 show the results for 
the various strategies, different numbers of downloaded pages, i.e. 10, 50, 100, 
200, 300, 500, as well as different similarity thresholds. As the results heavily 
depend on Google's index and page rank, we repeated each experiment five 
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times^ and report averaged results. The results shown in tables 8.7 and 8.8 
are grouped according to the number of pages considered, whereby the best 
recall, F-Measure and learning accuracy of each group are highlighted. There 
are several interesting conclusions to draw from these results. First, intro­
ducing a threshold makes the results worse in almost all cases, such that we 
have to conclude that our notion of contextual relevance seems too simplistic 
for the task at hand. Second, the version of our system taking into account 
the direct hits of the patterns performs better than the statistical measure 
based on the Jaccard measure as well as the combination of the two meth­
ods, whereby the combination of both measures still performs better than the 
Jaccard measure alone. Third, we also observe that the recall increases pro­
portionally to the number of pages processed, while the precision remains at a 
more or less constant level. It even seems that the recall is reaching a plateau 
between 300 and 500 processed pages. To assess the significance of the results, 
a Student's t-test (compare Section 4.1.6) has been applied to compare the 
results of the versions of C-PANKOW using the Hits measure as well as no 
similarity threshold. We thus assume our data to be normally distributed. The 
null hypothesis here is that different samples of data have been generated by 
the same random process, i.e. they stem from the same distribution. In case 
this hypothesis is rejected, we can then conclude that the differences observed 
between the samples compared are actually significant and not simply due to 
chance. 

The version using 500 pages for example differs from the versions using 
100 and 200 pages at a significance level of a = 0.15. However, the t-test 
also reveals that the differences between our version using 500 pages and 
the one using 300 pages are due to chance with a high probability of 0.92. 
This corroborates the conclusion that processing more than 300 pages does 
not pay off. On the other hand, the difference between our versions using 10 
and 50 pages is statistically significant at a level of 0.02, while the differences 
between using 100 or 200 pages with respect to using only 50 are due to chance 
with a high probability of over 0.75. We conclude thus that using around 50 
pages seems to represent an optimum between performance and cost, while 
moving beyond 300 pages does for sure not pay off with respect to the cost of 
processing more pages. 

8.3.3 Summary 

We have presented our paradigm Learning By Googling as well as two concrete 
instantiations thereof, PANKOW and C-PANKOW, the latter being an ex­
tension of the first. Both are based on the idea that lexico-syntactic patterns 
indicating some semantic relation can be matched on the World Wide Web. 
PANKOW exploits a brute-force approach in which patterns are generated 

'' These experiments were conducted between the 25th October 2005 and the 15th 
January 2006. 
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Table 8.7. C-PANKOW results for different numbers of downloaded pages, simi­
larity thresholds and strategies (in percent) 

P R| F | LA 
10 pages 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

no threshold 
46.36 
46.31 
46.57 

16.86 
16.25 
16.39 

24.41 
23.78 
23.97 

71.88 
71.89 
72.04 

Sim > 0.05 
44.4 

44.25 
44.32 

13.61 
13.54 
13.54 

20.5 
20.4 

20.41 

71.59 
71.76 
70.91 

sim > 0.1 
43.55 
43.55 
43.55 

5.2 
5.2 
5.2 

9.16 
9.16 
9.16 

70.51 
71.01 
70.19 

Sim > 0.3 
20 
20 
20 

50 I 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

0.14 
0.14 
0.14 

0.29 
0.29 
0.29 

40 
40 
40 

)ages 
no threshold 

46.52 
40.42 
44.69 

22.56 
18.81 
20.9 

30.22 
25.52 
28.31 

71.31 
67.59 
70.19 

Sim > 0.05 
43.24 
43.15 
45.62 

18.99 
18.48 
19.64 

26.17 
25.61 
27.17 

72.24 
70.58 
72.35 

sim > 0.1 
43.64 
47.72 
48.51 

10.11 
10.8 

10.98 

16.29 
17.44 
17.74 

72.53 
74.04 
74.5 

sim > 0.3 
43.33 
43.33 
43.33 

0.36 
0.36 
0.36 

0.72 
0.72 
0.72 

71.67 
71.67 
71.67 

sim > 0.5 
40 
40 
40 

0.14 
0.14 
0.14 

0.29 
0.29 
0.29 

40 
40 
40 

1 P| R F| LA 
100 pages 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

no threshold 
44.95 
37.37 
42.87 

23.32 
18.77 
21.59 

30.6 
24.88 
28.59 

71.24 
65.79 
68.62 

sim > 0.05 
46.1 

32.56 
34.14 

15.02 
12.74 
13.61 

21.19 
17.26 
18.37 

74.2 
66.28 
67.26 

sim > 0.1 
46.43 
34.83 
35.92 

8.59 
8.12 
8.45 

13.7 
12.69 
13.19 

73.15 
65.6 

66.06 
sim > 0.3 

30 
30 
30 

0.29 
0.29 
0.29 

0.57 
0.57 
0.57 

67.33 
67.33 
67.33 

sim > 0.5 
60 
60 
60 

0.22 
0.22 
0.22 

0.43 
0.43 
0.43 

60 
60 
60 

200 pages 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

no threshold 
44.84 
36.13 

41.1 

23.64 
18.45 
21.08 

30.88 
24.35 
27.77 

70.45 
64.81 
68.71 

sim > 0.05 
46.11 
43.15 
47.22 

23.18 
21.37 

23.65 

30.67 
28.4 
31.3 

72.75 
69.82 
72.76 

sim > 0.1 
44.42 
44.18 
46.24 

14.66 
14.4 

15.13 

21.98 
21.66 
22.73 

71.71 
70.64 
72.15 

sim > 0.3 
44 
41 
41 

0.58 
0.5 
0.5 

1.14 
1 
1 

74.8 
73.53 
73.53 

sim > 0.5 
40 
40 
40 

0.14 
0.14 
0.14 

0.29 
0.29 
0.29 

40 
40 
40 
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Table 8.8. C-PANKOW results for different numbers of downloaded pages, simi­
larity thresholds and strategies (in percent) (Cont'd) 

P | R F LA 
300 pages 

Hits 
Jaccaxd 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccaxd 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

no threshold 
46.18 
35.86 
43.57 

25.85 
19.68 
24.08 

33.09 
25.37 
30.96 

71.5 
63.68 
69.27 

sim > 0.05 
46.09 
39.57 
46.58 

23.9 
20.14 
23.97 

31.32 
26.54 
31.47 

73.14 
67.25 
72.81 

sim > 0.1 
46.8 

44.86 
48.19 

16.17 
15.31 
16.57 

23.94 
22.73 
24.56 

73.44 
71.09 
73.55 

sim > 0.3 
44 
44 
44 

0.58 
0.58 
0.58 

1.14 
1.14 
1.14 

74.8 
74.8 
74.8 

sim > 0.5 
40 
40 
40 

0.14 
0.14 
0.14 

0.29 
0.29 
0.29 

40 
40 
40 

P R F LA 
500 pages 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

Hits 
Jaccard 
Combination 

no threshold 
45.46 
33.79 
44.37 

25.92 
18.81 
24.94 

32.97 
24.13 
31.89 

70.88 
62.09 
69.44 

sim > 0.05 
45.75 
38.03 
46.41 

24.81 
20.4 
25.2 

32.08 
26.48 
32.57 

72.37 
65.84 
72.06 

sim > 0.1 
48.01 
45.28 
48.13 

18.02 
16.57 
17.73 

26.09 
24.09 
25.73 

73.7 
71.79 
73.28 

sim > 0.3 
54 
54 
54 

0.58 
0.58 
0.58 

1.14 
1.14 
1.14 

79.8 
79.8 
79.8 

sim > 0.5 
60 
60 
60 

0.22 
0.22 
0.22 

0.43 
0.43 
0.43 

60 
60 
60 

taking into account all the concepts of the ontology in question and counts 
the Google''*' -hits of each pattern, aggregating the results for each concept 
and annotating the instance with the concept having the maximal number 
of hits. C-PANKOW is based on the same principle, but instead of count­
ing the number of occurrences of a pattern, it downloads a number of pages 
matching certain automatically generated clues, and processes the abstracts 
offline. It thus reduces the number of queries sent to the Google™ API, while 
allowing to match more complex expressions at the same time. In particular, 
it allows for the application of natural language processing techniques to the 
downloaded documents. We have also presented a first approach towards cre­
ating more contextually appropriate annotations by calculating the similarity 
of the original page to be annotated and the downloaded abstracts. The main 
conclusions supported by our experiments are: 

• C-PANKOW outperforms PANKOW both in terms of efficiency and qual­
ity of the results. 

• Considering the number of hits for each concept as well as downloading 
around 50 pages represents some sort of optimal configuration with respect 
to the performance-cost trade-off and provides a quite good baseline sys­
tem difficult to outperform. 
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• The results can be improved by considering more pages and thus increasing 
the recall at the cost of processing more pages. Beyond 300 pages, however, 
the results show no significant improvement with respect to using fewer 
pages. 

• Unfortunately, our notion of contextual relevance and the usage of a sim­
ilarity threshold does not improve the results. 

8.4 Related Work 

In this section, we discuss work related to the population of ontologies. We 
focus in particular on systems going beyond the traditional named entity 
recognition task using three target classes. 

Fleischman and Hovy 

Fleischman and Hovy [Fleischman and Hovy, 2002] go beyond the coarse clas­
sification into three entities and aim at classifying instances of persons into 
7 fine-grained categories: athlete, politician/government, clergy, businessperson, 
entertainer/artist, lawyer, doctor/scientist and police. They explore a supervised 
setting in which classifiers are trained to recognize each of these classes. As 
features for the classifier, Fleischman and Hovy use the frequency of the uni-
grams, bigrams as well as trigrams occurring within a window of 3 words from 
the named entity in question. They also derive topic signatures for each of the 
subcategories of person and compute a topic signature score for each instance 
indicating how good the context of the instance fits the overall context of the 
subcategory as given by the topic signature. 

To address the problem that various mentions of one and the same en­
tity can be classified in different ways, Fleischman et al. also define a post­
processing step, called MemRun, in which different hypothesis are re-ranked 
according to the evidences produced by the classifier. In particular, if the con­
fidence level of the classifier's decision is above a threshold ti, the hypothesis 
is entered into the space of final hypotheses together with the number of times 
it was derived. Coreferences between different entities are resolved here and 
considered as one entity. In a second step, all the hypotheses having a confi­
dence below a threshold 2̂ are discarded. Finally, the instance is assigned to 
the class with the highest confidence multiplied by the number of times the 
corresponding hypothesis was derived. 

The authors train different classifiers (a C4.5 decision tree classifier, a feed 
forward neural network with 50 hidden nodes, a kNN algorithm with k = l and 
a Support Vector Machine using a linear kernel), achieving the best accuracy 
of 70.4% using the decision tree classifier and the post-processing by MemRun. 
Examining subsets of the feature set, they come to the conclusion that using 
all the features leads to the best results. 
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Evans 

Evans [Evans, 2003] considers a totally unsupervised scenario in which the 
classes themselves are derived from the texts. For each entity appearing in 
the text, a set of Google queries similar to the clues described in Section 8.3 
are issued to derive possible hypernyms for each instance. The instances are 
clustered bottom-up using the web occurrence counts of the hypernyms as 
features. The nodes in the cluster tree are labeled using the most specific 
hypernym of all words in the cluster. These labeled clusters thus constitute 
the set of classes which the named entities are assigned to. A named entity i 
with hypernyms {cji,...,Cj„} with frequencies fa^ ... /c.-^ is assigned to that 
cluster t with hypernyms {ti,...,tm} which maximizes the following formula: 

771 n 

J2Yl^it) 9{ci„tj) U^ (8.24) 
i=i fc=i 

where 9{t) is a coefficient inversely proportional to the level of t in the 
cluster tree and gici^,tj) is a function returning 1 if Cĵ , is identical to tj and 
0 otherwise. Using this classification procedure, Evans achieves an accuracy 
between 20% - 70.27% depending on the document considered as well as an 
overall accuracy of 41.41%. 

Widdows 

Widdows [Widdows, 2003b] also applies the technique described in Section 
6.5.2 to the classification of named entities, achieving much lower results 
than compared to classifying common nouns. The best result when classifying 
proper nouns is an accuracy of 10.6%. 

Alfonseca et al. 

Alfonseca et al. [Alfonseca and Manandhar, 2002] also address the classifica­
tion of named entities with respect to an ontology. As described in Section 
6.5.2, the classification of common nouns and entities is, however, mixed so 
that it is not possible to assess the accuracy w.r.t. classifying common nouns 
and proper names separately. Nevertheless, for comparison purposes, we will 
assume an accuracy of 17.39% on the task of classifying named entities for 
the approach of Alfonseca et al. (see Table 8.9). 

Tanev and Magnini 

Recently, Tanev and Magnini [Tanev and Magnini, 2006] have extended our 
approach described in Section 8.2 by providing seed examples for every class 
to the system. These seed examples are used to derive contextual features 
for the class vector. Tanev and Magnini have demonstrated that a significant 
improvement over our baseline can be achieved with their extension. 
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Hahn and Schnattinger 

Hahn and Schnattinger [Hahn and Schnattinger, 1998a] present an approach 
based on a qualification calculus where several hypotheses about which con­
cept a new named entity belongs to are created, maintained in parallel and 
iteratively refined or discarded. The hypotheses are created using linguistic 
evidence from appositive or other constructs as well as by considering what 
Hahn and Schnattinger call case frames, which in essence are selectional re­
strictions expressed with respect to the concept hierarchy and which allow 
to create or rule-out certain hypotheses. Interesting is that the different hy­
potheses get assigned quality labels corresponding to the way they have been 
created. Prom the expression 'the printer HP4OOO' a hypothesis would, for 
example, be created according to which HP4000 is a printer. This hypothesis 
would yield the label APPOSITION. An expression like: 'The Itoh-Ci-8 has 
a size of...' would lead to the creation of a hypothesis space in which Itoh-
Ci-8 is a physical-object as only physical bbjects have sizes. This hypothesis 
space would be labeled with the label CASE FRAME as it is the selectional 
restriction of the size-of frame which has lead to its creation. 
Besides these linguistic quality labels, also conceptual labels are attached to 
the different hypotheses spaces. The quality label M-DEDUCED, for example, 
is assigned to multiple derivations of the same concept hypothesis in different 
hypotheses spaces. The label C-SUPPORTED is assigned to a relation r be­
tween two instances if another relation already exists in the knowledge base 
involving the same instances in the reverse order. The quality-based classifi­
cation works as described in Algorithm 14. 

Algorithm 14 Selecting hypotheses in Hahn et al's approach: 
Input: a set of hypothesis H :— {hi,..., h„} 
Output: a set of hypothesis H' := {h'l,..., h'm} 

H' := {h e H\ such that h has the highest number of APPOSITION labels } 

i f ( | i y ' | > i ) 
H' := {heH'l such that h has the highest number of CASE FRAME labels} 

i f ( | H ' | > l ) 
H' := {he H'\ such that h has the highest number of M-DEDUCED labels} 

i f ( | H ' | > l ) 
H' := {heH'l such that h has the highest number of C-SUPPORTED labels} 

return H': 
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Finally, the returned set H contains the best hypothesis for the assignment 
of the instance to the appropriate concept. Hahn et al. evaluate their approach 
in terms of recall, precision and parsimony, the latter being defined as the 
number of cases in which H' is a singleton set containing the correct concept 
divided by the number of instances in the test set, and thus corresponds more 
or less to the accuracy of the other systems described in this chapter. Hahn et 
al. also measure the degree to which a certain predicted concept is correct by 
taking into account the distance in the taxonomy between the predicted and 
the correct concept. They define the learning accuracy in which our version 
of learning accuracy is inspired as follows: 

{ CPj if r i p _ PI 

where SPi specifies the length of the shortest path (in terms of the number 
of nodes being traversed) from the TOP node of the concept hierarchy to the 
maximally specific concept subsuming the instance to be learned. CPi spec­
ifies the length of the path from the TOP node to that concept node which 
is common both to the shortest path and the path to the predicted concept. 
FPi specifies the length of the path from the TOP node to the predicted node 
in case the prediction is wrong, and FPi = 0 in case the prediction is cor­
rect. Finally, DPi denotes the node distance between the predicted false node 
and the most specific common concept which is on the path from the TOP 
node to the predicted false node and still correctly subsumes the predicted 
node (compare Appendix A.l for a more detailed discussion of the learning 
accuracy). 

Different versions of Hahn et al.'s system obtain the results shown in Table 
8.9, where baseline is the system using only the terminological reasoning com­
ponent, TH is the version of the system using the linguistic quality labels to 
filter out certain hypothesis, and CB is the version of the system additionally 
using the conceptual quality labels to filter the hypotheses. 

Craven et al. 

Craven et al. have addressed the population of ontologies using 
machine-learning techniques in the context of the Web—>KB project 
[Craven et al., 2000]. They address the population of a small ontology about 
computer science departments with instances of concepts and relations. They 
assume that only web pages stand for certain instances, and hyperlinks be­
tween different web pages represent instances of relations between these. In 
this line, they treat the problem of discovering instances of concepts as a 
text classification task and report experiments using Naive Bayes classifiers 
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and different text representation models, i.e. a simple bag-of-words model, a 
model relying on the title and heading of the web page as well as a model 
using the words occurring around hyperlinks. Further, they also examine a 
ILP-based approach [Lavrac and Dzeroski, 1994] to classify web pages into 
their corresponding ontological class. They make use of the FOIL algorithm 
[Quinlan, 1990] for this purpose as well as in order to find instances of rela­
tions. 

Etzioni et al. 

Etzioni et al. [Etzioni et al., 2004a, Etzioni et al., 2004b, Etzioni et al., 2005] 
have developed KnowItAll, an approach similar in spirit to PANKOW, which 
does not assign a given instance to the appropriate concept, but aims at 
determining the complete extension of a given concept. Etzioni et al. also apply 
Hearst-style patterns to generate search engine queries, download a number 
of documents, process them linguistically, match the fully fledged patterns 
and extract a number of candidate instances for the concept in question. The 
main difference here is that the patterns are correspondingly used in 'reverse 
mode', i.e. to find instances and not concepts. Each instance is then ranked 
according to a PMI-like measure: 

where i is the instance in question and d is a so called discriminator phrase. 
Given the concept actor and the candidate instance Robert de Niro as well 
as the discriminator phrase 'actors such as', the PMI would here amount to 
calculating 

^ , , T / „ , , ,r. s "actors such as Robert de Niro" 
PMIiRobert de Niro,actor) = —— ;——— 

"Robert de Niro" 
These PMI values are calculated for each of the different Hearst-pattern-

inspired discriminator phrases and fed into a Bayesian classifier learning the 
optimal thresholds for the different PMI values to produce an optimal clas­
sification of the instances. In order to create training data for this classifier, 
Etzioni et al. apply a bootstrapping approach in which the m instance/concept 
pairs with the highest PMI values are used as training examples for the classi­
fier. The authors report their results in terms of recall and precision measured 
with respect to the TIPSTER Gazetteer for different classes such as US states, 
cities, countries, actors or films. The results get even better when using different 
techniques aimed at increasing the recall of the system, such as i) automati­
cally learning new patterns from examples, ii) using similar techniques to find 
subclasses and calculate the extension of the subclasses, as well as iii) wrap­
ping lists in which some of the already classified instances are encountered to 
find additional instances (compare [Etzioni et al., 2005]). 
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8.5 Conclusion and Open Issues 

We have presented several approaches tackhng the problem of populating large 
ontologies with named entities representing instances. The problem of assign­
ing named entities to their appropriate ontological class with respect to a large 
number of classes is currently addressed by a handful of researchers at most. 
The work presented in this section thus represents a significant contribution 
to the state-of-the-art in the field of large-scale named entity recognition or 
ontology population. We have presented a corpus-based approach relying on 
vector space similarity to assign a named entity to the most similar concept 
according to the corpus. The contribution here has been the systematic ex­
ploration of parameters which can improve such a similarity-based approach. 
We have in particular shown that there are a number of techniques which, 
applied in the appropriate way, can indeed enhance the performance of such 
an approach. It remains an open issue to explore each of the techniques in 
more detail. As an example, whereas in our experiments we have used an 
anaphora resolution algorithm developed for this purpose, it would be defi­
nitely interesting to explore and compare different state-of-the-art anaphora 
resolution tools with respect to their ability to improve the results on the 
task. In general, more thorough experiments are needed to explore the dif­
ferent parameters and techniques in order to allow meaningful conclusions. 
The contribution of this book is thus to provide a first step in this direction, 
identifying such techniques which have the potential to improve the results 
on the task of categorizing named entities with respect to a large number of 
classes. 

Concerning PANKOW and C-PANKOW, the contribution is to show 
that such a web-based approach to named entity recognition and ontol­
ogy population is indeed feasible and worth exploring. Though other re­
searchers have presented similar systems (compare [Brin, 1998], [Pasca, 2004], 
[Etzioni et al., 2005]) we are not aware of any system finding possible classes 
for a given named entity on the one hand as well as tackling the issue 
of selecting the contextually most relevant concept on the other. SemTag 
[Dill et al., 2003], for example, merely addresses the second task, whereby the 
possible classes for the named entity are given by the TAP lexicon, thus re­
ducing the task to selecting the contextually most relevant meaning of the 
entity. A systematic exploration of different parameters of PANKOW and 
C-PANKOW has also lead us to find reasonable settings for both systems. 
Further research should clarify if it is possible to improve the system along 
the following lines: 

contextual relevance of annotations, 
precision of the patterns, and 
scalability. 

Indeed, it would be necessary to explore more sophisticated techniques for 
word meaning disambiguation as proposed in the word sense disambigua-
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Table 8.9. Comparison of results 

System 
MUC 
Evans 
Hovy et al. 
PANKOW 
Hahn et al. (Baseline) 
Hahn et al. (TH) 
Hahn et al. (CB) 
Corpus Similarity 
C-PANKOW 
Alfonseca et al. 

#concepts 
3 
2-8 
8 
59 
325 
325 
325 
682 
682 
1200 

Rec/Acc 
>90% 
41.41% 
70.4% 
24.9% 
21% 
26% 
31% 
29.24% 
25.85% 
17.39% 

LA 
n.a 
n.a. 
n.a. 
58.91% 
67% 
73% 
76% 
69.87% 
71.5% 
44% 

tion literature (compare [Ide and Veronis, 1998]) as well as by Dill et al. 
[Dill et al., 2003]. The precision of the patterns would also need to be in­
creased by filtering out spurious concepts at earlier stages, thus making the 
task easier for the disambiguation step. Downloading hundreds of pages for 
each pattern used is still the bottleneck of the system. Techniques to avoid 
downloading and processing such an amount of pages should be explored to 
make the system even more scalable. 

We conclude this section by comparing different systems discussed in Sec­
tion 8.4 with our three approaches. Table 8.9 summarizes the comparison 
along the lines of (i) number of classes considered, (ii) accuracy and (iii) 
learning accuracy. The table illustrates in particular the trade-off between 
classes considered as well as the accuracy and learning accuracy achieved. 
The comparison is in a strict sense not meaningful. This is due to the fact 
that the systems have been applied to different datasets as well as using dif­
ferent evaluation measures or modes which are not comparable. For example, 
the learning accuracy as defined in the context of this book is not equivalent 
to the one introduced by Hahn et al. (compare Appendix A.l). Nevertheless, 
the table allows to conclude that the approaches developed fit well in the 
state-of-the-art of the field and provide a significant contribution. 



9 

Applications 

In this section, we discuss applications for ontologies learned from text as well 
as methods for automatically populating them. Besides typical applications 
of ontologies such as 

• agent communication [Finin et al., 1994], 
• data integration [Wiederhold, 1994, Alexiev et al., 2005], 
• description of service capabilities [Ankolekar et al., 2002] for matching and 

composition purposes [Paolucci et al., 2002, Sirin et al., 2002], 
• formal verification of process descriptions [Ankolekar et al., 2004] or 
• unification of terminology across communities. 

as 

there are also applications in text processing or information retrieval such 

• information retrieval (e.g. for query expansion) 
• clustering and classification of documents, 
• semantic annotation, e.g. for knowledge management or semantic retrieval, 

and 
• natural language processing. 

The main difference here is that traditional applications require ontologies 
to have a well-defined model-theoretic semantics as well as to be consistent 
with respect to these semantics and furthermore represent the product of 
an agreement between a group of people. Applications of ontologies within 
text mining differ in this respect in that the requirement of totally correct, 
consistent and shared ontologies is not given. The reason is that most text 
mining algorithms are themselves inherently fuzzy, often relying on similarity 
measures defined over vector space. This is in fact the case of most of the 
applications mentioned above. Query expansion, for example, addresses the 
so called vocabulary mismatch encountered in information retrieval, that is, 
the problem that the vocabulary of the document and the user query can 
differ, even if the semantic content is the same. Query expansion thus aims at 
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expanding a user query with synonyms or related terms in order to overcome 
the vocabulary mismatch problem. An automatically learned ontology can 
obviously be applied for this purpose. Another way of tackling the problem 
is to enhance the representation of the documents themselves by abstracting 
over the plain words occurring in the document and adding conceptual infor­
mation to the document representation. There also seems to be a potential 
for applying automatically learned ontologies in this respect. 

In the same vein, classification and clustering approaches can also make use 
of such an enhanced and conceptual document representation. We will come 
back to this issue below. In natural language processing, on the one hand, 
several methods have been suggested exploiting the structure of a thesaurus 
for the tasks of word sense disambiguation as well as the classification of 
new words (see below). Both tasks could thus make use of an automatically 
generated ontology. On the other hand, named entity recognition systems 
relying on gazetteers could obviously make use of automatically populated 
ontologies. 

In this chapter, we demonstrate the benefit of automatic ontology con­
struction and population in two applications which are described in detail in 
the remainder of this chapter. Thus, in contrast to previous sections of this 
book, in which ontologies are evaluated with respect to a gold standard or 
a posteriori by a judge, in this chapter we propose a task-based evaluation 
of ontologies in line with Porzel and Malaka [Porzel and Malaka, 2005]. The 
main requirements for such a task-based evaluation are that: 

• the output of the algorithm performing the task can be measured quanti­
tatively, 

• there is a potential for exploiting background knowledge for the task, 
• the ontology can be seen as an additional parameter to the system per­

forming the task, and 
• changes in performance can be traced back to the ontology if other pa­

rameters remain fixed. 

Figure 9.1 illustrates the principle of a task-based evaluation of ontologies. 
Such a task-based evaluation allows evaluating in terms of their performance 
on the task: 

• different hand-crafted ontologies, 
• different systems for automatically learning ontologies, 
• automatically learned ontologies compared to hand-crafted ones, or 
• a baseline system not using any ontological knowledge. 

The task-based evaluation of ontologies and ontology learning approaches 
is indeed very important as it also allows to gain insight into the real potential 
of ontologies for certain applications. In fact, task-based evaluations assess the 
value of a certain ontology in vivo in the context of some application, in con­
trast to in vitro experiments comparing ontologies with a gold standard. Such 
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Task Measurable 
Output 

Fig. 9.1. Task-based evaluation of ontologies 

task-based evaluations will ultimately allow meaningful conclusions about the 
usefulness of ontologies as well as of ontology learning systems from an appli­
cation point of view. In this section, we present two task-based evaluations: 
one involving automatically learned ontologies and another considering auto­
matically populated ones. In Section 9.1, we describe experiments in which 
automatically learned ontologies have been successfully used as background 
knowledge within text clustering and classification tasks. We compare the 
systems using no ontology, diflFerent automatically learned ontologies as well 
as hand-crafted ontologies. This section is based on joint work with Stephan 
Bloehdorn and Andreas Hotho (compare [Bloehdorn et al., 2005]). Further, in 
Section 9.2 we discuss an application of named entity classification/annotation 
to the browsing of document collections, comparing a version of the browsing 
approach using automatically extracted facts with one version using standard 
lexica as a baseline. In particular, we show that support to the user in the form 
of highlighting named entities in different colors according to their types can 
actually help to accomplish certain information gathering tasks. This section 
is based on joint work with Victoria Uren, Enrico Motta and Martin Dzbor 
from the Knowledge Media Institute (KMi) (compare [Uren et al., 2005]). The 
corresponding user study was carried out jointly by Victoria Uren and the au­
thor of this book in November 2004 in the context of the Dot.Kom project^. 
The descriptions in Section 9.1 and 9.2 are thus partially based on material 
published in [Bloehdorn et al., 2005] and [Uren et al., 2005], respectively. 

9.1 Text Clustering and Classification 

Text clustering and classification are two important approaches supporting 
users in organizing their textual information. State-of-the-art clustering and 
classification systems typically rely on the so called bag-of-words model known 

http://nlp.shef.ac.uk/dot.kom/ 
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from information retrieval [Salton and McGill, 1983], where single terms or 
term stems are used as features for representing the documents. 

Recent work has shown improvements in text mining tasks by means of 
conceptual features extracted from ontologies (compare [Hotho et al., 2003] 
and [Bloehdorn and Hotho, 2004]). So far, however, the ontological structures 
employed for this task have been created manually by knowledge engineers 
and domain experts, requiring a high initial modeling effort. 

In this section, we report on experiments in which we use automatically 
constructed ontologies to augment the bag-of-words feature representations 
of texts with features based on concepts. We compare the obtained results 
with respect to (i) the baseline given by the plain bag-of-words representation 
and (ii) results based on the MeSH Tree Structures as a manually engineered 
medical ontology (compare Chapter 5). We show that both types of conceptual 
feature representations outperform the bag-of-words model and that results 
based on the automatically constructed ontologies can actually compete with 
those obtained with the manually engineered MeSH Tree Structures. 

The structure of this section is as follows: in Section 9.1.1 we describe 
how the concept hierarchies are automatically constructed. In Section 9.1.2 
we describe the concept-based extension of the bag-of-words model and in 
Section 9.1.3 we present our experimental results. 

9.1.1 Building Hierarchies 

We have conducted extensive experiments using the OHSUMED text collec­
tion [Hersh et al., 1994] (compare Chapter 5), which was also used for the 
TREC-9 filtering track^. For the sake of comparison, the hierarchies are built 
using the terms appearing in the MeSH thesaurus. The terms appearing in 
the MeSH thesaurus have been sorted according to their frequency in the 
OHSUMED corpus, and the 7000 or 14000 most frequent terms from this 
list have been considered in order to build a hierarchy. The hierarchy is built 
using hierarchical clustering as described in Section 6.2. In the experiments 
described here, hierarchical agglomerative clustering with complete Unkage as 
well as Bi-Section-KMeans have been used (compare Section 4.3.2). Similarity 
between vectors is measured as the cosine of their angle in both cases. As con­
textual features to describe the terms we use pseudo-syntactic dependencies 
as described in Section 4.1.4. The automatically extracted ontologies are built 
using the 1987 portion of the collection, i.e. a total of 54,708 documents. In 
what follows, we give some examples for the features extracted from different 
syntactic constructions for illustration purposes. Hereby, a:b -I—I- means that 
the count for attribute 6 of a term a is incremented by 1: 

adjective modifiers: alveolar macrophages 
macrophages: alveolear++ 

http://trec.nist.gov/data/t9-filtering.html 
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prepositional phrase modifiers: a defect in cell function 
defect: in_cell_function ++ 
cell function: defect_in ++ 

possessive modifiers: the dorsal artery's distal stump 
dorsal artery: has-distal_stump ++ 

noun phrases in subject or object position: 
the bacterium suppresses various lymphocyte functions 
bacterium: suppress.subj ++ 
lymphocyte function: suppress-obj ++ 

prepositional phrases following a verb: 
the revascularization occurs through the common penile artery 
penile artery: occurs-through ++ 

copula constructs: the alveolar macrophage is a bacterium 
alveolar macrophage: is.bacterium ++ 

verb phrases with the verb to have: 
the channel has a molecular mass of 105 kDa 
channel: has_molecular_mass ++ 

On the basis of the extracted pseudo-syntactic dependencies, we can con­
struct a context vector for each term in order to calculate similarity between 
terms by the cosine measure as well as clustering these hierarchically as de­
scribed in Section 6.2. 

9.1.2 Conceptual Document Representa t ions 

In the approach of Hotho et al. [Hotho et al., 2003] as well as Bloehdorn and 
Hotho [Bloehdorn and Hotho, 2004], background knowledge is used to extend 
the standard bag-of-words feature vector representing texts with conceptual 
features. The approach relies on concept hierarchies or taxonomies, adding 
the superconcepts of a certain term (up to a certain level) to the document 
representation. The generalization step in fact consists in adding more general 
concepts to the specific concepts found in the text, leading to some sort of 
'semantic smoothing'. The basic idea is that if a term like 'arrhythmia' ap­
pears, the document should not only be represented by the concept arrhythmia, 
but also by the concepts heart disease and cardiovascular disease, etc., up to a 
certain level of generality. This in consequence increases the similarity with 
documents talking about some other specialization of cardiovascular disease. 

In contrast to the simple term features, these conceptual features overcome 
a number of shortcomings of the bag-of-words feature representation by con­
ceptually generalizing expressions along the concept hierarchy. The approach 
only considers noun phrases as potential concepts to be generalized. 

In Hotho et al.'s approach (compare [Hotho et al., 2003]), three strategies 
for extending the bag-of-words model are defined: add, replace and only. In 
the add strategy, the concepts are simply added as additional features to the 
vectors. In the replace strategy, all the terms are expelled for which at least 
one concept has been added. When applying the only strategy, exclusively 
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concepts are included as features. In the experiments reported in this section, 
the add strategy has been appUed. 

The crucial steps for such a conceptual document representation as de­
scribed above are: 

• assignment of words to concepts 
• adding superconcepts to the document representation 

The assignment of words to concepts typically requires word meaning dis­
ambiguation. The MeSH hierarchy used in the experiments described in this 
section only contains concepts unambiguously referred to by a single lexical 
entry, such that the need for disambiguation is eliminated. 

In contrast to standard bag-of-word models, however, we do not assume 
that one token corresponds to exactly one feature, but make use of the un­
derlying taxonomy to treat certain multi-word expressions as one feature. For 
this purpose, we use a candidate term detection strategy that moves a window 
over the input text that recognizes multi-word terms as specified by the labels 
of concepts in our ontology and creates corresponding features. We rely on 
part-of-speech annotation to only consider noun phrases in this process. As 
the ontology does typically not contain all inflected forms as labels for a cer­
tain concept, we use a fall-back strategy that maps words to their stems, using 
these as features. In these experiments, term stem extraction comprises the 
removal of the standard stopwords for English defined in the SMART stop-
word list (compare [Buckley, 1985]) and stemming using the porter stemming 
algorithm (consult [M.F.Porter, 1980]). 

With respect to adding superconcepts of the concepts identified according 
to the procedure outlined above, we realize this by adding, for every concept, 
all superconcepts up to a maximal distance h into the concept representation. 
The result of this process is a concept vector that can be appended to the 
classical term vector representation. The resulting hybrid feature vectors can 
be fed into any standard clustering or classification algorithm. 

9.1.3 Exper iments 

As already mentioned before, the experiments have been conducted on the 
OHSUMED text collection, which consists of titles and abstracts from medical 
journals indexed with multiple MeSH descriptors and a set of queries with 
associated relevance judgments. 

In our experiments, we use domain ontologies automatically extracted from 
the text corpus as described in Section 9.1.1 on the one hand and the Medical 
Subject Headings (MeSH) Tree Structures ontology as a competing manu­
ally engineered ontology on the other. We performed experiments with the 
following configurations: 

agglo-7000: automatically constructed ontology, pseudo-syntactic dependencies as 
features for the 7,000 most frequent terms, taxonomy creation via hierarchical 
agglomerative clustering; 
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bisec-7000: automatically constructed ontology, pseudo-syntactic dependencies as 
features for the 7,000 most frequent terms, taxonomy creation via Bi-Section-
KMeans; 

bisec-14000: automatically constructed ontology, pseudo-syntactic dependencies as 
features for the 14,000 most frequent terms, taxonomy creation via Bi-Section-
KMeans; 

mesh: manually constructed ontology compiled out of the Medical Subject Headings 
(MeSH)^ containing more than 22,000 concepts enriched with synonymous and 
quasi-synonymous language expressions. 

In all experiments, term stems were extracted as a first set of features 
from the documents. Conceptual features were extracted as a second set of 
features using the ontologies mentioned and assigning words to concepts as 
described above. In the following Section 9.1.3.1, we present our experimental 
results with respect to the classification task. In Section 9.1.3.2, we present 
the corresponding results on the document clustering task. 

9.1.3.1 Text Classification Experiments 

For the experiments in the text classification setting, we also used the 1987 
portion of the OHSUMED collection. Two thirds of the entries were randomly 
selected as training documents, while the remainder was used as test set, re­
sulting in a training corpus containing 36,369 documents and a test corpus 
containing 18,341 documents. The assigned MeSH terms were regarded as 
categories for the documents, and binary classification was performed on the 
top 50 categories that contained the highest number of positive training doc­
uments. In all cases, we used AdaBoost [Freund and Schapire, 95] with 1000 
iterations as classification algorithm and binary weighting for the feature vec­
tors. As evaluation measures for text classification we report precision, recall 
and F-measure^. 

Table 9.1 summarizes some of the classification results, where P is the 
precision of the classifier, R its recall as well as Fi the harmonic mean between 
both. In particular, we distinguish between micro- and macro-averaging. In 
macro-averaging, the results are averaged over all the categories, while micro-
averaging averages over the number of documents to be classified (compare 
[Cai and Hofmann, 2003]). 

In all cases, the integration of conceptual features improves the results, 
in most cases at a significant level (compare Table 9.1). The best results 
for the learned ontologies could be achieved with the bisec-7000 ontology 
and a superconcept integration level h of 15 resulting in 44.26% macro-avg. 

^ The controlled vocabulary thesaurus of the United States National Library of 
Medicine (NLM), http://www.nlm.nih.gov/mesh/ 

* For a review of evaluation measures we refer to Sebastiani [Sebastaini, 2002] in 
the text classification setting and to Hotho et al. [Hotho et al., 2003] in the text 
clustering setting. 



288 Applications 

Fi , which is both above the bag-of-words baseUne not using conceptual fea­
tures (42.56%) as well as above the best version using the MeSH thesaurus 
(44.19%). The best results for the ontologies bisec-14000 and agglo-7000 are 
macro-avg. Fi measures of 43.60% and 43.07%, respectively, thus being above 
the bag-of-words baseline, but not performing better than the MeSH the­
saurus. Considering micro averaging, again the bisec-7000 ontology yields the 
best result of Fi =45.46%, outperforming the baseline (43.94%) as well as the 
best result using MeSH (45.43%). The versions bisec-14000 and bisec-7000 
with micro-avg. Fi of 44.67% and 44.31%, respectively, both outperform the 
baseline, but not the MeSH thesaurus. These results are indeed significant 
from a statistical point of view as shown in Table 9.1, where '*' stands for 
significance at a a-level of 5% and '**' for significance at a 1% a-level. In 
this chapter significance tests will always applied for the same purpose and 
assuming normally distributed data. The null hypothesis will always be that 
both samples are drawn from the same population and that the observed dif­
ferences are due to chance. The aim will thus be to reject the null hypothesis 
in favor of the alternative hypothesis claiming that the diflFerences are indeed 
statistically significant.,The conclusion here is that the automatically learned 
ontologies indeed improve the baseline system, while the bisec-7000 ontol­
ogy even yields better results than the MeSH thesaurus. This proves that 
automatically learned ontologies have indeed the potential to improve text 
classification approaches relying on the plain bag-of-words model. 

9.1.3.2 Text Clustering Experiments 

For the clustering experiments, we first compiled a corpus which contains 
only one label per document. We used the 106 queries provided with the 
OHSUMED collection and regarded every answer set of a query as a cluster. 
We extracted all documents for all queries which occur in only one query. This 
results in a dataset with 4389 documents and 106 labels (clusters). Evaluation 
measures for text clustering are entropy, purity, inverse purity and Fi-measure. 

The purity measure is based on the well-known precision measure for infor­
mation retrieval (cf. [Pantel and Lin, 2002b]). Each resulting cluster P from a 
partitioning P of the overall document set D is treated as if it were the result 
of a query. Each set L of documents of a partitioning L, which is obtained by 
manually labeling, is treated as if it were the desired set of documents for a 
query. The two partitions P and L are then compared as follows. 

The precision of a cluster P £ P for a given category L £h'\s given by 

Precision(P,L) := .p, (9.1) 

The overall value for purity is computed by taking the weighted average of 
maximal precision values: 

Purity(P, L) := X ] JTTT ™^^ Precision(P, L). (9.2) 
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Table 9.1. Performance Results in the Classification Setting. 

Ontology 
[none] 
agglo-7000 
agglo-7000 
agglo-7000 
bisec-7000 
bisec-7000 
bisec-7000 
bisec-14000 
bisec-14000 
bisec-14000 
mesh 
mesh 

Ontology 
[none] 
agglo-7000 
agglo-7000 
agglo-7000 
bisec-7000 
bisec-7000 
bisec-7000 
bisec-14000 
bisec-14000 
bisec-14000 
mesh 
mesh 

Max. Level h 
n.a. 

10 
15 
20 
10 
15 
20 
10 
15 
20 
0 
5 

Max. Level h 
n.a. 

10 
15 
20 
10 
15 
20 
10 
15 
20 

0 
5 

macro-averaged (in %) 
P R Fi Significance 

52.60 
52.48 
52.57 
52.49 
53.39 
54.36 

55.12 
51.92 
52.17 
53.37 
53.65 
52.72 

mi 
P 

55.77 
55.83 
55.95 
55.76 
56.59 

57.24 
57.18 
54.88 
55.27 
56.39 
56.81 
55.94 

35.74 
36.52 
36.31 
36.44 
36.79 
37.32 
36.87 
36.12 
36.86 
36.85 
37.56 

37.57 
cro-av 

R 
36.25 
36.86 
36.67 
36.79 
37.25 
37.71 
37.21 
36.52 
37.27 
37.27 
37.84 

37.94 

42.56 
43.07 
42.95 
43.02 
43.56 

44.26 
43.86 
42.60 
43.20 
43.60 
44.19 
43.87 

eragec 
F i 

43.94 
44.41 
44.30 
44.33 
44.92 

45.46 
45.08 
43.85 
44.52 
44.87 
45.43 
45.21 

no 
no 
no 
* 
** 
** 
no 
no 
* 

** 
** 
i (in %) 
Significance 

no 
no 
no 
* 
** 
** 
no 
no 
* 
** 
** 

We also investigate the counterpart of purity: 

InversePurity(P, L) := VJ —-j max Precision(I,, P) 
LgL 

D\ P€V 
(9.3) 

and the well known 

\L\ 2 • Recall(P, L) • Precision(P, L) F-Measure(P, L) := V ^ max ^ " ^ecan,^ ^ ; • rrecis.on,^^ ^ ; 
Leh^^^ ^^^ Recall(P,i)-|-Precision(P,I,) ^ ' 

where Recall(P, L) := Precision(L,P). 
The three measures return values in the interval [0,1], with 1 indicating 

optimality. The F-Measure works similarly to inverse purity, but it penalizes 
overly large clusters as it includes the individual precision of these clusters 
into the evaluation. 
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While (inverse) purity and F-measure only consider 'best' matches between 
'queries' and manually defined categories, the entropy indicates how large the 
information content of a clustering result is. 

E{r,L) = J2pvohiP)-EiP) (9.5) 

where 
EiP) = - ^ prob(i |P) log(prob(L|P)) (9.6) 

Leh 

and 
prob(L|F) = Precision(P, L) (9.7) 

prob(P) = 1 ^ (9.8) 

The entropy has the range [0, /op(|L|)], with 0 indicating optimaUty. 
Table 9.2 presents the results of the text clustering task, averaged over 

20 repeated clusterings with random initialization. With respect to macro-
averaging, the integration of conceptual features always improves results and 
also does so in most cases with respect to micro-averaging. 

Concerning macro-averaging, the different versions agglo-7000, bisec-7000 
and bisec-14000 are over the baseline Pi-measure of 19.41% using no con­
ceptual features with best Pi-measures of 19.93%, 20.17% and 21.11%, re­
spectively (compare Table 9.2). However, the best result achieved with the 
automatically learned ontologies does not perform better compared to the 
version relying on the MeSH thesaurus, yielding an F-Measure of Pi =21.93%. 

With respect to micro-averaging, the best results achieved with automati­
cally learned ontologies are better compared to the baseline using no concep­
tual features as well as to MeSH (compare Table 9.2). 

Thus, also with regard to the clustering task we can conclude that using 
automatically learned concept hierarchies as background knowledge improves 
in any case the baseline using no conceptual features. Considering macro-
averaged results, we even get better results compared to using MeSH. This 
definitely corroborates the fact that automatically learned ontologies can also 
be successfully applied within a document clustering setting. 

9.1.4 Summary 

Summarizing, on the one hand we have presented in this section an applica­
tion for automatically learned concept hierarchies within text classification or 
clustering approaches relying on background knowledge. The main conclusion 
here is that automatically learned concept hierarchies can actually compete 
with handcrafted concept hierarchies in terms of performance with respect to 
the results on these tasks. This is indeed a very promising result as it shows 



Text Clustering and Classification 291 

Table 9.2. Performance Results 

Ontology 
[none] 
agglo-7000 
agglo-7000 
agglo-7000 
bisec-7000 
bisec-7000 
bisec-7000 
bisec-14000 
bisec-14000 
bisec-14000 
mesh 
mesh 

Ontology 
[none] 
agglo-7000 
agglo-7000 
agglo-7000 
bisec-7000 
bisec-7000 
bisec-7000 
bisec-14000 
bisec-14000 
bisec-14000 
mesh 
mesh 

Max. Level h 
n.a. 

1 
10 
20 

1 
10 
20 

1 
10 
20 

1 
10 

Max. Level h 
n.a. 

1 
10 
20 

1 
10 
20 

1 
10 
20 

1 
10 

in the Clustering Setting. 

macro-averaged (in %) 
Entropy F\ Inv. Purity Purity 

2,6674 
2,6326 
2,5808 
2,5828 
2,5896 
2,5361 
2,5321 
2,5706 
2,4382 
2,4557 
2,4135 
2,3880 

mi 
Entropy 
3,12108 
3,1102 
3,1374 
3,1325 
3,1299 
3,1533 
3,1734 
3,1479 
3,1972 
3,2019 
3,2123 
3,2361 

19,41% 
19,47% 
19,93% 
19,88% 
19,84% 
20,17% 
20,01% 
19,96% 
21,11% 
20,77% 
21,63% 

21,93% 
cro-avei 

Fi 
14,89% 
15,34% 
15,21% 
15,27% 

15,48% 
15,18% 
14,83% 
15,19% 
14,83% 
14,67% 
14,92% 
14,61% 

17,22% 
17,68% 
17,55% 
17,69% 
17,72% 
17,38% 
17,38% 
17,76% 
17,68% 
17,46% 
17,70% 
17,64% 

aged (in 9 
Inv. Purity 

14,12% 
14,56% 
14,43% 
14,62% 
14,84% 
14,46% 
14,23% 
14,63% 
14,33% 
14,07% 
14,91% 
14,64% 

22,24% 
21,65% 
23,04% 
22,70% 
22,53% 
24,02% 
23,59% 
22,80% 
26,18% 
25,67% 
27,78% 
28,98% 

Purity 
15,74% 
16,21% 
16,08% 
15,97% 
16,18% 
15,98% 
15,48% 
15,80% 
15,37% 
15,36% 
14,93% 
14,59% 

that, for some tasks, an automatically learned concept hierarchy can indeed 
replace a handcrafted one. 

On the other hand, from a more general perspective we have also sug­
gested a task-based and indirect evaluation of automatically learned concept 
hierarchies by integrating them as an additional parameter into a system ac­
complishing a certain task and the performance of which can be measured 
quantitatively. This goes in the direction of the suggestions of Porzel and 
Malaka [Porzel and Malaka, 2005]. Such an evaluation procedure indeed al­
lows to compare the quality of different ontologies with respect to a given 
task. In the experiments presented in this section, the only parameter varied 
is the ontology itself, thus allowing to conclude that any difference in per­
formance is due to the ontology. In fact, as discussed by Porzel and Malaka 
[Porzel and Malaka, 2005], an indirect evaluation of ontologies can only make 
sense if this requirement is fulfilled. 
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9.2 Information Highlighting for Supporting Search 

In this section, we present an experimental study with the aim of clarifying 
if highlighting annotations partially produced by automatic techniques can 
increase user experience within a browsing framework. In particular, the aim 
has been to compare the performance of users relying on highlighted anno­
tations to users which did not have such annotations with respect to a fact 
retrieval task. Indeed, as will be shown later, automatically generated annota­
tions were found to add value to the browsing experience in the investigated 
scenario. 

The user study can be seen as an indirect evaluation of the automatically 
populated ontologies. This sort of evaluation is thus a task-based evaluation 
as opposed to the quantitative evaluations with respect to a gold standard as 
presented in earlier chapters of this book. In this line, we present an alternative 
evaluation method based on analyzing the user experience of working with a 
system partially enriched with the help of ontology population technologies. 
In what follows, we briefly describe the technological settings in Section 9.2.1. 
In Section 9.2.2 we describe the settings of our experiments in detail before 
presenting the results in Section 9.2.3 

9.2.1 Technological Settings 

Our experiment was targeted to clarify whether the results of two information 
extraction tools, C-PANKOW and ESpotter [Zhu et al., 2005a], could be used 
to learn instances of concepts contained in the ontology, which if highlighted 
in the Magpie browser [Domingue and Dzbor, 2004] could increase user ex­
perience as well as performance on a fact retrieval task. The information 
extraction tools were used to generate lexicons from which Magpie could gen­
erate semantic annotations on the fly and highlight them to a user. Magpie, 
ESpotter as well as the settings with which C-PANKOW was applied to the 
task at hand are described below. 

9.2.1.1 Magpie 

Magpie [Domingue and Dzbor, 2004] is a framework developed by the Open 
University, partially responding to the challenge of the knowledge acquisition 
bottleneck. It allows users of web-based documents to interpret content from 
different conceptual perspectives by automatically generating annotations cor­
responding to a particular ontology as a semantic layer over the actual con­
tent of the document. This allows Magpie to provide semantic web services 
for documents with no semantic markup, or which are marked up according 
to ontologies that do not suit the user's purpose. 
The end-user part of the Magpie framework consists of a browser plug-in which 
enables the user to choose an ontology and to toggle categories of knowledge 
via simple push buttons presented in a toolbar. Selecting a button highlights 
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items in the text that are relevant to the chosen category. These dynamic 
annotations are generated using a lexicon which relates each concept in the 
ontology to the various text strings by which it is commonly represented. In 
early versions of Magpie, lexica were constructed by domain experts. It is this 
costly manual process which we have tried to automate using the two infor­
mation extraction tools C-PANKOW and ESpotter. The role of C-PANKOW 
and ESpotter is thus to automatically enhance the lexicon which Magpie uses 
to generate annotations. 

9.2.1.2 C-PANKOW 

C-PANKOW has been applied to the task at hand downloading 100 pages 
and using a similarity threshold of 0.05 together with the Hits strategy for 
selecting the best concept (compare Section 8.3.2). We processed 307 KMi 
planet stories (compare Section 5) with C-PANKOW, yielding 1270 different 
instances (4.1 per document on average), which, on a scale from 0 to 3 (3 
being best), were rated on average with 1.8 credits by a human evaluator. 
If we regard every annotation receiving at least two credits as correct, this 
translates into an accuracy of 58%. A total of 755 entities have been mapped to 
the following nine upper level categories: event, technology, place, organization, 
person, politician, company, project and research area and added to the Magpie 
lexicon. 

9.2.1.3 ESpo t t e r 

ESpotter is a named entity recognition (NER) system also developed by the 
Open University [Zhu et al., 2005b]. It builds, on the one hand, on standard 
named entity recognition (NER) methods, using capitalization as an indica­
tor for a name as well as relying on gazetteers (for example lists of common 
names). On the other hand, it also incorporates a domain adaptation mecha­
nism which allows to choose the methods that are most likely to be reliable 
for a particular site. 

Given a web page, ESpotter preprocesses it by removing markup tags and 
matching regular expressions with high reliability on the domain with respect 
to the task of recognizing entities of various types on the page. ESpotter 
extracted a total of 761 annotations (approx. 2.4 per document) from the 
KMi Planet News stories. These were 428 entities found for organization, 243 
for person, 4 for research area and 86 for project. In this experiment, ESpotter's 
ability to recognize people's names was of particular interest. 

9.2.2 Experimental Sett ings 

The evaluation took the form of a user study conducted jointly by Victo­
ria Uren from the Open University and the author of the present book in 
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November 2004. The goal of the experiment was to find out whether semantic 
annotations generated with the help of automatic ontology population tools 
improved the performance and user experience of Magpie users on information 
gathering tasks. The performance of three groups of participants was com­
pared on two fact retrieval tasks, which involved searching an online database 
of KMi news stories. The groups were: Group A (baseline), who used standard 
keyword-based search techniques, Group B (Magpie/AKT), who had the news 
stories and a version of Magpie with a hand crafted lexicon based on internal 
knowledge bases from KMi and the University of Southampton (we will refer 
to this lexicon as AKT in what follows), and Group C (Magpie/AKT-|—1-), 
who had the same set up as Group B, but with the hand crafted lexicon en­
hanced by additions from the information extraction tools as well as of recent 
information from KMi's knowledge bases that had been created since the orig­
inal lexicon was built. The AKT-I—I- lexicon used by Group C represented the 
best lexicon we could construct exploiting all the resources at hand. 

9.2.2.1 Tasks 

The tasks of our user study were performed on KMi's Planet News repositori^: 
an online newspaper featuring events at the Knowledge Media Institute. We 
defined two fact retrieval tasks: the People and the Technology tasks. 

The People tasks consisted in compiling a list of important people who vis­
ited the institute. This task was defined to test the capabilities of C-PANKOW 
as well as of ESpotter with respect to finding new persons not included in the 
lexicon created from the KMi knowledge base. 

In the Technology task, the participants were asked to compile a list of tech­
nologies, either in-house or external, used in KMi projects. This task mainly 
tested the C-PANKOW system, as ESpotter was not expected to find addi­
tional technologies not contained already in KMi's knowledge base (compare 
[Uren et al., 2005]). 

The users were instructed to complete both tasks within 10 minutes. They 
recorded their answers by copy&pasting them into a text editor. These text 
files were then used as the basis for evaluating the study. Additionally, the 
users' interaction with the tool was recorded using Camtasia Studio^ for fur­
ther analysis. 

9.2.2.2 Participants 

The participants of the study were a mixture of research students (all working 
either in KMi or in the Open University Maths or Computer Science Depart­
ment) as well as qualified researchers working at KMi. In general, they all had 

^ http://news.kmi.open.ac.uk/kmiplanet 

* http://www.techsmith.com/products/studio/default.asp 
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sufficient web-searching skills as well as a reasonable understanding of the do­
main. The participants were more or less uniformly divided into the already 
mentioned groups A,B and C. Group A consisted of six participants, group 
B as well as C of seven participants each. Each of the groups used different 
settings for searching the KMi Planet News repository. The settings for the 
different groups are described in detail in the following. 

9.2.2.3 Tes tbed 

The baseUne system used by Group A consisted of the Planet News search 
site, which incorporates a Main News page showing the most recent stories. 
From this site the user can access the News Archive, which lists the stories 
in reverse chronological order. It furthermore includes a drop-down list that 
allows the user to select a category of stories as well as a search option which 
permits simple and advanced keyword searches in which the users can search 
for authors, titles, stories or keywords within a certain category of stories. 

Group B used the baseline system augmented with Magpie using the AKT 
lexicon containing the four upper level categories: person, project, research area 
and organization. 

Group C used the baseUne system augmented with Magpie but using the 
enhanced AKT-I—I- lexicon. This lexicon is a superset of the original AKT lexi­
con containing additionally: (i) additional data from the KMi knowledge base, 
(ii) entities extracted with C-PANKOW and (iii) entities extracted with ES-
potter. This enhanced lexicon consisted of the nine categories: person, project, 
research agenda, organization, place, event, politician, technology and company. 
The various sources were merged with the AKT lexicon consisting of 3679 
items to a cumulated lexicon consisting of 6340 items. No duplicate detection 
was performed. A breakdown of the AKT-I—I- lexicon of the number of entities 
per source is shown in the following table: 

Category 
event 
technology 
place 
organization 
person 
politician 
company 
project 
research area 

AKT 
0 
0 
0 

154 
3182 

0 
0 

192 
151 

KMi KB 
0 

21 
0 

474 
633 

0 
0 

74 
92 

C-PANKOW 
74 
75 

105 
237 
120 
23 
53 
70 
9 

The above numbers already show that C-PANKOW has contributed sub­
stantially to the enrichment of the knowledge base. In particular, in the sce­
nario considered it was, on the one hand, able to add entities for categories 
which were poorly or not represented in the KBs at all, such as event, technol­
ogy or place. On the other hand, it is capable of a more fine-grained distinction 
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of entities, thus specializing the category person further into politician and or­
ganization into company, respectively. 

9.2.3 Results 

We present the results of the user study in terms of (i) retrieval perfor­
mance, (ii) an analysis of how many of the items each group retrieved were 
in one of the two lexica, and (iii) an analysis of interactions with the tools 
acquired from the Camtasia movies. For further details, the reader is referred 
to [Uren et al., 2005]. 

9.2.3.1 Retrieval Performance 

The first question examined was whether having Magpie annotation available 
improved the participants' performance in terms of the number and quality of 
items retrieved within the available time span. In order to evaluate the par­
ticipants' performance on the tasks, an impartial assessor neither involved in 
the design nor the execution of the experiments rated the items for the People 
task from '0' (unimportant or unrecognized), over ' 1 ' (moderately important) 
to '2' (important) and for the Technologies task from '0' (not a technology 
or unrecognized), over ' 1 ' (not an innovative technology) to '2' (innovative 
technology). Scores for each participant were calculated by summing up the 
scores for all their answers. Average scores for the three groups on both tasks 
are presented in Table 9.3. It is clear that both groups using Magpie achieved 
higher scores for both tasks than the baseline group. Group B (Magpie/AKT) 
did best on the People Task, whereas Group C (Magpie/AKT-I—I-) did best 
on the Technologies task. The differences between the scores for the People 
task are fairly small. None of the differences between groups are significant at 
the 5% a-level in two sample t-tests. Contrary to our expectation. Group C 
scored an average of 1.6 less than Group B. These are of course small sample 
groups and thus the results do not allow definite conclusions. The results for 
the Technology task, on the other hand, clearly show that having Magpie an­
notations available increased the scores of both Groups B and C compared to 
Group A. Group C, which used the enhanced AKT+4- lexicon, obtained the 
highest score of all. For this task, two sample t-tests showed that the differ­
ence in performance between Group A and Group C was significant at the 5% 
Q-level. The conclusion here is thus that automatically generated annotations 
have indeed the potential to improve performance on a fact retrieval task as 
considered in our experiments. 

9.2.3.2 Answer Coverage 

In addition to the objective performance on the fact retrieval task, we exam­
ined how suitable the two lexicons, i.e. AKT and AKT4—h, were for answering 
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Table 9.3. Average scores for the people and technologies tasks 

Task 
People 
Technologies 

Group A Group B Group C 
13.2 
19.2 

15.3 
23.4 

13.7 
26.7 

the questions in principle. For this purpose, we determined how many of the 
participants' answers were in one of the two lexica. For all three groups and 
for both tasks, we found that the AKT++ lexicon contains more answers than 
the AKT lexicon. For all six cases, the differences were significant at the 2.5% 
level according to two-tailed t-tests. This indicates that the AKTH—I- lexicon 
was better suited to the tasks than the AKT lexicon, that means, it would 
have given more appropriate suggestions. To some extent, this result is obvi­
ous due to the fact that the AKT-I—I- lexicon almost doubles the AKT lexicon 
in size, but it is reassuring to know that the additional entries have indeed the 
potential to enhance the users' browsing experience. For the People task, we 
are confident that the difference in the answer coverage comes from lexicon 
items generated either by C-PANKOW or by ESpotter, since we know that 
the majority of names stemming from new additions to the knowledge base 
are those of KMi staff. For the Technology task, a fine grained analysis deter­
mined that 19 of the answers categorized as project or technology could only 
have been highlighted because of additions to the lexicon by C-PANKOW. 
These 19 answers scored 15 using our assessor's ratings. Typical good quality 
additions were XML, Topic Maps, SMS and Semantic Web. They seem to 
represent technologies that are important to KMi but were not developed in-
house and therefore do not appear in the institutional ontology. C-PANKOW 
is thus giving a qualitative improvement to the scope of the annotations. For 
a more detailed discussion of these results, the interested reader is referred 
to [Uren et al., 2005]. Overall, the results show that the AKT-I—I- lexicon par­
tially produced by automatic ontology population techniques is better suited 
to carry out the tested tasks than the AKT lexicon in terms of coverage and 
categorization of items. 

9.2.3.3 Movie Analysis 

The Camtasia movies recorded during the experiment were analyzed to see 
how often the participants selected each of the categories offered by Magpie 
for highlighting. Table 9.4 shows the mean usage of the different highlighting 
options for Group B and Group C (Group A did not use Magpie). The most 
used highlighting options for Group B were person and project. The most used 
options by Group C were person, project, politician and technology. 
For the People task, Group B mainly used the person and organization options 
and Group C used person and politician. However, for the Technology task, 
whereas Group B mainly used project highlighting, Group C used primarily 
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technology, even though the answer coverage indicates that using project would 
have been a better strategy. The movies were also analyzed for two additional 
kinds of data. We counted how often Groups B and C made a selection (typi­
cally by cut and pasting an item to their answer list) when Magpie highlighting 
was on, and how often, on these occasions, the item they selected had been 
highlighted by Magpie. The data confirms that Group C were more inclined 
to turn Magpie on than Group B; for both tasks the percentage of selection 
events that occurred with Magpie highlighting on was higher for Group C. For 
the People task it is very clear why. For Group B turning Magpie on gave a 
very low rate of return, less than one tenth of items selected with highlighting 
on were actually highlighted by Magpie. For Group C three quarters of peo­
ple selected with highlighting turned on had been highhghted by Magpie. For 
the Technology task the results are very interesting because although Group 
C were more inclined to turn Magpie on, they were actually getting a lower 
rate of return than Group B (43.8% vs. 65.0%) (compare Table 9.4). It seems 
that the trust built up in their initial positive experience with the People task 
persisted into the Technology task, even though the reward rate dropped. 

Table 9.4. Usage of highlighting 

Task 
People 
Technologies 

Selections with Magpie 
activated (%) 
Group B 

H.7 
24.1 

Group C 
51.8 
62.9 

Selection of highUted texts 
with Magpie activated (%) 
Group B 

7.1 
65.0 

Group C 
74.1 
43.8 

9.2.4 Summary 

The results of the evaluation indeed show that for fact finding exercises of 
this kind, appropriate highlighting can help users in identifying more relevant 
items in a fixed time. Comparing the two different lexicons AKT and AKT-I—1-, 
the test subjects were more inclined to use the highlighting for AKT-F-1- which 
had been boosted with items extracted from text. We conclude that, for a 
browsing system such as Magpie, semantic annotations, including the slightly 
noisy kind inevitably produced by automatic ontology population systems, 
seem to work better than small amounts of high quality, humanly generated 
annotation with limited domain scope. While we cannot generalize too far 
beyond the scenario investigated here, our results support the view that such 
automatic techniques have indeed the potential to alleviate the knowledge ac­
quisition bottleneck. 

The user study presented in this section is in line with the task-based eval­
uation principle discussed earlier in this section in the sense that a baseline 
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system and a system relying on automatically generated annotations are com­
pared with respect to a certain task, in this case the one of retrieving certain 
facts from a text repository. Once again, it is important to mention that it 
is this sort of task-based evaluation which will ultimately allow definite con­
clusions about which technologies work in the sense that they improve over a 
baseline and which do not. 

9.3 Related Work 

In this section, we discuss related work in the fields of text mining, information 
retrieval or natural language processing using ontology learning techniques or 
showing a clear potential for their application. In particular, we discuss query 
expansion, information retrieval, text clustering and classification as well as 
natural language processing tasks. 

9.3.1 Query Expansion 

Several researchers have analyzed the possibility of expanding a search query 
with additional terms derived from a thesaurus, taxonomy or ontology. The 
aim of expanding document retrieval queries in such a way is to overcome 
the problem of vocabulary mismatch, that is, the case in which a user queries 
for a document using other words than contained in it. In this case, it makes 
sense to expand the query with semantically related words to alleviate the 
problem of vocabulary mismatch. For this purpose, one needs a structured 
resource such as a taxonomy or thesaurus in which words are organized in 
a graph-like structure and connected through links corresponding to certain 
semantic relations. These relations are typically: synonymy, hypernymy, hy-
ponymy, antonymy, meronymy, etc. WordNet is the standard example for such 
a thesaurus containing all of the above links. The hypernymy/hyponymy re­
lation thereby makes up for around 70% of the links, thus being the most 
frequent relation in WordNet. 
Several researchers have reported positive results concerning query expan­
sion. Salton and Lesk [Salton and Lesk, 1971], for example, found that expan­
sion with synonyms improved performance, while using broader or narrower 
terms produced too inconsistent results for being actually useful. Wang et 
al. [Wang et al., 1985] report that a variety of lexical-semantic relations im­
proved retrieval performance. These experiments were, however, conducted 
on very small document collections. Voorhees [Voorhees, 1994] in contrast re­
ports results on a larger collection, the TREC collection. In Voorhees' settings, 
WordNet synsets are added to the queries by hand, thus avoiding the problem 
of word sense disambiguation. The conclusions of Voorhees are twofold. On 
the one hand, she concludes that query expansion only helps when queries are 
relatively short. On the other hand, she also implements an automatic proce­
dure to add WordNet synsets to a given query and concludes that there is a 
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need for a lot of improvement in such a procedure before query expansion can 
be applied automatically. In general, it seems that using automatically derived 
thesauri or word associations works better than using hand-crafted resources 
[Fox, 1980]. The reason is that thesauri automatically derived from the docu­
ment collection fit the domain in question better than general resources such as 
WordNet. In fact, Qiu and Fei [Qiu and Frei, 1993] used an automatically con­
structed thesaurus with the result of a 20% improvement in retrieval effective­
ness on a small collection. Schiitze and Pedersen [Schiitze and Pedersen, 1997] 
built a co-occurrence based thesaurus and applied it within two information re­
trieval applications, slightly improving the retrieval performance. As already 
mentioned in Section 6, Grefenstette [Grefenstette, 1994] performed experi­
ments using several small text collections, improving the retrieval performance 
for some of the collections with his method. In the same line, Jing and Croft 
[Jing and Croft, 1994] found an improvement through query expansion using 
an automatically constructed association thesaurus. Other successful exam­
ples of experiments in query expansion using automatically generated thesauri 
can be found in the work of Park and Choi [Park and Choi, 1996] as well as 
Crouch and Yang [Crouch and Yang, 1992]. 

9.3.2 Information Retrieval 

Information from a thesaurus can be exploited within information retrieval 
essentially in two ways, either by modifying the document representation in­
tegrating conceptual descriptors or semantic features, or defining a 'semantic' 
similarity measure taking into account the structure of the thesaurus. Both 
approaches have been investigated in the context of information retrieval. 

A conceptual document representation requires the disambiguation of 
words, which is in itself a difficult problem. Sanderson [Sanderson, 1994] has 
argued that word sense ambiguity in fact has only a minor effect on retrieval 
performance. Furthermore, he estimates that word sense disambiguation sys­
tems need to achieve an accuracy of at least 90% to be applicable for infor­
mation retrieval. More recent work by Gonzalo et al. [Gonzalo et al., 1998] 
has however shown that this lower bound on disambiguation accuracy is far 
too pessimistic. In fact, in the experiments presented, indexing of texts with 
synsets yields up to 29% improvement with respect to a standard IR system 
- SMART - indexing only with words. More interestingly, the method based 
on conceptual indexing still performs better at a disambiguation error rate of 
around 30%. 

Other research has focused on integrating the structure of the thesaurus 
into the measure assessing the similarity between the query and document 
vectors. Richardson and Smeaton [Richardson and Smeaton, 1995], for exam­
ple, present a similarity measure based on the work of Resnik [Resnik, 1999]. 
However, they do not achieve an increase in retrieval performance. 
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9.3.3 Text Clustering and Classification 

To date, the work on integrating background knowledge into text clas­
sification, text clustering or related tasks is quite heterogeneous. Green 
[Green, 1999] uses WordNet to construct chains of related synsets from 
the occurrence of terms for document representation and subsequent clus­
tering. Green does not evaluate performance and scalability of his ap­
proach as compared to standard bag-of-words based clustering of documents. 
Dave et al. [Dave et al., 2003] used WordNet without word sense disam­
biguation and found that indexing with WordNet synsets decreased clus­
tering performance in all their experiments. Recently, Bloehdorn and Hotho 
[Bloehdorn and Hotho, 2004, Hotho et al., 2003] have reported promising re­
sults when using additional conceptual features extracted from manually engi­
neered ontologies. Other results from similar settings are reported by Scott and 
Matwin [Scott and Matwin, 1999] as well as Wang et al. [Wang et al., 2003]. 
De Buenaga Rodriguez et. al. [de Buenaga Rodriguez et al., 2000] and Ureiia 
et. al. [Ureiia et al., 2001] show a successful integration of the WordNet re­
source for a document categorization task, but the result is based on manually 
built synset vectors. 

Alternative approaches for conceptual representations of text documents 
that do not require explicit manually engineered background knowledge 
mainly draw from dimension reduction techniques like Latent Semantic 
Analysis [Deerwester et al., 1990] or Probabilistic Latent Semantic Analysis 
[Cai and Hofmann, 2003]. These techniques compute 'concepts' statistically 
from term co-occurrence information. In contrast to the approach of Bloe­
hdorn et al., the concept-like structures are, however, not easily interpretable 
by humans. 

9.3.4 Natural Language Processing 

Ontologies have important applications within natural language processing 
and understanding. Theoretical issues concerning the usage of ontologies for 
natural language processing are discussed by Bateman [Bateman, 1991], who 
in particular presents different types of ontologies and discusses their advan­
tages and disadvantages from a conceptual or philosophical point of view. 

From a computational point of view, they provide the necessary vocabulary 
and axiomatization of a certain domain, allowing for semantic construction as 
well as reasoning with respect to a given target language. An early example of 
a natural language understanding system heavily relying on axiomatized world 
knowledge is the JANUS system [Hinrichs, 1987]. A more recent example is the 
system described by McShane et al. [McShane et al., 2005]. Prom a processing 
point of view, the subtasks within natural language processing for which world 
knowledge in form of ontologies can be used typically are: 

• ambiguity resolution 
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• interpretation of compounds 
• interpretation of vague words 
• anaphora resolution / discourse analysis 

Natural language is typically highly ambiguous, whereby ambiguities oc­
cur at nearly all levels of analysis, that is, at the lexical level, at the syntactic 
as well as at the semantic level. At the lexical level, there are polysemous 
words featuring different lexical meanings, e.g. bank. There is also the prob­
lem of interpreting the relation between words within a compound such as 
headache medicine. Furthermore, there are prepositions such as with, of as 
well as auxiliary verbs such as has which are inherently vague and need to be 
interpreted with respect to the specific context. An ontology can help in this 
respect by stating which semantic relations potentially hold between different 
concepts, thus constraining the interpretation of vague predicates or the rela­
tions between words in a nominal compound. So called selectional restrictions 
specified with respect to a given ontology can help in the disambiguation of 
the meaning of polysemous words. In fact, selectional restrictions can be seen 
as the specification of which concepts are allowed to fill the arguments of a cer­
tain predicate represented by a verb, or can be modified by a certain adjective, 
etc. All the systems using an ontology as background knowledge for natural 
language understanding are obviously also faced with the so called knowl­
edge acquisition bottleneck. For this purpose, most researchers have developed 
tools supporting the development of ontologies on the basis of corpus-based 
analysis. The JANUS system, for example, relies on two tools for knowledge 
acquisition from corpora: IRACQ and KNACQ [Hinrichs, 1987]. Nirenburg et 
al. describe their tools for knowledge acquisition in [Nirenburg et al., 1996]. 
Other important research on lexical acquisition has been conducted in the con­
text of the Acquilex project'^, especially focusing on the extraction of knowl­
edge from machine-readable dictionaries (compare Section 6.1.1). 

In what follows, we further discuss some specific applications where on­
tologies have been used for natural language processing. 

9.3.4.1 Word Sense Disambiguation 

The problem of word sense disambiguation can be described as the task 
of assigning the correct meaning to a word in a given context. Typically, 
word sense disambiguation research has considered so called word sense enu­
merating lexica in which words are assigned a finite set of senses or mean­
ings such as in WordNet. One of the first word sense disambiguation al­
gorithms was the one introduced by Lesk [Lesk, 1986], in which that sense 
of a word is chosen, the gloss of which shows the largest overlap with 
the glosses for all the synsets of the words in the context of the target 
word. Other researchers have extended Lesk's algorithm additionally ex­
ploiting the structure of the thesaurus by not only considering the gloss 

^ http://www.cl.cam.ac.uk/Reseaich/NL/acquiIex/acqhome.htmI 
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of the synset of the target word, but also the glosses of synsets related to 
it via a lexical relation such as hypernymy, hyponymy or meronymy (see 
for example [Agirre and Rigau, 1996, Banerjee and Pedersen, 2003]). Other 
researches have adopted an information content based approach to as­
sess the similarity of words on the basis of the WordNet hierarchy (cf. 
[Resnik, 1995, Jiang and Conrath, 1998]). In particular, the information con­
tent is calculated for each concept by aggregating the corpus-based frequency 
of all the members in the extension of a concept by calculating its information 
content. 

9.3.4.2 Classification of unknown words 

Recently, several researchers have tackled the problem of classify­
ing unknown words with respect to an existing taxonomy (see for 
example [Hearst and Schiitze, 1993, Alfonseca and Manandhar, 2002, 
Pekar and Staab, 2002, Madche et al., 2002, Widdows, 2003b]). Pekar 
and Staab [Pekar and Staab, 2002] as well as Hearst and Schiitze 
[Hearst and Schiitze, 1993], among others, for example have shown how 
the structure of the concept hierarchy itself can be used for more accurate 
classification by aggregating the vectors of hyponyms to construct the vector 
of their hypernyms as in our approach to named entity recognition described 
in Section 8.2. 

9.3.4.3 Named Entity Recognition (NER) 

Named entity recognition typically relies to a great extent on so called 
gazetteers, in which named entities are assigned to their corresponding 
class. Named entity recognition can thus profit from ontologies automatically 
populated using diverse methods such as presented in [Etzioni et al., 2005], 
[Maynard et al., 2004] as well as the methods described in Chapter 8. 

9.3.4.4 Anaphora Resolution 

Some researchers have advocated 'knowledge-poor' strategies to anaphora res­
olution and reference resolution in general (compare [Mitkov, 1998]). How­
ever, other researchers have attempted to exploit lexical ontologies for 
the purpose of resolving definite descriptions (see [Poesio et al., 1997] and 
[Munoz and Palomar, 2001]). Other approaches rely on richly axiomatized on­
tologies (compare [Cimiano et al., 2005d]). Recently, some researchers have 
investigated the possibility of using automatically acquired knowledge for 
anaphora resolution (compare [Poesio et al., 2002] and [Markert et al., 2003]). 
In this line, our automatically generated qualia structures could represent a 
valuable resource. In general, it seems quite clear that background knowledge 
is needed for automatic reference resolution within NLP systems. 
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9.3.4.5 Question Answering 

Ontology learning also has important applications in question answering. To 
some extent, question answering also suffers from the same problem as in­
formation retrieval, i.e. the vocabulary mismatch problem. In fact, due to 
language's variation, in most cases people will ask for information in a differ­
ent way as it is stated in a certain web page. As an example, the answer to the 
question Who wrote the Lord of the Rings ? is clearly provided by the sentence 
Tolkien is the author of the Lord of the Rings. However, this correspondence 
can not be directly observed at the surface. Acquiring paraphrases of different 
ways to express the same content is thus an important issue within ques­
tion answering. This issue has been for example addressed by Lin and Pantel 
[Lin and Pantel, 2001b]. 

9.3.4.6 Information Extraction 

In the information extraction community, a lot of early research has ad­
dressed the induction of dictionaries from a corpus to facilitate portabil­
ity to other domains. Early systems addressing the task of automatically 
inducing extraction rules from a corpus in an unsupervised way are the 
CRYSTAL [Soderland et al., 1995] as well as AUTOSLOG [Riloff, 1993] sys­
tems, for example. Recently, Faure and Poibeau [Faure and Poibeau, 2000] 
have shown how ontology learning techniques can be applied to the induc­
tion of automata for information extraction. They present an approach in 
which extraction automata can generalize over word classes automatically 
acquired with the ASIUM system [Faure and Nedellec, 1998] (compare Sec­
tion 6.5.1), thus reducing the effort in customizing an information extrac­
tion system for a certain domain. Other corpus-based knowledge acquisition 
techniques have been applied, for example, to derive discourse analysis rules 
[Ng and Cardie, 2002, Soderland and Lehner, 1994] as well as to learn part-
of-speech, word sense and concept activation knowledge for unknown words 
[Cardie, 1993]. 

9.4 Contribution and Open Issues 

This chapter has discussed applications for approaches automatically learning 
concept hierarchies from text as well as populating them with instances. The 
main application of such automatically learned ontologies are definitely in the 
field of text mining, where noise is tolerable to some extent. We have sug­
gested query expansion, information retrieval, natural language processing as 
well as clustering and classification of documents as main fields of application 
for such techniques. In particular, we have presented experimental evidence 
for the fact that automatically learned ontologies can indeed compete with 
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handcrafted ones when used as background knowledge for clustering and clas­
sification approaches exploiting conceptual features. We have also shown that 
automatic population of ontologies with named entities can provide a benefit 
in information retrieval tasks. To our knowledge such task-based evaluations 
of ontologies have not been carried out before. 

Further work has still to unveil the full potential of using automatically 
learned ontologies for query expansion or information retrieval. As discussed 
above, some research has shown that handcrafted ontologies can provide a 
measurable benefit. However, it is definitely an open issue to clarify if such an 
improvement can also be obtained when using automatically learned resources. 

Concerning NLP, we have argued at the beginning of this book that world 
knowledge is crucial for certain tasks within natural language processing and 
understanding. Certainly, there is still a lack of empirical work conveying the 
usefulness of ontologies for NLP in general as well as of automatically derived 
world knowledge in particular. 

Finally, it also seems an open issue if automatically learned ontologies can 
be used as a basis for reasoning. For sure, some sort of fuzzy or probabilis­
tic reasoning will then be needed to cope with uncertain knowledge such as 
produced by automatic ontology learning approaches. 



Part III 

Conclusion 
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Contribution and Outlook 

This book contributes to the state-of-the-art in ontology learning in several 
ways. First, we have provided a formal definition of ontology learning tasks 
with respect to a well-defined ontology model. The ontology learning layer 
cake, a model for representing the diverse subtasks in ontology learning has 
been introduced. In addition, evaluation measures for the concept hierarchy 
induction, relation learning as well as ontology population tasks have been 
defined. These evaluation measures provide a basis in order to compare differ­
ent approaches performing a certain task. Most importantly, several original 
and novel approaches performing a certain task have been presented and com­
pared to other state-of-the-art approaches from the literature using the defined 
evaluation measures. 

Concerning the concept hierarchy induction task, we have presented a 
novel approach based on Formal Concept Analysis, an original guided agglom-
erative clustering method as well as a combination approach for the induction 
of concept hierarchies from text. All the approaches have been evaluated and 
have been demonstrated to actually outperform current state-of-the-art meth­
ods. We have further introduced and discussed several approaches to learning 
attributes and relations. In particular, we have presented approaches to learn 
i) attributes, ii) the appropriate domain and range for relations, as well as iii) 
specific relations using a pattern-based approach. Several approaches to auto­
matically populate an ontology with instances have also been described. We 
have in particular examined a similarity-based approach as well as introduced 
the original approach of Learning By Googling. Corresponding evaluations 
have also been provided. Finally, we have have also discussed applications for 
ontology learning approaches and demonstrated for two concrete applications 
that the techniques developed in the context of this book are indeed useful. 
Throughout the book, we have also provided a thorough overview of related 
work. 

Fortunately, there are a number of open issues which require further re­
search. On the one hand, though we have undertaken a first step towards com­
bining different ontology learning paradigms via a machine-learning approach. 
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further research is needed in this direction to unveil the full potential of such a 
combination. In particular, other paradigms than our classification-based ap­
proach could be explored. One could imagine to train classifiers for each type 
of basic ontological relation, i.e. isa, part-of, etc. using different methods and 
then use a calculus as envisioned by Heyer and colleagues [Heyer et al., 2001] 
as well as Ogata and Collier [Ogata and Collier, 2004] to combine the results 
of these classifiers and reason on different types of extracted ontological re­
lations. Such a post-extraction reasoning is in fact crucial as the different 
approaches can produce contradicting information and thus producing a con­
sistent ontology needs some kind of contradiction resolution approach. In fact, 
one important problem is to generate the optimal ontology maximizing a cer­
tain criterion given a certain amount of - possibly contradicting - relations. 
Initial blueprints for such an approach can be found, for example, in the work 
of Haase and Volker [Haase and Volker, 2005]. A lot of further research is 
however needed in this direction. 

Another important issue to be clarified is which similarity measures, which 
weighting measures and which features work best for the task of clustering 
words. Though we have provided some insights in the present book, much more 
work is needed to clarify these issues. In the same vein, further experiments 
are necessary to clarify the relation between syntactic and semantic similarity 
such as perceived by humans. These issues can only be approached from an 
experimental perspective. Though there has been a lot of work on this issue, 
much further research can be expected. 

In general, from a theoretical perspective, it would be necessary to clarify 
what type of ontologies we can actually learn, i.e. domain ontologies, lexical 
ontologies, upper-level ontologies, application ontologies, etc. Work in this di­
rection has been presented by Bateman [Bateman, 1991], for instance. In this 
line, it seems also necessary to ask ourselves about the limits of ontology learn­
ing techniques. Furthermore, an integration of ontology learning techniques 
with linguistic theories, in particular with lexicon theories such as Genera­
tive Lexicon [Pustejovsky, 1991] is definitely desirable. In addition, it seems 
desirable to clarify the relation between ontological and lexical semantics. 

In the long term, it would definitely be interesting to acquire more complex 
relationships between concepts and relations in the form of rules or axioms. 

Last but not least, approaches should actually have reasonable applica­
tions. We have argued that it is far from straightforward to devise applica­
tions making use of automatically learned ontologies in a reasonable way. The 
problem lies in the fact that there are a number of parameters to be tuned 
on which the success of using an ontology depends. However, the quest for 
applications is a necessary and crucial one. Future research should thus fur­
ther examine the usefulness of automatically derived knowledge structures for 
certain applications. 
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Concluding Remarks 

In this book, we have considered ontology learning as a reverse engineering 
task. Our aim has been to reconstruct the world model shared by a group of 
people on the basis of text documents which they produce. Our assumption 
here has been that the authors' world model heavily influences the creative 
process of writing a text. However, as we have argued several times, this 
knowledge is rarely discussed by the author explicitly, an exception being 
didactic material such as dictionaries, encyclopedias, textbooks, etc. There­
fore, the reconstruction of a world model is actually highly challenging. We 
have presented a considerable amount of techniques to address different on­
tology learning subtasks, i.e. learning concept hierarchies and relations, but 
also populating ontologies. All the approaches rely on the assumption that 
meaning can indeed emerge from the way certain constructs are used (com­
pare [Wittgenstein, 1953]). The whole work described in this book is in fact 
grounded on two crucial assumptions. The first one is that if we consider 
a heterogeneous text collection with contributions of different authors on a 
specific domain, we can expect a shared conceptualization implicit in the doc­
ument collection which we need to unveil. The second crucial assumption is 
that meaning can be approximated to some extent by statistically analyzing 
usage. The crucial open questions thus are: 

• In how far can the knowledge implicitly contained in a collection of texts 
from different authors be in fact regarded as shared? 

• If the knowledge implicitly underlying a document collection is indeed 
shared, can the knowledge automatically derived from the text collection 
also be regarded as such ? 

• What is the relation between knowledge, text and the process of writing ? 
• Is the meaning of a word actually in its use as assumed by Wittgenstein 

[Wittgenstein, 1953]? 
• To what extent can knowledge actually be extracted from text? 

A lot of research in philosophy, psychology and linguistics still needs to 
be conducted to answer the first four questions. To answer these questions 
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is definitely out of the scope of the present book. The fifth question is more 
practical in its nature, but decades of research are still to come in order to 
clarify the full potential of methods automatically acquiring knowledge from 
text. In this line, our work can be regarded as a humble contribution in this 
direction. 



Appendix 

A. l Learning Accuracy 

In this appendix, we formally clarify the relation between our symmetric ver­
sion of the Learning Accuracy LA and Hahn et al.'s original version LAuahn-
For this purpose, we introduce some mathematical notation and make some 
assumptions concerning the underlying mathematical structures. In particu­
lar, we assume a semi-upper lattice (iV, <) with top-element top, i.e. an order 
satisfying the following properties: 

^x X <x (reflexive) (-A-.l) 

Va;Vj/ {x <y l\y <x -^ X = y) (anti-symmetric) (A.2) 

^x^y^iz {x<yAy<z^x<z) (transitive) (A.3) 

Mx X < top (top element) (A.4) 

'ix^yBz {z>x/\z>yA Vw; (w > x Aw >y -> w > z)) (A.5) 

(supremum) 

Furthermore, we define -< as the inmediate successor relationship, i.e. 

Va; Vy {x^y<r^x<yA -'B z {x < z < y)) (A.6) 

Distance between nodes in terms of edges is now defined as follows: 

{ argminm such that a ^ oi ^ ... ^ Om-i -<b ii a <b 
argminm such that 6 -< 6i ^ ... ^ &m-i -< a iib < a 
undef. otherwise 

(A.7) 

And distance in terms of nodes is consequently defined as follows: 
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SNia,b)=:d{a,b) + l (A.8) 

We can now define the least common subsumer of two concepts a and b 

as: 

lcs{a, b) := z such that z > al\z > b and Vw {w > aAw > 6 -> u; > 2;) (A.9) 

Thus, we yield the following properties: 

Va lcs{a,a) - a (A.10) 

VaV& lcs{a, b) = lcs{b, a) (A.ll) 

'ia'iblcs{a,b) = bifa<b (A.12) 

Our Learning Accuracy is now defined as follows: 

^ ^ . X .^ 5{top,lcs{c,p)) + l 
^ ' ' S{top,lcs{c,p)) + 6{c,lcs{c,p)) + d{p,lcs{c,p)) + 1 ^ ' ' 

where c stands for the correct and p for the predicted concept. 
In contrast, Hahn et al.'s Learning Accuracy is defined as follows: 

r ^ £ if 
LAffahn •= i g ^ ^ 

I FP+DP " 

§ # if F P =3: 0 
otherwise 

(A.14) 

where 

• 

SP specifies the length of the shortest path (in terms of nodes being tra­
versed) from the top node of the concept hierarchy to the maximally spe­
cific concept subsuming the correct node c. 
CP specifies the length of the path (in terms of nodes being traversed) 
from the top node to the most specific node which is common both to 
the shortest path (as defined above) and the actual path to the predicted 
concept p. 
FP specifies the length of the path (in terms of nodes being traversed) 
from the top node to the predicted concept p (FP=0 if the prediction is 
correct, i.e. c<p). 
DP denotes the distance {in terms of edges) between the predicted node 
and the most specific common concept. 

We will make the following assumptions concerning the above definitions: 

SP = 6N{top,c), i.e. c is the most specific concept subsuming c. 
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• The most specific node common both to the shortest path (as defined 
above) and the actual path from top to p is lcs{c,p). 

• Concerning the DP definition, we will assume lcs{c,p) to be the most 
specific common concept. 

Thus we get: 

SP = SN{top,c) 

CP = SNitop,lcs{c,p)) 

(0 \ic<p 
FP= I 

[ 6isr{top,p) otherwise 

DP ^ d{lcs{c,p),p) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

So the Learning Accuracy of Hahn et al. is in terms of our notation: 

f ^4£?S=^ ifc<P 
LAHahn '•= * 

(5jv{top,c) 

6N{top,lcs{c,p)) n f h p r w k p 

I. SN{top,p]+dip,ics(c,p)) otnerwise 

(A.19) 

Transforming distance in terms of nodes to distance in terms of edges we 
yield: 

LAnahn •= < 

S(toplcs{cp))+i if r<n 
S{top,c)+i llC^p 

. s(tol^S+[7's£lt(c,p)) otherwise 

Furthermore, in case the concept hierarchy is a tree we get that: 

S{top, a) = S{top, lcs{a, b)) + d{lcs{a, b), a) for any b. 

Thus, as 5{lcs{c,p),p) = 0 in case c <p: 

(A.20) 

(A.21) 

LAuahn 

S(top,lcaic,p))+l if n < n 
S{top,lcs(c,p))+S{lcs{c,p),c))+S(lcs{c,p),p)+l '^ ^̂  i : f" 

5{top,lcs{c,p)) + l ,1 
I 6{top,ics(c,p))+s(ics(c,p),p)+5(p,ic8{c,p))+i o^nerwise 

(A.22) 

And this reduces to: 

LAnahn := * 

5{top,lcs{c^p))-\-l o\iop,ics\c^p))-\-i. -r ^ 
c5(top,;cs(c,p))+(5(ics(c,p),c))+(5(ics(c,p),p)+l It C ^ p 

i5(top,icg(c,p))4-l 
(5(top,ies(c,p))+2i5(ics(c,p),p)+l 

(A.23) 
otherwise 
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Fig. A . l . Learning Accuracy Examples 

Thus, in case the concept hierarchy is a tree, our and Hahn et al.'s Learning 
Accuracy are equivalent for the case that c <p. The main difference is that 
in the other case Hahn et al.'s learning accuracy does not take into account 
the distance between the correct concept c and the least common subsumer 
oi p and c, i.e. 5{c,lcs{c,p)). Figure A.l shows different configurations for 
the predicted concept p and the correct concept c. In example a) we have a 
correct but too general prediction. Thus we have lcs{c,p) = p. In this case 
both learning accuracies are the same, i.e. LA = LAuahn = j^lj"!^ = | . In 
case b) we have a wrong prediction in which both p and c are at the same 
taxonomic level. In this case both learning accuracies are also equivalent, i.e. 
LA := LAfiahn •= I = | - For examples c) and d), our learning accuracy 
and the one of Hahn et al.'s differ. In example c) we have LA — | and 
LAnahn = I ~ I- '̂̂  example c) we have again LA = | but LAnahn = j = \-

We hope that the discussion in this appendix has shed light on the principle 
differences between our and Hahn's learning accuracy. Clear advantages of our 
version of the learning accuracy are, however, that (i) it does not require any 
case distinction, (ii) it can be formulated in a clearer way, (iii) it also takes 
into account the distance between c and lcs{c,p) in case the predicition is not 
correct and (iv) it is easier to implement. 
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A.2 Mutual ly Similar Words for the tourism domain 

Jaccard 
(art exhibit ion,thing) 
(autumn,spr ing) 
(balcony.menu) 
(ball room,theatre) 
(banquet,ship) 
(bar,pub) 
(basilica,hair dryer) 
(beach,s^vimming pool) 
(bil l iard,sauna) 
(bus,car) 
(caravan, tree) 
(casino,date) 
(cinema,fitness studio) 
(city,town) 
(conference,seminar) 
(conference room,volleyball field) 
(cure,washing machine) 
(day tour,place) 
(distance,radio) 
(exhibition,price list) 
(ferry, telephone) 
(gallery,shop) 
(golf course,promenade) 
(hoi iday,ser vice) 
(journey, terrace) 
(kiosk,time interval) 
(law, present at ion) 
(lounge,park) 
(motel ,port) 
(nature reserve,parking lot) 
(night, tourist) 
(region,sit nation) 

Cosine 
(agreement,con t ract) 
(animal ,plant) 
(art exhibition,washing machine) 
(basilica,hair dryer) 
(boat ,ship) 
(cabaret,email) 
(cheque, pension) 
(city,town) 
(conference room, volley ball field) 
(golf course,promenade) 
(group,party) 
(inn,yacht) 
(journey,meal) 
(kiosk,tennis court) 
(law,view) 
(library, museum) 
(money,thing) 
(motel ,port) 
(pilgrimage i whirlpool) 
(sauna,swimming) 

LI norm 
(day.time) 
(golf course,promenade) 
(group,person) 

Jensen-Shannon 
(group,person) 
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A.3 Mutual ly Similar Words for the finance domain 

Jaccard 
(act ion,aver age) 
(activity, downturn) 
(addit ion,l iquidity) 
(after noon, key) 
(agency,pur chase) 
(agreement,push) 
(alliance,project team) 
(allocation,success) 
(analysis, negotiation) 
(animal,basis) 
(anomaly, regression) 
(archives,futures) 
(area, profit ability) 
(argument ,dismantl ing) 
(arrangement,capital market) 
(arranger ,update) 
(assembly,price decline) 
(assurance,telephone number) 
(automobile,oil) 
(backer, trade par tner) 
(balance sheet,person) 
(balancing,countenance) 
(behaviour,business partnership) 
(bike,moment) 
(billing,grade) 
(board,spectrum) 
(board chai rman,s ta tement) 
(bonus,nationali ty) 
(bonus share,cassette) 
(branch office,size) 
(broker,competit ion) 
(budget, regulation) 
(builder,devices) 
(building, vehicle) 
(business volume,outlook) 
(business year,quota) 
(capital ,material costs) 
(capital increase,stock split) 
(capital stock,profit dis tr ibut ion) 
(caravan,seminar) 
(cent,point) 
(chance, hope) 
(change,subsidiary) 
(charge,suspicion) 
(chip,woman) 
(circle,direction) 
(clock,ratio) 
(code,insurance company) 
(comment,foundation) 
(com mission,expansion) 
(communication, radio) 
(community, radius) 
(company profile,intangible) 
(compensat ion,part icipat ion) 
(complaint, pet it ion) 
(computer, cooperation) 
(conference, height) 
(confidentiality,doIlar) 
(consult ant ,survey) 
(contact ,hint) 
(contract, copy right) 
(control ,data center) 
(conversat ion,output) 
(copper,replacement) 
(corporation,liabilit ies) 
(cost,equity capital) 
(course,step) 
(court ,distr ict court) 
(credit ,disbursement) 
(credit agreement,overview) 
(currency,faith) 
(curve,graph) 
(decision,maximum) 
(deficit, negative) 
(diagram,support) 
(difference,elimination) 

Cosine 
(access,ad vantage) 
(acquisition,merger) 
(act ion,measure) 
(administrat ion costs,treasury stock) 
(advice, assurance) 
(allocation, length) 
(amount , to ta l ) 
(analysis,component) 
(area,region) 
(arrangement,regime) 
(assembly,chamber) 
(assessment, receipt) 
(backer,gamble) 
(balancing,matrix) 
(bank,company) 
(barometer ,market price) 
(bid,offer) 
(bond,stock) 
(bonus share,cassette) 
(boom, turnaround) 
(bull market, tool) 
(business deal,graph) 
(buy.stop) 
(capital stock,profit distr ibution) 
(caravan,software company) 
(cent,point) 
(change,increase) 
(commission,commit tee) 
(company profile,intangible) 
(complaint, request) 
(controller,designer) 
(copper,share index) 
(copy,push) 
(credit,loan) 
(credit agreement,credit line) 
(currency,dolIar) 
(decision,plan) 
(detail , test) 
(diagram,support) 
(dimension,surcharge) 
(discuss ion,negotiation) 
(diversification,miles tone) 
(do,email) 
(document, letter) 
(effect,impact) 
(equity fund,origin) 
(evaluation,examination) 
(example,hint) 
(first,meter) 
(forecast,stock market activity) 
(function, profile) 
(gesture, input) 
(guarantee,solution) 
(half ,quarter) 
( increment,rearrangement) 
( information,trading company) 
(insurance, percentage) 
(interest rate,tariff) 
(man,woman) 
(maximum,super vision) 
(meeting,talk) 
(merchant, perspective) 
(month,week) 
(press conference,seminar) 
(price,rate) 
(productivity,traffic) 
(profit, volume) 
(share price,stock market) 
(stock broker,theory) 

LI norm 
(archives,futures) 
(assurance,telephone number) 
(balancing,countenance) 
(cent,point) 
(creation,experience) 
(government,person) 
(loss,profit) 
(month,year) 

Jensen-Shannon 
(cent,point) 
(government, person) 
(month,year) 
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(disability insurance,pension) 
(discrimi nation, union) 
(diversification, request) 
(do,email) 
(effect,help) 
(employer,insurance) 
(energy.test) 
(equity fund,origin) 
(evening,purpose) 
(event, manager) 
(examination,registrat ion) 
(example,source) 
(exchange,volume) 
(exchange risk,interest rate) 
(experience,questionnaire) 
(expertise, period) 
(faculty,aalea contract) 
(fair,product) 
(flop,type) 
(forecast,stock market activity) 
(fusion,profit zone) 
(gamble,thing) 
(good,service) 
(government bond,life insurance) 
(happiness,quest ion) 
(hold,shareholder) 
(hour,pay) 
(house,model) 

dea,solution) 
m pact ,mat ter ) 
m pro vement,si t nation) 
ndex, wholesale) 
nformation,trading company) 
nit iat ion,middle) 
nput,traffic) 
nst i tute,organizat ion) 

IS tment ,product iv i ty) 
(knowledge,tradition) 

abel,t i t le) 
etter,reception) 
.evel,video) 

cense,re ward) 
jan,project) 
ocation,process) 
OSS,profit) 

(!• 
(" 
(" 
( • • 
( i i 
( i l 
( i i 
(" 
( 
( 
(1. 
(1' 
(!• 
(li 
(!< 
(1< 
( 
(man,trainee) 
(margin,software company) 
(market ,warranty) 
(market access,name) 
(matrix,news paper) 
(meeting,oscillation) 
{meter,share) 
(met hod,technology) 
(milestone,state) 
(month,year) 
(mouse,option) 
(mult ipl icat ion, transfer) 
(noon,press conference) 
(occasion,talk) 
(opinion,rivalry) 
(personnel,resource) 
(picture,surcharge) 
(plane,tool) 
(police,punishment) 
(profess ion, writer) 
(property,qualification) 
(provision, revenue) 
(requirement ,rule) 
(r isk, trust) 
(sales revenue,validity) 
(savings bank, t ime) 
(segment, series) 
(show,team) 
(speech, winter) 
(stock broker,theory) 
(supplier , train) 
(tariff,treaBury stock) 
(weekend, wisdom) 
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A.4 The Penn Treebank Tag Set 

1. CC Coordinating conjunction 
2. CD Cardinal number 
3. DT Determiner 
4. EX Existential there 
5. FW Foreign word 
6. IN Preposition or subordinating conjunction 
7. JJ Adjective 
8. JJR Adjective, comparative 
9. JJS Adjective, superlative 
10. LS List item marker 
11. MD Modal 
12. NN Noun, singular or mass 
13. NNS Noun, plural 
14. NP Proper noun, singular 
15. NPS Proper noun, plural 
16. PDT Predeterminer 
17. POS Possessive ending 
18. PP Personal pronoun 
19. PP$ Possessive pronoun 
20. RB Adverb 
21. RBR Adverb, comparative 
22. RES Adverb, superlative 
23. RP Particle 
24. SYM Symbol 
25. TO to 
26. UH Interjection 
27. VB Verb, base form 
28. VBD Verb, past tense 
29. VBG Verb, gerund or present participle 
30. VBN Verb, past participle 
31. VBP Verb, non-3rd person singular present 
32. VBZ Verb, 3rd person singular present 
33. WDT Wh-determiner 
34. WP Wh-pronoun 
35. WP$ Possessive wh-pronoun 
36. WRB Wh-adverb 
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