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Foreword

In the broad area of data and knowledge engineering — and including dis-
ciplines like databases, semantic web, knowledge representation as well as
overlapping areas such as computational linguistics, artificial intelligence or
information management — one may recognize some grand challenges that
puzzle many researchers and practitioners alike:

1. Combining statistics and logics;
2. Scaling towards large complex systems;
3. Turning what still often remains an art into a science and/or an engineer-
ing discipline.
This book responds to these challenges by moving ontology learning and pop-
ulation forward a very large step.

From Statistics to Semantics.

Access to information on the Web or in large enterprise information repos-
itories is mostly restricted to statistics-based keyword search. Even though
keyword search is often successful on the Web for general purpose queries, it
often remains unsatisfying for the professional user who searches more than
an address, more than a document and less than one million answers.

Statistics will certainly remain the major ingredient for finding informa-
tion. Nevertheless, statistics need to be augmented by semantics such as
described in conceptual models, e.g. in ontologies. The volume of informa-
tion generally accessible makes it highly improbable that ontologies would
be constructed for very many domains, if it were not for the statistics them-
selves to jump in and facilitate and partially automate the construction of
the very same ontologies. Thus, the statistics about information lead to se-
mantic descriptions of textual as well as other information resources in a way
that makes searching more powerful (e.g., because it integrates unstructured,
semi-structured and fully structured information sources) and more rewarding
(e.g., because it offers a semantically guided dialog between the search engine
and its users).



xvi Foreword

This book proposes new paradigms to derive semantics from statistics. In
doing so, it also gives a comprehensive account of which statistical methods
complemented by means of computational linguistics and knowledge repre-
sentation serve the purposes of ontology learning and population.

From Small Scale to Large Scale.

If previous work has focused on the bridge between statistical and conceptual
knowledge (e.g. machine learning), it has restricted itself to small scale with
what regards the conceptual knowledge, i.e. at most a couple of concepts which
were to be distinguished.

This book tackles scaling into large conceptual spaces. Working with hun-
dreds of target concepts it scales the richness of textual information not only
towards Gigabytes of ASCII text, but also towards real-world sized ontologies
instead of toy domains.

From Art to Science and Engineering.

Finally, ontology learning and — to lesser extent — population has remained
an art rather than a discipline within science and/or engineering. The basis
for making ontology learning a scientific discipline lies in measuring appropri-
ateness of learned concept definitions.

This book gives a precise and comprehensive evaluation of ontology
learning and population measures. It gives evaluation procedures for closed
world settings by gold standards and appropriate measures. It also gives
evaluations that consider the open world nature of ontologies, i.e. that
consider the fact that it is hard, if not even impossible, to draw an exact
line around which concepts should and which should not be included in a
particular ontology. Hence, never before has a book in this area given such
precise and comprehensive evaluations that moreover are accessible to the
general public.!

Koblenz, June 2006 Steffen Staab

U cf. nttp://www.cimiano.de/olp/



Preface

In recent years, there has been a surge in research on knowledge acquisition
from text and other sources, which is to a great extent due to a renewed
interest in knowledge-based techniques in the context of the Semantic Web
endeavor. A crucial question, however, still remains: where is the necessary
knowledge supposed to come from? How will we feed machines with the rel-
evant knowledge, that is, how will we deal with the so called knowledge ac-
quisition bottleneck? The formalisms for knowledge representation are now
in place. The Semantic Web community has developed, actually building on
decades of research in knowledge representation, standard ontology languages
such as RDFS or OWL to represent knowledge in a way which is understand-
able by machines. But again, how will we acquire all the knowledge available
in people’s head to feed our machines with?

Natural language is THE means of communication for humans, and con-
sequently texts are nowadays massively available on the Web: terabytes and
terabytes of texts containing opinions, ideas, facts and information of all sorts
waiting to be extracted or mined to find interesting patterns and relationships
or used to annotate the corresponding documents to facilitate their retrieval.
Let me thus dare to say that a semantic web which ignores the massive amount
of information encoded in texts, might actually be a semantic, but not a really
very useful web. Knowledge acquisition from text has to be in fact regarded
as a crucial step within the vision of a semantic web.

Looking at the history of knowledge acquisition from text, let me highlight
three, possibly arbitrary, snapshots. First of all, there has been extensive re-
search in the 80s and early 90s on extracting knowledge from machine read-
able dictionaries. This research showed that it is in fact possible to extract
knowledge from text with a more or less regular structure. Such approaches
will probably become fashionable again in the context of currently emerg-
ing large online dictionaries such as WikiPedia2. Second, the seminal work
of Grefenstette which found its way into his book Ezplorations in Automatic

2 nttp://en.vikipedia.org/wiki/Main_Page
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Thesaurus Construction, showed that we can move from regular to free text
and use syntactic or distributional similarity as a guiding principle for knowl-
edge acquisition from text. Third, the recent work of Méadche and Staab in
Karlsruhe, which ultimately lead to the book Ontology Learning for the Se-
mantic Web, brought knowledge acquisition from texts into renewed interest
by connecting it with research on the Semantic Web. Madche’s work addressed
in particular methodological aspects related to the creation of a usable on-
tology learning framework which eases the application of ontology learning
techniques for ontology engineers.

The present book can be seen as a follow-up to Alexander Médche’s work,
taking up his basic framework, but focusing on algorithms and their evalua-
tion. In fact, the book is largely influenced by hands-on experience with diverse
datasets and algorithms. Originally, the aim was to investigate in much more
depth the relation between natural language, lexica and ontologies, but this
aim had to stand back in favor of the necessity to develop practical algorithms
in the context of the projects that I have been involved in. Thus, I have to
confess that I have neither found a satisfactory definition of what a concept is
supposed to be nor what the relation between language, the mind and ontol-
ogy actually is. Thus, there is little I have to say about the relation between
lexical semantics and ontologies because, if there is an answer, it is definitely
out of the scope of the work presented in this book.

The work described in the present book is thus of a pragmatic nature and
driven by practical needs for supporting the ontology learning process. I have
attempted to provide a reasonable trade-off between breadth and depth, pro-
viding in-depth empirical analysis of certain techniques, but also covering a
wide range of ontology learning aspects. Here and there, the methods used
might seem a bit adhoc, for example the named entity recognition, anaphora
resolution or morphology components used. Ontology learning builds on a lot
of natural language processing and machine learning techniques, and, in the
case such techniques are not available off-the-shelf, they need to be imple-
mented in a way which is good enough to allow for the proof-of-concept of
some method. It is obviously out of the scope of a book on ontology learning
to implement the state-of-the-art in other fields.

I have devoted a considerable amount of work to the evaluation of the al-
gorithms and methods presented. Evaluation is a very problematic endeavor
because, on the one hand, it is very time intensive and involves twiddling
around with tiny details, and, on the other hand, bullet-proof evaluations
hardly exist. Nevertheless I am convinced that evaluation is an absolutely
necessary part of research in computer science. The amount of publications
is constantly increasing and the time for reviewing is decreasing at the same
pace. Sometimes, a good evaluation is at least a guarantee that the method
has been actually implemented and thus a good indicator of feasibility. I sup-
port formal theories and novel ideas, but algorithms and approaches need to
be evaluated on real datasets to demonstrate their benefits. Only then can
meaningful comparisons between approaches be drawn, allowing the ‘fittest’
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approaches to survive. In this sense I adhere to what we could call the ‘prin-
ciple of natural selection’ in computer science.

Finally, let me say a bit about the book in general. I have attempted to
create a book useful for novices and for experts in the field, with introduc-
tory material and a lot of related work on the one hand, but also detailed
descriptions of algorithms, evaluation procedures etc. on the other. I have
also attempted to give a broad and systematic overview of ontology learning
in general. The aim has also been to make each section of this book as self-
contained as possible to allow for selective reading. Let me conclude saying
that, though many researchers might disagree with the views put forth in this
book, as well as with the algorithms and evaluation procedures described, at
least I hope they will find the overview provided in this book of value.

The views on ontologies contained in this book have been largely shaped
by the Knowledge Management group at the University of Karlsruhe. The
views on ontology learning have been influenced by comments and fruitful
discussion with other researchers. I am in fact indebted to a lot of people
which have either contributed to this work directly or helped to shape many
of the ideas expressed herein. However, I am the only one to blame for errors
and inaccuracies which have made it into the book as you find it here in
front of you. I am always happy to receive comments, feedback, criticism
on this material, so don’t hesitate to contact me. Eventually, your comment
might be considered for a revised version of this book at some stage. Finally,
as a lot of people drop me emails asking for datasets and algorithms, I have
decided to create a website in which a lot of the material presented in this
book can be downloaded for a hands-on experience®. This material is of a
highly experimental nature, but hopefully useful for research purposes.

I hope you enjoy the book.

Karlsruhe, June 2006 Philipp Cimiano

3 See http://www.cimiano.de/olp
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Introduction

A crucial characteristic of human intelligence is its adaptive behavior. In fact,
humans can easily adapt to new situations by drawing on their earlier experi-
ences and previous knowledge. Assume a child learns that Yoyo is a cat, that
cats are animals and that animals are not to be hurt. The child will certainly
be able to apply this knowledge to infer that in particular Yoyo should not be
hurt. Since the late 1950s, Artificial Intelligence (AI) has devoted enormous
efforts to developing computer systems able to mimic human intelligence. The
first definition of artificial intelligence in fact goes back to Alan Turing. Tur-
ing defined a test, widely known as the Turing-test, according to which a
machine would merit to be called intelligent if a human interacting with it
as well as with a human counterpart would not be able to keep both apart
[Turing, 1950, Shieber, 2004].

Much research in artificial intelligence (AI) has in fact been devoted to
building systems incorporating knowledge about a certain domain in order to
reason on the basis of this knowledge and solve problems which were not en-
countered before. Such knowledge-based systems have been applied to a variety
of problems requiring some sort of intelligent behavior like planning, support-
ing humans in decision making or natural language processing. An early plan-
ning system was for example STRIPS [Fikes et al., 1972] in which goals as
well as the preconditions and effects of actions were specified in a declarative
fashion using a logical formalism. A prominent example of an expert sys-
tem applied to support humans in decision making is Mycin [Shortliffe, 1976].
Mycin was an expert system developed at Stanford in the 1970s. Its goal
was to support doctors in the diagnosis and recommendation of treatment
for certain blood infections. An early natural language system making use of
a logical representation of the domain in question was the JANUS system
[Weischedel, 1989]. Further details about the history, methods and applica-
tions of AI can be found in the early handbook of Cohen and Feigenbaum
[Cohen and Feigenbaum, 1981] and in the more recent introductory book of
Russel and Norvig [Russel and Norvig, 2003].
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Common to all the above mentioned systems is an explicit and symbolic
representation of knowledge about a certain domain. Such a symbolic repre-
sentation of knowledge has the advantage that it can be separated from pro-
cedural aspects related to its application and can in principle be reused across
systems. Computers are essentially symbol-manipulating machines, and they
need clear instructions about how to manipulate these symbols in a mean-
ingful way. For this reason, knowledge is represented using some logic with
model-theoretic semantics as well as with a syntactic procedure for verify-
ing semantic validity which is executable by a computer. When representing
knowledge symbolically in such a way that a computer can process it, the
question arises which symbols to use and what they stand for. Thus, an on-
tology as model of the domain in question is needed. Such an ontology would
state which things are important to the domain in question as well as define
their relationships. In the context of knowledge-based systems, an underlying
ontology would essentially tell us which symbols are needed and how they are
supposed to be interpreted. At the logical level, the interpretation can then
be constrained according to the ontology by appropriately axiomatizing the
symbols.

Knowledge representation and ontologies have actually gained impor-
tance in the last decade. Nowadays, ontologies are applied for agent com-
munication [Finin et al., 1994], information integration [Wiederhold, 1994,
Alexiev et al., 2005}, web service discovery [Paolucci et al., 2002] as well as
composition [Sirin et al., 2002], description of content to facilitate its retrieval
[Guarino et al., 1999, Welty and Ide, 1999], and natural language processing
[Nirenburg and Raskin, 2004]. This surge of interest in ontologies has even
been carried over to industry, where providers of semantic technologies such
as ontoprise GmbH! are cooperating with large companies such as Audi? or
Deutsche Telekom?.

Though ontologies can provide potential benefits for a lot of applica~
tions, it is well known that their construction is costly [Ratsch et al., 2003,
Pinto and Martins, 2004]. This problem is typically referred to as
the knowledge acquisition bottleneck and is witnessed by the large
amount of publications on methodologies for ontology engineering
(compare [Uschold, 1996, Fernandez et al., 1997, Holsapple and Joshi, 2002,
Sure, 2003, Pinto et al., 2004]). The modeling of a non-trivial domain is in
fact a difficult and time-consuming task. The main difficulty lies in the fact
that the ontology is supposed to have a significant coverage of the domain
and to foster the conciseness of the model by determining meaningful and
consistent generalizations at the same time. The trade-off between modeling
a large amount of knowledge and providing as many abstractions as possible
to keep the model concise makes ontology engineering indeed a challenging

! http://wuw.ontoprise.de/content/index . html
% http://www.ontoprise.de/content/e212/e52/e320/index_ger.html
8 http://wuw.ontoprise.de/content/e212/e52/e304/index_ger.html
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enterprise. Further, as ontologies are typically shared by a group of people or
a community, their construction is additionally complicated due to the fact
that different parties have to agree on certain design choices.

An ideal solution to this problem would be an approach to automatically
learn ontologies from data. Such an approach would indeed dramatically re-
duce the costs for building an ontology. As text documents are and will always
be massively available, many researchers have attempted to learn ontologies
from textual resources. Given a certain critical amount of texts, we would
expect such methods to provide a reasonable coverage of the domain. The
bottleneck of such methods lies in the fact that correctness and consistency
of the model can not be guaranteed, thus making human postprocessing def-
initely necessary. Assuming that the documents in the text collections stem
from different authors, the resulting ontologies can to some extent even be re-
garded as shared, thus overcoming problems inherent in the agreement process
between different parties.

The aim of this book is to investigate methods for automatically learning
ontologies from domain-specific text collections. The main contributions are:

e the formal definition of the ontologies to be learned as well as of the tasks
addressed in order to foster consensus within the ontology learning com-
munity,

o the development of novel algorithms with the aim of learning ontologies
from textual data,

e the comparison of different methods in order to provide guidelines for on-
tology engineers,

e the description of measures and methodologies for the evaluation of the
learned ontologies, providing a basis to compare different approaches,

e an analysis of the impact of ontology learning for certain applications.

The challenge in ontology learning from text is certainly to derive mean-
ingful concepts on the basis of the usage of certain symbols, i.e. words or terms
appearing in the text. It is in particular challenging to learn what the cru-
cial characteristics of these concepts are and in how far they differ from each
other in line with Aristotle’s notion of differentige. Such a characterization
of concepts is typically referred to as their intension. However, concepts can
also be defined extensionally by enumerating all the entities which share the
concept’s characteristics. To foster economy of representation in a knowledge
base, it is also important to have an underlying hierarchical organization of
concepts, semantically interpreted as subsumption of extension. Such a con-
cept hierarchy fosters economy of representation in the sense that it allows
to represent relations, rules, etc. at the appropriate level of generalization
for which they hold, thus eliminating the necessity of representing each case
explicitly. Besides deriving a concept hierarchy, we are also interested in dis-
covering relations among concepts. Such relations will in fact provide a basis
to constrain the interpretation of concepts by explicitly stating their relation
to other concepts in form of logical axioms.
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The challenge in ontology learning is thus one of bridging the gap between
the world of symbols, e.g. words used in natural language, and the world of
concepts, which in essence can be seen as abstractions of human thought.
It should already become clear that ontology learning from text is a highly
error-prone endeavor. The automatically learned ontologies will thus need to
be inspected, validated and modified by humans before they can be applied
for applications relying on crisp logical reasoning. However, there are a
number of applications in text mining and information retrieval for which
the automatically derived ontologies can be applied as such. In fact, while
the benefit of explicit knowledge representation in form of ontologies for text
mining applications still remains unclear today, the assumption of this book
is that the real benefit will only be unveiled once the knowledge-acquisition-
bottleneck has been overcome, i.e. once we have algorithms and tools to
automatically derive knowledge from domain-specific text collections. This
would allow to perform large-scale experiments on different domains and
datasets and thus to draw definite conclusions. The research presented in this
book can be understood as a step in this direction.

The structure of the book is as follows:

e The first part of the book continues in Chapter 2 with a formal and math-
ematical definition of an ontology which will provide the basis for the
formalization of ontology learning tasks as well as of the evaluation mea-
sures used throughout the book. From the description of this chapter it
will also be clear which are the ontological structures we aim to learn.

o In Chapter 3 we present in more detail the field of ontology learning from
textual data, in particular describing its history as well as the main learn-
ing paradigms exploited. In this chapter, we will also come back to the
issues which make ontology learning especially challenging.

e Chapter 4 then introduces the basics necessary to understand the remain-
ing chapters of the book. In particular, it introduces fundamental tech-
niques of natural language processing as well as inductive learning.

e In Chapter 5 we describe the datasets used in the diverse experiments
presented in this book.

¢ In the main part of the book, i.e. Methods and Applications, we present the
algorithms and approaches developed. In Chapter 6 we present algorithms
to learn concept hierarchies, which can be seen as the backbone of an
ontology, fostering economy of representation as described above.

e In Chapter 7 we turn to the issue of learning relations between concepts
and present three approaches addressing different aspects of the task of
learning ontological relations.

e In Chapter 8 we address the important issue of populating an ontology
with instances, i.e. learning the extension of concepts. The latter three
chapters represent the main contribution of the book to the field of on-
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tology learning from textual data. Besides presenting the algorithms and
evaluation methods developed, each chapter describes related work, sum-
marizes the main contributions and discusses open issues. The aim here
has been to make each section as self-contained as possible in order to
allow for selective reading.

Chapter 9 discusses applications for ontology learning methods and
presents some results on document clustering and classification as well
as on an information retrieval task.

Finally, in the last part Conclusion, Chapter 10 summarizes the main
contributions of the book and discusses open issues and further work.
Chapter 11 concludes the book with a few remarks.
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Ontologies

In this chapter, we introduce our formal ontology model. The model presented
will provide a basis for the formalization of ontology learning tasks in Chapter
3 as well as for the evaluation measures used throughout the remainder of the
book.

The term ontology comes from the Greek ontologia and means “talking” (-
logia) about “being” (6n / onto-). Ontology is a philosophical discipline which
can be described as the science of existence or the study of being. Platon
(427 - 347 BC) was one of the first philosophers to explicitly mention the
world of ideas or forms in contrast to the real or observed objects, which
according to his view are only imperfect realizations (or shadows) of the ideas
(compare [Annas, 1981]). In fact, Platon raised ideas, forms or abstractions
to entities which one can talk about, thus laying the foundations for ontology.
Later his student Aristotle (384 - 322 BC) shaped the logical background
of ontologies and introduced notions such as category, subsumption as well
as the superconcept/subconcept distinction which he actually referred to as
genus and subspecies. With differentiae he referred to characteristics which
distinguish different objects of one genus and allow to formally classify them
into different categories, thus leading to subspecies. This is the principle on
which the modern notions of ontological concept and inheritance are based
upon. In fact, Aristotle can be regarded as the founder of tazonomy, i.e. the
science of classifying things. Aristotle’s ideas represent the foundation for
object-oriented systems as used today. Furthermore, he introduced a number
of inference rules, called syllogisms, such as those used in modern logic-based
reasoning systems [Sowa, 2000a].

In modern computer science parlance, one does not talk anymore about
‘ontology’ as the science of existence, but of ‘ontologies’ as formal specifica-
tions of a conceptualization in the sense of Gruber [Gruber, 1993]. So, whereas
‘ontology’ was originally a science, ’ontologies’ have received the status of re-
sources representing the conceptual model underlying a certain domain, de-
scribing it in a declarative fashion and thus cleanly separating it from proce-
dural aspects.
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Whereas the number of applications for ontologies in computer science is
steadily growing, the necessity for a clear and formal definition of an ontology
arises at the same time. In the past, there have been many proposals for an on-
tology language with a well-defined syntax and formal semantics, especially in
the context of the Semantic Web, such as OIL [Horrocks et al., 2000], RDFS
[Brickley and Guha, 2002] or OWL [Bechhofer et al., 2004]. In the context of
this book, we will however stick to a more mathematical definition of ontolo-
gies in line with Stumme et al. [Stumme et al., 2003]. Our definitions are to
a great extent borrowed from there. However, we take the freedom to modify
the definitions for our purposes. Furthermore, we illustrate the definition with
a running example.

Definition 1 (Ontology) An ontology is a structure
0:= (C$ <c,R,0R, <R, -Aa TA, T)

consisting of

e four disjoint sets C, R, A and T whose elements are called concept identi-
fiers, relation identifiers, attribute identifiers and data types, respectively,

o a semi-upper lattice <o on C with top element rootc, called concept hi-
erarchy or taxonomy,

o a function og: R — Ct called relation signature,

e a partial order <g on R, called relation hierarchy, where ri <g 7o implies
lor(r1)] = loa(r2)] end wi(or(r)) <c¢ wi(or(r2)), for each 1 < i <
lor(r1)l, and
a function ca: A — C x T, called attribute signature,

a set T of datatypes such as strings, integers, etc.

Hereby, m;(t) is the i-th component of tuple ¢. In some cases, when it is clear
from the context whether we are referring to a relation or an attribute, we
will simply use o.

Further, a semi-upper lattice < fulfills the following conditions:

Vo x < z (reflexive) (2.1)
VeVy (x <yAy<z—x=y) (anti-symmetric) (2.2)
VeVyVz (x <yAy <z -z < z) (transitive) (2.3)
Yz x < top (top element) (2.4)
VeVydz (z 2 zAz22yAVw (w2 zAw >y = w > 2)) (2.5)
(supremum,)

So every two elements have a unique most specific supremum. In the con-
text of ontologies, we will refer to this element as the least common subsumer.
It is obviously defined as follows:



11

height (m) flow_through

capital_of

mountain I [ G

aver | [ G
4

instance_of i located_|n

l Zugspitze | Neckar | Germany )-(.“'p"" of

height | m} - length (km),+"

.....
g

flow through i
located ln s _,."

2962 | | 367 ﬂow_lhr:;;'h """ > Stutigart ]{ Berlin |

Fig. 2.1. Example ontology

les(a,b) := z such that z > aAz > b and Vw (w > aAw > b — w > 2) (2.6)

Often we will call concept identifiers and relation identifiers just concepts
and relations, respectively, for the sake of simplicity. For binary relations, we
define their domain and their range as follows:

it

Definition 2 (Domain and Range) For o relation r € R with |o(r)|
2, we define its domain and range by dom(r) := m1(o(r)) and range(r) :

ma (o (r)).

Ife; <o e2,foreg, e € C, then ¢ is a subconcept of ¢z, and ¢; is a superconcept
of ;. If ry <p 7o, for r1,72 € R, then ry is a subrelation of ro, and 79 is a
superrelation of rq.

If ¢; <¢ ¢2 and there is no ¢z € C with ¢; <¢ ¢3 <¢ ¢, then ¢ is a direct
subconcept of cq, and ¢3 is a direct superconcept of ¢;. We note this by ¢; < cs.
Direct superrelations and direct subrelations are defined analogously.

Let us illustrate all the above definitions on the basis of a simple ex-
ample ontology graphically depicted in Figure 2.1. The set C of concepts
is C :={GE, Natural GE, Inhabited GE, mountain, river, country, city, cap-
ital}, where GE stands for geographical entity. The set R of relations is:
R :={located.in, flow_through, capital_of}. Further, we have two attributes,
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i.e. A:= {length (km), height (m)}. According to the direct superconcept re-
lation we have, from left to right: mountain < Natural GE, river < Natural GE,
Natural GE < GE, country < Inhabited GE, city < Inhabited GE, capital < city
and Inhabited GE < GE. The partial order <¢ is then <¢:=< U {(mountain,
GE),(river, GE),(country,GE),(city, GE),(capital, Inhabited GE),(capital, GE)}.

In our example, the top element of the concept upper semi-lattice is
rootc :=GE. Further, lcs(country, city) is for example Inhabited GE, whereas
les(city,capital) is city and les(mountain,city) is GE.

For the relations and attributes in the example ontology we have the
following signatures:

ogr(flow_through) = (river, GE)

o g{capital_of) = (city, country)
or(located_in) = (city, country)
a.4(length (km)) = (river, integer)

o 4(height (m)) = (mountain, integer)

The relation hierarchy could further include capital.of <p located.in,
i.e. if z is capital of y, then z is also located in y.

Having defined the basic elements of a core ontology, we now define an
axiom system for it. Though we are not directly concerned with learning
axioms, we introduce an axiom system for the sake of completeness.

Definition 3 (£-Axiom System) Let £ be a logical language. A L-aziom
system for an ontology O := (C,<¢,R,0r, <r,A,04,T) is a triple

S := (4S,a, L)

where

e AS is a set whose elements are called axiom schemata and
o a:AS — AS. is a mapping from AS to aziom schemata defined over L.

An ontology with an L-axiom system is a pair
(0,5)
where O is an ontology and S is an L-aziom system for O.

We will formalize these axiom schemata using the untyped lambda calculus
(compare [Barendregt, 1984]) originally introduced by Church [Church, 1936].
The lambda calculus essentially provides a means to describe arbitrary un-
named functions. A lambda expression consists of a variable which we abstract
over - the argument of the function - and which is bound by the X operator.
A function f(z) = 2? can thus be written in the lambda calculus notation as
Az.z?, where the dot (.) separates the lambda operator from the actual body
of the function. In what follows, we will regard the standard lambda calculus
notation as equivalent to the wuncurried notation in which lists of A-bound



13

variables are used. Thus, Az. (Ay. (z +y)) will be written in the more handy
form: ‘Az,y. = + y, omitting the parenthesis by assuming that the A-operator
binds the variables in the list until the end of the whole expression.

For example, one axiom schema could be AP, Q. disjoint(P,Q) which is
mapped by a to a first-order logic schema as

AP, Q. ¥z (P(z) = ~Q(z)).
a(disjoint)(river) {mountain) would thus yield:

Vz (river(xz) — —mountain(z)).

The obvious benefit of such an £-axiom system is that by being indepen-
dent of some concrete knowledge representation formalism, the axioms formu-
lated can be translated into a variety of different languages. This is important
for ontology learning as the statements learned from textual data have in fact
an intuitive interpretation independent of any knowledge representation for-
malism. The learned statements can then get assigned a specific interpretation
with respect to a concrete KR formalism via the o mapping. Axiom schemata
capture frequently occurring patterns used in ontology engineering (compare
[Staab et al., 2001]). In addition to instantiations of these axiom schemata,
other general axioms have to be added to the logical theory. The difference
between axiom schemata and general axioms is thus only a pragmatic one, i.e.
it depends on the fact whether a type of general axiom occurs often enough
to deserve the status of an axiom schema. For example, we will assume the
following two axioms as being part of our logical theory:

Vz (country(z) — Jy capital of (y,x) AVz(capital of (z,z) — z = y))
Vz (capital(z) & Ty capital of (z,y) A country(y))

The first axiom states that every country has a unique capital, while the
second defines the concept capital as equivalent to saying that there is a coun-
try which stands in a capital_of relation with the corresponding city. Depending
on the view adopted and if axioms as the above occur frequently, one could
introduce the following axiom schema:

/\Cl,Cg,R. Cl = 3R02

which would be mapped to the following first-order axiom schema:

AC1, Ca, R. Yz (C1(z) & Ty A R(z,y) A Ca(y))

The instantiation AC1,Cs, R. C; = 3R.Ca(capital)(country)(capital_of)
would then be mapped to the following first-order formula:
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Vz (capital(z) & Jy A capital_of (x,y) A country(y))

The crucial question here certainly is whether the corresponding axiom
occurs frequently enough to be lifted to the status of an axiom schema.
In what follows, we also define what a lexicon for an ontology is:

Definition 4 (Lexicon) A lexicon for an ontology
0:= (Ca <c¢,R,oR, SR)Aa OA, T)

is a structure
Lew := (Sc, Sk, Sa, Ref o, Ref p, Ref 4)

consisting of

o three sets So, Sgp and S, whose elements are called signs for concepts,
relations and attributes, respectively,

e a relation Ref » C So x C called lexical reference for concepts,

o a relation Ref  C Sk X R called lexical reference for relations, and

o a relation Ref 4 C Sa x A called lexical reference for attributes.

Based on Ref -, we define, for s € Sc,
Refo(s) :=={ce€ C|(s,c) € Refc}
and, for ce€ C,
Ref5(c) :={s € Sc | (5,¢) € Refc).

Ref p and Ref,}1 as well as Ref 4 and Ref:‘l are defined analogously.

An ontology with lexicon is a pair
(0, Lez),
where O is an ontology and Lex is a lexicon for O.

For our example ontology, we could for instance specify that both
nation and country refer to the concept country, i.e. Refal(country) =
{nation, country}.

It is important to mention that the above definition accommodates a great
variety of lexical structures to which concepts and relations can refer, depend-
ing how the sets S¢, Sg and S 4 are defined. In fact, they could merely contain
labels, i.e. plain strings for the concepts and relations as typically assumed,
but also highly structured objects (compare [Buitelaar et al., 2006]).

Whereas ontologies formally specify the conceptualization of a domain, the
extensional part is provided by a knowledge base which contains assertions
about instances of the concepts and relations.
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Definition 5 (Knowledge Base (KB)) A knowledge base for an ontology
0 :=(C,<¢,R,0R,<R,A,04,T) is a structure

KB := (Ia LCy LR, I'A)

consisting of

e a set I whose elements are called instance identifiers (or instances or
objects for short),
a function 1c: C — 2! called concept instantiation,
a function tg: R = 21" with tr(r) C H1<i<|o(r)| te(mi(o(r))), for all
r € R. The function vg is called relation insfantiation, and

o a function t4: A — I x U, r[t] with va(a) C wo(m(o(a))) x [m2(a(a))],
where [t] are the values of datatype t € T. The function t4 is called
attribute instantiation. '

In our example ontology, we have for instance: [ =
{Zugspitze, Neckar, Germany, Stuttgart, Berlin}. Further, we have the fol-
lowing instantiation relations:

tc(mountain) := {Zugspitze}

vc (river) := {Neckar}

tc (country) := {Germany}

te(city) := {Stuttgart, Berlin}

¢t (flow_through) := {(Neckar, Germany),(Neckar, Stuttgart)}
tr(located_in) := {(Stuttgart, Germany)}

vr(capital_of) := {(Berlin, Germany)}

t4(length (km)) := {(Neckar, 367)}

va(height (m)) := {(Zugspitze, 2962)}

As for concepts and relations, we also provide names for instances.

Definition 6 (Instance Lexicon) An instance lexicon for a knowledge base
KB := (I,1c,tR,tA4) is a pair

IL = (S[, R[)

consisting of

e ¢ set Sy whose elements are called signs for instances,
o q relation Ry C St x I called lexical reference for instances.

A knowledge base with lexicon is a pair
(KB, IL)
where KB is a knowledge base and IL is an instance lexicon for KB.

When a knowledge base is given, we can derive the extensions of the con-
cepts and relations of the ontology based on the concept instantiation and the
relation instantiation.
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Definition 7 (Extension) Let KB := (I,ic,tR,t4) be a knowledge base for
an ontology O := (C,<¢,R,0r,<r,A,04,T). The extension [c]xp C I of a
concept ¢ € C is recursively defined by the following rules:

[lxB  ic(c)

[[C]]KB — I[C]]KB U |[Cl]IKB; for d<ce.

instantiations of axiom schemata in S (if O is an ontology with L-axioms),
other general azioms contained in the logical theory.

The extension [rjxks C I of a relation r € R is recursively defined by the
following rules:

[rlxp « tr(r)

[rlks < [r]lks U [r']kB, for v’ <grr.

instantiations of axiom schemata in S (if O is an ontology with L-axzioms),
other general axzioms contained in the logical theory.

The extension [a]xp C I x [T] of an attribute a € A is defined as:

e [alkp < ta(a)
e general axioms contained in the logical theory.

If the reference to the knowledge base is clear from the context, we also write
[e], [r] and [a] instead of [c] ks, [r]xs and [a]xr. Given our example, we
get in particular (taking into account the relation hierarchy and our general
axioms defining capitals and their relation to countries):

[mountain] := {Zugspitze}

[river] := {Neckar}

[country] := {Germany}

[city] := {Stuttgart, Berlin}

[capital] := {Berlin}

[Natural GE] := {Zugspitze, Neckar}

[Inhabited GE] := {Germany, Berlin, Stuttgart}

[GE] := {Germany, Berlin, Stuttgart, Zugspitze, Neckar}
[flow_through] := {(Neckar, Germany), (Neckar, Stuttgart)}
[located_in] := {(Stuttgart, Germany), (Berlin, Germany)}
[capital_of] := {(Berlin, Germany)}

Finally, what is missing is a definition of the intension of a certain concept or
relation. We extend the definitions of Stumme et al. [Stumme et al., 2003] to
also accommodate the intension of concepts and relations as follows:

Definition 8 (Intension) A structure
J:= ('CIa 1o, iR, Z-A)

is called the intension of an ontology O := (C,<¢,R,0r,<pr,A,04,7T) and
consists of:
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e a language L; capturing intensions of concepts, relations and attributes,
respectively,

o three mappings ic, ir and ig withic : C = Ly, i : R — Ly and iy :
A — L;, mapping concepts, relations and attributes to their corresponding
intensions.

We interpret the intension as a non-extensional definition of a certain con-
cept or relation. The above definition also accommodates different languages
for expressing the intension of concepts and relations. The intension, for
example, could be represented through differentiae in the sense of Aristotle
explaining why a certain concept is different from others and thus merits a
status on its own. In this line, the language could consist of sets of attributes
describing a concept in line with the theory of Formal Concept Analysis (see
Section 4.2). However, the language could consist of strings describing the in-
tuitive meaning of a concept in natural language such as done with the glosses
of the WordNet lexical resource [Fellbaum, 1998] (compare Section 4.1.8).
In this line, in our example the intension for capital could be ic{capital) :=
‘town or city that is the center of government of a country, state or province’.
Having outlined our formal ontology model, the next chapter introduces the
core topic of the book, i.e. ontology learning from text.
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Ontology Learning from Text

In this section, we introduce ontology learning and in particular ontology learn-
ing from text. Further, we systematically organize the different ontology learn-
ing tasks in several layers and formally define them with respect to the on-
tology model presented in Chapter 2. After giving a short overview of the
state-of-the-art with respect to the different tasks, we describe the structure
and scope of this book.

Whereas ontologies formally specify a domain model, the extensional part
is provided by a knowledge base that contains assertions about instances of
concepts and relations as defined by the ontology (compare Section 2). The
(semi-) automatic support in constructing an ontology is typically referred to
as ontology learning.

The term ontology learning was originally coined by Alexander Méadche
and Steffen Staab [M&dche and Staab, 2001] and can be described as the ac-
quisition of a domain model from data. It is historically connected to the
Semantic Web, which builds on ontology models or logic formalism restricted
to decidable fragments of first-order logic, in particular description logics
[Staab and Studer, 2004]. Thus, the domain models to be learned are also
restricted in their complexity and expressivity.

Obviously, ontology learning needs input data from which to learn the
concepts relevant for a given domain, their definitions as well as the relations
holding between them. One crucial requirement is thus that the input data is
representative for the domain one aims to learn an ontology for. Input data can
be schemata such as XML-DTDs, UML diagrams or database schemata. We
call this sort of ontology learning lifting [Volz et al., 2003] as it mainly consists
of ‘lifting’ or mapping definitions from the schema to corresponding ontological
definitions. Ontology learning can also be performed on the basis of semi-
structured sources such as XML or HTML documents or tabular structures
(compare [Pivk et al., 2005]). In case ontology learning is performed on the
basis of unstructured textual resources, we will speak of ontology learning
from text.
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Fig. 3.1. Ontology learning from text as a reverse engineering task

Ontology learning can be regarded to some extent as a process of reverse
engineering (compare Figure 3.1). The author of a certain text or document
has a world or domain model in mind which he shares to some extent with
other authors writing texts about the same domain. This implicit domain
model, among many other factors such as the intended message, shapes the
content of the resulting text. The task of reconstructing the world model of
the author or even of the model shared by different authors can thus be seen
as one of reverse engineering. The task is inherently complex and challenging
mainly due to two reasons. First of all, there is typically only a small part
of the authors’ domain knowledge involved in the creation process, such that
the process of reverse engineering can, at best, only partially reconstruct the
authors’ model. Second, and much more important, world knowledge — unless
we are considering a text book or dictionary — is rarely mentioned explicitly.
Brewster et al. [Brewster et al., 2003], for example, have argued that text
writing and reading is in fact a process of background knowledge maintenance
in the sense that basic domain knowledge is assumed, and only the relevant
part of knowledge which is the issue of the text or article is mentioned in a
more or less explicit way. In fact, world knowledge is typically contained only
implicitly in texts in the way certain words or linguistic structures are used
by the writers.

This is very related to the principle underlying the so called meaning
triangle, which illustrates that in every language (formal or natural) there
are symbols which need to be interpreted as evoking some concept as well as
referring to some concrete individual in the world. The meaning triangle in
Figure 3.2 is derived from Sowa [Sowa, 2000b] and illustrates this principle
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Concept
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:! K Yojo
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Fig. 3.2. Meaning triangle taken from Sowa [Sowa, 2000b]

with the string Yojo. For persons with the appropriate contextual information,
this string evokes the concept of a cat and furthermore denotes a specific cat
in the world. This corresponds to the sense (Sinn) and reference (Bedeutung)
distinction introduced by Frege [Frege, 1892]. Ontology learning from text
thus deals with uninterpreted symbols or signs for which the appropriate sense
needs to be identified as some sort of reverse engineering, i.e. contrary to the
direction by which these symbols are produced.

The process of learning the extensions for concepts and relations is com-
monly referred to as ontology population. Further, we will speak of knowledge
markup or annotation if the population is done by selecting text fragments
from a document and assigning them to ontological concepts such as in the
OntoMat Annotizer framework [Handschuh et al., 2001].

A large collection of methods for ontology learning from text have been de-
veloped over recent years. Unfortunately, there is not much consensus within
the ontology learning community on the concrete tasks, which makes a com-
parison of approaches difficult. It is therefore one goal of this book to con-
tribute to a better understanding of the ontology learning tasks and help to
develop metrics and benchmarks to compare research in this field.

In order to discuss the state-of-the-art in ontology learning, we first need
to establish the subtasks that together constitute the complex task of ontology
development (either manual or with any level of automatic support). Ontol-
ogy development is primarily concerned with axiomatizing the definition of
concepts as well as the relationships between them. For some applications of
ontologies in text mining or natural language processing as well as for the
purpose of human readability, it is also important to connect concepts and
relations to the symbols that are used to refer to them. In our case this im-
plies the acquisition of linguistic knowledge about the terms that are used to
refer to a specific concept and potential synonyms of these terms. An ontol-
ogy further consists of a concept hierarchy as well as other, non-hierarchical



22 Ontology Learning from Text

relations. In order to constrain the interpretation of concepts and relations,
axiom schemata such as disjointness for concepts as well as symmetry, reflex-
ivity, transitivity, etc. for relations can be instantiated. Finally, one is also
interested in using an ontology to derive facts that are not explicitly modeled
in the knowledge base but can be derived from it. For this purpose, logical
axioms modeling implications between concepts and relations can be defined.
All the above described ontological primitives can be organized in a layer cake
according to the increasingly complex subtasks within ontology learning to ac-
quire them. This layer is shown in Figure 3.3. We will refer to this layer cake
as the ontology learning layer cake. The layer shows the different subtasks of
learning an ontology, i.e.

e acquisition of the relevant terminology,
identification of synonym terms / linguistic variants (possibly across lan-
guages),
formation of concepts,
hierarchical organization of the concepts (concept hierarchy),
learning relations, properties or attributes, together with the appropriate
domain and range,
hierarchical organization of the relations (relation hierarchy),
instantiation of axiom schemata,
definition of arbitrary axioms.

In most cases, the layers conceptually build one upon another in the sense
that the processes within higher layers rely on the output of processes situated
at lower layers, i.e. concepts can only be ordered hierarchically if appropriate
concepts have already been formed. However, from a processing point of view,
the tasks within different layers can be grouped together and performed by
one and the same algorithm. As we will see in later chapters of the book, there
are algorithms such as Formal Concept Analysis which discover concepts and
order them hierarchically at the same time.

For illustration purposes, Figure 3.3 includes some concrete examples from
the domain of geography on the left of each layer. Within the terminology
acquisition step, we would find relevant terms such as river, country, na-
tion, city, capital. At the synonym discovery step, we might group together
nation and country as in certain contexts they are synonyms. This group
of synonyms might then provide the lexicon Refc for the concept country
:=< i(country), [country], Re fc(country) > with an intension i(country) and
its extension [country]. The intension might for example be specified as ‘area
of land that forms a politically independent unit’. Further, we could learn a
concept hierarchy between the concepts acquired. For the geographical do-
main, we might learn that capital <¢ city, city <¢ Inhabited GE, etc. In addi-
tion, we might learn relations together with their domain and range such as
the flow_through relation between a river and a GE. As defined in our ontology
model, relations can also be ordered hierarchically. We might for example learn
that the capital_of relation is a specialization of the located.in relation. At the
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¥x (country(x) — Jy capital of(y,x) A Vz (capital of(z,x) = y=2)) General Axioms

disjoint(river, mountain) . | Axiom Schemata
capital_of <, located_in i Relation Hierarchy
flow_through(dom : river, range : GE) | Relations

capital <, city, city <. Inhabited GE Concept Hierarchy

¢ = country = (i(c), [c|, Ref . (c)) Concepts

{country, nation} Synonyms

river, country, nation, city, capital,... -. % Te_qns;_‘-' %

Fig. 3.3. Ontology learning layer cake

axiom schema instantiation level, we might derive that river and mountain are
disjoint concepts. Finally, we also might derive more complex relationships
between concepts and relations in the form of axioms. The rule in Figure 3.3,
for example, says that every country has a unique capital.

As mentioned at the beginning, one aim of this chapter is to provide a
systematic organization and formalization of ontology learning subtasks with
respect to our ontology model. In what follows, we provide such a formalization
which will serve as the basis for the definition of ontology learning evaluation
measures in the rest of the book.

3.1 Ontology Learning Tasks

In this section, we describe the different ontology learning subtasks along the
lines of the ontology learning layer cake.

3.1.1 Terms

Term extraction is a prerequisite for all aspects of ontology learning from
text. Terms are linguistic realizations of domain-specific concepts and are
therefore central to further, more complex tasks. The task here is to find
a set of relevant terms or signs for concepts and relations, i.e. S¢ and Sg
which are characteristic for the domain as represented in the underlying text
collection and which will provide the basis in order to define a lexicon for an
ontology as described in Section 2. From a linguistic point of view, terms are
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either single words or multi-word compounds with a very specific, possibly
technical meaning in a given context or domain. Our definition of term is
slightly more general in the sense that we will refer to any single word or
multi-word compound relevant for the domain in question as a term. Thus,
the input to this task is a collection of documents representing the domain of
interest, while output is a set of strings S¢ and Sk representing terms which
will be used as signs for concepts and relations, respectively.

3.1.2 Synonyms

The task of synonym discovery consists in finding words which denote the
same concept and which thus appear in the same set Refc(c) for a given
concept ¢. To some extent, these elements can be regarded as synonyms. It
is well known that real synonyms hardly exist, as there are subtle differences
even between words which are commonly considered as such. Thus, our defini-
tion of synonymy is less strict. We will regard two words as synonyms if they
share a common meaning which can be used as a basis to form a concept rel-
evant for the domain in question. This definition corresponds to the synsets
in WordNet [Fellbaum, 1998]. Note that there is thus a significant overlap
between our definition of synonymy and the lexical relation of cohyponymy.
Cohyponymy is typically defined as the relation between hyponyms of a com-
mon hypernym, i.e. the descendants of a word in a thesaurus. It is important
to mention that synonymy, cohyponymy, hypernymy as well as hyponymy are
lexical relations which can not be seen as equivalent to the notions of equality,
sibling, superconcept and subconcept relations between concepts, which are
defined extensionally. Lexical relations are defined on the level of words. For
a more detailed definition of these lexical relations consult Section 4.1.8.

3.1.3 Concepts

In our view, concept formation should ideally provide (i) an intensional defini-
tion of concepts, (ii) their extension and (iii) the lexical signs which are used to
refer to them [Buitelaar et al., 2006]. Thus, for the purpose of ontology learn-
ing we define a concept as a triple < i(c), [c], Refc(c) > where i(c) is the
intension of the concept, [c] its extension and Refc describes its lexical real-
ization in a corpus. The lexicon can also contain more complex structures en-
riched with statistical information as described by Buitelaar [Buitelaar, 2000]
or even parse trees, subcategorization frames, etc. Though there is no ex-
plicit definition of an intension within the model described in Section 2, we
will assume an intension to be a natural language description of the intuitive
meaning of a concept in line with the glosses in WordNet [Fellbaum, 1998] or
a collection of attributes in line with the theory of Formal Concept Analysis
(see Section 4.2).
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3.1.4 Concept Hierarchies

In what follows, we present tasks related to inducing, extending and refining
the ontology’s backbone, i.e. its concept hierarchy.

Definition 9 (Concept Hierarchy Induction) We define concept hierar-
chy induction as the task of, given a set of concepts C, typically together with
their lezical realization Refc, learning pairs (ci,c;) where ¢;,c; € C such that
<c= U, ;{(cis¢;)} forms a semi-upper lattice. The task here is thus to induce
a concept hierarchy from scratch.

Starting from a set of concepts C :={city, mountain, river, country, capital,
...}, the task here would be to derive a relation <¢ mirroring, for example,
the concept hierarchy depicted in Figure 2.1.

Definition 10 (Refinement) We define concept hierarchy refinement as
the task of, given a set of concepts C as well as a semi-upper lattice <¢ on
C, learning pairs (c;,c) such that ¢ € C. The refined hierarchy C' := C|J; ¢;
and <cr=<¢ UUJ,{(ci;c)} should still form a semi-upper lattice (C',<c).
The task here is to extend the existing concept hierarchy with additional sub-
concepts of already existing concepts, thus refining the hierarchy. Note that
refinement is defined monotonically here.

As a result of a refinement, we could, for example, add the tuple (valley,
Natural GE) to the concept hierarchy <¢ depicted in Figure 2.1.

Definition 11 (Lexical Extension) We define lexical extension or lexical
refinement of a concept hierarchy as the task of, given a concept c together
with its lexical reference function Refc(c), finding new lexical realizations s;
of the concept c, thus extending Refc(c), i.e., Refi(c) := Refolc) U, {s:}

As a result of lexical extension, we would, for example, add the term ‘creek’
to the set Refo(river).

3.1.5 Relations

In the context of the work described in this book, we will restrict ourselves to
binary relations and define relation learning as the task of learning relation
identifiers or labels r as well as their appropriate domain dom(r) and range
range(r). In fact, the following three tasks can be distinguished here:

¢ finding concepts in C standing in some non-taxonomic ontological relation,

e specifying R, i.e. finding appropriate labels and relation identifiers on the
basis of the given corpus,

s given a certain relation r € R, determining the right level of abstraction
with respect to the concept hierarchy for the domain and range of the
relation,

e learning a hierarchical order <p between the relations in R.
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3.1.6 Axiom Schemata Instantiations

Concerning the axiomatic definition of concepts and relations, the aim of
ontology learning is not to learn the axiom schemata itself. We assume the
existence of some L-axiom system, defining axiom schemata which are of-
ten used in ontology engineering and therefore deserve a special status. For
concepts we have, for example, disjointness or equivalence axioms, while for
relations we have axioms describing the properties of the relation, i.e. transi-
tivity, symmetry, etc. The task here is thus to learn which concepts, relations
or pairs of concepts the axioms in our system apply to, i.e. we may want to
learn which pairs of concepts are disjoint, which relations are symmetric, the
minimal and maximal cardinality of a relation, etc. However, we will not be
concerned with this problem in the context of the book.

3.1.7 General Axioms

The situation is different for the task of learning general axioms, in which the
axioms themselves have to be learned and not merely instantiated. Here the
type of axioms strongly depends on the logical formalism used in the back-
ground. General axioms can be thought of as logical implications constraining
the interpretation of concepts and relations. They differ from axiom schemata
in that they do not occur as frequently and therefore deserve no special status.
The task of learning axioms can thus be understood as consisting in deriving
more complex relationships and connections between concepts and relations.
These axioms can then be represented, for example, using the Horn-fragment
of first-order logic. As we are not concerned with the automatic acquisition
of general axioms, we will not specify the form of such rules any further as it
heavily depends on the underlying knowledge representation formalism used.

3.2 Ontology Population Tasks

Ontology population consists in learning the extensional aspects of a do-
main. In particular, the aim is to learn instances of concepts as well as re-
lations. Hereby, an instance-of relation is the set-membership relation be-
tween an instance ¢ € I and the set (¢ (c) of some concept ¢, i.e. instance-
of(i,c) ++ i € tc(c). A similar definition holds for relation instantiation:
instance-ofg((¢1,42),7) © (i1,42) € tr(r). The tasks within ontology popu-
lation are thus to learn instance-of and instance-ofg relations. More specifi-
cally, if an ontology is populated by (i) keeping a link to the text in which
the instances were found as well as by (ii) contextualizing the assignment to
a concept or relation with respect to the context specified by the document
or text in question, we will speak about knowledge markup or annotation.
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3.3 The State-of-the-Art

Given the ontology learning layer cake as discussed above, we can take a closer
look at the state-of-the-art in this field. We first examine it layer by layer and
finally draw some general conclusions.

3.3.1 Terms

The literature provides many examples of term extraction methods that
could be used as a first step in ontology learning from text. Most
of these are based on information retrieval methods for term index-
ing [Salton and Buckley, 1988], but many are inspired by terminology and
NLP research (see [Frantzi and Ananiadou, 1999], [Borigault et al., 2001],
[Pantel and Lin, 2001]).

Term extraction implies more or less advanced levels of linguistic process-
ing, i.e. phrase analysis to identify complex noun phrases that may express
terms and dependency structure analysis to identify their internal structure.
As such parsers are not always available, much of the research on this layer
in ontology learning has remained rather restricted. The state-of-the-art is
mostly to run a part-of-speech tagger over the domain corpus used for the
ontology'learning task and then to identify possible terms by manually con-
structing ad-hoc patterns. In order to identify only relevant term candidates,
a, statistical processing step may be included that compares the distribution

of candidates between corpora using for example a x? test or similar (compare
Section 4.1.6).

3.3.2 Synonyms

Most research has tackled acquisition of synonyms by clustering and re-
lated techniques, in particular exploiting Harris’ hypothesis that words
are semantically similar to the extent to which they share linguistic
contexts [Harris, 1968]. Examples for such an approach can be found
in the work of Grefenstette [Grefenstette, 1994]. In very specific do-
mains, some researchers have exploited integrated approaches to word
sense disambiguation and synonym discovery (compare [Turcato et al., 2000],
[Buitelaar and Sacaleanu, 2002] and [Navigli and Velardi, 2004]).

An important technique for synonym discovery is certainly LSI (Latent
Semantic Indexing) [Landauer and Dumais, 1997], PLSI (Probabilistic Latent
Semantic Indexing) [Hofmann, 1999] or other variants, which essentially re-
duce the dimension of standard text representation models such as the bag-
of-words-model, thus leading to the discovery of strongly correlated groups of
terms.

Currently, there seems to be a trend to use statistical information measures
defined over the web in order to detect synonyms (compare [Turney, 2001]
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and [Baroni and Bisi, 2004]). In general, the research on synonym discov-
ery is relatively mature and has been shown to achieve a human com-
parable performance on the TOEFL synonyms selection tasks (compare
[Landauer and Dumais, 1997] and [Turney, 2001]).

3.3.3 Concepts

The extraction of concepts from text is not only a very difficult prob-
lem, but also a very controversial one as it is not clear what con-
cept extraction is supposed to be. Some researchers have addressed
the question from a clustering perspective and considered clusters of
related terms as concepts (see [Hindle, 1990], [Lin and Pantel, 2001,
[Lin and Pantel, 2002] or [Reinberger and Spyns, 2005]). Again, very promis-
ing in this context seem approaches applying dimension reduction tech-
niques such as described by Schiitze [Schiitze, 1993} or Landauer and Dumais
[Landauer and Dumais, 1997] and which reveal inherent connections between
words, thus leading to group formation. In fact, LSI-based techniques are
especially interesting as they run into fewer data sparseness problems than
approaches relying on raw data. Actually, there is a great overlap between
techniques used for synonym and concept detection which is due to the fact
that both tasks typically aim at discovering semantically similar words which
share some meaning. In the case of synonym discovery, the semantically sim-
ilar words are regarded as potential candidates for synonyms. In the case of
concept formation, they provide the basis for creating concepts.

Other researchers have addressed concept formation from an extensional
point of view. Evans [Evans, 2003], for example, derives hierarchies of named
entities from text, thus also discovering concepts from an extensional point
of view. The Know-It-All system [Etzioni et al., 2004a] also aims at learning
the extension of given concepts, such as, for example, all the actors appear-
ing on the Web. In the approach of Evans [Evans, 2003], the concepts as
well as their extensions are thus derived automatically, while Etzioni et al.
[Etzioni et al., 2004a} essentially learn the extension of existing concepts.
Finally, other systems learn concepts intensionally. The OntoLearn system
[Velardi et al., 2005], for example, derives WordNet-like glosses for domain-
specific concepts on the basis of a compositional interpretation of the meaning
of compounds.

3.3.4 Concept Hierarchies

There are currently three main paradigms exploited to induce concept hier-
archies from textual data. The first one is the application of lexico-syntactic
patterns indicating the relation of interest in line with the seminal work of
Hearst [Hearst, 1992]. However, it is well known that these patterns occur
rarely in corpora. Thus, though approaches relying on lexico-syntactic pat-
terns have a reasonable precision, their recall is very low. Other approaches
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exploit the internal structure of noun phrases to derive taxonomic relations
[Buitelaar et al., 2004].

The second paradigm is based on Harris’ distributional hypothe-
gis. In this line, researchers have mainly exploited hierarchical cluster-
ing algorithms to automatically derive concept hierarchies from text (see
[Faure and Nedellec, 1998], [Bisson et al., 2000] and [Cimiano et al., 2004c]).
In general, clustering approaches typically accomplish two tasks in one: con-
cept formation and concept hierarchy induction. This is due to the fact that,
on the one hand, they create clusters or groups of similar words, which can
be regarded as representing concepts to some extent, and further order these
clusters hierarchically.

The third paradigm relies on the analysis of co-occurrence of terms
in the same sentence, paragraph or document. Sanderson and Croft
[Sanderson and Croft, 1999], for instance, have presented a document-based
notion of subsumption according to which a term ¢; is more specific than a
term tg if ¢, appears in all document in which ¢; occurs.

Sections 6.1 and 6.5 contain a much more detailed description of related
work and the state-of-the-art in the field of automatic concept hierarchy in-
duction from text. We conclude this section by noting that, while a lot of re-
search has been devoted to develop approaches exploiting the different learning
paradigms, little effort has been spent on systematically comparing and eval-
uating different approaches based on one paradigm, as well as on combining
techniques from different paradigms.

3.3.5 Relations

There have only been a few approaches addressing the issue of learning on-
tological relations from text. One of the first was the work of Méidche and
Staab [Méadche and Staab, 2000}, in which a variant of the association rules
extraction algorithm based on sentence-based term co-occurrence is presented
(see Section 7.5 for more details).

The use of syntactic dependencies has been, for example, proposed
by Gamallo et al. [Gamallo et al., 2002]. To our knowledge, the only ap-
proaches to generalize the relations based on syntactic dependencies with
respect to an underlying concept hierarchy are the ones of Méadche and
Staab [Médche and Staab, 2000] and more recently also of Ciaramita et
al. [Ciaramita et al., 2005]. The problem is very related to the task of
acquiring selectional restrictions for verbs at the right level of abstrac-
tion (compare [Resnik, 1993, Ribas, 1995, Clark and Weir, 2002]). In gen-
eral, it seems that the current approaches to relation extraction, e.g.
[Madche and Staab, 2000], [Gamallo et al., 2002], [Ciaramita et al., 2005] .or
[Schutz and Buitelaar, 2005] have only scratched at the surface of the prob-
lem. Sections 7.1 and 7.5 discuss the state-of-the-art in learning relations in
much more detail.
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3.3.6 Axiom Schemata Instantiation and General Axioms

Initial blueprints for the task of learning instantiations of axiom schemata can
be found in the work of Haase and Voélker [Haase and Volker, 2005]. They
present an approach to learn instantiations of the disjointness axiom schema.
The approach is based on the assumption that, if terms appear coordinated
in an expression such as ‘men and women', they are likely to be disjoint.

The extraction of general axioms is probably the least researched
area in the context of ontology learning. Shamsfard and Barforoush
[Shamsfard and Barforoush, 2004] have suggested deriving axioms from quan-
tified conditional expressions such as ‘Every man loves a woman’. With re-
spect to learning implications between relations, which can be used as a basis
to define general axioms, Lin and Pantel [Lin and Pantel, 2001a] have shown
that one can also find similar dependency tree paths. Some of the extracted
similarities correspond to inverse relations such as author.of and written_by,
which could be used to axiomatize the meaning of some relation.

The recent PASCAL textual entailment challenge' represents a very re-
lated problem. In fact, this challenge has strongly increased the awareness
of the problem of deriving lexical entailment rules and led many researchers
to address the problem, so that a plethora of approaches to tackle the prob-
lem of learning ontological rules from text corpora can be expected in the
near future. Provided there would be enough explicitly given training data,
one could also apply techniques from inductive logic programming (ILP)
[Lavrac and Dzeroski, 1994] to the task of deriving Horn-like rules from a
dataset.

3.3.7 Population

The task of populating an ontology is very related to the named entity recog-
nition (NER) and information extraction (IE) tasks.

Information extraction (IE) consists of filling a predefined set of target
knowledge structures — commonly referred to as templates — by applying nat-
ural language processing techniques. Historically, the information extraction
task has been linked to the Message Understanding Conferences (MUC) which
provided datasets based on which different systems can be compared. The task
in MUC-7 was to spot management succession events in newswire articles,
for example. Recently, the information extraction community has emphasized
the adaptivity of systems and focused on the automatic induction of extrac-
tion rules in a supervised manner (compare [Freitag and Kushmerick, 2000,
Muslea et al., 2001, Ciravegna, 2001, Sigletos et al., 2003]). In general, this
has led to a simplification of the extraction tasks such as in the so called sem-
inar announcements task, in which the location, speaker, topic, date, start and
end time of a seminar have to be extracted. In general, many researchers have

! http:/ /www.pascal-network.org/Challenges/RTE/
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considered what is now referred to as single-slot information extraction, i.e.
filling certain attributes of one instance of a given template. These systems
are neither capable of extracting more than one template type nor several
instances of the type in question, i.e. they rely on what could be called the
one-template-type-and-occurrence-per-document assumption. Recently, there
has been work addressing the learning from relational data, thus leading to
the possibility of identifying multiple instances of a given relation (compare
(Iria, 2005]).

Named entity recognition consists in finding instances of a certain con-
cept in texts, where the set of relevant concepts is typically restricted to
person, location and organization. However, recently more classes have been
added in the context of the ACE framework?. Some researchers have fur-
ther considered named entity recognition from a more general perspective.
Evans [Evans, 2003], for example, considers a totally unsupervised approach
in which the classes or concepts themselves are derived from the underlying
text collection.

In general, research in information extraction and named entity recogni-
tion has been so far limited on a few classes of named entities as well as
templates consisting of only a few slots. When moving to larger numbers of
classes or slots to extract as specified by an ontology, current techniques face
a serious scalability problem. Supervised approaches are especially affected by
this problem as it is unfeasible to assume training data in the magnitude of
hundreds of tagged examples.

3.4 Contribution and Scope of the Book

After having discussed the current state-of-the-art in ontology learning, we
will now describe the contribution and scope of the book. But first of all, let
us take stock and reflect on the current state-of-the-art. We have seen that
there has already been a lot of work with respect to concept formation and
concept hierarchy induction. However, on the one hand, we observe that there
has not been much comparative work systematically analyzing different tech-
niques and algorithms. Such a systematic analysis is however indispensable
for ontology engineers needing guidelines about what learning techniques to
apply for which purpose. On the other hand, there is almost no work aiming at
combining different learning paradigms. However, as ontology learning from
text is a highly error-prone process, it seems clear that the success of ontology
learning from text lies exactly in the combination of different techniques to
compensate for each other’s erroneous predictions, thus increasing the overall
accuracy. We summarize the main contributions and the scope of the book in
the following.

% http://www.itl.nist.gov/iad/894.01 /tests/ace/
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Comparison and Combination of Techniques

We address both of the above issues in Chapter 6. Section 6.2 addresses
the lack of comparative work in the field of concept hierarchy induction by
defining an evaluation methodology and systematically comparing different
clustering approaches with respect to the defined methodology. Furthermore,
the book also presents innovative approaches to combine different learning
paradigms examining, on the one hand, an approach in which an agglom-
erative clustering algorithm is guided by taxonomic relations extracted by
other means, for example by applying lexico-syntactic patterns as defined by
Hearst [Hearst, 1992]. This approach is elaborated in detail in Section 6.3. On
the other hand, we also exploit a machine-learning approach to weight the
evidences contributed by different paradigms. This approach is discussed in
detail in Section 6.4.

Learning Relations

Our discussion of the state-of-the-art has also shown that there has not been
much work on the acquisition of relations. In this book, we advance the state-
of-the-art in three respects by developing novel approaches to learn attributes,
determining the appropriate domain and range for relations with respect to
a given concept hierarchy and deriving specific relations frequently occurring
in any ontology. These approaches are described in Chapter 7. In particular,
we describe an approach to learn attributes on the basis of the analysis of
the adjectival modification of nouns (see Chapter 7.2). In Section 7.3, we
examine different statistical measures for the task of finding the right level of
abstraction when specifying the domain and range of a relation with respect
to a given concept hierarchy. In Section 7.4, an approach to automatically
learning so called qualia structures from the Web is described. This approach
can be seen as a basis for learning a specific set of relations related to the
purpose, origin as well as components of a given object.

Population of Ontologies

Concerning the population of ontologies, it has become clear from our dis-
cussion of the state-of-the-art that current methods do not scale to large
numbers of concepts as specified within an ontology. The main aim of this
book is to tackle this issue and present methods which are able to clas-
sify named entities appearing in texts with respect to hundreds of ontologi-
cal categories. We discuss these approaches in Chapter 8. Two different ap-
proaches addressing this task are presented. Section 8.2 presents an unsuper-
vised corpus-based approach in which instances are assigned to the concept
sharing the most similar context, thus relying on some sort of memory-based
learning [Daelemans et al., 1999b]. In particular, the focus is to explore the
influence of different parameters and further extensions of such a similarity-
based approach. Section 8.3 presents a learning paradigm called Learning by
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Googling as well as a concrete instantiation of this paradigm called PANKOW
(Pattern-based Annotation through Knowledge on the Web). The core idea of
PANKOW is to match lexico-syntactic patterns on the WWW using a stan-
dard search engine. The results of these patterns are then aggregated to find
an appropriate concept for a given instance. In this way, semantic annota-
tions are approximated by analyzing the occurrences on the Web of certain
syntactic structures indicating a semantic relation of interest.

Each of the above described main chapters 6, 7 and 8 are structured in the
same way, giving first an overview of the common approaches applied to the
task in question. Then, each chapter presents the methods developed. After
describing other related approaches, each of these chapters concludes with a
summary of the contributions and a brief discussion of open issues.

Applications

As already mentioned in the introduction, there is also a lack of task-based
evaluation of ontologies. This lack is even clearer with respect to the evalua-
tion of the benefit of ontology learning techniques for certain applications. In
fact, it is our belief that the full benefit of ontologies for certain applications
will only unleash if we have a set of techniques for automatically learning
ontologies available, allowing to experiment with different parameters and to
tune the learned ontologies for the application of interest. In this line, we
address the task-based evaluation of ontologies and discuss applications for
automatically learned ontologies within document clustering and classification
tasks in Chapter 9, Section 9.1. We also discuss the application of methods for
automatically populating an ontology in the context of information retrieval
tasks (compare Section 9.2).

Formalization of Tasks

Last but not least, describing the different approaches and corresponding eval-
uation measures requires a formalization of the ontology model and the dif-
ferent ontology learning tasks. The formalization of the ontology model in
Chapter 2 and of the ontology learning tasks presented in this chapter also
represent an important contribution to the field. We hope in this line that our
formalization might foster agreement within the ontology learning community.

Scope

In general, the book is mainly concerned with algorithmic and methodi-
cal aspects of ontology learning as well as with their evaluation and ap-
plication. It completely neglects methodological issues related to the ap-
plication of ontology learning techniques within knowledge acquisition or
knowledge engineering processes. For this reason, it does not address very
important conceptual, technical and legal issues involved in the acqui-
sition of relevant documents for a certain domain. It also glosses over
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methodological aspects concerned with the integration of ontology learn-
ing into a concrete knowledge engineering methodology such as the ones
presented in [Uschold, 1996], [Holsapple and Joshi, 2002], [Sure, 2003] and
[Pinto et al., 2004]. Work addressing methodological issues can be found, for
example, in [Aussenac-Gilles et al., 2000], [Madche, 2002] or [Park, 2004].

The book is not concerned with philosophical, psychological or cognitive
aspects related to knowledge representation, ontologies or ontology learning.
It is neither concerned with the philosophical, psychological or cognitive issues
related to the representation, definition or acquisition of concepts or knowl-
edge in general. The interested reader is referred to Fodor [Fodor, 1998]. It
does neither deal with philosophico-linguistic aspects of ontology learning from
text nor with the inherent relation between language and ontology. We refer
the interested reader to the work of Bateman [Bateman, 1995] as a starting
point for further research.



Basics

In this chapter, we review basic formalisms and techniques which are necessary
for the understanding of the remaining chapters of the book. First, we give an
overview of the natural language processing techniques applied in the context
of the experiments reported. In particular, we show how such techniques can
be applied to extract features on the basis of which to describe and cluster
words. Second, we introduce the theory of Formal Concept Analysis (FCA),
which will be applied for different purposes in the remainder of the book.
Finally, we also give a short description of the machine learning techniques
used.

4.1 Natural Language Processing

Natural language is the primary medium by which humans communicate with
each other, asking questions, expressing beliefs, desires, attitudes and com-
mands as well as reporting events, actions and states. In general, different
syntactic categories are used to refer to different types of ontological entities.
Proper nouns are, for example, typically used to refer to individuals. Verbs in
general express beliefs, attitudes, events, actions, states or commands, whereas
nouns can be regarded as referring to classes. Determiners are typically used
to pick out a set of members of a certain class, which does not always need
to be concrete. Given a certain noun, say ‘man’, ‘every man’ would, for ex-
ample, refer to all the members of the class man, ‘e man’ would refer to one
non-specified element, ‘some men’ would refer to some non-specified subset of
the class, while ‘the man’ would refer to one contextually unique man. Ad-
jectives typically modify nouns and in general can be regarded as specifying
the value of some attribute of the corresponding class. ‘Green car’, for ex-
ample, states that the value of the attribute color of the car in question is
‘green’. Finally, adverbs modify verbs and describe the manner in which a, cer-
tain event, action or state takes place, while prepositions followed by a noun
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phrase typically add some spatio-temporal conditions describing the modified
entity represented by the noun or verb phrase.

Roughly speaking, we can distinguish between the following syntactic cat-
egories in natural language together with the type of entities they typically
refer to:

verbs events, states, actions, beliefs, attitudes, etc.
proper nouns individuals

nouns classes

adjectives class attribute values

adverbs description of manner

prepositional phrases{spatio-temporal conditions

It is important to mention that the above classification has to be regarded
as a very rough one. Indeed, there are many exceptions to all of the above
prototypical cases. Nouns can, for example, also denote events as in the killing
of John F. Kennedy. Adjectives can also be non-attributive such as in the
alleged criminal. However, as a rough approximation the classification can be
seen as adequate for the purposes of the present work.

We have mentioned before that nouns can to some extent be seen as refer-
ring to classes of individuals. Therefore, adjectives and prepositional phrases
modifying them, as well as verbs relating them should tell us something about
the nature of these classes. Attributive adjectives, for example, tell us about
which attributes the members of the class represented by the modified noun
typically have. The expression ‘green car’, for instance, tells us that the mem-
bers of a class of entities denoted by ‘car’ have a color. Verbs also tell us
a lot about the actions which can be performed with certain classes of en-
tities. The sentence ‘A man eats a cake’, for example, tells us that the ac-
tion denoted by ‘eat’ can be performed on members of the class denoted by
‘cake’ by members of the class denoted by ‘man’. This observation corre-
sponds to what computational linguistics have called selectional restrictions
[Ribas, 1995, Resnik, 1997, Clark and Weir, 2002]. Selectional restrictions can
be seen as conditions specifying the type of classes to which certain verbs or
adjectives are applicable.

We can conclude that certain natural language expressions provide us a
lot of information about the nature of classes denoted by nouns. In the work
presented here, we heavily exploit this observation with respect to the task
of learning and populating ontologies on the basis of textual data. For this
purpose, we need techniques to automatically process natural language. In the
work described in this book we mainly make use of shallow text processing
as well as statistical natural language processing techniques. The techniques
applied are described in the following sections. For further details, the in-
terested reader is referred to the introductions to natural language process-
ing of Allen [Allen, 1995], Jurafsky and Martin [Jurafsky and Martin, 2000]
and Carstensen et al. [Carstensen et al., 2004] (in German), as well as to
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Fig. 4.1. Standard NLP pipeline

the book on statistical natural language processing by Manning and Schiitze
[Manning and Schiitze, 1999].

4.1.1 Preprocessing

Natural language processing typically consists of the sequential application of
different analysis components in a pipeline architecture as depicted in Figure
4.1. After the so-called preprocessing step, natural language processing systems
typically produce a syntactic analysis of the input and perform a semantic
analysis on the basis of the syntactic structure yielding a logical form (LF) of
the input (compare [Allen, 1995]). The contextual interpretation component
then interprets the logical form with respect to the context in question and
taking into account pragmatic factors, that is, factors related to the intended
meaning of the input. We will understand the preprocessing step rather loosely
and regard it as consisting of the following substeps (not necessarily applied
in this order):

tokenization and normalization

part-of-speech (POS) tagging

lemmatization / stemming / morphological analysis
named entity recognition (NER)

coreference resolution

The purpose of the tokenization step is to detect sentence as well as word
boundaries. Problems here are, for example, punctuation signs such as periods,
which can either denote the end of a sentence, the end of an abbreviation such
as ‘Ltd.’, or can be used in the specification of dates, times, telephone numbers,
ordinal numbers, etc. A further problem is that blanks do not always indicate
word boundaries as it is the case for many named entities such as New York.
Thus it would sometimes be useful to apply named entity recognition (see
below) before actually performing tokenization.

The normalization step typically consists of finding dates, times, etc.
and transforming them into a standard format. Sometimes, normalization
also comprises the expansion of abbreviations, for which a corresponding
abbreviation lexicon is needed. For more details about tokenization and
normalization the reader is referred to the book of Manning and Schiitze
[Manning and Schiitze, 1999].
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Part-of-speech (POS) tagging is the task of assigning to each token its
corresponding part-of-speech, i.e. its syntactic word category such as noun,
adjective, verb, etc. Different tagsets as well as different paradigms have
been applied to the task. In particular, it is typically distinguished between
so called rule- or transformation-based approaches (compare [Brill, 1994])
and statistical/probabilistic approaches based on Markov Models (compare
[Jelinek, 1985], [Church, 1988] and [Charniak et al., 1993]).

In the work presented in this book, we apply two part-of-speech taggers.
We use TreeTagger [Schmid, 1994], which is based on decision trees (see Sec-
tion 4.3) as well as the Qtag tagger [Tufis and Mason, 1998]. It is interesting
to note that state-of-the-art taggers such as TreeTagger achieve a tagging ac-
curacy between 95% and 97%, i.e. on average between 95 and 97 words out
of 100 get assigned the correct syntactic category.

We also apply a lexicon-based lemmatization approach, i.e. we look up the
lemma for nouns and verbs in the lexicon provided with the LoPar parser (see
below). Lemmatization is typically applied as a normalization step, mapping
morphological variants to their corresponding baseform. In our experiments,
we neither apply stemming, which totally removes suffixes, nor a deeper mor-
phological analysis unveiling the internal structure of words.

Named entity recognition (NER) consists of recognizing so called named
entities, i.e. names referring to unique objects in the world, such as Germany,
George W. Bush, Mount Everest, Microsoft. Named entity recognition has
been so far restricted to small numbers of classes, considering in particular
the classes person, organization, location, date, etc. Named entity recognition
systems first attempt to recognize and classify named entities appearing in
a text by a look-up in so called gazetteer lists. These gazetteer lists contain
names as well as their corresponding type, class or tag. For new named
entities which do not appear in such gazetteer lists, obviously more sophis-
ticated approaches are needed. For this purpose, mainly supervised systems
trained on the above mentioned classes have been used in the context of the
information extraction contests organized under the auspices of the Message
Understanding Conferences (MUC). We discuss the named entity recognition
task as well as its relation to ontology population in more detail in Section 8.2.

Coreference resolution is often also seen as a preprocessing step. However,
here we are referring to a very simple sort of coreference, i.e. the coreference
relation between named entities. State-of-the-art systems are for example able
to recognize that John Adams, J. Adams and Mr. Adams refer to one and
the same real-world entity. Other sorts of coreference relations discovered
by anaphora resolution algorithms or complex discourse inferences such as
described in [Cimiano, 2003, Cimiano et al., 2005d] are typically not regarded
as a preprocessing task. We do not apply techniques to detect coreferring
named entities. However, we apply pronoun resolution techniques to increase
the contextual information about named entities or nouns (compare Section
8.2).
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4.1.2 Syntactic Analysis: Chunking

Chunking, also called shallow or partial parsing, applies shallow processing
techniques (typically regular expressions and finite automata) to group to-
gether words to larger syntactic and meaning-bearing constituents, typically
with a head which is modified by other words in the unit. A head is the
main meaning-bearing unit within a syntactic constituent. The verb is the
main meaning-bearing unit of a verb phrase and therefore its head. The main
meaning-bearing word within an English noun phrase is typically the right-
most noun. In ‘the exciting modern art museum’, ‘museum’ is certainly the
main meaning-bearing word of the constituent, while the other words are es-
sentially modifiers with a meaning-restricting function.

Syntactic units are generally called chunks. Chunks are non-overlapping,

non-recursive, and non-exhaustive. Non-recursive means that chunks are not
embedded within other chunks and non-exhaustive means that there may be
words in a sentence which do not belong to a chunk. Chunkers or shallow
parsers thus discover islands of words which build a syntactic unit. Typically,
chunkers apply finite state technologies in so called cascades, where the out-
put of one level forms the input to the next, thus being able to reuse groups
of words detected in earlier phases. Chunkers typically proceed by first de-
tecting the straightforward units and then proceeding to more complex ones.
In general, chunkers do not discover grammatical relations such as subject,
object, complementation or modification. Furthermore, they adopt a conser-
vative strategy and tend to avoid producing errors, so most of the chunkers
available do not attempt to resolve semantic or syntactic ambiguities. Syntac-
tic ambiguities arise in case there is more than one possible syntactic structure
for a given sentence. So called PP-attachment ambiguities arise from the fact
that a prepositional phrase (PP) can either modify the preceding noun phrase
or verb phrase as in ‘I saw the man on the hill with the telescope’, in which ‘the
telescope’ could either be ‘on the hill’ or used as instrument for seeing. The
obvious benefits of chunkers are in fact their robustness as well as efliciency.
For this purpose, they are predestined for ontology learning tasks as we need
to process large amounts of texts, and full parses are not as critical as in other
applications, e.g. Information Extraction (IE), Machine Translation (MT) or
Question Answering (QA) due to the statistical nature of the techniques ap-
plied.
In the work presented here, we either use self-created very simple chunkers
(comprising a set of regular expressions) or use Steven Abney’s chunker CASS
[Abney, 1996]. The results of CASS on the input sentence ‘The man caught
the butterfly with the net’ is shown in Figure 4.2.

It is interesting to see that, while CASS has recognized the noun phrases
‘The man’, ‘the butterfly’ as well as the prepositional phrase ‘with the net’, it
has not attempted to resolve the PP-attachment ambiguity by either attaching
the PP to the noun phrase ‘the butterfly’ or the verb phrase.



40 Basics

<s>
[c
[cO
[nx
[dt Thel
[nn man]]
[vx
[vbd caughtll]
[nx
[dt the]
[nn butterfly]]
(pp
[in with]
[nx
[dt the]
[nn netlll]
[per .]
</s>

Fig. 4.2. Chunking produced by CASS for The man caught the butterfly with the
net.

4.1.3 Syntactic Analysis: Parsing

Parsing, in contrast to chunking, aims at unveiling the full syntactic struc-
ture of a given input sentence. Syntactic structure is hereby represented us-
ing two main different paradigms: dependency grammars or phrase structure
grammars. While syntactic dependencies are represented differently in both
paradigms, they both aim at discovering larger coherent syntactic units of
words, i.e. phrases, and make their dependency relations explicit. Figure 4.3
shows a typical parse tree as produced by a phrase structure grammar for
the sentence ‘The man caught the butterfly with the net.’ Notice that here the
prepositional phrase ‘with the net’ is correctly attached to the verb phrase
(VP).

The search space for parsers is typically so large that there is no parser
which can avoid exploring different alternatives at some stage. Furthermore,
the larger grammars get, the more ambiguities a parser has to deal with,
typically leading to an overwhelming number of parses per sentence. This is
exactly the sort of complexity which is avoided when using chunk parsing.
Most of the parsers used in the NLP community use a context-free backbone.
An extension of context-free-grammars are so called unification grammars,
which allow to model subcategorization as well as gender and number agree-
ment in an elegant way, without leading to the proliferation of grammar rules
(compare [Kamp and Reyle, 1993]). Another extension are lexicalized gram-
mars, which assume a richly structured lexicon, thus being able to reduce
the number of grammar rules by modeling certain phenomena in the lexicon.
Examples for unification-based and lexicalized grammars are Lexical Func-
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Fig. 4.3. Parse tree for The man caught the butterfly with the net.

tional Grammar (LFG) [Bresnan, 1994] as well as Head-driven Phrase Struc-
ture Grammar (HPSG) [Pollard and Sag, 1994] or Lexicalized Tree-Adjoining
Grammars [Joshi and Schabes, 1997]. We have used LoPar!, a statistical left-
corner parser [Graham et al., 1980] developed at the Institute for Compu-
tational Linguistics of the University of Stuttgart [Schmid, 2000]. LoPar is
a parser for probabilistic context-free grammars (PCFGs) a well as head-
lexicalized probabilistic context-free grammars (HPCFGs). In particular, it
produces a syntax tree corresponding to the most probable parse tree with re-
spect to the probabilities specified in the probabilistic context-free grammar.
For details about the algorithm the interested reader is referred to Schmid
[Schmid, 2000].

4.1.4 Contextual Features

For many applications in NLP, it is crucial to represent the context of a certain
word. This is important for word sense disambiguation, i.e. the task of finding
the correct meaning of a word given its context (see [Ide and Veronis, 1998]
for a detailed introduction to word sense disambiguation (WSD)). There are
for example ambiguous words such as ‘bank’, which has two meanings: one in
the sense of financial institute and one in the sense of a river bank. The correct
meaning of such an ambiguous word can only be determined with respect to a
certain context. Therefore, it is crucial for word sense disambiguation systems
to represent the context of a word in some way (compare [Widdows, 2003a]).

A lot of work has considered word window models, in which n words to
the left and right of the target word are considered as features to describe the
context of a term. Though this is a valid approach, it is unclear in how far
all these words within a window indeed tell us something about the nature

! http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/
LoPar-en.html
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of the target word. We have seen above that there are several constructs in
natural language conveying more information about the arguments or words
they modify. This is the case of verbs, adjectives and prepositional phrases.
Instead of using word windows as a basis for extracting contextual features,
we rely on linguistic processing techniques to identify such constructs and
transform them into appropriate contextual features describing a term. In
what follows, we describe two approaches to extract contextual features. The
first approach relies on a parser to extract syntactic dependencies, while the
second applies shallow parsing techniques to extract so called pseudo-syntactic
or surface dependencies.

4.1.4.1 Syntactic Dependencies

One possibility for extracting contextual features describing a term is to
parse the text collection and extract syntactic dependencies between a verb
and its subject, object and PP-complement from the corresponding parse
trees by using tgrep?. In essence, tgrep provides support for searching certain
paths in trees. The verbs can also be lemmatized. As mentioned above,
lemmatization maps a word to its base form and may be used to normalize
the text. Consider for instance the following two sentences:

The museum houses an impressive collection of medieval and modern
art. The building combines geometric abstraction with classical references
that allude to the Roman influence on the region.

After parsing these sentences, we would extract the following syntactic
dependencies:

houses_subj (museum)
houses_obj(collection)
combines_subj (building)
combines_obj(abstraction)
combines_with(references)
allude_to(influence)

By the lemmatization step, ‘references’is mapped to its base form ‘reference’
and ‘combines’ and ‘houses’ to ‘combine’ and ‘house’, respectively, resulting
in:

house_subj (museum)

house_obj(collection)

combine_subj (building)

combine_obj{abstraction)

combine_with(reference)

allude_to(influence)

? see http://mccawley.cogsci.uiuc.edu/corpora/treebank3.html
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4.1.4.2 Pseudo-syntactic Dependencies

Another approach to extract contextual features is to apply a shallow pars-
ing strategy and match certain regular expressions in the text to extract
the syntactic dependencies. These dependencies are not really syntactical as
they are not obtained from parse trees, but with a very shallow and heuris-
tic method consisting of matching certain regular expressions over part-of-
speech tags. The motivation for doing this is the observation of Grefenstette
[Grefenstette, 1994] that the quality of using word windows or syntactic de-
pendencies for distributional analysis depends on the rank or frequency of
the word in question. Qur intention is to make a compromise between using
word windows and syntactic dependencies extracted from parse trees. Our
pseudo-syntactic dependencies are surface dependencies extracted by match-
ing regular expressions. In what follows, we list the syntactic expressions we
use and give examples of object—attribute pairs extracted in predicate nota-
tion a(o), where a is the attribute and o the object:

e adjective modifiers, i.e. a nice city — nice(city)

e prepositional phrase modifiers, i.e. a city near the river — near_river(city)
and city_near(river), respectively
possessive modifiers, i.e. the city’s center — has._center(city)
noun phrases in subject or object position. i.e. the city offers an exciting
nightlife — offer_subj (city) and offer_obj(nightlife)

e prepositional phrases following a verb, i.e. the river flows through the city
— flows_through(city)
copula constructs® i.e. a flamingo is a bird — is_bird(flamingo)

e verb phrases with the verb to have, i.e. every country has a capital —
has_capital(country)

Considering the above example sentences, we would extract the following de-
pendencies:

house_subj (museum)
house_obj(collection)
impressive(collection)
combine_subj(building)
combine_obj (abstraction)
geometric(abstraction)
combine_with(reference)
classical(reference)
allude_to(influence)
roman{influence)
influence_on(region)
on_region(influence)

3 A copula is a verb which links a subject to an object, an adjective or a constituent
denoting a property of the subject.
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Our approach based on syntactic dependencies relies on very simple at-
tachment heuristics and attaches a prepositional phrase to the verb or noun
phrase immediately preceding it.

4.1.5 Similarity and the Vector Space Model

Very important for ontology learning is the fact that context may be used as
a basis on which to assess the similarity of words. This is formulated by the so
called distributional hypothesis claiming that words are similar to the extent
that they share similar context [Harris, 1968). This hypothesis is also in line
with Firth’s well known statement that ‘you shall know e word by the company
it keeps’ [Firth, 1957]. In fact, empirical investigations corroborate the valid-
ity of the above hypothesis. Miller and Charles [Miller and Charles, 1991}, for
example, found in several experiments that humans determine the semantic
similarity of words on the basis of the similarity of the contexts they are
used in. Grefenstette [Grefenstette, 1994] further shows that similarity in vec-
tor space correlates well with semantic relatedness of words. The fact that
semantic similarity of words can be approximated by their contextual similar-
ity is a key assumption for most of the work in ontology learning. A crucial
question in this respect is how to represent the context of a certain word.

Context is often represented as vector in high dimensional space R”, the di-
mensions corresponding to words found in the context of the word in question.
This vector-based context representation constitutes the core of the so called
vector space model used in information retrieval [Salton and McGill, 1983,
Baeza-Yates and Ribeiro-Neto, 1999]. For further details on the vector-space
model, the interested reader is referred to the enjoyable and instructive book
of Widdows [Widdows, 2004], which contains information about the mathe-
matical and historical background of the vector-space model as well as about
interesting applications for natural language processing and information re-
trieval.

In general, what exactly is considered as the context of a word is a de-
batable question and can either be the whole document, such as described
by Lesk or Salton [Lesk, 1969, Salton, 1971], words to the left and right of
the word within a given window size (compare [Hearst and Schiitze, 1993,
Yarowsky, 1995, Schiitze and Pedersen, 1997, Widdows, 2003b]), or specific
grammatical constructs such as appositions, copulas, verb-object, verb-
subject, adjective modifiers, nominal modifiers, etc. as in the work
of Hindle [Hindle, 1990], Grefenstette [Grefenstette, 1994] or Caraballo
[Caraballo, 1999].

While using words occurring in the same document yields very large
vectors which are time-intensive to process, using only words with a
grammatical relation to the target word yields much sparser context vec-
tors which are easier and more efficient to process. Some people have
also applied dimension reduction techniques like latent semantic index-
ing (LSI) [Landauer and Dumais, 1997], thus yielding smaller vectors which
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can be processed more efficiently [Schiitze, 1993, Hearst and Schiitze, 1993,
Widdows, 2003b].

Context vectors as described above allow for comparing the contexts of
different words and thus provide a basis for the assessment of the similarity
or relatedness of two words. Thus, a lot of research in NLP has been de-
voted to the definition and analysis of different similarity measures (compare
[Lee, 1999]). In the following section, we introduce some of the most common
similarity measures used in NLP research. We distinguish between measures
based on binary vectors, geometric measures as well as measures comparing
probability distributions.

In what follows, we define what similarity and distance measures are and
discuss some of their properties:

Definition 12 (Similarity Measure) A similarity measure sim is a func-
tion sim : R* x R* — [0,1)] with the following properties:

Vvy,va € R"sim(vl,vz) =0 z'ﬁv1 v =0 (41)
Vvi,ve € R sim(vi,v2) >0 iff vi-va >0 (4.2)
Vv sim(v,v) =1 (4.3)

Translated to a feature-based model, the first condition means that the
similarity between two vectors is zero in case there is no dimension in which
both have a non-zero value, i.e. they have no features in common. Conversely,
the similarity will be greater than zero in case the vectors have at least one
common feature, i.e. a dimension for which both vectors have non-zero values.
In addition, a vector is maximally similar to itself.

It is important to emphasize that not every similarity measure needs to
be symmetric (c.f. [France, 1994]). We will speak of a symmetric similarity
measure in case the following condition holds:

Vvi,va sim(vy, ve) = sim(va,v1) (4.4)
In what follows, we also consider distance measures.

Definition 13 (Distance Measure) A distance measure is a function
dist : R* x R* — RY with the following property:
Vv dist(v,v) = 0 i.e. the distance of a vector to itself is 0.

Definition 14 (Metric) A distance measure is a metric if the following con-
ditions hold:

Vvi,ve € R™ dist(vy,va) =0 — vy = va

Vvy,ve € R*dist(vy,va) = dist(va,vy) (Symmetry)

Vvi,vae,vg € R" dist(vy,va) + dist(ve,vs) > dist(vy,vs) (Triangle In-
equality)
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A distance measure dist can be transformed to a similarity measure sim
by a bijective and monotonic decreasing function f(dist). Examples for such
functions are:

' B 1
sim(z,y) = 1+ dist(z,y) -

. _ | —ln(dist(z,y)) if dist(z,y) > 0
sim(z,y) = { 1 if dist(z,y) =0 (4.6)
sim(z,y) = e~ 4st@Y) (4.7

In particular, the transformation function from a distance to a similarity
measure needs to fulfill the following conditions:

dist(z,y) = +o00 & sim(z,y) =0 (4.8)
dist(z,y) =0+ sim(z,y) =1 (4.9)

The above definition presupposes the introduction of a special symbol +oc.
Alternatively, we can also rely on the maximal distance maxzdist and use the
following transformation function:

dist(z,y)
mazdist
Moreover, we can also use the following simple transformation function:

sim{z,y) =1-— (4.10)

f(dist(z,v)) = k — dist(z,y) (4.11)

where k is an appropriate constant. Strictly speaking, the outcome is not
a similarity measure as it is not bound to the interval [0,1]. However, it often
suffices for the relative comparison of different similarity values. This simple
transformation will be used in the experiments described in Chapter 6.2.

4.1.5.1 Binary Similarity Measures

One of the most well-known measures for assessing the similarity between
binary vectors, i.e. containing only the values 0 and 1, are the Dice and Jaccard
coefficient. The DICE coefficient is defined as:

<X>+<Yy> ST+

or more easily formulated for sets X,Y containing the non-zero dimensions
of the vectors x and y, respectively:

Dice(x,y) = (4.12)

21X NY|

DZ.CG(X, Y) = m

(4.13)
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The Jaccard or Tanimoto coefficient is defined as follows:

Xy _ Do Tili
<X>+<Y> XY Som Tt Yi— Doy Tili
(4.14)
again more easily formulated for sets X,Y containing the non-zero dimen-
sions of the vectors x and y as follows:

Jaccard(x,y) =

_|xny]

Jaccard(X,Y) = XU

(4.15)

4.1.5.2 Geometric Similarity Measures

The most well-known geometric similarity measure is definitely the cosine
of the angle between two vectors. It ranges from 1 for vectors pointing in
the same direction, over 0 for orthogonal vectors to —1 for vectors pointing
in opposite directions. In text mining applications, where the dimensions of
the vectors correspond to word frequency counts, the vectors never point in
opposite directions. The cosine is defined as follows:

cos(x,y) = Y . Liz) TiYi (4.16)

- - T )
[xly| Vi BV ¥
Furthermore, one can also assess the similarity between vectors as the
distance between their end points as done by the Lg- or Minkowski-measure:

(4.17)

In particular, for ¢ = 1 this formula yields the Li-norm, Manhattan or
Tazxicab metric:

n

Li(x,y) = Y |&: — il (4.18)

i=1

For ¢ = 2 we get the Lo-norm or Euclidean distance , i.e.

(4.19)
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4.1.5.3 Measures based on Probability Distributions

In this section, we introduce measures based on probability distributions, i.e.
relative entropy, mutual information, pointwise mutual information as well as
the Jensen-Shannon (JS) and Skew divergences (SD). But before, we introduce
basic notions of probability theory.

Probability theory deals with events as well as the probability that they
occur. The set of possible events is typically represented as 2. This set is
typically also called event space. The probability that a subset of events of (2
actually takes place is captured by a probability function P : 2 — [0,1].

Probability functions obey the following basic rules:

P(Ae2)>0 (4.20)

P(Ae <1 (4.21)

P() = (4.22)
(

P UAi €N) = ZP(Ai) in case the Ajs are disjoint (4.23)
? 2

Let us consider the rolling of a dice as an example. In particular, we have
the following event space: 2 = {1,2,3,4,5,6}. For each event in this event
space we have a probability of p = %. Further, the probability of getting an
odd number is P({1,3,5}) := P(1) + P(3) + P(5) =2 = 1.

Sometimes we have partial knowledge about the probability of some event
given that some other event occurs. This is captured by the notion of con-
ditional probability. The conditional probability of an event A given that an
event B has occurred is:

P(ANB)
P(B)

An important theorem in this context is Bayes’ theorem which allows to
swap the order of dependence between events as follows:
P(BNA) P(A|B) P(B)
(BI4) = ~prp A (4:25)
Instead of using concrete event spaces, often so called random variables
are used. A random wariable is essentially a function X : £2 — R and allows
to talk about probabilities of numerical values related to the event space. A
discrete random variable is a function z : 2 — S, where S is a countable
subset of R. For our dice example we have: X(1)=1, X(2)=2,... X(6)=6.
The ezxpectation of a random variable distributed according to p is its mean,
ie.

P(A|B) = (4.24)

E(X)=) zp(a) (4.26)
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For our dice example, we get an expectation of E(X) = Zf=1 31 =3.5.
The variance measures how much in average the variable’s mean diverges
from the expectation:

Var(X) = E((X — E(X))?) (4.27)

The commonly used standard deviation o is the square root of the variance.
For our dice example, the variance is calculated as follows:

=1 @s? 2157 +2(05)?)

The standard deviation thus is ¢ = 1.71.

Having defined what a random variable is, we can now define a number of
measures.

First of all, entropy, or self-information, of a discrete random variable X
distributed as the probability function p(X) is its average uncertainty, i.e.

H(X) =~ p(e) log: p(z) (4.28)
xeX
Entropy can be thought of as the average length of the message needed
to transmit the outcome of that variable. For our dice example, we get in
particular H(X) = —37_ L logs = loga(6) = 2.58. So we need on average
2.58 bits to encode and transmit the result of rolling a dice.
Relative Entropy or Kullback-Leibler divergence is a measure of how differ-
ent two probability distributions (over the same event space) are:

DGlo) = Y- pla) logs 25 (4.29)
xeX
Relative Entropy measures the average number of bits wasted by encoding
events from a distribution p with a code based on the distribution q. Relative
Entropy can thus be seen as a distance measure between p and gq.
The Jensen-Shannon and Skew divergences are defined on the basis of
relative entropy:

I8(.0) = 500 | L54) + D || 219 (4.30)

SD(p,q) =D(p|la-p +(1~a)-q) (4.31)
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The latter is thus an example of an asymmetric distance measure and was
introduced by Lee [Lee, 1999).

Mutual information is the reduction in uncertainty of one random variable
due to knowing about another, i.e. the amount of information one random
variable contains about another and is defined in terms of entropy as follows:

I(X;Y) = H(X) — H(X|Y)
= H(X)+H(Y) - HX,Y)

_ og P&Y)
Zp(w ) log oS (4.32)

For a detailed deduction of the above formula, the interested reader is
referred to Manning and Schiitze [Manning and Schiitze, 1999].

Finally, the pointwise mutual information is calculated between two par-
ticular points in those distributions:

p(z,y)
PMI{z,y) = I(z,y) = log ————~ (4.33)
’ p(z) p(y)
Mutual information and pointwise information can thus be seen as sim-
ilarity measures between two random variables or two particular points, re-
spectively.

4.1.6 Hypothesis Testing

Corpus-based co-occurrence counts are often sensitive to the frequency of the
involved words. Thus, an interesting question in corpus statistics is whether
two words occur more often together than chance would predict. Typically,
statistical hypothesis testing is applied to the problem. Hypothesis testing in-
volves formulating two hypotheses: Hy, the so called null hypothesis, and Hy,
the alternative hypothesis. The null hypothesis typically states that the ob-
served effect (typically difference in mean between two samples) is the result
of chance. The alternative hypothesis conversely claims that the observations
show a real effect. A statistical test is then performed to either reject Hy or
not to reject Hy. The statistical test then returns a p-value corresponding to
the probability of wrongly rejecting the null hypothesis if it is in fact true.
The smaller the p-value, the stronger is the evidence against the null hypoth-
esis. The p-value is then compared to an acceptable significance threshold «
(sometimes called an a-value). If p < a, the observed effect is statistically
significant, the null hypothesis is ruled out, and the alternative hypothesis is
valid. When assessing the degree of association between words, the Hy hy-
pothesis assumes that the probability of the two words is independent of each
other, i.e.

P(wl,wz) = P(wl) P(’wg) (434)
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Table 4.1. Example x? 2-by-2 table from [Manning and Schiitze, 1999]

A=new -A = - new
B=companies f(4,B)=38 f(—A, B)) = 4667
—B = - companies|f(A, ~B) = 15820|f(—~A, ~B) = 14287173

The independence hypothesis is rejected in case the observed probability is
found to significantly differ from P(w;,w,) as defined above. In what follows,
we briefly describe the two most commonly applied statistical tests applied
within NLP research, the Student’s t-test and the y2-test.

4.1.6.1 The t-test

The t-test considers the mean and variance of a sample compared to a dis-
tribution with mean p representing the null hypothesis. The test then looks
at the difference between the observed and expected means, scaled by the
variance of the data, and tells how likely one is to get a sample of that mean
and variance assuming that the sample is drawn from a normal distribution
with mean p. In particular, the t-test calculates the following value:

T —
t=2"F (4.35)
82
VN
where Z is the sample mean, s2 is the sample variance, N is the sample size

and p is the expected mean. It is important to note that the t-test assumes
normally distributed data.

4.1.6.2 The x>-test

An alternative to the t-test, which does not assume normal probability dis-
tributions is Pearson’s x2-test. The core of the test is the comparison of the
observed frequencies in an event table as depicted in Table 4.1. The x? value
is now calculated as follows:

O, ; — E; :)?
X2 — Z ( 11.7E‘ - zv]) (4.36)
i\j b

where i ranges over the rows of the table and j over the columns; O; ; is
the observed value in the cell (¢, j) and E; ; is the expected value. From table

4.1, for example, we get:

01’1 = f(A,B):8
01,2 = f(_'A, B))=4667
021 = f(A,-~B)=15820
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Os5 = f(—A,~B)=14287173

Eyq= 01,1]-4\-’02,1 . 01,11-501,2 — P(A) . P(B)
By = 01,21—1\}02,2 . 01,114\-’01,2 = P(-4) - P(B)
By = Ouigoed 25222 = P(4) - P(=B)
By = 01,2;02,2 . 02,1;}02,2 = P(=A) - P(—iB)

For the 2-by-2 case, the x? value can be reduced to (compare
[Manning and Schiitze, 1999]):

¥ = N(01,102,2 — 01,205,1)*
(01,1 +012)(01,1 + 021)(O1,2 + 022)(02,1 + O2.2)

(4.37)

where N is the number of observed events.

For our example in Table 4.1 we get for instance: x? = 1.55 which is not
above the critical value of 3.841 at a probability level of a = 0.05; that means,
the fact that A and B occur jointly in some cases is due to chance with a high
probability (compare [Manning and Schiitze, 1999]). Though the x? test does
not assume normally distributed data, it also underlies some assumptions:

e The deviation between observed and expected values needs to be normally
distributed.

e The sample should have been generated by a random process and be large
enough (more than 20 or 50 samples).
A minimum count in each cell is assumed, typically a minimum of 5.
The observations need to be independent and finite; this means that an
observation can only fall into one of a finite set of categories.

e Observations must have the same underlying distribution.

Finally, it is important to mention that x? can be understood as a negative
test on the unrelatedness of the variables in question. If the outcome of the
test is above the critical value, then the hypothesis that the variables are
unrelated has to be rejected. However, x? is an undirected test, i.e. say we are
considering a binary case with two variables A and B, we can neither conclude
that A causes B nor that B causes A in case the test value is above the critical
value.

4.1.7 Term Relevance

There are a lot of models from information retrieval to weight the relevance
of a term in a corpus. The simplest way of measuring term relevance is by the
absolute term frequency tf; of a term 4, i.e. the number of times a term occurs
in a document collection. One refinement, is to consider the relative frequency
instead of the absolute one, i.e.
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tf;
Z J tf;

Further, we can also look at how many times a term 7 occurs in a certain
document j:

rtf; .= (4.38)

tf; ; := {n | ¢ occurs n times in document j} (4.39)

In information retrieval, one typically also considers the number of docu-
ments df; that term 7 occurs in. More formally, given a collection of documents
D, df; is defined as follows:

df; ;= |{d € D | d contains i}| (4.40)

The latter is referred to as the so called document frequency on which the
so called inverse document frequency builds on:

idf; := loggl—(%l (4.41)

where | D} is the number of documents in the collection. The inverse docu-

ment frequency thus penalizes terms which occur in a lot of documents. Term

frequency and inverse document frequency are often combined by a family

of measures known as tf.idf. One instance of the tf.idf family is the following
measure:

tf.idfiyj = tfi’j - idf; (442)

More elaborated and linguistically inspired approaches to discover-
ing terms are, for example, the ones of Borrigault [Borrigault, 1992],
Dagan and Church [Dagan and Church, 1995], Frantzi and Ananiadou
[Frantzi and Ananiadou, 1999], Pantel and Lin [Pantel and Lin, 2001] as well
as Ryu and Choi [Ryu and Choi, 2005].

Frantzi et al. [Frantzi and Ananiadou, 1999], for instance, present a
method for the automatic extraction of multi-term words relying on the so
called C-value/NC-value method. The method consists of two parts. The first
part, the C-value method, relies on standard statistical techniques taking into
particular account the frequencies of nested terms. The C-value method pro-
duces a list of terms ranked according to their ‘termhood’ as input for the
second part, the NC-value method, which essentially reranks the terms by
incorporating context information. In particular, the method aims at finding
strong indicators for termhood in the context of the terms extracted with the
C-value method.

Pantel and Lin [Pantel and Lin, 2001] have proposed a hybrid approach to
term extraction relying on a combination of the mutual information and log-
likelihood measures. In particular, they first detect two-word term candidates
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and then extend them with additional terms provided that their measure
allows this.

Ryu and Choi [Ryu and Choi, 2005} present an information-theoretic ap-
proach to measure the relative specificity of terms by considering inside and
outside information. Inside information relies on the mutual information of the
term components and is used to calculate the relative specificity of two terms,
of which one is nested in the other, while the outside information takes into
account words occurring in the context of a term as in the NC-value method.
A hybrid approach combining both types of information is also presented.

4.1.8 WordNet

WordNet [Fellbaum, 1998] is a lexical database for the English language de-
veloped by the Cognitive Science Laboratory in Princeton since 1985. In con-
trast to standard thesauri, WordNet distinguishes between a word form and
its meaning by introducing so called synsets consisting of words sharing a
common meaning in some context. WordNet provides information for four
part-of-speeches: nouns, adjectives, verbs and adverbs. In the work described
in this book, we only consider the WordNet information for nouns and ad-
jectives. WordNet specifies a number of lexical relations between words and
synsets. It distinguishes in particular the following relations:

¢ Synonyms are words which in a certain context have the same meaning.
They provide the basis for WordNet’s meaning unit, i.e. the synset.

e The hypernymy relation is defined on synsets. In particular, a synset s is
a hypernym of ss if the meaning of s; subsumes the one of s5. The inverse
relation is called hyponymy.

e The meronymy relation holds between a synset s; and a synset s, i.e. 7 is
a meronym of s5 if s; denotes a part or member of s. The inverse relation
is called holonymy.

o Antonymy is the relation between synsets which have opposite meaning.

Further, it distinguishes the following relations between adjectives:

Similar to relates adjectives to similar adjectives, e.g. big to great.
Attribute relates adjectives to the quality or attribute they describe, e.g
big to size.

o By antonymy, adjectives are also related to adjectives with opposite mean-
ing, e.g. big to small.

o Derivationally related gives words from other parts of speech to which the
adjective is derivationally related, e.g. big to bigness.

Table 4.2 gives some examples for relations between nouns as contained
in WordNet, and Figure 4.4 depicts graphically the structure of WordNet on
the basis of an example.

Let us further introduce the following properties of relations:
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Table 4.2. Examples for lexical relations in WordNet

[Type ] Paraphrase |[Example |
Synonym | means the same as |“illness means the same as disease”
= synonym(disease,illness)
Hypernym/|is the general term for|“furniture is the general term for chair”
= hypernym(furniture, chair)
Hyponym is a kind of “a chair is a kind of furniture”
= hyponym(chair, furniture)
Meronym is part “a branch is a part of a tree”
= meronym(branch, tree)
substance/ “wood is the substance of a tree”
= meronym(wood, tree)
member of “a person is member of a group”
= meronym(person, group)
Holonym has part/ “a bicycle has a wheel as part”
= holonym(bicycle,wheel)
substance/ “a tree has wood as substance”
= holonym(tree, wood)
member “a group has a person as member”
= holonym(group, person)
Antonym is the contrary of |“ascent is the contrary of descent”
= antonym(ascent, descent)

e Two relations are reciprocal iff there is an inverse relation between them
such as for the meronymy and holonymy relations, i.e. meronym(sy,sz) ¢
holonym(sz,s1).

e A relation r is symmetric iff Vz,y r(z,y) ¢ r(y,z). This applies to the
antonymy relation, for instance, i.e. antonym(s;,s2) ¢ antonym(ss,s; ).

e A relation r is transitive iff Va,y, 2 r(z,y) Ar(y, 2) — r(z,2)). This is, for
example, the case of the hyponymy and hypernymy relations.

WordNet does not only contain synsets and lexical relations defined
on these, but also a description of the meaning of each synset which is
called gloss. The glosses can in fact be seen as the intensional descrip-
tion of a concept and have been used for several purposes within NLP
(compare for example [Agirre and Rigau, 1996], [Resnik, 1997}, [Peters, 2002],
[Banerjee and Pedersen, 2003], [Navigli and Velardi, 2004]).

For the purposes of the experiments described in this book, we have used
WordNet version 1.71. This version contains 107930 nouns and 74488 synsets.
The average polysemy in WordNet is around 1.22, i.e. a word has on average
1.22 different meanings.
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( ambulance ]
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Ly e
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Fig. 4.4. The structure of WordNet

4.2 Formal Concept Analysis

In Section 2, we already briefly discussed Aristotle’s notion of differentiae, i.e.
characteristics which allow to either group objects or distinguish them from
each other. In fact, Aristotle already noticed the inverse connection between
objects and their characteristics, namely that the more characteristics we
require, the less objects will fulfill these, and the more objects we consider,
the less common characteristics they will share. This intuitive duality has
been formalized as a so called Galois connection and represents the core of
Formal Concept Analysis (FCA) (compare [Wille, 1982]). Galois connections
can in fact be seen as a formalization of Aristotle’s notion of differentiae. In the
theory of Formal Concept Analysis, objects are represented by so called formal
objects, and their characteristics are represented by formal attributes. The
information about which attributes hold for each object is then represented
via a binary relation called the incidence relation. The formal objects and
attributes as well as the incidence relation then constitute a so called formal
contezt.

Table 4.4 shows an example formal context. Let us suppose that the var-
ious attributes have been automatically extracted from a corpus using the
syntactic dependency extraction process outlined in Section 4.1.4.1. Let us
further assume that only verb—-object pairs have been considered and that the
verbs and objects in Table 4.3 have been extracted.
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Table 4.3. Example for verbs and objects extracted from a text corpus

Iverb Iob jects |

book [hotel, apartment, car, bike, excursion, trip
rent |apartment, car, bike

drive|car, bike

ride |bike

join |excursion, trip

Table 4.4. Tourism domain knowledge as formal context

bookable|rentable|driveable|rideable|joinable
hotel x
apartment X X
car x X x
bike b'e X b'd X
excursion X X
trip X X

In the formal context shown in Table 4.4 we have further added the suffix
‘able’ to each verb thus emphasizing that the corresponding attribute applies
to objects on which the action denoted by the verb can be carried out. Now
we can try to find closed sets of objects and attributes. Intuitively speaking,
a set of objects O and a set of attributes A are closed with respect to each
other if the attributes in A are exactly those that are common to all objects in
O and, conversely, the objects in O are exactly those that have all attributes
in A. Let us consider the objects excursion and trip as an example. Both
share the attributes bookable and joinable, and the only objects which have
both these attributes in common are actually excursion and trip. Therefore,
the set of objects {excursion, trip} forms a closed set with respect to the
attributes {bookable, joinable}. Having described the important notion of a
closed set with an example, we now turn to a more general description of
Formal Concept Analysis. Formal Concept Analysis is a method mainly used
for the analysis of data. In particular, FCA finds closed sets on the basis
of a formal context, thus leading to creation of coherent groups or formal
concepts as they are called in FCA. The data as given by the formal context
are hereby structured into units which are formal abstractions of concepts of
human thought, allowing meaningful comprehensible interpretation (compare
[Ganter and Wille, 1999]). Thus, FCA can be seen as a conceptual clustering
technique as it also provides intensional descriptions for the abstract concepts
or data units it produces.

Central to FCA is the notion of a formal context:

Definition 15 (Formal Context) A triple (G,M,I) is called a formal con-
text if G and M are sets and I C G x M is a binary relation between G and
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M. The elements of G are called objects, those of M attributes and I is the
incidence relation of the context.

For O C G, we define: O’ :={m e M |Vge O: (g,m) € I}
and dually for ACM: A" :={geG|YmeA: (g;m) €I}

Intuitively speaking, O’ is the set of all attributes common to the ob-
jects of O, whereas A’ is the set of all objects that have all attributes in A.
Furthermore, we define what a formal concept is:

Definition 16 (Formal Concept) A pair (0,A) is a formal concept of
(G,M,I)ifand only if OCG, ACM, O'=Aand O =A'.

In other words, (0,A) is a formal concept if the set of all attributes shared by
the objects of O is identical with A, and, on the other hand, O is also the set
of all objects that have all attributes in A. O is then called the eztent and A
the intent of the formal concept (O,A). We can now define an order between
formal concepts as follows:

(01,41) <(02,43) & 01 COx( A2 C 4y) (4.43)

Thus, formal concepts are partially ordered with regard to inclusion of their
extents or — which is equivalent — to inverse inclusion of their intent. In fact,
it can be easily shown (c.f. [Ganter and Wille, 1999]) that the subconcept-
superconcept relation forms a complete lattice which will be denoted by
(B(G, M, I),<).

In our example, ({excursion, trip}, {bookable, joinable}) thus represents a
formal concept. Other concepts are, for example, ({bike}, {rideable, driveable,
rentable, bookable}) and ({car,bike}, {driveable, rentable, bookable}). Further,
the formal concept ({bike}, {rideable, driveable, rentable, bookable}) is a sub-
concept of ({car, bike}, {driveable, rentable, bookable}).

The concept lattice for our example formal context is depicted in Figure
4.5. Each node in the lattice diagram represents a formal concept. All the
white boxes below a node together represent the extent of the concept repre-
sented by that node, while the intent consists of all the gray boxes above the
node. The diagram compactly visualizes the fact that attributes are inherited
by the intents of all nodes downwards and that objects are also contained in
the extent of all formal concepts upwards. The lattice in Figure 4.5 is visual-
ized using reduced labeling. Reduced labeling as defined by Ganter and Wille
[Ganter and Wille, 1999] means that objects are in the extension of the most
specific concept and attributes conversely in the intension of the most general
one. This reduced labeling is achieved by introducing functions v and u. The
name of an object g is attached to the lower half of the corresponding object
concept, i.e. v(g) := ({g}",{g}'), while the name of attribute m is located at
the upper half of the attribute concept, i.e. u(m) := ({m}’, {m}").

For the sake of completeness, in what follows we present two algorithms for
computing the formal concepts of a given finite formal context. In particular,
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Fig. 4.5. The lattice of formal concepts for the tourism formal context

we will discuss a naive algorithm as well as the widely used algorithm of Ganter
([Ganter, 1984, Ganter and Reuter, 1991}). But before, we need to introduce
a number of properties:

Theorem 1. Let (G, M, I) be a formal context and 01,02 C G, A C M, then
the following properties hold (compare [Ganter and Wille, 1999)):

1. Oy (_102:>O§(_ZO'1
2.0, C OV
3.0l = O

The same relations hold for sets of formal attributes.

On the basis of this theorem, we can now formulate the naive procedure
for finding all the formal concepts of a given formal context in Algorithm
1. The correctness of the algorithm follows from the definition of a formal
concept and Theorem 1. In particular, a pair (4, B) = (0",0') is a formal
concept as A’ = (0")Y = O' = B and B’ = 0" = A. Obviously, as the
algorithm needs to consider all possible subsets of objects or attributes, the
above algorithm is always exponential in n, where n = min(|M|, |G|). So its
time complexity is O(2"). A widely used algorithm with a better complexity
is Ganter’s algorithm with a time complexity of O(|G|? x |M| x |B(G, M, I)]).
This means that Ganter’s algorithm is bound by the actual number of formal
concepts, which can be exponential in the worst case though. The difference
is that Ganter’s algorithm does not require iterating through all the subsets
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Algorithm 1 Naive FCA Algorithm

Input: a formal context (G, M, I)
Output: a set of formal concepts {(O1, A1), ..., (O, 4¢)}

C:=0
i{f (1G] < |M]|)

for each O C G: C:=CU{(0",0)}
}

else

{
for each A C M: C:=CU{(4',4")}

}

return C

of G or M, but is bound by the actual number of formal concepts. Ganter
defines a lectic order < on sets which is based on a total order for the sets G
and M, ie. G = {g1,..,9u} with g1 < ... < g, and M = {my,...,m,} with
my < ... < My,

The lectic order between sets is now defined as follows:

Definition 17 (Lectic Order) Given two sets O1,02 C G, we say that O
is lectically smaller than Oy (O1 < O2) if the smallest element in which O
and Oz differ is contained in Os, or more formally
0; <0y & 3dg; € 02\01 such that
O1N{g1,.,9i-1} = 02N {g1,...,9i-1}
01 %02 & g; € 02\01 such that
O1N{g1,.-,9i-1} = 02N {g1, ..., 9i—1}

The definition holds analogously for attribute sets 4, A3 C M.
Now, the lectic order can be extended to formal concepts:

Definition 18 Given two formal concepts ¢; = (01, A1) and cg = (O3, Ag),
we say that ¢y is lectically smaller than cg, i.e., ¢1 < ca, iff O < Os.

Finally, the following two theorems build the core of Ganter’s algorithm:

Theorem 2. Let ¢; = (01, A1) and ca = (O2,Az) be two formal concepts.
Then it holds that ¢y < ca & ¢y <; cg for some g; € G.

This means in particular that, if ¢; is lectically smaller than ¢z, then ¢; is
also a subconcept of cs. The proof can be found in the book of Ganter and
Wille [Ganter and Wille, 1999]. The other crucial theorem is the following:
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Theorem 3. Given a set of objects Oy C G, the smallest concept extent which
is lectically greater than Oy is Oy ® g;, where O1 & g; = ((O1 N{g1,.--9i-1}) U
{9:})" and g; is the greatest element in G such that O <; O1 @ g;.

Thus, starting from a given formal concept ¢; = (01, 41), in order to find
the next formal concept, we have to iterate over the set of objects in inverse
order and identify the largest element g; € G such that Oy <; O1 @ g; holds.
01 @ g; is then the extension of the lectically next formal concept. This means
that the time complexity for finding the next formal concept is O(|G|? x| M) as
the operation ” has a time complexity of O(|G| x |M|), which has to be carried
out at most |G} times. Ganter’s algorithm obviously starts with the lectically
smallest 