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PREFACE

This book has grown out of a collaboration of the authors in a sopho-
more course in physics at Yale University, a course which is aimed to
equip engineering students and majors in the natural sciences with
sufficient basic knowledge of physics to serve as a foundation for further
work in the various exact sciences and technologies. We have been
conscious of the need for a book that presents in a single volume an
account of the subject which is at once rigorous, vital, and modern, and
we have endeavored to fill that need.

The problem of how to use the calculus in an introductory physies
course on the college level has given us serious concern over the whole
period in which this course was taught. The students’ knowledge of
that discipline is still in the formative stage and amounts to a set of
newly acquired skills rather than understanding. Yet physics requires
the understanding as well as the skill. On the other hand, a use of the
calculus is so clearly advantageous and so obviously desirable that its
renunciation, in this day and age, is an unwarranted sacrifice. For the
saying that calculus is the language of physics is true as well as trite,
and continuity of training demands that a student should, even in his
early work, be confronted with those methods of analysis which form
the major tools of his later thinking. Altogether too many students
have to confess, at the end of their senior year, that their introductory
physies course was nearly useless because it did not acquaint them with
the ““elegant’’ methods of the calculus. And the fact that the physics
course provides opportune applications for a student’s fresh mathematical
acquisitions is not to be overlooked.

The fact remains, however, that few students can ‘‘take it”” when the
calculus is employed as freely as these considerations suggest. Hence,
in composing this book, we have adopted a device which is neither new
nor ingenious: We have allowed the student to catch his breath by
treating subjects not requiring the.use of this form of mathematics in
the first four chapters and then exposing him to it increasingly, but in
easy stages and with full explanation. Toward the end of the book the
student is expected to take elementary integrations in his stride. Our
treatment is suited to the level of attainment of readers who have
had an introduction to the calculus and are taking a more solid course
concurrently.

Students often complain that a course like the one for which this book
may serve as a text is veryv difficult, and they invariably, though some-

v



vi PREFACE

what confusedly, blame the ‘“emphasis on mathematics’” for their
dissatisfaction. In our experience this diagnosis has often been in error:
What has created difficulty is not the mathematics but the volume of
novelties that is being pushed out to the students. The wise teacher,
when using a book like the present, will select his topics with care and
limit his selection with pedagogical foresight.

For that reason, we have put in the book rather a plenum of material
for selection. It is our guess that coverage of all items presented will
require three full semesters’ work. In our own course, which meets four
times a week (exclusive of laboratory exercises) for two semesters, we
have succeeded in covering about three-fourths of the subject matter
without incurring accusations of having idled. This was doneby omitting
many of the starred sections. To make possible this selective procedure
without prescribing what ought to be left to every teacher’s judgment, we
have divided the book into starred and unstarred sections. The unstarred
sections, which can be covered in leisurely fashion in a two-semester
course meeting three hours per week, form a basic and coherent matrix
of work and are understandable by themselves. In only a few places will
it be found necessary to take for granted a result derived in a starred
section. In a similar way some of the problems at the end of each
chapter are distinguished by stars. Unstarred problems go with the
unstarred material.

Worked examples are employed very freely everywhere in the text.
They represent a simple pedagogic device for concrete understanding, a
device which the authors have found very useful in their teaching.

Our outlook, we believe, is fairly modern. In electromagnetism the
exposition recognizes that the forces between charges, at rest and in
motion, are fundamental, and hence magnetic poles take on minor
significance in this book.

We have shunned the sensational for its own sake. Rather have we
endeavored to broaden the treatment and to make contact with the
students’ general studies by inserting historical references, by explaining
the etymology of important technical terms, and by an occasional com-
ment in a philosophic vein.

The proper treatment of units in physics is a subject for controversy,
often heated, and we have tried to adopt a moderate viewpoint. In the
first chapters, the familiar British units are most often employed, but as
the subject is developed emphasis is shifted to the metric systems in both
the cgs and the mks forms. In the study of electricity, where three or
four metric systems are in common use today, the attempt has been
made to minimize troubles by employing three constants that have
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different values and dimensions in the different systems. All the funda-
mental equations are written, therefore, in terms that are independent
of the units except for these constant factors. Although this device
may not lessen the difficulties, it is hoped that it will help the student to
understand more clearly the distinctions between arbitrary conventions
and physical principles.
THE AUTHORS
New Haven, Conn,
January, 1949
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CHAPTER 1
THE METHODS OF PHYSICS

Physics is an exact science. As such it uses methods of procedure that
set it apart from many other fields of interest, notably the ‘“ humanistic”’
subjects, and it is well to note these differences of method at the very
beginning of our study. A clear view of what the physicist aims to do
and how he does it is important for an understanding of physics. Most
of this book is devoted to the question of “what’’; this chapter is briefly
concerned with a few aspects of the ‘“how.”

*1.1. Definitions. In physics, symbols are used with the utmost care. The
symbols may be words, or algebraic letters and signs that usually represent words,
or numbers or diagrams. The artifacts of letters and mathematical signs are
chosen to promote clarity of thought; diagrams and pictures are used to ensure
complete visualization. Even words are employed in a manner typical of an
exact science: they are given a specificity of meaning that poets would regard as
monotonous. Thus words frequently take on a narrow significance not neces-
sarily found in ordinary discourse. When the physicist speaks of force, work,
energy, he refers to matters far more definite than are implied by a historian’s
use of the same words. He is forced to such narrowness by the difficulty of his
task, and he accepts the limitations upon his discourse gladly because of the
successes they have brought. To ensure the careful use of words the scientist
must define his words and symbols with great precision. In physics, therefore,
proper understanding and proper use of definitions are an important preliminary
to progress. This explains why much emphasis is laid upon definitions in this
book. Definitions are usually given in the form of explanatory sentences; but
they may also appear in the form of mathematical equations provided that the
symbols are defined in words. Sometimes the last-named method is simpler.
For instance, if we wish to define density, it is not too much trouble to say:
““Density is mass per unit volume.” But to define kinetic energy as ‘‘ one-half the
product of the mass of an object by the square of its velocity’ tends to be a
mouthful. It is preferable to say it is 14mo? after we have defined the symbols
m and .

*1.2. Use of Mathematics. While most subjects taught at the college level
involve the use of some form of logic, physics relies heavily on the most nearly
perfect form of reasoning, on mathematics. Far from being ashamed of diluting
his science with a seemingly foreign formalism, the physicist takes pride in the
circumstance that his subject permits him the use of so lofty a discipline, for it
betokens a degree of refinement in the growth of his science that workers in other
sciences covet. But mathematics is never used for its own sake. It is alwaysa
tool employed either to shorten the labor of experimentation or to predict new
facts on the basis of already established knowledge. This book will contain

1



2 PHYSICS [Sec. 1.3

numerous proofs. These were introduced, not to make the treatment of the
subject ‘“highbrow,” but to show what is actually going on in it. It is hoped that
the reader will perceive, in every instance of the use of mathematics, the purpose
of clarity or economy of thought for which it was designed. The demonstrations
given are not always the best available; they are nearly always compromises
hetween simplicity and rigor.

1.3. Measurements and Units. DPhysics is a science of measurement.
To be sure, it contains a great deal of reasoning, but this reasoning never
departs very far from the solid ground of measured magnitudes. Accu-
rate measuring is an art to which this book is only an imperfect guide.
Some concrete appreciation of it is taught in thelaboratory accompanying
this course. An understanding of what is involved in the measuring
process, aside from technique, however, can be prepared here.

It is important to realize that almost every measured result contains
two things, a number (sometimes called a numeric) and a wunit. The
number alone has no significance unless the unit is also stated. A change
in the unit requires a corresponding ehange in the numeric. Such changes
will often engage our attention and will at once be made clear by exam-
ples. Suppose we measure a certain length and find it to be 9 feet. In
this case it is apparent that we may also say 3 yards or 108 inches. But
it is well to formulate a rule for making such conversions, for in less
familiar instances simple intuition may not work. The rule is this:
Treat all units as algebraic symbols, and express the symbols by other
equivalents. 'The numbers appearing in this process are then combined
to give the new numeric. Thus

9 ft = 9(12in.) = 108 in. = 9(14 yd) = 3 yd
or, to choose a slightly more difficult example,
50.0 miles/hr = 50.0(5,280 ft)/3,600 sec = 73.3 ft/sec

It will later be seen that units can also be canceled like algebraic symbols.
A certain feature, which might be called the ‘““counterplay of unit and
numeric,”’” is also apparent in these examples: when the unit increases
by a certain factor, the number decreases by the same factor, or vice
versa; a larger unit requires a smaller number.

While nature presents the scientist with certain obvious units such as
the day or the year or the foot, most units are man-made and employed
by convention. They must always be defined with great care and pre-
cision. In fact the student should always expect, when he is introduced
to a new scientific subject, the following sequence of events: first the
definition of quantities (e.g., energy, power, ete.) which are important
in the field under study; second a definition of units in terms of which
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these quantities are measured; finally a discussion of laws and regularities
which prevail among the quantities and through which they can often
be measured or calculated.

1.4. Knowledge Taken for Granted. It seems well to state what
knowledge on the part of the student will be taken for granted in this
book. First of all, familiarity with the ideas of distance and time is
assumed. These are in fact taken as primitive concepts, and no attempt
to derive them will be made. Such attempts would fall into the-domain
of philosophy. Distance covered per unit of time is a speed. While
mass and force are quantities to be defined more precisely later on, a
general acquaintance with them will be presupposed. Finally the reader
will be expected to know the simpler units in which these quantities are
customarily measured. There are
certain everyday measuring devices,
such as the yardstick, the clock, and
the balance, the use and action of
which are assumed to be understood. 7 A
These three are in a sense the
basic and universal instruments of L. .
physics; all others can be analyzed
into modifications and combinations of them. The quantities they
measure, length, time, and mass, are sometimes called basic or primitive,
for out of them, too, all other quantities can be constructed in a manner
discussed in Section 6.7.

Iinally a certain amount of mathematical skill should have been
acquired by the student. Aside from arithmetic, geometry, and the
elements of algebra, he will know the notation and the use of trigo-
nometry. He is reminded of the definitions!

a
Hlustration of trigonometry.

sin @ = cos 8 = a/c

sin 8 = cos @ = b/c

tan « = cot B8 = a/b
which hold for any right triangle (ef. Fig. 1.1); and of the following
relations, which hold for any angles 6, 61, and 8,:

tan § = sin 8/cos 6 cot 0 = 1/tan 6

sec 8 = 1/cos 6 cse 8 = 1/sin 6
sin? § + cos? 6 =1 (theorem of Pythagoras)
sec? § = 1 4 tan® @
sin (8; + 6;) = sin 8; cos 8 + cos 6, sin 6, (1.1)
cos (8, + 6,) = cos 8, cos 8; — sin 6, sin 6, (1.2)

1 Greek letters will sometimes be employed because they are customary or beeause
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From the last two we get

sin 26 = 2 sin § cos 6§ (1.3)
and cos 20 = cos? § — sin? 6 (1.4)
by putting 6, = 0,

We also recall the following relations, valid for any triangle such as the
one in Fig. 1.2:
sinae _ sinf3 _ sinvy

ety il (1.5)
¢ = a? + b? — 2ab cos vy (1.6)
¢z = a? 4 b2 + 2ab cos v’ (1.6")

Angles, while usually measured in degrees, are more naturally expressed
in radian measure. The definition of the radian is based on the observa-
tion that the ratio of any arc to its corresponding radius, such as s;/r; or

Fi1c. 1.2. Illustration of trigonometry. Fi1c. 1.3. Radian measure.

s2/79 Or 83/731n Fig. 1.3, is a constant as long as 6 is constant, and hence a
convenient measure of §. This ratio is the size of 8 in radians. Clearly,
90° = 7/2 radians, 360° = 27 radians, and 1 radian = 360/2r degrees.
In the expression of an angle in radians the unit (which is after all only
a ratio!) is often omitted.

A bundle of rays going out from a point O (cf. Fig. 1.4) is said to sub-
tend a solid angle, ©Q, at 0. To obtain a measure for @, let us suppose
that, at a distance r from O, the solid angle has an opening—no matter
how irregular—of area A. Now construct a sphere of radius r about O.
The area cut out from this spherical surface by the rays forming Q@ will
be the projection of A upon the spherical surface. We call the area of
this projection 4’. Then the magnitude of € is said to be

A’ X
Q= -2 steradians

One steradian is a solid angle whose opening at a distance of 1 ¢cm from

the Roman alphabet is exhausted. Their symbols, together with their names and
their modern equivalents, are given in the Appendix.
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its origin is 1 cm? Since the full sphere has an area of 4xr2, the solid
angle which it subtends at the center is 4nr2/r? = 4r steradians.

Suppose now that @ is very small, of magnitude dQ. The area A in
Fig. 1.4 will then also be small and will be d4. In that case the projec-
tion of d4 upon the sphere, dd’, will be d4 cos 6, if 8 is the angle between
the normal to dA (cf. the figure) and the radius vector drawn from O.
Hence

4Q = dA rc2os 0
This formula will be used in Sec. 25.4 and elsewhere.

Calculus will be used with increasing frequency as the development in
the book proceeds. At the beginning, however, its use will be restricted
to very elementary operations of
differentiation and integration. As
far as possible, mathematical de-
vices will be explained before they
are used; but it is supposed that
the student has a nodding ac-
quaintance with the calculus and is
pursuing it with greater attention
as the work in this book goes Fic. 1.4. A solid angle.
forward.

- 1.b. Special Systems of Elementary Units. The variety of units used
in science and engineering is great, and it is important to introduce
some order into their complexity at once. There are two large systems
of units in common use, one called the British system, the other the metric
system. The basic units in each are three, as already noted: the unit of
length, that of time, and that of mass. The basic units in the British
system are the foot, the pound (mass), and the second. Hence a common
abbreviation for this system, and one that we shall use henceforth, is the
fps system. The metric system is used in two different forms, the
centimeter-gram-second(cgs) and the meter-kilogram-second (mks) varieties.

Table 1.1. Basic Units in fps, cgs, and mks Systems

Quantity
System -
Length Mass (or force) ‘ Time
fps TFoot (ft) Pound (lb) Second (see)
cgs Centimeter (cm) Gram (gm) Second (see)
mks Meter () i Kilogram (kg) ' Second (see)
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All three systems are given in Table 1.1. In another interpretation,
favored by engineers, the pound, the gram, and the kilogram represent
forces, not masses. This matter will be carefully discussed in Secs. 2.3,
6.2, and 6.3. For the present the student may regard these terms as
representing either masses or forces.

Observe that the unit of time is the second in all systems. The con-
venience of the cgs and mks systems arises chiefly from the ease with
which smaller or larger units can be formed from the basic ones. The
units differ by factors that are powers of 10. The rule for formation of
desired units is simple if the reader will remember a few Greek and Latin
prefixes, which are listed in Table 1.2.

Table 1.2. Derwed Metric Units

1/1,000,000 | 1/1,000 | {00 | 3o Unit 10 100 1,000 | 1,000,000
micro- milli- | centi- | deci- | Meter, | deka- | hekto-| kzlo- mega-
gram,
second,
liter, ete.

It will be seen that, while the centimeter is the basic unit of length
in the cgs system, the linguistic unit happens to be the meter. From
it, multiple or submultiple units are derived in accordance with Table 1.2.
The prefixes in italics are the most common. Any of them may be
employed with other basic units; for instance, a milliliter is a thousandth
of a liter, a microsecond is 107¢ second, and so forth. The micrometer
(not to be confused with the micrémeter, an instrument for measuring
small lengths) is usually called the micron.

One further advantage of the metric systems is the existence of a
simple relation between the basic unit of length and that of mass. A
cube of side length 1 em (7.e., a volume of 1 cubic centimeter, abbreviated
1 cc or 1 ecm?) filled with water (at 39°F to be exact) has a mass of 1 gram.
One cubic meter (m?) of water has a mass of 1,000,000 gm, or 1,000 kg,
or 1 metric ton.

One pound equals 453.59 gm. On the continent of Europe a slightly
larger pound, called the ‘““metric pound,” is used; it equals 500 gm, that is,
14 kg. But this will not be employed in the present text. Finally we
remark that the meter was originally chosen to be 1/10,000,000 of the
distance between the earth’s equator and the pole, but it is now defined
as the length between two scratches on a standard meter bar. A com-
plete conversion table between metric and British units is given in
Appendix 1, '
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*1.6. Numerical Computations, Accuracy. In physics, great emphasis is laid
upon numerical computations. In fact all algebraic formulas are derived only
for the purpose of using them in computation; they serve no mathematical
purpose in themselves. A few elementary points have to be borne in mind when
formulas are put to numerical use. To illustrate them, we consider a geometrical
example, the formula for the area of an ellipse,

A = mab

where a and b are the semimajor and semiminor axes, respectively.

The subsequent remarks may at first seem trivial, but they are important in
respect to the more complex formulas of physies that occur throughout this book.
First we observe that some of the symbols, such as a and b, have units as well
as magnitudes, while & is merely a number. At the beginning, then, it is neces-
sary to distinguish the purely numerical symbols from those which, in addition
to a numeric, require units. The latter are said to possess * physical dimensions,”’
a matter to be discussed in Sec. 6.7.

Next, definite units have to he chosen for a and b, and here it is important to
use the same units. Let us choose feet. Both number and unit must be intro-
duced into the formula, so that it reads, for example,

A=mX2ft X3ft

thus A = 6x ft? = 18.8496 - - - ft2. The units of A are given automatically
by this procedure. Had we introduced a in feet and b in inches, a mixed unit
for area that is of obscure significance would have appeared. The lesson we have
learned is this: In using a formula, all symbols denoting quantities of the same
kind (““having the same physical dimensions’’) should be expressed in the same
unit. We could, of course, have chosen inches in the present example. The
answer would then be

A =7 X24in. X 36in, = 2,714.34 - - - in.2

Now the question arises as to how many decimal places should be used in
stating the answer. Obviously, since 7 is a never-ending decimal fraction, the
result could be stated to any number of figures. Brief reflection tells us that
this would be absurd unless we knew a and b with unlimited accuracy. In
general, @ and b will not be the round numbers we have chosen. Suppose they
were measured with an ordinary foot rule, which can be read accurately to within
142 in., or 0.03 in. approximately. That is to say, the true value of @ may lie
anywhere between 23.97 in. and 24.03 in., that of b between 35.97 in. and 36.03 in.
To put it another way, we are not sure of the fourth figure in the numeries of a
and b (notice that this would also be true if we had expressed a and b in feet!);
hence we cannot be sure of the fourth figure in 4. A little thought will convince
the student that there is no sense, under these circumstances, in using more than
four figures in .
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The number of digits in any result of which one can be sure in view of the
accuracy of the data (in this case a and b) is the number of significant figures.
When a scientist states a result to a great number of significant figures, he claims
great accuracy. This should always be remembered in giving numerical answers.
Further, the use of a greater number of digits in any numerical constant such as
m, or 14 in its decimal expansion, than corresponds to the number of significant
figures of the data is pointless and hence unscientific. For the same reason, one
should never employ six-place logarithms when computing data that have only
three significant figures. If the data are not all known to the same accuracy,
the number of significant figures of the least accurate datum dominates the entire
process.

Worked Ezamples.! a. The distance from an observer at which lightning
strikes is determined by measuring the time interval between lightning flash and
thunderclap with a stop watch that can be read with an accuracy of 0.2 sec.
The interval is found to be 11.6 sec. The speed of sound is 1,127.5 ft/sec (at a
temperature of 2014°C, which we shall assume). The distance is

1,127.5 ft/sec X 11.6 sec = 13,079.00 ft.

However, since the third significant figure in 11.6 is already uncertain, this result
should properly be rounded off to 13,100 ft. In fact the judicious student will
never use the accurate figure 1,127.5 ft/sec in conjunction with the crude 11.6 sec
but will round it off at once to 1,130 ft/sec. He will then obtain the answer
13,108 ft, which should be reduced to 13,100 ft.

On the other hand this reduction must not be overdone. It is true, of course,
that an answer of three apparently significant figures can be obtained by multi-
plying 11.6 by 1,100 ft/sec. This, however, leads to answers that are not correct
to three figures, as the multiplication will show. Hence it is never safe to use
fewer significant figures in any factor than the number of significant figures in the
one least accurately known.

b. Normal atmospheric pressure is 14.7 lb/in2. Convert this into gm/cm?.
Solution:

W, (454 gm) 147 X 454 gm gm
T = T o sem) = @54)7  ome — 1035 o
PROBLEMS

1. Sound travels through the atmosphere with a velocity of 340 m /sce, light with a
velocity of 3 X 108 m/sce. Convert both these into ft/sec and into miles/hr.

2. The density of wateris 1 gm/cm3  What is it in lb /ft3?

3. If a band were tightly stretched around the earth’s cquator (regarded here as a
perfect circle), its length would be 40,000 km. Suppose the band were lengthened by
10 ft, still forming a circle with its center at the earth’s center. What would be the
distance from the carth’s surface to the band?

! The student should do the worked examples himself and check his work step by
step with that of the book.
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4, The height of a tower is to be found by triangulation (cf. Fig. 1.5). The basc

a is 300 ft, 6, = 35°, 8, = 45°. What is h?

h

6, 6, l

a
F1c. 1.5. Problem 4.

6. Lxpress sin 30 and cos 36 in terms of 4.
6. Convert the following angles into radian measure: 10°, 45°, 90°, 180°, 360°.
7. Make graphs of sin 6 and cos ¢ vs. 8. Show that

sin (f + 22) = sin 8 cos (8 + 27) = cos 6
sin (§ +x) =sin (§ —w) = —sin @
cos (8 + ) =sin (§ —w) = — cos @

. w . m
sm(ﬂ—}-Q) = —sm(ﬂ—§> = cos @

m m .
cos(ﬂ-{—é) = —cos(o—‘—?) = — sin ¢

8. How many cubic millimeters are there in a cubic meter?
*9. A rectangular box was measured with a meter stick and found to have a height
of 45.4 cm, a width of 37.8 cm, and a length of 107.9 cm. State its volume, rounding
off the answer to the proper number of significant figures.



CHAPTER 2
INTRODUCTION TO MECHANICS; FORCES

*9.1. Brief History of the Science of Motion. Throughout the ages motion,
though one of the most familiar spectacles of nature, has presented to the curious
mind some very puzzling features. The philosophers of ancient Greece were
greatly concerned about the difference between the state of rest and that of
motion., To them it seemed that, for a thing to exist, its properties must be
permanent. But moving bodies have no permanence of position, and from this
dilemma some of them, notably Parmenides, drew the conclusion that moving
bodies do not exist. Motion was explained as an illusion.

Others in ancient Greece, among them the philosopher Anazagoras (500 B.¢.?),
regarded motion as real but felt called upon to distinguish clearly two states of
being—rest and motion. They speculated extensively about the origin of motion;
in fact they invented a special stuff, or substance, that would account for motion.
Later this view was rejected, and Leucippus, the inventor of the idea of atoms,
regarded motion as an eternal property of all atoms, thus denying in effect the
state of rest.

Out of this speculative welter there crystallized a theory, chiefly promoted by
the great philosopher and scientist Aristotle (384 B.c.), that dominated the think-
ing of the Middle Ages. It was an unsophisticated theory of motion, no longer
acceptable today but nevertheless interesting and appealing. Against the back-
ground of this theory the progress of physics since the Renaissance must be
judged. Aristotle was preoccupied with the question of why heavy bodies fall
toward the earth instead of rising to the heavens like a flame. He found the
answer to this paradox by an appeal to the belief, then current, in the existence
of a fiery sphere in the heavens and of the earthy realm below ground. The
solution was this: The flame rises because it seeks the realm to which it belongs,
its natural place; the stone falls because it, too, seeks its natural place. Thus the
motion of hodies “going home,” or seeking their natural places, seemed to be
accounted for. It was called natural motion.

But a stone can also be projected upward! To be sure, this requires an external
agency like an arm or a slingshot; hence it is in a sense ‘““unnatural’ motion.
Aristotle called it vtolent motion. And in this connection he introduced a famous
postulate, which was upheld until the days of Galileo almost 2,000 years later.
The postulate was this: Violent motion requires the application of force; natural
motion proceeds without force. It isnot difficult to see the homely reasonableness
of this assumption.

Whether we regard it as correct depends on our aceeptance of this particular
meaning of the term force. The Middle Ages accepted it. Hence to the medie-
val mind the falling stone required no force, and it is unjust for us to accuse our
pre-Galilean scientific forebears of error in this respect. However, the Aris-

10
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totelean postulate and the definition of force that it implies are not very fortunate
and fruitful and have therefore heen abandoned.

It was discovered by Galileo (1564-1642) and proved convincingly by
Newton (1642-1727) that the whole science of motion becomes at once
simple and universally valid if force is taken to mean any agency which
produces, or may produce, an acceleration in physical objects. The sub-
ject of acceleration will be studied in considerable detail later. In a
preliminary way we define it here as rate of change in velocity. An
object at rest or moving at constant velocity has no acceleration. Thus,
according to this new conception a falling body must experience a force
because it is accelerated.

2.2. Newton’s Laws of Motion. Among the truly great discoveries of
mankind are Newton’s three laws of motion. Though simple in wording
and in conception, they contain almost the whole of the science of motion,
the entire intricate formalism of modern mechanics. We state them here
in their historical form and recommend that the student commit them
to memory and endeavor to understand them fully. Much more will
be said about them in due course. Their full meaning will not be made
clear in the present chapter, which is devoted to a study of a very limited
aspect of them. In Newton’s famous work ‘Principia mathematica”
the laws are stated in the following form (translated from the Latin):

1. Every body continues in its state of rest or of uniform motion in a
straight line, except in so far as it is compelled by forces to change that
state.

2. Change of motion (acceleration) is proportional to the force and
takes place in the direction of the straight line in which the force acts.

3. To every action there is always an equal and opposite reaction; or
the mutual actions of any two bodies are always equal, and oppositely
directed, along the same straight line.

The meaning of the first law is clear; it is only to be noted that uniform
motion is motion with constant velocity. The second law is qualitatively
understandable; however, to give it quantitative and precise meaning,
we must carefully state how (1) forces and (2) acceleration are to be
measured. These two items will be postponed, the first to the next
section, the second to a later chapter. The third law is more difficult to
comprehend and will be the subject of much further comment. We
elucidate here merely by pointing out that action and reaction are names
for forces acting on two different bodies which tend to accelerate each other.

For the present, our interest will be in only one consequence of the first
and second laws: When the force acting on a body is zero, it is not acceler-
ated and is said to be in equilibrium. The engineer often wants to know
the conditions under which bodies, such as parts of machinery, bridges,
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and other structures, are and will remain in equilibrium. The part of
physics dealing with this question is called ““statics.” But before we turn
our attention to this, we must learn more about forces.

2.3. Forces. There are several ways of defining the meaning of force,
all of which may be shown to be equivalent. The simplest and most
useful to the engineer is this: A force s a push or a pull. Fveryone has an
intuitive appreciation of force through his experience of muscular
exertion.

The present definition may become inadequate and require revision under some
circumstances. For instance, it is true that the sun exerts a force on the earth,
a force that is transmitted through a vacuum, and it is a little hard to visualize
how ths sun can exert a pull across empty space. But these complications will
not concern us now. Later we shall see how it is possible also to define force in
terms of acceleration with the use of Newton’s second law.

If a force is a push or a pull, how is it to be measured? Clearly, our
muscular sense is too crude. We note, however, that a given force has a
specifiable and under proper conditions an invariable effect on an elastic
body, such as a spring. It is possible, therefore, to use a spring balance
as an instrument for measuring forces. Imagine, then, a standard
spring balance, a certain mark upon which designates the unit of force, the
pound. By comparison with it, other balances can be calibrated. There
are other units of force than the pound, but their consideration will be
postponed.

Unfortunately there is an ambiguity in physical usage, for the pound
is also a unit of mass. This should be interpreted, not as meaning that
mass and force are identical physical quantities, but as a regrettable
verbal coincidence. It arises from the fact that a mass of one pound is
pulled toward the center of the earth by gravity with a force of one pound
called its ‘““weight.”” Hence weight is force and must be distinguished
from mass. In the stratosphere the weight-force on a pound mass is
less than one pound, as a delicate spring balance would show.

The pound (Ib) is the British unit of force. It alone will be used in
this chapter and the next. Two thousand pounds (2,000 1b) is called a
ton.

2.4. Reckoning with Forces. Forces do not satisfy the laws of ordinary
arithmetic. One object plus another object will always make two objects,
but one force plus another force may well be no force whatever. It is
because of this possibility of compensation that the reckoning with forces
has to be carefully scrutinized.

To begin with, it is necessary, in every situation involving forces, to
distinguish between the forces exerted on an object and those exerted
by an object. In Fig. 2.1, for example, two bodies are connected by a
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spring. Aside from gravity, which is ignored, there are altogether four
forces. F;isaforce exerted by the spring on body 4 ; F, is exerted by A on
the spring; F's is exerted by the spring on body B; F, is exerted by B on the
spring. Thus 4 and B are subject to one force each, while the spring is
acted on by two forces.

We now consider all the forces on a body, such as the one in Fig. 2.2.
To specify them it is clearly necessary to state the magnitude (in pounds)
and the direction of each. Because

forces have both magnitude and di- Fl—» <£3—
rection, they require different treat-
ment from quantities that have only e
magnitude, like length, time, and T T

mass. With regard to the latter it .

. . Fic. 2.1. Forces exerted on and by
iseasy to see what is meant by add- |

ingthem. Thesum of 21b and31b

is simply 5 lb; it is the result of putting together 2 1b and 3 1b. The sum
of two forces is also the result of putting them together, but in this process
we must respect directions as well as magnitudes. Thus to add forces
requires a new procedure, which will now be described. But it should
always be borne in mind that we add forces acting on the same body,
never forces acting on different bodies.

2.5. Addition of Two Forces. Suppose that a body is subject to two
forces, one of magnitude 2 Ib acting
from left to right, and another of
magnitude 3 lb acting from right to
left. Their effect is the same as one
force of magnitude 1 1b acting from
right to left, as a little consideration
or a simple experiment with spring
balances would show. These two
forces, when acting simultaneously,
produce a resultant force, which
happens to be equal in magnitude to
their difference. If both forces act in the same direction, the magnitude
of the resultant would be their sum.

The situation is more complicated when the two forces do not act in
the same direction. In Fig. 2.3a the heavy lines represent two forces
on a body (not shown in the diagram). If a spring balance were inserted,
it would show that this body is urged in the direction of the dotted arrow
by a force of 51b. The latter force is called the resultant, or sum, of the
other two. It isnot the arithmetical sum but can be found by the follow-
ing rule (cf. Fig. 2.3b):

F1a. 2.2. Forces have both magnitude
and direction.
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Represent each force by an arrow the direction of which is that of the
force. Its length is taken to be proportional to the magnitude of the
force so that a given length, perhaps an inch or a centimeter, represents
one pound, the same for each force. In Fig. 2.3b the two representative
arrows are denoted by F; and F.. To find the resultant of I'; and F,, place
the end of Iy in coincidence with the head of ;. Then draw an arrow

4 lbs

\ b
(a) | ()
Fr1c. 2.3. Addition of forces.

from the end of F; to the head of F,. This arrow is the resultant, labeled
R in the diagram. This rule is general; in I'ig. 2.3¢, S is the resultant of
F3 and Fs. In the laboratory this rule can be verified with spring bal-
ances in all instances. It can also be proved theoretically, but this will
not be done at present (see Sec. 2.12).

For brevity we shall also call the resultant the sum of the two other
forces, and we shall refer to the rule as the
rule for adding forces. Illustrations of it are
numerous and can easily be supplied by the
reader. If, for instance, two people were
pulling on a body in the manner of ¥'; and F,
in Fig. 2.3¢, their effect would be the same as
if a single person pulled in the direction of S
with a force corresponding to that magnitude.

Fic. 2.4. Equal forces. It is well to become thoroughly familiar
with the representation of a force as an arrow

and to think of it always in this symbolism. Two arrows represent
equal forces if they have the same magnitude and direction, no matter
where they are drawn. For example, the three forces shown in Fig.
2.4 are equal.

2.6. Addition of Many Forces. The rule for adding forces can be

generalized to apply to cases where more than two forces act on a body.
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Four are shown in Fig. 2.5a, corresponding perhaps to different pulls by
guide ropes on a tree to be felled. To find the one force that is equivalent
to these four, that is, to find their resultant, or sum, we might first add
Fyand F», then add F; to the resultant of these, then add F 4 to this second
resultant. If the student will carry out this procedure, he will find it to
be equivalent to the simpler process illustrated in Fig. 2.54, where the
forces are added, tail to head, without drawing each resultant. The sum
of all four is then simply the arrow drawn from the tail of the first to the
head of the last force. For obvious reasons this procedure for obtaining
the sum of a number of forces is called the polygon method: the resultant

(a)

(b)

Fia. 2.5. Adding four forces.

(sum) is the closing side of the polygon made up of all the forces, with the
arrow properly drawn. '
In ordinary algebra we write

a+b=c (2.1)

in order to denote that ¢ is the sum of the ordinary quantities a and b.
Thus we might also designate the addition of the forces F; and F. in
accordance with Fig. 2.3b by

or that according to Fig. 2.5 by
Fi+F,+F;+F, =R (23)

The plus signs in Egs. (2.2) and (2.3) have the meaning given to them
by the polygon rule, a meaning different from that of the plus sign in
Eq. (2.1). But confusion can be avoided if, while retaining the symbol
+, we use boldface type for forces as in Eqgs. (2.2) and (2.3), or in general
for all quantities that are added by the polygon method. Thisconvention
will be followed throughout this text.
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In ordinary algebra the order of the summands is immaterial in the
computation of a sum. That is,

a+b=b+a

Is it also true that F; + F, = Fy, 4+ F;? The latter sum is constructed
in Fig. 2.6. Comparison with Fig. 2.3b will
show that it is equal to F1 + F,. The student
will easily convince himself that the forces in
Fig. 2.5, when added in any order, will always
yield the same sum R. Hence the order in
which forces are added is immaterial.

The rule here given is not the only one by which
addition of forces may be performed. In Fig. 2.7a
we are employing our rule; in Fig. 2.76 we lay off
F, and F», not head upon tail, but teil upon tal.
If now we complete the parallelogram and draw the

F, diagonal, this diagonal is identical with R. Hence
Fig. 26. F, +F, = F, the parallelogram rule: To add two forces, put their
+F, tails together, complete the parallelogram, and

draw the diagonal from the coincident tails out-
ward. This diagonal is the resultant. The parallelogram rule is sometimes the
more convenient to apply, but it cannot be generalized so easily to many forces as
can the other.

2.7. Subtraction and Resolution of Forces. Suppose a mass m (Fig.
2.8a) is to be held in place by two forces F; and F,, exerted by ropes tied
to the mass. We know F,, and we
also know that the total force
needed to hold the mass in place is
equal to its weight, say 1,000 lb
and must act upward (R in the dia-
gram). We wish to find F,. The
solution is easy. Since

F,+F. =R
F,=R-F, (a) ®)
. . Fig. 2.7. Parallel le f dding
F, is the difference of R and F;. foIr(ch araticlogram e for adcing

But the difference of two quantities
is always the sum with the sign of the second quantity, in this case Fy,
reversed. INow obviously —F; is F; with the arrow reversed. Hence to
get F» we add R and F,; but reverse the arrow on F;. This is done in
Fig. 2.8b.

The next chapter will present problems in which a force is given and



Sec. 2.7] INTRODUCTION TO MECHANICS; FORCES 17

it is necessary to find two or more forces which, when added together, will
have the given force as resultant. The rules for solving such problems
are now at hand, though not the terminology. Two forces that add up
to a given force are said to be its components, and the process of finding
two components of a force is called resolution. Thus, in Fig. 2.3b, F, and
F, are components of R; in 2.3¢, F3 and F4 are components of S.

+F,

_I..‘1

F,

(b)

F1c. 2.8. Difference of two forces.

A force can be resolved into components in an infinite variety of ways.
Most important, however, is its resolution into components in two given
directions, usually along the X and ¥ axes. Theparallelogram rule serves
to bring about such resolution easily. Figure 2.9 shows that F = F. 4+ F,.
The forces F, and F, are called rectangular components of F. They are
found by drawing F from the origin of the coordinate system and then
dropping perpendiculars from the
head of F upon the X and Y axes.
The notation just used will be con-
tinued; that is, F, will always denote T T
the component of forcc along the X g F
axis, and so forth.

Practical applications requiring
resolution of forces are very numer-
ous and will be discussed in the
next chapter. To mention a few:
If we want to know whether or not a body will slide down an incline, we
must determine whether the force of friction is smaller or greater than the
component of gravity along the incline; the force of the wind upon a sail
“resolves’ itself into one component along and one component perpen-
dicular to the surface of the sail; drag and lift of an airplane are rec-
tangular components of the force of the air upon the plane.

F,

Frc. 2.9. Rectangular components of a
force.
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2.8. Addition, Subtraction, and Resolution of Forces by Trigonometry.
Addition of forces, as explained so far, is essentially a graphical procedure.
Often, however, the use of trigonometry recommends itself for simplicity

(a) ()

I'sa. 2.10.  Addition of forces by trigonometry.

and accuracy. If an accurate value of the magnitude of the resultant of
two forces is wanted, the following method is suitable:

Let 8 be the angle between the positive directions of F; and F., as shown
in Fig. 2.10. Then, from (Fig. 2.10c¢), and because of Eq. (1.6),!

R = Fy2 + Fa? — 214, cos 6
= F.2 4124 2K F,5 cos 8 (2.4)

This is a most useful relation for obtaining the magnitude of R; note,
however, that it gives no informa-
tion as to its direction.

Inspection of Fig. 2.11 will show
that the difference

D=F2—F1

is given as to magnitude by the
square root, of

D2=F12+F22_2F1F20080
Fic. 2.11. Subtraction of forces by (2.5)
trigonometry.

Resolution of a force along X
and Y may also be performed trigonometrically. From Fig. 2.9 it is
clear that

F,=F cos a (2.6)
F, =T sin a 2.7)

provided « is taken to be the angle between F and X.

1 Note that the symbol R stands for the magnitude of the force R, F; for the magni-
tude of Fy, etc.
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>X
Figure 2.12 shows that, if
then R: =Fy + Fo (2.9)
Ry = Fly + F‘.’y (210)

An equation in boldface type, like Eq. (2.8), is therefore really equiv-
alent to the two equations (2.9) and (2.10).
if a force F does not lie in the XY plane, it has not two but three
components, F,, F, F,. These are T
indicated in Fig. 2.13. Here P is N
the point where the perpendicular
from the head of F meets the XZ :
plane; the arrow F’ is called the Bl B/
projection of F upon the XZ plane, :
|
|
[

F. and F, being its rectangular com-
ponents. In this more general casc E F’
the resultant of two forces not in -

the XY plane is also given by P
Z

R=F,+F (2.11)  Fre. 2.13. Foree components in three

. . . . dimensions.
but now this equation is equivalent

to, or an abbreviation of, the following three:
If: = I('lz + In?x l
Il),, = F1y + ng (212)
]1)2 = Iﬂl: + ]4’22 J
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We shall finally consider a problem in which we have to add two
forces that are given not in magnitude and direction but in their three
components. In other words, we know Fi,, Fy, Fi, individually, as
well as Fa,, Foy, I'2;; we wish to find R, the resultant, both with regard to
magnitude and direction. First we observe, using Fig. 2.13 and the
Pythagorean theorem, that

I =rz4 F?
while F'2=F2+F2

Hence F2=F2 4 F2+Fp

This relation holds, of course, for any force and may be applied to R
appearing in Eq. (2.11). Thus

R?=R}*+ R+ R.?
But the components of R are given by Eqgs. (2.12). Therefore
R? = (Flz + F?::)2 + <Fly + F‘Zy)?' + (Flz + F22)2 (213)

If F; and F; lie in the XY plane, we may simply put ¥, and ¥, equal to
zero in this formula.

To find the direction of R is difficult in the general case (three dimen-
sions) but very easy when Z components are absent. For then we see,
this time from Fig. 2.12, that tan « = R,/R,; or if we use Eqgs. (2.9) and
(2.10),

__Fly7+F21/

= 2.14
Fl: + FZ:: ( )

tan o

The angle a determines the direction of R; its value may be found in
tables when the quantities on the right are known.

2.9. Worked Example. An airplane momentarily coasting in hori-
zontal flight is subject to two forces, the thrust of the air F; and its weight
F,. The thrust of the air has two components, a lift of 8 tons and a drag
of 5 tons. The weight is 10 tons. Find magnitude and direction of the
resultant force on the airplane.

We have Fi, = —5 tons Fi, = 8 tons
Foro =0 Fs, = —10 tons

Hence, by Eq. (2.13), R = /(=5 tons)? + (—2 tons)? = /29 tons
This is the magnitude. The direction is obtained from Eq. (2.14),

tana = — " = 3 a = 22° = 0.38 radian or
202° = 3.52 radians
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Both answers are possible, and from this work we cannot tell whether «
lies in the first or the third quadrant.

The example can also be worked graphically, as is shown in Fig. 2.14.
We first add Fi; and F,,, then the
downward force F,, obtaining R.
It now turns out that only the latter
of the two answers for a is correct.

If the forces here considered are o
the only forces acting on the air- P /—\
plane, then it follows from Newton’s ¥ X
second law that the airplane, though
at present moving horizontally, is <R
starting downward with an accelera- Y
tion in the direction of R.

2.10. Composition of Many Forces; Summation Convention. Assume

now that many forces are to be compounded. Thus we write, instead of
Eq. (2.11),

AY

Fia. 2.14.

R=F1+F2+F3+"'+Fn (2-15)

implying that there are n forces, n being some integer. If now a diagram
like Fig. 2.12 is drawn for n forces (the student should do this for n = 1),
it will be seen that

R: = Iﬂlz + 1172:: + 1'73::: + ot + Iﬂnz (21“)
R, =V, +Foy +Fs, + - +F,, (2.17)

provided that all forces lie in the XY plane. The case where they extend
in all three dimensions will not be treated.
As before, it follows from the Pythagorean theorem that

R* = R, + R,
whence, in view of Egs. (2.16) and (2.17),

I{‘_’ = (I’Yh: + I"’g_r + =t + Fn;)2 + (Fly + 11721/ + ot + Fny)2 (2]8)
To find the direction of the resultant R the equation

_F1y+F2y+"'+Fﬁ/ «

e ¥ Pt - o Fu (2.19)

must be used.

In problems like this the notation we have used is cumbersome, and
we wish to introduce to the student a shorthand way of writing these
results. Mathematicians and physicists use the symbol 2 (pronounced
sigma, Greek letter for capital S) to represent a sum. They write, for
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example, instead of a, + a2 + a3 + - - + + ay simply 2 a and read it
“Sum over all a.”” But this convention is not very accurate, for it does
not tell us how many summands a there are. To remedy this defect
one puts a subscript 1 on a and writes, for example,

10
Zai=a1—|—a2+"'+alo

=1

The left side of this identity is read, “Sum over a; as ¢ goes from 1 to 10.”

In general, then, 2 is to be understood as an order to write down many
i=1

times the expression which follows it, giving the index ¢ which appears

in that expression successively all integer values from 1 to n, and then

adding all these expressions. Ordinarily, however, when there is no

danger of misunderstanding, or when one does not wish to specify what
n is, the limits 1 and n are omitted and one simply writes 2 instead of 2 .

i i=1
Using this convention, the formulas of the present section may be written

as follows:

R = ZF; (2.15)

R, = ZF, (2.16)

R, = 31, (2.17)

R = (12 Ii)* + (2 Fy)? (2.18)
Sk,

tan a = Zl:Fiz (2.19)

We wish to stress here that Z is not a new and strange mathematical
operation but merely a compact way of expressing a familiar sum. Its
convenience, apparent already in the formulas above, is even more clearly
seen in the example

10

21=14+24+34+44+5+64+74+84+94+10=255
i=1
This notation will occasionally be employed in this book.

2.11. Scalar and Vector Quantities. We have learned the rules for
adding (or ““compounding’’), subtracting, and resolving forces acting on
a body. These rules are different from those for ordinary addition and
subtraction, for forces have magnitude and direction. Actually the
methods discussed are part of a very general kind of mathematics known
as the vector calculus, for they are applicable not only to forces but to all
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physical quantities having magnitude and direction. These are quite
numerous.

To make the matter more definite, physical quantities that are com-
pletely specified by their magnitude are called scalars (from the Latin
scala, meaning ladder, a symbol for increasing or decreasing magnitudes
reminiscent of a musical scale). Examples of scalar quantities are time,
mass, volume, energy. Quantities having magnitude and direction are
called vectors (from the Latin vehs, to ride or to be displaced). A dis-
placement is in fact the simplest kind of a vector; others are velocity,
force, acceleration, momentum. All these will be studied in due time.
We now see that what has been said about forces is actually true for
all vectors. Force was chosen here for illustration because it is perhaps
the most familiar vector.

All vectors are symbolized by arrows. In this book, vectors will be
printed in boldface type when attention is to be drawn to their vector
character. An equation like

A=B
is really equivalent to three equations
A, = B, Ay, = By, A. =B,
and may be regarded as a shorthand way of writing them.

Vector addition may be performed either by the polygon rule or hy the parallel-
ogram rule, which we here repeat:

Polygon Rule: The sum (or resultant) of vectors A, B, C, . . . is found by
placing the tail of B upon the head of A, then the tail of C upon the head of B, etc.
Finally the polygon is closed by drawing a line from the tail of A to the head
of the last vector. This line, with the arrowhead at the head of the last vector,
is the sum (or resultant).

Parallelogram Rule (good only for adding two vectors): The sum of A and B is
found by placing the tail of B upon the tail of A, completing the parallelogram,
and drawing the diagonal passing through the tails of A and B. This diagonal,
with its arrow pointing away from the tails of A and B, represents the sum.

*2.12. Theoretical Proof of Rule for Vector Addition.—Now, with the larger
view that the foregoing section has given, we pause and wonder why so strange
a device as the polygon rule should work. The reason can be seen best from an
examination of the vector called displacement, which is exactly what the word
implies. If a body is subjected to a displacement of magnitude 3 miles and
direction north, it is carried from its present position to one 3 miles north of it.
If it is subject to two displacements, first the one just mentioned, then another
one of magnitude 4 miles and direction east, it will be found a distance

/(3 miles)? + (4 miles)? = 5 miles northeast
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of its original position, and this position is clearly found by the polygon (in this
case, triangle) rule. Several displacements, carried out one after another, will
land the body precisely at the place predicted by the polygon rule, and the sum
total of all the displacements is equivalent to a single displacement that takes the
body directly from its original to its final place. This is the sense of the state-
ment that the vector sum of the individual displacements equals the displacement
given by the polygon rule.

A little reflection will show that it makes no difference whether the two dis-
placements 3 miles north and 4 miles east are carried out successively or simul-
taneously or in the reverse order; the resultant displacement is always the same.

One can see, therefore, why the polygon rule holds for displacements. But
why should it work for forces? This can be shown in three more steps, which we
shall merely indicate. One goes from displacement to velocity, which, being
displacement per unit time, must obey the same rules as displacement. Next,
acceleration, being change in velocity per unit time (cf. Sec. 5.2), must obey the
same rules as velocity. Finally force, being proportional to acceleration by
virtue of Newton’s second law, must obey these rules also. This completes the
logic of the vector calculus.

PROBLEMS

1. Find the resultant of the two forces in Fig. 2.15 both graphically (polygon rule)
and trigonometrically (using formulas). Compare the results.

2. Find the resultant of three forces,
all acting in the same plane, F, acting
north and of magnitude 6 tons, F, acting
due southwest and of magnitude 10 tons,
I3 acting due southeast and of magni-
tude 3 tons. What are the components
of this resultant in an easterly and a
northerly direction? (It is suggested
that answers be obtained both graphically
and trigonometrically.)

Y
©
FZ AF_)o \00\0 Fl
S
(7
%, 30°
. X
F16. 2.15. Problem 1. Fig. 2.16. Problem 3.

3. The knot in Fig. 2.16 is subjected to the three forces shown. In what direction
will it start to move?

4. The pulley in Fig. 2.17 is fastened in such a way that it can sustain a weight
(downward force) of 1 ton. Both sides of the belt B make an angle of 30° with the
horizontal. What force, or ‘“tension,” along the belt can the pulley stand?
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F1c. 2.17. Problem 4. F1a. 2.18. Problem 5.

6. Three weights are arranged over fixed pulleys as shown in I'ig. 2.18. Find the
angles between the strings at the knot such that the resultant of the forces on the
knot be zero.

6. Find the resultant force on the hexagon of Fig. 2.19, all individual forees being
of equal magnitude.

Fi1c. 2.19. Problem 6.

7. Prove that, if a triangle has three forces acting on it, each perpendicular to a
side and of magnitude proportional to the length of that side, the sum of these forces
is zero.

8. Prove that, if a polygon is subjected to as many forces as it has sides and each
force acts perpendicularly to a side and has the magnitude of that side, the sum of
these forces is zero. (This is the situation with respect to pressure forces produced by
water upon submerged objects whose horizontal cross scction is the polygon.)

9. A rocket in level flight experiences two forces, one directed downward and of
magnitude 2 tons (its weight), the other in opposition to its motion and of magnitude
8 tons (air resistance). Find the resultant force on the rocket.

10. A body weighing 10 1b rests on an inclined plane as shownin Fig. 2.20. Find the
components of its weight along the plane and perpendicular to the plane. (HinT:
Resolve the weight, which acts vertically downward, along these two directions.)

30°

+ 10 Ibs
Fia. 2.20. Problem 10.

11. Using Egs. (2.18) and (2.19), find the magnitude of the resultant, as well as the
angle it makes with the X axis, of the following forces:
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Magnitude | Dircetion with X
I, 21b 15°
I, 31b 110°
F, 61b 90°
Fy 51b —60°
Fs 91b 160°
Fe 81b —90°

12. The wind exerts a force of 100 1b perpendicularly against the sail of the boat in
Fig. 2.21. Only its component along the line of the keel is effective in propelling the
boat. What is this component?

Sail
F1a. 2.21.  Problem 12.

13. What is the vector sum of all the displacements made by the tip of a second
hand as it moves from 12 to 6 on a dial?

14. An airplane is subject to two velocities, its own velocity relative to the air of
magnitude 250 miles/hr and directed north, and the wind velocity, which is 50 ft /sce
southwest. Find the velocity of the airplanc relative to the ground.

16. A rain drop weighs 0.01 gm. As it reaches the earth it falls with constant
speed (no acceleration!). Air resistance on the drop is proportional to its speed;
it is in fact (107%) gm, if » is cxpressed in em /see.  Using the information of Chap. 2,
find the terminal speed of the drop.

16. The boat drawn in Fig. 2.22 is to move to the right. The wind blows as indi-
cated. How must the sail he set so that the component of the wind force perpendi-

s
Motio

Fia. 2.22. Problem 16.

cular to the sail will drive the boat in the forward direction? Taking the angle
between wind and keel to be 30° find the best setting of the sail (assuming the sail
to be a plane, which is far from true).



CHAPTER 3
STATICS

3.1. Equilibrium of a Particle; Concurrent Forces. The subject of
statics treats of bodies in equilibrium; the word (Greek stenai, to stand
still) implies that the bodies in question are not moving. This, how-
ever, is not meant to be literally true; for the earth itself is moving, and
bodies at rest relative to it are certainly in equilibrium in the simple
sense of the word. A more adequate definition of equilibrium is absence
of acceleration. Strictly speaking, therefore, a body moving with a
uniform velocity, even relative to the earth’s surface, is in equilibrium;
our interest, however, will be con-
fined chiefly to cases of rest upon
the earth’s surface.

If equilibrium means absence of 7 000 2
acceleration, then Newton’s second
law at once informs us that a body F
in equilibrium must be subject to
no force or, more precisely, to no
resultant force. 1t may well have
forces acting on it, but their vector sum must be zero. This is often
called the condition for equilibrium of forces.

There is, however, an important fact that needs to be considered.
Will a body always be in equilibrium when the sum of all forces on it is
zero? The answer is no, as reference to Fig. 3.1 clearly shows. The rod
will rotate even though the sum of the two equal and opposite forces is
zero. We see that the condition for equilibrium of forces, which we now
write in the form

Fic. 3.1. Equal and opposite forces do
not necessarily produce equilibrium.

ZF =0 3.1)

does not ensure equilibrium with respect to rotation.

Let us, then, exclude the possibility of rotation for the present. This
limits our attention to objects which do not rotate or of which the rotation
does not concern us. For convenience we shall here think of a point
or a very small particle. If this particle is to be in equilibrium, Eq. (3.1)
must be satisfied and we understand by the quantities F all forces acting
on the particle. These forces will necessarily be concurrent, i.e., they all
are applied at the point.

From what has been learned in the previous chapter it is apparent that
Eq. (3.1) can also be written in terms of components,

27
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SF, =0
SF, =0 (3.2)
SF. =0

Equations (3.1) and (3.2) are equivalent statements of what we shall call
the force condition for equilibrium, or the condition for equilibrium of a
particle (as distinguished from an extended body). In applications it is
sometimes more convenient to use Eq. (3.1); sometimes Eqs. (3.2) are
preferable. '

*3.2. Examples of Concurrent Forces. A weight is suspended as shown in
Fig. 3.2(a), and it is desired to know the tension T in the ropes. Since the point P
is in equilibrium, the force condition must hold when reference is made to this
point as the “particle.” Equation (3.1) is best applied graphically, as in Fig.
3.2(b). Wedraw the known downward arrow representing 100 1b. Then we must

7 100 Ibs T
(a) (b)

Fic. 3.2. Equilibrium of concurrent forces.-

complete the triangle of forces by laying off the two tensions T assumed to be
equal, at the angles that they make in Fig. 3.2(a), a procedure that determines the
length of these arrows. It may be seen from Fig. 3.2(b) that T'sin8 = 14 X 1001b,
whence 7' = 50 Ib/sin 6.

One may also solve this problem by using Egs. (3.2). The three forces involved
have the following components (we take X for the horizontal, Y for the vertical
axis):

Force, X component | ¥ component

1 —1 cos @ 7T sin 6
2 T cos 0 T sin 8
3 0 —100 1b

There are no Z components in this example. On adding the X components we
obtain zero; hence the first of Eqgs. (3.2) is automatically true and gives us no new
information. The second yields 27 sin § = 100 lb, which is the previous result.

Notice that the smaller the angle 8 the greater will be the force T. In fact T
would be infinite if the ropes were actually horizontal. Here is the reason why
telephone wires must not be too taut, since otherwise the collection of any weight
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on them (e.g., ice) would cause an extremely large tension and consequent
breaking.

As another example, consider the situation depicted in Fig. 3.3(a). Here both
T and F can be determined when the weight W and the angle 8 are known. The
use of Eq. (3.1) is illustrated in Fig. 3.3(b). We lay down the vector W, which is
known both as to magnitude and direction. Then the triangle is completed by
drawing F and T in their proper directions; closure of the triangle determines the
lengths of both F and T.

Y K\

]
/ F
(a) (b)

Fic. 3.3. Equilibrium of concurrent forces.

s
Y

The trigonometric method, based on Egs. (3.2), leads to the following tabula-
tion of force components:

X component | } component

T —T cos @ T sin 6
F F 0
w 0 -w

and to the equations
—Tcos8+F =0
Tsing—W=0

When solved they give T = W /sin §, F = W cot 8. These results can also be
obtained from Fig. 3.3(b) directly.

As a third example we consider the forces acting on a particle that is at rest on a
rough inclined plane. Since the particle is in equilibrium and we know it to be
subject to the gravitational force W, the plane must be pushing upward on it with
a force —W (cf. Fig. 3.4). (Note that —W is a force along the positive 1 axis;
this is because we have followed convention in calling the weight force, which is
always directed downward, +W.) The force —W is called the reaction of the
plane against the particle. Later we shall find it convenient to resolve this
reaction in two perpendicular directions, along the plane and at right angles to
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the plane. Their magnitudes are W sin 6 and W cos 6, respectively (cf. Fig. 3.4).
If friction is not strong enough to supply a force W sin 6 along the plane, the par-
ticle cannot be in equilibrium and will slide down the plane with an acceleration.

In the preceding examples attention has been restricted to three forces acting in
the same plane (coplanar forces). More general cases can always be solved by
the same methods. Note that, when the forces are not coplanar, all three equa-
tions (3.2) become significant. But before we treat this general situation it is
well to enlarge our outlook in another
respect: we wish to be able to deal with
extended bodies for which, as we have
seen, the force condition alone is not
sufficient.

3.3. Torques, or Moments of
Force. Figure 3.1 showed how two
equal and opposite forces may pro-
duce, not equilibrium, but a tendency
toward rotation. It now becomes
necessary to introduce a measure for
this tendency. Suppose you wish to close an open door, which obviously
is a matter of producing rotation of an extended body. A given force
applied at the handle is more effective than an equal force applied near
the hinge. Hence the distance from the axis of rotation to the point at
which the force acts i1s an important quantity in this connection. Fur-
thermore a force applied at right angles
is more effective than one acting at
some other angle with the plane of the
door.

These simple facts of everyday ex-
perience may be summed up in this
way: Using the word torque (Latin
lorquere, to twist or rotate) or its
synonym, moment of force, for the meas-
ure of the effectiveness of a force in
producing rotation, we define: A torque
18 the product of a force times the perpen- Fic. 3.5.
dicular distance between 1its line of ap-
plication and the axis of rotation. Thus, in Fig. 3.5, the torque due to
the force F about an axis through the point A (and perpendicular to the
plane of the paper) is

Fia. 3.4. Body at rest on an incline.

Torque equals F-d.

L =Fd (3.3)

We shall always use the symbol L for torques. A torque refers to an
axis of rotation; there is no sense in speaking of the torque due to a force
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without reference to an axis. The distance d is sometimes called the
lever arm of F.  Notice that the point of application is immaterial so long
as it lies on the dotted line of Fig. 3.5. If F were applied at C instead of
B, it would produce the same torque about A.

It 1s sometimes useful to express the definition of L in other, equivalent
ways. If we denote by r the distance (not perpendicular) between the
axis and the point B at which F is
applied (cf. Fig. 3.6), then

L =Fd=Frsing (3.4)

since d = r sin 8, 6 being the angle
swept out clockwise from r to F.
There is, however, one important
difference between the torquerepre-
sented in Fig. 3.5 and that in Fig.
3.6; the former produces a counter-
clockwise, the latter a clockwise Fic. 36
rotation. To indicate this differ- _ gz
ence we shall speak of counter-

clockwise torques as posttive and of clockwise torques as negative torques.
With this convention, we should therefore affix a negative sign to the
right-hand side of Eq. (3.4).

Let us return to Fig. 3.6. The force F is equivalent to its two rec-
tangular components F; and F,. The torque due to F must therefore be
the same as that due to the two
forces F. and F, acting about A4.
But if we take the origin of a
coordinate system at A, then the

t
I \\F A
!
N ) rectangular components of r be-
T~/ come xr and y, these two torques
= are, respectively, «F, and —yF,,

Torque = Fr sin 6 = zF,

and we find

Fic. 3.7. General definition of torque: L = zF, y (3.5)
L = Fd.

This result will be useful later.

Thus far we have not treated the most general case, for we have assumed that
the force acts in a plane at right angles to the axis of rotation. Other cases will
not interest us in this book. Nonetheless we shall give here the most general
definition (cf. Fig. 3.7). If F does not lie in a plane perpendicular to the axis 4,
construct the perpendicular plane. Then draw the component of F in this plane,
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calling it F’, and drop a perpendicular ¢ upon its line of action. The torque is
given by F’d.

From the definition of a torque it follows that its wnits are the pound
foot, or the pound inch, or the ton foot, or the gram centimeter.

3.4. Equilibrium of an Extended Body; Noncurrent Forces. The con-
ditions for equilibrium of an extended body are now easily stated. If
the resultant of all forces were not zero, the body would have an acceler-
ation; if the sum of all torques about any axis were not zero, there would
be rotation about that axis. Hence the full conditions for equilibrium
are

ZF =0
ZL =0

The second equation has been written as if L were a vector, which is in
fact true, as we shallseelater. But
what matters hereis that this second
equation must be satisfied for any
6, 05 axis we care to choose. If it is true
for one, it may be shown to be true
vz 2 722 for any other parallel axis. Hence
in applying the second equation,
F, which we call the torque condition
for equilibrium, we may select the
axis that is most convenient.
In the following we shall always be concerned with coplanar forces.
Coordinate axes may therefore be chosen in the plane of the forces.
Labeling them X and Y one can write Eqs. (3.6) in component form,

(3.6)

F1c. 3.8. Torques on a bar.

SF, =0
ZF,=0 (3.7
SL.=0

provided that we mean by L. a torque due to a given force about the
7 axis, which is taken at right angles to the plane of the forces. An
example will clarify the meaning of these equations

Figure 3.8 shows three forces applied to a bar. Choosing a line per-
pendicular to the plane of the paper and passing through A as axis, and
denoting the distances of the points of application along the bar from A by
X1, Tq, X3, respectively, we get the components listed in the following table:

\ F, | P, L.
I Fycos 6, -1y sin 6, — Iz sin 6,
["-1 ["2 cos &, : 1’12 sin 6., ]’1-_3132 sin G
F;l —1"3 cos 03 —[’13 sin 63 —1";|I3 sin 0




Sec. 3.5] STATICS 33

Equations (3.7) read

Ficos 0+ Fycos 8, — Fscos 83 =0
—F,sin 6; + Fysin 8, — F3sin 8, = 0
—lel sin 01 +F2x2 sin 02 bt Fal'a sin 03 =0

Unless these are satisfied, the bar cannot be in equilibrium. The
reader should note a purely mathematical fact not without practical
importance. In the case of coplanar forces (regardless of how many
forces) equilibrium implies three equations, no more. Since three
equations can determine at most three unknowns, we can never determine
the values of more than three quantities in an equilibrium problem. We
shall observe an interesting consequence of this fact in our applications.

*3.6. Resultant and Equilibrant of Nonconcurrent Forces. The resultant of a
number of forces was seen to be a single force that is in all respects equivalent to

2 Ibs
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31bs

Fi1c. 3.9. Resultant of nonconcurrent forces.

them. It is the vector sum of the individual forces. This is true whether the
individual forces act upon a small particle or upon an extended object. But in
the case of an extended object it matters where the resultant force is applied!
In other words, the resultant of a number of nonconcurrent forces is still the
vector sum of these forces, but further consideration is needed in order to deter-
mine where the resultant is to be applied.

Clearly, if the resultant shall be equivalent to the individual forces, it must
produce the same torque as do these forces. The distance from the axis of rota-
tion is to be chosen so that this will be true. How this is done will be shown
through an example. But first we emphasize this definition: The resultant of a
number of nonconcurrent forces is a single force equal in magnitude and direction
to their vector sum and producing the same torque as these forces. Thus the
resultant of a set of nonconcurrent forces has a definite location in space as well
as a definite magnitude and direction.

The negative of the resultant is a force that, when applied in the presence of the
individual forces, would hold them in equilibrium. It is therefore called their
equiltbrant.

The three forces applied to a meter stick at distances 10 em, 30 em, and 80 cm,
respectively, which are drawn in Fig. 3.9, have a resultant of magnitude 3 b,
directed downward. To be a true resultant it must be applied at a point, say z



34 PHYSICS [Sec. 3.6

cm from the left end, so that it produces the same torque as the three forces.
Their total torque, however, is

—21lb X 10em +31b X 30cm —41b X 8 c¢cm = —250 Ib em
Hence 31b Xz = 2501b ecm and z = 83.33 em

The equilibrant is therefore a foree of 3 Ib applied in an upward direction 83.33 cm
from the left end. If it were added to the forces drawn, the bar would be in
equilibrium.

Ve
/&
/
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1ib 7 _41bs
/
i v 3
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/ AN
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/
/
2bs
3 lbs
(a) (b)

Fic. 3.10. Resultant of nonconcurrent forces.

Next we treat a slightly more complicated example. Suppose four forces are
applied at the corners of a square of side length 20 in., as in Fig. 3.10a. From the
polygon rule the student will find that their resultant is a force directed north-
west and of magnitude /8 Ib (cf. Fig. 3.10b). But where must it be applied?
To find out we calculate torques about some axis, let us say through the southwest
corner. The forces produce the following torques: 0 X 1, 0 X 2, 20 X 3, and
20 X 4 1bin., a total of 140 1b in. If the resultant is to produce the same torque
about this axis, it must be applied a perpendicular distance z from the southwest

corner, such that

Av/81b X z = 140 Ib in.
b2z A . .
Hence z = 49.6 in. This resultant,

2 Ibs marked R, is roughly indicated in Fig.
Fig. 3.11. The couple. 3.10a. The student should show that,
if torques were calculated about any
other axis, the resultant would still act at the same place.

*3.6. The Couple. There are some curious exceptions to the rules just dis-
cussed. Certain arrangements of forces on extended bodies do not have a
resultant at all! To see how this can be we look at Fig. 3.11, where two equal and
opposite forces are shown acting on a bar at distances 2 ft and 3 ft from the left
end, respectively. Their resultant has a zero magnitude; yet the torque, when
computed about the left end, is 42 1b ft. If a resultant of zero magnitude were
to produce this torque, it would have to be applied an infinite distance from the

2 lbs
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axis—which is, of course, absurd. Hence we must conclude that two equal and
opposite forces which are not in the same line possess neither resultant nor equili-
brant. They are called a couple. To produce equilibrium in a case like that of
Fig. 3.11 it is necessary to introduce two other forces, i.¢., another couple.

A couple has another queer property; it has the same torque about all axes
perpendicular to its plane. The student will convince himself of this fact by
computing torques about other axes—for instance, the one through the right end
of the bar in Fig. 3.11. This torque, which is independent of the axis, is some-
times called the strength of the couple. It equals the magnitude of one of the
forces, multiplied by the perpendicular distance between them.

Every arrangement of nonconcurrent forces whose vector sum is zero is equiva-
lent to a couple. For instance, four equal forces F, applied in the manner of Fig.
3.10 to the corners of a square of side length I, produce a torque of 2IF about any
perpendicular axis and are equivalent to a single couple of that strength.

When parallel forces act upon a body, all of them in the same direction and
sense, they can never constitute a couple. Such forces will therefore always have
a resultant and an equilibrant.

3.7. Center of Gravity. The force of gravity on every small part of
a rigid body is directed vertically downward. The resultant of all these

w, W
. {Im —
T x z,
Fia. 3.12.

vertical forces is called the “‘weight” of the body. In accordance with
what has been said, the weight must act through a definite point of the
body, and this point is called its center of gravity. For the purpose of
discussion we assume a weightless bar (cf. Fig. 3.12) to be carrying two
small masses, one of weight w;, the other of weight w,. Let their
distances from a fixed point O on the bar be z; and z,. Their resultant,
or the weight of the system of two masses, is W = wy + ws. To yield
the same torque, W must be applied at Z, such that

Wz = wiry + was
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Hence T 0. T w0, (3.8)
The point between the two masses that lies a distance Z from the fixed
point is the center of gravity of the two masses. -
If the fixed point, 7.e., the origin from which distances are measured, is
itself taken at the center of gravity, then Z = 0 and Eq. (3.8) indicates
that y
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WiTy = — Wl
— I w1
Or == —
To Wa

Note that z: is now a negative quantity. Hence the center of gravity
of two (point) masses lies at a point that divides the distance between
the masses in the inverse ratio of their weights. This rule can often be
applied without formal calculation.

The center of gravity of more than two distinct masses may be found
by the same method, used repeatedly. If there are four masses, find the
center of gravity between mass 1 and 2 and replace these two masses by a
single one of weight w; 4+ w.. Next find the center of gravity between
this fictitious mass and of mass 3. Place a mass of weight w, + w.: + w;
at this new center of gravity and compute the center of gravity between
it and mass 4. This is the center of gravity of the four masses.

Let us return to the case where weights are arranged linearly, as at the
beginning of this section; but assume there are n weights, not two. Let
their positions, as measured from some fixed origin on the line, be z; . . .

Zn. Their resultant will be a weight W = w, +w. 4+ - - - 4 w,.
LEquality of torques requires
WZ = wixy + wers + - - © 4 WaTa

and the center of gravity Z becomes

2 wixi

. (3.9
> )

j:

if we use the summation convention explained in Sec. 2.10. This equa-
tion is a generalization of Eq. (3.8); it represents the center of gravity
as the wetghted mean of the distances of all masses from the origin.

Although we shall not be concerned in this chapter with the calculation
of anything but linear-weight distributions, we remark here for the sake
of completeness that three-dimensional arrangements of weights with
coordinates (x;y:2:) yield a center of gravity whose coordinates are
Z, 9, Z, and these are given by formulas like Eq. (3.9), viz.:

E Wi X; E WYz
; i

1
2 w; IRTY 2wy
i i i

E WiZ;
7

LN

T =

The center of gravity of a uniform rod lies at its center. A rectangular
slab may be regarded as composed of uniform rods, and by applying
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the rules already discussed one finds that its center of gravity lies at its
center. This result is found to be generally true for uniform bodies;
the center of gravity of a uniform body is at its geometric center.

For bodies of irregular shape this center is hard to calculate. But
here experiment sometimes helps. If it is desired, for example, to
determine the center of gravity of
an irregular plane lamina, one pro-
ceeds as follows: Suspend it from
some arbitrary point A (cf. Fig.
3.13), and draw a plumb -line
through A. Next suspend it from
some other point B, and draw a
plumb line through B. The center
of gravity lies at the intersection
of these lines.

Fr1c. 3.13. Finding the center of gravity
of an irregular lamina.

*3.8. Equilibrium of Extended Bodies. Examples. Before continuing the
student is asked to read again Sec. 3.4, the contents of which will now be used.
Let us study the forces on a horizontal bar, pivoted at one end and supported
by a string, as in Fig. 3.14. As a first step it is a good thing to isolate the body
on which the forces are presumed to be acting. In the figure this is done by
drawing an envelope around the bar. A
moment’s reflection will show that there
are altogether three forces acting on the
bar, its weight w, at the center of gravity,
which is the center of the bar; the tensionT;
and the “reaction” R of the hinge against
the bar.

If we know w, R and T may be computed
from the conditions of equilibrium [Egs.
(3.7)]. The vector R really represents the
two unknowns E. and E,, for we do not

N

ANNARRRRRRNARNASSSSS

4= know its direction. Computing force com-
7 T S LT T ay8] ) ponents and taking moments about the left
end of the bar, we obtain
Yw R.— Tcosf =0
Fic. 3.14. Forces on a horizontal R,—w-4+ Tsing =0
bar. —w(l/2) + Tisin 6 =0

if 7 is the length of the bar. From the last of these,
T = w/(2 sin 6)
Hence, from the first two,

R. = (w/2 cot R, =w/2 R=~R*+R>=uw/(2sin)="1"
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In the present example these results could have been obtained more simply.
Whenever three coplanar but nonparallel forces hold an extended body in equi-
librium, they must intersect in a point. For if they intersected in three points, and
we computed moments about any one of the points of intersection, one force would
always produce a torque about an axis through that point and equilibrium could
not result. For more than three forces a similar theorem does not hold.

On applying this fact to the previous example, it is clear that R and T must
intersect vertically above the middle of the bar. Hence R = T, the three forces
form an isosceles triangle, and all the results just obtained are seen to follow.

If the bar carried an additional weight W at its end, Eqgs. (3.7) read

R:—Tcos8=0
R,—w—W+Tsinf =0
—w(/2) — Wi+ Tlsinf =0
Their solution is

W+ (w/2)

T = sin 6

R. =[W + (w/2)] cot 0 R, = w/2

In the absence of W the angle a between the bar and R was equal to 6, since, in
that case, tan a« = R,/R, = tan 6. This is no
longer true, for now

R, w
tana=R—z—mtdn0

and «a is smaller than 6.

As another example we treat the problem of a
ladder leaning against a wall (cf. Fig, 3.15). The
wall will be considered as perfectly smooth, which is
another way of saying that it can exert no force
tangential to its surface. Hence the reaction at
A is at right angles to the wall. We start again by
isolating the ladder (envelope), and then consider
forces on it. In addition to R there is the weight,
which, if the ladder is uniform, will act at its
Fic.3.15. Ladder problem. .o ter At B there will be a force F, which we at
once resolve into components ¥, and F,. The equations of equilibrium are

R—F.=0 F,—w=20
—Rlcos 0+ w(l/2)sinf =0
and their solution is
F,=w F,=R = (w/2) tan

These results can also be obtained by noting that the forces R, w, and F must
intersect in a common point. Observe that F is not necessarily directed along
the ladder.
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If the wall is not smooth, the force R may extend in any direction. Instead
of the previous three unknowns R,, F., F,, we then have four unknowns, namely,
R, R, F., F,. Butwehave only three equations at our disposal! At this point
one is tempted to say that the problem cannot be done. Nevertheless, even in
this peculiar situation the mathematics is trying to tell us something. Three
equations can be satisfied by four variables in a great variety of ways; the problem
is indeterminate. This means that, when the wall is rough, the ladder can be in
equilibrium for any one of many choices of F, and R,, even for a given 6.

*3.10. The Beam Balance. A beam balance consists of a rigid beam with
pointer, pivoted at O (c¢f. Fig. 3.16), and two pans hinged at A and B. When
equal weights are placed on the pans and the pans are of equal weight themselves,
the beam is horizontal and the pointer is ut some zero mark on the scale. Now

4 !

10 5 0 5 10
F1G. 3.16. The beam balance.

let a small weight w be placed on the right pan, so that a final deflection 8 results.
Assume the center of gravity of the rigid beam-pointer system to lie at C, and
denote the distance OC by b, the weight of the rigid system by W. The weight
of each pan is P. If we take moments about an axis through O when the deflec-
tion is @ as indicated in the diagram, the following torque equation is found:

Plcosf + Wbsin8 — (P 4+ w)lcos§ =0
since the system is in equilibrium. From this we see that

w
tan0=WB

Now tan 6 is a measure of the number of divisions on the scale corresponding to
the deflection §. (Indeed the distance along the scale equals tan 8 times the
distance between O and the scale.) The quotient tan 8/w is proportional to
the deflection per unit weitght w. This expression is called the sensitivity of the
balance; it is

. (3.10)

Equation (3.10) tells us how a very sensitive balance may be obtained. The
balance arm ! must be made as large as is feasible, the weight of the balance
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system, W, and the distance b must be very small. To minimize W and yet have
I large requires delicate construction and design. The distance b is adjustable
on some balances by means of a movable weight on the axis of the pointer, a
device that allows S to be varied in accordance with the task to be performed.
Because of the possibility of deformation of the beam structure, which may
change the quantity b appreciably, the sensitivity is not always independent of

the load.

If b were zero, the sensitivity would be infinite but the balance useless, for the
slightest weight w would tip it completely.

A balance with two exactly equal arms is an ideal that is not attainable. For
sensitive weighing, the difference in the lengths of the arms must be taken into
account. This is done by the method of double weighing. The unknown weight
W is placed first on the left pan, where it appears to be balanced by a weight W,
on the right. It is then put on the right pan, where it is balanced by W, on the
left. W, and W, will be nearly equal. How are they related to the true weight
W? If the lengths of the arms are assumed to be [; and I, respectively, the torque
equation in the first act of weighing is

llW = l2W1
and in the second LW = LW,

Multiply the two equations together to obtain

l1le2 = l1l2W1W?
or W = \/W1W2

In words, the true weight is the geometrical mean of the two apparent weights.
But if two quantities, like W, and W, differ by a very small amount, the geomet-
rical mean is very nearly the same as the arithmetical mean. (The student
should convince himself of this fact by numerical examples. See also Prob. 24.)
Hence for practical purposes one may usually replace the last formula by

W= (W, 4+ Wy (3.11)

3.11. Machines. In designing machinery the engineer is everywhere
confronted with the necessity of changing one force into another. The
force of the steam on a piston in a cylinder must be converted into a force
on the wheels of a locomotive, a force different in magnitude and in
direction. The force of the revolving propeller must be changed into a
lift and a propulsive force on an airplane. Even in the simplest circum-
stances problems of this sort are met; one wants to lift a rock by applying
a smaller force on another object (e.g., lever); one may wish to raise a
heavy load by applying a downward force (pulley) because that is more
convenient.

It is clear that the general subject of machines is an important and
difficult one; it does not belong primarily to the province of physics
although it involves nothing but physical and mathematical principles.
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Our aim is therefore merely to arouse the student’s interest in this field
and to present a basic though elementary survey of it.

The function of a machine is always one of the following three simple
tasks or a combination of them: to increase the magnitude of a force
(lever), to decrease the magnitude of a force (lever), or to change its
direction (single pulley). As to composition, every machine consists of
combinations of the following elementary types of machine: (1) the lever;
(2) the pulley; (3) the wheel and axle; (4) the inclined plane. These
fundamental forms may appear in different guises but can always be
recognized on close inspection.

Because machines transform forces, it is useful to have a measure of
their ability to do so. This is called the mechanical advantage. To define
it we recognize that, however a machine may be constructed in detail, it
has one force applied to it, and it applies another.
The latter is called the output force F,, the former
the input force F'; (see Fig. 3.17). 'The mechanical Machine
advantage is defined as their ratio

F,

= F
M = 7 (3.12) 5,

\

If it is smaller than 1, the machine reduces the ”
applied force; if larger than 1 it ¢ncreases the %/
applied force. Many machines are reversible;

. . . . Fic. 3.17.  Mechanical
that is to say, one can use either side as the input dvant IsFo/F,

) . advantagescquals Fo/F;.

or output side. In that case, if one mode of use
produces a mechanical advantage M, the other will yield 1/ (provided
that we disregard friction; see below).

It is possible to calculate the mechanical advantage of every machine
by the principles of equilibrium; but before we proceed to this task a
little must be said about a very peculiar, though very common, kind of
force that influences the performance of all machines, »:z., friction.

3.12. The Strange Force of Friction. When a weight rests on a table
and the hand pushes against it slightly, the weight does not move; it is
still in equilibrium. The force of the hand is being counteracted by an
equal and opposite force on the weight. This can only be exerted by the
table and must be directed horizontally. It is this force of friction that
prevents the object from being accelerated by the force of the hand.

Now let the hand push a little harder: still the weight remains at rest.
The force of friction has the remarkable quality of adjusting its magnitude
exactly to that of the force tending to produce motion. But this is not
true indefinitely. If the hand pushes with sufficient strength, the weight
will move, but with an acceleration corresponding to a force smaller than
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that applied. We describe this occurrence by saying that up to a certain
limit, the so-called ‘“maximum force of friction,” friction is exactly equal
and opposite to the moving force. Only when the latter exceeds that
limit does motion take place, and even then the net force acting is the
difference between the force applied and the maximum frictional force.

Friction possesses adaptability not only with respect to magnitude
but also with respect to direction. For if the hand pushes the other way,
friction, too, turns around and opposes it. In all instances, however, 1t
acts parallel to the surface.

A moving body is also retarded by friction. Experiment shows that
the retarding force on sliding objects is in general slightly smaller than
the maximum force of friction on a stationary one. Hence it is necessary
to make a distinction between the latter, which is called static friction, and
the former, known as kinetic friction (Greek kinein, to move).

Friction, both in its static and in its kinetic aspect, arises from a variety
of causes, not all of which are easy to understand. Surfaces, when
viewed under a microscope, are far
from flat, and the motion of one sur-
face over another requires the over-
coming of interlocking obstacles, the
lifting of the moving body, and per-
haps abrasion of irregular projec-
: tions. Friction between metals may
even involve local melting of small portions in the surface. In addition
to all this, there are intermolecular forces attracting one surface to the
other, and these must also be considered in some instances. Fluids are
used to reduce friction, and the science of lubrication, a very young one,
is a fascinating but complicated subject. In general a lubricant spreads
itself over the surface, smooths its irregularities, and causes one film of
lubricant to slide over another film, thereby reducing friction.

Friction is often a most beneficent agency, without which few machines
could work. No amount of engineering could construct a wheeled vehicle
if the friction between tire and road were not present. Needless to say,
the force of friction is different for different pairs of surfaces.

The rolling of a wheel is also impeded by a force, but for different
reasons. No surface is completely rigid, and a wheel will make a slight
impression on it. As the wheel moves forward, it has to overcome
continually a slight hump in front of it (see Fig. 3.18), and the effect
is the same as if it were rolling uphill. When a pneumatic tire wheels
along, the rubber is constantly deformed, an action that is tantamount
to the process depicted in the figure and also gives rise to rolling
friction.

Fic. 3.18. Rolling friction.
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Later, in Sec. 6.6, we shall see how the force of friction can be measured
quantitatively.

*3.13. Simple Machines and Their Mechanical Advantages. a. The Lever.
Everybody knows the lever from his youthful experiences with the seesaw. If a
lever is used as a machine to lift a load, as in Fig. 3.19, it has a mechanical advan-
tage that is easily calculated from the laws of equilibrium. When F; just balances
the load F, and moments are taken about the fulerum, we find

FJli cos® — Flscos8 =0
or M=ot (3.13)
There are many ways of using levers, and levers are sometimes divided into
classes. In every instance, however, M can be computed by the method here
explained.

A word of caution must now be inserted. In deriving Eq. (3.13) we have
neglected friction altogether. This force, which opposes motion and therefore
effectively decreases F, makes the
actual M smaller, as can be seen from
Eq. (3.13). In mechanics it is often
necessary to distinguish the actual
mechanical advantage M, from the
theoretical one, which is given by Eq.
(3.13). There is no simple way of cal-
culating M ,; it must be determined by
measuring the actual F, and the actual
F; and then forming their ratio. But we should remember that 3/, is always
smaller than M. This is true also when the lever is used the other way around
so that its M is smaller than 1. Henceforth we shall always be concerned with
the theoretical M.

b. The Pulley. A single pulley, as depicted in Fig. 3.20a, has a mechanical
advantage 1 and serves merely to change the direction of a force. Because of
friction in the pulley axle the tension in the rope on the left of the pulley will not
in general be equal to that on the right; since, however, we are ignoring friction
in our present study, we assume, and shall assume in what follows, that tension is
transmitted undiminished from one side of a pulley to the other. This will be true
only when there is no friction in the pulley bearing and when the rope is perfectly
flexible; it is usually a good approximation to reality.

A block and tackle is a pulley system arranged as shown in Fig. 3.20b and used
to lift a weight. The input force F, is transmitted to all parts of the rope, and by
counting the rope strands supporting the weight we find that F, = 4F;; hence
M = 4. For a machine of this type, M is equal to the number of parallel
ropes supporting the load.

Nature, in building the animal organism, makes use of levers very profusely
but abstains entirely from employing free wheels and pulleys, which are so
prevalent in man-made machinery.

Fi1G. 3.19. The lever.
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¢. Wheel and Axle. The wheel and axle are shown in Fig. 3.21; the student
will have no difficulty in proving, by taking torques about the axis of the system,

77777774

% F,= weight F,= weight p

(a) (®)

Fic. 3.20. (a) Single pulley. (b) Block and tackle.

that M = ry/r;. An interesting modification of the wheel and axle is the differ-

Fic. 3.21. Wheel

and axle.

enttal pulley, explained in Fig. 3.22. The smaller pulley is
rigidly attached to the large one, and both turn about O.
By pulling down on the rope at the extreme right (F;) the
weight can be lifted. To calculate the mechanical advan-
tage, we note that the system is in equilibrium and consider
forces and torques on the top pulleys of radii r, (smaller) and
re. The sum of the torques about an axis through O is

F, F,
51‘2—77'1 —F,'Tz =0
27'2
whence F,=-="=F;
To —T1
and M= 2rs
Te —T1

As a rule the pulleys in Fig. 3.22 are toothed wheels, and

the rope is replaced by a chain to avoid slipping when heavy loads are to be lifted.

d. Inclined Plane.

Truck drivers know the advantage of using an inclined

plane for loading a truck. They wish to lift a weight W = F, but manage to do
so by applying a force FF; along the incline (Fig. 3.23). Now F; is the component



Sec. 3.13] STATICS 45

of W along the plane, and we have previously (see Fig. 3.4) seen this to be W sin 6.

L /. 7117/ 7/174, Hence
) 1 l
;/v/ M — 3 —
7 sin@ A

the length of the incline divided by the
height to which the weight is to be
carried. In splitting wood the incline is
used in the form of a wedge.

A screw is an inclined plane in dis-
guise, for it may be regarded as an
incline wrapped around a cylinder, the
thread being the slanting side. To com-
pute its mechanical advantage one needs
to know how the screw is used, for it is
rarely turned directly by hand. In the
case of the screw jack (Fig. 3.24) the
vertical force F, causes a force F, sin 6
parallel to the thread, and sin 6 == p/2mr
if! we denote the pitch of the screw (dis-
tance between successive threads) by p
and its radius by . The screw is thus
subject to a torque F, sin 8 r = F,p/2r.

W=F,

" =l F,=

weight

Fic. 3.22. Dxﬁerential pulley. Fic. 3.23. Inclined plane.

and this must be equal and opposite to the torque F,l supplied by the hand. On
equating the two we find for the ratio F,/F; the
value

M = 2xl/p ] / |

We wish to remind the reader that, in all ex-
amples treated here, M represents the theoretical
mechanical advantage. The ratio M must not be
confused with the efficiency of the machine, a term
that will be explained in Sec. 8.10. Suffice it to
say here that the efficiency which is defined in
Sec. 8.10 may be shown to be the ratio of the
actual mechanical advantage to the theoretical mechanical advantage,

AM“
M

Fic. 3.24. Screw jack.

This is never greater than 1.
' The symbol =2 is used throughout this book to denote approximate equality.
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PROBLEMS

1. A hammock extends between two trees, 8 ft apart. The length of hammock
and ropes (cf. Tig. 3.25) is 10.ft. A person weighing 150 Ib sits at the center of the
hammock. What tension will he produce in the ropes?

/
F1ac. 3.25. Problem 1. Fia. 3.26. Problem 2.

2. A weight is suspended as shown in Fig. 3.26. Show that the tensions in the two
strings are
W cos 6, W cos 6,
and

sin (01 + 02) sin (01 =+ 02)

respectively. If W = 5001b, 6, = 45°, and 6, = 60°, compute the two tensions.

3. A boy of 80 Ib, sitting in a swing, is pulled sidewise until the rope supporting
him makes an angle of 20° with the vertical. Find the tension in the rope and the
force pulling sidewise.

4. A bracket supports a weight of 1,000 b (cf. Fig. 3.27). Find the compressional
force C along the diagonal strut.

LANANANNNNY
Q

30°

1000 Ibs

/]

Fic. 3.27. Problem 4.

b. A truss (cf. Fig. 3.28) supports a weight W. Find the thrust F along each beam.
(Note similarity to hammock problem!)

Fra. 3.28. Problem 5.
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6. To pull a car out of a ditch requires a horizontal force of 1 ton (cf. Fig. 3.29). To
supply this a rope is tied to a tree, and a force F is exerted as shown. How much force
F is needed to move the car?

Tree Car
Fic. 3.29. Problem 6. Fic. 3.30. Problem 7.

7. Figure 3.30 shows a set of forces that have a zero total torque about the point O.
Select any other axis perpendicular to the plane of the paper, and show that the sum
of all torques about this axis, too, is zero.

*8. Calculate the resultant and the equilibrant of the following vertical forces, all
acting on a horizontal bar at the given distances from its left end:

+11b —21b +41b —61b +81b
10 in. 15 in. 20 in. 30 in. 45 in.

9. Forces of 1, 2, 3, 4, 5, 6 Ib act at the corners of a regular hexagon, each parallel
to an edge in the manner of Fig. 3.10. The side of the hexagon is 1 ft. Calculate the
resultant of these forces. Where does it act?

*10. Show that six equal forces F, acting at the corners of a regular hexagon in the
manner of Prob. 9, are equivalent to a couple of strength 3 4/3 IF, I being the length of
one side.

11. Find the center of gravity of three equal masses placed at the corners of an
equilateral triangle. Does the answer depend on the position of the triangle?

12. The corners of a weightless square carry successively weights of magnitude
1,2,3, and 41b. Find the center of gravity. Does it matter whether the square is
vertical or horizontal?

13. Find the center of gravity of the three masses arranged as in Fig. 3.31.

14. The eight corners of a cube of side length 4 ft carry the masses shown in the
figure. Find their center of gravity.

hoT 20 Ibs
|
201bs | 10 tos
|
|
|
|
|
|
L401bs
/// ]
//
8 Ibs 5 ft 10 Ibs 30 Ibs 40 Ibs

Fi1c. 3.31. Problem 13. F16. 3.32. Problem 14.
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16. Find the center of gravity of a flat piece of metal having the shape given in
Fig. 3.33.

10'cm
¥
50 cm

30cm

20 cm
F1c. 3.33. Problem 15.

16. Find the forces in the ladder problem of Sec. 3.9 by utilizing the fact that the
three forces must pass through a common point.

17. A ladder weighing 100 1b rests against a smooth wall, making an angle of 75°
with the ground. A man of weight 180 1b stands two-thirds of the way up the ladder,
which has a length of 20 ft. Find the forces exerted by the wall and the ground upon
the ladder. Does the length of the ladder matter?

18. Calculate the tension in the cable and the horizontal and vertical forces on the
hinge of the derrick in Fig. 3.3¢. (NoTE: Consider forces on the boom.)

19. By considering the equilibrium of the
'} point A4 in Fig. 3.34 determine the thrust of the
boom on point A.

20. A telephone pole of height 30 ft at the end
of a line supports eight wires, each having a ten-
sion of 30 lb. At the pole these wires are
inclined at 4° with the horizontal. On the oppo-
site side a guy wire is attached to the top of the
pole and fastened to the ground at a point 20 ft
from its base. Assuming the pole to be under no
horizontal tension, find the tension in the guy.

/ 21. An automobile of 130 in. wheel base reg-
Fic. 3.34. Problem 18. isters a weight of 1,800 1b under the front wheels,
a weight of 1,500 lb under the rear wheels.

Find the distance of its center of gravity from the front axle.

22. A meter stick weighing 200 gm supports four weights—1 kg at 10 cm, 3 kg at
30cm, 5 kg at 60 cm, 2 kg at 90 cm.  Where must it be supported in order to balance?

*23. A balance has a sensitivity of 0.05 per mg. Through what angle will it deflect
under a load of 10 mg?

*24. An object weighs 0.346 gm on the left and 0.351 gm on the right pan of a sensi-
tive balance. What is its true weight computed as the geometric mean? As the
arithmetic mean? What is the ratio of the lengths of the balance arms?

*26. Using the (binomial) theorem that

I4+n%=01042z/2forz<k1

prove that the geometric mean of two nearly equal quantities equals their arithmetic
mean.

*26. A balance has a beam of length 40 ¢m and a weight 50 gm. It is desired to
attach to it a uniform pointer of length 30 em. The balance is to produce a deflection
of 5° per mg or better. How much may the pointer weigh?

27. A man and a boy are carrying a 200-lb weight on a uniform 10-ft rod weighing
20 Ib, each holding one end of the rod. Where must the load be placed if the man is
to carry twice the load of the hoy?

3000 Ibs
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*28. Select three simple machines from the human anatomy, and consider their
mechanical advantages.

29. A smooth circular cylinder rests, its axis horizontal, between two smooth planes
that make angles of 70° and 20° respectively, with the horizontal. Calculate the
force exerted by each plane.

30. A smooth rectangular board of width 1 ft rests between two smooth walls as
indicated in Fig. 3.35, the walls being perpendicular to the plane of the paper. Find
the inclination of the board in equilibrium. If the board weighs 100 1b, find the
forces exerted on the board by the walls.

1t

30° 50

Fi1c. 3.35. Problem 30.

31. Pulleys are arranged as in Fig.3.36. (a) Assuming the pulleysto be weightless,
find the unknown weight w and the tension in all ropes.  (b) Obtain the answers when
each of the small pulleys weighs 20 Ib, the large one 40 1b.

& Lol % < Lll

V7 < T
Fi1g. 3.36. Problem 31.

*32. A jackscrew with 4 threads to the inch is turned by a lever 1 ft long, to which a
force of 100 lb is applied at right angles. What weight can it raise? (Neglect
friction.)

*33. How much force must be exerted on a 20° wedge if it is to separate two surfaces
held together by a force of 500 1b?

*34. A nut that requires a breaking force of 9 Ib is placed 1 in. from the fulerum of a
9-in. nutcracker. What force must be applied to its ends to crack the nut?

36. Two children weighing 120 Ib and 90 Ib wish to seesaw with a man who weighs
170 1h. The seesaw has its fulerum at the center, and its beam is 15 ft long. If the
man sits 1 ft from one end, find a way of disposing the weight of the children correctly.



CHAPTER 4
ELASTICITY

4.1. Hooke’s Law. In the preceding discussion we often encoun-
tered forces that were called tensions and compressions. Our interest,
however, has been confined to the effect of these forces on other bodies,
not on the body that is itself carrying the tension or compression. The
present chapter deals with the changes caused by these forces in a body
sustaining them. First, however, we must form a clear idea of their
nature.

The wire in Fig. 4.1 is said to be under tension T,
equal to the weight W. This means, first of all, that
an external force, viz., W, acts on the wire at B. It
T also means that the wire pulls with a force W on the
ceiling at A. But as far as the wire itself is concerned,
there is a force W across every cross section of it; if a
cut be imagined at the point C or at any other point,
the lower part of the wire would pull on the upper, and

B the upper part on the lower, with a force equal to W.
% If a weight W rests on a vertical bar, the bar is said
w . . )
to be under compression, of magnitude W. Analysis
Fic.4.1. Tension. Of this situation yields the same results as the tension
above, except that all pulls have become pushes.

The effect of a tension or a compression on a body is of course a change
in its physical dimensions, and it is our aim to see what correlation there
is between the force and the change in dimensions. Bodies which
undergo a fairly regular deformation under the application of a tension
or compression and which in addition return to their undeformed state
when the force is removed are said to be elastic. But the term elastic is
not one of high scientific precision and is not much used in quantitative
work. It tends to be replaced by terms like “resilience,” ‘‘tensile
strength,”’” and ‘stiffness,” which convey much clearer physical ideas.

The connection between a tension and the longitudinal deformation
that accompanies it was first formulated by Robert Hooke (1635-1703), a
contemporary and antagonist of Newton. For fear of having his dis-

covery ‘“‘stolen”’ by unscrupulous scientists, he published it at the end of
one of his lectures in the form of an anagram,

LA A,
A

ce 11l nosss tt uv
50
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Later he divulged the proper order of the letters to be
““ut tensio sic vis”’

(as the extension, so is the force). In more modern terms we state
Hooke’s law as follows: Elongation is proportional to tension. In this form
the law refers to longitudinal deformations; it implies that a weight of
3 1b will stretch a wire three times as much as a weight of 1 Ib, a fact
that can easily be verified by experiment. Hooke’s law is also applicable
to compressions and indeed to other less familiar kinds of forces to be
discussed presently. It is valid for all so-called ‘“elastic” bodies if the
deformation is small, but the range of validity differs for different sub-
stances (cf. Sec. 4.5).

A steel spring is an object that obeys Hooke’s law particularly well, and

even for large elongations. Since .

it is often used as a sort of model of % S

an elastic body, a special terminol- 2

ogy is employed in connection with Az,

it. FiG. 4.2. Hooke's law.
Thespring S (Fig. 4.2) is assumed

to lie on a smooth horizontal surface and to be fastened to a rigid body

at the left. The equilibrium position of its right end is 4. Under a

force F' this end moves a distance x to the right. In accordance with

Hooke’s law, x « F, and this may be written .

F = kx (4.1)

The constant & in this equation is called the stiffness constant of the spring;
it represents force per unit extension.

When the deformation is not a mere elongation, it has to be considered
more carefully, which we now proceed to do.

4.2. Strain and Stress. In everyday speech, strain and stress are
often used interchangeably; in physics a strain is a measure of deformation;
a stress measures the effectiveness of a force in producing deformation.

An extended body can be deformed in many ways; a ball can be
squeezed into almost any imaginable shape. But even in the most
complicated sort of deformation, each small portion (of infinitesimal
volume) of the body undergoes only two basic kinds of change: it may
alter (1) its volume, (2) its shape, or both. Let us study these two
elementary kinds of deformation in mare detail.

1. For simplicity we consider a small cube. If all faces of it are sub-
jected to equal forces acting perpendicularly upon the faces, as would
be the case if the cube were submerged in a liquid, it will undergo a volume
change only, as indicated in Fig. 4.3. If the original volume was V and
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the final volume is ¥V — AV, the change in volume AV is, of course, a
measure of the deformation. But it is advantageous to use the ratio
AV /V for this purpose. We therefore define as the strain for this type of
deformation, called the ‘‘volume strain,” the dimensionless quantity

Volume strain = av
7
2. Next let the cube be deformed in such a way that its volume will
remain unaltered but its shape will change.
Clearly, this cannot be done by applying
equal forces perpendicularly to two of its
faces; it requires the action of a couple. The
simplest case is depicted in Fig. 4.4, where
two opposite sides are subjected to equal
and opposite tangential forces. The cube is
there drawn in section. A deformation of
this type is called a shear, and it is measured
by tan 6,  being the angle of the shear. If
6 is small, as will always be supposed, tan 6 is very nearly equal to 6,
and the shear, or shearing strain, is simply 6, measured in radians.
3. Shears and volume strains may be combined in many ways to give
a more complicated form of strain. Among these there is one that,
because of its frequent occurrence, may be singled out for special con-
sideration. It is called a stretch, or longitudinal strain, and occurs as the
result of a simple tension. When a weight is hung from a wire, the wire

Fi1c. 4.3. Volume strain.

changes its shape (though it still remains a F

cylinder) as well as its volume (cf. Sec. 4.8). — — i

Figure 4.5 shows what happens. We define // //

longitudinal strain as Al/l, presupposing / /

always, and in contrast with the figure, that ; /]

[>> Al that is, the stretch is small. / /
Having carefully explained the meaning of L/E ,/3- 7

e

three types of strain, we now turn our atten-
tion to the corresponding stresses. Stress s
always defined as force per unit area; it is therefore not simply a force.
The following definitions are used by physicists and engineers.

In case (1), Fig. 4.3, the volume stress is taken to be | /A, where A 1s
the area of one face of the cube and we have added the symbol L as a
subscript to F in order to remind the reader that F is perpendicular to the
face A. In case (2), Fig. 4.4, the shearing stress is taken to be F'./A; 4 is
again the area of one face, and | is to indicate that F is parallel to the
face whose area is A. Finally, in case (3), Fig. 4.5, the longitudinal stress

Fi1c. 4.4. Shear.
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is defined as F/A, where now F is the total weight W applied to the wire
and A is the cross section of the wire. In these definitions it is assumed
that the forces F' are distributed uniformly over the corresponding surfaces
A, a condition that is usually met in practice.

A volume stress F'; /A is also called a pressure. It is this kind of stress
that is exerted by fluids upon surfaces immersed in them.

As to units, we note that all strains are ratios, or pure numbers; all

. 1Ib tons gm
stresses are clearly measured in :— or ~_— s or—
in. in. cm

Ordinarily we think of a stress as a condition inside a body that has
been deformed. Our definitions seem to depart from this idea, since
they involve external forces producing deformations. The fact is, how-
ever, that the deformed body opposes the external forces with equal
internal forces, so that the definition of stress here o 5
given may equally well be said to describe the internal [

stress condition of the body. :

4.3. Elastic Moduli. In a somewhat generalized |
and more refined form, Hooke’s law states that, for { {
all types of small deformations, stress is proportional l :
to stratn. The ratio of stress to strain is therefore |

a constant for any given elastic object; furthermore, ‘Il:_:rT
if the definitions of the preceding section are used, this | |
constant is, within wide limits, independent of the : : Al
size and shape of the object and dependent only on .- i
the characteristics of the substance of which it con- 5
sists. This quotient, stress/strain, is called a modulus. / W
Moduli have been given special names, Z
Fic. 4.5. Tongi-
F,/A _ F.V tudinal strain or

(1) Bulk modulus = M = (4.2)

AV/V — AAV stretch cquals Al/L.
It indicates the force needed to compress the substance in question. Its
reciprocal, 1/M, is called the compressibility.

(2) Shear modulus = = gé‘i = —f—; (4.3)
o - _F/A FI
(3) Young’s modulus = Y = AL = AAl (4.4)

Every modulus has the units of force/area, strain being a pure number.
Table 4.1 gives some representative values of all three moduli for a num-
ber of substances. They are only approximate, for they vary greatly
with composition in the case of alloys, and with temperature in general.
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For fluids, i.e., liquids and gases, it is more customary to list the
compressibility (that is, 1/M), expressed as ‘““relative volume contraction
per atmosphere,” the atmosphere being a unit of stress, or pressure, equal
to about 14.7 1b/in.? (cf. Chap. 13). But we have listed M for compar-
ison. Note, first of all, that the shear modulus as well as Young’s
modulus is zero for all liquids and gases. This is fairly obvious, for a
fluid cannot sustain a shear; it takes practically no force whatever to
deform a cube of fluid as in Fig. 4.4.

Furthermore, liquids are seen to have smaller bulk moduli, hence
greater compressibilities, than solids, and the bulk modulus of gases is
about a million times smaller than that of solids.

The question is sometimes asked whether a stress is the cause of a
strain, or vice versa. A moment’s reflection will convince the reader
that, when a stress is produced in an elastic body, the strain will invari-
ably follow. But it is also true that when a strain is produced, a stress
will be set up at once. It is useless to look upon one as the cause and the
other as the effect; stress and strain always accompany each other; they
form an inseparable pair and should be recognized as such.

Table 4.1. Elastic Modulz
In lb/in.2

Bulk Shear Young’s
modulus M modulus N modulus Y
Aluminum. ... ... . ... ... ... .... 10 X 108 3.6 X 108 10 X 108
Brass......... ... ... .. ... .. .. ... 9 X 108 5.4 X 10¢ 13 X 108
Copper. . .. oo 18 X 108 6 X 108 14 X 10¢
Gold. . ... ... .. ... .. ... ... 23 X 108 4.4 X 108 12 X 108
Iron: .
Drawn. ... .. ... ... ... ... ... 22 X 108 12 X 108 29 X 108
Cast..... ... ... ... . ... .. ... 13 X 108 7.5 X 108 17 X 10¢
Steel... ... . ... ... 28 X 108 11 X 108 30 X 108
Tin. ... . 7 X 108 3 X 108 7 X 108
Lead... ... .. ... ... .. .. 1.2 X 10¢ 1 X 10¢ 2.5 X 108
Benzene. .. .. ... L. 1.5 X 10° 0 0
Carbon tetrachloride. .. ............ . 1.5 X 10° 0 0
Water.................. ... .. ... 3 X 10° 0 0
Mercury. ..., 4 X 10¢ 0 0
Alr (at atmospheric pressure). ... ... .. 14.7 0 0

*4.4. Worked Examples. The theory of the preceding paragraph permits
numerous applications.
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a. How much bigger is a brass ball of volume 1 liter (1,000 ¢cm?) in a vacuum
than in air? The air exerts a stress (or pressure) of about 15 1b/in.?2 Let us call
the change in volume AV. Equation (4.2) then tells us that

AV Fi/A 15 1b/in.?

7 = "M — §x10°Ib/nz — 167 X107

where the value of M is taken from Table 4.1. The actual change in volume AV
is therefore 0.00167 cm3, or 1.67 mm3, a small though not insignificant amount.
In a similar way, the student may show that a liter of benzene would expand
60 times as much.
b. A force of 1 ton is applied parallel to the upper surface, of area 2 ft2, of a
steel block 34 ft high. What lateral displacement will ensue? From Eq. (4.3),
_ Fy/A 2,000 1b/288 in.?

9 N = 11X 10° Ib/in.? = 6.31 X 1077 radian

If the lower surface of the block is stationary, the upper moves through
6.31 X 10-7 X 6 in. = 0.0000038 in.

.¢. How much weight is needed to elongate a 50-mil copper wire of length 6 ft
by 15 in.? From Eq. (4.4),

F = Y%«lA = 14 X 10° lb/in.? X 14 in./72 in. X x(0.025)%n.2 = 191 b
provided that we remember that a mil = 0.001 in. (diameter).

Finally we calculate the stiffness constant of a helical spring that, under a
weight of 3 Ib, is elongated 6 in. Clearly, from Eq. (4.1), k = 14 Ib/in. Note
that the units of k are different from those for the moduli.

4.6. Elastic Limit, Tensile Strength. It has been emphasized through-
out this chapter that Hooke’s law holds for small strains only. If the
stress is increased indefinitely, an ordi-
nary solid shows a behavior represented )

vy
by the stress-strain diagram of Fig. 4.6. é A
Up to strains corresponding to the point ©
A the graph is linear, indicating validity 0 Stam

of Hooke’s law. Beyond that point
curvature sets in, the modulus is no
longer constant, and the material stretches more than it does in the
initial stage. If the strain is carried to a point past A and the stress is
then released, the material will not return to its original undeformed
state; it has acquired a permanent strain, or set. 'The process has not been
reversible. On the other hand, if the stress is further increased, the
specimen will break at some strain B. Strain A is called the ‘‘elastic
limit,” strain B the ‘“breaking point”’ of the material under test. For an
ordinary metal under tensile stress, A corresponds to about 0.0005, B to

Fi1G. 4.6. Stress-strain diagram.
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0.3. The inelastic range A B is seen to be very much larger on the strain
axis than the elastic range OA. By tensile strength is usually meant the
stress at the point B.

It is interesting to consider the physical mechanism that is responsible
for the behavior exhibited in Fig. 4.6. Every solid consists of molecules,
and these are regularly spaced, each occupying a point in definite relation
to the others. For small strains the distances between all molecules are
slightly altered, but forces between them draw them back into their
original positions. Beyond the point A, large displacements occur among
the molecules, and some of them, indeed, exchange places. Release of
tension is then no longer able to restore the original condition, certain
regions of the substance having been permanently deformed. At the

b/
1000+ in?
40,0001
Ib
412 30,0001
5007 20:0001
10,0007
0 4 + + 0 + S S—
0 200 400 600 0 0.1 0.2
Fic. 4.7. Stress-strain diagram for Fie. 4.8. Stress-strain diagram
natural rubber. for iron wire,

point B, enough molecules have been severed from their neighbors so
that the bonds between the remaining ones do not suffice to hold the
substance together.

*4.6. Rubberlike Elasticity. Substances called rubbers exhibit properties
that differ markedly from those so far described. Figures 4.7 and 4.8 show stress-
strain diagrams for natural rubber and for an iron wire under tensile stress. First
the reader should observe the vast differences in scale, indicating, of course, that
rubber stretches very easily. But it is also clear that Hooke’s law does not
describe the strain of rubber in a significant way. Different rubbers such as
neoprene and butyl have widely different stress-strain diagrams.

Another phenomenon, called hysteresis (Greek hysterein, to remain behind), is
observed as a rule for rubberlike substances. The extension curve and the
retraction curve do not always coincide. A typical example is shown in Fig. 4.9.
It is due to the generation of heat in extension, which causes retraction to take
place at a different temperature.

The physical processes which account for rubberlike behavior are quite differ-
ent from those to which attention has been drawn in connection with ordinary
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solids. The molecules of rubber are long, flexible threads, which can be bent and
twisted into any shape. In the normal state of a rubber sample the average
length of the threads corresponds to their most probable degree of coiling. On
stretching the threads uncoil into longer and less probable shapes, only to return
to their most probable condition when the
stress is released.

*4.7. Stresses in Beams and Rods.
When a beam bends under the application
of a load, a complicated system of longi-
tudinal stresses is set up. If the beam is
considered as consisting of a large number
of horizontal strips, some of these are
lengthened while others are shortened.
It is clear, therefore, that the bending of
beams is controlled by Young’s modulus.
The detailed theory will not be given in
this book, but a typical formula, useful
in engineering, will be given without proof. If a beam of rectangular cross sec-
tion, of length [, breadth b, and depth d, is subjected to a weight W at its middle
while supported at its ends, the amount of sagging at the middle is

Stress

Strain
Fic. 4.9. Hysteresis.

o Wl3

S = o1 (4.5)
4Ybd?
SRR
\ This assumes the beam itself to be weightless. * Under its
own weight W it sags an amount
N
\ sw
N — )
! \ S = 32Vbd (4.6)

When the ends of a rod or wire of circular cross section
\ are subjected to torque, as is the case, for example, with the
drive shaft of an engine, it suffers a deformation called a
Y “twist” or a forsion. A strain of this type is completely
reducible to a shear, as Fig. 4.10 will illustrate. The rod
Fra. 4.10. Tor- Mmay be regarded as composed of cylindrical shells, one of
sion. which is shaded in the figure (where one quadrant is cut

away to permit the strain to be exhibited). If each of these
shells were flattened out, it would form a slab of rhombic shape, indicating a
shear, and the angle of shear is the same for all slabs. The following formula
may be derived for the torque L that, when applied to one end of the rod (the
other being held firmly), will produce a shear 8:

T \Nrd

IJ = 2l

0 4.7)

Here r is the radius of the rod and [ its length; the angle 8 must, of course, be
measured in radians.
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To give an example, a 100-mil copper wire of length 2 ft has a torque of 1 1k in.
applied at one end, the other end being clamped fast. According to Eq. (4.7),

(0.05 in.)*

11bin. = 3.14 X 6 X 108 lb/ln.2 Tm

Notice that the units cancel on the two sides of the equation, and the shear or
twist # becomes 0.406 radian = 23.3°.

*4 8. Poisson’s Ratio. We return briefly to the longitudinal strain, or stretch,
depicted in Fig. 4.5, which is controlled by Young’s modulus. The longitudinal
strain was seen to be Al/l. There exists, however, in addition to the longitudinal
strain a lateral strain responsible for the decrease in cross section of the rod or
wire, and of magnitude Ar/r. The ratio of lateral to longitudinal strain, vez.,

p = LAX—;//{ (4.8)
is called Poisson’s ratio, in honor of the physicist and mathematician S. D. Poisson
(1781-1840), who introduced it. This is not an idle definition, for it happens that
p is nearly independent of the magnitude of the strain and interestingly related
to other elastic constants.

The ratio p is, in fact, related to ¥ and M. It may be shown that

_3M Y

P="6il (4.9)

We are now in a position to answer the question as to whether the volume of a
wire changes as a result of a stretch. Referring again to Fig. 4.5, the unstretched
volume is wr%; the stretched volume 7 (r — Ar)2(l + Al). Calling the former V,
the latter V + AV, we find
Eﬂ_[ Ar (AT)Z]( A_l)
vV =[1-2 r + 1+ l

-
which may be approximated by 1 + (Al/l) — 2 Ar/r if Ar/r and Al/l are both

much smaller than 1 (ef. Sec. 1.7), which is assumed. Hence AV is positive when
Al/l > 2 Ar/r, negative when Al/l < 2 Ar/r. In other words,

V inereases if p < 13
V decreases if p > 14

But according to Eq. (4.9) p must always be smaller than 14 since Y is a positive
quantity. We may conclude, therefore, that stretch always increases the volume
of an object.

PROBLEMS

1. An iron wire 6 ft long and 30 mils in diameter carried a load of 51b. A micro-
scope with a scale was then focused upon the lower end of the wire, and its positions
were read under additional loads, as follows:
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Additional Load Position

0 0

11lb 6.0 X 1073 1n.
21b 12.1 X 1073 in.
41b 23.9 X 1073 in.
6 1b 36.1 X 103 1in.
91b 75.8 X 1073 in.
12 1b 137.8 X 1073 1in.
13 Ib 172.7 X 1073 in,

Plot a stress-strain diagram. Calculate Young’s modulus.

2. A steel cable of diameter 1 in. supports a load of 10 tons. Calculate stress and
strain in the cable. If its length is 100 ft, what is its elongation?

3. A 6-ft steel column of 5 in. diamecter carries’a weight of 20 tons. Compute
stress, strain, and shortening.

4. The stress at the elastic limit of a 50-mil aluminum wire is 8 tons/in.2 If its
length is 10 ft, what maximum elongation can it stand without suffering a permanent
set?  What weight will produce this maximum elongation?

6. Calculate the elongations of the two
wires in Fig. 4.11.

6. A copper wire and a steel wire, both
having a cross section of 0.2 in.2, and of
lengths 2 ft and 3 ft, respectively, are fas-

V7,
7
Z
Z 4in.
Z ﬁ/ 7 %
Z
30 mil 7
3t Steel /
7,
Z
2 Ibs %
/ 2 in.
60 mil,
2ft Copper A
7
Fic. 4.11. Problem 5. Fi1c. 4.12. Problem 9.

tened end to end, and then subjected to a tension of 200 1h.  Caleulate the elongation
of each wire.

7. The ratio of the diameters of two wires of the same material is . How much
more will the smaller one be stretched under a given load?

8. Compute the stiffness of a spring that stretehes 9 in. under a load of 11h.  How
much will it stretch under 50 gm? ’

9. A block of steel, rigidly fastened to a wall (see Tig. 4.12), has a strip brazed to
its outer face, as shown. How much weight must be suspended from the strip to pull
down the outer face of the block by 1 mm?

10. A force of 1 oz will displace the upper surface of a cube of jelly (side length 4 in.:
by 14 in. Calculate the shear modulus for jelly.
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*11. Shear moduli are usually determined by an arrangement like that shown in
Fig. 4.13, " and 8 being measured, and N then computed from Eq. (4.7). The rod
has a twistable length ! and a radius . In an experiment the following values were
found: ! = 3in.,,» = X4 in, R = 10in,, " = 10,300 1b, 6 = 10°. Compute N.

Fi1c. 4.13. Problem 11.

*12. How much weight is needed to twist the rod in Fig. 4.13 through 30°, if its
N =6 X 10¢1b/in.2?

*13. The steel drive shaft of an automobile is 5 ft long and has a diameter of 2 in.
It issubject to a torque of 250 1b in.  What is the angular displacement of one end with
respect to the other?

14. The pressure (I per square inch) at the bottom of a lake is 150 Ib/in.2  Calcu-
late the change in volume of a lead object normally occupying 1 gal when taken to the
bottom of the lake. (One gallon = 231 in.3)

*16. Calculate the depression at the center of a steel beam of cross section 2 by 5 in.,
10 ft long, and supported at its ends, when ecarrying a load of 1,000 1b at its center.
(Neglect the weight of the beam.) (a) Take the depth of the beam to be 2 in. (b)
Take the depth of the beam to be 5 in.

*16. Calculate the sag of the beam in Prob. 15 under its own weight, taking its den-
sity to be 0.28 1h/in.3

*17. Two beams of the same cross scction, one having b = 2 in., d = 4 in. and the
other with b = d, arc loaded at the center. Compute the ratio of two loads that will
produce the same deflection.

18. How may the values of the moduli listed in Table 4.1 be converted to kg /cm?2?

19. Calculate the compressibility of aluminum, steel, water, and air in “relative
volume change per atmosphere.”

*20. Using Fq. (4.9), caleulate Poisson’s ratio for brass, gold, steel, and water. Show
that the result for water means no volume change.



CHAPTER 5
DESCRIPTION OF MOTIONS; KINEMATICS

6.1. Introduction. To describe the motion of a body is to specify its
successive positions in time. For an extended body this is not an easy
thing to do, since attention must be paid to its orientation with respect
to other objects as well as to momentary position of, let us say, its center
of gravity. The matter becomes simpler when we consider small bodies,
so-called “mass points,” for which rotatory motion can be left out of
account. In the present chapter consideration will therefore be limited
to mass points.

The study of motions without reference to the forces that are respon-
sible for these motions is called kinematics (Greek kinein, to move, as in
‘““cinema’). Its purpose may be illustrated simply by means of an
example. A stone is observed to fall freely. We know all about its
motion if we can say where it is at any instant. This information,
obtained by observation, may be collected in the form of Table 5.1, in
which the first line lists successive instants after the motion has begun,
the second the corresponding distances of the stone above ground.

Table 5.1
{ 0 1 sec 2 see 3 sce ' 4 sce 5 sec
¥ 400 ft 384 ft 336 ft 0 ft

256 ft y 144 ft

Table 5.1 may be said to represent the kinematics of a falling stone.
But it is inconvenient to make a table of this sort for each kind of
motion. The physicist therefore avails himself of more elegant methods
provided by the mathematician. Two such methods can be used. The
first is to make a graph, on which the distance from the ground y is plotted
as ordinate against the time ¢ as abscissa. The result is shown in Fig.
5.1. The other method is to find a mathematical function of ¢ that will
represent the distances in Table 5.1. How this can be done will be
explained; for the present we shall merely state that the formula

y = 400 — 16¢° (5.1)

reproduces all the numbers in Table 5.1, as the student will verify.
Table 5.1, Fig. 5.1, and Eq. (5.1) are three equivalent ways of express-

ing the kinematical behavior of the stone. Of these, Eq. (5.1) is by far

the most convenient. Usually, therefore, our desire will be to find the

displacement as a mathematical function of ¢ for any given kind of motion.
61
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But the situation is not always so simple as that here discussed. If,
instead of falling freely, the stone were thrown and hence traveled in a
curved path, the entries in Table 5.1 would not suffice; for it then becomes
necessary to specify the horizontal position (z coordinate) and the vertical
position (y coordinate) for every instant {. The table then contains
three rows, one for ¢, one for z, and one for y. The graphical representa-
tion will contain fwo curves, one in which z is plotted against ¢ and one in
which y is plotted against {. Finally we shall need two formulas like
Eq. (5.1), one for z and one for y. For the present, however, we return
y(;t) to the simple case of rectilinear
4001 motion.

3001 6.2. Velocity and Acceleration:
Differentiation. Ordinarily, veloc-
ity is distance traveled per unit of
100+ time. It is measured in ft/sec, or

0 ) ) ) ‘ miles/hr, or cm/sec, or km/min.

0 .1 2 3 4 ( getc ) ’ll‘his 'rathfer uns'ophisticated defini-
Fia. 5.1. Plot of the positions of a tion s ql.nte satistactory as .lon.g as
falling stone. the velocity does not change in time,

t.e., if the motion is uniform. For
the motion described in Table 5.1 and for most other kinds of motion,
this is not the case. We may then speak of the average velocity of the
stone and compute it as the total distance traveled divided by the total
time of travel. Using a bar over the symbol v to indicate average
velocity, we thus obtain

b = 400 ft/5 sec = 80 ft/sec

2001

But now it becomes clear that the average velocity, when computed for
the whole 5 sec, is not the same as that for any of the partial intervals,
for it is easily seen that the average velocity during the first second is
16 ft/sec, for the second 48 ft/sec, and so forth. In general, if ¢; and ¢,
are any two instants, so that t, — ¢, is the time interval between them, and
if y1 and y. are the positions occupied by the stone at ¢; and ¢;, respec-
tively, the average speed during this interval is

o1 = (y2 — y1)/(b2 — 1) (5.2)
This formula can also be written the other way around:
Y2 = Y1 = Dalle — 1),

or, if we write s for the distance traveled, ¢ for the time interval, and omit
the subscripts on v,
s = bt (5.3)
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To talk about average velocities is clearly not good enough in most
problems of motion. It is necessary to make matters more precise by
introducing the concept of instantaneous velocity. This is the average
velocity for a very small interval of time. Let us see what happens to Eq.
(5.2) when the difference t, — ¢, is made very small. It might at first
seem as though 7,; would then become very large; but this is erroneous, for
y2 — y1 will also become very small, and the quotient remains, in fact,
finite. Using the mathematical notation of a limit, we define the instan-
taneous speed v by the formula

» = lim y—2 — W (5.4)

12—ty ta — Iy
to be read: v is the limit, as {; approaches ¢1, of the quotient

(Y2 — y1) /(b2 — t1).

Another way of stating this definition is to write Ay for y. — y; and At for
l2 — 1, so that
. Ay
¢t = lim —=
At—0 At
The student will remember from his calculus course that the right-hand

side of this equation is the derivative of y with respect to ¢,
v = dy/dt

This result shows the peculiar advantage gained by representing y as a
function of ¢, as in Eq. (5.1). To obtain the instantaneous velocity, one
simply differentiates y with respect to . Hence, from Eq. (5.1),

v = —16 X 2t = —32¢ (5.5)

It will also be recalled that a derivative is a rate of change; hence
velocity can be defined equally well as the time rate of change of distance,
or the time rate of displacement. The negative signs in the last equation
mean that y diminishes as time goes on.

The derivative of a function is known to be the slope of its graph.
Hence the instantaneous velocity is the slope of the curve in Fig. 5.1.
Uniform motion is represented by a function of constant slope:
y = const X t, and the constant, being the derivative, is the velocity.

The unit of instantaneous velocity is, of course, no different from that
of average velocity. To say that the speed of a bullet is 50 miles/min
implies that, ¢f the bullet were to travel for 1 min at this velocity, it
would go 50 miles.



64 PHYSICS [Sec. 5.3

The result of Eq. (5.5) shows that the velocity, too, is a function of the
time. Whenever this is true the motion is said to be accelerated or non-
uniform. The term ‘“acceleration” will here be used to denote increase
as well as decrease of velocity, although the latter is often called ‘‘decel-
eration.” Instantaneous acceleration is the tZme rate of change of velocity,

g = _dy (5.6)
dt de?

Hence it is the second derivative of the position (or displacement) with
respect to time. In the case of Eq. (5.5), @ = —32 units; the negative
sign indicates that the speed increases in the negative direction of y.

Since acceleration is change in velocity per unit of time, its unit must
be a velocity unit divided by a time unit, such as the (foot per second) per
second (abbreviated ft/sec®) or the (centimeter per second) per second
(em/sec?). Physically, we think of motion having an acceleration of a
ft/sec? as motion in which the velocity increases by a ft/sec during each
second.

In the motion of our example the acceleration turned out to be con-
stant in time. This will not be the case in general. When it is true, as
in free fall, the motion is said to be uniformly accelerated, or simply to
have constant acceleration.

5.3. Integration. In the preceding section we have shown how velocity
and acceleration may be found when the displacement is given as a function
of the time, either in the form of a graph or in the form of a function.
More important is the problem of finding velocity and displacement when
the acceleration is given. This is because we often know the force acting
on a particle, and by Newton’s second law, discussed in Chap. 2, the
force determines the acceleration. Let us consider, therefore, how we
can pass from a knowledge of a to that of v and y.

The simplest case is that in which a = 0. For then v = const and the
displacement is v¢.  If v is not constant, another procedure must be used.
Assume that an automobile starts from rest. An observer records
speedometer readings at equal intervals—Ilet us say every 10 sec—and
it is desired to know the distance traveled after a certain period of time.
First a table listing the displacements x for the various instants ¢ is
prepared. From the table a graph, like Fig. 5.2, is made. On this graph
the ordinates drawn at 20 sec and at 30 sec, for example, are the velocities
at these instants. The area of the shaded rectangle, being the product
of the mean ordinate between these instants and the time interval, repre-
sents approximately the distance traversed during the 10 sec under
consideration. If similar rectangles are drawn for all intervals, the sum
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of their areas is approximately the total distance covered. An uncer-
tainty arises only because the mean ordinate is not well defined.

This uncertainty is eliminated if we subdivide the abscissas more and
more finely, using a very large number of intervals and hence very narrow
rectangles. But in that case the sum of the area of all the rectangles
becomes identical with the area under the curve. Hence we conclude:
The area under the velocity curve between the instants t; and i, is thedistance
traveled between t, and t,. The student will recall from the calculus that
this area is the integral

Mi/hr

/ N v dt 30

' 25}

This, then, is the answer to our 20l

problem: To obtain the distance v |
when v is given, we integrate with

respect to the time. Thus 101

x = [vdt (5.7) 0

0 10 20 30 40 50 60sec
To make this integral definite we Fia. 5.2. t
must insert the limits ¢, and ¢, and z
will be the distance traveled between ¢; and {;. More properly it is the
difference between the displacement x» at the time ¢, and z, at ¢;.

As z is related to v, so is v related to a. For a was defined as dv/dt;
hence by inversion

Speed curve.

v = fadt (5.8)

This result, however, is not quite so simple as it looks, and care must be
taken in its interpretation. If the limits of the integral are again ¢; and
ts, v is the increase in velocity between these instants, just as x in Eq. (5.7)
was the increase in displacement that took place between ¢, and (..
Hence it is better to replace Eqs. (5.7) and (5.8) by the following more
explicit formulas: '

t:

Ty — X1 = [l v dl

t2
Ve — U1 = /;1 adi

(5.9

Returning briefly to Fig. 5.2, we note that the slope of the curve at
every instant is the acceleration. If a is plotted against ¢, the area under
the curve will be the velocity.
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*5.4. Worked Examples. a. The velocity of a train at various times is given
in the following table:

Time............ 2:00 | 2:01 | 2:02 | 2:03 | 2:04 | 2:05 | 2:06 | 2:07 | 2:08
Velocity, ft/sec...| O 8 16 24 30 34 37 38 38

It is desired to find the acceleration of the train and the distance it has traveled
at any time.

On looking at the entries, several facts are at once apparent. During the first
3 min the train gains equal increments of velocity and therefore has constant
acceleration, its value being 8 ft sec~! min—!, which equals 480 ft/min? or 8§,
ft/sect. After 3 min the acceleration becomes smaller, and after 7 minutes it
has become zero. During the eighth minute the motion is uniform.

40

30
ft

sec. 20

10

L

0O 1 2 3 4 5 6 7 8 min.

F1G. 5.3. Speed curve,

To get the distance covered we could proceed as follows: The mean velocity
during the first minute is 4 ft/sec; hence the distance traveled in that minute is
4 ft/sec X 1 min = 240 ft. The mean velocity in the second minute is 12 ft/sec,
and the distance covered is 720 ft. By adding up all these partial distances we
obtain the total at any instant.

It is advantageous, however, to do this by means of a graph. The data of the
table are plotted in Fig. 5.3. Up to the third minute the plot is straight, indicat-
ing that the slope, which is the derivative and hence the acceleration, is constant.
The last part of the curve is straight and horizontal and therefore characteristic
of uniform motion.

The distance is the area under the curve. Up to the end of the third minute
we may compute it by using the formula for the area of a triangle; it is

14 X 24 ft/sec X 3 min = 36 ft min/sec = 36 X 60 ft.

To find the distance at a later time—where the curve is no longer straight—one
would have to measure the area with a planimeter.

b. The work is simpler when the velocity is given as a mathematical function
of t. Suppose that v = ¢o 4 cit + ¢2t* where all the ¢’s are known constants.
We then have at once a = dv/dt = ¢; + 2¢o. On the other hand the distance
covered between the instants ¢; and (., which we may call z. — z,, is seen to be
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[ [2)
$2—11=ﬁlzvdt= 4/t1 (Co+01t+c'_)t2)dt

2]
= [ e + 3507 + 25027,
= cola + Y4cite® + L4cata® — coli — Y4cili? — l4cat)®

If we are interested in the distance covered from the beginning, i.e., since ¢ = 0,
we must put ¢, = 0 in the last result.

6.5. Integration (Continued). Students who are not conversant with
definite integrals but who know that integration is the inverse of differ-
entiation may obtain the same results in the following way: If v = dz/dt,
then

x = [vdt (5.7)
Similarly, since a = dv/dt,
v = [adt (5.8)

In order to evaluate these integrals the integrands [v in Eq. (5.7), a in
Eq. (5.8)] must be given as functions of ¢{. As an example, suppose
a = ct", where n is some integer and ¢ a given constant. KEquation (5.7)

then gives
Ct"+1

v=aFitC
C being the constant of integration. If in this equation we put ¢ = 0, it
reads v.—o = C and this allows us to identify C with »,, the speed at
t = 0. Hence
tn+1

n+1
On substituting this into (5.7) we find

+ %o (5.7")

vV =¢

tn+1 Ct"+2

and by putting { = 0 we see that the present C = xy. Hence we find

Ct"+2

- (n+ (n + 2)

6.6. Free Fall. Prior to the time of Galileo Galilei it was believed
that heavy bodies fall faster than light bodies. Galileo demonstrated
—according to some accounts by dropping objects from the leaning
tower of Pisa—that this belief is not substantiated by the facts. It is
true, of course, and agrees with common observation that a feather falls
more slowly than a steel ball, but this is not the case in a vacuum. Air

+ vt + 2o (5.8

T
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resistance causes the difference: in a vacuum, all bodies fall “equally
fast.”

This does not mean, however, that bodies fall with constant velocity.
Galileo’s great discovery showed that they fall with constant acceleration.
By painstaking observations made on inclines, which, as we shall see in
Sec. 6.6, have the effect of reducing the acceleration to measurable values
yet leaving it constant, Galileo determined the acceleration in free fall
to be approximately 32.2 ft/sec?, or 980 cm/sec?. This value is usually
denoted by ¢g. It varies slightly from one location to another for reasons
to be explained later. For present purposes we shall use the approximate
values above.

The laws of free fall are now easily developed. Starting with

a = dv/dt = g, a constant (5.10)
we find at once by integration
vy — U = /;lhgdt = g(t — t1) (5.11)
If the body starts from rest, v; = 0 at the time ¢, = 0, and we have

Vg = (/tg
which can be written
v =gt (5.12)

since v, is the velocity at f, and there is no longer any need for retaining
the subscript.

We can also integrate the equation dv/dt = g by writing the indefinite
integral

v = gt + const (5.13)

provided that we do not forget the constant. The physical meaning
of the constant of integration can always be seen from the context in
which it appears. In the present instance the constant equals » when
t = 0. This gives it away: it must be the initial velocity, for which we
may write v; as above or, if we please, vo. Upon using the latter choice,
Eq. (5.13) takes the form

v = Vyp + gt (514)

The distance covered is found by one further integration as seen from
Eq. (5.7). Hence

y = [(vo + gt)dt = vet + L5gt*> + const
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or

¥ = yo + vol + 14g¢2 (5.15)

Observe also that Eqgs. (5.14) and (5.15) could have been obhtained
from Egs. (5.7") and (5.8’) provided that weputx = y,¢ = ¢g,and n = 1.

Equations (5.14) and (5.15) permit the calculation of velocity and
distance in free fall at any instant. They will not answer the question:
What velocity will a body acquire while it falls through a given distance?
A formula providing the answer is obtained by eliminating the variable ¢
between Eqs. (5.14) and (5.15). From Eq. (5.14),

When this is put into Eq. (5.13), there results

. v — vy) 1 (v —w)? 1
) yo——g +2g 3 =95

A simple way of writing this result is to put ¥ — y,, the distance of fall,
equal to s and to multiply through by 29. Then

02 — 1y = 2¢s (5.16)

This formula holds for any motion with constant acceleration, not only
for free fall, provided that we replace g by the proper value a.
Equations (5.14), (5.15), and
(5.16) contain the entire theory of VA rmrr”r
uniformly accelerated motion, of "’W gt
which free fall is a special case. l
The student would do well to com-
mit them to memory. Equation }v"
(5.14) means that the velocity in-
creases by constant amounts in equal
intervals; Kq. (5.15) expresses the
fact that the area within a triangle
equals half the product of its base by its height (see Fig. 5.4); Iiq. (5.16)
has no such simple interpretation.

>

0 t
Fic. 5.4. Shaded area (distance y-yo) =
rectangle (vot) + triangle (19¢ - gt).

*5.7. Worked Example. A stone is thrown upward with an initial velocity of
64 ft/sec.

a. What is its velocity after 3 sec?

b. How high will it be after 3 sec?

¢. How high will it rise?
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d. How long will it stay in the air?

e. What velocity will it acquire after 10 ft of rise?

To answer any of these questions one must first specify what direction is to be
taken as the positive one. Let us reckon y positive upward, as is customary.
The acceleration g will then be negative, that is, g = —32 ft/sec?. (This approxi-
mate value will here be used for convenience.)

Question a may be answered with the use of Eq. (5.14).

v = 64 ft/sec — 32 ft/sec? X 3 sec = —32 ft/sec

Hence the velocity is downward and has a magnitude of 32 ft/sec.
The answer to b is based on Eq. (5.15). Here yo = 0, and

y = 64 ft/sec X 3 sec — 16 ft/sec* X 9 sec? = 48 ft

When the stone is at its highest point, its velocity is zero. The corresponding
time is observed from Eq. (5.14), which says

0 = 64 ft/sec — 32 ft/sec? X ¢
and hence t = 2 sec

To find the position of the stone at this time we substitute 2 sec for ¢ in Eq. (5.15),
which then gives y = 128 ft — 64 ft = 64 ft as the answer to c.

Question d can be answered by noting that y = 0 when the stone returns to
the ground. Thus, using Eq. (5.15), we have

0 = vat + J4gt2 = 0

This has two solutions, t = 0and t = —2ve/g. The first is trivial, for it gives the
initial time at which the stone was projected. The second is the answer we want;

128 ft/sec

T 32 ft/sec? 4 sec

t =

We have already seen that the time of ascent was 2 sec and have therefore also
verified the obvious fact that the time of descent equals the time of ascent.
The solution of question ¢ requires the use of Eq. (5.16):

> — (64 ft/sec)® = —64 ft/sec? X 10 ft

Hence v* = 3,456 ft?/sec?, and v = 58.8 ft/sec.

*5.8. Motion in a Plane. Velocity and Acceleration as Vectors. Thus far
only rectilinear motion has been considered. The most general kind of motion
is not confined to a straight line; it takes place in three dimensions and requires a
knowledge of z, ¥, and z at every instant. An example is the flight of a long-range
projectile, which describes a curve lying predominantly in a vertical plane but
departs slightly from this plane because of the earth’s rotation. This case, how-
ever, is too difficult to be treated in this book. Since the departure from the
original plane of flight is small and since most other motions of interest are con-
fined to two dimensions, we shall restrict our attention to motion in one plane.
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To this end it is necessary that we recognize at once the vector nature of
velocity and acceleration. In Fig. 5.5 the curve represents the path of a moving
particle. The points marked 1 and 2 are its positions at times ¢, and ¢.. At
every instant, the displacement of the particle from the origin is represented by a
vector drawn from the origin, such as r; or r.. The two rectangular components
of the vector r are z and y, and these are functions of the time,

YA 2

r, -n
n r;

-1

» X
(a) (b)

Fi1c. 5.5. Velocity as a vector.

Average velocity is defined exactly as in Eq. (5.2), except that the vector dis-
placement r must be substituted for the one-dimensional distance y. Thus the
average velocity of the moving particle between positions 1 and 2 is

v I, — I
21 =
e — &

(5.17)

The difference in the numerator is now a vector difference; hence v., is a vector.
This vector difference, as shown in Fig. 5.5b, is the line drawn from the point 1
to the point 2. When its length is divided by t. — {,, it represents the average
velocity we are seeking. To find the average velocity on a curved path this
graphical procedure must be used; there is in general no formula to take its place.

Next we define the instantaneous velocity, again in conformity with our previous
development. Equation (5.4) is applicable, except for the substitution of r for y.

(5.18)

This tells us to form the vector difference r» —r, as the point 2 in Fig. 5.5a
approaches more and more closely the point 1. But it is seen that, in the limit,
the direction of this vector will be along the tangent to the curve at 1, and its
length is infinitesimally small. If we divide its length by the other small quantity,
t. — 1, a finite quotient results whose magnitude equals the rate of progression
of the particle, in ft/sec or cm/sec or a similar unit, along the curve. Hence the
important theorem:

The instantaneous velocity of a particle moving on a curve is a vector, tangent to the
curve at the point considered, and of magnitude equal to the rate of progression along
the curve.
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Rate of progression along the curve without regard to direction is called speed;
it is the magnitude of the vector velocity.
Equation (5.18) may also be written in derivative form,

v = dr/di (5.18")

but the limit process by which the vector differential dr, explained in connection
with Fig. 5.5, was derived must never be forgotten.
Acceleration, also, is a vector. Formally its definition is the same as before,

a = dv/dt (5.19")

but to see its meaning it must be written in more explicit form,

a = limy:— "N (5.19)
fo—tl 2 — 01

Figure 5.6a shows what is involved here. The velocities, constructed in accord
with the theorem just proved, are drawn at the points 1 and 2. Equation (5.19)

V2

v,— Vv

(a)

F1G. 5.6. Acceleration as a vector.

asks us to form their difference. This is done in Fig. 5.6b. The vector vo — v,,
when divided by ¢, — {;, is the average acceleration during the interval from
t; to 2. The instantaneous acceleration at ¢, is obtained by letting the point 2
approach 1. While this is done, the difference v, — v; will change its direction
(as it becomes smaller), and it is not possible to say in general what its limiting
direction will be. Only for special types of motion, such as that to be discussed
in the next section, can this result be specified.

If the motion is rectilinear, v, and v, are in the same straight line and the
definition (5.19) reduces to the ordinary one, Eq. (5.6).

Finally we insert a brief comment about relative velocity. This is a term used
to describe the motion of one object with respect to another. Assume that
body 4 has, at a given instant, a velocity v, and body B a velocity v, both veloci-
ties being determined with respect to the same reference system, e.g., the earth’s
surface. The relative velocity of B with respect to A is then vz — v4. For
example, if an airplane has a velocity of 200 miles/hr north (relative to the
ground) while a 50 mile/hr west wind is blowing, the velocity of the airplane
relative to the air is seen to be 1/200% + 50 miles/hr in a direction making an
angle # = tan—! 594 ,, with north.
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Strictly speaking, all velocities are relative. The theory of relativity says, in
fact, that it is impossible to find out whether or not a body is absolutely at rest.

5.9. Uniform Circular Motion; Acceleration. Perhaps the simplest
kind of motion in a plane is the revolution of a particle at constant speed,
like a stone in a slingshot or a dust particle on the rim of a flywheel. Tts
path is a circle, and it travels equal distances along the circle in equal
times. This motion is called uniform circular motion.

Despite this misleading name, it is not uniform motion, for the particle
—believe it or not!—has an acceleration. Its speed, to be sure, is con-
stant; but since the velocity continually changes its direction, the acceler-
ation vector is not zero. To see this, consider Fig. 5.7a.

in
\|\/
|
=

(0)

Fi1G. 5.7. Acceleration in uniform circular motion.

In position 1 the velocity of the particle is v;, tangential to the circle.
At 2 it is vy, and the vectors v; and v; have the same length, v. To find
the acceleration [cf. Eq. (5.19)] we first form vo — vi. This is done in
Fig. 5.7b. Note that the angle ¢ in Fig. 5.7b is equal to ¢ in Fig. 5.7a,
since the velocity vectors are perpendicular to the radii 7. Considering
similar triangles we can therefore say that

Length of v. — vi/length of v, = ¢/r

if ¢ is the dotted chord in Fig. 5.7a. Now the length of v, is v, and for the
length of vo — v; we shall write Av. Therefore

Av = ev/r (5.20)

In accordance with the definition of acceleration [see also Eq. (5.19)] the
magnitude of a is

a = lim —2¢ (5.21)

t2— t2 - tl
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Let us see, then, what happens to Av as t, — t;. Clearly the angle ¢
becomes smaller and smaller, and ¢ in Fig. 5.7a, while becoming smaller,
approaches coincidence with the arc s between the points 1 and 2. In
other words, in the limit, ¢ — s = v({z — t1). Hence, by Eq. (5.20).

2 .

lim Av = vt — 1)

to—1 r

.. . . vt — ty)
and in view of Eq. (5.21), which tells us that a = lim ———%"
. ta—t1 T(t2 - tl)
2
a=" (5.22)

T

This gives the magnitude of a.

Its direction may be found as follows: When ¢, approaches ¢, the angle
¢ in Fig. 5.7b tends to zero. Thus
the direction of v — vy, which is also
the direction of a, tends toward per-
pendicularity to vi. Looking now at
Fig. 5.7a we perceive that a, if it is
perpendicular to v,, must point toward
O. What has been proved is this:

A particle in uniform circular mo-
tion has an acceleration of magnitude
v:/r, which is always directed toward
the center of the circle.

F16. 5.8. =z and y in uniform circular This acceleration, thOl-lgh _Of con-
motion. stant magnitude, changes its direction

continually and is therefore not a con-
stant vector. It is called centripetal acceleration (Latin centrum, center;
petere, to seek).

To understand the physical meaning of this result one must note that
the particle, if it had no acceleration, would move on a tangent in the
direction of vi. To keep it on the periphery of the circle an acceleration
toward the center must be imposed on it.

5.10. Uniform Circular Motion (Continued). Further insight into
this important type of motion is gained if we consider several ways in
which the position of the particle can be described. The simplest is to
introduce an angle 6, as in Fig. 5.8, which measures the angular separation
between the radius vector to the instantaneous position of the particle A
and the horizontal or X axis. Assume 8 to be expressed in radians. The
rate of change of 9,

AY

w = do/dt, (5.23)
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is called the angular velocity of A. Though it may be shown to be a
vector, its vector nature need not concern us here. If the motion is to be
uniform circular, @ must be a constant.
The time interval during which A describes one revolution is called the
period; it is
P=2r/0 (5.24)
since a full revolution corresponds to an angle 2. The reciprocal of the

period is the number of revolutions, or cycles, per second; it is called the
frequency of revolution. It is denoted by f.

f=1/P = w/2r (5.25)

In words, the angular velocity is 2r times the frequency.
Furthermore, if the radius of the circle is r and the arc from the X axis
to A is s, we find from Fig. 5.8 that

s =716 (5.26)

Since the speed of A along the circle is ds/dt = v, Eq. (5.23) when com-
bined with Eq. (5.26) states that

v = rdo/dt = ro (5.27)

Equations (5.23) to (5.27), although very simple and easily derived, arc
used so frequently in physics that the student might well ponder their
meaning until thorough familiarity with them has been attained.

Instead of using the angle 6, one may also describe the motion by means
of rectangular coordinates x and y, as drawn in Fig. 5.8. There we see
that

r =7rcoséf -
and y =rsinf l (5.28)
If we remember the calculus formulas
d(cos §) _ . d(sin )
~dé = sin 6 70 = cos 0
d(cos 8) _ d(cos 6) db
and also 7 = 0 di
we find
Z_f = —rsino%) = —rwsin §
y (5.29)
vy _ rw cos 8

dt
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These are, respectively, the x and y components of the velocity v, namely,
v; and v,. From these two equations we may derive

v = \/1)12+v,,2=rw

which is the same as Eq. (5.27).
By differentiating Eqgs. (5.29) once more we obtain the components of
the acceleration,

2 . 2
a, = Q—Jf = —rwcosﬁd—o = —rw?cosf = — v—cos(i
dt? dt = ont
dzy 2 (5.30)
a, = aﬁ = —rw?’sin f§ = — 7 sin 6

Notice how precisely this agrees with the conclusions of the former sec-
tion. Indeed,

2
a=\/az?—l—a,,2=7

In view of the relations (5.24), (5.25), and (5.27) the centripetal
acceleration can also be expressed in the following equivalent forms:

a = v/r = w¥r = 47 = 47%/P? = vo (5.31)

PROBLEMS

1. An end of a piston rod requires 14 sec to move from the center to the end of its
path, a distance of 2 ft. What is its average velocity (a) during the first 14 sec;
(b) during the first second; (c) during the first 114 see; (d) during the first 2 sec?

2. By observation a certain motion is found to be represented by the formula

z =4ft + 2 ft/sec Xt + 3 ft/sec? X 12 — 1 ft/sée? X 3

if ¢ is expressed in scconds. Find velocity and acceleration at any instant, by differen-
tiation. Make three graphs on squared paper, plotting z, v, and a against ¢ from 0
to 4 sec.

3. By counting the number of squares under the a curve of Prob. 2, show that

4 sec
adl =v — v
0

at 4 sec. Note that, when a goes negative, the area between the curve and the t axis
must also be taken as negative.
4. By counting the number of squares under the v curve of Prob. 2, show that

4 sec
/;) vdt =1 — 1o

6. A body moves along the X axis with an acceleration,

a = +6 c¢m/secd X ¢
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t being in seconds. At twelve (12:00) o’clock it is 50 cm to the right of the origin and
has a velocity of 10 cm /sec directed to the left. Find veloeity and position of the body
at 12:00:02 and at 12:00:04.

6. Compute the average velocity of the hody in Prob. 5 for the following three
intervals: (a) from 12:00:00 to 12:00:02; (b) from 12:00:02 to 12:00:04; (¢) from
12:00:00 to 12:00:04.

7. A certain motion is represented by z = 4 sin of, and 4 = 10 em,

w = 2 radians/sec

(a) Plot z against ¢, (b) Compute v, and plot v against £. (¢) Compute a, and plot a
against ¢.

8. Repeat the work in Prob. 7, but let £ = A sin (ol — «). TUse the same values
for A and w, and take & = x/4.

9. Make a graph of (a) a against ¢; (b) v against {; (c) z against ¢ for uniformly
accelerated motion.

10. A projectile is fired vertically upward with an initial velocity of 1,000 ft /sec.
(a) Where will it be after 3 sec? (b) How long will it rise? (¢) How high will it
rise? (d) With what velocity will it strike the ground? (Neglect air resistance.)

11. A rock is thrown vertically downward from a cliff with an initial velocity of
100 ft/sec. When and with what veloeity will it reach the ground 500 ft below?
(Neglect air resistance.)

12. To find the depth of a well a stone is dropped into it. It is heard to strike the
bottom 3 sec after release. (a) Compute the depth of the well, assuming sound to
travel infinitely fast. (b) Compute the depth, assuming the velocity of sound to be
1,000 ft/sec. (This leads to a quadratic equation.)

13. A freight train, starting from rest, acquires a velocity of 10 miles/hr while
moving 2 miles under constant acceleration. (a) Find its acceleration. (b) Express
it in ft/sec?. '

14. What velocity does a body acquire when falling from rest through a distance of
100 m? (Neglect air resistance.)

15. By what amount will the velocity of a body, initially moving at a rate of 5
m /see, increase while it is falling through 100 m?

16. The velocity of a body increases with distance according to the law v = bz,
where b is a constant. Calculate the acceleration at any point z. (Hint: Note that
dv/dt = dv/dz - dr/dt = v dv/dzx.)

17. Galileo’s law of free fall may be written v = const X ¢. In an earlier, erroneous
formulation, Galileo proposed the law v = const X z, = being the distance of fall.
Show that this does not correspond to a constant acceleration; show that it leads to
a = Aé", where A and b are constants.

18. A particle describes uniform circular motion of period 2 sec on a vertical circle
of radius 5 ft. At ¢ = 01t is at the highest point on the circle and moving to the right.
What is its average velocity (a) during the first half second; (b) during the first second;
(¢) during one revolution?

19, The velocity of an airplane relative to the air is 250 miles/hr north. The wind
has a velocity of 20 miles/hr from northwest. Find the velocity of the airplane rela-
tive to the ground.

*20. A boat is crossing a river of width 1 mile, heading upstream so that it moves
toward a point exactly opposite its starting point on the other shore. The current has
a velocity of 5 miles/hr, and the trip across takes 15 min. What direction does the
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keel of the boat take relative to the riverbank? What is the velocity of the boat
relative to the water? What distance does it actually travel?

J

Vpoat

>

Vwater

Fic. 5.9. Problem 20.

*21. Suppose raindrops fall vertically to the ground? Why must a person running
through the rain tilt his umbrella forward? (Determine the relative velocity of a
raindrop with respect to the runner.)

22. Calculate the centripetal acceleration of the particle in Prob. 18.

23. A body describing uniform circular motion has a period of 5 sec and a speed
of 10 ft/sec. Calculate its frequency, its angular velocity, and its centripetal
acceleration.

24. Find the acceleration of a particle that moves on the periphery of a circle of
10 em radius. At a given instant its speed is 25 ¢m /sec, and the speed is increasing at
the rate of 20 cm/sec? along the path. (Nore: The total acceleration equals the
vector sum of centripetal acceleration and acceleration along the path.)

26. Christian Huygens (1629-1695) stated the following in the form of an anagram:
If a body moves on the circumference of a circle with a speed equal to that which it
would acquire by falling through half the radius of the cirele, then its centripetal
acceleration equals the acceleration in free fall. Prove this.



CHAPTER 6
FORCE AND ACCELERATION; DYNAMICS!

6.1. Introduction. Newton’s First and Second Laws. Newton’s first
law states that, without application of an external force, a body moves
with constant velocity. Velocity is here to be regarded as a vector; hence
motion, in this simple case, takes place along a straight line. Perfectly
force-free motion is rare indeed; the actual proper motion of the ‘‘fixed”
stars, which are far away from other attracting matter, is perhaps the
closest approximation to it. All ordinary motions are subject to some
amount of frictional force and therefore illustrate Newton’s first law only
approximately.

According to Newton’s second law the resultant force on a body (to be
exact, on a particle) causes it to be accelerated, and the acceleration is
proportional to the force. Both force and acceleration are vectors, and
the word ‘‘proportional’’ here implies equality of direction and pro-
portionality of magnitudes; for vectors are said to be proportional only if
they have the same direction. By force is meant the sum, or resultant,
of all forces acting on the body. The first law is seen to be a special case
of the second, and we shall not consider it further.

In Chap. 3 on Statics a study was made of the conditions under which
a body can be without acceleration. In Chap. 5 acceleration and
velocity were analyzed from the point of view of kinematics, 7.e., without
reference to forces. We have learned how velocities and positions of a
particle can be derived when the acceleration is given. It is through
this procedure that contact is made with Newton’s second law. For the
law tells us the acceleration when the forces are given, and on combin-
ing this knowledge with what was learned in the preceding chapter we
are able to obtain all aspects of the motion from the given forces. The
purpose of the present chapter is to study methods for doing this.

Newton’s second law, which is perhaps the greatest generalization
and the most useful theorem of all natural science, may be stated in the
form :

F « ma

where F is the resultant force, m the mass of the particle, and a its accel-
eration. But to say that one quantity is proportional to another is to say
that it is equal to the other times a constant. Hence

F = kma (6.1)

1 The student should review Secec. 2.2.
79
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k being a constant, at present undetermined. Its value will depend
upon the choice of units of F and m. The meaning of Eq. (6.1) will be
apparent from the following experiment (Fig. 6.1):

A spring S rests on a smooth horizontal table. TIts left end is fixed
rigidly to an immovable wall, while its right end is attached to a mass m,
able to slide without friction on the table.

We first consider what happens when different forces are allowed to act
upon the same mass m. Let the mass be drawn to the right a distance b
beyond zy, which is the point at which the spring exerts no force. In
accordance with Hooke’s law the spring then pulls with a force propor-
tional to b, say 2 1b. When the mass is now released, it will move back
toward z, with an initial acceleration, which turns out to be, say, 5 ft /sec?.
Next the mass is drawn out a distance 2b beyond xz,. When it is released
from this position, where the force is twice as great, the initial acceleration

is found to be 10 ft/sec? in accord-
m ance with Eq. (6.1). Thus in gen-
%I . . era.l an initial displacement n X b,
x°'<—b—>i<—b ——>| which corresponds to a force of
) n X 2 lb, produces an initial accel-

Frs. 6.1. Illustration of Newton’s sec- . .
ond law. eration of n X 5 ft/sec.. Note

that both F and a are to the left.

Second, we perform a set of experiments in which the force is held
constant but is allowed to act on different masses. This may be done by
drawing the spring out to the same distance b and letting the force of 2 Ib,
which 1t then exerts, successively accelerate different masses. When
m is doubled, a will be 2.5 ft/sec?; when m is halved, a will be 10 ft/sec?,
and so forth. This, too, is implied by Eq. (6.1).

In these experiments none of the masses moved with constant acceler-
ation. For as the force diminished with diminishing extension of the
spring, the acceleration became smaller. In particular, at the instant
in which the masses passed through the point z,, there was no force.
Hence we conclude that at this instant the acceleration of all the masses
was momentarily zero, their velocity was uniform.

6.2. The Meaning of Mass. The time has come when we must state
more clearly what is meant by mass. Although both mass and weight
are commonly measured in pounds, the two are not the same. The mass
of an object is the same everywhere in the universe; its weight is different,
for example, on the moon and on the earth.

Mass is identical with inertia; but this statement hardly defines it, since
the term ‘“‘inertia,” although it has the right qualitative implications, is
equally vague. Mass has to do with how difficult it is to accelerate a
body. In the following we give what is called an operational definition of
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mass, a definition not merely by words but by reference to experimental
operations, a definition that has the further advantage of permitting a
quantitative determination of mass. It will be based on Newton’s
second [aw.

Suppose we are given three bodies, numbered 1, 2, and 3, and we are
to find their masses. Attach each of them in turn to the spring of
Fig. 6.1, draw out the spring to the same distance b beyond its neutral
point, and measure the initial acceleration. This, while difficult prac-
tically, can nevertheless be carried out in principle. Call the observed
accelerations of the three bodies a;, a», as (only magnitudes need here he
considered). By Eq. (6.1), F = kmiay = kmsas = kmsas. Hence

ma _ 01 ms o %1 (6.2)
my  as’ my Q3 '

The masses are inversely as the accelerations. All mass ratios may
thus be determined. If we now choose m, to be a unit of mass, the masses
themselves are defined by relations (6.2). By means of experiments of
this type all masses can be determined through comparison with a unit
mass or standard mass.

Standard masses are actually used in physics, although the comparison
1s usually made by more practical procedures. The standard kilogram
is a platinum object kept at Sévres in France; the standard pound is in
Westminster, England. They are carefully protected from all corrosive
influences.

6.3. Units of force. We have already become acquainted with one
unit of force, the pound. It was seen to be the force with which gravity
pulls upon 1 1b of mass. Hence 1 1b of force produces in 1 1b of mass an
acceleration of ¢ = 32.2 ft/sec?.

Let us substitute this information in Eq. (6.1). It reads

1 Ib-force = k£ X 1 Ib-mass X 32.2 ft/sec?.

To balance the equation numerically we must give the constant k£ the
numerical value 1/g = 1/32.2. This is often inconvenient.

To avoid it we may introduce a new unit of force, so chosen that the
constant k& will have the value unity (and no physical dimension). This
unit force must clearly be one that, when acting on a mass of 1 lb, will
give it an acceleration of 1 ft/sec?, as substitution in Eq. (6.1) immediately
shows. It is called the poundal. Since 1 lb-force causes an acceleration
of 32.2 ft/sec? in a mass of 1 1b, 1 Ib-force must be equal to 32.2 poundals.
The poundal is said to be the absolute unit of force, the pound the gravi-
tational unit. When the force is expressed in absolute units, Newton’s
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second law reads

F = ma (absolute form) (6.3)

When F is expressed in gravitational units, the factor 1/¢ must be
inserted ; that is to say, m must be replaced by W /g, where W is the weight
in pound-force, numerically equal to the mass in pounds. Hence the
formula reads

F = %/ a (gravitational form) (6.4)

In this equation, both ' and W aré measured in pound-force, while both
g and a have the units of acceleration. This form of Newton’s second
law is commonly employed in engineering practice.

The same distinction between absolute and gravitational units occurs-
when masses and accelerations are expressed in the cgs system, where the
unit of mass is the gram and the unit of length the centimeter. Here
the absolute unit of force is the dyne (Greek, dynamos, force), defined as
the force which, when acting on a mass of 1 gm, imparts to it an accelera-
tion of 1 em/sec?. The gram-force, on the other hand, which is the
gravitational unit of force in the cgs system, is 980 dynes (¢ = 980 cm /sec?
in this system), because it produces an acceleration of 980 cm/sec? in a
mass of 1 gm.

Again, in the mks system, a similar distinction is made. Here the
absolute unit of force is the newton, defined as the force that, when acting
on a mass of 1 kg, imparts to it an acceleration of 1 m/sec?. The kilo-
gram-force, which is the gravitational unit of force in the mks system, is
9.8 newtons, since ¢ = 9.8 m/sec?.

In all three systems Eq. (6.3) -is valid when forces are expressed in
absolute units, Eq. (6.4) when they are expressed in gravitational units.

We have thus arrived at six different units of force; they are given
in Table 6.1. They are called absolute fps unit (poundal), absolute cgs

Table 6.1. Units of Force

fps cgs mks
Absolute . .. ... ... ... poundal dyvne newton
Gravitational . .. ... .. . b gm kilogram

unit (dyne), absolute mks unit (newton), and so forth. All three absolute
units have the following advantages:
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1. They permit the use of Newton’s second law in the simple form (6.3).

2. Their names, being different from the names of the corresponding
mass units, avoid confusion between force and mass, which are funda-
mentally distinct.

Henceforth the student should learn to distinguish very clearly between
a pound of force and a pound of mass, as well as between a gram of force
and a gram of mass. Though the units are homonyms, their meanings are
no more identical than the North Pole and the telephone pole. Whether
the word pound, or gram, or ton (= 2,000 1b) refers to a mass or to a
force will usually be clear from the context; when confusion is likely to
arise, these words will be qualified by the addition of ‘“force’’ or ‘“mass.”

Also it should be understood that the distinction between gravitational
and absolute applies only to forces, not to masses. In this book we shall
employ no gravitational unit of mass. For problem work involving the
use of Newton’s second law we recommend for the present the following
procedure: First express all forces in absolute units, remembering that
1 gm-force equals 980 dynes and 1 lb-force is 32.2 poundals. Then use
Newton’s second law in the form (6.3). All answers will then be in
absolute units. If the answers are wanted in gravitational units, we
divide the results for forces by g. .

*6.4. Worked Examples. a. A locomotive is capable of exerting a maximum
pull-of 2 tons. What velocity can it give to a freight train weighing 300 tons in a
distance of 1 mile, if it starts from rest on a level track and the train is subject to a
frictional-force of 10 b per ton of weight?

The force on the train is a forward pull of 4,000 Ib less the backward pull due to
friction of 300 X 10 Ib = 3,000 lb; the resultant is 1,000 Ib, or about 32,000
poundals. The mass of the train is 300 X 2,000 1b = 600,000 1b. Applying
Newton’s law in the form (6.3) we find

32,000 poundals = 600,000 1b X a

a = %75 poundals/lb = 445 ft/sec?
for a poundal, according to its definition, is 1 Ib-mass X 1 ft/sec%.  To find the
velocity acquired by the train over 1 mile of distance, we use Eq. (5.16), familiar
from Sec. (5.5),

2 — po? = 2as
In this instance v = 0. Hence

v? = 8¢5 ft/sec? X 5,280 ft = 563 (ft/sec)?
v = 23.7 ft/sec

b. An airplane of total weight 1 ton is subject to the following forces: the thrust
of its propeller, F, = 2,000 Ib (cf. Fig. 6.2); its weight W; the action of the air
upon it, F, = 1,000 Ib; find its momentary acceleration.
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The first step is to calculate the resultant force on the airplane. This can be
done either graphically or by components. 1 is, of course, 2,000 1b. Using the
method of components we obtain for the horizontal component of the resultant
(in the direction of the propeller force)

R, =F, —TFsc0s30° = 1,134 1b
and for the downward component

R, =W — F,sin 30°

1,500 1b

The resultant is a force of A/(1,134)% + (1,500)% Ib = 1,880 Ib in a direction
making an angle 8 with F,, and tan 6 = 1,500 1b/1,134 Ib = 1.32. Thus from
trigonometry tables 6 is approximately 53°. The acceleration is in this direction.

Its magnitude is computed from Eq. (6.3) after conversion to absolute units.

Since 1,880 1b = 60,540 poundals, we have

F.
2 o 60,540 1b X ft/sec? = 2,000 1b X a
B 30 ¢ = 30.3 ft/sec?

t 6 Notice that the mass of the airplane, not explicitly

R given, is numerically equal to its weight.
W ¢. The moon revolves about the earth at a dis-
tance of 3.84 X 105 km and with a period of 28
Fic. 6.2. days. Its mass is 7.36 X 10?2 kg. Find the force

with which the earth attracts it.
In accordance with Sec. 5.10 the moon has a centripetal acceleration
a =4w?/P? = 0.260 cm/sec?. To provide this the earth must attract it with a
force given by

ma = 1.91 X 10?5 dynes

6.6. The Force of Gravity. Gravity, which means the earth’s attrac-
tion, gives all falling bodies the same acceleration. This is a fact of
observation. Does it mean that the force of gravity is the same for all
bodies? Newton’s law says no; for if /' = ma, the force of gravity must
be proportional to the mass of the falling object. This simple conclusion
has given rise to much philosophic speculation and to considerable con-
fusion. One wonders indeed how the force of gravity manages to adjust
itself so precisely to the mass of an object, since most forces are quite
independent of the masses on which they act. The elastic force of
the spring considered in Sec. 6.1 depends wholly on the condition of the
spring, not on the mass to which it is attached. As already stated, the
force of gravity acting on an object is its weight. What has been said
is that weight is proportional to mass.

Physicists have at times doubted that this proportionality can be
exact. But in 1830 the famous mathematician Friedrich Bessel proved
that it is at least as exact as measurements could determine. There was
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no satisfactory theoretical explanation of thisremarkable coincidence until
the advent of the general theory of relativity during the present century.

Table 6.2. Values of g at Various Points on the Earth’s Surface

Location Latitude | Elevation, m | g, cm /sec?
North Pole...............................] 90°00 0 983.1
Karajak Glacier, Greenland................ 70°27' 20 082.5
Chicago, Ill......... ... ... .. ... ... ... .. 41°47° 182 980.3
New York, N.Y.......... ... ... ...... 40°49’ 38 980.3
Mt. Hamilton, Calif.......................| 37°20 1,282 979.7
Panama Canal Zone....................... 8°55’ 6 978.2
Equator... ... ... ... ... ... .. 0°00’ 0 978.1

The weight of a body of mass m is clearly
W = mg (6.5)

when expressed in absolute units. If m is in grams and ¢ is taken to be
980 cm/sec?, the numerical result for W will be in dynes. If m is in
pounds and ¢ = 32.2 ft/sec?, W will be in poundals.
We have already used this fact in Example b of the pre-
ceding section. The direction of W is that of g, that
is, downward.

A simple device known as the Atwood machine
(George Atwood, 1746—1807) represents an application
of these principles. It consists of a pulley, here
regarded as frictionless and massless, with a flexible
cord running over it (see Fig. 6.3). Attached to the
ends of the cord are the masses m; and m.. The larger
one of these will be accelerated downward, the other
upward. By determining the accelerations and the two masses it is
possible to find ¢ with considerable accuracy. The theory of the
machine is as follows:

Newton's second law is applied to each of the two masses separately.
The first is subject to two forces, mig and T, T being the tension in the
string supporting m,. Their downward resultant is m;g — T. In a
flexible string this tension is communicated, with its value unaltered, to
the other side of the pulley, where it acts on m.. Calling the downward
accelerations of the two masses a; and a. and applying Eq. (6.3) to each
mass we find

Fic. 6.3. At-
wood machine.

nig — T = miay

6.6
meg — T = meae (6.6)
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But if the spring is inextensible, a; = —a;. On making this substitu-
tion and then subtracting the second equation from the first we find

(my — mp)g = (my + ma)ay

m; — Mo
and hence a, = —
my + me

Notice that, if the masses are nearly equal, a, is quite small and therefore
easily measurable.

6.6. Friction Again. The qualitative aspects of the force of friction
were discussed in Sec. 3.12 (review this). We are now ready to consider
how this force can be measured. Certain regularities, sometimes called
laws of friction, are matters of common observation and will now be dis-
cussed. The term ‘‘laws’ should be employed with caution, for the
facts to be stated are true only within limits.

The first is illustrated by a brick that is being pushed over a rough
surface. It is found that the force of friction is the same whether the
base on which it rides is the narrow or the wide face of the brick. Thus, in
general, the force of friction is independent of the area of contact.

Second, if a board, with its flat surface horizontal, is loaded by weights
and then drawn over a rough horizontal surface, it is found that the
retarding force of friction is proportional to the total weight. Hence
the force of friction is proportional to the total force normal (perpendicular)
to the plane. Now the force of friction is always parallel to the plane and
will be symbolized by F; the normal force, which may or may not be the
weight of the object to be moved—there might be an additional push
against the plane—will be called ;. The relation stated may then be

expressed
Fy = k) (6.7)

The constant g, which depends on the nature of the fwo substances in
contact, is called the “coefficient of friction.” Its value has been
determined for a great variety of pairs of substances, some of which are
given in Table 6.3. In Sec. 3.12 attention was called to the circumstance
that kinetic friction is a little smaller than static friction. To be accurate,
one must therefore distinguish between w., and p...; the latter is slightly

Table 6.3. Coefficients of Friction

Metal on dry oak wood .. .. ... .. .. ... ... 0.50
Metal on wet oak wood........... ... .. ... ... ... ... ... ..., 0.25
Metal on metal, without lubricant. .. ... ... ... ... ............. 0.18
Metal on metal, lubricated..... ... ... ... ... .. ... ... ... . ... 0.03
Steel onagate. .. ... .. 0.20
Leatheron wood. ... ... ... ... ... .. .. . ... . ... ... 0.35

Leatheronmetal . ... ... .. .. ... . . . ... ... 0.56
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larger than the former, but for the purposes of this book the difference
will be disregarded.

We now apply these considerations to a problem of frequent occurrence,
the motion of a body sliding down an incline (cf. Fig. 6.4). If its mass is
m and the angle of the incline 6, the force normal to the plane is mg cos 8,
while the component of the force along the plane is mg sin 8. The
component mg cos § upon the body is neutralized by an equal and
opposite force exerted by the plane (not drawn in the figure). The
frictional force, counteracting the force mg sin 6 that propels the body
down the plane, is pmg cos 8 in accordance with Eq. (6.7). Newton’s
second law, when applied in the di-

rection of motion, is then umg cos 9

mg sin § — pmg cos 6 = ma
Solving for @ we find mg sin 6

a = g(sin 8 — pcos ) (6.8)

mg ¢cos 6

If 6 =90° a =g, which is what
we should expect. But if 8 = 0,
Eq. (6.8) would seem to predict an Fic. 6.4. Motion on an incline.
acceleration up the plane. This of
course is nonsense; it must be remembered that friction always opposes
motion and cannot produce motion of itself. Equation (6.8) is therefore
correct only as long as it predicts motion in the direction of the accelerat-
ing force.

Under what condition will a be zero? According to Eq. (6.8) this
happens when sin § — p cos § = 0. Solving this we find that

tan 0 = u (6.9)

mg

The angle 6 defined by this condition is called the limiting angle of repose.
This last equation provides a useful method for measuring u: one alters
the angle of the incline from the value 0 to that at which sliding just
begins. The tangent of this angle is the coeflicient of (static) friction.

Finally Eq. (6.8) also tells us what happens in the absence of friction.
When u = 0, a = g sin . This is the relation that enabled Galileo to
determine g. The speed of falling bodies is so great that g is difficult to
measure directly. But a can be made as small as is desired by making
6 small and can be measured with ease. Motion on an incline is still
uniformly accelerated, but the value of the acceleration is lessened.

6.7. Dimensional Analysis. It has frequently been emphasized that,
in all the equations of physics, both sides must be measured in the same
units. There is, however, an even more basic kind of homogeneity in
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these equations which arises from the fact that all quantities which are
equated must have the same physical nature. The student who is quick
in discerning this can often avoid mistakes. There is a systematic pro-
cedure for checking whether or not equations are correct from this point
of view; it is called ‘‘dimensional analysis.”

The three basic quantities in the science of mechanics are length, time,
and mass. They will be designated by L, 7', and M for the present pur-
poses. Out of these three all other quantities can somehow be con-
structed. For example, velocity is a length divided by a time. It is
said to have the physical dimension [LT~!]. 'Thus the physical dimension
of the quantity 30 miles/hr is [L7~!]. The brackets are used to indicate
that LT! represents only the physical dimension and that all numerics
have been disregarded.

The dimension of an area is [L?], of an acceleration [LT—?], of a force in
the absolute system [MLT-?], and so forth. When quantities are raised
to some power, the physical dimensions are raised to the same power.
The point of it all is that every equation used in physics must have the
same dimensions on both sides. Let us test, for example, Eq. (5.16) for
uniformly accelerated motion, v? = 2as. We have

[L*T?] = [LT7?][L]

and this is obviously correct.

It is easily seen that Newton’s second law in its absolute form [Eq.
(6.3)] is also correct, for in a sense it defines the physical dimensions of F.
But in its gravitational form (6.4) it presents some puzzling features.
Suppose we write

w

F=—a
g

and treat W as weight (a force!) and ¢ as a number. We then have
[MLT? = [MLT?)[LT-?

which is incorrect. A correct dimensional equation results if the constant
g is given its dimensions of acceleration. Henceforth, in all examples of
dimensional analysis, Newton’s law will be assumed to be written in its
absolute form, so that ambiguity cannot arise.

Considerations of this sort become more useful as more and more new
physical quantities, like energy, momentum, power, are introduced.
Each of these has its distinctive dimensions.

6.8. Summary on Units of Force. In the present chapter we have
introduced six units of force, and we have reviewed three units of mass.
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1. In the cgs system the unit of mass is always the gram. The unit
of force can be either the absolute one (dyne) or the gravitational one
(gram-force). When the absolute unit is employed, Newton’s second law
takes the standard form

F = ma

A dyne is the force that will give a mass of 1 gm an acceleration of
1 em/sec?. A gram-force equals 980 dynes.

2. In the mks system the kilogram is the unit of mass. The unit of
force can be either the absolute one (newton) or the gravitational one
(kilogram-force). A newton is that force which will give a kilogram-
mass an acceleration of 1 m/sec?. A kilogram-force equals 9.8 newtons.

3. In the British system the unit of mass is always the pound (or one
of its multiples or submultiples). The unit of force can be either the
absolute one (poundal) or the gravitational one (pound-force). When
the absolute unit is employed, Newton’s second law takes the simple
standard form above.

A poundal is the force that will give a mass of 1 lb an acceleration of
1 ft/sec®.. A pound-force equals 32.2 poundals.

Engineers often prefer to use gravitational units of force throughout their
calculations. As we have seen, this necessitates the introduction of a factor 1/g
in Newton’s second law if the conventional units of mass are employed. One can,
however, retain gravitational units of force and the simple form of the law pro-
vided that he introduces a new unit of mass. If 1 Ib-force gives a mass of 1 1b an
acceleration of 32.2 ft/sec?, then 1 Ib-force will give a mass of 32.2 Ib an
acceleration of 1 ft/sec?. Therefore, when masses are expressed in multiples of
32.2 1b and F in pounds, the simple form [Eq. (6.3)] remains valid.

A mass of 32.2 1b is called 1 slug. A slug is that mass which acquires an
acceleration of 1 ft/sec? under the application of 1 lb-force.

6.9. Limitations of Newton’s Second Law. The preceding discussions
have always taken for granted that there can be no doubt as to the
meaning of a, the acceleration of a body. A little reflection shows, how-
ever, that a is always measured relative to something else. When a body
falls, it has an acceleration g with respect to the earth. Since the earth
rotates about its axis, a point manifestly at rest on its surface has itself
an acceleration with respect to a fixed star and therefore the acceleration
of a falling body with respect to that fixed star would be different from g¢.

To take another example, consider that an airplane is falling toward
the earth. The passengers in the cabin have an acceleration zero with
respect, to the airplane but of g relative to the earth’s surface.

Universal experience with moving bodies decides the following: The
acceleration that enters Newton's second law must be relalive to some body
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that does not have an acceleration itself. To be sure, this raises a host of
other questions; for how can we be sure that a body which we innocently
regard as having no acceleration may not be accelerated relative to objects
so far away as to be invisible? Questions of this kind are dealt with in
the theory of relativity. In this book we assume that we can always
tell whether a body is accelerated or not.

Clearly, then, the earth is not a proper ‘“system of reference’” for
measuring a, since every point on its surface except the poles has a cen-
tripetal acceleration w?R. With

w = 27 per day = (27/86,400) sec™! and R = 6.4 X 10% ecm

we obtain about 3.5 cm/sec? at the equator, where the acceleration is
greatest. For many purposes this may be neglected; for precise work,

"
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Fic. 6.5. Descending elevator.

however, it must be taken into consideration. More will be said about
this in the next chapter. Here we assume as an approzimation that the
acceleration a appearing in Newton’s law is referred to the earth’s surface.

What is the apparent weight of an object placed on an elevator, when
the elevator descends with an acceleration a? To answer this question,
consider Fig. 6.5. Let the object of mass m be placed on the pan of a
spring scale. The forces upon it are mg downward and the support of the
balance pan upward. Call the latter . The correct acceleration to be
used in this example is that relative to the earth, a, not relative to the
elevator (which is zero!). Hence we have

mg — F = ma

The apparent weight of the body is F, the force of the balance. This is
m(g — a). If a = g, the body has no apparent weight.

PROBLEMS

1. At the Lick Observatory, Mt. Hamilton, Calif., the acceleration of gravity is
found to be 979.7 em /sec2.  What is the value of g in ft /sec? at this location?
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2. Two masses m; and m., connected by a flexible cord, are placed on a pair of
smooth inclined planes as shown in Fig.
6.6. There is no friction at the point
A. TFind the acceleration of the system
and the tension in the cord. If the sys-
tem is to be in equilibrium, what must be
the relation between the masses and the F1G. 6.6. Problem 2.
angles?

3. A 1,200-1b elevator is pulled upward by a cable with an acceleration of 5 ft /sec?.
Find the tension in the cable.

4. A block slides down an inclined plane with constant veloeity when the slope of
the plane is 10°. If the slope is increased to 25°, what will be the acceleration of the
same block down the plane?

b. A mass m slides down a smooth inclined plane of slope 6 and length d. Find its
velocity at the bottom of the plane. Show that this is equal to the velocity it would
have acquired in falling a distance equal to the height of the plane.

6. An Atwood machine (see Sec. 6.5) consists of two masses suspended by a flexible
cord over a massless pulley. If one of the masses, weighing 11 lb, has an upward
acceleration of 12 ft/sec?, find the other mass.

7. An automobile weighing 2 tons is traveling 60 miles/hr. The brakes are
applied, and it comes to rest with uniform deceleration after going 154 ft. Find the
force exerted to stop the automobile.

8. A spring with stiffness ¥ = 500 dynes/cm is used in an experiment like that
described in Sec. 6.1. If, when the spring is extended 4 cm and released, it gives an
instantaneous acceleration of 25 cm/sec? to the mass m attached to it, what is the
magnitude of m?

9. A spring and four masses mi, ms, ms, and mq are used in an experiment similar
to that described in Sec. 6.1. The spring, when extended 5 cm, imparts to the masses
instantaneous accelerations of 20 cm/sec?, 5 cm/sec?, 35 cm/sec? and 40 cm/sec?,
respectively. If m is chosen as the standard mass, compute the masses of m,, my,
and my in terms of it.

10. Find in terms of g, m,, and ms, an expression for the tension 7" in the cord of the
Atwood machine described in Sec. 6.5.

11. Show that »?/r has the dimensions of acceleration.

12. A body of mass 75 gm rests on a horizontal frictionless table. What horizontal
force is required to give it an acceleration of 3 cm/sec?? If the force is applied down-
ward at an angle of 60° with respect to the horizontal, what magnitude is necessary?

13. A body weighing 73 gm starts from rest at the top of an inclined plane, 2 m long,
making an angle of 30° with the horizontal. If the body takes 8 sec to reach the
bottom, what is the coefficient of sliding friction between it and the plane?

14. A wooden block is placed on an adjustable inclined plane, and the angle of
inclination 8 is increased gradually until the block just begins to slip. If 8 = 21° at
this point, what is the coeflicient of friction between the block and the plane?

15. In an experiment like that which Galileo conducted (see Sec. 6.6) a 30-1b mass is
observed to slide down a nearly frictionless inclined plane (8 = 20°) with an accclera-
tion of 11.00 ft /sec2. Calculate the acceleration of gravity g from these data.

16. A block of mass m is projected up a smooth inclined plane of slope 8 with an
initial velocity vo. How far up the plane will it travel? IHow much time will elapse
before it is again at the foot of the plane?
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17. A block of mass 3 1b slides down an inclined plane (8 = 25°). If the coefficient
of friction is 0.4, find the acceleration of the block in ft /sec?; in em /sec?.

18. At a given instant a 2-ton airplane has an acceleration directed horizontally
forward of 5 ft /sec2. If the thrust of its propeller is 1,000 lb, find the magnitude and
direction of the force that must be exerted by the air on the airplane to keep it in level
flight.

19. A man twirls 2 mass of 0.5 1b in a circle on the end of a 3-ft string. If the mass
makes one complete revolution in 1.5 sec, what is the tension in the string?

20. A rectangular block of mass 2 1b is accelerated along a surface by a foree of 80
poundals applied at an angle of 60° with the surface. If the coefficient of friction is
0.5, how long must the force act to give the block a velocity of 20 ft /sec?

21. A 30-gm mass moving initially to the right is acted on by a constant force of
600 dynes to the left.* It returns to its initial position in 5 scc after the force starts to
act. Find its initial velocity. Where and when does it reverse its direction of
motion?

22. (alculate the acceleration of the syvstem shown in Fig. 6 7. The coeflicient of
sliding friction between the 4-lb mass and the inclined plane is 0.2.  (Assume the

pulleys to be frictionless.)
5 23. A 50-gm block is initially at rest

4 Ibs on a table. If a horizontal force of
20,000 dynes acts on it for 2 sec, how far
P 20° 4
1 5X 10 dynes
——— 50gm
12 Ibs 30 gm
8 Ibs
Fi1G. 6.7. Problem 22. F1c. 6.8. Problem 24.

from its initial position does it finally come to rest? Take the cocfficient of sliding fric-
tion to be 0.3.

*24. A force of 5 X 104 dynes is exerted on a 50-gm block, which in turn pushes a
30-gm block (see Fig. 6.8). If the blocks move on a frictionless surface, what force
does one exert upon the other?

If the coefficient of friction between the 50-gm block and the surface is 0.3 and that
between the 30-gm block and the surface is 0.4, find the acceleration of the system and
the force that one block exerts on the other.

*26. A 13-lb block is pulled along a smooth table by a string which runs over a small
frictionless pulley and on which hangs a 3-Ib block. If the system starts from rest and
the 3-1b block is initially 6 ft from the floor, find the time that elapses before the 3-lb
block hits the floor. What is the velocity of the system when this occurs?

26. A 5-lb mass is attached to a spring scale, which is suspended from the roof of an
elevator. What does the scale read (a) if the clevator ascends with a constant velocity
of 20 ft/sec; (b) if the elevator descends with an acceleration of 4 ft/sec?; (c) if the
elevator ascends with an acceleration of 2 ft/sec?; (d) if the cable breaks and the
elevator falls freely?

*27. A plumb bob hangs from the roof of a railroad car. What angle 6 will it make
with the vertical when the train has an acceleration of 8 ft/sec?? Find the general
expression giving 8 as a function of a. (This device constitutes a simple form of
accelerometer.)

*28. Using length, time, and force as basic dimensions, find the dimensions of mass.



CHAPTER 7
SPECIAL MOTIONS IN A PLANE

7.1. The Motion of a Projectile in a Vacuum. A body, treated here
as a particle, is projected at an angle 6 with the horizontal, its initial
velocity being V (cf. Fig. 7.1). The origin of a rectangular system of
coordinates is taken at the point of projection. At any instant during
its flight (for instance, at the point P) the projectile is subject to only one
force, viz., its weight mg, and this acts vertically downward. If there-
fore we resolve its acceleration at P into one component a, = d2y/di?

h
+ —X

Fi1c. 7.1. Flight of a projectile.

along Y and another a. = d*t/dt? along X, we find from Newton’s second
law
d*x

e

d2
t2

<

m =0 (7.1)

|

- —mg

Q.

From these, velocity and position at any instant are obtained by integra-
tion. The vector v, which is tangent to the curve of flight called the
trajectory, has components v, = dy/dt and v, = dr/dt,and the displacement,
has components y and x. Integrating once we find

d & -
d—?t/= —gt + ¢, 57 = C2 (‘2)
The constants ¢; and ¢, which are not determined by the mathematical
equations, must be chosen to fit the initial condition of our problem. We
have assumed that, at { = 0, v, was V cos 6 and v, was V sin . Putting
t = 0 in Eqgs. (7.2) we see that

dy| d_:c1

a1=0—Cl dtl-o - o

Hence ¢; = V sin 6 and ¢; = V cos 6, and Eqs. (7.2) take the definite
form

Z—i/=v,,=—gt+Vsin0 d—x=v:=VCOSB (7.3)

93
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From these results it is apparent that the vertical velocity is the same as
that in free fall, with the initial velocity V sin 6 superposed; the hori-
zontal velocity remains constant and equal to its initial value. The
absence of ‘“‘interference” between the two motions is sometimes referred
to as the “‘independence of vertical and horizontal motions.” It is but a
consequence of the vector nature of accelerations.

To obtain the instantaneous position of the projectile Eqs. (7.3) are
integrated once more. Thus

y= —14gt> 4+ Vsin 0t + cs
x=Vecosbt+ cs

The new constants ¢s and ¢4 are again determined in conformity with the
initial conditions. Since both y and x are zero at { = 0, the constants
must vanish. This leaves us with

y= —1}4gt" + Vsing ¢ z = Vcosh-t (7.4)

Equations (7.4) are called the equations of motion of the projectile; they
tell us its position at every {.

It is not easy to see from them, however, what the path or trajectory
is. To obtain this information one must eliminate ¢ between Eqs. 7.4.
According to the second, t = x/V cos 6; when this is introduced in the
first there results

1 x?

y=——2-gw—0+xtan0 (7.5)

which is the equation of a parabola with its axis parallel to the ¥ axis.

7.2. Time of Flight, Range of Projectiles. The time of flight is easily
obtained from Eqs. (7.4). The y coordinate is zero at two times—at the
initial instant and when the projectile reaches the ground again. Cor-
respondingly the equation

0= —1gt2+ Vsin -t

has two solutions, { = 0 and ¢t = 2V sin §/g. The latter must be the
time of flight.

The time at which the missile reaches its highest point is that for which
v, = 0. From Egs. (7.3) this is seen to be t = V sin 6/¢, which is one-
half the time of flight. Hence one may conclude that the time of ascent
is equal to the time of descent for our frictionless projectile. If air
resistance were taken into account, this would not be quite true.
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The range (R in Fig. 7.1) is the distance z reached when the body
returns to ground, that is, z at ¢ = 2V sin 8/g. From Egs. (7.4), this is
_2V*sinfcosf _ V?

R = 2 in 26 (7.6)
g g

because sin 20 = 2 sin 6 cos . The range depends on the initial velocity
V and on 6, the angle of elevation. If, for a given V, we wish to obtain
the maximum range, 8 must be taken to be 45° because sin 90° is the
maximum value of the sine function. One may also obtain E by putting
y = 0 in Eq. (7.5) and then solving it for zx.
The maximum elevation of the projectile, h, is the distance y at
t = V sin 8/g; it may be found by putting this value of ¢ into Eqs. (7.4).
1 V?%sin?6 Vsingd 1VZ%sinZo

h=—§g—g—2+Vsm0 5 7

(7.7)

It can also be obtained from the equation for the path; if the maximum
of Eq. (7.5) is determined by differentiation, the same result is found.

A bombsight is an optical device utilizing the basic principles of the preceding
section, though with very great elabo-
rations, To understand its function
we consider an airplane in horizontal
flight (Fig. 7.2). Assume its height
above ground to be A and its velocity
V. The target T is sighted forward
and at an angle ¢ with the direction of
flight. The bombardier must know at
what value of ¢ he has to release the
bomb. Neglecting air resistance the
bomb describes the second half of a parabolic trajectory. If it takes ¢ sec to fall

the distance &, then
A2
h = %gﬁ or = ?h

During this time ¢ it travels a distance d = V¢ along the horizontal, and

But tan ¢ = h/d; hence the correct angle of release is

Fic. 7.2. Plane dropping bomb.

h hg
¢ = tan"'5 = tan~! Vo35 (7.8)

An automatic bombsight not only sets a telescope for the correct angle ¢ (h and
V are supplied to it directly through connections with altimeter and tachometer)
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hut also makes adjustments for wind velocity, departure from horizontal flight,
air resistance, and other factors.

The true trajectory of a body in air is qualitatively given by the solid curve in
Fig. 7.3. Tor high velocities of projection the asymmetry is very considerable,
the range is shorter than that given by
Eq. (7.6), and the height attained
smaller than predicted by Eq. (7.7).
Even before Galileo’s time interest in
gunnery was great, and considerable
information about actual paths of flight
had been collected. But the analysis
was based on the following interesting though erroneous assumption: The path,
conceived to be the dotted trajectory in Fig. 7.3, consists of a straightline part, a,
in which the motion is ‘“violent,” or nonnatural, and a curved downward part,
b, representing natural motion in Aristotle’s sense.

*7.3. Exterior Ballistics. The subject that deals with the flight of shells and
bullets in all its aspects is called exterior
ballistics in contradistinetion to interior L
ballistics, the study of the behavior of / ' 8
projectiles inside guns. The general D ’ Motion of shell_
problem of the motion of projectiles is / i
too difficult and complicated for treat-
ment in this book. However, the mg
physical principles and the manner of Fi1g. 7.4. Foreces on a shell.
attack are very interesting and can be
briefly described. One main concern is, of course, to take account of the action
of the resisting medium, air, upon the projectile.

Air resistance depends upon the velocity and the shape and size of the moving
object. In Fig. 7.4 we have drawn a shell in flight to the right. The axis of the
shell makes angle §, called the ‘‘angle of yaw,” with the direction of motion. The
three forces acting on it are its weight mg, the “drag” D due to air resistance, and

Fic. 7.3. Actual trajectory.

A the ‘‘cross-wind lift” L, which is
: mainly due to a difference in air pres-
1 sure below and above the shell. With

D | this information it is easy to set up the
: equations from which the motion must
: Velocity of be found (Newton’s second law),
:/sound o

’U: m W = —D
Fic. 7.5. Drag as a function of projec- t_iv_,, _
tile velocity. m—y =L —mg

In these two harmless-looking equations, D and L are functions of v, and also of 8.
A qualitative plot of D for a given angle & is shown in Fig. 7.5. It is interesting
to note that D becomes very large for velocities approaching that of sound. The
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equations above cannot be solved in general by known procedures. So-called
“numerical methods,” which involve substitution of D and L from graphs and
tables and integration by a process of summing, must be used in their solution.
Modern electronic calculating machines have been, and will increasingly be, of
very great help in the theory of ballistics.

*7.4. Vertical Motion of a Raindrop. Actual bodies, when falling in air, are
subject not only to their weight but also to a retarding force due to air resistance.
This is greater the greater the velocity of the falling objects and for small speeds
is proportional to ». For definiteness we consider a falling raindrop of mass m.
Reckoning downward displacements as positive, Newton’s second law states

dv
mﬁt = mg — by (7.9)

when b is written for the force of friction per unit of velocity. So long asmg > b,
dv/dt will be positive and v will increase. Finally, however, dv/dt will be zero,
and the drop will fall with constant velocity. This so-called ‘ terminal velocity "
is attained when by = mg; hence

wo=7" (7.10)

A similar result holds for all falling objects. A person falling from a very great
height attains a terminal velocity of about 150 miles/hr. A parachute is a device
that makes the constant b very large.

7.5. Centripetal and Centrifugal Forces. Many a fun-loving youth
remembers vividly his experience on the horizontal wheel, now gradually
disappearing from fairgrounds because it is thought to expose its occupants
to undue risk. As the wheel spins faster and faster, a person sitting on it
will be thrown off. And if you ask him, he will assert that he was pushed
off by “centrifugal force.”” This, we shall find, is an error. But let us
analyze the situation.

To make things as simple as possible, assume an object to be tied by a
string to a vertical shaft S (Fig. 7.6) and to revolve about S at constant
speed v in a horizontal plane. The length of the string is 7, and the sur-
face (perhaps a horizontal table top) on which the motion takes place is
perfectly smooth. The mass has then no vertical acceleration; its weight,
is neutralized by the support of the surface.

We know from Sec. 5.9, however, that the mass has a centripetal
acceleration of magnitude v?/r. It is therefore not in equilibrium but
requires a force that will supply this acceleration. By Newton’s law
this force must have the magnitude mv?/r, in absolute units; and it must
be in the direction of the acceleration, i.e., centripetal (Latin petere, to
seek). It is indeed provided by the string, which, being under tension,
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pulls the mass toward O. The tension thus equals mv?/r, as a spring
balance inserted between O and m would show.

It is true, of course, that the mass while rotating has a centrifugal
tendency; for it flies off along a tangent when the string breaks. But
this is precisely because, when the string ceases to supply the centripetal
force, the mass must execute force-free motion along a straight line in
accordance with Newton’s first law. Hence there is certainly no cen-
trifugal force acting on the mass m.

Similarly the person was not pushed off the wheel by any centrifugal
force; he began to slide off because friction, which previously supplied the
centripetal force needed to hold him in a condition of centripetal accelera-
tion, was no longer sufficient to do so. In fact he began to slide off when
mv?/r (m is his mass) became greater than the force of friction. But the
latter, as we know from Sec. 6.6, is given by pumg if u is the coefficient of
friction. Thus sliding occurs the
instant when

2

= umg(7.11)
or, since v = wr, when w = \/pug/r.
If the angular velocity and the dis-
tance from the center, r, were deter-
mined, the wheel could be used for measuring p. From this result it is
also apparent that a person near the center is harder to push off (requires
a greater w) than one near the ed<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>