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PREFACE

RECENT discoveries have revealed that clectromagnetic phenomena
are of greater importance in cosmic physics than used to be supposed.
The time now seems to be ripe for an attempt to trace systematically
the electromagnetic phenomena in the cosmos, and this is the reason
for writing the present volume.

Cosmic physics is still in the stage where the most important task is
to find out what are the dominating physical factors. Too many
theories have been worked out with much mathematical skill on basic
assumptions which were not physically tenable. Hence in this book the
stress is always laid more on the physical than on the mathematical side.
It is clearly understood that definite tests of any theory can be made only
by means of rigorous mathematics, but the scope of this book is more to
put the problems than to solve them.

The first four chapters are of fundamental character, the last three
contain the applications. The reader is supposed to be familiar with the
empirical results in this field. No attempt has been made to give an
historical account of the development of the theories.

During a prolonged correspondence and many discussions Mr. Nicolai
Herlofson has offered most valuable criticism from which I have
profited. My thanks are also due to Mr. Stig Lundquist who has very
kindly helped me with the preparation of the manuscript.

STOCKHOLM
THE ROYAL INSTITUTE OF TECHNOLOGY

July 1948
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I
GENERAL SURVEY

1.1. PHYsICS is mainly based on experience gained in thelaboratory. When
we try to apply to cosmic phenomena the laws in which this experience
is condensed, we make an enormous extrapolation, the legitimacy of
which can be checked only by comparing the theoretical results with
observations. Classical mechanics was once extrapolated into the realm
of astronomy so successfully that only the most refined observations of
the last decades have revealed phenomena for which it does not hold.
The application of atomic theory, especially spectroscopy, to cosmic
phenomena has proved equally successful. In fact, classical mechanics
and spectroscopy have been two invaluable tools in exploring the uni-
verse around us.

It seems very probable that electromagnetic phenomena will prove to
be of great importance in cosmic physics. Electromagnetic phenomena
are described by classical electrodynamics, which, however, for a deeper
understanding must be combined with atomic physics. This combina-
tion is especially important for the phenomena occurring at the passage
of current through gaseous conductors which are treated by the com-
plicated theory of ‘discharges’ in gases. No definite reasons are known
why it should not be possible to extrapolate the laboratory results in
this field to cosmic physics. Certainly, from time to time, various
phenomena have been thought to indicate that ordinary electrodynamic
laws do not hold for cosmic problems. For example, the difficulty of
accounting for the general magnetic fields of celestial bodies has led
different authors, most recently Blackett (1947), to assume that the
production of a magnetic field by the rotation of a massive body is
governed by a new law of nature. If this is true, Maxwell’s equations
must be supplemented by a term which is of paramount importance in
cosmic physics. The arguments in favour of a revision are still very
weak. Thus it seems reasonable to maintain the generally accepted
view that all common physical laws hold up to lengths of the order
of the ‘radius of the universe’ and times of the order of the ‘age of the
universe’, limits given by the theory of general relativity.

The discovery of sunspot magnetic fields (Hale, 1908) and later of the
sun’s general field (Hale, Seares, von Maanen, and Ellerman, 1918) has
been of decisive importance to cosmic electrodynamics. More recently

Babcock (1947) has shown that even stars possess strong magnetic
3595.74 B



2 GENERAL SURVEY 1.1

fields. It may be said that if the sun and stars had no magnetic fields,
electromagnetic phenomena would be of little importance to cosmic
physics.

Celestial magnetic fields affect the motion of charged particles in
space. Under certain conditions electromagnetic forces are much
stronger than gravitation. In order to illustrate this, let us suppose that
a particle moves at the earth’s solar distance Ry with the earth’s orbital
velocity v,. If the particle is a neutral atom, it is acted upon only by the
solar gravitation (the effect of the solar magnetic field upon an eventual
atomic magnetic moment being negligible). If M is the solar and m,
the atomic mass, and k is the constant of gravitation, this force is

fi = kMo m,/RE.

If the atom becomes singly ionized, the ion as well as the electron
(charge = --e) is subject to the force

£, = (efc)[vs Hyl

from the solar magnetic field H,. Under the assumption that this field
is due to a dipole with the moment a = 0-42.103 gauss cm.?, we find
H, = 1-2.10-% gauss. If m, is the mass of a hydrogen atom it is easily

found that
fm/fA ~ 105'

This illustrates the enormous importance of the solar magnetic field
even at the earth’s distance from the sun.

On the other hand, as f, has opposite signs for electrons and for ions,
in many cases the forces on electrons and ions may cancel each other.
If we substitute for the particle an ionized cloud, containing the same
number of electrons and ions, the resulting magnetic force on the cloud
becomes zero to a first approximation. Second-order effects, e.g. due to
the inhomogeneity of the magnetic field, may still be important.
Further, the motion in the magnetic field produces a separation of the
ions and electrons, but the resulting polarization causes an electric field
which limits the separation. Under certain conditions the electric field
may produce currents in adjacent conductors so that very complicated
phenomena occur.

In the sun itself the magnetic field is of importance in several respects.
In the outer layers, the chromosphere and the corona, the radius of
curvature of the path of a charged particle with thermal velocity is
smaller than the mean free path. Hence the magnetic field introduces
an anisotropy, so that, for example, the electric conductivity is higher
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in the direction of the magnetic field than perpendicular to it (Cowling,
1932). In the photosphere, and in the sun’s interior, the mean free path
is small in comparison to the radius of curvature, which means that solar
matter can be treated as an isotropic conductor. But even in this case an
anisotropy is introduced by the fact that currents perpendicular to the
magnetic field produce forces which accelerate the medium. A con-
sequence of this is that magneto-hydrodynamic waves (see Chap. IV)
move in the direction of the magnetic field.

The examples above demonstrate on the one hand the importance
of electromagnetic forces in cosmic physics, and on the other the com-
plexity of the electromagnetic phenomena. In our attempt to trace
electromagnetic effects we shall start with a discussion of the magnetic
and electric fields in cosmic physics. In Chapter II we shall treat the
motion of a single particle in such fields. Ifseveral charged particles are
present, forming an ionized gas, phenomena related to those studied in
electric discharges are likely to occur. A survey of these phenomena
is given in Chapter I1I. At densities so great that the ionized gas can
be considered as an ordinary electrical conductor, the most important
phenomenon in connexion with electromagnetic forces is probably that
of magneto-hydrodynamic waves. These are treated in Chapter IV.

The results are applied to solar physics in Chapter V and to the theory
of magnetic storms and aurora in Chapter VI. A discussion of the astro-
physical aspect of cosmic radiation is given in Chapter VII.

It was originally intended to discuss an electromagnetic theory of the
origin of the solar system (Alfvén, 1942, 1943, 1946) in an eighth chapter.
This has been excluded, however, because it would require rather too
much space.

It is a matter of judgement whether the physics of the ionosphere
should be reckoned as cosmic electrodynamics or not. Certainly it has
close connexions with, for example, the theory of the solar corona. On
the other hand, it is still more closely related to the extensive field of the
physics of the upper atmosphere. Aseven a superficial treatment of these
problems would require too much space, the physics of the ionosphere
has been excluded altogether.

1.2. Magnetic fields in cosmic physics

Every electric current, and what is equivalent to that, every magnet,
gives a magnetic field which at great distances approximates to a dipole
field. Hence in the absence of currents in the surroundings the fields
of the earth and the sun are dipole fields at great distances. For the
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earth, and probably also for the sun, this approximation is rather close
even at the surface, and hence everywhere above the surface.
A dipole with moment a situated at the origin and parallel to the z-axis

TFic. 1.1. Magnetic line of force from a dipole a.

gives a field, the components of which in a spherical coordinate system

(R, ¢, A) are Hp = H,sing, (1)
H, = —3H,cosq, (2)
H), =0,
H, = 2a/R?, (3)
H = J(Hy+HL+H}) = ap/R® = {H, ¢, (4)
where é = J(1+3sin2p). (5)

Hy, represents the ‘vertical’ and H, the ‘horizontal’ compgnent of the
field.t A magnetic line of force has the equation
R = r,cos%p, (6)
A = const.,
where 7, is the distance from the origin of the point where it intersects

the equatorial plane (¢ = 0). The angle « between the liree of force and
the radius vector is given by

tana = cot o, (7)
or sina = COSCP, (8)
coOSa = 2S1ncp. (9)

The ‘inclination’ of the field is 7 —a.

t In terrestrial magnetism the ‘vertical component’ is counted positive if directed
downwards.
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The total strength of the field along a given line of force can also be
written

H = g5$ = g(cos o) = Lo, (10)

where n = \/(Lé—(%nch). (11)
In a Cartesian system (z, y, z) we ha:ve

H, = 3xz1%5, (12)

H, = 3yz—1%-5, (13)

H, = (32— %)= (14)

with R?* = x24-y%+4-22.
If the terrestrial field is treated as the field from a dipole situated at
the earth’s centre, this dipole has the moment (see Chapman and Bartels,

1940, p. 645) 8:1.10% gauss cm.3 (15)

Its axis intersects the earth’s surface in two antipodal points situated
at latitude 78-5° S., longitude 111° E., and at latitude 78-5° N., longi-
tude 69° W. The dipole moment (15) corresponds according to (3) to
H, = 0-63 gauss.

A better approximation is obtainable if the condition that the dipole
should be situated at the centre is dropped. The best agreement with
the real field is obtained if the dipole is shifted 342 km. from the centre
towards th® point 6-5° N., 161-8° E. The axis of the eccentric dipole
intersects the earth’s surface at two points, 76-3°S., 121-2° E., and
80-1° N., 277-3° E.

The terrestrial field is subject to a slow (secular) variation. At present
the magnetic moment seems to decrease by about 0-1 per cent. per year.

The solar magnetic field has been determined by measuring the Zee-
mann effect. The displacement of the sunspot zone (see § 5.31) and some
other effects supply additional, although less direct, arguments for the
existence of a general magnetic field. The properties of the field are
discussed in § 5.22. The polar strength is likely to be about 25 gauss,
corresponding to a dipole moment of

4-2.10% gauss cm.3 (16)

Because of the difficulty of exact measurements, this value may be in
error by a factor 2, perhaps even more.
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Sunspots are always associated with strong magnetic fields, as big as
4,000 gauss.

Stellar magnetic fields have been discovered by Babcock (1947) through
Zeemann effect measurements. For 78 Virginis he finds a polar strength
of 1,500 gauss corresponding to a moment of 4.103¢ gauss cm.3, and for
the star BD 18°3789 (HD 1252 48) the field is no less than 5,500 gauss.
The field of the latter object seems to be variable.

There are some arguments for the existence of a general galactic mag-
netic field. This problem is treated in § 7.5.

1.3. Induced electric field

In the presence of a magnetic field an electric field is defined only
in relation to a certain coordinate system. If in a system ‘at rest’ the
electric and magnetic fields are E and H, we can calculate by means
of relativistic transformation formulae the fields E’, H’, in a system
which moves in relation to the first with the velocity v. The components
parallel to v remain unchanged, but the components perpendicular to v
are transformed in the following way:

,  E--c-vB]

B = Ja—ew)’ W
,  H—c1[vD]

M = o) @

(D = eE, B = uH; reduced in a vacuum to D = E, B = H).

The astronomical velocities are much smaller than the velocity of
light (c). Because of the good conductivity, electrostatic fields will
usually be of little importance. Hence the electric fields are usually
secondary to the magnetic fields, which, according to (1), means that
the electric fields are much weaker than the magnetic fields. Con-
sequently in cosmic physics we can usually to a good approximation write

E' = E4(1/c)[vH], (3)

H =H (4)

(where also the components parallel to v are included in the vectors).

Thus the magnetic fields are independent of the coordinate system,

but to speak of an electric field without defining exactly the coordinate
system to which it refers is meaningless.

These simple and fundamental principles seem to have attracted very

little interest from astrophysicists and geophysicists. They are not very
much to blame because the subject is omitted in most treatises on



1.3 GENERAL SURVEY 7

electromagnetism. Formulae (1) and (2) are found in books on the theory
of relativity, e.g. Riemann—-Weber (1927) and McCrea (1935).

The importance of the relativity of electric fields in cosmic physics is
enormous. One of the consequences is that all celestial bodies with
magnetic fields are on account of their rotation electrically polarized
when seen from a system at rest. This
phenomenon is well known from labora-
tory experiments and is usually called
‘homopolar’ or ‘unipolar’ induction. It  , G
wasfirststudied by Faraday,and attracted ©
much interest during the last century
because it was thought that by investi-
gating this subject it should be possible to
ascertain whether the magnetic lines of
force from a rotating magnet rotate with
the magnet or not. At present the pheno-
menon seems to be half-forgotten, and
most text-book authors do not mention }--=~
it. A noteworthy exception is Cullwick
(1939), who devotes a special appendix to
it. It is also discussed by Becker (1933).
Further, it should be mentioned that one

Fic.1.2. Unipolar inductor. When a
of the best methods for absolute deter- bar-magnet N-S is rotated around

mination of the ohm employs a unipolar itsaxis 4A’acurrent is obtained in a

inductor (see Curtis, 1937). The device fi#ed cireuit connecting the axis with
a sliding contact at C.

has also been developed electrotechnically

as a direct current generator producing currents of thousands of amperes

(see, for example, Arnold-la Cour, 1919).

A simple unipolar inductor is obtained by rotating a cylindrical bar-
magnet N-S around its axis 44’ (see Fig. 1.2). A fixed wire 4AGDC
connects the axis with a sliding contact C at the middle of the bar. If
the switch D is closed the galvanometer G indicates a current as soon as
the magnet rotates. The phenomenon can be treated either in a fixed
system or in a rotating system. In the first case the magnetic lines of
force are considered to be at rest outside as well as inside the magnet. The
motion of the magnet produces a polarization inside it so that positive
charge is accumulated near the axis and negative charge near the
sliding contact. If the circuit is interrupted, this accumulation pro-
ceeds until the field from the charges neutralizes the polarization field,
so that the resulting field £’ becomes zero. This is necessary because

—_—
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the magnet is a conductor and when the current is zero the electric
field seen from a system moving with a conductor must be zero. Then

we have from (3) E = —(1/¢)[vB]. (5)

The voltage difference between the sliding contact and the axis is

C
V= —(1fe) [ [vB] ds, (6)
A

where ds is a line element.

If the switch is closed this voltage produces a current in the circuit.

This discussion is founded on the assumption that the magnetic field
is ‘at rest’. The problem can also be treated under the assumption that
the lines of force take part in the rotation, and the result is the same. In
this case no polarization is produced inside the magnet, but outside
the magnet the wire AGDC constantly cuts magnetic lines of force.
Hence an e.m.f. is induced and it is easily shown that this has the
value (6).

When we treat a problem in the rotating system we must observe that
according to the general theory of relativity the electrodynamic equa-
tions for a rotating system do not have the usual form. In the presence
of a magnetic field B the electric field deriving from a space charge p

can be found from d4mp = div E—(2/c)(wB),

where w is the angular velocity.} Within a conductor we have £ = 0,
and the space charge is given by

p = —(wB)/2nc.

The same result can also be obtained in the fixed system by taking the
divergence of (5).

If the magnet is surrounded by an ideal insulator, we have outside the
magnet p = 0. Hence, even in the rotating system, an electric field is
produced. If, on the other hand, the surrounding medium has a con-
ductivity which differs from zero, we have also E = 0 outside the
magnet. In this case the magnetic lines of force may be considered as
rotating with the magnet. As we have assumed v < ¢, the result does not,
of course, hold for large distances from the axis.

It is not essential that the rotating body should be a permanent
magnet. Any conductor will do if only a magnetic field is established in
some way. In Fig. 1.3 a coil produces the magnetic field in which a
copper disc rotates around the axis 44’. The e.m.f. is given by (6).

1 Iam indebted to Professor O. Klein for pointing this out to me.
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It should be observed that if an instrument G” is placed on the dise, so
that it takes part in the rotation and is connected between the axis and
periphery, the voltage zero is read on this instrument.

After having discussed various types of earthly unipolar inductors
we may be allowed to extrapolate the results to cosmic phenomena. It
is obvious that the earth and the sun
must be polarized in the same way as
the bar-magnet or the copper disc. Let
us consider the fields of these bodies
as dipole fields with the magnetic axis
coinciding with the rotational axis §

and neglect the non-uniform rotation
of the sun. Because of the good elec-
tric conductivity the electrostatic
potential must be the same at the
poles as at the equator, when measured Fic. 13 Unipolar ir}ductor, consisting of
‘n a system which takes part in the rota- a rotating copper disc which is polarized
v Y part v ol by the field from a coil.

tton. Transforming to a system at rest

(not partaking in the rotation) the bodies are electrically polarized
according to (3). The electric field lies in the meridian plane and its
horizontal component E, amounts to

’UHR/C,

where Hp, is the vertical component of the magnetic field. Putting

v = v,C08 ¢,
HR == H]) Sin P
(p = latitude, v, = equatorial velocity, H,, = polar field strength), we
obtain
E = vezlj” sin 2¢. (7)

For the earth we have v, = 0-5.105 cm. sec.~!, H, = 0-6 gauss. Hence
we obtain for ¢ = 45°, the field | = 0-5.10-% e.s.u. = 150 p volt cm.~1
Integrating (7) from the equator to the pole, we find that the voltage
difference between equator and pole is given by V = f E ds = 105 volts
if measured from a system at rest.

In the same way we find that seen from a system at rest there is a voltage
difference between the equator and the poles of the sun of 1:7.10°
volts. As in the case of the earth, the equator is negative in relation to
both poles.
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The surface charge of the rotating body produces an electric quadru-
pole field outside the body. In the case of a rotating sphere this field has
been calculated by Davis (1947). If the body is surrounded by a con-
ducting medium, the electric field is modified so that it becomes

E = vH/c,

with ¥ = 7w, which means that the surrounding medium tends to share
the rotational state of the body.

The consequences of the unipolar action of celestial bodies will be
discussed further in §§ 5.61 and 5.82.

Another example of unipolar induction is found in the solar atmo-
sphere, where motionsin the general magnetic field or sunspot fields may
produce very large electromotive forces (see § 5.61).

When an ionized cloud moves in a magnetic field it becomes polarized
according to (3). For example, the ionized clouds, which according to
current ideas of the cause of magnetic storms are emitted from the sun
(see § 6.1), are electrically neutral when seen from a coordinate system
which moves with the cloud. When seen from the earth, which in this
connexion may be considered as approximately at rest, they are elec-
trically polarized (compare Becker, p. 336). As we shall see in Chapter
VI, this field is probably of decisive importance in the theory of magnetic
storms and aurorae.

For the production of electric fields according to (3) we use the term
polarization or (with Cullwick) motional induction. Unipolar induction
is one special case of this and the polarization of an ionized cloud
another.

Electric fields may also be produced by a change in magnetic field.
This type of induction is called by Cullwick transformer induction. The
field may be calculated from Maxwell’s equation

curl E = —1@
c ot
or from E = _%,
dt

where B = uH is the magnetic flux density and A the vector potential.

In cosmic physics large electromotive forces are produced either by
motional induction or transformer induction. In special cases electro-
static fields must also be taken into consideration. Small voltage differ-
ences, due to diffusion, thermo-electric or electro-chemical effects, may
in some cases be of importance.
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1.4. Approximate equality of positive and negative space charge

Consider a sphere of radius R containing N, positive charges e and N,

negative charges —e per unit volume. The electrostatic potential at its
surface is 4
V= —;—T(NI—NZ)eRZ.

When we deal with a problem in, for example, the solar corona, we can
be sure that there cannot be a potential of say 3.10 volts (= 108 e.s.u.).
A sphere with radius R equal to 10° cm. is so small a part of the
corona that all densities are likely to be approximately uniform. Insert-
ing the value of R and putting e = 4-8.10-1%e.s.u., the condition
V < 108 gives

N,—N, < 0-05 particles.cm.—3

As N, ~ 108 cm.-3, we find

NN,

0-5.10-°,
N, =

Hence even if there are only 10%4- 1 electrons for 10° protons an impossibly
high voltage is produced.
Similar results are obtained for almost all other cosmic problems.
Hence we may conclude that in cosmic physics the positive space charge
in a volume is always approximately equal to the negative space charge.
From the study of electric discharges in gases it is also known that the
number of positive and of negative particles must be approximately the
same, as soon as the charged particle density is large.
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ON THE MOTION OF CHARGED PARTICLES IN
MAGNETIC FIELDS

2.1. THE first to appreciate fully the paramount importance to cosmic
physics of the problems of the motion of charged particles in magnetic
fields were Birkeland and Stormer. Inspired by Birkeland’s terrella
experiment (see § 6.1), Stormer has devoted a long series of papers
especially to motion in a magnetic dipole field. He has also discussed the
effect of an additional electric field. The problems are treated by exact
mathematical methods, but the final results about the paths of the
particles can be obtained only by very laborious numerical integrations.
It has not been possible to carry through the calculations except for the
case when the particle does not make too many loops in the magnetic
field. This means that Stormer’s method is generally applicable only for
particles above a certain momentum. In the terrestrial field the limit
lies in the range of cosmic rays. Of the trajectories corresponding to
momenta below this only some special types (trajectories through the
dipole) can be found with a reasonable amount of labour. In the general
case particles below the cosmic-ray range make hundreds or thousands
of loops in the terrestrial magnetic field, and unless modern calculating
machines are used the integration is practically impossible.

In the case when the path makes many loops the size of one loop is in
general small compared with the extension of the magnetic field. Hence
during a single turn the particle moves in an approximately homogeneous
field. Inorder to calculate the motion it is advantageous to start with the
motion in a homogeneous field and introduce the inhomogeneity as a
perturbation (Alfvén, 1940). This perturbation method which is developed
in § 2.2 and § 2.3 is especially suited for low-energy particles. In the
terrestrial field it is applicable to almost all problems where the momen-
tum is below the cosmic-ray range. Thus the two methods seem to com-
plement each other.

The paths may also be found by direct experiment. Briiche (1931)
produced very thin electron beams and studied their paths in the dipole
field from a homogeneously magnetized iron sphere. The method has
been further developed by Malmfors (1945), who has determined quanti-
tatively a number of orbits which are of interest in cosmic-ray problems.
Malmfors’s diagrams give a very valuable survey of the motion of cosmic
rays in the terrestrial field.
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After a survey of the motion in a homogeneous field we shall develop
the perturbation method of calculating the path in a field of arbitrary
form (§§ 2.2 and 2.3). The motion in a dipole field is treated by Stormer’s
method (§ 2.4), as well as by the perturbation method (§ 2.5), and the
results are compared.

2.2. Homogeneous magnetic field

In this paragraph we shall first give some simple formulae referring
to the motion of charged particles in a homogeneous magnetic field and
then discuss the perturbation method, which
will be further developed in §2.3. This
method makes use of the fact that when a
particle which spirals in a magnetic field is
acted upon by a force, it moves (‘drifts’)
perpendicular to the force. This is expressed
by equation (24). To the applied force f an
eventual inertia force f? should be added.
When the magnetic field is inhomogeneous
a fictitious force f™ should be introduced
leading to the more general equation (32) of
§2.3. A simple physical interpretation of f™
is possible. The equations give the motion
of the centre of the fictitious ‘gyroscope’, at
the periphery of which the actual particle is
Fre. 2.1. In a magnetic field H supposed to be situated, so that it oscillates

roduced by currents I, nega- .
Eve pmicle’; rotate in the Safne around the trajectory defined by the equa-

direction as I, positive particles tions.
in the opposite direction.

Confining ourselves to the non-relativistic
case, we consider a particle with mass m and charge e moving in a
homogeneous magnetic field H which is directed along the z-axis of an
orthogonal coordinate system. The velocity v of the particle has the
component v, in the z-direction and the component v, in the xy-plane.
If we put Wj = ime} and W, = }mo?, the energy of the particle is

W = W+W, = im2 (1)
Because of the action of the magnetic field the particle moves in a spiral,
the motion being composed of a motion with constant velocity in the
z-direction and a circular motion in the zy-plane. In the projection of
the path upon the zy-plane the radius of curvature p (a vector from the
actual position of the particle) is given by

map = (¢]c)[VH], (2)
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Fig. 2.2. Drifts of charged particles in a magnetic field. If the magnetic
field is inhomogeneous, the radius of curvature is smaller where the field is
strong than where it is weak. Hence the circle in which the particle moves
in the case of a homogeneous field is changed into the curve shown above.
When the inhomégeneity is small the curve is a trochoid and the motion
consists of a circular motion superimposed by a translational motion
(“drift’) perpendicular to the magnetic gradient. [Cf. equation 2.33 (25).]
An electric field E, or another force F, also changes the curvature with the

results shown above. [Cf. equation 2.2 (24).]
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or, as |[[VH]| = Hv,

_cmy ¢ 97
eH eH @MW), 29
with the gyrofrequency = 2777 = % , (3)

where T is the period (time to complete one turn):

T = 2m- . (3")

Fi1a. 2.3. A change in momentum Ap produces a displacement D of the
centre of curvature.
makes a large number of loops is equivalent to a circular current
el
I=-_. 4
ST (4)
Hence the particle is equivalent to a magnet with magnetic moment
. = mp2l, or because of (2'), (3), (3'), and (4)
The magnet is antiparallel to H. The magnetic flux (¢ = =p2H) through
the circular path is easily found to be

2mmc? /
$="3 (5')
Introducing (3) into (2) we obtain
c
=___[pH 6
P = —z[PH], (6)
with | p = mv. (6)

Suppose that during a small interval of time Af the force f with compo-

nents f; and f, acts upon the particle. Then its momentum component

P, changes to Pl =P, +AD,, (7)
At

where Ap, = f f, dt. (8)
0
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Because of this change of momentum, the centre of curvature of the
projection on the xy-plane of the path is displaced a distance

D =p'—p (9)
or, because of (6)—(8),

D = _ﬁ[HApL] (10)

-l ]

This formula holds for a single collision, but of course also for a series
of collisions. Iffis a continuous force, D gives the displacement of that
point where the centre of curvature would be if f vanished for a moment.
This point shall be called the guiding centre. Iffis continuous, the guiding
centre drifts with the velocity

u, =9 _

LA eH 2

When f has a component f; in the direction of the magnetic field, an
accelerated motion in this direction is obtained at the same time:

T Lp= ). (13)

——[Hf]. (12)

The case when f is continuous can also be treated in the following way.
The force f, may be due in part to an electric field E,, and in part to
other forces {9, so that we have
We make a transformation to a system moving with the velocity u, by
means of the formulae (1) and (2) of § 1.3. Supposing that

U < ¢, (15)

the square root, which is a relativistic correction, can be put equal to
unity. Then we have

H' =H—(1/c)[u, E,]. (17)
When the moving system is accelerated we must introduce the inertia
force ) du,
L= —m—=. 18
£} m-a (18)

This force is usually small and may often be neglected. Consequently,
in the moving system the particle is acted upon by the magnetic field

H — H—[‘% EL], (19)

8595.74 c
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and by the force f, =f0—m—= duL

or, because of (14) and (16),

+JeE, (20)

. e . du;
Putting u, = _e—fc[_z[H(fi_m%)]’ (21)

and observing that for a vector A, which is perpendicular to H, we have
[H[AH]] = H?A, we obtain
fi =o0. (22)
As in the moving system no force, except the force from the magnetic
field, acts in the xy-plane, the particle moves in a circle relative to the
moving system. The magnetic field H' is very close to H because of (15).
Consequently when a particle moves in a homogeneous field H under
the action of a force f with the components f, and f |, its path is a circle,
the centre of which drifts with a velocity given by the differential

equation c .
where f is the force applied to the particle and
. du
= 24
f m-—r- (24)

For negative particles the sign in (23) is positive because e is negative.
In many important cases f* is small and can be neglected in (23). The
motion parallel to the field is determined by
(H{f+£}) =0, (25)
duy,

which is equivalent to M= = f,.

When high-order derivatives of f are small, the equation (23) is
satisfied by the series:

ol ) e 2 ] o0

_ e P\ed, [T\, T df, (7,
y = ‘E‘E[fx—(%) WJF( ) T T o dt”+( ) P ]
(27)
It must be observed that even when df/dt = 0, f may depend implicitly
on time.

When f varies slowly, we need often only take account of the terms
containing f,, f,, eventually also of df,/dt and df, /dt.
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Let us treat the motion in the zy-plane, neglecting all terms except
fz> [, Then U, (from (12)) and u, are equal. Iffderives from a potential,
the drift, which is perpendicular to f, follows an equipotential line. The
average energy of the particle is constant.

If in the moving system the circular velocity is v, and consequently
the kinetic energy W, = Imuv%, the energy in the fixed system is

W = 3mv? = Im(v, +u,)? = W 4-imud +m(u v)). (28)

Averaging over one turn, the scalar product cancels, so that we obtain
for the mean values W, and W',

W' = W, +imu?. (29)

When the terms df, /dt are also taken into account, there is a difference
between U, and u,. The ‘guiding centre’ (to which U, refers) moves
always perpendicular to f, but the centre of the circle in the moving
system (to which u | refers) has also a velocity component in the direction
of df, /dt. Hence the average energy W' is changed at the rate

4
aw’ c o1y — C (e 3
dtl = (fu,) = —@(f[H(f‘f‘f )]) = e_}'—i(f [H(f+£)])
du d [mu?
=muld_;=a( 2L)' (30)

Hence the centre of the circle may be displaced to another equipotential
line by a change in f. The difference in energy between the two equi-
potential lines is equal to the change in kinetic energy due to the change
in drift velocity. The circling velocity, i.e. the velocity in relation to the
moving system, remains constant.

2.3. Inhomogeneous magnetic field

The equations (23) and (25) of § 2.2 may be generalized to the case
when the magnetic field is a function of space and time with the condition
that the change during one turn is small. We assume that

l(pgrad)H| < |H| (1)

and T ‘%I < |H|. (2)

We introduce the effects of the inhomogeneity, and of time variation,
of the magnetic field as perturbations of the motion in the homogeneous
field. We have to consider perturbations of three different kinds:

2.31. The magnetic field varies with ttme. Then an electromotive
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force is induced, which changes the energy of the particle. We have
%(Eds):-z— (3)

where ¢ (= mp2H) is the flux through the circular path of the particle
and the integral is to be taken along the periphery of the same circle.
The gain in energy during one turn is

2le| dH

W, = — E ds — 71148
AW, le| j[; ds b
(The negative sign derives from the fact that a positive particle goes in a

direction opposite to that in which the integral is to be taken.) Thus the
rate of increase in energy is given by

dw, AW, W, dH
@ T CH &
using equations (2') and (3’) of § 2.2. This shows that the magnetic
moment p (= W, /H) remains constant when the magnetic field changes.

The general electric field produced by the changing magnetic field has
to be introduced as in § 2.2.

2.32. The gradient of the magnetic field has a component tn the direction
of the field, so that if at a point we place an orthogonal reference system
with the z-axis parallel to the magnetic field we have dH /dz # 0. Intro-
ducing polar coordinates (p,?) in the xy-plane, the condition

(4)

(5)

. . 1d dH,
gives (if Hg = 0) ;@(pHp)-{-E =0, (7)

where H,, H,, and Hy are the components of H. Because of (1) we can
put dH./dz = dH|dz = constant over the small circle p so that we
obtain dH

H =—}p—.

b b (8)
As the particle moves with the velocity v, in the ay-plane it is subject
to a force 7 — (efeyn, H, (9)

in the direction of the z-axis. Introducing (8), equations (2') and (5)
from § 2.2, and v, = /(2W,/m), we obtain

dH
(m) — __
fz IJ' dz . (10)

It is immaterial whether H represents H, or /(H2+H?2+ H?).
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When the particle moves in the direction of the z-axis a distance Az,
the energy component W is increased

AW, = fimAz. (11)
As the total energy W (= W4+ W,) remains constant we have
AW, = — fimAz. (12)

Owing to the displacement of the particle there is a change in the mag-
netic field in which the particle moves:

dH
AH = —_ Az.
7 Az (13)
Introducing equations (10) and 2.2 (5) into (12) and eliminating
(dH /dz) Az by the help of (13), we find

AW, = %AH, (14)

showing that even in this case p = W, /H remains constant. According
to equation 2.2 (5') this means that the flux through the circular path
remains constant. The particle moves on the surface of a flux tube.
2.33. The gradient of the magnetic field has a component perpendicular
to the magnetic field. Suppose that in the xy-plane (which is perpendicular
to H) dH/dx = 0 but dH/dy = b # 0. If H, is the magnetic field at the
centre of the circular path of a positive particle, which at time ¢t = 0
is at the point (p, 0), then at the time ¢ the particle is situated in a field of

which the strength H = Hy—bpsin wt, (15)

where p and w are given by equations 2.2 (2') and 2.2 (3). The components
of momentum of the particle are

Py = —p,Sinwt (16)
P, = —pP, coswl. (17)
When H is increased by dH, the radius of curvature changes according to

equation 2.2 (6). Hence the centre of curvature is displaced a distance ds

in the direction of p
cdH
= —__[pH].
ds oI5 [PH] (18)

Introducing (16), (17), and, after differentiation, (15), and observing
that bp < H,, we obtain for the components of ds

% = —Ji—zp_,_ bpw coswt, (19)
ds, c : 2
Et_zﬁsz_bprlnwtCOSwt. (20)
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The drift «, (with components u, and u,) is the average value of (19)
and (20) and can be calculated from

) T
Uy = 75 f ds, (21)
0
and a corresponding formula for u,. After elementary reductions we
obtain L dH
== Teg" dy’ (22)
u, = 0,

where p is the magnetic moment:

W,
= =, 23
2 (23)
W, is the energy of the circling velocity, i.e. the kinetic energy referred
to a system where the centre is at rest.

Introducing fm) = —pugrad H, (24)
. c
we obtain u, = _@[Hf(’")]. (25)

For a particle which drifts perpendicularly to the magnetic field under
the influence of a force (e.g. an electric field) and an inhomogeneity of
the magnetic field, we have to add to (25) the drift found from equation
2.2 (23). The displacement of the particle changes the field in which it
moves at the rate

dH c Y
— =W grad H = —@[H{f—{—f +fi}]grad H. (26)
Heref™ = —pgrad H. For an arbitrary vector A, we have (HA]A) = 0.
Hence dH c '
i —e—Hz[H{f—l—f’}]gradH. (27)

At the same time the average energy changes. As the force from the
magnetic field acts perpendicularly to v, it produces no change in energy.
Thus we have AW’

L

dt

= (u,f). (28)

The average energy referred to the moving system, according to equa-
tion 2.2 (29), is given by
W, = W —}mu3.



2.3 IN MAGNETIC FIELDS 23

Differentiating this we obtain from (28)

W, (ul{f—m%}) = (W {f+) = — 2o (H{E+ -]+ £)

or, as ([H{A,+A A, = —([HA,]A,), )
d_dV%_ = 2 [HE+£)]Em. (30)

Asfm = —pugrad H = — (W, [H)grad H, we have from (27) and (30)

showing that p remains constant.

As the perturbation method is applicable only when the inhomo-
geneity is small, this magnetic drift is small in comparison to the circling
velocity v of the particle. The drift due to the electric field, however,
is not subject to the same restriction. It could very well be larger than v,
but it must always remain small compared with the velocity of light.

Hence an inertia force f* due to a change in the electric field may be
important, but a change in the magnetic inhomogeneity does not pro-
duce a considerable inertia force (within the limits of applicability of the
perturbation method).

. The result is that a particle in a magnetic field, the inhomogeneity of
which is small (p|lgrad H| < |H]), moves in a circle, the centre of which
drifts with a velocity «, which has a component perpendicular to the
field:

u, = —-e%[H(f-l-fm-l—fi)], (32)
where f is the sum of non-magnetic forces applied to the particle, and
. fm" = —pgrad H, (33)
. du
P = —m——. 4
f m 7 (34)
The velocity component w; parallel to the field is given by (34) combined
with (H{f4fm4-£i})) = 0. (35)

During the motion p remains constant.

The force f may be due to an electric field or to gravitation. It may also
be composed of a series of impacts (compare § 2.2), as is the case when the
particle is part of a gas which is subject to a pressure gradient. In this
case the force is given by

f = —(1/n)gradp, (36)

where n is the number of particles per unit volume and p the pressure.
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2.4. Motion in a dipole field. Stormer’s method

The general case of the motion of a charged particle in a dipole field
has been treated by Stérmer. Only a brief account will be given here.
For a detailed study the reader is referred to Stérmer’s original works
or the surveys included in most text-books.

If the magnetic field from a dipole with moment a is H, and e, m, and
v are the charge, mass, and velocity of the particle, the equation of motion
18

dv e
— = -[VvH]. 1
"% c[v ] @
Introducing cylindrical coordinates (r, A, z), the z-axis being parallel to
the dipole, we have for the components of (1)

d3r dA e dA
hadid — H 2= 2
e (dt) mcHJ dt’ 2)
d?z e dA
B " me rra, (3)
d( ,dA er dz dr
2 H ). 4
dt( dt) mc(H’ dt H, dt) (4)

We put ds = v dt and introduce the length unit cg,

= )= )= )

where p = mv is the momentum. We shall discuss the case of a positive
particle. For negative particles the paths are the mirror images, with
respect to a plane through the z-axis, of the paths of positive particles.

For the purely mathematical discussion it is convenient to express all
lengths in cg, as unit, but for the physical application it is preferable to
have this quantity included in the formulae.

The velocity v is constant because the force is always perpendicular
to the velocity. Using equations (12)—(14) of § 1.2, equation (4) gives for
a positive charge

—

5)

d d)\ 3r22 d_z+R2—3zzrﬂ‘)
' ds ds et RS ds R ds

o [r2\dz 0 [r\dr
_ _a2lOo(r\az O [T"\OT
o cs"[az(R‘*)ds_l_ar(R")ds]

with B = ,/(z2+72). After integration we obtain
r2 dA 72

2, 6
cwds | MR (®)
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where 2y is an integration constant proportional to the angular momen-
tum at infinity. Observing that

. @)2 dr)z dz)z_
’(ds +(d—s +(d—s =1

we obtain from (2), (3), and (6)

1 d*r 2y r y 3r2 1
clds® (cstr+_3)( tr2+_1$—§5)’ ™
1d?2 (2y  r\3rz 8
chds® \cgr & (8)
dr\?  [dz 2y 2
— —) =1—1" cd..
(ds) +(d3) (cSt +R3) )
Putting the velocity component rdA/dt (= rvdA/ds) equal to vsin,
we have . dA cqr . 2ycg
smB_frIq=-—(F " ) (10)
As [sinf] < 1, we obtain
2%y T % 11
e B3 (1)

Stormer has shown that the value of y determines the character of the
orbits. If y > 0 the orbits never reach the dipole. For —1 <y < 0,
particles can move up to the dipole from infinity. One of the orbits for
y = —1 is a circle in the equatorial plane with B = ¢g. If y < —1,
there are two different allowed regions, one outer region (R > cg,) far
away from the dipole and one inner region (R < cg;) close to the dipole.
The latter group contains those periodic (or quasiperiodic) orbits which
may be treated by the perturbation method.

The following table gives the value of cg, in some cases of interest:

TaBLE 2.1
Electron-volts ca, = +/(alHp) cm.
Hp Sun Earth
gauss.cm. Electron Proton a= 42,108 | g = 8-2.10%

102 0-89.10% 0-48 6-5.101 9-1.101
108 0-82.10% 48 2:0.10 2:9.10
104 2-53.108 4-8.103 6-5.1014 9-1.10t
10° 2-95.107 4-8.10° 2-0.101 2-9.1010
108 3-0.108 4-7.107 6-5.1013 9-1.10¢2
107 3-0.10¢° 2-2.10¢ 2-0.1013 2:9.10¢°
108 3-0.101° 2-9.101° 6-5.1012 9-1.108
109 3-0.101 3:0.101 2-0.1012 2-9.108

Compare: earth’s radius = 6-37.108 ¢m., sun’s radius = 7-0. 10'° cm., distance earth—
moon = 3:8.101% ¢m., distance sun—earth = 1-49.10' cm.; solar magnetic field equals
terrestrial field at 4.10!° em. from the earth.
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Except in problems concerning cosmic rays, there is no problem
relating to the terrestrial field where the electronic energy exceeds 10°
volts. This corresponds to cg, = 2-5.101 cm. In the solar field the
same energy gives cg, = 1:7.10% cm. Consequently in all problems,
except cosmic rays, we have r < R<cg. Excluding the exceptional
case r < R (which corresponds to motions very close to the magnetic
axis), we find from (11) that we must have

y<—1. (12)
In this case, which consequently is of most interest in cosmic physics,
the particle moves in orbits whose radii of curvature are small in com-
parison to the distance from the dipole. The perturbation method is
well suited to the treatment of this problem (see § 2.5).
The conditions in the equatorial plane (r = R) are simple. Particles
reach the equator at an angle 8 given by the equation (10)

c c
inf = — St{ 2. 8t} 13
sin Ro( v+ -Ro) (13)
If the momentum is given, cg, is defined. For ¢g, > R, and for a certain
value of § we have an orbit coming from infinity if y > —1, and a
periodic orbit (never leaving the neighbourhood of the earth) ify << —1.
The boundary between orbits from infinity and periodical orbits is
given by y = —1. For sinf = +1 we have
B, = cg.
According to (5) this corresponds to a momentum

ea

=, 14
y 2 CR% ( )
Particles above this momentum can reach a point at the equator from
all directions. For sinf = —1 we obtain
Ry (14+42) = cg,.
The corresponding momentum is
ea
= — (3—2v2). 15
Y4 CR%( ) ( )

Particles below this momentum cannot reach the equator at all. For
p-values in the range p, < p < p,, particles are allowed within a cone
defined by 8 according to (13).

For higher latitudes particles are also allowed within certain cones,
but these are usually very complex. Much labour has been devoted to
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these problems which are very important in the study of cosmic radiation.
Besides Stormer, Lemaitre and Vallarta and many others have made
extensive investigations in this field. A detailed account of their results
is beyond the scope of this book. Recently a summary has been given
by Meixner (1943).

2.5. Motion in a magnetic dipole field ; perturbation method

In most cases of interest—in fact all problems except those concerning
cosmic rays—the radius of curvature is small compared with the distance
from the dipole, which means that we can use the perturbation method.
The calculations may be carried out in the following way.

We start from § 2.3, equations (32) and (35), where f equals zero. In
order to calculate f™ we employ polar coordinates: radius vector = R,
magnetic latitude = ¢, magnetic longitude = A. For this system the
equations of the magnetic field are given in § 1.2.

The magnetic energy e of a magnet having the moment p and situated
antiparallel to the field H is given by

a
e = —pH = —%agb (1)
The force acting upon this dipole has the components
_ 8¢ 3pa
Jr= SR ﬁ(ﬁ’ (2)
8 3uasingcose
f(P - Egp - - R% ¢ ’ (3)
Hi=0.

With the help of equations 1.2 (8), 1.2 (9), and 2.2 (5) we can now cal-
culate the forces parallel to and perpendicular to the magnetic field.

3W, sin ¢(34-5sin®p)

|(|m) = fR COoS a_fqa SinC! = R ¢3 H (4)
in2
fi™ = fpsina+f,cosa = 321 coscp(lq;L-sm CP). (5)

The force f, (as well as f) is situated in the Rep-plane.

In order to calculate %, from equation 2.3 (32) we must also find f% .
The only considerable component of this force is the centrifugal force
f. deriving from the motion with velocity u, along the curved magnetic
lines of force. If R, is the radius of curvature of the line of force we have

Je = mof/RB,. (6)
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As a simple geometrical consideration shows, we have

m b2 _ W H 7

f.L_' -Rc - H -Rc’ ()

which gives f, = f’fﬂ (8)
A

We introduce an orthogonal coordinate system with the z-axis parallel
to H and the y-axis parallel to f{. Then the equations of motion are:

dA C [ m

RCOSCPE = U, = 67_1(J"¢‘|‘fc), (9)
— (10)
duz —fﬁm)
= (11)

The integration of (11) gives the same result as can be obtained immedi-
ately from equations 2.2 (1) and 2.2 (5).

u, = vy = J{2(W—=W,)/m} = J2u(H,—H)[m}, (12)

where H, (= W/u) is a constant denoting the strength of the field at the
turning-point. From equation 1.2 (6) we find

2 2 2
v = V@B + B2 dg?) = TCCOS@J(1+3Sin2@)@. (13)
dt dat
Putting H = an/r3; Hy, = any/r? (14)
in analogy with equation 1.2 (10), we obtain
do _ (2ua Mo—7 ] (15)
dt mr3 cos?p(14-3 sin?p)

Further, combining equations (9), (8), and (5) of this section with (5) of
§ 2.2, and (6) and (14) of § 1.2, we find
dA __ 3cp 1+sin2p 2no—n
dt  er? coste(l43sinZp)t 5

(16)

We can now compute the path of the particle. Introducing Stérmer’s

unit of length 4 2.3
I = X
cmy ctmun,
and equation 1.2 (10) we find
. A=Ay = (refcst)?Ly, (18)
3 in%0) 1—
Wituh Il — 3 f €Os CP(]‘—*._S;H :P) 1 %U(‘P)/"?o dCP, (18’)
(14-3sin%p)!  1—n(e)/ne
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2.5

where 7, is the distance from the dipole to the points where the particle
(or more exactly the ‘equivalent magnet’) crosses the equatorial plane
(¢ = 0); n(e) is defined by equation 1.2 (11) and 7, is a constant [see
(14)]

The parameter 7, is related to Stormer’s constant y. For the equa-
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Fic. 2.4. Connexion between displacement in longitude (proportional
to I,) and latitude ¢ for a particle oscillating through the equatorial plane
with amplitude ¢,.

torial plane the condition 2.4 (11) can be written

¢ c
I P ) < 1. 19
<%(w+g) <+ (19)
As R oscillates between the limits r,+p and r,—p we have (r, < cg):
refesy = —3y~* (20)
(20°)

and plre = (refcq)® = 3y~%
The integral I, in (18’) is plotted in Fig. 2.4.
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The equation (18) gives the path of the ‘equivalent magnet’. The
path of the particle itself is a spiral around the curve defined by (18).
The spiral has the radius of curvature given by equation 2.2 (2’). In
most of the cases to which our perturbation method of calculation is
applicable, the equation (18) gives as much information about the motion
of the particle as is wanted.

The motion defined by (15), (16), and (18) takes place on the surface
defined by equation 1.2 (6), and is an oscillation through the equatorial
plane ¢ = 0, combined with a rotation around the axis of the dipole.
The amplitude of the oscillation is defined by the condition n,—n > 0.
The ¢-value of the turning-point is given by

in2
cosbo,

Fig. 2.5 shows a comparison between one of the trajectories integrated
by Stormer (1913) and the corresponding path found by the perturba-
tion method (Alfvén 1940).

2.51. Motion close to the equatorial plane of a dipole field. Of particular
interest is the special case when the amplitude of the oscillation is small
(pg <€ 1). Then we have approximately

N_/(_l_'l'_?’jm;z‘m = 144-5¢2 (22)
cos®o

and in the same way n, = 144-593. Putting these values into (15) and
integrating, we obtain a sine oscillation

0= cposin(Qﬂ%'), (23)
5
where T = 2m (%) = _23«/253. (24)
3 na 3 v
To the same approximation, A increases at a constant rate:
3cp 37
A= (—t,) = = Lo(t—t,). 25
g b—t) = 5 o=t (25)

During the period 7' the increase in A amounts to

A = 742 73/cd,, (26)
where cg, is given by equation 2.4 (5). For small amplitudes the value of
Alcg/r,)? is mV2 (= 4-44), corresponding to 255°. The dotted line in
Fig. 2.4 represents the difference in longitude between the turning-

point and the intersection of the orbit with the equatorial plane. Its
value for ¢ — 0 is }7v2 (= 1-11), corresponding to 63-6°.



2.5 IN MAGNETIC FIELDS 31

-~

r sin A

~———

Fic. 2.5. Motion in dipole field calculated by Stérmer and by perturbation

method. Projection upon & plane through the axis of the dipole (above)
and upon the equatorial plane (below).

Path of equivalent magnet. —-——- Path of particle according to Stérmer.

2.52. We now have to calculate the parameters &, r,, and cg,. Suppose
that the particle (mass = m) starts at the point (R’,¢’,A") with the
velocity (v, v3,))- Then we have:

¢ = (1+3sin%p’)}, (27)
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‘) r . I_ ‘I 4
of = .dvRsmcpcqs, %, COS @ ’ (28)
7] ’ y e ne

vtL — {(vRCOS(P Ilgvtp Sll’l(p ) _'_,U;\2}%’ (29)
H = %(ﬁ'; 1]' = (cos (p’)—sﬁb’, (30)
_ mEB3(v cos ¢’ + 20, sin @')2+ 202 (31)

H’ a¢/ ’
r, = R'(cos¢’)2, (32)
no = 7'[1+ /v )], (33)

1

6 = (% 17). (34)

The particle spirals in a circle of radius p which moves according to what
1s said above. We have B 1
[
P= 505"
cVn® Vn
2.53. In order to show the connexion between Stormer’s equations

and the perturbation method, we shall derive (25) through successive
approximations, valid if y € —1. We put

To = TofCs = — 3y~ (36)

(35)

Consequently r, < 1.
As in the equatorial plane z = 0, we obtain from equation 2.4 (9)

(%:)2: 1—cg%(1_;’;)2. (37)
‘We develop r into a series
r = rocg[ 1473 F(s)+rs G(s)], (38)
neglecting higher terms. Then we have (denoting d/ds by dashes)
drids = rice(F'+r2 @) (39)
and 1—rfrocg, = —r2(F 412 G). (40)
The first approximation solution of (37) is obtained from
reci(F'): = 1—F?, (41)
which gives F =sin S, (42)
where §=_2 (43)

ot
ToCsi
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In order to obtain the second approximation we put (42) into (38),
(39), and (40) and obtain from (37)
13 (F2 23 F'Q') = 1—(F?4-2% FG)(1—412 F). (44)
Using (42) we get G = 4—2sin28. (45)
Consequently, equation (38) gives
7 = ¢ Cy[ 147§ sin S4-rd(4—2sin28)], (46)
where terms of the order of 7§ in the expression in brackets are neglected.
If (36) is introduced, equation 2.4 (6) gives
@:Cﬁl_R)= 1 Fir@
ds R3 ToCst) ToCs (1+72 F4-78G)?
1
= L (Frre)(1—32F) = 1 [sin S+r2(4—5sin®8)]. (47)
7'0 cSt TO cSt.
Here terms of the order of r§ have been neglected. Consequently we

obtain ) 1

[sin S+ 75(4—5sin28)]. (48)

ds rocy,

This equation defines the motion of the particle. The motion of the equi-
valent dipole is the average of dA/ds. As the average of sin § is zero and
of sin2§ is }, we obtain

a1 1

—_ = — 4—‘5 == 3 — 47

i et (49)
The error is of the order of 5.

This equation is identical with (25)

dA . 3cp
Et‘ - E:E: (50)
because
d d
(ﬂ = vzg, (51)
o5t = 4/(aefcm), (52)
b= dmotrdfa, (53)

In a similar way the expression for T' can be derived.

2.54. Ontheregion of validity of the perturbation method. The perturba-
tion method is applicable as soon as the radius of curvature p is small
compared with the distance » from the dipole. If we put the limit to

pjr < 0-01, (55)

3505.74 D
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it is of interest to see how this condition restricts the use of the method
in cosmic physics.

If the magnetic field H is due to a dipole with moment a at distance 7,
we have H > ar—3. Further, we have, according to equation 2.2 (2),
p = cmv, [eH < cri®p/ea. Consequently we can be sure that the method
is applicable when

r < 0-1(ea/cp)t = 0-1cg,. (56)

The values of cg, for some interesting cases are given in Table 2.1.

A study of the table shows that for electrons with energy as high as
about 105 e.v. (which probably is the upper limit of the energy of the
auroral particles) our method is applicable in the earth’s field almost
to the moon’s orbit, and in the sun’s field to a distance of 10 times the
radius of the earth’s orbit. For protons with the same energy the region
of validity is restricted to about 7 times the earth’s radius, but such
particles cannot be expected to be of any importance in the physics of
the earth. For protons of ‘thermal energy’ (< 1 e.v.) the limits are very
large. The perturbation method is, of course, not applicable to cosmic
rays with energies of 100 e.v. or more (also for the reason that we have
not applied relativistic mechanics).

Consequently, in almost all problems of cosmic physics—except
cosmic rays—the motion of charged particles can be treated according
to the perturbation method.

2.6. Cosmic-ray orbits

For cosmic rays the perturbation method is not applicable. The
orbits must be determined through numerical integration of Stérmer’s
equations. Much work has been spent on this important problem,
especially by Stormer, Lemaitre, and Vallarta (review, see Meixner,
1943).

It is also possible to determine the paths by a scale-model experiment.
This has been done by Malmfors (1945). His results are accurate to
within a few degrees, which is fully enough for all problems concerning
the terrestrial magnetic field. His diagrams show from what point of the
sky particles originate which reach an observer on the earth from the
zenith. For latitude A = 58° he gives data for all incident directions.

2.7. Radiation losses

A charged particle moving in a circle emits electromagnetic radiation,
which diminishes its energy. According to Larmor’s formula the energy
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. . 2 e? [dv\?
diated d P =22,
radiated per second is 3 c3(dt) (1)
For a particle moving in a circle in a magnetic field we have
dv e
= %[VH]

The kinetic energy of the particle is W = {mv?. This gives the decay
time T for the energy as
_w_3 & 1 9
P 4e(e/m)® H? )
For one single electron this gives
T = 2-55.108H 2, (3)

where T is given in seconds and H in gauss. As this time is very long,
the radiation losses of a single electron are usually negligible. (Only in
extreme cases, such as treated by Pomeranchuk, 1940, and Tzu, 1948,
it may be considerable.)

In cosmic physics we have usually to do with problems involving many
particles. If, for example, several electrons move together, they radiate
much more, because (1) contains the square of the charge. From the
theory of magnetrons it is well known that electrons in a magnetic field
have a certain tendency to ‘bunch’ so that a large fraction of them oscil-
late with the same phase. The result is an increase in radiation, so that 7'
is very often many orders of magnitude smaller than the value given by
(3). Experimental investigations by Astrom (1948) on electrons drifting
in crossed magnetic and electric fields have shown that they radiate
a ‘noise’ containing frequencies distributed over a very large range.
The radiated energy increases very rapidly with the density. With
a magnetic field of 100 gauss and a density of about 108 electrons/cm.3,
T is less than one microsecond. Hence we must be cautious in using
(2), because in cosmic physics, where we seldom have to do with one
single electron, it may be in error by many orders of magnitude.
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111
ELECTRIC DISCHARGES IN GASES

3.1. Introduction

ELEecTRIC fields are likely to be produced, especially by induction, in
stellar atmospheres and in interstellar space. Such fields accelerate
charged particles, which are present wherever ionized matter exists,
thus causing currents. Traditionally a current through a gas is called a
discharge.

The most important cosmic phenomena which may be interpreted
as electric discharges are solar prominences (§ 5.6) and aurorae (§ 6.4).

In principle it is possible to calculate the motion of electrons and ions
in an electric field and in such a way predict the properties of the dis-
charge. From laboratory studies of the discharges we know, however,
that such a procedure is very difficult and dangerous. In fact, the theory
must take account of all the complicated interactions between electrons,
ions, molecules, and quanta. Hence it has been possible to build up the
theory of electric discharges only through a very intimate contact with
experiments, and many times it has been found that phenomena occur
in a way which from the theoretical point of view was considered to be
impossible. A striking example of this is supplied by the investigations
of the ignition time of an electric spark, where a succession of theories
has been disproved by experiments (see Loeb and Meek, 1941). As
another example of the still precarious state of the theory we may
mention the cathode mechanism of an ordinary arc. Although a pheno-
menon which because of its theoretical as well as overwhelming technical
interest has been very much studied, no adequate theory of it exists.
(In many cases thermionic as well as field emission is ruled out; see
Loeb, 1939, p. 629.)

There is no reason to doubt that cosmic discharge phenomena offer
problems as complicated as those occurring in laboratory discharges.
A purely theoretical treatment of them is certainly very precarious, and
still, in many cases, this is the only way of attack.

One important approach to the study of electric currents in cosmic
physics is due to Chapman and Cowling. From the mathematical theory
of gases they have deduced the conductivity of ionized gases (see
Chapman and Cowling, 1939). In view of what is said above an empirical
check is highly desirable.

Another, and quite different, line of approach was tried by Birkeland
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(1901). His famous terrella experiment was an attempt to solve cosmic
discharge problems by model experiments. The investigation has had a
very inspiring effect on cosmic physics, but, as it was made before the
theory of gaseous discharges, no one really knows what happened in his
vessel. Probably the interpretation of his experiment was inadequate
(see § 6.1).

Since the time of Birkeland’s experiments the theory of electric dis-
charges has been developed very much, but until quite recently no
attempt had been made to transfer the results to the realm of cosmic
physics. Certainly many parts of the theory are still unsatisfactory, but,
for example, our knowledge of the properties of a plasma is so good that
valuable results may be expected if we apply it to cosmic problems.
What is urgently needed at present is not a refined mathematical treat-
ment but a rough analysis of the basic phenomena. The purpose of this
chapter is to draw attention to some aspects of discharge theory which
may be important in cosmic physics.

3.11. Survey of electric discharges. Electric discharges are usually
divided into two groups: non-sustained discharges, which are dependent
upon an ‘external’ ionizer producing at least an essential part of the ions
and electrons which carry the current, and self-sustained discharges,
where the ionization is mainly produced by the discharge itself. Ceteris
paribus the second is characterized by higher current densities than the
first. This is due to the fact that in the laboratory we have at our
disposal only very weak ionizers. In cosmic physics, where the ‘external
ionizer’ may be a high temperature which ionizes the matter more or
less completely, non-sustained discharges may carry very large currents.

The domain of the self-sustained discharges is very extensive, in-
cluding Townsend discharges, glow discharges, and arcs. Moreover,
there are several special forms such as the spark, which is essentially a
short-lived arc. In most of the discharges we can discern three different
regions:

1. The cathode region, where the electrons (which carry the main
part of the current) are produced by emission from the cathode and
by ionization of the gas.

2. The anode region (which israther unimportant), associated with the
passing of the current between the discharge and the anode.

3. The‘plasma’ which extends from the region of the cathode mechan-
ism to that of the anode mechanism. The properties of the plasma
can be régarded as characteristic for a gaseous conductor in the
absence of disturbances from electrodes.
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The distinction between the different types of discharges lies mainly
in the cathode mechanism. In the Townsend and the glow discharge
the emission takes place from a cold cathode; in the arc the cathode is
hot enough to give thermionic emission (or it emits abundantly for some
other reason).

The properties of the plasma are not immediately connected with
the cathode mechanism, so in principle the plasma could have the same
properties for all types of self-sustained, and even for non-sustained,
discharges. The state of the plasma depends upon the current density,
and this is usually increasing when we go from non-sustained to Towns-
end and further to glow and to arc discharges. Although in principle
the same phenomena occur in all plasmas, the properties of an arc
plasma are, because of the high current density, different from that
of a glow discharge, and still more different from that of a non-sustained
discharge.

In cosmic physics the cold cathode mechanisms are of little interest.
If we can speak of electrodes these usually consist of ionized gaseous
layers of higher density than the discharge space. Such layers can give
off electrons abundantly, so that the cathode mechanism is most similar
to that of an arc discharge.

3.12. Similarity transformations. In the theory of gaseous discharges
certain ‘similarity laws’ have proved very valuable (see Cobine, 1941,
p- 209, or Engel and Steenbeck, 2, 1934, p. 95). When changing the linear
scale by a factor n the most characteristic features of the phenomena
remain unchanged if at the same time we change other quantities accord-
ing to Table 3.1.

TaBLE 3.1
Similarity transformation applicable to gaseous discharges
Length, time, inductance, capacity vary as 571
Particle energy, velocity, potential, current, resistance » 8sq°
Electric and magnetic field, conductivity, gaseous density » 83 771
Current density, space charge density »s 88 72

Proportionality between length and time is required by Maxwell’s
equations. The most characteristic features of a discharge depend upon
the interactions between atoms, electrons, and quanta. As these inter-
actions depend in a very complicated way upon the energies involved,
we must leave all energies, and hence the electrostatic potential (which
determines the kinetic energy of a charged particle) unchanged. If we
change the linear dimensions ! by a factor 7, the electric field £ must be
changed by 5~! in order to leave the potential V ~ IE unchanged.
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Because of Maxwell’s equations we must change D, H, and B in the
same way as E. The current density ¢ which is equivalent to the dis-
placement current oD/dt must be changed by the factor n-2, which
means that the total current I = ¢I2 remains unchanged. The con-
ductivity ¢ (= i/E) changes as n~!, the inductance L, which equals
V/(d1/dt), and the capacity C' (~ I) change as . Further, as the mean
free path, which is of fundamental importance in gaseous discharges,
varies as the linear dimension, the density p of the gas, which is inversely
proportional to the mean free path, must be changed as n~1.

In the theory of gaseous discharges the above transformation has
proved to be very useful in making a general survey, but it must be used
with some care, because it refers to the most fundamental phenomena
only, and many secondary phenomena, which in special cases become
important, do not obey the transformation. For example, the number
of charged particles per unit volume is proportional to ¢ and hence varies
as n~2, whereas the number of molecules is proportional to p and hence
varies as n~1. Hence the degree of ionization is not invariant, as we
should like it to be, but varies as 1. Further, as the force f(= ¢H/c),
which acts upon unit volume traversed by a current ¢ in the presence of
a magnetic field H, is proportional to =3, but the density is proportional
to =1, the acceleration becomes proportional to =2, and not, as it ought
to be because of its dimension /{-2, to »~!. One of the consequences of
this is that magneto-hydrodynamic waves (see Chapter IV) do not obey
the transformation. '

It must be observed that the transformation does not affect atomic
quantities. For example, atomic dimensions, wave-length of emitted
light, and lifetime of metastable states will remain unchanged.

If we want to apply the results obtained in a laboratory apparatus
with the linear extension of 10 cm. to cosmic phenomena, we have to
increase the scale by a factor of 108-10° with regard to the conditions
around the earth, a factor of 101° for the sun, 1012-10®3 for the planetary
system, and 1021-1022 for the galaxy. Perhaps it is of more interest to
go the other way, i.e. to transform the cosmic phenomena down to
laboratory scale, because this gives us some hint concerning the general
type of the phenomena. Itshows what quantitiesare the mostimportant
ones, and indicates to what extent it is possible to make scale-model
experiments illustrating cosmic phenomena.

Table 3.2 shows how the similarity transformation may be applied to
some important domains of cosmic physics.

The table shows some features of interest. The first is that most
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TABLE 3.2
Linear Density Magnetic field
Problem dimension | particlesjcm.? gauss Time
Aurora and magnotic Initial phase of
storms . . . 3.10° 103 ?7—1012 0-5-0-01 storm = 3h. = 104
Reduced: p = 3.10% . 10 3.1017-3.102°| 1-5.10%-3.10° sec. — 30 usec.
Solar corona . - .| 10M-10'2% | 10%-10° 20-0-02 Life of coronal
arc = 10® sec. —
10~7 sec.
Reduced: p = 10'°-10" 10 1018107 2.101-2.10° Solar cyecle = 11
years = 3.108%sce.
— 0-03 scc.
Chromosphere . . 10° 101-10M 20 Solar flare 1,000
Reduced: 5 = 108 . 10 1018-1022 2.10° sec. — 10 pusce.
Prominence 108
sec. — 1,000 usee.
Planctary system .| ro-10v | 1032 10-5-10-8 1 year — 3-30 uscc.
Reduced: p = 1012-10% 10 1015-108 ? 107-10°%
Galaxy . . . .| 3.10%2 1 10122 Age of universe =
Reduced: » = 3.10% | 10 3.10% 3.10%? 10 years = 3.10V7
sec. — 100 psec.

At normal temperature a density of 3-6.10'® particles/em.? corresponds to a gas
pressure of 1 mm. Hg.

The density in the planetary system is a guess founded on the reasonable assumption
that the density must be intermediate between the coronal and the interstellar values.
The same value is used for ‘aurora and magnetic storms’, representing the density at
some distance from the earth. The latter value in the same square refers to the upper
atmosphere (E-layer).

pressures are to be considered as rather high. Inthe case of the planetary
system a reduced value of some tenth of a millimetre is obtained, but
this is, of course, rather uncertain. At a display of aurora and magnetic
storm, the density around the earth corresponds to about 10-° mm. Hg.
All other equivalent pressures are well above 1 mm. Hg (3-6.1018
particles cm.=3). Consequently with the above exception there is no
analogy to high-vacuum phenomena in cosmic physics. When consider-
ing electrical phenomena the interstellar space of our galaxy should
not be compared with a ‘vacuum’ but with a highly ionized gas at a
pressure of 100 atmospheres.

Still more striking than the high densities are the very high magnetic
fields in the cosmos. In fact, they are so strong that at present our
laboratory resources do not suffice to produce fields strong enough
for model experiments.

The powerful magnetic fields have two important consequences. The
first is that the motion of charged particles is usually of a different type
from what we are familiar with in the laboratory. The radius of curvature
is very small and the particles move in the direction of the magnetic
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field or ‘drift’ perpendicular to it. This type of motion has been studied
in Chapter II.

The other consequence is that strong electric fields are easily produced
by any motion across the magnetic field (see § 1.3). To give an example,
in a magnetic field of 10® gauss, a velocity of 3.10% cm./sec. causes an
electric field of £ = 10 e.s.u. = 3,000 volt/cm., and in a field of 101°
gauss the same velocity gives 30.10% volt/em. Thus the electric fields in
the cosmos also, when reduced to laboratory scale, are often very strong.

Finally, the time-scale transformation in Table 3.2 is of interest.
Solar flares, coronal arcs, and also the initial phase of a magnetic storm
should be regarded as very short-lived phenomena. In fact their equiva-
lent duration (a few usecs.) is of the order of the ignition time of an
electric discharge.

3.13. Properties of a plasma. From what has been said in § 3.11, it is
evident that from the point of view of cosmic physics a survey of the
properties of a plasma is of special interest. Because of the importance
of the cosmic magnetic fields we must also pay attention to the influence
of magnetic fields upon a discharge, a phenomenon which has not been
studied very much in the laboratory.

A plasma consists of neutral molecules (monatomic or polyatomic),
electrons, positive (and in many cases also negative) ions, and also
quanta, emitted from the excited atoms. The presence of an electric
field is essential. In most laboratory discharges the degree of ionization
is very small. In cosmic physics the ionization may be more or less
complete in many cases.

The electrons, ions, and molecules collide mutually. In a typical
plasma only a very small fraction of the electrons have velocities so
large that they can ionize or excite the molecules. Hence most collisions
between electrons and molecules are elastic. Due to the big difference
in mass between electrons and other particles, the exchange of energy is
small at such a collision. In fact an electron transmits only a fraction of
the order of m,/M (m, = electronic, M = molecular mass) of its kinetic
energy when colliding with a heavy particle. Hence if the mean energy
of the electrons is different from that of the molecules, several thousand
collisions are required before the energies are equalized (m,/M being
< 1/1840). On the other hand, the ions and molecules have masses of
the same order, so that at collisions the energy exchange is of the same
order as the total kinetic energy. A difference in mean energy is rapidly
smoothed out.

In a plasma the velocity distribution of the molecules is, at least to a
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first approximation, Maxwellian, as in an ordinary gas. We call its
temperature Ty;. The ions and electrons are affected by the electric
field, which gives them a systematic velocity parallel or antiparallel to
the field. In a typical plasma this velocity is small in comparison to the
random velocity, which even for the ions and electrons to a first approxi-
mation is Maxwellian. Thus we can speak of an electronic gas having a
certain ‘electronic temperature’ 7, which is defined through the con-
dition that 3/2kT, (k = Boltzmann’s constant) shall equal the average
energy due to the random velocity of the electrons. In the same way
there is an ionic gas having the ‘ionic temperature’ 7.

The systematic motion in the electric field causes a heating of the
electronic gas as well as of the ionic gas. Due to the small energy ex-
change between the electrons and the other constituents, the electronic
gas may reach a temperature which is one or two (or even three) powers
of 10 above that of the molecular gas. On the other hand, the thermal
contact between the ionic and the molecular gas is good enough to ensure
that no big difference between the ionic and molecular temperature is
established.

The average energy of the electrons is usually much lower than the
ionization or excitation energies of the molecules. Only that small part
of the electrons which, due to the Maxwellian distribution, have energies
several times the average energy are able to ionize or excite.

The behaviour of a plasma is very complicated because so many
different reactions are possible between electrons, more or less excited
or ionized atoms or molecules, and quanta. In principle it is possible to
treat the phenomena by exact statistical methods. In practice, however,
most theories must be approximate because of the complexity of the
problems. For several purposes we reach sufficient accuracy without
using the more elaborate methods of statistical mechanics.

3.2. Mobility and conductivity

When an electric field is applied to an ionized gas, all charged particles
are accelerated. Because of the friction with the rest of the gas, their
average velocities in the direction of the electric force soon reach station-
ary values. Suppose that the volume density of one kind of charged
particles with charge e, and mass m,, is n;. An electric field £ gives to
these particles an average ‘drift’ velocity u,:

uk = bk .E. (1)
For weak fields b,, is a constant called the mobility. When the mobilities
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of all the constituents of a gas are known, its conductivity o can easily
be computed. In fact, the current density, ¢, produced by the field is

% k

where the summation includes all kinds of charged particles. As the

conductivity is defined by
o=1/E, (3)

we have o= n,e,b,. (4)
2

For negative particles e as well as b is negative.

Using exact statistical methods Chapman and Cowling have calculated
the conductivity of ionized gases (see Chapman and Cowling, 1939).
Their calculations are mathematically difficult, so for a survey it is pre-
ferable to use the simpler ‘free path method’ which more easily demon-
strates the physical process. As the authors just cited have shown, this
gives, in general, formulae which are sufficiently accurate in view of the
fact that the final results anyhow depend on uncertain parameters, such
as atomic collisional cross-sections.

In the free path method it is assumed that the molecules (including
ions and electrons) of a gas make instantaneous collisions with each
other, but move freely between the collisions. In a rigorous treatment
according to this method the statistical distribution of molecular veloci-
ties, free paths, etc., is taken into consideration, but in a less accurate
variant of the method only the average values of the quantities are used.
The results differ in gencral by less than a factor of 2, an accuracy which
is enough for most applications.

Let v, be the mean temperature velocity, A, the mean free path, and =,
the mean interval between two collisions which a particle of kind & makes

with other particles: e = Agfvy (5)

During the time 7, the particle falls freely in the electric field a distance
e, I

k= ;—kaE (6)

Hence its average motion in the direction of the electric field is

D, e E e g

Up = —F =

'Tk 2mk L 2mkvk

(7)

This gives the mobility
by = w/ B = yey Apfmy vy, (8)

with y = . A more rigorous treatment taking account of the statistical
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distribution of velocities and free paths gives the same formula but with
y = 1. Different authors give values of y between these (see Cobine,
1941, p. 33). For electrons we may put y = 0-85.

For low values of E, v, and hence b,, are independent of £, but when £
is greater than a certain value, they vary as we shall now see.

When the particle drifts in the electric field, its kinetic energy W,

W = b, (©)
increases at the rate dw,/dt = e;, Euy. (10)

Let «;, be the fraction of its kinetic energy which it loses on an average
when colliding with a molecule. A stationary state is reached when the
increase in energy due to the drift in the electric field equals the energy
losses at the 1/r collisions per second:

%‘ = ""T ?fk (11)

Combining (10) and (11), and introducing (5), (8), and (9), we obtain
Lyt X B? = i, W3, (12)
or We = J(y/2x)ex A E. (13)

The value of the collision loss ratio «;, depends upon the character of the
collision. Ifitis inelastic «;, may be as high as 1, the total kinetic energy
of the colliding particle being transformed into excitation or ionization
energy. Usually most collisions are elastic, and in this case «; can be
computed from a formula given by Cravath (1930):

My P (14)

WI'c ’

where M is the molecular mass, W, the average kinetic energy of a mole-
cule, and v, is a constant of order unity:

1= g(mkgMY (15)

Introducing (14) into (12) we find
Wi = 3War+EWir+vs M(ex Ay, B)*fmyd, (16)
where ve = dy/y1- (17)

y, is a numerical constant. If the charged particles are ions (k — ) so
that M/m, ~ 1, the average energy, W, of these is about the same as
the average molecular energy W, unless E is very large. If the charged
particles are electrons (k —>e) the ratio M/m, > 1,840, so that even
relatively weak fields make W, considerably larger than W,,. This is in
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agreement with what was stated in § 3.13: the ionic temperature 7 is
usually approximately equal to the gas temperature, whereas the
electronic temperature 7, easily becomes much higher. As we have

Wy = 36Ty, (18)
and, if the charged particles are electrons,
W, = 7., (19)
we can write for (16):
T, = T+ T3+ y. M(ed, E)/m,}, (20)
where e is the conversion factor between electron volts and temperature
€ = 2¢/3k = 2-32.10% e.s.u. = 7,700 degrees/e.v. (21)

The electronic temperature becomes considerably different from the
gas temperature when A, & increases beyond the value given by

AE=1 /(%)1};1 (22)

If M = 2,000m,, this occurs for 7}, = 300° when the product of the
mean free path and the electric field, A, E, equals 0-001 volt, and for
T, = 6,000° when A, E = 0-02 volt. In laboratory discharges, electron
temperatures of 20,000-50,000° are frequently measured.

As long as T, = Tj,, the drift is proportional to the electric field E.
According to (8) it is given by:

U, =y— 2K, (23)

where y = 1, and m, means the electronic mass; v, is given by

tm,v; = 3T, = 3T}y (24)
If instead 7T, > T}, we have approximately (according to (20))
T, = ey(y, Mm,). A, E. (25)
From (9), (19) and (21) we find the heat motion velocity
v, = (e/m)H{dy, Mm )}, E)2. (26)
Introducing (26) into (8) we find that the drift velocity
Uy = (e/m)t. (Ry*y H(me MY\, B = () Mo, (27)

u, is proportional to the square root of the electric field.

When the drift velocities of all charged particles are known, the
current density ¢ is found from (2).

As we have seen above, for values of the electric field £ so small
that the charged particle temperatures approximately equal the gas
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temperature, u; and u, are proportional to E. In this case the conduc-
tivity is given by
o= 'yez(—niAi —|———ne/\e). (28)
m;v; M,
As A, > Ay, myv, L m;v;, and usually n; = n, (see § 1.4), the electronic
conductivity is usually much higher than the ionic conductivity, so that
the first term can be neglected:

c=Y

E v, = YEneTe (29)
(. = A,Jv, = time between two collisions). If the electron temperature
is higher than the gas temperature, ¢ according to (27) is proportional to
E}. If we still want to use (3) we must put o proportional to E-*. Thus
the conductivity is independent of E for small values of £, but as soon
as K increases beyond the value given by (22), the conductivity begins
to decrease.

3.21. Influence of a magnetic field. A magnetic field parallel to the
electric field does not directly affect the mobility and conductivity. (As
it impedes the sideways diffusion of charged particles, it often changes
the degree of ionization and thus indirectly affects the conductivity in
an electric discharge (see IXngel and Steenbeck, 2, 1934, p. 112). On the
other hand, when the magnetic field H is perpendicular to the electric
field E, new effects are produced which shall be discussed here. We
suppose £ and H to be homogeneous.

Consider at first a completely ionized gas which consists of electrons
and positive ions and is on an average electrostatically neutral. The drift
of a charged particle in combined electric and magnetic fields may be
found from equation 2.2 (23). When a stationary state is reached f*
becomes zero because of 2.2 (24). As f = eE, we have

u; = — 7 [HE] (30)
independent of the charge and mass of the particle. This means that all
the charged particles drift with the same velocity which is perpendicular
to E and H. The current is zero because the gas is electrostatically
neutral. Consequently, as soon as a stationary state is reached, an electric
field produces no current in the presence of a transverse magnetic field.

This holds also when the gas is incompletely ionized so that it contains
neutral molecules. In fact, even in this case, the charged particles will
tend to drift according to (30) and they will bring the rest of the gas into
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the same state of motion. The only difference is that the time required
to reach the stationary state is longer.

As in the presence of a transverse magnetic field an electric field pro-
duces no current in the stationary state, it would be reasonable to say
that the conductivity is zero. Conventionally, however, the ‘cross-
conductivity’ o, is defined by

ip = o {E+(1/c)[vH]}, (31)
where ¢ is the current in the electric field direction and » represents the
average state of motion of the gas. Inthe
stationary state we have v=wu,, so
that the bracket cancels and we obtain
tz=0. Thismeansthato, referstoatran-
sient current that starts at the moment
O W when the electric field is switched on and

later decays exponentially until the sta-

ﬂ tionary state isreached. This current has

O one component parallel to £/ and this is
m defined by (31), but it has also another

component 7;; which is perpendicular to

i
< Resulting Hall current
- lonic component

«——  flectronic component

Hall current

® H (upwards)

E Up Ui b X E as well as to H. This component is
y called the Hall current. The ‘Hall con-
I , ductivity’ oy is defined by
i, — %alu E+1[vH]} (32)
o H™'H c ’
! o2 iy _ g
TF1g. 3.1. In an electric field E posi- or i = ;J:‘ (33)

tive ions move with velocity u; and

electrons with velocity u,, P”°d“°mg The transient current is due to the

a current ¢. In the presence of a mag
netic field H (upwards through paper) differential motion of charged particles

the particles also drift perpendicular hefore the whole gas hasbeenaccelerated.
to E and H, thus causmg a Hall cur-
ront iy. It may be computed by introducing into
equation 2.2 (23) the friction produced
by the relative motion. Still adopting an approximate method we con-
fine ourselves to the electronic part of the current which is the most
important part. Suppose that at a certain instant the average drift
of the electrons is u, relative to the average motion of the rest of the
gas. At the collisions which an electron makes with the rest of the gas
its average momentum before the collision is mu, and after the collision
zero. The frictional force equals the change in momentum multiplied
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by the number of collisions per second. Hence an electron is subject
to the force

f=eE' —mu,/r, (34)

where E’ = E+-¢-[vH] and is the field measured in a system sharing
the average gas motion. Introducing (34) into equation 2.2 (23) and still
neglecting f* because the change in the average drift is slow, we obtain

—_ LT
u = — H2[H{eE : }] (35)
and . i = neu,. (36)

Suppose that H is parallel to the z-axis and E to the z-axis of an ortho-
gonal reference system. Let uy and iz be the drift and current parallel
to K, and uy and iy the corresponding y-components. Then we have

from (35) ¢ mu
H

Up = _E T ’ (37)
c , mu
We introduce the gyrofrequency
lelH
= . 39
we= o (39)
We obtain from (37), (38), (31), and (32)
N, €21,
=t _ 40
Tt wi) 0)
and Og = W,T,0)]. (41)

For an exact derivation of these results see Chapman and Cowling (1939).
Taking also the ionic component into consideration Cowling (1945)

writes: n, et M n;etrM

o1t = T ) T TGy )’ (42)

where j = ,/(—1), w; is the ionic gyrofrequency, and v and 7 the
collisional times for electrons and ions with molecules.
From equations (39), 3.2 (5), and 2.2 (2), and because statistically
v, = 4/3v, we have
eHA v, A

wr=HA_wA_ 22 (43)
mev v p 3p
Hence wr is a measure of the ratio between the mean free path and the

radius of curvature.
When the drift perpendicular to the electric field is braked, the

3695.74 E
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conductivity increases. When no drift is possible the cross-conductivity
equals the parallel conductivity. This can be shown in the following way.
Suppose that in an electric field no Hall current ¢4 is allowed to flow.

This may be effected, for example, by inserting insulating planes parallel
to the electric and magnetic fields. Then ¢4 is compensated by a con-
duction current 7', which is due to a secondary field produced by the
impeded Hall current. This secondary field also produces a Hall current
tg. We write 1z = w,7,%, or in vector notation:

ig = weTe(I/H)[Hi]f
i’+iH == 0,

iy = w,7,(1/H)[Hi'].
The result is a current ¢” in the direction of the primary field E:

i” = itig = 1Y wii= (14w272)0o, E,

or simply " =0 L.

and have

If the Hall current is prohibited the conductivity is independent of the
magnetic field.

The cross-conductivity o, never enters at a stationary state. If the
medium cannot move freely, it is replaced by the parallel-conductivity
o). If the medium can move freely, the cross-conductivity certainly
gives a current but only for a time, after which the matter is accelerated
to such a velocity that its polarization compensates the electric field and
no current flows perpendicular to the magnetic field. In problems of
this kind magneto-hydrodynamic waves may be produced (cf. Chap.1V).

3.22. Equivalent circuit. The general analogy between a mechanical
system and an electric circuit makes it possible to survey the behaviour
of a gas by drawing its equivalent electric circuit. We start with the
simple case of a homogeneous conducting medium with density p and
conductivity o, which is freely movable and acted upon by crossed elec-
tric and magnetic fields £ and H. The equivalent circuit of a unit cube
of the medium consists of a resistance R in series with a condenser C
(Fig. 3.2 a). The applied voltage is ¥, the condenser voltage ¥, and the
current I. It is easily seen that we have the following correspondence

I—>1

V>FE

V.- vH/c (44)
R—>1/o

C — pc?/H2.
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The charging of the condenser corresponds to the acceleration of the
medium by the current density <. The magnitude of the condenser is
chosen so as to make its electrostatic energy 1CV?2 equal to the kinetic
energy 3pv? of the medium.

When the medium is a gas consisting of charged particles the influence

L
v R T+
4 0 R
e ]-c
a b
R=/0' C‘a:%}, T
C=pcyH? L =my/ne?
R =1
C =n mcyH2
Al Lej Xé L;
Vi T Re<) XM XT RL
l . G+ MT JLCL
; C
Re
v X v Re
Cu
d e

Fi1c. 3.2. Equivalent circuits of conductors in a magnet;ic field. a. Conduct-
ing liquid. R represents the specific resistance ; the energy of condenser C
represents the kinetic energy. b. Charged particle gas. L represents the
inertia of the charged particles. C, represents the capacity in vacuum.
c. Complete circuit of ionized gas. L,, R,, C, represent the electronic gas,
L, R, C, the ionic gas, and Oy the molecular gas. The resistances XX,
X!, XX represent the friction between the constituents. d. Simplified
circuit of ionized gas in crossed fields. e. Circuit of gas in parallel fields.

of the inertia of the particles (mass = m, density = n) is represented by

a series inductance L, m
L—~>_—, (45)
ne?
The resonance frequency of this inductance and the capacity C,
o pc® _ mmc?
o= m

is the gyrofrequency w = (LC)~t = eH/mc. In order to account even

(46)
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for the displacement current ¢ = 1/4w dE/dt we must introduce a con-
denser C, = 1/4w. The circuit is seen in Fig. 3.2 b.

Consider an ionized gas, consisting of molecules, electrons, and ions.
The equivalent circuit is composed of the circuits for each of the con-
stituents (see Fig. 3.2 ¢). The electronic gas is represented by L,, C,, and
R,, the ionic gas by L;, R;, and C;. As the conductivity of the molecular
gas is zero, this constituent is represented by the condenser C;, only,
the energy of which corresponds to the kinetic energy of the molecules,
when drifting perpendicular to the field. If the gas is electrostatically
neutral (n, = n;) we have, according to (46):

m;

P = nTeCe’ (47)
so that C; is much bigger than C,. If the degree of ionization (= relative
number of ionized atoms) is low, Cy, is bigger than C;. Except when the
ionization is almost complete, we have

OllI > Gc' (48)

The friction between the gases is represented by the resistances
Xi XM and X}, In order to find the value of X, let us consider the
circuit C,— XM —C,, alone. The time constant 7 of this circuit is given by
7 = 0,0y XM[(C,+Cyy) or (because C, < Cy,) approximately r = C, X.
If the voltage of C, differs from that of C,, this corresponds to a difference
in velocity between the electronic gas and the molecular gas. The drift
velocities become equalized when every electron has collided once with
a molecule. Denoting the average time between two collisions which an
electron makes with a molecule by ¥, we have an equivalence between
the time constant » and 74. Consequently we may put

'Tg[ = OeXé‘I’ (49)
which gives [compare equations (46) and 3.21 (39)]
_X]ll — ,réWH2 zmeng‘]:W (50)
*  nm,m,c? en,

Analogous expressions are obtained for X: and XM. (Note that
n; Ty = nyy7# and that a molecule when colliding with an electron
transmits on an average only m,/m,, of its momentum.) Except in
extreme cases X} is much smaller than X¢ or XX,

In the case of an electrostatically neutral slightly ionized gas

(ne =n,; < nﬂI)s

which is one of the most important cases, the dominating elements of
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the circuit are Gy, R,, and X}, To a first approximation we may neglect
all other elements, so that the equivalent circuit becomes as shown in
Fig. 3.1 d. The field gives energy to the electrons (through R,) which in
their turn transmit it to the atoms (through X¥). If for the sake of
simplicity we put y = 1 in (29) we obtain:

m,

e . 51
e*n, T, (51)

R, =

As the electrical conductivity should be the inverse value of the resistance
in series with the condenser, the circuit of Fig. 3.1 d gives for the cross-
conductivity ¢, in the magnetic field

1
(where X is abbreviated to X), or because of (50) and (51),
[ m,  muwlr, 1_ e*n, 7,
L [ezneTe e’n, ] Me(1+wl 72) (53)

where 7, is substituted for 7! because we have assumed the degree of
ionization to be small. This is the same result as obtained in equation
3.21 (40).

For densities so high that the mean free path A is much smaller than
the radius of curvature p, we have R, > X. Hence the contact between
the eleetronic and molecular gas is good so that their states of motion
are approximately the same. The resistance is due to the difficulty of
transmitting energy from the field to the electrons. For small densities
(A > p), we have X > R,. The energy is easily transmitted from the
field to the electronic gas, which possesses almost the full drift velocity
(V, = V), whereas the transmission of energy from the electronic gas to
the molecular gas is a slow process.

3.23. Mean free path. Numerical values of conductivity. The quan-
tities entering into the conductivity formulae 3.2 (29), 3.21 (40), and
3.21 (41) are atomic constants (e, m,), the density »,, the gyrofrequency
w,, and the collisional time 7,. Only the last one is difficult to calculate.
According to 3.2 (5) we have

Te = AofVes (54)
where the velocity v, is given by
(3kT,[m,)* (55)
Here k is Boltzmann’s constant, m, the electron_ic mass, and 7}, the elec-
tronic temperature. [Inan accurate analysis the difference between the
root mean square velocity (3%7./m,)}, and average velocity (8k7,/mm,)
ought to be taken into consideration. ] The problem is to determine A,.
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The mean free path is a simply definable quantity when the molecules
are supposed to collide as elastic balls. For collisions between equal balls
with the same average velocity and the same cross-section S,,, we have

1

—_ 56
o (56)

Ay =
where 7 is the number of balls per unit volume. Ifelectrons are supposed
to be balls much smaller than the molecules and to move much quicker,
their mean free path is given by A, = 4v2),.

In reality the phenomena are much more complex, because the inter-
action between the particles is not confined to certain instants of collision.
If we still want to use the same terms, and put

A, = — (57)

S must b&introduced as a complicated function of the electronic velocity
and hence the temperature. Diagrams and tables of S are found in most
text-books (e.g. Engel-Steenbeck 1, p. 168; Cobine, p. 29). Usually the
function 3-6.10%8§ is given, which is the sum of the cross-sections of all
molecules contained in a cubic centimetre of a gas at 1 mm. Hg and 0°.
The inverse value gives the mean free path at this pressure and tempera-
ture. For electrons below some hundred e.v. the cross-section, S, of
most gases is of the order of magnitude of 10-15 cm.? Introducing (57)
into 3.2 (29) we find (y = 1)

o) = — 5 — . (58)

For a completely ionized gas the cross-section S refers to the collisions
between electrons and ions and may be roughly estimated in the follow-
ing way. When an electron approaches anion, the main force acting upon
it derives from the Coulomb field. At the distance = from a Z-fold
ionized atom, the electrostatic energy of an electron is

Ze?
w=—. (59)
If this energy is a considerable fraction—say the fraction y’—of the
kinetic energy W, (= %kT,) of the electron, the path of the electron
becomes so much deviated that we can speak of a collision. Thus the
collisional cross-section is
Z2et  ZPet dn  Z2%4

S = x2 == = -— == .
T T W W ‘}/’2WE 9},/2 (kqwe)g

(60)
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As because of the neutrality of the gas n,/n = Z, we obtain from (58)

ir ¥ Zem,'

(61)
The factor ¢’ is of order unity.

The conductivity of a completely ionized gas has been calculated by
exact methods, first by Chapman (1928) and later by Cowling (1945).
According to their results o’ varies slowly with temperature, density,
and ionization. As an average, which in any case gives the order of

magnitude, we may put ' = 04, (62)
D 1 72 Z?
which gives S =872 2 — 924.105Z cm.2 63
k* T? T2 (63)
and oy = 1-4.10'T%/ Z. (64)
As, according to (54), (57), and 3.21 (39), we have
w, T, = ecXH (3km,) T} (nS)~1 = 108HTEn;1Z-1, (65)

the cross-conductivity is
o, = o[l4-w?72]! = [0-7.10-7ZT4+40-7. 105 H2n ;2T Z-1]-1.  (66)

It is of interest to compare the cross-section of ions and of molecules.
For T, = 6,000° and Z = 1 we obtain from (63) § = 0-7.10-12 cm.2,
which is about a thousand times more than in the case of neutral atoms
(molecules). This means that already when the degree of ionization has
reached 10-3, the interaction between electrons and ions in the photo-
sphere begins to exceed the interaction between electrons and molecules.
In Fig. 3.2 ¢ the resistance X becomes smaller than X, and as X} is
much smaller than both of these, the energy is transferred from the
electrons to the gas through X:. Thus as soon as the degree of ionization
exceeds about 10-3, X stands for X¢ in Fig. 3.2 d, and 8§ refers to the
cross-section of the ions. The molecules do not appreciably affect the
conductivity.

The conductivity formula for a slightly ionized gas without magnetic
field has been checked experimentally (see Loeb, 1939, p. 188). For a
completely ionized gas no experimental check has been made. Nor is
there any confirmation of the formula for the conductivity in a mag-
netic field.

Finally it must be observed that ¢ is not constant when the density
of charged particles is affected by the discharge. In a self-sustained
discharge 7, is usually proportional to the current density ¢. This
means that o is inversely proportional to 7 and the electric field £ inde-
pendent of s.
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3.24. Conductwvity in cosmic physics. Putting Z = 1 in (64) we ob-
tain oy = 1-4.108 e.s.u. for 7' = 10,000°, and oy = 1-4.10% e.s.u. for
T = 106 degrees.

As a comparison the conductivity of copper is 5.10'7 e.s.u. Hence
the conductivity of a completely ionized gas is not far below that of
metallic conductors. According to§ 3.12 the conductivity is transformed
as n~1. This means that if we wish to construct a scale model with linear
dimensions reduced by a factor of, say, 10-1%, we ought to make it of a
substance with a conductivity which is many orders of magnitude
higher than that of copper in order to represent a completely ionized
gas of cosmic dimensions. This shows that the parallel conductivity in
cosmic physics must often be considered as extremely good. In fact,
in most problems concerning highly ionized gases we could consider it as
infinite. This means that Ohm’s law is of little importance in cosmic
physics: we cannot find a current by calculating the voltage and resis-
tance of a circuit, because we have seldom to deal with stationary
currents. Instead the inductance enters as a dominating factor. In this
respect cosmic electrodynamics is more related to high-frequency
technics than to direct current problems. It must be observed, how-
ever, that cosmic problems derive a quite special character from two
circumstances: most conductors are fluids, and strong magnetic fields
are usually present. Some consequences of this will be discussed in § 3.41
and in §4.1.

What has been said above does not altogether hold for problems con-
cerning the environment of the earth. Here the dimensions are too
small and the temperature, the degree of ionization, and hence the
conductivity too low.

3.25. Diffusion. The diffusion of charged particles causes a current
as soon as the density », has a gradient (see e.g. Cobine, 1941, p. 53).
This current 7 can be calculated if, in the formulae of the preceding para-
graphs, the electric field £ is replaced by E—(kT}./e, n;)gradn,. For
example, the electronic current is given by

i = o-e(E— T, gradne), (67)

e e

where e, (<< 0) is the electronic charge and o, the electronic conductivity
which is given by 3.2 (29) or in the case of a magnetic field by 3.21 (40).
For the ionic diffusion we obtain a similar expression:

i, = cri(E— kT grad ni), (68)

1
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where T; is the ionic temperature, and o; is similar to o,. Note
that e; > 0.

Suppose that, in the absence of an electric field, a gas is ionized within
a certain volume within which there-are », electrons and n, ions per unit
volume. Initially we have n, = n,. At the border of the ionized region
electrons and ions diffuse outwards. Because of the higher mobility of
the electrons, these diffuse more rapidly, so after some time there is
immediately outside the border a region containing a surplus of elec-
trons, whereas immediately inside the border there are more ions than
electrons. Hence an electric field is produced which impedes the outward
motion of the electrons and accelerates the ionic diffusion. As, in the
cases of interest in cosmic physics, the relative difference between n,
and n; can never be large (see § 1.4), the electric field soon attains such a
value that the diffusion of the electrons equals that of the ions. This
type of diffusion is called ambipolar diffusion. It is a very important
phenomenon in ordinary gaseous discharges (see Engel and Steenbeck, 1,
1932, p. 197, or Cobine, 1941, p. 48).

The ambipolar diffusion is easily treated by (67) and (68). Putting
n; = n, = n; t,+1; = 0 and introducing |e| for the absolute value of
the electronic charge, we find the electric field £ produced by the
difference in diffusion of electrons and ions:

O, Tc_ oy TL k
o.+o; |eln
The rate of diffusion corresponds to the current components

. . o,0;, k(T,4+T)
— J— [ [ 1 . 7
Ty = —i; = ofo. Jemm gradn (70)

If 0; < o, we have approximately

Ty = —1; = Mgradn. (71)
le|n

E=— grad n. (69)

3.3. Diamagnetism of an ionized gas

According to formula 2.2 (5) a charged particle which moves in a
magnetic field H and has the energy W, perpendicular to the magnetic
field has a magnetic moment w:

_m

b= "

The condition for this is that the mean free path A is much larger than the

radius of curvature p. The moment is directed antiparallel to the
magnetic field, so that the spiralling particle is diamagnetic.

(1)
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Itisnot legitimate, however, to conclude from this that a gas consisting
of charged particles is diamagnetic. From the classical theory of mag-
netic properties of metal conductors it is well known that no resultant
diamagnetism is caused by the conduction electronsin a metal. Asshown
by Bohr, this is due to the fact that electrons are reflected against the
walls of the conductor. These electrons give rise to currents neutralizing
the currents of the electrons in the interior so that the diamagnetism
cancels. The effect is shown in Fig. 3.3.
Electrons are uniformly distributed over the
whole cross-section of the conductor, and at
every point the resultant current is zero,
because of the isotropic distribution of the
spiralling electrons. Even near the wall the
electrons are isotropically distributed be-
cause of the perfect reflection of the walls.

As the isotropy is a consequence of ther-
modynamic equilibrium, it is evident that
Fig. 3.3. An electronic gas g5 jonized gas in such a state cannot be
f;’;‘,?;i‘;n‘;{mri,fffcfu“;eg :}';zuzi:? diamagnetic. This has been demonstrated
magnetism of the electrons in by Cowling (1929) in connexion with a dis-
the interior is compensated by . . e e s
eloctrons reflocted at the walls, Ccussion on the radial limitation of the solar

magnetic field.

On the other hand, as a single spiralling particle produces a dia-
magnetic moment, it seems reasonable that a gas consisting of an
aggregate of such particles could be diamagnetic when it is not in thermo-
dynamic equilibrium. The importance of this is evident in view of the
fact that discharges are in a state very far from equilibrium. Let us
discuss a simple case which shows how a gas may become diamagnetic.

Suppose that a cylindrical wall in a homogeneous magnetic field
parallel to the cylinder axis encloses a gas which consists of n electrons
per unit volume (see Fig. 3.4), and that the wall is perfectly reflecting
and the gas in thermodynamic equilibrium and hence non-magnetic.
Suppose further that the density is so small that wr > 1, which according
to 3.21 (43) means that the electrons spiral many turns before they
collide.

The pressure in the gas is nkT (T = temperature). This is also the
force which a unit surface of the wall exerts on the gas. Let v be the
number of electrons which hit this surface per unit time. The average
force per electron is given by f = nkT/v, and this force makes the v
electrons drift with the velocity u, which equals cf/eH [compare 2.2
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(23)]. Hence the pressure of the wall gives a current

Iy = veu, = cvf/H = cnkT[H. (2)
This is the current per unit length of the cylinder due to electrons
reflected at the wall. Denoting the cross-section of the cylinder by S

and supposing the radius of curvature of the electronic paths to be small
compared with §?, the magnetic moment of the wall current ¢ is

My, = 8Iyjc = SnkT/H. (3)

Motion of
conguctor

Induced
—\gurrent

Pressure
Ffrom wal/

orift_
Density=n

wall \
current

(upuya%s)

Density =0

TF1c. 3.4. Electronic gas with density » within a cylinder. The density gradient
at the wall produces a drift (*wall current’) which exactly compensates the Hall
current, so that no magnetic effect occurs. If the wall is taken away the wall
current disappears and the uncompensated Hall current makes the gas diamag-
netic. In the absence of walls the expansion of the gas induces a current.

As the number of electrons per unit length of the cylinder is Sn, and each
of these on an average has a moment — W, /H which equals —k7'/H, their

resulting moment is M = —SnkT/H. (4)

Hence the moment of the wall current exactly compensates the moment
of the interior electrons, as expected.

Let us now suddenly take away the wall and the reflected electrons.
This means that the wall current disappears, but it does not immediately
disturb the motion of the other electrons. Certainly in the absence of a
wall the electrons will diffuse outwards, but at sufficiently low pressures
this is a very slow process due to the magnetic field. In fact the electrons
continue to spiral in the same orbits as before until they accidentally
collide. Hence at least the immediate result is that the gas becomes
diamagnetic with a moment J/, per unit volume.

M, = —np = —nkT/[H. (5)
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As in the interior of the gas the electronic motion is still isotropic, the
diamagnetism may be considered to be produced by the electrons at the
border. As the reflected electrons have been taken away, the motion
near the border is anisotropic.

Looking at the problem from a macroscopic point of view the border
current may be considered as a product of the density gradient and, as
will now be shown, it can be interpreted as a Hall current. According to
§ 3.25 an electronic density gradient gradn gives the same electric
current as a field £ = —(kT'/en)grad n. Hence the Hall current is

tg = —oy(kT/en)grad n. (6)
Our formulae for the conductivity do not refer to a pure electronic gas
but to a gas which may consist of neutral molecules, electrons, and ions.
We consider in a preliminary way such a gas and shall later return to the
electron gas by making wr very large, which means that the influence of
the other constituents vanishes. Inserting 3.21 (41) and 3.21 (40) into
(6) we find the current density

or, because of 3.21 (39),
. kT w?r?
g = C3p TT ot ngradn (8)

If in a plane perpendicular to the magnetic field the density is constant
within a certain region and zero outside it, there is a current I; at the
border. This current can be found by integrating (8):

nkT w?r?

In =g 1

(9)

A surface § encircled by a current I; has a magnetic moment
M (= —8Ig/c).

That the sign is negative is easily seen from Fig. 3.4. The moment,
M, per unit volume is given by
nkT w?r?
M=———
1 H 1+w?r?
For wr > 1 this result agrees with (5).

When w7 is small the magnetic moment of a single electron is no
longer given by (1), because when deriving this in § 2.2 we have supposed
that the particle made a large number of turns between two collisions.
In this case the derivation of the magnetic moment from the Hall
current is preferable, because it is more general.

(10)
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The existence of a ‘Hall diffusion current’ is an indication of lack of
equilibrium. Hence the occurrence of diamagnetism as a product of
such a current is not in conflict with Bohr’s theorem.

Except in the case wr > 1 the gas will spread more and more. Suppose
that we try to prevent this by applying at the border an electric field
which makes all those electrons turn back which attempt to escape.
This electric field produces a Hall current which compensates the Hall
diffusion current and hence makes the gas non-magnetic as if enclosed
by a reflecting wall.

That an ionized gas in the absence of walls is diamagnetic can also be
shown in the following way. Consider the case of an electron gas in a
homogeneous magnetic field discussed above. When the wall is taken
away, the gas would expand immediately if the magnetic field were not
present. The magnetic field impedes the expansion and hence a force
from the field acts upon the gas. This force can be considered as due
(see Fig. 3.4) either to a motional induced current at the border of the
gas or, which is only another way of expressing the same thing, to a
difference in magnetostatic pressure inside and outside the gas. As
the magnetostatic pressure in a body with the susceptibility « is

(14+4me)H? /4w
and the difference between this pressure and the magnetostatic pressure
outside the body must equal the gas pressure nkT', we obtain

—xH?2 = nkT,
which, as «H = M,, gives the same result as above. When neutral
molecules are present also, the diamagnetism becomes smaller, because
the magnetic pressure need only take up the difference in diffusion with
and without magnetic field.

Our discussion of an electron gas is of interest because it shows that
under certain conditions a charged particle gas may be diamagnetic.
In cosmic physics a gas always contains about the same number of
positive and negative particles. We shall now try to analyse the magnetic
properties of such a gas.

In § 3.25 we have seen that when in an ionized gas the density of
charged particles is great, the diffusion becomes ambipolar, i.e. an electric
field is produced which makes the electronic diffusion decrease and the
ionic diffusion increase so that both reach the same value. The drift
of ions and electrons produced by this electric field changes the Hall
current. If we add the Hall currents from the electrons and from the

ions, we have g = W, Tely—w; Tylp (11)
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Inserting 3.25 (70) we find

’iH = (we 'Tc+w12 Ti)

Oe 03 k(Tc+ Tz)
o,+o; leln
where o, and o, mean the electronic and ionic conductivities perpendicu-
lar to the magnetic field [see 3.21 (40)]

grad n, (11%)

e?nr,
= & _ 12
T m(ltwi)’ 12
ezn’r,; ’
%= el (1)
and [see 3.21 (39)] w, = |e|H/m,e, (13)
w; = |e|H[m;c. (14)
If as above we integrate and put p = —Ig/cn, we find
p= KT +T3) We TeFw; 7 (15)
H w7 (14+Z,)+w;m(1+2Z;)
with Zy = (w,7,)7% Z; = (w;my)72 (16)
At low pressures we can neglect Z, and Z; and find
T, +T;
p = ettty ; D, (17)

which, because W, = kT, is in agreement with (1) and represents the sum
of the magnetic moments of one electron and one ion. For high pressures

we have  KTAT) e, 1, .

= —— W, T, w; T, =
l"‘ e‘e 1 mem.’:c2

- (T+T)H. (18)
Experimental data concerning the diamagnetism of ionized gases are
scarce. Certainly since the time of Faraday it has been known that flames
are diamagnetic. The repulsion of a flame by a magnet was studied a
great deal during the nineteenth century, but quantitative results are
lacking. No recent measurements seem toexist: the field is as completely
out of fashion as the unipolar inductor and is not even mentioned in
modern text-books. Reviews of the investigations are found in old
handbooks, e.g. Graetz (1915). The observed effects are probably too
large to be explained as due to molecular diamagnetism, so it is not
unlikely that they are of the kind considered in this paragraph.
Although the discharge plasmas have been studied much more than
flames, there seems to exist only one measurement of the diamagnetism
of a plasma. This is made by Steenbeck (1936), who also attempts to
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give a theory of it. His formula, which is similar to (10) but not identical
with it, has been criticized by Tonks (1939), who gives a formula which
in certain respects is similar to (15). As has been shown above, there is
no doubt that formula (10), which refers to a pure electron gas, cannot
be applied to a plasma, where, according to what is stated above, the
diamagnetism is connected with the ambipolar diffusion. Steenbeck’s
experimental results confirm qualitatively his formula, but quanti-
tatively his theoretical values of the diamagnetism seem to be about
15 times too large. The discrepancy is not definite because of the diffi-
culty in measuring accurately some quantities, but his experimental
results seem to be at least as well reconcilable with our formula (15).
Compare also Rompe and Steenbeck (1939).

When studying the often enormous effect of a magnetic field on one
moving particle we are tempted to conclude that even the effect on an
ionized gas must be enormous. When the gas is at rest and in equilibrium
this conclusion is illegitimate. Only a motion of the gas (eventually of
the charged particle component of the gas) can produce currents and
hence diamagnetic effect. The diamagnetism which we have considered
18 a product of the expansion of a gas, even if at low pressures and strong
magnetic fields the expansion may be very slow. A diamagnetism of this
kind is not very important in the laboratory but may be worth consider-
ing in cosmic physics. It is of special importance in an inhomogeneous
magnetic field. Such a field tends to push a diamagnetic body into the
weakest parts of the field. As an expanding gas is diamagnetic, this
means that it prefers to expand in the direction where the magnetic
field, which counteracts the expansion, is weakest.

3.4. Constriction of a discharge

A discharge in a gas may fill the whole space between the electrodes
or be confined to a narrow channel. The former is the case for a glow
discharge at low pressure. Asan example of the latter type of discharge,
which is called ‘constricted’, we may take a spark in air at atmospheric
pressure. Constriction occurs in general at high pressures and strong
currents.

There are some phenomena in the field of cosmic physics which may
be interpreted as constricted discharges. A weak aurora is in general
diffuse. In fact the most common auroral form is the diffuse arc. If its
intensity increases it often ‘dissolves’ itself into auroral rays. It seems
probable that this could be interpreted as a constriction of a discharge
when the current exceeds a certain limit (see§ 6.4). Another phenomenon
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where we may have to do with a constricted discharge is the solar
prominences (see § 5.6).

The constriction of a discharge is a very complicated phenomenon,
because there are so many different factors which determine the con-
striction (see Engel-Steenbeck, 2, p. 138, and Cobine, p. 317). Although
it has been studied in detail for many special cases, a general survey of it
seems to be lacking. If this is the state for the laboratory discharges, a
discussion of the importance of the phenomenon in cosmic physics is
certainly very difficult.

The constriction is often connected with a ‘falling characteristic’,
by which we mean that the electric field necessary to maintain the dis-
charge is a decreasing function of the current density. If the total
discharge current is given, the field becomes smaller when the current
concentrates in a small channel than when it fills the whole space. A
discharge in general adjusts itself so that the field becomes a minimum.
For example, in the cathode fall of a glow discharge the current density
attains, if possible, that value for which the field has its smallest value.
We are not actually concerned with this phenomenon here, but the con-
ditions are somewhat similar in a plasma.

At atmospheric pressure discharges are diffuse at very low currents
(e.g. in ionization chambers). At currents of the order of a few amperes
or more, discharges become constricted. Examples are an arc, a spark, or
a flash of lightning. The discharge channel is heated to several thousand
degrees. The electronic temperature is usually almost the same as the
gas temperature, and hence relatively low, and most of the ionization is
due to temperature ionization (atomic collisions). The decrease in
temperature towards the cool surrounding gas is very rapid.

The arc plasma does not obey the similarity laws of § 3.12. Instead it
obeys rather complicated laws, the essence of which is that the heat pro-
duced by the electric current shall cover the thermal losses, mainly
through convection and conduction, to the cold surroundings (see
Cobine, p. 317). If we change a discharge according to the similarity
laws of § 3.12, the conditions for thermal constriction become less
favourable the lower the pressure (and hence the larger the dimensions).
This is mainly due to the fact that the energy Ei developed per unit
volume varies as 53, and hence becomes small when we go to larger
dimensions and lower pressures. It is a general experience that at atmo-
spheric pressure discharges are usually constricted, whereas at pressure
below, say, 1 mm. Hg constriction becomes a more rare phenomenon.

It should be observed that even at low pressure constriction may occur
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if certain gases (e.g. CO,) are present. This constriction has nothing to
do with the thermal effect discussed above. More detailed knowledge of
its causes seems to be lacking.

Constriction may also be due to the electromagnetic attraction be-
tween parallel currents. Suppose that the discharge flows in a cylinder
and that the current density ¢(r) is a function of the distance r from the
axis. The magnetic field H(r) produced by the discharge is

T

47 [ .
H(r) = — .
() p f ir)rdr (1)
0

A unit volume at distance r from the axis is acted upon by the force

£ = (1/o)[iH], (@)
 dmi(r) | . _ 1 (H* _oH

or f= o f Wr)yrdr = E(T_I_Ha_r)’ (3)

0

which is directed towards the axis. This force causes a constriction of
the discharge, because all charged particles drift towards the axis.
The effect is known as ‘pinch effect’ (Tonks, 1937; Dow, 1944, p. 434).
The pressure at the axis becomes higher than in the surrounding gas.
In fact we have

op
R 4
L_ 4)
or from (3) after integration ©
— po—rHey L [y, (5)
e

T

3.41. Application to cosmic physics. We have seen that the constric-
tion of a laboratory discharge is due in some cases to the heating of the
gas through the discharge, in other cases to electromagnetic attraction.
The heat produced per unit volume is proportional to ¢E, and hence
should be transformed as 5=%n~! = 5~% (compare 3.14). The force
f (= iH]/c) causing electromagnetic constriction is also transformed as
n~3. The former effect gives rise to an increase in temperature, which
must have a certain absolute value in order to be of importance. The
latter effect, however, should be compared with other forces, the most
important one being the force f (= ¢FE) of the electric field £ upon a
space-charge ¢q. This force is also transformed as 5~3. Thus the relative
importance of electromagnetic constriction does not diminish as does
the heat constriction. Consequently it seems likely that electro-

magnetic constriction constitutes the most important effect in cosmic
3595,74 F
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physics. This does not at all mean that heat effect could be neglected—
owing to the enormous currents in cosmic physics they are probably
also important. Nor does it mean that other causes for constriction are
ruled out.

Hence for the application to cosmic physics we ought to study the
constriction due to magnetic effects. This is certainly a complicated
phenomenon, and only some hints about factors of importance can be
given here.

Let us discuss the simple case of an ionized gas in a homogeneous
electric field E in the absence of an imposed magnetic field. A current
with constant density ¢ is produced:

t=ock. (6)
Here o means the conductivity, which is given by 3.2 (29) as long as the
magnetic field is zero. When the electric field is strong enough to produce
a current which gives rise to an appreciable magnetic field H, the con-
ductivity is given by 3.21 (40) instead. Putting
o wiTs €1l
of =y = ’"W’ (7)

we obtain for the conductivity
— Ml 8
1+4+a2H? (8)
The magnetic field depends upon the boundary conditions. If the con-
ditions are symmetrical with respect to the z-axis, supposed to be parallel
to B, we have

(o4

r

H = ilirJ‘zr dr, (9)
cr
0

where r is the distance from the z-axis. Differentiating (9) and inserting
(6) and (8) we obtain
dH B H

dr  1+4a2H? 7’ (10)
with B = @. (11)

We have found that the magnetic field of the current causes a con-
centration of the discharge to the symmetry line. The problem is,
however, more complicated than this, because the electric field and the
current magnetic field produce together a drift of charged particles.
This drift is directed towards the axis and causes a continuous increase
in charged particle density near the axis until compensating effects
occur. The most important of these is the outward diffusion due to the
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density gradient dn,/dr, which according to 3.25 (67) causes a current
—o,; kT grad n,/e,n, in the radial direction and a Hall current in the
z-direction, which according to 3.21 (41) is —w,r, times the radial

current. Adding these currents to those caused directly by the electric
field we obtain

kT, dn,
;= O_L< e,m, d ‘w Tc), (12)
. kT, dn,
=0 [—E _ e @)

i = oy~ Bor,— e O) (13)

If equilibrium is reached we have
1, = 0.

This gives from (13) i% — ekf;’ (14)
Inserting this value into (12) we find

iz = O'J_(1+w§TE)Ez = UllEz’ (15)

a result which has already been obtained in § 3.21, p. 50.

If 3.21 (39) and (9) are introduced into (14) we may calculate n,,
and hence %, as a function of r in a stationary state. The result is that
the current density is almost constant near the axis but decreases as
r-3 for large values of . Hence a constriction occurs.

In a completely ionized gas the conditions are somewhat different
because according to 3.23 (61) the conductivity is independent of the
density. Hence we should expect a uniform current density. The
pressure of the gas increases towards the z-axis.

This stationary state is probably never attained in cosmic physics.
The reason for this can be understood from the following discussion.

Consider a cylinder (axis coinciding with the z-axis, surface given by
r = r,) consisting of a solid conductor. If an alternating electric field
E is applied in the z-direction, the current is confined to a thin layer at
the surface because of the skin effect (see e.g. Harnwell, 1938, p. 315).
In fact, the current penetrates to a depth A of the order of

c(wo)t,

where w is the frequency of the electric field, o the conductivity, and ¢
the velocity of light. If instead a constant field is suddenly applied, the
current starts at the surface but at the first moment no current flows in
the interior of the conductor. The current-carrying layer gradually
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increases, so that after the time = it has a thickness of the order
A = ¢(r/o)

In cosmic physics a completely ionized gas—such as we have in the solar
corona and in parts of interstellar space—has a conductivity of the
order of, say, ¢ = 1013-10 e.s.u. If a solid conductor had a conduc-
tivity of 1013 e.s.u., the current sheath would after one year (3.107 sec.)
have a thickness of 5.107 cm., which for the problems mentioned above
is next to nothing. Consequently in a solid conductor of cosmic dimen-
sions an applied electric field cannot cause a current within a reasonable
time except in a very thin surface layer. As in high-frequency technics,
it is easier to produce a current in a dielectric than in the interior of a
conductor.

If we pass from a solid conductor to the ionized gas, the skin effect
changes character. Suppose that a gas is ionized only within a cylinder,
limited by the surface » = r, and two circular electrodes z = 4z,
When an electric field E, is suddenly applied between the electrodes,
current starts at the surface of the eylinder. Due to the attraction
between parallel currents, a force is produced directed towards the axis.
The gas begins to stream inward with the velocity ». An induced field
E’ =[vH]c! is produced which reduces the applied field. The result
is probably that