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PREFACE

’ I \HE writing of this book was undertaken with
the object of providing a text-book on the
elements of the theory of the Spherical Har-

monics, with applications to mathematical physics, so

far as this could be done without employing the method
of contour integration. Subsequently it was thought
advantageous to include discussions on similar lines of

Fourier Series and Bessel Functions. with correspond-

ing applications.

The first chapter contains an elementary account
of the theory of Fourier Series, while the second and
third deal with the applications of Fourier Series to
Conduction of Heat and Vibrations of Strings. The
four following chapters form the central part of the book.
In Chapter 1V. the Spherical Harmonics are defined,
and a summary is given of the elementary properties of
the Hypergeometric Function. Chapters V., VI, and
VII. are devoted respectively to the Legendre Coef-
ficients, the Legendre TFunctions, and the Associated
Legendre Functions.

In Chapters VIII., IX., and X. the Spherical
Harmonics are employed to obtain expressions for
the gravitational and electrostatic potentials of bodies
bounded by circles, spheres, and spheroids; Chapters
XI. and XII. include similar discussions for bodies
bounded by ellipsoids of revolution and eccentric

v



vi SPHERICAL HARMONICS

spheres. A short account of Clerk Maxwell's theory
of the Spherical Harmonics will be found in Chapter
XIII.  The remaining three chapters deal with the
Bessel Functions and their applications to Vibrations
of Membranes and Conduction of Heat.

At all stages of the work, as in the course of many
previous undertakings, I have been indebted to Pro-
fessor G. A. Gibson, LL.D., for important criticisms
and valuable suggestions. To him my warmest thanks
are due. I have also to thank my colleague, Mr.
William Arthur, M.A., for the great care with which
he has read through all the proof sheets.

Among the books that proved useful to me, special
mention should be made of the following : Wangerin's
Theorie des Polentials und dev Kugelfunktionen ; Cars-
law's Conduction of Heat,; Schafheitlin’s 7heorie der
Besselschen Funktionen ; and Lamb’s Dynamical Theory
of Sound. 1 have also made use of lectures by Professor

E. W. Hobson, F.R.S.
THOMAS M. MacROBERT

GLAsGow
September, 1927



PREFACE TO THE SECOND EDITION

S was explained in the Preface to the First
AEdition, the principal object of this book is to
provide an account of the theory of the Spher-
ical Harmonics so far as that is possible without the
use of contour integration. At the time this seemed
to involve a restriction to integral values of the
orders of the Associated Legendre Functions. In
the present edition it has been found possible to
extend the theory to functions whose orders are any
real numbers whatever. In order to simplify the
formulae the functions Q. (x) and T, (x), as defined
in the previous edition, have been multiplied by
(-1)", so avoiding the introduction of inconvenient
exponential or trigonometric factors when  is not
integral.

Two new chapters have been added: the first,
Chapter XVII., deals with some properties of the
hypergeometric function; the second, Chapter
XVIII., contains an account of the Associated
Legendre Functions of general real degree and
order. A set of Miscellaneous Examples, arranged
to correspond with the order of the text, has also
been annexed.

T. M. M.

GrLasGcow
December, 1945
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CHAPTER 1

FOURIER SERIES

§ 1. Fourier's Expansion. In the course of his researches on
the Conduction of Heat, Fourier was led (1807-11) to the
discovery of the theorem that a function f(¥) can usually be
expressed in the form

S(@) = a, + E(an cos nx + b, sinnr), . (1)
n=1
where = s
If it is assumed, for the time being, that the series in (1)
can be integrated term by term between the limits — # and =,
the coefficients can be determined as follows. First of all,
integrate both sides of the equation (1) over the range (- =, 7);
this gives

j " )= auj" d + 2 {(zn J' " cosmrdr+ b,,j" sinnxdx}
- - w1 - -

= 27ay,
since j" cosny dr = (, -‘.” sinny dx = 0.

In the next place, multiply (1) by cos mx, where m is a
positive integer, and integrate. When 2 and # are unequal

—-r -_m

r COS 724 COS X dx = %J‘" {cos (n + m)x + cos(n — m)ridr=0,

-

r sin 7y cos mx dx = %J-" {sin (7 + m)r + sin (n — m)x}dr =0,

so that
1
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o m m
j J(¥) cos mx dv = ﬂ,,‘J‘ cos’ mx dr + llmj sinmx cosmx dx
- -1 —%

T m .
= %-(z,,,j‘ (1 + cos2mx)dy + %—/},nj sin 2mx dr
-7

-1

= Tap

Again, multiply (1) by sin mx, and integrate ; then, since,
when 72 and 7 are unequal,

-1

.‘. sinnx sinm dy = %j {cos (n — n)v - cos (n + m)x}dr=0,

™ m m
j J(®) sinmw da = a,n“- cos my sin mx dr + bmj sin® mx dr
-7

—n —-r
w
= %/;mj (1 - cos2mr) dy = mwh,y,
-
Thus

a, = ;Iﬂj'iw S(@)dx,

Ay = _Ijﬂ Sfx) cosmr dzx, by = i_“” S@x)sinmx de (2)
- W —n

o

so that (1) can be written

J(x) = -;;“tﬂf(y)aj/ + :72 ‘:cos m’r_ ”f(y) cos iy dy

ne1

+ sin u,rj."_ ”f()/) sin ny d}’} (3)

xn

I

o W OUEED |~ 7o) cosnty - myay . @y

The series on the right of (3) is a Fourier Series. In
determining the coefficients the following assumptions have
been made :—

(i) That an expansion for f(x) in a series of sines and
cosines of integral multiples of x is possible ;

(i) that the series can be integrated term by term.

Thus it is still necessary to prove that the series does give
the values of f(x) for the range ~ = < x < =, and to determine
what restrictions on f(x) are required in order that the theorem
may be valid.

It should be noted that the series is periodic, of period
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2w ; so that, if it gives the values of f(r) for values of =z
between — 7 and 7, it will not, in general, give the values of
[ (%) for values of x outside these limits: indeed, it could only
do so if f(r) were itself periodic, with a period 27.

If the function f(x) is even; that is, if, for - 7 v <=
Jf(—= x) = flx), then all the coefficients &, will vanish. For
from (2),

0 L g
Ty = -‘. f(x) sinmx dx + j JS (&) sin mx dx
—n o

jof( - x) sinmxy dx + rf(x) sin mx dv

" 0

= - j"f(x) sinmx dx + rf(x) sinmx dv = 0,
0 0

Thus, for an even function, equation (3) becomes

7@ = oy + 23 cosme| ) cosmy dp. (5)
Again, if f(¥) is odd; that is, if f(- #) = - f(2) for
- 7 < v < 7, then, from (2),
I(° I("
ap = _j_,fU) cosmy dy + ;jof(y) cos my dy

ks
I ” I T
= = 2 16y cosmy dy + L[ f () cosmy = 0,
and similarly @, = 0, so that every a,, is zero. Hence, for
an odd function, (3) becomes

o

S(x) = 72; 2 sin nxj:f@) sinny dy . . (6)

"n=1a
The following examples will illustrate the method of evalu-
ating the coefficients in a Fourier Series.

Example 1. Find the Fourier Series for the function f{z), where
fley=0for - 7r=2x=0, and fla) = x for 0 s v < .
From (2)
a, = 2 ("rdr = 3,
2wy
0, if mz is even,

1¢m 1 4
an = ~S xrcosmx dr = 1[ pmnmr + cosmam _ | _ 2 . .
mJo Ll m e ) — if 7 is odd,
wm

Irr . H - m-—1
bm = _j rsinmxy dx = 1[- p O8E S mx]ﬂ (=1 .
mdy ™ m m? m
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Hence
_ 2/cOsx , COS3x , COSGx
f(x)—in—;( Tttt )
+(sinr _ sin2x " sin 3 _ L )
1 2 3
When x = 0, it follows from_the formula
m? 1 I I
T + 3; + —g—‘ + ..

that the value of the series is zero, which is also the value of f(x). On the
other hand, when » = % =, the series has the value 3=, while /(- =) = 0
and f(n) = = ; so that the value of the series is the mean of these two
values of f(x).

Example 2 (Even Function). Let f(x) = — x for — nsx =0,
and f(z) = x for 0 < x < = ; then

ay = lj".m’x, am = E.V.r cos mx dx,
mJo mJo

so that these constants have twice the values of the corresponding con-
stants in ex. 1, while 4, = 0 ; thus

_ 4/COSX¥ COS3xr = COSGY
f(z)_gw—;< Ia+ 3 + = +>
If = 0, the series and f(2) have both the value zero, while, if
z = I =, the series and f(x) are both equal to =.
Example 3 (Odd Function). Let the function f(x) be given by

-1, -wm=s52<L0,

) = { 0, x=0
I, 0<rsm

Then a,, = 0 and

— 0, if » is even,
bm = —5 sinmxy dxr =

—4—, if 2 is odd ;
mn

T
thus
_4(sinx  sin3r sinsx )
S =A(TE A TR B,
When » = 0, the series and the function have each the value zero;
on the other hand, /(- ») = - 1 and f{n) = 1, whilefor x = X 7 the

series has the value zero, the mean of these two values.

The graph of the sum of » terms of the Fourier Series for
a function f(x) approximates to the graph of /(z), the greater the
value of 7 the closer being the approximation. In Figures 1
and 2 are shown the graphs of the functions y = f(x) in examples
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2 and 3, with, in each case, the graph of the sum of the first
three terms of the corresponding Fourier Series.

y/k

TG, 2,

§ 2. Validity of the Expansion. The simplest method of
establishing the validity of the Fourier Expansion is to take
the sum of the first (# + 1) terms of the series in (4), and
show that, as » tends to infinity, this sum tends to /(x). Let

S, +. denote this sum ; then
”

Suvs = o) SO+ Deosrty - o)} @y

T

L sin(2n + I)}/ : il
L — e
T 2 sin”

2
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Here put y — » = 24 ; then

=X

ST j ﬂ+xf(:c+ 21 )s‘“(z” + D%

Sin %

I ”__“_x sin(27z+1)u
- _j o PTG
7y sin

10 sin(2n+ 1)u
+ = ¥ e
77_[_ ’Lﬂf(t + 2u) e du

| sin(2n+ 1«
_"jo f(1+'  sinx au
vr+x
1 sm(..n+l)u
w2 F e T ()

on replacing # by - # in the second integral.

The problem now is to determine the limits to which these
integrals tend when # tends to infinity. The integrals can be
expressed in the forms known as Dirichlet’s Integrals, which
will be discussed in the next section. It will be assumed that
the function f(x) satisfies the following conditions, known as
Dirichlet's Conditions :

(i) The function must be continuous at all points of the
interval under consideration, except that it may have a finite
number of finite discontinuities, like the discontinuity at x = 0
iner.30f§ 1,

(ii) There must only be a finite number of turning points of
the function in the interval; an example of such a point is
giveniner. 2 of § 1 atx = 0. The function sini has an infinite
number of maxima and minima near x = 0, and does not there-
fore satisfy the required conditions.

It is possible to extend these conditions to include wider
classes of functions, but these extensions are not required for
the purposes of the present volume.

Since the number of discontinuities is finite, each discontin-
uity will be isolated ; that is, at a discontinuity » = ¢ a definite
positive quantity % can be found such that, in the interval
(¢ - m ¢ + 1), f(x) is continuous except at + = ¢. The in-
terval (¢ — u, ¢ + 7) is called tke neighbourhood of c.
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If the function /() has an isolated finite discontinuity at

x = ¢, f(x) tends to a definite
limit as #» tends to ¢ through

4

values greater than ¢, and the
value of this limit is denoted -Q
by flc+0): similarly, f(x) ] —

tends to a definite limit
JS(c = 0) when x tends to ¢
through values less than
In Fig. 3, OM = ¢, AP, and A
P,Q are parts of the curve

7 =@ MP, =7 +0), - >
and MP, = f(c - 0). o M

§ 3. Dirichlet's Inte- Fe. 3.
grals. Consider the integral

j: () sin mu du, . . )]

where s is any positive number, and ¢(«) satisfies the Dirichlet’s
Conditions of the previous article. The limits 2 and & and the
function ¢(#) may involve a parameter: for instance, x is a
parameter in the integrals in (7).

Now leta, a, . . ., a, be the values of # in the interval
(a, &) for which ¢(x) has either a turning value or a discontinu-
ity ; then, in each of the p + 1 intervals (a, @)), (@}, a5) . . . ,
(ap, 0), (%) is monotonic; that is, as » increases ¢(«) either
never decreases or never increases in the interval. The second
theorem of mean value can therefore be applied to the integral
(8) in each of these intervals; so that*

Ay 4+ 1 .
j (1) sin mu du

ay

B
sin mu du

= ¢(a,.)jzr sin mu du + ¢(a, 4 ‘)j

¢

cos mé + (a4 ) cos mé — cosma, .,

cos ma, -
a,) .
= 96( 1) ‘ n

where @, < € < a, ,,; thus

* Here, and in what follows, ¢(a,) and ¢(a, ,,) are written for ¢(a,-0) and
$(ar 41— 0).
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$ar + 1)l

2
+ —
n

< 21 g(ar)

Ay 41
\ j ¢(2) sin mu du
G
< ﬂ-—x
m

where G is a positive number which is greater than |¢(z)| for
all values of # in the interval (g, §). If a parameter 1 is involved,
G is chosen so that the inequality holds for all values of x under
consideration.

Hence

-‘.b é(#) sinmu du| < M, . . (9
a m
where, if a parameter x is involved, the greatest value that p
can have for any value of x under consideration is taken,

Accordingly, since G and p are finite and independent of z,
when 2 tends to infinity the integral (8) tends uniformly to
zero.

In the same way it can be shown that the integral

Ib d(u) cosmu du . . . (10)

tends uniformly to zero when sz tends to infinity.
Next, it can be shown that the integral

[ s

sin mu

du, . . . (11)

%

where 0 < a < 4, tends uniformly to zero as m tends to in-
finity. For

br 41 sin mu { sinmu
R OEAy ¢(a,)L T
1 4
br+1 sin
+ &ay 4 I)S sin #u u
3 ¢ *
. : ma .
sin# 1 oginy
= ¢(a,)_‘-ma adun + ¢(a, ,)j du ;
’ mg
and, since the integral
© 5in % o
0o %
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is convergent, and each of the quantities a,, ¢, a, , , is not less
than the positive quantity @, a definite positive quantity M
(independent of ) can be found such that, for 7z = M,

mé
sin % mrtising
ma,

where € is any assigned positive quantity. Hence

J‘:r+l¢(u) sin:zu du|<e|dla,)| + €| Plar 4 1) |
<2€G,

r () Si“u’”" du| < 2(p + 1)G.

u | < €

and

Thus the integral (11) converges uniformly to zero as
tends to infinity.
Lastly, it can be shown that the integral

r () Si“u””‘ dv, . . . (12)

where a is positive, tends to the value {né(+ 0) when 2 tends
to infinity ; if ¢(«) is continuous at » = 0, this limit is §mw¢(0).
Let %4 be a positive number such that 0 << 4 < a; then,

J-a o) sinumu du = j’: () sinumu du + J‘: (%) sin umu 4

Since the second integral is of the type (11) it tends uniformly
to zero as m tends to infinity. Now, choose £ so small that
é(x) is monotonic in the interval (0, £); then, by the second
theorem of mean value

jk o(u) sinumu - $(+0) j‘k sn;mu du
q_‘>(k) _ <}5( O) j‘ sin mu du,

where 0 < ¢ < £: thus
J‘ ¢>( )smmu _ <;b(+0)j Sluﬂtdu

+ 198 - 4+ 0|

mk
smu a'u (13)
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When m tends to infinity, the first integral on the right of this
equation tends to * 4w, while the second is numerically not
greater than + =. But % can be chosen so small that, for any
assigned positive quantity e,

|¢(£) - ¢(+ O)[<e . . . (14)

Therefore, when 2z tends to infinity, the integral (12) tends
to the limit 47¢( + 0).

When there is a parameter r, it may happen that it is not
possible to determine a fixed £ so that inequality (14) should
hold for all values of » under consideration ; in that case, while
the first integral can always be made to approach indefinitely
near 4w, it may not do so uniformly. This point will be dealt
with more fully in the following section,

§ 4. Summation of the Fourier Series. Returning now
to the summation (7), let us assume, to begin with, that the
function f(x) is centinuous at all points of the interval (2, ¢),
where - 7 <{p<g<m The first integral in (7) can be
written in the form

J‘”‘ # sin(2n + I)ua’u. . (15)

Tz
0 f(x+2u)sinu u
which is of the form (12) with 7 = 2% + 1 and

$(u) = flxr + 2u) _® .

Smu

Then, for any assigned ¢, a £ can be found such that the in-
equality (14) holds for all points x of the interval (p, ¢). Itis
then possible to choose a positive quantity M so that, when
m = M, the first integral on the right of (13) differs from
37 by less than any assigned small positive quantity. Thus
the integral on the left of (13) tends uniformly to $wé( 4 0)
when m tends to infinity ; therefore (i5) tends uniformly to
3nf(x + 0) when m tends to infinity.

In the same way it can be shown that the second integral

* Cf. Misc. Exs., 2.

+ The reader may verify this statement by drawing the curve v = sin x/x:
the successive half-waves have the same breadth » and diminish in amplitude, the

greatest ordinate beingy = 1 when x == 0: thusif u;, — u,, %3, — u, ... Le the
areas between the ordinates at x =0, 7, 27, 37, . . ., 7> ;> wup > uy . . ..
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in (7) tends uniformly to {mf(x - 0) for all values of x in the
interval (2, ¢). Thus S, , , tends uniformly to

Hx+ 0) + /@ - 0)},

and this is equal to_f(x), since the function is continuous at the
point .

Point of Discontinuity. At a point of discontinuity of 4x)
it is, of course, impossible to include & in an interval of con-
tinuity (2, ¢), and, in consequence, the convergence to the limit
of one of the integrals in (7) ceases to be uniform. From
equation (13), however, it follows that, though the convergence
is not uniform,

Lim Spyy = $fG + 0) 4/ = OF . (16)
#—>wm

An illustration of a discontinuity of this type will be found
iner. 3 0of § 1.

Note 1. These results are in accordance with the well-
known theorem that the sum of a uniformly convergent series,
the terms of which are continuous functions of the variable, is
itself a continuous function.

When x = =, (7) becomes

_rf(" P sin(2z + 1 o

I
s . =1
- sinz

1 i
_ —rf(‘ﬂ-zu) 51n(2.n+I)u u
), sin %

I(= i
+ —J‘ J( -7 +2u) smiznt L (2.72 + du
7}, sinu

as can be seen by dividing the range (0, =) into the two parts

(0, §m), (4w, m), and in the second substituting = — « for # in
the integral : hence, as before

L_i>mSn.+1=%{f(7T_0) +f(_77+0)} . (17)

If /(- =) = f(=), the sum of the series is /(£ #). For the

interval (m 3m) the function f(x) can be defined by means of

the equation f(r) = f(- 27 + #): the point 7 can then be
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included in an interval of continuity of the function, and, con-
sequently the convergence is uniform. When f(x) and f( - =)
are unequal, the points 7 and - 7 are to be counted among
the points of discontinuity.
The value of the series when x = - 7 is also given by (17).
Note 2. From the formule (2) and (9) it follows that the
coefficients a,, &, in the series (1) are less in absolute magnitude

C . .
than g where C is a definite constant ; thus, while the series

is convergent, it is not always absolutely convergent.

Note 3. 1If the function f(x) is continuous, and has equal
values when » = * 7, and if it has a derivative f(x) which
satisfies Dirichlet’'s Conditions (§ 2), then, from (2), by partial
integration

Ccos m::l”
o

by = - 2 s
= i.‘.” S(%) cos nx dx,

) _ .

+ L'r J'(x) cosnx dx

) _

and similarly
I )
a, = - ;7;[_ ”f(x) sin nx dz,
so that, from (g),

C C
|aal <33 and [8,] <

In this case the series will be absolutely and uniformly
convergent, and f'(x) can be obtained by differentiating the
series for f(x).

§ 5. Sine Series and Cosine Series. The validity of the
series (5) and (6) for the range — 7 < x < 7 follows from that
of (4) for the cases f(x) even and f(r) odd respectively, since
(5) and (6) are then merely particular cases of (4). It can
easily be shown, however, that (5) and (6) still hold for the
more restricted range 0 < x < =, when f(x) is any function
satisfying Dirichlet’s Conditions.

For instance, if f(x) is not an even function, let a function
F(x) be defined as follows :

F(:r)=f(;r), O=sr=m

—_ == ’

Fx) = f(-2), —-a<52+<0.
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Then IF(x) is an even function, and, for the range - =# < x = =,
its value is given by (5). But, for the range 0 Sx <=,
F(x) = f(#); hence, for this range, f(x) is given by (5).

Note. In this case F(x) is continuous at » = 0, and there-
fore the actual value of f(0) is given by the series. Also,
F(- m) = F(a), so that the value of /(=) is given by the series.

Again, when f(x) is not an odd function, let F(+) be defined
by the equations

F(x) = f(v), 0sx=m,

F) = - f(-2), - 7250,
Then F(x) is an odd function, for which the expansion (6) is
valid, and this expansion holds for /() for the range 0 <& < m.
When # = 0 and when » = 7 the series is zero, so that it will
not represent the function at these points unless f(0) and f(w)
are zero.

Note. For the cosine series the equivalent of the conditions
of Note 3 of last section is that, in the range 0 <x < #, Ax)
must be continuous, and f'(x¥) must satisfy Dirichlet’s Con-
ditions. For the sine series, in addition, /(x) must vanish when
2z = 0 and whenx = 7.

§ 6. Other Forms of Fourier Series. Fourier expan-
sions are sometimes required for other ranges of x than those
discussed above. For example, the expansion for the range
0 <x = 27 can be deduced from that of (3) by writing

F(y) = /()

where y = 2 — #; then, for - 7 <y <,

F(y) = a, + 2 (@, cosny + b, sinny),

where, by (2),
I (™ .. 1 (. I (™
a,— _j F(3)dy = 2_;-{0 F(x - m)de = EL F(x)dx

27) —n .
-] 70,

and, similarly,

an = 2 70 cosnte - my d = =D 1) cos r a
0

T

0
2w n rlr

b, = %j J@) sinn(x - n)de = (- 1) J(x) sinnx dv.
0 0

T
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Hence, for 0 £ x < 27,
JSx) = a, + 2 la, cos n(x — ) + by sin n(x - m)}

n=1

- ;I_I F(dy + = i {cos nx j:ﬂf(y) cosny dy

n=1

2
+ sin m‘j Sf(y) sinny dy} (18)
0

2 ~ 2w
= L[+ L2 [ cosnty -y - (19)
27 0 @™ we=1 0
Again, for the range - /< x </ let F(y) = f(x), where
y = mx/l; then, if - 7=y =,
F(p) = a, + 2 (a, cosny + by sinny),

I

o= [T Fowy - L[ res

where a

and, similarly,
1 .
an = 3" S cos™ T ds by = ] sy sin T dr (20)

Hence, with these values of the coefficients,

Y nmy
J@) =a, + 2 (a COS—-V— + b, sin - - )

fi=1

- L o + B3 [ s 20 4y o

where - /IS <2

The reader should notice that in these expansions the
coefficient can be at once determined by multiplying by the
cosine or sine in the term and integrating over the range
under consideration.

As in the previous section it can be shown that the cosine
series and the sine series corresponding to (21) are

76 = o + 2 S cos ™[ 100 o™ . (2)

n=1
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where 0sxr,

2 Q. nmr(! . nm
and Sx) = 7 2 sin —7; Lf(y) sin /—y ay, . (23)

where 0+l

Also, from (18), for the range 0 < x < 2/, it can be deduced
that

oo

J(@) = a, + z(a,, cosﬁz—x + b, sin ’Z’;—x)

n=1I

2l
where a, = 51.“0 JS(x)dx

18 - 12
a, = 7_‘.0 J&@) cos”—‘; dx, b, = ?L J® sinﬂ—";'f dx ;
or

s = 5o v 3 [ 0™ D g (e

n=1i

The reader can easily verify that, for any range ¢ < x < J,
the expansion becomes

@ = sl o0 + 52 2 [70) e 20 =2 g,

n=i1

. : . . i (25)
while the cosine and sine series for this range are
nwx
A= 7+ 52 Seos (PN i) con (P72)
(26)

and

@©

) = 1% 2 sin( ;

n=I

N o) sin(F2) @)

Example 1. Show that the cosine and sine series for f(2) = x in the
interval 0 £ x < = are

_ Z _4/cosx COS3r  COS5X
<1) x < 12 3‘.’ + 52

. sinx sinz2x  sin3x
(n)x:z(l -—t 3" —...),0sx<n.

. ),0§I§Tr,
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Since the first expansion holds when + = 0, it can be employed to obtain
the formula
72 I

F=l_”+3 +~5—)+

Example 2. If m is neither zero nor an integer, show that

o 2 . sin x 2sin2x 3 sin3x )
1) sinmxy = — sinmm - - .
© 7 19 — m2 23 — g0 3 — 2 !
where - r<r<n;
.. 2 . 1 7 COSX mCOS2XY M COS3x
(1) cosmx = - sinmna( — + — - = -+ A N
T 2m o 12— 27—t 33— w3

where —w=sxsm

From (i), by putting » = 0 and ¥ = =, deduce that

(iif)

I 2m 2m 2m

- ~ + T T
sinmz  m w - 12 m? - 2% - 32

+--o,

2mn 2m

. 1
W) scotmmr = — + —— —
() m mt — 12 mi ~ 21

Example 3. Show that, if 2 is not zero, and — n < ¥ <=,

mn
sinhsr 2w sinh me cos nx
coshmx = + (= 1) —, -
mm m m + 71‘
neg
Deduce that
2]
. T I 2m
(l) nh = — (_ l) ———3
sinh sz m nt +n
=1
.. I 2m
(1) = cothmnr = — + — .
m m? + 2*

n=1

§ 7. Fourier's Double Integral. From the integrals
(11) and (12) it follows that, when 2 tends to infinity, the
integral

b .

J‘ $(u) smumu du . . . (28)
tends to zero if 0 <a <4, and to 4md(+ 0) if 0 = a <4,
provided that ¢(x) satisfies Dirichlet’s Conditions (§ 2). Also,
ifa<<b<O,

qu( )smmu J‘ o u )sin:zu d . (29)
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and, from (28), when s tends to infinity this tends to zero,
while, if a< 6 = 0, it tends to 3n¢(— 0). Also, if a <04,

-“95( )sm mu j‘q{)( )sm MU J‘Z¢<u) sinumu du,

and, from (28) and (29), when 2 tends to infinity this tends to

1m{(+ 0) + ¢(- O)}.
Here replace ¢ (%) by f(x + «), and these results can be
written

fx+0)+ flx- 0}, if a<0L5,
Lim I sinmu , |3 f(x+0), if 0=a<é,
e ACERD W= 3 Fle-0), if a<b= 0, (30)
0, if 0<a<<t or a<b<0.
Now let it be assumed that the integral

j S+ %) .. 31

converges uniformly for all values of m; that is, that corres-
ponding to any positive quantity ¢, however small, a positive
quantity K can be found such that, for all values of 7,

|rf(-t‘+u) sinmu ;. j Fla+w)
k u

provided that 2 = K : then, from (30),

Lim " flevn) T du = 31/ 0) + - O} (32)

m—>o 7

sin 7}221

sin 7IZZ¢

< ¢ and

<e

In (32) write « for z + u, and it becomes

Lim 1™ ) 225 dom e 0) - O (33)

m—>o TJ_
Now
sinm (o — x)
-z

so that, from (33),
$1/@ +0)+f(x - 0)}= Lim lj F(@) da. j cosBla - %) dB

= j;n cos B (a — x) dB;

m o (34)
“lin ], o] /@ e te - s G
- %I: d’B_[_ S(a)cosBla - x)de, . (36)

44
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provided that it is allowable to change the order of integration.
The integral (36) is known as Fourier's Double Integral. Of
course, when £ () is continuous, the value of the integral is f(x).

When f(r) is even, the second integral in (36) may be
written

el

j: F(a) cos Bla - ) du + L Fla) cos B(x + x) da
- 2J: F(&) cos af cos B da;
so that (36) becomes
2|, coszap | :f(a) cos af du= 31 f(x +0) +/(z = O (37)

w

Similarly, if /(2 is odd, (36) becomes
“sinaf dB [ /(@) sinaB du= 4/ (4 0)+/ (=0 (38)

2
)

For positive values of x the formula (37) is still valid, even
when f(#x) is not even. This can be ‘deduced from (36) by
substituting f( — x) for f(x) in that formula when x is negative.
Similarly (38) still holds for positive values of x even when f(r)
is not odd ; to prove this, substitute - f( - x) for fx) in (36)
when x is negative.

If in (37) we replace the inner integral by \/<g>¢('8) we

obtain the theorem that, if x is positive and if

: S(&) cosra da = «/ <g>¢(1),
then [~ $(a) cosra du = \/ (g) J@ . . (39)

Jo
Similarly, from (38) it follows that, if x is positive and if
Jo

o S (@) sin va da = \/(94’(”)’
then (-~ () sinra da = \/<72_T>f(x) . . (40)

Jo

It will now be shown that, if the integral

n

S )z
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is absolutely convergent, all the steps in the proof just given
are valid. For then a positive quantity K can be found such
that, if £ = K,

jfu b ) S lé j LI

< md<s L o)

and similarly
sin mu

f(.r + u)

for all values of 7. Thus the mtegral (31) converges uni-

formly, and consequently (32), (33), and (34) are valid.
Now

[~ " floda j "cos fla ~ z) dB - I ;"dﬁj': F(@) cos fla - %) da
- (a)a’cxj cos B(a — %) df - J’ ;"dﬁj: (@) cos Bla — %) da
+ Ie f(a)dajo cos B(a — x) dB - j;nu’B"‘: S (&) cos B(a — x) da,

and, no matter how large sz and 4 are, the first two integrals
cancel. From (40), the absolute value of the third integral
is less than €/4; also, for the fourth integral,

j;na’ﬁ‘{:f («) cos Bl — ) da | < J-:la’ﬁ-‘-:| f ()| da
<s

€
ul<z€|

if K is chosen so large that
j (@) de < 2,
k m

for # = K. Thus, no matter how large 2 is, K can be chosen
so large that

| [/ cos Bla ~ ) @B ~ ["aB] f(u) cos fla—5) |
< €</£e + I) < 2g,

and therefore, since the integrals are independent of 2,

j:f(a)daﬁ"cos Bl - %) dB = j?dﬁj:f(a) cos B(a — %) da.
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Similarly
J-c'_mf(a)da.“;"cos Blo — %) dB = j ;ndﬁj_nf(a) cos B(a - %) dt;

and therefore (35) and consequently (36) are valid.

Examples.
1. If - » < x < m show that
2 sinh = cos x cos2xr  COs 3x
et = ( - o + o b a LI

™ 41 2+ 1 341

1.sinx 2sin2r 3sinjr

F] Y + 3 - .
1+ 2% + 1 3+

2 lf fx)=r+xfor —m=s2<0,and f(@)=7n-~ 2 for 0sx g,
show that, for - n s x <=, .

f(x) = 47 + ﬂ(cols,x + cof.f’x + co;,sr + .. )
2
3. Prove that
. sinx sin2r  sin 3z
(|)n—x=2( —t— -+ 3 +...),0<xSw,
(i) m + 2 = 6(S":x + sm33x + smssx + . )

2(sinzx sin4r sin6x

2 + a + 3 +.”>0<x<m
4. Show that, if 0 s x <=,

Sinx < 2 5(c052x cos 4 + cos bx + )
- 1.3 3.5 5.7

™ ™
8. Prove that, if 0 < xr < m,
cosx=§<2smzx+4sm4r 6sm6x+“ )

.3 3-5 5.7

6. If f(2)=0 for 0 <<a<<4dn and f(x) = 1 for §r < x < 3m, show
that, for 0 < x < 3m,

2/.2x 1. 6x 1 . 10X
= - —={sin — - SIn — - _— [N
s@) =3 - 2 S+ 3 +gsin = )

3
2. If 0 £ 2 <=, show that

. _ 87 ) G | G
(i) 2(m - 2) = ;(smx + ?sm3x + ‘5‘35‘“ 5 + . . .),

3 cos2xr cos4r cosbx

k2
6 1 28 T T3 teee

8. If 0 < x <7, show that

(il) x(m - 2) =

() $(m~2)sinz=3+4 cos» - ﬁ coszx—z—fz cos 37

—g_l—scos4x— Ceey
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.. . . 4(2sin2xr 4sin4r 6sinbx
(i) 37— #)sinx=rsin x4 IR ARATL ORI, L

9. If f(x) =sinx for 0 s *x <nf2 and f(x) = - sinx for nf2 < 2x < m,
show that

2 sin 2x 4sin 4r 6sinbx )

= + - )
/@) ( 1.3 3:5 5.7
sinh Ax _ sinh A(2a - x)

10. If f(2) = “osh 'z for 0 g2 <aqa and f(x) = cosh a for

a £ x 5 24, prove that
nnx

sm—T—r Slﬂ——
Sx) = —2 —

n=1

k) _x+ 2nl)2
1 If f(x) = E e ¢, where ¢ is positive, and if

4 am — @

v

S(x) = 8Aq + 2 Ay, cos ”le,
Nne=1

show that

20m 2 nmy
A, = — pakited
n ljo e ¢ cos 7 dx.
Deduce that
-] n2

Fi) = x/(vrc){l + 2 26— 41';2‘ cosz’;—x}.

n=1

12. Show that, when »# tends to infinity, the integral
i
sin nr dx
v "54 —
0 COSXY 4/x

tends to 4/(m/2).
[Use the Fresnel Integral Su sin 2% dx = §4/(n/2).]

0

13. By integrating each side of the equation

. sinny sin(z + 1)x
sin 27y = :

sinxy

r=1
and taking the limit when » tends to infinity, show that, if
O<CaB<m,

oy

2 cos 27a — cos27f _ log sin B ~ log sina,

r

LD §
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and that, f 0 < ¥ < m,

(- -]

Ccos ¥y .

= - log {2sin-).
r 2

r=1

14. By writing /(2) = e—% cos z in Fourier's Double Integral, show that

oydsingrdy =«

5 o —— = —=€—@ Cos a,
0 X"+ 4 2

where a > 0.

15. If jm S(x)sindr dr = e — M sin),
0

1 _=x? _rt»n?
show that  f(2) = 5_—,;{3 4 - ¢ 4 }

16. If jmf(.r) cos ar dv = w, find f(x).
0 a

[Ans.: f() =1 i 0<L2xr L1 f(a) =0 if x> 1]

17. If ro f(a) sinxa da = 1-51:—%, show that the function /() is given by
0 P

SO = e~ 1T e if0sr s,
S@) = e~ e if 1 s

18. Prove that the integral

® (sin# — 2 COS#) sin# sin xx
du
0 w

is equal to g(zx - 2)if 0sx <2 andis zero if + > 2,
19. Show that, if 0 < < 1, the integral

a simnnxy
nPj Coscx dx
0 al—p

tends to I'(p) sinézz as » tends to infinity,



CHAPTER 11

CONDUCTION OF HEAT

§ 1. Definitions. If one part of a solid body is at a higher
temperature than another part, heat passes through the body
from the hotter to the colder part, and this process is known as
Conduction of Heat. Conduction should be distinguished from
Convection and Radiation. Convection takes place in liquids
and gases, and the transference of heat is due to the movements
of the particles of the fluid among themselves, the hotter and
colder particles mingling with one another. In Radiation heat
is transferred from the hotter to the colder body by a process
which takes place in an intervening medium; it is thus, for
instance, that the earth receives its warmth from the sun.

Conductivity. Consider a slab of solid material bounded
by two parallel planes, and let one plane be maintained at a
constant temperature v, and the other at a lower constant
temperature v,. It is assumed that the faces of the slab are
so large compared with its thickness that, for practical purposes,
they may be regarded as infinite in extent. Heat passes from
the first to the second face, and after an interval of time the
temperature at all points of the slab ceases to vary with the
time. If Q denote the amount of heat which then passes in
time # across an area S of a section of the slab parallel to the
faces, it is found, as a result of experiment, that

_ K(v - 2,)S¢
Q= — . . . (1)

where o is the thickness of the slab and K is a constant de-

pending on the material of which the slab is formed. This

constant is known as the 7/ermal Conductivity of the substance.

As a matter of fact, the value of K varies slightly with the

temperature, but at ordinary temperatures this variation is so
23
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minute that it may be neglected in the Mathematical Theory
of Conduction.

In some bodies (heterogeneous bodies) the value of K varies
from point to point, but it will here be assumed that the bodies
dealt with are homogeneous, so that K is constant throughout.
It will also be assumed that the bodies are isotropic, that is,
that heat can spread with equal ease in all directions; in
crystalline and non-isotropic bodies the rate of conduction may
vary with the direction, On' the assumption, then, that the
bodies dealt with are homogeneous and isotropic, the mathe-
matical theory will be developed from the fundamental
hypothesis made in equation (I).

The numerical value of K will depend on the units of
measurement adopted, and it will also depend on the definition
of the unit of heat employed. The unit of heat will here be
taken as that quantity which will raise unit mass of water
through one degree centigrade. The dimensions of Q/(v - v,)
will then be simply [M]), and consequently the dimensions of
Kare

K] = M
[LIT)

In the C.G.S. system of units the unit of heat is the Calory,
the quantity of heat which will raise one gramme of water
through one degree centigrade.

Specific Heat. It will also be found necessary to make use
of the expression “ Specific Heat.” The specific heat of a body
is defined as the amount of heat required to raise unit mass of
the body through one degree centigrade. It will be assumed
for the purposes of the present volume that the specific heat
is independent of the temperature, volume, and pressure.

Isothermal Surfaces. The temperature v at any point
(x, », #) of the body under consideration is a function of the
co-ordinates of the point and also of the time # A surface
described in the body so that every point on it at the instant #
has the same temperature is called an Isothermal Surface.
Obviously, no two isothermal surfaces can intersect, as a point
cannot have two temperatures at once; thus the solid may be
regarded as divided up into thin shells by its isothermals. At
the time ¢ heat is flowing from one isothermal to another, the
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direction of flow being along the normals to the surfaces, since
no transference of heat can take place along surfaces of equal
temperature.

Let the temperature of the isothermal through P (x, y, 2) at
time z be v, v 4+ 8v the temperature of a neighbouring isothermal,
and &» the distance between the two surfaces measured along
the normal at P to the surface through P. If the thickness
8z of the shell is very small, in the neighbourhood of P the
shell may be regarded as a thin slab; and therefore, from (1),
the quantity of heat which passes through the isothermal at P
per unit of area per unit of time in the direction of the normal
n is

K - (v + o)} _ st°
3n on’
which, when 87 tends to zero, tends to

dv
- K—- . [ . ]
mn (2)

This may be taken, in place of (1), as the fundamental
hypothesis in the Mathematical Theory of the Conduction of
Heat.

§ 2. Flow of Heat across any Surface. It will now be
shown that the formula (2)
gives the rate of flow of heat
per unit area, at time # not
only across an isothermal
surface, but across any sur-
face in the solid.

Let P be the point
(x, , 5) in the solid, and con-
sider a small tetrahedron
PABC, in which the faces
PBC, PCA, PAB are parallel
to the planes + =0,y = 0,
z = 0 respectively. Denote
the area of the triangle ABC
by 4, and let p be the length
and (A, p, v) the direction- Fic. 4.
cosines of the perpendicular
from P to ABC; the volume of the tetrahedron is then }p4.
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Let 7 be the rate of flow of heat per unit area outwards across
ABC, and let £, f,, /; be the rates of flow of heat inwards per
unit area across PBC, PCA, PAB respectively. Then, since
the areas of these triangles are A4, ud, v4 respectively, the rate
at which the tetrahedron is gaining heat is

Jo M + fypd + fvd - fA.
But if ¢ is the specific heat and p the density of the material,
this is equal to
.2/
cpb—E X %pA,
so that

Mok pfy+vfi-f= bt .. (3)

Now let the volume, and consequently p tend to zero; then
J becomes the rate of flow per unit area at P across a surface
whose normal # has direction-cosines (A, g, v), and is called the
Jlux at P in the direction 7 Similarly, £, f,, /; become the
fluxes at P in the directions of the z, y, z axes respectively.
Equation (3) then reduces to

Mz + pfy +vfo=f . . . 4

If the axes are chosen so that the flow of heat at P is
paralilel to the z-axis,

oV

So=/Sy =0, f,=- KS?

and therefore S =vf=- sz_v.
3

But w_w W

m aw o Ty ez

and, since the isothermal surface is parallel to the (r, ) plane
0w

— = — =0, hence
oy
hiXZ Qv
_— = V__"
hY// dz
so that
hr/
J=- K. N )
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In particular

oV Y -0V
/‘;——Kb;, ,——Kb_y-, f,——kb_g

§ 3. The Equation of Conduction. In proving the
differential equation of conduction of heat use will be made of
the following well-known theorem, by means of which a surface
integral can be expressed in terms of volume integrals.

Green's Theorem. Let U and V be two functions, which,
with their first and second derivatives, are uniform and con-
tinuous at all points of a space 2 bounded by a surface S:
then, if # is the normal to the surface, measured outwards,

Uuﬁds - ”I(EI—JEY § 20V, U A
on o oy oy 05 03

where V*V denotes the expression
2 2 2
A
oy 035*

ot ’

and the surface and volume integrals are taken over S and
throughout 2 respectively.

For, since a line drawn parallel to the x-axis meets the

surface in an even number of points, on integrating by parts
with regard to x we obtain

j j PH N trdyds
o v

- (02 (20 (0,0 - oo
- j”u%‘,fdxdydz,

where (Ug) is the value of (Ubb—v> at the 7th intersection
’ x

of the line with the surface. Hence, if (A, g, v) are the direction-
cosines of #, since dydz is — AdS if » is odd, but AZS if # is even,

YU WV AV, - RV
{3 57z = [Juspas - [[fuszes
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Similarly
[t - s - ffoes
dy Wy oy bﬂ)"
and ”JE WVos - ”U?Xwis - HIUD'Y@.
0z 02 02 03"

On adding these three equations, equation (6) is obtained,
since

LA ,ubl, 2 Y

dr dy 2w wm

From this result the equation of conduction can be deduced
as follows. Let X be any volume of the solid, bounded by the
surface S; then the amount of heat flowing into the solid per

unit of time is
W 4
~11/4S = || K=4dS
Jfros = [
and this is equal to the gain of heat

[joe

by the solid per unit of time ; hence

”Pi’dz - IEHE’_’JS.
JJoz pl)on

Now, if U = 1 and V = 9, equation (6) becomes

(975 = ”jvadz,
o

so that j .jb_vdZ’ = I_(J-jjvadﬂ.
J Jos cp

But this identity is true no matter how small the volume X2 may
be: thus, at all points of the solid

(7)

— =V =¢ +

v v dv v
G e
A wr o WE

K
where « = = Equation (7) is the Eguation of Conduction, and

the constant « is called the Dzfusivity or the Thermometric
Conductivity of the substance.



CH. IL] CONDUCTION OF HEAT 29

§ 4. Initial and Boundary Conditions. The value of »
obtained as a solution of (7) for a given solid must be a con-
tinuous function of x, y, 2, and ¢ and this must also be true of
its first derivative with regard to # and of its first and second
derivatives with regard to #, », and =.

In order that v may be completely determined, there must
be given certain boundary or surface conditions, and ‘'also the
initial conditions ; that is, the values of v throughout the body
when ¢ = 0.

If the initial distribution of temperature is a continuous
function, v must converge to this value when ¢ tends to zero.
If the initial distribution is discontinuous at a finite number of
points or surfaces, these discontinuities will disappear very
rapidly ; when 7 tends to zero, v must converge to this initial
value at all points where the initial distribution is continuous.

There are several possible types of Boundary or Surface
Conditions.

(i) At the surface of a body placed in a medium heat is
usually lost or gained by radiation and by convection. Let ,
be the temperature of the medium, and v that of a small area
8S of the surface: then it can be assumed, as a result of ex-
periment, that the amount of heat passing off the area in time
ot is

(v — v,)8508¢

where ¢ is a constant called the Emissivity of the surface. As
a matter of fact, it is found that ¢ does vary considerably with
the temperature of the surface, so that, in experiments on con-
duction it is best to cut down the loss of heat by radiation as
far as possible by treating the surface with a suitable material.

Now the amount of heat that passes through the area 8S in
time 8¢ is

- Kssss,
”m
and therefore
L
- K== = ov - v,).
2 v - v)
Thus the surface condition is

Rk
57—1 + k(v - vo) = O, . . . (8)
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where /2 = ¢/K, and the differentiation is along the outward-
drawn normal. If (A, u, v) are the direction-cosines of this
normal, (8) may be written
v oV oV '
Al b+ p— v+ v - v) =0 . . (8)
= #Dy 3z ( 0) (
(ii) If the surface be maintained at a constant temperature
v,, the surface condition is simply
v = Y 9)

(iii) If the surface be made impermeable to heat, so that no
heat passes across it, the surface condition is

it

— =0, . ] . . (10

o (10)
or )\b—v‘ + /.Lb—v +7 0. . . (10)

at the boundary.
(iv) If two solid bodies are in contact, then if v and o' are
their temperatures at their common boundary,

hXZ i
— =K'~ . . . (11
Ko = Ko (1)
where K and K’ are the conductivities of the respective bodies,
and the normal 7 is measured in the same direction for both.

As a rule the additional equation
V=0 . . . . (12)

will also hold at the common boundary.

It may be that one of the above boundary conditions holds
over one part of the surface, and another over another part.

§ 5. Uniqueness of the Solution. If a solution of (7)
can be found which satisfies the conditions stated in § 4, that
solution will be unique. The following proof of this theorem

0
holds when v or D_Z is given at all points of the boundary.,

Suppose that there are two possible solutions V, and V,,

and let v = V, - V,; then v satisfies (7), it has the value
W, .

zero when ¢ = 0, and either v or D—Z is zero at each point of the

boundary.
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)« [ffes

the integral being taken throughout the body ; then

d 0
b—g - _‘-“.vb—;)dZ‘ - K”jvv'zvdz,
by (7). Now, in (6), let U = 2, V = v, and it gives

2 - s (D G+ G

oV
But, on the boundary, either » = 0 or n = 0, so that the first

Now let

of these integrals is zero: hence

] d\2 d\?2 dv\?
2= G +6) « @) )
. . . .oo0) .,
Thus, since the integrand cannot be negative, 5—3—15 either
negative or zero: but, whenz = 0, v = 0, sothat J = 0 ; there-
fore, when 7z + 0,
J=o
On the other hand, since

- [ffes

J cannot be negative, and therefore J, and consequently v, must
vanish for all values of £ Hence, finally, V, and V; are
identically equal, which proves the theorem.

§ 6. Infinite Slab with Parallel Faces. Consider a slab
of homogeneous material bounded by the planesx = 0, =/,
let the temperature be the same for all sections of the slab
parallel to these two faces, so that it is a function of x alone:
the problem may therefore be regarded as being one-dimensional.
The faces are kept at zero temperature and the initial tempera-
ture is v = f(x). Thus the problem is reduced to the solution
of the equation

g—f = Kg;;, ife>0 0/ . . (13)
with v = 0, whenx = 0 and whenx =/

and v = f(x), when z = 0.
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In (13) put v = TX, where T and X are functions of # and
z alone, and divide by «TX ; the equation then becomes

dT &*X
lE‘— de
kT - X

in which the left-hand side is independent of x, and the right-
hand side of #, thus each side is independent of #and z, and
has therefore a constant value, C say. Accordingly

dT a’X_

whence T = &, X = gt*N©O)
and v = &Ct{AeV O 4. BemNENM)

A and B being arbitrary constants.
Whenx = 0, v = 0, and consequently
A+B=0,
so that
v = AgCleN©r — o=N(©ix}

Now, in order that v may be zero when » = 7 and may re-
main finite when # tends to infinity, ,/C must be imaginary,
making C negative, and ,/(C) / must be of the form 7zm, where
z is an integer ; hence

= Cne

—x'izTﬂat . nnxy

sin _/—’
where C, is an arbitrary constant, and the most general solution
obtained in this way is

—r,
ECne i sm—~

n=1
provided that the constants are chosen so that the series is
convergent.
Now, if f(x) satisfies Dirichlet'’s Conditions (§ 2), the sine
series for f(z) for 0 <x < /is

n=1I

2} . nmy
where C, = Zjo S(p) sin—7= dy.
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Hence

> n2n? l
v = ;EE_KTt sinn%rjf(y) sin”—j}’ dy . (14)
0
satisfies the conditions of the problem, provided that the series
is convergent, and that it can be differentiated with regard to 2
and .
Now, if # = = where 7 is positive, since (Ch. 1., § 4, Note 2),

C
Icnl<;)

where C is a definite constant, the series (14) and all the series
derived from it by differentiating with regard to x and ¢ are
uniformly convergent in » and z for 0 <+ </, <t The
value of v given by (14) may therefore be differentiated with
regard to ¢ and z, and is consequently a solution of (13). Also,
when ¢ tends to zero v tends to_f(x) for all values of x for which
J(x) is continuous.

Finite Rod. This solution also holds for a finite rod of
length / and of uniform cross-section, with = 0 at x = 0 and
atx = /,and with v = f(z) when ¢ = 0, provided that there is
no radiation at the surface of the rod.

Ends at Fixed Temperatures. If in the slab or rod the ends,
instead of being at temperature zero, have fixed temperatures
v, and v,, the equations to be satisfied are

2
g—;} = Kbb?z.}, ifz>0 0<r <4,
v = v, whenx = 0, (15)

v = v, whenx = /
v = f(x), when z = 0.
Here let v=10 + (v, - vl)'/E + u;

then # satisfies the equation

)

du dyu

D_t = Kit_'z’ 1ft>0, O<x<l,
with # = 0, when x = 0 and when » =/,
and v =fx) - v - (v, - vl)';, when ¢ = o,
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and this is of the same type as (13). Thus, from (14),

—x"z_:_,t . nnxy
u = Cpe ! sin —r,

l
where Co = 5[ {f0) - o - @ - 0} sin P @y
0

2 2
= 7J.0f0/) sin’%/ dy + 7;1(7)2 cos nm — ).

Hence the solution of (13) is

«w

2 v, COSAT — Uy . NTE —rt
- sin——e !
T ” /

X
‘Z)=‘Ul+(’02—‘vl)z+

n=1

hd ntmr 1
+ 3/ 2 sinn—Zx e_‘T'_'j' S(») sin ?’ &. (16)

0

n=1

§ 7. Radiation at the Surface of a Rod of Small Cross-
Section. It is assumed that the cross-section of the rod is
uniform throughout, and that the temperature is the same at
each point of the same cross-section: ¢ is the area and p the
perimeter of a cross-section, and x is the distance of a point P
on the rod from one end. At time # the amount of heat per sec.

. oV
passing through the cross-section at P is — Kb_xa’ and the

amount through the cross-section with abscissa x + 8z, where

. . v
&r is small, is - K(—— + —.8.1:)0; hence the total amount
o ot
entering the small volume between these sections is
My
K—ézxa.
Y

If the temperature of the surrounding medium is zero, the
rate at which the surface of the volume is losing heat by radia-
tion is

evpdr
per second, so that the total heat gained by the volume per
second is

Kg% o - eypdx.



CH. I1] CONDUCTION OF HEAT 35

Now the rate at which the volume is gaining heat is

dv

cpb—ton;
9
therefore w K D—zf - f‘e-v,
o pt  cpa
or 3?-} = KE—zi - }zv, . . . (I
oz ox”

where «x = K/cp and % = ep/(cpa); «, of course, asin § 3, is the
Diffusivity.
If the temperature of the surrounding medium is z,, equation
(17) becomes
Qv %
— =«k— - kv - v). . . . (18
7 Kbxz (U vO) ( )
When the surface is impervious to heat, ¢ and /% are zero, and
equation (17) is then the same as (13). Even when there is
radiation, equation (17) can be reduced to the same form as (13)
by the transformation

v = ue ~ M,
which gives s—;‘ = Kg;;—f. . . . . (19)

The corresponding transformation for (18) is
V= v, + ue M,

If the cross-section of the rod is very small, these results,
and also those of § 6, hold even if the rod is curved, x being
then measured along the rod.

Rod with Ends at Temperature Zevo. Let the conditions
to be satisfied be

%;’ - Kb'b?? - I, if£>0,0< 2 < 1,
v = 0, when x = 0 and when x =/, (20)

v = f(x), when ¢ = 0.

Then, if v = ue — , u satisfies the equation and conditions
(13), and therefore, from (14) the solution is

s t
v = ;r’" Ee_‘ ntsin”—?f S(» sin”%y dy. (21)

LB 0
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§ 8. Fourier's Ring. The first problem to which Fourier
applied his theory was that of the conduction of heat in a circular
ring of small uniform cross-section. The appropriate differential
equations are then the same as those of sections 6 and 7, but
the solution must be such that the value of v for any value of »
will be equal to its value for + + #/, where # is any integer and
/ is the length of the ring.

Case I. No Radiation. Suppose that the radius of the
ring is unity, and let there be no radiation at the surface. Then,
if the initial temperature is (), the conditions to be satisfied
are

%? = Kgi—i}, ife>0, -ar<m,
v=f(x),ift=0 -7<2r<m7, (22)

Uz = Uz + aum lft>0

As in § 6 it can be shown that the differential equation has
a solution of the form

v = e~ A cos Cxr + B sin Cx),

and, since v has a period 27, C must be an integer. The most
general solution obtained in this way is
v=A, + e~ (A, cosnr + B, sinnx).

n=1

When 7 is zero, this becomes

fx) = A, + 2 (Ap cosnr + B, sinnx),

n=1

and consequently

T

A= L j F)y,

27) _ o

A=l j F(3) cosny dy, B, =1 j f(9) sinny dy.
- T)—»n
Hence, finally,
U= ir f(y)a'y+% 2 e el J(y) cosn(y - x) dy. (23)

27

B=1
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The convergence of the series can be discussed in the same
manner as that of the series in (14).

Case II. Steady Temperature. Suppose that the section of
the ring at x = * 7 is maintained at a temperature V until
the flow of heat has become constant, and that radiation is taking
place into a medium at temperature zero. The equations to be
satisfied are, from (17),

f_ifz: = w'v, where p* = /—l, -r< a7, . (24)
ar* K
v=V,atx = %7
and @:0, atx=0,
ax

the last equation being required owing to the symmetry of the
distribution of temperature about the diameter through the points
x=0andxr = =
The general solution of (24) is
v = Ae"® 4+ Be —#3

23

and, since i 0 when » = 0, A and B must be equal ; hence
v = 2A cosh pz.

Also, sincev = V whenx = * 7,
V = 2A cosh um.

Therefore the solution of the problem is
cosh px

vV =
cosh pr

. . (25

Case I[I. Cooling due to Radiation. Suppose the ring tc
have been heated to the condition discussed in Case /., and
that the source of heat is then removed, and the ring allowed
to cool. The temperature of the surrounding medium is assumed
to be zero, and the moment at which the source of heat is re-
moved is taken to be £ = 0. The equations to be satisfied are

2
bb_’;= ,cg_;_’ -k, ift>0, - m<x<m . (26)

vV cosh px
cosh um
U = Uz 4 onm lf-t> O;

where = «/ (f)

v = ,if2 =0, -7 xS 7,
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In (26) put v = e — #; then the equations to be satisfied by
% are

du N .

o _ B0, - m<r=m
YR

LT J N,

cosh pm
Uy = Ug 4 gnm if £ > 0.
Now (Ch. L, § 6, ex. 3),

coshpr 2ptanhpn( I N\ n COSNE
= — + (_ I) 2 9 (?
cosh puw T 2pt 4= u o+ n

and the value of # can be deduced from the solution in Case I. ;
hence

v V/-L tanh p e—ht{ ; 2( - I)" C}OS ny _mut}_ (27)
T 2,u, - + n

§ 0. Duhamel's Theorem. If the surface temperature
varies with the time, the solution of the equation of conduction
can be obtained by means of the following theorems:—

Theorem I. Let the initial temperature of a body be zero,
and the surface temperature ¢(z, y, 2, £); then, if the solution
for the case in which the initial temperature is zero and the
surface temperature is ¢(x, y, 2, A), where A is a constant, be

= F(x, y, 2, A, ),
the solution for the case in which the surface temperature is
#(x, », 2, 1) is
£
v = j —F(x, 9, 2 A t - NdA
Y

For, suppose that the surface temperature has been zero
from # = 0 to # = A, where A< ¢ and ¢(z, », 2z, A) from ¢ = A
to ¢ = #; then, since the initial temperature is zero, the tempera-
ture of the body at time A will be zero, and this can be taken as
the initial time. The solution in this case is therefore

v=F@yp2,2-2,t>A

Again, if the surface temperature has been zero from 7 = 0

to 2= X+ 8\ where A + 8A < ¢ and ¢(x, y, 2z A) from
t = X+ 8\ to ¢ = ¢ the tempeyature at time # will be

v-0u=FxypzAt-X-08),2>A+ 8\
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Now, if the second of these solutions be subtracted from the
first, we see that, if the surface temperature has been zero from
t=0tor=A ¢(r, 92 A)fromz=2Ato? = A+ 8) and zero
from ¢ = A + 8A to ¢ = ¢, and the initial temperature is zero,
the temperature at time # will be

v =F(@x 9 2A2-X) - Fx 92 At- 2= 06}),
or, if 6A tends to zero,

ov h)
W= —tF(x,y, 2,A2-RQ), t>A
Hence the solution at time ¢ due to initial temperature zero

and surface temperature ¢(v, y, 2, £) is
¢
d
v = j—F(x, 5,5 A\ £ - N
Y

When the surface temperature ¢(¢) is the same at all points
of the boundary, this theorem can be stated in the following
somewhat simpler form :—

Theorem [I. 1f the solution when the initial temperature
is zero and the surface temperature is unity is

v = F("") y’ z’ t))

the solution when the initial temperature is zero and the surface
temperature is ¢(?) is

v = j:qs()\)b—th(x, 7, 2,2 = N\

The proof, which is on the same lines as that of Z/eorem I.,
is left as an exercise to the reader.
Similar theorems hold for radiation into a medium whose
temperature is ¢(x, 3, 5, £) or ¢(2).
For the more general problem in which v = f(r, », 2)
initially and v = ¢(x, », 2, ¢) on the boundary, put

v =u + w,

where # = f(x, y, 2) initially and # = 0 on the boundary, while
w = 0 initially and w = ¢(x, », % ) on the boundary;
Duhamel’s Theorem is then employed to obtain .

§ 10. Finite Rod with Variable End Temperatures.
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First of all, suppose that there is no radiation at the surface.
Then the equations to be satisfied are

@ _ xg;, ifz>00<2r<
v = ¢(?), whenx = 0, (28)
v = ¢,(), whenx = /,

and v = f(x), when ¢ = (,

Now, let v = # 4 w, where

2
2_;‘ _ K%‘j, if2>0,0<x<t,

# = 0, when » = 0 and when x =/,
# = f(x) whent = 0,

dw

Yw |
and % = K3 if2>00<2r<,

w = ¢,(f), when x = 0,
w = ¢y(?), when x = /,
w=0 when =0

From (13) and (14) it follows that

u = 12 "l! sm———j.f(y) sm—dy,

n=1

and from (15) and (16) that
Fnh = dr -5 - 2 _7}

u

o woofs 230

lﬂT .

Thus
w = r DR A 2 - N
Y.

= T e sin 10 j BN

2uem 2( 1)"ne™ <5 sin @j $.Ne” i

=1
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Hence, finally, if 0 <2 </,

v = -523 — < sm_——[j JS(») sin ya’y

+ ”/ﬂ‘ IS - (= 1N a’/‘] (29)

Finite Rod with Ends at Fixed Temperatures and Radiation
at the Surface. The equations satisfied by the temperature v

are
v v )
357 = 5e T ho, if £ >0, 0 <2</,
v=u1u, whenzx =0,
v =1, whenx =/
v = f(x),when ¢ =0, 0 <xr <<l

Here let v = ue =%, and » will satisfy

2
g—:;t = 27-2’ ift>0 0<xr</
u = ve®, when xr = 0,
u = v, when x = /,
# = f(x),when ¢ = 0, 0 <2+ <L/
These equations are of the same form as (28), and therefore,
employing the formula (29), we find that

= n'vr‘
v = 2¢M E € "tsin’ﬂ[ jf(y) sm—— dy

+ S (- 1)y, e(’_“_;r_+h) I}:I’ (30)

kn*m + Fh
where 0 < v < /.

§ 11. Steady Temperature in an Infinite Rectangular
Solid. Consider the solid bounded by the planes » = 0,2 = =,
which are kept at zero temperature, and the plane y = 0,
which is kept at steady temperature v = f(#). The equations

to be satisfied are
0 0 if0<cr<m 0<y 1)
YR TS )
v = 0, when xr = 0 and when x = =,
v = fx), wheny = 0, 0 <2xr < m,
Limv = 0.

y—>=
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In (31) put v = XY, where X and Y are functions of x and
y alone; then, dividing by XY, we get

d*X d*Y
_ “dx? _ ay?
x Y

and, as in § 6, we can show that each of these fractions is equal
to a constant C: thus '

aix ay
= = - =CY
dzxt CX, dy* !
so that X = AeNV(=Cr 4 Be—wN(-Cz
and Y = VO,
Since v and therefore X vanish whenx = 0, B = - A:
thus v =etVYgin (V(C)r}

is a solution, and, since it must vanish when x = =, ,/(C) must
be an integer, » say. Also, since v tends to zero when y tends
to infinity, we must, when # is positive, take the upper signin
the expression for Y. Thus the solution is

v = e~ ™ sinnx,

and the most general solution obtained in this way is

[ =]
v = E A, e~ sin nx,

n=1

where A, is arbitrary, subject to the condition that the series
must be convergent.
Now, when y = 0,

v =f(x) = EA,, sin nz,

Hence A, = zrf(]) sin ny dy,
mJo

and therefore the solution is

S 2_2 e—™ sin nx-\-"f(y) sinny dy, 0 Sxr <7, 0=y (32)
w 0

n=1I

The convergence of the series can be discussed in the same
way as that of the series in (14).
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§ 12. Rectangular Parallelepiped : Steady Temperature.
Consider the solid bounded by the planes x = 0,2 = 4,y = 0,
¥y =02 =0,z = ¢; the boundary conditions are

v = v, when x = 0,
v = v, whenx = a,

with the other faces at zero temperature. Also, since the tem-
perature is steady, the equation of conduction is

v W o

—_— —_— —_—= O - Y .
Ry Ry (33)
Here let v = XYZ, where X, Y, Z are functions of z, y, 2

alone ; then, substituting in (33), and dividing by XYZ, we find
that

axX d¥Y d*Z
dx* ay* dz*

=O. [] [ ]
<~ vt t (34)

Now, since the second and third of these terms are inde-
pendent of x, so also is the first. [t is therefore constant in
value, and we may write

a*X
W - Clx-
Similarly
ay d*Z
‘:i)_/‘[ = CQY, }737 = CaZ,
where, from (34),
Cl + C2 + C3 = 0. (35)

Solving the equation for Y, we find that
Y = AeN/‘C:‘}' + Be—‘\/(cxb’;

but, since Y = O wheny = 0, B = - A; hence

Y = A{e'\/(cl)}' - e—l\/(cﬂy}.
Again, Y = 0 when y = 4, and therefore ,/C, must be of the
form ¢mw/[b, where m is an integer: hence

mmy

Y = Csin 5
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Similarly it can be shown that ,/C; = #nm/c, where 7 1s an

integer, and that
nmz

Z = D sin -
Equation (335) then becomes
M n
G- (5 + 7).

so that C, must be real and positive.
equation for X becomes

Let C, = /7 and the

Xy

ax:
and has the solution
X = E¢l* 4 Fe-lz,

The most general solution obtained in this way is
nmy . nwms
» (36)

xn o
.9
v = E, E {Emne’® + Fp 7%} sin — sin—

m=1n=1
o o
m- ﬂ“)

ﬂ=ﬂ2<7+? .

v, and when » = @, v = v,; hence

where

Now, whenr = 0,v =
from (36),

. . mmy | nmg
U = 2 2 '{hm.n + Fm, n} s b sin _L‘—’ . (37)

m=1 n=1

v, = 2 2 (Emn €% + Frnpeie) sin 22 sin 2. (38)

But, if 0 <y <4, 0<s<¢
-4 4 g sindZ 4 g sinS )
I—-ﬂ_sm&+§-smb+gsmb+...,
4/ . w3 . 3mz . 5§73
I=7—T<sm?+-:‘,5m7+%;sm p +...>,

and therefore, on multiplying, we find that
I
o (z2p + L)my sin (2¢ +‘ I)wz.

g‘m o I
I_w2222p+12(]+151 b

p=04g9=90
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_ On comparing (37) and (38) with this equation, we see that
E,. »and F, , both vanish unless 7z and 7 are both odd, and

that, when m = 2p + 1,7 = 29 + 1.

Em.ﬂr_'l'_Fm, no_ 16 1 I
4 ™ 2+ 1294+ 1
Em.n e + Fm,n ela _ 16 I I
V2 7 2P+ 120+ 1
On solving these equations, it is found that
E 16 1 I vy — 'Ule_'a
m,n = — T ’
™ 2p + 1 2¢ + 1 2 sinh(/a)
Fm,n = 16 f I vlela ~ Y

# 2p + 1 2¢ + 1 2sinh(/a)
Thus (36) becomes

16 E S v, sinh /(a - x) + v, sinh (/1)
v="3 .
- sinh (/a)

sin (2p+bl)-ny Sin(2q+ 7z
x d y  (39)
29 + 1 2g + 1
2+ 1) (2q+1)
L b 2
§ 13. Rectangular Parallelepiped: Variable Tempera-

ture. Suppose that all the faces of the solid considered in the
last section are at temperature zero, and let there be no radia-

tion at the surfaces ; then

where

By, v dv v
— = -~ + - + o ] . . o
oz K<bx- o bz-) (40)
v=0,whenxr =0,y=0,5=0,
r=aqy=0612s5=q (41)
and v = f(x, 3, 2) when¢ = 0. (42)

By putting v = TXYZ, where T, X, Y, Z are functions of
2, x, y, = alone, it can be shown, in the same manner as in the

previous section, that

1’2 mE ut / y

- =+ =+ =) . mr ., 77277)’ . RmZ
e (“’ b C') sin_ — sin —— sin —
a b c
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where /, m, » are integers, satisfies (40) and (41). The most
general solution obtained in this way is

-]

@ -]
1t m? g 1 -
—xmt{ =4+ —+= ¢ Y mmwy . NnS
v = A e (“' b ") sin— sin sin —,
l,m,n a b c

=1 m=1n=1

and, when 2 = 0, this gives

@ @ [--] ) l
Sy 2) = 2 E 2 A; m, nsin— smm—ZZ sinn—‘::f

=1 m=1n=1

If we assume that an expansion of the Fourier type is valid
in this case, it follows that

8 mn nwl

Appn= a_‘. j I VA NS Sm — sin 5 sin —a’{a’na’f
In particular, if f(z, y, 2) =

n = /rzi (1 = cos /m)(1 = cosmm)(1 - cosnm),
mnm

2 z 2 (2P +1)' + (2q+l)= + +1)’}

=0g=0r=20
sin (2/1 + I)7mx Sin(29 + Dmy Sin(zr + 1wz
a b ¢
@+ 107 + 1 + 1)
where 0 S22 <4, 0y 025
§ 14. Infinite Rod: No Radiation. In the case of an in-
finite rod, with no radiation at the surface, the equations to be
satisfied are
v v
3 = 2 5, i 2>0, - 0o <xr {0 . (44)
v=flx), whenz =0, -0 <2r<ow . . (4%

In the same manner as in § 6, it can be shown that a solu-
tion of (44) is

Al, m,

and

, (43)

v = £CE NOF,

where C is a constant. As the solution must be finite for all
values of x, ,/C must be imaginary ; thus C is negative, so that,
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when ¢ tends to infinity, v tends to zero. Two solutions then
are

e~*F* cos Bx, e~*#" sin fz,
where B is an arbitrary constant. It follows that

r‘ e~ " cos B(x - a)dB

]

(x—a)?
T Bl
or* \/<‘>e .
Kl

is also a solution, where « is arbitrary; hence, if () is any
function, another solution is

® et
v = ~—/I(7)J‘_me <t (a)da
Here put & — » = 2,/(x?) ¢, and the solution becomes
v = 2~/Kji cme—f"(,ll{x + 24/ (xt) E}dE.

Now, when 7 tends to zero, this integral tends to
2/ ()| et = 24/ (em) i),
Hence, in order that v may have the value f(r) when 2z = 0,

we must take 2%/ﬁ)f(x) as the value of (%) : thus the solution
of (44) and (45) is

v= | et s syt

-

o™ _(x—a)?

=5—~—/%’?t)‘\-_”e T fla)da. . . (46)

Since *

(e conste -y = 1(5) 7 F

0

(46) can be written

v = ;7 I ) f(a)darcos Ha - D= dy, . (48)

0

* Gibson’s Calculus, p, 469.
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a form which is suggested by Fourier's Integral

F@) = %S:dy‘r F(@) cos (e ~ ) da.

-

§ 15. Infinite Solid. For an infinite solid with variable
temperature, the equations to be satisfied are

Yok i>0 L . (49)
and v=flr,y,8)forz=0 . . (50)

As in the previous section, it can be shown that

© po e F—aP+(y— B2+ (z—y2
veal e e e B uapy

1) —od —od —»

satisfies (49); transforming this as before, we find that

v = 3,01"'” r r o= E+m+a

x Bl + 26/ (k) 3 + 2ua) (), 5+ 2L ()} dednd,

and, in order that (50) may be satisfied, (1, », ) must be
replaced by
I

m%f(x’ P 2).

Hence the required solution is

S Y A R YT R
77& —0Jd —od ~>

x fix + 26/ (kt), y + 293/ (kf), 2 + 20/ (x?)} dfdndl
— I e (e et (y:‘ﬁ’)’ + (s—y)2 dadﬁa'
- S(sz)sj_mj_mj ¢ /(o B y) y.

h (s1)

Semi-infinite Solid. Let the solid be bounded by the
planex = 0, and lie on the side of this plane for which x is
positive. It will be assumed that v = 0 when x = 0, and that
v = flx) when z = 0. The solution can be derived from that
of the infinite solid by assuming that, for negative values of
%z, v = ~ f(- ), when # = 0: from these initial conditions it
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will necessarily follow that v = 0 when # = 0. Then, from
(46),

vV =

(x - a)’ x — a)2

- f(a)dn + I o= S - f( a)}a’a]

—_—CD

. ®
U(KTZ)[I (x_u), _wtap
_ 2~/(K7rt)_|. (a){ - e }a’a . (52)

By means of (47) this can be transformed into
v = J- (oc)d:zj fcosyla — %) — cosy(a + x)je V" dy
ko)

_j f(ot)dar sinay sinxy e — " dy; . . (53)
TJo 0

a solution suggested by Fourier’s Integral—
Sx) = Erdyj S(&) sinay sinzy do.
o 0

Example. 1f a quantity of heat Q is instantaneously generated at
time # = 0 at a point in a homogeneous infinite solid whose temperature
is zero, and if the point is taken as the origin, show that, at time ¢,

”2
8pc(nxt)a
where 79-= 22 + 9 + 23,

As shown above, v is a solution of the equation (49), and, when
¢t = 0, v is infinite at the origin and zero elsewhere. Also, if we integrate

throughout the solid, we find that the total quantity of heat at time ¢ is

© 3
j vpcqny dy = Q j' e gy
0 2(mct)

and, on integration by parts, this becomes

r2 »
- 2 ar
e wr| + Q

__Q 2, = " _ _o.
v o PO T T

Examples.

1. A bar of length / is heated so that both ends remain at zero tempera-
ture. If one end is taken as the origin, and the initial temperature
is v = cx{l — x)/&, show that the temperature at x at time Z is

[ - —x "21|-2
_ 4ce—ht z I - cosnm ~*pt . pnx
= - [ sin —r.

1',3 nd

n=1ax
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2. In the case of an infinite rod with no radiation at the surface the
initial temperature is given by v = (- 1)»V between » = nc and
x = (7 + 1), where 2 is zero or any positive or negative integer.
Show that, if 2> 0,

. mx
sin (2 1)—
22+ 1) ¢ —x(2p+ 1)2:;::

\%
v="14 e

T -0 2+ 1
3. A uniform bar of length a is heated so that three successive portions
of length }a are respectively at temperatures V,, Vy, Vy; if there
be no radiation, either at the side or at the ends, show that, when
the origin is taken at one end,

x n2n2
=V__‘ + Vot Va+ 32{!1—\12 sin 7" V“’ Vs g sin 2ﬁ'}e B cos T'f,
3 7 7 3 n 3 a

n=riI

where 0 = x < a.

4. One end of a finite rod is kept for a long time at temperature v,, there
being surface radiation into a medium at zero temperature. A part
whose extremities are distant 4 and 4 + / from this end is then cut
off from the rod and kept from loss or gain of heat. Show that
the temperature at time £ at a point distant x from the end of the
part is

) n3n2
I —e—M 29y 1 —¢e—#mcospnr —xgt nrx
+ ——e—nb e Cos ——,
ul / 7203 4

ve — Kb

=1 F'2+

where p? = Z/«.

5. An infinite plate is bounded by the planes x = 0, ¥ = /, which are
kept at temperature zero, and by the plane y = 0, which is kept at
steady temperature v = ¢. Show that, at any point of the plate

. nr
sin 7
2¢
v = =tan—! .
. o
4 sinh —%’

6. A solid is bounded by the planes * = 0, 2 = a,y = 0,y = 5. If the
planes x = 0, » = @, y = 4 are maintained at temperature zero,
and the plane y = 0 at steady temperature v = ¢(x), show that, at

" any point of the solid,

sinh 224 - )
v=2»__2a " sn 'ﬂfj #(z) sin "2 gz,
a sy A
n=1 sinh ==

a
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7. If in the solid of ex. 6 the faces x = 0, x = @, y = 0 are kept at
lemperature zero, and the face y = é at steady temperature
v = f{x), show that, at any point of the solid

nm
2 sinh a}l nn nnz
== sm__S f(z)sin == gz,
a : nnbd a Jy a
n=y Sinh =
a

8. Ifin the solid of ex. 6 the faces x = 0, x = a are kept at temperature
zero, the plane y = 0 at steady temperature v = ¢(x), and the
plane y = 4 at steady temperature v = f(x), show that, at any
point of the solid v = #;, + w,, where 7, and %, are the values of
7 found in exs. 6 and 7.

9. If in the solid of ex. 6, all the faces are kept at temperature zero, and
v = f(x,y) initially, show that, when /> 0,

- 2 2 mrr (mr) }t G 7% mnx é},

m=1n=]

x Sa sin 'f%'é at jo sin __f(g, n) dn.



CHAPTER III

TRANSVERSE VIBRATIONS OF STRETCHED
STRINGS

§ 1. The Differential Equation. It was in connection with
the discussion of the vibrations of a stretched string that the
question of the expansion of an arbitrary function in a series of
sines and cosines first arose, though it was not till Fourier took
up the subject in connection with the conduction of heat that
such an expansion was definitely shown to be possible.

The string is supposed to be of uniform line-density p, and
to be stretched with a tension P. The co-ordinate axes are
taken to be rectangular, with the x-axis along the equilibrium
position of the string. It is assumed that, in any disturbance of
the string from its equilibrium position, the square of the inclina-
tion of any part to its initial direction may be neglected ; that
is, if (#, y, #) are the co-ordinates of any point on the string, the
%—i and %—i are negligible. At any
particular moment the string lies along a curve in space, and y
and z may be regarded as functions of x, so that

£V @ - )

] 7\ dz\? ds
or, since <1> and <_z> are to be neglected, - = 1. Hence,
Qx dr dx

if it be assumed that the string as a whole does not move parallel
to the x-axis, the length of any part of it remains unaltered. It
follows that the tension P may be regarded as a constant, and
also that the particles of the string may be assumed to vibrate
in planes parallel to the (y, ) plane.

squares and higher powers of *

* These derivatives are written as partial .derivatives because y and s are
functions of ¢ as well as of «,

52
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Now, consider a small element of the string of length 8s,
with x and » + &r as the x-co-ordinates of its end-points. The
forces acting on the element are the tensions at its ends, and
any impressed forces Ypds and Zpds parallel to the y and z-axes
respectively. At the end-point whose abscissa is x, the y and 2
03
2s

components of the tension are - PY and - P , or, since the
s

hX)

squares of Y and ¥ are to be neglected, - pY
ox o o

Similarly, at the end-point whose abscissa is + + 8z, the corre-
sponding components are

2 2
P{bl’ + D_J:S,r} and P{b—z + b——z,,Sx},
Y R

and - Pb_z.
dr

dr being taken so small that its square and higher powers may
be neglected. Thus the y and z forces due to tension acting on

the element are Pg%&r and Ps—;&r respéctively. Hence the.

equations of motion are

2 2 :
p&t‘% = Pg-;yg&r + Ypdx

Y 2
and prbb—; - P;_r";’sx + Zpdr,
5% dy .
o= 3 Y . . .
or 57 =t (r)
Mz 2z
and 3= 625__,1:2 + Z,

where & = P/p.

It is evident from these equations that the dependent variables
y and 2z are completely independent of each other. In what
follows it will be assumed that the vibrations take place in the
(, ») plane, so that equation (1) only requires to be considered.
As a rule, the impressed force Y will be zero, and equation (1)
becomes

A

2 2
2 = 222 )

Yz 2
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The vibrations of the string are then described as Free
Vibrations, while, if Y does not vanish, they are said to be
Forced.

Kinetic and Potential Energies. The kinetic energy of the
string is

T=§pj}7~’dx,. )

where 7 denotes g—i’ The potential energy may be obtained by

either of the two following methods.

Firstly, suppose that the string is brought from its equilibrium
position into the configuration under ccnsideration by lateral
pressure, the alteration being brought about by steps such that,
if y is the final ordinate of any point, its ordinate at an inter-
mediate position is £y, where 0 < £ < 1, and £ is constant for
all values of . In this intermediate position the force which
must be applied to any element &r to balance the tensions at its
ends will be

- (B )om,
o\ oS
where &r is so small that its square may be neglected, and this,

when small quantities of higher order are omitted, may be
2

0 .
equated to — Pky“8r, where " denotes —&J—; Thus, since the

displacement when £ is increased by &% is yd%, the work done
in bringing the element into its final position is

1
- Pyy"b‘xj kdk = — §Pyyr,
0
and consequently the potential energy of the string is

V= - %PJ}/}/"th . . . (@)

The second method of obtaining V is to equate it to the work
done in lengthening the string against the tension. For any
element &r of the string this is equal to

o () -

or, approximately, 3P <g> or;
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and therefore the potential energy is

W\ 2
I%P(b:) dz,
or, if terms of higher orders'of smallness be omitted,

V = %Pjy"zdx . . . . (5

The equivalence of the formulz (4)and (5) can be established
by integrating by parts in (4); this expression then becomes

- PPy + %Pjy'zdx,

and, since y vanishes at the ends of the disturbed portion of the
string, the value of the first term is zero.
§ 2. Solutions of the Equation. The general solution of
equation (2) is
y=f@-D+Fa+n, . . (6
where fand F are arbitrary functions.
In the case of the function f(cz — %), when ¢ is increased by
7 and x by or, the value of the function is unaltered. Thus the
equation
y=f(c¢ -2 . . . . ()
represents a wave-form moving with velocity ¢ towards the right.
For any values of x and ¢, y is called the amplitude of the wave.
Similarly
y = Fla + %) . . . . (8
can be shown to represent a wave-form moving with velocity ¢
towards the left.
Unlimited String. 1If the string is unlimited in length in
both directions, and if the initial conditions are

y=¢x), y=4) =0
for all values of x where ¢(xr) and Y(x) are arbitrary given
functions, it can easily be verified that (6) becomes
z + ¢t

- e - )+ )+ 5| WOk )

Semi-infinite String. If the string is fixed at the origin,
and extends to infinity in the direction of z positive, then, when
x is zero, y vanishes for all values of 2z Thus, from (6),

Flet) + Fet) = 0,
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for all values of #; so that, if z is any variable quantity,
F(z) = - £
Hence the solution is of the form
y = flet = x) = flet + 2), . . (10)

and consequently involves only one arbitrary function.
Finite String Fixed at Bothk Ends. Let the string be fixed
atx = 0 and » = /; then, when » = /, from (10),

0=sfla-0-a+ D)
for all values of #; so that, if z be written for ¢z - /,

S(2) = f(z + 20). . . . (11)

 Thus f{() is a periodic function of period 2/, and consequently
the solution is of the form (10), subject to this proviso. The
solution is then periodic also in ¢ of period 2//c: this period, it
may be noted, is the time that a wave would take to travel twice
the length of the string; so that a disturbance passing a point
on the string will, after two successive reflections at the ends of
the string, pass the point again in the same direction and with
the same amplitude and sign.

It is with the vibrations of finite strings fixed at both ends
that we are concerned in the theory of sound. In stringed
musical instruments the strings are stretched with considerable
tension between two points which limit the range of vibration.
At one at least of these points the string passes over a bridge
which rests on a sounding-board. The vibrations of the string
are communicated, by means of the bridge, to the sounding-
board, and from it to the surrounding air, the direct effects of
the vibrations of the string on the air being negligible. The
string may be caused to vibrate by three different methods: by
plucking, as is done in playing the harp, by bowing, as in the
case of the violin or violoncello, and by striking with a hammer,
as in the case of the piano. Each of these cases will be con-
sidered separately. B -

§ 3. Normal Modes of a Finite String. A second
method of solving equation (2) is as follows. Let y = JX,
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where J and X are respectively functions of # and x alone; then,
substituting in (2) and dividing by £]X, we find that

a] dX
dar di
T =X . . (12)

Now the function on the left of this equation is independent of
%, and, in consequence, so is also the function on the right.
It must therefore have a constant value, K say, so that

| d’X

W=KX. . . . (13)

The solution of this equation is
X = AefVE + Be—eVK
where A and B are arbitrary constants, But, when z is zero,

y vanishes for all values of ¢4 and, in consequence, X must also
vanish. Thus A + B = 0, so that

X = A(@VE = gmaK),

But, when » = /, X = 0: hence /K must be imagfﬁary
and equal to #zw//, where % is an integer : therefore

X = A2¢ sin n%r
'Now, from (12) and (13), with this value of K,
] _ n21r2£21_ '
P
S0 ti’xat J=0C, cosmT_ch + D, sin ”L/f_t,

where C, and D, are arbitrary constants: hence one solution
of (2) is
) Co. N\ . .
y = (C,, cos’ﬂ + D, sm”i> sin?™, | (14)
/. / /
Since
nwet . nhx
2 cos —— sin ——

/

i

sin nT”(ct + x) — sin ”7"(51 - x),

and 2 sin’f;—dﬁn @;._r = cos ”TW(CZ - z) - cos n—;T(ct + 1),
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we see that the solution (14) is of the type given by (10) and
(11). By expanding the latter solution in a Fourier sine series
it can be deduced that it can be expressed in the form

y = 2 Cn cos”Ld+D sm’_”_lrff) sin”%r, . (13)

which is the most general solution obtained from (14). If the
string starts from rest, since y = O initially, every D, must
vanish. If, on the other hand, it starts from the equilibrium
position with given velocities, every C, must vanish.

The solution (14) may also be written

nwx nrct
y =K, sm——l cos <__71T + E ) . (16)
o‘\\\ e ”i .;
Fie. 5
where K2 = C,2 + D, and tanE, = - D,/C,, Here y»

varies as a simple harmonic function of the time, and the mode
of vibration is called a Normal Mode. When the string vibrates
in a normal mode, it gives a simple musical note, and the notes
usually given by the string are combinations of the notes given
by its normal modes of vibration.

The gravest, or fundamental mode, which determines the
pitch of the note sounded, corresponds to » = 1. For this
mode, at any time ¢ the graph of y is in the form of a half-
period sine curve, and it oscillates between two extreme positions
such as those shown in Fig. 5. The frequency of this mode is

RN OIS

and consequently varies inversely as the length, inversely as the
square root of the density, and directly as the square root of the
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tension. The frequency of a note determines its pitch, the
height of the note increasing with its frequency. Thus the note
can be raised by tightening the string, a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>