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Preface

In discussing the external physical world, we may start with Newton’s laws
of motion, Hamilton’s principle, or similar basic postulates and develop
therefrom the essential whole of macroscopic classical physics. Or we can
adopt Schrédinger’s wave equation and study the microscopic properties of
atoms. Modern physicists, with their natural inclination to emphasize the
newer phases of the subject, sometimes skip over or omit the classical prob-
lems entirely.

This volume, although primarily concerned with classical physics, specially
emphasizes those topics closely related to modern phases, either in technique
or subject matter. Several topics seldom presented, e.g., electron theory or
general relativity, appear in considerable detail, because an understanding of
them is increasingly vital to the student of atomic physics.

The book has been designed for use in junior, senior, or graduate courses
in mathematical physics. The student is expected to possess a good working
knowledge of differential and integral calculus. Some prior experience with
differential equations is desirable, though not absolutely necessary.

All other phases of mathematics, function theory, vectors, matrices,
dyadics, tensors, partial differential equations, etc., flow directly from the
physics during the presentation of the various subjects. Such topics as exis-
tence theorems, convergence, and high degree of mathematical rigor do not
receive special emphasis because they chiefly concern the pure mathematician.
Rigor in physies is an important consideration, but a feeling for the mathe-
matics as part of a physical process is even more important.

To develop the student’s abilities and to assist his understanding of new
principles, the methods followed 1in the book are not always the shortest or
the most elegant in the mathematical sense. Some deliberate duplication
occurs to explain a topic more fully or to demonstrate the superiority of a
new technique. Also, as an aid to both student and teacher, the intervening
steps and auxiliary argument in the development of a formula appear in
greater detail than usual. The book generally avoids phrases like “‘after a
little algebra, we get” or ‘it is obvious that,” which commonly imply that
the reader must spend some time in laborious if not recondite verification of
the intermediate steps. As a consequence, the book will also be suited to
the independent reader.

A general simplification of the derivations permits the treatment of topics
often omitted. To compensate for the fact that selected topics and problems
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appear in considerably greater detail than usual, other less essential topics
have been omitted or shortened. As far as possible, assumptions and postulates
have been distinguished from conclusions that follow directly from the
analysis.

In the references to sections, equations, etc., the roman numeral signifies
the major Part (I to V), the numeral following indicates the section, with a
decimal to mark the equation. Thus I1-20.18 refers to equation 18, section 20,
Part II. Omission of the roman numeral signifies that the given equation
falls in the same Part under immediate consideration. Omission of the numer-
ical part before the decimal indicates that the equation falls within the same
section wherein the reference occurs.

In Part IV, Electromagnetic Theory, the basic formulae appear in both
Gaussian and rationalized Mks notation. The reader can choose for himself
which one he prefers. Ifach system has certain advantages and disadvantages,
but both are here to stay and a scientist must understand something:of both
systems if he desires to read the literature.

I wish to acknowledge especially the generous help and assistance given to
me by George H. Shortley, Carl Anderson, Max Krook, and Cecilia Payne-
Gaposchkin, who read the manuscript and made many helpful suggestions.
I am indebted to Edward U. Condon, former editor of this Prentice-Hall
Physics Series, for his encouragement. Everett Dulitt gave particularly help-
ful advice on MKs units and on Part IV in general. Mrs. Stanley P. Wyatt, Jr.
and Mrs. Richard M. Adams aided me in the preparation of the manuscript
in its successive draft forms. And to my students, who have used the original
notes in various mimeographed editions, go my special thanks for helpful
advice and criticism.

Donarp H. MENzZEL
Cambridge, Mass.
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PART I

Physical Dimensions and Fundamental Units

Units and Dimensions in Physics

1. The significance of an observation. Any direct observation of a
physical nature ordinarily results in a number expressing the magnitude
of the measured quantity. The simpler measures are those of lengths, of
masses, or of times. More complicated ones may be of velocities, of energies,
or of angular momenta. The number, by itself, does not indicate what is
being observed; its magnitude depends upon the type of measuring scale
employed. We may express lengths in centimeters, miles, or light years;
we may define masses in grams, tons, or in units of solar mass. All basic
physical measurements are, therefore, ratios.

We see that a physical observation has a dual significance: (a) the
reading itself, expressed in some chosen system of units and (b) the type
of quantity that is being measured. If we refer to the velocity of the earth
in its orbit, we do not say simply 29.8, but 29.8 kilometers per second.
When the magnitude of the numerical result depends on the units chosen
we say that the quantity has dimensions. For example, the physical
dimensions of a velocity are those of a length, L, divided by the time,
T, or [LT™').

In Part I, we shall define and discuss briefly many types of physical
parameters, many of which we shall encounter again in later sections.
Most readers should be satisfied to give §§ 6-13 only a brief glance at
the first reading. The material of these sections is presented for complete-
ness and ready reference, with respect to later chapters.

2. Conversion factors. We frequently find it necessary to convert
measures in units of one system to those of another, a process ordinarily
effected through multiplication* by a conversion factor. The application
of conversion factors is greatly simplified because the number of funda-
mental physical quantities is limited. Disregarding for the moment quan-

*Occasionally an additive constant is also involved, as in the conversion of Fahrenheit
temperatures to the centigrade scale. Absolute Fahrenheit and centigrade conform,
however, to the regular conversion rules.

1



2 PuysicaL DIMENSIONS AND FUNDAMENTAL UNITS [§3

tities of an electromagnetic nature, we have the following fundamental
physical quantities: length, mass, and time, indicated respectively by the
letters L, M, and T. To these we may add the temperature, 6, expressed
on an absolute scale. We choose these quantities as the fundamental
physicai dimensions, and express measurements of other quantities in
terms of them. Area has physical dimensions [L’] and volume [L®]. No
new parameters appropriate only to area and volume are required. We
have seen that a velocity has dimensions [LT™"]. Similarly the dimensions
of acceleration are [LT™?], of force [MLT 2], of energy [ML*T~?], etc.

The factor necessary to change a measure in one system into units of
another is simply determined. We substitute the conversion factor for
each of the fundamental units into the dimensional formula for the meas-
ured quantity. The result gives the conversion factor. As an example,
one astronomical unit* is 1.495 X 10° km and one year is 3.16 X 107 sec.
Hence, the factor to convert velocities expressed in astronomical units
per year to kilometers per second is 1.495 X 10° divided by 3.16 X 107,
or 4.73. In other words, one astronomical unit per year is equal to 4.73 km
per sec. This application of the theory of dimensions is well known and
should require no further discussion.

In this book we shall employ the centimeter-gram-second (cgs) system
of units as far as possible. The International Angstrom Unit (I.A.) is
useful for measures of wavelength. For certain astronomical measures, the
radius of the earth’s orbit (astronomical unit), or the parsec (the distance
at which an astronomical unit subtends one second of arc), are more
convenient as units of length. Likewise the mass of the sun, and the
tropical year may be used in place of the gram and the second. The ap-
propriate conversion factors appear in Table I.

TasLE I
1LA. =1X 10" em lem = 10°I.A.
1 solar radius = 6.953 X 10" cm lem = 1.438 X 107" sol radius
lastunit = 1.495X 10" em lem = 6.691 X 107** ast unit
1 parsec = 3.084 X 10"® cm lem = 3.242 X 107" parsec
1 solar mass = 1.983 X 10* gram 1 gram = 5.043 X 10> solar mass
1 trop yr = 3.1557 X 10 sec* Isec = 3.1689 X 107° year

*One sidereal year equals 1.000038773 tropical years.

3. Dimensional constants. Many of the quantities of physics to which
names have been given, such as energy, action, force, are not readily
visualized. They have found a place as the result of theoretical develop-
ments interpreting the data of observation. As we shall see later on, these
quantities occur naturally in the mathematical equations that form the

*The semi-major axis of the earth’s orbit.



§ 4] Prysican DiMENSIONS AND FUNDAMENTAL UNITS 3

basis of physical theory. Many of these equations are differential in char-
acter.

The various ‘“‘constants’ of physics also have physical dimensions, since
their values depend on the system in which they are expressed. As an
example we have the so-called ‘“‘constant’” G defined by Newton’s expres-
sion for the law of gravitation, that the attractive force between two bodies
is directly proportional to the product of their masses and inversely pro-
portional to the square of the distance between them:

F = Gm,m,/r’, (1)

where @ is the ‘“constant’ of proportionality.

Physical equations, like the above, must be true, independent of the
units in which they are expressed. If we write in the dimensions, which
are known for all but the constant G, we have

[MLT™*] = G[M*L™], 2

where the purely dimensional parts of the equation have, in accord with
custom, been enclosed in square brackets. Equation (1), therefore, will be
independent of the units only if ¢ has dimensions defined by

[G] = MT'L°T’]. 3)

Such a constant is ‘“‘dimensional’’ because its magnitude depends on the
units used to express the other quantities in the equation. Most constants
of nature are of this variety.

4. Electromagnetic quantities. The units for electric charge and mag-
netic pole strength remain to be fixed. The formula for the force between
two charged spheres, containing charges ¢, and ¢, (Coulomb’s law), is
analogous to that for gravitation 3.1:

F = Ciq.q./ . (1)
Similarly the force between two magnetic poles of strengths p, and p, is
F = Czplpz/l-”z- 2)

The quantities « and u are characteristic of the media between the
attractive bodies. Electric and magnetic differ from gravitational forces in
that they depend on whether the intervening medium is conductive or
insulating, magnetically permeable or not. A copper screen, for example,
interposed between two bodies, will alter the electric forces, whereas the
gravitational action passes through unimpeded. We term the respective
quantities ¥ and u the ‘“dielectric constant’”’ and the ‘‘magnetic perme-
ability.”

Several alternative choices of units present themselves. We may select
some arbitrary units of electric charge and pole strength, adopt some
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convenient values for « and g in a perfect vacuum, and determine the
constants C; and C, to agree with the measured forces in cgs or other
basic units. We defined our units of mass in such an arbitrary manner.
This procedure has some advantages, as we shall note later on.

For the moment, we take both C, and « as dimensionless, with C; = 1
and ¥ = 1 for a vacuum, select our unit of electric charge to satisfy equa-
tion (1), and write

F = 91Q2/KT2- (3)

Units defined in this way are said to be on the ‘‘electrostatic system,”
since the formula depends upon the concept of only stationary electric
charges. This definition determines the physical dimensions of electric
charge, ¢, on the electrostatic system.

[MLT™] = £[L*'], 4)
or [q] — [M1/2L3/2T—1K1/2] — [M1/2L3/2T—1]’ (5)

since we have assumed that « is dimensionless.
We proceed to make a similar definition for magnetic poles. Setting
C, = 1, we define the pole strength in terms of dynamical units, thus:

F = Plpz/l-”"2- (6)

the so-called ‘‘electromagnetic system.” We set p equal to unity for a
vacuum.

The two systems of units are not independent, since we may also define
an electric current in terms of the magnetic field produced. There are
thus two possible expressions for the electric charge, one in the electrostatic
(es) and one in the electromagnetic (em) system. The values are not the
same, and we must reconcile the two systems of units. From (6) we see
that p has dimensions

[p] — [M1/2L3/2T_],LL1/2]. (7)

The force that a magnetic field exerts upon a pole is F = Hp. Hence the
dimensions of H are

[H] = [F/p] = [ML™"*T"'u™"?]. (8)
In the electromagnetic system we define the current, 7, in terms of the
resultant field H. IFor example, a current flowing in a circle of radius r gives
H = 2xi/r, 9

so that current has dimensions
[ilew = [M'?L7*T7"u™2]. (10)
Now, on the electrostatic system, current has dimensions of charge

divided by time, or

[i]e, = [MY2L¥*T%«'?]. (11)
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In one sense, the definition of current on the electrostatic system seems
far less artificial than in the electromagnetic. Even so, we measure current
in the laboratory with an ammeter, whose operation depends on the
magnetic field produced.

We must, of course, define the current so that its physical dimensions
are independent of the system. The ratio of our two sets of units requires
that

[ku]™* = [LT™], (12)

the physical dimensions of a velocity. Maxwell pointed out that this
quantity is ¢, the velocity of light in the medium.

Hence, if we use the electrostatic system, we shall reconcile the quan-
tities defined electromagnetically, if we take u = ¢* for free space. Con-
versely, if we take the electromagnetic system as fundamental, we shall
have to set k = ¢* for free space.

The so-called “Gaussian’’ system provides an alternative to the fore-
going. Here we adopt the electrostatic system as basic and take the con-
stant C, in equation (2) equal to 1/c. This procedure enables one to keep
« = u = 1 for free space.

The other widely used system of units is the so-called meter-kilogram-
second system. Where the Gaussian system employs only three funda-
mental quantities [MLT], the MKS system employs four, the extra one
being electric charge. This choice makes p and « also dimensional, so
that we cannot omit them from our equations, even for free space. The
Gaussian system is ‘‘unrationalized,” by which term we mean that factors
like 47 continually crop up in unlikely spots. By an arbitrary choice of
our unit of electric charge, we can make factors involving = disappear in
problems that involve rectangular symmetry and reappear in problems
that possess axial or spherical symmetry.

For MKS, Coulomb’s law takes the form

F = q.q./4we®, (13)

where ¢ is the charge in coulombs and r the distance in meters. The factor
47 in the denominator achieves the aforementioned ‘‘rationalization.”
Since the unit of charge is arbitrary, and we must measure F in “newtons,”
i.e. kilogram meter/second®, we must define the quantity e, a characteristic
of the medium related to « in the foregoing, so as to satisfy the dynamical
relation (3). For a vacuum, ¢ = ¢ = (107°/36x) farad/meter.

Equation (2), for the force between magnetic poles, has some limita-
tions, arising from the fact that magnetic poles, unlike electric charges, are
fictitious quantities. If poles did occur singly or if they could be even
reasonably isolated we should find (2) a satisfactory representation of the
force field. However, we ordinarily operate only with “induced” rather
than “real’” poles. Hence we introduce an induced pole strength or “mag-
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netic charge,” p, such that

p = up. (14)

Thus we write, instead of (2)
F = 02#ﬁ152/7'2 = ﬁzB; (15)
where B = uH, (16)

the magnetic induction as defined by Maxwell’s equations. Now, for MKS,
we set C, = 1/4x, and

F = upip/4mr’. (17)
We must take p = po = 4r X 1077 henry/meter. Then
(1/e00)'’* = 3 X 10° meters/sec = c, (18)
the velocity of light, as required by (12). We shall find, later, that
F =1iX B. (19)
Hence the physical dimensions of p must be the same as that of current,

or [QLT™Y.

Maxwell, himself, overlooked the fact that B is more fundamental than
H. Many of the older texts fail to point out the difference. Indeed some
inconsistencies occasionally enter as a result. Some writers have unjustly
attributed the resulting confusion to a supposed defect of Gaussian units.
However, the MKS system avoids the difficulty because of the necessity
of keeping the constants e and u in the equations.

In the MKS system, we employ such practical quantities as coulomb,
volt, ampere, ohm, watt, farad, etc., along with meter, kilogram, and
second. The fact that we can employ such units is the chief argument for
the MKS system.

Although engineers have specially favored MKS, many physicists have
felt that it is unduly cumbersome, especially when both electrical and
dynamical quantities appear in the same equation. Despite the heavy
campaign for general adoption of MKS, the Gaussian system will un-
doubtedly persist for some time to come. Even if MKS ultimately takes
over completely, necessity for reading and understanding the older books
and journals would seem to require a knowledge of both systems.

Here we hold no special brief for one over the other. In Part IV, which
deals with electricity and magnetism, we shall employ both systems con-
currently.

5. Definitions and dimensions of physical quantities. One should re-
member that the definitions of the various physical quantities depend upon
the way in which they enter into the mathematical equations of physics.
Although there is no a priori reason why quantities of dimensions like
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M*L~*T" should not appear in physics, nature fortunately seems to
prefer simplicity.

We introduce at this time definitions of various physical quantities and
their dimensions in terms of basic units. The list is somewhat more com-
plete than necessary for the purposes of this volume. The letters or com-
binations of letters that will conventionally be used to denote the given
quantity are given in parentheses. Occasional duplication should cause no
confusion. Some, but not all, of the vector quantities (i.e., quantities having
direction as well as magnitude) have been distinguished by bold-face letters.

Note that a dot above the quantity indicates the first derivative with
respect to the time, two dots the second derivative, etc. The physical di-
mensions appear, as usual, in brackets. The name or designation of the
unit is given at the end; cgs units are employed when available. For addi-
tional formulae, see the Smathsonian Physical Tables, which is the basis
of the following compilation.

Dimensions of Various Physical Quantities

6. Fundamental units.

LenegtH. (I, 2,9, 2, 71,8, ds, d, 1, ds, etc.) [L]cm. (1)
Mass. The quantity of matter a body contains. (m, M) [M]

% (gram). (2)
Tmve. (¢) [T] sec (second). (3)‘
TeEMPERATURE. (T) [O6] deg (absolute or K). (4)
DI1ELECTRIC CONSTANT. (k) [«]. (5)
MAGNETIC PERMEABILITY. (u) [ul]. (6)

7. Definitions from geometry and mechanics.
AREA is expressed in terms of a unit square. (4,8,dS) [L*] cm® (1)
VOLUME is expressed in terms of a unit cube. (V, dV, dr) [L’]

cm®. (2)
DEnsITY is mass per unit volume. (p = M/V) [ML™? gem™. (3)

FrEQUENCY is the number of times per unit of time that a given
physical quantity assumes the same value. (») [T7'] sec™'. (4)

LINEAR VELOCITY is the rate of change of the distance of an object
from a point.

(w=1=dl/dt,v) [LT'] cmsec™ . (5)
LINEAR ACCELERATION is the rate of change of velocity.

(a, a, I, °l/dt?, v) [LT?] cmsec™, (6)
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ANGLE is measured by the ratio of the length of an arc to its radius.
Since the two lengths are mutually perpendicular, the true dimensional
formula may be written [L,L; '], although it is frequently given as
unity, (i.e., dimensionless). When L, and L, are measured in similar
units, the angles are expressed in radians. The possibility of using
different measures for the two linear dimensions provides for the use
of other units of angular measure, such as degrees (6). (7)

ANGULAR VELOCITY is the angle described in unit time.

(= 6 = de/di, o).

[LL;"T™"'] or [T7'] sec™'. (8)
ANGULAR ACCELERATION is the rate of change of angular velocity.
(=6 =de/dt*) [LL;'T®] or [T7?] sec™. (9
AREAL VELOCITY is the rate of transcription of area by a radius vector.
1P dojdt) [L.L/T'] or [L*T7']. (10)

MomenTUM is the product of the mass of a moving body by its
velocity.
(p = mdl/dt = mi,p) [MLT'] gecmsec . (11)

MowMENT of an infinitesimal body with respect to a plane is the
product of its mass by its perpendicular distance from the plane. [ML]
g cm. For an extended body, of density p, the moment with respect
to the yz plane is [ px dr. With respect to a point, the moment (a’
vector) is [ pr dr; d7 is an element of volume. (12)

MowmENT oF INERTIA of a body about an axis is given by the integral
I = [ pr® dr, where p is the density at any given point, r its distance
from the axis, and dr an element of volume.

[ML?] g em®. (13)

ANGULAR MOMENTUM is the product of the moment of inertia of a
body by its angular velocity.

<L = py = f or(d/db) dr, L>
[MLIL,'T™'] or [ML’*T"'] g cm’sec”. (14)

MoMENT or MOMENTUM of an infinitesimal body with respect to a
a point is the product of the momentum of the body by its distance
from the point.

(M(dl./dt)l,, p.l.)
MLL,T™'] or [ML’T'] gcm’sec™, (15)
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For an extended body, we may best express the moment of momentum
as a vector product, [ pv X rdr. (In most problems the angular mo-
mentum and moment of momentum are equivalent.)

Force is the rate of change of momentum. In non-relativistic for-
mulae, where the mass does not depend on the velocity, it may be
defined as mass times the acceleration.

< d d’l

F=—mv~m

7 TR F) [MLT™®] g emsec ? ordyne

ForcE INTENSITY or force at a point. To calculate the value of the
-force, we must know the mass of the accelerated body. In many
instances the value of the mass is of no great importance. We may
investigate the intensity of the force field surrounding any body in
terms of the force acting per unit mass. The magnitude of this quan-
tity is termed the force intensity. Its physical dimensions are those
of an acceleration.

(F,F) [F/M = LT™.

We shall occasionally refer to the force intensity as the force vector.
Work is done when a body, acted upon by a force, moves in the

direction of the force. Work is the product of the component of the

force in the direction of motion, by the distance moved through.

<W= del)

[ML’T™*] g em®sec™ or dyne cm or erg.

EnErGY results from work done on a body. The work produces a
change of shape, of position, of velocity. In the first two instances
there is a change of potential energy, in the latter a change of kinetic.

T = KINETIC ENERGY = 1M1’

When energy is conserved, i.e., when the processes are completely
reversible,
V = POTENTIAL ENERGY = [ F dl.

Under these conditions, we may derive the force from the potential
energy, thus: ¥ = —adV/9l. When the system is non-conservative,
part of the work goes into heat, etc.

ToraL ENErRGY. (E, W, H). H refers specifically to the sum of
the kinetic and potential energies; H = T + V. H is the Hamiltonian
function. The Lagrangian function, L, will also be used for certain
problems; L = T — V. The dimensional formula for energy is the
same as that for work.

[ML*T™?] g em’sec™? or erg.

(16)

(17)

(18)

(19)
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PoTENTIAL. On occasion we shall find it convenient to define a
function that bears the same relation to the potential energy that the
force intensity bears to the true force. In other words, this new
function is the potential energy that a unit mass would possess at the
specified point. When the potential, V| is given as a function of the
coordinates, the negative of its partial derivative with respect to a
coordinate defines the force intensity in the direction of the coordinate.

F = —98V/3l. [L’T"®] cm’sec . (20)

TorqQUE, moment of force, or centrifugal couple, is the product of a
force by a length. It is sometimes defined as the rate of change of
angular momentum.

(T, Fl, dL/dt, T) [ML’T"*] dyne cm. (21)
PressuRE is the force per unit area.
(P,p) [ML'T™?] dyne cm™>. (22)

SoLip ANGLE. To measure the solid angle at a point, P, subtended
by a surface, first connect P, by an envelope of straight lines, to the
extremities of the surface and then draw, about P as a center, a sphere
of radius B. Let S be the area of the spherical surface included in the
solid angle. Then

w = solid angle = S/R*® (w, dw, Q)
Dimensions: [unity] or [LiL.?] steradian. (23)
8. Definitions in radiation theory.
ENERGY DENsITY, the energy per unit volume.
(p = E/V) [ML*T?/L’] = [ML'T"?] erg em™. (D

ENERGY DENSITY OF »-RADIATION, the energy per unit volume per
unit frequency.

(p») p=f py dv [ML'T™'] erg em™ seec. (2)
1]

FLux or rRADIANT FLUX, the energy flowing per unit time through a
given element of surface.
(F) [MT™®] ergem *sec’ or gsec . (3)

FLux oF »-RADIATION, energy per unit frequency flowing per unit
time through a given element of surface. (F,).

F = f F,dv [MT?] orgem 2. 4
0
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FLUX OF A-RADIATION, energy per unit wavelength flowing per unit
time through a given element of surface.

(F) F = f Frd\ [ML'T™] erg em™sec™
1]

SPECIFIC INTENSITY is the flux per unit solid angle (1), (1,), or (1)).
The dimensions are the same as for flux, with which intensity is all too
often confused. Further and more precise definitions will appear in the
sections on radiation.

ATOMIC ABSORPTION COEFFICIENT represents the area presented by
an atom that absorbs energy from an incident beam of radiation.

(@, @,) [L’] cm®.

MAss ABSORPTION COEFFICIENT represents the total absorbing area,
presented by all the atoms in a unit mass of material.

(k, k) [L°M7'] em®g'.

9. Heat units.

TEMPERATURE. (7T) [6]. Temperature ordinarily refers to the
reading of a thermometer scale. T occurs most frequently in physical
equations when multiplied by a dimensional constant. Under such
conditions the product has the dimensions of energy. We shall indicate
the presence of this multiplying constant by the dimensional symbol
[6’]. The expression

[6’] = ML*T?

is symbolic of the equivalence of heat and energy. Ordinary heat
measurements are based on the energy necessary to raise a unit mass
of water at a given temperature, by one degree. In thermal units,
quantity of heat has dimensions [MO]. The egs unit for heat or ther-
mal energy is the calorie; that for ordinary energy is the erg. The
factor necessary to convert calories into ergs is called the mechanical
equivalent of heat.

SpECIFIC HEAT of a substance is the ratio of the amount of heat
necessary to raise the temperature of a given mass by one degree C
to the amount required to raise the temperature of the same mass of
water by one degree. Being a ratio, the specific heat is dimensionless.

TEMPERATURE GRADIENT is the rate of change of temperature with
distance.

(dT/dl) [eL™].

THERMAL CONDUCTIVITY is the quantity of heat transmitted per unit

time per unit area per unit temperature gradient.

[ML™'T"'] in thermal units, or
[MLT 67'] indynamical units.

11

()

(6)

()

(8)

(M
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10. Electrostatic units.
QUANTITY OF ELECTRICITY has already been defined.

@, q, Ze) [MY?L**T '«'*] esu. (1)

ELECTRIC INTENSITY is the ratio of the force on a quantity of electric-
ity to the quantity of electricity; compare argument of (7.17).

(F/Q [M'’L7*T™'«]. 2

EvLECTRIC POTENTIAL Or electromotive force is the ratio of the work
done in an electric circuit per unit of electricity operative.

(IV/Q) [MI/ZLI/ZT—l K—I/Z]. (3)

EvLECTRIC MOMENT with respect to a plane is the product of the
charge by its distance from the plane.

(P, Q) [MYL¥*T™ "), @

In general, the electric moment with respect to a point is a vector,
P = [ pr dr, where p is the density of electric charge.
Capracrty is proportional to the ratio of a charge to the potential of

the charge.
C = @Q/potential [L«]. (5)

Capacity is expressed in centimeters in es units.
ELECTRIC CURRENT is the rate at which electricity flows past a given
point.

z- — Q — dQ/dt [M1/2L11/2r1\—2K1/2]' (6)
PoTENTIAL GRADIENT is the rate of change of electric potential with

distance.
[MI/ZL_I/ZT_IK_UZ]. (7)

ELECTRIC cONDUCTIVITY is the quantity of electricity transmitted
per unit time per unit area per unit potential gradient.
(77" «]. (8)

CONDUCTANCE is the ratio of a current flowing through a conductor
to the difference of potential between its ends.

[LT " «]. 9)
REsISTANCE is the reciprocal of the conductance.
[L'T«]. (10)

11. Electromagnetic units. The definitions for many of the various
electromagnetic quantities are analogous to those for electrostatic quantities
and need not be repeated in detail.
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MAGNETIC POLE STRENGTH is defined by equations (4.2), analogous to
(4.1) for the electrostatic system.

(p) [M1/2L3/2T—1#1/2]‘ (1)
MAGNETIC FIELD INTENSITY. [MY2L7V*T 'u™V?. (2)
MAGNETIC POTENTIAL. [M'?L'*T™'u™V2). (3)
MAGNETIC MOMENT. [M"Y?L**T7'u"?). (4)
CurreNT. [MZLY*T7',7V2. (5)
QUANTITY OF ELECTRICITY 1s the product of the current by the time.
[M1/2L1/2[.l.—1/2]. (6)
ELECTRIC POTENTIAL., [M'2L**T7%u'%]. (7
Caracrtance. [L7'T%7']. (8)
ConpucTance. [L7'Te™']. (9)
REsIsTANCE. [LT 4l (10)

SELF INDUCTANCE is the emf (electromotive force) produced in a
circuit, per unit rate of variation of the current through the circuit.

emf/(di/df) [Lul. (11)

12. The physical constants. We have already studied one example of
the way in which certain dimensional constants enter naturally into the
equations of physics, that of the constant of gravitation, G, which appeared
in equation (3.1). Many such constants exist. They appear sometimes
singly and sometimes in combination with one another. Their values are
never fixed by a priori reasoning.* The equations are intended to be
quantitatively representative of nature; therefore the values of the con-
stants must be determined by experiment. Since successive experiments
always yield the same results, within the limits of experimental error, the
quantities are said to be ‘‘constants of nature.”” The experimental methods
of determining the values of various physical constants do not fall within
the scope of this book. Birge has given an admirable summary.f

A number of choices for the fundamental constants are presented, from
which we may derive the others. The constants ordinarily chosen are not
necessarily the simplest in the dimensional sense, but the ones most easily
and accurately determined from experiment. The constants fall into two
categories, the one relative to fundamental physical relations and the other
dependent on reconciling various systems of units employed. Table (12.1)

*Various investigators have proposed recondite semi-metaphysical theories intended
to fix the values of certain dimensionless ratios, but no definite and entirely satisfactory
proofs of this reasoning have appeared.

1Cf. Reviews of Modern Physics, 1, 1, 1929; or Smithsonian Physical Tables, 8th rev.
ed., 1934, pp. 73 ff.
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gives the fundamental and derived constants, as calculated by DuMond
and Cohen.

LEAST-SQUARES ADJUSTED VALUES OF PRIMITIVE UNKNOWNS AND
FuncrioNns THEREOF

(See end of table for explanation of I" coefficients)

N Avogadro’s number:
(6.02544 &= 0.00011) X 10* gm mol™ (phys) (—1.241T)

c Velocity of light:

(299790.2 & 0.9) km sec™* (0.023T")
£ Electronic charge:
(4.80223 4= 0.00007) X 107" esu (1.291T)
e = e’ Electronic charge:
(1.601864 = 0.000024) X 107* emu (1.268I")
m Electron rest mass:
(9.10721 £ 0.00025) X 107 * g (1.077T")
h Planck’s constant:
(6.62377 4= 0.00018) X 107" erg sec (2.073T")
h= h/2mw (h-“bar”):
(1.054206 == 0.000028) X 10~ erg sec (2.073T)
N/N, Conversion factor from Siegbahn z-units to milliangstroms:
(1.002020 == 0.000011) (0.349T)
F = N¢ Faraday constant:
(2.893556 == 0.000021) X 10" esu g mol™" (phys) (0.050T")
F' = N¢' Faraday constant:
(9651 .94 =+ 0.07) emu g mol™’ (phys) (0.0271)
h/€ (1.379311 == 0.000018) X 107" erg sec esu" (0.782I")
¢/m  Specific charge of the electron:
' (5.27300 =+ 0.00010) X 10" esu g™* (0.214T)
g'/m Specific charge of the electron:
(1.758897 == 0.000032) X 107 emu g~* (0.191T)
h/m (7.27311 % 0.00009) cm® sec ' or erg sec g (0.966T)
a= 2re’h ¢! Fine structure constant:
(7.29698 == 0.00005) X 107 (0.486T")
o 137.0429 + 0.0009 (—0.486T)
o (5.32460 % 0.00007) X 107° (0.9721")
o/2m (1.161351 = 0.000008)10° (0.486T")
(1 — a®)V? 0.99997338 (—2.6 X 10°T)
Nee = hm ¢! Compton wavelength of the electron:

(2.426067 &= 0.000032) X 107 '° em (0.973T)
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A, = hm~'c ' @m)7! Compton radian length of the electron:
(3.86120 == 0.00005) X 10" cm (0.973T)
Nm Atomic wt (electron):
(5.48749 = 0.00010) X 107* (phys) (—0.164T)
(4mc) " (e’ /m) Zeeman displ. per gauss:
(4.66888 == 0.00009) X 107° em ™ gauss ™ (0.168T")
ao = K{dnrme)™ First Bohr radius:
(5.29151 = 0.00003) X 10~° em (0.487T)
af = ag(1 — of)'? Separation of electron and proton in ground state: of H'
29137 £ 0. X1 cm .
(5.29137 = 0.00003) 0’ (0.487T")
al! = a}R./Rg Radius of electron orbit referred to center of mass for
normal H':
(5.29425 = 0.00003) X 10~° em (0.487T")
ro = &€m ¢ ? Classical radius of the electron:
(2.81751 == 0.00006) X 107 cm (1.459T)
2 (7.93839 == 0.00032) X 107%° em® (2.918T)

H Atomic wt hydrogen:
1.0081284 =+ 0.0000030 (phys)

H" = H— Nm  Atomic wt proton:

1.0075797 == 0.0000030 (phys) (8.94 X 107°I)
H/H* = R./Ru 1.00054462 4= 0.00000001 (—8.94 X 10°°I")
H'/H = Ry/R. 0.99945567 4= 0.00000001 (8.94 X 107°I")
H'/Nm Ratio proton mass to electron mass:
1836.139 + 0.034 (0.164T0)
Nm/H* Ratio electron mass to proton mass:
(5.44621 = 0.00010) X 107* (—0.164T)

R, Rydberg for infinite mass:
(109737.323 = 0.010 cm™")

Ra = (1 — Nm/H)R.. Rydberg for hydrogen:

109677.591 == 0.010 em™ (8.94 X 10°°T)
= mH"/H Reduced mass of electron in hydrogen atom:
(9.10225 == 0.00024) X 107 g (1.077T)
(1/16)Ryuc? Fine structure doublet separation in hydrogen:
(0.3649932 + 0.0000048) cm ™ (0.9721)
o= 2r'Ry/15¢°N*  Stefan-Boltzmann constant:
(5.6699 - 0.0009) X 107° erg cm™* deg™* sec™ (—1.301T)
¢, = 8whe First radiation constant:
(4.99071 = 0.00014) X 107 *° erg cm (2.096T)
¢, = heNR;' Second radiation constant:

(1.43868 == 0.00006) cm deg (0.855T)
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c/c  Atomic specific heat constant:
(4.79894 £ 0.00021) X 107" sec deg

Boltzmann’s constant:
(1.38026 == 0.00006) X 107*° erg deg™

Moo T = chN/4.965114R, = 0.2014052c;
(0.289757 == 0.000012) cm deg

Bohr magneton:
(0.927120 &= 0.000022) X 10~*° erg gauss

po(1 + o/2r — 3d’/n°)
(0.928182 == 0.000022) X 107> erg gauss™

(Bk/N)"* = (3Ro/N)"

k= R,N'

po = he'/(4wm)

ment per molecule:

Theor. magnetic moment of the electron:

[§12

(0.832T")

(1.241T)

Wien's displacement law constant:

(0.855T")

(2.264T)

(2.269T)

Multiplier of (Curie const.)"’? to give magnetic mo-

(2.62148 == 0.00007) X 107> (erg mole deg™")""* (phys) (1.241T)

8romh > Schrédinger constant for a fixed nucleus:
(1.63894 = 0.00005) X 10” erg™' em™>
8ruh Schrédinger constant for the hydrogen atom:

(1.63805 == 0.00005) X 10° erg” ' em™>
E,=cF107
(931.152 = 0.008) Mev (amu)~ ' (phys)

Conversion factor from grams to Mev:
(5.61060 == 0.00009) X 10°° Mev g~

E, = &(//m)107 Energy equiv. of electron mass in Mev:
(0.510969 == 0.000010) Mev electron-mass "

E.H'/Nm Energy equiv. of proton mass in Mev:
(938.210 <= 0.008) Mev proton-mass -

Compton wavelength of the proton:
(1.321287 == 0.000017) X 107" em

Compton radian-length of the proton:
(2.102894 == 0.000028) X 107 em

Wavelength associated with 1 ev:
(12396.44 == 0.17) X 107° cm

Frequency associated with 1 ev:
(2.418357 == 0.000032) X 10" sec”

Wave number associated with 1 ev:
(8066.83 == 0.11) cm™

€10%/c Energy associated with 1 ev:
(1.601864 == 0.000024) X 10™* erg

Energy associated with unit wave number:
(1.98574 &= 0.00005) X 107'® erg

Speed of 1 ev electron:
(5.93110 == 0.00005) X 107 em sec”*

E,= 107

!
[

Aer = NoeNm/H"
Ap = K. Nm/H"
Xo = (e H107°
1

vo = 10%h™'c”

9o = 10° en”'¢?

E1=hC

v = [2 - 10°(e//m)"/*

(—3.069T)

(—3.069T)

Conversion factor from atomic mass units to Mev:

(0.019T)
(—1.222T)
(—0.145T)

(0.019T)

(0.809T")

(0.809T")

(0.828T)
(—0.805T)
(—0.828T")

(1.268T)

(2.096T)

(0.0905T)
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(Ry/F")107° Energy associated with 1° Kelvin:

(8.61656 == 0.00036) X 107’ ev - (—0.027T)

(F'/Ry)10° “Temperature” associated with 1 ev:
(11605.6 4= 0.5) deg Kelvin (0.027T)

ne = N/Vo Loschmidt’s number:
(2.68744 =+ 0.00007) X 10" em™ (—1.241T")
2mk)*/%(2.71828)°h " N~/
Sakur-Tetrode constant

(— 5.57305 == 0.00007) (0.225T)
So (—4.634907 == 0.000036) X 10° erg mole™ deg™ (0.225T)

In the preceding table, the uncertainties of the most poorly determined
value limit the accuracy of each expression. Among the atomic quantities,
the one least well known is a factor related to the hyperfine structure
shift of 2S,,, of hydrogen. Theory proposes the relationship:

Avg = o’(u,/)RaG .

The quantity G, whose nature we need not record here, is imperfectly
known and is subject to future changes as we revise it from refined ex-
perimental determinations. Designate our best present guess as G* and
define a quantity T, such that

r = 10%G°/¢° — 1).

The quantities set in parentheses to follow each value of the above table
indicate the change, in parts per million, needed to correct the tabulated
value for any error in the estimated G, if later studies show that G is not
the correct value.

For example, under N we find the quantity (—1.241T). If we should
later find that (G°/g*> — 1) = —30.6 X 107° (—1.241T = 38). Conse-
quently we should have to increase the tabulated value of N by 38 X 107°
or 38 parts per million.

13. The checking of physical equations. As was mentioned in the pre-
vious section, we are at liberty to choose any of the constants we wish
as fundamental. The constants appearing most frequently in physical
equations are the following:

gravitation @ = 6.664 X 10°° dyneem®g®> [M'L’T7? (1)
velocity of

light ¢ = 2.99796 X 10" cm sec”’ [LT™ ©)
electronic

charge &= 4770 X 107° es units M2 LT (3)
electronic

mass m=9.035X 107* g [M] “4)
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Planck’s

constant h = 6.547 X 1077  erg sec [MLT™ (5)
Boltzmann’s

constant & = 1.3708 X 107"® erg deg™’ IML*T’67'] (i)
Loschmidt

number 7, = 2.705 X 10  em™® L3 (7)

The constants usually occur in combination with the physical variables,
time, velocity, energy, etc., which represent the parameters of the partic-
ular physical systems under investigation. An equation is a statement of
the functional relationship between the parameters. Newton’s equation, for
example, expresses the dependence of the gravitational force upon the
masses of and the distance between two bodies. Assignment of numerical
values to the physical constants and to the independent parameters leads
to a numerical value of the force.

The two sides of the equation must agree dimensionally as well as
numerically. If, after carrying through a laborious analysis, we substitute
the dimensions of the various quantities into the equation and find that
the left-hand side represents a force [MLT™*] and the right-hand side an
acceleration [LT?], we must have inadvertently omitted or lost a factor
of dimensions [M] in the calculation. Dimensions, accordingly, form a
rapid means of checking the accuracy of algebraic computation. If physical
constants and parameters occur in a logarithm or an exponent, their
combination must ordinarily be dimensionless. Otherwise the value of the
quantity would depend on the units employed.

In checking the dimensions of differential equations, the student should
note that derivatives also possess dimensions. The following examples are
_ self-explanatory and will be a guide to more complicated forms.

[ =dl/di, [LT™; & = (dl/dy?, [L’T];
I = a/de, [LT™?;  dl/de, [LT™].

Dimensional Analysts

14. Derivation of equations. The requirement that equations must
balance dimensionally, plus the fact that the number of fundamental
dimensions and physical constants is limited, places a powerful tool in our
hands. If we suspect that certain parameters may enter into a certain
physical relationship, we can set up a general equation between the con-
stants and variables. The condition of dimensional equality requires that
the variables combine with one another so that the exponents for each
dimension are identical on each side of the equation. Thus we may often
determine the functional form of an equation except for the numerical
factors of zero dimension. We call this procedure dimensional analysis.
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To illustrate the method we shall first of all investigate the classical
example of the relationship between the parameters of the pendulum and
the period of its swing, under gravitational action. The constant of gravi-
tation G may be expected to enter, but none of the others. Atomic con-
stants could play no part in the process. The constants £ and n, will not
come in, if we suppose the pendulum to be placed in an evacuated chamber
at constant temperature. The parameters characteristic of the pendulum
are its length, I, and the mass, m, of the bob. Let ¢ be the period of its
swing. We should expect the swing to depend on the acceleration of
gravity, g, which is given by

GM u
g="%", LT )
E
where M ; is the mass and Ry the radius of the earth. Then we may write
t = g"ml, (2)

where «, 8, and v are numerical exponents to be determined. The dimen-
sional analogue of this equation is

[T = MPL”**T%7], (3)
by which we see, equating exponents on both sides of the equation, that
B=0 y+a=0 —2a=1
o= —1/2 8=0 y = 1/2.
Thus t = 2rvV'1/g. (4

The numerical factor 27, which dimensional analysis leaves undetermined,
has been inserted for reference. The period of swing proves to be inde-
pendent of the mass, a result that experiment and further theoretical
analysis substantiate. In this development we have omitted consideration
of 6, the angle of swing, which actually does enter into the problem for
large amplitudes. Here dimensional analysis gives no information, except
that we may expect a dimensionless factor f(6), to multiply the right-hand
side of (4).

The method finds immediate application to many problems of physics
and: astronomy. It has been suggested that certain stars, the Cepheid
variables, whose light and radial velocities undergo periodic variations, are
actually pulsating. We suspect that the period, {, may depend in some
way upon the star’s radius, R, and mass, M. We also expect that G will
enter because the restoring force that tends to limit the pulsations is
gravitational. Hence we write

t = G'R°M", (5)
[T — M—a+7L3a+ﬁT—2a], (6)
—2a =1 3a+8=0 —a+vy=0

a= —1/2 B =3/2 vy = —1/2.
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Thus { = (2)<§];>1/2 = <?—r>1/2(Gp)_”2, (7

where p is the mean stellar density. Sterne gives the expression
as t = (6mB)'"*(Gp) ™", ®

where 8 is a dimensionless parameter depending on the mode of vibration
of the star and the ratio of the specific heats of stellar material. Equation
(8) fits the observational data very closely, within the uncertainty of our
knowledge of the parameter 3.

Let us investigate the problem presented by Kepler’s third law of
planetary motion, the relation between R, the planet’s mean distance from
the sun, and ¢, its periodic time. When we introduce the parameters G
and M, the solar mass, the resulting equations are identical with equations
(5)—(7), except for an undetermined factor =. We find, on introducing the
factor =, and squaring (7), that '

£ = (4R’ /GM. (9)

The squares of the periodic times are proportional to the cubes of the
mean distances. A more rigorous analysis shows that we should replace
M by the sum of the masses of sun and planet. This difference becomes
important for the problem of the spectroscopic binary, a double star whose
components possess comparable masses.

We may determine the functional form of many important physical
laws in similar manner. Take Stefan’s law, for example, which expresses
the relation between energy radiated per ecm” per second (flux) by a hot,
perfectly emitting body, and the temperature of the body. We select the
physical constants, ¢, h, and k, as relative to the problem, in addition to
the absolute temperature, T and the flux F.

F = c*WE"T. (10)
[MT—S — MB+7La+2ﬂ+2‘yT—a—B—2'ye—-7+5]. (11)

(In the dimensional equation, T represents time and © the temperature).
We have four equations and four unknowns. The solution is

a= —2 g = —3, vy =6 =4.

Note that the temperature must always be accompanied by the factor k,
or a parameter of similar dimensions. One may save some time in checking
equations by immediately setting 7T equal to an energy. Stefan’s law

becomes
_ &L"') (kT)*
F= (15 W (12)
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To derive Boyle’s gas law we look for a relation between P, n,, k, and 7.

P = nkT?, (13)
[ML'T™? = MPL7** T *gF+7], (14)

Herea = 8 =+ = 1, and
P = n,kT. (15)

Further illustrations of dimensional analysis appear in the problems at
the end of the chapter.

15. Dimensionless combinations. Let us look for a dimensionless com-
bination of the physical constants m, ¢, and c.

coNsT = m°®e%”,

1 — [Ma+ﬂ/2L35/2+7T—5—7].
The result gives two equatioﬁs that are inconsistent with one another:
3B/2+y=0, B+v=0

Thus no solution is possible. If, in addition, we include Planck’s constant,
h, we find that

1 — Ma+(ﬂ/2)+8L(3ﬁ/2)+7+26T—B_7_8. (1)

Here we have four variables and only three equations. Regardiug 5 as
fixed and carrying out the solution in terms of § we find

a =0, g = —2¢, Y = é.

Hence the constant is (hc/e?)’. For the simplest form we take § = 1.
This constant occurs in numerous physical applications, especially when
written in the form hc/2we’, where it appears in the theory of atomic
spectra, related to the fine structure of lines. Although the numerical
value, according to the best determinations, is 137.29 & 0.11, Eddington
has argued that its true value is exactly 137. Since this constant is truly
dimensionless, its value is independent of the system of units.

There are many examples where dimensionless combinations of physical
constants and parameters may enter. Consider the problem of the distri-
bution of atomic velocities in a gaseous assembly. Let P(v) dv be the
probability that a given atom will have a velocity between » and v + dv.
The integral

fm PG) dv = 1, @)

since the probability that the atom has some velocity is unity. The product



22 PraysicaL DiMENSIONS AND FUNDAMENTAL UNITS [§16

P(v) dv must be a pure number, hence P(v) has the physical dimensions
of v,

P@) = mkT, 3)
or [L7'T = ML, F2vg ™, 4)
The equations are

a+vy=0, B+2y=-1, —B—2vy=1, —yv+6=0.

The second and third equations prove to be identical, so that a unique
solution is no longer possible. We have

a=—5 B=—1-—25 ~v=o.
Thus Pw) = v~ (md*/kT)"°. (5)

Whenever we have one more unknown than equations, we shall find that
a dimensionless factor usually occurs. This factor may be present not only
as a multiplying constant but it may also occur as an exponent, as an
argument of a logarithm, cosine, etc. We cannot carry the dimensional
analysis further in this example. We might conclude, from the condition
of equation (2), that § is negative and that an exponential of the form
e(—const mo3/kT) 2

is involved, to make the definite integral finite at both limits.
Later on, by the methods of statistical mechanics, we shall prove that

P@) = 4w ' (mv’/2akT)> %e™ ™" /%", (6)

This problem illustrates of the limitations of dimensional analysis.
Nevertheless, even if no unique solution is possible, the general form of
the actual equation may often be determined. Let A be the physical quan-
tity under discussion, B any simple combination of parameters of physical

dimensions equal to those of 4, and X, ¥ ..., etc., the simplest dimen-
sionless combinations. Then
A = consTt Bfi(X)fo(Y) ..., (7)

where the arbitrary functions, f, may be exponential, logarithmic, etc., or
only multiplicative.

16. The choice of constants and parameters. The success of a particular
application of dimensional analysis depends on proper choice of constants
and variables. The particular problem under investigation generally
dictates the choice. We cannot include all conceivable constants for then
the equations would be indeterminate. Dimensional analysis is ordinarily
employed as a short cut. One must rely upon physical intuition. The
following rules are general guides for the choice of the constants to be
employed.

Rarely does any question arise as to whether G enters or not. G never
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comes into atomic or simple radiation problems. The constants n, and k
enter into problems only where matter is considered in the aggregate. The
quantity, k, enters into a problem only when the temperature is involved.
Radiation and atomic problems are divisible into two categories: classical
and quantum. They differ from one another only in that the Planck
constant h appears as an additional factor in the latter. For atomic prob-
lems, ¢, h, and m are important. For questions involving radiation, ¢, A,
and k are the relevant constants.

17. Numerical coefficients. One rather surprising fact emerges from a
comparison of the equations derived by dimensional analysis and the
exact equations, derived by other methods. The numerical multiplying
factor, indeterminate by dimensional methods is surprisingly close to
unity, and usually quite simple in form. 27 occurs very frequently as a
factor. The most complicated we have met with so far is 2°/15. Occa-
sionally the result is exact, as for the gas law. No general way exists for
proving that the numerical coefficients must be nearly unity, but ex-
perience ‘indicates that the mathematical processes giving rise to the
constant yield factors of no high order of magnitude.

This fortunate circumstance means that the dimensionally derived equa-
tion, if unique, is very nearly exact. Very often an exact detailed solution
is very difficult. All the labor will be wasted if the theoretical result should
turn out to be in disagreement with experiment. We can often save much
time by employing dimensional analysis and testing the result with the
observational data. If we obtain a rough check, the work of a more de-
tailed analysis is justified.

As an example we may discuss the observed splitting of spectral lines
in a magnetic field, as first observed by Zeeman. Suppose that we have
quantitative observations showing that the frequency shift, Aw, is pro-
portional to the field. We are considering a detailed study by means of
the classical theory of light. The parameters involved are &, m, ¢, and H,
the last being the magnetic field intensity. We shall express ¢ and H in
Gaussian units:

Av = &*mlc"H. (1)

The exponent of H is set equal to unity because of the observational result.
Dimensional analysis then gives the formula

Av = (1/4m)eH /me. (2)

Now, disregarding the numerical factor, which we must consider as un-
determined, test the observational data, that the shift is of the order of
10° frequency units per gauss, by substituting in the equation:

Av/H ~ 10° ~ ¢/me = 4.77 X 107'°/9.03 X 107** X 3 X 10"
= 1.76 X 10". 3
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The agreement is sufficiently close to be accounted for by a simple nu-
merical constant, and the more detailed investigation is warranted.

The foregoing example illustrates how we may employ experimental
data to make the equation determinate. If we had set the exponent of H
equal to & instead of to unity, we should have arrived at the indeterminate
result

Av = const (mc®/e)(H/m’c*)’. (4)

SELECTED PROBLEMS FOR PART 1

1. The velocity of the sun is 29.8 km sec™'. Find its velocity in parsecs per
century.

2. From the known radius of the earth, 6.378 X 10° cm, its mass, 5.983 X 10”7 g,
and the gravitational constant, find the acceleration of gravity, ¢, at the surface of
the earth. Compute the value of g at the surface of the sun. Find the appropriate
conversion factors to reduce to a system expressed in astronomical units per year
per year. Prove that ¢ has the physical dimensions of an acceleration.
g = GM/R’.

3. Determine the physical dimensions of z in the following equations. (Take ¢,
the electronic charge, in es units throughout.)

(a) x = he/NkT.
(T = temperature; A\ = wavelength; £ = Boltzmann’s constant)
(b) z = we®/me. (¢c) z = (2kT/m)">.
(d) 2 = 2’ /)T — 1)7'. (v = frequency)
(e) x = (2emkT)*?/H.

4. Which, if any, of the following equations are in error dimensionally?

(a) md’z/dt* = (2h’/c)("*" — 1)7'. (v = frequency; z = length)
(b) @, = we’/me. (@, = atomic absorption coefficient)

(¢) A = K'¢/2rme*. (A = wavelength)

(d) p = poe—ZGR/‘m'u’.

(e) d(log p)/dz = —m’G/R’kT. (p and p, are densities; R = radius;
v = velocity)

5. On the supposition that the energy density of »-radiation in a thermodynamie
enclosure depends only on 7, k, ¢, and », prove that p, = (8m°/c*)kT, the well-
known Rayleigh-Jeans law.

6. In electromagnetic theory one may show that a weightless sphere, electrically
charged, possesses an effective mass. For a given charge, the mass depends on the
radius. On the assumption that the total mass of an electron results from its
charge, prove that the relation between the radius and the parameters €, m, and ¢
is r = (3)¢’/m®. Compute the numerical value of r in em.

7. Form the dimensionless products from combinations of the constants %, ¢, €,
m, and G. (Since the square of any dimensionless product is also dimensionless,
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give only the lowest powers of the combinations.) Hint: Employ an extension of
the discussion of § 15.

8. Assume that the energy of ionization, E, for hydrogen, and radius (a) of an
electron’s orbit in an atom depend on the constants €, m, and h. Prove that

E = 2m)me*/’; a = ()W’ /me.

9. If the magnetic moment, u, of an electron in the first Bohr orbit depends on
g, m, ¢, and h, show that u = (1/4m)eh/me, where ¢ is expressed in es units. Note:
The dimensions of x are [M"?L**T™] in the em system.

10. Select some other physical or astronomical problem and determine the rela-
tionship between the parameters and constants by means of dimensional analysis.



PART II

Mechanics and Dynamics

Principles of Mechanics

1. Introduction. Several alternative methods exist for investigating
problems of mechanics and dynamics. Each method starts with some basic
assumption, from which the mathematical development proceeds toward
some result capable of being tested by observation. Which method we
use or which assumption we take as fundamental is largely a matter of
convenience, since the basic hypothesis of one development appears as a
logical corollary in the others. Certain approaches are, of course, more
general than others. In all, however, agreement with observation is the
final test of the validity of the underlying assumptions.

On the basis of experiments, in particular those performed by Galileo,
Newton enunciated his three laws of motion:

I. Every body tends to remain in a state of rest or of uniform rectilinear
motion, unless compelled to change its state through the action of an
impressed force.

IT. The “rate of change of motion,” i.e., the rate of change of momentum,
is proportional to the impressed force and occurs in the direction of the
applied force.

III. To every action there is an equal and opposite reaction, i.e., the
mutual actions of two bodies are equal and opposite.

For the present, we shall start from these laws. Other methods of ap-
proach, e.g., that of Hamilton, will be discussed presently.

2. The equations of motion. We may write Newton’s second law as
follows:
F = dp/dt. (1)
Since the force, F, and momentum, p, are both vector quantities, having
direction as well as magnitude, the above expression is incomplete. We
may take this fact into account by resolving the force into components
parallel to the axes of the coordinate system employed. For a Cartesian
system, we may write

p, = mv, = mdx/dt; dp./dt = m d’x/dE, (2)

27
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and similarly for the y- and z-components. For ordinary problems, where
the velocity, v, is small compared with that of light, we may disregard
variation of mass with velocity. For velocities approaching that of light
a relativistic treatment is necessary.

Consider an assembly made up of n particles, appropriately numbered.
The equations of motion of the ¢th particle become

m; d2xi/dt2 = X{, m; dzyi/dt2 = }Y,', m; d22,-/d152 - Z,', (3)

where X;, YV;, and Z; are the components of force at the position of the
particle, resolved along the three Cartesian axes. These equations are of
the second order and each will have two arbitrary constants in its solution.
The set of 3n equations, consequently, involves 6n constants, which we
identify with the 3z initial coordinates and the 3n initial velocity com-
ponents at time { = 0.

3. Conservation of energy. To integrate the equations (2.3), multiply
the first equation through by dz;/dt. The left-hand side is immediately
integrable.

dxide;, 1 d (%)2 _ v 4z

mia? a2 ™aa\a) =X (1)
1 dr.\*
9 m,<m> = f X, dx; + CONST. (2)

The right-hand side can be integrated further only if we know the func-
tional dependence of X; on z,. Summing over all the particles of the assem-
bly and over the coordinates x, y, and z, we have

Sy (%) + (%) + (5]
_ Z[[de+f Y,.dy,.+fz,.dz,.:| —E

where E is the sum of all the constants of integration.

Summations like the first, which may be written D, mq?, where v, is
the space velocity of the sth particle, occur so frequently in physics that
we give a special name to them. We call the first summation the kinetic
energy of the assembly, and designate it by the letter 7. The second
summation is the work, W, done by the forces in moving each particle
from its initial to its final coordinates. The underlying algebra contains
one implicit assumption. We must carry the integration along the actual
path followed by the particle, because, if frictional forces are involved, W
will depend on the path of integration.

For certain types of force fields, however, W is a constant, independent
of the paths followed by the particles and dependent only on the initial
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and final coordinates. When this condition obtains, energy is said to be
conserved for the assembly. In other words, if a body moves from 4 to B
and then back to A, the initial energy conditions repeat themselves. We
may then define a function, V, of the coordinates of the particles, so that

W = —V 4+ consrt. 4

We call V the potential energy. Note that when a particle moves in the
direction of the force, W is positive but the potential energy decreases.
The additive constant is arbitrary and depends on the choice of zero
point for V. In place of (3), we may write, symbolically,

T—W=T+V =E. (5)

The total energy, E, of the system is constant for such an assembly.
Further discussion will appear in § (8).

4. Conservation of momentum. Let X;, be the r component of force
on the particle 7, caused by action of the particle j. Newton’s third law
of motion requires that the force resulting from the interaction of any
two systems be equal and opposite. Hence

X = —X;. e))

If the force on a particle ¢ results from the action of all the other particles
in the assembly,

Xi=Xil+Xi2+--'Xii+---=ZXij- (2)

Formally we may take care of the meaningless term X, by defining it to
be zero. If, now, we sum both sides of equation (2) with respect to 7, we
have

Z_X.'= Z_ZXii=(X12+X21)+(X13+X31)+---

+(X23+X32)+---=0; (3)

by (1). (We have omitted the zero terms X,,, X,,, etc.) Since force is
the rate of change of momentum, we express and integrate equation (3)
as follows (cf. equation 2.3):

&z, d dr,
Z{X,’ = Zimiitﬁ_—dt - m; dt —'O- (4)

Z m, Et— = > p = 7 Z m;r; = CONST = da,. (5)

The sum of the z components of momenta is thus conserved in an assembly
where no external field is present. We may construct similar proofs for
the ¥ and z components.
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5. Motion of the center of mass. Equation (4.5) gives, on further
integration,

Z mx; = at + b, (1)

where b, is a second constant of integration. The quantity m,x; is the
moment of mass of particle 7 with respect to the yz-plane. The z-coordinate
of the center of mass, £, of the assembly is, by definition,

i = Zmle/z m;. 2

Equation (1), together with its analogues in y and 2, prescribes that the
center of mass of the assembly move with uniform velocity in a straight
line.

6. The law of areas and conservation of angular momentum. Let
P,P, in Fig. 1 be the projection of the trajectory of particle ¢ on the zy-
plane. Let the coordinates of the points A and B be respectively (z, y)

Y

I1-1.

and (z -+ dz, y 4+ dy), or, in polar coordinates, (r, ) and (', 8 -+ dé).
A and B are supposed to be an infinitesimal distance apart. Under this
condition " ~ 7; the element of trajectory approaches a straight line,
and we may regard the area OAB as a triangle of area ir° df. Employ
the relationships

2

=24+ 4°, 0 = arctany/z, d0=w. (1)

« +y
Therefore the triangle has an area
1

2 1
57 d0=§(a:dy—ydx). (2)
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The moment of inertia of particle 7, with respect to the origin is, by defini-
tion, m,r? . The particle possesses an angular velocity, dé,/dt. Hence the
angular momentum, L;, which by (I-6.14) is the product of these two
quantities, becomes

_ 2 dai _ ( d_y_; _ dxi>
L; = m;r; i m\x; di Y di/ 3)
The total angular momentum, L, is
_ dy: _ ‘!&)
L= Xomfe -y %), @

We are interested in the rate of change of angular momentum with the
time,

_dL _ 'y, d_x>
T="43=2 <xim" g — YiMigp

= Z (.Y, — y.X,) = 21 (x Z Yii — v Z X)), (5)

by equation (4.2). The quantity zY is a “moment” of force; T is the
force couple or torque. Suppose that the force is directed along the line
joining each particle. The force between each pair of particles will have a
component F;; in the zy-plane along the line that joins the points. Let

y

11-2.

r:; be the projected distance, in the zy-plane, between the two points and 6
the angle of slope with respect to the z-axis (Fig. 2). Then

cos 0 = (z; — ;) /ri;, sin 8 = (y: — y.)/7si. (6)
Ao
Xt'i = F” Cos 0, Yii = F:’i Sin 6. (7)
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If we substitute these expressions into (5) we find for each pair of particles,
a symmetrical combination of the sort:

.Y —y Xy + Y — y, X
= Fyl(x: — z;)sin § — (y; — y,) cos 6]
= F;r;/(cos §sin # — sin 6 cos §) = 0,

since, as before, F;; = —F;;. Each pair of particles thus gives a zero
resultant. Hence

— =0 (8)

and
L = coNsrT. 9)

The angular momentum of the assembly about a given axis is thus
conserved if the forces act along the lines jotning the particles. There is no
need to specify the nature of the law of force. The choice of axes was
arbitrary, so that the result is general. The quantity L., by equations (2)
and (3), is the product of the mass of a particle by twice its areal velocity.
The areal velocity is the rate at which the projected radius vector from
the given axis sweeps out an area on a plane normal to the axis.

7. Theorems from analytical geometry. To specify any vector quantity
such as the force we ordinarily state its three components relative to some
system of coordinates. As a convenient alternative, we may state the value
of the unresolved force and specify the angle in which the maximum force
i1s acting. Directions in space are very simply represented by direction
cosines, whose definitions and several properties are here presented for
reference.

Consider two points A and B with coordinates (2, y,, 2,) and (x,, ¥, 2.).
Let [ be the linear distance between the points. Then the direction cosines
of the line segment AB are ‘

A= cosa = (z, — 1)/,

p=rcosB = (y — ¥/l (D

v =cosy = (2, — 2)/1,
where a, 8, and v are the angles made by the line AB and intersecting
lines parallel respectively to the z-, y-, and z-axes (see Fig. 3). Direction
cosines obey the Pythagorean relation

N4ttt =1 (2)

Let A and B represent two neighboring points on a curve and the line
AB the secant of length I. The coordinates of A and B are, respectively,
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(x, ¥, 2) and (z + Az, y + Ay, z + Az). By (1) the direction cosines of
the secant are

A= Az/l, pu= Ay/l, v = Az/l. 3)

y

B (x2,¥2,22)

I11-3.

Now, as A and B approach each other indefinitely, the secant will approach
the tangent to the curve and [ will approach the value As, where Asis
the distance between A and B measured on the arc of the curve. In the
limit we shall have

N =dz/ds, w=dy/ds, v = dz/ds, (4)

as the direction cosines of the tangent to the curve.

When two lines with respective direction cosines (A;, y;, »;) and (A,
Ha, ¥5) intersect, we shall wish to determine the angle, 8, between them.
Translate the origin of coordinates, keeping the axes parallel to their

~
~
~

11-4.

original directions, until the point of intersection coincides with the origin.
The direction cosines will not be changed by such translation. (Fig. 4.)
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Consider the triangle OAB formed by the origin and any two other
points on the respective lines. Let

OA=1, OB=1 AB=d.

Let the respective coordinates of A and B be (z;, ¥, 21) and (x2, Y2, 2s).
Then

L=z 4y +42,
=2+ v + 2,
d = (x, — Il)2 + (Y — ?/1)2 + (2, — 21)2

=L+ L — 2@ + gy + 22). (5)
But r, = llkl' ?/1 == ll,ul' 2, = l]Vl. (6)
Ly = lzkz. y2 == l2/.l,2. 2y = Z2V2.

Now
d’ = l? + lg - 2l1l2()\1)\2 + wpe + v, = l? + lg — 20,1, cos 6,

by the well-known trigonometric formula, expressing the length of one
side of a triangle in terms of the lengths of the other two sides and the
cosine of the angle included between them. Hence

cos 0 = A, + pipe + vive. (7)
Tet V(xzyz) be some function of the coordinates. Then
V(z, y, z2) = CONST. (8)

represents a, surface, which we call an ‘“‘equipotential surface.” Let P and
P’ be two neighboring points on the surface and let P’ approach P along
some curve on the surface whose successive points are indicated by the
coordinate s. Then the tangent to the curve will have direction cosines:

A, = % , ETC., 9)

as in (4). Differentiating (8), we have
dV _dVdx  dVdy , 8V dz

ds = 9z ds dy ds 9z ds

aVv oV 4
=£)\2+6—y#2+6—zvz=0’ (10)

by (8) and (9). From (7), we see that two mutually perpendicular lines
(cos @ = 0) obey the relation

A, + paps + v, = 0. (11)
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Comparison of (10) and (11) shows that the line defined by

oV oV oV

p V- or My ay, vV« 3z

(12)

is perpendicular to the line s tangent to the surface. Hence, since s is
any curve in the surface, we see that the direction cosines (12) define the
normal to the surface V. Equation (2) fixes the constant of proportionality.
The signs of the constants are arbitrary, and depend to some extent on
the physical significance of V. If the equipotential surface of equation (8)
is closed, we shall regard the outward normal as fixing the positive direc-
tion.

8. Work as a line integral. From the definition of force, we require
knowledge of the mass of the moving body in order to calculate the
magnitude of the forces acting. In a large number of problems, however,
the mass of the body acted upon is of no great importance. The orbits of
particles moving around the sun are, for example, independent of the
particle mass. For the investigation of various types of motions, we often
introduce a test particle, of unit mass, in order to define the field of force.
The force, so defined, we shall usually refer to as the ‘“force intensity,”
the “force vector,” or the ‘“force at a point.” Further, the potential energy
of the unit particle, expressed as a function of the coordinates, we shall
refer to as the “potential.”*

With respect to this definition we introduce a minor inconsistency which
should, however, cause no confusion. Although we have defined our force
field in terms of a test particle of unit mass, such a force and its associated
potential possess respective physical dimensions of [MLT™*] and [ML*T ™).

We usually omit this test mass from our formulas, so that force intensity
and its associated potential may appear to have the dimensions of [LT™?]
and [L*T~?]. We shall, in fact, use the term force intensity as synonymous
with acceleration, even though we do imply the existence of the fictitious
test mass.

We shall now proceed to calculate, in a more general fashion, the work
done by a force, as it moves our unit particle along a curved path. Let
A1, 1, and »;, be the direction cosines that define the orientation of the
force vector F. If 6 is the angle between the force vector and the path at
some given position of the particle, the component of force along the
trajectory is F cos 6. The total work done, as the particle moves from A
to B is

B
W=f F cos 6 ds, (1)
A

*Cf. definitions in I, (7).



36 MEecHANICS AND DyNaMICs [§9

where ds is an element of the path. We term an integral of this form a
line integral. Substitute for cos 6 from (7.7) and for ds from (7.4), and
note that

Fn =X, Fuy =Y, Fn =2, (2)

are the force components parallel to the three coordinate axes. We thus
find that

W=[A (X de + Y dy + Z d2). 3)

This expression is consistent with the definition of W given in (3.3), except
that the present expression is referred to unit mass.

The value of the integral will depend on the path of the particle unless
certain conditions are fulfilled. Let us suppose that there exists a function
V, of the coordinates, known as the potential function, such that

4 vV av

X=_a_x’ Y=—a—y,Z=—E. 4

Then, since

14

3z

qv = dx+%dy+%dz - Xdo+Ydy+2Zd), (5
the factor in parentheses in equation (3) will be a complete differential,
for we may write

B B

W = —f dV = '—|:V:| = VA - VB- (6)
A A

The value of the integral depends only on the limits; it is independent of

the path followed. Since

WAB = _WBA, (7)

the process is reversible. Conservation of energy in dynamical systems does
not enter into physics as a special postulate; conservation follows naturally for
any assembly where the forces are ‘“‘derivable’’ from a poteniial.

9. The force vector. We may divide physical quantities into various
classes: scalar, vector, or tensor. A scalar quantity expresses merely mag-
nitude. Mass, length, potential energy, for example, are scalar in nature.
Vector quantities imply direction as well. Examples are velocity, mo-
mentum, force, ete.

In § (7) we discussed two alternative methods of representing vectors.
We may also consider a third type of representation, which is not so cum-
bersome mathematically. The concept of adding vectors to give a vector
resultant should be familiar to everyone. If F is the force vector and X,
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Y, and Z, the component vectors along the respective coordinate axes, we
may write, symbolically,

F=X+ Y+ Z. (1)

We shall ordinarily indicate vector quantities by bold-face type. The
above representation signifies that one measures from the vector origin
along the z-axis an amount equal to X, then up parallel to the y-axis an

y
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amount Y and finally out parallel to the z-axis an amount Z, where X,
Y, and Z are the scalar absolute magnitudes of the corresponding vectors.
The resultant determines the vector F, measured from the initial to the
final point. We shall use a so-called right-handed system of coordinates in
this book, in the following sense. We extend the thumb and first two
fingers of the right hand to indicate roughly three mutually perpendicular
directions. We take the thumb as pointing along the z-axis, the forefinger
as indicating the y-axis and the middle finger the z-axis.

Vectors obey the ordinary commutative laws for addition and sub-
traction. Thus

F=Y+X+Z=Z+ X+ Y, ETC. (2)

Multiplication by any positive scalar quantity merely alters the mag-
nitude of the vector, without changing its direction. If the scalar is negative
the direction of the vector is reversed.

The concept of a unit vector is important. Let i, j, and k be vectors of
unit length, measured along the three respective coordinate axes. Then
we may express any vector component, X, Y, or Z, in terms of its scalar
magnitude X, Y, or Z, as follows:

X =iX; Y=jV; Z=KkZ (3)
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Cartesian coordinates are not necessary for the representation. We may
use any convenient system of axes, such as polar, cylindrical, or parabolic
coordinates. Non-orthogonal axes occasionally prove useful.

One of the important properties of a vector is its invariance to co-
ordinate transformations. Rotation of the coordinate system, for example,
will alter our concept of the z, y, and 2z components. But the original
vector remains unchanged in magnitude and direction. Since a scalar
quantity expresses the magnitude of a function at a given point of space,
it must be invariant to all coordinate transformations.

Ordinarily we are not concerned with a single vector, but with a so-
called vector field. For example, the force at each point of space is a vector
whose magnitude and direction depend on the coordinates of the point.
Our problem is to derive mathematical expressions for the vectors at all
points of space.

10. The vector operator V. We have seen that equation (8.4) expresses
the three vector components of F, when a potential function exists. Hence,
in vector notation, we may substitute these values in equations (9.1) and
(9.3) and write

.0V .oV av
F= —<l ax+16y+kaz>

3.3, 0\ o
- (i iRV = YV = ety )

where we have factored out the quantity in parentheses and abbreviated
it as V or grad. The vector operator V, called either ‘‘del” or ‘the
gradient of,” is frequently written as ‘“‘grad’’:

. 0 . 0 d
grad—V—lﬂ—l—]ay—{—ka—z. (2)

Let us consider the physical significance of this operator, when applied
to V. Each term of it directs us to find a certain component of the force
along one of the axes. The sum directs us to combine the components
vectorially to give the force. Or, if we prefer, we may interpret the symbol
V as an order to find in what direction the force is greatest and measure
its value in that direction.

The scalar or absolute value of the force vector in the direction of its
maximum, is ordinarily written either as F or | F|. The magnitude of
the force is

F=|F|=V@V/ox)’ + (0V/oy)® + (3V/d2)?, 3)

with the three vector components compounded according to the Pytha-
gorean theorem. We may regard this expression as a means of determining
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the gradient of the scalar quantity, V, in the direction where the force is
a maximum. We shall show in § (12) that this direction is normal to the
surface of constant potential.

We need to know how to express the force in polar coordinates, because
the potential frequently appears as a function of r, 6, and ¢. According to
Fig. 6, we may express the rectangular coordinates of the point P in
terms of the polar coordinates as follows:

y=rsinfcos¢, y=rsinfhsing, z=rcosé. 4)

y
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Now, VV is a vector whose magnitude and direction are independent
of the coordinate system employed. The three mutually perpendicular
components are arbitrary as long as they add up to give the proper re-
sultant. Each component has a magnitude equal to the rate of change of
V with distance in its own direction. The three mutually perpendicular
elements in the spherical coordinate system have magnitudes dr, r df, and
r sin 6 d¢ in the respective directions r, 8, and ¢. Hence, in such a system,
the operator ¥V becomes

.0 ,.19 . 1 @ )
grad—.v‘<1’ar+‘”rao+1‘*rsmoa¢’ %)
where i,, iy, and i,, represent the unit vectors of this system. The student
should note that the directions of these unit vectors, unlike those of the
rectangular system, vary from point to point. A more general and rigorous
derivation of this equation will appear in § (33).
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Theory of the Potential

11. The potential of a sphere. The potential ¥ assumes a prominent
role in physics because of its scalar nature. When a potential function
exists, we can form V by simple addition of the various partial potentials.
The derivative will then give the force, whereas calculating the force
initially would have required the compounding of numerous vector com-
ponents.

Newton’s law of gravitation holds explicitly only for particles of in-
finitesimal size. Let dx dy dz represent an infinitesimal volume containing
matter of density p and mass dm. Then the potential at distance R from
the element will be

dV=—%dm=—%d:cdydz, (1)
because the negative derivative of this quantity with respect to R ex-
presses the law of gravitation:

Gp
TR
The negative sign indicates an attractive force.

Let us calculate at a point P the potential resulting from a homogeneous
thin spherical shell of matter of radius r and thickness dr. We may express

d c
dF = — -5 (V) = dz dy de. (2)

I1-7.

the total potential as an integral of the volume element over the spherical
shell:

. dedyde ff f“rzsixﬁﬁdrdodd: .
Vo= =0Gp fff R~ "G o Joco Juco R @

where the volume element has been expressed in polar coordinates. The
elementary lengths are dr, r df, and r sin d¢, as noted in § (10). From the
“law of cosines,” we have the relation

R® = R} + r* — 2R, cos 6. (4)
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For the thin shell we may regard r as constant and employ (4) to relate
R and 6. Also,

R dR = R,rsin 6 dé. (5

Let V, and V, represent the potentials when P is internal or external,
respectively, to the sphere. Then the integrals become

T+dr Ro+7 p27 2
V, = —pr [ Lardrds = - 4rGor
r Ro—r Y0 0 R-’J

dr, (6)

r+dr T+ R, 27
V. = —pr f_R f - dr dR dg = —4xGpr dr. )

Since V', is independent of R, its derivative with respect to R, is zero.
Thus the force at any point inside a hollow spherical shell is zero. The
mass M, of the shell is 4wpr® dr. Hence the potential for an external point
becomes

V. = ~GM,/R,. 8

The potential of the shell is thus equal to that produced by a point of
mass M,, located at the center of the sphere.
We may extend the theorem to include the case of a solid sphere, whose
density depends only on r.
47TG i 2 G]l{
V.= — rdr = — , 9
R, /o p R. ( )
‘where M is the total mass of the sphere.
The above proof applies to the potential between a sphere and a particle.
The equations also hold for the potential between two spheres.

12. Equipotential surfaces. The equation (7.8)
V=2¢,

where C is a constant, denotes a surface over every point of which the
potential is constant. Such surfaces are important because the force com-
ponent along such a surface is zero and the work required to move a
particle from one point to another on the same surface is zero. Conse-
quently, there is no component of force along the surface and the force
vector is perpendicular to a surface of constant potential. This result is

not surprising since the direction cosines of the normal to the surface, by
(7.12),

N4 <
or’ M7 ey

oV
VOIE, (1)

are proportional to the components of the force vector.
For purposes of evaluating the force vector, we shall often find it con-
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venient to adopt a coordinate system such that one coordinate shall always
be perpendicular to the equipotential surfaces. If we denote this coordinate
by the letter n, the force is given by the equation
av
This equation is essentially synonymous with the much more cumbersome
expression (10.3). We may further use the quantity n to represent a unit
vector along the normal, and write, in vector notation,
14
F= —n 3 )
since the partial derivatives of V with respect to either of the two co-
ordinates normal to n, i.e., coordinates lying in the surface, V' = constant,
vanish.
Thus, for (11.9), since n = 1i,, the unit vector along the radius, the
gravitational force external to a sphere becomes
. GM
F = —1, — 3 . (4)

Or, since r is itself a vector, equal to

r=ir=ir+ jy + kz, (5)
we may write, in place of (4),

F = —rcﬁf. ©)

13. Surface integral. We may represent an element of some arbitrary
surface by two magnitudes, one expressing its area and the other indi-
cating the orientation of the normal to its surface. We may represent both
magnitudes simultaneously by a vector along the normal, with its length
proportional to the area of the element.

In numerous physical applications, we shall be called on to evaluate
what is commonly called the ‘“flux” of some vector field through the
surface. As a simple illustration of the procedure we shall calculate the
amount of sunlight falling on (or “flowing through’) a receiver of arbitrary
shape. Let dS be an element of surface whose normal makes an angle 6
with respect to the solar beam. Let F be the incident solar energy per cm*
per sec. We shall suppose that the sun lies far out on the negative portion
of the axis. Then the total energy falling per second on the receiver, i.e.,
the “flux’ becomes

¢=fchosBdS. (1)
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But cos 8 dS = A dS = dS’ = dy dz, the projection of the area element
on the yz-plane normal to the beam; A is the direction cosine of the surface
vector. Since F is a constant, by supposition, we can integrate immediately
and write

o= [[mas=[[Faya=rs, @
y
- 0
To Sun },‘é
X
4
I1-8.

where S’ is the area of the receiver as projected on the yz-plane. We may,
if we wish, interpret S’ as the area of the shadow cast by the receiver.

As suggested in the opening paragraph, we might have considered dS
as a vector normal to the element. Then dS cos 6 represents the projection
of the vector in the direction of the solar beam. The simplicity of the
above problem arose from the constancy of ¥ both in magnitude over the
surface and in direction. In many problems we shall have to evaluate
integrals of the above variety where F is variable, both in magnitude and
direction.

The flux in geometric optics is often allied with the concept of light
rays. For example, if F is 6 X 10° ergs, per cm” per sec, we may imagine
the solar beam to consist of 6 X 10° rays per ecm® Then a unit surface
inclined at angle 9 will intercept 6 X 10° cos 8 rays. Rays diverging from
a source exhibit the inverse-square-law property and the number inter-
cepting any surface is proportional to the flux. This formal device is useful
in gravitational and electromagnetic studies, where rays are called “lines
of force,” whose density is proportional to the field of force at a given
point. We can therefore evaluate the flux in a manner analogous to that
used above for light.

Let F be the absolute value of the force vector. Let dS be an element
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of the surface over which we are to integrate and let 8 be the angle between
the surface element and the force vector. Equation (1) will hold as before
for the flux. Let (A\;, uy, ») and (A,, w,, »,) be the respective direction
cosines of F and of the normal to dS. Then, by (7.7),

6= [[ FOX + wms + v aS = [[ GO+ Yia + 2 S, )
from equation (8.2). An expression of this form is called a surface integral.
14. Gauss’ and Green’s theorems. Suppose that dS is an element of a

closed surface as shown in Fig. 9. We are required to evaluate the total
outward flux over the entire boundary. In the previous section we have

II.9.

reduced the problem to the sum of three integrals. Note the close analogy
of each integral in (13.3) to that of (13.2), where F was considered to be
parallel to the z-axis. Analogously,

N\ dS = dy dz, (1)

the shadow of the area element on the yz-plane. Draw, parallel to the
z-axis, a long prism of cross section dy dz, intersecting the surface at z,,
Ty, T3, T4, . . ., etc. The y- and z-coordinates are of no immediate concern.
The geometry requires an even number of intersections, because the surface
is closed. Asin § (13), we may regard this prism as the boundary of a beam
of light rays, traveling from left to right.

There are, however, two differences in the present problem as compared
with that of the solar beam. In the previous problem we took F as con-
stant. Here X, which replaces F, is a function of z, y, and z. Along the
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prism, where y and z are constant, we may suppose that X is a function
of z alone. If X,, X,, ete., are the values of X at the points of intersection,
we may write

X, - X, = f %;_; dz, ETC. @)

If we regard the flux as negative when the beam enters and positive when
it leaves, we have

= [[xnas = - [[1x - %)+ % - XD+ .. dyde. @)

Substituting from (2), we obtain

fff ~— dx dy dz. @

We find similar expressions for y and 2. Therefore the complete surface
integral (13.3) becomes

o [ramoss= [[(EeF Do o

where dr is an element of volume. This expression, which enables us to
transform a surface integral into a volume integral, we shall refer to as
Gauss’ theorem, although many writers call it Green’s theorem.

We easily derive an extension of this formula, properly known as Green’s
analytical theorem. Assume that we can represent the components X, Y,
and Z, as follows:

- _ g ¥ _ 4% _ gV
X=o Y—@ay,Z—cbaz, (6)
where ® and y are scalar functions of the coordinates. Then, by (13.3),

fchosedS= ff (XN + Yu + 20 dS

NN 1
_ffq)<c')a:)\+ay”+az>ds ™

where ), u, and » are the direction cosines of the surface element dS. Let
n denote a coordinate along any normal to dS. Then, by (7.4),

_dz _dy _dz
A_dn’ b= an> "' T dn ©6)

But when these quantities are introduced into (7), we find that the func-
tion in parentheses is equivalent to

dydr | dydy , oy de 6_1,&
dx dn = 9y dn + o dn ~ on’ ©
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by the rules of partial differentiation. Hence

fchosedS= ffq%—fds. (10)

This expression, in turn, is equal to the volume integral defined in (5).
Carrying out the indicated differentiations, we have

[ 25tas = [ {55+ 5+ %)

9P Iy | 3¢ Iy 3_¢>Q.»k>
+<6x ax+6y6y+62 az}dr, (11)

which is Green’s theorem. We may write

Yy | Iy &e_(f 62 62> g
ax2 ay2 622 - 2 + 622 1,[/ - v ll/y (12)

where V7 is an abbreviation for the indicated differentiations. V? (réad
““del square’’) is often called the Laplacian operator. It is scalar, whereas
V (or grad) was vector in character. Since the functions ® and ¢ are
arbitrary, we may interchange them in (11) and write the equivalent
equation:

[[92as = [[[ {owra+ (22 2200 L2200,

Subtracting (13) from (11), we obtain a second form of Green’s theorem:

ff <¢% = ¢§—;‘;) S = fff @V’ — ¢yV°) dr. (14)

If weset ® = 1l and ¢ = V, then
¢=chosedS=— —dS——fff(VV)dr (15)

15. Gauss’ law. Consider any closed surface containing a number of
particles of matter attracting each other gravitationally. We are required
to calculate the total flux (the surface integral of the force acting on a
unit mass) over the boundary of the surface. Let us first determine the
value of ¢ when a single particle, of mass M, is located at some point P
within the volume. From P draw a small cone to an element of surface dsS.
Let 6 be the angle between the axis of the cone and the outward normal
to dS. The total flux is [[ F cos 6 dS, as in equation (13.1). About P de-
seribe a sphere of radius r, of which the cone intercepts the area, da. Let
R be the distance from P to dS. Then, ¢f the law of force follows the inverse
square, the force intensity, i.e., the force per unit mass, at dS is

F = —GM/R*. (1)
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Hence ff Fecos0dS = —-GM f/ COSzg ds.

R

But cos 6 dS is merely the projection of dS on the plane normal to R.
Therefore

cos @ ,, da @

II-10.

The total integral thus becomes

¢ = f F cos0dS = — GE/I ff da = — G;]zwélm*z = —47GM. (3)
This equation is known as Gauss’ law. If the surface is concave so that
the cone enters more than once, as at dS’ and dS”’, no correction is needed
since the contribution at dS’, being ‘nward, just balances the effect of the
exit contribution at dS”. If more than one particle exists in the volume,
the effects are additive, because (3) is independent of the position of the
particle in the volume. Hence equation (3) holds if we interpret M as the
total mass contained in the volume. For electric charges we can prove an
analogous relation:

¢ = 4me, (4)

where ¢ represents the total electric charge contained in the volume. The
sign is positive because two electric charges of the same sign repel one
another, i.e., the electrical analogue of (1) is

F = e/r°. (5)
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Furthermore, if no matter or charges are found in the volume,

¢ = 0. (6)

Gauss’ law has led to an interesting fictitious representation of the force
field. During the nineteenth century the concept of ‘“lines (or tubes) of
force” played an important role in the development of physical theories.
The interpretation was similar to that of light rays and flux, discussed in
§ (13). If we imagine that 4rG lines of force emanate from each unit of
mass, the number of lines penetrating the closed surface of a volume
containing mass M must be 4rGM.

16. The theorems of Laplace and Poisson. From the nature of the proof
of (15.3) we regard the equation as holding for any small element of
volume, dr. We may apply Green’s theorem (14.15),

o=~ [l G+ 5+ 52) o

= —[[[ V) ar = —aa6M1 = ~tn6 [[[ par,

where p is the density of matter in the volume. Hence, for a volume
element,

V2V = 47Gp. (1)
Equation (1) is known as Poisson’s equation. In regions where p = 0,
VvV =0, (2)

by (15.5), or (1), with p = 0. Equation (2) is due to Laplace. For electric
charges, Poisson’s equation becomes

ViV = —4wp,, (3)

where p, is the density of electric charge per unit volume. Equations (1),
(2), and (3) have had many important physical applications. The quantity
V is, of course, the potential from which we may calculate the force in-
tensity from the formula

= -VV. (4)

The equations of Laplace and Poisson hold only for inverse-square fields,
because their derivation depends on the assumption (15.1). We ordinarily
calculate the potential from equation (11.1); thus

V=—fffG—T"dr, ®)
by (1).

Consider the problem of determining the potential at P produced by
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the irregularly shaped mass M. For convenience we shall adopt a system
of coordinates with P at the origin. About P describe a small sphere of
radius r,. Denote the position of any other point, P’ by the spherical polar

y

II-11.
coordinates 7, 6, and ¢. In equation (14.14), Green’s theorem, set

Y = and & =1V. (6)

ten [[[v 2 () - 22 as = [ [ro() - Lov]or. @

We shall integrate over the volume and surfaces bounded by two con-
centric spheres of radius 7, and R,. Since n is by definition a coordinate
normal to the surface of integration, we have n = r, or —r for the re-
spective outer and inner boundaries. The left-hand side of (7) becomes,
if for the moment we neglect integration over the outer boundary,

[y -1 o= [ has+ [[13as

= [

We have =1 +y+7 9)
d (1 1 or x
Wh _<_>=____=__
ence oz \r r’ ox r (10)

and 9 (l) _ _r -3z (11)
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Similar expressions hold for the y and z derivatives. Therefore

o(1 o 9 a1} _
v <r> <6x T y* T 8z2><r> = 0. (12)
Making use of (12), we have from (7) and (8),
19V a4
ff Las+ [[ 195 as = ff Lar. (13)

Further, let us take r, so small that V and 8V /dr approach their respective
values at P. Then these quantities may be taken as constant and removed
from the integral sign. Further, since r = 7, the left-hand side of (13)
becomes, because

f dS = 4ars,

( +_—V) ff dS = 4wV + daro - (14)

7o OT

the last term of which we may neglect because it contains r, as a factor.

When the integral is extended over all space, the second surface integral
of (13), over the outer boundary, is zero. We suppose that R is extremely
large compared with the extension of the mass M, so that in the neigh-
borhood of the boundary M acts effectively as a point mass. Then

aM V. _GM
V=g wd 5~ R

The surface integral over the outer boundary, which is of the form of
(14), becomes, to the first approximation,

_ 4xGM + 4xGM
R R

not merely because of the identity of the two principal terms, but because
we may now allow K to become infinite. Combining the results of (13)

and (14), we have
-+ [[ %Y, (17)
T r
in agreement with (5).

If we do not wish to carry the integration over all space, we must include
the surface integral over the outer boundary, and

_iwff V:Vdf—v[f[v%@—%%]ds. (18)

We have replaced a portion of the volume integral by an integral over
the surface. The function V will, in general, vary from point to point. We

(15)

=0, (16)
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located P at the origin only for convenience of notation. As a function of
the coordinates, then, V must satisfy the boundary conditions of the sur-
face integral. We may regard (18) as a solution of the differential equation
(2).

The function V is determined if we know V>V at every point of 7, and
the value of V, at every point of the surface enclosing 7. Evaluation of
the potential function, with the aid of Poisson’s and Laplace’s equations
becomes a boundary-value problem. The function V, so determined, is
unique.

17. Harmonic functions. Any solution of Laplace’s equation is known
as an harmonic function. When the equation is written in spherical co-
ordinates, the solution comes out in terms of functions known as solid
spherical harmonics, of which zonal and tesseral harmonics are examples.

P2

2
71

n

I1-12,

We shall briefly indicate here the nature of harmonic functions. Figure 12
depicts the body whose potential we wish to determine. The mass element,
dM, located at P, (x, ¥, 2,), contributes to the potential V, at the point
P, (x,, 4., 2.), an amount

_GdM G M
T12 B (7'22> — 2ryr; cosy + Tf)

dVv = i/2 * (1)

In deriving the foregoing we have made use of the well-known ‘“cosine
law” of triangles, that

7l = ri — 2rr, cosy + 1, (2)

where v is the angle between OP,(r;) and OP,(r,) and r,, the distance P,P,.
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We first suppose that r, > r,. Now set
cosy =pu and r/r, =8, (3)

and expand the brackets in the following by means of the binomial theorem.

dv = — GZM [l — B(2u — B
- _GZM[1+ 6(2n—6)+ B(2u—6)2 ] @)

We next expand each binomial factor and collect the resultant series as
a power series in 8. The coefficient of 3', which we shall denote by P,(u),
proves to be

@m[l_zu—n -
2'(1N)* 220 — ¥

Py(u) =

+K%4W—%U—$P*—”].@

2420 — @2 —3)~
We may express the numerical coeflicient in the form

@)! _ @ —D@El—=3...1
2'(1N? il

(6)

Here P,(u) is a polynomial, the last term being of the first or zero degree
in p according as [ is odd or even.
The expression for dV becomes

2

These coefficients P,(x), which multiply successive terms of the infinite
series, are Legendre’s polynomials or zonal harmonics. A few examples

follow:

3 1 5 3
Po=1, Pi=u Po=3u ~5, Po=34 —3u
5.7 4 3-5 -3
P4_2.4“ 3. 42# +2 2 » ETC. ©)

Rodrigues gave a simple alternative expression for the coefficients. We

establish the identity of (4) and the following, by first expanding the

binomial and then performing the indicated differentiation, term by term.
1 d

Py(u) = 2l aat P W — 1. 9
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Let the spherical coordinates of the respective points P; and P, be
(ri, 61, ¢1) and (73, 6;, ¢,). We have the relation

iy = (z, — x1)2 + (y. — y1)2 + (2, — 21)2- (10)

Substituting for z,, z,, etc., from (10.4), and comparing the resulting ex-
pression with (2), we identify

cosy = u = cos 6, cos 6, + sin 6, sin 6,
- (cos ¢, cos ¢, + sin ¢, sin ¢,). (11)

A spherical harmonic with p defined as in (11) is sometimes called a Laplace
coeflicient, as opposed to a Legendre coefficient, for which 6, = 0.

If we substitute this expression for u successively into the various
equations (8), we find that

Py = (1)(1). (12)
P, = (cos 6,)(cos 6,)
+ (sin 6, cos ¢,)(sin 6, cos ¢,)

+ (sin 6, sin ¢,)(sin 6, sin ¢,). (13)
— (3 ooz g — l><§ 2, _ l)
P, = <2 cos” 6, 2/\5 cos 0, 2

4 % (3 cos 6, sin 6, cos ¢,)(3 cos 8, sin 8, cos ¢,)
+ 32'(3 cos 8, sin 6, sin ¢,)(3 cos 8, sin 6, sin ¢,)

+ 42' (3 sin® 8, cos 2¢,)(3 sin® 8, cos 2¢,)

+ 2 (3sin’ 6, sin 263 sin” 6, sin 29), (14)
etc. We have employed the following trigonometric expansion:
cos” ¢ = 2m1_1 [cos m¢ + m cos (m — 2)¢

+m<m—2!_—1—)cos(m—4)¢+---+L:|. (15)

The coefficients in (15) are those of the binomial theorem. The last term
of the series, L, is

!
or Ui (16)

L (m + D/2)1[(m — D211’

_ . ml
— 2[(m/2)1T

according as m is even or odd.
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The developments of further values of P, become fairly laborious, but
the algebra is straightforward. We note especially that the factors in-
volving 6, have been completely separated from those involving 6,. We
see further that any given term of the expansion is symmetrical with
respect to the angular subscripts 1 and 2. The problem is to find a general
expression for the factors in parentheses, in (12), (13), and (14). We note,
in advance, that the first term in each equation is a simple Legendre
function, like those shown in (8). The others are somewhat more compli-
cated. We group them according to the value of m in cos m¢ or sin me.
The coefficient of sin m¢ or cos me, in each parentheses, itself a function
of 6 only, we denote as P7 (cos §), where

P(cos 6) = P(w) = (1 — ™" 4= P,
du™
. we 770
= o (1 — ) T (u* — 1)
_ 1=y 2D [ e (= m(—m =1 .,
2Nl — m)! 2021 — 1) H

L= ml=m = D= m == m=3) .
2.4@l — D)@l =3 ] (17)

This relationship involving the derivatives is an extension of Rodrigues’
formula (9). The quantities P7(u) are known as assoctated spherical har-
monics. We establish the identities of the functions in (12), (13), (14),
etc., by direct differentiation of (17). '

Each term of the harmonic functions in (12)—(14) is known as a tesseral
harmonic. The order of the harmonic is [, and there are 2] + 1 tesserals
for each value of [. The first four orders of tesseral harmonics are:

Order 0: 1.

Order 1: cos 6, sin 6 cos ¢, sin 6 sin ¢.

Order 2: 2 cos” § — 1, 3 sin 6 cos 6 cos ¢, 3 sin 4 cos 6 sin ¢,
3 sin® 0 cos 2¢, 3 sin® 0 sin 2¢.

Order 3: £ cos® § — 2 cos 6, 3 sin 6 (5 cos® § — 1) cos ¢, (18)
2 sin 8 (5 cos® § — 1) sin ¢, 15 sin® 4 cos 0 cos 2¢,

15 sin® @ cos 6 sin 2¢, 15 sin® 6 cos 3¢, 15 sin® 6 sin 3¢.

The function, P;, then becomes

P,(cos ) = Z . ( l T (i=m!2 — P7(cos 6,)P7(cos 8,)(cos me¢p, cos mep,

m)! a.,

+ sin me, sin mg,). (19)
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The quantity

am = 2, m = 0, (20)

—

m #= 0.

a, =

The substitution
cOs M, €OS Mmep, -+ sin mep, sin me, = cos m(p: — ¢5) 21)

is sometimes useful. Equation (19), which is usually called the addition
theorem in spherical harmonics, will be established more rigorously in the
next section, equation (18.32).

In deriving equation (7) we assumed that r,, the distance from the
origin to the mass element dM, is less than r,, the distance from the origin
to the point P,, where the potential is to be calculated. When the reverse
is true, i.e., when

<, (22)

we may expand equation (1) in powers of 1/8, equation (3).

GdM 1 1 1\ |72
Thus dV = — T El:l - E (2/.1 - ,E>:| . (23)

Comparing this expression with (4), we see that the expansions are identical,
except for the extra factor 1/8. Whereas previously P,(u) was the co-

efficient of §°, it now appears as the coefficient of (1/8)'*'. Hence, we
may now write the expansion
GdM < AN
av = — 2 Pz(m(—z) : (24)
T2 T-o T

18. Orthogonality and further miscellaneous properties of spherical
harmonics. Consider the integrals

N§=ftcosm¢cosm’¢d¢>
1 2x , ,
=5/ leos (m + m) + cos (m — m)s] ds, M
N§=/Tsinm¢cosm’¢dqb
0

= %/:r [sin (m 4 m')¢ + sin (m — m')¢] do, 2)

wherein we have made a simple trigonometrical substitution. Integrals
of the cross-product type always vanish whatever value we may assign
to m or m’. Hence

NI =0. 3)
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Integrals of the first type vanish except when m’ = m,
27 32#, m =m=20
Ni:fo s mbdd =) oy m=1,2,3 ... (@
N =0, (m' #= m).

Similarly,

27
Nf=f sif® medop =7, (m =m),m=1,2,3,...
0 (5)

N2 =0, (m’ #= m).

The latter integral is zero when m = 0, because the integrand vanishes.
Systems of functions possessing properties similar to those demonstrated
above for the sine and cosine, are said to be orthogonal. Orthogonality
requires that the integral of the product of two functions distinguished
by some index (like m in the preceding example) vanish except when the
two indices are identical. The integration is usually taken over the ex-
treme range of the coordinates involved.

Tesseral harmonics, of the form P7 (cos 6) {ilons :::: are well-known
examples of orthogonal functions. The notation indicates that either the
sine or cosine of me¢.1s to be adopted. The harmonics are of the surface
variety and the integration is to be over the surface of a unit sphere, the
element of whose area is

dS = sin 6 do d¢. (6)
The expression becomes
! i m m’ sin sin , )
/;=0 » P}(cos 6)P";(cos 0){00S (md’)}{cos (m d))}sm 9dode. (7)

The variables 6 and ¢ are independent. Integrating first with respect to ¢,
we may apply equations (4) and (5), which require that m’ = m, if the
definite integral is to have a non-zero value. Therefore, removing the
factor N2 or N?, we have the analogous quantity for the spherical har-
monics:

N3 = f P7(cos 8)P/"(cos 6) sin 8 df
4]

1
=/ P (w)P['(w) du.

1 1 1 dl+m dl’+m ,
N2 — f [ 2 _ 1 l][ 1 _ 2\m 2 1 l ] d
«=Snam G (u )| ( w) Py (u ) K,
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wherein we have set cos § = u and have substituted from Rodrigues’
formula, (17.17). We shall first suppose that I’ < I. Denote the factor in
the second brackets by Y. Y is a polynomial in x with the highest power
equal to u' ™. Expanding the factor (u* — 1)*" by the binomial theorem
and performing the indicated differentiations on the term with the highest
value of the exponent, we find that

= (=" 55— T = _ent )' p'"*™ 4 terms in lower powers of u. (10)

Integrating by parts, we obtain the result

- L 1 {[ dl+m—1 ) _ l}l
Na= omiamm Yd#“"“‘ W =07

(11)
1 dY dl+m—1 . .
- _ d# d’u'l+m—l ('u - 1) d# °

The bracketed term vanishes at the limits owing to the presence of the

factor (1 — u®) in Y. Successive integration by parts finally gives the
result

2 _ +m
N = “2 z'v [ (o d — Y dp. (12)

Butif I/ <, thenl + m < I 4+ m and the (I + m)th derivative of ¥
vanishes, as one sees from differentiation of (10). Hence, under these
circumstances,

NZ = 0. (13)

If ' > I we have only to interchange the derivatives in equation (9) to
arrive at the same result. Thus we prove the orthogonality of the functions.

If, however, I = I, then
' @2+ m!

dul+m Y = (l — m)!

(14)

The terms of ¥ with powers of u less than I 4+ m, indicated schematically
in (10), vanish. Returning to the variable 6 in equation (9), we find

2 _ @i + m)! T _ 20 4+ m)!
Ne = 27N — m)!f s 0d0 = gier+ e (1)

Equation (8) therefore becomes

el L., Jsin ]2 _(+m! 2ra,
'/;1 _/:) liPl(#){COS (m)} d/-’- dd’ = (l _ m)’ (2l + 1) (16)
We shall use the orthogonal properties of the trigonometric and spherical

harmonics in Part III as the basis of expansions of functions in Fourier
and similar types of series.
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Expand the function (u* — 1)’ by the binomial theorem, differentiate,
and then compare the two resultant series within the square brackets, to
verify the following expression:

1 1 1 dl 1 dl—l 1
f Pwdp=—-| — @ -1 de = _z—[ W= l)l:l
u 2N Y du 2°01 Ldu u (17)
_ L[ﬁ —1d 1),}‘ _ (1 — ) dP.(n)
o LI+ 1) g+ ¥ L WF D de

by (17.5) and (17.9).
When [ is an even integer, we find that the derivative in (17) becomes:

1:3:5...0+1)

l:d—PM:l = higher powers of p + (—1)*/2*!

du "2.4-6...01=2"
(18)
Similarly, when [ is an odd integer,
dP[([J.)} _ . _ (1-1)/2 . 1 . 3 b 5 « s (l) .
[7(1# = higher powers of u + (—1) 2.4-6...(1=1) (19)

Hence, in (17), setting the lower limit of the integral equal to zero, we find

1
f Py du = 0, if liseven but 5 0,
0
1, ifl=0,

1-3-5...1—2)
2.4-6...(1+ 1)

(20)
— (_1)(1—1)/2

if 1 is odd.

All terms in (18) and all but the last in (19) vanish when 4 = 0, asa
lower limit.
The function P,(u) is a polynomial of degree (I) in u. Hence the equation

Py(u) =0 (21)

has [ roots, all of which are real. In other words there exist [ values of §
for which the function P,(u) vanishes. These ‘‘zeros’ occur on various
parallels of latitude on the sphere. The odd-numbered harmonics must
vanish at the equator, because they contain the factor u, which becomes
equal to zero for 6 = 90°.

Similarly, P7(u), vanishes along (I — m) parallels of latitude. Because
of the factor (1 — ™ in (17.17), the associated functions vanish at
the poles (u = #£1), when m > 0. The ‘‘zeros’ at the poles are of order
m/2 because of the factor (1 — u)™”2. Tesseral harmonics, P (u) {3102 (mqb)},
also vanish along 2m meridians. The parallels and meridians on which the
sample harmonics P3(u), Pi(u) cos 3¢, and P3(u) cos 3¢ vanish appearin
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Fig. 13. The figures illustrate why we call the Legendre polynomials P ()
zonal harmonics, and the functions P, (u) cos me sectorial harmonics. The
zero lines of a function P7(u) cos me divide the surface of the sphere into
a sort of checkerboard of ‘“squares” (Latin fesserae); hence the name
lesseral harmonacs.

Zonal Harmonic Sectorial Harmonic Tesseral Harmonic
PY (u) PJ (w) cos 3¢ Ry (1) cos 3¢
II-13.

We shall now prove that
P(1) = 1. (22)

From (17.1) and (17.7) we have the identity

! =15 pw(n). (28)

3 N172
(r; — 2rrou + 1) T2 1=0

Setting u = 1, we have an exact square in the denominator, which expands

as follows:
S (R o I

o — 1y Te 1=0 \I'

The right-hand sides of (23) and (24) must be identical for 4 = 1. This
condition requires the relation (22), which is therefore proved.
We shall denote the general surface harmonic of order / by the symbol Y.

1
Yi(y, ¢) = AoPi(w) + 2 Piw)[A, cos mp + B, sin me],  (25)
m=1
where the A,’s and B,’s represent arbitrary numerical constants. Y, is
thus a linear combination of tesseral harmonics of index I. When
6§ =0, orm; l.e., u=cosf = %1, (26)

the summation in (25) vanishes because of the occurrence of the factor
(1 — &»™* in the associated harmonic. Hence the value of

Y,(:i:l, ¢) = AOP?(:t 1) = A, = Y,(l), (27)
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by (22). Y,(1) is the value assumed by Y, at the pole. The integral
[ Vi, 9) ds = 20 4P, (28)

The other terms vanish. Further, multiplying both sides of (28) by P{(u) du,
integrating again, and making use of (16) and (27), we have

[ [ Py ¢ ds de = 57 7). (29)

We may now determine the addition formula (17.19) in a more rigorous
manner. Set

cos 0, = u, (30)

with v defined in terms of 6, and 6, and as in equation (17.11). Assume
the expansion

Acosy) = CoPiu) + Z P7Y(u)[C,, cos m¢y + D, sin me,],  (31)

where C,, and D,, are constants to be determined. Multiply both sides of
(31) by P"(u,) cos me, du, d¢, and integrate as follows:

f j P?(COS V)P (u,) cos me, du, de,

=c. | ” [ 1P cos man du ds, 32)

I+ m! 2r
"l—-m! @+

by (16). a, is given by (17.20). We still have to evaluate the left-hand
side of this equation. We have already shown, in equation (29), that when
any zonal harmonic P}(x) is multiplied by ¥, the general surface harmonic
of similar degree, and the result integrated over the unit sphere, the
result is 47/(2l 4+ 1) times the value assumed by Y, at the pole of the
zonal harmonic. The pole of the harmonic P} (cos v) is at 8, = 0, i.e.,

=C

Cosy = €os 0y = s,
by (17.11). The pole lies at 6,, ¢,. Therefore, analogous to (29), we have

1 27T 4
f_l ]; P(cosv) Y (iy ’ é1) du, dop;, = #1 Y, (ﬂz ’ ¢2)7 (33)

and

1 2w
| [ Putcos DPw) cos me, du, doy
-1 4J0

47 _ I+ m! 2r
\\ 2l+1P(#2) cosm¢2—Cm(l m)'2l+1a

-

(34)

S
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Hence

=—m'!'2
Cn = (l+m)'a

and similarly for the terms involving sin m¢,. When we introduce these
coefficients into (31), we find that the resulting summation agrees with
(17.19), which we may now regard as proved.

P7i(uz) cos mey, (35)

19. Development of the potential in spherical harmonics. The addition
theorem is important for the following reason. The ordinary zonal har-
monics are functions of a single angle, v. These functions will often suffice
to describe the potential resulting from an axially symmetrical distribution
of matter. We must, however, always measure vy with respect to this axis.
When the distribution of matter is unsymmetrical or whenever we wish
to use a spherical coordinate inclined to any existing axis of symmetry,
we must apply the addition theorem, which is in effect a transformation
of coordinates. We may then express the density as a function of variables
r, 6, ¢, and integrate (17.7) to give V as a function of the coordinates
Te, 03, ¢9. Thus, writing

dM = pdr = prisin 6, dr, db, do,, (1)
and making use of (17.12), and (17.19), and (17.21), we find

@ rin 0, 30 3 (1) =m)! 2
V(r2’02’¢2)=—Eff‘/.pT151n01;”;< ) (Z+Z;'a

P7(cos 6,)P"(cos 8,) cos m(¢p, — ¢,) dry db, de,

2l s £ 26

- P7(cos 6,)P"(cos 0,) cos m(p, — ¢») dr, d8, de,.

)

The respective integrals are to be taken over the indicated ranges of r,.

When p is independent of ¢, i.e., when the solid is a figure of revolution
about the z-axis, the axis from which 6 is measured, all the terms except
those for m = 0 vanish, because

on 2r, m =20
[ cosm@ —odds =)o oo ©

Therefore

—= 27r /f pr: sin 01 > < ) P,(cos 6,)P,(cos 6,) dr, d, (4)

when r, < r,.
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Let us calculate the potential of a homogeneous hemisphere, Fig. 14.
We may remove the density, p, from the integral sign and carry out im-
mediately the integration with respect to r,. The integration limits for
r, are 0 to a, where a is the radius of the sphere. Since we have assumed

Axis

rz

11-14.

that a < r,, we need employ only the first summation in (2). The limits
of integration for 8 are 0 and x/2. Setting

cos 8, = u; and cos @, = u,,
we find that (4) assumes the form

2 .6 3 ' !
V= —3ma = 13 <£> Pl(#z)/; P(u,) du,. (5)

3 T2 1=0

The latter integral was evaluated in (18.20), whence

V= -Ps S (e () |

Tg T‘Z

(6)

where M, the mass of the hemisphere, is

2
= g 7rpa3. (7)
We have introduced the index

l=2k+4+1 (8)
to eliminate all the even-numbered harmonics except that for I = 0.

From (6) we may derive the force vector VV. We note that F is inde-
pendent of ¢, a general result for all figures of revolution.

There is an alternative method of deriving equation (6), which is often
extremely useful. Assume that we may express the potential of a solid of
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revolution in the form

V= -2 5 4 (2) P ©

T2 1=o

At any point along the axis of symmetry,
P(u,) = P(1) = 1, (10)

from (18.22). We shall calculate the potential along this axis, where, by
virtue of the symmetry, the problem is relatively simple. In the previous
notation, we have

V= —q f“f”/2f2’ r; sin 8, dr, df, d¢,
- TP Jo 6F 4= 2rm, cos )2

a 1 2 dr d[..l,
—9%Q f f Ty ar 1
e o Jo (7'3 + Tf - 27"17'2#1)1/2

= 282 [y — 12— e+ ]
To 0
_ _waj[ 31 | 1 a0, oam (_>]
= 3 1+2a+a3(r2+a) 2 I (11)

Expanding the parentheses and collecting terms, we have

QM 1 (a
V__r2 {]'+3|:2-4<r2>

(12)
bl e -]
2-4.6\r, 24.6+8\n, )
Comparing (12) with (9), we find
3 3
4, = 1, A, = ‘—2.—4, A; = —2 4.6 ETC., (13)

In agreement with equation (6) when x = 1. By this method we determine
the coefficients of the various terms of the potential directly. To calculate
the potential at a point where 7, < r,, we must employ the second integral
in (2).

The potential of a homogeneous ellipsoid of revolution follows by an
analogous procedure. Let the outer boundary of the ellipsoid be represented
by the equation

2 2 2

St L+ n=1 (19)
We compute, first of all, the potential at some external point z = 2z,
along the axis of symmetry. Consider the ellipsoid to be built of super-
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posed circular disks of radius R and thickness dz. If p is the density of
the ellipsoid, the potential dV produced at z, by the disk of radius E and
thickness dz is

Qv = — f f Gp dz Rdeﬂ; = —2rGol(h* — RYY* — hlds, (15)
y
0
x
&,
R A
<
Zo
11-15.

where £ is the distance from the center of the disk to z,, i.e.,

h =20 — 2. (16)
Now, from (14), the radius R, of the element is given by
Ry =2+ y° = a® — a%’/c’. (17)

Therefore the complete potential of the ellipsoid is

V = —27Gp fc {lzo — 2)° + @® — a®*/c*]* — (20 — 2)} dz. (18)

—c

Consider the case, first, of an oblate spheroid, a > ¢. Then, ‘“completing
the square” inside the brackets, we find that

c 2 _ 2 2
V=—27erf {02_a 26_'2_%

a —C

(19

_(Eve=as o o) as
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Since

2 2\1/2 _ﬂ(bz_ﬂf)]/2 b_2 7 E
f(b w) " dw = B E—— —|—2a.rcs1nb,

we find that

. 2 @ —c+z21
V = QTGpa-C[az __0 cz — (az _ 02-;;/20 5 (01 - 02) )

where
2 2 2 2\1/2
. cz a —c a —c 20 — C)
0, = arc sin — _i_ ——: = arc cos( _ZMEO—E ,
a\/a—c + 2z a\/a—c + 2z,
.z —a + (@ — )"z + ¢
6, = arc sin ——————— = arc¢ cos

The following trigonometric expansion gives

tang (0 = 0 = 56 — 4

1 — cos 6, cos 6, — sin 6, sin 6,
sin 6, cos @, — cos 6, sin 6,
_ (a2 . 02)1/2

= 2

)

by (22) and (23). Therefore

2 2 2 2 2\1/2
2 a —c¢ + 2 a —c
V = 27era2c|:a2 0 2 02)3/20 arc ta;n L ) il.

¢ (d Zo
But
03 05 @ k‘ﬁk+l
arctan0—0—3—|—5 ...—,;0( 1) @+ 1)

Furthermore, the mass, M, of the spheroid is

4
M = g-’ra c.
Hence
_ oM 2 (=DM =) 1
V= MY G @y g

aVa® — ¢t + 22

65

(20)

(21

(22)

(23)

(24)

(25)

(26)

27)

(28)

For points on the axis z, = 7. Hence the general expansion of V, in terms

of zonal harmonics, is

_ _GM = (=D =N P
V= =7 = 3GM 2 o o gy e

(29)
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This series is convergent for values of r such that (a® — ¢*)/r* < 1.
But 7 > ¢ for all points external to the boundary surface. Hence, if a® < 2¢?,
(29) represents V right down to the surface of the spheroid. When the
ellipticity is small, the convergence of (29) is very rapid. The first two
terms of (29),

GM (@ —c)3cos®f — 1
3 )

V=" T r

(30)

are ample for many problems.

Vector Analysis

20. The vector of angular velocity. The potential functions just dis-
cussed are scalar in nature. We now return to problems involving vectors.
The force fields obtained from an application of the operator ¥V to the
scalar potentials represent but one type of physical quantities of vector
character. We shall now proceed to develop the vector notation and derive
the rules of vector algebra. The reader will require no prior knowledge of
vector analysis.

Consider, now, the motion of a particle constrained to move with con-
stant angular velocity, w in a circular path located in the zy-plane. We
may suppose this point to be one of many in a solid disk, rotating around
the z-axis. As in §(13), we may represent the area, S, enclosed by the tra-
jectory as a vector of length S, placed normal to the surface, or

S = kS. (1)

The angular velocity, like S itself, is associated with the zy-plane. We
may therefore take @ as a vector normal to the plane; thus

o = ko. 2

The convention ordinarily adopted for the positive direction of the vector
in a right-handed coordinate system is that, when the observer sees the
motion as counterclockwise, the vector points toward him, as in Figure 16.
Another simple rule is that if the extended thumb of the right hand points
along the vector, the rotation is in the direction of the fingers of the
clenched fist.

Let z and y be the coordinates of a point on the rotating disk. Then
we may represent the motion by the formula:

z =rcos (wt + o), y = rsin (wt+ a), (3)

where « is the angle made by the radius vector with the x-axis at time
t = 0. The respective velocity components, v and v, are
u = —rwsin (Wt + o) = —wy. @)

v = rw cos (wf + @) = wr.
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We represent the velocity v, as the following vector:

Vo = iu + jv. (5)
Also, we see that
o ou
3z oy = 2. (6)

This differentiation is essentially scalar, but w represents the magnitude
of a vector.

II-16.

If the plane of rotation is inclined to the coordinate axis the normal to
the surface of rotation will also be inclined, and the w-vector will have
components along the coordinate axes. The resultant will be the same, of
course, and will be given by the equation

2 2
N C e T S
Jdr  Jdy dy 9z 0z ox
where w is the z velocity component. Each term denotes a vector com-
ponent, and the spatial orientation of the resultant vector can be deter-

mined by the ratios of the components. The vector itself must be the
quantity

(90 _ vy (0w ow (a_v_a_u>
l(&y az> + J<6z 6x> Ttk Jx dy (8)

=curlv, =rotv, =V X v, = 20,
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where v, is the velocity vector. ‘‘rot” is symbolic for ‘“rotor of v,”’; the
significance of the notation V X v, (read ‘“‘del cross’” or ‘“curl”) will
appear presently. A ‘“‘curl” of any vector, then, is the vector that results
from application of the operator (8), which directs us to find the three
components of a new vector associated with the vector operated upon.

The foregoing simple demonstration indicates that the ‘“‘curl” of a
vector has something to do with rotation. The vector ¥V X v,, however,
will be equal to 20 only for the rotation of a rigid body. A body moving in
a straight line, for example, has angular velocity with respect to any
given point. The curl of its velocity, however, would be zero because no
rotation is involved.

21. Angular momentum as a vector. Angular momentum of an extended
body is equal to the product of the moment of inertia of that body aboeut
an axis, by its angular velocity about that axis. We can also represent
angular momentum as a vector. Assume a body to be moving in the xy-
plane and let P,P, be a portion of its trajectory. Let its momentum at

11-17.

the point A be p. Let the momentum vector make an angle 6 with respect
to the radius vector. Now if B, a neighboring point on the trajectory is
allowed tc approach indefinitely closely to A, so that r’ — r, the com-
ponent of momentum perpendicular to r will be p sin 6 and the moment
of momentum L will be

L = rpsin 6. (D

Since L is associated with the xy-plane, we may represent it as a vector
perpendicular to that plane.
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We gave a somewhat less restricted definition of angular momentum in
§ (6). For a single particle, we may write the components of angular mo-
menta along the z-, y-, and z-axes, respectively, as

L.—: = Yp. — 2Py, Lu = &Pz — XP,, Lz = IPy — YDa, (2)

where p., p,, and p, are the instantaneous components of the momentum.
In vector notation we have

L = iL, + jL, + kL,. &)

22. Scalar and vector products. In the foregoing brief introduction to
vectors, we have encountered two different ways of combining vectors.
We represented the work done by a force, (8.1), as the product of the
scalar magnitudes of two vectors times the cosine of the angle between
them, thus

dW = |F| |ds| cos 6§ = I cos 8 ds. 1

where ds is an element of the path. The value of dW is equal to the product
of the length of one vector by the projected length of the other vector
upon the first. The result is scalar. Hence we call this type of combination
the scalar product, and indicate the product symbolically by the notation

dW = F . ds, 2)

where the ‘““dot’”’ represents the operation implied in (1), viz., the product
of the magnitude of one vector by the magnitude of the projection of
the other upon itself. “Scalar product” means ‘‘invariant product,” in-
variant, that is, to all coordinate transformations.

The second type of combination is that discussed in the previous section,
where the magnitude of the angular-momentum vector proved to be

L = rpsin 6. 3)

Where, in the scalar product, the one vector is projected along the other,
in the present example the one vector is projected in a direction per-
pendicular to the other. The result of such a product is a vector per-
pendicular to the two original vectors. The operation, known as taking
the vector product, we represent symbolically by the formula

L=rXp. 4)

The reader who is here meeting the subject of vectors for the first time,
may find it helpful to regard the “dot” and “cross’ as symbolic, respec-
tively, of cos 8 and sin 6.

For the scalar product, we need not distinguish which vector we project
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on the other, since cos § = cos (—6). Hence the commutative law holds
and we have

a-b=">b-a. (5)

But for the vector product, the projection of r on a perpendicular to p is
not identical with the projection of p on a perpendicular to r. Since
sin § = —sin (—#0), reversing the factors changes the sign,

aXb=—bXa. (6)

If the right hand with thumb and two fingers are extended to indicate three
mutually perpendicular directions, the thumb points along r, the forefinger
along p, and the middle finger indicates the direction of L. For both types
of products the distributive law holds; thus

(@a+b):(c+d)=a-c+a-d+b-c+b-d, (7)
and similarly for the vector product. Hence we may write, in place of (2),
dW = (iX +jY + kZ) - (idz + jdy + k d?), (8)

where X, Y, Z, dz, dy, and dz measure the magnitudes of the rectangular
components of F and ds, respectively.
The unit vectors, equation (9.3), obey the relations

j-i=j-j=k-k=1, (9)
whereas
i-j=j-k=k-i=0,

since the projection of a unit vector on itself is unity, and on a perpendicular
vector is zero. Hence

dW = Xdx+ Ydy + Z dz, (10)

a scalar quantity. The result agrees with that of (8.3).
We have the vector identities

dr =idr +jdy +kdz, and r = ix 4+ jy + k.
Consider the vector product
L=rXp=(iz +jy + ko) X (ip. + jp, + kp.), (11)
iXi=jXj=kXk=0, (12)

since any unit vector projected on a line normal to its direction is zero.
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But

and (13)
jXi=-k kXj=-—1i iXk= -j.

The signs of (13) follow from the right-hand rule, above. The positive
directions are consistent with a right-handed system of axes, such as that
drawn in Fig. 5. The rotation is counterclockwise.

L=rXp=(yp. —2p)i+ (p. — zp.)j + (zp, — yp.)k, (14)

a vector quantity, whose scalar components are in accord with (21.2).

The operation of multiplying a vector by a scalar quantity, a, is ex-
tremely simple. The length of the vector is merely altered by the factor a.
We may write

ar = i(az) + jlay) + k(az). (15)
A D
_____________________ -
/
/
/
/
b //
bsinC //
/
C¥ //
¢ a B
I1-18.

Let two sides, a and b, of a plane triangle include the angle C between
them. If a is the base, the altitude will be b sin C and the area (Fig. 18),

area (ABC) = %ab sin C. (16)

The sides of the triangle are vector quantities. In accord with equations
(3) and (4), we may represent the area as follows:

area (ABC) = %a X b. 17

The vector representing the area is perpendicular to the surface. Similarly,
the area of the parallelogram, ACBD (Fig. 18),

area (ACBD) = a X b. (18)

The volume of a parallelopiped is equal to the area of the base times
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the altitude. The value of the latter is equal to ¢ cos 8. As shown in Fig. 19,
B is the angle between the vector ¢ and the normal to the parallelogram
formed by the vectors a and b.

VOLUME = abcsina cos 3 = (a X b) = ¢ (19)

=bXc)-a=(cXa)-b,

y

e

b
oL
‘/a

II-19.

since we may use any pair of the three vectors a, b, and ¢, to form the
parallelogram base of the prism. Quantities of the form of (19) we call the
“triple scalar product.” In the scalar product, as we have seen, we may
reverse the order of the factors. From (19) we get

-~

T a]l az

a
bXc-a=a--(bXc)=@x»b-c=1,5b, b, b,]|. (20)
¢, ¢, C,

The dot and cross may thus be exchanged in the triple scalar product.
Since an expression of the form a X (b - ¢) has no physical vector inter-
pretation, since b - ¢ is a scalar, we may drop the parentheses from the
triple scalar product. Transposition of two adjacent vectors changes the
sign of the product in (19). The determinant equivalent is extremely useful
in many cases.
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We may reduce the triple vector product, (a X b) X ¢, to simpler
form. For sake of simplicity and with no loss of generality, we adopt co-
ordinate axes such that

a=uai, b="bi+ b,
Cc = Cli + CQj + C3k.

(21)

which is to say that we take the x-axis along a and set b in the zy-plane.
Then a X b will lie along the z-axis. I'inally, the vector (a X b) X ¢, which
must be perpendicular to (a X b), as well as to ¢, must lie in the zy-plane,
Fig. 20. From (21),

(a X b) = abk (22)

11-20.

and
(a X b) X ¢ = ab,c,j — abyc,i. (23)

To the right-hand side of (23) add and subtract the vector ac,b,i, and
factorize as follows:

(a X b) X ¢ =ac(bi+ bj) — (biey + bcr)ai
ac,b — (bie; + byco)a (24)
=a-cb—b-ca=c-ab — c-ba,

since

a-c=uac and b -c = b + bys.
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We cannot drop the parentheses from the triple vector product. Equation
(24) shows that the final vector can be expressed in terms of the vectors
in parentheses, with their magnitudes altered by the scalars (a - ¢) and
(=D - ¢). The triple vector product may also be written in the convenient
symbolic form:

(aXb)Xc=c-(ab — ba). (25)

The quantity (ab — ba), each member of which is formed by the juxta-
position of two vectors, is called a ‘“dyadic.” We shall return to consider
the properties of these functions in § (27).

We call a vector like L, which results from the cross-product of two
other vectors, an ‘‘axial vector,” to distinguish it from the ordinary, or
“polar vector.”

23. Vector operators. At this point we may conveniently summarize
and extend the various vector formulae introduced up to the present. The
student may, if he prefers, regard the vector notation merely as an ab-
breviation, not dissimilar to the operators of calculus. But in many prob-
lems, e.g., in electromagnetic theory, a knowledge of vector operations is
helpful and greatly shortens the labor of calculation. The simplification
results because we can perform many of the indicated vector operations
without reference to any special set of axes or given system of coordinates.

The vector operator grad or ¥V (del) is given, in rectangular coordinates,
by (9.5):

v=<i%+j;—y+ka—i), 6
where i, j, and k are the unit vectors.

When V operates on some scalar function, ¢, the result is a vector, and
expressed thus:

; 00

V¢=16x

. O £
+j 3y +k 2
We call this quantity ‘‘the gradient of ¢.”” The gradient of a scalar is thus
a vector quantity.

The differential sign in calculus is subject to symbolic manipulation; ¥V
may be similarly employed. Let Q be a. vector, with components X, Y,
and Z, such that

Q=iX+jY +kz. 3)

We may then consider VQ as a ‘“product” of the operator by the vector.
But in vector analysis there are two kinds of product, the ‘“‘dot” and
“cross.” If we adopt the former, we may write

. .9 3\ .. .
V'Q=<1£+]@+ka—z>'(1X+ly+kZ)- @
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Carry out the symbolic multiplication and note the identities (22.9). Then
. aX oY  oZ
VeQ=dive=G 4+ 5+ 5 (5)

a vector operation previously encountered in the derivation of Gauss’
theorem, equation (14.5). The operator V- is called the ‘“‘divergence of”,
for reasons that will appear in § (34). The result is scalar.

If we adopt the vector product, we obtain the vector Q’; by (22.12)

and (22.13),
, o2 _a¥) | {0X _9Z) (0¥ _ox)
Q =V XQ=culQ= (ay 6z> J(az 6:1:) Koz "oy
(6)
a vector already discussed in § (20). If we write symbolically,
9* 9*
V-V = v__+_+az2’ )
we obtain the Laplacian operator discussed in § (14),
Vg = 2 + "3 +5 ¢ (8)

When V? operates on a vector we have the result
VQ = iV’X + jV*Y + kV’Z. (9)

The above equations, when extended, form the basis of vector analysis.
When Q is the resultant of two vectors Q, and Q,, we may write

=V +:Q£V-Q..
Similarly,
V(g £ ¢.) = Vé: &= V¢, (11)
and
VXQ £Q,) =V XQ, £V XQ,. (12)
By carrying out the operations indicated we may show that
V-V XQ-=0. (13)
V X V¢ = 0. (14)
3 2 2 2 2 2
viv-Q = < X2 T ac; (}9; + ai gx) + j<63:§y + aa; + ai. gy)

°X Y azz)
T k(ax 9z + dy 0z + 9z°/" (15)
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Q' -V XVXxQ-Vxe =i 2

dy 9z
(oX’ oz aY’ X’
) )

0z or. ox dy
But
,_ (92 _ oY ,_(a_ﬁg_@@ ,_<6_Y_'_6_?£>
X _<ay az>’ Y'=\5 ax/)’ 2= dx oy /°
Thus

<6Z’ _ aY’) _dY _FX IX | 52
dy 9 /]  dyox  dy> 92

’X | 'Y Oz > <agX X 62X>
<c'9x2 T oy o Toror) " \or T oy’ T )

etc., for the j and k components. The sum of the positive elements is
equal to those of (15). The negative elements comprise the sum of the
Laplacians of the vector components, (9). Hence

VXV XQ=V(V-Q —VQ. (16)
We may also summarize various other formulae. The force, F, is
F=-VYV, (17)

where V is the potential. The work, as a line integral, assumes the form:

W=fF-ds. (18)

Gauss’ theorem becomes

ffF-dS=ffV-Fdr (19)

where dr is an element of volume.

24. Differentiation and integration of vectors. We shall also have to
consider vectors that are functions of the time, ¢, as well as of the co-
ordinates. Let r be a vector,

where

z=z(t), y=y®), z=-22. 2
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The tip of the vector will describe a trajectory, as P,P,, Fig. 21. At the
time ¢,, let r = r;, and at time ¢, = ¢, + Af, letr =1, = r; + Ar.
We shall define the time derivative of r as follows:

dr . I, —1 . Ar

= = lim 2+ — = lim —. 3

dt At—0 Al At—0 At ( )
y

I1-21.

The argument is analogous to that used for derivatives of ordinary scalar
functions. But

r, + Ar = i<x1 + Ax) + iy, + Ay) + k(zl + Az). 4
Hence
. d
e sy e ®

where v, is the tangential velocity of the point on the trajectory indicated
by r. Note that dr is not necessarily parallel to r.

In analogous fashion we define the integral of a vector, which process
15 the inverse of differentiation. Divide the interval from ¢ = ¢, to ¢ = &,
into 7 parts such that

fy — & = D Ab. (6)
k=1

For each element of time, Af,, we let the value of r somewhere in the
interval be r,. Then we define the definite integral of r from £, to £, by
the equation

f ‘rdt = lim 31, At )

n—o k=1
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But

I Atk = ixk Atk + jyk Atk + kzk Atk, (8)
and
Z ) 9% Atk =i Z"xk Atk + j Z Y Atk + k Z F4% Atk. (9)
k=1 k=1 k=1 k=1

In the limit, we have, from (7),

f’rdt=ifaxdt—l—jfnydt—l—k/azdt. (10)

Equations (5) and (10) enable us to evaluate the derivative and integral
of any vector. The interpretation here given, of r as a radius vector, of ¢
as the time, and of dr/dt as a velocity, was merely for convenience.

From equations (22.8), (22.10), (22.14), and (22.15), we have

r-p=uxp.+ yp, +2p. . (11)
r X p = i(yp. — 2p,) + iep. — zp.) + k(zp, — yp.). (12)
ar = i(ax) + jlay) + k(az). (13)
Applying (5) to these equations, we obtain the relations
d d
dep=F.p4r. 2 (14
(r Xp = x +rx P (15)
"t P P dt
2 (ar) p + a (16)

The reader will note the analogy between these expressions and the ordinary
derivative of the product of two scalar variables:

d du dv
dt(uv) _dtv+udt' (17)
In equation (15), one must not change the order of the various factors.

25. Vector transformations to moving coordinate systems. Consider two
rectangular coordinate systems with a common origin. Let one of these,
wherein we denote the coordinates by z,, ¥, and 2,, be a fixed (inertial)
system. We shall use the subscript, zero, to indicate the fixed system in
all that follows. The second system, z, y, z, we shall suppose to be rotating
with a constant angular velocity, @, with respect to an axis that passes
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through the origin of the fixed system (Fig. 22). The radius vector, velocity,
and acceleration, with respect to the fixed axes, of a point P, are given,

respectively, by the equations

I, = i + joyo + ky2,.

dr i dz d dz . .
Vo d_[o = 0 dto + 0 yO + ko dto = 10002 + ]OvOy + kOIUOz-
dV . d xr R d“" d A . .
a, = gtg =1 dt20 + Jo a‘%g + ko g = 1,Qg; + Joloy + koaM_
Yo
K P
|—*
Xo
Zo 1
T1-22.

The analogous equations, with respect to the moving axes, are
r = iz + jy + ke.
v =1, + jv, + kv..
a = ia, + ja, + ka,.

We seek expressions for v, and a, in terms of r, v, a, and . Since

I'=I'0,
we have
dr_ .dv , di | .dy , di , de dk
Vo= Tigte dt+Jdt+ydt+kdt+zdt

==v+:c—+y +zdt’

(D
(2)

@)

(4)
(5)
(6)

@)

(8)
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by (24.16) and (5). The unit vectors, i, j, and k, are variable in direction,
so that their time derivatives do not vanish in (8). For this reason we did
not set v = dr/dt in (5).

The unit vectors i, j, and k are, by definition, constant in length. Hence
the vector di/dt, representing the rate of change of the unit vector, must
be perpendicular to that vector. It will, therefore, have only y and z
components, or

with analogous expressions for the time derivatives of j and k. Let the
angular velocity be

o = ¢+ 9j + k. (10)

Two of the three components are shown, together with the sense of the
rotation, in Fig. 23. These two components are responsible for the vector
di/dt. The third, £i, represents rotation of the vector i about itself as an

y

di

Tk

I1-23.

axis and does not contribute to di. From Fig. 23 we see that the vector aj
exists because of the rotation about the z-axis. Hence, because |i| = 1,

a=¢ and b= —q. (11)
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We adopt the minus sign because bk, as in the figure, points in the negative
direction. Therefore

di .
Similarly
4 _ g _ e
d = tk i (12)
dk . .
g = M £].

From (4) and (10) we have
o Xr=(nr-— s‘y)i + (fz — 82)j + ¢y — 70k

. dk (13)
= + y + " dt’
by (12). Then, by (8), we have
Vo =V+wXr. (149)
Differentiate (14), and employ (3):
a0=%vt—°——v+ m)(r——(w—l—]v—l—kv)—i— m)(r
dv, . dv, dv, dk
< @ T dt> < +””dt dt)
+Exrtox® s

We identify the first parenthesis as the acceleration, a, from (6). The
second, by a legitimate analogy with (13), proves to be @ X v. The quan-
tity, do/dt = 0, since  is constant, by hypothesis. The last term on the
right becomes [ef. equations (8), (14)]:

ng}_vao=mX(V+er)=0xv+"’X(“’xr)' (16)
Therefore a3, =a+wX(Xr + 20Xv. 17)

In equation (17) the second term on the right is usually called the centri-
fugal acceleration; the third is the acceleration of Coriolis.

26. The problem of two bodies. We shall now consider the relative
motion of two bodies, under the action of their mutual gravitational forces.
Although we shall presently discuss the problem from the standpoint of
Hamilton’s principle, we first give the conventional approach, via Newton'’s
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laws. The derivation, stated in vector form, constitutes a useful demon-
stration of vector procedures.

We suppose the bodies to be rigid spheres of masses m, and m,, so that
in accord with § (11) we may regard the action as proceeding from their
centers. Let the instantaneous positions, P, and P, of the centers of the
two bodies be the respective vectors r; and r,. The vector r, joining the
centers is given by the equation

by | T 2 = r. (1)
P2
rs r
(o} n R
11-24.

The forces are directed along r, by Newton’s laws. Further, if i, be a
unit vector along r, so that

r=ir, 2
where r = | r |, the inverse-square law of force becomes, as in (13.6),
d’r mms . m,m.
m] dt; = —G ;‘2 2 lr = _G 71.3 2r) (3)
d’r mym
and My E% = —@ ;3 2 (—-1). 4

Equation (3) represents the force acting on m, because of the presence of
m,. The negative sign in (4) arises from the fact that r is reversed in direc-

tion, i.e., the forces in (3) and (4) must be equal and opposite. Adding
them, we have

m1W+sz=0- (5)
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Integrating this equation directly, we have

dr, dr, _
m; dt + m, dat Po, (6)

where p, is a constant of integration. Integrating again, we find

m,r; + Moty = Pt + a,, (7)

where a, is another constant. We recognize equations (6) and (7) as special
cases of the general theorems derived in §§ (4) and (5), conservation of mo-
mentum, and uniform rectilinear motion of the center of mass.

Since each of the two vector differential equations (3) and (4) has three
components, and since each component equation is of the second order,
we shall require twelve constants of integration in the general solution.
Equation (7) implies six such constants, because p, and a, are vectors.
Consequently we require only six more constants to determine the orbit.

Having fixed the motion of the center of mass we need now determine
only the relative orbit of one body with respect to the other. Dividing
equations (3) and (4) by m, and m,, respectively, and taking their difference,
we find, on making use of (1), that

2,
L e G+ m) 5= —GM 5 M= m o ®)

Now take the vector product of r into (8), or

rxgt_=—@r)(r—0 9)

since r X r = 0. We shall find it instructive to write (9) in its expanded
form. Setting

r = ir 4 jy + ke (10)

and performing the indicated vector multiplication according to the rules
of § (22), we find

[ d% d2y> (d_ d) <d"’ @)_
<dt a) T\ g the gz —yge) =0 4D

Integrating directly with respect to ¢, we obtain

8- ) = =8) e -4 -
< a2y TICa theg, —vg) = (12
One readily checks this result by differentiating it. The integration constant
¢ = ic. + je, + ke, (13)

contains three arbitrary constants as indicated. Perform, now, the scalar
product of (12) with r, making use of (10). The left-hand side vanishes
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identically, leaving
cer=czx+cy+cz=0. (14)

This is the equation of a plane. In fact it represents the plane of the orbital
motion. Two of these constants fix the position of the plane so that the
original twelfth-order problem reduces to one of the fourth order. Reference
to § (6) identifies the components of (12) as comprising the vector of twice
the areal velocity. Two of the three components of ¢ simultaneously fix
the orientation of the orbit plane. The third determines the magnitude of
the areal velocity, which becomes

[c| = 5¢ 1\/cz—l—c + . (15)

N

Note that we may obtain the result from (9), by direct vector methods.
We may write, in place of (9), cf. equation (24.15),

d dr dr _, dr d’r d’r
GxG) = GxGrexgi=rxii=o (16

because the vector product of a vector by itself vanishes. Hence

dr
rX o, =c 17)
Multiplying (17) by m,, we have
rx<mlz—rt>=r)(p,=m1c=L, (18)

where p, is the momentum and L, by (22.4), the angular momentum, a
constant as required by (6.9). We also see that the areal velocity becomes,
cf. equation (22.17),

c, (19)

a constant, in accord with Kepler’s second law. Here ¢ is a vector per-
pendicular to r and v, i.e., it is perpendicular to the orbit plane.

Returning now to equation (8), and taking twice the scalar product of
(8) by dr/dt, we have

dr dr _ 2M d_r_i(_ _) oM d
2 aE s T T T\ = g, (@

by (24.14). But

dr

o= (21)

do do
+19T +1rsm gdt
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Hence (20) becomes

d(ary | o(d6Y | .. e d_<p>:|
dt[(dt) +r<dt> +rsmt 6 g,

__qMd_ _2Mdr _ i(l)
= —G A T ¢ rodt 2GMdt (22)
Integrating (22) we find that
] {4 e 8] <00
(dt) Tr\g) Tty =, T (23)

where ¢/, another constant of integration, equals the total energy per unit
mass. (22) is the well-known ‘“‘vis viva” integral, expressing the kinetic
energy (per unit mass) in terms of the potential.

We find it convenient at this time to orientate the system of co-
ordinates so that the plane, 8 = x/2, coincides with the plane of the orbit.
Then (23) becomes, since 8 is now a constant,

dr\? de\* 2GM
(&) + (%) =2+ @9
From (17), we obtain
o dr Lde
r)(a E='CI=. (25)
dr dr do
Al - = — ==
50 At~ dedt (26)

Therefore, using (25) and (26) to eliminate di from (24), we find

cdr
rv —c¢ + 2GMr + ¢'7*

We may perform this integration with the change of variable r = 1/u, or
take the result directly from integral tables. We find that

dp = (27)

GMr — ¢ ,
@ = arc cos N & Gl + ¢, (28)
2
c

or r

= s (29)
GM — V' + G°M* cos (¢ — ¢’)’

which is the polar equation of a conic with the origin at a focus. The

constant ¢’’ defines the position of the apse, i.e., the major axis. If we

measure ¢ from the point of nearest approach, ¢’ = 0. To simplify (28)

we set

p=c/GM (30)
and & =1+ % /GM*. (31)
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Then (29) becomes
r=p/(1 + ecosep). (32)

Equations (30) and (31) enable us to replace the integration constants
¢ and ¢’ with two others. Here p, the semi-parameter or semi-latus rectum
determines the size of the ellipse, whereas e, the eccentricity, determines
its shape. The constant ¢’’, which really defines the position of the line
of apsides in the orbit plane, is the third constant. These constants, together
with the pair defining the orientation of the orbit planes, are all that we
require for a complete specification of the orbit. A final constant specifies
the position of the body in the orbit. For this purpose we ordinarily em-
ploy T, the time of some perihelion passage, i.e., when the planet is closest
to the sun.

Dyadics, Matrices, and Tensors

27. Introduction to dyadics or temnsors. We have just discussed the
relative motion of two spherical masses. We might expect that our next
logical step would involve a discussion of the motion when the mass dis-
tribution in one of the bodies departs from spherical symmetry. There
prove, however, to be several intermediate steps. When the body con-
sidered is not spherical, we must consider the question of its own rotation.:
The resultant torques that arise from lack of symmetry may cause a
shifting of the body with respect to the axis of rotation and may also
produce a shifting of the position of the axis in space (precession). The
mathematics of the discussion are greatly shortened by the use of a special
notation, an extension of the vector treatment already given.

Consider a point-mass P attached to the centers of three mutually per-
pendicular stretched rubber bands and held in static equilibrium by the
force of elasticity. Take a set of Cartesian axes parallel to the bands. The
mass, if displaced a small distance z parallel to the z-axis, will experience
a restoring force proportional to and opposite in sign to the displacement,
ie.,

F = —ia.zx, (1)

where a, measures the tension of the band on the z-axis. We suppose the
bands to be so long compared with the displacement that the restoring
force in the z-direction produced by the crossed yz-bands is negligibly
small.

In general, the tensions a,, a,, and a, will not be equal so that when the
displacement is r, where

the force becomes
F = —(ia.z + ja,y + ka.?). 3



§27] MEecHANICS AND DYNAMICS 87

We shall now express the vector F in a new notation that will be partic-
ularly useful in certain types of vector problems. The scalars z, y, and z
may be written

r=1i-r, y=j-r, z=kor. 4
Therefore (3) becomes
F= —[ai(i-r + ajG 1) + akk -1l 6

Since quantities of the form ii, jj, etc., have no interpretation except when
one or the other of the two juxtaposed vectors enters as a scalar product,
the parentheses in (5) are not really necessary. Hence we may factor out
r, and write symbolically,

F = —(a.ii+ a,jj + akk) 1= —® -, (6)
where the quantity,
® = a,ii 4+ a;jj + a.kk, €]

plays a role analogous to the operators of calculus and vector analysis.
The quantity @® is called a dyadic or tensor of the second rank and the
individual components are known as dyads. It is a quantity that, when
“dotted” into a vector, yields another vector.

When the coordinate axes are not specially chosen to lie parallel to the
elastic bands, ® assumes a somewhat different form. Let A,, g, and », be
the direction cosines of the vector i in the new coordinate system, etc.,
for the vectors j and k. Then

i= )\1i’ + #1j, + Vlk,)
i= Nd’ + pj’ + vk, 8
k = \i" 4+ #3j’ + Vak’;

where i/, j’, and k’ are unit vectors in the new system. Substituting these
values into (7) and carrying out the expansion we find that

P = auii + alzij + alaik
+ axji + azzjj + azajk
+ aski + aa2kj + aaakk, (9)

in which equation we have, for simplicity, dropped the primes because
they are no longer needed. The coefficients are

a;, = Na, + N\a, + Na, , ETC. (10)
Gz = MpiQ: + Aapo@, + Asps@. = @y , ETC.

Note that the general dyadic has nine components, whereas a vector
possesses only three.
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We now define the so-called conjugate dyadic, ®,, obtained by per-
muting the unit vectors in each element of ®.

®, = a,il + apji + a-ki
+ anij + 6:55] + axkj
+ asik + ai.jk 4 ap.kk = @, (11)
because, in the present example,
Ai; = Qjqy (12)

by (10). Dyadics that are equal to their conjugates are said to be sym-
metric, whereas those that are equal to the negatives of their conjugates,
with

Gi; = —0q, (13)

are called anti-symmetric (or skew-symmetric).

To sum two or more dyadics we merely take the sum of each element.
Consequently the sum of two or more dyadics is itself a dyadic. The
compound dyadic ® + @, has for its conjugate ®, + ® = ® 4+ ®_. In
other words, this dyadic 1s symmetric. Analogously, the dyadic ® — @,
has®, — ® = —(® — @®,) for a conjugate. It therefore is anti-symmetric.
Consequently we may express any dyadic in the form

@ =1(0+ @) +1(0— @), (14)

DO —

1.e., as the sum of symmetric and anti-symmetric dyadics.

We may show, by reversing the argument leading to equation (10), that
if a dyadic is symmetric, we may by simple rotation of axes cause the
non-diagonal elements in (9) to vanish, so that the dyadic takes the form
of (7).

The operator

iit+jjt+kk=3 (15)

is often termed the “idemfactor,” or identical dyadic. When § is multiplied
by any vector, either as a pre- or post-factor, the vector is unchanged, i.e.,

F-X=@G0X+ijY+kZ) -I=1i-iiX+j-jjY +k- -kkZ = F. (10

The expression a-®-3 is scalar in nature, as also is ® :W", where W' is
another dyadic. An expression of this type is called the ‘“‘double-dot
product,” which signifies that the two dyadics are to be expanded by the
rules of distributive multiplication and then each dyad pair combined
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according to the rule
(ab) : (cd) = (a-c)(b-d). 17
Note that, from equations (9) and (11),
® D, = al; + 1,0, + G130
+ @012 + a3 + G230

+ @31a13 + G30055 + a3s. (18)

-28. Dyadic transformations. The process of multiplying a vector by a
dyadic transforms the vector into a new vector. The simplest transforma-
tion is the multiplication by the unit dyadic § which carries the vector

into itself, according to (27.16). The unit dyadic, transformed by simple
rotation of the coordinate system, becomes:

a, i’’’ + a,i'j’ + a,i'k’
R =ii+jj+kk = | +a,j'i" + i’y + anj’k’
Fa,. ki’ + a3k’ + ak'k’
=i+ i + Kk =3, (1)
wherein we have substituted for i, j and k from (27.8). The quantities:
T e =NANAN=
Ao = My + Nops + Az = 0, ETC., (2)

for a Cartesian coordinate system. Thus, if we have a vector, F, which we
wish to transform to a new coordinate system, we can carry out the multi-
plication:

F=3:-F=3  F=3- (X +jY +k2
=i'(Xi" i+ Yi'-j+ Zi' -k
+iXY i+ Y § 4+ Z§ K

+ kK (Xk"-i+ Yk’ - j+ ZK' - k). 3)
But i’«i=X, i'-j=um, BETC (4)
Thus F = i'(X)\l + Yﬂl + ZVI) + j’(sz + Yﬂ2 + ZV2) (5)

+ k(XN + Yus + Zvy) = /X7 +jY" + kZ7.

The foregoing transformation leaves the original vector unchanged.
Consider, now, the more general transformation:

G=®-F=o- ({0X +jY 4+ k7), (6)
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a,ii + ap.ij + a,ik

where ® = | + axnji + aj] + axnjk]|. @)
+ as ki + askj + a.kk
(an, X + a..Y + a;32)i

Thus G = |+ (@uX + Y + ax2)j|. (8)
+ (a2 X + a5 Y + a;:0)k

We can regard the new vector, G, as obtained from the old by a process
of distortion and rotation. For this reason a dyadic is equivalent to a
tensor of the second rank. We shall find later on that, for three definite
directions of the vector r, the operation @ - r, represents only a stretching
of r;. In other words,

q’ i 1'1 = )\1'1, (9)

where A is a numerical constant.
Let r, be a vector that is to be transformed by pure rotation into a
vector r, by the equation

1'2 = ‘D ¢ rl- (10)

Specify the axis of rotation by a unit vector, g, not necessarily perpendicular

to 1, or r,. Define
»

e =i\ + ju + ky, (11)

in terms of its direction cosines. The component of r,, along e, viz., r, - gp,
is unaltered by the rotation. The component perpendicular to ¢ has the
magnitude | o X 1, |. However, ¢ X 1, is perpendicular to both ¢ and r,.
Hence the component perpendicular to ¢, in the plane defined by p, r,, is

(e X1) X o= (rip— or) - o, (12)

by (22.25). The vector of the foregoing equation is the component prior
to rotation. If 6 is the angle turned through, we get

r2=r1°99+(1'19—9r1)'90080+9xrlsi110. (13)
We can write
eXr=J-e X, =3Xp- 1. (14)
to—eor)-e=1 —po 1, =(J — g0 - In. (15)
Therefore
r, = [po(1 — cos 6) + J cos & +F X psin 6] - r;. (16)

The dyadic, in the brackets, is independent of the original vector r,. We
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identify it with the @ of equation (10). Thus (11) and (16) give
iiA*(1 — cos 6) + cos 6]
+ ij[Au(l — cos 6) — v sin 6]
+ ik[Av(1 — cos 6) + usin 6]
+ jiAu(l — cos 6) + v sin 6]
® =19 +jjlg*l — cos 8 + cos¥] (17)
+ jk[u»(1 — cos 6) — X sin 6]
+ ki[Av(1 — cos 8) — usin 6]
+ kj[ur(1 — cos 6) + X sin 6]
+ kk[’(1 — cos 8) + cos 4]

We can break this dyadic into a pair, one of which is symmetric and
the other skew-symmetric. Thus

® =S5+ Q. (18)
ii(A\*(1 — cos 6) + cos 8] + ijau(l — cos 6) + ikhv(1 — cos 6)

S = | + jizu(l — cos 8) + jj[u’(1 — cos 6) + cos 0] + jkur(1 — cos 6) |.
+ kidv(1 — cos 6) + kjur(l — cos 6) + kk[*(1 — cos 6) + cos 6]

(19)
0 — ijy + iku
Q= |+4jir + 0 — jkAr[. (20)
—kip + kjx + 0
Note that for small rotations,
S ~K. (21)

The more general dyadic transformation of equations (6) and (7) repre-
sents compression or strain, in addition to rotation of the original vector.

Consider the application of two successive dyadic transformations of a
vector, as follows:

G=w-.-a&-F, (22)
where @ is given by (7) and W is a similar dyadic:
biii + bi.ij + bisik
W = |+ byji + beejj + basik|. (23)
+ b,k + by kj + bakk
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For convenience in a later interpretation we shall write the components
of F in a vertical column,

ix
F=|jv|. (24)
kZ

To simplify our notation, we may omit the factors that represent the
unit vectors, in view of the fact that the positions of the components
uniquely specify the quantities. Also, we may omit the addition signs. In
this fashion we shall write:

(b b bi| [an @ as| [X
G=W- -®:-F=|byy by bos| - |Gy G Qo3| |Y
[ D31 bso bysd  Las as  ass VA
(b by bis| [anX 4 anY + anZ
= |bar bae bas| c [ @nX + @Y + axZ . (25)
| bar bae basd  [an X 4 @Y 4 asZ

We have carried through the multiplication, exactly as we should have
done if the dyad elements were present. Continuing the process, we get

[(b1101y + bustar + brsas)X + (bias + broGas + bisae) ¥
4+ (01113 + b12053 + b13G33)Z

G = (021011 + 022021 + 023030 X + (b51012 + 020050 + Das3s) Y (26)
+ (021015 + basss + b23ass)Z

(031011 + bassr + basas) X + (bg1ayy + b3aGon + byaaan) Y

| + (bs1013 + b30005 + basG33) Z ]

The respective rows are the z, y, and z components of the vector G.
We find that

G=%.-(®-F)=(¥. o) -F. (27)
The order of multiplication, therefore, is not significant. The dyadic

XxX=y:®=
(b11¢111+b12@21+b130«31) (b11012+b12022+b13a32) (b11a13+b12a23+b13a33)

(b21011+b22a21+b23a31) (b21a12+b22022+b23032) (b21013+b22a23+b23a33)'

(b31G11+ basas, + bi303,) (b31a12F b3s@ss+b33ass) (b31G13+ b3aas3+ b3sas)
(28)
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Note carefully the construction of each of these nine terms. Denote, by
¥:;, the element in row 2 and column j of the dyadic W and, by ¢,,, the
term in row j and column % of the dyadic ®. Then the term x,; in row <,
column % of the dyadic ¥, is

Xix = Z Viidik (29)

In other words, we multiply the terms of row 7 of the first dyadic by the
corresponding terms in column k of the second dyadic, add the individual
terms and enter the result in row 2 and column % of the result.

The above rule for multiplication of two dyadics is identical with that
for multiplication of two determinants or two matrices. Indeed, the nota-
tion introduced in (9) is the same as that used for matrices. The great
majority of matrix theorems hold also for dyadics and vectors.

29. Introduction to the theory of matrices. It is interesting, as well as
useful, to consider at this point the general algebra of matrices. The appli-
cations of matrix theory to physics are many. Among the newer uses of
the methods is the so-called matrix mechanics, employed in conjunction
with wave mechanics for the analysis of atomic properties.

The procedures of matrix algebra $eem unduly formal and artificial
unless one understands the origin and development of the subject. The
simplest approach is from the standpoint of simultaneous linear equations.
Consider the set of equations

a,, % + Gy + 13T = dy,
A%y + 22Ty + U233 = dz, (1)
3% + 32Ty + Aa3T3 = ds.

Using the multiplication rule previously defined, we can represent these
three equations in matrix form:

Q;; Gz Qi3 X d,
A1 oy G| * |T2| = |da]. (2)
'J’m Q32 Q3 Z3 d,

Expansion of the left-hand side gives
A%y + 12T + 13T d,
an®; + G272 + azaan = |d,|, 3)
a5 %1 + Q32%2 + A33Ta ds

which is equivalent to the original equations, (1).
If, now, we designate the matrix of the coefficients by a, and the column
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matrices, {z;, Z., 25} and {d,, d;, ds}, by = and d, respectively, we can
abbreviate our equations in the form

ar = d, (4)

which is not limited to any specific number of equations. Our matrix can
be of any order.
In general, our matrices need not be square. For example, the equations,

2¢ + 3y = 8§,
3x — 4y = —5,
x + 5y = 11,
are equivalent to
2 3 8
x
3 —4|- |: ] =|-=5/[. 5
y (5)
1 5 11

In multiplication, however, the matrices must be “conformable,” i.e., the
number of columns of the first matrix must be equal to the number of
rows of the second. In the foregoing example we have three equations and
two unknowns. The three equations, therefore, are not linearly inde-
pendent. Multiply the first by 19, the last by 17, subtract and divide by
—7. The result is identical with the middle equation.

Return now to equations (1)—(4). Effect a change of variable, such that

r, = bllEl + b12$2 + bl3£3;
x, = bk + b22£2 + bzaEa, (6)
X3 = balfl + b32£2 + b33£37

or, in matrix notation,
z = bt @)
We can represent the resulting linear equations in £ by the matrix equations
ar = abt = ¢t = d, (8)

where ¢ is the matrix product, ab, calculated by the rules of matrix multi-
plication.
Suppose, now, we solve the equations (6) simultaneously to give

£ = e + €127 + €13,
£ = en) + €Ty + 3%, (9
£ = €T t+ €3%; + €335,

go that £ = ex, (10)
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Substitute this result in (7), and obtain

r = bex = Iz, (11)
1 00

where I=10 1 0, (12)
0 01

equivalent to the idemfactor or unit dyadic .

When two matrices bear such a relationship to one another that their
product is equal to I, we say that one is the reciprocal of the other. These
matrices cannot be singular, because we should then find the determinant
of the coefficients vanishing.

Thus, since

be =1, b'be=e=b"'I=0>", (13)
since multiplication by I gives the original matrix. Therefore, to divide
by a matrix, we multiply by its reciprocal, which we denote by the above
notation, e.g., the reciprocal of matrix b is the matrix b~'. Only square
matrices possess reciprocals.

To calculate the reciprocal, we note that the solution of equations (9)
in the form of determinants, is

z: by, b T, Ty X4
T bas by |biz by by
Zs bss Dal by bay by
by bz bl |bu ba ba
bor Day bl iz bay D
bay bsz basl bz ey bus (14)

where we have interchanged the rows and columns of the determinants.
Similar expressions hold for ¢, and £. Call the determinant in the de-
nominator A,. Then, expanding the numerator in terms of the minors of
T, T, and x;, we obtain

&

T * b baal _ [bir Buaf o [bie Dl
G = 1bie b b = |y o T bis Do
brs bas  Das
= Bz, + B2, + Bazs. (15)
Similarly,

Aty = Bz, + Byox, + B,
Aty = Bz, 4 Bysx, + Baax,,

(16)
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where B;; is the determinant that we obtain by suppressing the 7th row
and jth column of the original matrix b. To this determinant we attach
the positive sign when 7 4+ j is even and the negative sign when 7 + 7 is
odd. This procedure goes under the name of Cramer’s rule.

Expressing our three resultant equations in matrix form, we have

MEcHANICS AND DYNAMICS

& B B21 BSl X

1
£ | = Kb B,: Bs Baf - |2|. 17)
£ B.s B,, B L3

This equation shows the indeterminacy that arises when the matrix b is
singular, because A, will then be zero. Comparing the terms of (17) with
those of equation (9), we note that

By . _Ba _ _By
Ab’ 12 Ab) 13 Ab'

Note especially the reversal of indices in the B’s, as compared with the e’s.

Although we have carried through the foregoing development for a 3
by 8 matrix, the results must be applicable to a matrix of any order. If a
is any square matrix,

Bs (18)

€1 =

a;r Qe Q1a
Az Qg Aoy
a= , (19)
_anl anZ ann_
its reciprocal is )
An An A |
‘4-12 A22 An2
L1
« = (20)
_A 1n A?n ‘4 -

We call the matrix of the A’s, whose components are defined as were the
B’s of equation (15), the adjoint (or adjunct) of matrix a. Thus

Apg; =

An
Ay

A21
A22

A,
AnZ

A nN-—t

’ (21)
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so that @ Qu; = A (22)

We can calculate the reciprocal of a matrix only if A, # 0. When A, = 0,
the matrix is said to be singular. Two examples of singular matrices follow:

2 3 1 [2 2 1
L 1 1 3 L5 5 7

When multiplied into the column matrix, {z, y, 2}, these matrices produce
the equations

A B
2t + 3y + 2 =d,. 2t + 2y 4+ 2z =d,.
—z— 2y + 22 = d,. 3z 4 3y + 3z = d,.
z+ y 43z =ds. 5¢ + by + 7z = d,.

The numbers d,, d,, and d; do not concern us here, except that their values
must be consistent with the equations represented. In example A4, the
third equation is equal to the sum of the first two. In example B, the vari-
ables z and y are not independent. They occur in such a form that we
may replace the quantity * 4+ y by a single variable w. The determinants
of both these matrices vanish. Such a matrix is said to be degenerate. If
several such relationships exist the matrix may be multiply degenerate.
If we multiply a matrix through by a constant, we multiply each of its
components by that constant. Equality of two matrices implies that each
pair of terms in corresponding positions shall be equal. We construct the
conjugate (or transpose) of a matrix in the same way that we defined the
conjugate of a dyadic, by interchanging the rows and columns. Thus

a1 Gz Qg
G, = G = (@, Gy 0 |- (23)
G135 Qga  Qas
If a matrix is equal to its transpose,
a = d, (24)
we call the matrix symmetrical. This condition implies that
Gy = @31, Qo3 = Gaz, Q13 = Q. (25)
If a matrix is equal to the negative of its transpose, so that

a = —d, (26)
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we say that the matrix is skew-symmetric. In such a matrix the terms on
the main diagonal are equal to zero. For the others,

Qg = —0qg1; Qo3 = —0a32y Q13 = —0a3;- (27)

The properties and definitions are identical with those employed previously
for dyadics.

Matrices and dyadics may have complex as well as real elements.
Vectors whose components are complex are called ‘“bivectors,” with one
element in real and one in imaginary space. Later on we shall see that such
notation is useful for certain types of physical problems. If, for example,

1 14 0
a=| 4 34+% 1 (28)
1 -3 7 4-—3i
[ 1 4 1-3
a=|14+4¢ 34+2 7 | (29)
L 0 1 4-—3¢

We define the Hermitian conjugate of a as af, where
a¥ af agt
a' = a’t as ast|, (30)
a’ ay ash

where a¥ is the complex conjugate, in the usual sense, of a,;. To find the
complex conjugate of a matrix, interchange rows and columns and replace
7 by minus 7, everywhere that ¢ occurs.

Thus, for the a of equation (28), we get

1 —47 14 3¢
a'={1-43¢3-2 7 | 31)
0 "1 4 + 31
Note that the product,
aa' = aTa, (32)
is real.
If a = aT, (33)

the matrix is Hermitian. An example of an Hermitian matrix is
4 3t 1 — 2
a=| —3 -2 -6 |[. (34)
14+ 2 —6 0
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The main diagonal is real and elements symmetrically located above or
below the diagonal are complex conjugates of one another.

Let us return to the properties of various matrices. First of all, in matrix
multiplication, the factors do not ordinarily commute. In fact, some of the
commutations are meaningless. For example,

Zy || G Q12 Qg3
L[| G211 Qa2 (a3 (35)
T3d| Q31 A3z A3s

has no interpretation in terms of our notation. The two matrices are not
conformable. The number of columns of the first is not equal to the number
of rows of the second. However, we do note that

AT 2 ST/ 231
~y
[z: 2 Za]|a: G a3 = $@ = az, (36)

Q13 Q23 Qg3

ax = 7a. (37)
More generally, we have for complex matrices,
TNt
ar = (ax) . (38)

To give some of our matrix procedures definite geometrical meaning, let
us now consider the dyadic:

anii + aij + a;sik
® = |+ axnji + @xjj + a.jk
+ ay.ki + a5.kj + aaakk_l
= B,i + B,j + B;k. (39)
We have substituted the vector quantities B,, B, B, for their equivalents,
B, = ia,, + ja.. + ka31-= P -,
B, = ia,; + jas; + kas, = @ - j. (40)
B, = ia;; + ja,s + kas; = @ - k.

Let us regard (40) as three equations, to be solved simultaneously for the
vectors i, j, and k.

B, B, B B, B, B;
Azy QAgzz (a3 Ay Q2 Gys
{ = A31 A3z Qas = a3y G323y . ETC. (41)
a1 Gy Qg3 i G2 Gy3
Q21 Q22 Qg3 G211 Q22 Qg3
as1 A3z Qag Qa1 Q32 Qag
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In the notation of equation (15), we expand the determinant of the
numerator, getting

. 1
1= K (AllBl + 4..B; + A13B3);

. 1
] = A (4B, + A4..B, + AxBy), (42)

|
k = A (A31B1 + A32B2 + A33B3>:

where A, is the determinant of the denominator of (41). Also, let us define
the reciprocal dyadic
@' = ib' + jb® + kb®, (43)
so that
@0 =3 (44)

The superseripts of b are indices, not exponents. By equations (39) and (43),
® - ®' = B)b' + Bb® + Bb’®

b' - Biii + b' - B,ij + b' - Byik

= [+ b” - Bjji +b*- B,jj + b”: Bijk

+ b’ - Bki + b® - Bkj + b® - B;kk
=@ - ®=ii+jj+kk=g. (45)

Equating coefficients of the two dyadics, we get
b' B, =b’-B,=b"-B; = 1.

b'-B,=b"-B, =b*>-B;,=b-B,=b-B, =b'-B; = 0. (46)

The vector b' is perpendicular to vectors B, and B;. It is not necessarily
parallel to B,, however.

b!'.i= ‘illbl - B, = 1111,
“ “ (47)
b* - i = 1112, b'-j = 1121, ETC.
Therefore
1 1 ) .
b' =+ (Aui + Aaj + Ask),
1 . .
b* = A, (i + Asj + Ash), (48)
3 1 . ]
b” = — (A1 + Asj + A331§),

L.
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All A21 A31
_ 1 1
and i )] ! =Z A12 Azz Aaz = X (padi . (49)
A13 Azs A33

We could have inferred this result directly from equation (20), since the
elements of the dyadic transform like those of a matrix. The alternative
demonstration should be useful in guiding the student to an understanding
of the relationship between matrices and dyadics.

Let the determinant

A An Ay
Ay = |A, A, Agl. (50)
A Az A
We shall prove the relation that
Ay = A, (51)

Write Al as A,A,, and expand in minors around the first and second
rows respectively. Assume that (51) is correct. Then

A2 = (a4, + apAy, + apAn) @Ay + @yl + ax3Ass)
= A = Ap(Apdy — Apdy) + Au(Aspdy — Andy)
+ A5 (A4 — Asdyy). (52)
On the right-hand side substitute the equivalents
/ Ay = 015053 — G304, -
Asy = G130y — 011023 - (53)
Ass = 1,802 — Q12G5; -
Multiply out and cancel. The remaining nine terms factor as follows:
(@A + 1242 + 013A423) (@0 Ay + @204y + G23445) = 0. (54)
Both of these factors are zero. The first, for example, becomes

ay;; Q2 O3

= — a“ (112 A3 = O, (55)

0z Q3 ay; Qis a1 Q2

—ay,

+ a..

— Qi3
A3z QAaz

a31 (133 aal a32

A3; Q32 Qaz

because the first two rows are identical. The identity (51) is therefore
established,
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The three vectors b', b?, and b® define a parallelopiped whose volume is
v=D"-b* XD’ = A,/A], (56)
by the rule (21.19) for the triple scalar product. Similarly, the vectors

B,, B,, and B; define the volume
V=B B, XB, = A,. (57)

The relation (51) shows that

vV =1 (58)

The vectors b’, b”, b*> and B,, B,, B, define so-called reciprocal systems.

30. Matrix and dyadic transformations. In general, as we have seen,
the operation of a dyadic ® upon a vector r results in a distortion of r
both in direction and magnitude. There are, however, certain unique
orientations of the vector r, for which the distortion may be one of stretch-
ing alone. We call such values of r “‘eigenvectors” or “eigenrays’ of the
associated dyadic or matrix. The condition, thus expressed, is

® -1 =M, (1)
where A is a numerical constant. We can write the equation in the form
P r—AN=® 1T —AJ'r=(®—2\J) -r=0. 2

Where ® has the form of equation (28.7), we can write (2), in matrix
notation, as

G — A a; (13% x
(1231 (122 ha )\ (1273 . y = O. (3)
129 A32 O3z — A z

Comparing these equations with (29.2), which are similar in form except
for the fact that the latter have a non-zero value on the right, we see that
the determinantal solution of (3) must be

o 0 0
Qa1 Qoa — A Qa3
£ = a3y a3 @y — A , ETC., FOR ¥ AND z. (4)
a,, — A Q12 Q1s
Aoy Aos — A (L25)
a1 (12 Az3 — A

The numerator is equal to zero. Hence, if we are obtaining a solution other
than the trivial expression, z = y = z = 0, the determinant in the de-
nominator must also vanish. This relationship, known as the “secular
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equation,”
a;; — A a2 Qi3
Q31 G2z — A Q23 =0, (5)
2% Q32 Gz — A

is a cubic in A. Solving it, we obtain three roots, A, A,, and A,.
Substitute one of these roots, say A,, into equation (3). The three re-
sultant equations, which we write out for purposes of demonstration, are

(all - )\1)13 + a2y + (23%:Y = 0.
a1 T + (a2 — Ny + A232 = 0. (6)
31T + ey + (@ — Nz = 0.

Because we have employed (5) to determine A,, these equations are not
linearly independent. We may assign any arbitrary value we choose to
one of the three variables z, y, or 2, and determine the two remaining
parameters from any pair of the equations. The third merely provides a
numerical check on the process.

Let us consider a concrete example, by determining the eigenrays of the
dyadic or matrix:

11 —6 2
d=|—-6 10 —4|. (7)
2 —4 6
The determinant of the matrix
11 — A —6 2
-6 10—\ —4|=0, (8)
2 —4 6 -2
leads to the secular equation
324 — 180\ 4+ 27\ — \° =0, (9

which has the roots A, = 3; A\, = 6; A; = 18.
Thus, for \;, we get the equivalent of (6):

81:1 - 6y1 + 221 == 0.
. 6131 + 7y1 - 4Z1 = O- (10)
2z, — 4y, + 32 = 0.,



104 MECHANICS AND DYNAMICS [§ 30

Set 2, = ¢; then we find that y, = 2, = 2¢. Our first eigenray is the vector
with components

z 1
vl =12l
2 2

where ¢ is some arbitrary constant, which we temporarily set equal to
unity, for convenience. Later on we shall set ¢ = 1/0/1 4+ 2° + 2° = 1/3
so that the eigenray is of unit length.

As a check on our calculations, we readily find that

11 —6 21 3 1
—6 10 —4([2]|=1|6{=3|2] (11)
2 —4 6J2 6 2

in accordance with our original condition (1). The vector {1, 2, 2} from the
origin or any other vector in this direction, irrespective of its length,
when operated on by the given matrix, increases its length by a factor of 3.

Now, proceeding in analogous fashion for A\, and A\; we determine two
other eigenrays, respectively {2, 1, —2} and {2, —2, 1}. These three vectors,

1= i+ 2j + 2k,
r, =2 +j— 2k, (12)
1, = 2i — 2j + k,

are mutually perpendicular, because the scalar product of one with either
of the others is zero. The vectors will be orthogonal, however, only when
the matrices are Hermitian.

Now let us form a matrix (or dyadic) from each of our three sets of
eigenrays:

Ty Lo X3
K = Y Y2 Y3 . (13)
2 2 za

Because of the special character of these vectors, the product
M1 Aoy AT
® - K = MU AYs Nays |- (14)

M2 Noza A2y
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Each column of this matrix fulfills the condition (1). Let A be the diagonal
matrix of the eigenvalues.

A 0 O
0 0 A

Then one readily proves the identity
®-K=K-A, (16)
by direct substitution. Multiplying both sides of this equation from the
right by the reciprocal matrix, K™', we have
®KK'=®=K+A K", (17)
The square of a matrix,
@’ = KAK'KAK™' = KA’K™

A0 0
=K-[0 A O0[-K7, (18)
0 0 X

and similarly for any higher power of a matrix. In fact, if we have some
funetion, a polynomial in ®, such as

P(®) = al + b® + c®® + do’ 4 .. ., (19)
we can express it in terms of the related polynomial,
Pix) 0 0
PA)y=| 0 PO) 0 |, (20)

0 0 P(xy)
by the equation

P(®) = K - [P(A)] - K. (21)

For P()), the secular eqﬁation, we adopt tl_le form

a;; — A Qs Qi3
PO = | ay Gz — N Gy | =at+NFDN+..., (22
Qs (o 298 A3z — A
so that -
a,l — @ a1 a3l
P(®) = as, 1 anl — @ I | (23)
I | [ | Al — @

=al +b® +cd® + ...
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Then, by (20), we obtain the result that
P(\,) 0 0
P(®) = K[PA)JK7' =K. 0 PH) 0 |-K*
0 0 P

000
=K-|0 0 0/-K, (24)
00 0

since P(\) = 0 for the values A, \;, and A;. Thus
P(®) = 0, (25)

where 0 is the zero matrix. This equation is a matrix equation whose
algebraic form is identical with that of the secular equation, with the
matrix @ substituted for the A of the original and I (unit matrix) intro-
duced as a factor for the term independent of ®. We call the equation
thus transformed from the variable A to the matrix variable @, the “Hamil-
ton-Cayley equation.” Speaking somewhat loosely, we may say that &
satisfies its own secular equation.

Although we have carried out the proofs of the foregoing matrix-dyadie
relationships in terms of square three-by-three matrices, the nature of the
proofs in no way depends upon this limitation. We can apply the results
directly to a square matrix of any number of columns. '

In many physical problems, the diagonalization of matrices is of great
 importance. The general K matrix, whose columns consist of the vector
components of the eigenrays, plays a significant role in matrix mechanics.
We term such an array a ‘‘modal or transformation matrix.”

We may adopt one convention that will uniquely determine, except for
sign, the basic eigenvectors. We choose the constant ¢, (equation 10 ef.
seq.) in such a way that the vector has unit length. For the numerical
example given above, we can set ¢ = 1/3. Then

1 2 9
K=%2 1 —ol. (26)
2 —2 1

The factor, 1/3, by definition, multiples each of the matrix components.
The matrix, so determined, is a special example of a unitary matrix. The
individual components are the direction cosines of the unit vectors. When
K is complex, we say that it is a unitary matrix when KK' = KK =],
cf. equations (30) and (33). In words, we term K unitary when its Her-
mitian conjugate is also its reciprocal.
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When the vectors comprising the matrix are orthogonal, we can imme-
diately write the reciprocal by mere interchange of rows and columns. Thus

12 2
K = % 2 1 —2|=K. @7)
2 —2 1

In the foregoing example, the matrix is its own reciprocal. The reader
may wish to check the fact that

K-K'=1. (28)

He will also wish to test the relationship of equation (24) as well as its
inverse, viz., that

K'-®-K=A. (29)

Under a unitary transformation, the ‘“trace’” of the matrix, viz., the
sum of the diagonal elements is constant and hence equal to the sum of
the roots.

One sometimes finds that the matrix has a repeated root. When this
condition obtains, the matrix may not be reducible to diagonal form. How-
ever, one may, in some cases, find two independent vectors that will
satisfy the transformation matrix. Any Hermitian or unitary matrix can
always be diagonalized, but the transformation matrix is not necessarily
unique.

Matrices or dyadics often have a mechanical or geometrical interpreta-
tion. A rigid body having axes of symmetry has certain mechanical prop-
erties that we can express in dyadic form. Usually the dyadic is sym-
metrical. By a proper choice of axes we can express the dyadic in diagonal
form:

® = a,,ii + azjj + a..kk. (30)

In other words, we can reduce the general dyadic to principal axes. The
procedure for effecting such a transformation is identical with that given
above. The vectors of the modal matrix define the orientations of the
principal axes. If, in (29), we take ® and A as any matrices satisfying the
relation, whether A is diagonal or not, if K is a unitary matrix, we say
that the operation is a ‘“‘unitary transformation of the matrix ®.”

Tensor Analysis

31. General theory of tensors. Certain extensions and generalizations
of the vector-tensor operations previously discussed lead to a shortened
notation, though the individual operations are not thereby abbreviated or
altered.
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Consider the equations

¢ = Q'@ 2% 2Y); ¢ =QG,2,7); ¢ =G 2 @

and ' = X'(¢', &, ¢); & =X(d, ) ¥ =X, D) @

where the superscripts are indices, not exponents. In this notation we
employ z', z°, 2* as replacements for the more conventional rectangular
Cartesian coordinates: z, y, z. The new notation has the advantage of
symmetry. A single equation represents three above, sic:

¢ = Q@' 2, 2%, (3)
= X', ¢ 0. 4

where 7 stands in turn for the numerals 1, 2, or 3.
These equations define a new system of curvilinear coordinates: ¢, ¢°, ¢°.
We now specify a vector, r, in the conventional sense, such that

r = i,z + i,2® + i.2°, (5)

where i,, i, and i; are the unit vectors. Then
.oz, 9t . 9’
dr = <11 3 + i, g + 1 a_qT> dq'

. ox' ., 9, oz’
+ (11 5&5 + i %'2' + i 5&5 dq2

. ox' . 0t . 6x3> s
+ <11 3(]3 + 1, aq3 + i, aqa dq
= €; dql + e, dq2 + e, dqa; (6)

wherein e,, e,, and e; assume the role previously played by unit vectors.
By virtue of (6),
or ar or

€ = a_ql; e, = 6q§’ €; = 6—q3 (7)

We say that these vectors are “unitary,” although they ordinarily do not
possess unit length. We shall refer to them as the “basic” vectors of the
new coordinate system. They depend, in general, upon the particular point
in space. ,

In prior work we have usually introduced the condition that e;, e,
and e; be orthogonal. We shall now drop this restriction and merely require
that the three vectors be not coplanar. Our earlier studies have indicated
the possibility of setting up a reciprocal vector system. The parallelopiped
whose sides are the unitary vectors will possess a volume

V=e -e Xe, (8)
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equation (22.20). Now define a new set of three vectors, e', e, €°, such
that

el =¢,Xe/V; e€e=¢e,Xe/V; e =¢ Xe)/V. 9
Note that e’ is perpendicular to the plane defined by e, and e,, etc. Let
v==e-e*Xe’=(e Xe)X[e;Xe]- (e Xe)V®
= [e; X e,] - (e,e; — e;€,) - (e, X e,)/V?
= {[es X e,] - e,}{e; - (e, X e)} = (e, - e, X e)’/ V' =1/V, (10

wherein we have expanded by means of the triple vector product. We thus
get

vV =1, (11)

s

as in equation (29.58).

Associated with this system of reciprocal vectors is a new set of co-
ordinates qi, ¢z, ¢s. As we have seen, the coordinate curves g¢,, like €', lie
perpendicular to the surface defined by the coordinates ¢* and ¢* or their

- associated unitary vectors e, and e,. Similar conditions hold for ¢, and g,.
Any quantity that we wish to define, be it scalar, vector, or tensor, must
be independent of the special coordinate system. However, its representa-
tion will depend on the particular system. We shall adopt as fundamental
that system whose unitary vectors possess subscripts and whose coordinates
q possess superscripts. Therefore

dr = e, dq' + e, dq” + e;dq’. (12)

However, the reciprocal system, though secondary by definition, is equally
satisfactory for representing vectors. In terms of the second system, the
position vector becomes

dr = e' dq, + e""dq2 + e° dg,. (13)
We can write the two equations above as
3 3
Ldr= ) e, d¢' = D e dqg.. (14)
i=1 i=1

Note that the summation index, 7, appears twice in each of the sums. We
can further simplify our notation if we drop the summation sign, and
agree to perform a summation, over a previously specified range, for all
literal indices that appear twice in any one term. Here the range of sum-
mation is 1 to 3. With this “summation convention,”’ we abbreviate the
foregoing equations to

dr = ei dq, = €; dq". (15)

Since the letter used for the summation index has no special significance,
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we can replace it at will by 7, k£, or any other convenient letter. We term
such a letter a “dummy index.”
The elementary scalar, (dr)?, takes three alternative forms. The first,

by equation (12), becomes
(dT)2 = dI' . dl' = €, * €; dql dql + e, * e, dql dq2 + €, - €, dql dq3
+ e2 M el dq2 dql + e2 . 82 dq2 qu + 82 M e'; dq2 dq3
+ e -e dg’dg + e - e,dg’ dg’ + e, - e, dg’ dg’
3 3
=D e -edgdg =e; -e; dqdg. (16)
i=1 j=1
To simplify this notation, we set
€: - € = g = Gisy (17)
the scalar coefficient in the 7th row and jth column of the expanded form
shown above. We can, therefore, write

dn’ = >

i=1 7

g:; dg’ dg’ = g.; dq’ dg’, (18)

3 3
=1
by the summation convention. Analogously, from equation (13), we have

(' = 2 2. e - e dgidg, = g dg. dg,. (19)

3 3
i=1 j=1

The third form results when we take the dot product of (12) and (13).
Then

3 3
@)’ = 2 2 e - e dg dg; = gldg dg;. (20)

i=1

The reciprocal system is based on the vectors of the original system.
When j = 7, then e’ = e, X e,/V, where r and s differ from <. Thus we
find that

qf =1, when j = 1. (21)

Note that we cannot write (21) as g; because this notation requires a
summation, and is merely an abbreviation for g + ¢5 + g3 = 3. When
J # 1, the cross product that replaces ¢’ must have e; as one of its com-
ponents. Hence, momentarily suspending the summation convention, we
get

e;-e =(e;-e Xe)V =0, (22)
because we can interchange the dot and cross. In general,

gi = &), (23)



§31] MEecHANICS AND DyNaMICS 111

where

_ 1 =14
0 71,

the well-known ‘‘Kronecker delta.”

Later on, in § (33), we shall introduce a related quantity hs, specifically
for an orthogonal curvilinear system,

Vg = 1/h; Vgu = Uhy Vi = 1/hs, (25)

where h; measures the length of the special unitary vector. Also, for
orthogonal systems only,

G (24)

gii = g;: = 0; 1 # . (26)

Consider any vector u. We may express u in terms of the basic unitary
vectors e; as

u = eu’, (27)
or in terms of the reciprocal vectors e’ as
u= ey, (28)

We say that (27) expresses u in terms of its confravariant components u’,
which term signifies that the index, 7, in terms of its location as sub- or
superscript, runs counter to or is unlike the index of the base vector e;.
Analogously we say that (28) gives u in terms of its covariant components
u;, whose index is a subscript and therefore like that of the base vector
e,. The vector u, being invariant by definition, is neither covariant nor
contravariant.

Although we agree to use the two reciprocal sets of unit vectors, we
shall henceforth employ only one coordinate system, viz., the ¢'. Hence
we express any vector or tensor field, irrespective of covariant or contra-
variant character, as a function of ¢'.

Take the dot product of e’ into u. Then

e cu=-¢-eu =uél (29)
or e’ - u=u,. (30)
Resubstituting this value of u’ into (27), we have
u=-eu =ee -u (31)
Now, let
u=e, (32)

and we get

e =ee' -e =eqg". (33)
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Thus, if we have a vector given in terms of its covariant components we
can immediately transform it to the contravariant type, a process called
“raising the index.” We substitute (33) into (28) and get

u=eu; = eqg'u; = eu’ (39)
so that we may write
We can omit the unitary vectors e; from our equations and deal directly
with the components. Note, however, that we can dispense with the unit
vector only because we have indicated which component we are dealing
with by its appropriate index, ¢, j, or equivalent, applied to the component
itself. Many treatises on vector and tensor calculus do not even bother to
express the basic vectors and confine their attention wholly to components.
By reversing the roles of equations (28) and (27) we obtain the equations
for transforming contravariant to-covariant components, i.e., ‘for lowering
the index.”

u=-eu =egu = eu,. (36)
Hence u; = gi,-ui- (37)

In matrix notation the transformation equations (37) and (35) become

U, G o ga |0 ]
Uy | = | Gra Goz a2 || ¥ | = G| U (38)
Us Gis Gos  gsadl [ %’ ]
o I i [, ]

and W = g7 ¢° |lu.| = Flu.|. (39)
u' g ¢ ¢°llus | 5]

These equations imply that
|G| = g = pETg,; # 0, and |G’'| = ¢’ = pET ¢’ # 0. (40)

Furthermore, the reciprocal character of these equations requires that

U, U,
Uy | = (GG uy |, (41)
U Us
so that the matrix
G’ =1, or ¢ =@ (42)

In tensor notation, we have

ir r

99" = g.i¢” = g"g:, = g7'g.: = 8L (43)
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Let us examine the g,; in greater detail. We have defined the system
z*, in equation (2) as Cartesian, so that the unit vectors i, are independent,
of position. Then, by (5), (7), and (17) we have

r = iz*. (44)
ar or o9zt axt. .
gii=ei'e1‘= ~ . - = - ~1k'll
aq" dq¢’ ¢ ¢’
dz* ax' ax* ax
= - = G- (45)

aq’ 6qi e aqi 6q"

In this equation the appearance of k twice as an index signifies the summa-
tion from 1 to 3 as before. The factor §,,; is a Kronecker symbol.

If the system ¢° is also orthogonal, g,;, which is proportional to the
cosine of the angle between the unitary vectors e; and e;, must vanish
when 7 # 7. Similarly, if the system ¢° is orthogonal, the reciprocal system
must likewise be orthogonal.

2 . e
gw=3V@”’ 7= (46)
0 J#E
where h; is the factor defined in (25). Then
2 .
gn‘ - 30%‘) J =1 (47)
0 J#

For orthogonal systems, therefore, part of the basis for distinguishing be-
tween contravariant and covariant components disappears, because the
unitary vectors of the basic and reciprocal systems are parallel. However,
they need not have the same length.

The foregoing equations define the g,,’s and g*’’s, which provide a ready
means of transforming a vector from covariant to contravariant form or
vice versa, all within the same basic coordinate system, ¢'. We now wish
to transform a vector from one coordinate system to an entirely new one.
For example, consider two different and independent sets of unit vectors
¢; and e,, associated with the respective coordinates ¢° and ¢*. We are
required to determine the rules for transforming a vector from one system
to the other. Let

u=eu =eu =1 (48)
in terms of contravariant indices. Of course u and u are identical vectors.
The use of the bar merely indicates that we are to adopt the components
of u in the coordinate system of g rather than in ¢q. Furthermore, suppose
that we have the equations

¢ =Q@, D), T =0 ¢ D). (49)
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Differentiating these equations, we get

e 00 40 9T e 0T 40 0T
dg = aq" dg + o dqg” + o dg” = Py dg’. (50)
Now
i ook = 99
dr=e;dq=ekd§=ekaidq. (51)
q
—k
Hence e, = € aq_. (52)
aq’
Substituting for e; in (48), we get
Y
u = eu _q = eu’. (53)
dq
Thus the components of a contravariant vector obey the transformation
law .
_ . 9q" .
wt = _q_ = vy, (54)
dq
og"
where T (55)
2q’

Note that equation (54) represents a set of linear equations in the u’s
which take the form

u' vi o2 vl

= v || (56)
—3 3 3 3 3

U Y1 Yz YadLUu

in matrix notation. Where, in our earlier development, we limited such
transformations to orthogonal systems, we now perceive that the linear
matrix form applies also to oblique coordinate systems. For this repre-
sentation to be significant, the determinant of the coefficients must not
vanish, i.e.,

1 1

Y Y2 Vs

y=detvyi = |v] i 3 = 0. (57)
3 3 3
Y Y2 Vs

Let U° and U° represent the column matrices of (56), the symbol °
indicating the contravariant nature of the component and let T' be the
transformation matrix, so that we can write

U° =T10U"°. (58)
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The equation implies the existence of the reciprocal relation
Ue = T'U° = CU°, (59)

where C is a new matrix whose transpose, obtained from an interchange of
rows and columns, is the reciprocal of I'. Our reason for this choice of
notation will appear in a moment.

Now, we set

— 1 2 3

€, ¢y 1 1]} €1

— 1 2 3

€| = {C C3 Co e, l. (60)
e c; ¢ calles

Let E, and E, represent the two column matrices and C the transformation
matrix, above, so that

E, = CE,, (61)
which equation corresponds to the abbreviated tensor form

aq'

€, = 57" e. = cie;. (62)
As in (57), the determinant
¢ = det c, = 0. (63)
Now, using (61) and (54) successively, we obtain
u=eu = cieu =cievu = eu'. (64)
Therefore v = u'. (65)

This condition requires that

¢y = 8, (66)
which equation is equivalent to the matrix equation previously written:
Cr =1C = 1I, (67)
where I is the unit matrix.
We shall now write
E° = TE°, (68)

as a matrix equation analogous to (61). In its transposed form the equation
becomes

(E°}) = [E°)T, (69)
where the symbol {E°} now denotes a row matrix. Taking the scalar
product, e; - e’, we get the matrix

E,{E°} = I = CE,{E°}T = CIT = CT = I, (70)
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in view of the fact that

e, - e = &l (71)
Analogous to (58), we also have

U, = CU,. (72)

Let us now summarize and emphasize the most significant facts of the
foregoing discussion of tensor formulae. Thus far we have limited ourselves
to the vector u, which must be invariant under any coordinate trans-
formation. We adopt as basic some coordinate system wherein the base
vectors, €,, €,, €, are arbitrary except for the condition that they be
independent, i.e., not coplanar. These basic vectors are, in general, func-
tions of position. We further introduce the reciprocal vectors e', € €°
respectively normal to the planes defined by the vector pairs (2, 3), (3, 1),-
and (1, 2). Although our formulas apply strictly only to three-dimensional
space, we can readily generalize the basic concept of reciprocal vectors to
a space of n dimensions.

We express the invariant u either in terms of its contravariant com-
ponents u’ or its covariant components u;:

u=-eu = eu,. (73)
Defining,
g’ =e' -¢e =g’ (74)
gi; = €; + € = g;,. (75)
gi=¢e" e = 5 = gl (76)
g9 = gug" = & = ol (77)

We can always raise or lower the index of the unit vector by the trans-
formation

ej‘ = giiei and e, = gi,-ei. (78)
Similarly, for the components:
uw = g'u; and wu; = g, u'. (79)

If, now, we transform from our initial coordinates ¢‘ to a new system
¢, the unit vectors transform as follows:

ék = C;;-e,' (80)

and e’ = +le’, (81)
.9 97"

where 6= o and % = pyes (82)

subject to civs = 8. (83)
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The associated vector components transform as:

contravariant, U=y, (84)

covariant, U = Cilli. (85)

We say that such transformations are contragredient when the matrices C
and T obey equation (67). Note especially that, in c; the new variable ¢*
appears in the denominator where, for the %, ¢° appears in the numerator.
Some theorists prefer to use these transformation properties themselves as
fundamental in defining covariant and contravariant components, without
reference to the unitary vectors. ,

The above formulas, derived for vectors, provide the basic rules for
transforming tensors in general. Consider, for example, a dyadic

e.e, T" + e e, T'? + e,e,T"
T = + e2e1T21 + e2e2T22 + e2e3T23 ) (86)
+ e.e,T°" + e.e,T** + e,e, T

which takes the abbreviated form with our summation convention,

3 3
T= Y Y eeT' =eeT". (87)
i=1 j=1
T, of course, is an invariant concept, but the components T’ will change
as we transform from one coordinate system to another, or when we shift
to the reciprocal system of basic vectors. T"', by virtue of our previous
definitions, we term a contravariant tensor. The rank or valence is 2, by
which we mean that the components involve two indices. We can also
express T in terms of the reciprocal basic vectors,

T = e'e'T,;, (88)

where T';; is a covariant tensor of rank 2. Or we can use some permutation
of the two varieties, such as

T = e'e,T; = ee'T';. (89)

Quantities like T’ or T?; we call “mixed’’ tensors. Since the order of
sub- and superscripts may be important, we have put in the dots to make
the order unambiguous, which it would not be if we merely wrote T'}.

At this point we may generalize still further, to consider tensors of even
higher rank, e.g., the contravariant tensor T°’*, the covariant one T, or
any of the six mixed varieties such as T?’;, T'ii, . . . , ete.

We can raise or lower the index of any tensor component by merely
applying the formulae for vectors, one index (or basic vector) at a time.

ii. il
T, = guT ’

Tiik — ngTum — gkmgilT'f.I'."’ ETC. (90)
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Thus, given a tensor of any type, we can readily transform it, step by step,
to any other desired type, but still of the same rank.

To transform from a coordinate system ¢ to one g, we make use of the
relations (80)—(85). For a contravariant triadic tensor we have

Tiik — 7:'7271: rst. (91)
For the covariant type we have
T = ciciiTrae (92)

The number of factors v or ¢ equals the rank of the tensor. For the mixed
type we get
T = v (93)
For triadics and tensors of higher rank, the matrix notation is increasingly
cumbersome, because the triadic itself comprises a cubic or hypercubic
rather than the familiar square array of the dyadic, as in (86).
Consider the dyadic, T, formed by multiplication of the two vectors

u=-exu and v = eV, (94)
so that
T = e{eiuiv,- = e,e1T1,. (95)
The scalar product,
T=u-v=ce;-eT;=§T;="T:=uv,. (96)

We term the foregoing process ‘“‘contraction’ of the tensor, and comment
that the procedure involves “putting a dot” between some pair of the
vectors. Before contracting the tensor, for a given pair of indices, we
must transform the tensor, if necessary, so that one of the two indices is
contravariant and the other covariant. Note that contraction of a tensor
of rank two gives a scalar, i.e., a tensor of rank zero. Contraction of a
tensor of rank three yields a tensor of rank one, i.e., a vector. Hence con-
traction always reduces the rank by two. E
A knowledge of the quantities, ¢} ... ,v: ..., gi; ..., ¢, provides all
the necessary information for transforming tensor components from one
coordinate system to another. We still have the problem of differentiating
a tensor with respect to one of the coordinates, e.g., ¢°. Suppose that we
are given the derivative
T ..

P 9"

and wish to determine its relation to the corresponding quantities in the
new coordinate system q*, viz,
oTe.

Pre (98)
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As we shall subsequently see, neither of the quantities in (97) nor (98) is
the component of a tensor.
To indicate the covariant nature of the differential operator, set

d
gt

D;,. (99)

When D, operates on a tensor component we obtain another component,
D.T:.:, whose covariant rank is one unit higher than that of the original
tensor.

Consider now the action of the operator D; upon the vector e,u’. Differ-
entiate as a product

D,‘(e,'ui) = e,'Diui 4+ uiD,'e,'. (100)

The operation D;u’ amounts to ordinary differentiation of the function u’
with respect to the coordinate ¢* and hence presents no unfamiliar problems.
However, to complete our knowledge of the derivatives we must further
simplify the quantity D.e; and also determine its transformation char-
acteristics.

In a Cartesian system, the direction of the unit vectors is invariant and
the derivatives in question vanish. More generally, such a derivative gives
an expression that depends on all the unit vectors of the system. Thus
let us set

De; = I'le, + Tle, + I'’e, = T'le,
= T'figue' = T. ., (101)
where, by definition,
Tii0 = guld;. (102)

The I's, the so-called coefficients of the affine connection, are to be
determined. The subscripts ¢ and j indicate that they refer to the directions
of the basic vectors e; and e;; the index k or [ indicates which unit vector
applies in the expanded form. We should emphasize that these I'’s are not
tensors, despite the notation. The reason that they are not tensors (except
in special cases) lies in the fact that they do not obey the mathematical
transformation laws for tensors. We shall therefore think of them as co-
efficients or merely as “symbols.” Indeed, I'}; frequently appears in the
literature as {%;}, the so-called Christoffel symbol of the second kind and
T.;.1 as [17,l], the Christoffel symbol of the first kind. Multiplying (101)
through by e* - | we get

I‘,'k,' = ek . D,'e,'. . (103)
Now expand the product differential
De* -e, =D, 8 =¢e"-De, +e - De"=0. (104)
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Hence rt = —e, - D,&* (105)
and D" = —Tfe'. (106)
& =% _ D, (107
dq
by equations (7) and (99). Then (105) becomes
rt.=e.D,Dxr=¢€-D,Dr (108)

- ek * D,'ei = I-‘,'k,'.

Hence the gammas are symmetrical in the two lower indices, 7j. Conse-
quently, by (102),

Pii.l = I‘,'.,',;. (109)
Differentiate the product
D,e, - e, = Digil = € Diei + e, - D.e, = Ty + T (110)

Permuting the indices ¢, j, £ in cyclic fashion, we get the equivalent
expressions

ngu = T + T (111)
Dlgii =Ty, + T (112)

Add equations (110) and (111), subtract (112), and make use of (109).
Then

1
Lo = Q(Digik + D;gi; — Dygi)) = gkzl‘aki (113)
and IS = ¢"'Ti. = ¢'(Digis + Digic — Dugsy).

These equations illustrate, among various facts, the enormous com-
pressive power of the tensor notation. For three-space, 77k (or ) inde-
pendently assume the values 1, 2, and 3. Hence there are 27 values of
T';;.;. Because of the symmetry in 77, however, only 18 are distinct. More
generally, for n space, the number of permutations of 75 is n(n + 1)/2.
Hence the total number of independent I'’s is n*(n 4+ 1)/2.

Since the ¢.;’s are defined in terms of the adopted coordinate system,
equations (124) and (125) permit calculation of the significant T's, how-
ever cumbersome actual computation may prove to be. In many applica-
tions, however, the symmetrical forms, with I'; = 0, for j ¥ k, assume
special importance. From (17), (40), and (8), we have

g =det g;; =det(e;-e) = (e, -e Xey) =V (114)
D;V = Dyle, - e, X e;5) = (Pill + I3 + F?ﬂ)(el - e, X e) = I‘ikk '\/5
(115)
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all values of I' vanishing except those for which ;7 = k, because the triple
scalar product vanishes when any two indices are identical. For a more
detailed derivation of (114), see equation (137).

We are now ready to define the familiar operator V¥, in generalized co-
ordinates. Since the differentiation is a covariant process, we must balance
it by a contravariant base vector so that the operator will be an invariant,
as required. Thus

V = Ekﬁj = ei'Y,;C]iDi = ejale = eiD,;, (116)
by (80) and (98). _
The simplest operation is that of ¥V upon an absolute scalar, ¢.
V¢ = e D = eDip = e'u; = u, @117

an invariant as required. This procedure immediately gives a vector u in
terms of its covariant components. To obtain u in terms of its contravariant
indices we must raise the index by methods previously given.

Now consider the operation, Vu, with u written in the contravariant
form

Vu = e'D,(eu’). (118)
Differentiate as a product. Then, by (100) and (101) we get
Vu = e‘e;(Dau’) + eu'I'le, (119

= e'e;(Dau’ + u'Tr),

through an interchange of dummy indices.
Now, if we wish to calculate the divergence of u, we contract the re-
sulting tensor as follows:

V- -u=e¢€' -e(Du +u'T)) = (D + Tin'. (120)
1
Vg
by (115). To test the equivalence of these last two forms, merely differ-

entiate \/g u’ as a product.

If u is the gradient of a scalar function, ¢, as in (117), we raise the index
of u; to give

V-u=Du + \“/—g D:Vyg = D.(Vgu), (121)

u' = g'u; = ¢ D, (122)
1
vy
the Laplacian in generalized coordinates. Note that the summation is over

both 7 and j, so that the generalized Laplacian possesses nine terms, unless
orthogonality reduces the number to three.

Vu=V- -V¢=V%= D{V'g ¢''Di¢), (123)
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Now consider the operation VT, where T is a dyadic. First adopt the
contravariant form of T:

VT = eiDl-(e,-ekTik). (124:)

Differentiate as a triple product, holding the alternative pairs of factors a
constant. Then

VT = e‘e;e,D,T'" 4 e'e,e, I’/ T"* + e’e;e, ', T"". (125)

Interchange the dummy indices 7 and [ in the second term on the right-
hand side of (125) and & and [ in the third term. Hence

VT = eie,-ek[DiTjk + P,;lelk + P.,;le”]. (126)

Note that the original vector prefix, e‘e;e,, which obtained before the
differentiation, has now reappeared as the result of the index shifting. We
can further simplify our notation by writing

VT = e'e;e, V. T (127)
where ¥, operates only upon the components T7*, with
viTjk == D,;Tik + I‘iilT”c + I‘ile” = ny'{c'i (128)

since the derivative is itself a tensor component. We call such a process
“covariant differentiation.”

To obtain the divergence of T, contract the foregoing triadic on the
first and last indices, ¢ and k. Thus, since e - e, = §,, we get

V - T = ¢[DT" + T, T" + T.T"]
= ek[i— DV g T + I‘,’;T”]. (129)
Vg

Consider, now, the scalar volume V of the parallelopiped formed by the
unitary vectors e,, e,, and €;, in a new coordinate system. By (62) we get

V==t e Xe =cciie;, -e; Xe,. (130)
In the factor e, - e, X e,, each of the indices, by the summation con-
vention, assumes in turn all values from 1 to 3. However, when any two
of the indices are identical, e.g., when ¢ = 1, j = 1, £k = 1, 2, or 3 the
triple scalar product vanishes, because e, - e, X e, = e; X e, - ¢, = 0,
etc., by interchange of dot and cross. When the indices ¢, j, k£ are cyclic,
the triple scalar product equals V. When the cyclic order reverses, the
product equals — V. Therefore we can set

€; * €; X €, = €;;:€; * €, x e; = G,','kV, (131)
where
€123 = €231 = €327 = 1,
€111 = €12 = €13 = €, €6C = 0, (132)

€132 = €327 = €3 = —1.
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Then we can write, from (130)—(132),

V = cicicte.;, V. (133)
Note that, from (60) and (63),
a ¢ ¢
c= |y & ¢ = cicicke, . (134)
c; €3 Ch
thus V =cV. (135)

From (8), (33) and (11),
V=e e Xe = gngz,-gake" -y X e
= 1:02i0ue € - " X e = g, (136)

k

by a reasoning similar to that of equations (131)—(134). The symbol ¢’
has properties identical with that of e,;, equation (132). The quantity g
is the determinant defined in (40). Using (11) we get

V =149, (137)

a relation previously given in equation (114).
Reconsider the elementary vector product u X v, with the vectors u
and v written in contravariant form:

uXv=eu Xer =e, XeT’
= ekéi,'kVTH = ekUk, (138)

by (9) or (131). When we compute the vector product of a pair of contra-
variant vectors, we obtain a vector component wherein the volume element
V appears in the numerator. Hence the quantity is not a vector com-
ponent in the ordinary sense because V, as well as U,, varies in any co-
ordinate transformation.

Such quantities are not uncommon in physics. We do meet with certain
quantities, like scalar potentials, which are invariant to any coordinate
transformation. Such quantities are absolute scalars. On the other hand,
a quantity like density (mass per unit volume) must depend on the co-
ordinate system, because the volume element V may change with the co-
ordinate system. An absolute scalar obeys the transformation law

¢ = ¢. (139)

A scalar density will contain the volume element in the denominator so
that we have the transformation law

¢/V =¢/V. (140)
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We thus consider the volume dependence separately from the absolute
scalar function ¢ which measures, for ordinary density, the distribution of
mass with respect to the coordinate system. If we adopt a still more general
law, and make use of (102), we have

_ AN
5= (Do =0y, (141

where we term N the “weight’’ of the scalar quantity. N = 0 corresponds
to an absolute scalar, N = 1 to an ordinary density, etc. Negative values
of N are not excluded.

Similarly we get vector densities or tensor densities in general. The most
general transformation law then assumes the form

re.. N r_ s

=y .. ciew . . T (142)

With this definition we note that the ‘‘vector’” u X v, whose properties
we examined in (138), is not an absolute vector but a tensor density of
weight 1.

Although the cross product is a convenient device for representing an
area of magnitude wv sin §, with its orientation indicated by the vector
perpendicular to that surface, we note that the cross-product notation fails
for spaces of more than three dimensions. The failure is due to the fact
that two vectors do not uniquely determine a normal to the surface element
except for a space of three dimensions. To represent properly a surface
element, we may project it in turn upon each basic surface element specified
by a pair of vectors e;, e;,. Thus a surface element becomes, in general, a
tensor, whose components, T',;, represent the orientation of the surface
element. This tensor replaces the axial vector, whose orientation is defined
specifically only for three coordinates.

When we operate upon a vector with ¥V, we cannot employ the curl,
V¥V X, for spaces of more than three dimensions. Instead we operate directly
upon the vector or tensor

Vu or VT, (143)

and irterpret the resulting components by rules previously given.
Let us determine the gradient of a tensor density, T* = T*V" of
weight N. The invariant concept applies to the tensor

T = S/VN = eke,'I”c/VN,

so that T/V" denotes an absolute tensor. We now operate with ¥ on
this quantity and then multiply again by V" to produce a tensor of proper
weight. Thus

VT = Ve D(VT) = ¢"e'U~NV"'D,V) + ¢ DT
= e(D, — NTH)T. (149
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Now let T be a dyadic, and we get
Ve = e'e,e,V.T, (145)
where V, is an operator:
vIT*t=DI* + 1" + it — NI)T, (146)

which operates only on scalars, as in (127) and (128) for absolute tensors.
For a covariant dyadic we have

V«;I,'k = Diﬁ:ik - Piliszik - I‘ilkiil - Nrilli:ik; (147)
and for a mixed dyadic,
V& = DI, + TiT; — T, — NI.T,. (148)

The above formulae provide the basic rules for covariant differentiation.
In three-dimensional space, the operation, V X u, is analogous to the
vector product. We write

V Xu=¢e'D, Xeu =e" XeVu =e Xeu,.,, (149)
where the covariant derivative
w;; = Dau; — Tlu, — NT u,. (150)
Noting that the idemfactor I takes the alternative forms

I = e'e, = e,e* = g, e'e’ = g'*e.e;, (151)
we can set
e Xe =e Xe' -ee = ¢'ve, (152
in which case we can write curl u in the more familiar form
iik
V Xu=e G u, (153)

where the component is a tensor density of weight —1.

To ascertain the superiority of the tensor notation for the curl, and, at
the same time, to extend the analysis to a space of more than three dimen-
sions, apply the result to Stokes’s theorem (32.8), which states that

[V xu-as=[u-as (154)

Let us omit the cross, according to the agreement of (143), and write Vu
from (149). Also represent dS in terms of its contravariant tensor com-
ponents,

dS = e,e, dS”°. (155)
Then we get, in place of the left-hand side of (154),
fe"e"e,esu,-,,- ds™. (156)

Now contract this tensor over the indices j, r and i, s. Since this pro-
cedure is equivalent to taking the scalar product e’ -e, = &, we are
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summing the components of u; ; through the face of dS*’. In other words
we are computing the flux of the tensor u, ; through the entire surface.
And (156) measures the flux through the entire boundary surface. We
perform the summation w; ; dS*'. The surface element, dS"’ = —dS’, is
antisymmetric. We can, therefore, write the integral in the form

f w, , dS7 = %fu,-_,-(dS“ 4 dS) = %fu,-,,-(dS” — 48y, (157
Now interchange the dummy indices on the second term, and we continue,
= [ s as” —uds™ = 5 [ s =) as”. (158)

The differential area dS’’ consists of an elementary parallelogram, dg* dg'.
Continuing, we now divide the integral into two parts:

L] (o) -4 ] (o).

At this point let us suspend the summation rule, and calculate (156)
over some specified pair of coordinates, say ¢' and ¢°. Then

aul 14 fauz 2
2[ bgdg — 4 dq' dg

To evaluate this entity we have to assume some limits for our integra-
tion. Over the elementary parallelogram, as we hold ¢° constant, we sup-
pose that ¢' ranges from a to b. Similarly, let ¢* range from ¢ to d. The
quantities u, and u, are functions of the coordinates ¢, and ¢,, as well as
of the other coordinates, in general.

w =g, @), w=uld ). (160)
Now, holding ¢, constant, we get
A = e, @ - e ) = @) = )
Similarly,
[ 2540 = v, @) = wla, @) = @) = @ (6D
Hence

%./;b .[nd (12 — Usy.1) dg' dg’
- [T~ @rlag — [ 1w - @rldg

= f,_,b ()" dg’ — f " w® dg’ - f ") gt + f (e df. (162
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These last four terms represent the line integral of u around the circuit
abcd. Hence, returning to the summation convention, we get, finally,

1 <0u,- 6u,—> ” f :
—5 — — —1dS" = s dg’. 163
2J o o u: dg (163)

The right-hand side of (163) represents the line integral of the scalar
quantity u(q'q’) around the closed circuit adbc. The left-hand side is an
integral over the area bounded by the circuit. This expression enables us
to extend Stokes’s theorem, and indeed other vector operations, to a
space of n dimensions. We have done so by dropping the vector product
and redefining equation (9), which specifies the reciprocal unitary vectors.
As before, our basic coordinate system, ¢', ¢°, ..., ¢" defines n unitary
base vectors e,, e,, ..., e, Then the vector e’, reciprocal to the base
vector e;, is normal to all the unitary base vectors except e;. Further,
the n base vectors define a volume V in n dimensions and the reciprocal
vectors a volume, v, so that (11) still holds. Given e, we choose the length
of €' so that e, - ¢ = §.. We introduce the metric tensor g;;, as in (17)
and employ (18) except that our summation convention must apply to
the range 1 to n instead of 1 to 3, as before. The definitions of contra-
variance and covariance do not change, but the transformation matrices,
G(38), G'(39), I'(58), and C(61), become n-dimensional. All of the essential
remaining formulas, except those containing vector products, are un-
altered. Whenever a symbol X appears in any formula, we omit it, forming
a tensor from the pair of base-vectors originally separated by the symbols.
We have to extend our definition of epsilons to n subscripts, each of which
may range from 1 to n.

0
€ikl... = 1. (164)
-1
The epsilons are zero whenever any pair of indices is duplicated. In other
words, e differs from zero only when the subscripts ¢, j, k, [, . . . , consist
of some permutation of the numbers 1 to n. We start with
€123...n = 1. (165)

The other values of ¢ have as their indices some permutation of the in-
tegers 1 to n. If we form this arbitrary sequence by the successive operation
of changing adjacent letters, the number of permutations determines the
sign of e. If we require an even number of permutations to derive the given
e from (165), we assign to e the value 4 1. For odd permutations, e = —1.

Equation (150) gives the basic rule for covariant differentiation of a
covariant vector component. Omit the cross, as irrelevant.

Vu = eieiv,'u,' = eieiu,'_,' = eiei[D,-u; — F,’l{ul], (166)
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wherein we have set N = 0. Now form the second covariant derivative
9 o
Vvu = ek a—_k {e]e1[D1'ui - I‘,'lt'ul]}. (167)
q

The quantity in square brackets is a doubly covariant tensor, hence we
employ (147) to get the second covariant derivative

VVu = e'e’e’ {D,[Du; — T'jul
— T8[Dau; — Taaw] — DA[Du, — Thwll.  (168)

Differentiating the product term and changing the dummy index from
! to m in the first square bracket, we get

ui i = DD, — [T/iDwun + TWiDu; + T Dju,]

+ T5iTau + wTaT,), — D). (169)
Now reverse the order of differentiation, changing the indices jk,
Ui v; = D;Du; — [T5iDwu,, + ThDu; + TiDu,]

+ TilTaa + w(T/ile, — D,T],  (170)

and subtract (170) from (169). The first five terms cancel identically,
with the use of (108). Hence

Uiip — Ui = WGl m — I/iTwm — DT/ + DT (171)

The quantity on the left-hand side represents a triply covariant tensor.
Hence the quantity on the right must also be triply covariant. Non-
repeated indices within the braces include the covariant indices ¢jk and
the contravariant index [. The dummy index, m, does not count because
it is repeated in both positions. Hence we represent the tensor in braces
by the symbol B;;;/,

B‘Hkl = {Pk":Film - Fi”:]:‘klm - Dklei + D,‘I‘kli}, (172)

the famous Riemann-Christoffel curvature tensor. We can lower the index
{ as follows:

Biiw = g.Biji- (173)
Through (169) and (114), this procedure gives
Bt = {TiTint — Ifilkm — DT + D;Tyi s
— I''D;g1n + T0iDgim}. (174)

Using (111)—(113), carry out the indicated derivations, canceling various
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terms in the process. We get, finally,

Bijkl = —I‘ZZF,-z.m + I‘iﬂ;rkl.m
1
+ § [D.-Digzk + Dszgu - Dkagz,- — D;‘Dtgik]- (175)

This tensor i1s antisymmetric in the indices j, k, and in the indices 4, I,
so that

Bikjl = Bliki = _Biikl' (176)
Also, permuting the last three indices cyclically, we get
Biikl + Bilcli + Bilik = 0. (177)

For a space of four dimensions, this tensor has 4* or 256 components. The
enormous economy of the tensor notation is immediately evident, when
we realize that (173) or (174) represents 256 separate equations, despite
the fact that (176) and (177) severely reduce the number of independent
relations to only twenty.

Having derived this tensor, let us now consider its physical significance.
We started with a vector, u, and formed, in turn, the tensors Yu and
VVu. This latter tensor is invariant, but its components possess some
unusual features. As we perform covariant differentiation, to get the tensors
ee’e’u, ;. and e*e’e‘u, ,;, these tensors are not necessarily identical. In
other words, the components of the tensor VVu are not symmetrical in
the indices jk. The difference,

Usip — Uii = WiBiiL, (178)

depends on B;;;!, component of the Riemann-Christoffel tensor. Only
when B;;;' is zero, can we interchange the order of covariant differentiation.
And when this tensor vanishes, the components of ¥V Vu are symmetrical
in the indices jk.

Of special significance is the fact that B;;;' in no way depends on the
vector u under consideration. Its components and those of the related
Bi;.; depend only on the TI.%’s and thus on the g,;’s. The Riemann-
Christoffel tensor expresses a particular property of the space itself. For
example if the components vanish in one coordinate system they must
vanish in all coordinate systems for that space; We are required to find
this property of the space.

Compare (162), Stokes’s theorem,

5£ui dg* = -;— f (i s — u;.5) AS™, (179)
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with the equation (172), also integrated around a similar contour,
oue = [uBiitdg =1 [wdin ~ hedds™. (80

If we identify (u,;) in the latter equation with w of the first, and then
replace 7, j in the first by 7, &, the correspondence becomes exact. Thus,
even though (180) is a tensor whose rank is one higher than that of (179),
the index < remains constant throughout the integration, and hence this
subscript has no special significance other than to identify which component
of the basic tensor we are applying the theorem to. Whether we write the
pair of subscripts (, jk), (4, k), or omit the comma altogether is immaterial to
the argument, since the subscripts j and k& both refer to differentiation.
From equation (180) we can infer directly that if the right-hand side of
the equation equals zero, this vanishing property depends fully as much
on the character of the tensor B;;;' as upon the character of u,. In other
words, since B;;;’ derives all of its properties from the space, the value of
the integral will depend on those properties. However, the derivation in-
dicates that the equation (180) expresses some property of the vector u;,
which should be independent of the coordinate system. Here is a seeming
inconsistency.

Although VVu is an invariant, independent of the coordinate system,
this invariance holds only at a given point or over an infinitesimal area
surrounding that point, unless the vector u possesses very special prop-
erties. When we displace u around some arbitrary finite curve or, what
is the same thing, study the character of the vector field over a finite
region, by means of the equation (180), we are essentially trying to balance
out the component (u,); . by subtracting the quantity (u,); ;. But these
are not necessarily identical, because the order of covariant differentiation
is not commutable unless

Biii. = 0. (181)

Then and only then does the integral in (180) become independent of the
path.

If we are to take the integral of u, around some arbitrary curve, we
must regard u; as being some function of a parameter p, which defines
this curve. Many varieties of curves exist over which we can perform the
integration, but one type deserves special consideration, because it is
essentially unique. Of all paths joining two points in space, only one is
“shortest,” in the Euclidean sense of the word. More accurately, we can
define a “straightest’” path, i.e., one along which the unit vectors show
the least possible change.

The vanishing or non-vanishing of the Riemann-Christoffel tensor is an
intrinsic property of space itself rather than of the coordinate system.
When B;;;’ vanishes, we say that the space it represents is flat or Euclidean.
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We then can always fit some Cartesian coordinate system into that space.
We are, however, not limited to Cartesian systems, and the B;;;' will
vanish for all possible coordinate systems in that space.

A non-vanishing B;;;' indicates that space is non-Euclidean and that
no Cartesian system can be fitted within it. Such a system is the two-
dimensional space on the surface of a sphere, whether we define its metric
in the conventional system of latitude and longitude or in terms of any
other coordinates. In a space of two dimensions, of the sixteen (2*) possible
components of the B;;;' or its covariant equivalent B,;,;, with indices
ranging from (1111), (1211), ..., (2222), only one is non-vanishing or
independent, viz., B,as.

The foregoing analysis indicates why we term the Riemann-Christoffel
tensor the curvature tensor. When it does not vanish, the space in which
we make our calculations becomes curved. Curvature implies the existence
of a radius of curvature. Thus we find that the g,,’s determine the actual
metrical properties of the system.

When we perform an integration like that indicated in (180), carrying
a vector around some closed curve, we must define some convention for
the procedure. We call the process “parallel displacement,” a definition
that is unique for Euclidean space. But how are we to define a system
of parallel vectors for a Riemannian space, e.g., the two-dimensional
surface of a sphere. If we ‘“view’” this surface from the outside, i.e., as
part of a Euclidean space of three dimensicns, we readily see when two
tangents to the surface are indeed parallel.

If the surface of the earth were itself a plane we should have no great
difficulty in keeping track of absolute directions. Sailing a boat, for ex-
ample, we could complete a closed triangular path by executing three
turns, the sum of whose angles would add to 180 degrees. On the surface
of the earth, however, we should be sailing along the sides of a spherical
triangle the sum of whose angles would exceed 180 degrees. The excess
would depend upon the path traversed. Hence parallel displacement, as
defined by the integral (180), will depend upon the path unless B,j, = 0,
Le., unless the space is Euclidean.

However, of all the paths that join two points in space, only one is
“shortest”” in the quasi-Euclidean sense of the word. More accurately, we
can define a ‘‘straightest’”’ path as the one along which the unit vectors
show the least possible change. In a pure Cartesian system, the unit
vectors do not alter direction along a straight line, and the T',; all vanish;
the curvature tensor B;;;' vanishes if we arbitrarily imbed some curved
coordinate system in a space originally Euclidean.

We now suppose that u is a “velocity,” defined as the derivative of the
coordinates; thus

dq’
e, i

u= (182)
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Then

du _ <d_2qi . dg’ d_q_">

o = el ragt ) (183)
a sort of generalized ‘‘acceleration” in terms of the arbitrary parameter p.
If we regard p as measuring the displacement along some arbitrary curve
s, such that

e dq’ dq’
ds’ = gi; dg¢" dg’ = g.; dz, gz;dpz, (184)

then dividing the above equation by ds®, we must have

d i d i
gir -2l = 1. (185)
Thus, to maintain u constant as we displace it along the curve s, we must

have

g’ | g dedgt
Lol — (186)
as the differential equation of this curve. For Cartesian space, where
I,y = 0, the integral becomes

¢ =as+b=ap+V, (187)

the equation of a straight line. Thus (186) is the generalized expression
for the straightest possible path in the space under consideration. We call
such a path a ‘“‘geodesic.”

Generalized tensor analysis, with the added theorems on curvature and
geodesics, provides us with a mathematical tool especially useful in rela-
tivity. In Part V, we shall return to make practical use of this generalized
geometry, whose notation is essexrtially independent of the exact nature
of the metric or type of surface. We have been seeking a system that is
invariant, not merely to changes of scale, but to the entire basic mesh
underlying the idea of measurement. We call this basic measurement
system the “gauge system.” We have worked out a basic and very general
notation that is independent of the gauge and, hence, gauge invariant.
Individual vector or tensor components are covariant, contravariant, or
mixed, as the case may be. But the basic quantity that they represent,
together with the derived transformation properties of the components,
have constituted a gauge-invariant system.

Vector Operations

32. Stokes’s theorem. Just as Green’s theorem, § (14) evaluates a
double integral of some function taken over a closed surface in terms of
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a volume integral, Stokes’s theorem expresses a line integral of a function
around a closed curve in terms of an area integral. For example, the work
done by the forces that move a particle from one point to another is the
line integral of the force function along the path. Suppose the path » to
be closed and let F be the value of the force at any point on it. Then we
seek to evaluate the integral (8.1)

ch0s0d3=/F-ds 1)

around this contour. For simplicity of argument we shall assume that we
are to take the integral over a path that lies entirely in the zy-plane.
Let P be a point within the area enclosed by p, Fig. 25. Then we may
write the vector function F(z, y),

11-25.

where X and Y give the values of the z and y components of F at any
point z, y. We start by evaluating the work done as a unit particle moves
about an elementary rectangle surrounding P. Then, by addition of rect-
angles, we shall find the work accomplished as the particle moves around
the contour p. We shall shortly establish the validity of the summation.

The average value of the z-component of the force along AB is X(P,),
ete.

X d ., 0Yd
X(P) =X =55, Y =Y+ 55, o
3

OXdy ypy -y -1

I
X(Py) = X+ 5,79 z 2
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We make these approximations by assuming that X and Y are linear in
z and y over the short distances along the sides of the rectangle, in accord
with the customary calculus procedure. In moving the particle from A to
B, the y-component of force does no work; similarly from B to C, the
z-component makes no contribution to the work. Hence the total work
spent as the unit particle moves completely around the rectangular circuit,
is

Y oX
X(P)dxe + Y(P,) dy — X(Py) dx — Y(P,) dy = (5 — £> dr dy. (4)
We now divide the entire area enclosed by the curve p into elementary
rectangles and sum. Since every line in the diagram except the periphery
is traversed twice and in opposite directions, the contributions to the

— s————j/
I1-26.

integral cancel. Hence the work required to move the particle around all
the individual rectangles of the network equals that for the peripheral
path, p, or

f[(%‘%)dxdy=prcos0ds=fp(de+ Y dy). (5)

If the area to be integrated is of arbitrary shape and not wholly in the
zy-plane, we project the path on three fundamental planes in turn and
sum the result.
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/Fcosﬁds=f(de+ Ydy + Z dz)

f[[(%“@)d dy +<——ﬂ>d de +(—;—%)dzdxj|
SR R e R ] EESC

since A dS = dzx dy, ETC., (7)

where A, u, », are the direction cosines of the normal to the surface element
dS. In vector notation, Stokes’s theorem takes the beautifully simple form

pr-ds=fVXF-dS, 8)

as we see from (23.6), the definition of the curl. For comparison we add
Gauss’ theorem (23.19):

[F-dS=fV-FdT. ©)

33. Vector operators in general orthogonal curvilinear coordinates.
Since the various functions on which we shall require the vector operator
V to act may appear in polar, cylindrical, or types of coordinate systems
other than Cartesian, we must interpret V in terms of appropriate
variables. Here we treat special cases of the general formulas of § (31).
Consider the three equations

Q1 = Ql(x: Y, Z), q: = QZ(x) Y, Z), qz: = Q3(x: Y, z); (1)

where @,, Q., and Q; are functions of the rectangular coordinates z, v,
and z. Further, let us suppose we have solved these equations simultaneously
so that we have the unique solutions

= X(q, ¢ ¢)) Y=Y, & &), 2= Z(q, ¢ ). 2
The equations
¢ = aq, q2=b7 and g = ¢, (3)

where a, b, and ¢ are constants, are the equations of three surfaces. In
the first surface ¢, is constant, while ¢, and ¢, vary, etc.
The three curved surfaces defined by (3) intersect at the point P, as
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shown in Fig. 27. Along the lines that form the intersection of two surfaces
only one parameter varies while the other two remain constant. For ex-
ample along ¢,, we hold ¢, and ¢; constant, whereas ¢, varies. Let us
consider the possibility of adopting ¢, ¢, and ¢; as a system of coordinates.
To any point z, y, 2, we may, through equations (1) and (2), assign a

1I-27.

corresponding set of coordinates: q,, ¢, gs. These alternative coordinate
systems are most useful when the three curves, at any point, are orthogonal
to one another. This condition places a restriction on the character of the
functions in (1) and (2).

We may regard the line ¢, as determined by the equations

r = X(ql; b: C),
Yy = Y(ql) b) C), (4)
= Z(qlx b7 C),

where b and ¢ are constant values assigned to ¢, and ¢; as in (3).

We assume that the functions Q,, @,, @;, X, Y, Z are continuously
differentiable. Since dg is not necessarily a linear distance (e.g., it may be
an angle) we shall measure lengths in the ¢ coordinate system by the
relations

dsl = h] qu dsz = hz de d83 = h'i dq3) (5)
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so that ds,, etc., are infinitesimal displacements along the respective co-
ordinated curves. The direction cosines of the element ds, at P are, by (7.4),

No= B _dX(g1, 0,9 dg _ 9X(g, g ) 1 _ 10X Xi )
Y ds dg, ds, aq h hydq. Ry’
Similarly,
_lev_m o, % -
o= hi8q,  hy’ e hy’ (

with similar equations for ¢, and ¢;. For an orthogonal system we must have
hi= X+ Y + Z7.
K= X+ Y+ 25
W= X0+ YE A+ Zf
0= XX+ Y'Y, + Z{Z;,, =Erc, BY (7.11).

8)

Further, expressing dz, dy, and dz as total differentials, we have

oX 0X 0X
dr = a—qld% + 3¢z dg. + 3¢, dgs,

or
de = X! dg, + X} dgs + X dgs.

dy = Y{dq, + Y} dq, + Y; dg. (9)
dz = Zidq, + Z}dg, + 2% dgs.

The element ds must be independent of the coordinate system. Thus, in
vector notation, we obtain

dS = idx + j dy + k dz = i]hl dql + izhg dQ2 + i3h3 dq;g, (].O)

where 1i,, i,, and i; are the unit vectors at P in the curvilinear system.
Substituting from (9) and equating coefficients of the various dg’s, we
find that

ds, = i,k dg, = (iX] + jY] + kZ}) dg.
ds, = ihy dgy, = (iX} + jY + KZ2) dgs.
ds; = 13hy dg, = (1X5 + jYi + kZ3) dgs.

The volume of the rectangular parallelopiped formed by the elements ds,,
ds, and ds, is

dT = dSl * d82 x d83 - h1h2h3 dql dQQ dq3
= [XW(YiZ: — Y3iZ3) + Yi(Z;X3 — Z:X3)
+ Zi(X1Y: — XaY)ldgi dg. dgs (11
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by (22.19). If we introduce the well-known Jacobian determinant,

Xy Y Zi
J =X} Y Zj, (12)
Xi Yi Zg
then dr = J dq, dg, dgs,, (13)

a general relationship which, unlike (8), holds whether the ¢ coordinate
system is orthogonal or not, although the proof here given is restricted to
the orthogonal case. Equation (13) is a very important mathematical re-
lationship whenever one wishes to change variables in an integration. It
can be applied to any number of coordinates.

For orthogonal systems, the element ds obeys the relation

ds’ = hi dq} + h: dgs + R dgi. (14)
For rectangular coordinates, z, y, 2, we have
hy =hy =hy =1, dr =dzxdydz, ds° = dz*+ dy* + d2’. (15)
For cylindrical coordinates, r, 8, z, we have
x=rcosf, y=rsinfb z=z.
0z

/_@_ /_%_' 7 — &7 __
Xi=, =cosf Yi=_"=sinb, Zi=>=0, mrc. (16)

Hence, by (9),
W =XP4+Y?P+2Z®=cos" 0 +sin* 0 = 1.

Similarly,
hi = 1% K =1
Therefore
hy =1, hy =1, hy=1. dr =rdrdfde, (17
ds® = dr’® + r* d¢® + d2°.
Analogously for spherical coordinates, r, 6, ¢, we find
z=rsinfcos¢, y=rsinfsing, z = r cosb. (18)
Whence
hy =1, h, =7, hy = rsin §,
dr = r’sin 0 dr df d¢ (19)
and

ds’ = dr’ + r’ d6* + r*sin® 9 d¢”.
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For parabolic coordinates £, 7, ¢, we have

1

z= Vinecoss, y= Vigsing, z=5¢— . (20)
Therefore
=L VET ok h=2VEFa/n k= Vi,
dr = § &+ v dg dn dg, (21)
a5 = 4<“;”>ds+ (H”)d + £ dg”.

There are numerous other varieties of orthogonal coordinate systems, but
the ones here given will suffice for many problems.

We first derive an expression for the gradient in generalized coordinates.
The components of the gradient of any scalar function V are simply the
derivatives of V with respect to three mutually perpendicular directions.
We must, therefore, have

av _ 19V oV 1 6
o — h o0 98 I ETC. (22)
Hence
i] a iz a i3 ad >
(22 L d 1) 23
v <h1 6(]1 hy aq, + ha 0q, ( )

where i, i,, and iy are unit vectors as in (10). Thus, for spherical coordi-
nates, the gradient becomes, from (19),

19 ., 1 9o >
v = < o Tl g T M rsneae) (24
in agreement with (10.5).
We evaluate the divergence in general orthogonal coordinates from an
application of Gauss’ theorem to the volume element

dr = hyhhs dq, dg, dgs. (25)

Let a vector quantity F have orthogonal components F,, F,, and F, along
the three coordinate curves ¢, g., g. We consider the flux of this vector
over the boundary surface of the volume element. The flux across the face
ABCD, i.e., across the face ¢, of area h,h, dg, dg; is (F.hhs dg, dgs) and
the amount leaving by the face ¢, + dg, is

O(F hohs dg, dgs) dg
aq, 7

(F1h2h3 dQ2 dq:a) + (26)
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by Taylor’s theorem. Subtracting the incident flux from the emergent flux,
we find the excess leaving over the pair of faces to be

O(F1hahs) _ 1 O(Fihshy)
aql dql dq2 dq3 - h1h2h3 aql dT’ (27)
az
B L
B
“—— c
" R Iy a,
D D
RE
I1-28.

by (25). Similar expressions obtain for the other pairs of faces. But the
total outward flux, by Gauss’ theorem, (23.19), is V - F dr. Hence,
dividing by dr, we obtain the general expression for the divergence:

1 a a a
VF - [a_ql (Pilsha) + 5 (Fahih) + 50 (Fshth)]. (28)

We are now in a position to derive the expression for the Laplacian V.
Let ¥ be a scalar function such that

F = ilFl + ize + i3F3 = V‘p (29)
V:F=V- -Vy=V%. (30)

We have only to introduce the expression for F,, etc., in terms of ¢ into
(28), to obtain the final answer. But from (22) or (23),

_ 1oy
F, = hoae IO (31)
Therefore
1 3 (hhy OV 9 (hihy Y d (hh, Y
ol () 2022+ 208 20] o
v hlh2h3 a% h, aq, +<9Q2 ha aq, +(9QS hs 3¢, ’ ( )
since -i,=1, i,-i, =1, i, i, =0, ETC,

as for rectangular coordinates.
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In polar coordinates this expression becomes, by (18) and (19),

2y 1 g<2. ﬂ) i(- ﬂ) i<_1_§£>]
v¢—rzsm0|:6r Smear +60 Smoae +6¢ sinf 8¢

_ 13 zélk) 1_i<- ﬂ) 1 8%y
_rzar<r or) T 7sin 696\ P 96) T Pt ¢ o (33)

We derive the expression for the curl analogously, with the aid of
Stokes’s theorem. Consider first an element of area in the ¢,¢, plane. We
compute the line integral about the circuit, following the general method
of § (32). Equations (32.3) and (32.4) apply if we merely replace X by F,
and Y by F,, where F, and F, are force components along ds, and ds,
respectively. Thus in place of (32.4) we have for the work done as a unit
particle moves around the rectangle,

oF,
9q,

oF i} d
dq, ds, — a_q: dg, ds; = [a—(]l (hoF3) — 3—q2 (hIFI)] dq, dgs, (34

wherein we have employed (13). One must include the parameters h, and
h, under the sign of particle differentiation, because they are not generally
constant and may vary with the coordinates.

We may now apply Stokes’s theorem directly, which requires that (34)
be the ¢gsth component of the curl, i.e., the component normal to the surface
element, times the area ds, ds, of the element. Hence, in general,

_ ik fa _ 9
VXF= haohs | qz (tha) ¢, (h2F'2):|
i, [0 8
T hsh, L693 (hIFI) dq, (h3F3):|
i, [ o a .
+ h:;lz a_q: (thz) - a]_z (hli'l)]- (35)

Hydrodynamics

34. The equation of continuity. Consider a volume r fixed in a space
through which fluid flows. The mass of fluid flowing past an area element
of cross-section dS per unit time will be pv, cos 6 dS where p, the density,
is a function of z, y, z, and ¢. The velocity, v, has as its Cartesian compo-
nents u, in the z-direction, v, in the y-direction, and w, in the z-direction.
61s the angle between the velocity vector v, and the normal to dsS.

TLa amount of fluid in the volume 7 is [ p dr. This quantity may change
because of production or destruction of fluid, action of sources or sinks, or
flow of material across the boundaries. From the law of conservation of
matter, the change in the amount of fluid in the volume 7, must be equal
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to the sum of the rate of inflow and the rate of production, or, in vector
notation,

[2ar= [ v -as+ [ ean, @)

where ¢ is the rate of production of fluid per unit volume.

Let us take dr in the form of a rectangular parallelepiped bounded by
the faces z, x 4+ dzx, y, y + dy, 2z, 2 + dz. The flow across the face = into
dr is (pu) dy dz; across the face z 4+ dr the flow out of dr is
[ou + (8/0x)(pu) dx] dy dz. Hence the net flow into dr, through the pair
of faces z and = + dz is the difference of these quantities, or — (3/9x) (pu)
dz dy dz. The reasoning is analogous to that used for the derivation of
(33.26). A similar analysis, applied to the y and z faces, yields, as the
total flow into 7,

[ (& o+ 2wl ) do dy dz. )

The quantity [(8/9x)pu + (3/3y)pv + (3/932)pw] is merely the divergence
of pv,; abbreviated to V - (pv,); it represents the amount of matter di-
verging from the volume. One readily sees that the derivation above is a
proof of Gauss’ theorem, which indeed could have been used directly, by
virtue of (23.19).

From (1) we now have

f%d7=_fv.(pvo)d7+fsd7, ®

which we differentiate with respect to volume to give the general equation
of continuity:

%=—V-(pvo)+€=—pV'Vo—Vo'VP+€' )

There are several special cases of (4). When there are no sources or sinks,
the term in & drops out. Thus

%+PV'V0+V0'VP=O- (5)

For an incompressible fluid, p is constant, and dp/dt = 0, so that
pv * Vo = E. (6)

If, now, there are no sources or sinks, and the fluid is incompressible, the
equation of continuity reduces to

V - v, =0. (7

The equation of continuity may assume an alternative form in the
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absence of sources or sinks. In the equation
dp
£+PV’V0+V0'VP=O; (8)
we perform the indicated differential operations, obtaining
9 , 9 4 9 Op (@ @ @%-
6t+uax+vay+waz+pax+ay+az = 0. )

Now the total differential of p = f(¢, , y, 2) is, by a purely mathematical
relation, given by

_ g, 0, L . 9
dp—at dt+axdx+aydy+az dz. (10)

Dividing by dt, and substituting the values u, v, w, for the velocities ex-
pressed by dz/dt, dy/dt, dz/dt, we find the equivalent equation

dp _ 9, 9p 90 b _dp_ _ .

dt "ot T%ar TV T s o T Ve Ve (1)
Substracting (11) from (9), we obtain

Ldp  ou_ v ow _ ldp _ _

sdt Tar Toy T =0 o L= Vo: (12)

The partial derivative (dp/dt) denotes the rate of change of density at
a given point in the coordinate system. The total derivative dp/dt denotes
the rate of change of density of some definite material element of the fluid
as it flows from point to point.* Let V' denote the volume of such an ele-
ment. Its mass, m, will be constant as it flows through the fluid, or,

pV’ = m = CoNST. (13)
By differentiating logarithmically we obtain

Ldp 1 aV

sat TV e =0 (14)
From (12), then,
1 dV’
V.v = AT (15)

which is the rate of change of volume per unit volume.

35. Velocity potentials and vector potentials. In many problems, we
can find a single scalar function, ¢, such that
Vo = _V¢y (1)

*Some writers use the symbol Dp/Dt for this fluid hydrodynamic derivative,
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or, in more extended notation,

_ 9 _ _0¢ _ _9%
U= T VT Tay YT Tar )

In such examples we may write the equation of continuity (34.4):

% = e = V- (o) = #V% + (V) - (Vo) + . )

For an incompressible medium with no sources or sinks, this equation
becomes

V¢ =0, (4)

the Laplace equation in the theory of potentials.
If such a function ¢ exists,

u_w_ 9% _ 9% _, ®)

etc., which by (23.6) and (23.14) is equivalent to
VXv,=VXVe¢=0. (6)

By mathematical analogy, the scalar function ¢, from which the vector
velocities may be ‘“derived” in the manner that conservative force fields
may be derived from a potential, is usually called the velocity potential.
The component of the velocity that is derivable from a velocity potential
is called the linear or lamellar component, v,. The possibility of repre-
senting the velocities by a single function ¢ is an aid in the analysis.

Sometimes, as for instance in a vortex, we can find no such function ¢,
by whose means we can represent the velocities. Assume, however, that
we can define the velocities in vortical flow by a single vector V, whose
scalar components are X, ¥, Z. We must not regard V as a velocity but
merely as a mathematical function from which we may determine the
velocities by some mathematical process. By definition,

_ (92 _ 8_K> -(a_ig _ QZ_> (6_11 _ aj{)
va_l(ay 02) T\ o oz +kax oy /” @
We shall proceed to identify the vortical or solenoidal component of
velocity, v,, with the above vector, i.e.,

v. =V XV, (8

and regard the true velocity as the sum of the lamellar and solenoidal
components.

d | 07 a_}j)

(_09 Q?é_é%) <_a_¢g a_li_a_?g> /
+]< 6y+ 9z ox Tk ) @
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Further, by applications of various theorems from § 23, we easily prove
the following relationships:

VXVW=VXV=VXVXV=VV: V)-VY¥, (10)

because VXv,=VXVe¢=0. (11)
alSO v ¢ Vo = V * VvV, = —v2¢, (12)
since V:v.=V- -V XV=0. (13)

The descriptive terms ‘‘lamellar’”’ and “‘solenoidal’’ have been taken over
into vector analysis and applied to the vectors themselves. The former
adjective suggests flow in sheets, the latter flow in circles. We shall, there-~
fore, speak of lamellar or solenoidal vectors. A lamellar vector is, by
definition, one whose curl is zero, as in (11), whereas a solenoidal vector
is one whose divergence is zero, as in (13).

The representative vector V can be uniquely defined by its curl and its
divergence, and, since its curl is not equal to zero, we may conveniently
assume its divergence to be zero. It is then a solenoidal vector. The vector
function V from which we may derive the vortical velocities, as in equation
(8), is termed the vector potential. The vector potential plays an important
role in electromagnetic theory. The vector velocity in general is given by

Vo= —Ve¢+V XYV, (14)

which is equation (9) in full vector notation.

36. Euler’s hydrcdynamic equations of motion. The relationship be-
tween the velocities and densities depends on the equation of continuity.
This relationship does not, however, consider the pressures and forces.
Two other equations are necessary, one to define the densities in relation
with the pressures, and one to define the relationship between the forces
and the velocities. The latter is Newton’s second law. To find the rate of
change of momentum, consider a moving volume element dz dy dz whose
coordinates, z, ¥, 2, and whose velocity components, u, v, w, are functions
of the time {. Suppose that the density is p, and the pressure p. Let the
components of external force, F, acting on the volume element be X, Y,
and Z. The mass of the fluid element is p dz dy dz. Then the rate of change
of momentum, in the z-direction, is

du
pdxdydzdt. (D
If we are dealing with ““ideal” fluid, i.e., one possessing no viscosity, (1)
must be equal to the sum of the £ components of the internal and external
forces. The external force in the z direction is Xp dz dy dz. The internal
forces arise from pressure gradients within the fluid. By reasoning analogous
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to that used in deriving (34.2), we deduce that the resultant r-component
of pressure in the volume element is

_9p
Y dx dy dz. (2
Hence the equation of motion becomes
du _  _ 9P
Pat — ° oz’ ()

Note that pX has the physical dimensions of force per unit volume.
From the calculus theorem giving the total derivative of w with respect
to t, and by manipulations similar to those of (34.9) and (34.10), we
obtain for the equation of motion in the z-direction,

du _du, ou ou_ du_ o 1dp
dt=6t+uax+vay+w6z_X p 02’ ®)
or, in symbolic vector notation,
du _ du _y_Llop
i = TV Ve=X =5 5)
Similarly, for the y- and z-coordinates,
dv _ _y_1ldp
7= at+v° Vv=Y P ETC.
Combining these equations into one vector equation, we get
av, _ v _r_1
7 = a7 + (vo - V)V = F p Vp. (6)

Since | v, |° = u® + ¢ + w® = v;, we may write the term (v, - V)v,,
using the notation of (20.8) in the expansions and simplifications,

(Vo » V)V, = V<% vﬁ) + 2iu(y — §) + 2p(¢ — &) + 2kw(E — 7)

- v(ii)+ T x WV, o

where £, 7, {, represent the components of angular velocity. If the last
term is not zero, vortical motion is present.

37. Integrals of the hydrodynamic equations of motion. Under certain
conditions we may integrate the equation (36.6). When the motion is
lamellar, a velocity potential exists, and the velocity becomes — V¢. The
last three terms of (36.7) vanish. If the external forces are conservative,
they too may be expressed in terms of a potential, V, as

F=-VV. @
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Then Euler’s equation of motion becomes
—£V¢+VGW>——VV—1V )
at 2° p p-
Performing the scalar multiplication of this equation by

dr = idr + jdy + k dz,

we see that the resultant scalar equation consists of the sum of various total
differentials, by (8.5). Thus

_ a_¢> (1 ) _ _av -1
d<af +d2vo = —dV pdp. 3)
This equation integrates to
dp _9¢ _ ;1.
fp_at V- i+c. @
If p is constant and if the flow is steady so that ¢ i1s independent of ¢,

I 5
p+ eV + 5= Cp. (5)

The above equation is known as Bernoulli’s theorem. The three terms of
the left-hand side are respectively the potential energy of the fluid pressure,
the potential energy of the external forces, and the kinetic energy. The
sum of all three, as the volume element flows along a stream line, is con-
stant for an incompressible fluid. Equation (5) is thus an expression of
the law of conservation of energy.

If the fluid is replaced by a perfect gas at uniform temperature, so that
it obeys Boyle’s law,

P = C,p, (6)

we have, in place of (5), >

¢ Inp+ V—f—%z%:C. (7
If, instead of (6), the gas obeys the adiabatic law,
p = C”py, (8)

where v is the ratio of the specific heat at constant pressure to that at
constant volume, the theorem becomes

1
711p+pV+§pvo=Cp- )

The integration constants on the right-hand sides of (4), (5), (7), and
(9) are all different; the value of the constant in a given medium will in
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general change from one stream line to another. Since the integration is
carried out with respect to the volume, the quantity C may depend upon
the time. Variations in C however, represent additions to or subtractions
from the energy content of the medium, as with an external source of heat.

38. Circulation and vortical motion. We now turn our attention to
vortical motion, for which we shall define several fundamental concepts.
This discussion applies, of course, to motion in which the fluid elements
possess angular velocity. A vortex line is a curve that has everywhere the
direction of the axis of rotation of the fluid elements. If vortex lines are
drawn through every point on an infinitesimal closed curve, the fluid
contained in the tube so formed is said to constitute a vortex filament. The
tube is so small in cross section that the angular velocity, v, is constant
over the enclosed area a. The vorticity is then wa. The circulation, C, along
any path in the fluid is defined as the line integral of the tangential velocity
along the path, i.e.,

C=fv0-ds=f(udx+vdy+wdz), (1)
where v, is a vector function of the form
Vo = iu(z, y, 2) + ju(x, y, 2) + kw(z, ¥, 2). 2
Surface T
2
‘q] 5
S2

|

Consider the path, Fig. 29, composed of the lines S,C,S,C,, lying wholly
upon the surface of the filament and the surface bounded by this path.
By Stokes’s theorem,

Internal Boundory
11-29.

C=[v-ds=[[Vxv-das=[[2-as, @)
by (20.8). But

C=fq‘vo-ds+f01v0-ds+ﬁzvo-ds—l— Vo-ds =0, @

Ca
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because the vector o is everywhere parallel to the surface of the vortex
lines, i.e., w and dS are perpendicular, so that o - dS = 0. Also

f Vo * dS + Vo * dS = 0, (5)
Cl C'

because the integrals, taken in opposite directions over the same path, just
cancel. Therefore, if the integrals S, and S, are taken in the same direction,
we have

fs‘vo-ds=fSnvo-ds. ©)

The interpretation of this equality is that the circulation about any
path enclosing the vortex filament is constant. Applying Stokes’s theorem
to one such path, S;, we find

C=‘/;lvo-ds=ffVXvo-dS=f % - dS = 202, (7)

where a is the area of the tube’s cross section, measured perpendicular to
the vector w. Our complete result is that the circulation is constant over
the tube and equals 2wa at any point.

From this law follow several conclusions. First, a vortex filament must
end in the surface on some boundary of the liquid or else be re-entrant.
Otherwise, if the tube were to end at S,, below the surface of the fluid as

Surface

2 S2

___—-’
- !
[}

-

Internal Boundory

IT-30.

in Fig. 30, the line integral S,C,S{C,, as in (4), would not vanish because
the circulation around S’ is zero by hypothesis.

And yet equation (4) requires this integral to be zero. The only way to
fulfill these conditions is to have S, and S; lie in a boundary surface of the
liquid, be re-entrant to form a vortex ring, or extend to infinity. Second,
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in the absence of frictional or viscous forces, the vorticity of a tube re-
mains constant with time. Third, since the circulation is zero over the
entire surface of the tube, the matter within a given tube will always
remain part of the same tube.

We shall now consider the problem of a simple rectilinear vortex, with
its axis of rotation along the z-axis, in an incompressible liquid extending
to infinity in the zy-plane. Within the vortex, as we have seen, we can
represent the velocities in terms of the vector potential V. We assume that
V is solenoidal, so that ¥V - V = 0. Then, by (35.8), (20.8), and (35.10),

=V XYV, 8
and 20 =V Xvs = —V?V. (9)
We set V=iX+jY 4+ kZ, (10)

and note that the partial derivatives of these components with respect to
z must vanish because the vortex is constant along this axis. Hence, by
(35.7),

87 87 Yy 9X
vs=1u—|—w+kw—15—15;+k<5g—5—> (1)
and
_ __f¥X | X 'Y | &Y 87
20 = 2k{ = < ) + ) ]< Fy 5 + ayz) < 7 + > (12)

Comparing the components on either side of the equations (11) and (12),
we see that the components X and Y of the vector potential play no part
in determining the vortical motion. We may, therefore, take X = ¥ = 0,
and deal only with the scalar components, which are

oz YA

@ = u, P (13)

and Z2+ Z—a—“—a—”=—2;. (14)

Our problem is to determine Z from these equations. Let us assume that
¢ is constant over the vortex. Then (14) must hold inside the cylindrical
column of the vortex, i.e., for r < 7, the radius of the vortex, whereas
we must have

Z2+ o7 _ (15)

when r > 7, outside the vortex. We are to regard these equations, which
we may write in the form

VZ = —2¢, and V°Z =0, (16)
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as the respective analogues of Poisson’s and Laplace’s equations in two di-
mensions. The axial symmetry indicates that we should employ cylindrical
coordinates. From (33.17) and (33.32), we have

v=i502) a

since == =0 = 0, (18)

because of axial symmetry. Since r is the only variable, we may use total
derivatives. Equation (16) then becomes

1d dz
T dr <T d—T> = —2¢ T < To. (19)
1d dz
;%(TJ) =0 r> To. (20)

The radial velocity v, at the point (r, 6) is

e _20L Yoz _
v,—ucosﬁ—}—vsm()—ray rax—o’ (21)

the radial component vanishing in a cylindrical vortex. The transverse
velocity v, is
yozZ _ zo: dZ

= —usi = ¥ - 22
Vs usin 8 + v cos 6 " oy o o (22)

YA dzZ or 8Zx 9Z _dZy

since 94 _ &4 f 94t = )
ox dr 9z dr r 9y dr r

Integrating (19) and (20), we get

Z=—é§'r2+Alnr+B. r < To. (23)
Z=Clr+ D. T > Ty. (24)

Within the vortex, which rotates like a rigid cylinder, we must have
Vg = fT. (25)

For (25) to be consistent with (22) and (23) A must be zero, and since
the constant B plays no useful role we may conveniently (although not
necessarily) take it also to be zero. At the boundary r, the two equa-
tions (23) and (24) must agree, as must also the tangential components
of velocity computed from them by means of (22). Thus

—¢re/2=Clnr,+ D, tro = —C/ro, (26)
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which equations define C and D. Hence

Z = —'/2, r<r, (27)
and
Z = —¢rynr/ry — {15/2, T > To. (28)

Outside the vortex, we must not confuse Z with the scalar velocity
potential ¢. The two functions are related as follows:

dp 9z re

U= = "= — 3,
dr 9y Y2 (29)

do _ _9Z _ .. To

v 9y  ox & 2
and ¢ = {rsarctan y/z. (30)

The tangential velocity

vy = {To/T (31)

outside the vortex, is to be compared with the value inside given by (25).
Vo

Cro-

I1-31.

A plot of the velocity appears in Fig. 31. Outside the vortex, as within,
the motion is circular. The flow outside is nevertheless lamellar, consisting
of pure translation. A match floating on the surface will always move
parallel to itself, whereas in the vortex the match will rotate and indicate,
in turn, all points of the compass.

The function Z has an interesting physical interpretation, apart from its
significance as a vector potential. The flux, ¢, across a given surface in
the liquid is given by

'I/=ffv-dS, (32)
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where v is the velocity vector. In the rectilinear vortex we shall consider
the surface bounded by a curve AB lying in the surface of the liquid and
the unit vector, k, parallel to the z-axis. If ds is an element of the curve,

dS = ds Xk (33)
and
B B
¢=f v-dst=f (—vdx + u dy), (34)
A A
since
ds =idr+ jdy and v = iu + jv. (35)
Making use of (30), we have
®(oZ o7 > I
= [\ (ax do + 5 dy) = L iZ = Zn — 7. (36)

This equation relates the vector potential to the flux or current function,
Y. We see that, in an incompressible liquid, the flux across a surface
bounded by k and any curve whatsoever joining A and B is constant, and
equal to the difference between the vector potentials at the points.

We readily calculate the distribution of the liquid. Outside the vortex,
since the motion is irrotational, equation (37.5) defines the pressure.
Assume that the external field is constant along the z-axis, so that

V =gz and F = —kg. (37)
Then, introducing v, = v, from (31), we have
p/p = —gz — {'ra/2" +c. (38)

The pressure vanishes at the surface, and if we assume that the surface
at r = o lies in the zy-plane, z = 0, we must have ¢ = 0.

Within the vortex we must return to the equation (36.6), because (37.5)
1s inapplicable in a vortex. We prove, using (10), that

(Vo « V)V = —¢(ix + jy) = —i.8r 39)

Also, for steady motion, the partial time derivative vanishes, and (36.6)
becomes, in cylindrical coordinates,

g __1<-@ . Op a_p)
i.{r + kg = pl,ar—l—lgag—i—kaz, (40)

which is the equivalent of three partial differential equations. Integrating
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them successively, we have

p/e = £1%/2 + B(6,2), p/p =B@,2, p/p=—gz+ B, 0. (4D

The integration constants are, of course, functions of the variables that
we treated as constants during the partial differentiation. Combining all
three equations, we have |

p/p = —gz + /2 + B. (42)

At the boundary r, equations (38) and (42) must give identical values
for the pressure. Hence

B = — . (43)

The pressure vanishes at the surface of the liquid. Therefore the equa-
tions of the boundary are

2= —¢(2r —1)/2g (49
and z = — /297", (45)
Z
z-0l
Z,|
Zo ’!o r
11-32.

The surface profile is shown in Fig. 32. If the bottom of the tank lies above

20 = — f'27'(2J/gy (46)
the vortex is partly hollow. If the bottom lies as high as
a = —{'ra/2g, (47)

the entire vortex is hollow, as the diagram indicates.
When the medium contains two or more vortices, the filaments interact
to produce relative motion. Consider two equal vortices, rotating in counter
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directions, and separated by a distance r (Fig. 33). The velocity component
contributed by vortex A to the medium at B is {rg/r, whereas the joint
contribution of both vortices at the point C, halfway between them is
2¢75/(r/2), or four times as great. The velocity vectors are perpendicular

11-33.

to the radius vector. The vortex pair moves parallel to the plane of sym-
metry DCE, with a velocity one-fourth that of the liquid at C. The flow
along the plane, by virtue of symmetry, must be linear, and DCE may
be considered a boundary of the fluid. If we remove vortex A entirely
and place a wall along DCE, reflection of the liquid from the walls will
produce precisely the same effect as the vortex A, and the motion of B
will be the same as if A were present. The wall acts like a mirror, the
“image” of B taking the place of vortex A.

We repeat that the results of this section hold exactly only for a perfect,
i.e., non-viscous liquid.

Principles of Advanced Dynamics

39. Equations of motion in Lagrangian form. In §§ (31) and (33) we
introduced the concept of generalized coordinates. From (31.18) we find
that an arc ds is given by

(ds)2 = gn de + Qa2 dq§ + s dq§ + 2¢,, d(_h dQ2
+ 2¢., d92 dgs + 2¢a dq:a dq, (1)
where

_ 0z 0z 9y dy , 9 9 _ 0
- aqm aqﬂ + aqm aq,. + aqm aq" gﬂm' ()

gmn
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The vector element, ds, becomes

: : — (9% 9z 9z
ds =ider+ jdy + kdz = l<6q1 dq, + 20 dg, + Y dq;,)

+ J( ~ dg, ‘|‘

3y ) (gz_ oz 2 )
3 dqz + 30, dg;) + k . dg: + %0 dg. + dgs). (3)

aqs

Collecting the coeflicients of dg,, dg,, and dg; we have

+k——>dq1 (1——+ ay+k——>dqz

ox
ds = (i -t
aq, aq, dq,

aq1

+ (1 3__ +j + k __> dqs = i,h, dg, + i2he dg. + i3h; dgs, (4)
qs aqa

analogous to equation (31.6). However we shall no longer require the

new unit vectors i, i,, and i; to be orthogonal. Thus we cannot assume

that i, - i, = 0, for example. The cross-product terms in ds* do not neces-

sarily vanish, as they did in equation (33.8).

The coordinates ¢,, ¢», ¢s represent the position of a single particle in
three-dimensional space. If we are dealing with n particles, instead of
with one, we require 3n such coordinates.

Suppose, to take a simple example, that we have but two particles,
one of which is constrained to move along the z-axis and the other along
the y-axis. We require two numbers, 2 and y, to fix the instantaneous

y

I1-34.

position of the particles, a and b, Fig. 34. Instead of representing their
positions by two points in one-dimensional space, we may represent the
same information symbolically by one point in two-dimensional space, as
at ¢. When the particles move, ¢ will describe a path in the plane. The
path is clearly not the real path of the particle; nevertheless if the position
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of ¢ is defined with respect to the time, the motions of 2 and b are also
defined. By means of this artifice, we have to keep track of not two but
only one moving point in representing the motions of the particles.

We may extend the argument to the general case of n particles. Instead
of having to follow the histories of n points in a space of three dimensions,
we represent the instantaneous condition of an assembly of particles by
one point in a ‘‘configuration’’ space of 3n dimensions. The n-body problem
reduces to that of defining a single trajectory. And since our 3n spatial
dimensions represent the 3n coordinates of the particles, the problem will
be simplified if we use, not a Euclidean hyperspace, but one wherein the
metric conforms most naturally to the motions of the particles. The
number of basic points is at most 3n. Constraints, which reduce the number
of degrees of freedom also reduce the number of points required in con-
figuration space.

Fix attention on the 7th particle. Instead of representing its position in
three-dimensional space, independently of the remaining particles, we sup-
pose that its coordinates conform to the equations (z = 1 to n)

T, = Xi(qI; gz, + - - Q:m), Y. = Yi(ql) g2y « -« - q3n)7 (5)
2. = Z{q1, Q2 - - - Qan),
rather than to equations like (33.2). The coordinate z; depends on the
time, as follows:

de, _ dz.dg | 9%z dg, 0, dgan

== . , : 6
dt ~oq dt Tog dt T ag, dt ' T ©)
which we may write in the form
3n ax 3n ay . an 62'
. . — __1, 0- I': — _—1 l]. z' — _'l_ -J_. 7
. 2_:1 ag, 17 Y ; ag;, ¥ “ ag; ! @

The “dot’’ notation signifies the time derivative. We call the ¢;’s generalized

velocities even when they do not have the dimensions of a linear velocity.

For example, ¢; may represent an angle, and ¢; an angular velocity. The

products (8z/dq;)¢;, etc., must have the dimensions [LT™']. We note that
0z, ox;

t = 8

dg;  9g; ®)

We have customarily expressed forces as derivatives of the proper
potential function, V. By analogy, we introduce the concept of a generalized
force, so that the component, F,, along ¢, is

poo 9V _ _9Vox dVoy _ Vo
T T 9q;,  dx, 9q; Ay, 0q; T 0z, 9¢;
" (3V oz, , dV 9y, . oV 62,—)
= — ‘ iy 2T ) 9
‘Z; (61;{ 9q; + dy. 9q; + dz, dq; ©)
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The total kinetic energy of the assembly of particles is

=15 m@ gt 4, (10)
i=1
where m; is the mass of the 7th particle. Form the derivatives
aT . d oT d
Fryle m%; and di o5, = di (mz;) = X, (11)

since the time derivative of the momentum is simply the force X;. But

14
X = Fy (12)
d oT
so that di oz, (13)

etc. There are three such equations for every particle. Multiply them by
dx./dq;, 0y./dq;, 0z./dq;, respectively, and add. We get
i(%iaT dy; d 3T | 9z ddT)
dg; dt 0¢, ' dq; dt dy. ' dq; dit 32

+6—q,—0 (14)

by (9). We now differentiate (7) partially with respect to a coordinate g,;

ok, & 9, 9z, d oz,
= — v '7. = z .i = - 1. ].5
s Zl 3g. 9q; ~ 3g; 9 I~ dt dg, (15)
Also the derivative of a product gives
d <aT axi> 9z, d 8T | 3T d oz, (16)
dt \di; dq;/  9dq; dt oz, ' oz, dt dq;’
whence (14) becomes, by (15), (16) and (8),
i(aT o¢, , oT a3y, ga_z>
Z.- |:dt 9%; 9¢; + 0y, 94, T 0z2; 94q;
_ (oT 8i | 9T 8y: aTa_z',)] v _
(a:i:i aq; + dy; dq; 9z; 9q, + aq; 0- a7
By partial differentiation of (10), we find
oT <aT di, 9T ay; a_Ta_z>
ag; 2 0, aqG; = Y. 9¢; T % dg; (18)
T _ (aT% oT 3y, aTé;eﬁ-)
g, 2 0%, dq; + dy: dq; ' 02, dq;/)° (19
Therefore (17) reduces to
a.9r 2 r_wv=o (20)

dtag;  9dg;



§ 39] MEcHANICS AND DYNAMICS 159
so that if we introduce the Lagrangian function or kinetic potential,
L=T-Y, (21)

and regard V as a function of the coordinates and not of the velocities,
we obtain finally

T =0, (22)

Here L must be expressed as a function of the coordinates and the first
time-derivatives. Since the coordinates are general, the Lagrangian equa-
tions are independent of the system used. There are three such generalized
coordinates for each particle. For many problems, these equations are more
convenient than those of Newton, to which they immediately reduce,
when we employ a Cartesian system. Making use of (11) and (12), we
recover the Newtonian form, cf. (2.3),

X, = L (ms), e (23)

As an example of the use of generalized coordinates consider the case of
orbital motion expressed in plane polar coordinates, 7, ¢. Then

= % m* + r°¢%). (24)
We may introduce a generalized momentum, p;:
Pi == (25)

for which the respective components are
p, = mi, p, = mr'e. (26)

The reason for calling L the “kinetic potential” thus becomes apparent,
since the momenta are ‘“derived” from it after the manner that the force

is derived from the force potential. We obtain the generalized force from
(21), (22), and (24):

L (i) — mry = <27 = F, @7

from (9). If p, is constant, as for a particle constrained to move in a circle,
F, = —mrd’. (28)

F. is termed the centripetal force. In this example F, possesses the ap-
Propriate dimensions, but not all forces, so derived, possess the dimensions
that we conventionally attribute to this parameter.
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40. The Hamiltonian function. We frequently find it advantageous to
split the system of second-order Lagrangian differential equations into two
systems of first-order equations. We begin by introducing a new function,
H, called the Hamiltonian, defined by

3n
H = Z} Pig; — L(Ql; Q2+« + Qan; G1y G2 v - - Q3n)- (1)

We shall see later on that H represents the total energy when the assembly
is conservative. Since p,; and ¢, are related to one another through equa-
tion (39.25), we may eliminate the latter variable, if we so desire. The
generalized or canonical momenta and the coordinates are then the only
parameters required to specify the Hamiltonian. The total differential of
H now takes the form

aL aL
dH=Z(p,dq,Jrq,dp]——qdq,——dq) (2)

(For the total differential of a variable, cf. (34.10.) But, from (39.25)
and (39.22),

oL . oL

Therefore dH = Z, (¢; dp; — p; dgs), 4)

which we may compare with the identity determined from direct differ-
entiation of H, considered as a function of the p;’s and ¢,’s.

atr = 5 (L ap, + L ag,). ®)

These two equations will agree only if

the equations of motion in canonical form. As previously mentioned, these
two systems of first-order Hamiltonian equations are equivalent to one
system of second-order Lagrangian equations.

Proceeding as in equations (2)—(4), we take the time derivative of H.
Thus

= Z (¢ip; — pig:) = 0. (7)

d t
Therefore H = const (8)

in a conservative system.
In rectangular coordinates T is given by (39.10) and #, by (39.7). Sub-
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stituting the latter into the former, we see that T will be a quadratic
function of the generalized velocities, which we write in the form

In 3n
T = Zl Z_} Afkq'fq'k, (9)
where
. {0x; Ox; ay; 9Y; 0z; 02;
A = M <—— —F = ——) 10
- Z 2 \d¢q; Iqx + 9q; dqs + 3¢; Iqs (10)

The terms in the summation for which j = k are to be counted only once.
Then

aIY

0 = 2 Zk A iy, (11)

the factor 2 appearing because each term of the summation is counted
twice, when j k. When j = k, the resulting single term is ¢, which,
when differentiated, again introduces a factor of 2. Then

. oL . oT . ..
ZPJ'Q:‘ = Z 5? g, = E @ g = 2 Z: Z Aingige = 2T. (12)
Hence, by (39.21), (1) becomes

H=2T - L =T+ V = consrt, (13)

the total energy, a fact we wished to prove. If the system is non-conserva-
tive, H is no longer the total energy, but merely a function of the co-
ordinates and momenta, as expressed in (1).

41. Poisson brackets. Consider any two variables, » and v, which are
continuous and differentiable functions of the coordinates and momenta.
We shall introduce the notation

2 fou v u
by 0] = ; <8p,- a—qz - a_p, 6q,->' &
This expression is known as the Poisson bracket.
[u, v} = —v, ul. 2
We have, by direct differentiation and application of (40.6),

: ou o . ou 0H  du 6H>
= 9v 5. g8 ) = —= = _ = =" = [H, u]. 3
“ Z: <6q,~ ¢+ op; p,> Z: <6’Qf op; dp; 9¢q; A, u] ( )

In this notation we obtain the canonical equations by setting w = ¢; or
i, In turn, in (3). Thus

g: = [H, (I:‘] and p; = [H, p;il. 4
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These relations follow directly:

l2;; @] = 0 = [qi, ¢;],
[2;, o] = 0 = [ps, 2], (5)
[pi) qk] = O = [qka pi]) .] # k

Quantities that obey this rule are said to commute, because we may reverse
their order in the Poisson bracket, without changing its value. Similarly,
we have

piy ¢;] = 1, lg;, il = —1. (6)

Variables that do not commute, but whose Poisson bracket is equal to
unity, with the proviso that the other combinations, as in (5), are zero,
are said to be canonically conjugate. At this point we make use of the
notation, originated by Kronecker, which we shall find useful later on.
Let 8,; be a number whose value is zero when k # 7, and unity when k& = j.
Then the condition that two systems of variables %; and v, be canonically
conjugate is

-

[ui) vk] = 6ik7 [ui7 uk] = 07 [U,', vk] = 0. (I)

The Poisson brackets, which have a limited use in ordinary mechanics,
have recently been elevated to a position of considerable importance in
wave mechanics. We append for reference several additional relations, the
proofs of which are merely extensions of the foregoing. Note the similarity
of the formulas to those of ordinary calculus.

[u,c¢] = 0. (c = consT.)
fu, v + w] = [u, v] + |u, w].
lw + v, w] = [u, w] + [v, w]. )
' [uv, w] = ulp, w] + v[u, w].
[u, vw] = wlu, v] + v[u, w].

Consider, now, two sets of functions, P, and @, related to the dy-
namical variables so that

Pk=Pk(p1...p3n,q1...Q3n), (9)
Q=P .- Dsny @1+ - - ).

We may suppose these 6n equations to be solved simultaneously to give

Di =p1’(Pl .o 'P3n7 Ql L -Qan)) (10)
q:'=Qi(Pl"'Pﬂn)Ql--'Qan)-
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We form the time derivatives

@=E=Z@%+£%>§m&ﬁ_@ﬁ) (1

dt aq; op; dq; dp;  Op; 9¢;
by (40.6). Therefore
P, = [H, P,] and Qk = [H, Q], (12)

which are in form similar to (4), the Hamiltonian in bracket notation.
Since H is a function of the p,’s and ¢;’s, we may also regard it, through
(10), as being a function of the P,’s and Q,’s.
Taking the partial derivatives in terms of the new variables, we find

0H _ <~ (ﬁa_l’erﬁL@)
op, = \oP.dp, ' 9Q. ap;)’

and similarly for the partial derivative with respect to ¢;. (The index 7 is
used as an alternate for k, and does not now distinguish a particle.) We
insert these expressions in (11) and rearrange the terms, thus:

Emzﬁ_@&>

ap; 9q; dap; 9¢;

90.0P, _ ap. 20,

In writing (14) we have reversed the summations over z and j. Also, the
derivatives of H, which are independent of j, have been factored from
that summation. We note the identity of the parentheses with (1), and
accordingly write

(13)

Pk = [H; Pk] = Z {aP iy ] - gg [Pky Q:]} (15)

We shall now restrict our consideration to functions that are canonically
conjugate as in (7). Then all the brackets vanish except those for7 = £, i.e.,

[P, @] = 1. (16)
Therefore )
Pk = _aH/an. (17)
An analogous derivation for Q, gives
Q. = 0H/dP,. (18)

Equations (17) and (18) are thus in canonical form (40.6). They are valid,
however, only if the P’s and Q’s are canonically conjugate, whereas equa-
tions (12) are not subject to this restriction.

If, in (12), P, commutes with H,

P, =0, or P, = consr. (19
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Thus a dynamical variable is a constant during the motion of the system
if, and only if, it commutes with the Hamiltonian. A transformation of
variable such as we have just made, which satisfies the condition (7), is
called a point or contaci transformation. The most significant feature of the
Hamiltcnian equations, which are rarely integrated to give trajectories, is
their invariance under a contact transformation.

As a simple example, consider the case of a single particle in a potential
field. Try the bracket [H, L,], where L, is the z-component of angular
momentum for a particle of mass m. By (21.2),

La: = Yp. — 2Py (20)
1, . ,
and H=T+V=%(p;+p§+pz)+k (21)

In accord with previous notation, we set
0H/oy = 0V /dy = —Y, and 0H/dz = —Z, (22)

the y- and z-components of force. In the bracket the summation is to be
carried over z, y, and z, which replace ¢, ¢., and ¢;. The number of parti-
cles, n = 1.

H, L,] = yZ — 2Y. (23)

Hence H and L, do not commute unless
yZ —zY = 0. (24)

But the left-hand side of (24) is merely the z-component of the force
moment r X F (cf. equations 22.4 and 6.5), i.e., the torque about the
z-axis. Therefore H and L, commute only when the torque vanishes, and
then the angular momentum is constant, as we have previously proved.

The value of the Poisson bracket in quantum mechanics is due in part
to symmetry of form and simplicity of notation. But its major use is the
investigation of the relations between dynamical variables. Further, in the
atomic problem, the major emphasis is placed on observable quantities
and these are often constants of motion.

42. Hamilton’s principle and least action. We have already noted, in
§(1), that there exist numerous alternative approaches to the problems of
dynamics. In the foregoing we assumed the validity of Newton’s equations
of motion. Other possible initial assumptions appear as corollaries in the
Newtonian method. Analogously, we may deduce the Newtonian equa-
tions as corollaries of other approaches.

The broadest of all fundamental dynamical principles is that enunciated
by Hamilton, which may be written in the form

BS=6f:Ldt=5ft:b(T—V)dt=O, (1)
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where § symbolizes a variation in S that occurs when we arbitrarily vary
the coordinates of the natural path by infinitesimal amounts. This equa~
tion requires that S, the time integral of the Lagrangian function for the
natural orbit, assume a stationary value. This stationary value is usually
a minimum or maximum, compared with that for any neighboring path,
traversed in the same time, with the same terminal points.

The physical significance of the problem is best gained from an actual
example. Suppose that two identical particles start from a at time ¢ = t,,

c
11-35.

the one traversing the natural path acb, Fig. 35, and the other, sliding
along a smooth wire, following the “varied” path ac’b, and both arriving
simultaneously, at ¢ = t,, at the terminal b. Then Hamilton’s principle
states that the time integral of L, which is proportional to the average
value of the difference of the kinetic and potential energies, must be either
less or greater for the natural trajectory than for any other path. In practice
S usually assumes a minimum value.

Hamilton’s principle is broader than Newton’s because we can apply it
more readily to problems where the potential is a function of the time as
well as of the coordinates, or to those where no true potential function
exists, e.g., when friction is involved.

To show the equivalence of the Hamiltonian and Newtonian points of
view we shall derive the former from the latter. Or, more accurately, we
shall assume the Lagrangian equations (39.22), which in turn followed
from those of Newton, as our basic relationship. The operator §, in the
calculus of variations, is analogous to a differential. It is distinguished
from d in that the latter refers to a variation along the trajectory, whereas
0 refers to an infinitesimal variation of the position of the trajectory.
When the operand is a function of two or more variables, we must apply
the rules of calculus in calculating the variation. Thus

s(uwv) = u o + v du, (2)

ete. And if » is expressed as a function of the coordinates ¢; and velocities
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g, we determine év by the calculus rule for determining a total differential:

o . _ W
o = dq1 6g, + 34, o, + ... = Z <6q, ég; + a4, 6q,->. (3)
As an example of the foregoing rule, we may apply (2) to the quantity ag;:
dg; _ 1 _dleq) _dg d |
o = 07y dt bdg; +dg; 85, =" dt i % )

the operations d and & being interchangeable only when they operate in
turn on a simple variable, i.e., 6(dg) = d(dq). IFurther,

4. — g dg; &
Therefore, adding (4) and (5), we obtain
. . d .
8¢; — ¢ 8t = 5. (8¢, — ¢ o), (6)

a relation that we shall use later on. We now take the variation of S in a
general fashion, permitting variation of both the coordinates and the time.

aS=af:Ldt=ft“aLdt+ft:de(at). @

Integrate the last term by parts, to give

Ld(st) = [L 54" — [ dL st

ta

= [L st]}> — [ Z< 65— ) 8t, (8)

ta ag]

wherein we replace the total differential, dL, by the sum of partial de-
rivatives. Similarly,

‘e aL
ft ‘ 8L dt = f > ( 30, 8q; + 3, 6q,~> dt. (9)

In (8) we set

dg;
dt

in = dt = qi dt and dq, = q, dt, (10)

so that the integration is carried out with respect to the time. Then (7)
becomes

aS—f Z—(aq, g 8?) dt—i—f Z—(aq, g; ot) dt. (11)

te
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Evaluate the second integral by parts, with the aid of (6), so that

ty

* oL  d oL ,
+ [T (- L D)y —gama a2

Since, in (12), L applies to the actual trajectory, each term of the integrand
vanishes, by Lagrange’s equation, (39.22). Also, by (39.25) and (40.12),

oL oL .,
aql_pl) Zjaqlq_2[" (13)

Therefore we obtain the final general result that
88 = [L 8t + 2 p; 8q; — 2T &t)ic. (14)

Thus 658 is a function only of the variations in time and coordinates of the
terminal points. Hence if we set 6 = 0 and é¢; = 0, as required by
Hamilton’s principle,

8S = 0, (15)

and ‘S itself is a maximum or minimum along the trajectory. If, therefore,
we accept the Lagrangian equations, Hamilton’s principle follows as a
corollary.

We turn now to an elementary example. Consider a particle moving
along the z-axis, in a constant potential field, and proceeding with constant
velocity v according to the relation

x = vt. (16)

1I-36.

A particle moving along one of the varied sinusoidal paths ac’b or ac’’b,
Fig. 36, described by the equations

r =vt, y = +Bsinmt/b, (17)
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will start from the origin at {, = 0 and arrive at the point x = b, at time
t, = b/v, simultaneously with the particle following path acb. The kinetic
potential for the varied paths is

L=%|:02+TBD cosﬂlt:l—V. (18)

Hence

meb | T o, VQ, (19)

b/
S=f0 Ldt=7—|—?B

since V is constant. We may vary the path by varying B, or
88 = (x’mw/2b)B B = 0. (20)

Since 6B is not zero, this equation requires that B = 0, a condition that
brings (16) and (17) into agreement, suggesting that (16) represents the
natural path of the particle in a field of constant potential.

When the assembly is conservative, we may state Hamilton’s principle
in somewhat different form. Let us write

H=T+V, L=2T-H. (21)

But if we assume that H is the same for the varied as for the natural path,
we run into difficulties. The particle moving on the varied path will not
be able to reach the terminal point b within the allotted time. In the
previous example, the condition (16) requires that the tangential velocity
along ac’b be constant. Hence at time { = {,, the particle will be only at
d’, where ab = ad’, measured along the curve. Or, if we allow the particle
to proceed on to b, the time of transit will differ for the two paths. In
consequence we cannot set §S = 0 because we cannot make dg; and &
vanish simultaneously.

We avoid the difficulty in the following manner. Introducing (21) into
(1), we obtain

58 = 5 [ ordt — [ oH dt —f H d(1). 22)
Integrating the last term by parts, we have
[ Hawy = 15 s - % stdt = [H 58], @)
ta te

since H is constant along any given path. To strive for a general result
we shall postpone introducing §H = 0. 6H is a constant, however, along
the varied trajectory, whose total energy is H + 6H. Then (22) becomes

ts
88 = o [ 2T di— [H sttt — sH(, — ). (24)
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But, from (14) and (21), we derive the equivalent expression,
BS = [—H ol + ZP: 6Qi]:z; (25)

which requires that
b4 =5 [ 2T di= [ X p; oq ) + sH( — 1. (26)

We have now solved our problem, because if we now set 6H = 0,
64 = 0, 27

independent of the time of transit as long as we make the terminal points
coincide, i.e., 8g; must be zero at both limits. The function A4 is called the
action, and the principle involved is termed least action because it is a
minimum (though occasionally a maximum) for the natural path. We
usually write 4 in different form. By (13),

Ly qis
A=f erdt =3 [ p, dg. 28)
[ i v 4Qija
If n particles are involved and if p, is the generalized momentum vector

along the tangential orbital element ds,, of particle z,

a=3 [ p-ds, (29)

the sum of the line integrals of the momenta.

43. Varying action and the Hamilton-Jacobi method. Our application
of Hamilton’s principle might lead one to conclude that preliminary knowl-
edge of the trajectory is necessary, in order to calculate S and prove its
variation zero. We shall now attack the inverse problem and show that
we can determine the trajectory itself directly from the principle. We shall
rewrite it, however, in somewhat different form. We now assume that the
varied trajectory is a natural motion, consistent with the force field. Under
these circumstances we can no longer enforce the condition &g, = O,
because, even if the initial coordinates agree, the momentum vectors will
be different and we cannot force the two natural paths to cross again at
any arbitrarily chosen coordinate. Hence, dropping the subscript & in
(42.26) as no longer necessary, we have

8A = 3 pi 6q; — 20 Pia 8¢ia + SH( — 1), (1)

instead of 64 = 0. We call (1) the equation of varied action.
If we choose the times of transits to be the same for both trajectories,
80 that A is a function of the initial and final coordinates, the rules of
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differential calculus require that

9A dA dA
SA = ) 5q, O + > 30,. 6q. + 7 oH. (2)

Comparison with (1) shows that
8‘4/aQI = Di, aA/aQia = —Dia aA/aH =1— ta- (3)

Hence we may express the Hamiltonian function, H, which depends on
the time, coordinates, and momenta, in the form

9A 9A ) @

H=H(q1...q3ﬂ,p1...p3n)=H(ql...q;3n,a—ql...aq3n

where we have substituted 04/d¢q; for p, everywhere it appears in the
equation of energy. The result is a partial differential equation, which we
may solve to give A directly. This method originated with Hamilton and
Jacobi. The formulation includes the case where H may be a function of
the time. We can best exemplify the procedure by an illustrative case.
We again turn to the two-body problem. To shorten the analysis we shall
assume in advance that the motion is in a plane, though this result would
follow, of course, from a more extended investigation. If M and m are the
respective masses of the attracting body and of the particle, we have for
the potential energy,

V= —-—GCMm/r, (5)
and the Hamiltonian becomes, in polar coordinates,
_ _ (.1 ) _ GMm
H_T+V_2m<p'+r2p“’ r
_ L [(a4Y 1 (@ﬂ GMm
T 2m [(c%) +r2 de oy 6

by (3). To effect the solution of this partial differential equation, let us
try to guess the functional form of A. For example, test the equation

A =R+ ¥, (7)
where B and ® are functions of only r and ¢, respectively. Our aim is to

achieve complete separation of variables. If (7) does not work we may
try more complicated forms, such as A = R®, etc. From (7),

9A/or = dR/dr, 9A/dp = d®/dy, ®)

where we use total derivatives because B depends only on r, etc. Hence
(6) becomes
2 2
7‘2(@) — 2mHr* — 2GMm’r = —<d£> = —a. ¢)
dr do
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The variations in B must be independent of those in ®. Hence we can
satisfy (9) only if both sides are equal to a constant, which we call —a.
Thus, solving (9) for dR and d®, integrating and substituting the results
into (7), we obtain

A= f N2GM T — ) + 2mH dr + Va o. (10)

We postpone carrying out the integration. Thus far we have employed
only the first of the equations (3). We may assume that the quantities
¢;c and p;, in the second equation represent the initial coordinates and
velocities, and therefore play the role of the 6n constants of integration
demanded in the solution. Thus, to apply the principle of varied action
to (10), we should differentiate A partially with respect to the constant
representing the initial coordinate and set the result equal to another
constant, the negative of the initial momentum. In (10), only one arbitrary
constant apart from H appears, i.e., a. Had we not restricted the problem
to a plane we should have had still another such constant. The physical
dimensions of «, however, are seen to be those of A, or [M°L*T’]. Hence
« can in no way be interpreted as an initial r, or ¢,, though some functional
relationship is implied between « and the initial coordinates. For example,
4/« has the physical dimensions of angular momentum.

Let us suppose that we can express the coordinate ¢;, as some function,
Jiley ... ¢; ...), of the constants of integration. Then we have, as before,

5q = 3 Ui g, (11)

% 0C
Substituting this result into (1), we find
84 = D p;dg; — 2. C; dc; + SH(t — ), (12)

where Cj = Z Dia a—fk-; (13)
3 dc;
another constant. And since we may write

dA 04 dA
5A = 2] aq, 5g; + 2. 9. %+ o o, (14)

analogous to (2), we have as an alternative for the second equation of the

principle of varied action, that

dA
60,-

= —C;. (15)

In other words, we are not necessarily required to differentiate with respect
to the initial coordinates. We may differentiate A in turn with respect to
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any constant of integration and set the result equal to another constant.
Hence we proceed as follows with (10):
94 _ _1 / dr L _
da 2 vV —a + 2GMm*r + 2mH?* 2V a

8. (16

The integral is of the same form as the one we previously encountered in
the two-body problem (26.27). We thus obtain finally for the equation of
the orbit,

a

T GMm* — V2amH + GMPm cos (¢ — 28V a)’

(17)

r

which agrees with (26.29). To introduce the time into the equations we
may employ the third equation of (3) and set

dA _ m dr _
oH V2GMm’ fr — a/r* + 2mH

- tu’ (18)

which determines r as a function of the time.

Perhaps one of the most striking facts of the foregoing analysis is the
behavior of the action variable A. The action starts out to assume a domi-
nant role. We write down integrals that represent A and go through all:
the motions of minimizing the action. Then, suddenly, A vanishes from
the stage and leaves us with the desired orbit. Had it been necessary for
us to determine A explicitly, in terms of the coordinates, we could have
done so from equation (10).

The Hamilton-Jacobi method owes its power to the fact that we can
represent the dynamical variables as partial derivatives. Also, we work
with scalar functions rather than with the vectorial forces of the New-
tonian methed. For complicated types of forces, we thus can choose co-
ordinate systems natural to the problem.

SELECTED PROBLEMS FOR PART II

1. Three points have coordinates (1, 4, 3), (2, —2, 5), (—3, 1, —3). What are
the direction cosines of the lines to these points from the origin? Of the latter two
from the first?

2. Two lines have direction cosines (1/2, v/6/4,— 4/6/4) and (1/6/4, 1/4, 3/4).
Show that they are orthogonal.

3. A potential function V = z° 4 2zy 4 zz = const. Find the direction cosines
of a normal to the surface at any point (z, y, 2).

_ 2z + 2y 4+ 2 et
T[98 + 4y’ 4+ Ay + w7 T

Ans. A
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4. Find the force that each of the following potential functions implies:
(a) V(z) = az’. (d) V() = A In cos ax.
(b) V(z, y) = acosby 4+ csindzx. (e) V(x,y,z) = ¢’ [tanz — arc cos (z/y)].
(©) V(@) = — o/x — b/o. §) V(r,8,0) = (1/r)(e °>*° — In ap).

5. Let the potential of the earth be V = —GM/r, where G is the constant of
gravitation, M the mass of the earth, and r the distance from the center to some
external point. Then, if we set r = R -+ &, where R is the earth’s radius and 4 the
height above the surface, show that the force, for small values of &, follows the law:

GM h
Fh—_R2<1—2R+...>.

6. Show by direct substitution that the function P7(u) satisfies the differential
equation

d’P dP ?
(1—#2)F—2ﬂzi—+|:l(l+1)—lf 2:|P=0-
n p 1

7. Calculate the work necessary to move a unit mass along the following paths
in the zy-plane from the point (1,0) to (0,1):

(a) counterclockwise in a circle of radius unity.

(b) parallel to the y-axis to the point (1,1) and then parallel to the z-axis.
Assume the following force fields, normal to the zy-plane:

(@) F = Auxy.

B) F=Blny.

() V= A/Va

(8) F = Azxyv, where v is the velocity.
Which of the above are “conservative fields”?

8. Given: A =3i— 5+ 2k;B=9i+ j— 4k. FindA - B.
Ans. 14,

9. Given the vector field: A = 4ai — 2zyj + 7k; B = zi + 2:°yj + 3k. Find
V(@A - B),V - Aand V - B at the point (z, 9, 2) = (1, 1, 3).

10. Given: A = (z + y)i+ 37j+ k cos y; B = 2isin z + 3j2"y 4 kez. Find
V:@A+B)and V(A - B).

11. Prove V - uA = uV cA+A-Vu

12, Find the flux due to the vector F = 4ayi + 3j + 2’k through the surface of
a sphere of radius a whose center is at the origin.
Ans. V «-F=4y+ 37 = 4rsinfsinp+ 3" cos 8, ¢ = 4rd’/5.

13. Given: ¢ = y + sinz; ¥ = 3’ cosz. Verify the second form of Green’s
analytic theorem for a rectangular box bounded by the planes z = 0,z = a, y = 0,
Yy=1bz=0,and z = c.

oo [ (63— v%)us= [ eve - vven

V% = —sinz; V¢ = 2 cosz — 4 cosz.
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14. A particle moves from A4 (—a, 0) to B(2a, 0) over the rectangular path
(—a, 0) - (—a, a) - (2a, a) — (2a, 0) and over the path formed by a straight line
from (—a, 0) to (0, 2a) and the arc of a circle from (0, 2a) to (2a, 0). Calculate by
integration over the appropriate path (i.e., do not assume a conservative field) the
work done in each case if there is present a force F = k/(z* 4 4) directed toward
the origin.

Ans. W =+ k/2a.

15. Calculate the work done for the paths of problem (14) if there is no foree field
present, but the particle moves in a viscous medium which retards the motion of the
particle with a force F = —kv. Assume the particles to move with constant speed.

Ans. (a) W = Bakv; (b) W = 5.38akv.

16. Find the angle between the vectors: A, = i+ 2j 4+ 3k;A, = 2i+ 3j + 3k.

Ans. 6 = 14°23'.

17. Given two vectors at the origin: A = 2i+ 4j —k;B = 3i — 8j+ 2k. Find
a unit vector at the origin perpendicular to the given vectors.

Ans. C= (1/V17)([ + 4k).

18. Find the force field associated with the potential function V = zy + 22° +
3zy13.

Ans. F= —(y+ 92y2°)i — (z + 322°)j — (42 + 3y2d)k.

19. Given the vector function

F = i2zy + j@&® + 34’ In 2) 4 k’/e.
Find the potential function, V, from which the force is derived.
Ans. V= —2y — v’ In 2.

20. Remove from a uniform thin spherical shell whose center is at the origin, the
half of the shell having negative z-coordinates. Calculate the potential at all
points P on the z-axis resulting from the remaining hemispherical shell. ILet
a = radius of spherical shell, M = mass of spherical shell.

Ans. © >a: V=—(MG/H[V1I+ G+ 1— (z/a)];
t<a V=—(M)V1+ /o’ — 1+ (z/a)].
21. Find the flux of the vector
F=2icosy+ vzj + 7k

through a cylinder of radius a and height & whose axis of symmetry extends from
(0,0, 0) to (0, 0, h). Consider the cylinder closed at both ends as well as along the
sides.

Ans. ¢ = wd’K.

22. Derive the first three Legendre polynomials from the conditions that P(z)

is a polynomial of order [ and that

1

P(2)P.(x)dz =0 [+ m,

-1

/ PP e = 2/(20 4 1),
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23. Find the gravitational potential at a distance R from the center of the base
of a solid hemisphere of radius a whose density is directly proportional to the dis-
tance from the center of the base. Assume that we can neglect terms beyond those
in R™>.

Ans. V= —(GM/R)(1 4+ % a cos 6).

24. Prove 0) VX Va=0. ) V-V XA=0.

25. Prove (a) VX (VX A) = VV - A — VA
b)V-AXB=B-VXA—A-VXB.

26. Find the area of the triangle defined by the points (2, —3, 1), 4, —1, 2)
(3) 5) _2)
Ans. A = 2%,

27. Given: A = 3yi+ 27§+ ayk; B = 2’i — 4k. Find V X (A X B).
Ans. (—16z + 4z2))j + 35yk.

28. Given the matrices:

0 4 2 2 3 1
A=11 3 5| and B=|4 0 2
2 1 2 1 2 1
Find: (a) AB. (b) BA. (¢) A + B.
18 4 10
Ans. AB = (19 13 12| ete.
10 10 6

29. (a) Express the following equations in matrix form:
V= (2u; + 3uy + ug)i + 4(u; — 3uy)j + (v + 2u, — uy)k,
W = (31)1 - 21)2 + U3)i + (1)1 + 31)2 - va)j + (Ul - 21}3)k.

(b) Express in matrix form w as a function of u.

” —1 3 2]
Ans. wy =113 —35  2||ul.
Wy 0 —1 3J Lus

30. Given two systems of Cartesian coordinates related by the expressions:

' = z cos¢ + ysin ¢,
y = —x cos sin¢ 4+ y cos 8 cos ¢ 4 zsin 6,
2/ = xzsin §sin¢p — ysin § cos¢p + 2z cos 6.

(a) Prove that the transformation is orthogonal.
(b) Express z, y, and z in terms of 2/, %", and 2/,
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31. (a) Prove the distributive law for matrix multiplication:
AB+ C)= AB+ AC.

(b)If A =1+ a, B= I+ B, where I is the unit matrix and « and 8 are
matrices whose elements «;; and (;; are all infinitesimal, prove AB = BA,
to first order.

32. Find the eigenvalues of the matrix

1 2 0 1
6 8 2 10

4 6 1 6
|7 10 2 11
Ans. 0,0, (21 + V/505)/2, (21 — +/505)/2.

33. Given a triangle with vertices at (z; 1), (z2 ¥2), and (z; ys) prove that its
area is

1 1 1
A= 2Lz, z, =z
Y1 Y2 Ys
34. Given the matrix
1 0 6

A=1|0 —2 0].
6 0 6

(a) Verify the Cayley-Hamilton theorem with respect to this matrix.
(b) Find the adjoint matrix.

—12 0 12
Ans. 0 —30 0.
12 0 —2

(¢) Find A™', (i) using the results of Cayley-Hamilton theorem. (i1) using
the adjoint matrix.

—-1/5 0 1/5
Ans. 0 —1/2 01.
1/5 0 —1/30
(d) (i) Find the normalized eigenvectors. (ii) Show that these eigenvectors are

orthogonal.
Ans.

u, = (1/V13)(2,0,3); 1, =(0,1,0); u, = (1/V13)(—3, 0, 2).
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(e) Write the diagonal matrix D and the corresponding unitary modal matrix
S. Verify by direct multiplication that S'AS = D.

-2 0 0 2/v13 0 —3/V13
Ans. D=| 0 10 o0f S= 0 1 0

0 0 —3 3/vV13 0 2/V13

35. The normalized eigenvectors of problem (34d) define a new set of right-
handed Cartesian coordinates with unit vectors i’, j’ and k’. Choose this set in
such a manner that the transformation from the i j k system to the i’ j’ kK’ system
represents a rotation about an axis.

(a) Givenr = 3i + 4j + 2k, find r’.
Ans. r' = (12/V13)i’ + 4§’ — (5/V13)K'.

(b) Show that the matrix B of the transformation r’ = Br is orthogonal.

(¢) Show that eigenvectors expressed in the unprimed system transform into
unit vectors in the primed system.

(d) Find the angle of rotation.
Ans. 6 = 33.°7.

36. Prove that the volume within any closed surface is given by the formula
V=3 [[r-dS, wherer is the radius vector and dS is an element of surface.

37. Describe the trajectory of a particle of charge ¢ and mass m which enters a
uniform magnetic field H with initial velocity v. In vacuum the force on a particle
in a magnetic field is F = —¢H X v.

Ans. Helix with axis parallel to H; radius = (vm/¢H) sin 8; w = ¢H/m;
axial velocity = » cos 6.

38. Prove VX AXB) =B:-VA—-BV-A)— A-V)B+ AV -B).
39. Find the gravitational potential of a uniform ring of radius a, at distances R

from the center of the ring. Assume R > a and neglect terms beyond those in R™°.
Ans. V= —(MG/R)[1 + (d’/2R*)(2 sin” 8 — 1)].

40. Find the potential at a distance R from the center of the base of a uniformly
charged hemisphere of radius a and total charge Q. Neglect terms beyond those

in R?,
Ans. V = (Q/R)[1 + 3(a/R) cos f].
41. If the hemisphere of problem (40) has a radius of 10 cm and a total charge of

150 esu, what force will be exerted on a particle of charge +20 esu placed in the
equatorial plane of the hemisphere at a distance 80 cm from its center?

4Ans.  0.156 dyne at 2°.69 below equatorial plane.
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42. Demonstrate that the two following dyadics differ from one another only in
respect to the orientations of the coordinate axes. Determine in each case the direc-
tion cosines of the three major axes. Reduce to diagonal form.

28/9 —16/9 2/9 2 1 2

—16/9 22/9 —14/9] and |1 3 1].

2/9 —14/9 13/9 2 1 2
5 0 0
Ans. Diagonal matrix = {o 2 0].
0 0 O

Matrix (1) direction cosines: (2/3, —2/3, 1/3);
(1/3, 2/3, 2/3).
(1/V'3, 1/V/3, 1/V3);
(1/V'6, 2/V6, 1/V6);
(1/V'2,0, —1/V2).

43. Transform the dyadic

Matrix (2):

1 0 0
0 2 0
0 0 3

to axes whose direction cosines are:

(1+\/§ 11— \/E>;

4 7 27 4
iy (\/1—5—3\@ V15 \/1_5+3\/§>
2 12 r e 12 ‘
. 47 -3v5 13—-3V5 5 ]
' 24 24’ 12
13-3V5 25 134 3V5
24 7 12’ 24

5 13+3V5 474 3V5
| 127 24 ’ 24

-
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44. By diagonalization of the inertial dyadic obtain the principal axes of inertia
and the momentum of inertia about these axes for a system composed of two
similar rods of uniform density extending from (—3, —4, 0) to (3, 4, 0) and
(—4, —3, 0) to (4, 3, 0), respectively.

Ans. I = 89 M direction cosines of axis (0, 0, 1);

I = 84 M direction cosines of axis (1/V'2, —1/V/2, 0);
I =1M direction cosines of axis (1/V/2, 1//2, 0);
M is mass of one rod.

45. The earth moves about the sun in an elliptical orbit of eccentricity 0.0167.
Calculate the maximum variation of the velocity of the earth in its orbit.
Ans. 1.0 km sec.

46. A plumb line hangs from the ceiling of a plane that is moving due east at a
north latitude of 60° with a velocity of 400 mph. What angle does this line make
with the direction towards the center of earth?

Ans. 0°.217.

47. Show that a particle moving under the influence of an inverse-square repul-
sive central force will describe a hyperbola.

48. Find the Laplacian V?V, given V" = 2r sin 6 + 7° cos ¢.
Ans. 2sin 8 4 7 cos ¢(6 sin® § — 1).

49. Given a system of coordinates defined by the relations: z = 2V/£y cos¢,
y= 2\/§sin¢,z=.§— nwhere 0 < ¢ < 2m, 0 < £,0 < 9.
(a) Show that surfaces of constant £ and surfaces of constant 5 represent
paraboloids of revolution.
(b) Find the element of distance ds, the element of volume dr, and the Lapla-
cian operator VZ.

Ans. ds = \/E—i_f—" dg® + "—j—f dn® + 4 dg°;

dr = 2(¢ + n) dt dy de;

1 a (0 d 0 1 9
o [ae) 202 e ]
f+ Lot \For/ T an\Tan) T agnag
50. Given A = i7° cos 6 + 2i,2° sin 8 + i,rz. Verify Gauss’ divergence theorem
for a eylinder of radius a whose axis of symmetry extends from z = 0, r = 0, to

2= h,r=0.
Ans. ¢ = 2xhd’.

51. Find the work done by a force field: F = 3z%i + 2zyj + 2°2’Kk upon a particle
moving through one circle of radius a about the origin in the xy-plane.
Ans. Work = 0.

52. If the energy of a system is independent of one of the coordinates show that
the momentum associated with this coordinate will be constant. Use this result to
show that a real velocity is constant in planetary orbits.
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53. Obtain the Lagrangian differential equations of motion for a pendulum corn-
sisting of a mass suspended by a rigid weightless rod attached to a ball and socket.
Neglect any effects of the earth’s rotation.

Ans. ab — a¢’ sin 0 cos 0 + gsin § = 0; ¢ sin® 6 = const.

54. Given: A=2i+3j+k;B= —i+ 2j — 2k; C = 2i — j+ 4k. Find
& = AB, in both dyadic and matrix forms. Find® - C and C - .

55. Given

3 —2 0
A =10 1 -1
3 —3 1

(a) Find the transposed matrix of A.
Find the adjoint matrix of 4.
Find the inverse matrix of A.
(b) Find the diagonal matrix corresponding to A.

56. Given _ _
0 1 0 O
A = 0 0 1 0 .
0 0 0 1
|1 0 0 0
Show that the diagonal matrix, D, corresponding to A is
[ 0 0 0]
D = 0 —1 0 0

0o 0 —2 0

[ 0 0 0 1]
and find the transformation matrices, T, such that 4 = TDT™.

57. Given A = 2/i, cos 0 + ris sin 6. Verify Gauss' divergence theorem
[v-aar=[a.as

for a hemispherical shell of radius r, bounded by the plane z = 0. Hint: Employ

spherical coordinates for V and express A in rectangular coordinates over the plane
interface.

58. By diagonalization of the inertial dyadic, obtain the principal axes of inertia
and moments of inertia about these axes for a system composed of two similar rods
of uniform density extending from (— 12, — 5, 0) to (12, 5, 0) and from (— 5, —12,0)
to (5, 12, 0), respectively. Note: The inertial dyadic is:

o = f/fp(lrz—n)dT

where I is the idemfactor.
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59. Prove that V X aA = aV X A — A X Va, where a is a scalar and A 3
vector product.

60. If g is some scalar quantity, prove that

[ods=—[[ vgxas.

Hint: first take the scalar product of the first integral by some constant vector a,
thus forming another vector A = ga. Further reduction depends on Stokes’
theorem and simple vector algebra, including the rule for the triple vector product
and the theorem for the foregoing problem. Finally, factor out the constant vector.

61. If & is some dyadic, prove that Stokes’ theorem applies as follows:

[o-as=[[vxa- s

62. Prove that the Poisson bracket {H, {] = 1.

63. Prove that [u, (v,w)] + [v, (w,u)] + [w, (u,0)] = 0.

64. Under what conditions will the angular momentum vector
L =il + jL, + kL,

be a constant of motion? In other words, show that L commutes with H, only if
the external torque is zero.

65. Show that the Hamiltonian for a particle of mass m, moving in an elliptic
orbit in an inverse-square field can be expressed as follows:

2 2
M
H__p;_*_ pd,_Gm

- 2
2m 2r° m r

where p, and p, are the respective radial and angular momenta, and r is the radius
vector.

66. Show that, for a particle moving in a plane under thé action of a central
force, ¢ is constant only if r is a constant. Take

H=1/2m@}+ py/r’) + V@) and  p, = m'd.
V(r) is a potential function of r alone.

67. Prove that a pair of uniform, rectilinear vortices, rotating in the same direc-
tion and separated by a distance r, will describe circles about their center of gravity
with an angular velocity w = 2{ 2/ rz, where 7, is the vortex radius and { the angular
velocity of the vortex.

68. Prove, using the method of images, that a linear vortex, located at the point
(z,9) in a medium bounded by the planes z = 0, ¥ = 0, will move in the spiral path
s + 1/y* = ¢. Hint: introduce three “image’” vortices symmetrically located
in the other quadrants. Evaluate dz/dy = /.
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69. Calculate the I'*; for a system of cylindrical coordinates: g = G =¢,
3
qg = z.

Ans. Ti, =T3 = 1/r; Ty = —r; others vanish.
70. Calculate the I'*; for spherical coordinates, ¢ = r, ¢ = 6, ¢* = ¢.
Ans. T2, = T2 = 1/r; T3, = I's, = 1/r; T3, = —rsin® 6;
%, = —sin 8 cos 6; I's; = I'3, = cot 6; Ty = —r; others vanish.

71. Givenv = e,v’, anda = dv/dt, where v is the velocity and a the acceleration,
prove that

a = e(d'/dt +v'v'T}) = e§+ ¢'¢d'T}).
72. Combine the results of (69), (70), and (71) to calculate the acceleration terms
in (a) cylindrical, and (b) spherical coordinates.
Ans. (a): a'=7# — r(@)?; a® = ¢ + 2d/r; d® = 3.
73. Show that B;;;' vanishes for the coordinate systems of problems (69) and
(70). Why?

74. Give the rules for transforming the tensors: T;;; T"7; and T'; from a rectangu-
lar to a cylindrical coordinate system and thence to a spherical system.

75. Write down the precise formulae for taking (a) the gradient of a scalar
function, (b) the divergence of a vector, and (¢) the divergence of a tensor in both
cylindrical and spherical coordinates.

76. If ¢ is a scalar function in three-space, prove that its gradient can be ex-
pressed in the invariant form

e € € 0

0

1 gn  Giz Gis a;Zl

Vo = -

g ¢

g21 Q22 @23 a_E

q

de

gs1 Qa2 Gss 6q3

Also show that

o o 0 .

a¢" a4 8¢’
0
1 gir G122 s £T

(Vo) - (Vo) = p

g21 Qa2 Ges 6_q§

Ga1 J32 Gas aqa



PART III

Waves and Vibrations

The Wave Equation

1. Derivation of the wave equation. Subject a gaseous medium in
equilibrium to a small compressional disturbance. If the original equilibrium
was stable, the natural resilience of the gas will return the medium to the
initial state. The gas, however, will tend to ‘“overshoot” the equilibrium
mark. Oscillations will be set up and the disturbance will spread out from
the origin in the form of a wave.

We apply the hydrodynamic equations of motion to calculate the vibra-
tions. Assume that the initial equilibrium density of the medium is p,. As a
result of the disturbance the density increases to po(1 4+ ¢), where we assume
that ¢ 1s small compared with unity. Otherwise the equations would not be
linear. Let u, v, and w now refer to the velocity components of the displaced
material. Take the velocities so small that we may neglect their squares and
products by their spatial derivatives. Then the hydrodynamic equations of
motion, (II-36.4), in the absence of an external field of force, become

ou lop w_ _1p ow_ _10p

at = pox’ It pdy At  pdz’ @
We have also the equation of continuity (I1-34.12),

ou ov ow 13p

ow , % , 0w __2% 9

oz + dy T dz p dt’ @
and the “equation of state,” defining the relation between the pressure and
density of the gas. For the present problem we do not require some specific
relationship, such as Boyle’s law or the adiabatic gas law. We may write, in
general,

p = f(p) = floo(1 + ¥}, @3)
where f is some function. We expand this formula by Taylor’s theorem:
P = f(p0) + potf (o) + P2 o) + 1 @

183
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where f’ denotes the first derivative of f with respect to p, ete. Therefore

1op  f(po) 8% 0 OV _ 0¥
00z 1+ oz P 5y = ¥ 5 (%)

to the first order of small quantities. We have set

f'(po) = v, (6)
and similarly for the y and z derivatives. Also
19p _ 93¢
sat — ap FTC (7

Equations (1) and (2) then become

du _ 0% _ .0y dw _ o 0¢ )
at Yoz ot Voay ot TV o
ou v ow _ 9y
and oz Toy T a2 T "ot ®)

Differentiating the three equations (8) with respect to z, y, and z re-
spectively and adding, we obtain the result

0 (ou v dw\ _ _ L0 Y ﬁg
at <6x T dy + 6z> -0 (6:62 oy’ + 9z°)" (10
Or, by (9),

gie_»(ﬂ Oy «ﬂ)_ 22

at2 = v ox + 6y2 + 92 = VAR (11)

Assume that a velocity potential ¢ exists for these small displacements.
Since
9¢

oy ETC (12)

U =

equation (8) becomes

_ 8¢ L9y _ 0| _d L | _
6x6t+v ox ~6x|: 6t+v¢]—0'

Similarly, we may express the y and z equations of motion as the partial

derivatives with respect to the appropriate coordinates of the equation

9 _ 2, _
Y vy = 0. (13)

Differentiate (13) partially with respect to ¢ and make use of (9) and (12).
Then

i‘é_ 2v—2 4
3f = UV, (14)
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an equation of the same form as (11). We call this equation the wave equation
because its solution indicates that the initial disturbance spreads out as a
wave from the origin. Both the velocity potential and the ‘“‘compression,”
¥, obey this wave equation.

Equation (11) is more general than the specific assumptions made above
would indicate. The dimensionless quantity ¥ may represent a rarefaction
as well as a condensation, or it may represent a spatial displacement. The
term (1/p)(dp/dx), in equation (5), measures, in general, the acceleration,
i.e., the restoring force per unit mass of displaced material. The medium
need not be gaseous. The equation of continuity always appears in some
form or other. We shall now write u” instead of v>. Then the wave equation
becomes

<

14
2

2 —
v‘//_u at*

(15)
The form taken for ¥? depends upon the coordinate system and upon the
number of dimensions involved. One may select the appropriate expression
for V? from those given in Part II, § (33).

2. One-dimensional vibrations. For a one-dimensional oscillation, the
basic equation is

o° 18°
T A Y @

<
<

|

[o1)
3

If the vibrating medium is, for example, the air in an organ pipe, we have,
from equation (1.6) that

w = f'(p). 2
If the vibrations were those of a stretched string we should have had
w = T/p, 3)

where T is the tension and p the density of the string. From the form of
the wave equation, we perceive that the physical dimensions of u are

u = [LT7'], (4)

Le., u has the dimensions of a velocity.
We have first to show that (1) really represents wave motion. To prove
that it does, introduce two new variables, defined by
2, =z +ut and x, =z — ut. (5)
Then

9y _ 9y 9z, | dY 9z, _ 9Y | 8¢
ox 9z, 9z | Oz, dx Oz, = Oz’
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. 9z, _ 0z, _
since o  or 1.
Fy _ Y Fy | Py _ 3 (aw a,w)
o 2 2 2 —+ a2 = oo \q A
Jx 0xy oxr, 0x, ox, dx \dzx, oz,
=i<% ﬂ)ai i(% .@)%
dx, \0x, dx,/ Ox 0z, \0zx, ox,/ Oz’

Carrying through a similar reduction for the variable ¢, we find

1321,0_32\0_2 62¢ +6_2£

W9 9’ 9z, 0z, ' Oz

These two last equations, when substituted in (1), yield the result

2
Iy = 0.
0xr, 0x,

The integral of this equation, as one may verify by differentiation, is
¥ = filz) + fazs),

where f, and f, are arbitrary functions. Changing to the original variables,
we have as the solution of the initial equation,

Yy = filz + ul) + folr — ub). (6)

Now the function f,(z — wt) is exactly of the same form as f,(z), except
that all points are shifted a distance ut to the right of the origin. If ¢ is
supposed to vary, we may therefore consider that the values of f; moveto
the right with a uniform velocity u; the values of f, exhibit a similar pro-
gression to the left. These characteristics illustrate why we call (2) the
wave equation. Any initial disturbance, periodic or not, will progress from
one location to another. This interpretation of the wave equation leads,
by equation (2), to a prediction for the velocity of sound in a gas. We have
to know merely the form of the equation of state, relating the pressure to
the density. If Boyle’s law obtains,

P = f(P) = C,Py
[ =¢,
and . u= Ve. 7

We may regard ¢, a function of the temperature and molecular weight, as
known.

If the condensations and rarefactions accompanying the sound waves
follow the adiabatic law, in which v is the ratio of specific heats,

p = c’’p", u = ‘\/,,Y C//p-y—l_
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The latter expression agrees more closely with experiment, whereby we
conclude that the pulsations occur so rapidly that the medium has no
opportunity to lose energy by radiation or conduction of heat.

3. ‘““Eigenvalues.” In our solution thus far we have tacitly assumed the
string (or organ pipe) to be infinitely long. Any disturbance whatever will
be propagated with velocity . The medium will sustain a vibration of any
frequency. We shall now consider periodic disturbances. When many fre-
quencies are present simultaneously, the resulting ¥ will arise from super-
position of all of them. We may, however, consider each frequency sepa-
rately, adding them later, if we wish. This procedure is equivalent to
resolving y into its individual single periodic components. The displacement
for a single periodic vibration may be written

v = A sin m(x + ut) + B cos m(z + ui)

+ Csin m(x — ut) + D cos m(x — ut), (D
where A, B, C, D, are amplitudes. By a simple trigonometric transformation,
v = (A’ cos mut + B’ sin mut) sin mzx

+ (C’sin mut + D’ cos mut) cos mz, (2)
where A’, B/, C', D’ are amplitude constants related to A, B, C, D. Also

d . .
a—f = mu(— A’ sin mui + B’ cos mut) sin mx

+ mu(C’ cos mut — D’ sin mut) cos mz. 3)

Thus far we still have the case of the infinite string and there is no restric-
tion on m. But if we consider the string to be rigidly clamped, say atz = 0
and z = X, at these points both ¥ and dy/df must be zero, no matter what
value we assign to {. Since cos mx is not zero for x = 0, we must have

¢’ =D =0,

The term sin mx vanishes automatically for z = 0. At the point X, the
coefficient of sin mz will not necessarily vanish. Hence

sin mX =0, mX = arcsin 0, mX = kn,
where k=0, %x1, £2, ETC. (4)

Clamping the wire at two points has forced m and therefore ¢ to adopt
certain values, which we call “eigenvalues,” and eigenfunctions, respec-
tively. If now we substitute for m and sum over all values of k, to allow for

simultaneous superposition of displacements from various frequencies, we
find

krut : lﬂt)

. x
¢=Zk¢k=;s1nkrY<Akcos—X——l—Bksm X (5)
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Since the function ¢, is a solution of the original equation, subject to the
special restrictions imposed on the problem, we may refer to ¥, as an
“eigenfunction,” i.e., a function specially selected to fill certain conditions.
The quantity ¢ is a simple example of a ‘“wave function,” formed by super-
position of the eigenfunctions. Each term of the summation is periodic
with the time, returning to the initial state after an interval ¢, defined by

krut,

e = 2.

Hence the frequency, »,, of vibration, is

The condition &k = 0 corresponds to the state of no vibration; k£ = 1 is the
fundamental vibration, with a single loop and nodes at either end of the
string. Larger values of k£ correspond to the overtones. Ordinarily we exclude
k = 0 from the set of eigenvalues. The negative values of k do not add new
vibrational states.

4. Solution in terms of complex variable. There is another more general
way of approaching the solution of the wave equation. Our previous result
(3.5) showed that each eigenfunction ¥, was the product of two factors,
one, let us say R(z), depending on the coordinates, and the other, S(t),
depending only on the time. Thus we may write

¥ = E(x)S(). (1)

Taking the second partial derivatives of y, first with respect to z and then
with respect to ¢, and introducing the results into (2.1), we find

1d°R _ 1 d&'S _ 2
R &S de - % @

The first and the second terms now are independent of one another, pro-
vided that u does not depend on the coordinates. The derivatives are total,
because R is a function of x alone and S a function of ¢. The variations in
8 and R are independent. Hence if (2) is to hold, each side must be equal
to some constant. Here we shall anticipate the result and set this constant
equal to —a’. However, we could have chosen any form and would have
found the value —a® at the end of our solution. The equation for S becomes
2
dd—Sz + a8 = 0. )
t
We recognize (3) as the differential equation of harmonic motion. We may
express its solution in the form

S = A cos aut + B sin aut. 4)
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Or if we proceed to solve the equation in the normal fashion, by setting
8 = ¢, differentiating, and substituting into (3), we find the auxiliary
equation,
m® + a’u’ = 0,
or m = Zqui, (5)
where i = v/ —1. We may therefore write
S — Ceiaul + De—{aut. (6)

The correspondence between (4) and (6) becomes evident when we expand
the following functions by Maclaurin’s theorem, obtaining the results

> 6 6
0080=1—a 21 7 Bl
) e 6
sm6=0——!+5—!—7—! } @)
. 6’ 9 6 6°
9 v .9 v A
et =1+ -5 —igzitptig
Hence
cos § +isin @ = ¢, and cos § — isin 6 = ¢, (8)

Substituting for the exponential in (6), we find that
S = C cos (aut) + D cos (—aut) + iC sin (aut) + 7D sin (—aut)
= (C 4+ D) cos aut + 1(C — D) sin aut. (9)
If we set, in (9),
C=C,+Cz and D= D, + Dy, (10)

where the subscripts r and ¢ denote the real and imaginary parts of the
respective coefficients (C; and D, are taken as real, however,), we obtain
the result

S = [(C, + D,) cos aut + (D, — C,) sin aut]
+ 2[(C; + D)) cos aut + (C, — D,) sin aut]. (11

The two terms in brackets, the first representing the real part and the
second the imaginary, are individually identical with equation (4), if we
take '
(C.+ D,) =(C.+ D;) = 4.
(D. — C) = (C, — D) = B.

Accordingly we may take as our solution for S either the real or the imagi-
nary parts of the resulting equation. Usually we adopt the real part.

(12)
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We may represent a real number as a point on a line. A single parameter
expresses the magnitude of the number. A complex number, on the other
hand, by equation (10), is a function of two parameters, one defining the
real part and the other the imaginary part. This characteristic suggests
that we may possibly find it convenient to represent the number as a point
in a plane. Let x denote the real and y the imaginary part of a complex
number, z. (The notation z has no relation to the z of three-dimensional
Cartesian coordinates.) We shall therefore write

z=ga 4+ 1y, (13)

and interpret z as a point in the “‘complex plane.” Or, if we prefer, we may
interpret z as a vector. The ordinary vector

z =iz + jy (14)

has certain features in common with the complex quantity z. Equation
(13), however, lends itself to mathematical manipulation. We can treat the
algebra of a changing vector in a plane more conveniently by the methods
of complex variable than by the methods of vector analysis.

If we denote the distance OZ by r,

y = rsin 6, x = rcos 6,
2=z + iy = r(cos 8 -+ 7 sin 6) = re”, (15)
by (8); hence
6 = arc tan y/x. (16)

We call the parameter r the absolute value or modulus of z. To indicate the
operation of finding the modulus of a complex quantity we enclose the
variable between vertical parallel lines; thus

Modz = |z | = V2’ + 4 =r. (17)
f is the so-called argument, or phase, of z. If § = 0, 7, 2, ete., z is real. If
6 = w/2,3r/2, 5r/2, etc., z is a pure imaginary. z goes through a complete

cycle when 8 changes by 2.
We shall now show that equation (6), for our purposes, is equivalent to

S = Ce™™, (18)
where C itself may be complex. Let
C = C, — iC,. (19
Substituting from (8), we find that the real part of S,
S, = C, cos aut + C, sin aut. (20)

Thus we obtain no greater generality by including the second term of (6)-
Only two constants of integration are significant and these are C, and C..
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Now, by introducing two new constants, A and «a defined by

cosa = C,/A sima = C;/A,

(21)
Le., C:4+Ci=A4% or A=]8, ]|,
we may transform equation (20) to
S, = A(cos aut cos a + sin autsin @) = A cos (aut — «), (22)

by a simple trigonometric transformation. The symbol « therefore repre-
sents the “phase,” or the initial angle at { = 0. Hence we may write

S = Aeier, 23)

where A is real. For most problems we may conveniently set « = 0. We
may also set 4 = 1, since S ordinarily multiplies some other function,
whose magnitude changes periodically with the time. We may suppose the
factor A to be absorbed in the spatial part of the wave function, because its
magnitude is independent of the time.

As we have previously mentioned, S goes through a complete cycle when
the value of aut alters by 27. In wave motion, where the frequency of
oscillation is » times per second, one cycle will occupy »~* second.

Therefore aw™' = 2r, or au = 2mv. (24)

Thus we may also interpret S, in the problem of periodic vibrations, as
either the real or the imaginary part of
_ 2wmiv(t—tg)
S =e ) (25)

where o = 2mvi,,

and ¢, represents the initial time.
We have seen the necessity for evaluating the absolute value and also
the real part of a complex quantity. Consider the complex quantities
z=2x+ 1y =re’, =1z — iy =re’’.
The quantity z* is known as the complex conjugate of z. To find the complex
conjugate of any function, replace (¢) by (—1) everywhere it appears in the
function. The square of the absolute value of z is

|z | = 22* =1°. (26)
The real and ima'ginary parts of z are given, respectively, by the relations
1 3
RR) = 2 (z + =%).
' (27)

96 = 5 ¢ — 2.
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5. The form of the wave equation for periodic solutions. When we limit
our consideration to only periodic solutions of the wave equation, we may
simplify the form of the basic wave equation. In

2y - L0
v ‘p - u2 at2; (1)
set ¥ = ¥.5, 2

where ¢, depends only on the coordinates and S upon the time, and intro-
duce (4.25):

S — e21r1'v(t—to)‘ (3)
The equation takes the form

e21riu(l—to)<62¢c 62‘#'.' 62¢E
ar’ Yy’ 02

2
V  oxiv(t—to)
= —ydr e .
> T

Divide this equation through by the common factor. Dropping the subscript
¢, we shall suppose that ¢ refers only to the spatial part of the wave func-
tion. The wave equation takes the form

22
47y

3
u

Vi + y = 0. 4)

The time variation will be governed by the real part of (3). The values of
V?in various coordinate systems remain as before.

6. Alternative solution for the vibrating string. The wave equation in
one dimension becomes

d? 4 2 2
R

¥y =0, 1)

which is of the form of equation (4.3), the general solution of which was
given by the real part of (4.25). Thus we may write
\b - AgQri(v/u)(z—:n) . (2)

The real part of ¢ is
v = A, cos21r%(x— Zo) + A;sin 27r:;(x—x0). (3)

If the wire is clamped at £ = 0 and at £ = X, nodes must occur at these
positions, or ¢ must be zero. Therefore we must have

A, =0 (4)
and *

2 5 X = kr. 6)]
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Then,
kx

Y = Aksz

x, (6)

which agrees in giving the spatial part of equation (3.5). Here A, represents
the amplitude of the £th mode of vibration.

7. Fourier series. In part II, § 18, we investigated the orthogonal
properties of sine and cosine functions. For example, we showed that

rO, m’ # m,
2
Ni=/ cos m¢ cos m'¢ dp = 12z, m’' = m = 0, (1)
0
Lr, m =m=1,23,...,

as in (II-18.4). From this property follows an interesting mathematical
theorem of far-reaching importance. First, we note that equation (1)
possesses similar forms for other limits of integration. Following the
method of II, § (18), we prove that

0, m #=m,

NZ = [T cos mep cos m'edp = 2xr, m' = m =0, (2)
o 1#, m =m=1,23,....

N; = /”r sin m¢ cos m'¢ d¢ = 0, (3)
o 0, m = m,

Nf=f’r sin m¢ sin m'¢ dp = 0, m’' = m = 0, (4)
- mx, m' =m=123,....

Suppose we are given f(¢), some arbitrary function of ¢. For example,
we might have f(¢) = e**, or f(¢) = a¢ + b¢’. The problem is to represent
this function, over an interval 2w, by a series of the form

F@) = B+ 2 (B cos ma + A sin me). (5)

This representation is an example of a Fourier series.

We determine the constant coefficients B,, and 4,, as follows. Multiply
both sides of (5) by cos k¢ d¢ and integrate from — to =. By virtue of the
orthogonal properties of the sine and cosine functions, all the integrals of
the right-hand side vanish except the cosine term for which m = k, and we
have, when k& = 0,

fr f(@) cos k¢ dp = 7B,
or - (6)

1
B, = - f-, f(¢) cos k¢ do.



194 WavES AND VIBRATIONS [§7

We must evaluate the constant term B, separately. Its value is

Bo= 5 [ 1@ ds. ©
Similarly, we have

Av =2 [ 1) sin ko da. ®

Substituting these results back into (5) we have

1@ =5 [ 1@ do

+ 15 eosts [ 1) costpdo+sinke [ s@sinksds| @

Within the definite integrals let us replace ¢ by . This procedure does not
change the value of the result, but it enables us to write (9) in an abbrevi-
ated form. We obtain, with the aid of the trigonometric expansion for

cos (a — ),
1@ =3[ swav+1 3 [" ) coskw —9ay. 0

By changing the limits in equatlons (2) to (10) from —= and 7 to 0 and
2w, respectively, we easily obtain expansions valid over the latter range.
For the theoretical justification and proof of convergence of the Fourier
series, we refer the reader to mathematical treatises on the subject. If
f is a continuous function in the range —= to =, and if f(—=) = f(x), or
f(0) = f(2x), the series will be valid over the entire range inclusive of the
limits. But if these conditions are not fulfilled, the representation is ex-
clusive of the actual limit. The series will give the mean of the values at the
limits. For example, if f(0) = 0 and f(27) = 1, the representative Fourier
series will give the result f(0) = f(27) = 1/2. Outside the range of integra-
tion the Fourier series cannot represent the function unless f(¢) is itself
periodic with a period of 2.

We often find it possible to represent a function, F(z), over an arbitrary
range of , say from a to b, by a Fourier series. To derive the series we shall
introduce a change of variable. Let

Fx) = f@¢), F(y) = f(¥), (11)
and set
- = (b -;ra)zb n b —21— a’ y = (b ;Wa)gb i b ;l— a (12)

The variable, 3, is to be used in the integration. Note that the limits
become
=7 y=b ¢¥=-—m y=gq (13)

ay =2 =9 o 9 gy.
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Substituting these results into (10), we find that

@ = 2= [P dy+ 2 3 [ Fe) e TR gy g

Expanding the cosine term in the integral, we obtain the respective cosine
aind sine series for the new range:

F@ln = =2 [ F@) dy

2kmrx

+ — Z c0s 7- / F(y) cos kya dy. (15)

[F(2)]sin = b% ) sin -2‘]& f F(y) Slll

=1

2]L7l"

Y
. dy. (16)

We shall now make a practical application of the foregoing formulae.
Equation (6.7) represents the sinusoidal displacement of the string caused
by the kth mode of vibration. Each mode gives rise to a pure note of single
frequency. Normally, the motion of a vibrating string will consist of the
superposition of all possible modes, the so-called ‘‘principle of superposi-
tion.” What modes will be present or what ones will predominate depend
on the initial displacement of the string. A musician will recall that when
any open string is plucked or bowed with one finger lightly touching the
center of the string, the fundamental tone is suppressed and the first har-
monic emphasized. The finger at the center induces a node to appear at
that point.

We may thus assume, in general, that the actual motion of the string
conforms to the equation

> kmut
Wz, ) = 2 du(@) cos 2, 17)
k=0 X
n accord with (3.5). We have taken the amplitude of the sine term equal
to zero, to make the velocity dy/dt vanish at ¢ = 0, so that the initial dis-

placement, by (6.7), is

W) = E Ga(z) = Z Aysin = ke (18)

Equation (18) is a Fourier series, for which we are to evaluate the coeffi-
cients by the method previously outlined in this section. As we compare the
argument of the sine term in (18) with that of (16), we see that

2knz/(b — @) = krx/X. (19)

Therefore the entire range of integration must be (b — a) = 2X, or twice
the length of the string. We readily resolve this apparent difficulty. We
have merely to assume that the string is actually of length 2X, stretching
say from —X < z < X. y(x) is given specifically for only the positive
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segment of the string. However, we assume that y(x) also represents the
displacements over the negative half, with the appropriate value of (—z),
sign included, substituted in the equation.

Consider an initial distortion of the string into the form of an isosceles
triangle, with maximum amplitude ¢. Then we shall have

Y(iz) = —2(X — 1)/X, - X<z< —-X/2,
Y(xr) = 2cx/X, —X/2 << X/2. (20)
Y(x) = 2¢(X — 2)/X; X/2<z<X.
—~ > )
III-1.

The form of the function appears in Fig. 1. Since our final interest is in the
positive half, the resulting series is sometimes called a half-range Fourier
series, to distinguish it from the full-range series, where the entire range is
necessary to represent the given function.

We have thus broken up the range of integration into three parts. The
resulting cosine series (15) vanishes. The sine series (16) becomes

1l &k Y2o%(X — y) . k'n'y
w(:c)—XZsz [f_ —X Xdy

k=1 X
X2 2y . k7ry *2%X —y) . kny :|
dy —_— - d
+ ] R R+ [ e ey
= 8—2 E 2sm k—xsin %r (21)
- X

In evaluating the integrals we have made use of the relation

f 6sin 8 df = sin § — 6 cos 6. (22)
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The terms of even k vanish, and the series alternates in sign. Thus, finally,

sin 5rx/X )
52 T e e e fe

_|_

() = f;_rg (sin mz/X _ sin 3mz/X ©3)

12 3?

I11-2.

The series is rapidly convergent. The first three terms have been plotted in
Fig. 2. If the ordinates of even these few terms are added, the resulting
displacement approximates very closely the triangle representing the
initial .

Fourier series are useful in many types of investigation, especially when
one wishes to represent, over a certain range of variable, a function whose
derivative is discontinuous, as in the example here considered, where an
abrupt change occurs from one line to another. The student should be
warned, however, that the representative Fourier series cannot always
suffice for all types of mathematical analysis. Differentiation, for example,
introduces increasingly large coefficients into the higher terms, which may
destroy the convergence. Thus if

¢ =3 A, coskd, dy/de = — 3 kA,sin ke, (24)

One must test the derivatives for convergence. If the original function has
finite derivatives, so also has its representative series.
We may obtain a useful, alternative representation of the Fourier series
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in terms of the complex equivalents of the sine and cosine functions. From
(4.8),

cosg = = (* + e, sing = é;.(e'“’ — ¢ ). (25)

DO [ =

Hence (5) becomes

J@ = Byt 3 3 (B — ide™ + (B + i4.06 ™)

= ) C.e'™, (26)

where C,, represents the complex coefficient of the respective term. When
we require a series of this character, we can evaluate the values of C,, most
easily by a somewhat different procedure. Multiply both sides of (26) by
e *** d¢, and integrate over the range from 0 to 2r; k is now either a positive
or negative integer. From the right-hand side of (26) we obtain integrals
of the form

[ei(m—k)q‘)]gar

Am =B )

2w
Cmf ei(m—k)qb d¢ — Cm
0
Now, (m — k) is an integer. Therefore cos 2r (m — k) = cos 0 = 1, and
sin 2r(m — k) = sin 0 = 0. Hence, by (4.8), we see that the integral is
identical for both limits. The definite integral vanishes, when m = k. When
m = k, we have

C, f " db = o, . @8)
1 2 Cire
Thus C= g [ @ ds, (29
1 . o ik(p—y)
and 1@ =5 X [ st ay. 30

This type of complex Fourier series may be conveniently employed to
expand a complex f(¢). Such a representation is particularly useful in wave
mechanics, where we often deal with complex wave functions.

If, now, we attempt to apply the Fourier series to points outside the
specific range of calculation, we find that the pattern of the function repeats
itself periodically. We may, therefore, legitimately inquire whether there is
some way of extending a Fourier series to represent some non-periodic
function over the entire range from — « to + =.

To accomplish this result, we first express our function over some large,
but finite range, and calculate the Fourier series representative of the func-
tion. Then, by proceeding to the limit of an infinite range, we find that the
summation essentially goes over to an integration,
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Consider some function of x, whose expansion we desire to obtain over
the range from ¢ = —X/2 tox = +X/2, let us say. We shall expect our
expansion to take the form

f@ =B+ 2 A,csm”;{—” + > B 0052?"“
k=1 k=1
= k; Ake21rl'k:/x’ (31)

by analogy with equation (18), and in accord with equation (26). We are
dealing with a full-range series, rather than with the half-range series of
equation (18), which fact accounts for the extra factor of 2. We shall adopt
the exponential form for our study. Then, multiplying both sides of equation
(81) by e *"*** and integrating from —X/2 to +X/2, we get

X/2
A= [ seerr g 32

wherein we have substituted ¢ for x, as the variable of integration. Intro-
ducing this equation in (31), we get for our series:

= xre 2xik(z— X dE
W= 3% [ et (33
k=—m -X/2

Our arbitrary parameter, X, is much more closely related to £ than to
either z or £. The larger we assume X to be, the larger we must take & in our
series, to arrive at significant amplitudes for A, in our summation. For
very large X, the A,’s, for successive values of k, differ insignificantly from
one another. Hence we may replace the sum over k£ by an integral over the
same range. Thus

f@ = [ [ jgereora (34

Moreover, since the significant k’s depend upon our choice of X, we now
find it convenient to replace our continuous variable &, by a new variable,
m, such that

m = 2nk/X; dm = 2r dk/X. (35)

Now, letting X approach the limit infinity, we can write our final expression:
@ =5 [ [ @ dg dm. (30

This equation, known as a Fourier integral, enables us to express our

original function in terms of an integral. The above derivation lacks the
finest considerations of rigor and does not indicate the conditions under
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which we may apply the transformation. Advanced treatises show that the
condition depends upon whether the integral

[ 5@ 1da @

exists or not. We shall give a practical application of this formula in § (14).
As a corollary to the foregoing demonstration, we may write the following
relationship between a pair of functions:

1 ® :
fl@) = —= g(m)e'™ dm.
vﬁwfm 39

1 ® —im
g(m) = 2 /_m fEe '™ de.

We say that the two functions f(z) and g(m) are the Fourier transforms of
one another. These equations have many physical applications. They are
special cases of the more general Fourier-Bessel transforms, which we state
for sake of reference.

1@ = [ gtm)J (mx)m dm,
° 39

gom) = [ @) (ma)z d,
0 ,
where J, represents a Bessel function of order n.

8. Normalization of eigenfunctions. We have seen that the eigen-
functions

.k
Vi = A,sin % (1)
possess orthogonality properties. If we form the product ¢;y, dx and inte-

grate over the length of the string, we find that

x r, ik,
. = 2
/; ¢7¢k dx AiX/2, ] — ]C. ( )
We have also studied spherical and tesseral harmonics, which behave simi-

larly.

Certain characteristics of the vibrating system, e.g., the potential energy,
depend upon the square of the amplitude, integrated over the coordinates.
As a matter of convenience, we shall often find it desirable to assign a value
to the constant A,, such that the integral (2) will assume the value of
unity, or

Alg = \/Q/—X (3)
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The process of determining this constant is called normalization. Thus the
normalized function is

o= V2/X sin 2L, 4

If we employ the complex notation for the wave functions, we have as a
representative term of the complex Fourier series, the expression

l//)c = Ckeik¢. (5)

Here the procedure for normalization is slightly different. We first form the
complex conjugate, obtained as explained in § (4) by replacing 7 by —¢
everywhere it appears in the expression. Denote this conjugate by ¢*.
The product ¥,¥% is real and may be integrated as before over the coordi-
nates

2x 2
/0 Wbk dp = C.C f db = 20C,CF = 1, ©®

to give the normalization condition.
We express the complex coefficient C, in the form

C. = B, + Ay = VBi + Ai¢e'", (7)
By (4.15) and (4.16), where '

a = arc tan é, (8)
k

Then, by (6), (7), and (9), we obtain in place of (5), the normalized complex

function

"bk — \/Lz_eikctﬁia. (10)
13

The phase « is rarely of importance because we can include it as a complex
factor in the coefficient.

Vibrations in Mechanical Systems

9. Eigenfunctions for the tensed circular membrane. In two dimensions,
we have from (II-33.32) the time-independent wave equation in polar
coordinates,

it My ()
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Guided by our previous experience, we shall now look for a solution in the
form

¥ = R6, (2)
where R and O represent functions of » and 6, respectively.

ddlie+Rd2+l‘iEe+4”2”Re—o 3

The equation becomes

r"d®R | r dR | 477 1d
Ra’ TRar 5 2 Tear =" (4)

QD

where we now employ total instead of partial derivatives. Transposing all
but the term in 8 to the right-hand side, we see that variations in 6 cannot
possibly affect those in 7. Since the two sides are thus independent, they
must be constant, which, for later convenience, we take equal to —m’
as in (4.2). We then have

28+ me =0, ®)

whose solution is
= A sin m8 + B cos mf = Ce'™,

as in equation (4.22), where C may be complex. As our eigenfunctions,
therefore, we adopt

0 = ASCI;IS (mé); or © = Aé™. (6)

The values of 6 must repeat themselves when 6 alters by 27. This condition
will obtain only if m is an integer, or

m=0, =£1, X2 (7)

When we adopt the form of sine or cosine for the eigenfunction, we take
only positive values of m. In the exponential form of equation (6), we must
use both positive and negative values of m to get a complete solution. The
essential equivalence of the two procedures follows from the replacement
of e™’ by its equivalent in terms of the angular functions. The above expres-
sion for O is the angle-dependent factor of an eigenfunction of the original
equation.
When we substitute (5) back in (4), we have

d 1dR %)* m’
P dr ( u T_2>R = 0. ®)
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A simple substitution reduces this differential equation for R to the form of
Bessel’s equation, which mathematicians have widely studied. It has no
solution in terms of the simpler functions. The R’s are Bessel functions,
developed in terms of the variable r. Each value of the constant m yields a
distinct equation. Introduce a new variable r’ defined by

r = @r, 9
U

di _ dE dr’ _ @’ﬂ?, ETC., (10)

by means of which the transformed equation becomes

» d°R
drl2

r

+7 2 e~ mIR =0, (1D

Dropping the primes temporarily, we shall look for a series solution in the
form

R = f} A (12)
When we introduce this series in (11), we obtain the following result:
i A(f = my' + 25 A = 0. (13)
Or, collecting coefficients of the same powers of r, we find
3G = )+ Al = 0. (19)

The series is an ascending one, with powers of 7 increasing by jumps of 2.
By the theorem of undetermined coefficients, we must set each coeflicient
individually equal to zero, which gives the following relation between
successive values of 4;:

A= —A,/(f" — md). (15)
The ratio between successive terms of the series is

_rz/(jz - mz)’

which approaches zero as j — «; hence the series converges. But the series
must not extend to negative values of j; otherwise we should have an
infinite value of R at r = 0, which condition is physically inadmissible, if
we exclude the possibility of a broken drum head. We have supposed that
the series begins with j = j'; then A;._; in (14) equals zero by hypothesis,
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and
A;(j”* — m’) = 0. (16)

Now A;., being the coefficient of the lowest power of r, is not zero; hence
j”? —m’ =0, Jj = £m. (17)

Negative values of m are not physically distinct from the positive values
since equations (8) to (16) contain only the square of m. Hence we set
j/ = | m|, and the series becomes

W 2 r*
R=Ar |:1 221 (m + 1) + 2°2/(m + 1)(m + 2)
. r,2i
ey ] s
( ) 221]!(,m+ 1)(m—|—2) .. (m +]) ( )

where 7’ has been reinstated as the variable, and m used for | m | when m
is negative.
If, now, we set

1
An = ) 19
2™"m! 19
then R = J.(r), (20)

where J,,(r’) is a Bessel’s function of order m. From the generating function
for the Bessel series, viz.,

@

R H e Z thm(z)’

m=-—o

we establish a result that does not follow uniquely from the differential
equation,

Jon@ = (=1)"J (). 1)

when m is an integer. To check this result, merely substitute u = —1/¢in
the generating function.

From the fact that R and d’R/dr'®, in (11) must have opposite signs for
r > m, we conclude that J,.(r") is an oscillatory function of 7/, not unlike
a sine or cosine function, except that amplitudes of successive waves and
the distances between the nodes are not constant. By the same argument
we may show that the first node occurs for # > m. Various mathematical
tables give graphs or numerical values for selected functions.

If the membrane is infinite we have no restrictions on », but if the mem-
brane is clamped, say, at » = r,, then the point 7, must lie at a node. From
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the tables we may find that the function J,,(r') = 0, say at v’ = a,, a,,

a, . .. etc.; whence, by (9),
(22)

U a wa
vV, = 5, Vg = o — .
! 2 v, ? 27 1,
Since the values a,, a,, etc., are not in any simple harmonic ratio to one
another, the successive overtones of », will not be true harmonics. This

analysis shows why a drum gives a noise, not a pleasant musical sound.

R

1.0
* Jo(r)

AN
e \\><</ N

-05 5

I11-3.

By (9) and (22), we restrict 7’ to the condition
or R = Jm<a,. :—) (23)

r = a,—,
1

T

We should, perhaps, point out that J,(a, r/r,) also depends on m, a fact

that the diagram clarifies.
The expression for ¢, therefore, is
), (249

Y = OR = Aé™ J,,,<a,,7_

by (6) and (20). We shall now proceed to normalize ¥ by integrating yy*
over the area of the membrane. An element of area is r dr d6. Hence

2 T 2T ry
f f W dr do = f A% do f J,f(a,. T—)r dr.
0 0 0 0 T

The r and 6 factors may thus be normalized separately. The normalization,

(25)

for ©, derived in the manner of equation (8.6), gives

f 00*do = 2r | A . 26)
0

The functions are orthogonal.
We develop the normalization of R, as well as its orthogonality in the
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integral above, most easily from the original differential equation, which by
(8) and (22) may be written in the form

1d( dRn) (aj mf) _
r dr (r dr ) T ot Bn = 0. (27)

2
T

Write a second equation for the same value of m, but with a different value
of n, say k. Substitute R from (24), multiply the first equation by
Jn(a, 7/r)r dr and the second by J.(a. r/r.)r dr. Subtract the two and
integrate from 0 to r,. We have, then,

1—}? (@’ — a3) fo J ,,,<ak :—)J ,,.<a,, %)r dr
- [ (a r ) d [T dJm[akcr/rl)]} 0
o \N'"r/ dr dr

- f J ’"(“" 3) & [" %] dr.  (28)

Integrate the right-hand side of the equation by parts. Set u = J,.(a,r/m)
and

d dJm [ak(T/T1)] d']m[a’k(r/rl)]

Proceeding in the usual manner, we find that the first of these two integrals
becomes

|:7‘J,,,<an "_> %’m]n ~ franJm[adkir/rl)] dJ,,.[adnir/rl)] o

T 0

while the second takes the same form with the subscripts n and % reversed.
The integral, being identical for both, vanishes. The terms are zero at the
lower limit because of the factor r, and we have

- [ o)l
Tf(an a) . I akrl I a,,rlrdr

B r\ dJ ulan(r/r)] r ) @J nla.(r/r)]
=) S (o T) S|

Now, both J,.(a, r/r,) and J,.(a, r/r,) are equal to zero when r = r,, by the
hypothesis that a node occurs at r,. Hence the right-hand side of (29) is
zero. Either the integral, or the factor (a> — a;) must vanish. The latter,
obviously, does not vanish as long as n and k are different. Therefore

f ‘ J,,,(ak T—)Jm<a,, r—>r dr = 0, n # k, (30)
0 LAt T

which proves the orthogonality of the function.



§9] WavEs AND VIBRATIONS 207

Dividing through by (a: — az), we find that the integral takes the inde-
terminate form 0/0, as n = k. To evaluate the expression we must differen-
tiate numerator and denominator, treating a, as a variable that will be

allowed to approach indefinitely close to a,.
We find

[ Jm<ak r_> Jm<an r_>, = I [dh[m(r/n)]dJm[aker)]J ,
o T T 2a, da, dr rmr

the second term vanishing because of the factor J,(a, r/r,). Since J,.(a, r/r.)
is expanded in terms of a, 7/r,, see equation (23), we may write

dJ nla(r/r)] 1 dJala.r/r)]
da, " a, dr

Thus, setting n = k, we have

forx [Jm<a,, %):Izr dr = 27—(1; {[WiL}z 31)

We can make one further simplification. Compare the general term in
J.(r"), (equation 18),

i 1 ]- ym+2i
(=1 vy NG
2"m! 2%\ (m + 1)(m + 2) . .. (m + )

and the analogous term in J,.,(+’) with the power »'"**"*', We note the
identity

N Mmoo _ 4.0
Jm+l(r) - 7“/ Jm(r) d’l"’ .
Whence
Ty 2 2
f [Jm<a/n L)} r dr = ﬂ [Jm+l(a’n)]2) (32)
0 r 2
since
dalan(r/r)] _ y @Iul) L0 s g
dr r, dr e

The normalized eigenfunction for the tensed membrane thus becomes, by
(24), (26), and (32),

e VB ()
= — Jada, —]. 33
Vmn ‘\/21r ¢ rll]m+l(a’n) . B (33)

We may legitimately term the two numbers m and n ‘‘quantum numbers”
because they have selected, from the double infinity of possible vibration
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states, certain discrete modes. The locations of the nodes in the vibrating
membrane, for several vibrational states, appear in Fig. 4. We build up
our complete solution by superposing the eigenfunctions, as before.

R=Jn(a,r) ©:=AsinmB
0 n 0 2r
m=0
m=0
n=0
m=1
\ m:O
n=1
m=2
\ m=0 /'\
~—— n=2 \/

m =1
m=1 SNa——" n=2
n=0

I11-4.

10. The wave equation for the vibrating sphere. The wave equation
in three dimensions, with the time factor eliminated, and expressed in
spherical coordinates, is, from (5.4) and (I1-33.33),

1@(@) 1 _1<- ésk) B S 2 2
Far\" o) T s 06 ™% 50) T e b 0g? =0 0

For the spherical case we may regard ¢ as a measure of the density of the
vibrating medium, rather than a spatial displacement. Setting ¢ = RO,
we have, after multiplying the equation through by 7* sin’ 6, and dividing
by ¥,
sin® § d < 2 (ﬁ) sin 6 d < d9> T 1 d’® | 4n’r’sin® 6

R\ & 6 a6\ 00 T 5 s z =0 0

As far as @ is concerned, we may regard the rest of the equation as a con-
stant, let us say m®. Then

’® e
W—l—mtb—o, (3)

whose solution we have discussed several times previously.

d = 1 ime (4)

— ¢
\/27r '

normalized as in equation (9.33).
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Since ¢ is cyclic, we have, as in the case of the vibrating membrane, the
permitted integral values

m=0, +£1, *2, .... (5)

Dividing equation (2) by sin® 8, and making use of (3), we now find that
we can separate the terms in r and 6:

L (00 () s
esin20d0<sm0d0 sin 8 Rar\ dr) T W& = =0 (©

where C is a constant. From the above equation we perceive that positive
and negative values of m give essentially equivalent solutions in 6 and .
To solve the equation in 6, first make the substitution

6 = sin'™' ¢ Q(cos 6),

where @ is some function still to be determined and where | m | denotes the
absolute value of m. In all further developments we shall understand that
the positive value of m is to be taken. Make the substitution

cos 0 = pu.
Then
dQ _ dQdu _ . ,dQ
a0~ dudo - SmOig,
rQ . . dQ  dQ
d02=(1—#)gf—#dﬂ.

The resulting differential equation is

u—m%%—m+m»%+w—m—mw=a

Let us substitute in the above equation the following assumed solution:
Quw) = u' Zo Al

Equating the lowest power of u to zero, we have as the solutions of the
indicial equation,

g=20, or I
We thus see that the solution can be expressed as a power series in p.

Writing now

mm=§Am )

where j is integral, and substituting in the above differential equation for
@, we have an identity in u.
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Collecting the coeflicients of the same power of u, we have
Y A=Al + 1+ 2m) + m* + m — C]
i=0

+ Ai+2(j + 1)(] + 2)}/-4i = 0. (8)

By the theory of undetermined coeflicients, each coefficient of u’ must
itself be equal to zero, since u is not zero, generally. Hence

m(j+m =1 = C ©
G+DG+2

Note that (9) holds even when consecutive values for j differ by unity,
without j being necessarily integral. In that case, the series for finiteness
must terminate on the side of lower j on a non-negative value. Now, revers-
ing the relation (9) we see that the series will terminate on the side of lower
7 only when j is an integer. The series then terminates on the side of lower j
at A,. We are thus again led to the power series solution (7) for Q(u).

The usual tests of convergence show that an infinite series with the rela-
tion (9) between alternate coefficients converges for —1 < u < 1, but
diverges for p = 41 or —1. We can therefore get a physically acceptable
wave function only when both the series with the even and the odd coeffi-
cients terminate. Now the condition for termination of either of these
series 1s, from (9),

Ao = A; (J +

C=0G+mG+m+ 1. (10)

We see from (10) that for no value of C can both the even and the odd series
terminate. We do have, however, a set of values of C given by (10) which
will make either one of these series terminate, and we can make the other
series vanish by putting A, or 4, equal to zero.

As 7 and m are integers, we can put

J+m=1 (11)
and write (10) in the form
C=1Il1+1). (12)

We perceive that the condition of a physically possible solution, with finite
amplitudes at all points, has not only dictated the form of the constant C,
that is its eigenvalues, but has limited the solution to certain discrete
eigenfunctions.

The relation between successive coeflicients is, by (9) and (12),

4 (G +2G +1)
A= A T Ut m ¥ D

(13)
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The series thus becomes

(/—m)(l—m—l)(l—m—Z)(l—m—3) i
22121 — D2l —- 2) T

cl—ml—-—m—1...0=—m—=2+1 - ]
kN2 — )2l — 2) ... (2l — k) g ol

(14)

+ (=1)

The constant A4,_,, is arbitrary as far as the equation is concerned, but if
we take

1-3-5...2l—-1 @n!
A, = = , 15
‘ (I — m)! 2111 — m)! (15)
© becomes
6 = sin'"'9 Q,™'(cos 6) = P7(cos 6), (16)

where P} is one of the so-called associated Legendre polynomials, as given
in equation (I1I-17.17). We make this identification chiefly for convenience
of notation. In practice, we must fix the value of the constant, A,_,., by
normalization. By (II-18.15), we have

i " [Picos ) sin 6.0 = [ PUWF di = Al )J,r(z’l”i 5 (D

Therefore, instead of (16), we adopt the normalized form

m) = \/(l 2(7)_:_(% + D! P7(cos ). (18)

The solution of the wave equation of the sphere is thus seen to be, apart
from a normalizing factor, equal to a sine or cosine function, exemplified by
the factor ¢’™, times an associated spherical harmonic. In other words, for
each surface defined by r = const, we can express the displacements or
condensations of density in ¢ and 6 in terms of tesseral harmonics. The
result is not surprising. The potential function V, similarly expressed in
Part II, must satisfy Laplace’s or Poisson’s equation, which are akin to
the wave equation.

11. The radial equation for the vibrating sphere and the general normal-
ized eigenfunction. From equation (10.6), we find that the radial function
satisfies the equation

At [y - m0,
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wherein we have employed (10.12). If now we substitute

R — 7'_1/28
S must satisfy the equation
d’S |, 1dS 4% (1 4+ H?
’,2+rdr+|iu2 - rzz) S =0. 2

This equation is of the form of (9.8), which had as its solution a Bessel
function. Hence

—1/2 2
R=rY Jz+1/2< ZV 7’), (3)

by (9.23). Since we suppose that the sphere possesses a boundary at r = r,,
then R must be zero at that coordinate. If a,, a,, . . . a,, represent successive
numerical values where J,,;(a, r/r,) goes to zero, then

U a,

v
"= o r’

4)
asin (9.22). The frequencies of the vibrating sphere, however, will not agree
with those of the membrane because of the occurrence of (I 4 1), which
gives half-integral rather than integral values of the Bessel functions. These
functions possess alternative expressions in terms of sines and cosines, as in
problem 12. The function J_,_; is infinite at the origin.

We shall require the normalized value of R, as follows:

T 2
_/0 Riﬂ'z dr = % [Jl+3/2(an)]2) (5)

by equation (9.32). The R.,’s are orthogonal, by the previous reasoning.
Thus far, we have stated, without proof, the nature of the normalizing
factor in each case. The form of the expression is determined by the con-
dition that the square of the amplitude, integrated over the volume, is
equal to unity. Since the volume element is dr = 7° sin 6 dr d dg, we have

fw* dr = f &, b d¢f 0 sin 6 df [ Rdr=1. (6
0 4] <

From equations (10.4), (10.27), and (5), we write down the complete
eigenfunction:

= m2l+1) .. 12 Jiaslar/r)]
\/ 200 + m)! Pri(eos 6) ! \/T Jivaa(an) @

1
xl/mln - ‘\/21‘r
12. The significance of wave functions. As far as the present volume
is concerned, we shall not go into details concerning the relationship be-
tween ordinary vibrations and the atomic problems of wave mechanics.
Nevertheless, the reader who may be familiar with the elements of the
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quantum theory cannot fail to see an analogy between the foregoing dis-
cussion and that of the classical methods of quantization. In the problem
of the hydrogen atom, as originally discussed by Bohr and Sommerfeld,
arbitrary rules were employed to select, from a manifold of mechanically
possible electron orbits, a few stationary states of special significance. The
older atomic model postulated no vibrating medium capable of sending out
light waves. The model was definitely incomplete. The mechanical problem
of selecting certain stable modes from all possible modes of the vibrating
sphere has many features in common with quantization. The parameters
m, l, and n, are analogous to quantum numbers. The distinguishing differ-
ence is that in the mechanical problems the quantum numbers appeared
naturally. We needed no special assumption to introduce them, aside from
the physical limitation that the amplitudes fulfill the boundary conditions
and that they be everywhere finite and continuous.

Schroedinger, in 1925, succeeded in applying the wave equation to atomic
problems. Although he needed certain additional assumptions to adapt the
fundamental equation to wave mechanics, the solutions follow in a manner
similar to that already employed. The letters m, [, and n, as introduced in
the problem of the vibrating sphere, have been adopted because of their
relation to the atomic quantum numbers. Indeed, the functions ® and 6 for
the hydrogen atom are identical with those for the vibrating sphere.

For the present we need not concern ourselves with details. We should
merely consider the general method of attacking wave problems. We see
that the wave equation is a partial differential equation, involving ¢ and the
various coordinates. By considering periodic solutions, we may eliminate
the time factor. Some assumption is necessary concerning the form of ¢,
e.g., we may substitute ¢ = RO® in the wave equation. The substitution is,
in effect, a transformation of variable, made with the hope of separating
the portions of the equation that depend on only a single coordinate from
those depending on other coordinates. To effect the separation, we may
try various coordinate systems or various assumptions concerning the nature
of the wave functions.

When we find that we can separate out all the terms that depend on some
single coordinate, we may set those terms of the equation equal to a constant
and solve the resulting ordinary differential equation by standard methods.
The boundary conditions together with the required finiteness of the am-
plitude serve to define the eigenfunctions. The resulting wave functions,
which are usually orthogonal, are then normalized. This procedure, gener-
ally employed in the vibration problems of classical mechanics, is taken
over almost without change into wave mechanics.

13. The vibrating string with complex wave velocity. In the previous
vibration problems we have considered the velocity u as a constant. When
we remove this restriction many interesting possibilities arise. For example,
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let us consider the problem of a vibrating string, equation (6.1), where

w = (0" — b2")7". (1)
We shall suppose, further, that the string extends from — « to 4 . Thus
the velocity will be real over the region —Va'/b’ < 2 < V/d'/b’, and
imaginary over the rest of the string. Even though an imaginary velocity

is difficult to picture physically, we obtain a real solution from the equation,
which takes the form

d’y
dz*

+ (a — bx*)y = 0, (2)

where a and b are new constants, which bear a single relationship to a’ and
b'.
For large values of z, the equation becomes, asymptotically,
d’y

dil?§ ~ bx ¢J (3)

which is satisfied in this region by the function, as follows:

- 2 —
g = e*(‘\/b/Z).:’ d_'k = (Vb/s2) 2

bJ dx2 = (:i:b + bxz)e

~ bx*y. 4)

Of the two possible values for ¢, only the one with the minus sign is accept-
able as a wave function. With the other, ¢ tends to infinity for large values
of z. Accordingly we shall look for a solution of the form

p o= e Ve 2 A (5)
Substituting this expression in (2), we find that
CYVIIEANVE@ )~ ae +5G - DY @
Collecting coefficients of z’, we have
e Ve Z-4VIEG+ D — e+ 4G + 26 + DI =0,

GHAG+D
Vb2 + 1 — (a/ V)]

If the series does not terminate at some value of 7, say 5/, then the increasing
powers of z, as x — », will tend to give an infinite value of y, which even

(7

or A; = A

the factor e~ V=% cannot control. Thus if A, » =0, to keep A, finite we
must have
: a . a
2’+1———_>=0, or 2/ +1=——
( J Vb J Vb

The quantity 7/ must also be integral, to eliminate negative powers of z.
q g p



§14] WaAvVES AND VIBRATIONS 215

Referring to equations (1) and (2), we have

VIV o+ 1. @

2ma

a = 47T2V20’, b - 47r2V2b,, or Vi =

The wave function, apart from a normalizing factor, takes the form

—yi i’ (9" — 1 jl—-
wi, = e /2[?/ —_ '7(_]2§F___) 2

=/ '/_1 '/_2 '1_3 4
IR R N ] ©

where vy = Vbz = V2w, Vb z. (10)

If we multiply (9) through by 27, we may write the wave equation as
follows:

¥ = e_“'ﬂHi’(yi’)y (11)

where H ;. stands for the summation, the well-known Hermite polynomials,

= (=D dd—;,- €. (12)

Also % — %H,_(3). (13)

By means of these relations we may establish both the orthogonality and
the normalization of the functions, through successive integration by parts.
The final wave function is as follows:

1 <b/>1/8 J
= =] e ¥v'?H, 14

'pl (21"7.!)1/2 T € 1(y)) ( )
where we have now written 7 for /. Note that no special boundary condi-
tions are necessary. The required continuity and finiteness of ¥, suffice to
determine the wave functions.

The Effects of Damping in Vibrating Systems

14. Damped oscillator. The time variation of the vibrating string led
to the well-known differential equation of harmonic motion, (4.3),
d’s

ir + a*’S = 0, (1)
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whose solution is the real part of

S — 621iv.,(t—to)

s (2)
where av = 2mp,. (3)

Let us now introduce into (1) a damping resistance that is proportional to
the velocity, or

d’S dS | saq
EE—I_’Y:Z?—I_‘”LS_O' (4)

The substitution of
S — emt
into (4) yields the equation of condition

m’ + ym + a*u’ = 0, (5)

_ 2 dqnh?
or _ —v =+ \V/ '2y da™u . ©
The nature of the solution depends upon the nature of the radical. If
Y > 4a™, @)

m is real and the motion is
S = Aem‘t + Be"'", (8)

where m, and m, denote the two roots of (5). The resulting motion is
non-oscillatory. Such a mechanical system is said to be overdamped. When

Y < 4a™, 9

we may set
% Vi = 4 = om, (10)

and the solution is
S — AeQ-n'iru’t—(‘y/2)l
=e ""PYA, cos 2mjt + A; sin 2mll)
= A% "?'sin (2mit — q). (11)

The factor ¢2™*" * represents a sinusoidal wave, of frequency »j, but the
amplitude of the wave diminishes with the time because of the factor
e~ "*’?. The motion is said to be underdamped.

When v = 4a*® = 4773, (12)

we have a case of critical damping.
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The resulting motion for the underdamped example is not a pure sine
wave. A sine wave must be of infinite extent and must have constant am-
plitude. We suspect that the motion may be represented as a sum of sine
waves of various amplitudes and frequencies, superposed to give the effect
of a damped sinusoidal wave. The problem is not dissimilar to that already
discussed in § (7), where we represented an arbitrary displacement in terms
of a Fourier series. Consider a displacement of the form

y=0; t<0. ¢=Ae ""?'sin2mit; t> 0, (13)

which represents a disturbance that starts initially at ¢ = 0 and is sinu-
soidally damped thereafter.

Since this function extends from zero to infinity, we can represent it in
terms of a Fourier integral, not a Fourier series. Substituting ¥(¢) for f(z)
in.(7.36), we get

Y(t) = .‘%/ [ e ¥ sin 2mite ™Y di dm. (19)
—_w Jo

The lower limit in the second integration is zero because y(f) = 0 over the
range — < ¢t < 0. Replace sin 27yt by its equivalent, in expanded form,
from (4.8),

2cos 8 =¢' +e . 2sing=¢e" —e. (15)
Then (14) becomes
— i fm fm —(y/2)E+27ive E+imt—imE
v =25/ . i le
_ e'—(7/2)E—Z1rivo’£+imt—im5] dE dm- (16)

Integrating with respect to £, we get

A ® imt ] _ 1
VO =) e [7/2 — Omivh + im /2 + 2rivy + zm} dm.  (17)

Break up the integration into ranges, from — « to 0, and from 0 to .
Over these ranges make the respective substitutions:

m= —2mv, dm = —2rdv, and m = 2wy, dm = 2r dv.

We can then write the integral as

A ® 2xivt 1 _ 1
W = 4_77;»/; {e [7/47r — i+ y/Am + o + iv:l

—2xipt 1 _ ]- N }} 18
Te |:‘y/41r — vy — W v/47 + Wy — . (18)

Combining the first and fourth terms, and similarly the second and third,
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and rationalizing the denominators, we get

_ A 7| (y/4m) sin 2mvt 4+ (v5 — ») cos 2mi
o =5 [ e —

_ (v/4m) sin 2mvt — (vo + ») cos 21rvt:| o (19)
(v/4m)* + (o + »)° '
Now, clearing fractions and introducing the expression, equation (10),
2
w = - (2), (20
we obtain
Wl = A} — (v/4m)?]"? /'m (yv/2x) sin 2mvt + (v5 — ¥°) cos 21rvtd
= - 0 @ =) + (w/2r) ’
= f F, cos 2mvt — «,) dv
0
= [ F,(sin a, sin 2mvt + cos a, cos 2mvi) d, (21)
Jo
which equation defines F,.
Let us set
Al — (v/4n)]” yv/2m
frsine =2 G =
and
_ Al — (v/4m)°] (o — ¥°)
fcose = N R
Therefore
tan a, = vv/2r(vh — V7). (24)
_ Al — (v/4m)*]'” 1
= . & =+ &

The phase factor, «,, depends on the frequency. Collecting these significant
expressions, we write finally,

Ay — (v/40)°]\? fm cos (2mvt — a,) dv
o [0° = w0)* + (w/2m)° ]

Equation (26) represents a ‘‘spectrum analysis”’ of the damped oscillation.
If the oscillator is, for example, an electron which radiates electromagnetic
energy, (26) gives the distribution function of that radiation, with respect
to frequency, v. A spectrograph, for example, would show the radiation as
having a peak for » = », and rapidly decaying for wavelengths on both sides

¥(t) = (26)

™
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of the true resonant frequency. The radiation of a damped oscillator is not
monochromatic, but covers a range from » = 0 to v = «. The sharpness of
the peak depends on the magnitude of the damping constant, v.

The student may recognize that the square of the coefficient, F,, is of the
same form, functionally, as the expression for the coefficients of line absorp-
tion and emission. The correspondence is no accident. A direct physical
connection exists between the equations of the present section and the
form of the atomic absorption coefficient, as we shall demonstrate in Part
Iv, § (31).

15. Forced vibrations. Let us consider the problem of a string (or of any
oscillator in general), subjected to a periodic force of frequency ». Let », be
the fundamental frequency to which the oscillator is resonant. Assume that
the impressed force, F, is periodic with the time,

F = F, cos 2mvt. (1)

Introducing this expression into the right-hand side of (14.4), we obtain the
equation

2
ddfz’ + 5 % + a*u’S = F, cos 2mvt. (2)

In solving differential equations of this type, we first set the right-hand
part equal to zero, to obtain the general solution. To the resultant equation,
which contains the arbitrary constants, we add a particular solution that
satisfies the equation. The general solution is already available (14.11),
where »{ is given, as before, by

Varv, — 5. (3)
To obtain the particular solution, make the substitution

S = C cos 2mvt — a), 4)

where C' and « are quantities to be determined. The result is

2mvy = % \/EL%LZ —7 =

DN | =

Cl4n*(vy — ¥*) cos 2mvt — a) — 2mvy sin 2wl — a)]
= C[4n* (i — »*) cos a + 2xvy sin @] cos 2mvt
+ C[4x*(; — »*) sin « — 2wy cos a] sin 2mvt
= F, cos 2mvi. " (5)

The coefficient of the cosine term on the left-hand side must be equal to
F, and that of the sine term must be zero, for the equation to be satisfied
identically. Hence

tan @ = (V—gi—yij (27—%) (6)
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From this equation we may evaluate sin @ and cos « as well. The amplitude
C may then be determined directly:

_ Fo 1
T dr [y — )+ (y/20)°]F

The complete solution of (2) is

C @)

S = [B cos 2mvjt + A sin 2mjitle"’®* 4 C cos (2mvt — a). (8)

The term in brackets represents a fransient disturbance, which decays
exponentially with the time. The second term represents a so-called forced
oscillation, since its periodicity agrees with that of the impressed force. The
oscillation, however, will be out of phase with the applied harmonic force.
If v, > v, tan « is positive and the displacement will lag behind the force
by less than one-quarter period. If v = »,, tan @ = =, and the lag becomes
exactly one-quarter period. When », < », tan « is negative. Since sin « is
positive, « is in the second quadrant and the lag lies between one-quarter
and one-half period.

Of special interest are the identities of (6) with (14.24) and (7) with
(14.25). For the latter pair of equations, the constant factor is, of course,
different. But the variation of the amplitude with frequency is identical.
The analysis of the previous section applies only to the term A sin 2zxvite” "/
in (8). A similar investigation gives the same result for the cosine term, with
a different «,, however. The spectral distribution of the radiation from the
transient term of (8) is the same as that of the forced oscillations.

From (7), we see that the maximum amplitude occurs for » = v,, when,
if it were not for the damping term, the amplitude would be infinite. This
result is one illustration of the phenomenon of resonance.

16. General wave equation for a damped oscillator. The complete wave
equation for the damped one-dimensional oscillator becomes

’y _ 1 <i¢: 3_¢>
o @ \af TV 4 ) ()

To solve this equation we write, as before,
¥ = SE. 2
Then we have

1R 1 <d28 dS) 2
RdZ ~ S \df TVar)= ~° @
We have already solved these two equations. The function for the z-coordi-
nate is unaltered by the presence of damping. Its normalized form is given
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by (8.5). The time variation is most simply represented by (14.21), where
the ¢ refers to the variation for a given value of k.
The complete eigenfunction with the time factor, therefore, is

V= \g sin k7r)—2é f; F, cos 2mt — a,) dy, (4)

where F, and «, are given by (14.25) and (14.24), respectively. In these
expressions we must set v, equal to v,, the normal vibration frequency of
the kth mode of the undamped oscillator. Equation (4), because of the
appearance of the extra amplitude factor, F,, is no longer normalized. The
F, factor must now represent the initial amplitude. We have, in effect, split
up our original wave function ¢,, into an infinite number of wave functions,
each characterized by a frequency ». These individual subfunctions are not
orthogonal to one another. Indeed, one may legitimately question whether
“sub” wave functions exist. The individual amplitudes, F,, ascribed to
various frequencies, cannot be added, because the phases are different.

The general form of the wave equation, when a damping resistance pro-
portional to the velocity is present, is the extension of (1) to three coordi-
nates, or

1 (3%

vy = (G i) ®)

17. Dissipation of energy by a damped linear oscillator. The discussion
of these sections on damped vibrations is leading up to the classical problem
of the interaction of atoms and radiation. Before the days of quantum
theory, physicists generally attacked such problems on the basis of a very
simplified atomic model. The emitting electrons were supposed to be oscil-
lating about a position of equilibrium. Physicists assumed the existence of a
restoring force proportional to the displacement and a damping force pro-
portional to the velocity. The resulting differential equations of motion are
identical with those already discussed.

The motion of an oscillator subject to a damping force is given in equa-
tion (14.11):

S = Ae "% sin (2miht — o). 1)

A represents a linear amplitude and S measures the displacement as a func-
tion of ¢. The velocity of the oscillating particle will be

S _

= Ae (/D! |:21rv{, cos (2mvht — @) — %sin (2mvit — a)]. (2)

As aresult of damping, the average kinetic energy exhibits a slow decrease
from cycle to cycle. To eliminate the variations that occur in any one cycle,
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we shall calculate the average value T of the kinetic energy. We suppose
the damping to be small, so that we may neglect the change in the exponen-
tial term during a single oscillation. Since

if” in? 0do = = hcoszﬂdo—l (3)
27r 0 S ' _271' 0 _2’

d if“ cos #sin §d6 = 0 (4)
an o . = 0,

we have, if m is the mass of the oscillator,

__1 @Z_det Azme—(v/z)t< 2 2 72)
T_§m<dt>_ Fda > 4 v + o

= 1% A me ", (5)

by (14.20). The symbol # signifies that the integral is to be taken over one
complete cycle.
Since, on the average, the energy is half kinetic and half potential, the
rate at which energy disappears from the system is
@ _ @ . _ 9. 2242 -yt
T 2 i 2o A mye” 7" (6)

The logarithmic decrement is

d In 2T
a7 Y

We should note two points in particular: the fact that the damping factor,
v, directly determines the rate of energy loss, and that the energy is propor-
tional to the square of the amplitude.

The forces, of course, are not conservative and no general potential func-
tion exists. The rate at which the forces do work against the resistance,
~(dS/dt), is determined by the integral of the force times the displacement
ds, averaged over a given cycle. The length of a cycle is equal to 1/»), and

dE _ , _AS B v+ (1/va’) <ds>2
di = Myvyo ds = my /; di dt; (8)

v

because dS = ds, as shown by equation (1). This result proves to be twice
the average value of the rate of change of kinetic energy, as previously
given.

Let us now discuss the problem of dissipation of energy in a system sub-
ject to forced oscillations. If the frequency of the forced oscillation is v, the
solution of the equations of motion, after the transient term has died away,
is given by (15.8):

S = C cos 2mvt — a). )
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C and « are given by (15.6) and (15.7). The velocity is

(2—‘?’ = —2m( sin 2mvt — «). (10
The rate of energy loss from the system is still to be calculated from (8),
where »; i1s set equal to v. We find that

dE _ o e _ _pelm (y/4mp’ }
it = et = R e M)

The quantity in braces is proportional to the absorption coefficient, for
upon it depends the rate at which the oscillator subtracts energy from the
external field and dissipates the energy as friction, radiation, or in some
other fashion. The absorption coeflicient shows a sharp maximum for ener-
gies near or equal to the fundamental frequency.

In the neighborhood of this maximum we may set, without appreciable
error, v ~ v, and v + vy ~ 2v,. We shall still have to retain the factor v — v,.
Let us now suppose that the driving force consists of a continuous band of
frequencies, instead of a single sharp frequency. To obtain the total rate of
energy absorption over all frequencies, we shall have to multiply (11) by dv
and integrate over all ». With the foregoing approximations this equation
becomes

dE _ d __pm [T v/4n
a = di f B, dv = —Fo g / 6 =) + G/ >

m
= _FOV_

4r(v — Vo)jr _ m
87 [arc tan v Fo, 3" (12)

0

At the lower limit, we have used the approximation

arc tan <— ‘i@) ~ arctan (— o) = —g, (13)
Y
in accord with the assumption that
v/4n K v,. (14)

The foregoing problem is closely related to the question of the formation
of an absorption line, when radiation passes through a layer of atoms. The
factor Fy, measures the amplitude of the radiation; its square times dv is
proportional to the intensity of radiation within the frequency interval dv.
F,, must also contain a factor specifying the nature of the interaction
between the incident energy and the atomic oscillator. This latter factor
might conceivably be a function of the frequency in certain types of
problems.
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Boundary Value Problems in General

18. Flow of heat. The differential equation for vibrations and wave
motion is closely related to that for heat conduction. We shall, therefore,
find it interesting and instructive to derive the equation for heat transfer
and solve it in several representative examples.

Consider some medium, solid, liquid, or gaseous, through which the
temperature, T, is not constant. We shall suppose that T is a function of the
coordinates and the time. At any given instant we may define, in the
medium, surfaces over which the temperature is constant. The equation,

= C, 1)

is analogous to the equation defining a surface of constant potential. Such a
surface, or any line drawn upon it, is called an 7sotherm or isothermal. The

force, F, a vector normal to the surface V = C, is given by F = —VV.

Similarly we represent the normal to the isothermal surface by a vector g,
T

g= —VT - - n, @

where n, as in previous sections, denotes a coordinate normal to the iso-
thermal surface. The factor 97/dn is the temperature gradient along the
coordinate n.

We assume, in accord with experiment, that heat will tend to flow from
the hotter portions of the medium toward the cooler. This flow takes place
in a direction opposite to the temperature gradient. For example, if the
temperature increases along the z-axis, the vector representing the flow of
heat will be in the negative direction, because heat flows from hotter to
colder regions. The rate of flow is proportional to the instantaneous tem-
perature gradient and to the specific conductivity, «, of the material. Hence,
we set the vector f, representing the vector rate of flow equal to

f=«g = —«VT. - 3)
Consider, now, some definite volume of the medium. The net rate of heat
flow out of this volume must be

dE
= - ff-ds, @

where dS is an element of the boundary surface. Let ¢ be the specific heat
and p the density of the material. According to the definition of specific
heat, we associate the amount of heat dE with a temperature change d7,
through the equation

dE = — f (co dT) dr, ‘ 5)

where dr is an element of volume. The negative sign indicates a tempera-
ture drop because dE represents a negative gain. Hence, the rate of heat
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loss depends upon the rate of temperature change, at each point of the

medium, as follows:
dE aT
at f ¢ 5 O ®)

Equating (4) and (6), we have

ff ds = —prat )

If any heat energy is generated within the volume, we must add a term
| € dr to the right-hand side of (7), where ¢ is the rate of heat generation
per unit volume. By Gauss’ theorem, we transform the surface integral of
(7) into a volume integral:

ff-dS=fV-‘fdr=—fV-(KVT’)dT, (8)

by (3). Then if « is a constant over the medium (x may still vary with the
time),

V - («WVT) = «V°T, 9
and (7) becomes
2 aT :
[ errar = [ ar (10)
Hence, for any volume element, we must have
e _ ¢p 0T
VI = o (11)

This differential equation applies only to the transfer of heat by conduc-
tion. It fails in any medium where the transfer occurs by convective or
radiative processes. Equation (11) has much in common with the wave
equation involving the time. We effect the solution most simply by writing
V? in whatever form the geometry of the medium suggests and then
attempting to separate variables by means of a product function. For
example, in spherical coordinates, we try

T = SR6%, (12)

where S is a function only of the time, etc. One can show that the solution
of (11) is unique, when the proper initial and boundary conditions are
specified.

19. Steady flow of heat. We shall discuss first the case of steady flow.
Then

aT/at = 0, (1)
and (11) takes the form of Laplace’s equation,
VT = 0. (2
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Consider a medium bounded by the two infinite planes x = 0 and 2z = q.
Further assume that the temperatures of the surfaces are constant and
equal to T, and T, respectively. The symmetry shows that the isotherms
are planes parallel to the boundary surfaces; hence we must regard T as a
function of z alone. Equation (2) becomes

T _ d'T

o A ®)
the integral of which is

T = Az + B. (4)

The constants are easily evaluated from the boundary conditions. Thus

T=T“+TOQ:+TO. (5)

Similarly, if the medium is in the form of a spherical shell, bounded by
two spheres of radii r, and r,, with the boundary temperatures maintained
constant at T, and T, the temperature distribution will depend only on 7.
Therefore the conduction equation becomes

9 29T _
o’ ar = (©)
Hence T = —-% + B, (7)

which gives, with the assumed boundary values (r, < 7,),

77 _ Ta - Il’b Tola + Tbrb _ Tara.

r Ty — 7o Ty — 7o

)

y We shall now treat flow in two dimen-
b c sions. Consider a slab in the form of a long
rectangular bar bounded by the surfaces
x=0,z=a,y =0,y = b, and extending
to 4- = along z. A cross section of this slab
by a plane perpendicular to the z-axis
appears in Fig. 5. We further assume that
the temperatures along ob, oa, and oc, are
constant and equal, and of magnitude T..
Along bc we take the temperature to be
variable, a function of z alone, i.e., we set
T = T(x). Because of symmetry, the
temperature distribution is independent
III-5. of z. The conduction equation becomes
o°T | 9T
w2 T o 0, )

Laplace’s equation in two dimensions.
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To solve this equation we try the solution

T =XY + K, (10)
where K 1is a constant. Then
1 &’X 1 &Y
Y dE - Y 71/5 = —d’. (11)

The justification for the negative sign of the constant, to which we equate
the independent sides of the equation will appear later. The solutions are

X = Ae’** 4+ Be ***, Y = Ce™ — De . (12)

The temperature along the face z = 0, i.e., along ob, must be independent
of ¥, and equal to T\:

T = (A + B)(Ce*” + De **) + K = T,. (13)
We can fulfill this condition only if
B=-4 and K =T,. (14)
Similarly, along oa, ¥y = 0, we must have
T = A ** — e "™ }C + D) + Ty = To. (15)
Hence D = —C. (16)
We also note that
e — e "% = 2{sin azx. 17

We now introduce the third condition, that along z = a,
T = Gsinaale™ —e ) + Ty, =T, (18)

where G is a new constant defined in terms of the old by

G = 24Cq. (19)
To satisfy (18), we must have

G sin aa = 0, (20)
or aa = km, k=01,2....

We now point out that had we adopted a positive sign for o’ in (11),
instead of a sine term for z we should have obtained the factor e** — e %,
which does not vanish for £ = a. Since any one (or all) of the values of &k

in (20) will satisfy (18), we must write the solution in the general form

Z G, sin &7 :c(e'“”’/“ — e ") + T (21)
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We must determine the coefficients G, of the IFourier series from the fourth
condition, that for y = b,

T = T(z). (22)
thus Z k sm T4+ T, = T(x), (23)
where H, = Gk(ek""/“ — e F7Y9), (24)

We find the coefficients, H,, as before, by integration of the half-range
Fourier series, as in (7.17):

H, = gf (T, — Ty) sinlﬂxdx. (25)
alo a

To proceed further, we must know the form of 7'(x). If we set
T(x) = 27% 0 <z<a/2
and (26)

T(x) = Ty + %"‘a_—x), a/2 < z < a,
so that the temperature increases linearly from 7', at each edge to the value
T, + B at the center of the face, the analytical problem becomes identical
with that of § (7), with the solution as given in (7.23). If we introduce the
notation,

k1ry

ek‘iru/a . e—kwu/a 2smh (27)

the final expression for the temperature distribution in the interior of the
bar becomes

_ — 83 sin (2k 4+ Dwx/a sinh (2k + Dry/a
T=Tot 2 " Gh ¥ D° sh (2 + Drb/a

(28)

Fourier first introduced series of this character in connection with problems
of heat flow.

20. Variable heat flow. We may divide problems of heat conduction
that depend on the time into two rough classifications. The first and simpler
arises when we permit a body with a known initial temperature distribu-
tion to come to equilibrium, either with itself or with external sources of
constant temperature. The second deals with the variations in temperature
that contact with a non-constant (often periodic) source of heat may
induce in the given body.

As an example of the former, we consider the flow of heat in a long
uniform rod of length a. We suppose the rod to be covered with perfect
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insulation so that heat can enter or escape only from the ends. At time
t = 0, we suppose that the temperature distribution is

T = T(z, 0). (1)

We plan to maintain each end of the rod at a constant temperature T,.
We are required to find the temperature at any point for all later times.
Our transfer equation is

2

~

o OT

Y 2

ol

g
3

= |

z
We try the solution
T = XS + K, ®3)

and further suppose that ¢, p, and « are constant with z and £. Then (2)
becomes

1d°X ¢pl1dS .
Xdf ~ xSd - % @
which yields the solutions,
S = Ce*=t°?, X = Ae'*® + Be ", (5)
When ¢ = 0,
T(z,0) = Ae'*" + Be™'"" + K = T, (6)
forz = 0, and x = a. As before, this condition requires that
B=—-4, K =T, aa = kr. (7)

Thus the general solution becomes

kﬂ-x —k3xkwx2t/cpa?

T(x, &) =Ty + insinTe . (8)

We are to obtain the coeflicients H;, as usual, by means of Fourier series.
Note, especially, that the higher modes are damped out more quickly than
the lower ones, because of the &’ factor in the exponential. The final state,
as t — o, is that of a uniform temperature, as expected. The last remaining
trace of a non-uniform distribution will come from the sine term for k = 1.
If we had adopted a positive sign for &°, in (4), the temperature would have
increased without limit, in direct contradiction to experiment. Further, we
could not have satisfied our boundary conditions.

As an example of the second type of problem, we consider the temperature
variations in a semi-infinite rod, one face of which is in contact with a sur-
face whose temperature varies sinusoidally with the time. We take this face
to be the plane z = 0, and suppose the rod to extend indefinitely toward
¥ = o, We further suppose that the rod is covered, except for the front
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surface, with perfect insulation. The equation to be solved is the same as
(2), whose solution is

T(z, t) = (Ae’*® 4+ Be "*")e**"* + K. 9)
The constant C'in (5) is superfluous, since we may combine it with A and B.

Let » be the frequency of the temperature variation on the face z = 0,
so that

T, t) = Ty + Bsin 2mt; 2mv = xy/cp, (10)

where 8 denotes the magnitude of the extreme temperature variation. Then
we must have

Ty + 8sin 2mvt = (A + B)e**""* + K, (11)
which requires that, for ¢ = 0,
K =T, (12)

This equation, however, leads us to an impasse, for the sine term on one
side and the exponential function on the other are certainly not compatible.
This example illustrates the difficulties that may arise when we inadver-
tently adopt the wrong form for the constant a’. The discordance disap-

pears if we set

aZ = _77:) (13)
and regard the constants 4 and B as complex, and of the form
A=A, + i4,, B = B, + 1B, (14)

for then the complex exponential is equivalent to a sine or cosine function.
Taking the real part of the result, we have

Gsin 2mt = (A, + B.) cos “clp‘ — (A, + B) sin ’Z_lp‘ (15)

whence
A, +B,. =0, A, 4+ B, =8, v = 2mvcp/«. (16)

We must make similar changes in the first factor of (9). From (13),
o = 1\/% (17)
Since

A+9° =2, Vi=(0+1/V?2, (18)
ia = —Vv/2 (1 +9). (19)

Then (9) becomes

T(x, t) — [(A,. + ?:Ai)e—'\/;/—Z(l+i)z + (B,- + ,L'Bi)e'\/.“/—/;(l+i)z]eix‘yt/cp _I_ TO‘
' (20)
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As here defined, v is a real positive quantity. Therefore if we wish to exclude
the possibility of infinite temperatures for + = «», we must take

B,. = Bi = 0, A,- = O, A.; = ﬁ, (21)
by (16). Hence (20) becomes

T(J), t) — _ﬁe—\/ 7/2:0:{[1-61"(71/: -V ‘Y/Z::]

= ﬁe“\/m’ sin (kyt/cp — Vv/2 2)

V xvcp/k z

= Be” sin (2mvt — \/WVCP/ K ), (22)

which is the general solution of the problem. The temperature variation
shows three characteristics. The amplitude of the variation diminishes
exponentially with depth. The variation below the surface is sinusoidal with
frequency v, but the phase is shifted by the term V/ mvcp/ k x, i.e., the varia-
tion in the interior lags behind that for the surface. This shift is due to the
finite velocity, v, of the temperature wave. When

\/7rVCp/K x, = 2m, (23)

the lag amounts to a full period. The wave has taken the time »™' to
penetrate a distance x,. Therefore the velocity is

v = z,/v = 2V mrk/cp, (24)

a function of the frequency.

SELECTED PROBLEMS FOR PART III
1. Prove that

" e |1 1 1 1 1
= — | -4 = = — — + = 49 — . ...
e |:2 5 cos 8 + 5 cos 26 10 cos 380 17 cos 46

4
—I—ésinﬁ—%sin20+%sin30—ﬁsin40+ .. :l

Hint: In the integration use the sine and cosine in complex form. —7 < § < .
2. Let f(f) = sin 26, 0 < 6 < 2. Express f(0) as a Fourier series.
3. Use Maclaurin’s expansion to derive the series expansion for ¢’

4. Derive the expression for the form of a vibrating string at time ¢ = 1 sec.
Assume ¢ = X T and expand in orthogonal cosine functions. Assume that Y = f(x)
when ¢ = (. Let ! be the length of the string.
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5. Prove that

1+ cos @+ cos260+ ... o =1/2 0 <6 < 2m.
sin 8 + sin 260 + sin 360 4 ... @ = (1/2) cot 6/2, 0 < 6 < 27.
cos § — cos 20 + cos 3 — ... » = 1/2 —r < 0 <m.
sin @ — sin 20 +sin30 — ... o = (1/2) tan 6/2, —7 < 8 < .

6. Prove that

[}
e =

no [y
0o =

(1+e")sin0+%(1—e’)sin26+%)(1+e")sin30

+%(1—e*)sin40—l—...w.

7. A vibrating string, extending from x = —1/2 to x = +1/2, has a varying dens-
ity along its length so that the wave velocity varies as > = w7 (1 — a sin wz/l),
where a >> 1. Obtain the first approximation according to the assumption that
a = 0. Then use this first approximation, ¥ = cos 7mz/l to get the equation

2
¥ Ly =L ysin™.

2 2
dx Ug Uy l

Substitute for ¥ on the right-hand side to express it as a function of  only. Express
the product (cos wmz/1)(sin wz/1) in terms of exponential equivalents and solve for
the particular integral.

8. Suppose that a vibrating string of length [ is subject to a damping resistance of
magnitude —a | v |, where » = dy¢/dt. Determine the motion as a function of the
time, and discuss the rates of damping of the various overtones. If the string has
initially the V-shaped form of equation (7.20), discuss the subsequent motion as a
function of the time. At what rate will the string lose energy?

9. For the vibrating circular plate, show that eigenfunctions are independent of
the origin chosen for the angular coordinate.

10. Discuss the vibrating rectangular plate, the rectangular box, and the circular
cylinder. Write down the normalized wave functions for each, in terms of solutions
already derived.

11. The equation of motion of a solid, vibrating bar is

v p Y
az* Qk 9t

where p is the density, « the so-called “radius of gyration,” which depends on the
shape of the bar, and Q a constant of the material, known as “Young’s modulus.”
For a circular bar of radius a, & = a/2. Discuss the motion of a cylindrical rod and
show that ¥ = f(z = ut) is not a solution. Find the harmonic solution. Show that, if
we try to define a wave velocity, it depends on the frequency, whereas the ordinary
vibrating string has a wave velocity independent of frequency.
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12. The Bessel functions whose order is half-odd integral are series of sines and

cosines. If
172 .
J12(2) = <7%;) sin z, J/0(2) = (2-><Sm ¢ - cos z),

e 4

etc., show that J;, 1,2)(2) is finite at the origin. Show that the alternative solutions,
which satisfy Bessel’s equation,

2 \'"* 2\"? cos 2
J_1,2(2) = <—) cos 2, J_3,5(2) = <—> <— —"=—" — sin z),
Tz Tz 2

are infinite at the origin and, therefore, not satisfactory as eigenfunctions in the
vicinity of the origin.

13. A particle moves with constant velocity parallel to the axis of z back and
forth between two points located at x = 0 and z = . At ¢t = 0, the particle is at
the origin. Its motion is subject to the law: x = vt for I/2v; 2 = [ — vtfor /20 < t <
3l/2w,

vt, 0L t<L a/v,
2z, —vt, /v < t < 2z,/v.

r =

If the moving particle is an electron, its radiation will be on certain characteristic
frequencies, of which »/2l is the fundamental. Assuming that the damping by loss
of radiation is negligible, express the motion in terms of its representative Fourier
series. If we assume that the rate of radiation is proportional to the square of the
amplitude and to the fourth power of the frequency, discuss the type of radiation
to be expected from such a system. Compare the result with that of the vibrating
string.

14. Show that the eigenfunctions of the vibrating sphere are independent of the
choice of axes.

Problems 15-23 are representative of the use of eigenfunctions in wave and
matrix mechanics.

15. Prove the following expansions:

a%e(l; m) =é\/(l— m(I + m 4+ 1) 6(l, m + 1)

_é\/(l—{-m)(l—m—f-l)e(lym_l);

(m cot O)O(L, m) = — % NVI= i+ mEDO m+ 1)

_%\/(l—{-m)(l—m-’rl)e(l;m_l)'

Hint: Use Rodrigues’ formula.
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16. Show that

(cos 0)0(1, m) = 6(1 + 1, m)\/(l _(Zi };E;l++";)+ :

(= mi+m
+ 6(l — 1, m>\/(21 TR

(I4+ m+ DU+ m+4 2
(21 + D2 + 3)

(I=ml—m+1
+06(l—1,m+ 1)\/ (20 — D20 + 1)

~ B —m+ D0 —m+ 2
=0(l+1,m 1)\/ (20 + (21 + 3)

(+m—D0+m
20— DEL+ 1)

17. Express the vector r = iz + jy + kz as a bivector, in terms of the coordinates
T} 0! ¢'

Ans. 1 = rl(a(e™*/2/2) sin 0 + B(e™®/V/2) sin 6 + k cos 6)],

where « = (14 1j)/V/2; B=(31— l])/‘\/E Note that a and 3 play the roles of
unit vectors, in the sense that

(sin )6(1, m) = —6(I 4+ 1, m + 1)

—e(l—1,m+ 1)

e a*=a-3=1 @e-B3*=«-a=0, ETC
Show thatr - r = 7°. For further details cf. IV-28.

18. We have defined angular momentum as L = r X p, cf. equation (1I-22.4).
In rectangular components,

L = i(yp. — 2p,) + j(zp. — 2p.) + k(zp, — yp.) = iL. + jL, + kL,.

Show that in terms of the bivectors of the preceding problem,

L = oL —iL) | B(L. + iL)
V2 /

19. Now, with the standard transformation,

+ kL..

x =rsin 0 cos¢, y =rsinfsing, z =r cos b,

and with the arbitrary definitions,

_ k9 _h 8 __hd
Pe = omioz’ P 7 omiay’ P* T omioe’

where A is Planck’s constant, show that L takes the form

_h| e —w(_i : i)
L—27r|:\/§e 60+100t06¢

91-¢<i : g)_.i]
—l—2e 60+zcot06¢ 1ka¢-
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20. From (19) and (15) show that

L[6(l, m)®(m)] = % [—v"—i\/(z + m(— m+ 1) 60 m— 1) &(m— 1)

-—G— ( — m m m m
+v§x/(l YU+ m+ 1) 6(l, m + DB(m + 1)

+ kmO(l, m)®(m) ]

21. From the preceding problem and considerations of orthonormality of the
wave functions, calculate

L= [} [D ’ (U m")®(m')L[6(1, m)®(m)] sin 8 df de.

Ans.
L =/20/VIV(I+ m)(l— m+ 1) 8, Dé(m/, m — 1); wmrcC.
22. Show that the operator

h,216<. a) 132}
L-L= <27r> Lin 030 \°"9%0) T i o4
Note the similarity of this expression to the angular portion of the operator

V2 (10.1).

23. Apply the operator L to the result of problem (20), to show that

L - [LO(im)®(m)] = (%r) (1 4+ 1Ol m)®(m).

Then show that

L L= [ [ o', m)®(m")L - LO(I, m)®(m) sin 6 d6 do

_ <2L;r>gl(l + 08, Do(m’, m).

24. A cylindrical wire of radius a, heated electrically, along the axis of a cylinder,
maintains the surface r = a at constant temperature T,. The cylinder itself, of
radius b, is immersed in an oil bath of temperature T,. Calculate the distribution of
temperature within the cylinder. Assume that the two plane boundary faces are
heavily insulated.

25. Consider a source of heat whose intensity fluctuates cyclically as follows:

T = T, cos 2mvel, —wo/4 < t < w/4; 3w/4 < t < 5w/4; ETC;

T = 0, V0/4 S t S 3V0/4:; 5V0/4 S t S_ 7V0/4; ETC.

Express T as a Fourier series.
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26. Consider a uniform solid, bounded by the plane z = 0, and extending to
infinity in the direction of 2 = o. Assume that a controlled source (or sink) of
energy maintains the temperature over the entire plane z = 0 at the value given by
problem (25). Calculate the distribution of temperature within the solid as a func-
tion of z and ¢. If v, corresponds to a period of one day (v, = 1/86,400), and if
¢p/x = 200, calculate the time required for the wave to penetrate to a depth of one
meter. At what depth will the temperature be exactly one year out of phase with the
impressed temperature at the boundary? If T, = 300°, what will be the amplitude
of the fluctuation at the two depths referred to above?



PART IV

Classical Electromagnetic Theory

Electrostatics and Magnetostatics

1. Electric and magnetic fields. The fundamental equation for two
point-masses attracting one another gravitationally is

m;me
3
P2z

F=-q (1)
Newton’s well-known law, where F is the force. The minus sign (sometimes
omitted for convenience) indicates that the force is one of attraction, i.e.,
its action tends to diminish the distance » between the bodies. If equation
(1) were not of further use, we should never have to worry about the factor
G. Equation (1) is important, however, in that it relates quantities of a
purely physical nature, such as mass and distance, to the dynamical quan-
tity F. When we introduce the dimensional constant G, whose value
depends on experiment, the equation is satisfied dimensionally as well as
numerically. We may calculate the resulting trajectories from the funda-
mental differential equation.

The laws governing electric and magnetic fields are of similar character
to those governing gravitational fields. As we demonstrated in Part I,
§ (4), we may write expressions analogous to (1) for the respective fields.
We must allow for one marked difference, however. Electric and magnetic
forces, unlike gravitational force, depend on the nature of the intervening
medium. Accordingly we must introduce the factors p and «, defined,
respectively, as the magnetic permeability and dielectric constant, which
are properties of the media and not of the force centers. The respective
forces are (I-4.1 and 1-4.2)

F=c 2 (2
and F =05, ®)

where ¢, and g, refer to the electric charge, and p, and p, to the magnetic
pole strengths. When the charges or the poles are of opposite sign (one
positive and the other negative) the forces are attractive.

237
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We must choose the various parameters so that the forces appear in
ordinary dynamical units. In equation (1), we might have adopted a special
unit of mass so as to make @ unity, had not other physical concepts proved
to be more convenient for defining the mass. For electrical and magnetic
quantities, several systems of units are available. For the treatment of
dynamical problems, when the force is to be expressed in cgs units, we may
define the unit of ¢ or p in such a way as to make the constants C, and C,
equal unity. Similarly, we may set both «x and u equal to unity for empty
space.

We now restate the above definitions in quantitative form. Two equal
electric charges (or magnetic poles) of the same sign possess unit charge
(unit quantity of magnetism), if they repel one another with a force equal
to one dyne, when placed one centimeter apart in a vacuum.

The two systems, thus established, are called, respectively, the electro-
static (es) and the electromagnetic (em) systems of units. They cannot be
completely independent. A circulating electric current of given magnitude
produces an electromagnetic field of a definite intensity. We shall determine
the relationship presently. The physical dimensions of ¢ and p are, from
Part I,

g = [M?L** T «"*]. es (4)
p = [M'2L¥*T'u'?. em (5)

We have also seen, from I-4, that force in the MKS system becomes
F = upp,/4mr* = Bp,, (32)

where p represents the induced pole strengths of magnetic charge and B the
magnetic induection.

To extend the usefulness of this section we give the formulas in duplicate.
The original form of each equation is Gaussian but its MKS counterpart
follows directly, with the distinguishing symbol, @, in the equation number.
Equations that appear only once possess identical form in both systems.
In the MKS portion, some abbreviations occur. For example, when rela-
tivly long identical brackets are common to both, the internal factor is
indicated by [ ], { }, or analogous symbol.

2. Electrostatic potential. Electric potential is analogous to gravi-
tational potential. For example, a spherically symmetrical distribution of
charge acts like a point charge at the center. As for gravitation, a scalar
potential function V exists, such that the components of the electric force
vector E are

o oV oV

E.’L‘ = ax) Eu = —7, Ez = - az) (1)
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(equations II-8.4), or in vector notation (1I-9.4),
E=-VV. 2

The quantities E,, etc., are potential gradients, since they determine the
rate of change of V with distance. They are also termed the components of
electric intensity, because they represent the force acting on a unit charge.

Let @ be the number of units of free electric charge symmetrically dis-
tributed through a spherical volume of radius 7,. The radial force acting on
a positive unit charge at distance r from the center, where r > r,, is

_Q _ oV

E, kr’ ar 3)
_Q _ v

B, = drer® ~  Or (3a)

We shall provisionally adopt the gravitational convention of setting the
potential energy of a particle, moving in the electrostatic field, equal to
zero for r = = . Hence, integrating (3), and setting the constant of integra-
tion equal to zero, we have

|4 (4)

_9
KT
Q.

" drer

(4a)

The sign of @ determines the sign of V.

The electrostatic problem, compared with the gravitational, is compli-
cated by the existence of repulsive as well as attractive forces. However,
most of the ordinary mechanical formulae relating to the gravitational
fields apply without substantial change. This similarity of procedure results
from the fact that formulae already derived depend on an assumed inverse-
square law for the force field and are otherwise independent of the nature of
the bodies involved.

Gauss’ law, (II-15.4), relating the total charge g contained within a vol-
ume to the total flux ¢, i.e., to the integral of the normal component of E
over the boundary surface, becomes

¢=ffE.ds=4,rq=fffv-EdT= —fffV2VdT, (5)

¢=f E - dS = g/e, (5a)

by Gauss’ theorem and (2). And since

q=fpw, ©)
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where p is the density of charge, we immediately obtain Poisson’s law
(11-16.3)

VV = —dnp (7)
VV = —p/e (7a)

and Laplace’s law
V’V =0, (8)

the latter for a region devoid of charge.

From the standpoint of electrical properties, we may divide matter
roughly into two classes: conductors and insulators. Conductors will convey
away the charge from an electrified body whereas insulators will allow it to
remain. Physically, the distinction between a conductor and an insulator
is that in the former the outer atomic electrons are only loosely bound, if
at all, to the core of the atom. The charges are free to move and, if possible,
occupy an equilibrium position under the forces of their mutual attraction
and repulsion and of the external fields. In an insulator, however, the elec-
trons are tightly bound.

Let E, be the force intensity resulting from all other charges acting on an
elementary charge ¢,, in the conductor. Since, by hypothesis, g, is in a
position of equilibrium, E, must vanish throughout the conductor, i.e.,

EO = _VV == 0. (9)
V = coNsr,

The potential is constant in the entire conducting medium. Since the earth
is a conductor, one often chooses the arbitrary constant in the potential to
give zero for the ground potential.

In electrostatics, the charges must lie entirely on the surface of a con-
ductor. If we draw any closed surface entirely within the conductor, E

IV-1.

must vanish over it, so that ¢ = 0, and hence, by (5), the charge within the
surface must be zero. In consequence, for conductors we deal with a surface
density o, rather than with volume density, and we must modify our for-
mulae accordingly. Outside the conductor the vector E will be normal to
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the boundary because the latter is a surface of constant potential. Let its
value be E,. Consider, now, a small volume, shaped like a pillbox, with its
lower surface imbedded in the conductor and the upper surface, of area d.S,
outside and parallel to that of the conductor. The total charge inside the
box is ¢ dS. The scalar product E - dS vanishes over the lower boundary
because E = 0 and over the sides because E and dS are perpendicular.
Hence the total flux (5), is

¢ =E-dS =E,dS = 4rs dS (10)
¢ = o dS/e. (10a)
and E, = 4r0. (11)
E, = ofe. (11a)

This equation relates the normal component of electric intensity to the
surface charge density.

In the calculation of electric fields between conductors, the mobility of
the charge introduces a new complication that did not concern us in the
gravitational problem. For example, consider a grounded conducting sphere
brought in the neighborhood of a plate charged with positive electricity.
Because matter is electric, there will be a tendency for the negative charge
to flow from the ground to the surface of the sphere. These induced charges
on the sphere act to produce second-order distortions of the charge dis-
tribution on the plate; these in turn react to give third-order induced
charges on the sphere, etc. The phenomenon finds its closest analogue in
ordinary mechanics in the realm of tidal perturbations.

To illustrate the problem we shall first consider a point charge of magni-
tude g, in the neighborhood of an infinite plane. We suppose the plane to be
uncharged originally and connected with the ground, so that the electric
potential in the plane is constant and equal to zero. We are required to
find, at any point in space, the value of V resulting from the charge ¢ and
the induced charges on the plane.

We adopt a system of coordinates such that the charge lies at (a,0,0),
and take for the equation of the plane, x = 0, (Fig. 2). Let us now suppose
that a charge (—¢q) is placed at the point (—a,0,0). The potential at any
point b, in the yz-plane, resulting from the two symmetrically placed
charges, is

— 9 9 _

V=214 -7=0, (12)
_ 9 _7 _

V= darer + 4qrer 0, (122)

where » = ab. This equation satisfies the condition V' = 0. Hence the
electric fields must be the same whether the conducting plate is in place or
not. The positive point charge and the negative charge induced on the
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surface of the plane must produce a field on the positive side of the origin
identical with that from the pair of point charges. The combined potential
of these charges is

= q —q
M e o A o Ly e 13)

(13a)

V = 2(] 2 3717z + 2_q 2 271/2-
drel(x — a)* + " + 2°1'7 T dwel(x + 0)* + ¥’ + 217

Iv-2.

This equation satisfies (12) at the plane z = 0. The z-component of force
normal to the plane is

E = _ﬂ - g(x — a) _ gz + a) (14)
I R e S o ey
E = ﬂ Q(l‘ —_ a)

T ox  dmellx — a) + ¥° + 217

— iz + a) .
4rel(z + a)® + o° + 2 (14a)

In the plane z = 0,

2qga 2qa
B. = E, = (@ + y2q+ 27T T 33 = 4mo, (1)
_ _ —2qa _ 2qa o
E. = E, = dre(a® + y° + 257 T dxe® T € (152)

by (11). We have written
r = (az + yz + 22)1/2’ (16)
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which is, as in (12), the distance from the external charge to the given
point on the plate.

o = —qa/2nr". (17)

The induced charge is opposite in sign to the original, and ¢ has a maximum
at the origin. The total induced charge is

f f cdyds = —q. (18)

The method employed above is based on the so-called theory of images.
We regard the plate as a plane mirror, in which the “image’” of the charge,
taken with opposite sign, makes the problem symmetrical. We have used
images in similar fashion in II-§ 40, as an aid in calculating the motions of
vortices near a plane boundary.

We next consider the problem of the charge induced on the surface of a
grounded sphere centered at the origin, by a positive point charge ¢ located
at an external point (a,0,0). Over the surface of the sphere V = 0. Let b
be any point on the surface of the sphere, and let r be its radius. We are to
find the magnitude, ¢,, and location of an image point charge that will
make the combined potential from this image and the original charge
vanish over the sphere.

Considerations of symmetry dictate that the image must lie at some point

1v-3.

along the line Oa (Fig. 3). Take its coordinates as( ¢,0,0) and its magnitude
as —gf. Then we can determine ¢ and f from the condition that

g/ab — gf/cb = 0 (19)
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for all positions of b. In terms of the coordinates, we have

g _ qf
(@® +r* — 2ax)"® (& + r* — 2c2)"” (20)

which gives the condition
fla® + f7* — 2f%ax = ¢ + r* — 2cx. (21

The coefficients of 2 on both sides of this equation must be equal; hence

f* = c/a. (22)
Equation (19) becomes
¢ —cl@®+r)/a+1r =0, (23)
the solution of which gives
c=a, f=1 or ¢c=7r/a, f=r/a. (24)

The first of these solutions is trivial because it corresponds to an equal
negative charge superposed on the original. The second leads to the desired
result: the image charge is one of magnitude (— er/a) located at (+*/a,0,0).
Using the law of cosines we prove that the potential at some point in space
indicated by the spherical coordinates (r/,6,¢), with 8 measured from the
axis Oa, becomes

V= 7
(r'* + a® — 2r'a cos 6)'°

q(r/a)
T 4 @/a)® — 27(*/a) cos 6] 29

y =L [ :
dre | (r"* + a® — 2r'a cos 6)'?

(r/a)
T 4 (*/a)® — 27 (% /a) cos 0]1/2:|' (252)

The electric intensity normal to the surface of the sphere is

oV gla® — 1)
|V _ _ .
|:3r’:|r’=r a(r2 T 4% — 9ra cos 0)3/2 4re. (2 )

E,

14 ql@® — 1) o
= —| — = — 573 = —. 26
E, [ar :I,,=, drea(r’ + a® — 2ra cos 6)* € (262)

The factor in the denominator is simply the cube of the distance, R, from
the point a to the surface of the sphere. Therefore

o = —qla® — r°)/aR’. (27)
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The quantity ¢ varies inversely as R, as before. We find that

L 2T
q. =-f0 /0 or’ sin 0 d6 dp = —%, (28)

as we might have inferred from the fact that the image charge possessed
this value.

Suppose now that the conducting sphere is insulated from the ground,
and originally uncharged. The image problem is the same as before, but the
negative charges must come from the side of the sphere opposite to a.
Since the total charge on the sphere is zero, instead of (—gqr/a), as in (28),
we must introduce into the image field a compensating positive charge of
magnitude (4¢r/a). This charge excess we place at the center of the sphere,
in order to give a constant potential over the boundary surface. We obtain
the potential by adding a term (4g¢r/ar’) to the right-hand side of (25).
In MKS units the added term is (qr/4mear’).

Of special interest is the case when a becomes very large, with the value
of ¢ sufficiently large so that the field at the origin is finite:

E = —q/d’. (29)
E = —qg/4red’. (29a)

Here the minus sign arises from the nature of the coordinate system, which
is not centered at the charged body. Because of the repulsion, a positive
charge tends to move in the negative direction of the z-axis. As a —» =, the
field near the origin becomes parallel to the z-axis. Hence we may investi-
gate by this procedure the charge induced on a sphere by a uniform field.
In the limit, the last term in (25) gives rise to the potential

[—qr/ar’ — (qr’/a’r’®) cos 6].
For MKS units, multiply by 1/4re. This excess potential, added to that of
the central image, gives the combined potential of the induced charge:
V= —(Er’/r"® cos 8, (30)

by (29). Similarly expanding the first term in (25), we find the potential
of the external field:

!

Ve=§+%cos0=—Er’cosﬁ+C. (31)

’

= -7 r = —FKr 1
Tred + Tred® €O 6 Er’ cos 6 4+ C. (31a)

Note that an infinitely distant charge sufficiently large to give a finite field
at the origin, will give C = . We here employ the concept merely as a
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device to reproduce the conditions of a uniform field. Hence C is not
necessarily infinite in problems involving a uniform field. The total potential
is

3 3
r’ —r

V = V,' + Ve = —F 7"2 cos 6 + Cy (32)

which reduces, as it must, to V' = C over the surface of the sphere ' = r.

The pair of infinitely close charges at the center of a sphere, producing a
double source of potential, is called an electric dipole. Dipole moment, P,
we define as the product of the charge by the distance between the charges.
Therefore

—

2
p=2L" = g2 (33)
a a
P = 4weEr®, (33a)

which informs us that a constant electric field of intensity £ produces on
the surface of a sphere, a charge distribution that acts in the space exterior to
the sphere like a dipole source of moment P. P is a vector quantity. In the
present example,

P = E, (34)
P = 4weEr®, (34a)

since E and P are similarly directed along the axis of z. We shall discuss
the dipole problem further in § (5), where we transform the formulae for
the magnetic case to those for the electric problem through substitution of
q for p, the magnetic pole strength.

We easily extend these examples to cover more complex cases. For exam-
ple, we can reduce the distribution of ¢ over the surfaces of two charged
spheres to an infinite series of images. We shall not follow the arguments
further, but turn now to the problems presented by insulators in an electric
field.

As previously mentioned, the distinction between conductors and insu-
lators is chiefly one of the relative mobility of the electrons. In insulators
the atomic electrons are tightly bound. Nevertheless, in an electric force
field, there will still be a tendency for the positive charges to flow in one
direction and the negative in the other. There results a slight net separa-
tion of charge, which, in a plate normal to E, would give two external sur-
faces charged oppositely in sign. The phenomenon is called polarization.
Insulators are often referred to as dielectrics because the induced charges
occur in compensating pairs. The potential field in the dielectric, resulting
from a charge ¢ in the dielectric, is less than that in a vacuum, according
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to the formula
= q/«r. (35)
V = q/4zer.

kK = €/e, € = 10°/36mr.

(35a)

Here « is the dielectric constant (2.4) in Gaussian units.

Let us consider the field produced as the result of a positive charge ¢
located at (a,0,0), in the neighborhood of an infinite block of dielectric
material (z < 0) with a plane face at z = 0. As a result of electric polariza-

Iv-4.

tion, a layer of negative charge will collect on this face. The compensating
layer of positive charge will lie at z = — « and can produce no effect at the
origin. We cannot consider the plane a surface of constant potential, as
for a conductor, since the charges are not free to move.

To solve the problem we apply the theory of images, supposing the di-
electric to be removed, leaving only the surface layer of negative charge.
Within the space previously occupied by the dielectric, the original poten-
tial, given by

Vi = ¢/lle — 0 + y* + 17, (36)

' V., = q/4nel(x — a)® + o + 2°]'7%, (36a)

will be partially “screened’” by the layer. Let us assume that the potential,
because of the screening, takes the reduced value

V., = fo/llx — @) + y* + 21", (37)
Vo = fq/drel(x — @) + ° + 2°]'7, (37a)
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in the dielectric. Further, we assume that the ‘“image” of a, as reflected in
the surface charge, is equivalent to a charge of magnitude —gj’, located
at (—a,0,0) giving a potential

Vs = —f¢/l(z + a)® + ¢* + 21" (38)
Vs = —f'q/4dnel(z — 0)° + o + 2717 (38a)

We must have
Vo=V, + V,. (39)

Furthermore, these potentials satisfy Laplace’s equation, except at the
points (a,0,0) and (—a,0,0). Therefore, they must be continuous across the
face x = 0, whence

=1-—f. (40)

The normal or z-component of the electric intensity, in free space, at the
boundary is

o e+ Va)] _ ga(l + f1)
. = B = [ 5z T @t gt W
_ qa(l + ')
Ez = 47re(a2 i yz i 22)3/2- (413,)

This expression must hold for £, when the image is replaced by the actual
dielectric. In the space originally occupied by the dielectric, the electric
intensity at the boundary is

. v, _ qaf
|: or ]z=0 - (a,z + y2 + 22)3/2' (42)
_ gaf

dre(a® + y° 4+ 25 (42a)

Now imagine the dielectric replaced. From (35), we see that the actual field
E. is less than E., as follows:

E;

E;

B = B = B (43)

€o

which relation must be true for all values of ¥ and z in the boundary (see
equation 22.8). Therefore

1+ e =EDe p oy g, (4

from (41). Hence

(45)
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For MKS substitute e/¢, for « in (45) and (46). These conditions, in com-
bination with (41) to (45), completely define the electric field both inside
and outside the dielectric. The justification for our artificial assumptions
lies in the fact that the potentials satisfy both Laplace’s equation and the
requisite boundary conditions.

Combining the foregoing approach with the image method used in deriv-
ing (32) we may prove that a homogeneous sphere of dielectric material,
in vacuo, will give in a constant electric field, the potential outside the
sphere:

3
_ , Tk — 1]
V= E[r 7T cos 8 + C. (46)
Comparing this equation with (32), we note that a conductor behaves like
a dielectric of infinite «.

‘3. The charge on the surface of a star. There are some simple astro-
physical applications of these theorems, first applied by Lindemann* to
calculate the electrostatic potential at the surface of a star. For illustrative
purposes we shall attempt to set an upper limit to the electric charge on the
surface of the sun. The solar atmosphere consists of highly ionized gases,
negative electrons, and positive ions. The former, being lighter, are the
more likely to attain velocities in excess of the velocity of escape. The
condition that a particle escape is simply that its kinetic energy be equal
to or greater than its potential energy, i.e.,

1 MG

4 2
5 M0 ZmRo, (1

where m is the mass of the particle, M the mass, and R, the radius of the
sun. According to kinetic theory, the component of mean kinetic energy of
an atemic constituent is independent of its mass, or

1 1

s m = 5T = 4.12 X 107" erg, 2

for the observed surface temperature, T', of 6000°K. Here k is Boltzmann’s
constant. The value of the potential energy of an electron in the gravita-
tional field, obtained from the right-hand side of (1), is 1.71 X 107'* erg.

Although the average kinetic energy is less than the potential energy,
enough of the electrons possess kinetic energies greater than the critical
value to make the escape appreciable. A star that was electrically neutral,
initially, would rapidly acquire a positive charge through loss of negative
electrons. The rate of escape, however, must diminish with the time, be-
cause the star’s positive potential supplements the gravitational potential

*Phil. Mag. 38, 674, 1919.
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in retarding the escape. Theoretically, a finite fraction of the electrons al-
ways possesses velocities greater than any specified finite velocity of escape.
Given an infinite time, a star could acquire an infinite positive charge if no
other forces came into play.

Nature, however, sets an upper limit to the potential, for, when the
positive charge reaches a certain value, positive protons will be repelled.
From then on, the sun will expel protons and electrons at the same rate.
Let Q... be the maximum charge of the star. The condition that the posi-
tive potential energy of a proton in the electric field of the sun equal that
of the negative gravitational energy is

Omex _ MG _m
Q1 Ro - ml ]{0 ) Qmax - 81 MG° (3)
q1anx _ MG (33)

4.7['60R0 = fo—.

Therefore Q... turns out to be independent of the star’s radius. Putting in
numerical values, we find that

Qe = 4.61 X 10" esu = 154 coulombs. 4

19

Since a single electron has a charge, ¢, of 4.77 X 107"’ es unit or 1.6 X 10~
coulomb, this value of @,... results from the removal of a definite number,
N, of electrons from the entire surface of the star.

N = Qe _ 9.7 X 10*° electrons. (5)

1

The number is surprisingly small. The area of the sun is 6.1 X 10** em®

At the maximum the excess of protons over electrons cannot be greater
than one for every sixty square centimeters of solar surface.

The calculation illustrates how much more powerful electric forces are
than gravitational; 10™° gram of electrons or 2 X 107? gram of protons
placed at the center of an otherwise empty sphere of radius equal to that
of the sun, would produce an electrostatic attraction (or repulsion) upon a
proton, equal to the the gravitational force of the entire solar mass. A
stellar atmosphere must therefore be electrically neutral, to a very high
degree of approximation.

The maximum electrical potential, V. is

— anx _ 6
Vmux - RO ~_ 6-64: esu ( )
Vo = Ome 9000 volts (6a)

max dre R, )

Note that 1 esu = 300 volts.
The figure for V..., representing an extreme upper limit, is not excessive.
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The energy of cosmic rays, for example, which runs into billions of electron
volts,* indicates that their origin is non-stellar, unless some very special
processes are acting.

The actual value of the solar potential may be appreciably less than that
given by (6). It is determined by a complicated balancing of the individual
kinetic motions of electrons and atoms with electric, gravitational, and_
radiation-pressure forces.

4. Capacitance. The potential at the surface of the sun, or of any
electrically charged sphere, by equation (3.6), is directly proportional to the
quantity of electricity and inversely proportional to the radius. If the sphere
is surrounded by a medium whose dielectric constant is «, instead of unity,
we have the relation, in accord with (2.4),

Q

= R (1
V= 473Ro (Ia)

If we have a series of spheres of various radii, each charged with the same
amount of electricity, the potentials will vary inversely as «R,. In electrical
terminology, such a sphere or indeed any medium used for holding or storing
an electrical charge is known as a capacitor.

When a capacitor attains a certain potential with respect to its surround-
ings as more and more electricity accumulates, electrical breakdown may
very well occur. The capacitor will then discharge, much as an electrified
cloud sends a flash of lightning to the earth. More electricity can be stored
without danger of breakdown on a sphere of large than on one of small
radius. In consequence, we often call the quantity «E, the capacitance, C,
of the capacitor. Then

vV =2Q/C. (@)

The physical dimensions of C' thus become [Lk]. Although (1) holds explic-
itly only for a sphere, we may extend relation (2) to apply to a capacitor of
any shape. The capacitance of the sun, with « equal to unity, is equal to the
solar radius in centimeters. The capacitance of a capacitor depends on its
surroundings through the occurrence of the dielectric constant.

The electric intensity, i.e., the radial force acting on a unit electric charge
outside of a charged sphere, is, as.we have already seen,

E = —Q§ = 4 E, (3)
KT K

E=2,-° (32)
4arer €

-—

*1 electron volt = (1.601864 = 0.000024) X 1072 erg. See Table (I-12).
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since Q = 4wor’, where ¢ is the surface density of the charge. We shall calcu-
late the force on a unit charge at distance r from a uniformly charged,
circular plane sheet, of radius z,. Then

o= Q/A, (4)

p

IV-5.

where A is the area of the plate. The potential at P resulting from the an-
nulus between z and z + dzx is

2wox dx
e ?
ox dx
W= 2+ )7 2
and
v= [ av =+ oy -l ®)
0
V=5 [0°+ 20" —1l. (62)
Then the electric intensity along r, is
oV  2me r
= 2¥ _ 419 S A— 7
E ar K l:l (r* + xﬁ)”{l' @

a r
E = Z |:1 - _(T_2 i zg)T7§:|- (73')
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When z, > r, we have the result that

_ 2mo _ 27Q
E = kK kA° ®
E = ¢/2¢ = Q/2A. (8a)

In a capacitor consisting of two parallel circular plates, carrying equal
and opposite charges, each plate contributes an equal amount to the field.
The field inside such a capacitor is uniform and of intensity

E = 47Q/«A. (9)
E = Q/eA. (9a)

For further discussion of these equations see § (20).

5. The magnetic dipole. The magnetostatic force-fields surrounding
individual magnetic poles follow the laws we have derived for electrostatic
fields, with « replaced by u and @ by p, the magnetic pole strength. The
formulae for the single poles, however, are rarely applicable because, unlike
electric charges, magnetic poles never occur singly. Each positive (north-
seeking) pole is always accompanied by a negative (south-seeking) pole.
As far as we know, no fundamental magnetic “stuff’ exists. All magnetism,
including that of permanent magnets, owes its existence to circulation of
electricity, whether macroscopic in a coil of wire, or microscopic in a whirl
about an atomic nucleus. The experimental data of magnetic phenomena
can nevertheless be graphically and quantitatively represented on the sup-
position that fundamental magnetic poles of both signs actually exist, but
that their occurrence is always in pairs. With some limitations we may
describe the resulting force field in terms of a distribution of fictitious
magnetic dipoles. Nevertheless, the distribution is not unique. If we wish
to describe the field at the position we adopted for our original fictitious
magnets, we have to employ some alternative fictitious distribution for that
purpose. In brief, we can describe magnetic phenomena in terms of fictitious
dipoles; we cannot always say that poles actually exist at some definite
location in space.

Laboratory study of the force fields arising from a uniformly magnetized
needle, e.g., mapping of the “lines of force” by means of iron filings, shows
that the effective magnetic poles reside near either end of the needle. In a
magnetized needle of infinitesimal cross section and infinite length, the
poles would act like the theoretical pole of given sign and the force field
would obey the inverse-square law assumed above. The presence of mag-
netic material introduces complications that we shall discuss later on. The
potential at distance r from a single pole of magnetic charge p is, analogous
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to (2.4) for the electrostatic case,
vV =rp/r (1)
V = p/4axr. (1a)

The potential, V, at a given point is the work required to bring a unit
positive pole from infinity up to that point. The force vector, H, at the

point, is, as before,
H=-VV. 2
Let us calculate the magnetic potential at a point, C, at distance r from

a small bar magnet, i.e., from a dipole of length a and pole strength p.
Suppose the magnet to be placed along the z-axis, with the center at the

IV-6.

origin, the positive pole at A and the negative pole at B (Fig. 6). Let the
coordinates of C be z, ¥, 2. Then

OC = r = [xZ + y2 + 22]1/2’

a2 1/2
AC=r = |:<x—§> —l—yz—l—zz]

ax)” 2, 3)
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where the expansion and approximations depend on the supposition that
r > a. To get the potential at C we add the potentials of the respective
poles. Or, from (1),

L1 Te r T r i
_ P _ P _ _ baz _ pa
V= I, A, T dmr dmr c® 0 (42)

We have obtained (4) by expanding the parentheses in accord with
the binomial theorem and by discarding second-order terms. The direction
cosine of the line OC with respect to the z-axisis x/r = cos 6; 6 is the angle
between OC and the positive direction of the axis of the magnet. The
product, pa, of the pole strength by the length of the magnet, is the mag-
netic moment, M. Hence

V = 11742 cos §. (5)
M
V = 1g? ©08 6. (5a)

To evaluate the force at the point 7, 6, ¢, we express V in polar coordinates
(II-35.24). Then by (2),

. sin 6
H = M(i,2 s b 4 ;50 ) ©)
T T
. sin #
H=i‘—4—<ir2c‘330+198”§ ) (62)
yig T T

The magnetic moment is really a vector, and M cos 0 is the projection
of the vector M upon the vector r. Hence in vector notation, we may write,

instead of (5),

p-M-1 7
T
M.
V= 4‘”31'_ (72)

G. The potential of a uniform magnetic shell. Consider a thin shell
and suppose that n magnetic dipoles per unit area, each of magnetic mo-
ment M, are distributed uniformly over the surface, with their positive
poles coinciding with one face and the negative poles with the other face
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of the shell. We need to know the potential at the point P (Fig. 7). Let dS
be an element of area of the shell at distance r from P. The magnetic
moment of the area dS is Mn dS. Hence, by (5.5), the contribution to the
potential from the area element is

qv = Un dfgco—”. (1)
Mn dS cos 6 \
v, = S (1a)

Iv-7.

About P draw a sphere of unit radius. From P as a vertex draw the elemen-
tary cone having dS as its base. The projection of dS upon the normal to
the axis of the cone is dS cos 6. Furthermore,

dS cos 6
7"2

= do, (2)

where dw is the area of the unit sphere intercepted by the cone. Hence dw is
the solid angle of the cone. For a complete sphere, | dw = 4.

V+=de=Mnfdw=MnQ=m &)
Mrn Mn$ (<29
Vo= [de =120 (3a)

where V., denotes the potential when P is on the positive side of the shel'l,
Q is the solid angle subtended by the shell at P, and & is the magnetic
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moment per unit area. The potential, V_, at a point on the negative side of
the shell, is

V. = —aQ. )
V. = —%}. (4a)

The work, W, necessary to carry a positive unit induced magnetic charge p
from a point A in the negative surface to a point B in the positive surface is,
by (2.3a) or (I-4.15).

B B
W=[ F.ds=[ B-ds
A A

= & ‘[A H-ds = u(Vs — Vi) = ud(Q + 20, 5)
W = Fﬂ_ﬂz_:'&l, (52)

where H is the magnetic field. B, the magnetic induction, is equal to uH.
Equation (5) is a line integral. The reversal of sign from the original equa-
tion (II-8.6), relating work to potential difference, comes in because two
unit positive poles repel one another, i.e., work must be done on the system
to bring the poles together, whereas in the gravitational problem, the forces
are attractive and negative work is done when the particles are made to
approach one another.

The solid angles 2, and 25 depend only on the shape of the periphery of

IV-8.

the shell. A schematic representation appears in Fig. 8. When the shell is
very thin, so that A and B are almost coincident,

Q4 + Qp ~4r (6)
and W = 47ud. (7)
W = pd. (7a)
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Electromagnetism

7. Ampere’s theorem. Thus far we have considered electric and mag-
netic fields separately. To relate them we must either make some assump-
tion or appeal to some experiment. Since the fate of any assumption ulti-
mately rests in the laboratory, we shall resort to the experimental data at
once. In 1820 Oersted noted that a wire carrying an electric current was
surrounded by a magnetic field. Three years later Ampere announced the
fundamental theorem concerning the nature of the relationship. Ampere
discovered that, as far as magnetic effects are concerned, an electric current,
I’, flowing through a wire bent to form a closed circuit, produces the same
effect as a thin magnetic shell bounded by the periphery of the circuit
and of strength proportional to I'.

In Fig. 9, we suppose the current to be flowing through the closed circuit

]

/f/ 0

AT ”

OO
QIO

-
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(ABC) in the direction indicated by the external arrows. Over ABC as a
boundary construct a fine network of intersecting wires to form a covering
of any shape whatever. In appearance the final structure may resemble a
badly-bent tea-strainer, where the original circuit flows around the rim.
Let the mesh be so fine that any rectangle can be considered a plane.
Now suppose that a current I’ is flowing around each individual mesh, as
indicated by the small arrows. Throughout the network, each current is
balanced by a current in the opposite direction, except at the boundary.
But each individual network produces a magnetic moment perpendicular to
its plane. Hence, as far as magnetic effect is concerned, we may replace the
current by a magnetic shell of shape coinciding with the network. The
theorem holds for a network of any shape. We may, therefore, take any
shell we choose, bounded by the circuit, as the equivalent magnetic shell.
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The reader will recognize the similarity of the above demonstration to that
used previously in the derivation of Stokes’ law (I1-32). We shall see that
the resemblance has actual physical significance.

To remember the direction of the magnetism in the equivalent shell,
follow the simple rule: if the face of a clock dial represents the positive poles
and the back of the dial the negative, the direction of flow of the positive
current is counterclockwise.

8. The electromagnetic and electrostatic systems. In accordance with
Ampere’s theorem, we may define the current I’ in terms of the equivalent
magnetic shell, by the equation

® = kI, (1)
® = ki, (1a)

where k& is a constant of proportionality. Since equation (1) amounts to a
definition, we may set k equal to unity, and write

I' = . 2
I =3 (2a)

In MIKS units, the dimensions of all other quantities appear in terms of
M, L, T, and Q. Thus [I] = [QT'].

The current, defined as in (2), is said to be in the electromagnetic system.
We shall expect to find that it differs, both numerically and dimensionally,
from its value in the electrostatic system. The current, I, in electrostatic
units, possesses physical dimensions of electric charge divided by the time,
or

[1] = [M"L¥*T7*"], @3)
where « is set equal to unity for free space. The physical dimensions of I’ are
'] = ML, @

where x is to be set equal to unity for a vacuum. If, now, we let
I =¢T1, (5)

where ¢’ is some constant, we note that the physical dimensions of ¢’ are
given by

'] = [LT™], (6)
Le., ¢’ has the dimensions of a velocity. Had we not suppressed the dimen-

sions « and g, by calling them unity, we should have been able to allow for
the difference between the two sets of units by setting

¢ = (/-“()—1/2; (7)
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where ¢’ is a dimensional constant, whose value is to be determined by
experiment,

By reference to Chapter I, §§ (10) and (11), we ascertain the following
relationships between given physical quantities measured in es and em
units. In (8) we have purposely written ¢ for ¢'.

Quantity of electricity: 1 em unit = ¢ es units.

Current: 1 em unit = ¢ es units.

(8)

Electric Potential: 1 em unit = 1/c¢ es units.
Capacitance: 1 em unit = ¢® es units.

The tabulation may be extended if desired.

To evaluate ¢’ we must measure, in the laboratory, any one of the physical
quantities, first in one system and then in the other system of units. For
example we might collect a certain amount of electricity on a sphere, meas-
ure the quantity by electrostatic means, and then discharge the sphere over
a known interval of time through a loop of wire and measure the resultant
magnetic field. This procedure, although theoretically sound, meets with
practical difficulties because of the great difference in magnitude of the
units. An enormous quantity of electricity, as measured in es units, might
still be insufficient to produce a perceptible magnetic field. We can compare
units more conveniently through the medium of capacitance, because we
are able to calculate the capacitance of a capacitor, in es units, from simple
geometry. The student will recall that the es capacitance of a spherical
conductor is equal to its radius in centimeters.

Equation (4.2) holds for either the es or em system, as may be proved
from the conversion factors of (8). That is,

_Q , Q@ I At
V_ V_ /_Cl;

9

where the primed quantities refer to the em system and At is the time that
the average current, I’, flows to charge a capacitor. With proper procedure,
V', I’, and At can be measured and C’ calculated from experiment. Then,
C is derived geometrically. The mean of the best experimental results is

¢ = AV C/C" = (2.9979 &+ 0.0001) X 10" cm sec”". (10)

(We have already seen that ¢’ represents a velocity.) Equation (10) agrees
within its experimental error with the direct determinations of the velocity

of light:
¢ = (2.99796 & 0.00004) X 10 cm sec .

This agreement led Maxwell to conclude that light is an electromagnetic
phenomenon. Henceforth we shall assume that ¢’ = e¢.
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9. Practical units. As we have previously stated, the es and em systems
are specially adapted for calculations of a dynamical nature. The numbers
that result from their use are, however, frequently too large or too small for
general purposes. Consequently a “practical”’ system has been devised as
follows, founded primarily upon the em system:

Practical or

Name Symbol MXKS unit em units es units
Quantity of electricity € 1 coulomb 107 3% 10°
Current I 1 ampere 107" 3 X 10°
Electric potential " 1 volt 10° 1/300
Electromagnetic force

(1 farad 10~° 9 X 10"
Capacitance C <1 microfarad 107" 9 X 10°

1 micromicrofarad 107" 9 X 107
Resistance R 1ohm 10° 1/(9 X 10"
Conductivity o 1 mho/meter 107" 9 X 10°
Electric field E 1 volt/meter 10° 1/(3 X 10%
Electric displacement D 1 coulomb/meter? 4r X 1072 127 X 10°
Flux 1 weber 10° maxwells 1/300
Magnetic induction B 1 weber/meter 10* gausses  1/(3 X 10°%
Magnetic field H 1 ampere turn/meter 47 X 107>

oersted 127 X 107
Inductance 1 henry 10° 1/(9 X 10"
Permittivity of free
space 6 (1/36m) X 10°
farad/meter 1 1/(9 X 10*)
Permeability of free
space to 4m X 1077 henry/meter 1/(9 X 10%) 1

Length L 1 meter 10° em 10° cm
Mass m 1kg 10° g 10° g
Time t 1sec 1 sec 1 sec
Force F 1 newton 10° dynes 10° dynes
Work W 1 joule 107 ergs 107 ergs
Energy E 1 joule 107 ergs 107 ergs
Power P 1 watt 107 ergs/sec 107 ergs/sec

The figures in the last two columns are based on ¢ = 3 X 10" cm/sec.

To obtain greater accuracy, use the exact value of the velocity of light.
The resistance, R, of an electric circuit is

R=V/I. 1)

The practical units, defined above, are said to be on the absolute scale.
We may thus speak of the abs volt or the abs amp, often written as one
word, e.g., abamp. For commercial purposes, alternative definitions are
employed by international agreement.
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In certain problems we must know the work required to move an electron
through a difference of potential V. The charge, ¢, of an electron is 4.770
X 107*° es unit. The potential is the work per unit charge. In falling through
a potential difference of one volt = 1/300 es unit, the electron acquires
energy ¢V = &/300. In falling through V, abs volts, therefore, the electron
acquires energy:

W, = 1.5910 X 107"*V, erg. 2)

This equation is particularly important for relating the ionization potential
of an atom to the energy of ionization.

10. The circuital theorem. In Figure 10, the path abc represents the
projection of a circular loop of wire carrying a current I’. Let the plane,
circular area bounded by this wire represent the equivalent magnetic shell.

IV-10.

By the rule of § (7), the negative poles are on the upper surface. The work
required to carry a unit positive magnetic pole around the circuit from A
to B is given by (6.7), or

4wl

B
W=f B - ds = 4mud = dmul’ = L, (1)
A

B B
W=fB-ds=ufH-ds=u<b=yI, (1a)
A A

where ds is an element of path. This law holds only for steady currents.
Otherwise a displacement current enters. For the present we shall consider
only steady currents.

Ampere’s theorem would not apply over the remaining distance BA, if a
physical magnetic shell composed of real magnetic dipoles existed. In trav-
ersing the distance BA, the pole would regain the energy lost and the work
done would be zero. When the magnetic field results from an electric cur-
rent, however, the shell has only a fictitious existence. As in § (7), we may
represent the magnetic field by any one of an indefinite number of possible
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shells. Therefore, when the particle arrives at B, let us adopt some other
shell to represent the field, which will be undisturbed by this change. Then
the unit pole may continue on to A, in air. The distance BA is so small that
the work done can be neglected. Equation (1) therefore represents the
work done for the complete circuit.

The potential at A is multivalued, depending on the number of times the
unit pole traverses the circuit. If the circuit does not enclose part of the
current, as for the path C, the work done is zero and we may employ the
magnetostatic potential.

If J represents the current density, i.e., the current per unit area,

I =deS, @)

where dS is an element of surface. Equation (2) holds in the above form
only when the current is flowing in a direction normal to dS. In general, we
shall have to write

I=chosodS=fJ-ds, 3)

since J and dS are vectors. From (1) and (3), with intermediate application
of Stokes’ theorem (I1-34.8), we obtain the result for a circuit over a closed
path, v,

W=yf7H-ds=yfVXH-dS=46ﬂfJ-dS. @)

W=pf]-dS. (4a)

This equation must be independent of the shape of the boundary or surface.
Hence it must hold for each differential element. Therefore

v xH= %)
VXH-= J; (53’)
which immediately gives the result that
c
1=‘v. = 6
V:-J=,V -VXH=0, (6)

V-J=V-VXH=0, (6a)

by (11-23.13).

The magnetic field produced by a circulating current is clearly dissimilar
to ordinary gravitational, electrostatic, or magnetostatic fields. No scalar
potential V exists that will enable us to evaluate H at every point of a closed
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path encircling the current. We cannot define H by
H=-VYV, (7)
because we should then have
VXH=-VXVV =0, (8)

by (11-23.14), in contradiction to (5).

The reader will have already noted the analogy of the behavior of the
vector H to the behavior of the velocity vector v, in a vortex. Since we
cannot define them in terms of a scalar potential, we may introduce a vector
potential A, as in (II-35.8). Then we make the following definition:

B=_uH=VWV XA. 9)

For MKS units, in free space, u = p, = 107" weber/ampere meter. In
Gaussian units, H and B are identical in free space. In MKS units they are
entirely different, dimensionally as well as numerically. Here A is provi-
sionally assumed to be a solenoidal vector, i.e., V - A = 0. In fact, the
descriptive adjective ‘‘solenoidal’’ results from this application, since a

circuit through which current flows in a circular path is a type of solenoid.
Then

47J/c = — VA, (10)
p] = — VA, (10a)
by (II-35.10). The components of J are given by (11-23.9). Also
V- -H=0. (11)
VvV +-B=0. (11a)

The condition expressed by equation (6) is equivalent to that of (I11-34.7),
viz., that there are no sources or sinks of electricity in the volume and that
electricity behaves like an incompressible fluid. An incompressible fluid,
however, is free to move, in the absence of sources or sinks, only in closed
circuits. Analogously, the fundamental equation (5) is directly applicable
only to motion in a closed circuit. Since transient currents may exist in an
open circuit, as when a capacitor is being charged, we shall later extend the
equations to allow for the existence of displacement currents, in contrast
with continuous currents.

We shall define A as follows:

el ] ()

Ao <l> s, (122)

4 r
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where ds is now an element of the length along the circuit, parallel to the
direction of current flow. We shall show later on in this section that (12)
leads to the correct expression for H. From (9) and (12) we have

B=VXA=”C—IfVX%§, (13)

_ _ el ds, _ I ds
B—VXA—%fVXT, —%fvxr, (13a)

where the derivatives are taken with respect to the field point at which we
wish to measure B and not with respect to parts of the circuit element. We
shall define this problem in greater detail in equations (24) to (32). Since

V XaC =aV XC —-CX Va, (14)
where C is any vector and a a scalar, (see problem II-59, p. 181), we have
B=—“—Ifdsxv<1>=—“—lf%xds. (15)
c T c Jr
o [ (1) g L [ da 2
B = 4 <V . X ds = i 5 (15a)

Here V X ds vanishes, since ds is a constant of the circuit and hence does
not depend on the coordinates of r; r is a vector from ds to the field point.
This result is the Biot-Savart law, which becomes, in its differential form,

Ir
=7 X ds. (16)
_IdsXr
dH = o (16a)

This expression gives the component of the magnetic field arising from the
current flowing in the circuit element ds. In general, dH is a vector normal
to r and ds. Its absolute magnitude is

. ds -

]dH[=Ism¢c7, (17
I . ds

IdH l = Ersm 50 ?, (17&)

where ¢ is the angle between ds and r.

Consider a current flowing in the positive direction of the z-axis. The
contribution, dH, to the magnetic field at r = jy, from an element
ds = idzr, at the origin, is

k

o I~

~
a &
3]

dz (18)

dH
dH

{
-

(18a)

e
@h?]
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Thus a positive magnetic pole at y is urged to rotate about the wire carry-
ing the current. The rotation, as viewed from a point on the positive portion
of the z-axis, is counterclockwise. Upon this simple fundamental theorem,
with its important consequences, rests the industrial development of the
electric motor.

The quantity I must necessarily be the magnitude of a vector parallel to
the circuit element, ds. Thus we may replace I ds by I ds in the foregoing
equations. Also, we may express I in terms of the current density vector, J,
by (3). We take dS everywhere as a surface element normal to ds, the
direction of flow. Then

I = f J ds. (19)
Since dS ds = dr, an element of volume, we find in place of (15),
H=-[2X1g (20)
cr
__[rXxX]
H = f Xlan. (200)

We have still to prove that (12) and (13) give the correct magnetic field,
which by Ampere’s law we compute from the potential of any equivalent
magnetic shell. In equation (6.1), Mn, i.e., the magnetic moment per unit
area, and dS are really vector quantities parallel to one another. Further,
6 is the angle between dS and the vector r to the point where the potential
is being measured. Then r dS cos § = r - dS. Finally, in accord with Am-
pere’s law, (8.2), we may set

=1 =1I/e. (21)
® = 1. (21a)

Thus the entire potential of the fictitious magnetic shell becomes

y=1[g5 22)
C T
I 2

and we may calculate H for any point on any path that does not cut through
the given fictitious shell, by

H=-vy=-1 v(’ 'fls). (23)
C T
2 v(’ 'sds>. (232)
4 T

We must show the equivalence of (23) and (13).



§10] CrassicaL ELecTROMAGNETIC THEORY 267

First take the scalar product of A, equation (12), with some constant
vector a. Then

ca=M[(3) .4t [ (E)

A a—cf<r> ds_cf X\;) 95 (24)
ca= k[ (). g6 = &L ’ <§> .

Ara=4 <T> ds—47er x (2) - as, (24a)

by Stokes’ theorem. Let z, y, z denote the coordinates of the field point for
which we are to calculate the vector potential, and z’, ¥/, 2’ the coordinates
of a point in the shell. In performing the integration, we must hold z, ¥, z
as fixed. Thus the differentiation must be carried out with respect to the
primed coordinates, whereas in (23) the differentiation refers to the coordi-
nates of the field point. For this reason we must distinguish between the
operators V and V.

We have the following relation for the curl of the product of a scalar b
and a vector (see problem II-59, p. 181):

V' X ba=0bV' Xa—aXVb (25)

Therefore, since a is constant,

_ N oo el <1>
A-a——cjaxv<r> as = —“a fv xas, (@)

__ul 1). _ ol (1)
A-a——47rfaxv<r dsS = i fVT)(dS, (26a)

wherein we have interchanged the dot and cross in the triple scalar product.
This relation must hold whatever the orientation and magnitude of a.
Consequently the vectors into which a is multiplied must also be equal.
Further, since

rP=-—-2z)+@y—vy)+ -2, (27)

() - =o{)

we readily prove that

Therefore
v o) xs
iy v<i> % dS. (292)
47 r
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From equation (25), we see that
v<%>><ds=vxd—rs—%v><ds, (30)

the differentiation is now carried out with respect to the field point, so that
the vector dS is held constant during the partial differentiation. Hence

A=ﬂfvx@. 31)
C r
_ul as
And now, applying (13), we have
B=va=ﬂf\7xvx@. (32)
c r
B=VXA=f1‘—vaxvx@. (32a)
T A
But
UxvxLovy. B8 (33)
B _gsvrloo. 34)
r r
v. B _lyg.istas.-vioc _L.gs. (35)
r r r r
Thus we get the relation
H= -1 [yl (36)
c T
H= - [viE (362)
47 T

which agrees with (23). The use of equations (12) and (13) is therefore
justified. Equation (13) is to be distinguished from (23) in that it does not
depend on the introduction of a fictitious magnetic shell. Therefore we
may use (13) to calculate the force for any path in the field, whereas (23)
has the limitations previously specified. Note that we may employ the
vector potential to represent the field resulting from any distribution of
double or dipole sources. ‘
The questions arise, if we provisionally accept equation (16), giving dH,
produced by the current in the element ds, what sort of elementary mag-
netic shell are we entitled to associate with this current element, and what
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is its equivalent magnetic moment? The problem, of course, is to find a
shell that gives the correct value for dH. Let ds, in Fig. 11, represent an
element of a circuit carrying current I, and let P be the external point at
which we are to calculate the force. In the plane containing ds and P con-
struct an infinite sector as shown and suppose it to be bounded by a wire
carrying current I, as indicated by the arrows. This circuit is now closed
and we may regard the plane surface thus bounded as the equivalent shell,
whose magnetic moment per unit area is @. By the rules previously dis-

IV-11.

cussed, we see that the positive poles lie an infinitesimal distance above, and
the negative poles an infinitesimal distance below the plane of the paper.
If r, is any vector from P to ds, we see that r, X ds is perpendicular to the
plane of the paper, and thus points in the direction of ®.

The force from the area ra dr of the shell between r and r 4 dr is ob-
tained from (5.6). Here § = w/2, and the radial component of force van-
ishes. In the present problem, i, is perpendicular snwards to the plane of the
paper. Hence

. “dr ..

dH = Pl -/;a ? = Pi, To’ (37)
o, ["dr_® . «

dH = ’4:[_15& ./:D T2 _47|' 1 7"0, (37&)

wherein we have taken ds and therefore also o to be very small. Let ¢ be
the angle between r and ds. Then

dssin ¢ = ra. (38)

(dH [ = 232 ¥ g5 = I'sinp &, (39)
s cr

(dH | = DS Lsiny, (392)

4r r 4r r
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in agreement with (17). Thus the shell we are considering gives the proper
magnitude and direction for dH, and hence may be adopted as the equiva-
lent magnetic shell.

Now construct an infinite cone, with its vertex at P and directrices
cutting all elements of the closed surface (Fig. 12), and imagine the cone

IV-12.

to be closed at infinity by a spherical cap centered at P. The potential of
the cap is, from (6.4),

V = —®Q = consrt, (40)
V = —®Q/4r = CONST, (40a)

because @, the solid angle of the cone, is independent of 7. Therefore
H=-VV =0, (41)

and the cap contributes nothing to the magnetic field at P. We thus find it
convenient to regard as the equivalent magnetic shell that portion of the
cone and spherical cap cut off by the circuit boundary.

If we imagine the cone to be complete, the surface integral, M, of the
magnetic moment vector @ over the closed surface must vanish, i.e.,

M=fcl>-dS=fV-(I>dr=O, (49)

because ®, like I, is a solenoidal vector. Therefore, if we divide M into two
portions M,, the part arising from the conical shell under consideration,
and M the part from the vertex down to the circuit, we have

M, = —M!. (43)
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The latter expression is easily evaluated. The area of any one of the infini-
tesimal triangles subtended by ds from the point P, is 3r X ds by (11-26.19).
Thus

dM. = —L @ -1 X ds. (44)
We have chosen r as the vector from ds to P, hence ds X r is parallel to ®.
In our present integration we shall regard P as fixed. It is more convenient
to replace r by —r, and reinterpret r as the vector from P to ds. We shall
denote by dM the resultant total magnetic moment arising from the current
element in ds, and drop the subscript ¢ as no longer necessary. We may
write, replacing ® by its equivalent in terms of the current,

I 1

dM —Q—CI'XdS—?CI')( Ids. (45)
I 1

dM=§ers=§rXIds. (45a)

Further, we express I in terms of J dS, the current density, and consider
dS ds = dr, an element of volume, as in (19) and (20). Then we have, for
the resultant total magnetic moment of any current distribution at the
point P,

1
M = 2_0 r X J dT, (46)
M = 1 r X Jdr, (46a)

a formula of great importance in radiation problems. The vector potential
consistent with the foregoing demonstrations is, from (12) and (19),

|

A= . f rdr- (47)
J

A= 4—‘; f S dr. (472)

11. Magnetic field of a circular loop. In a magnetic field produced by
a current, no scalar potential exists for the purpose of calculating the work
done by a pole that traverses a closed path encircling the current. As we
have seen, the difficulty arises because the potential is multivalued. Never-
theless, we can calculate the force at any point in the field by means of a
scalar potential, referred to some equivalent magnetic shell.

We shall now calculate the magnetic field resulting from a current I flow-
ing in a circular path of radius r. Let the circle be centered at the origin, its



272 Crassicar, ELecTrRoMAGNETIC THEORY [§11

plane corresponding with the xz plane (Fig. 13). We shall restrict our calcu-
lations to points along the y-axis.
From equations (6.4) and (8.2) the potential at the point P,

V = &Q = E Q, (1)
$Q IQ
= 4r ~ 4n (1a)

1V-13.

where Q is the solid angle subtended at the point by the circle. Let a be
the distance from P to the circumference of the circle. Then

o’ =14y’ 2)

We easily find that
Q=2r fomm " sin 8 d§ = 27r[1 - (—Tﬁ)m], (3)
whence H, = —-%—Ty/ = 2:—1 (T—z_:—zyz)—a/—z (4)
R g (42)

RLETiie
The field at the center of the circle and, indeed, for any point in the zz-plane

inside the circle, is
H = 2rl/er. (5)

H=1/2r. (52)
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H is normal to the zz-plane. I is to be measured in es units and r in centi-

meters. The unit of magnetic field in the em system is the gauss.

12. The magnetic field of a rotating charged disk. Consider the field H
produced by a rotating disk carrying a uniform charge of n electrons, each
of charge ¢, per unit area. Any small ring located between r and r 4 dr will

y

p

Iv-14.

behave like the loop of the previous section. If w is the angular velocity of
the disk and v the linear velocity at distance r from the center,

v = Tw (1)
and the electric current in the annulus is
dl = nev dr = newr dr. (2)

The magnetic potential at P resulting from current flowing in the ring is
given by (11.1) and (11.3):

v = 71;—“’ [1 — (r—z_’_—yf)—l/—z} dr. (3a)
Then
To 2
V= f dv = 2——728“’ [g — g5 + )" + yz], €)

V=" [TQ—" — g0 + )" + y2], (4a)
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0V 2mew | 1o+ 24 :|
H, = 3y =T |:(7”§ T y2)1/2 2y |, (5)
2 2
_@eﬂiﬂ__]
m‘z[%+ww % (5e)
and H, = 2rnewry _ 27rnevo’ ©)
¢ c
_ MEWr, _ NEY
HO 2 - 2 ) (68‘)

where v, is the linear velocity at the circumference of the disk. We note that
we could have derived equation (6) from (11.5),

=2 @=ﬁf%wa )
c r c Jo
H, = 1 L new dr, (7a)

2 r 2/,
since the vectors from the different annuli are parallel, along the axis of the
disk.

13. Magnetic fields in sunspots. When an atom located within a
magnetic field emits light, the ordinary single spectral lines split up into
several components. This phenomenon, which is known as the Zeeman
effect, will be discussed in detail later on. We may, in the meanwhile,
employ the observational result that spectral lines in sunspots exhibit an
unquestioned magnetic splitting. The fields responsible for the solar Zeeman
effect occasionally attain, in large spots, values as high as 4000 gausses.

The origin of these intense magnetic fields is one of the outstanding
astrophysical problems. We easily dispose of the more obvious hypotheses.
In the first place, we cannot appeal to permanent magnetism. No alignment
of the individual atom magnets could possibly be maintained in the presence
of the turbulent motion and high temperatures existing on and in the sun.
The effect is undoubtedly electrical and we may calculate the magnitude of
the electric currents and electric charges involved.

A simple model, based on the formulae of the proceeding section will
indicate the nature of the difficulties. Observations suggest that sunspots
are vortices. We shall assume, for purposes of demonstration, that the spot
contains a disk of n electrons per cm®, which rotates with uniform angular
velocity. Then, from equation (12.6),

n = CH()/Z‘Irevo, (1)
n = 2H,/ev,, (1a)
where v, represents the tangential velocity at the periphery. Although the

vortical speeds of spots are unknown, we may take v, = 300 km sec =
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3 X 107 cm sec™’, as an upper limit to the value. Also set H, = 4000 gausses,
to agree with observation. Then we find that n, at the very least, will be

n ~ 10" electrons cm 2. (2)

The electric currents are truly enormous.
I = ne f v dr = nevgr,/2. (3)
0

We shall take 7,, the radius of the spot, to be 10° cm. Then
I ~ 10*® es units ~ 3 X 10'° amperes. (4)

A change of model will alter these figures by at most an order of magni-
tude or two. We may safely draw certain general conclusions from the
result. We have previously found (§ 3) that an excess of one proton per
sixty square centimeters of solar surface would produce sufficient positive
potential just to overcome the solar attraction by electrostatic repulsion
of an electron. An excess of protons, as given by equation (2), would pro-
duce forces 6 X 10" times as great. A sunspot having such an excess would
break up with explosive violence. We have been forced to the conclusion
that the sun is practically neutral electrically. Circulation of the minute
residual charges would produce fields of negligible strength. Currents of
the order of 10'* amperes are required, but they must be galvanic in nature.
The charges of one sign must drift with respect to those of the other sign,
while the medium remains macroscopically neutral. The forces that produce
the galvanic current still remain to be identified.

14. Derivation of Maxwell’s equations. We may summarize the funda-
mental electromagnetic relationships, derived up to the present point. We
have the circuital theorem, (10.6) or (10.8),

V X H = 4xJ/c. (1
VXH-=]. (1a)
Also, from (10.14),
V -B =0, (2)
V- -B=0, (2a)
and from (10.9),
V-J=0. 3
vV-.-J=0. (3a)

These are not the most general equations that could be derived. They hold
for the steady state, when the current is flowing through a closed circuit.
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When the currents or the magnetic fields are fluctuating, either in magnitude
or position, with the time, we shall have to re-analyze the problem.

Consider the electric circuit shown in Fig. 15, where A indicates the

circular plates of a capacitor and B a

+ - source of electric potential, e.g., batteries,

l | ‘ I | | ’ | connected across the wires leading to A.

The electric intensity E, between the

plates, where we suppose the separa-

tion to be negligible compared with the
+ — linear dimensions, is given by (4.9),

1 E = 47Q/xA, 4
E = Q/eA, (4a)

+ —
where ¢ is the quantity of electricity
on the plates and A is the area. As long
as the voltage applied to the capacitor
remains constant, both @ and E are con-

A stant and no current flows in the leads.

IV-15. If the voltage increases with the

time, instead of remaining constant,

electricity will flow from the batteries along the leads, negative charges on

the left and positive along the right as indicated by the arrows. The result-

ing flow of electricity is analogous to that of a closed circuit, as if an actual

instead of virtual flow took place, directly through the medium between the
plates. Differentiating (4), we have

__7r_Q
o (el) = T2, ®)
1dQ

(GE) = a) (53‘)
which relates the rate of change of F to the ‘“virtual” current across the
plates. The virtual current density, J,, across the capacitor is (d@Q/dt)/A.
Hence

a dD
T (kE) = T 4nJ,, (6)
d dD
IT (eF) = d—t =J,, (6a)
where we have set
D = «E. )

D = ¢k, (7a)



§ 14] / Crassical ELEcTROMAGNETIC THEORY 277

Although this equation applies specifically for a field in a one-dimensional
coordinate system, we readily deduce the generalization. First, we note that
E indicates the magnitude of the vector defining the electric intensity at a
given point of space.

Ordinarily, £ will vary from point to point, hence the time differentiation
must be a partial one. In an isotropic medium the vectors D and E are
parallel. Then for the three vector components we have the relation

a%(iD, + jD, + kD,) = 4x(iJ.. + jJ., + KJ.)),

or 22 = 4. ®)
ol (8)

Maxwell termed the quantity D the ‘‘displacement current” or the
“electric displacement.” He regarded the true currents as being composed
of steady currents and virtual currents and made the additional supposi-
tion, now fully justified by experiment, that the magnetic effects of the two
were identical. Accordingly, we have only to replace J in (1) by J + J.,,
where J represents as before the constant component. Then we have

19D | 4x
VXH=_""+"T] ©)
vxH=247. (92)

This is one of the famous Maxwell equations.
If we take the divergence of both sides of (9) we have

4
v-va=v-<§aa—]t)+{J>=o. (10)
V-VXH=V-<%+J>=O. (108)
Therefore
VIt (VD=0 (1)
V-J+5(V-D)=0. (11a)

The equation of continuity (I11-34.4) is, if the total charge is conserved (no
sources or sinks),

g;; +V - (o%) = 0. (12)
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If we interpret p as the density of electric charge with v, the vector velocity
of flow, the current density

J=pv (13)

and g—§+v-1= . (14)
Equations (11) and (14) require, then, that

V + D = 4mp, (15)

V D = p, (15a)

which replaces (3) in the more general relationships. Equation (2) is taken
over unchanged:

vV :-B=0. (16)
since there can be no divergence of magnetic poles of one sign into a given
volume, magnetic poles always occurring in pairs.

The fourth Maxwell equation defines the current produced by a mag-
netic field, whereas (9) defines the magnetic field resulting from an electrie
current. The relationships are not quite reciprocal. A steady current will
give rise to a magnetic field. But, as the experiments have shown, electric
currents are induced only by changes in a magnetic field. Consider some
surface bounded by any closed curve, v. The flux of magnetic intensity
through a surface is given by the expression (II-13.1), which becomes

¢>-—;:fH-dS. (17)

The symbol ¢ represents the “number of magnetic lines of force” passing
through the surface. The work required to carry a unit electric charge
around the closed curve v is the electromotive force, emf:

emf=f7E-ds=fVXE-dS. (18)

(E represents the electric field.) Stokes’ theorem (II-32.8) has been em-
ployed. The law found experimentally relates the current to the rate of

change of flux, as follows:

_ _1d¢
emf = c Qi (19)
_ _do ,
emf = 7 (192)

The factor ¢, in (19) converts emf from the em to the es system. Then

1d 1 i ]
fVXE-dS——c—d—tpr-dS——c—fa—t#H-dS. (20)

JvxE.as=-%u[m.as=-[Z,m.as.  w
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Note that we require a partial differentiation when we carry out the differ-
entiation under the integral sign. This equation must hold for each differ-
ential element, hence

1 6B
B
v X E = —6—t’ (213,)
where B = uH, (22)

the magnetic induction. Equation (21) is the fourth Maxwell equation,
which, in conjunction with (9), (15), and (16), forms the basis of electro-
magnetic theory.

The four field quantities E, D, H, and B are fundamental to electromag-
netic problems. We might have introduced D and B earlier (cf. equation
10.1a). They are essentially more basic than the parameters u and «, by
which we have defined them. The simpler representation above given holds
only for-isotropic media. In general, we should regard both u and « as
tensors or dyadics: u and . Then the equations

D=x%x+E and B=y-H (23)
D=¢-E and B=p-H (232)

replace (7) and (22), respectively. When equations (23) apply, D and E are
proportional only along the principal axes of the tensor.

The quantities « and u take values differing from unity because the
respective fields induce polarizations within the media. We define two quan-
tities x. and x., respectively the electric and magnetic susceptibilities, as

drx, = k — 1 and 4wy, =p — 1. (24)
xe=—~—1 and x,=%8—-1. (242)
€o Mo

Experiment shows that x. > 0, whereas x,, may be of either sign. We
distinguish between the two types of magnetic susceptibilities as follows:
X= > 0 for paramagnetic substances and x..- < 0 for diamagnetic materials.

For most materials x.. is nearly zero and, in practice, we may usually set
X» = 0. But a certain group of materials, iron, cobalt, nickel, and various
alloys of these substances exhibit extreme positive susceptibility. Equation
(22) does not apply to ferromagnetic media of this type, since B does not
necessarily vanish with H. Although the phenomenon will not concern us
for much of the following, we shall digress for the moment with a brief
discussion of hysteresis.

For ordinary material a plot of B vs. H defines a straight line whose slope
is u. For ferromagnetic materials, however, such a diagram produces a
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curve known as a hysteresis loop. Consider the behavior of a bar of iron
inside a coil of wire through which an alternating current runs. As the cur-
rent, measured by H, drops to zero, the magnetism B of the bar does not
vanish. To reduce B to zero we must apply some current in the opposite
direction. The fact that B lags behind H constitutes the phenomenon of
hysteresis. The area of the loop measures the rate of energy dissipation
within the material.

We define the polarization P and magnetization M by the equations,

cf. (31.25),
P=(D —E)/4r and M = (B — H)/4n, (25)
P=D— ¢E and M = B/u, — H, (25a)

so that the x, and x,, of (24) are
x.=|P|/|E| and x.=|M][/|H]. (26)

Xe = _’IEEL (26a)

€ |

Electromagnetic Radiation

15. The electromagnetic theory of light. For a medium where no con-
duction current flows and where «x and u are independent both of the time
and the coordinates, we may rewrite Maxwell’s equation in a simpler form.
Let E and H be vectors representing the electric and magnetic fields, with
respective components E,, £, and E, and H,, H,, H,. Then the equations

become

vxH=*E 0
va=%=e%—f, (1a)
VXE=—CE%, )
VXE=—%=—u%, (28)
V-H=0, 6

vV -H=0, (38)

V « E = 47p/x. 4

V D = p. (4a)
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As an illustration of the superiority of vector methods, and also as an
example, we shall carry out the solution of these equations, first in the nota-
tion of differential calculus, and second in the vector notation. Rewriting
equations (1) to (4) in terms of their vector components, we have

dH, dH, kOE, OH, dH, «dE,

Ay % ¢ dt’ 9z  dx ¢ at’

6))
0H, 0dH, _ «9E,
ox ay ¢ ot
0H, o6H,  JE,
3y 9% = € FIC (5a)
O, _OF, _ _uoH, 0B, _ 3B, _ _uoH,
F) % ¢ dt’ 9 éxr ¢ o’
Y ©®
8B, OB, _ _poH,
dx dy ¢ ot
0E, 9E,  9H,
3y 5. — M ETC (6a)
oH, o0H, 0H,
o T oy T T 0. @
OB, | OB, | oH. _ dmp
6:c+6'y+ ¥ ok ®
oK, E, P
oz T e (8a)

Differentiate partially the first equation of (5) with respect to ¢, the
second of (6) with respect to z, and the third of (6) with respect to y. Use
the two last equations to eliminate 6°H,/dy 9t and °H,/dz ot from the first.
The result is

pk E,  O°E, O’E, (aE OE, )

Gl =+ 2 2+z amax+ + 2 )
OE, 2E O’E, E 9 (aE E, )

e o = ort + 2 + 92 9z \ oz + (9a)

where we have added and subtracted the term 6°E,/d2” on the right-hand
side. In a region where no free electric charges exist, p = 0, and the second
member vanishes, by (8). Hence

2
u ol 98,9 2 + 2L _ v, (10)
3°E
Y

= V’E.. (10a)
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Let

2

v = /ux. (11
v® = 1/pe. (11a)

We treat each independent equation of (5) and (6) similarly, to give six
fundamental equations of the form

o _ 1 O°E, o 1 0°E, e _ 1 9°E,
V'E, IR T VE”_vz "’ V&, T (12)
oy _ 1 9°H, oy _ 1 9°H, 2y _ 1 0°H,
VH,_UQ Yl VH,,—UZ YR VHZ_UZ o (13)

The vector analogue of the foregoing transformations is as follows.
Differentiate (1) partially with respect to ¢, substitute from (2), and reduce
further by means of (I1-23.16).

%VXH=VX%=—9VXVXE
u

(14)
c egy _ KOE
=_;(VV'E_VE)—Cat2.
0 1
5 (VXH =-—"VXVXE
N
= —%(VV -E — V’E) =eaE (14a)

E
Equation (2) follows a similar transformation. When p = 0, V - E = 0.
Then the results are

V’E =

1 9B e
v’ 9t v® 9t
the vector components of which agree with (12) and (13).
Equations of the type (12) and (13) have already been studied in detail.
The reader will already have recognized them to be of the form of the wave
equation, (III-1.15). The general solution of (12), which is representative, is

E. = fi(x + vt) + fo(x — vi), (16)
by (III-2.6). The f’s are arbitrary functions, which define the form of a
disturbance traveling through space with a velocity ». For free space,
k = p = 1, In Gaussian units. In the MKS system, for free space, e = €,
i = po. Then

and V’H = (15)

v =c, a7

v = 1/V e = 3 X 10° M /sec = ¢, (17a)

the velocity of light. Maxwell thus recognized the electromagnetic character
of radiation.
We have already seen that we cannot make further progress in solving
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the wave equation, unless the original conditions or certain boundary con-
ditions are specified. A light wave, presumably, has its origin in some atom.
More precisely, the electromagnetic radiation is emitted as the result of
oscillations of some atomic electron (or electrons). If the electronic motion
is periodic the light wave will also be periodic and the frequency of the wave
will be equal to that of the atomic oscillation. If the electron’s vibrations
are aperiodic, the light wave will also exhibit no characteristic frequency.
As a next step, we shall require the equation of motion of an electron in a
composite field involving electric and magnetic forces.

16. The electromagnetic force field. We begin by calculating the
electromagnetic forces produced by a moving point charge, of magnitude q.
The first term of the force, that arising from the electrostatic field, is merely
Coulomb’s law,

E = g/« (1)

E = q/4rer®, (1a)
where r is the distance from the charge to the point where we measure the
field, E.

The second term, arising from the action of magnetic forces, is more
difficult to calculate. First of all, we note that only charges in motion exert
magnetic forces. The electrostatic field is symmetrical about the charge in a
coordinate system moving with the charge. Transforming this moving

oelectrostatic field to coordinates at rest with respect to the observer intro-
duces distortions, which we shall interpret as a magnetic field.

Suppose that the charge moves parallel to the axis of z, that its velocity

y

IV-16.

is uniform, and that at time ¢ its position coincides with the origin. We are
required to calculate the magnetic force produced by the motion at some
point P, at distance r from the origin (Ilig. 16). At time ¢ + d¢ the charge
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will have moved to a position O’, and its z-coordinate will be v d¢. From P
draw the vector PP’ parallel to and equal to OO’. The electric field about
the charge follows the charge in its motion. Hence the field at P’ at time
t -+ dt is equal to the field at P at time ¢. Since changes of the intensity of
the electric field at any point are propagated with the velocity of light, we
suppose that the speed of the moving charge is much less than that of light.
If X now denotes the electric intensity at P, we have
oE, oF,

ot = " Yex 2

This result follows from the equation of continuity (14.12), if we write E,
for p. It follows more directly from the fact that we obtain the same change
in field in an instantaneous traversal of a distance —dz, as we do by re-
maining stationary for a time d¢, during which interval the field attached to
the electron advances through a distance dxr = v df. We also have the
equations

OB, _ _ 9E, OE. _ _ 9B, @
ot ~ Yoz’ ot or

We may substitute these values into the Maxwell equations (15.5),
whence '

oH, _ oH, _ _vxdE. OH. _oH. _ _vxdE,

Ay dz c dx’ Oz oz ¢ oz’ @
OH, _oH, _ _uxiE,
or dy ¢ oz’
OH. _oH, _ _, 9. Lo (4a)
Ay oz ° oz’ o

three equations from which we are to determine H,, H,, and H,, in terms
of E,, E,, and E,. Writing the last two equations in the form

d vk 0H, 98 VK __0H,

oz (H ¢ E") ;I <H" + c Ez) oy’ ®)
d 0H,
e (H, — veE,) = 5, EIC., (5a)

we see that the values of the two sides of each equation must be independent
of the coordinates, because the partial differentiation is carried out with
respect to different variables. Each side, therefore, must be equal to 2
constant. Integration of the first equation gives the results:

H, — Qc'—(E' =Cxz+C, H,=Cz+ Ci, (6)

H, —veE, = C,xz + C,, ETC., (6a)
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where the ‘‘constant’ of integration, C,, is independent of x but may still
be a function of ¥ and 2. Similarly, C; may be a function of z and y. We
know, however, that the magnetic field, and hence H,, H,, and H,, must
vanish when v = 0, whatever may be the coordinates of the charge. There-
fore all the integration ‘‘constants’ must disappear; and we have the result:

H,=0, H,= —v«E,/c, H, =v«E,/c. (7
H,=0, H,= —uveE,, H, = vek,. (7a)
From (15.4),
V - E =0,

for the region devoid of charge, we prove that the solution also satisfies
equation (4a).

The components of electric intensity at P, (coordinates z, ¥, z), produced
by a point charge, result when we multiply the normal component q/«r?,
by the respective direction cosines; thus

X
Ez=_q§_7 Eﬂz—qi%)

ke r KT
__49
E. = drer’ 1’ ETC. (a)
Hence
H,=0, H,= —vgz/cr’, H, = vqy/er’. (8)
H, =0, H, = —vgz/4m’, H, = vqy/4nr’. (8a)

In vector form, the magnetic field at P is
_ Vg (_;* Yy
H_cr2< Jr+kr>' ®)
_ g (_.z y)
H—47rr2< Jr+kr' (9a)

There is no z-component of magnetic force in the present example. The
absolute magnitude of H is

2 22 1/2 ) . )
H=|H|=g%<y—:€;—> =£7%Sln0, (10y
2 2\ 1/2 Y )
H=|H| =ﬁ%§(y—j;—z~) =grqrasm 8, (10a)

)1/2

where 9 is the angle between r and the axis of z. (y* + 2°)'* is the radius
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PQ of the circle drawn in Fig. 17, centered about the z-axis and normal to
it. Equation (10) is essentially equivalent to the Biot-Savart law (10.15),
the application of which is now justified for open circuits.

We determine the direction in which the force acts most readily from
consideration of the point z = 0, where

H = ky/r. (11

le— D

Iv-17.

The force is normal to the xy-plane, i.e., to the plane defined by the direc-
tion of the charge’s motion (the vector v) and the point P (the vector r).

Thus far we have calculated the magnetic field intensity at P produced
by the charge in motion. The force upon a positive magnetic charge of
strength p is, by (1.3a),

= Bp = _ %P (_:* Y ‘
F_Bp_”Hﬁ_#CTZ( ]r+kr>° (12
PG (i) o

As a result of the presence, at P, of the magnetic pole, the moving charge at
the origin will experience an equal and opposite force,

— Y ri® _ o Y
F. = c uH (J r k r>’ (13)
F, = ;qu’(j  _k Q), (13a)

r r
since H' = p/r, (14)

H' = p/4m”, (148)
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the intensity of the magnetic field at the origin resulting from the pole at P.
In (13) z and y refer to the coordinates of the pole, P. As in (10),

|Fm|=%uH'sino=”c—qB'sine, (15)

| F,. | = wqH’sin 6 = vgB’ sin 6, (15a)

where B’ is given by (14.22).

Equation (13) is, of course, not the most general equation, since the
vector velocity will not necessarily be parallel to the z-axis. We may remove
this restriction, however.

The vector, F,, is perpendicular to the plane defined by the vectors v and
H, as we prove by setting z = 0 in (13). Furthermore, the magnitude of the
resultant, as in (15), contains the factor sin 6. The procedure of evaluating
F,. corresponds to that of taking the vector product, as defined in (II-22).
Hence

F.=ZvxB, (16)

F. =qv X E, (16a)
or, since we may regard ¢qv as the current vector I,

F,=Ldsx B. (17)

F,=1ds X B. (17a)

That v X B and not B X v is required we see from the vector diagram
shown in Fig. 17. Since B represents a repulsive force emanating from P,
the vector B is opposite (anti-parallel) to the vector r, which we suppose
to be in the zy-plane (z = 0). We may set

= —iB, — jB,, v =1, (18)
where B, and B, are positive magnitudes. The vector product,
v X B = —kuB,, (19)

is compatible with the sign of (13), with z = 0. Had we adopted B X v,
the product would have had reversed sign.
We note that, for free space,

B = H. (20)
B = pH. (20a)
If E is the electric intensity at the origin, the complete force vector becomes

F=F,—{—F,,,=q<E+é1-v><B>. 1)

F = ¢(E + v X B). (21a)
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Equation (19) gives the true force; to derive the force per unit charge, we
must divide by ¢. In some problems, we may replace ¢ by p, the density of
electric charge, to obtain the force acting on a unit volume.

The foregoing equations are fundamental and apply to many physical
problems. Our derivations may imply that the velocities of the charges must
be small compared with that of light. We have assumed that the forces
exerted at P at a given instant by the charge are determined by the instan-
taneous position of the charge on the z-axis. If the velocities are high, this
assumption will no longer be true, for the force fields are propagated with
the velocity of light and not with infinite velocity. To allow for high veloci-
ties we should have to re-derive the equations on the basis of restricted
relativity theory. However, a detailed analysis shows that the field equa-
tions, given above, are invariant irrespective of the velocity. Nevertheless
we shall have to make use of the fact that the electric potential at P is not
determined by the instantaneous position of the charge, by introducing
the so-called ‘‘retarded potential.”

17. The energy of an electromagnetic field. We have seen, equation
(4.9), that the electrostatic field between two parallel capacitor plates is
constant and of magnitude

E = 47Q/«A, (1)
E = Q/eA, (1a)

along the normal to the plates. The work done by a charge d@ that moves
from one plate to the other, then, is simply

dW = Ea dQ, (2)

where a is the distance between the plates. The charge may move either
through the intervening medium, or, by means of a battery, along the leads.
An increment of charge, dQ, changes the electric intensity by an amount

4
dE = — dQ. 3)

dE = dQ/Ae. (3a)

Hence the total work done, as the field changes from an initial value of
zero to some value F, is

E
W=iaAf EdE = X AR, )
41!' 0 87|'
E Aea 2
W=Aeaf RdE = 52 B, (4a)
(1)

W represents the potential energy stored in the capacitor. Experiment
shows that the energy is actually distributed through the volume between
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the capacitor plates. The volume is a4; hence the electric energy per unit
volume is

«E? /8. (5)
eF?/2. (5a)

The total electric energy, in general, when the vector E is not necessarily
always parallel to one axis, is

= K . - K 2 2 2
V—SrfE E dr &an+4n+Egm, ®)

v=:[E Edr, (62)

where dr is an element of volume.
The magnetic energy per unit volume, analogously, proves to be

/J,HZ/ST,
pH?/2, (a)

and the total magnetic energy, T,
- £ . _ M 2 2 2
& [m.-Har =L [ 2+ B+ 1) ar. @)

T=ng-Hm. (7a)

We determine the total energy of the medium by integrating the sum of the
two expressions over the volume.

18. The Poynting vector. The work done by electromagnetic forces
that displace a unit charge of electricity through a distance ds becomes

dW = F - ds. (D
If the displacement occurs in time di, the rate of doing work is

M=F.d_S=F.V’ (2)

where v is the velocity of the charge. If p is the volume density of the
electric charge, we have, from (16.21), the force per unit volume:

F=&E+%vx®. 3

F = p[E + v X B]. (3a)
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Then the total work done in time dt over a given volume, results from an
integration over the volume:

aw _ ( el . )
= olE v-|—cv)(B v)dr. 4
‘%: o(E-v+vXB-vdr (4a)

By the definition of the vector product, the vector v X B is perpendicular
to v. The scalar product of one vector and another perpendicular to it is
zero. Hence the second term of (4) vanishes. The magnetic forces do no
work because the motion is always at right angles to the field. Since

v =17, (5)

the current density,

dw c 1 oD

dWw oD
= <E-V)(H—E°—67>d7', (6a)

where we have used one of Maxwell’s equations, (14.9). Let

E = iFE, + jE, + kFE,
()
and H = iH, + jH, + ki,

as before. Then, by performing the elementary vector multiplication, we
obtain the identity

E-VXH

_ aH,_a_H,) <3Hz_3_H=> <3Hu Q&)
_E’<ay oz ) T B\, oz) TE\ oz EA ®)

At this point we shall make a simple vector transformation. Analogous to
(8), we have

H-V XE

_ gy (9E: _ 3_Eu> <6Ez _ G_Ez> (3Eu <9_Ez>
_'Hx(ay 0z) T HA\ S, oz) T H\ Gy — dy /) ©

Now consider the vector N, defined by
TN-ExH

= i(EZIHz - EZHU) + j(Esz - E:Hz) + k(EzHy - Esz), (10)
N=EXH-=... (10a)

’
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and its divergence,
o [l ) o) )
VN = [L £ ) T B\ G, oz ) TE\ Gy — dy

oE. _ oI, 0E, _ 9B, 0F, _ OB,
+ |:H’< Ay 6z) T H”( 0z 6:c> T Hz( or 6y>
=—E-VXH+H-V XE. (11)

V-N= - E-VXH+H-V XE. (11a)

Replacing E « V X H by its equivalent from (11), we obtain instead of
9),

aw _ ¢ : _1 oD _ dx
= (Evxe-lp. 2 _tg.x),
! oD
- -1 ( —+E >dr—fv Ndr,  (12)
- <H vxE-E-2_v. N)

=—f< -——I—E >d7’ fV N dr, (12a)
by Maxwell’s fourth equation, (14.21). But
E = uH, D = «E, (13)

B=uH D=, (132)
by (14.7) and (14.22).
Then, if «, (¢), and u are independent of the time and coordinates,

B, _ x el [
41rfE Yar = £ 2at(E E) dr fE dr,  (14)

3 _ .
efE-a—th Zat(E E)dr—2dth (14a)

since the scalar product of any vector by itself is equal to the square of the
absolute value of the vector. A similar relation holds for H. By Gauss’
theorem (II-14.5) or (I1-23.19), we transform the second volume integral
into one over the boundary surface; thus

fV.NdT=fN-dS, (15)
Thus, ﬁnally,
H = —— KE2 + uH?) dr — f N - dS. (16)
—_— — 2 —_—
dt _ dtf (B + uH?) dr fN ds. (16a)

We are now in a position to interpret the result physically. The sum of
the two integrals represents the rate at which the electromagnetic forces,
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do work on the charges. The first term, we note by comparison with (17.9),
we may interpret as the rate of change of energy stored in the medium.
When the second term is not zero, we see that it represents a flux over the
boundary surface. We must therefore identify this term with radiation
escaping from the volume. The vector

N = ~E XH, (17)
4
N =E X H, (17a)

which is perpendicular to both E and H by definition of the vector product,
is known as the Poynting vector. Its magnitude and direction at any point
of space determine the flow of electromagnetic energy at the point.

19. Propagation of a plane electromagnetic wave. The equations,
E.=0, E,= B cos [%r (x — vt)j|, E, =0, (1)

represent a continuous wave, of electric amplitude B and wavelength A,
progressing with velocity » in the direction of the axis of z (Fig. 18). We

y

Iv-18.

shall suppose that E,, at any given z-coordinate, represents the electric
intensity of the electromagnetic wave. We are to calculate the direction and
magnitude of the magnetic wave that must be associated with an electric
field of varying intensity. (Do not confuse B with B.) We have

oF 2r o . 27
3 ——stm)\(x i), )
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all the other partial derivatives being zero. Substituting these results in
the Maxwell equations for free space (15.6), we obtain the conditions

_/'_”QIL — _E% =0
c at c ot
3
_woH. _ OB, _ %, . 2w, _
c ol = or = >\Bsm T (z — vb).
— 0H, 0, —pu o0H,
at at (3a)
OH., 0B, 2w, . 2r
B T Th me L (@ = 0.
The integrals of these equations are
H,=H,=0, H,=£Bcos2—7r(x—vt), (4)
1) A
1 2 Ve
H,=—Bcos—x—vt——_Bcoq r — vt
2
= eB cos N (x — vt), (4a)

the constants of integration vanishing because the magnetic field must go
to zero when B — 0.
Since H, is the z-component of the magnetic field, we see that the electric

E

Direction of

Propagation

1v-19.

and magnetic fields are perpendicular to one another. They are of the same
phase. Both go to zero simultaneously. A representation of a plane wave of
this variety appears in Fig. 19, Here E, and H. comprise, respectively, the
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electric and magnetic vectors. A wave of this variety is said to be “plane
polarized,” but since the zy- and the zz-planes are equally involved, we
shall have to define polarization in some arbitrary manner. The older con-
vention of physical optics specified polarization in terms of the plane of the
magnetic vector. There is an increasing tendency among physicists, how-
ever, to choose the electric vector as defining the fundamental plane. We
shall adopt the latter procedure in this book.

The Poynting vector, N, which represents the direction of propagation
and the magnitude of the energy transferred across a given plane, lies along
the positive direction of the z-axis. Its magnitude follows from the equation

4?’rN=E><H=(E,,H,)j)(k:iE”Hz.

2 ®
_ e OB eos Iy —
N=|N|= 471_#03 cos” (x — vi).

N =E X H.
N 2 (53‘)
N=|N|= \/E—B2 cos® - (z — vl).
M A
The value of the energy transferred across a given plane is, therefore, con-
tinually fluctuating. The average value of N during a cycle is

= " N dt c’
= = = B, (6)
Mo di 8mruw

Nl [epe
—2\/;B, (63)

since the average value of cos’ § over a cycle is 1/2. The mean flux of energy
is proportional to the square of the amplitude of the wave.
We have previously noted (15.11), that the velocity of wave propagation

is defined by
v =c¢/Vpuk. (7)
v = 1/Ven. (7a)
Hence
N=2L <i‘)1/2B2 = X2 ®)
T 87 \u T 8 T
1 €2 _ € 2
= 5 ;B = 21)B . (83)

At this point we note that B does not represent a spatial amplitude. The
physical dimensions are

[B] — [ﬂUX/UK]l/2 — [MI/ZL—1/2T—1K——1/2]. (9)
[B] = [force/Qv] = MT'Q'. (9a)
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By (I-10.2) the dimensions of (9) are equivalent to those of electric inten-

sity, as equation (1) requires.

20. Radiation pressure. Let us calculate the pressure exerted by a
beam of radiation falling normally on one side of a perfectly absorbing slab
of unit area. The energy per unit volume on the side of the surface from
which the beam is coming is, by equations (17.6) and (17.7),

W = o (B + uH?). W
= § (" + ul). (1)

Let us consider the field in the neighborhood of a hollow, electrically
charged sphere (Fig. 20). The electric

P intensity at the point P, which lies
just above the surface, is

E = 4we/x, (2)

E = o/e, (2a)

where ¢ is the surface density of the

electric charge, equation (4.3). We shall

consider the electric intensity at P to

consist of two parts, E,, that arising

from charges in the immediate vicinity

of P, and E,, that from all other

charges, so that £ = E, + FE,. Now,

when P approaches indefinitely close to

1V-20. the surface of the sphere, the charges

in the immediate neighborhood of P act

as if they were distributed over an infinite piane and therefore produce an
electric intensity,

E, = 270/k = E/2 = E,, 3)
El =0'/2€=E/2=E2, (33:)

equation (4.8) for a plane capacitor. The force acting upon unit area, result-
ing from charges in the vicinity of P is therefore

F = E,oc = 2r¢’/x = xE°/8. 4)
F = Ec = ¢°/2 = eE°/2. (4a)

Equation (2), an expression of Gauss’ law, holds whatever may be the form
of the surface. The work done when a unit area moves through a unit dis-
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tance in a direction parallel to the force vector is

«E*

1
V=f0Fds=§, ®)
1 2
V=des=%, (5a)
0

which agrees with equation (17.5).

If the electric shell is replaced by a magnetic shell, we may reproduce the
equivalent of (17.7). We see then that the total electromagnetic force per
unit area is

N «E* 4+ uH? _
F=——"=W, (6)
2 2
F = w =W, (62)

by (1). The electromagnetic force resulting from a beam of radiation falling
normally upon a surface is equal in magnitude to the energy density of the
radiation.

If the beam is plane polarized in the zz-plane, so that

E=E, =8B cosz)\l(x — ot),
@)

c 2
H—HZ—E)BCOS N (x — vb),

H=H,

1 2
E)B cos ~ (x — vi), (7a)
equations (19.1) and (19.4), then
2
_ K p N\ e2r . Koy 22T
W = 87rB (l + /qu> cos” (x —ot) = 47rB cos” (x — vt), (8)

= i 2< 1_> 2 2_7r - — 2 2 2_7r

=3 Ble + 50 cos” 5 (x — vt) = eB” cos X (x — vi), (8a)
by (19.7). The energy W is continually fluctuating, but the variations are
so rapid that we observe only the average value, E°. The cos’ term, aver-
aged over a cycle, is equal to 1/2, as determined in the previous section.
Hence the mean values of the density of electromagnetic energy and of the

forces, are

— kE® xB? =
W = I = 8 F. (9)
W = B = £ _ F (9a)
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We shall now derive, by induction, the more general forms of the equations
(6) to (9), when the radiation is moving in random directions, by consider-
ing the summed effect of all the rectangular components.

When the radiation was flowing along the z-axis and polarized in the
zy plane, we found that the Poynting vector was N = iE_ H.. If the radia-
tion had been polarized in some other plane, but still traveling in the same
direction, we should have had two component vectors instead of one, thus:

N = i(E.H; + E'H,),

wherein the superscript represents the direction of flow of the given com-
ponent, as indicated by the subscript. In general, we should have to write

N = (E;H; + E:H) + j(E:H: + EHY) + k(E2H; + E}HY),  (10)

a vector that we break up into six superposed components, since E; may
not be equivalent to E;, etc. The six components arise because we have
three independent directions, with two polarization planes for each direc-
tion.

We must write the general expression for the density of radiation flowing
in random directions as follows:

B + (B + (B + (B + (B) + (B

W=«

8T
4 (HY? + (H)® + (H)® + (H)® + (H)® + (HY®
K 87
_ kB + ul ‘;*‘H (1)
W= @_42-_#1513 (11a)

The force per area normal to any one of the directions, say that of the axis
of z, will be

CE) + E) ) 4 (HY

F= 8 T 8 (12)
P BN U ) 120

We can say nothing regarding the instantaneous values of the various
components. But, if the medium is homogeneous and isotropic and if the
beam is unpolarized, the average values of the various components must
be very nearly the same, i.e.,

B = E) =B = =7,
(13)
H) = (H) = (H) = =,
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from (1). Hence
F =W/3, (14)

the force of radiation pressure is equal to one-third of the energy density.
For each of the components the time variation follows an equation of the
form of (7),

E.,, = A, cos 2n (x — i), H,, = £ A, cos 2 (x — vt), ETC. (15)
A uv A

H,, = 1 A, cos 2n (x — vt), ETC. (15a)
uv A
The average value of W, obtained as before, is
2 2 2 2 2 2
W = KAU+ Az +B1+B2 + Cz+ Cu. (16)
8w
2 2 2 2 2 2
W = ¢ Au + Az + Bz ;j_ B:/ + C: + Cy' (163,)

But we may regard the sum
A+ AT = A (1
where A is the amplitude of a vector defining the actual magnitude and

instantaneous direction of the polarization along the z-axis. Similar expres-
sions hold for B and C. Likewise, we write

E; = A’ + B® 4+ (7, (18)
where FE, denotes the amplitude of the actual wave. Then
F =W/, (19)
W = «E:/S. (20)
W = eE}/2. (202)

One should note at this point that when the medium is not isotropic,
as, e.g., in the case of a crystal of Iceland spar, the various components of
(13) will differ. A tensor replaces the vector of (10) and the phenomenon of
double refraction results. We shall not concern ourselves with these com-
plexities, however.

21. Momentum of radiation. The pressure of a beam of radiation
incident normally upon a surface is

F=W-= xB* /8, (1
F =W = ¢B*/2, (1a)

equation (20.9). This equation represents the momentum received per
second by the surface, because we define force as the rate of change of
momentum. This momentum must be associated with the radiation itself.
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Energy incident per unit time on the surface is given by the Poynting flux,
(19.8):

N = wB*/8r. (2)
N = aB?/2. (2a)
Hence we may write .
F = N/v. 3)
For problems that involve light transmission in a vacuum, we have
k=1, v =c. 4)
€ = €, v =c. (4a)

To determine the radiation pressure, we first calculate the average value
of the normal component of the radiation, i.e., the flux through the surface
element, and divide by the velocity of the radiation. This procedure gives
the radiation pressure on the area when all the energy is absorbed. When a
fraction is transmitted by the surface the radiation pressure is diminished.
If a fraction is reflected backwards, the radiation pressure is increased. Let
fi1 and f, denote the respective fractions. Thus the general formula for the
radiation pressure is

F=N{1-fi+f) (5)
For many purposes we may employ different notation. We shall call the

upward flux F,, the downward flux F_, and let p, and p be the respective
radiation pressure and density. Then equation (5) takes the form

p, = (F. — F)/b. (6)
For an enclosure, wherein the radiation is isotropic,
p. = p/3. (7)

22. Conditions to be satisfied at a boundary surface of a medium. When
a light beam crosses a surface of discontinuity, from one medium into
another, the various conditions that must be satisfied follow directly from
the Maxwell equations. Let us integrate the Maxwell equation (14.9), over

A = — A

Iv-21.

2 long rectangular surface like that shown in (a), Fig. 21, set across the
boundary, AA’. The condition is

fVXH-dS=fH-ds=f(%%+4—d>-ds, 0

c

fVXH-dS=f<%—|—J>-dS, (1a)
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by Stokes’ theorem (11-34.8). By allowing the two sides of the rectangle
normal to the boundary to decrease indefinitely, but still keeping the two
opposite sides in the different media, we may make the surface integral
vanish. Whence

fH-ds=o. ©

We may ignore the contribution to this contour integral, of the infinitesimal
sides. Let the length of the side tangent to the surface be [, and let the com-
ponents of H tangent to the surface in the respective media be H,, and H,,.
Then

fH-ds=l(H,l—Ht,)=O

and Hz, = Ht,- (3)
By a similar treatment of the equation (14.21),
fvxE-dS=fE ds = —+ aB-dS=O, @
fvxE-dS=— %-d8=0, (4a)

we may show that the tangential components of the electric vector are also
continuous on both sides of the medium.

We derive the third boundary condition by integrating the Maxwell
equation (14.15) over a volume such as would be produced when the thin
rectangle (a) moves normal to its own surface and parallel to the surface of
the medium. Then

fV'DdT=fD-dS=f47rpd7, %)

fv-DdT=fpdT, (50)

by Green’s theorem. Again, by allowing the opposite faces of the volume,
which we suppose to have area A, to approach each other indefinitely
closely, we can make the volume integral vanish, or

fD-dS:O. (6)

The vector dS is normal to the surface. Hence, to evaluate the integral we
take the respective normal components of D, D,,, and D,,, on opposite
sides of the media, and write

A, — D,)=0, D, =D,, 7
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or, by (14.7),
E,, = kFE,,, ®
«F,, = &F,,, (8a)
which is analogous to (2.43). Similarly, from (14.6), we may show that
B, = B,, 9
or mH,, = wH,, (10)

by (14.22).

Thus the four boundary conditions require, (a) that the tangential com-
ponents of the magnetic field intensity (and likewise of the electric intensity)
be equal on opposite sides of the boundary surface, and (b) that the normal
components of the electric displacement D (and also of the magnetic
induction B) balance.

23. Refraction and reflection of light waves. We have seen that for light
traveling along the z-axis, with its polarization (electric vector) in the
zy plane, the electric and magnetic vectors follow the relationships

E' = E, = j'E, cos% (' — v't),

(1
H = H = KH =Kk - B! cos =% (@' — v'1).
uv A
1 , 2r ,
H = H, =kH, =k’ -5 E] cos 7 (' — v't). (1a)
Qv A

These equations are the vector equivalents of (20.7). We have introduced
the primed notation for later convenience. Similarly, light polarized in the
zz-plane will be defined by the relationships

E = E/ = kK'E! cos % (' — v'1),

2
H=H = H = i’ % B cos 2% (&' — v"1).
787 A
2
H=j e E! cos % (x' — v't). (2a)

Now, when a light ray traveling along the z-axis in one medium meets the
boundary of another medium of different optical properties, the light beam
splits into two components. Part of the ray is reflected, say, along = and
part of it is refracted into the second medium, along z”’. We shall suppose
that the normal to the boundary surface lies in the z'y’-plane. 6, 6., and 65,
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(Fig. 22), are then the respective angles of incidence, of refraction, and of
reflection.
The experimental results are well known. We have

6, = 6, 3)

sin 4 n
—— = — = CoNsT, 4)
sin 0, M,

and

x ) \ .
~ ~
o~ /\
RN
e N
z IV-22.

where 7, and n, are the respective refractive indices of the first and second
media. We know the latter relation as Snell’s law. We wish to see whether
the electromagnetic theory can account for the observed phenomena of
physical optics, including the quantitative test of predicting the relative
intensities of the reflected and refracted beams.

We shall distinguish two cases: (a) when the incident beam is polarized
in the z'y’-plane (perpendicular to the plane of incidence) equations (1),
and (b) when it is polarized in the z’y’-plane (in the plane of inci-
dence) equations (2). The two solutions will enable us to derive the general
result, since the vectors associated with light polarized at any other angle
may be resolved into the two components of the solution here given.

We employ, for sake of convenience, different coordinate systems for each
of the three rays, with the z-axis along the respective beams, and with the
origin at the point where the rays meet the boundary surface. The following
equations represent the electric and magnetic vectors of the reflected beam:

N

EII = (j/lEy _|__ kIlEz) COS)?T": (xll — v,,t),

H,, — (j”H,’,/ + kIIH:I) COS%; (xll _ vllt) r (5)

= % (G”E) + kE'’) cos 2—1,r, (' — v''1).
U A

J
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1
H' = 77 77
JTA )

. 2
(B! + KEY) cos 177 (2" ~ v'"), (52)

The equations for the refracted wave, in its own system of coordinates, are
identical with those of (5), with triple instead of double primes.

We now reduce the vector equations to a coordinate system relative to
the boundary surface. We need no formal proof to show that the axes of
7', /, and z’”all lie in the same plane. The forces acting to deflect the
initial beam are those associated with the boundary surface, the orientation
of which is specified by the normal. Since the forces acting are normal to the
boundary surface, the deflections must take place in the plane defined by
the axis of " and the normal. We have already chosen our coordinate sys-
tem in accord with this condition.

In our new coordinate system we shall take an axis of y along the normal
to the boundary surface and an axis of z along the surface, but in the original
z'y’-plane. We thus have four coordinate systems, related to one another
by simple rotation about the z-axis, which is common to all systems. The
unit vector, k, is common to all. Hence

k/ — kll — klll = k’ (6)

where the unprimed system refers to the new coordinates. Referring to
Fig. 23a, which depicts the relationship of the unit vector j’ to the new
coordinate system (cf. Fig. 22), we see that

j’ = 1icos 6, + jsin 0,. )

Iv-23.
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Similarly, for the other systems, 23b and 23c,

i’’’/ = —icos 6, + jsin 6, (8)
and 7"’ = 1icos 6; + jsin 6. 9
Also 2’ = zsin 6, — y cos 6,.

2’/ = xsin 6, + y cos 0,. (10)

2’ = xsin 6; — y cos b;.

Equations (1) become

£

= (iE] cos 6, + jE! sin 6,) cos — 2r 7 (xsin 6, — y cos 6, — v'Y),

N (1)
H = k—f—;E{, cos2—7:(xsin 6, — y cos 6, — Vi),
uv A
, 1 o 27
H =k?Z7Ey cos 57 (zsin 6, — y cos 6, — v't), (11a)

for light polarized in the x’y’-plane. Similarly, for light polarized in the
x'z’-plane, equations (2), we have

E' = kFE. 0082 (zsin 6, — y cos 6, — v't).
(12)

. 27 .
H'= (iF’ cos 6, + jE. sin 01) e cos 37 (x sin 8, — y cos 6, — v'{).

H’'= (iE! cos 6, + jE. sin 6)) , — cos ~ (:1: sin 8, — y cos 6, — v'f). (12a)

The equations for the reflected ray are, from (5), (6), and (8),
E” = (—1iE;’ cos 0, + jE,' sin 8, + kE'")

. cos% (x sin 6, 4+ y cos 6, — v''t),
(13)

= (—IE:/ CcOS 02 + ]E” SHI 02 + kE”) // 77

2 .
. cos }\—Z’, (x sin 0, + y cos 8, — v'’%),

( IE” CcOs (92 + ]E” sin 02 + kE”) // 1/
(13a)

2 ]
* COS )\—Zr, (xz sin 6, + y cos 6, — v"'1),
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and for the refracted ray,
E"’" = (iE}’ cos 6; + jE.’ sin 6, + kE."")

2 .
.+ Cos )\,—7,", (xsin 8; — y cos 6; — v'’’'¢).
(14)

H''' = (iE!’’ cos 6; + JE.”’ sin 6; + kE’'’) _///cv—///
U
2

* €08 3777 (xsin 6; — y cos 8; — v'’'%).

B/ = (B! cos 6 + JEL sin 6, + KE) 7
# (14a)
2 .

+ COS )\,—7,5 (xsin 8; — y cos 6; — v'’"1).
By our boundary conditions, the resultants of each component of E and
H on opposite sides of the boundary must be equal for all points on the
boundary and at all times. The boundary lies at y = 0. From the cosine

factors in (11) to (14) we have the conditions,

sin §, sin §,  sin 6,
A, - A/I - A//, )

(15)

a«Ild vl/xl — 2)II/AII — vlll/)\//l‘ (16)

But since the media are the same for the incident and reflected ray, we
must have

v =", 17
We thus deduce the following equations:

AN o=\, sin 6, = sin 6,, (18)

01 = 02) (19)
sin 6, N v Ny
- = 577 = 77 = —, 20
sin 6; N7 . (20)

by (4). Equations (15) to (20) hold for both cases (a) and (b). For (a) we
equate the sum of the vector components of (11) and (13) to those of (14),
in accord with the boundary conditions of the previous section. Note that
iand k are the unit vectors tangent to the surface and that j represents the
normal component. For the tangential components mere balancing of field
Intensities is all that we require (22.3), but for the normal components, we
must multiply the electric and magnetic intensities by x and u, respectively,
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for the different media, (22.8) and (22.10). The letters (t) and (n) after the
following equations indicate the tangential and normal components.

E! cos 6, — E}’ cos 0, = E}’’ cos 0;. (t) (21)
«'E!sin 8, + «"’E)’ sin 6, = «’"’E} sin 6;. (n) (22)
¢E!lsin 6, + ¢'E!'sin 6, = ¢’’E!/' sin 6;. (n) (22a)

E’ =FE!. (t) (23)

cos 6, .., cos 0 .,,,

— Bl = =7 El. ® (249
T [T
sin 0, py _ S0 G )y @) 25)

v v

E; E E!’
7 7 + 77 17 — T717 177> (t) (26)
Lo Lo [T

Equations (23), (24), and (25), are consistent, in view of (20), only with
the solution

E/ =FE!" =0. (27)
Multiplying equation (22) by (26) and making use of (19) and (20), we have
(B, + EY) = \/i B, (28)
U K
E, 4+ E/ = |55 E). (28a)
uo €
From (21) and (19),
oy — Cos 03 1244
(Eu Eu) - cos 01 Eu . (29)
If we set
rer 2
2 _ p"«k cos” 6
U= T o8k 6y (30
rre _r 2
2 _ u'"€e cos” b
U = 'u/ e cost 9.’ (30&)
we find that
(E, — E) = w(E;, + E). (31)
The ratio of the amplitudes of the reflected and incident beams becomes
EJ/E; = (1 — uy)/(1 4+ w). (32)

For all media capable of transmitting light, the magnetic permeability i
equal to unity, to a high degree of approximation, as the experimental data
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show. Hence

s .
K COS 84 _ Sin 6, cos 0,

YN cos 6, sin 6, cos 6, (33)
¢ cos 6,
6” COS 91 (33&)
by (15.11) and (20).
After making a simple trigonometric transformation, we find that
E,) tan (6; — 6,
E, ~ tan (0 + 6))° 34)
The analogous expression for the refracted beam is
E) 2 2 sin 6, (35)

E, 14w sin 26, + sin 26,

when we set u equal to unity for both media.

The reader should specifically note that no general solution of the equa-
tions (21) to (26) would result if we had originally set E’, = 0, 1.e., if we
had assumed that there was no reflected beam.

Equations (21) to (34) refer to case (a). Turning now to case (b) and
solving in an analogous manner, we find from (12), (13), and (14), that

B 1—u B 2
ETive ™ T Tire (36)

where

. p’ sin 6, cos 8;  u'k’’’ cos2 0,
U = 777 : = “7ir 71 . (37)
4 sln 83 cos 6, KK cos® 6,

2
o p'e'’ cos 6

Uy = #IIIEI COS 91 (373‘)
When ¢ = 1, we have
E!  tan ¢, — tan 6, _ sin (6; — ) (38)

E’ ~ tan 6, + tan 6, sin (6; + 6,)

We could have inferred these equations directly from those preceding. Since
the electric and magnetic vectors of the initial wave are interchanged we
have merely to interchange « with u in u,, to obtain u,. Otherwise the equa-
tions are identical.

Now consider an experiment where two beams of equal intensity, one
polarized perpendicular to, and the other in, the plane of incidence, are
allowed to fall on a surface and suffer reflection. We deduce the ratio of the
amplitudes of the two reflected beams, for various angles of incidence, by
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setting E/ = E! in equations (34) and (37) and dividing the latter by the
former.

amplitude perpendicular _ E,” _ cos (6; — 6,)
amplitude parallel E) " cos(8; + 6,)°

(39)

This ratio is always greater than unity for 6, > 0. In other words, light
polarized perpendicular to the plane of incidence suffers greater reflection
and less transmission than light polarized in the plane of incidence. Experi-
ment quantitatively verifies this theoretical result.

In equation (34), we see that when

™
2)
E! =0, (41)

0; + 6, = (40)

and there is no reflected beam. For still greater angles, the tangent becomes
negative and E!’ is opposite in sign to E), i.e., the phase of the wave alters
by 180°.
We have seen that
sin 0; = X sin 6,, (42)
Ny

equation (20). When the ratio n,/n; is greater than unity, i.e., when the
path of the beam is from the denser into the less dense medium, we can
always find a critical angle of incidence, 6,, for which

sin 6, = %sin 6, =1 or 6, = g (43)
3

The refracted beam is parallel to the surface of the medium. For values of
8> 4, (44)

we can find no real solution, since the right-hand side of (42) is greater than
unity. A detailed solution, which we shall not reproduce here, confirms our
suspicion that the refracted ray dies out and that only the reflected ray
exists. The phenomenon, known as total reflection, is familiar to all students
of optics. The totally reflecting prism is widely employed, since its effi-
ciency appreciably exceeds that of the best mirror surface.

24. The dielectric constant and the refractive index. Media of the type
we have been considering up to the present, in which no free electric charges
exist, are termed dielectrics. All electrons are closely bound to the atomic
nuclei and are not free to wander through the medium. As a preliminary to
the more general problem of transmission of light in a medium containing
electric charges, we may rewrite several of the previous equations in slightly
different form.
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Since we shall no longer be concerned with boundary surfaces, we may

conveniently suppose the beam to travel along the axis of . Then, dropping
the primes, we have

_ 2m — B oeos 2T
E = E, cos X (x — o), H = WL,, cos ~1 (x — vi), (1D

1 27
H = E)E” cos ~- (x — o), (1a)

for light polarized in the zy-plane, (23.1). There is no need to retain the
vector form, because we are now dealing with single vector components. We
must merely recall that £ and H are perpendicular to one another. In these
equations A and v refer specifically to the wavelength and velocity in the
medium under consideration; in vacuo the respective values would have
been A\, and ¢. From (23.20), we have

No/N = c¢c/v = m, (2)
by the definition of refractive index. Also, by (15.11),
v’ = ¢*/ux. 3)
v = c*/k.k,, where «k, = ¢/e, kn = u/uo. (3a)
Hence pk = n’, (4)

or, since u = 1 for dielectrics, as experiment discloses,
k = n’. (5)
n2 = KoKm- (534)

These equations relate the dielectric constant to the refractive index of the
medium.
The frequency, », associated with the wave is defined by

v = ¢/ = /N, (6)

ie., the frequency is independent of the velocity of propagation. The equa-
tions of (1) then become

E =FE, cos 27r11<a:cﬁ — t) = B Erirenemo @)

where we have introduced the complex exponential in place of the cosine
term. We understand that the real part of (7) represents the solution of the
problem. The procedure will be to determine the form of (7) in various
types of media, evaluating n for each example.

25. Absorption of radiation in a charged medium. The wave equations
as derived in § (15) are not completely general. We supposed that the me-
dium was devoid of free electric charges. We also assumed that no electric
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currents could exist. For greater generality we shall have to replace (15.1)
by (14.9),

190D | 4x
vxH=18 Iy 0
vxH=2 47 (12

Equations (15.2) to (15.4) remain unchanged. We shall suppose the electric
current, J, to be that induced in the medium by the direct action of the
light waves. The principal force acting on the electric charges is that of the
electric intensity. If R is the specific resistance and ¢ the conductivity of
the medium to the flow of the electric current, we shall have

Y = E’'/R = oF/, (2
by Ohm’s law, (9.1).
In this equation J’ and E’ are expressed in either electromagnetic or
MKS units. Converting them to es units by (8.8), we have

J = E/R = ¢’¢E, 3)

where R is still expressed in em units. Since J refers to the current per unit
area, 1/R must also be the reciprocal resistance or the conductivity per
unit area, per unit length. For the present we shall not specify the origin of
the resistance. It may arise from a purely electric effect, as when the elec-
trons fritter away their energy in collisions with atoms, or it may arise
from the reaction of the radiation emitted from an accelerated charge.

Furthermore, if we assume « to be independent of the time, we may, by
(14.7), write (1) in the form

k 0E  4mc
VXH=G%+0’E. (4a)
Taking the divergence of both sides of (4), we obtain
_1( 8, dad (2 gt e
0—c<"at+R)V'E‘c<"at+R K’ ©
(.9 E= (.2 P
0_<€at+">v E"<€at+">e’ (52)
by (15.4), since V « V X H = 0. (6)
The equation
9 | 4t _ ;
at Re P 7 0 @
9 , o _ i
gt tTer=0 (7a)
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has the integral

47¢°
Inp= s t + consT, (8)
ol
In p = - -+ coNsT, (8a)
or p = poe(—41rc’/Rx)t’ (9)
p= o, (%)

where p,, the constant of integration, the value of p at time t = 0, may be a
function of x, y, and 2, because (7) is only a partial differential equation.

Equation (9) shows that the effective charge of a medium, under action
of a light beam, diminishes with the time, so that, in the limit,

p—0 (10)
and V +«E -0, (11)
by (15.4). Differentiating (4) partially with respect to the time, we obtain
oH k 3°E  4mc OE
VX =t TR &

=—%vxvxE=—%(vv-E—V2E),

x °E 4me OE _

C 2 'y
cot TR o=, VE -
oH o’E oE
VX =ty
- —vxvxE
1 1.

by (II-23.16) and (11).

The general solution of this equation has no particular interest for us.
Let us consider, as before, a plane wave, polarized in the xz-plane, and
attempt to represent the solution of the form of (27),

E = Ey — EUOe2riv(xn/c—t). (13)

We have written n instead of n, to distinguish it from the true refractive
index. We shall treat n as an arbitrary parameter, whose value we are to
determine from the differential equation. Then, since

E,=E, =0, (14)
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(12) becomes

pK Q@z dmu OE, _ IE,
2

¢ ot R ot ox* (18)
’E, oE, O°E,
pe ot oo = = o (15a)

Performing the indicated differentiations, we have, from (13) and (15), that

2 2uc’s
N’ = uk o+ 22T (16)
2 + 2 2
n’ = M, where w = 2mp. (16a)

w

This result is equivalent to setting a condition upon n so that (13) will be
satisfled. When R is infinite we recover our previous expression for the
refractive index. When R is finite n is complex.

Let us set
n=n-+1b 17
where both n and b are real and positive. We have
n* = n® — b® + 2nbd. (18)
Then from the imaginary part of (16), we find that
2
— kC
b B’ (19)
2
_ CHO
b = e (192)

We determine n from the biquadratic:

nz _ #204
RhE = A (20)
2 42 2
% = c’ep. (202)
4n’w

We shall suppose that this equation has been solved for n. Substituting
from (17) and (19) into (13), we obtain the result:

E = Egririem/emvmemucs/in — e ™ cos 2m(zn/c — 1), (21)

E = E*mirev/emvmciesiin — Be™*'? cos 2mv(xn/c — 1), (21a)
where k= 4;—20 (22)

k = uco/n. (22a)
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The quantity n determines, as before, the wave velocity in the medium and
hence plays the role of a refractive index. Equation (22) shows that ampli-
tude of the light beam decreases exponentially with the distance. The aver-
age value of the energy density is

W=LF = iﬂ_ R (23)

W= B = Lo (232)

from (20.9). Here k is the absorption coefficient.

When R is sufficiently large that we may neglect the second term on the
left-hand side of (20) in comparison with ux, n® ~ uk, (in MKS, n* ~ c%eu)
and we may write

c4
o {1+ ) (@)
2 a
2
h =¢ E,u<1 + azw—2> (24:3,)

When R is small, we may neglect the term ux. (In MKS, we neglect c’ey).
Then

1/2
Nl
n c(VR) ’ (25)
uo 1/2
n~ c<%> , (25a)

which becomes infinite for a perfect conductor. This result accords with the
statement made in § (2), that conductors behave like dielectrics of infinite
k. We know from experience that all metals are poor transmitters of radia-
tion, a fact in agreement with their low resistance. For a metal, from (22)

and (25), o
k~ 4#(%) .

For copper, R = 1.7 X 10~ *ohm =1.7 X 10’ em units. u = 1,» = 6 X 10"
corresponding to a wavelength of 5000 Angstrom units. With these values,

kE~7 X 10° ecm™'.

A very thin sheet of metal, therefore, only 1.4 X 1077 cm in thickness
should be capable of reducing the intensity of an incident beam by a factor
of 1/e, (¢ = 2.718). This result does not agree well with experiment, but
the metallic model is highly idealized. We have assumed that the electric
resistance to the impressed high-frequency forces is equal to that for ordi-
nary direct current. This assumption fails to allow for possible change of
the resistance with frequency.
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Before we can make further progress, we must examine the question
whether the electron, subject to acceleration, resists the change of motion
in accord with Newton’s laws of motion. In other words, we are asking,
““does electricity possess mass?”’ We know from experiment that an electron
possesses mass, but is this mass that of a true material point, irrespective
of charge? Or can we attribute the term, m, d*z/dt*, in the equations of
motion of an electron to an effective electromagnetic mass of magnitude
m,?

26. The scalar and vector potentials. In obtaining the necessary for-
mulae for electromagnetic mass, we first return to § 10, and introduce the
vector potential. The Maxwell equations are

k OE 47
VXH—EE—F?J’ (1)
vxH= 4, (1a)

oH
VXE=—55, )
oH
VXE=—#§, (2a)
V-H=0, 3)
v-E =" @
V-E=2 (4a)

for x and « constant with respect to the time.
Let A be a vector potential obeying the relations

B =V XA. (5)
Then we have one of the Maxwell equations automatically satisfied since
V-B=uWVW-H=V -V XA=0. (6)

In the electrostatic case we had
E = —Vs, (7)

where ¢ is a scalar potential. This expression cannot satisfy the conditions
when the charges are moving, because it requires that

VXE= -V X Vg =0, (8)

in contradiction to equation (2). The question of electric potential must be
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approached via equation (2), which we write in the form

_ _koH _ pd _ b 9A
VXE-= c ol = catva_ cvxat. 9)
This equation suggests our taking
1 0A
E = ~ a3 (10)
dA
E = 30 (10a)

although we note that it does not fulfill the limiting condition (7), when A
is stationary. We may, however, fulfill both conditions simultaneously if we
write

1 A
E=—-Vo¢ — PYe (11)
0A
E——an—a. (11a)
Then we have, by (4)
e v, 10 g T
V- -E= -V catv A= Pt (12)
V-E= —-Vi—2v.a="2 (12a)
¢ at €
The last Maxwell equation to be satisfied is
JE 4
VXH=vx<VxA>=1(VV A—VA) =" +7]
u U c dt c
_ _kgle _xOA  dr
==V zated (13)
9E
vxH=vx(YX) _Lwv.a-va - T+g
_ dp _  OA 1
= _fvat at2+Jy (33')

by (II-23.16) and (11). In order to determine a vector completely we must
specify both its curl and its divergence. We have defined V' X A by equa-
tion (5). We are at liberty to select the divergence in any manner we choose.
Accordingly we shall set

kp 9o _
V'A+cat'0’ (14)

VoAtaoo, (14a)
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because it leads to the simplifying result that

K o 90 _
vV -A+ v (15)
YV A+ e g—‘;=o. (158)

In passing we note that whereas A uniquely determines B, a knowledge of

B alone will not enable us to evaluate A. In thus adopting a non-zero value

for V - A, we depart from the methods used in the analysis of vortices,

where we assumed that the vector potential was strictly solenoidal.
Equations (13) and (12) become

A 4
VA= - T 0
3°A »
VA = eu—p — ], (16a)
e 4
VL 17
¢ =eu s . (17a)

These equations are closely related to Poisson’s (II-16.3), to which they
reduce when A and ¢ are constant with time. In regions devoid of currents
or charges, the foregoing equations reduce to the wave equation, the poten-
tials being propagated with velocity

v =c/(ng)'”. (18)
v = V1/ep. (18a)
In a vacuum the potentials are propagated with a velocity equal to that of

light.

If the velocity of propagation were infinite, instead of finite, the poten-
tials would be directly determined by Poisson’s equation. We could evaluate
the electrostatic potential, as before, by means of the integral

_ P

6 = f £ gr, (19)
_ P

6 = f 2= dr, (192)

where p is the charge density within the volume element dr and r the dis-
tance from the element to the point at which the potential is being calcu-
lated. By analogy, we may also write, since the defining equations are
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identical in form,

a=[4q, (20)

A= f L % dr, (20a)

which breaks up into three scalar integrals, one for each vector component.

We must allow for the finite velocity of propagation of the potential wave.
A potential so calculated is known as a ‘retarded”” potential. The problem
is analogous to that of making allowance for the finite speed of light, the
so-called “light-time”’, in astronomical measurements. We regard the poten-
tial as a function of the time, as well as of the coordinates. Thus, with x = 1,

¢(x’) y,7 z,) t,) = f p(xo, y:, zo’ tO) dTO) (21)
0
’ ’ ’ 4 d
o,y 2, 1) = | B, (21a)

where o, yo, and 2, denote the coordinates of the volume element at time ¢,.
{o represents an instant earlier than ¢’ by the ‘“light-time” between the
element and the point 2/, ¥/, 2’. Or,

t, - to = ’I‘O/C. (22)

27. Electromagnetic mass; forces acting on an accelerated charge. We
shall now be able to calculate the forces acting on an accelerated electric
charge. Lorentz developed the fundamental theory. For the present we
shall not attempt to define the shape of the charged volume. We shall,
however, assume that all elements of the volume have the same velocity,
acceleration, and rate of acceleration. Later on we shall attempt to identify
the volume, containing total charge &, with that of the electron.

Let O be a small volume element dz dy dz, containing charge of density p,
(Fig. 24). This is the volume that we shall eventually associate with the
electron. The discussion of this section applies to the potentials within the
electron. At a certain time let the coordinates of O be x, %o, 2. If the
charges are stationary, the electrostatic potential at some other point Q,
located within the volume, at coordinates z’, ¥/, #/, is

6= [ Ladn, ®
o = f‘l:ﬁ'g dTO) (la)
where =G —z)+ @ —y) + @ — 2), (2)

dro = dzo dyo dz,. 3)
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If O is moving, however, we shall have to make due allowance for the
finite time required for propagation of the electrostatic field from O to Q,
because the various elements do not lie all at the same distance from Q.

The time, T, of propagation of the field, is
T = ro/c, 4)

where c is the velocity of light. While the field associated with the element
at position O is travelling to Q, the element will have moved on to P at

{ To
|
T X
,' )
| /
| //
{ 0 P yd
| s
[ -7
1 7
///
z
1V-24.

coordinates z, ¥, 2, reaching P at time ¢, let us say. We shall suppose that
the motion is parallel to the axis of z.

We wish to calculate the retarded potential at Q as if it had proceeded
instantaneously from P, which means that we shall have to evaluate in
terms of z, y, 2, instead of in terms of x,, ¥,, 2o, making allowance for the
retardation caused by the non-instantaneous time of propagation. Denote
the distance PQ by r.

The position of the element along the axis of z is a function of the time;
thus

z = f(9), (5)

and the position x,, occupied at time t — T, is
Ty = _f(t - ,l'). (6)
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Let us expand this function by Taylor’s theorem.

20 = SO =TI + 37 170 = 55 770 + . ..

dt 2 dt’ 6 d* '
Y N
—x—vl—l—vz—vG—l—..., @)

where v represents the velocity, ¢ the acceleration, etc. In thus expanding
our function, we have assumed that v, 9, and & are of successively smaller
orders, so that convergence is assured.
From (2) and (7), we have
iT°

rﬁ=[<x’—x+vT—%+ 6) +(y'—y)2+(z'—z)2}, 8)

since Yy =1y and z = z,. 9

We have, from (4),
T = ry/c ~r/c. (10)

This value of T is sufficiently accurate to be entered in the right-hand side
of (8), where it multiplies second-order terms. Inserting (10) into (8), ex-
panding the result by means of the binomial theorem, and dropping terms
of higher order, we find

1_ l 2(13, ___1) < B 1JT2 1-)-_T:3>i|—1/2
-~ [1 + 5 T — 5+ (11)
l[1—9”/_“:<’3~ir—+ﬁ—r2>:| (12)
~r r c 2 6¢®/ 1
From (7) and (10),
v O/ /o
xo=fv—z+2—c§*6ca, (13)
and
_ v —a) Vo, oo, :
dz, = [1 +.7 = (@ — ) + 53 (x x)] dz, (14)
since 3—; = -z r_ x’ (15)

by (11). Substituting from (12) and (14) into (1), we find that

_[el b I _
@ = fr |:1 o0 (z x) +303 (z :v):| dz dy dz. (16)

= | £ ly d. 16
) f47re7‘|: ]dxdydz (16a)
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To obtain (16), we have multiplied together (12) and (14) and dropped the
higher order products. We shall require the expression

.6¢_f ¥ —x j_[l_(x’—x)z}_i} -
ar’ p{ F T e |, r® 3c* de dy dz. (17)

-2
5 = | Tme dz dy dz. (17a)

The differentiation may be performed under the integral sign, because 2’
remains constant as far as the integration is concerned.
We have now to calculate the retarded vector potential, by (26.20).

A= f T a2y dys dzo. (18)
cro
A= f Z%dxo dyo dz. (184)

The only current component is along the x-axis, and
Jz = iva) (19)

where v, is the velocity of the element when at O. Here i, of course, indicate:
the unit vector.
Analogous to (13), we may write

. .. 2
or | ir
vo—v—c—l-zcg—.... (20)

Therefore, by (14), (19), and (20), equation (18) becomes

_1 £<_-7: ﬂf)

A—cfr v =00+ 15) do dy d. @1)
_ Hop

4= f 4—w( >dx dy dz. (21a)

The vector notation is no longer necessary, since we are dealing with the
magnitude of a single component. Higher order terms have been excluded.
We also have

104 1 p ( . r)
—29a _ L ;5" 9
Y el B Ul dz dy dz, (22)
_B_A__#_o/g<-_..7_’> '
3= dar ) P00 dx dy dz, (22a)
since ® _ v, (23)

at
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etc. From (26.11),

_ 99 194

E. = ar’ ¢ ot’ (24
_ _%0 64

Ez’ - ax/ 6t’ (2424)

which represents the instantaneous electric intensity at Q resulting from
all the charges in the volume. Let p’ be the density of electric charge at Q,
within the volume element dz’ dy’ dz’. Then the z-component of force on
the volume element is

E..p dz’ dy d2'. (25)

To obtain the total force acting on the total charged region, we must
integrate over the volume a second time, because each element of charge
interacts with every element. We thus have, for the force,

F,=fp'dr'fpx—r:—xdr—zzg»/‘p'd7"

'fp[%i-(l/—;ﬁ:l dr-i-?%i;fp’ dT’fpdT, (26)

1 ;g ¥ — =z v ,
FI:R pdrfp——rg— —giwfpdr
r 2 ..
. f pli% + (x—r_g—x):| dr + AGLL:C p’ dr’ f pdr, (26a)
where

dr = dvdydz and di’ = dz’ dy’ d?’.
But f pdr = f p’ dr’ = ¢, (27)

the total electronic charge. We may write the first integral of (26) in the

form
[oar [ 0%ar — [oar [ p5ar=0, (28)

since the integrations with respect to 7’ and r cover the same volume.
The last term in (26) becomes

288 28
3_231, = Ei" EE, (29)
we' . _ wedr _ & dx (292)
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by (27). These last two results, (28), and (29), are independent of the shape
of the volume or of the distribution of the charge. To evaluate the middle
term, however, we must know both these factors. Let us calculate the mag-
nitude of the term on the assumption that the electron is a sphere of radius
R, with its electric charge uniformly distributed over its surface. Assume
the center of the electron to be at the origin.

Determine the value of the integral,

f [ f p[} + (“’T;g,x)z] dz dy dz, (30)

' = R,, y =2 =0. (31)

at the point

We have the relation

R

0o Itﬂ
4xR2s = 4r f oR® dR = 4rF: f pdR = ¢, (32)
0 0

where ¢ is the surface density of the charge. We have factored R from the
integral sign since p = 0, except for R = R,, by hypothesis.

y

}\

4

7

6
R
X
/
IV-25.
Take spherical coordinates as follows:
x=Rcos 8 y=LRsinbcos¢, 2= Rsin fsin ¢, (33)

de dy dz = R*sin 0 dR d6 de,
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which differs from the conventional set of polar coordinates only by an axis
of rotation. We find from (31) and (33) that

e e el
= R; — 2RR, cos § + R* = 2R;(1 — cos §), (34)

since the integrand is zero except when R = R,. The integral becomes

Vo fﬁu f [ [ L (L cos 0)”2} sin 6 dR d6 d
‘\/Q 0 n Jo f (] — COS 0)1/2 ©

27l |: 1/2 2 3/2]’r
= | 2(1 — cos @ 4+ -0 — cos @ =
VAE )7+ 2 ¢ |
Because of the spherical symmetry, the value of this integral is the same
for any point on the surface. Carrying out second integration for this term
of (28), we obtain the final result that

QI | H~

£
R (35)

282 . 232 dzx
3RS T 3RS AT (36)
2 2 ;2 2 o
BeE . e dz & dxz
ke’ OrRe A bmeoRoct dIE (36a)

The quantity [¢°/R,c’] has the physical dimensions of mass, as it should,
in order that the full term represent a force. If we set the coefficient of the
differential term equal to the mass of the electron we obtain the result

R, = 2&°/3mc>. (37
R, = 2&*/6meymc’. (37a)

This equation, of course, does not necessarily specify the radius of the
electron. It merely states that a weightless sphere, of radius R,, containing
charge £ upon its surface, will behave mechanically as if it possessed a mass
m. If we assume that the mass of the electron is all electromagnetic, then
for the observed values of ¢, m, and ¢, we find

R, = 1.874 X 107" cm. (38)

The forces are calculated in the present section from the point of view of
an observer within the electron. We shall not question the validity of the
assumptions involved, bizarre as they appear in the light of modern atomic
theory and wave mechanics. As a matter of fact, physicists often adopt
certain of the relationships of classical electromagnetic theory as funda-
mental postulates of the newer mechanics. The ultimate test of the assump-
tion lies, of course, in the experimental laboratory.

For the present we wish merely to transform our point of view to that
of an observer external to the electron. According to the law of reaction,
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the external forces must be the negative of the internal forces. Thus, for
the external observer, the electron is subject to the force,

d’x 2&” d*x

i ~ 35 dt (39

F,.=m

_ dr pe’dz
Fo=m 78 = 6w af®

(39a)

from (26), (29), (36), and (37). We note, in passing, that the y and z force
components are zero, as a result of our assumption that the acceleration
components are zero along these axes.

The work done by an electron that moves from z, to x, is

) i > d’x 28 [ d’z
W= f Fode=m [ i T 3 [ ar
“dr dx 26 " d’z dx
=m | gl apa ¥ 40
“ d’r dx woe [ d’x da
W=m . difdt A= e Joodttdt dt. (40a)

We readily integrate the first term. For the second we carry out an integra-
tion by parts:

o, 2 .]" 2¢° f” "

W = |:2 my 33 . + 38 . 0" dt. (41)

'W—[lmf—@ﬁu]7+ﬂ5f“*m (412)
L2 6mc " ' 6mc J,, vat.

The term, mv®/2, gives the change of kinetic energy from time ¢, to ¢,. The
second term is more difficult to interpret, but an intricate analysis shows
that it actually represents changes in the electromagnetic energy stored
within the electron. The presence of such a term is consistent. with the
theory of relativity, which requires a variation of the effective mass with
velocity.

If the electron under consideration is vibrating in an atomic linear
oscillator, and if we set for ¢, and £, the moments when the oscillation has
reached maximum amplitude at the extremities of the swing, v, = v, = 0.
The bracketed terms vanish and we have left only the relationship

2 ta

W=% 7 dt. (42
2 t,

W=%ffﬁ (422)

This last term represents the loss of energy by a linear oscillator. The
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instantaneous rate of loss is

aw _ 267

At 3¢ (43)
aw  ue® ., e .

At T bm’ ot (432)

28. Bivectors. Consider the following expression for the electric in-
tensity of a light wave of frequency », moving in the positive direction along
the z-axis, cf. (23.1):

E = iE, cos 27w<t — §> + jE, cos 21ru<t — 'Z) (1)

v = ¢/A. (2)

Let us examine the time variation of E at z = 0. The vector components
represent plane waves, polarized, respectively, in the zz- and yz-planes.
The two components are ‘‘in phase,” i.e., both components attain their
maximum and minimum values simultaneously in the same period. Thus
the two vectors add to give a resultant plane wave, polarized in some inter-
mediate plane. A simple rotation of axes will give an equation of the form

E, = i’A cos 2mvt, (3)

where the new amplitude is related to the old ones by
A® = E; + E, (4)
because E, - E, must give identical results for both (1) and (4). Thus E,

changes in magnitude but not in direction. Introducing complex notation,
we may represent (1) as the real part of

E, = (iE. + jE)e™"". (5)
Now consider the expression
E, = iE, cos 2wt + JE, sin 2mvl. (6)

This time the two components are exactly out of phase. When ¢ = 0,
E = iE, and the intensity lies along z. One-fourth of a period later, i.e.,
for t = Y{», E = jE,, where E is a vector, rotating about the origin and con-
stantly changing in magnitude. Its tip describes an ellipse. We may express
E, as the real part of the expression

E,.. = (i, — 4jE,)e"""" = [iE. cos 2mvt + jE, sin 2mvi]
+ 4[iE, sin 2mvt — jE, cos 2mvt]. (7

This quantity is called a bivector, because it consists of one vector in real
space and another in smaginary space. The magnitudes of each vector must

be treated separately. .
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Now let us examine the more general vector
E, = iE, cos 2mvi + a) + jE, sin 2mvt + B), (8)

where a and 3 are phase angles. Equation (1) correspondstoa = 0, 8 = 7/2,
and (2) to a« = 0, 8 = 0. Equation (8) thus represents a variable vector
rotating in counterclockwise fashion about the origin, in an ellipse (Fig. 26).

1V-26.

With a rotation of axes, we may express (8) in the form of (6) or (7). This
axis rotation is not always convenient, however. For example, if we wish to
follow the variation of E, at z we should have to adopt an axis system rotat-
ing as though attached to a screw that advances as it turns. Hence we seek
another way of expressing E, in complex form. We assume that E, is the
real part of '

Eo. = (iE.e'® — ijE,e®)e™*"". 9)
We may write this equation as follows:
E,. = [iE.(cosa + isin @) — ¢jE,(cos 8 -+ % sin B)]e*"*"*
= (E., — B8, (10)
where
E.,, = E(cosa+ isina) and E, = E,(cosB + 7sinfB). (11)
More generally, for any point on the z-axis, we may write
E. = (iB,. — 4jE,)e"" "7, (12)

The symbols E,. and E,. represent what are called complex amplitudes.
Both components of the bivector, iE,. — 7jE,., now have physical signifi-
cance, since thgy are multiplied by the complex factor et
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At this point we may introduce a mathematical simplification. In most
problems of electromagnetic theory, the vector E is important chiefly as
an intermediary. Our ultimate interest usually lies in values of products
like E - E, E X H, etc. We evaluate such quantities by taking the real part
of (12), performing the scalar or vector product, and finally averaging the
time factors. The results of this somewhat long-winded process are as
follows:

E - E = (E? cos® o+ E?sin® B) cos® 2mv(t — 2/c)
+ (E?sin® « + E? cos’ ) sin® 2m(t — z/2) = (B> + E2)/2. (13)

With E, defined as above, the associated H, vector becomes

H, = = (B.. + iiB,)¢""" ", (19)
H, = = GF. + B¢, (14a)
EXH = ka 52—42"—E—2 (15)
ExH=#—lvkE—f%E. (15a)

These results prove to be independent of the actual magnitudes of « and 8.

It is interesting to note that we can obtain identical results by a much
shorter calculation of a purely formal nature. We make direct use of the
bivectors. Perform as follows the symbolic multiplication of the vectors
and complex conjugates, replacing (¢) every place it occurs by (—1), noting
that

E.E* = E: and E,E* = E., (16)

EXH = (E X HY) = ‘%)kE—;—E (17)
ExH=i}kE—5?;—E3, (17a)

and EE=%EE*=—E—_2‘_—EZ (18)

When E, = E, = A and « = §, the tip of the vector E describes a circle.
Under these circumstances equation (12) takes the simple form

E. = A F e . (19)

The upper sign corresponds to counterclockwise and the lower to clockwise
rotation. When 8 = a + /2, we see from (11) and (12) that

E,. — (iEI + jE")CZIiv(I—z/c)-f—ia, (20)
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The vector, being real, does not rotate when we come back to the case
of plane-polarized light. Equation (19) refers to circular polarization.
These formulae represent the two extremes of the general expression (12),
which refers to elliptical polarization.

The foregoing notation is easily adapted to scalar quantities. For example,
the sinusoidal variation of E,, expressed by

E. = E,, cos 2mvt + a), (21)
where E., is the amplitude of the oscillation, may be written as
E. =E.e"""". (22)

with the phase constant absorbed in the complex coefficient. We may dis-
entangle «, if necessary, by taking the ratio of the imaginary and real
coefficients of E.., since

tva»n a = E,i/E';". (23)

But the phase constants, important as they are when we set up an initial
problem, are rarely of significance in the final results. Hence we find the
formal shorthand method of calculating time averages extremely useful.
We note that .
E: = E,.E* /2. (24)
This formalized representation of a vector as the real part of a complex
bivector is a natural extension of the methods we introduced for scalar
quantities, cf. III-4. As one further example, note the existence of the iden-
tity
r=1ir+ jy + k=

= Tl:% (i+4)sinfe*” + %(i — 7j) sin 8¢'? + k cos 0]. (25)

We prove the above from the equations

z =7rsin fcosy, y =rsinfsing, 2z =T Cose,

e = cos ¢ = 7sin .

For bivectors, the quantities
1

. 1
Q@ = — { i = — 1 — 73 = 26
st 6=_s0-d, r=k (26)

take the place of the unit vectors i, j, and k. They form an ortho-normal set
in the sense that

¢ee*=1 a«:3*=0, a-v*=0
B-o*=0, B-8*=1 B-v*=0 27
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We can extend the concept to tensors or dyadics. For example, the dyadic
rr becomes

2

IT=r

l : 20 —~27¢ l 2 1 . —"‘P\
2aas1n e 2a§sm 6 7§a~(sm000s0e
1 « D ]. « 0 24 1 . 9
= Basin” 6 = (BB sin® g e —=0ysin 6 cos fe'”
2 2 V2

1 . —ip 1 . ‘e 2

:/—éyasmﬁcosﬁe Wyasmﬁcos fe Yy cos @

J

(28)

Both r and rr are real, despite the complex notation. However, the expo-
nential form often simplifies the calculations.
Similarly we can write any real vector A in bivector notation as

A= 4+ 4, + kA, = - (A —id)+ v% (A, +iA) -4, (29)

29. Radiation from a pulsating charge. Consider a volume containing
an electric charge, whose density is fluctuating. In some volume element,
suppose we express the density, p, as a function of the time, ¢, so that

p = p(t). (1)
Then the scalar potential, d¢, at a distance 7, arising from the charge within
dr, is
oo [00] 0
r t=t"+r/c
_ e ]
de = |:47re7‘ dr e, (2a)

The brackets signify that we must calculate the potential at r for a time ¢,
later than t’, by the light-time, r/c. We assume that the potentials are propa-
gated in a vacuum. We are concerned with the heterogeneous fluctuations
in p only to the extent of evaluating the radiation that results from them.
Hence we simplify the problem as follows. By means of a spectroscope at r,
we resolve the radiation into its component frequencies. In this way we may
confine our attention to a given frequency. We may express the fluctuations
in density in a pseudo-Fourier series as tfollows:

p(t) = po + E pn €08 2mv,t + a), 3)
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where we use the index », instead of n itself, because the frequencies in-
volved may not be integral multiples of one another. Note in particular
that since

[ o dr = o, @
the total charge in the volume, we must have
fp,,d7'=0, n > 1. (5)

If we substitute this expression into (2) and integrate over the volume,
we see that the first term gives only the constant electrostatic potential,
which is of no importance in the radiation problems. Further, if we restrict
the problem to consideration of a given frequency, », ignoring possible
fluctuations that give rise to radiation in another spectral region, we may
study the series one term at a time.

The phase constant, «, is likely to prove troublesome, since different
regions will be oscillating with diverse phases. We may at least postpone
consideration of the problem, by means of the notation of the previous
section (38.21) and (38.22). Introduce a complex density, p., such that

p(t’) — pce21rt'vt’- (6)

Then we may write the potential at r, a function of the time ¢, as the real
part of

pe27riv(t—r/l:)
¢=f¢———wm @
r
peZ'riv(t—r/c)
¢ = f —41r€7‘ dr. (7a)

The waves from each volume element are propagated with spherical sym-
metry. Hence the elementary potential, resulting from the volume element
dr,

2xiv(t—r/c)

dp, = B dr, ®)
p e21riv(t—r/c)
d‘Pc = drer dT, (83)

must obey the wave equation for spherical symmetry,

2_Lg@@§_1&g 9
v%—rzarrar T )

Direct substitution verifies that (8) satisfies (9). Hence we may proceed
with (7).
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We adopt spherical coordinates with an axis running from the origin to
the external point, P, and measure 6 from this axis. Then, if P lies at dis-
tance r, from the origin, and if the coordinates of dr are r,, 6, ¢, we have by
the law of cosines,

r= \'ri +r: — 2rr; cos 6, (10)
which we are to substitute into (5), and integrate over the volume
dr = r} dr, df do. (11)

Here 7, is constant during the integration and r, the variable coordinate.
In evaluating ¢, we make use of the condition, r, >> r,, to expand r in
powers of r,/r,. The reader will recognize the identity of this procedure
with that used earlier, in our development of spherical harmonics. From
(I1-17.7) and (II-17.8), we have, to the first approximation,
l=l[1+;lcosa+...]. (12)
2

rT,

Inverting (12), by direct division or by the binomial theorem, we have

7'=7'2[1—‘;:—10080+---:|) (13)

2
and similarly
k2 cos® 6

e_”" Ne—ikr,eiercoaﬂ Ne—ikr:[l + ile coS 0 _ 2 _I_ .. .jl, (14)

where k = 2mv/c = 2m/\. (15)

For visual light, ¥ ~ 10°. Since we shall later adopt 7, as the radius of an
atom, i.e., r, ~ 107°, the above expansion is legitimate. Then, with (12)
and (14), (7) becomes

2xivt—1kra 2.2 2 0
0. = ——f pc<1 + ikr, cos 6 — ki%) dr.  (16)
T2
2xivt—1ikr, . kZT2 COSZ 0
Qe = '_47'-6—1‘2_ f pc<1 + 'l'k'rl COS B - l—2—> dT. (163,)

The neglected terms are all of powers (r,/r,) or higher, consistent with our
setting r, > r,.

We express the retarded potential A, (10.47), as a complex bivector,
again to avoid difficulties with phases. Hence,

= Jceznvt' (17)
and
A — 1 f _J_c_eZTivl’ dr = 1 l”-e“““_r/” dr, (18)
c c r C T

A — L /- LCZ-;riv(t—r/c) dT, (183)
c 471_ r
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where J. is the complex current density. Since each vector component of
J. gives a scalar equation of the form of (7), the expansion proves to be
identical with (7). Therefore

2xivt—ikra
A =—— f 1.1 + dkr, cos 6) dr. (19)
2
up21r1'vt—ikr, )
A = yp— J.(1 + <kr, cos 6) dr. (19a)
2.

Higher order terms are not necessary.

We shall now transform (16) and- (19) to full vector form, and identify
the successive terms. First, we note from (5) that the first term of (16)
vanishes, unless v = 0, when ¢ reduces to the electrostatic potential. This
does not interest us, however, because no radiation results. Let i, be a unit
vector along r,. Then

ry COS 0 = I, - i,- (20)
and
(ry cos ) = (r, - i,)> =1, - 1,1, - i,. (21)

The dyadic form is especially useful since we may factor the unit vectors,
i,, from the sign of integration.

Let us set
P, — f pt,dr and R, — f pt.t, dr. 22)
2xivt—aikr kZ
Then oo = <iki, ‘P TR 1> (23)
e2rivl—ilcr < >
e T drer ! (232)

wherein we have dropped the subscript of r,, as no longer needed. Here P,
is clearly the first-order moment and M, the second-order electric moment
of the charge distribution. We have met vectors and dyadics of these types
previously. The integral representative of N., apart from the complex nota-
tion, is similar to integrals we encountered in Part II, in connection with
moments of inertia, which also are of the second order. Also we shall find
the complex diadic form of (29.28) useful. Not knowing the phases in each
elementary volume of the charge distribution, we still are unable to take
the real part of these expressions. Until we specify the phases from physical
considerations, these integrations are only symbolic. Note, however, that
the phases from each charged element have reinforced or canceled one
another so as to give some resultant phase for each of the integrals P and

N.
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We turn now to the vector potential. The equation of continuity
(I1-34.4), cf. also (14.12) to (14.14),

Z—; = -V - (pV) = -V - J7 (24)

takes the following form in complex notation:
V - J. = —2mivp, = —ikep., (25)
as we introduce (6) and (17). Consider the integral,

[ 0% - Tdr = —ike [ pgar, (26)
where ¢ is any scalar quantity. Then, since

V-@@)=9vV-:-J+7J-Vy, (27)
(II, Problem 59), we may write

[ov -Jar=[or-as~[1-vgar, (28)

where the surface integral results from an application of Gauss’ theorem.
If we choose for our surface one completely enclosing and entirely outside
the atom, J will vanish over the boundary; thus the surface integral will
be equal to zero. Each component of a vector r, e.g., iz, iy, ..., or of a
dyadic, rr, e.g., iiz’, ijzy, ..., is a scalar. Hence, after performing the
transformation (28), for each scalar component, we may multiply by the
appropriate combination of unit vectors and sum. This procedure, however,
is equivalent to setting ¢ = r or rr originally, as the case may be. Now

3 ;] a\. .
J-Vr= <JI£+J,£+J,az>(lx+Jy+kZ)

= iJ. +iJ, + k. =T, (20)
3 a d
and J. V) = (J, op + Teag T a—g)rr. (30)

Expanding rr in terms of its nine dyad components, differentiating and
collecting terms, we easily find that

J: V@) =Jr+1], (31)

also a dyadic. Therefore
chdT: fJE . VrdT

= —f tV - J.dr = ikcf pX dr = tkcP,, (32)
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by (29), (28), (25), and (22). Similarly,

[ar+myar=[1 Ve
= — [V - J. dr = ke, (33)

Now return to the vector potential, (19). The first integral is simply 7&cP,,
by (30). The second integral becomes

ke f J.ry cos 8 dr = dkci, - frJC dr

= tkei, - f |:% (rlJc + Jr) + ';: ). — Jcrl):IdT) (34)

where we have expanded the unsymmetrical dyadic, r,J, as the sum of a-
symmetrical and an anti-symmetrical dyadic, (II-27.14). Note the expan-
sion of the triple vector product, (11-22.25)

ir x (rl x Jc) = _ir * (rllc - Jcrl)' (35)

We have already shown, (10.46), that the total magnetic moment of any
current distribution is

1
M= f r. X J. dr. (36)
1
M, = f r % J. dr. (36a)
Thus, from the last group of equations, we finally obtain the result:
e?rivl—ikr ’I:k
Ac=—r-ich+§i1-‘ﬁc—ir)(Mc, 37)
u e21rivt—ikr
o M€
A = i 1k|: :I, (37a)
which, together with (16) and equations (26.5) and (26.11),
H =V XA and E = Vo, — 1% (39
dA,

(382a)

B.=V XA, and E, = —Vyp, —

serves to define completely the periodic complex magnetic and electric
vectors at any point in space. Since A, and ¢, are functions of r alone, we
may apply V in the form: V = 1,d/9r. Thus, keeping only terms of the
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first order in ', we have

2rivt—ikr .
H =— k|:l X P, + % i X (- N) — i X (34 X Mc):|. (39)
e21rivl—1'kr
2
H = E— kc[ ] (39a)

Employing the relations,

P=3-P and i - NR=Z:-MN-1i, (40)
where § is the unit dyadie, we also find that
e?wivt—ikr , .. 'L.k . .
E =—1—FHQ-ii)- PC+E§RC-1, -1, XM, |. (41
e21rivt—ikr .
Ec = _41r—607‘——k l: :I (41&)

The three terms of (39) and (41) are to be considered separately. Thus,
from (28.18), we distinguish three cases:

p— C T < . Ck4 : 1

N, = (B X H) =i g~ [P. - P¥ — (i, - P)(i, - P)], (42)

_ S— . ck*

Nl — E1 x I—I1 =1, W ’ (4234)

Nomi i o R RE e h =G - )G ME L] (43
2 - 11- 327[‘1‘2 T c [ T T [ T, r € 11' ) ( )

— . ck’

Nz =1, 1287!'2607"5 |: :I; (433)

T s _cﬁl_ . * __ (1 . 1 . *

N, =i g [M. - M — (i + M), - M3)], (44)

— .k

N, =i g5 [ :l’ )

which refer, respectively, to radiation resulting from the so-called electric
dipole, electric quadrupole, and magnetic dipole moments of the fluctuating
charge distribution. These expressions are by no means as complicated as
they appear at first sight. They reduce to simple expressions when P, i,
and M, are given. But we must have advance knowledge of the nature of the
fluctuations. For example, if the electric moment is that of a linear oscil-

lator, we may set

P, = kP&, P, - P* = P, (45)
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By (28.25),

i = 7{ = isin § cos ¢ + jsin #sin ¢ + k cos 8,
1. e e 1. v i
=3 (i + 7j) sin ¢ + 3 (1 — 2j)e’* + k cos 6. (46)
We find that
Lockt o, L,
N, =i, 81rr2P sin” 6. 47
) K .
N, =i, 575&07 P?sin® 6. (47a)

If the electric moment arises from rotation of charges in a circle, we may
set, as in (28.19),

P - o
P, = —= (i F j)™"", 48
\/2( i) (48)

where the normalizing factor, v/2, has been introduced in the denominator,
so that we shall continue to have

P, - P*¥ = P?, (49)

as in (45). When the normalizing factor has been thus introduced, we must
define P appropriately so that P will still be the real part of (48). For this
case,

4 2
N, =i, 80_k21i(1 + cos’ 6), (50)
. k'
N, =i, 3952 o 2 (1 + cos® ), (50a)

independent of the sign of rotation. The total flux over the surface of a
sphere of radius 7, is

4 4
o = f N, - dS = 1%”3" P, (51)
4™t
@Y = 36063P’ (5].3.)

where dS = i,7° sin 8 d6 d¢. Equation (50) holds for both expressions for N.
There are alternative forms for P; e.g., we may consider the case of elliptic
instead of circular or linear vibrations. But (45) and (48) represent the two
extremes and we may express other cases in terms of these.

The magnetic dipole formulae become identical with those for electric
dipole radiation, if we replace P by M. The electric quadrupole problem is &
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little more complicated. We may, as for dipole radiation, distinguish several
fundamental cases. We have defined N as follows:

N = f prr dr. (52)
To write this expression in complex form, we set p = p.e*"""* as before, and
build up the dyadic rr as in (28.28), from the bivectors of the dipole
problem.

We may classify the elements of the dyadic rr (28.28) according to the
factor e'™*, where m = =2, 41, or 0. When p, contains the complex conju-
gate, ¢ '™’ as a factor, the integral over ¢ is finite. Otherwise it vanishes.
Thus we shall usually find that R falls into the following three classes,
labeled according to the value of (—m).

RN(£2) — ie“”’(i + i) + i) f p. sin? 667 dr. (53)

In this equation and in other analogous equations in this section we can
advantageously employ the unit bivectors « and § defined in (26.26):

N(£1) = %e“”’[(i + ik + k(G =+ 5] f p.sin 6 cos 8™ dr.  (54)

RO) = e““‘[%s\ [ oosin® 0 ar + 1 | m(cos? 0 — 5 0) dr], (55)

where § is the unit dyadic as before.
In actual practice, the significant quadrupole distributions defined by .,
fall into several distinct classes. We may usually write

m — 96211'”92” (56)

where ® stands for any one of the following dyadics:
R(+£2) = 3 (i = i) + i), (57)
R(£1) = 3 (G = @)k + kG = )], (59

80 = A2 |~ L+ - i - G-+ 0] 6o
These brackets have been normalized to unity, so that
fR:f*=1 or N, :N*=N (60)

Quadrupole radiation has special significance in connection with atomic
problems. We should point out that the three equations refer to quadrupole
oscillations of three distinctive types. Whereas dipole moment results from
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the presence of one plus and one minus charge in close proximity, quadru-
pole moment requires the presence of a pair of such dipoles, which execute
linear or circular oscillations simultaneously and with specified phases. We
find it easier to interpret these dyadics from the vector i, «+ R, than from
M. itself. Thus we prove, with the aid of (46),

i - R(22) = %(i & ) sin 6¢~*, 61)

i, - R(£1) = é[k sin 6 + (i 4 j) cos 6], (62)

3 2

These equations correspond respectively to a pair of rotating dipoles, to
one dipole oscillating and the other rotating, and to both pairs oscillating.
From (43), (46), (52), and (60) to (63), we calculate the total flux.

i,-.@(O)=\/g[kcosﬁ—lisinﬂcos«;—%jsinﬁsincp]. (63)

6 6
6= [N, ds = 325’;5” n’. 64)
8 .,
¢ = —MN" (64a)
5606.

30. Radiation from a linear oscillator; classical damping factor. An
electric charge, oscillating with frequency », according to the law

x = A cos 2myyl, (1)
v = —2mv,A sin 2mv,l, 2
v = —(2mp)° A cos 2mw,t, (3)

will radiate energy at the rate
aw _327r4v?)'€2A2

= 20 cos” (2m,l), @
34 2 2
%/ B _8T32023A cos” (2mvot), (42)
0

by equation (27.43). The minus sign indicates that the oscillator is losing
energy. The average of the cosine-square term, over a complete period, is
1/2. Hence the theoretical mean rate of radiation from an oscillator is

aw _167r41/$82A2 _ _167r41/§P2 6
dt 3¢’ - 3¢

aw 4r%aP?

aw _ _ 5
dt 36003 ! ( a)

where P = €A, (6)
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the electric moment corresponding to the maximum displacement of the
oscillator. Equation (5) agrees, as it should, with (29.51), thereby justifying
our identification of the last term of (27.41) as the energy actually radiated
by an accelerated charge.

The kinetic energy associated with the oscillator is

T = —;mvz = 2r%omA’ sin® (2mvol). (7
When 2ot = /2, z = 0. (8)

All the energy is kinetic and none is potential. Hence, for the total energy
of the vibrating system, we may write

W = 20 A’m. (9)
Eliminating A® from (5), we have

dW 8

dt ~  3mc W= —W. (10)
dW ot e?
= —337025 W = —yW. (102)

We may write the expression as above only if the energy lost during a com-
plete oscillation is small compared with the total energy of the oscillator.
If this condition were not fulfilled, we should not be justified in making
the step from (4) to (5), neglecting the variation in the amplitude between
successive oscillations. If we interpret ¢ and m as the respective charge and
mass of an electron, and if » represents a frequency of the order of that of
visible light, the coefficient of W, in (10), does prove to be small. Integrating
(10), we find

W = We "', (11)

where W, represents the initial energy at time ¢ = 0. In an interval of time
T where

3mc 1
T = 8#2821!5 = 'Y’ (12)
1 3e,mc’
T = v = 27!'821/3’ (123’)

the energy is depleted by a factor 1/e. Here v is the well-known classical
“damping factor,” so termed because it fixes the rate at which the oscilla-
tions are damped as a result of radiation processes. Numerically

T = 4.52\° (13

where X is the wavelength, in centimeters, of the light wave.
The foregoing solution represents in particular the case of an oscillator
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which, after initial excitation, executes its own damped oscillations. The
problem is analogous to that of damped mechanical vibrations as discussed
in Part III, §§ 14-17. We may analyze the exponentially-damped beam of
radiation emitted by the oscillator, in terms of a Fourier integral. We shall
find the spectrum to be composed of frequencies additional to »,, as in
I11-14.

We have previously noted, in the mechanical analogy referred to, that
the spectral distribution of the damped and forced vibrations are identical.
We shall discuss this question further in the following section.

31. Forced vibrations; electric polarization; refractive index; absorp-
tion coefficient. Ordinary, light-transparent media show no macroscopic
electric charge. Each negative electron is balanced by the presence of an
equal charge of opposite sign. Thus far we have specifically avoided discuss-
ing the problem of atomic oscillators. No simple electromechanical model
will explain all the features of complex atomic spectra.

Various models of harmonic oscillators have been proposed. The simplest,
perhaps, and at the same time most complete is that of Sir J. J. Thomson.
Thomson’s model of an atom consisted of a uniform spherical distribution
of positive electricity in which a negative electron was imbedded. He sup-
posed that the haze of positive electricity offered no resistance to the motion
of the negative electron, which was free to oscilate about the position of
equilibrium with some characteristic natural frequency ». Let x be the
distance of the electron from the center of the positive sphere. The total
charge within the sphere of radius x varies as 2° and the inverse-square law
introduces a factor z~>. Hence the total force acting on the charge is propor-
tional to the displacement. If m is the mass of the electron,

2
m %Z% = —az. (1)
The minus sign indicates that the force is attractive. The solution of this
equation by (30.22), is

z=Acos(Va/mt— a), (2)

where A and « are constants of integration. Obviously, we must have the
relationship

\/a/—m = 2mv,. (3)

Equations (1) to (3) represent those of completely undamped oscilla-
tions. If now we introduce a resistance to the motion of the electron, such as
that imposed by its own radiation, and if we assume a sinusoidal light wave
of frequency » to be falling on the oscillator, the entire equation of motion
becomes '

2 2 3
m d—f — % % = —ax + &k, cos 2mvi. 4
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d’r e d'z
M IE " ore F = T + eK, cos 2mxvi. (4a)
The two terms on the left are those given by (27.39). The first term on
the right is the normal restoring force, in which we may replace a by (3).
Here E, represents the maximum amplitude of the electric intensity. The
last term represents the periodic external driving force tending to set up
the oscillations.
Consider, instead of (4), the equation
2
m % + b % = —4r’vimx + eE, cos 2mvt, (5)

which is similar to (4), except that the damping force is proportional to the
velocity instead of to the rate of change of acceleration. Equation (5) is
identical in form with (III-15.2), which we have already solved. The
solution, after the transient terms have died away, is

x = C cos 2mvt — a), (6)
where
ek, 1 )
drtm [y — V))® + (by/2rm)* ]V
From this equation we have:
Z—f = —2m( sin 2mvt — a), (8)
d’ d
d—;ﬁ = —(2m)’ d—tx 9
By setting
288 d’x  8r'eHdx  , dx
38 df T 3¢ dt - Cadv (10)
2 33 2 2
ot d'x _ 2mpeey dr _ . dx
Teme d = 3¢ ai - lar (102)

from equations (4) and (5), we find that
b/m = v, (11)
the classical damping constant (30.12). Hence if we write (7) as follows:

¢k, 1
= 41r2m [(yg _ V2)2 + (’YV/27T)2]1/2,

C (12)

we have solved equation (4).
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The oscillator emits energy at the rate

aw 167 e*C?

dt 3 (13)
aw 47y 2C*
W Ber (139)

where the amplitude C takes the place of 4 in (30.5). The Poynting flux
characterized by electric intensity E is

N=_EXxH, (14)
N =EXH, (148)
Also, cf. (19.5) and (19.8), for free space,
_ _C o o V = o
[E|=|H|, |N|=F£Eco@m), N=%2 19
Ve |E|= Vi |H|, |[N|=|EXH| =\/€—°E§cos"’(27rut)
Ho (15a)
~ _ el
N = T

where we have averaged over the cycle. N represents the average radiation
incident normally per sec upon an area of one cm”. The oscillator presents
a cross section for absorption of a, ¢cm®. The energy absorbed must be

16x*y €2C°

Na, = éE{‘;a, = (16)
= ecEiay _ 47 8 C?
Na,, = ) = 36003 y (1631)

since the energy absorbed must be equal to that emitted, when a steady
state has been set up.
Introducing C, from (12), we finally obtain the result:

_ 8ret ) y (17)
@ =3t (2 — ) + (/207
a, £ d (173,)

= brem’c [ — v)” + (w/207]

This formula is extremely important. We call «, the atomic absorption
coefficient, as calculated by classical theory. We shall see in a moment that
the above general result contains a number of special cases of scientific
interest. We see that «, has the physical dimensions of an area.

There is an alternative derivation of equation (17) that illustrates still
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one further feature of the problem of radiation. Let us suppose that the
medium contains N oscillators per unit volume. We have already seen that
if the medium were subject to no outside disturbance, the amplitudes of the
individual oscillators would rapidly decrease to zero. The electric moment
would likewise vanish. We may consider that the light, traversing the
medium, induces a certain electric moment per unit volume. The magnitude
of the induced electric moment, often called the electric ‘“polarization,” is

P = Nex. (18)

We shall suppose the beam to be traveling along the z-axis. We shall
suppose, also, that the beam consists of plane-polarized light, with the

electric vector parallel to the axis of z. Then we may write, analogous to
(24.7),

E = iE, cos 27rv<z?n — t) = iE,&"" MY, (19)

where 7 is, by definition, the refractive index of the gas. Then ¢/n measures
the wave velocity.

We are to determine n from the conditions of the problem. A medium
that possesses neither free electric charges nor induced electric moment
behaves electrically like a vacuum, with « = /¢, the dielectric constant,
equal to unity. If «in the medium differs from unity, we must ascribe the
variation to the presence of induced polarization.

Let us consider what forms the Maxwell equations assume for certain
specified conditions. We restrict our attention to the equation whose general
form is

16D | 4«
VXH—Eat-l'CJ- (20)
D
VXH=a—t—|—]. (20a)
In vacuo, (20) takes the form
1 E
VxXH=o2 (21a)
and in a medium containing no free charges,
16D x OE
VXH_Z?t_c . (22)
VXH=c¢ @ (22a)
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In Maxwell’s equations, displacement currents are to be treated on a
par with real currents. The polarization results in the production of a
current density J:

J=W£d—x='£=%,

dt ~ o (23)

since P is itself a vector. Multiply this expression by 4/c¢ and add it to
(21); thus

VXH=2(E+ P), (24)

V X H =1 («E + P), (242)

to allow for the effect of polarization in the dielectric, as we have previously

termed a medium devoid of free charges, § (2). Equations (24) and (22) are
consistent if we set, as in (14.25),

D = «E = E + 4xP. (25)
E = ¢E + P. (25a)

Here E and P are parallel vectors because we assume the medium to be
isotropic. Thus we have merely to consider their absolute values, and write

4P

k =1+ & (26)
€ P
k=_-=1+_5 (26a)
We return, now, to equation (4), written in the form:
dz_x @ 2 _ E_Eo 2xiv(zn/c—t) ‘
dtZ + 7 dt + (27FV0) xr = m € ’ (27)

by (8), (9), and (19).

Although we may, if we choose, work entirely with real variables, em-
ploying a cosine instead of the imaginary-exponential factor, the algebra
is considerably simplified by the present procedure. The reader is encour-
aged not to worry about obscure physical conceptions like complex ampli-
tudes, complex refractive indices, etc. The appearance of the complex
quantities is only temporary. To regain the physical meaning we must take
the real part of the final solution as before.

Assume a solution of the form

T = Ae21r1'v(zn/c—t), (28)

where 2, being the coordinate of the given oscillator, is a constant. Differen-
tiating this expression, substituting the result into (27), and solving for the
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amplitude, we find that

&l [ 1 ]
4 = 4°m LG® — vy — wi/2r] (29)

From (18), (19), (28), and (29), we find that

_ N&? 1 2 2 yvi
R e = R R <]

_ Ngz 1 2 2 'YV?:
=Y am G = )" + (yr/2m)* [(VO )t (309)
where we have cleared the denominator of imaginary quantities.

The procedure we have followed up to the present bears a close resem-
blance to that followed in §§ 24 and 25. Our dielectric constant and hence

the refractive index turns out to be complex.
Let n be the complex index of refraction. Then, by (24.5),

k= 1. (31)

Instead of setting n = a + bi, we shall anticipate the form of the final
result and set the complex index

_nt ke _ .

K
4y )

n

where n and k are constants to be interpreted physically. For the physical
conditions we shall ordinarily encounter, the second term of (30) proves to
be small compared with unity. We may therefore expand «'’* by means of
the binomial theorem, and write

_n 4 dke N 1 s o, W

e e G R @
_ N¢é 1 2 2 m

n=1 + 87r2c-0m (V(z) _ V2)2 + ('yv/21r)2 [(VO V) + 27} (323)

The quantity written as n in equation (19) should now be interpreted as n.
Dropping the vector form of (19), we have

E — Eoezriv(zn/c—t) — Eoe—kz/zemriv(zn/c—t)
= Epe *’* cos 2mv(zn/c — ©). (33)

We have finally taken the real part of the complex expression and are now
in a position to interpret the result physically. The cosine term represents,
asin (19), a wave progressing parallel to the axis of z. The induced polariza-
tion of the medium has had two effects on the incident light beam. The

wave velocity has the value
v = C/’n, (34:)
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instead of ¢, as for a vacuum. n thus plays the role of the ordinary refractive
index. Also the presence of the exponential term leads to actual absorption
of the radiation. The amplitude of the beam is decreasing as ¢ **’* and the
energy, which is proportional to the square of the amplitude, varies as e™**
We may, therefore, interpret k as the absorption coefficient per unit path.
The magnitudes of n and £ still remain to be fixed. Equating the real and
imaginary parts on both sides of (32), we readily obtain the results

SR L el S— (35)
2wm (7 — )+ (/20"

n— 1= 8ﬁeg:m vy — VZEZ—-I—VZW/%)% (352)

b= N ot A G %9

k a 2 (36a)

=N 6rem’c’ (V?) — V2)2 + (yv/ 27")2’

where we have substituted for v from (30.12). Equation (36) is consistent
with (17) through the relationship

k = Na,. 37)

32. Anomalous dispersion. According to equation (31.35), the index of
refraction of most gases will lie in the vicinity of unity. For a frequency »
in the neighborhood of an absorption line that lies at frequency »,, we may
write

ve — 0 = (v + »)(o — ¥) ~ 2wy — ¥), (1)
and (31.35) becomes
N& Vo — ¥
n— 1~ drmy, (vy — V)2 + (')//41r)2. e
n—1 Ne¢ Vo — ¥ (2a)

- 167 egmy, (vo — V)2 + (7/47")2'

When » > »,, i.e., for frequencies greater than »,, n — 1 is negative. The
refractive index is less than unity and the wave velocity is greater than
that of light in vacuo.* For frequencies less than »,, the refractive index is
greater than unity. The form of the curve of n — 1 is shown in Fig. 27. The
explanation of the well-known phenomenon of anomalous dispersion or
refraction lies in the above formula. Figure 28 illustrates a well-known
laboratory experiment. Here A is a source, let us say, of sodium light; B is
a spectrograph slit (horizontal); C is a collimator lens; D a prism; and F the

*The reader is assured that a wave velocity greater than ¢ does not violate the law of
relativity. As will be shown presently, the “signal velocity’’ is always less than c.
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camera lens. If the second prism, I, were not present, the spectrum would
extend in a horizontal plane and the lines would be vertical. Let GG’ repre-
sent the position of one of the D lines of sodium.

Vo
Iv-=27.

The prism E is merely a glass shell filled with sodium vapor. The base
of the second prism is at right angles to that of the first. As a result of
anomalous dispersion, the prism E bends light in the neighborhood of the

A 8 c

| OQE

yioe! G'

G'VH'
IV-28.

D lines into a special pattern. The light in the red wing bends in one direc-
tion, whereas that in the violet wing bends in the opposite. In consequence
the light originally in GG’ assumes the pattern of an anomalous dispersion

curve AHH'B'.
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The observed magnitude of the phenomenon will not agree, however,
with that predicted in equation (2). In deriving the foregoing formulae we
have tacitly assumed that the molecules are motionless. As a consequence
of the gas-kinetic velocities of the molecules, the dispersion curve is the
average effect of the individual atoms. Each atom behaves as a resonator
of frequency »,, but the motion of the atom relative to the light source and
observer causes it to absorb in some adjacent frequency, related to the
first by the Doppler effect. We shall not attempt to estimate the magnitude
of the Doppler correction.

33. Limiting expressions for the classical absorption coefficient. The
general expression for the classical atomic absorption coeflicient, for the
linear oscillator, is

_ 8ret ! )
YT 3w 62 — ) + (w/2n)
et vt
& = bregm’ct vy — v°)* + (yv/2m)* (1a)

(31.17). This formula, like that for anomalous dispersion, requires correc-
tion in the neighborhood of the spectral line to allow for the Doppler
effect.

Disregarding the Doppler correction, we may derive a number of
extremely interesting results from (1), according to the value of », — ».
When » = », , we have

% = 3m’c'y’ 2 vi 27 Ao. @

21"841/2 3 2
a, = 3637)’&204‘)'2 = on Ao. (2a)

When v ~ v, ,
2r et v

% = 3uie o — 0" F O/ @

4 2
a, = £ z . (32)

T 24Em’t vy — »)° + (v/4m)°

When | vy — v | > v/4 m,

_ 87t ' @
a, = 3’m204 (V(z) _ Vz)z-
4 4
o, £ 14 ) (42,)

- brem’ct (vi — ¥°)°
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When v, K v, i.e., when the fundamental frequency lies far to the red,

o = 8re
v 3m2c4; (5)
&t
o, = %Egmzcu (5&)

Thomson’s well-known scattering formula for x rays. This equation also
holds for free electrons, for which v, ~ 0.

Finally, when v, >> », i.e., when the fundamental frequency lies in the
extreme ultraviolet,

8ret v 8we* \p
@, =5 2id= 5 31d (6)
3mc vy 3mec A
et
o, = 2214 4 (6&)

6regm e’ v, 6remct A\

the well-known A\ * law of Rayleigh scattering.

34. Wave and group velocity. We have already pointed out that no
strictly monochromatic waves occur in nature. But, even if they did, we
should find it impossible to measure their velocity of propagation. A pure
sine wave extends from — o to + o its amplitude is uniform so that
there is no distinguishing feature at any point of the beam. All experi-
mental determinations of the velocity of light depend upon interrupting,
chopping, or modulating the beam. The mechanical act of cutting off an
otherwise pure sine wave will introduce, as we have seen, spurious frequen-
cies differing from the natural one. The actual sharply terminated beam
behaves like a Fourier integral of pure sine waves.

Suppose that we have a group of such sine waves, traveling in the positive
direction of the z-axis. Let their amplitudes, 4, all be identical and the
frequency interval be narrow. As in (II1-7.31), we shall express the indi-
vidual frequencies as an integral multiple, k&, of some very much lower
fundamental frequency »,. Then we may express the amplitude resulting
from the action of the entire group of waves, as,

k7
v=4A kz cos 21ru,lxc<zcﬂ - t>, ey

where n, is the refractive index for light of frequency v, = k »,. Each
individual wave is assumed to travel with its own wave velocity, v,, where

v, = ¢/ (2)

as before. Equation (1) follows directly from (31.19). In the limit (1)
assumes the form of an integral.
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Consider, now, any pair of these subwaves distinguished by the respec-
tive indices k and &’. The composite amplitude ,, of the pair will be

) + cos 2mvk’ <zﬂ — t>:| 3)

Two harmonic interfering waves ‘‘heterodyne’ with one another to give
“beat” frequencies equal to the sum and difference of the original fre-
quencies. This relation follows from the trigonometric formula:

¥p = A[cos 27rufk<zc

COSa—I-cos6=2cos%(a+ﬁ)cos%(a—ﬂ). 4)

For the present case the two frequencies are assumed to be very nearly
equal. Hence we may, without appreciable error, set

k+ k" ~2k and kn, + k'n,. ~ 2kn,. (5
For the difference « — 3, we may take
k— k" = Ak, and kn, — k'n.. = A(kny), (6)

since we cannot here ignore the difference between & and k’. Equation (3)
becomes

v, = 2A|:COS 27rv,k<z% — t) cos 2my, Ak(z A(Akzk) - t>:| )

The first of the cosine factors appears to be our original harmonic wave,
with twice the amplitude. The second cosine factor possesses an angular
argument that is very much less than that of the initial wave. Its effect

oA
vvv VY

Iv-29.

is to superpose on the initial wave a slowly varying amplitude. The re-
sulting wave may be compared to a high-frequency radio wave “modulated”
with a pure musical tone (Fig. 29).

Comparing the arguments of the two cosine terms, we note the corre-
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spondence between the factors

1 Alkny) _ 1
c v and ¢ Ak u’ 8)

Since v is the velocity at which the maxima of the individual wave progress,
u will be the velocity of propagation for the maxima of the modulating
wave. To the extent that A (kn,)/Ak is a constant for the group, we may
regard u as the velocity at which any modulated signal is propagated.
It is u, therefore, the group velocity, and not v, the wave or phase velocity,
that is found from experimental determinations of the velocity of light.

Since » = k v;, we may pass to the differential form, and write, instead
of (8),

c
“ = @/dom) ©
We have previously noted in § 32, that the wave velocity may exceed that
of light. But u, as may be seen from substitution of (32.2) in (9), is always
less than ¢. Hence the theory of relativity, which specifies that no signal
velocity may exceed that of light, is not violated by the case of anomalous
dispersion.

35. Larmor’s theorem and the Zeeman effect. We have seen that
electrons vibrating harmonically with a given frequency will give rise to
radiation of that frequency. If the oscillation occurs in the presence of a
magnetic field, the character of the vibrations will be altered, with con-
sequent change in the resulting radiation. We call the observed phe-
nomenon, a splitting of the line into various components, the Zeeman
effect.

The force on an electron of charge ¢ and mass m, moving with velocity
v, through a uniform magnetic field of intensity B = u H is (16.21):

F—oE+%v, X H) = ma, 0

F = ¢(E + uvo X H) = ma,, (1a)

where a, is the acceleration. The last part of (1) is merely a statement of
Newton’s second law of motion.

Let v, and a, represent the velocity and acceleration with respect to
fixed axes o, Yo, 2, and v and a the same parameters with respect to
axes z, y, z with origin common to the first set, but rotating with angular
velocity . Then, by equations (II-25.14) and (I11-25.17), we have

Vo =V+oXr,
a,=at+eoX X1+ 2wXvV).

2
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Substituting these in (1), we get

ma—8E=Hc—8(v+m)(r)XH—mu)((m)(r)—2m(m)(v)

=2mv)(<o) ”—£H>+m(mxr)x<m+ﬁ€—H>. (3)
2me me

ma — €E = pe(v+ o X1) X H — mo X (0 X1) — 2me X v)
= 2mv X ((.) LBE H> + mlw X 1) X <m + !f;—é: H) (3a)
2m m

Thus far, © is an arbitrary vector introduced with the expectation of
simplifying the equations. Let us try setting

_ __HE

0= -7 H, €
- _ ke

© = —p H, (4a)

which will cause the first parenthesis on the right to vanish. Then

_ pe’

ma = ¢E + Ao r X H X H, (5)
_ pe :

ma = ¢E + im X E)XH, (52)

which is the exact equation of motion of the electron referred to axes
rotating with angular velocity, o as d:fined by (4).

Let us now investigate the relative magnitudes of the two terms on the
right-hand side of (5). The electric field E arises from charges within the
atom. If the effective charge of the nucleus and inner electrons in the
atom is Z, where Z is some number generally greater than unity,

E = Zer/wr®, E=|E| = Ze/wr'. (6)
E = Zet/dwer®, E = Ze/dmer’. (6a)

the last term of (5) attains its maximum value when r and H are per-
pendicular, so that its numerical value cannot exceed u’e’rH?/4mc®. For
MKS, the value is p’£*rH?/4m. Thus the order of magnitude of the ratio of
the last to the first term is wu’r*H?/4mc’Z. For MKS, the ratio is
reu’r’H/mZ. Here r will be of the order of an atomic radius, 10™° cm.
We may set « and g equal to unity, and we may also take Z = 1. The
maximum value of H attainable in the laboratory is about 20,000 gausses.
Therefore the ratio of the two terms in (5) will ordinarily not exceed 107"".

From this rather lengthy digression, we conclude that we may safely
neglect the second term of (5). Hence we get for the equation of motion
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in a magnetic field,

ma = €E. )
But if the magnetic field were to drop to zero, we have from (1), that
ma, = EE. (8)

To a high degree of approximation, the equations of motion with respect
to axes rotating with angular velocity o are the same as those in the non-
rotating coordinate system when H = 0. Thus to calculate the motion of a
charge under the combined influence of electric and magnetic fields, we
may first calculate the motion as if H were zero. And then, whatever this
motion may be, we obtain the true motion by imposing, upon the initial
trajectory, a rotation with angular velocity @ = —ueH/2mc. For MKS,
o = —ueH/2m. The axis of rotation is parallel to the field. This result is
known as Larmor’s theorem.

In the case of electrons moving in elliptic orbits, as for the Bohr atomic
model, the motion in a magnetic field may still be described as elliptic
with a superposed ‘‘precession.” If the electron is merely oscillating
linearly, a similar precession occurs. For example, consider, as in Fig. 30,

y

/
A sin
A P
o]
X
/ /
X
A cosy //(
w
¥
/ /
H
z
Iv-30.

an electron oscillating along the line OP, with frequency », and amplitude
A. Let OP make the angle x with the positive z-direction, which we adopt
as paralle] to H. Larmor’s theorem then states that the electron will
oscillate with frequency », and amplitude A along a line that precesses
around the z-axis with angular velocity © = —ueH/2me, with the angle
x a constant. For MKS, cf. preceding paragraph. The line OP thus traces
out a right circular cone, with vertex at O and generating angle x. The
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direction of precession, for a megative electron, is shown in Fig. 31. From
(4), we see that H and o point in the same direction when the charge is
negative. We may set « and g equal to unity because we consider the
electron to move in a vacuum. For MKS, we thus set e = ¢ and p = u,,
to achieve the same purpose.

g 7

Iv-31.

The displacement of the electron along the vector OP = A is a function
of the time, e.g., A cos 2my,t. Resolving the combined vibration into
components parallel to the three axes, we have

x = A cos 2my,t sin x cos 2mvt,
y = A cos 2mv,l sin x sin 2mwvi, (9)
2 = A cos 2wy, cos x,

wherein we have written

w = 27y, Or v = uel . (10)
drme
| ueH
"7 | dam I (10a)
Set Asiny = 24’ and A cosxy = 24" (11

Then employ the trigonometric transformation (34.4) and the analogous
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expression for the sines. We thus obtain
x = A’[cos 2r(v, — v}t + cos 2x(v, + v)i].
y = A’'[—sin 2m(vy — »)t + sin 2z(vy + »)i]. (12)
2 = A’ cos 2my,t.
The original displacement takes the form
r = A cos 2myt = ix + jy + kz = A’k cos 2wt
+ A’[1 cos 2n(vo + v)i + jsin 2x(v, + »){]
+ A'[i cos 2r(vo — v)t — jsin 2x(vy — »)t].  (13)

The expression A’[i cos 27(vy — v)t — j sin 27(v, — »)t] is a vector of
magnitude A’ located in the zy-plane and rotating around the z-axis in a
negative (clockwise) sense, with frequency (v, — »). Similarly, the second
bracket of (13) is a vector that rotates about z in a positive sense with
frequency (v, + »). An impressed magnetic field therefore resolves the

y

"zAsinx

1v-32.

original linear oscillation into the three components, which we tabulate
as follows:

Component Direction Amplitude  Frequency
(a) linear parallel to H A cos x Yo
(b) circular positive rotation about H 1 4 sinx vo + v
(¢) ecircular negative rotation about H 1 A sin x Vo — ¥

The component vectors are illustrated in Fig. 32.
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Expressed as bivectors, the instantaneous electric moments, er, for

the three cases of (13) become

(a) P, =kAe cosxe™"". (14)

(i—1j) Aesinx Q2T ot
b) P, =
) V2 V2

(C) P, = (1\'*;;]) AS\S/H;X 27!‘1-(Vo it (16)

The three components of (13) are the real parts of these bivectors.
The factor (1/1/2), placed in front of the two rotating vectors, brings
these equations into the form of (29.49). We are to compare equation (14)
with (29.45). For this equation, we have

P? =P, - P* = A% cos’ x, (17)
whereas for (15) and (16) we have, as in (29.49),

(15)

PP— P, .P* = %A%"’ sin” x. (18)

The Poynting vector and integrated flux for the linear component are,
from (29.47) and (29.51),

25t

N, =i, ?7—}2/— A’€® cos’ x sin® 4, (19)
2 4
N, =1 " Dee §—§A e® cos® x sin® 4, (19a)
0
1 4 4
¢, = —303 A?e? cos’ x. (20)
47F3V4 2 92 2
¢ = 3. 3 A“e® cos” x. (20a)
0

We shall explain the significance of the subscripts = and ¢ presently. For
the rotating vector components these quantities become

N, =i, 7;—217” A;€2 sin® x (1 + cos’ ), (21)
N, =i, I::;; A;EZ sin® x (1 + cos® ), (21a)
and 4, = 16?:;':’4 A 28228in2 X (22
¢ = 437223 AQSZ;iIf X, (222)

where v = v, £ v. (23)
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For zero field, as »* — v, , the sum of the linear and the fwo circular com-
ponents becomes

167 5 »
¢”+2¢”=TA£’ (24)
6 + 20, = % 40 24a)

[ d e 36063 8! ( a

which agrees, as it should, for the flux from the original linear oscillator,
of moment Ae.

The foregoing equations refer to the energy emitted by a single atomic
oscillator in a magnetic field. Ordinarily we shall have a large number of
such oscillators, with their initial vibrations distributed at random. If all
the oscillators have the same amplitude A, we may calculate the resulting
intensities and fluxes by averaging sin® x and cos® x over a sphere. Thus

a7 [o cos® x sin x dx de .

cos’ x = S (7 oin 5 dy do = 1/3, (25)

and sin® x = 2/3. (26)
Now set

A’e?/3 = P (27)

Then (19) and (21) become, respectively,

a4 3 44
N, — i, ¥ p*sin®0, N, =i, %% Pl + cos® ), (28
cTr crT
16 4 4
and $r = b = g5 P,
vt . s .ot 2
N, =1, 26 o P?’sin®9, N, =i, ZE_CE;EP (1 + cos® 6), (28a)
o 0
47t
d)r - ¢a 36063P )

as in (29.51). For zero field, the light in any given direction will be un-
polarized.

From equations (28) we may now calculate the relative intensities of
the three Zeeman components, as viewed from any angle. The electric
vector, from (29.41), lies in the plane defined by the point of observation
and the instantaneous position of P. Thus the linear component will give
rise to linearly polarized light. When 6 = 0, the linear component vanishes
and we view two lines circularly polarized in opposite directions and
separated by frequency differences f=ueH/4rme from the central position
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vo. In MKS the separation is £ueH /4mm. This appearance of the spectrum,
viewed along the field through an aperture drilled in the pole of the magnet,
is called the longitudinal Zeeman pattern (Fig. 33).

If we view the oscillations from some point in the zy-plane, we observe
the so-called transverse Zeeman pattern. Here the component parallel

C, 9

Y Y oty

Iv-33.

to the z-axis yields an undisplaced component linearly polarized. The
two circular vibrations appear like linear oscillators, as seen from the
transverse position. They thus give rise to light linearly polarized at right
angles to the central component, with frequencies at », & ». The two
types of components are usually indicated by the letters = (parallel) and
o (perpendicular—German: senkrecht). Hence the significance of the
notation in equations (19)-(22). Note that these letters refer to the direc-
tion of oscillation of the electron in the field and hence to the position of
the electric vector. Hence a m component is polarized parallel and a ¢
component perpendicular to the field. The theoretical tranverse Zeeman

g x g
Vv Y Votv
IV-34.

pattern is shown in Fig. 34. As viewed from intermediate positions, the
pattern will consist of a linearly polarized central component and two
displaced elliptically polarized components.

The Zeeman effect, as observed for actual atoms, is usually much more
complex than the simple pattern predicted for the classical oscillator.
Quantum theory completely removes the anomaly. Part of the difference
results from the fact that the electron possesses an intrinsic magnetic
moment in addition to a negative charge.
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36. The Hamiltonian for the electromagnetic field. We have seen that
the force acting upon a particle whose charge and mass are ¢ and m,
respectively, conforms to the equation

F=e<E+cleB>, ey

F = ¢E + v X B), (1a)

(16.21). Furthermore, we have both E and H expressed in terms of the
scalar and vector potentials ¢ and A, as follows:

1
E=—V¢—c—%, B=V XA. )
E=—V¢—%, B=V XA. (2a)

Let us write down in expanded form, the z-component of (1), in terms of

(2). Then

_ 4 = % g4,
F’_dt(mx)_ or ¢ ot
f.eﬁ_am__@é_amﬂ
+c |:y< ox 6y> Aoz ax /1’ 3)
_do s dA.
T dt (md) ar — %ot

(24, Q&)-@é Q&ﬂ

T e[y( ox dy \ o2 ox /1’ (3a)
where the ‘“dots” denote time derivatives as before. Now the total de-
rivative

dA, 084, . |, 94, . , 04, . 94,
dt = ex Tt ey VT F T )
Using this equation to eliminate d.4./d¢, we obtain
1<. 4% %_EP&- 34, @U}_
dtm$+€c +€6:c c 6$x+6xy+6:c~_0' (5)
d, dp ‘[aA, ., 84, | 4. ] B
dt(mx—{—eA,)—i—eax € axx+6xy+axz = 0. (5a)
Similar equations hold for y and z.
Let us define a function L as follows:
L= % m@ + 9* + ) —ep + Cf (4,2 + Ay + A2, (6)
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L= %mw b 4D — o+ e(Ad + Ag+ AF,  (6)
so that % = mi + ed, )
az c

oL ,
5 = md + €4, (7a)
and
oL _ _ 89 [% 94, . a_fg}
or 86x+c 6xx+6xy+axz' ®)
oL _ 9o, [9A.. , 94, &}
dr £6x+ |:6xx+6:z:y+6xz' (82)
Then we may write (5) in the form
d oL 9L
dtoz ox O ®)

This equation is in the form of the Lagrangian equation of motion (II-
39.22), if we interpret L as the Lagrangian function, T — V. (II-39.21).
If conservative forces in addition to those of electrical origin are acting,
we must replace the scalar electric potential energy, € ¢, by V, the sum
of all the scalar potentials of the system. Furthermore we must define
the canonical momenta by means of (II-39.25). Thus

oL

p. = 3., PTC. (10)

The Hamiltonian function, H, is defined by (II-40.1) as
1 .
H=2pj— L= m@+y+8)+7. (11)

Hence, in terms of the p’s, we have, from (10) and (7), the following
modified form of the Hamiltonian:

H == [(pz - 8A’>2 + (p,, - 8A”>2 + (pz - %)2} + V. (12

2m c c

H - %Z, [(p: - EA:)Z + (pu - 8Ay)2 + (pz - 8A2)2] + V (12&)

The occurrence of a vector potential requires us to distinguish between
the ordinary momentum mz of the charged particle and the canonical
momentum p, of the electromagnetic Hamiltonian. If A is zero, as for
the electrostatic case, the expression reduces immediately to its usual form.
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SELECTED PROBLEMS FOR PART IV*

1. By what factor would you have to increase the mass of two electrons in order
to make their mutual gravitational attraction exactly counterbalance their mutual
electric repulsion? Does this result indicate that we are justified in neglecting gravi-
tational forces in most electrodynamical problems?

2. Two particles of mass m and electric charge +¢ are suspended from strings
of equal length, I, separated by a distance, d. Solve for the angle of deviation of the
strings when the particles attain equilibrium in a gravitational field ¢ em/sec™.

3. Plot the field pattern and equipotentials for:
(a) two equal charges of the same sign;
(b) two equal charges of opposite sign. Let a be the distance of separation.

4. Plot the field and equipotentials of a charge 4¢ and —2q, separated by a
distance d. Locate and identify the surface of zero potential. Hint: Consider the
two charges to be images in a conducting grounded sphere.

5. Given a spherically symmetrical charge distribution, p(r), prove that the field
or potential at any point r = r,, depends only on the charge in the region r < 7,
and that the effect of such a charge is equivalent to that of a charge concentrated
at r = 0.

6. According to wave mechanics, a hydrogen atom in its normal state consists
of an electric charge 4+ ¢ located at r = 0, surrounded by a negative charge distribu-
tion whose density is p(r) = —Ce~2"/%°. Determine C from the condition that the
total charge of the electron must be —g¢. This process we call ‘“normalization.”
Then find the potential and electric field as a function of r.

7. Three particles, A, B, and C with respective electric charges ¢, —qa/f, and
Va, lie in the same straight line such that AC = f, BC = a®/f. Show that a spherical
equipotential surface always exists. Discuss the position of the points of equilibrium
on ABC when V = ¢(f + a)/(f — @)° or V = ¢(f — a)/(f + @)*. (Cambridge
exams.)

8. A and B are spherical conductors with respective charges ¢ + ¢’ and —gq.
Prove that either a point or line of equilibrium exists, according to the relative
radii and separation of the spheres and the ratio ¢’/¢. (Cambridge exams.)

9. The charge density arising from the presence of electrons between the plates
of a small, parallel-plate capacitor varies linearly as p = poz/d, where d is the plate
spacing and z represents the distance from one plate. One plate is grounded and the
other held at potential V.

(a) What equation connects Vi, po, and d?

(b) If the field at any point between the plates reaches breakdown value E,,
(a function of the material between the plates), a spark discharge will occur. At what
eritical value of V, will this breakdown occur?

*Unless otherwise indicated, Gaussian units are used.
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10. Solve for the potential at all points of space resulting from a charge ¢ located
at the point (z, ) in the plane z = 0, with the two planes x = 0 and y = 0 consisting
of infinite grounded sheets of conducting metal. Use the method of images.

11. Solve for the potential at all points of space resulting from a charge ¢ located
on the z-axis at x = a, between two infinite conducting sheets at + = 0 and z = b,
where b > a. Hint: This problem will require an infinite series of images and the
solution will take the form of an infinite series.

12. Prove Earnshaw’s theorem: A charged body placed in an electrostatic field
cannot be maintained in a position of stable equilibrium under the influence of
electric forces alone. Hint: Use Laplace’s equation.

13. (a) Use Gauss’ theorem to prove that the charge on a conductive body must
reside at the surface.
(b) What can you conclude about the charge on the surface of a completely
enclosed cavity within the econductor?

14. (a) Evaluate the integral of Gauss’ theorem over a sphere of radius r whose

center lies at the origin, where a charge ¢ is located. Evaluate D at the surface.

(b) Now separate the charge into two parts. Let fg remain at »r = 0 and put
the remainder (1 — f)q on the z-axis at the point z = a. Evaluate Gauss’ integral
over the sphere of radius r = R > a. Can you use this result to find D on the surface?
If not, why not?

(¢) What conditions must be satisfied so that we can apply Gauss’ theorem
to the evaluation of fields that arise from a given charge distribution? What method
can you always apply, even when the Gaussian integral fails?

15. (a) The value of E, in a perfect conductor, must be zero. In what type of
medium will the polarization vector P behave analogously?
(b) Use the fact that P and the associated polarization charge follow from
Gauss’law: [P + dS = — ¢/, to show that the surface charge density on the interface
between a dielectric and a vacuum must be equal to the normal component of P.

16. A charge ¢ lies a distance d from the center of an insulated metal sphere of
radius R, which carries a charge Q. What will be the force between the sphere and
the charge when (a) d > R? (b) d < R? Show that the signs of Q and g are not the
sole factors that fix the sign of the resultant force.

17. Assume that we can cut a small sphere of radius R out of a dielectric without
affecting the polarization vector, P. Calculate the field produced at the center of
this sphere by the induced polarization charges on the surface of the cavity.

Ans. E = 4xP/3.

18. Calculate the work necessary to move a charge ¢ to infinity from an initial
point a distance d from an infinite conducting plane. Note that W = ¢[V(d) —
V()] is not the correct answer.

Ans. W = ¢°/4d.

19. (a) Consider a plane sheet containing a surface charge of density o. Is E
discontinuous across the sheet? In what way does the discontinuity depend on ¢?
Is the potential, V, discontinuous across the sheet? What relation connects the
discontinuity of V and ¢?
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(b) Consider a double layer of charge, e.g., the limiting case of a layer of
surface charge density +o separated a distance I from one of —¢, in the limiting
case where | — 0, ¢ —, and lo = const = electric dipole moment per unit area.
Discuss the possible discontinuities in E or V at the double layer and indicate how
they are related to lo.

20. Calculate the potential resulting from charges +¢ at = a and —gq at
T = —a, on the z-axis, at respective distances r, and r, from the respective points.
Express the potential in polar coordinates (r, ) with the simplifying assumption
that 2a << r. This expression represents the potential of a dipole of moment
M = 2aq. Calculate the field intensity from such a dipole.

21. (a) Calculate the force and torque that a uniform field E, exerts on an elec-
tric dipole of moment M.
(b) Calculate the force and torque that an electric field whose gradient
dE./dx is constant, exerts on a dipole.
Ans. (a) F=0;T=M XE,.
®F,=M:dE,/dc;T=MXE,.
(c) Show that, in general, F = V(M - E)andT =M X E.

22. Two concentric spheres of radii r; and r, (r, > 7,), with respective voltages
Vi = 0and V, = V, are separated by a dielectric whose « varies as k = (ry/7)",
n 2> 0 = const. Calculate the potential as a function of ». Use the relation V « P =
— p,, where p, is the polarization charge density, to solve for the distribution of
polarization charge.

n—1 n—1
Ans. V = ]'0<T1T—rn—_1>’ n# 1,
L T T '
. (In r/7))
_ - Unr/r) =1
v 1 "(In 7, /1))’ " ’
.nln — 1) 7t
P =1, Ao S , n# 1
- n—1
Pr = S I ) n = 1.

23. Faraday performed his famous “ice pail experiment’ to prove that Cou-
lomb’s law of force between two point charges varies inversely as the square of the
distance between them. Maxwell and Cavendish later refined the experiment, sub-
stituting spheres for the original ice pails. Two concentric spherical conducting
shells, completely insulated from one another, are temporarily connected with a
wire. Now, in turn, place an electric charge on the outer shell, remove the connecting
wire, discharge the outer sphere, and then test the inner sphere for charge. The re-
sult, perhaps surprising at first sight, is that the inner shell possesses no resultant
charge. This condition will obtain only when the charges obey Coulomb’s law. To
show this theoretically, assume that the force between two charges &, &', varies as
£e'¢(r), where r is the distance between them and ¢ some general function.

(a) Show that the potential at a point P within a uniformly charged sphere
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V = foh _[OKEQC? <frm¢>(r) dr)azsinﬂdﬁd(;b;

where @ is the total charge and where r is the distance from P to the elemental area
2 .

a’ sin 0 df d¢ on the surface.

(b) Suppose that Pliesatr = ¢, 8 = 0. Show that, if ¥’ = a*+ ¢® — 2ac cos 6,

r=ge [ ([ena)E

(¢) Introduce the notation

0 = [ ([ 40 ) ar,

of radius a is

then

and show that

V=L lfa+d — fa—

This expression holds whether we regard ¢ as point external to the smaller shell or
internal to the larger one. During the time that the two spheres are in electrical
contact their potentials must be the same. Further, this potential must be inde-
pendent of ¢, and therefore constant.

(d) By successive differentiation with respect to ¢, show that

f'la+c¢ = f"la—¢=7C
where C is a constant.
(e) Show thatf(r) = A 4 Br+ Cr° and¢(r) = B/r”. For further discussion,
cf. Jeans, Electricity and Magnetism, Ch. II.
(f) If we write the law of force between two charges as ¢(r) = 1/r2*?, prove
that a charge @, remains on the inner shell of the previously described Faraday
““ice pail”’ experiment, so that, to the first order in p, we have

Q, = —sz[—l— In 2r, — T In(r, + r) + % In (r, — rl):l,

r
re — Ty 2(r, — 1)

where ), is the charge on the outer shell prior to discharge and r, and r, the respec-
tive radii of the outer and inner shells. Hint: Use Maclaurin’s theorem to expand
¢(r) as a power series, in p.

¢(r)=7%(1+ap+...).

Evaluate V and then determine Q, by application of results from the previous prob-
lem. (Cf. Jeans, Ch. II.)

24. Calculate the capacitance of two concentric metallic spheres. How does the
capacitance change when we move the inner sphere slightly off center? What is the
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capacitance of a single sphere? Hint: Let the radius of the inner sphere approach
Z€ro.

25. Two capacitors, of capacitances, C; and C,, possess respective charges @, and
Q.. What is the total energy of the pair? How does connecting the two capacitances
in parallel affect the total energy? Account for the difference. Discuss the non-
physical case when the connecting wire has zero resistance.

26. Cover the inner sphere of a capacitor consisting of two concentric spheres
with a thin layver of thickness d, of dielectric whose constant is k. What effect does
this layer have on the capacitance of the capacitor?

27. A parallel-plate capacitor contains a dielectric whose « increases linearly
from one plate to the other. Calculate the capacitance of the capacitor in terms of
k; and k,, the values at each plate.

28. Consider a capacitor formed by two concentric spheres of radii » = r, and
ro. If the dielectric between them varies in some arbitrary fashion like k = (8, ¢),
where 8 and ¢ are polar coordinates in the usual sense, prove that

_ T2
47!'(1‘2 - T'l)

C k sin 8 df de.

29. Consider a perfect conductor, set into an electrostatic field (i.e., one pro-
duced by charges, not batteries), in such a way that it does not disturb the initial
pattern of the equipotential surfaces, external to its boundaries. In other words,
its boundaries must coincide exactly with some of the original equipotentials. How
much work will you have to perform on the conductor to move it to infinity and
thus restore the original pattern? Hint: Consider the field between the equipotentials
bounding the volume previously occupied by the conductor.

30. A current flows in a straight wire of circular cross section, wherein the current
density (in esu) is of the form: ¢ = f(rt). Neglecting the displacement current, show
that

47 d oK oH
c "= gD and o= wT

31. Use the Biot-Savart law (10.16), to solve for the field along the axis of a
current-carrying wire loop. Compare with the discussion in § (11). Take care, before
integrating, to get the proper directions for the dH's and resolve into components
along and perpendicular to the axis of symmetry.

32. (a) For a very long, closely wound solenoid (coil) the magnetic field just
outside is very small. Symmetry considerations lead us to expect the internal field
to be axial. Use these assumptions and the circuital theorem to calculate the field
within the coil.

(b) The field along the coil axis also follows from the result of the previous
problem. Perform the necessary integration and check the answer with that of (a).
Note that the method (a) shows that the field anywhere inside the coil is equal to
that along the axis, whereas method (b) gives the field on the axis for a solenoid
of finite length.
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33. Use the Biot-Savart law (10.16),

r
3
r

dH = — X dS,

S I~

to solve for the magnetic field at a distance r from a straight wire of infinite length;

carrying constant, current.
Ans. H = 2I/cr.

34. From conditions of symmetry and the equation V + H = 0, we should expect
the magnetic field around a straight wire to possess eylindrical character, with H
tangent to circles concentric with the wire. Use these considerations and Ampere’s

circuital theorem,
[Hoa="[[5.as

to calculate the field from a straight wire of infinite length. Compare the answer
with that of the previous problem.

35. Derive the equivalent wave equation for ¢ and A, using Maxwell’s equations
without the displacement-current term. How could you test this equation experi-
mentally? Do the solutions of these equations represent wave motion, such as
light waves?

36. Calculate the magnetic moment at the center of a current-bearing loop.
(a) of circular shape, radius = a. (b) of square shape, side = a.

Use M = 21—cfffr)(JdT.

(c¢) Note the difference in the form of the answer, when calculated in MKS
units.

37. The intensity of the earth’s magnetic field, at the pole, is about 2/3 gauss.
Assume that this field results from a magnetic dipole. Calculate the magnetostatic
potential V and the force field H in polar coordinates. Evaluate the magnetic
moment M. Assume that the field results from a current loop circling the equator
and calculate the total amount of current required to produce the field. The radius
of the earth is 6.38 X 10'° em. What is the differential equation of a line of force?
Integrate this equation and check the fact that these lines of force are perpendicular
to the equipotentials, V.

38. Prove that the area of a hysteresis loop measures the rate of energy dissipa-
tion (energy per cycle) within the magnetic material, as stated in § (14). Consider
the work done by the agent that drives the current through the coil surrounding
the core and relate the electrical parameters to B and H.

39. What is the magnetic energy stored in a coil carrying current I and possessing
a paramagnetic core of permeability u?

40. Calculate the total energy, in ergs, stored up in the earth’s magnetic field in
the volume bounded by its surface, r = R, and r = o . Compare this amount with
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the quantity of solar energy incident on the surface of the earth in a second. cf.
problem 51. If all this incident solar energy could be concentrated into the manufac-
ture of this external field, how long would it take to manufacture the field?

Ans. Energy = 8xR’H?/3, where H, is the value of the field at the pole, given
in problem 37. R = 6.37 X 10° cm.

41. Prove that the two Maxwell equations,

vxE=-18 4 va=cl%

47
c 9t +cJ’

imply also the two divergence equations

V: :D=4rp and V -B = 0.

Hint: Take the divergence of the curl equations and apply the equation of con-
tinuity, V - J + 9p/dt = 0.

42. In a cyclotron, particles of charge ¢ and mass m travel in circular paths under
the influence of a magnetic field B. An alternating electric field is applied across the
gap ab as shown in the diagram. B is perpendicular
to the plane of the page. What is the relationship
between the radius r of the orbit e¢d and the energy
of the particle (non-relativistic) with no external
voltage applied? If we wish to accelerate the
particles by means of the alternating field, what
frequency must we apply? Note that the frequency
is independent of r and thus also independent
of the energy.

43. In a betatron, an increasing magnetic field
accelerates electrons and keeps them in an orbit of
fixed radius r,. Show that we must have (dB,/dt) =
1(dB,,/dt), where B, is the field at the orbit, r,, and
B,, is the average field within the orbit, if the elec-
trons are to remain in the orbit of constant radius.

IV-35. Suppose that the field increases linearly with the

time. Now if the electrons are injected into the field

with an initial energy 17, by a sort of accelerating “‘gun’ at a time ¢, seconds after

the field has zero B, find the value of £, such that the electron will circulate in
the orbit of radius r,.

44. (a) Solve for the torque on a square wire loop of side a and carrying current

t, when the normal to the plane of the loop makes angle  with a uniform magnetic
field B. Is there any net force on the loop?

(b) Recalculate for a circular loop of radius r.

(¢) Show that one can, in general, express the force on aloopasT = m X B,
where m is the magnetic moment of the loop of area 4, m = 74n/c.

(d) Note the difference in the calculation resulting from the use of Gaussian
vs. MKS units.
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45. (a) Two current-bearing wires run parallel to one another. Calculate the
force (magnitude and direction) between the wires as a function of current and
separation. Are any electrostatic forces involved?

(b) Consider two parallel electron beams, wherein the electrons move with
velocity oo, in the same direction. Calculate the force between the beams. Are any
electrostatic forces involved?

(c¢) Consider the force determined by an observer moving with velocity v
parallel to the wires or beam. What force will the observer measure in the two re-
spective cases? What fraction is electrostatic and what magnetic?

46. Consider a coordinate system wherein the zy-plane is horizontal. An electro-
magnet produces a uniform field, B, parallel to the z-axis. Within this field, hold a
non-conducting rod of cross section 4, length I, and mass m parallel to the y-axis.
Now drop the rod so that it falls parallel to the z-axis while retaining its horizontal
position.

(a) Find the voltage difference from one end of the rod to the other.

Ans. V = (de/dt) = Blv = Blgt.

(b) Let the rod in part (a) have resistivity p and connect its two ends by a
wire of resistance R. We suppose that the magnetic field ends at the limit of the rod
and that the connecting wire is free of the field. Determine the viscous drag as a
function of the velocity and calculate the terminal velocity of the falling rod.

Ans. F = B°I’»/(R + pl/A).

Vierminal = mg(R + pl/A)/B°C.

47. A cylindrical capacitor, of length L has a charge per unit length along the
inner conductor whose radius is a. Calculate the field as a function of r, neglecting
end effects. Calculate the capacitance when the outer conductor has radius b.
Verify that the energy contained in a capacitor is Q°/2C, by integrating the electro-
static energy density over the volume between the conductors.

48. A long slab of dielectric material slides into the gap of a parallel-plate capaci-
tor. The thickness of the slab just equals the spacing of the plates. After setting the
slab part way in, release it. Discuss the forces acting on the slab and its subsequent
motion under the following circumstances. Let « be the dielectric constant of the
material.

(a) Suppose that the capacitor plates carry charge Q. Calculate the force on
the slab. Hint: Consider the difference in the field energy resulting from a motion
dz into the gap. Regard any loss of field energy as corresponding to a gain of kinetic
energy of a free slab or as mechanical work done on the slab. Will the slab tend to
move into or out of the capacitor gap?

(b) Now suppose that the capacitor is connected to a battery of voltage V.
Again calculate the force. How does it compare with the result of part (a) for an
insulated capacitor? Do the forces tend to move the slab into or out of the capacitor?
Hint: Use the energy method, as hefore, noting that (0E/dx) = F. Be sure to
include, however, all sources of energy, including the work done by the battery.)

49. Consider a small, flat disk of dielectric, (something like a hockey puck) whose
thickness is equal to the spacing of a parallel-plate capacitor. The diameter of the
plates is large compared with either the diameter or thickness of the dielectric disk.
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Let the capacitor be insulated and carry a charge Q. Now suppose that we propel
the puck horizontally into the gap from an initial position well outside the field of
the capacitor. Let v, be the initial velocity, m the mass, and & the dielectric constant
of the disk. Calculate the velocity of the disk when it is completely within the space
between the capacitor plates. Note that no force acts on the disk, once it is entirely
within the capacitor, because the field energy is then a constant. What part of the
field, therefore, actively does the attracting? Do we consider this part of the field in -
our energy calculations?

50. Consider the following statement. ‘“The vector field D depends solely on real
charges whereas the vector field E depends on induced polarization charges as well.”
Is this statement valid for (a) a plane parallel-plate capacitor and dielectric?
(b) a uniform dielectric sphere with charges at the center? (c) a charge adjacent to
a dielectric block, as in Tfig. 4? Hint: Does D remain constant, if we remove the
dielectric in the three above cases? (d) What additional condition is necessary to
make the above statement generally valid? (e) Modify the statement, to make it
generally valid, merely by substituting other electrostatic parameters for ‘‘the
vector field D’ and “the vector field E.”

51. The sun’s radiation (solar constant) at the earth’s distance from the sun is
94 g cal/em® min by Abbot’s measures. What will be the pressure exerted by this
radiation on a unit area of the ocean (considered to be a perfect reflector) or of the
ground (considered to be a perfect absorber). Use the result of the previous problem
to calculate the total radiation pressure on the earth, considered as a perfectly
reflecting sphere. Compare this figure with the gravitational force of the sun.

One g cal = 4.183 X 107 ergs = 4.183 joules;
mass of earth = 5.98 X 107 g;
mass of sun = 1.91 X 10* g;
G = 6.67 X 10~° dyne em® g °.

The total mass of a body varies as the cube of a radius, whereas the effective cross
section for radiation pressure varies as the square of the radius. At what radius,
then, can we expect radiation pressure to equal the gravitational attraction? Hold
the density of the body constant.

52. A plane electromagnetic wave and a free, charged particle interact to transfer
both momentum and energy to the particle. Since we can show that the ratio of the
rates of energy transfer and momentum transfer is ¢, we may reasonably assume
that the wave itself possesses energy and momentum in that ratio, as given in
equation (21.6). To demonstrate that the ratio is ¢, consider a plane electromagnetic
wave traveling in the z-direction, with the E and H vectors parallel respectively to
the z- and y-axes. A free electron lies at the origin.

(a) What is the force acting on the electron? Write the differential equation
of motion.

(b) By taking the dot product of the force and electron velocity determine
the rate of energy transfer, dW/dt.

Ans. dW/dt = ¢E «- v = ¢Ev,.
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(c) From the equation of motion written in (a) calculate the average rate of
momentum transfer.
Ans. F, = dp,/dt = qHp./c.
Note that the force associated with H, and v, averages to zero.
(d) Show that dW/dt = (d/dt)(pc).

53. From the solar constant (see problem 51) calculate, by Einstein’s equation,
the mass that must turn into energy every second to account for the sun’s output
of light and heat.

Ans. 4.2 X 10" g/sec.

54. Let ¢ be the flux in erg/cm” sec, of radiation at normal incidence. Show that
radiation incident at angle 8 upon a totally reflecting plane will produce a pressure,
normal to the plane, of magnitude (2¢/c) cos’ 8, with a component (2¢/c) cos’ 6
along the direction of the original beam. Calculate the total radiation pressure upon
a reflecting sphere of radius R, produced by a plane radiation incident from one
side.

Ans. mR%®/c.

55. (a) Describe radiation pressure of a plane wave on a sheet of absorbing
material, qualitatively in terms of the interaction between currents in the sheet and
the H of the incident wave.

(b) Caleulate the radiation pressure on a perfect conductor. Hint: Calculate
in terms of a surface current density, related to H through the appropriate boundary
conditions.

56. Consider a 60-watt bulb as a point source of radiation. What force will this
radiation exert on a perfectly reflecting radiometer vane of area 1 cm®, located 1
meter from the bulb? If the vane is blackened, what will be the force?

57. Section (22) gives the boundary conditions on the electric and magnetic
vectors in the absence of charges or currents at the interface. By an analogous
procedure, derive the boundary conditions for:

(a) The normal component of D in the presence of a surface charge density ¢
at the interface. Will a volume charge density in the regions bordering on the
interface affect the boundary conditions? Why?

(b) The tangential component of H in the presence of a surface current of
density j per unit length flowing along the interface perpendicular to the component
of H. Will volume currents affect these boundary conditions? Why?

(c) State briefly why the normal component of B and the tangential com-
ponent of E must always be continuous at the interface, regardless of surface or
volume phenomena.

(d) Consider a piece of magnetic material wherein a field B exists. Scoop out
two small cylindrical cavities in the material, one long and needle-shaped and the
other flat like a coin. Let the axes of the two cylinders be parallel to B. Calculate
the value of B at the center of each cavity, assuming that a small cavity does not
appreciably distort the field of the material. Hint: Use the boundary conditions of
(a), (b), and (c). One should note that this result is consistent with the idea that
the resultant field arises from (a) the initial field H, and (b) an induced field on the
circular faces of the two cylinders. In the needle-shaped cavity (b) is negligible
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because the faces are small and far removed from the point of measure. In the coin-
shaped cavity, the induced field cannot be neglected. By analogy with electrostatic
polarization show that:B = H + 47M, where M is the intensity of magnetization.

58. We can define D and E in terms of measurements of the field E, in needle-
shaped and coin-shaped cavities in a dielectric, analogous to the previous problem.
Derive the cavity definitions of D and E by relating E, in the cavity to the uniform
field in the dielectric, using the boundary conditions on D and E.

59. Place a conductor of arbitrary shape in the field of a point charge.

(a) Is the field pattern in space affected?

Now imagine that we can ‘“freeze’” the surface charge distribution on the metal
in space (or reproduce it on an insulator) and remove the metal.

(b) Is the field pattern different from that referred to in part (a)?

(¢) Hence, which of these two statements represents the facts more accu-
rately? “The presence of the metal affects the field of the point charge’ or “The
presence of charges, available in the metal, affects the field pattern.”

(d) Make a similar statement relative to the effect of a dielectric of arbitrary
shape on the field pattern. When we introduce a dielectric medium, which alters the
initial charge distribution, does this phenomenon require a totally new parameter
k? Or can we define this parameter in terms of the availability and relative mobility
of charges in the dielectric, so that the field alterations again arise from the entrance
of new charges into the picture, rather than from some mysterious new property of
dielectrics?

(e) Consider the gravitational analogy of the force upon a mass at the surface
of the earth. How is it affected by the tides, which in turn depend on the position
of the moon?

60. The magnetism of some substances arises from partial alignment of the
magnetic moments of the individual atoms under the action of an applied external
field. Molecular agitation prevents perfect alignment of the magnetic axes. The
number of dipoles having orientation within the element dw of solid angle is

dn = Ae” "' du,

with E = uH cos 6, where 8 is the angle between the dipole of magnetic moment u
and the magnetic field H, & is Boltzmann’s constant, 7 the absolute temperature,
and A a numerical constant.

dw = 2w sin 0 d6.

(a) Calculate the magnetic moment per unit volume,

M=fucos0dn.

(b) Find the ratio of magnetization at temperature T to that at zero tem-
perature, T = 0° (perfect alignment).

(c) Show that for small fields or high temperatures, when pH/kT << 1, the
Curie law for the susceptibility,

follows directly.
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61. Consider a dielectric sphere of radius a and dielectric constant « in a uniform
field E.

(a) Show that the boundary conditions to be satisfied are:
(1) Asr—o, V— —Eq.
(2) k(@V/9r) must be continuous at r = R.
(3) V, (1/r)(@V/36), and E,,,, are continuous at r = R.
(4) V*V = 0, everywhere else.

(b) From the results of § (2), try the solution

V = <—E0r + %) cos 6,

outside the sphere and
V= —Ercos#

inside, where the field must be uniform. Show that these potentials fit the boundary
conditions (a) if we set B, = Eo(1 — A/d°) and «E, = E,(1 + 24/d%).

(c) Compute the effective dipole moment of the sphere.

(d) By what factor is the uniform field E, reduced within the sphere?

62. Use the Fresnel equations, which relate the reflected and transmitted electric
vectors to the incident electric vectors, to verify the conservation of energy by
computing the appropriate Poynting vectors for

(a) Normal incidence.

(b) Incidence at any angle, E polarized perpendicular to the plane of inci-
dence.

(c¢) Incidence at any angle, E polarized in the plane of incidence.

63. Show that

— —_— — — — 2

¢ 6t2+ R at VE,
and

peH | 4rpdH o

¢ ot R dt VH

follow directly from Maxwell’s equations.

64. Derive Ohm’s law for extended media, J = oE, where J = current/unit area,
E the field, and ¢ = 1/p = conductivity = 1/resistivity. Resistivity is a charac-
teristic property of the medium defined by R = pl/A, where R is the total resistance.
Consider a cylinder of area A and length .

65. Evaluate the inward component of the Poynting vector at the surface of the
resistor. The power flow into the resistor, represented by the inward component of
the Poynting vector, is dissipated as heat. Prove that the power dissipated as heat
by a current, in a medium whose resistance is R, is I°R.

66. Show that ¢ = &(t — r/c)/r satisfies the wave equation
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Obtain the retarded-potential solution of the equation

19°
Vi — 2 32‘5’ = —A4mwp,
where p is a charge density.

67. Consider the mass of an electron to be related to the energy of its field by
E = mc.
(a) Calculate the radius of an electron, assuming that its charge is uniformly
distributed through the volume of a sphere.

68. Solve for the damping constant in the equation of motion of a bound electron
moving under the influence of an impressed sinusoidal field

d’zx dz .
mag + aa + kxr = &F, sin wt.

The electron will dissipate energy by radiation.

69. (a) Show that two electric dipoles, oscillating at right angles and 90° out of
phase to one another, are equivalent to a single charge rotating in a circle, as far as
their radiation is concerned. Hint: Calculate P, the electric dipole moment.

(b) Calculate the average power, P, radiated by such a pair of dipoles.

(¢) To keep the charge rotating at constant w in a circular path, one must
supply power. Prove that we are also supplying angular momentum at a rate
L = Plw.

(d) Since the rotating charge possesses constant w and constant angular
momentum as well, the radiation itself must carry away the angular momentum.
Show that the E vector, from the dipole, represents a circularly polarized wave.
Discuss the possibility of reconverting the electromagnetic energy into mechanical
energy with the aid of another dipole, hence recapturing the angular momentum
transmitted in the circularly polarized wave.

70. To prove the electromagnetic character of x rays, Barkla, in 1906, projected
a beam along the z-axis upon a small block of carbon at the origin. Part of the beam
scattered by the first block falls upon a second block located at some point on the
y-axis. Observation shows that scattering by the second block is zero in the z-direc-
tion. Why does this experiment indicate the electromagnetic character of x rays?

71. A light beam falls on a volume of gas containing N atoms/ em’. Assume that
the atomic electrons scatter independently, calculate the attenuation of the original
beam as a function of distance, z, traversed in the gas. Let Z be the number of

electrons per atom.
Ans. I = Ie VZez,

72. Use the Rayleigh formula for molecular scattering, as given in § (32), to
explain why the sky is normally blue and why sunsets are red.

73. In an ionized atmosphere, the complex propagation constant, £, in MKS
units, follows from the expression

k2 — 0)_2 [1 _ Ng/mfo }
¢’ (0 + euHow/m) |
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where N is the number of electrons per unit volume (i.e. per m’), £ and m the
respective charge and mass of the electron, and H, the component of the earth’s
magnetic field along the direction of propagation of the radio wave of circular
frequency w. Rewrite this expression in Gaussian units. Calculate the refractive
index and absorption coefficient. Determine the phase and group velocity of the
waves.

74. Show that the orbital plane of an atomic electron will precess about the axis
of a uniform magnetic field, B, with a frequency equal to the Larmor value.

75. Consider an atomic electron to be rotating in a fixed circular orbit.

(a) What force is necessary to keep it in this orbit, when it moves with
angular velocity w,? (Neglect forces caused by the radiation of an accelerated
electron.)

(b) What additional force acts on the electron if we introduce a uniform
magnetic field B, perpendicular to the orbit plane?

(c¢) Setting the total force on the electron equal to the product of its mass
and centripetal acceleration, employ (a) and (b) to evaluate the new angular fre-
quency, in terms of w,, B, and fundamental constants. When £B/2m << w,, show
that w = wo &= @ Larmor- '

76. Refer back to problem (ITI-13), page 233. Using equation (29.51) or equiva-
lent, calculate the electric moment and total radiation from the oscillating electron
on each frequency.

Ans. P? = 41" /7*(2k 4 1)*, where k is an integer.

Show that the total radiation on all frequencies is infinite. Why? Hint: What are
the values of ¥ and #?



PART V

Relativity

1. The special theory of relativity. Newton’s laws of motion, which
constitute the framework of ordinary mechanics, do not depend on the
existence of an absolute frame of reference. We have used the words
“stationary axes,” in our previous discussions, to specify coordinates
at rest with respect to some particular system, e.g., the surface of the
earth. We have ignored the motion of the earth itself. Strictly speaking,
we should not have done so. The axial rotation of the earth and the curva-
ture of the earth’s orbit introduce extraneous force fields of a variable
nature. We can transform these forces away only by choosing a frame of
reference with appropriate motion relative to the original frame. We
have referred to coordinate axes of this character as ‘““inertial systems.”

Apart from the minor corrections just mentioned, a railroad train
moving uniformly along a straight track is an example of an inertial
reference frame. Newton’s laws imply that any mechanical experiment
performed on board such a train will give the same results, relative to the
train, as it would when performed in the railway station. For example,
an observer on the train will record as a straight vertical line the trajectory
of a ball dropped from the ceiling. A stationary observer, however, will
chart the motion as parabolic. A reciprocal relationship clearly exists.
This experiment very clearly implies a relativity principle of a sort. We
are required to find the mathematical transformations connecting the
phenomena in the two frames.

Let us adopt two such reference systems, S and S, with rectangular
axes parallel and so orientated that the relative motion is in the z-direc-
tion. Then the transformation equations of Newtonian relativity are
=z t =1t (1)

14 ’

¥ =zxz—ut, y =y, 2

where u is the relative velocity of the systems. (1) is sometimes called
the Galilean transformation.

At first sight, the last of these equations almost seems superfluous. But
a closer examination of the problem reveals a fundamental defect of the
Newtonian equations. We note, first of all, that we are privileged to write
t = t' only if we are able to set the clocks on S and 8’ in absolute synchron-
ism. But here we encounter unforeseen difficulties even when u = 0.

375
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Suppose that we, as observers on S, note that the clock on S’ reads noon.
We must apply a correction for the light-time between S’ and S. If SS’
= 2/, we infer that our clock must be advanced by an amount

At = 2’ /c 2

where ¢ is the velocity of light.

Now S and 8’ may both be stations fixed on the surface of the earth.
But if the earth is traveling through space with a velocity component u
in the direction SS’, we should have used ¢ + u for the effective velocity
of light, in which case the correction becomes

At = z(c + ). 3)

If, in our attempts to set our clocks synchronously, we employ (2) where
we should have employed (3), as the light-time correction, the error in
our clock setting is

= At — AV ~ux' /e, (4)

if u <.

At this point the experimental physicist of the nineteenth century
would ask, “Why employ (2)? Why not determine experimentally the
effective velocity of the light signal and then, by (3), set your clocks in
exact synchronism?” The man who was accustomed to set his watch by the
chimes of Big Ben, correcting his observations for the finite speed of
sound, could similarly attain a better correction if he used an anemometer
to gauge the speed of the wind. He could thus ascertain how much the
wind would retard or advance the arrival of the sound wave.

The principle enunciated in the previous paragraph is in full accord
with Newtonian mechanics. There is no apparent a priori reason why
light should be exempt from the transformation equations. Physicists
confidently expected to detect, for example, the changes in the velocity
of light at different seasons of the year. The Michelson interferometer is,
in effect, an “ether anemometer.” The numerous attempts to discover
and measure an ether “wind” or ‘“drift” have, however, come to naught.
The velocity of light appears to be constant no matter how the observer
is moving. We are faced with the paradox that ¢ + v = ¢. It also appears
that we can no longer avoid the error of (4). We must discard or drastically
revise the concept of simultaneity and, at the same time, we must alter
the transformation equations (1).

Einstein pointed the way out of the dilemma. We are first to accept as
universally true the experimental result that the velocity of light is con-
stant, as measured from any inertial frame of reference. And then we must
modify our concept of time and space in accord with the primary postulate.

Let S’ move with velocity u relative to S in the direction of the z-axis.
Suppose that the two systems are coincident at time ¢ = 0, at which
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instant a flash of light is sent out. After an interval ¢, the observer at S will
find conditions as in Fig. 1a. The wave front will lie on a sphere of radius
¢t whose equation is

x2 + y2 + 22 — 62t2 (5)

and S’ will have moved on in the direction of the arrow. It seems paradoxical
even to suggest that the form of the wave front as viewed from S’ could
be considered by that observer as a sphere centered ot S’. But that is exactly

V-1.

what the relativity postulate requires. The velocity of light, as measured
in either system must be a constant. There is no essential difference between
S and S’ since both are inertial systems. Thus Fig. 1b presents the re-
ciprocal conditions from the viewpoint of observer 8’. For him the sphere
will be represented by the equation

2 4+ y”* + 2 = . (6)

We are required to find the transformation equations analogous to (1)
that will satisfy (56) and (6) identically. Further the desired set must
reduce approximately to (1) when % is small, because the Newtonian
equations must then be closely fulfilled, to agree with experiment.

Certainly we cannot possibly satisfy (5) and (6), which imply the
existence of one sphere with two different centers, if we retain Euclidean
ideas of measurement. We have already seen, however, that the classical
concept of simultaneity and therefore of a universal time system runs into
difficulties. Perhaps spatial conditions are similarly altered; e.g., the
length of a measuring rod may depend on the velocity.

Let us try the following transformation equations in x:

' = y(x — ut), = y(x’ + ut’), (7)

where v is a multiplicative constant to be determined. The principle of
relativity demands the reciprocal character of these equations. Further,



378 RELATIVITY [§1
since the relative velocity along y and z is zero, we take
y =y and 2 =z. ®

The transformation equation for ¢ still remains to be determined.
Take the differentials of (7). Then

dr’ = y(dx — udt) and ~(dz’ + udt’) = dzx. (9)

Divide the left- and right-hand members of the first equation by the corre-
sponding members of the latter. Then

‘Y_(l-I-IW)_ = p(l — u/2) (10)

where £ = dx/dt and &’ = dz’/dt’, the instantaneous velocities as measured
in the respective systems. By our relativity hypothesis, to express the
velocity of light in both systems, we must have & = &’ = ¢, whence

y=@0-=67" 8=u/. (11)

Thus, for small velocities, u < ¢, y~ 1, and we recover as required, equa-
tions (1). Thus, finally, the transformation equations are

z' = (1 - 62)_1/2(1; - ut)y y, =Y Z = 2y
= (1 — )t — Bz/o).

To obtain the last equation, eliminate z” between the pair of equations (7).
The reader will verify that equation (6), transformed by means of (12),
reduces to (5). The relativity conditions are thus satisfied. We also write
the reciprocal transformations

(12)

z=01—-F""0 +u), y=y, z=27, (19)
t= (1= 8)7"(t + Bz'/c).

Solving (10) and (11), we obtain as the relativity addition theorem for
velocities,

: &+ u
ST 4
which replaces the Newtonian theorem z = ' + u.

Let us investigate some of the consequences of these relationships.
Consider a rod, of length [ = z, — x, , at rest in system S. A physicist in
S’, at a given instant, say ¢ = 0, as recorded by his own clock, will find
the length I’ = 2} — x{ to be

l=0-=6"1 or I =( — Bl (15)

The rod thus appears to be shortened along the direction of its relative
motion, Note that I’ is the length of the rod as recorded by observer S'.
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An observer on S will find a rod of length [ attached to S’, similarly short-
ened. The relationships are reciprocal.

This effect is generally known as the Lorentz-Fitzgerald contraction.
Fitzgerald suggested that the null result of the Michelson-Morley experi-
ment to detect the relative motion of the earth and the ether might arise
from a contraction of this character. Lorentz proved the effect to be con-
sistent with the electron theory of matter. Einstein’s contribution was
to have deduced it from the principle of relativity.

The independent clocks in the two systems show a somewhat analogous
behavior. Note that, for small velocities, we have approximately, from (13),

t — ¢ = Bx’/c = ux'/c. (16)

This term must represent the lack of synchronism deduced in (4). We are
ordinarily concerned, however, only with time intervals measured in the
respective systems. If ¢, and ¢, denote two times measured on a clock
stationary in system S and ¢ and ¢; the analogous times recorded on a
clock stationary in system S’,

L — &= (1 — )72 — ¢). (17)

Thus the interval (¢; — ¢{) as perceived in the unaccented system, will
appear longer than the interval ¢, — £, . The clock in S’ will appear to run
slow, as checked by an observer on S, and vice versa.

The foregoing transformations have an important geometrical inter-
pretation, given by Minkowski. We have seen that the equations (5) and
(6) represent, in their respective coordinate systems, spheres whose radii.
are expanding uniformly with the time. Let us make the substitutions

r=dct and " =qct’; i= vV —L. (18)

Then the equations take the symmetrical form
Y+ =0 2+ Y+ 4+ =0. (19)

By analogy with the two-dimensional equation
=t =0, (20)

which represents a conical surface, we see that (19) is the equation of a
four-dimensional cone, its axes extending toward the past or future.

In relativity, time and space are no longer considered separately, but
are fused into one geometry by means of the transformation (18). In
special relativity we regard this four-dimensional geometry as Euclidean.
We further assume that the relativistic laws of mechanics follow from
extrapolation of the Newtonian laws to four dimensions, assuming in-
variance of the significant physical quantities, and applying the formulae
in a coordinate frame wherein the particle is momentarily at rest. We
term this frame the proper system of coordinates. We may consider four-
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dimensional vectors, and four-dimensional tensors analogous to the three-
dimensional ones discussed earlier. For example, we have by simple
extension of the three-dimensional formulae

ds =idx + jdy + kdz + 1dr,
ds’ = da* + dy* + d7° + d+°,

(21

where 11is a unit vector along 7. The only restriction on our previous vector
formulae is that we must interpret the cross-products, like the axial vector
k X 1, as a tensor of second rank. In the primed system, we have

ds’ =i'de’ + j dy’ +k’dz" + 1 d7’,
ds'’® = dx'* + dy’® + dz’* + dr'*.

(22)

Let us now make the assumption that the vector element ds is invariant
to a change of coordinates, i.e.,

ds’ = ds and ds”* = ds’, (23)

which are at least consistent with the fundamental equation (19) and its
primed analogue, where ds shrinks to a point. Equation (23) is equivalent
to assuming that (21) and (22) are related by a mere rotation of axes,
because the resulting vectors are identical. Further, let us take dy = dy’
and dz = dz/, in accord with (13), and assume that the primed system is
moving along x with constant velocity u with respect to the unprimed.
Then we have

de’ + dr* = dz’* + dr', (24)

dt2[1 — j;(%)] - dt’2[1 _ %(%)2] (25)

But if the velocity of a particle in the primed system is zero, dz’/dt’ = 0,
and dz/dit = wu. Therefore

or, by (18),

di(l — g°? = ar, (26)

which is equivalent to transformation equation (17) for the time dilatation.
It is interesting to note, though difficult to interpret physically, that
through the afore-mentioned rotation, part of the vector 1 dr becomes a
true spatial vector i’ dz’, and vice versa. The fusion of time and space is
more than formal or symbolic; it is fundamental to relativity.

We introduce a four-dimensional velocity ds/dt related to the velocity in
the primed system, by

d _dsdt _(jde iy ode )
af “arar Mg Tig gt g
_ i+ jv + kw + lic @7)

(1 _ 62>1/2 b
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by (26). We have written u, v, and w for tl.e velocities in the unprimed
system. Since we have now allowed motion in all coordinates, we must
define

B8 =/, vy =u + o+ W (28)

The physical significance of this four-vector of (27) is not immediately
obvious, although the first three components are clearly the ordinary
velocities, multiplied by (1 — 8°)'?. The vector ds, apart from the im-
aginary character of the time variable, is the separation of two points in
time and space. It thus represents the separation between events at two
points in four-dimensional space. If dz, dy, and dz are zero, ds is the interval,
measured in 7 units, between two events at some point in three-dimensional
space. By analogy, we infer that ds/dt’ defines the rate at which events
occur in the primed system. The four-dimensional coordinate system
represents a space-time frame. A line in this space represents the progress
of a point through ordinary space and time. We call it a “world line.”” A
point that is regarded as stationary in space will move parallel to and
hence define the direction of the #ct axis. From this argument we can
visualize how a transformation from S to S’ is in effect a rotation of our
coordinate system.

Since the rate of occurrence of events will depend on the field of force,
we assume that Newton’s equation of motion applies to a four- as well as
to a three-vector, and write, in accord with (II-2.1), a four-vector force:

F, = % <m0 %), (29)
where m, is the mass of the particle in the proper system. If now, we set
Vo = iu + jv + kw, (30)
the spatial part of the force vector becomes, by (27),
B A T Rl e B
At this point we now understand the reason for specifying m, as the

“rest mass,” i.e., the mass measured in a frame in which the particle is at
rest. For if we introduce an effective mass

m = m/(1 — )7, (32)
and define F, in terms of F, , the ordinary classical force, by
F — FO/(I _ ﬂ2)1/2, (33)

we shall then be able to write our equation of motion in its customary
Newtonian form

F = — (mv,). (34)

&l
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By (32), we see that the effective mass varies with the velocity of the
particle. For the velocities commonly met with, 8* is a small quantity, so
that both F and m approximate closely to the classical value, The force
F, , when defined as in equation (29), is invariant under a Lorentz trans-
formation, and hence fulfills the requirements of relativity. In relativity,
the momentum of the particle becomes

P = mv, = mevo/(1 — )%, (35)

To derive the energy imparted to the particle, as it moves under the
action of a field of force, we calculate, as in the classical case, the work done
by a particle that moves along a trajectory. To shorten the algebra, we
write v, = iu and ds = i dr. Then 8 = w/c. The final results are not
affected by this assumption.

_ [’ _ Al w
W_fA F-ds—mo/A dt[(l_ﬁz)l,z}dx
_ Fod U
=m [ [(1 6)”2:| a.

Note that we must treat 8 as a variable. Integrating this equation by
parts, we find that

o w Fuw o me
W= mo =gy = mo [y e = [u B)‘”L’ (36)

wherein we are to substitute the values of 8 at the initial and final limits.
If B = 0, initially, we note that the particle is to be assigned a ‘‘rest energy”’
of magnitude

Wo = moc’. (37)

The difference between the initial and final energies, if the particle starts
from rest, is the kinetic energy, T, imparted to the system. Its value is

T 2 ]‘ o — p2 —
T = my mz 1 =c(m M) . (38)

All the foregoing equations are important, but (37) is perhaps the most
fundamental, because it expresses the equivalence of mass and energy.
The widest physical application of this relation is in the field of nuclear
physics. For example, if 4 X 1.0078 (= 4.0312) g of hydrogen could be
transmuted into helium, the weight of the product would be 4.0000 g,
corresponding to a loss of 0.0312 ¢ of mass. By (37), this mass reappears
as free energy of the nuclear reaction, of amount

E = 0.0312¢ ~ 2.8 X 10" ergs, (39)

which is approximately equal to the energy released by combustion of
100 tons of coal. Nuclear reactions are not as simple as here pictured, but
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the energies involved are truly enormous. The fission processes of uranium
235 and plutonium are well-known examples. Astronomers generally believe
that nuclear reactions furnish the heat radiated by the sun and stars. In
relativity the laws of conservation of matter and energy fail individually,
but hold collectively through the medium of (37).

Let the symbol [0 represent the operator

, 9 o 9, &
D=5z Ay’ Tor T am 40
the analogue of V? in three dimensions. This operator is equivalent to
2 2 _ l_ 6_2
D —_— v c2 at27 (4:1)
by (18). Thus the four-dimensional analogue of Laplace’s equation,
1 8%y
0% =0=V% - 575 (42)

where ¢ is any potential that is a function of z, y, 2z, and ¢, is merely the
wave equation. Hence, if ¥ represents the ‘‘retarded’” scalar potential or
any component of the “retarded” vector potential, as described in the
coordinate system S and ¢/, the similar potential in S’, the relativity trans-
formations will enable us to express the wave equation in the symmetrical
form,

O%*y’ = 0. (43)

Further, since we can express H, H', E, E’, etc., in terms of these potentials,
we infer that the Maxwellian equations must have the same form for both
coordinate systems. Lorentz foresaw the necessity of this result from data
of the Michelson-Morley experiment. From this condition alone he was
able to deduce the transformation equations (12) and (13), which we
generally refer to as the Loventz transformation.

To demonstrate the invariance of Maxwell’s equations, we shall employ
the basic methods of tensor analysis, as developed in (II-31). To make
our notation consistent with that of tensors, we adopt the following
coordinates to represent the system at rest.

=z 2=y, =2 z'=r71=ict (44)
We write out the pair of equations
10D A4«
VXH-Cr =3 )

(45)
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to give the following set of four linear equations:

o0H, o0H, .9D, 4~

0 + 0 oz _Zax“:?JI'

ULy o ¢ UL 00 iy
(46

o Ge 0 —if=T

i i 8 0 = 4w

We have multiplied the last equation through by 7, to produce a symmet-
rical array. Now consider the antisymmetric tensor

0 H, —H, —iD,]
91',' — _H3 O H1 _’LD2 , (47)
H2 —Hl 0 _7-D3

| iD, iD, iD, 0

where 7 denotes the row and 7 the column, in the usual matrix sense. Also
define a four-vector §* as

[ J,]
g =2 (49)
Js
[ 2cp ]

With these definitions, the single equation
a LX) (%) i
—§ =6.,=4 (49)
ox

represents the pair of Maxwell equations, (45).

We invoke the summation convention over the repeated index, j. That
the introduction of the four-vector g’ is in no sense artificial follows
directly from the process of taking its divergence. If §° is a vector in four-
dimensional space,

9 . .
: z i 5 50)
or g =4d. (

must be a scalar invariant. That this is so follows from the equation of
continuity (11-34.8),

g, =V -J+5=0. (51)
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We have written G/ in the notation of a contravariant tensor, despite
the fact that the distinction between the two types of indices vanishes for
the Cartesian system of special relativity.

In terms of the tensor, we express the displacement vector as

D = ieg" = —ieg", (52)

but the expression for H is somewhat more complicated. We can write it
in the form

H — e1923 + e2931 _|_ e3912

— —61932 _ e2913 _ e3921

(53)

but the notation indicates that we should consider H as an antisymmetric
tensor rather than as an axial vector. Hence we write

H = eeG” + e + ee,§" + ee§” + ee.8” + eeg”
= e,e,G". (54)
If we place a cross between each pair of unit vectors in (54) and carry out
the multiplication so indicated, we shall obtain a final result that is twice

that of (53).
To these equations we must add the defining relationships

= uH, E = K_lD) (55)
and the other pair of Maxwell equations

1 0B
V)(E-I—E—az—o. (56)

VB =0.

First, we note that (55) implies the existence of a second tensor related
to the first in some special way. Let us write the tensor in the following
form and later justify our procedure.

0 By —B, —ik]
EFTS - _B3 O Bl _lEz . (57)
B2 _Bl 0 '—iEa

1B, E, i, 0

This form of the tensor implies a congruence between (51) and (47) in the
sense that electric and magnetic quantities occupy similar positions. Then
our fundamental vector quantities are

E = iergr4 = —’l,.es‘}“ (58)
and B = e’e'F,,, r,s =1, 2 or3. (59)
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Let i] EFra = gr&.i' (60)
oz
Our full set of 4 equations is contained in the following abbreviated tensor

form:
gra.i + gsi.r + gir,a = 0] (61)

wherer £ s # jand r, 5,7 = 1, 2, 3, or 4.
We must now define the transformation connecting G*' and &,,. First
of all,

gir = 6ir) (62)

because the coordinate system of special relativity is Euclidean. Hence
we can lower the index on G*’ to form the covariant equivalent G,;, whose
components are identical with those of G*’.

Now define the mixed tensor

m m ms 0

W a0

m=|" ™" | (63)
3 3 3
M M2 N3 0
0 0 0 75l

and carry out the transformation
gra = "7:.-771;91'1'- (64)

This equation allows for the fact that both u and « may be tensors. Carrying
out the indicated multiplication, we find that

(«7)7 = mamy, > (65)
and p! is the minor of det 5 that results from the suppression of the tth
row and rth column of the tensor array. Hence

2 3 2 3

H1 = M2M3 — N3Ne.

By = mami — mims. (66)
1 3 1.3

H1 = 7M3%M2 — 7N2Ns.

When the medium is isotropic,

m=1n=mn =u’"% =0, =7, (67)

while 'n;1 = ,u,l/z/K[.l. (68)
We note, in passing that («™') and (u) are symmetric tensors only when

the axes defined by 7, are orthogonal.
The mere fact that we have been able to express both electromagnetic
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quantities and the Maxwell equations in the form of four-dimensional
vectors and tensors is in itself a guarantee of their invariance to coordinate
transformations. However, we find it useful to determine the precise laws
of the transformation.

Consider, therefore, a system in motion along the z axis with velocity v.
This amounts to a change of coordinates in the usual tensor sense. We are
to evaluate the coefficient v;, for contravariant vectors.

T =~z (69)
or
- =3 _ .3,3 3 4
T =x; T =7 + v (70)
7 = 2% T = yix® + viz'.
With 8 defined as in (11), we have
T = yi(@® — vl) = (" + iB2"). (71)

Orthogonality requires that

vivs + vivs = 0,
whereas
@)+ () = () + () = 1. (72)
Solve these equations, as follows:

3

vi = By = [1 — ()]

(73)
—B() =1 — (v)".
Thus
N=YVI= v =a8/VI= 85 7= —i/VI=F
YVi=i/VI-F; n=7v=1
Other than these, the values of
v; =0, EEE (75)

Now if we have &, or G*’, in a stationary coordinate system, we have,
for a moving system

? =779 . (76)
F

rs ‘Yf“y':glm'

These transformations give

[0 H, —H, —iD,
§w= _za 3 H, _1D2, (77)
H2 _Hl O '_"I:D3

L ¢D, D, D, 0
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where
Hy, = Hy; H,= fi/ 601 H, = ’i/j BD.
— (78)
— — BH, — D D, + BH,, —
D, = \/1 — 52’ 2 \/ 2 D, = D;,.
Likewise _ . B .
0 B3 _B2 _lEl
zo_| B 0 B —il (79)
Ez _El O _iES
iE, iE, iE, 0 |
where
o D Bz — BE E>) Bl + 6E2
B, = By; B, = —t—F2; B, = LT
) ﬂBz ) Ez + BBI Er
E ; B, = ———; KE; =F,.
’ \/ 1-8 ° Ai-pg”
The components of the four-vector, g, obey the transformation
g =g, (81)
so that
Ji=Ju; Jp = Ju; _ \J/al—_vpz’
g (82)
= . cp — BJ,
J, = 1cp =1 —
4 cp _\/1 — ﬂz

The form of all the equations, therefore, is unaltered by the relative
motion, though the magnitudes assigned to the various quantities H, P,
E, D, J and p change.

The Maxwell equations, when written in the above manner, transform as
tensors. For example, (49) becomes

g, = vg",. (83)

Similar relationships hold for the other equations (50) and (61).

Numerous consequences of scientific importance follow directly from

these equations. As a primary example, consider the case where a stationary

charge “sees’” only the electric field E,, with all other components of E

and B equal to zero. A charge moving with velocity v, parallel to the z-axis,

will under the same circumstances experience the force components
BE, E,

Ez = —————— and El =71_—E§.

84
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In other words, the charge moving in what we originally defined as a
purely electric field is now subject to magnetic forces as well. By the same
token, we can show that purely magnetic forces may appear as electric
forces to a charge in motion.

The primary conclusion to draw from this analysis is that electro-
magnetic forces possess no unique character by whose means one can deter-
mine absolute motion. Electric vectors and magnetic vectors do not
possess individual properties of conservation. The two sets of parameters
are interrelated in a manner that depends on the motion of the observer.

Any observer can determine all physical parameters in a manner con-
sistent with the assumption that his own velocity is zero. If any other
observer in uniform relative motion reports to him a simultaneous set of
physical measurements, the foregoing equations will enable him to reconcile
both sets of observations. However, the same equations will enable observer
number two to regard his own velocity as zero and attribute the difference
between the two sets as due to relative motion of the first observer. Thus
no experiment can possibly enable one to establish a system of absolute
coordinates. All motion is relative. Hence the theory of relativity.

As an alternative representation, in terms of scalar and vector potentials,
define a four-dimensional potential & whose components, ®°, are

P = A'; & = A% & = A%, &' = is. (85)
Then form the tensor ¥ through multiplication of ® by the tensor
(1 0 0 0]
el R P Tt (86)
0 01 O
[0 0 0 'kl

where (9))7" is the reciprocal of the matrix (63), with the condition of
(67) and (68), for the medium, which we here take to be isotropic. Then

T o= e, (87)
The divergence of ¥, given by the covariant derivative,
v =0, (88)
represents the equation (IV-26.14),
K do _
v A+cat_0' (89)
Similarly, ‘ o
\I’Zkk = _#1/2711'3‘ (90)
represents both the vector equation (IV-26.16),
viA - b oA dm] (91)

¢ at c
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and the scalar equation (I1V-26.17),

chrv it (92)

Then we find that we can represent the components of our basic tensor
F,; in terms of the &,, whose components are identical with those of ®':

d d
Foj = — & —

R &, =;,; — P, ;. (93)
dx’ oz

These equations are the equivalents of equations (IV-26.11) and (IV-26.5),

1 0A
E = —V¢—c—a (94)

and B=V XA (95)

The vector & is also invariant to a Lorentz transformation, so that equa-
tions (85), (93), and (55) completely define the electromagnetic vector
field. '

Now we shall investigate the physical problem of a beam of radiation
moving in the zz-plane at angle o with respect to the z-axis, in free space.
The stationary observer will measure the x and z components of electric
field as

E, = E cosa; E; = Esin q, (96)
and the magnetic component, parallel to the y-axis, as
H, =E, (97)

where F is the intensity of the electric vector. In the moving system, we
have, similarly

El =Ecos&; E, =I—Esin&; ﬁz = E. (98)
But by (79) and (80),

El —ﬂHz El _‘ﬁE I
1 = — = > E, = E;.
V-8 V1-8 99)
=H2_BH1=E_6E1

V1-8* V1-p

E

H,=E

Hence

(100)
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The apparent direction of the incident beam thus depends upon the
velocity of the moving system. This equation is the relativistic expression
for what physicists commonly term the ‘“aberration” or wandering of
light, first discovered by Bradley. The earth’s orbital motion causes the
position of stars to traverse an ellipse or circle, a result of the changing
direction of the motion.

As a final calculation, we determine the effect that relative motion
has upon the wavelength, \, of a light beam, a phenomenon generally
called the “Doppler effect.” As in the previous problem, let the beam be
incident at angle « with respect to the z-axis. Thus, in the inertial system,
A has the component X sin « along x and X cos « along the z-axis. Similar
expressions A sin @ and A cos @ hold for the moving system. The projection
along r must be constant in both systems, because the motion is along
z not z, by hypothesis. Hence

Asina = A sin a, (101)
or
_Tsina T V1 — g
A=A na A 1= Boosa by (100). (102)
The frequency
¢ __1—fcosa
v = )\—v——\/l—_7 . (103)

Hence, if we observe a frequency 7, of light originating on a system re-
ceding from the earth with velocity u, the observed frequency will be
diminished according to the above formula. The light will thus suffer a
shift to the red. If the light beam contains lines of known frequency,
the observer may judge the relative velocity of himself and the source
by measuring the amount of the Doppler shift. When g8 < 1, we have

V=;[1—gcosa+%<%> —} (104)

The first two terms of the parenthesis give the old classical expression,
which holds sufficiently well as long as 8 < 1.

2. General relativity. In special relativity we regarded the four-di-
mensional space-time manifold as Euclidean. The electromagnetic field
equations take an invariant form under such circumstances, as we have
seen. However, we must introduce gravitational fields by some sort of
ad hoc hypothesis. Furthermore we are led to assume that gravitational
fields, like electric ones, are propagated with the finite velocity c. Instead of
representing the field F as the three components of the spatial potential



392 RevaTIVITY [§2

V, we introduce a four-dimensional gravitational vector F, whose com-
ponents are

F=-0V. (1)
Then, in place of Poisson’s equation, we have .
O+« F = 0% = 47G)p, (2)

an equation that implies the existence of gravitational waves.*

In general relativity we attempt to avoid all assumptions concerning
external fields of force by introduction of a curved metric. We consider
that such a procedure may be possible from the basic equation (I1-31.186)
for a geodesic:

Fq o dede’

ES‘E_—I— an ds ds = 0. (3)

We adopt the convention of using Greek letters for the tensor summation
indices, in this relativistic treatment.
Compare equation (3) with the law of gravitation:

2

R @
In (3), introduction of Cartesian coordinates immediately gave the equa-
tion of a straight line because the Is vanish. If we can introduce a non-
Euclidean space, whose non-vanishing Christoffel symbols can reproduce
the force term GMrt/r°, we can say that a body moving in a geodesic in
warped space traverses the same orbit that it would ordinarily follow,
in Euclidean space under the law of gravitational attraction.

To visualize the physical meaning of this new viewpoint, consider
again the picture of the navigator (page 131) sailing in a triangular course
around an island. Since the triangle is a spherical one, on the curved
surface of the earth, the sum of the three angles must exceed 180° by an
amount F, the so-called ‘“‘spherical excess.”

Now, if the navigator is unaware that the earth’s surface is curved,
he will be puzzled, at first, by the fact that he must make each angle of
his triangle exceed 60° in order to return to the starting point. And then
a simple explanation may occur to him: ‘“The island is exerting an attraction
upon the ship!” This ‘“‘attraction” draws the ship toward the island during
the time that the ship traverses a given leg of the triangle, so that the
angular excess of the initial course just balances out.

The navigator, with this clue, can then investigate the nature of the
force field associated with the island. The larger the triangle, the greater
the excess. Hence he concludes that the attractive force varies as the area

*What we have here called [, a four-dimensional operator, many writers express
as []. They have no symbol analogous to [J the four-dimensional V.
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of the triangle, i.e., the force increases (approximately) as the square of
the distance. The navigator can prepare an entire set of sailing directions,
based on the hypothesis of force fields and a plane geometry. And yet we
know that introduction of a curved metric or Riemannian space could
completely eliminate the fictitious field of force.

We shall consider further the navigator’s problem. Meanwhile, can we
not learn a lesson from the above analogy? In our solar system we describe
the motion of planets about the sun in terms of a pure Euclidean space
and force fields. Instead, may not the mere presence of the great solar
mass (and other masses as well) warp the surrounding space or rather,
space-time continuum? Can we not regard orbital trajectories as geodesics
in four-dimensional curved geometry?

We can draw some conclusions about the character of this non-Euclidean
space. It should not possess a curvature like that of the earth’s surface,
as in the analogy, because then the equivalent gravitational force would
increase with distance. Instead we must expect the curvature to decrease
with distance from the sun; as a rough picture we may visualize a space
shaped something like a rapidly flaring horn of an old-fashioned phono-
graph. And, unlike the analogy, we must attribute the curvature directly
to the presence of the “island.” But let us try to state these results in
quantitative form.

To summarize the significant tensor formulae, we shall define the
curvature in terms of the Riemann-Christoffel tensor (11-31.172):

vafc = DvI‘;a - D“I'\:’ + I‘\:al‘!:p - I‘vpﬂr‘:py (5)
0
where D, =— (6)
dq
and
g o 1 ogE
Fuv =T, = 5 ) (Dugve + Dvgt-n - Deg#v)y (7)

with the g,, given by
(d9)* = gu, dq" dq’. (8)

The sixteen components of g,,, in four dimensions, form the symmetric
metric tensor. We define the reciprocal tensor, g°*, by

Jug" = O : (9)

The foregoing equations, in their general sense, contain far too many
variables for us even to attempt a solution. We must find some way of
restricting the problem.

If we concern ourselves with motion of planets in the neighborhood
of the sun, we readily see that spherical coordinates, r, 6, ¢, and ¢ are the
natural coordinates for the problem. We expect, therefore, to express our
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line element as

(ds)® = (dr)® -+ 7*(d6)* + r° sin® 8(d¢)’ — c*(di)?, (10)
with
gu = 1; @ =1°; @5 = 1’ sin’ 6; (11
gus = =€ G =10, pFv.
This system, however, is basically IFuclidean, because the curvature tensor
vanishes. We readily adapt it to the problem of special relativity already
discussed. But if we are to introduce force fields as described above,
we require a more complicated system of g,,’s. The spherical symmetry
inherent in the problem leads us to maintain ¢,, and ¢s;; as in (11). How-
ever, we shall suppose that g,, and g,, are functions of r, which, respectively,
must go to unity and —¢® for large values of r.
At this point we introduce some minor changes of notation, unimportant
mathematically or physically but desirable in order to make the notation
agree with that in common usage. Instead of (10), we write

(ds)® = —ef(dn? — r(d6)* — r* sin® 6(d¢)® + € (dt)>. (12)

This change of sign makes (ds)” positive and ds real, because

2
ds =c¢"—v and » <ec. (13)
dt

In equation (12) we have arbitrarily written
gll = —ee, g44 = er, g22 = —T2, g33 - _Tz Sirl2 0, (14:)

a substitution that simplifies our mathematics and involves no loss of
generality, since we regard both ¢ and ¢ as functions of r, still to be de-
termined.

We now calculate the significant I’s. The contravariant metric tensor
possesses the components

_ 1 1 . -
mo_ -, 22 __ __ L, 38 _ _ 1 2 g, a4 __ -t
g € ’ g ,’,2; g ,r2 sSm 0: g € ) (15)
g© =0, u*v
19 1 1]
Plll = 53_7'111 gu = 55,; F122 = P221 = Fla.‘! = 11311 = ;;
19 1 r
144 = P441 = 55‘ ln g44 = § g_,; r'212 = — = -—Tre E,
gu L (19
.2
ss = Doy = cot §; Tgy = L —re ¢ sin’ 6,
gn
. 1 9 1 ,._
I'y; = —sin f cos §; T = _EE‘ Jas = Eer Yer J
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where the primes signify derivatives with respect to r. All other values of
T vanish.

We consider substituting these symbols into B;,.: , which task isnot
impossible, because only 20 of the 256 components that this tensor possesses
are linearly independent. However even this number is excessively large.
Rather than operate with the complete tensor, which provides us with far
too many equations, we follow the precedent set by Einstein and consider
the contracted tensor

G = B’ (17)
with € = o. Then
G. = D, I, — DT, + I.T,, — I.T,. (18)
The I's with duplicate indices take the form
Iy, = D,In vV—g, (19)

where
g = det |g,,| = —e'"*r* sin”® 6. (20)

Hence
G,=DD, InN—g—-—T.D,In—g— DTS + T.T,,. (21)

Write out the expressions in detail. For example,
¢ — 9 — 3
G, = <5ln \/—g) - (I‘fl 5ln \/—g> — <5‘ I’i,)

+ (Flllr‘lll + P122F221 + F133F331 + P144P441)

I AR o S € 0 N 4
T2 4 + 4 r’ (22)
Similarly,
Gy = 6_2[1 + EIT—E_I)' - ef}, (23)
Gz = e_El:l + QIT_EI—) — ef:| sin’ @, (24)
e N o N () s“_’}

Gy = —e [2 4 + 4 + L (25)
Gnv = O) uFE v, (26)

so that we have four equations from which to determine £ and ¢. Of these,
(23) and (24) are identical, as far as functional dependence on r is con-
cerned.

Up to this point, our discussion has been mathematical rather than
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physical, except for the fact that we have allowed the spherical symmetry
of the problem to influence our choice of the metric tensor. But here
mathematics fails us. We have determined what mathematical structure
the tensor (7, must possess. We have found, in other words, the mathe-
matical form of the left-hand side of the equation, but we do not know
what the right-hand side should be. Therefore, as out-and-out hypothesis,
let us make the simplest assumption open to us, viz., that

Guv = 0 (27)

for all sixteen components. This equation is Einstein’s alternative ex-
pression for the law of planetary motions. We can say, if we wish, that it
is Linstein’s equation for the law of gravitation. The three basic equations
then become

(AR of N (o) N

2 7 1 i ;=0 (28)
1+T(§,2_§Q—e£=0, (29)

LA of S €0 N S (30)

2 4 4 T ) '

Subtracting (28) from (30) we get

= —F or ¢ = —&-+4 CcoNnsT. (31)
Substituting this value into (29), we obtain the differential equation
¥ = —et 4 1. (32)
Now set
¢ = %; f=—Iny; ¢ = —77,;
5’ 1
1_7=;; —In(1 —9) =Inr+ const; vy=1— «/r, (33)

where « is a constant to be determined. Note that this solution makes v
and therefore e* go to unity as r — «, a condition we previously expressed
50 that ¢,; will be — 1 at infinity. The quantity, g.s, must approach ¢’ as
r — o a relationship that sets the constant in (31). Or

¢ = yc. (34)

These relations satisfy all three of the basic equations. Hence we now
take the line element

(ds)® = —v7'(dr)* — r*(d8)® — 7° sin® 6(d¢)® + vc’(dt)®. (35)
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The metric tensor
Juiu = =Y 3 22 = _7"2; Gzz = —r” sin” 0; g = ye® (36)

1s thus a particular solution of the basic equation (27).

We are now ready to test our assumption that the equation of a geodesie,
in this four-dimensional continuum, represents the path of a particle in
the gravitational field of the sun. We still have one constant at our disposal:
x, which we expect to fit by observation, since it expresses or depends on
some physical property of the sun itself.

If, in (3) we set € = 2 (i.e., ¢ = 6), we have

@0, L.drds L. dodr . déds _
ds’ + T ds ds + T ds ds T 198 ds ds 0. (87)
Employing (16), we get
d’e , 2drde . do\?
g + - d—f;% — cos f#sin 0<£> = 0. (38)

If we take our initial condition so that the particle moves in the plane
6 = w/2, this equation is satisfied identically and for all time. With this
condition, we get

dr 1 ,<d_r>2 _ —E<d£> 1 - ,<d_t>2 -

dsz_l_2"E ds e \ds Tae ¥ ds =0 (39)
d’¢ | 2drde _
ds® ' rdsds 0, (40)
d’t drdt _

E9§+§' d_sds_o' (41)
These last two equations are exact differentials and we get the first
integrals:

Tk g =K =5 (42)

where h and K are constants of integration. Using these expressions, we
may simplify (39) and carry out the indicated integration. As a simpler,
but equivalent, alternative, we can substitute into (12), and get, after
some algebraic reduction,
iV (KT

Now compare this equation with that previously obtained by classical
methods, viz., (I1I-26.27). Replace the constants ¢ and ¢’ in (26.27) by «
and E, respectively. Square both sides and find

dr\’ . 2GM , | Er' _
<d¢>> +r o r 4+ o = 0. (44)
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With v defined as in (33), the equation (43) assumes the analogous form
dar\* e ko ( Ef) o

<d¢> +r7 =t (1 =)= e (45)
Now if « is very small, so that the term on the right-hand side of (45) is
negligible or nearly so, we can identify the constants

2GM Jo® = «k/h (46)
22
and l_th_/c_ = Qz (47)
o

Of the constants in these equations, we regard G, M, and c as basic.
E and «, which measure orbital properties, represent the energy and
angular momentum of a unit mass in a given orbit. Thus we have to de-
termine K, h, and «. We need one more equation. From (1I-26.25),

Tz%?:a. (48)
Hence
2 dé _ o ddds _ b’ _
Tdt__rdsd_t_K_a' (49)

This relationship is supposed to be one between the constants of the two
sets of equations. However v is not a constant, because it is by definition a
function of r. Even so, if « is very small, so that «/r << 1 for significant
values of 7, we can set v ~ 1 into (49) and take

2
o~ % (50)
Then, from (46) and (47) we obtain
2
. = 2G]|{K (51)
¢
2 1

The total energy of a unit mass is usually small compared with ¢*, and
of the order v*/c’. Hence

K&l, and x~2G2 . (53)
¢ c

For the sun, with G = 6.66 X 107° g7! cm® sec™®; M = 1.99 X 10% g;
¢ =3 X 10" cm sec™’, so that

Kk~ 2.95 X 10° cm. (54)
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This calculation indicates that the greatest part of the warped space
occurs in the first few kilometers of solar radius. Even at the solar surface,
where r = 7 X 10 em, vy ~ 1 — 4.3 X 107°.

The term on the right-hand side of (45) thus proves to be small, and
our neglecting it in the first approximation is justified. Our analysis thus
justifies our original contention, that we can express motions of planets
in terms of geodesics in a Riemannian space whose curvature we attribute
to the presence of the solar mass.

In deciding between this interesting possibility and the original hypoth-
esis of Newton, we find the neglected term on the right-hand side of equa-
tion (45) of some assistance.

In equation (45) set r = 1/u. Then

du\* | .« K\1 _
B s D)hw o

Differentiate this equation with respect to ¢ and cancel the factor (du/d¢)
that appears in every term. Then

2
f{—qzé 4oy — ,—;‘5 = 3wl (56)

The equation of the ellipse

N |

=u = A[l 4 € cos (¢ — @0)] (57)
when substituted into (56), gives zero for the left-hand side:
—2Aecos (¢ — ¢,) + 24 + 24€ cos (¢ — @) — h—Kz = 0, (58)

if we set
K

2A=—h—2.

(59)
In these equations e is the eccentricity.

To allow for the effect of the extra term on the right-hand side of equa-
tion (56), we shall consider the quantity ¢, to be a slowly varying function
of ¢. Then

T = —Ae(1 — ¢b) sin (¢ — ¢o) (60)
and

2
Ol = —Ad(l = 6 cos (@ — b)) — ¢i/sin G — 8] (6D
where the primes signify differentiation with respect to ¢. In this equation
we shall neglect the higher order terms, (¢6)* and ¢¢’. Then, when we sub-
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stitute this expression back into (56), we get

K 2
|:2A —ET 3kA ]
+ Ae[4¢) — 6Ax — 3Axe cos (¢ — ¢o)] cos (¢ — @) = O. (62)

This equation requires that each individual bracket equal zero. In fact,
the relation

A = 2—2 (63)

is an excellent approximation to the first equation. The second approxi-
mation gives

K 2 2
A = 5 (1 + 36/40). (64)

This second bracket in (62) leads to a differential equation in ¢, :

4‘%= GAx + 3A ke cos (b — o). (65)
3 3
¢0=§AK¢+1AKfsm(¢_¢o)+5- (66)

On the right-hand side, we can regard ¢, as a constant, because it varies
so slowly.

Equation (66) shows that ¢, consists of a fluctuating sine term and a
progressive term: 3A«k¢/2. The effect is that of an ellipse whose major
axis slowly rotates at the rate ¢; , i.e., an advance of the line of apsides.
The secular change is simply

2
, _ 3k

3G°M*°
b0 = W = T2

- _th2 . (67)

To reduce these, we use

o= A2 Gi = \[CL = VGilp = NGl — &) = he, (69

by (46), (63), (11-26.32), (50), and (53). Therefore

¢l — ____3§]l[ —
* T el = €

where a is the major semi-axis. The rate at which the line of apsides
precesses 1s

(69)

dt do dt a

(70)

2

dbo _ dpodd _ ¢ <GM>-W 1
ac (1 — &)
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since, by Kepler’s third law, (I-14.9),

For the planet Mercury, e = 0.206, a = 5.78 X 10 cm, GM/¢* =
1.475 X 10° cm. Hence

% = 6.68 X 10" rad/sec. (72)

To interpret this number, we note that
1 radian = 2.06265 X 10° seconds of are.
100 years = 3.15 X 10° seconds of time. (73)
At this rate, the advance of perihelion is

Ay = 6.68 X 107" X 2.06 X 10° X 3.15 X 10° (74)

= 43 seconds of arc per century.

This figure agrees very well with the observed value, and no other accept-
able explanation exists for the rotation of the ellipse, other than the
Einstein theory of relativity.

LFinstein has also pointed out that a light beam should experience a
deflection that results from the curvature of the field geometry. A ray of
light is a geodesic, with ds = 0. Hence, by (42),

h— =, (75)
and equation (56) takes the form
dw 3 .
d¢2+u—2xu. (76)

To the first approximation, when we neglect the right-hand side of this
equation,

1
R

the equation of a straight line. To get the full solution, substitute this
approximate result in the right-hand side of (76), to give
d*u

3 2
%5 +u = 5]%2 cos” ¢. (78)

cos¢; rcos¢ =R, (77)

u =

Try the general solution

u=A—|—11—€cos¢+Bcos2¢>. (79)
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Then
—B(2 cos® ¢ — 2sin® ¢ — cos® ¢) — :3—,1% cos¢p + A = 0. (80)

Replacing the sin® ¢ by 1 — cos’ ¢, we see that the condition of (80) is
satisfied only if

A = —2Band B = — /2R’ (81)
Thus the full solution is
1 2GM 1 GM
7—' = ?&E_ + ]—{ cos ¢, — }?{? cos’ ¢:. (82)

Without the correction terms, the angle corresponding to the value of
r = o follows from the equation cos ¢; = 0, or ¢, = /2 or 3n/2. The
two asymptotes are 180° apart and the ray is a straight line. Now, for the
full equation, with » = « we get for the first approximation

—2GM

cos ¢, = e (83)
Substituting this result for cos® ¢, we get
L 20 ()20
Ccos ¢, = RS R/ (84)

The first approximation is amply accurate.
The two solutions for ¢, lie respectively in the second and third quad-
rants. The values are

. b . (3w b 2GM
s (5 + 3) = sin (5 - §) = "5 (85)
The total angle of deflection
3r B T b) 4GM
(3‘§>‘<§+§>—”—5—Rcz- (86)
At the surface of the sun,
8 = 8.5 X 10 ° radians = 1.75 seconds of arc. (87)

A ray of starlight grazing the sun should suffer a deflection of just this
amount. The observations designed to measure the deflection must be
made at a total solar eclipse and are among the most exacting of scientific
experiments. Some uncertainties have unavoidably crept into the data,
and the evidence is not absolutely conclusive. However, the measured
deflections from many eclipses appear to be about 2 seconds or slightly less.
The values thus provide some confirmation of the general theory of
relativity.
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The third observational test of the theory consists of a displacement
of the Fraunhofer lines in the solar spectrum. We assume that each atom,
in its own reference frame, emits radiation at a constant frequency. An
atom on the sun, at rest relative to the earth, will measure the timelike
interval between successive waves as

(ds)* = vc'(de)’, (88)

from (35), wherein we have set dr, df, and d¢ equal to zero, since the
atom is motionless, by hypothesis. In this equation, ds is the true invariant;
hence the ratio between the time intervals of two similar atoms, one
located on the earth and the other on the sun, is

vs(d@8)s = ve(d)%, (89)

where the subscripts S and E refer to sun and earth, respectively. If dt
denotes the time for one cycle of the emitting mechanism, the frequency
of the radiation is

» = 1/(di). (90)
Hence
vs/ve = Vvs/ve ~ V1 — 2GM /R, (91)

by (33) and (53), where R is the solar radius. We can set vz = 1, without
loss of generality, not only because M /R is small, but because we measure
vg in time units appropriate to our location at the surface of the earth.

For the sun, GM/¢’R ~ 2.1 X 107°. Hence, at A = 5000A (in the green
of the solar spectrum), solar wavelengths are shifted to the red by 0.01 4,
approximately. Doppler shifts, caused by differential vertical currents in
the solar atmosphere, somewhat mask the effect, but the observations
appear to be in reasonably good accord with prediction.

The equations

G, =0 (92)

represent only one possible solution, selected from a large number of
alternatives. It applies to regions of space that are empty, insofar as the
departure from a non-Euclidean geometry arises from the presence of a
large mass of matter in the neighborhood, the sun for example.

When we attempt to extend this theory to encompass the enormous
distances within the universe, we cannot assume that the relative empti-
ness of space means that the geometry of the extended world must be
Euclidean. In fact the above type of argument is essentially meaningless.
A Riemannian space possesses a natural metric, imposed on it by the
existence of a definite radius of curvature. A Euclidean space possesses no
such metric. How, then, can the expression ‘‘relative emptiness of space,”
used above, acquire meaning? May not the great extent of space more than
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offset the low density of material contained within it, and thus auto-
matically induce non-Euclidean regions at great distances?

The nature of the quantity v implies that any universe containing
matter must be finite. If, about some region of space, we can draw a
boundary such that

v=1-—2GM/Rc® = 0, (93)

light waves would be unable to move from that inner region into some
outer region. A light wave approaching such a boundary from within would
travel slower and slower.

We have seen that, for the sun,

2GM /R = 4.3 X 10°°, (94)

so that light escapes readily from its surface, although it is subject to
the minor red shift already discussed. For a star in general, whose mass
depends on the density,

M = 4wpR%/3, (95)
the condition of (93) specifies that
87GpR*/3c* = 1. (96)

A star with mean density equal to that of our sun, but with a radius
increased by the factor (4.3 X 107%)7"?  or approximately 500 times,
would be a closed system. No light could escape from its surface. We
should become aware of it, however, because the warp of the surrounding
space would make itself felt as a gravitational force field.

Similarly, if we could compress all the mass of the sun into a volume
of radius less than 2.95 km, equation (54), light could not escape through
this barrier, but the dynamical properties of the solar system would not be
altered appreciably. Attempts to explore the characteristics of space just
outside the barrier—say at 3 km from the center—would lead to the
peculiar situation that the barrier was still an infinite distance away.
The paradox arises from the fact that the unit of radial measure (like the
unit of time) approaches zero in the vicinity of this region. As we approach
the boundary, our measuring rods shrink to zero. To show this, we note
that as we hold ¢, 6, and ¢ constant, ds —» asy — 0.

If we try to manufacture a Euclidean universe from a space filled with
matter of constant density, p, no matter how small, equation (96) shows
that there exists some finite value of R, which makes the universe close
up on itself. We can even try to estimate this value of R.

Observations indicate that our own galaxy possesses a density of the
order of 107** g/cm®, about 1 atom per em®. This density is perhaps 10*
times greater than for the universe as a whole, although the exact figure
is not known.
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Try p = 107%, and solve for R. The value is R = 4 X 10*" cm. Since
light travels a distance of 9.46 X 107'7 c¢cm/yr, we see that this theory
indicates a radius of the order of 5 X 10° light years, a figure that probably
is a maximum since the value assumed for p is, very likely, a lower limit.

Our largest telescopes have recorded external galaxies out to distances
of 5 X 10° light years or so. One of the most surprising facts of observation
is the increasing red shift of the spectra of the more distant galaxies, an
effect that appears to be roughly linear with distance over the range thus
far studied.

To formulate the general theory of a finite universe, Einstein replaced
his original law (92) by

G = N 97)

where A is a universal constant, so small that his original approximation
was excellent, except over distances of the order of the dimensions of the
material universe. The non-vanishing components of G,, are the same as
pefore, viz., those for which » = p.

The form of our equations and the character of the laws of the universe
differ considerably according to the various basic assumptions. Einstein
considers a world wherein the spatial geometry is spherical and the time
geometry linear.

With the aid of equations (14) and (22) to (26), we write out the non-
vanishing components of (97), which become

Gy = e‘{l + C(SUT—E,—) - e_E:I = —\° = Sﬁ?—g
(98)
G = —ef%l:%l — SL:f, + ({;)2 + %,:l = .
G, =0, usv.
From G,, and G,, , we find that
et=v, {!=—t=4N, &=2c, (99)
as before. These values substituted into G,, give
Ty 4y =1 - N (100)
This equation leads to the integral
y=1 -2 % (101)
We have previously noted that the condition, vy = 0, represents a

surface that no light ray can traverse since all time ceases, in effect, when
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v = 0. Or, in other words, the distance ds, as expressed by (35), measured
in terms of a dr, i.e.,

Z—f = V—-1/y > —iew, (102)

The two roots of (101) are, approximately
ro~2GM/c* and 1, ~ V/3/\. (103)

Of these two roots r, is very small and r, very great. A particle of mass
M and radius r, would behave like the impenetrable solid sphere that we
once regarded as the ultimate particle of matter.

We can regard 7, as the radius of the universe. If we set r, ~ 4 X 10*
cm, as previously derived,

A~2X107%. (104)

Thus we can now justify our previous contention that the equation,
G,, = 0, is a satisfactory approximation in the solar neighborhood.

We are faced with two major relativistic problems. One is related to
motion within the solar system and the other to the structure of the entire
universe, wherein we regard such condensations as stars, or even galaxies,
as only minor irregularities in the otherwise essentially uniform continuum
of matter.

The solar-system problem is the one whose solution is most definite
and least subject to question. The primary reason for our success here
is the fact that the distances are small compared with the dimensions of
the universe. We arbitrarily adopted a Euclidean metric, equation (10),
for empty space and then computed the character of the Riemannian
warp introduced by the presence of the sun.

But by what right could we assume our initial space to be Euclidean?
Our reply is that we could have adopted almost any kind of space whatever,
so long as its curvature was great enough to include the observed universe,
and we could still employ a Euclidean approximation for an empty volume
the size of our solar system. However, when we extend our solution farther
and farther into space, can we or should we adopt as our starting point, a
TFuclidean rather than a Riemannian space?

Our analogy of the navigator proved useful, as a means of showing how
apparent force fields can arise from the metric alone. It is even more apt
when we apply it to the universe as a whole rather than to the solar system,
because unless the island itself produced the curvature, its presence is not
necessary. The navigator, exploring his full universe, would find that
the force field seemed to exist everywhere, for all circuits that he traversed.
The analogy might have been improved had we replaced the island by
some geyserlike upheaval that altered the shape of the ocean surface in
some major fashion.
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The navigator finds that the spherical surface of radius R curved in the
third dimension follows the law

(ds)*> = R*(d6: + sin’® 6, d6,), (105)

where 6, and 6, are angular coordinates. If, about some origin, the navigator
proceeds a distance R#6,, and then draws a circle, the circumference of
such a circle will be 27R sin 6,, not 2rR6,, unless 6, is very small. For
small distances the result is the same as for Euclidean space. But as we
increase 6, to 7/2 we shall find some largest circle, an equator. Thereafter
the circumference diminishes for still greater distance, to the value zero
at the antipodes.

Analogously, a three-dimensional spherical world curved into four
dimensions conforms to the law

ds’ = R’[d6 + sin® 6,(d6; + sin® 6, db,)]. (106)
If, to this world, we add time as a linear, Cartesian coordinate, we get
ds’ = —R’[d6; + sin® 6,(d6; + sin® 6, d,)] + ¢ dF’, (107)

where we have changed the sign to correspond with the convention pre-
viously adopted.

As we proceed from the origin, the radial coordinate is R6,. As before,
we reach, not a greatest circle, but a greatest sphere, for 6, = x/2. The
area of this sphere is 4rR® sin® 8,, rather than 4rR*6}.

The volume of space is finite and equal to

x x 2x
v=[ [ [ Edo in6 do)in ,5in 0,d8) = 2R (108)
0 V] 0

Where Einstein chooses time to be a linear coordinate, de Sitter adopts
a more general metric! Analogous to (106), he takes
ds = —R?{d6; + sin® 6,[d6; + sin® 6,(d6: + sin® 6, d63)]}. (109)

Within this spherical world we transform the coordinates to

cos 6, = cos p cos ict/R, (110)
cot 6, = cot p sin iwct/R, (111)

sin p = sin 6, sin 4, (112)
tan ict = cos 6, sin 6,. (113)

Then
ds’ = —R*dp® — R?sin’p(d6; + sin’f, d63) + ¢® cos’p dt'.  (114)

This equation agrees with Einstein’s (107) as far as the spatial parameters
are concerned. As for time behavior, however, the presence of the cos® p
factor creates a marked difference. This cos® p factor is analogous to the
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v of our previous discussion. Hence for larger distances, i.e., large values
of Rp, clocks begin to slow down. At the distance Rx/2, cos n/2 = 0,
and time utterly ceases. Thus we find an apparent horizon. Spectral lines
from distant objects should show a red shift of amount cos p, increasing
with distance.

We cannot expect to study in detail all the implications of these two
worlds. In Einstein’s we find a red shift caused by the presence of matter.
In de Sitter’s we find a red shift produced by the pure geometry of space
and time, even in a world devoid of matter. These two points of view repre-
sent extreme cases, between which present evidence cannot easily decide.
However, de Sitter’s curved world appears to be unstable and thus capable
of expanding—perhaps carrying the distant galaxies along in this ex-
pansion.

These Riemannian geometries carry hope for the future. The relativistic
tensor forces of the universe, which display themselves in the form of a
warped space, may resemble those that hold the atom together. They
may well hold the key to the future as well as to the past of the entire
universe.

SELECTED PROBLEMS FOR PART V

1. The index of refraction for x rays is less than 1 for certain crystals. Hence the
phase velocity should be greater than ¢. Does thisresult conflict with any conclusion
or postulate of special relativity?

2. Using the relativistic expressions for the total energy £ and momentum p,
show that E* = p°c® 4+ (moc”)®. Show that the kinetic energy, T, can be expressed
as a function of p, that is,

T = VP& — (me®)® — moc.
3. In classical mechanics, T = p°/2m. Show that the relativistic expression

reduces to the classical value when 8 = »/c < 1. Hint: Expand the radical in a
power series in p°c’/ (moc®)?.

4. (a) What will be the kinetic energy of an electron traveling at 99 per cent of
the velocity of light?
(b) If we increase the kinetic energy by a factor of 100, what will be the
increase in velocity of the electron?

5. Discuss problem I1V-42 from the standpoint of special relativity. The differ-
ences between the relativistic and classical formulae are large for particles moving
with high velocity. Experiment confirms the relativistic relations and thus provides
the best single experimental verification of the correctness of special relativity.
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329, 337, 338

radiation constant, 15

radiation pressure, 295, 299

radius of gyration, 232

rationalization, 5

Rayleigh-Jeans law, 24

reciprocal matrix, 95

reciprocal system, 102

reflection, 301

refraction, 301, 408

refractive index, 308, 340

relativity, 375, 391

resistance, 12, 13

Riemann-Christoffel, 128

Riemann-Christoffel tensor, 130, 393

Riemannian geometries, 408

Riemannian space, 399, 403, 406

Rodrigues’ formula, 233

rotating charged disk, 273

rotation, 86 »

rotor, 68
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Sakur-Tetrode constant, 17

scalar, 66, 102

scalar potential, 264, 314

scalar product, 69

Schrodinger, 16

sectorial harmonic, 59

secular equation, 102, 103

self inductance, 13

skew-symmetric dyadic, 88

Smithsonian Physical Tables, 7

solar atmosphere, 249

solenoid, 150

solenoidal, 144

solenoidal vector, 270

solid angle, 10

space-time manifold, 391

special theory of relativity, 375

specific heat, 11

specific intensity, 11

spherical coordinates, 182

spherical harmonics, 55, 56, 61

star, 249, 406

starlight, 402

steady flow of heat, 225

Stefan-Boltzmann, 15

Stefan’s law, 20

Stokes’ law, 259

Stokes’ theorem, 125, 129, 132, 141, 148,
263

sunspots, 274

surface integral, 42

synchronism, 379

T

Taylor’s theorem, 183

temperature, 7, 11

temperature gradient, 11 .

tensor, 86, 87, 107, 128, 130, 329, 384, 385,
386, 393

tensor analysis, 107

tesseral harmonic, 59

thermal conductivity, 11

time, 7

torque, 10, 86

trace, 107

transformation, 107, 164

transverse Zeeman pattern, 358

triple scalar product, 102

two bodies, 81

INDEX

U

ultraviolet, 349

unit matrix, 106, 115

unit vectors, 74

unitary matrix, 106, 107
unitary transformation, 107
units, 1, 261

A4

variable heat flow, 228

varied action, 169

varying action, 169

vector, 36, 38, 66, 69, 74, 76, 78, 135, 143,
152, 270, 289, 290, 294, 314, 333,
356

vector algebra, 66

vector analysis, 66

vector multiplication, 290

vector operator, 38, 74, 135

vector potential, 143, 145, 152, 314, 333

vector product, 69

vector transformations, 78

velocity, 5, 7, 8, 17, 66, 143, 213, 249, 349

velocity of escape, 249

velocity of light, 5, 17

velocity potentials, 143

vibrating bar, 232

vibrating sphere, 208, 211

vibrating string, 192, 213

vibrating systems, 215

vibration, 185, 219, 340

“virtual” current, 276

viscosity, 150

volume, 7, 71

vortex, 150

vortical motion, 148

W

wave, 183, 212, 213, 292, 349
wave equation, 183

wave functions, 212

wave velocity, 213, 349
work, 9, 35, 173

Z

Zeeman, 15, 23, 351, 358
Zeeman effect, 15, 23, 351, 358
zonal harmonice, 59



