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FOREWORD

The topic with which I regularly conclude my six-term series of
lectures in Munich is the partial differential equations of physics. We
do not really deal with mathematical physics, but with physical mathe-
malics; not with the mathematical formulation of physical facts, but
with the physical motivation of mathematical methods. The oft-
mentioned “prestabilized harmony’’ between what is mathematically
interesting and what is physically important is met at each step and
lends an esthetic — I should like to say metaphysical —- attraction to
our subject.

The problems to be treated belong mainly to the classical mathe-
matical literature, as shown by their connection with the names of
Laplace, Fourier, Green, Gauss, Riemann, and William Thomson. In
order to show that these methods are adequate to deal with actual
problems, we treat the propagation of radio waves in some detail in
Chapter VI.

Chapter V deals with the general method of eigenfunctions. The
most spectacular domain of application of that method is wave mechanics,
as we show here with the help of some selected, particularly simple
examples. The mathematically rigorous foundation of the existence and
the properties of eigenfunctions with the help of theorems about inte-
gral equations cannot be given here; the latter are mentioned only occa-
sionally as the counterpart of the corresponding theorems on differential
eqguations.

Chapter IV on Bessel functions and spherical harmonics is compara-
tively lengthy despite a development that is as concise as possible. For
the sake of brevity we have relegated some proofs to the exercises, as
we have also done in other chapters. A special section is dedicated to the
beautiful method of reciprocal radiv and to the demonstration of the fact
that it unfortunately cannot be applied to other than potential problems.

Chapter III deals exclusively with the classic problem of heat con-
duction. In addition to the Fourier method we develop in detail the
intuitive method of reflected images for regions with plane boundaries.
Chapter II deals with the different types of differential equations and
boundary value problems; Green’s theorem and Green's function are intro-
duced in considerable generality.

Chapter I about Fourier series and integrals is based throughcut
on the method of least squares. If the latter is complemented by a
raquirement which we called ‘“‘the condition of finality,” then we can
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vi FOREWORD

replace the more formal computations of the older developments in a
complete and generalizable way, not only in the trigonometric case but
also for spherical harmonics and general eigenfunctions.

As is seen fram this survey, the arrangement of the material is
determined not by systematic but by didactic points of view. Chapter I
intends to put the reader in the midst of the methodology of the Fourier
and the Fourier-like expansions. Only in Chapter II do we start to
introduce the concepts from the theory of partial differential equations
that are of the greatest importance for the mathematical physicist.
From a systematic point of view Chapter III would be subordinated to
the general methods of Chapter V but it precedes it for historic and
didactic reasons. The lengthiness of Chapter IV may be justified by the
fact that a large part of the material contained in the textbooks on
Bessel functions and spherical harmonics is at least sketched there, and
is put in readiness for application. The formal mathematical part is
interrupted for didactic reasons for both classes of functions by typical
examples of applications.

It is obvious that this material could not be presented completely
in a short summer term. In fact several mathematically more com-
plicated sections have been added in print, some of these in the form of
appendixes. In this connection we wish to mention Appendix II to
Chapter V, which was added only after the completion of the rest of the
manuscript and which is likely to be of fundamental importance for
problems dealing with the intermittent range between short waves and
long waves, that is, for the passage from geometrical optics to wave
opties.

In tke preparation of the manuscript I was able to rely on the lecture
notes of R. Schlatterer for 1935, as well as on earlier notes of Professor
J. Meixner. My friend F. Sauter critically perused the entire manu-
script and has also been most generous in giving me his own improved
version on many points. I cwe him more than I can point out in the
text. My colleague, J. Lense, examined the manuscript from the
mathematical point of view. Dr. F. Renner collaborated on the last
chapter especially; H. Schmidt advised me on the arrangement of the
material.

ARNOLD SOMMEEFELD.

[Publisher's note: This is a translation of Sommerfeld’s ‘“‘Lectures on Theoreti-
cel Physics,” Volume VI. Translations of Velume I entitled, ‘‘Mechanics,” and
Volume II entitled, “Mechanics of Deformable Bodies,” are in preparation. In this
text they are referred to as v. I and v. II1.]



EDITORS’ FOREWORD

Thisbook is the first volume in a projected new series of mathematical
books to appear under the title “Pure and Applied Mathematics.”
The books of the new series will be “advanced’ in the sense that they
will maintain a standard of scientific maturity. It is not intended,
however, to adhere to any rigid pattern of presentation or degree of
difficulty. Thus there will be & place for textbooksfor first-year graduate
students as well as monographs for research workers and possibly an
occasional treatise. It is the hope of the Editors that these volumes will
find a worthy place in the growing list of excellent scientific vvorks which
have appeared in recent years.

P. A. S
S. E.
New York, 1949.

ERRATUM

‘“Eigenvalues” (see pp. 166ff.) should be written a8 one word. The
two-word form ir incorrect.
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CHAPTER 1

Fourier Series and Integrals

Fourier’'s Théorie analytique de la chaleur' is the bible of the
mathematical physicist. It contains not only an exposition of the
trigonometric series and integrals named after Fourier, but the general
boundary value problem is treated in an exemplary fashion for the typical
case of heat conduction.

In mathematical lectures on Fourier series emphasis is usually put
on the concept of arbitrary function, on its continuity properties and its
singularities (accumulation points of an infinity of maxima and minima).
This point of view becomes immaterial in the physical applications.
For, the initial or boundary values of functions considered here, partially
because of the atomistic nature of matter and of interaction, must always
be taken as smoothed mean values, just as the partial differential equa-
tions in which they enter arise from a statistical averaging of much more
complicated elementary laws. Hence we are concerned with relatively
simple idealized functions and with their approximation with ‘least
possible error.” What is meant by the latter is explained by Gauss in his
“Method of Least Squares.”” We shall see that it opens a simple and
rigorous approach not only to Fourier series but to all other series expan-
sions of mathematical physics in spherical and in cylindrical harmonics,
or generally in eigenfunctions.

§ 1. Fourier Series

Let an arbit1ary function f(z) be given in the interval —n < = < + 7 ;
this function may, e.g., be an empirical curve determined by sufficiently
many and sufficiently accurate measurements. We want to approximate
it by the sum of 2n + 1 trigonometric terms

S, (z) =Ag+ Aycos z + A,co82z + ---+ A,cosnz

@) + B;sin £+ Bysin2z+ ---+4 B,sinnz

1 Jean Baptiste Fourier, 1768-1830. His book on the condugtion of heat
appeared in 1822 in Paris. Fourier also distinguished himself as an algebraist,
engineer, and writer on the history of Egypt, where he had accompanied Napoléon.

The influence of his hook even outside France is illustrated by the following
quotation: “Fourier’s incentive kindled the spark in (the then 16-year-old) William
Thomson as well as in Franz Neumann.” (F. Klein, Vorlesungen itber die Geschichte
der Mathematik im 19. Jahrhundert, v. I, p. 233.) )

1



2 PARTIAL DIFFERENTIAL EQUATIONS §1.2

By what criterion shall we choose the coefficients A,,B, at our disposal?
We shall denote the error term f(z) — S,(z) by &,(z); thus

(2) H(z) = 8, () + &, ().

Following Gauss we consider the mean square error
+ =

3) M= [de

-0

and reduce M to a minimum through the choice of the Ay, B;.

To this we further remark that the corresponding measure of the
total error formed with the first power of &, would not be suitable, since
arbitrarily large positive and negative errors could then cancel each other
and would not count in the total error. On the other hand the use of
the absolute value |¢,| under the integral sign in place of &,2 would be
inconvenient because of its non-analytic character.?

The requirement that (3) be a minimum leads to the equations

+a
—;f:%./ {f(x) —S,(x)}coskzdz =0, £=0,1,2,...,n
A,
(4)
CT—_/{m S,(z)} snkzde =0, k= 1,2,...,n.
d 3

These are exactly 2n + 1 equations for the determination of the
2n + 1 unknowns 4,B. A favorable feature here is that each individual
coeflicient A or B is determined directly and is not connected recursively
with the other A,B. We owe this to the orthogonalily relations that exist
among trigonometric functions:?

(d) fcoskzsinlzds =0,

da sk lzd

(da) Jcoskzcoslxzde Okl
(5b) [sinkzsinlzds

* A completely different approach is taken by the great Russian mathematician
Tchebycheff in the approximation named after him. He considers not the mean but
the maximal |€,| appearing in the interval of integration, and makes this a minimum
through the choice of the coefficients at his disposal.

* Here and below all integrals are to be taken from — » to 4+ ». In order te
justify the word ‘“‘orthogonality’”’ we recall that two vectors u,v which are orthogonal
in Euclidean three dimensional, or for that matter n-dimensional space, satisfy the
condition that their scalar product
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In order to prove them it is not necessary to write down the
cumbersome addition formulae of trigonometric functions, but to think
rather of their connection with the exponential functions e***% and
e**'*  The integrands of (5a,b) consist then of only four terms of
the form exp {£¢(k +1) 2z} or exp{d¢(k—1I)z}, all of which
vanish upon integration unless ! = k. This proves (5a,b). The fact
that (5) is valid even without this restriction follows from the fact that
for ! = kit reduces to

4
217/ (e2ikz — e Zikz) dz =0
In a similar manner one obtains the values of (5a,b) for Il = k>0 (only
the protluct of exp(tkz) and exp( — +kz) contributes to it): this value
simply becomes equal to x; for [ = k = 0 the value of the integral in
(5a) obviously equals 2r. We therefore can replace (5a,b) by the single
formula which is valid also for I = k>0

(6) :};/coskwcoslmdz=-71?/sinka:sinla;da;=6k,
with the usual abbreviation
0...1%k
Oy =
1...1=k>0.

Equation (6) for k = [ is called the normalizing condition. It is to be
augmented for the exceptional case ] = k¥ = 0 by the trivial statement

(6a) %‘fdz=1.

If we now substitute (5),(6) and (6a) in (4) then in the integrals
with S, all terms except the k-th vanish, and we obtain directly Fourier’s

representation of coefficients:
1
A4, =;/f(z) cosk zdx
. k>0.
(7) B, == / f(z) sin k z dz

4y =5 [ f(2) dz.

N
wv)=Luv,=0
1

vanish. The integrals appearing in (§) can be considered as sums of this same type
with infinitely many terms. See the remarks in §26 about so-called ‘“‘Hilbert space.”



4 PARTIAL DIFFERENTIAL EQUATIONS §1.8

Our approximation S, is hereby determined completely. If, e.g.
f(z) were given empirically then the integrations (7) would have to be
carried out numerically or by machine.*

From (7) oneseesdirectly thatforanevenfunction f(— ) =f(+ x),
all B, vanish, whereas for an odd function, f(— z) =— f(+ =}, all 4,
including Ao, Vanish. Hence the former is approximated by a pure
costne series, the latter by a pure sine series.

‘The accuracy of the approximation naturally increases with the
number of constants A,B at our disposal, i.e., with increasing n. Here
the following fortunate fact should be stressed: since the A,B; for k<n
are independent of n, the previously calculated A,,B; remain unchanged
by the passage from n ton + 1, and only the coefficients 4,,,, B, ,,
have to be newly calculated. The A,,B;, once found, are final.

There is nothing to prevent us from letting n grow indefinitely,
that is, to perform the passage to the limit » — oo . The finite series
considered so far thereby goes over into an infinite Fourier series. The
following two sections will deal with its convergence. '

More comglicated than the question of convergence is that of the
completeness of the system of functions used here as basis. It is obvious
that if in the Fourier series one of the terms, e.g., the k-th cosine term,
were omitted, then the function f(z) could no longer be described by the
remaining terms with arbitrary accuracy; even in passing to the limit
n — oo afiniteerror 4, cos kz would remain. To take an extremely
simple case, if one attempted to express cos nz by an incomplete series
of all cosine terms with k< n and k& > n, then all A, would vanish be-
cause of orthogonality and the error would turn out to be cos n z itself.
Of course it would not occur to anyone to disturb the regularity of a
system like that of the trigonometric functions by the omission of one
term. But in more general cases such considerations of mathematical
esthetics need not be compelling.

What the mathematicians teach us on this question with their
relation of completeness is in reality no more than is contained in the basis
of the method of least squares. One starts, namely, with the remark
that a system of functions say g, ¥1,-.., @ ..., can be complete
onty if for every continuous function f(z) the mean error formed according
to (3) goes o zero in the limit n — oo . It is assumed that the system
of ¢ is orthogonal and normalized to 1, that is

(8) f%?’zda"—‘O, f¢idz=1,

4 Integrating machines that serve in Fourier analysis are called ‘“harmonic
analyzers.” The most perfect of these is the machine of Bush and Caldwel; it can
be used also for the integration of arbitrary simultaneous differential equations; see
Phys. Rev. 38, 1898 (1931).
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which implies that the expansion coefficients A, are simply
(9) 4, = ff(x) o () dz.

Let the limits of integration in this and the preceding integrals be a and b
so that the length of the interval of expansion is b — a. One then forms
according to (3)

o—a)M = / (f _k%Ak,,,k)zdm - / frdz — 2k%0Ak f fo.dz +k%‘0AE..

Equation (8) has been used in the last term here. According to (9) the
middle term equals twice the last term except for sign. Hence

Lim(b—a)M = [fdz— 3 43
k=0

=+ o0

and one requires, as remarked above, that for every continuous function
(10) S 4= [fda.

This is the mathematical formulation of the relation of completeness
which is so strongly emphasized in the literature. It is obvious that it
can hardly be applied as a practical criterion. Also, since it concerns
only the mean error, it says nothing on the question of whether the
function f is really represented everywhere by the Fourier series (see
also §3, p. 15).

In this introductory section we have followed the historical develop-
ment in deducing the finalily of the Fourier coefficients from the ortho-
gonality of the trigonometric functions. In §4 we shall demonstrate, for
the typical case of spherical harmonics, that, conversely, orthogonality
can be deduced quite generally from our requirement of finality. From
our point of view of approximation this seems to be the more natural
approach. In any case it should be stressed at this point that ortho-
gonality and requirement of finality imply each other and can be replaced
by each other.

Finally, we want to translate our results into a form that is mathe-
matically more perfect and physically more useful. We carry this out
for the oase of infinite Fourier series, remarking however, that the
following is valid also for a truncated series — actually the more general
and rigorous case.

We write, replacing the variable of integration in (7) by &:
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Ha) =52 [ &) de +
1 1 & . »
;g;ff(f)cosk\&df.cosk:v+;g;/l(§)smk£d§ sinkz
1 1 <=
=gz /HeraE + ;g,l/f(f)cosk(a;—g)dg

= 91;[/]‘(5) ¢ + g(/f(g) gkE—Ogg 4 /f(f) e—ik(z—f)df)}‘

In the last term we can consider the summation for positive k in
exp{—ik(z—&)} tobethe summation for the corresponding negative
values of k in exp {4 ¢k (z — §)}. We therefore replace this term by

—oo , -1 _
2 /i(f) Clk(z_e)'df = 2 /f(f) etk(I—E) d& )

Then the uncomfortable exceptional position of the term k£ = 0 is
removed: it now fits between the positive and negative values of k and

we obtain
~+ oo

(1) fo) =55 3 [f@)eeDde.

-

Finally, introducing the Fourier coefficients C;, which are complex even
for real f(z):

400 . 1
(12) f@)= D' C,é*, Ck=2_5/.f(§)e—tked£a

" kwm—co

The relations among the C’s and the A’s and B’s defined by (7), are
given by
3(4,—iBy), k>0,

C, = 4,.

Our complex representation (12) is obviously simpler than the usual
real representation; it will be of special use to us in the theory of Fourier

integrals.
If we extend our representation, originally intended for the interval
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—rn<z<-+x, to the intervals z >a& and z<—x then we obtain
continued periodic repetitions of the branch between —# and 4 = ; in
general they do not constitute the analytic continuation of our original
function f(z). In particular the periodic function, thus obtained will
have discontinuities for the odd multiples of 4=, unless we happen to
have f(—=) = f(+x). The next section deals with the investigation
of the error arising at such a point.

§ 2. Example of a Discontinuous Function.
Gibbs’ Phenomenon and Non-Uniform Convergence

Let us consider the function Y

+1for0<az<m — oy —

1 =
@) ) —1for —z<z<0.

-1 1) +1 28 x

We sketch it in Fig. 1 with its periodic
repetitions completed by the vertical
connecting segments of length 2 at the
points of discontinuity =0, +a, . '
:l:2“, . whereby it becomes a Fig. 1. The chain of scgments
2, . . =41 f iti d -
‘“meander line.”” Our function f is odd, ;/t.ive jf,_.l <0;p::ti“;:sa;er£3%c
its Fourier series consists therefore repetition represented by the
solely of sine terms as pointed out in Fourier series.
(1.7). The coefficients can best be calculated from equation (1.12),
which yields

(1a) : 2i

1 (e‘”‘“—l 1_e+ik.-z) (_1)7;_1 ’—ﬁkodd

=3 —r ik ) =R T

7 ik '.I” tak i 0...% even

This implies according to (1.13):
4 -
Bk:n—k’ k=1,3,0,...
We obtain the following sine series:
4

(2) f(z)=;(sinz+%sin3x+%sin5a:+---).

One may imagine the upheaval caused by this series when it was first
constructed by Fourier. A discontinuous chain formed through the
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superposition of an infinite sequence of only the simplest continuous
functions! Without exaggeration one may say that this series has con-
tributed greatly to the development of the general concept of real func-
tion. We shall sze below that it also served to deepen the concept of
convergence of series.

In order to understand how the series manages to approximate the
discontinuous sequence of steps, we draw® in Fig. 2 the approximating
functions S,, S;, S5 defined by (1.1) together with S = f(z) .

Sl=isina: Sa=i(sma:+ smB.'z:)
Ss—i(sma;+—sm3a:+ sm5z)

S: has its maximum value
y =4[z =1.27,

at z = xn/2, and hence rises 279, above the horizontal line y = 1, which
is to be described. S; has a minimum value at the same point and hence

y=%(1—%)=0.85,

stays 156%, below the straight line to be described. In addition S; also
has maxima at %f4 and 3 x4, which lie 209, above that line.(The reader
is invited to echeck this!) Sgon the other hand has a maximum of

y=2(1—3+ 3)=110,

at z =x/2 which is too high by only 10%. A flat minimum on either
gide is followed by two steeper maxima situated near z = 0 and z==a .
In general the maxima and minima of Szn+1 lie between those of Syn —1(see
exercise 1.1).

All that has been said here about the stepwise approximation of the
line y=+41, is of course equally valid for its mirror image y=—1.
It too is approximated by successive oscillations, so that the approximat-
ing curve S, swings n times above and n 4+ 1 times below the line seg-
ment which is to be represented. The oscillations in the middle part of
the line segment decrease with increasing n; at the points of discontinuity

¥ In the lectures at this point abundant use was made of colored chalk. Since

this unfortunately is impossible in print, both S,,and the approximation Ss, which
are the most important for us, are drawn in bolder lines.
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=0, &x 4 2=, ..., where there is no systematic decrease of the
maxima, the approximating curves approach the vertical jumps of dis-
continuity. The picture of an approximating curve of very large n
therefore looks the way it has been pictured schematically in Fig. 3.

+1
-f 0 +7
n‘——ﬂJ -
Fig. 2. The approximations Fig. 3. An approximation S of very

of the chain S4; the maxima and minima high order for the illustration of
lie at equally spaced yalues of z, respectively  Gibbs’ phenomenon.
between those of the precedingapproximation.

We now consider more closely the behavior of S,,+,(z) for large n
at one of the jumps, e.g., for z = 0. To this end we rewrite the original

formula for S,,+; in integral form (an integral usually being easier to
discuss thar a sum). This is done in the following steps: ’

4 sin (2k 4 1)
S2"+1 —-]—t' g;—25—_*_1— —;/COS (2k+1)6d5

/{; (2k+1)1£+g’ -—(2k+1)i€}df.
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After factoring out exp (4 ¢ £) from the two sums of the last line they
become geometric series in increasing powers of exp (4-2¢§) which can
be summed in the familiar manner. Therefore, one obtains

1 —e2itntné o] —e-26n+D
& —-1i§
(3) 2n+1=—f{‘l 1_ s a1 1 —e-9¢6 ldE

By further factorization these two fractions can be brought to the com-
mon form (except for the sign of 7):

(3 a) ptint sin(n+1)§
sin§ - °

In this way (3) goes over into

(3b) Su+1=§/Zc°“"‘+?’§;m(n+1)s dc.
0

Finally for sufficiently smail z we can replace sin £ in the denominator
by §&; the corresponding simplification in the numerator would not be.
permissible since & there is accompanied by the large factor n - 1.
We obtain therefore for (3a), if we introduce the new variable of inte-
gration u and the new argument v,

9 ”bsmu M=2(n+1)6s
4) 82n+1=§0/ u du.. [v=2(n+1)z.

From this the following conclusion may be drawn: if for finite n we set
z = 0 then » vanishes and S;,+; = 0. If now we allow n to increase
toward infinity, the relation S,,;, = 0 holds in the limit. Hence

(4a) Lim Lim S,,4,=0.

n-co -0

But if for > 0 we first allow n to approach infinity, then » becomes
infinite, and, according to a fundamental formula that will be treated in
exercise 1.5: Sg,+; =1. If we then allow z to decrease towards zero,
the value 8,,+, = 1 holds also for the limit £ = 0; hence

(4b) Lim Lim Sz"+1 = 1 .

£-+0 n-o00

The two limiting processes therefore are not interchangeable. If the function
‘f(z) to be represented were continuous at the point z = 0, then the order
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of passage to the limit would be immaterial, and in contrast to (4a,b) one
would have

n-»00 z-+0 z—+0 n-—-+00
Si(v)
This, however, does not [17] TR .

exhaust by any means the
peculiarities contained in equa-
tion (4); in order to develop
them we introduce the fre-
quently tabulated® “integral

3 ”

sine

~R

(5) Si(v)=/m%‘du T "

Fig. 4. Graphic representation of the
integral sine.

and represent its general form in Fig. 4. It can be described as follows:
for small values of v, where sin u can be set equal to u, we have propor-
tionality with v; for large values of v we have asymptotic approach to /2 ;
in between we have successively decreasing oscillations with maxima and
minima at v =, 2%, 3x, ..., as can be seen from (5); the ordinate
of the first and greatest maximum is 1.851 according to the above men-
tioned tables. To the associated abscissa of the Si-curve there corre-
sponds in the original variable z, owing to the relation v = 2(n 4 1) z,
tbe infinite sequence of points

_ T _ -
(6) o T =gy I agag

at which according to (4) the approximations S,;,41, Sgn+s,-.. have
the fixed value:

) S=21851=118.

This value, which exceeds y = 1 by 187, is at the same time the upper

limit of the range of values given by our approximations. Its lower limut,

8§ =—1.18 isassumed when we approach zero from the negative side

in the sequence of points —=z,, — z,4+4,.... Each point of the range
8 E.g. B. Jahnke-Emde, Funktionentafeln, Teubner, Leipzig, 3d edition, 1938.
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between — 1.18 and + 1.18 can be obtained by a special manner of pass-
ing to the limit; e.g., the points S = 0 and S = 1 are obtained in the
manner described in (4a) and (4b).

This behavior of the approximating functions, in particular the
appearance of an excess over the range of discontinuity =+ 1, is called
Gabbs’ phenomenon. (Willard Gibbs, 1844 to 1906, was one of America’s
greatest physicists, and simultaneously with Boltzmann, was the founder
of statistical mechanics.) Gibbs’ phenomenon appears wherever a
discontinuity is approximated. One then speaks of the non-uniform
convergence of the approximation process.

We still want to convince ourselves that actually every point between
S = 1.18 and S = — 1.18 can be obtained.if we couple the two passages
to the limit in a suitable fashion. According to (6), this coupling consists
in setting z (» + 1) or, what comes to the same thing, setting z, equal
to the fixed value =/2 . If instead we take the more general value, g,
then from (4) we obtain v = 2¢, and (4) and (5) together yield

2 4.
S2n+1 =;‘S" (29),

where St(2g) can assume all values between 0 and 1.851 with varying
positive ¢, as can be seen directly from Fig. 4. Correspondingly for
negative ¢ one obtains all values between 0 and — 1.851. The passages
to the limit that have thus been coupled yield not only the approach of
our approximating function to the discontinuity from = 1 to 4 1, but
also an excess beyond it, i.e., Gibbs’ phenomenon.

In addition to these basic statements we want to deduce some formal
mathematical facts from our Fourier representation (2). In particular
we substitute z=7/2 therein and obtain the famous Leibniz series

L4 1 1 1
(8) I=1—§+3—7+...

This series converges slowly; we obtain more rapidly convergent repre-
sentations for the powers of = if we integrate (2) repeatedly. For the
following refer to Fig. 5 below.

By restricting ourselves to the interval 0 << z < 7z, we write

9) %=sinz+%sin3m+%sin5z+---

instead of (2). Integration from 0 to z yields:

(10) -g-a:=1——cosw+%(1—cos3x)+é(l—cosﬁz)+---
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Hence for = =n/2
. 2 1 1
(11) T=1+g5t+tst+--
Subtracting (10) from (11) we get:

Tl

(12) i(_—;—::)=cosz+§1§cos3z+$cos5z+---

By another integration from 0 to z this becomes
(13) '—;(nm—:rz)=sinz+%sin3x+%sin5z+---

Hence for 2 = /2, as an analogue to the Leibniz series
; ]

n? 1 1
(14) §i=1—§+§—.'.

We integrate (13) once more with respect to z and set z = x/2:

(15) g@g—g): 1 —cosz +—E}—4(1—cos3z) +31;(1—cosf>a:)+---

at 1 1
(16) rm=l-mtE+-
Fihally we subtract (15) from (16) and have

73 T2 a3 1 1
(17) —783(%—%—%?):%3z+§cos3z+—5;cos5z+---

The series (11) and (16) range only over the odd numbers. The
series ranging over the even numbers cre respectively equal to 1/4 and
1/18 of the sums ranging over all integers. If we denote the latter by
2, and X, respectively, then we have

a? 1 2} — x4 1
38_+Ezz=22 and 3:-(_373+EZ4=Z\4'

hence

— a o
(18) >, =% ad 3 =g
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This value of X; was needed in the derivation of Stefan’s law of

radiation or Debye’s law for the energy content of a fixed body. The
trigonometric series (12), (13), (17) will be useful examples in the follow-
ing sections. The higher analogues to the “Leibniz series” (8) and (14)

as well as those to 2, and X, will be computed in exercise I.2.

§ 3. On the Convergence of Fourier Series

We are going to prove the following theorem: If a function f(z),
together with its first n — 1 derivatives is continuous and differentiable
between —x and -+ = inclusive, and the n-th derivative, is differenti-
able over the same interval except possibly at a finite number of points
z = x; where it may have bounded discontinuities (i.e., finite jumps),
then the coefficients A,,/3; of its Fourier expansion approach zero at
least as fast as k="' as %k — oo.

The stipulation “inclusive” in referring to the boundaries of the
interval has here the following meaning: every function which is repre-
sented by a Fourier series is periodic in nature. An adequate picture
of its argument would therefore not be the straight line segment from
—x to -+ @, but a circle closing at z = 4+ @. It is this fact to which the
continuity -of f and its first » — 1 derivatives at the point = 4=
refers. This point is ir. no way distinguished from the interior points
of the interval, just as it is immaterial whether we denote the boundaries

of the interval by —=x, }-x® or, e.g., by %, ?Z’-t ete.

For the proof of this theorem it is convenient to use the complex
form (1.12)

‘oo +ie
M) flo)= X Gre ™, (12) 220, = [/(¢)e=*¢dg
From (1a) one obtains through integration by parts
+=n +=n
(2) 2nC, = %k]‘(f)e‘“‘e + ;1?/ (&) e~ ke dE.

Here the first term on the right side vanishes because of the postulated
continuity of f; the second term can again be transformed by integration
by parts. After n iterations of the same process one obtains

+n
(8) 27 (R Cp = [ [ (e Fidg.
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Because of the discontinuities of f™(z) at z = g, this integral has to be
divided into partial integrals between z = #; and z = %;,, ; let the
jumps of ™ at the points of discontinuity be denoted by A]. Equation
(3) written explicitly then reads:

T4

(3a) . Qn(ik)n0k=‘ls j fm(g) e~ tREGE
=

where the point = -~z may be contained among the points z = z;
By one more partial integration (3a) becomes

Zr+1

7N 1 Y o n —ikzx 1 -
4 2m(Ek Ck:-'_ik;Al e~ thr 4 a_k;‘/ [ D () g ikt gy
%

Considering the fact that the discontinuities A4} were assumed to be
bounded- and that /™ was assumed to be differentiable between the
points of discontinuity, one sees from (4) that C; vanishes at least to the
same order as 5~ "1 when one lets £k —>oco. For special relations be-
tween the AP or for special behavior of f®+)(£), the order of vanishing
could become even higher.

This theorem is valid for negative k¥ too. This implies that it is valid
also for the real Fourier coefficients A D (k > 0), since according to
(1.13) they are expressible in terms of the C; with positive and negative k.

A special consequence of our theorem is that an analytic function
of period 2x(such a function is continuous and periodic together with
all its derivatives) has Fourier coefficients that decrease faster than any
power of 1/k with increasing k. An example of this would be an arbitrary
polynomial in sin z and cos z. This is represented by a finite Fourier
series with as many terms as required by the degree of the polynomial,
so that all higher Fourier coeflicients are equal to zero. Another example
is given by the elliptic & series, which we shall meet in a heat conduction
problem in §15; its Fourier coefficients C decrease as fast as e~ !

It further follows from our theorem that the sum XA} which
appears in the relation of completeness converges like Zk~2 for every
function f(z) which has a finite number of jumps and which is differen-
tiable everywhere else (case n = 0 of our theorem). An example of
this is given by our function (2.1) where Z A} converges, although
2 A, diverges. This function also shows that the relation of com-
pleteness does not insure representability of the function at every
point (this has already been noted on p. 5. Namely, if we sharpen
definition (2.1) by putting f =1 for 220 and f = — 1 for <0,
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then f if not represented by the Fourier series (2.2) at the point z = 0,
for there the series converges to 0.

A further illustration of our theorem is given by the sine and cosine
series which were derived at the end of the last section. The expressions
of the functions which are represented by these series were valid only
for the interval 0 < z << . We complete these expressions by adjoin-
ing the corresponding expressions for the interval —w < £ << 0 . The
latter are obtained simply from the remark that the cosine series are even
functions of z, and the sine series are odd. The expressions thus ob-
tained are written below inside the { } to the right of the semicolon.
We therefore complete the equations (2.9), (2.12), (2.15), (2.17) as
follows:

(5){%;—§}_31nx+—sm3a:+ sSinhx 4 -
© {7(z—»)
™ {

(8){-—(;2’ ngxz-{— ) (g-—%ﬁz-—g)}_cosz—}- ~cos3z + -

%’(g-k z)}._cosa:+ cos3:v+ scosbhx +--

n -

'Z )

akd 2). T =21

E—(:rzas—x), E(:m:—l—.,)f_sma:-{— sm3z+ s 8in b + -
4

8

Here the functions which are represented possess successively stronger
continuity properties: in (5) the function possesses discontinuities at the
points z = 0 and z= 4, in (6) the function is continuous but the
first derivative is discontinuous, in (7) the function and its first deriva-
tive are continuous but the second derivative is discontinuous; in (8) the
function and its first two derivatives are continuous but the third deriva-
tive is not. The discontinuity arising in each case is the same as that
of the function in (5) and it appears at the same points £ = 0 and
z = -+ m corresponding to the fact that each succeeding function was
obtained from the previous one by integration.

Figure 5 illustrates this. Its curves 0,1,2,3 represent the left sides
of (5),(6),(7),(8). The discontinuity of the tangent to the curve 1 at
z = 0 strikes the eye; the discontinuity of the curvature of 2 at z = 0
can be deduced from the behavior of the two mirror image parabolas
which meet there. Curve 3 consists of two cubic parabolas, that osculate
with continuous eurvature. The scale, which for convenience has been
chosen differently for the different curves, can be seen by the ordinates
of the maximal values which have been inserted on the right hand side.

The increasing continuaty of our curves 0 to 3 has its counter-
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part in the increasing rate of convergence of the Fourier series on
the right sides of eqgs. (5) to (8): in (5) we have a decrease of the

coefficients like 1/k, in general, in
accord with our theorem, we have
a decrease with 2 "', where n
is the order of the first discon-
tinuous derivative of the repre-
sented function.

The convergence of Fourier
series stands in a marked con-
trast to that of Taylor series.
The former depends only on the
continuity of the function to be
represented and its derivatives
on the real axis, the latter de-
pends also on the position of
the singularities in the complex
domain. (Indeed the singular
point nearest the origin of expan-
sion in the complex plane deter-

PO &%

x 7

Fig. 5. Four curves 0,1,2,3, obtained
by successive integration. Increasing con-
tinuity at z = 0: 0 discontinuous in the
ordinate, 1 in the tangent, 2 in the curva-
ture, 3 in the third derivative.

mines the radius of convergence of the Taylor series.) Accordingly the
principles of the two expansions are basically different: for Fourier
series we have an oscillaling approach over the entire range of the
interval of representation, for Taylor series we have an osculating
approach at its origin. We shall return to this in §6.

§ 4. Passage to the Fourier Integral

The interval of representation

—7% < <7 can be changed in

many ways. Not only can it be displaced, as remarked on p. 14, but also
its'length can be changed, e.g., to —a < z << 4 a for arbitrary a. This

is done by the substitution

(1) z="=,
which transforms (1.7) into
+a +a
A 1 ak 1
(2) B:}=;/f(z):?;72dz, Ao=ﬂ /f(z)dz.
-0 -0

In the more convenient complex way of writing (1.12), one then has

:kz

4+ co i
G =2 Ce® ,

ta - iZ ke
q=%]ﬂm s dt.

~ - 1.

————— s b Car e
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We may obviously consider also the more general interval <z << ¢
by substituting

{4) z=az-1p, &= -"7> ﬂ=—:’lc_b

The formulas (2) then become

®) ‘;:}=;E—bbff(z)§§’:k(az—¥ﬂ)dz, A= 25 [ 13

In this connection we mention some ‘“‘pure sine and cosine series’’ that
appear in Fourier’s work. One considers a function f(z) which is given
cnly in the interval 0< z<<x say, and which is to be continued to the
negative side in an odd or even manner. For example, one gets for odd
continuation

(=] : x
f(z)=;;Bksinkz, B, %/i(x)sinkzdz,
- 0

See also exercise 1.3.
Starting from (3) we take a to be very large. The sequence of

values
n
wk —_— ; k

then becomes dense, for which reason we shall write @ instead of w,
from now on. For the difference of two consecutive w, we write corre-
spondingly

do

n 1
dw=—, —_— = —.
a a E 4

If in (3) we replace the symbols 2z, ¢ by the previous ones z, § then we.
obtain

+a
d e
(6) Co=757 [f&)emi=tas.
For the moment we avoid calling the limits of this integral — oo and

-+ oo
Introducing (6) into the infinite series (3) for f(z), replacing the
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summation by integration, and denoting the limits of integration for the
time being by 4+ 0, we get:

: +0 +a
0 f() = Lim Lim — [ éoda [ f&)e¢=¢de.
D-booadroo"n_b -2

The order of passage to the limit indicated here is obviously necessary:
if the passage to the limit £ — oo were carried out first, we would
obtain the completely meaningless integral

(=]

f e{m(z—t)dm
o0

On the other hand f(£) must vanish for & = 4 oo in order that the
first limit for @ = oo have a meaning. We do not have to investigate
how fast f — 0 in order that the other passage to the limit be possible,
since for all suitably formulated physical problems this convergence to 0
will be “sufficiently rapid.”

After this preliminary discussion we shall further abbreviate the more
exact form of (7) by writing:

+ oo + oo

(8) @) =5z [ do [ f&)éo=9aE,

From this we pass to the real form of the Fourier integral (8) as it is
commonly given in the literature. We set

~.

=9 =cos w (x— £) + isin w (z — &).

Here the sine is an odd function of w, and hence vanishes on integration
from —oo to + oo; the cosine, being even in w, yields twice the
integral taken from 0 to oo. We therefore have

400 +oo

(9) f(2) = [ do [ 1(8) cos w (z— ) d¢,
0 — 00

by which we do not wish to imply that the real form is better or simpler
tban our complex form (8). We can write instead of (9):

[~ =]

(10) f(z)= b[ a(w) cos w z dw + fb (o) 8in w z dw
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whére
+ oo + oo
(102) a(w) =%[f(£) cos w & dE, b(w) =%ff(£) sin o & dé& .

In particular b (w) must vanish if f(z) is even, a (w) if f(z) is odd.
We then have corresponding to the above ‘“pure cosine or sine series,”
a ‘“‘pure cosine or sine integral.” One or the other can be produced
whenever f(z) is given only for z > 0, by continuing f(z) as an even or
odd function to the negative side. We then write explicitly:
for even continuation

o0 [=e]

(11a) f(=) =[a(w) cosw zdw, a(w) =%f}‘(£) cos w £ dE,
0

0

for odd continuation

(11b) @)= [b()sinwsdo, b(w)= 2 [Heysino £ ds.
0 ‘ (12

The usefulness of this procedure will become apparent to us in some
particular problems of heat conduction below.

We denoted the variable of integration by w deliberately. In
general one denotes the frequency in oscillation processes by w. Let us
therefore, for the time being, think of z as the time coordinate; then in
equation (10) we have the decomposition of an arbitrary process in time,
f(z), tnto its harmonic components. In the Fourter integral one is con-
cerned with a conttnuous spectrum, which ranges-over all frequencies
from w =0 to w = oo in the Fourier series with a discrete spectrum,
consisting of a fundamental tone plus harmonic overtones. Here the
following fact must be kept in mind: when a physicist determines the
spectrum of a process with a suitable spectral apparatus, he finds only
the amplitude belonging to the frequency w, while the phase of the partial
oscillations remains unknown to him. In our notation the amplitude
corresponds to the quantity

¢ (@) = Va2 () + b2 (w),

the phase, y (w), is given by the ratio b/a. The relation between these
various quantities is best given as

(12) ¢ () e = u (w) + 1 b (w).

The Fourier integral which describes the process completely uses both
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quantities a and b, i.e., both amplitude and phase. The observable
spectrum therefore yields, so to speak, only half the information which is
contained in the Fourier integral.

This is noted markedly in the ‘“Fourier analysis of crystals,” which
is so successfully carried out nowadays. Here only the intensities of the
crystal reflexes, i.e., the squares of the amplitudes, can be observed; for a
complete knowledge of the crystal structure one would have to know the
phases too. This defect can only be partially removed by symmetry
considerations.

In exercise 1.4 we shall deal with the spectra of diverse oscillation
.processes as examples for the theory of the Fourier integral and at the
same time as completion of the spectral theory.

Once more we return to the complex form of the Fourier integral
and split it into two parts

+ o0 + o0
1

(13) I(w)=V—2—;1f¢(w)e‘“"dw, ¢.(w)=—f/<z)e—f“*dz.

which together are equivalent to (8). Disregarding the splitting of the
denominator 27 into V2:z . V27¢ , which was done mainly for reasons
of symmetry, and disregarding the notation of the variable of integra-
tion in the second equation, we have @ (w) identical with the quantity
a(w) — tb(w) defined in (10a); it therefore contains information con-
- cerning both the amplitude and the phase of the oscillating process f(x).

Moreover (10) shows that the two functions fand ¢ have a reciprocal
relation: one is determined by the other, whether we regard f as known
and ¢ as unknown or conversely, and the determination in each case is
by “integral equations” of exactly the same character. Onc says that
one function is the Fourier transform of the other. In (13) we have a
particularly elegant formulation of Fourier’s integral theorem.

So far we have spoken only of functions f(x) of one variable. It is
obvious that a functipn of several variables can be developed into a
Fourier series or integral with respect to any one of the variables. By
developing with respect to z,y,z for example we obtain a triply infinite
Fourier series and sixfold Fourier integrals. We do not wish to write
here the somewhat lengthy formulas since we shall have ample oppor-
tunity to explain them in their applications.

§ 5. Development by Spherical Harmonics

We do not claim that the path we shall pursue is the most convenient
approach to the theory of spherical harmonics; but it proceeds immedi-
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ately from the discussion of {1, needs no preparation from the theory of
differential equations, and leads to interesting points of view on far
reaching generalizations.

We consider the problem: Approximate a function f(z) given in the
interval — 1 < z < + 1 by a sequence of polynomials Py, Py, Py, . ..
Py,... P, ofdegrees 0,1,2,...k,...n in the manner which vs the best
posstble from the point of view of the method of least squares. We form an
n-th approximation of the form

(1) Sn=2'Ak Pk

k=0

and reduce the mean error
) +1
) M =3 [[/(a)—8,]rde
-1

to a minimum through choice of A, just as in (1.3). This leads to the
n + 1 equations:

3) T[f(a;)—S,,] Pdz=0, k=0,1,...,n.
=1

just as in (1.4). This minimal requirement we complete by a require-
ment concerning the amount of calculation that will be needed: the
coeflicients A, which are to be calculated from (3) in the n-th approxima-
tion, shall also be valid in the (n 4 1)-st and in all subsequent approxima-
tions; they shall represent the final A, for all & < =, and the finer approx-
imations are to complete their determination by yielding the A, for
k> n. In §1, p. 4 this finality of the 4, resulted from the known
orthogonality of the trigonometric functions. Here, conversely, the
requirement of finality will be seen to imply the orthogonality of the P,.

The proof is very simple. Equation (3), written explicitly, reads
(we omit in the following the limits of integration &= 1):

(4) 4yf PyP.dz+ 4, [P, P dz+---+ A, [ P, P dv= [f(z) P,dx.

Since the right side is independent of n and the A; are to be final, this
equation retains its validity for the (n 4 1)-st approximation &, .,
except that on the left side we add the term

An+1an+1Pkd”'

Equation (4) implies that this term must vanish, and since 4, does
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not vanish (except for special choice of f(x)), the integral must vanish
for all k for which (4) is valid, i.e., for all k < n. But this implies that
P, ,is orthogonal to P,, P,, ... P, for arbitrary n. Hence, if we take
P, and P, orthogonal to each other, our requirement of finality implies
the general condition of orthogonality

(5) [P,P,dz=0, msn.

Using (5) we obtain from (4)
(6) 4, [ Pidz= [ /() P(2) da .

The A, are therefore determined individually if we add a convention
about the normalizing integral on the left side of (6). The most obvious
procedure would be to set it directly equal to 1, and indeed we shall do
this in the general theory of characteristic functions. Here we prefer
to follow historical usage and require instead that

This normalizing condition has an advantage in that, as we shall see, all
the coefficients in P, become rational numbers.

We now pass to the recursive calculation of P,, P;, P,,... from
(5) and (7). P, is a constant, which according to (7), must be set equal
to 1. In the linear function P; = a = + b we see from (5), after setting
n=0and m = 1, that b = 0 and from (7) that a = 1. After setting
P,=az?+4 bz + c e obtain

/PgPod:v=-§-a+2c=_0; hence c=—%;
[P, Paz=2b=0; hence b=0;

Therefore P, = a (22— %) and by (7)

R

l
o] oo
o

ll
o w

%

|
o] b=

3 3% , 15, 3
?Z, P4=F(L —T.T —f—g,etc.

The P, are therefore completely determined by our two requirements,
the P,, aseven, the P,,,, as odd polynomials with rational coefficients.
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More transparent than the recursive process is the following explicit
representation:

1 d .
(8) P (2) =57 7 (@ —1)".

We see that P,(z) as defined by (8) satisfies condition (7) as follows: for
z —1 we have to carry out the n-fold differentiation solely for the
factor (z — 1)", whereby we obtain n!; the factor (x + 1)" becomes equal
to 2"; equation (8) therefore dogs imply that P, 1) =1.

It remains to be proven that (8) satisfies the orthogonality condi-
tion (5), which is equivalent to our “condition of finality.” To this end
we introduce the notation

.
(9) D, = 5 (a* — 1

and write the left side of (5) (suppressing the constant factor which is
immaterial here) as

+1
{D,,D,,dz,
-1

where we take, say, m > n. We now reduce the order of differentiation
of the second factot D,,,, by integration by parts; this increases the order
of differentiation of D,,. The terms which fall outside the integral sign
will vanish for 2= 41 , since in D,_, ,, according to (9) one
factor 22 — 1 remains. Repeating this process we get

f‘Dn,n ‘ Dm,mdz = _fDn+1,n ) Dm—],mdz =
fDn+2,n' ‘Dm—2,m dz = -+ = (— l)nf D2n,n -D dz

m—n,m .

(10)

Here according to (9) D is a constant, namely (2n)! Hence

fDn,n'Dm,mdz: (— 1)" (2 ”)!_’.Dm—n,mdm

=(—1"@2n)!D, :

(11)

—n—=1,m

This vanishes, since the number m — n — 1 of differentiations that still
remain to be carried out is less than the number m of factors z — 1 and
z + 1 which are to be differentiated. This deduction is valid for
m = n + 1, too, and fails only for m = n. The orthogonality is there-
fore proved forall m 4= n» . '
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At the same time the method just used provides & way of calculating
the normalizing integral of (6):

1\ [
fP%da:= (ﬁ) /Dk,k'Dk.kdI-

Using the first line of (11) for m = n = k, we obtain

5 (—1)* 2k)! S (2 k! f Ak
de e fDo,kdz_Q”l.ﬁ.“zk)z (1— )t dz.

'The numerical factor in front of the last integral is

(2k—1)

1-3-5-
2-4- 6 . -2k

z =

under the substitution z = cos# the integral itself goes over into the
well known form
?
[sin***1 99 =2-
0

2-4:-6...2k 2
3-67...2k+1)  2k+1

1
z

Therefore, one obtains

2 1
(12) /P*da:_2k+1 e

Equation (6) then gives
(13) 4, = (k+ 1) f/("’) Py (z) dz.

Substituting this in equation (1) of the n-th approximation S, and letting
n —oco we get (assuming convergence and the completeness of the
system of functions P):

(=] +1
(14) Hz) = f.v-x, (& + I/z)_f; (&) P (§) d& - P, (2) .

The two assumptions just mentioned can be justified here, just as in the
case of Fourier series, by consideration of the limiting value of the mean
square error. The k-th approximating function has k zeros in the interval
of approximation just as before, except that now they are not equally
spaced. The approach to the given function, f, proceeds, here too,
through more and more frequent oscillations. Also, we find Gibbs’
phenomenon at the points of discontinuity, etec.
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§ 6. Generalizations: Oscillating and Osculating
Approximations. Anharmonic Fourier Analysis.
An Example of Non-Final Determination of Coefficients

The following Guestion suggests itself: Why are the two series differ-
ent, despite the identical nature of the approximation processes? Since
we saw that the form of the P,(z) was completely determined by our
approximation requirements, we might think, e.g., that the pure cosine
series (expansion of an even function) would go over into a series of
spherical harmonics, if in the former we set cos ¢ = z , because then
cos k@ becomes a polynomial of degree k in z just like Pi(z), and the
interval of expansion 0 < ¢ < % becomes the interval +1 >z > —1.
But the individual infinitesimal elements of this interval receive a different
weight g in each case since

Whereas in the Fourier approximation we associate the same weight
with all dg, the endpoints z = =1 of the interval in the z scale seem to

be favored since g(z) = 1//IT—a® . At these points the function is
better approximated than at the middle of the interval. The opposite is
obviously the case for approximations by spherical harmonics which,
translated to the ¢-scale, discriminate against the endpoints of the
interval since g (@) = singp. Pictorially speaking, in the case of
Fourier series, one deals with a uniformly weighted unit semicircle
between ¢ =0 and =, which, under orthogonal projection on the
diameter between = — 1 and + 1, yields a non-uniform density; on
the other hand the case of spherical harmonics deals with a uniformly
weighted diameter, which corresponds to a non-uniformly weighted

semicircle.

A. OscCIZLATING AND OSCULATING APPROXIMATION

These different distributions of weight g (that is, densities) are the
factors that, in conjunction with the delimitation of the interval of
expansion, distinguish among the different series expansions common in
mathemstieal physics. Here we only mention the expansions in Hermite-
and Laguerre-polynomials because of their importance for wave me-
chanics. We shall not concern ourselves here with their formal repre-
sentation — they can be obtained from the requirément of a best possible
calculation of the coefficients satisfying a condition of finality, just as in
the case of spherical harmonics. (See exercise 1.6, where the usual
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normalizations are given; orthogonality would again be the necessary
result of these requirements.) We restrict ourselves here to a tabulation
of the most important characteristics of both polynomial series:

HerMITE LAGUERRE
Interval , ., . . . o e v . —co<x <+ 00 0<z <00
Weight-g(z) . . « « « « . e e ®
Orthogonality + )
condition for m¥n . . . . H, H,e® dzx=0 JLyLye®dz=0
—_ 00 0
y=sinx

For these series, just as for
Fourier series and spherical
harmonics, the approach to the
given function, f, is through
closer and closer oscillations.
However, from the calculus we
know a series whose character
1is osculating rather than oscillat-

: . Fig. 6. The Taylor expansion of sin z
g, namely the Taylor seres. (heavy line) and its approximations

In the case of Taylor series the 28

consecutive approximations S, Sy=z, 8= z— 7y,
- » 2

osculate the curve to be repre 85 = z— o + 5

sented in such a way that at a

given point S, has the same derivatives as f up to and including f'™
The graphic representation of the power series of sin z (Fig. 6) demon-
strates this without further explanation.

Here the total accuracy is concentrated at a single point. Following
Dirac we can express this succinctly as follows: g(z) has degenerated into
a & function. Dirac defines, as an analogue to the algebraic symbol é;;
of (1.6), a highly discontinuous function 8(z | z,)

Zo+ e
0 z54z,,
+ % /d(xlzo)d:c=1
OOZ=$0,

Ty—8

(1) a(z|zo)=[

for arbitrary & For the Taylor series of Fig. 6, where z, has been set
equal to 0, we get

(1a) g(2) =8(z0).
B. ANHARMONIC FOURIER ANALYSIS

Whereas in §1-3 we considered only Fourier series which proceed
according to harmonic (integral) overtones of a fundamental tone, we
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now consider the problem of expanding an arbitrary function f(z) in the
interval 0 << z < & into a series of the form

(2) f(x) = B,sini, z + B,siniyz + Bgsinigz+ - - -

Fig. 7. Diagram of the tran-
scendental equation tan Ar = a)
a < 0. In the ordinate both
y = tan Ar and y = o\ have
been drawn. The intersections
-yield the roots, Az, of the equa-
tion. N = 0 is not to be con-
sidered as a root; for n — ®.we
get asymptotically A, = n — 1.

n

(3) Jsinlkzsin Azdz=20

where the A, are given as the roots of a
transcendental equation, e.g.,

(2a)

(e being an arbitrary number). We do
this for use in problems of heat conduc-
tion (see §16). The fact that (2a) has
infinitely many roots is seen directly from
Fig. 7 where 4 has been drawn as the
abscissa and both tan Axz and «24
as ordinates. We shall meet another
equation of character similar to (2a) in
exercise II.1.

We first show that the functions
sin4, z form an orthogonal system with
weighting factor g(z) = 1, i.e., that

tan An=a i

kL

In fact, by passing from the product of sines to the cosines of the sums
and differenees, we obtain for the left hand of (3)

lk Zl
p

COS A, T COS A, 7t (

tand, 7 tan i,
A A ’

where the expression inside the brackets now vamnishes because of (2a).
In the same manner we find for k =1

(3a)

n

ro. 2 1 .

[sin?, z2dz = 1,(1 — s—sind, x- coslkn).
o -

Mz

This calculation of (3) and (3a) which is based on special trigonometric
identities, will receive a less formal treatment in §16 where it will be
reduced to an application of Green’s theorem.
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From (3) and (3a) one obtains the following value for the expansion
coefficients B in (1):

2 H(z) sind, z
(3b) B, =3 / s 2a 40

1 24 =
0

This value for B, is final in the sense of p. 22, since it is independent of n
and minimizes the mean square error of the approximation

n
S, = B, sin A, z
2 Besin 4y

At the same time this settles the question of convergence and complete-
ness, if for n — cothe mean square error approaches zero.

C. AN ExaMpPLE oF A NoN-FINAL DETERMINATION t>a

Pe-a, -
oF COEFFICIENTS 2\ 5‘:\
a\a
[}

As preparation for an optical (or rather ‘“‘quasi-

P LY

optical’’) application, we shall consider a much more \f f‘a ,'l
involved case in which the requirement of finality is Pt
not satisfied. Let us consider a metal mirror in the I : T

shape of a circular cylinder (see Fig. 8). The electric Fig. 8. Reflection
vector of the total oscillation, which we take as per- of an incoming
pendicular to the plane of the drawing, is composed “quasioptical”
. . . wave on & circular
of the incoming wave, represented on the mirror by  ¢ijinder mirror of
opening ¢ = & and

radius 7 = a.

4) w=—fp), —a<g<+tea, r=a

and of the reflected (refracted, scattered) wave. J.et the latter be repre-
sented by:

u = u(r,p), —nm<@p<—+=mn, r<a,innerfield,
= v(r, ¢), —n<@p<+am r>a,outerfield.
We then have to demand

(6) u4w=vfw=0 for r=a and |p|<ax,
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(6) %=uv, for r=a and [@|>«,

the former on account of the assumed infinite conductivity of the metal
mirror, the latter on account of the required continuous passage from the
inner to the outer field. '

Assuming w to be symmetric with respect to the axis of the mirror
(as, for example in the case of a plane wave proceeding in that direction),
we write’

u= 3 C, g,(r)cosne,
n

(7)
v=X D, h,(r)cosng.

g» and h, will turn out to be Bessel and Hankel functions, respectively
(see §19); they can be chosen so that

ga(@) = Rha(a) =1
Equation (5) and the first equation (6) then imply

(8) SC,cosng=3D,cosnp=flp) |p<x
=y n

and

9) 2Cicosng =D, cosng lp| >e.
n n

respectively. From these two equations it follows that
S (C,—D,)cos np =0 forall ¢,
n

hence, whether the preceding summations are extended over all integers n
or only over the first N integers (the more general case), we have

D, =2C,.
This satisfies (9) while (8) still requires
(10) %‘C,, cos no=f(p) for |@p| <.

In addition to this we have to satisfy the second equation (6) which on
account of (7) reads:

7 In view of the notations to be used in Chapter 1V, it is advisable here to change
the index of summation from k to n. For the previous n we shall write N, and instead
of | we shall use m.
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(11) SC,y,cos np=0 for [p]| >a
o (Wa(r) __dh,(7)
(11a) ya=a(T2 S0

We add the factor a before the parentheses here, as we may by (11), in
order to make ¥s a pure number. Equations (10) and (11) together
determine the C,.
Here the way is again shown by the method of least squares. We
consider the square errors corresponding to the equations (10) and (11)
»

/ (f(«p) — ’é‘; C, cos mp)z dp and /n(né,\"o C, ¥y, cos nqp)z dp.
0 a

The sum of these two is to be minimized through choice of the C,. By
differentiation with respect to the C, this yields a system of N + 1 linear
equations for C,,...C,,...Cy, of which the (m + 1)-st equation is:
N a n h
>0, [0[ cos np cos medp + y, ¥, [ c0s nep cos mq:dgp}
(12) "7 .
= 6[ (@) cos mo dp.

If we pass to the limit N — co we obtain an infinite system of linear
equations for the infinitely many unknowns C,, which are in general of no
interest to us. We must postpone further treatment of this problem
until appendix I of Chapter IV, for only there shall we have the necessary
values of the parameters 9,. The corresponding spatial problem, where
we have a spherical segment instead of a circular cylinder segment,
would lead in the limit N— oo to an infinite system of linear equations,
in which B, (cos #) \\_'ould replace cos ng (by & we denote here the angle
measured from the axis of symmetry of the spherical mirror). This
problem too will be treated in appendix [ of Chapter IV. At preseni we
call atfention only to the difference in method between those problems
in which the method of least squares leads to a definitive calculation of
the individual coeffictents C, and those problems in which the “require-
ment of finality” is not satisfied and in which therefore, the totality of the
C.. must be determined from the totality of minimality conditions.
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CraprTER 11

Introduction to Partial Differential Equations

§ 7. How the Simplest Partial Differential Equations Arise

The potential equation
L]
(1) Au =0 or (la) Adu=—(4m)e

is known in the theory of gravitation as the expression of the field-action
approach, as opposed to the action-at-a-distance approach of Newton.
The Laplace operator is defined as

ot ot ot .
(@) A =55+ 55+ 7 = div grad.

The same equations (1) and (1la) are fundamental for eloctrostatic and
magnetic fields, (1) in empty space, (1a) in the présence of a source of
density @ the factor4x in (1a) has been put in parentheses since it can
be removed by a proper choice of units.

Equation (1) appears also in the hydrodynamics of incompressible
and irrotational fluids, u standing for the velocity potential. We also
mention the two-dimensional potential equation

o o
(3) 5 T =0

as the basis of Riemannian function theory, which we may characterize
as the “field theory’’ of the analytic functions f (z + y).

Equally well known is the wave equation

4 Au == —

It is fundamental in acoustics (¢ = velocity of.sound). It is also funda-
mental in the electrodynamics of variable fields (¢ = velocity of light),
and therefore in optics. In the special theory of relativity one may
write (4) as the four-dimensional potential equation '

32
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a

-2
oz,

®) Ou=0 with Q=

k=1

by introducing the fourth coordinate z; (or zo) = tct in addition to the
three spatial coordinates z;,2;,2z;. For an oscillating membrane we have
(4) with two spatial dimensions, for an oscillating string we have one
spatial dimension. In the latter case we write

Oy 1 ot . Py o
®) s T Aar or sometimes (6a) 5 — = 0,

setting, for the time being, y = ¢t (not y = ict). Neither membrane
nor string has a proper elasticity; the. constant ¢ is computed from the
tension imposed from outside and from the density per unit of area or of
length.

In the general theory of elasticity one has, as a special case, the
differential equation for the transverse vibrations of a thin disc

‘ 1 o2u ot o o
(7) AAM=—Z§a-tT, AA=5F+2W+W’

for reasons of dimensionality ¢ here does not stand for the velocity of
sound in the elastic material, as it does in acoustics, but is computed
from the elasticity, density, and thickness of the disc. Analogously, the
differential equation of an oscillating elastic rod is

o 1 0%
®) = T aw

This will be derived in exercise 11.1, where the resulting characteristic
frequencies will be compared with the acoustic frequencies of open and
of covered pipes.

As a third type we add to the differential equations of states of
equilibrium ((1) to (3)), and of oscillating processes ((4) to (8)), those of
equalization processes. As their chief representative we shall here con-
sider heat conduction (equalization of energy differences). We remark,
however, that diffusion (equalization of differences of material densities),
Sluid friction (equalization of impulse differences), and pure electric con-
duction (equalization of differences of potential), follow the same pat-
tern.

Let G be a vector of the magnitude and direction of the heat- flow
and let the initial point P be surrounded by an element of volume dv.
Then div G dr is the outflow of heat energy from dv per unit of time.
A decrease per unit of time in the amount of heat in dr, which we
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shall denote by —aQ/ at, corresponds to this. We then have

©) divGdr = — 2.
Our heat conductor is here considered to be a rigid body so that we can
neglect expansion; heat content is then the same as energy content.
Now every increase d@ in heat causes an increase in the temperature of
dr, every decrease — d@Q in heat causes a decrease in temperature. De-
poting the temperature by u«, we have

(10) dQ = cdm du, dm = gdr.

¢ being the specific heat (for a rigid body we need not distinguish between
¢ and ¢,). The factor dm is due to the fact that c is related to the unit of

mass.
From (9) and (10) we get

(11) divG:—cg%“.

We now apply Fourier’s law, which determines the relation between
G and u. It states that for an isotropic medium
(12) G = — x grad u:

the flow of heat 18 in the direction of decreasing temperature and is propor-
tional to the rate of this decrease. The factor of proportionality 2 is called
the heat conductivity.

Introducing (12) in (11) we get the differential equation of heat
conduction

(13) Au =7

ok

x
, =2
ce

k is called the temperature conductivily.

Fourier’s law was adapted to the case of diffusion by the physiologist
Fick. Here u stands for the concentration of dissolved matter in the
solvent, G for the material flow of the dissolved matter, and k% for the
diffusion coeffictent. In the case of inner friction of an incompressible
fluid, k stands for the kinematic viscosity, and (13) is the Navier-Stokes
equation for laminar flow (i.e., flow in a fixed direction). Owing to the
tensor character of this process equation (12) has no general validity
here. The analogue of Fourier’slaw in the electric case is Ohm’slaw. Here
u stands for the potential, G for the specific eleciric current (the current
per unit of area of the conductor), and k for the specific resistance of the
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conductor. Equation (13) is of the type of Maxwell's equations in the
case of pure Ohm conduction.

Schrédinger’s equation of wave mechanics belongs formally to the
. .same scheme, in particular in the force-free case, to which we restrict
ourselves here:

(14) Ay = 2m & { % = Planck’s constant divided by 2»
1A & | m = mass of the particle.

However, owing to the fact that the real constant, k, of (13) is replaced

here.by the imaginary constant i %/2m, equation (14) describes an oscil-

lation rather than an equalization process. We see this in the passage to

the case of periodicity in time, if we set .

(14a) u=1ype o, w = %, W = energy of the state.

Then (14) becomes

(15) dp+Cyp=0, C=22W.

This is the same form as we would obtain from the wave equation (4)
if we set v = g - exp (—iwt) and let C = w%/c?

The so-called case of linear heat conduction, with the thermal state
depending on only one variable z, will be treated in detail in the follow-
ing chapter. In order to compare its differential equation with (3) and
(6a), we write it in the form:

o ou
=0,

(16)

Looking back on this sketchy survey one notices a family resem-
blance among the differential equations of physics. This stems from the
1nvariance under rotation and translation, which must be demanded for the
case of isotropic and homogeneous media. The differential operator of
second order implied by this invariance is just the Laplace 4. In the
case of space-time invariance of relativity this is replaced by the corre-
sponding four-dimensional [O of (15). For the case of an anisotropic
medium, 4 must be replaced by a sum of all second derivatives with
factors determined from the crystal constants. For the case of an
inhomogeneous medium these factors will also be functions of position.
We shall deal with such generalized differential expressions in the be-
ginning of the next section.

The fact that we are dealing throughout with partial differential
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equations is due to the field-action approach, which is the basis of present
day physics, according to which only neighboring elements of space can
influence each other.

§ 8. Elliptic, Hyperbolic and Parabolic Type. Theory of
Characteristics

We restrict ourselves to the case of two independent variables,
.z and y. The most general form of a linear partial differential equation of
second order is then:

(1) L(u)s.4§%+2332—”gy+ C%+D%+E%+Fu=0.
A,B, ... F being given functions of z and y having sufficiently many
derivatives. For the present we may even consider the far more general
equation:

Pu oy M ou ou
(2) A@+2Béz—@+0@=¢(11,55,3—3;,z,y),
where @ need not be linear in u, du/dr, du/dy.

We now investigate the conditions for the solvability of the following
problem, which is put first in the mathematical theory of partial differ-
ential equations, although in the physical applications it is of secondary
importance compared to certain boundary value problems considered
later.

Let I'" be a given curve in the zy-plane along which both « and the
derivative du/dn of u in the direction of the normal are prescribed. Does
a solution of (2) that satisfies these initial conditions exist?

Preliminary remark: If u is given on I" then so is du/ds; but from
du/ds and du/dn one can calculate du/dx and du/dy. Therefore both
% and its first derivatives are known on I".

We introduce the following abbreviations, which are common in
the theory of surfaces:

o
p—EE’ —'a_gy

_ o Pu oM
=g ¢ oz dy’ T o

Written in terms of 7,s,t equation (2) reads:

(3) Ar4+2Bs+ Ct=9.
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Furthermore the following relations are valid in general, and therefore
hold on I'

(3a) dp =rdz + sdy,

(3b) dg =sdz+ tdy.

Now, since p and ¢ are known on I, equations (3) and (3a,b) constitute
three linear equations for the determination of r,s,t on the curve. The
determinant of this system is

A 2B C
d4d=|dz dy 0 |=Ady*—2 Bdzdy+ Cds?.
0 dx dy

Only when this determinant 4 is different from zero can r,s,t be calcu-
lated from (3), (3a), and (3b). However, in general, two directions,
dy:dz, exist for every point (z,y), for which this is not the case. There-
fore two (real or conjugate complex) families of curves exist on_which
A4 = 0, and which, according to Monge, are called characteristics® They
are the dotted lines of Fig. 9. Along each
of these characteristics it is in general im- y}  ¥(Xy)=const.
possible to solve for 7,s,t in terms of «,p,q.
We shall therefore demand as a necessary
condition for the solvability of our prob-
lem, that I" shall be nowhere tangent to a
characteristic.  The opposite case, in
which I' coincides with one of the charac-
teristics, will be discussed in §9A in con- Fig. 9. The curve I along which
nection with D’Alembert’s solution. uand du/9dn are given, and the two
When the condition A == 0 is satis- families of characteristics € = ¢ (z,y)
fied, a solution of the differentialequation = c°Pet-2nd 7 = ¥(z,y) = const.
in the neighborhood of I' must exist. Then the higher derivatives
can be calculated in exactly the same way as the second derivatives.
Let us consider, say, the third derivatives:

__ P 3 P __Pu
To = 373> sz=axsay=rv’ z=awya_sv’ tv_a—y'f'

Differentiating (3) and (3a,b) with respect to z, we get:
Ar,+2Bs,+ Ct,=P,+ ---
7,d% + s,dy = dr,
8,8% + t, dy = ds.

.

! A geometrically intuitive introduction of characteristics is given, e.g., by
B. Baule in v. VI (Partielle Differentialgleichungen) of his Mathematik des Natur-
forachers und Ingenieurs, Hirzel'. Leipzig 1944.
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On the right . . . represents terms that contain no third derivatives, and
therefore contain only known quantities. The determinant of this sys-
tem is again A. The same holds for equations obtained by differentiation
with respect to y. Our condition is therefore sufficient for the computa-
bility of the third and all higher derivatives. Therefore w can be ex-
panded in a Taylor series at every point of I' and the coefficients are
uniquely determired by the boundary conditions on I
We now turn to the discussion of the equation of characteristics

4) Ady—2 Bdzdy+ Cda? =0,

where we restrict ourselves to an arbitrarily chosen neighborhood in the
zy-plane,? and distinguish between the following cases:

1) AC—B*>0 ellzptic type in which the characteristics are
conjugate complex.

2) AC— Bt < 0 hyperbolic type in which the characteristics
form two distinct families.

3) AC—B*=0 parabolic type in which only one real family of

characdteristics exists.

Each of the three types can be brought into a special normal form in
which the equations of the characteristics are utilized for the introduc-
tion of new coordinates. Let these equations be

(4a) ® (2, y) = const. and ¢ (z, y) = const.
respectively. Then through the transformation
(6) Et+in=9(zy), E—in=vy(zy)

one obtains the normal form for the'elliptic type,

Ay o1 ou du
(58’) a_e_g—_l_aT'::X(u’égva_ﬂ,Ern);

through the transformation
(6) {=¢(z.y), n=v(ny
one obtains the normal form for the hyperbolic type,

M du Ou N
(6&) a£—=X(u,a—£, %, (,t, ?’/),

2 Whep A,B,C depend on z,y, then the equation may obviously be of different
types for different neighborhoods of the zy-plane.
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and through
=@ y)=v(zy), n==2

one obtains the normal form for the parabolic type,

2%u
(7a) o = X (u, % d" , & n)

Before proving this, we compare the above forms (5a), (6a) and (7a)
with the equations (7.3), (7.6a), and (7.16), i.e., with the two-dimensional
potential equation, the equation of the vibrating string, and the equation
of linear heat conduction. We observe that the left hand sides of (5a)
and (7.3) coincide except for the letters used to denote the independent
variables. The analogous relation holds between (7a) and (7.16). In
(6a) we only have to perform the simple transformation

®) = %(E’ +7), n= %(E' —7)
with the inverse

(8a) §F=E&+n n=&—n
we obtain

on — o o
which establishes the essential equality of the left hand sides of (6a) and
(7.6a). Hence the two-dimensional potential equation, the equation of the
wbrating string and the equation of linear heat conduction are the stmplest
examples of the elliptic, the hyperbolic, and of the parabolic types, re-
spectively.
Starting with the treatment of the hyperbolic case, we first show that

(6a) is obtained from the initial equation (2) through the transformation
(6). From (6) we obtain for the first derivatives

ou _ cu ou . Ou ou

Pr 35 z+a,l ¢ 3] 3_y=?_5q7'+%w"

where the subscripts again denote differentiation. From this we obtain
for the second derivatives

o oy oty Py o

o = 5 ¥ +2-{,£—a,,m¢ +oa¥s oo
o%u a’u My

a'x_ay prs) Pz v+a£aﬂ(¢cwv+¢v'pc)+'_z’h:'l’v+"'
S o 2 au 2

+ 2

- 351‘]’ afanq’va 3,72 + -
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where the three dots stand for terms containing only first derivatives,
Multiplying the last three equations by A, 2B and C, respectively, and
adding, we obtain for the left side of (2):

o (4t + 2 Ba.g,+ Co))
(9) + 22—;“3—,7 (A v+ By + 0¥ + Coy )
+Z%(Awi+ 2By, p,+Cyp)+ <+~

But here the coefficients of d%u/0¢ and d%u/dn* vanish, since for the
family of characteristics ¢ = const. we have

P, dz 4 ¢, dy ='0’

Hence on introducing the ratio dz:dy into (4) we get
(10) A¢l+2Bg,p,+ Coy=0.

The derivatives of y must satisfy the same equation. Hence (9) indeed
reduces to the hyperbolic normal form (6a) if we transfer the coefficient
of 3%u/3£9n in (9) to the other side of the equation.

Since in the parabolic case we have n = z, we must substitute in (9)

(11) v(z,y) = z; and hence y,=1, 9,=0,

whereas (10) still holds for ¢, ¢,. The first term in (9) therefore
vanishes. Owing to (11) the coefficient of the second term reduces to
Ao, + By, which also vanishes since A C — B2 = 0 makes the left
side of (10) a perfect square, so that (10) can be rewritten as (4 ¢, +
Be,)?/A = 0. Considering (9) and (11) the third term finally becomes
simply
4 g%;,

which is the parabolic normal form (7a).

The elliptic case need not be treated separately. It can be reduced
to the hyperbolic case by a transformation analogous to (8a):

E=E4in, 7=§—in.

§9. Differences Among Hyperbolic, Elliptic, and
Parabolic Differential Equations. The Analytic Character
of Their Solutions

The problem of integration, which is illustrated in Fig. 9, is applied
in physics only to the case of hyperbolic differential equations; for elliptit
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differential equations it is replaced by an entirely different kind of
problem, the boundary value problem. For the time being, we shall dis-
cuss this profound difference only sketchily and refer the reader to the
following sections for a more precise treatment.

A. HyperBOLIC DIFFERENTIAL EQUATIONS

As the simplest example we use the equation of the vibrating string,
which, written in its normal form, is

oty

(1) H=0’ f=z+y, n=z—y, y=ct.

Here the characteristics are the lines § = const., n = const., which in
Fig. 10 are drawn at 45° angles with the z- and y-axes. The general
solution of (1) is the sum of a function of £ and a function of 5:

(2) u=F () + Fy(n).

Because of the meaning of £ and 5 this is d’ Alembert’s solution (see V. II,
§13). For the sake of simplicity, let us consider u as being given on
segments AB and AD of two of the characteristics. This determines u
in the entire rectangle AECD. We could calculate the value of u at P
by passing in the directions of the characteristics to P, and P, and
‘substituting into (2) the values F;(§), Fy(n) which are given at these
points. The values along two iniersecting characteristics determine the
function everywhere. For example, any discontinuaties of the given functions
on the characteristics would be continued into the intertor of ABCD. Thus
the solution need not be an analytic function® of z and y over its domain
of definition.

In physics one is given the values of u and of du/dy along a segment
of length [ on the z-axis (I = length of string):

u=u(z,0) and %=%z—:‘=v(z,0).
This segment corresponds to the curve I” of Fig. 9, on which, too, u and
dulon were given, and it satisfies the requirement of not being tangent
to any characteristic.

In order to apply the conclusions drawn from (2) to our present
problem, we have to calculate F; and F. from our given u(z,0), v(z,0).
This is done with the help of the following equations, which are immedi-
ate consequences of (2):

3 A function of two real variables r,y is called analytic in a certain domain, if in
some neighborhood of each point (ze.7,) of this domain it can be represented as a
power series in £ — roand ¥y — yo.
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u(z,0) = Fy(z) + Fyla), Fy(z) = 3 {#(,0) + [ v(z, 0) dz},
v(z,0) = Fi(z) — Fiy). Fy(a) = 2 {u(z,0) — [ v(z, 0) da}.

We conclude: the giwen initial values, together with any possible discon-
tinutties, are continued along the characteristics. The solution, u(z,y) is in
general not an analytic function of z and y. It is determined only within
the rectangle of characteristics determined by the length of string | as shown:
in Fig. 10.

However, from a physical point of

y ! view, the{ §qlution must be determined
| \B< : from the initial time on, ie., forally > 0.
: ,&ﬁ?, ('%: This indicates that, in addition to the
. \3}\" ‘:’P\‘:t":/ initial values, certain boundary values
N ,?f\ =X  must be prescribed at the ends of the
y e i string. These are the stringing conditions
i ~¢” ' u=0forx=0and z =1 Justas for
A all z such that 0 < 2 < [ two values (u

and du/dy) had to be given,so for all y>0,

Fig. 10. The vibrating string of fwo values are given. This is due to the

length I and the square of charac- fact that our differential equation is of
teristics determined by its end . .

point, second order in both variables z,y and

the only difference is that both values

along the z-axis are given at the same point (z,0) whereas the values along:

the y-direction are given at the different points (0,y) and (I,y). The only

exceptions to this rule of two necessary boundary conditions are the

characteristics on which, as we saw above, one value (F; or F3) ts suffictent.

We shall show in §11 that these results, which we have established

for the case of the vibrating string, can be extended to ali cases of hyper-

bolic type.

B. Evvipric DIFFERENTIAL EQUATIONS

Here the characteristics are imaginary and therefore have no direct
bearing on the problems we are going to treat. These problems do not
deal with an arc I, as in Fig. 9, but rather with a closed region S of the
real zy-plane. On the boundary of S, u or du/dn (or a linear combination
of u and du/adn) will be given but not both v and du/dn as in the hyper-
bolic case. Discontinuities of the boundary values are not continued into
the interior of S, but only into the imaginary domain, and the function
u is analytic everywhere in the interior of S.

These are known theorems from the theory of functions (two-
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dimensional potential theory). Their proof for arbitrary linear elliptic
differential equations will'be given in the following section.

The analogue to d’Alembert’s solution (2) is given in potential theory
by

u=fi(z+1y) + fr(z—1y),

where, in order that u be real, we must set f3 = f;, i.e., /2 conjugate* to f,
We may also write:

3) u= Re[/(2)].

where f is an arbitrary analytic function of the complex variable
z =z + 1y. However, this general solution of the equation 44 = 0does
not help ys (at least not directly) in the general solution of our boundary
value problem.

C. ParaBoLic DIFFERENTIAL EQUATIONS

Here the two families of characteristics have degenerated into one.
In the special case of the normal form of the equation of linear heat con-
duction this is the family of lines parallel to the z-axis. Only one
boundary condition should be given on these characteristics just as in
the case of hyperbolic differential equations (see p. 42). We can also
see this directly from (7.16): here du/dy is determined uniquely if u is
given as a function of z for some fixed . From physicel considerations
one sees this in the following manner: the thermal behavior of 4 rod of
length [ is determined once and for all as soon as its initial temperature is
given together with conditions for the ends cof the rod (the lateral surface
of the rod must be considered adiabatically closed, if heat is to flow only
in the z-direction).

We shzll see in §12, that the temperature distribution of the rod
becomes an analytic function of x and y for arbitrary — even discon-
tinuous — initial temperature. To this extent, therefore, the parabolic
type resembles the elliptic type. However, the problere is not relative
to a bounded region, but rather, as in the hyperbolic case, relative tc a
strip, i.e., a region which is infinite in one direction. The parabolie type,
therefore, occupies a middle position between the elliptic and the hyper-
bolic types.

* We use the notation f* instead of f, which is more common in mathematical
iiterature, since we want to reserve Lhe use of (he bar for inean values In time. Re
and Im stand for the real and imaginary puort respactively,
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§10. Green’s Theorem and Green’s Function for Linear, and, in
Particular, for Elliptic Differential Equations

In (8.1) we had the general form of a linear differential equation of
second order. In order to retain a common expression for the three types,
we shall not transform this system into its canonical form for the time
being.

A. DEFINITION OF THE ADJOINT DIFFERENTIAL EXPRESSION

We now have to introduce the seemingly rather formal concept of
the differential form M (v) which is adjoint to L(uw). It is defined by the
requirement that the expression v L (v) — v M (v) be generally integrable
or as we may put it, that it be a kind of a-vergence.

We demand, namely

X oY
(1) vL(u)—ruM(v)=E+a;.
The problem is to determine M and X,Y as functions of » and of u,v
respectively.b
We shall use the following identities:

u oAy ] ou 2Av
(2) vATg—ug = (dvg—ug), -
2u #Bv 0 ou a éBv
(2a) VB~ %hn=5m("Ba) (v w) =
ou a 7]
(8) Dvy_—uz(—Dv)= _(Duv),...

Here the three dots (. . .) indicate the fact that (2) and (3) remain valid
if we replace £ by ¥ and 4,D by C,E respectively, and that on the right
side of (2a) we may use the symmetric expression obtained by inter-
changing r and y. From this we get:

_ 94y 2By #Cy dDv oEv

X=A(vgl;—-u%)+ B(‘vg?’;—uz—;) + (D—%—gg)uv,

(6) ou v ou ov ZZ :C
Y = B(v%—ua—z +O'('va—y—u5§) + (E—a-?—ﬁ)uv.

* The operation of divergence is properly defined only for a veclor. Since, as
equation (5) will show, X and Y are not vector components, we speak of ‘‘a kind of
divergence.”

Obviously X and Y are determined only up to quantities X,,Y,, whose divergence
vanishes. We can therefore change the terms in (5): we may add —ad/dy to X and
+ 8P/ox to Y, where Dis an arbitrary function of z,y as well as of u,v.
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We see that the relation between L and M is reciprocal: L(v) is the adjoint
differential form to M (u).

Of particular importance for mathematical physics are those differ-
ential expressions for which L(u) = M(u). They are called self-adjoint.
By comparing (4) with (8.1) we get the condition of self-adjointness

24 2B oB acC

B. GREEN’s THEOREM FOR AN ELLIPTIC DIFFERENTIAL EQUATION
IN ITS NoRMAL ForMm

We now consider a region S with boundary curve C in the zy-plane
and integrate (1) over S. We denote the element of area of S by de, and
the line element of C by ds; let the orientation be counter-clockwise
(see Fig. 11).

Applying Gauss’ theorem® we get

o S/[@L(u)—uM(v)]da=S/(g+g)da

=/{Xcos(n, z) 4+ Y cos(n, y)} ds.
o

This is the general formulation of Green’s theorem which is valid for all
three types. Setting A = C = 1, B = 0, we specialize it to the case
of the elliptic type in normal form. We then have:

/[vL(u)—uM(v)]do=/(vg—:—u%’)ds
C

+ /{D cos (n, z) 4+ E cos(n, y)}uvds.
¢

Fig. 11. TIllustrating Green’s theorem for
an elliptic differential equation. The inte-
gration with respect to do is extended over
the domain S between the boundary curve
C and the circle K of radius g, which contains
the unit source at Q.

X

¢ It states, when applied to a two-dimensional vector A with components XY,
that [divAdo= fA,ds,
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This is a generalization of Green’s theorem of potential theory
/(vAu— u dv)de = /(v%u— uZ—:)ds,

which is obtained from (7a) by setting D = E = 0. (The fact that in
potential theory also F = 0 is of no importance here.)

We shall meet another form of Green’s theorem in exercise 112.

If, in the interior of S, u and v satisfy the equations

L(u)=0-, M(v)=0

then the left hand sides of the equations (7), (7a) vanish. These equa-
tions, therefore, become

(7b) 0 =/{X cos (n, ©) + Ycos(n, y)}ds
¢

(7¢c) 0 = f(vgi;—ug—:) ds + f{Dcos(n, z) + E cos(n, y)} uvds.
¢ c

However, this holds only if » and v and the derivatives which appear here
are continuous throughout S. If » has a discontinuity at the point
Q = ( & n), then it must be excluded from the domain of integration,
just as in all applications of Green’s theorem. We therefore surround Q
by a curve K, which we choose to be a circle of arbitrarily small radius po.
The integration in (7b,c) must then be taken over both boundaries
K and C:

l...ds+°[...ds=0,

where the orientation is opposite on the two curves and the direction n
is to the exterior of S.
If for K we use (7c) and for C we use (7b) we get:

f(v%‘—ug—:-) ds-i—fuv{Dcos(n, z) + E cos(n, y)} ds
x K

8).
® =—f{Xcos(n, z) + Y cos(n, y)} ds.
P :

or, written in terms of coordinates:
X oY
f(a? +-@ da=f[X cos(n, z) + ¥ cos(n, y)]ds.

We apply this formally in (7) to our “pseudovector” X,Y.
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C. DErFINITION OF A UNIT SOURCE AND OF THE PRINCIPAL SoLuTION

We shall assume that the discontinuity of » at @ consists of a “unit
source.”” By this we mean the following: the yield ¢ of a source Q is
defined as the outward gradient of its field v. If we denote the distance
from Q@ by o, we bave

9 g= Z—st
K

where K has the same meaning as before. Assuming that in the immedi-
ate neighborhood of the source v depends only on ¢, we get

+ =
dv dv
(9a) q,—_[”d—éedqv—zne@.
A unit source is therefore given by:

do .1
do  2=z¢’

For arbitrary ¢ we write:

(9b) v = %’ log o + const for o —0.

(10) v=Uloge+V, o=V(@—E&t+ (y—n)?,

where U and V are analytic functions of z,y and &, » such that U becomes

1/2x  for (z, y) — (& 7).

A function of this kind we call a principal solution of the differential
equation M(v) = 0. In the same way we shall speak of a principal solu-
tion of the adjoint equation L(uw) = 0. Since the latter also corresponds
to a unit source it will have the same form (10), although in general
U and V will be different functions. Here too we can assume U and V
to be analytic as long as the coefficients D,E F in the differential equa-
tion are analytic. In the case of the potential equation du = 0 our
principal solution corresponds essentially to the logarithmic potential,
where we have for all p

(10a) v= 2—1,—‘ log o.

D. THE ANALYTI€E CHARACTER OF THE SOLUTION OF AN ELLIPTIC
DIFFERENTIAL EQUATION

We return now to equation (8). Substituting (10) in (8), we see
that only the term with
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ov @ U 1
m> % @ ~ 2ne

contributes to the integral over K, while all the other terms on the left
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