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Preface to Second Edition

THE present edition of this work contains a number of cor­
rections and additions; Birge’s new set ot fundamental 

constants has been adopted throughout,' and various tables, 
especially the table of ionization potentials, have been brought 
up to date.

The author is indebted to Professor J. W. Ellis of the Lnivcr- 
sity of California at Los Angeles tor a list ol errors and correc­
tions; several of the author’s students have also been helpful in 
pointing out certain mistakes.

The author is grateful to Dover Publications for their initiative 
and interest in making this book available again in a revised 
photo-offset edition in spite of war-time difficulties.

G. II.
Saskatoon, Sask., August, 1944.

Preface
IHE present work is the translation of a volume published in

German by Theodor Steinkopff about a year ago.1 Atomic 
Spectra and Atomic Structure constitutes the first part of a more 
comprehensive course on atomic and molecular spectra which 
the author has prepared and given recently.

Though in the past few years several excellent accounts have 
been written on the subject of atomic spectra (cf. bibliography), 
there is still a need for an elementary introduction that is espe­
cially adapted to the beginner in this field and also to those who 
require a certain knowledge of the subject because of its appli­
cations in other fields.

For these two groups of readers the discussion of too many 
details and special cases does not seem desirable, since it is likely 
to obscure the fundamentally important points. Consequently, 
in this book the main stress is laid on the basic principles of the 
subject. Great pains have been taken to explain them as clearly 
as possible. To this end numerous diagrams and spectrograms 
are given as illustrations. Always the experimental results serve 
as the starting point of the. theoretical considerations. Compli­
cated mathematical developments have been avoided. Instead, 
the results of such calculations have been accepted without proof, 
reference being given to sources where proof can be found. 
Throughout the work an effort has been made to emphasize the 
physical significance of the theoretical deductions.

v



VI Preface

Rather liberal use has been made of small type in the printing 
of certain portions of the text. These, together with the foot­
notes, contain theoretical explanations and details that may very 
well be omitted in a first reading without interfering with an 
understanding of the fundamental points. Throughput the book, 
in making this distinction between small and ordinary type, the 
author has kept in mind the needs of those readers who wish to 
obtain a thorough knowledge of only the more important prin­
ciples. The part printed in ordinary type is self-sufficient and 
adequate for that purpose.

In view of the applications, particularly to the study of molec­
ular spectra and molecular structure, some points have been more 
extensively treated than others that might appear more impor­
tant from the point of view of atomic spectra alone. In general, 
completeness has not been attempted except in Tables 17 and 
18, which give, respectively, nuclear spin values and ionization 
potentials. In these tables, results published up to the begin­
ning of the present year have been considered.

A discussion of X-ray spectra has been omitted, as one can be 
found in almost any advanced physics text.

Naturally in the course of the translation the author has used 
every opportunity to improve the original German presentation. 
It is believed that in many instances the explanations have been 
clarified. Also, certain recent findings have been added.

The author is greatly indebted to Dr. J. W. T. Spinks for his 
willingness to undertake the translation and for his prompt and 
careful wrork in carrying it out. He also owes many thanks to 
Dr. R. N. H. Haslam, who was kind enough to read the entire 
proof and made numerous and valuable suggestions for improving 
the presentation. Finally, the author wishes to express his appre­
ciation to Dr. E. U. Condon, Editor of the Prentice-Hall 
Physics Series, and the staff of Prentice-Hall, Inc., for their 
helpful co-operation during the publication of this volume.

G. H.
1 G. Herzberg, Atomspektren und Atomstruktur (Dresden, 1936).



Introduction
TA URI NG the last few decades the investigation of atomic 

and molecular spectra has had a decisive influence on 
the development of our present ideas of atomic and molec­
ular structure. This investigation has shown above all 
that only certain discrete energy states are possible for an 
atom or molecule. The investigation of atomic spectra in 
particular, with which we shall occupy ourselves in this 
book, has given us information about the arrangement and 
motion (angular momenta) of the electrons in an atom.
Furthermore, it has led to the discovery of electron spin and 
to a theoretical understanding of the periodic system of the 
elements. The data on the fundamental properties of 
different atoms obtained by means of spectra form a basis 
for an understanding of molecule formation and the chem­
ical and physical properties of the elements.

In this book we shall be concerned exclusively with 
optical line spectra in the restricted sense of the term—that 
is, with atomic spectra in the region from 40 Â to the far 
infrared, and not with X-ray spectra, which extend from 
approximately 100 Â to lower wave lengths. The essential 
difference between optical line spectra and X-ray spectra is 
that the former correspond to energy changes of the outer 
electrons of an atom, and the latter to energy changes of the 
inner electrons.

Observation of spectra. The separation of light into its 
spectral components can be accomplished either by refrac­
tion or diffraction. Both phenomena depend upon the wave 
length, but in opposite ways: the greater the wave length, 
the greater is the diffraction of light; but the greater the 
wave length, the smaller, is the refraction of light. For the 
separation of light by diffraction, gratings are used; for 
separation by refraction, prisms. Both methods may be

l



2 Introduction

employed except in the region below 1250 Â, where a grating 
is necessary. The prism method has the advantage of 
greater light intensity, whereas the grating method gener­
ally affords greater resolving power.* 1 The construction and 
use of spectroscopes and spectrographs will not be dealt 
with here. Information on these topics is given in bibli­
ography references at the end of this book: (la), (2a), (3), 
(4), (11), (14).

Spectra in the far infrared can be investigated only with 
thermopiles or bolometers; however, below 13,000Â photo­
graphic plates are generally used. By using a photographic 
plate a large region of the spectrum may be obtained at one 
time.

Lenses, prisms, and windows of glass can be used only in 
the region from 3/i to 3600 Â. At lower wave lengths, glass 
absorbs light almost completely and this necessitates the 
use of quartz or fluorite. Quartz begins to absorb ap­
preciably at 1800Â, and therefore fluorite must be used 
below this wave length. Fluorite itself begins to absorb 
strongly at 1250 Â, so that below this wave length only 
reflection gratings can be used, with complete exclusion of 
lenses and windows.2 Since air absorbs strongly at 1900Â, 
the whole spectrograph must be evacuated for photographs 
below this wave length. Also, in this region the gelatin on 
the photographic plates absorbs, and makes necessary the 
use of specially prepared plates.3

Light sources. There are many possibilities for the pro­
duction of light for spectroscopic investigations. The 
principal ones are temperature radiation and all kinds of 
luminescence—electroluminescence, chemiluminescence, and 
fluorescence.

In temperature radiation of gases, the atoms or molecules 
are excited to light emission by collision with other atoms or

1 Shortly before the short wave-length limit of transmission, a prism can 
in some cases provide a greater resolving power than a grating.

1 Melvin (40) has recently found that LiF transmits down to 1080 Â.
’ These difficulties disappear for the very penetrating X-rays below 4 Â.
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molecules, the necessary energy being derived from the 
kinetic energy of the colliding particles. Therefore a high 
temperature is required. Such emission occurs, for ex­
ample, in flames, although it is then often mixed with 
chemiluminescence. Excitation of gases by high tempera­
ture alone is obtained, however, in any electric furnace of 
sufficiently high temperature—for example, in the King 
furnace.

Luminescence includes all forms of light emission in which 
kinetic heat energy is not essential for the mechanism of 
excitation. Electroluminescence includes luminescence from 
all kinds of electrical discharges—such as sparks, arcs, or 
Geissler tubes of different kinds operating on direct or alter­
nating current of low or high frequency. Excitation in 
these cases results mostly from electron or ion collision; that 
is, the kinetic energy of electrons or ions accelerated in an 
electric field is given up to the atoms or molecules of the gas 
present and causes light emission. Chemiluminescence re­
sults when energy set free in a chemical reaction is converted 
to light energy (see Chapter VI). The light from many 
chemical reactions (for example, Na + Cl2) and from many 
flames is of this type. Photoluminescence, or fluorescence, 
results from excitation by absorption of light (for example, 
in fluorescein, iodine vapor, sodium vapor, and so on). The 
term phosphorescence is usually applied to luminescence 
which continues after excitation by one of the above 
methods has ceased.

Emission and absorption. By any of the foregoing 
methods, characteristic emission spectra can be obtained for 
each substance. They usually vary for a given substance 
according to the mode of excitation.4

To obtain the absorption spectrum of a substance, light 
with a continuous spectrum (as that from a filament lamp) 
is passed through an absorbing layer of the substance being

4 Conversely, conclusions as to the mode of excitation may be drawn from 
the kind of spectrum observed.
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investigated and is then analyzed with a spectrograph. We 
obtain light lines (absorption lines) or bands on a dark 
background on the photographic plate.5 (See Fig. 2.) 
The intensity of the absorption can be altered by varying 
the thickness of the absorbing layer, or, in the case of gases, 
by changing the pressure.

Examples. Examples of simple and complicated optical 
line spectra are given in Figs. 1, 2, 3, 4, 5, 6. In the spectra 
of H, Na, and Mg (Figs. 1-4), regularities are immediately 
apparent, whereas with Hg and Fe such regularities are not 
easily recognizable. Actually, both the complicated and 
the simple spectra consist of series of lines, or series of line 
groups (cf. the figures), whose separation and intensity de­
crease regularly toward shorter wave lengths. When the 
number of these series is large, a complicated spectrum 
results. Two such series are indicated in the Hg spectrum 
(Fig. 5). Fig. 7 shows a typical example Of a band spectrum 
(PN) for comparison with the line spectra. It obviously 
shows a completely different type of regularity. This 
difference led quite early to the assumption that line spectra 
are emitted or absorbed by atoms, band spectra by molecules. 
This assumption has in the course of time been completely 
justified, notably by the fact that with it all the details of 
a spectrum can be explained satisfactorily. It has also been 
independently verified by the experiments of W. Wien on 
canal rays, and by the determination of line width, which, 
as a result of the Doppler effect, depends on mass.

Spectral analysis. As already stated, each chemical 
element gives rise to a characteristic line spectrum by 
suitable excitation (flame, arc, spark, electric discharge). 
Conversely, the appearance of a line spectrum can be used 
as an analytical test for the presence of an element—a test 
which has the advantage that extraordinarily small amounts 
of an element can be detected. This method of analysis, 6

6 Obviously, the reverse holds for visual observation—dark lines appear on 
a light background.
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called spectral analysis, has recently been considerably de­
veloped |]see bibliography: (15), (16), (17), (18), (19)], but 
the results will not be discussed here. Rather, we shall 
concern ourselves with the structure of atomic spectra and 
the conclusions which can be drawn regarding atomic 
structure. However, a knowledge of the structure of the 
spectrum is of some importance to the spectro-analyst, 
particularly in the choice of suitable lines for spectro- 
analytical tests.

Units. In the infrared, wave lengths are usually meas­
ured in terms of ju: 1m = 10-3 mm. In the ordinary optical 
region, wave lengths are measured in Angstrom units: 
lA = l()_s cm. For wave lengths above 2000Â, the value 
in air under standard conditions, Xa;r 6 * * * * is generally used, 
while Xvai is usually employed for wave lengths below 2000Â 
since these wave lengths are almost always measured with 
a vacuum spectrograph.

For the purpose of investigating regularities in spectra 
and their connection with atomic structure, it is very helpful 
to use, instead of the wave length of a given line, the fre­
quency or a value that is proportional to the frequency. 
The frequency (number of vibrations per second) is:

/ _  Cair _  Cvac
^air ^vac »

where c is the velocity of light. That is, v' is usually a very 
large number. (For Xvac = 1000 A, / = 3 X 1013.) Be­
cause of this and also because the accuracy of X sometimes 
is markedly greater than that of c, wave numbers are gener­
ally used in spectroscopy:

v = _Ș_ _ 1 = 1
CVac Xyac ^^airXajr

6 When n is the refractive index of air for the wave length concerned,
1 . __  Xvac

Aair —
n

Therefore X:i;r is somewhat smaller than Xvac-



Introduction 9

where wair is the refractive index for the wave length 
considered. The value v is simply the reciprocal of the 
wave length in vacuo—that is, the number of waves in 
1 cm. in vacuo. (Dimensions, cm-1; for X vac — lOOOA, 
j^vac = 100,000 cm-1.) In order to obtain the vacuum wave 
number, we must first convert the wave length in air to the 
wave length in vacuo by multiplying by 7?air, and then 
take the reciprocal value. This computation is much 
simplified by using such tables as the Kayser Tabelle der 
Schwingungszahlen (21).

As will be further explained in Chapter I, the frequency 
v’ and the energy E of a light quantum are related by the 
fundamental equation E = hv', where h is Planck’s constant 
(h = 8,624 X 10-27 erg sec.). The frequency or the wave 
number can therefore serve as a measure of the energy. 
When a single atom or molecule emits light of wave number 
r, the emitted light quantum has an energy E = hv' = hcv. 
Therefore 1 cm-1 is equivalent to 1.9858 X 10-16 ergs per 
molecule. If we consider the elementary act for one mol 
instead of a single atom or molecule, we .must multiply by 
the number of molecules in one mol, N = 6.0228 X 1023. 
Then 1 cm-1 is equivalent to 1C960 X 107 ergs per mol, or 
2.8575 cal. per mol. using the chemical atomic weight scale.

Finally we must mention the electron-volt, which is very 
widely used in atomic physics. One electron-volt is the 
energy of an electron which has been accelerated through a 
potential of 1 volt.7 The kinetic energy acquired by an 
electron of charge e falling through a potential V (in 
electrostatic units) is eV ergs. With e — 4.8025 X 10-10 
electrostatic units and one volt — 1/299.776 electrostatic 
units, it follows that one electron-volt is equivalent to 
1.6020 X 10-12 ergs per molecule, which corresponds to 
8067.5 cm-1 or 23,053 cal. per mol. All these conversion 
factors are collected together in Table I.

7 The volt used here is the absolute volt, which differs slightly from the in­
ternational: 1 voltj„t = 1.00034 voltubs-
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Table 1

CONVERSION FACTORS OF ENERGY UNITS

Unit, cm 1 ergs/molecule (Til. /molc |1Pn, electron-volts

1 cm-1................ 1 1.9858 X 10"le 2.8575. 1.2395?» ■
] erg/molecule . 5.0358 X 10ls 1 1.4390 X 1016 6.2421 X 1011
1 Cil 1./molc)i(>m . . 0.34996 6.9494 X 10“17 1 4.3379 X IO-5
1 electron-volt . 8067.5 1.60203 X IO”12 23053 1

The values for c, h, N and c are taken from Birge (144). 
These values differ rather considerably from those used in the 
original printing of this book; but they are only insignificantly 
different from those used in the author’s Molecular Spectra and 
Molecular Structure I: Diatomic Molecules.



CHAPTER I

The Simplest Line Spectra and the Elements 
of Atomic Theory

1. The Empirical Hydrogen Terms

The Balmer series and the Balmer formula. The
simplest line spectrum is that of the H atom, which is itself 
the simplest atom (see Fig. 1). This spectrum consists, in 
the visible and near ultraviolet, of a series of lines whose 
separation and intensity decrease in a perfectly regular 
manner toward shorter wave lengths. Similar series are 
emitted by the alkali atoms, though in greater number and 
overlapping one another (see Fig. 3). The spectra of all the 
other elements likewise consist of such series, which, how­
ever, on account of much overlapping, are not always so 
easily recognizable.

The apparent regularity of the so-called hydrogen series 
was first mathematically formulated by Balmer. He found 
that the wave lengths of the lines could be represented 
accurately by the formula:

where ni = 3, 4, 5, • ■ •, and G is a constant. The equation 
is now generally written in the form:

where v is the wave number of the line (see Introduction, 
p. 8). In this equation a single constant R, the Rydberg 
constant, appears and has the value 109,677.581 cm-1 
(— 13.595 volts).1 In spite of the simplicity of the formula, 
extraordinarily close agreement is obtained between experi-

1 Cf. Bilge (145).

11
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Fig. 8. 
Schem

atic Representation of the H-atom Spectrum
. 

The intensity is indicated roughly by the thickness of the lines. 
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dotted lines correspond to the series lim
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(See section 2 of this chapter.)
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mental and calculated values, the 
agreement being within the limits 
of spectroscopic accuracy (1 : 107).

Other hydrogen series. When 
the number 2 in the Balmer formula 
is replaced by n2 = 1, 3, 4, 5, • • •, 
and Wi is allowed to take the values 
2, 3, • • •; 4, 5, • • •; 5, 6, ■ • •; 6, 
7, • • •, respectively, other series of 
wave numbers or wave lengths are 
obtained. The spectral lines of H 
corresponding to these series have 
actually been observed and are found 
to have exactly the predicted wave 
lengths. The first series (n2 = 1) 
was discovered by Lyman in the far 
ultraviolet; the others, in the infra­
red, by Paschen (n2 — 3), Brackett 
(n2 = 4), and Pfund (n2 = 5).

All these line series of the H atom 
can be represented by one formula:

R R /t i\v = —2 — —2 lbn/ ni
where w2 and ni > n2 are integers, 
and n2 is constant for a given series. 
With increasing values of the order 
number ni, v approaches a limit 
r, = R/n22. That is, the separation 
of consecutive members of a given 
series decreases so that v cannot 
exceed a fixed limit, the series limit. 
In principle, an infinite number of 
lines lie at the series limit.

Fig. 8 gives a schematic represen­
tation of the complete H spectrum.

Representation of spectral lines 
by terms. According to formula
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(I, 1) the wave number of any line of the H-atom spec­
trum is the difference between two members of the series, 
T(ii) = R/ri2, having different values of n. These mem­
bers are called terms. The lines of other elements also 
can be represented as the difference between two such terms. 
This conclusion follows empirically from the fact that they 
likewise form series. Therefore, quite generally the for­
mula for the wave number of a line is:

v = T.- T\ (I, 2)
However, the term T usually has a somewhat more com­
plicated form than that for the H spectrum. In addition, 
the first and second members of the formula are obtained 
from different term series (see below).

The converse of the fact that each spectral line can be 
represented as the difference between two terms is embodied 
in the Rydberg-Ritz combination principle, which states that, 
with certain limitations, the difference between any two 
terms of an atom gives the wave number of a spectral line 
of the atom. For example, the difference between T(4) 
and T(10) for hydrogen gives the sixth line of the Brackett 
series.

2. The Bohr Theory of Balmer Terms
The fundamental relation between the terms of an atom 

and its structure was first recognized by Bohr. Even 
though the Bohr theory is now extended and altered in some 
essential respects by the new wave or quantum mechanics, 
we must deal with it briefly at this point, since a knowledge 
of this theory considerably simplifies an understanding of 
modern theories. In fact, a number of phenomena in spec­
troscopy can be dealt with by using the Bohr theory alone.

Basic assumptions. According to.the Rutherford-Bohr 
theory, the atom consists of a heavy nucleus with a charge 
Ze, about which Z electrons rotate. (Z = the ordinal 
number in the periodic system of the elements—that is, the 
atomic number.) In order to explain the characteristic 
light emission by atoms, Bohr proposed two basic assump­
tions. (1) Of the infinite number of orbits of an electron 
about an atomic nucleus, which are possible according to
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classical mechanics, only certain discrete orbits actually 
occur. These fulfill certain quantum conditions. Further­
more, in contradiction to the classical Maxwell theory, the 
electron, in spite of accelerated motion, emits no electro­
magnetic waves (light) while in one of these discrete orbits. 
(2) Radiation is emitted or absorbed by a transition of the 
electron from one quantum state to another—by a quantum 
jump—the energy difference between the two states being 
emitted or absorbed as a light quantum of energy hv' 
(h = Planck’s constant, v' = frequency). The light quan­
tum is emitted when the atom goes from a state of higher 
energy to one of lower energy, and is absorbed in the 
converse case (conservation of energy). The relation 
hv' = Eni — Eni therefore holds, Eni and Eni being the 
energies of the upper and lower states, respectively. This 
relation is the Bohr frequency condition. The index n of E 
distinguishes the different orbits and their energy values 
from one another.

The wave number of the emitted or absorbed light is 
obtained from the frequency condition,:

_ Em _  Em
c h'C h’C (I, 3)

From the similarity between equations (I, 2) and (I, 3)—- 
in both cases v is the difference between two quantities 
which can take only discrete values, that is, which can be 
numbered by integers—we see that, apart from a factor, the 
terms of equations (I, 1) and (I, 2) are equal to the energies 
of the quantum states. The E values contain an arbitrary 
additive constant. If we take the additive constant so that 
E = 0 when the electron is completely removed from the 
nucleus, the energy values of the different quantum states 
will be negative, since, by the return of an electron to such 
a state, energy will be liberated. (A positively charged 
nucleus attracts electrons.) The terms in (I, 1) and (I, 2) 
are positive quantities (for hydrogen, T = R/n2). Therefore

r, A-c’ r, = En,
h-c
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Here — E = W is the work that must be done in order to 
remove an electron from a given orbit to infinity (separation 
energy). Apart from the factor he, the terms are therefore 
equal to the separation energies of the electron in the given 
states. For the lowest state of the atom, the ground state, 
the separation energy is called the ionization energy, or the 
ionization potential, which accordingly is equal to the largest 
term value of the atom. Similarly, apart from the factor 
he, the term differences are equal to the energy differences 
of the given atomic states.

This connection between term values and energies is 
shown experimentally in the work of Franck and Hertz. 
They observed that, when collisions between electrons and 
ațoms take place, an inelastic collision—that is, an energy 
transfer from the electron to the atom—can occur when, and 
only when, the kinetic energy of the electron is greater than 
that calculated from the term difference for the transition of 
the atom from the ground state into an excited state. The 
amount of energy lost by the electron is exactly equal to the 
excitation energy of the atom as calculated from the spec­
trum. Furthermore, after such a collision, there can be 
observed the emission of a spectral line Corresponding to the 
transition from the excited state to the ground state. £Cf. 
Geiger-Scheel (lc).J

Electron orbits in the field of a nucleus with charge Ze.
Taking first the simplest case, in which the orbits are circles 
of radius r, we apply Newton’s fundamental law: force 
= mass X acceleration. Here the force is Coulomb’s at­
traction Ze2/r!; the acceleration is the centripetal accelera­
tion v2/r. Hence

Ze2 _ mv2 
r2 r or =r mv2 (I, 4)

where m and v are, respectively, the mass and the velocity 
of the electron. Thus far we have applied only classical 
mechanics, which leads to the conclusion that every value 
of r is possible, depending on the value of v.
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According to Bohr (see earlier text), only certain orbits 
actually do occur and these are selected by the postulate that 
the angular momentum mvr is an integral multiple of hj2ir\ 
that is,

hmvr = n — > Zir whore n — 1, 2, 3, (I, S')

This is an assumption which cannot be further justified. 
Here n is called the principal quantum number. For a 
given value of n, the values of r and v are now unambigu­
ously fixed by equations (I, 4) and (I, 5). For r, we obtain:

47r2me2Z (I, 6)

Fig. 9. Circular Bohr Orbits for the H 
Atom (n = 1 to n = 4).

It is apparent that the radii of the possible orbits are. pro­
portional to n2. *

In Fig. 9, for the case of hydrogen (Z = 1), the first few 
orbits from n = 1 to n = 4 are drawn to scale. For the 

smallest possible orbit; 
that is, with n — 1: 

h2r = -r—.—5 = an -- 0.529Â 4TT2me2
This radius is of the 
same order of magnitude 
as the radius of the atom 
given by kinetic theory.

There are three refine­
ments of this simplified 
theory.

(1) In reality the 
electron revolves, not

about the nucleus itself, but about the common center of 
gravity; also, the nucleus revolves about that center. 
Therefore the mass of the nucleus enters into the equations. 
It may be shown [cf. Sommerfeld (5a)] that equation (I, 6) 
still holds if m is replaced by the so-called reduced mass: 

mMM = m + M
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where M is the mass of the nucleus. Here p is approxi­
mately equal to m because M/(m + M) is very nearly 
equal to 1. (m = 9.1066 X 10-28 gm. and, for hydrogen, 
M = 1.6725 X 10-24 gm.)

(2) In general, not only circular orbits but also elliptical 
orbits are possible (compare above). Evidently the one 
condition mentioned above is not sufficient to fix unam­
biguously both axes of the ellipse. Therefore Sommerfeld 
introduced a new and more general postulate than the 
original one of Bohr—namely, for the stationary states 
the so-called action integral f pi dq^ extended over one 
period of the motion must be an integral multiple of h.

Pi dqt = Uih (I, 7)

Here n,- is a whole number, p,- any generalized2 momentum 
which depends on the corresponding co-ordinate g,-. This 
postulate implies the previous one: If dqi = dip where <p is 
the angle of rotation, then pi = pv, the angular momentum 
of the system. According to classical mechanics, the 
angular momentum of any isolated system is a constant. 
Therefore
£ pv d<p = pv § dip = 2irpv = n^h; nv = 1, 2, 3, • • • (I, 8)

that is, as before, the angular momentum is an integral 
multiple of h/2-ir. However, for an ellipse, r is not constant 
and therefore we have from (I, 7) an additional condition:

pr dr = nT-h; nr = 0, 1, 2, • • • (I, 9)

where pT is the linear momentum in the direction of r. 
Here nT is called the radial quantum number; nv, which will 
henceforth be replaced by k, is called the azimuthal quantum 
number. Just as previously by (I, 5) the continuous range 
of r values was reduced to (I, 6), now, by conditions (I, 8) 
and (I, 9), the possible values of the major and minor axes

2 This term is not defined here because it is not particularly essential for the 
following considerations. For a complete explanation, the reader is referred to 
the texts on advanced dynamics.
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of the elliptical orbits are reduced to the following £cf- 
(5a), (10)1

h2 n2 aH o 
a ~ Wue2' Z ~ Z ' n

b h2 nk _ Oh ,
• ~z~ * nk (I, 10)

where the principal quantum number n is now defined as 
n = k + nT. Here k may take the values 1, 2, • • • n (k = 0 
was considered impossible in this theory since for zero 
angular momentum the electron would have to traverse the 
nucleus). Consequently n S k. For n = k, a = b; in 
other words, we have the circular orbits discussed in con­
nection with Fig. 9 (with the same meaning for n). From 
relation (I, 10) it follows that a/b = n/k. The principal 
quantum number n is thus a measure of the major axis of the 
elliptical orbit, whereas the azimuthal quantum number is a

Fig. 10. Elliptical Bohr-Sommerfeld Orbits for the H Atom with k = 1, 
2, and 3 [from Grotrian (8)]. The positive nucleus is at the focus O of the 
ellipse. The energy difference between orbits with equal n but different k is 
very small. The smallest value of n for a given k is n = k. Same scale as 
in Fig. 9.
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measure of the minor axis. On the other hand, according to 
(I, 8), k( = nJ gives the angular momentum of the atom in 
the specified state in units h/2-jr. Fig, 10 shows the elliptical 
orbits (drawn to scale) for hydrogen, with various n values, 
for k = 1,2, and 3.

(3) Sommerfeld also applied relativistic mechanics to the 
motion of the electron. He found that the orbit is an 
ellipse, the axis of which rotates uniformly and slowly about 
the center of gravity (rosette motion) instead of remaining 
stationary.

Energy of Bohr’s orbits (Balmer terms). For circular 
orbits, the total energy is:

Ze2 1E = potential energy + kinetic energy =---------1- ~ mv2T A
Using formula (I, 4), we obtain:

„ Ze2 , Ze2 Ze2
r 2r 2r

This equation holds also when the motion of the nucleus is 
considered. Substituting from (I, 6) the value for r and 
using n instead of m, we obtain :

27r2Me4 Z2 
h2 n2 (I, ID

The same expression is obtained for the energy of the 
elliptical orbits £cf. Sommerfeld (5a)]. Thus the energy 
does not depend on the azimuthal quantum number k—that 
is, on the minor axis of the ellipse.

However, if relativity is also considered, a very slight 
dependence on k results—namely (as found by Sommerfeld),

En, ic = —
2ir2nei
~W~

z2 r n , ^zvi 3 \ i 
rf|.1 + — (i-îs)J (I>12)

where a = 2ire2!hc = 7.2977 X 10_3is the so-called Sommer­
feld fine structure constant.3

The second term in brackets is very small because of the 
term a2; hence, for most purposes the simplified formula 
(I, 11) may be used. The state of lowest energy evidently

* Further terms with a4, etc., are included in the exact formula, but are 
usually negligibly «mall.
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has n = 1. This state, according to Bohr’s theory, is the 
stable ground state of the hydrogen atom (smallest orbit 
in Fig. 9).

From equation (I, 11) and Bohr’s frequency condition 
(I, 3), it follows that the wave numbers of the emitted spectral 
lines are given by:

v = — fF - F• 1 = 27r2/ie4 he ^Eni Er>i) Z2 < —2 ~ A
n22 nf (I, 13)eh3

where ni and n2 are the principal quantum numbers of the 
upper and lower states.

The formal agreement of this formula with the empirical 
Balmer formula (I, 1) for the hydrogen series is obvious. 
By substituting the known values of u, e, c, h, and Z in the 
numerical factor of equation (I, 13), we obtain the Rydberg 
constant R, which formerly had been obtained purely 
empirically from the Balmer spectrum. For hydrogen 
R = 2Tr2fjLei/ch3, and the agreement between the calculated 
and observed values is as close as can be expected from the 
accuracy with which the above constants are known. The 
formula for the Balmer series is obtained from (I, 13) by 
using n2 = 2. This Series thus results from the transitions 
of the hydrogen atom from different higher energy states 
with ni = 3, 4, • • •, to the state n2 = 2. In the remaining 
hydrogen series the lower state has a different principal 
quantum number. (See also Fig. 12 and discussion in 
section 3 of this chapter.)

Spectra of hydrogen-like ions. Taking Z = 2 in (I, 13) 
gives the spectrum which would be emitted by an electron 
moving about a nucleus with charge 2; that is, the spec­
trum of He+. Analogously, for Z = 3 and Z = 4, we 
obtain the spectra of Li++ and Be+++. The general 
formula is:

The mass of the nucleus enters into R because of the de­
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pendence of R on p. Substituting n, we obtain:
R = R„ (

\M + m
where R*, is the value of R obtained for an infinitely heavy 
nucleus—that is, when m is used instead of n in the formula 
for R (I, 14). It follows that R varies slightly for He, Li, 
and Be. The values for R, calculated from Rn by using 
accurate values for the masses Qsee Bethe (48) J, are given 
in the second column of Table 2.

Table 2

RYDBERG CONSTANTS AND FIRST MEMBERS OF LYMAN 
SERIES FOR HYDROGEN-LIKE IONS

Hydrogen-like Ion R (cm-1) V2. i (cm-1) ^2,1 vac 0^)

H 109,677.581 82,259.56 1215.664
He+ 109,722.263 329,188.7 303.777

* Li++ 109,728.723 740,779.8 134.993
Be+++ 109,730.624 1,317,118.1 75.924

* Referring to the isotope of mass 7.

Apart from this small correction and apart from the 
factor Z2, corresponding to a strong displacement to shorter 
wave lengths, the spectra of these ions are identical in all 
details with the hydrogen-atom spectrum. The third and 
fourth columns, respectively, of Table 2 give for these ions 
the calculated wave numbers and wave lengths of the lines 
corresponding to the first line of the Lyman series (n = 2 —> 
n = l).4 These and other lines indicated by (I, 14) have 
been found at exactly the calculated positions. From 
formula (I, 11) it follows that for He+ the separation energy 
Wi of the electron from the lowest level (the ionization po­
tential) will be very nearly four times that for the hydrogen 
atom, where it is equal to RH = 13.595 volts. For Li++ 
it will be nine times as great, and for Be+++ sixteen 
times.

4 The relativity correction of (I, 12) has been allowed for in the calculation 
of the table, taking k = 2 for the upper state (k = 1 would give a slightly 
different wave number).
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Continuum at the series limit. As already stated, the 
energy of an atomic state is known apart from an additive 
constant. The latter is chosen so that E = 0 when the 
electron is completely removed from the atom; therefore all 
stable atomic states will have negative E values. A positive 
value of E would, accordingly, indicate more energy than 
that for the system with its parts infinitely separated and at 
rest; that is, the two parts possess relative kinetic energy. 
They approach or separate with a velocity (kinetic energy) 
that does not disappear—even at infinity.

According to classical mechanics (disregarding radiation) 
the electron in this case moves, not in an ellipse, but in a 
hyperbola. This behavior is similar to that of heavenly 
bodies that come from space with a great velocity and 
describe a hyperbolic orbit about the sun as focus (for 
example, the orbit of a comet). Since, according to the 
quantum theory, only the periodic motions in the atom are 
quantized, these hyperbolic orbits can occur without any 
limitation; in other words, all positive values of E are possible. 
Hence, extending from the limit of the discrete energy 
levels, there is a continuous region of possible energy values: 
the discrete term spectrum is followed by a continuous one. 
Just as in elliptical orbits, according to Bohr (but in con­
trast to classical theory) electrons will not radiate in hyper­
bolic orbits. Radiation results only through a quantum 
jump from such a state of positive energy to a lower state of 
positive or negative energy. When the relative kinetic 
energy is AE, for a transition to the discrete state n2, 
formula (I, 13) changes to:

R AE 
n22 he (I, is)

As AE can take any positive value, the series of discrete lines 
whose limit is at R/n22 is followed by a continuous spectrum, 
a so-called continuum. Such a continuum actually occurs 
with the Balmer series in absorption in the spectra of many 
fixed stars, and is also observed in emission spectra from 
artificial light sources [(Herzberg (41) J. In absorption, it
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corresponds to the separation of an electron from the atom 
(photoeffect) with more or less kinetic energy (depending 
on the distance from the limit); in emission, it corresponds 
to the capture of an electron by a proton, the electron going 
into the orbit with principal quantum number n2.

The beginning of the continuum, the series limit, cor­
responds to the separation or the capture of an electron with 
zero velocity (AE = 0). If the transition takes place from 
the ground state to the ionized state (absorption in cold 
gas), the wave number of the series limit gives directly the 
separation energy (ionization potential).

The intensity of the continuum falls off more or less 
rapidly from the limit. Fig. 11 gives as an illustration the 
continuum, for the Balmer series in emission.

H7 Hm Continuum

_ Fig. 11. Higher Members of the Balmer Series of the H Atom (in Emis­
sion) Starting from the Seventh Line and Showing the Continuum [Herzberg 
(41) J. Hm gives the theoretical position of the series limit. The photograph 
was more strongly exposed than Fig. 1, and consequently some weak molecular 
lines not belonging to the Balmer series are also present—for example, one in 
the neighborhood of the position of Ho;,.

In Fig. 2 the continuum can be seen beyond the series 
limit for Na in absorption. The ionization potential for 
Na may be obtained directly from this limit (5.138 volts).

3. Graphical Representation by Energy Level Diagrams
Energy level diagram and spectrum. Consideration of 

the hydrogen spectrum and of hydrogen-like spectra has 
already shown that in a discussion of the spectrum the terms 
are of far greater importance than the spectral lines them­
selves, since the latter can always be derived easily from the 
former. In addition, the representation by terms is much
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simpler since the number of terms is much smaller than the 
number of spectral lines. For example, there is only one 
series of terms for H, but there is an infinite number of series 
of lines.

A descriptive picture of the terms and possible spectral 
lines is obtained by graphical representation in a Grotrian 
energy level diagram. Fig. 12 shows the energy level 
diagram for the H atom. The ordinates give the energy,
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and the energy levels or terms Rh/u2 which occur are drawn 
as horizontal lines. The separation of the levels decreases 
toward the top of the diagram and converges to a value 0 for 
n —> oo. Theoretically there is an infinite number of lines 
in the neighborhood of this point. A continuous term 
spectrum joins the term series here (indicated by cross- 
hatching). At the right, the energy scale is given in cm"1, 
increasing from top to bottom (term values are positive). 
As previously explained, the value 0 corresponds to the com­
plete separation of proton and electron (n = °o). To the 
left is a scale in volts beginning with the ground state as 
zero. This volt scale can be used directly to obtain the 
excitation potential of a given level by electron collision 
—that is, the potential through which electrons must be 
accelerated in order to excite H atoms to a given level on 
collision (see Franck-Hertz experiment, p. 15).

A spectral line results from the transition of the atom 
from one energy level to another. Accordingly, this line is 
represented in the energy level diagram of Fig. 12 by a 
vertical line joining the two levels. The length of the line 
connecting the two levels is directly proportional to the 
wave number of the spectral line (right-hand scale). The 
thickness of the line gives a rough measure of the intensity 
of the spectral line. The’ graphical representation of the 
different series is readily understood from the figure, as is 
also the fact that the lines approach a series limit.

The absorption spectrum of an atom at not too high a 
temperature consists of those transitions which are possible 
from the lowest to higher states. Fig. 12 shows that for H 
atoms this spectrum is the Lyman series with a continuum 
starting at the series limit (see above). In general, there­
fore, H atoms will not absorb at longer wave lengths than 
1215.7Â.5

5 The appearance, in absorption in some stellar spectra, of the Balmer 
series whose lower state is not the ground state of the atom, is due to the fact 
that, on account of the high temperature of the stellar atmosphere, a con­
siderable portion of the atoms are in the first excited state.
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Since the terms for hydrogen-like ions differ from those of 
the H atom only by the factor Z2 (apart from the very small 
difference in Rydberg constant and relativity correction 
term), quite analogous energy level diagrams may be drawn 
for them. Practically the only difference is a corresponding 
change in the energy scale.

60,000-

60,000-

70,000 -

80,000-

90,000-

100,000-

110,000-

Fig. 13. Energy Level Diagram of the H Atom, Including Fine Structure 
[Grotrian (8)"]. The Balmer series is indicated, as usual, with H„, H3, H7, 
and so on. The broken lines refer to forbidden transitions;
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When an atom reaches an excited state by the absorption 
of light, it can return to a lower state or to the ground state 
with the emission of light. This is called fluorescence. The 
longest wave length capable of exciting fluorescence is 
known as the resonance line for the atom concerned. Fig. 
12 indicates that, for H, this line is the first line of the 
Lyman series. The resulting fluorescence is called reso­
nance fluorescence, or resonance radiation.

Consideration of the quantum number k, and the fine 
structure of the H lines. Each of the simple levels in Fig. 
12 with a given value of n actually consists, according to 
equation (I, 12), of a number of levels lying very close to one 
another. In the Bohr theory these levels differ in the length 
of the minor axis of the ellipse—that is, in the azimuthal 
quantum number k. For a given value of n, n such sub- 
levels are present. Because of the small value of the factor 
a2, the levels lie so close together that their splitting cannot 
be shown in the figure.

In Fig. 13, therefore, the levels with different k are drawn 
side by side at the same height, whereas states with equals 
and different n are drawn above one another.6 The number 
of sub-levels increases with increasing n. According to the 
Rydberg-Ritz combination principle, each sub-level should 
be able to combine with any other sub-level; in other words, 
their energy difference should correspond to a spectral line. 
Consequently each hydrogen line should consist of a number 
of components corresponding to different possible origins 
from the various term components.

Selection rule for k. Using spectral apparatus of great 
resolving power, it has indeed been possible to resolve the 
Balmer lines and also several He+ lines into a number of 
components; however, the number of components is much 
smaller than might be expected on the basis of the com­
bination principle. This discrepancy is due to the fact that

• Such a group of levels, drawn over one another, corresponds to the group 
of ellipses with the same value of & in Fig. 10 (p. 18).
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the number of possible combinations is limited by certain 
so-called selection rules. Such rules play an equally im­
portant role in all other spectra. Most of the selection rules 
are not absolutely rigid, since so-called forbidden lines often 
appear, though very weakly. (See Chapter IV.)

These selection rules can be derived if we take into con­
sideration that, for large quantum numbers, the quantum 
theory must coincide with the classical theory, and then 
assume that the rules so derived for large quantum numbers 
also hold for small quantum numbers (Bohr’s correspondence 
principle). The details of this derivation will not be given 
here. The result, however, is that, in the present case, k 
may alter only by + 1 or — 1. According to this selection 
rule, in Fig. 13 only those transitions indicated by solid 
lines between neighboring term series can occur. The 
combinations indicated by broken lines are forbidden. For 
each line of the Lyman series, there is consequently only one 
possible origin; for each line of the Balmer series, there are 
three possible origins; for the Paschen series, five; and so on. 
However, observations show certain deviations from this 
theory; for example, there appear certain components which 
are forbidden according to the k selection rule. This dis­
crepancy was first explained by several new assumptions, 
which will be discussed in Chapter II, section 2.7

In Fig. 13'and similar illustrations that appear later in 
this book, the wave number of a transition obviously is 
given, not by the length of the oblique line representing it, 
but by the vertical distance between the two levels.

4. Wave Mechanics or Quantum Mechanics
The Bohr theory of the atom gave a surprisingly accurate 

quantitative explanation of the spectra of atoms and ions 
with a single electron. But, for atoms with two electrons 
(He), serious discrepancies with experiment were en­
countered. Quite apart from these and other discrepancies

7 Extended discussions of the hydrogen fine structure are given by Sommer- 
feld (56); Grotrian (8); White (12).
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there was the difficulty of understanding the quantum 
conditions themselves. The attempt to solve this problem 
found expression in wave mechanics (De Broglie, Schro­
dinger) and quantum mechanics (Heisenberg, Born, Jordan, 
Dirac), which were put forward almost simultaneously and 
proved to be different mathematical formulations of the 
same physical theory. In the following discussion the wave 
mechanical formulation will be principally used wherever 
the Bohr theory proves inadequate.

Only a brief and necessarily incomplete account of the 
elements of wave mechanics will be given here. For further 
details one of the numerous texts in the bibliography should 
be consulted.

Fundamental principles of wave mechanics. According 
to the fundamental idea of De Broglie, the motion of an 
electron or of any other corpuscle is associated with a wave 
motion of wave length:

mv (I, 16)

where h = Planck’s constant, m = mass, and v = velocity 
of the corpuscle. For an electron, replacing these symbols 
with numerical values, we obtain:

X = 12^3Â (1,17)

(V 1 m \
300 = § e" / ' F°r

example, for electrons of 100-volt energy the De Broglie 
wave length is 1.226Â.

In order to calculate the motion of an electron, we must 
investigate the accompanying wave motion instead of using 
classical point mechanics. Howevei’j classical mechanics 
can be applied to the motion of larger corpuscles for the 
same reason that problems in geometric optics can be 
calculated on the basis of rays, whereas actually the prob­
lems deal with waves. Wave mechanics corresponds to 
wave optics. Accordingly, if we use appropriate wave
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Fig. 14. Photograph of Electron 
Diffraction by a Silver Foil. Elec­
trons with a velocity of 36,000 volts, 
corresponding to a wave length of 
0.0645 A, were used in the experiment 
[after Mark and Wierl (49) J.

lengths, we should expect diffraction phenomena also for 
corpuscular rays. From formula (I, 17), electrons with not 
too great energy should have a wave length of the same 
order as X-rays. The above prediction by De Broglie was 

confirmed in experiments 
first carried out by Davisson 
and Germer. The experi­
ments show the correctness 
of De Broglie’s fundamental 
principles. Fig. 14 is an ex­
ample of diffraction rings 
produced by the passage of 
a beam of electrons through 
a silver foil. Diffraction 
takes place at the individual 
silver crystals. The figure 
agrees in all details with a 
Debye-Scherrer X-ray photo­
graph. Stern and his co- 
workers also have shown 
that analogous diffraction

phenomena are exhibited by atomic and molecular rays.
According to De Broglie, the frequency v' of the vibra­

tions may be calculated from the Planck relation
E = hv' (I, 18)

where E is the energy of the corpuscle.
For a given mode of motion it is necessary to decide 

whether we are dealing with progressive or standing waves. 
Progressive waves correspond to a simple translational mo­
tion of the corpuscles considered (potential energy. V = 0). 
In this case, just as for waves propagated in a very long 
string, any frequency is possible for the wave motion—that 
is, any energy values are possible for the corpuscle. How­
ever, when the corpuscle takes up a periodic motion as a 
result of the action of a field of force (potential energy 
V < 0) and has not sufficient energy to escape from this
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field (for example, circular motion or oscillatory motion 
about an equilibrium point), the wave returns to its former 
path after a certain number of wave lengths.

Fig. 15 shows this behavior diagrammatically for a 
circular motion. The waves which have gone around 0, 1, 
2, • • • times overlap and will, in general, destroy one another 
by interference (dotted waves in Fig. 15). Only in the

Fig. 15. De Broglie Waves for the Circular Orbits of an Electron about the 
Nucleus of an Atom (Qualitative). Solid line represents a stationary state 
(standing wave); dotted line, a quantum-theoretically impossible state (waves 
destroyed by interference).

special case where the frequency of the wave and, therefore, 
the energy of the corpuscle are such that an integral number 
of waves just circumscribe the circle (solid-line wave) do the 
waves which have gone around 0, 1, 2, • • • times reinforce 
one another so that a standing wave results. This standing 
wave has fixed nodes, and is analogous to the standing 
waves in a vibrating string which are possible only for cer­
tain definite frequencies, the fundamental frequency and its 
overtones (cf. Fig. 16). It follows, therefore, that a station­
ary mode of vibration,, together with a corresponding state of 
motion (orbit) of the corpuscle, is possible only for certain
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energy values (frequencies). For all other energy values (fre­
quencies), the waves destroy one another by interference, 
and consequently, if we assume the relation between wave 
and corpuscle indicated by the observed diffraction phenom­
ena, there is no motion of the corpuscle corresponding to 
such energy values. Even quantitatively the results are 
the same as in Bohr’s theory; namely, the interference 
condition in Fig. 15 is evidently

ri\ = 2irr, where n — 1, 2, 3, • • •
With (I, 16) this result leads directly to Bohr’s original 
quantum condition (I, 5), from which the Balmer terms 
were derived. However, here this condition and, with it, 
Bohr’s discrete stationary states result quite naturally from 
the interference conditions.

Mathematical formulation. In order to determine more 
rigorously the stationary energy states or stationary wave 

states, we must set up the 
wave equation (Schrodinger) 
just as in the case of the 
vibration of a string. Let 
be the wave function which 
is analogous to the displace­
ment y of a vibrating string 
from its equilibrium position. 
(In a later paragraph we shall 
deal with the physical mean­
ing of >K) Since we are 
dealing with a wave motion,

Fig. 16. Vibrations of a string: «varies periodically with
Fundamental and Overtones. r

time at every point in
space. We can therefore write:

cos (27rr7) or sin (27r/Z)
These expressions are combined in the usual convenient 
form:

(I, 19)
Here f depends only upon the position (x, y, z) and gives the
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amplitude of the standing wave at this point. For the 
vibrating string the corresponding amplitude functions are 
shown in Fig. 16.

Schrodinger’s differential equation for the amplitude of 
the atomic wave function is:

d2\p dV . dV 
dx2 dy2 dz2 (E - F)^ = 0 (I, 20)

In this equation, m is the mass of the particle, E the total 
energy, and V the potential energy. This Schrodinger equa­
tion replaces the fundamental equations of classical mechanics 
for atomic systems. The frequency v' of the vibrations in 
(I, 19) is obtained from the fundamental assumption (I, 18):

E = hv'

and hence we can also write:
21)

When it is assumed, similar to the case of the vibrating 
string, that is everywhere single valued, finite, and con­
tinuous, and vanishes at infinity, then the Schrodinger equa­
tion (I, 20) is soluble, not for unrestricted values of E, but only 
for specified values of E, the so-called eigenvalues. The cor­
responding wave functions are called the eigenfunctions of 
the problem. They represent the stationary states for 
which the wave motion is not everywhere destroyed by 
interference. The discrete energy values of an atom which 
are experimentally observed in the spectrum appear here as 
the eigenvalues of the atomic wave equation.

Without the above boundary conditions the wave equa­
tion could be solved for any value of E (that is, any fre­
quency), but the solution would not be unique. For ex­
ample, we would obtain different values of for a point 
according to whether the inclination to a fixed axis were 
given by the angle <p, or 360° + <p, and so on. The different 
yp values at each point would destroy one another by inter­
ference (cf., also, Fig. 15 and accompanying discussion).

The amplitude curves (eigenfunctions) for the vibrating 
string, whose differential equation is much simpler, are



34 Simplest Line Spectra and Atomic Theory [I, 4

represented in Fig. 16. The eigenvalues are the frequencies 
of the fundamental vibration and its overtones: vQ, 2v0, 
3r0, •••• Other frequencies are impossible.

The eigenfunctions for the wave equation of the H atom 
are given graphically in Fig. 18 and discussed on page 38.

Equation (I, 20) is, as stated above, the differential equation 
for the amplitude \f/ of the wave function 4. The wave equation 
for itself, which contains both the spatial co-ordinates and 
the time, is:

h2 /d24 d24 d24\ _ ihd*
8ir2m \ dx2 + dy2 + dz2 ) + V ~ 2tt dt (I, 22)

In all the cases with which we have to deal in the following discus­
sion, this equation can be solved by substituting 4 from equation 
(I, 21), which immediately leads to (I, 20) for the amplitude 
function Therefore, in the following considerations equation 
(I, 20) may always be taken as the starting point.

It should be noted that the imaginary quantity i occurs in 
(I, 22). Hence it is essential, according to (I, 21), for 'k to be 
complex. The function sin 27r(jE'//i)f would not solve the time- 
dependent Schrodinger equation (I, 22).

Equations (I, 20) and (I, 22) refer only to the one-body prob­
lem. If the system contains several particles, these equations 
must be replaced, respectively, by:8

ih d'k

and
8tt2 mk\ dxk2 dyk2 dzk2 J 2tt dt (I, 23)

E — + + +JT(E - VW = 0mk \ dxk2 dyk2 dzk2/ h2 ' 24)

where mk is the mass of the kth particle whose co-ordinates are 
xk, yk, zk. Therefore T and are functions of 3N co-ordinates— 
that is, they are functions in 3N dimensional space (configuration 
space) if N is the number of particles.

Physical interpretation of the T function. According to 
Born, the value of T for a given value of the co-ordinates is 
related to the probability that the particle under consideration 
will be found at the position given by the co-ordinates; in other 
words, the probability is given by | >k |2 or 'k • 'k* where 4,* is 
the complex conjugate of T. The corresponding relation 
for light—namely, that the number of light quanta at a

8 For the derivation of these equations, see Sommerfeld (5b).
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given point is proportional to the square of the amplitude 
of the light wave at that point—is readily understood when 
it is remembered that, according to elementary wave theory, 
the light intensity is proportional to the square of the ampli­
tude of the light wave and, on the other hand, is naturally 
proportional to the number of light quanta, since each light 
quantum contributes hv' to the intensity.

When ^!, ^2, ^3, • • • are eigenfunctions of a vibration 
problem, 'P = is also a solution of the differential
equation. With a vibrating string this means that a num­
ber of overtones, and possibly also the fundamental, can be 
excited at the same time, as is usually the case. On the 
other hand, when we have 'k = 2ct4r1- for an atomic system, 
this does not mean that the different characteristic vibra­
tions 4<i, ^2, • • ■ are excited in one and the same atom with 
amplitudes cb c2, • • •, but it corresponds to the following 
state of knowledge concerning the system: The relative 
probabilities of being in the states given by or or 

• • • are in the ratios |ci|2 : | c2 ]2 : | c312 - - •. A given 
atom can be found in only one state. London (50) ex­
presses this result by saying that the “as well as” of 
classical physics has become “either . . . or” in quantum
mechanics.

From the probability interpretation of 'P'J/* it follows that 
dr = l(where dr is an element of volume,)since the prob­

ability that a given particle will be found somewhere in space is 1. 
The condition previously stated, that T must vanish at infinity 
and be everywhere finite, also follows from this.9 Eigenfunctions 
'J'i lor which f'f'i'l'* (It =)= 1 must be divided by a factor so 
chosen that ./'!',%* dr = 1 (normalization). Likewise, it can
readily be shown mathematically that

’L'L* dr = 0, for n =t= m (I, 25)

That is, eigenfunctions belonging to different eigenvalues are 
orthogonal to one another. The system of eigenfunctions is 
therefore a normalized orthogonal system.

’ In fact it follows that 'J< must vanish more rapidly at infinity than 1 /r.
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The Heisenberg uncertainty principle. The Heisenberg 
uncertainty principle is very closely related to wave theory. 
In order to determine as accurately as possible in wave 
mechanics the velocity or momentum of a particle, the De 
Broglie wave length must be defined as accurately as 
possible, since

hp = mv = - Â
This equation is the converse of (I, 16). In order to meas­
ure X accurately, the wave train must be greatly extended, 
and in the limiting case must be infinitely extended if we 
wish to give X or p an absolutely exact value. Then, ac­
cording to wave mechanics, the position at which the par­
ticle under consideration will be found is completely uncer­
tain, since the probability of finding it at a definite point is 

and, when the wave is infinitely extended, this quantity 
has everywhere the same value W*. If then p is exactly 
measured, the corresponding position will be completely
uncertain.

Conversely, when we wish to define the position of a 
particle as accurately as possible, the wave function must 
be so chosen that it differs from zero only at one given point. 
According to Fourier’s theorem, there can be produced a 
function limited to a small region by the overlapping of sine 
waves, but only by the overlapping of many waves of 
different wave lengths. In the limiting case (completely 
defined position), the wave lengths must take all values 
from 0 to oo; this makes the wave length and, therefore, 
the momentum completely uncertain. We arrive then at 
the law: Position and momentum cannot be simultaneously 
measured exactly. Heisenberg has formulated this relation­
ship somewhat more precisely: When Ag and Ap are the 
uncertainties with which q and p can be measured simul­
taneously, the product Ag • Ap cannot be of a smaller order 
of magnitude than Planck’s quantum of action.

Ag* Ap > h (I, 26)
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This holds for any co-ordinate and the corresponding 
momentum.

The Heisenberg principle will now be verified for a simple case. 
Consider the diffraction of a matter wave at a slit of width Ag 
(Fig. 17). Through this slit the position of the particle is known 
with an accuracy Ag. The point within the slit through which 
the particle passes is completely un­
certain. The particles are deflected 
by the slit and will form a diffraction 
pattern on a screen. How a single par­
ticle b'ehaves behind the slit is, in prin­
ciple, indeterminate within certain 
limits. For example, if the particle 
appears at A, it has acquired an addi­
tional momentum Ap in the vertical 
direction above the original momen­
tum where Ap = p sin a. According 
to the ordinary diffraction theory, the

Fig. 17. Diffraction of De 
Broglie Waves at a Slit (Un­
certainty Principle).

diffraction angle a is of the order X/Ag (the smaller the slit and 
the greater the wave length, the greater the diffraction). Substi­
tuting, we obtain Ap ~ p\/Aq. But, according to De Broglie, 
pX = h, and therefore Ap-Ag ~ h. Thus, when the position is 
limited by the slit to a region Ag, the momentum in the same 
direction is uncertain to at least an extent Ap = A/Ag since, for 
each of the points in the diffraction pattern, we can give only the 
probability of the particle’s hitting the screen at that point.

Wave mechanics of the H atom. In order to deal in 
wave mechanics with the H atom or hydrogen-like ions, the 
Coulomb potential — Ze2jr must be substituted for V in the 
wave equation (I, 20). Z is the number of charges on the 
nucleus (for H, Z = 1). The differential equation

d2/ d2/ ,d2'l', 8ir2m I p Z# 
dx2 dy2' dz2^ h2 r = 0 (I, 27)

(w = mass of the electron) must then be solved under the 
conditions that is everywhere single valued, continuous, 
and finite.

The calculation, which is simple in principle, will not be 
dealt with here.10 It gives the result that the differential 
equation can be solved for all positive values of E but not 
for all negative values of E. More particularly, it is found

10 For textbooks on wave mechanics, see bibliography: (56) and (23) to (32).
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that only those negative values of E for which

En 27r2we4 Z2 _ RhcZ2 
~~h2~'n2 with n = whole number,

lead to a solution. For all values other than these, the De 
Broglie waves in a Coulomb field completely destroy one 
another by interference. Thus the possible energy Values 
for a hydrogen atom and a hydrogen-like ion as given by 
wave mechanics are exactly the same as those given by 
the Bohr theory Qcf. equation (I, 11) J. It will be remem­
bered that the latter were in quantitative agreement with 
tjie experimentally observed spectra of the hydrogen atom 
and hydrogen-like ions. Making allowance for the fact 
that the nucleus also moves has the same effect as in the 
Bohr theory: in the energy formula the reduced mass m = 
mMj{m + M) must be used instead of the electron mass m, 
where M is the mass of the nucleus. The influence of rela­
tivity has been disregarded in (I, 27).

It should perhaps be stated here that, while wave me­
chanics agrees with the old Bohr theory in this case, it really 
has made a distinct advance beyond that theory: first, it is 
in agreement with many experiments which the Bohr theory 
contradicts; and second, in contrast to the Bohr theory, all 
the results can be derived from one fundamental assumption 
(the Schrodinger equation).

To each eigenvalue of the Schrodinger equation—that is, 
to each stationary energy state—there belongs, in general, 
more than one eigenfunction. These eigenfunctions are 
distinguished by two additional quantum numbers I and m, 
which are always integers. One of them, I, corresponds 
to the Bohr quantum number k, which was a measure of 
the minor axis of the elliptical orbit. The quantum 
number I is called the azimuthal quantum number, or the 
reduced azimuthal quantum number. If the relativity 
theory is considered, there is also a very small difference in 
energy for states with different I but equal n.' The value of 
I, together with k, is indicated in the energy level diagram 
for hydrogen (Fig. 13). For a given value of n, I takes the 
values 0,1,2, • • •, n — 1; that is, I = k — 1. The quantum
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number m, called the magnetic quantum number, takes the 
values — I, — Z + 1, — Z + 2, • • •, + Z for a given pair of n 
and I values. This gives the following scheme:

"1 2 3 4

I 0 o: 1 0: 1 : 2 0- 1 • 2 • 3

m 0 oi-I 0 +1 o; -1 0 +1 j-2 -1 0 +1 +2 oj-l 0 +i;-2 -1 0 +1 +2J-3 -2 -1 0 +1 +2 +3

Each m value in the last line corresponds to one eigen­
function different from the others. For each value of n, 
there are as many different eigenfunctions as there are num­
bers in the last line below the n value under consideration.

The mathematical form of the eigenfunction is the following: .
y^nim = Ce-"(2P)1 L2n1+l(2p') P\m' (cos 0)efm*’ (I, 28)

referred to a system of polar co-ordinates r (distance from the 
origin), 0 (angle between radius and z-axis), and ip (azimuth of r-z 
plane, inclination to a fixed plane). Here p is an abbreviation for 
Zr/naș-, that is, for the lowest state of the H atom (Z = l,n = 1), 
P is equal to the distance from the origin measured in terms 
of aR as unit (radius of lowest Bohr orbit = 0.528 Â). L^J1(2p) 
is a function (Laguerre polynomial) of 2p; its form depends on n 
and I. PJml (cos 6) is a function of the angle 6 (the so-called 
associated Legendre polynomial), and has a different form ac­
cording to the values of m and I.

The eigenfunctions can be split into two factors, one of 
which depends only upon the distance r from the origin, 
and the other only upon the direction in space. For the 
values n = 1, 2, 3, the dependence on r is shown in Fig. 18 
(see p. 40). For a given value of n, the function shows a 
different form for different values of I; similarly, it shows a 
different form for a given value of I and different values of n. 
The form of the function is, however, independent of m. 
In Fig. 18 the radius of the corresponding Bohr orbit is 
represented by a vertical line on the abscissa axis. In all 
cases, \f/ finally decreases exponentially toward the outside 
and is already very small at a distance which is, on the 
average, about twice the radius of the corresponding Bohr 
orbit. For n > 1, \p goes once, or more than once, through
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Fig. 19. Nodal Surfaces 
of the Part of the Hydrogen 
Eigenfunction Independent of 
r (for 1 = 3, zn = 1). The 
three nodal surfaces are: the 
plane of the paper, and the 
two conical surfaces. On the 
two sides of each nodal sur­
face, J- has opposite signs.

the value zero before the exponential decrease sets in; that 
is, on certain spherical surfaces about the nucleus, the 
function is always zero. These are the nodal surfaces of the 

function corresponding to the nodes of a vibrating string 
(see Fig. 16). For I = 0, the number of nodal spheres is 
n — 1, as is shown in Fig. 18. Since in these cases the 
eigenfunctions are also spherically symmetrical,11 they are 
represented completely by Fig. 18.

For Z > 0, the number of nodal spheres is smaller (see 
Fig. 18) and equals n — I — 1. However, new nodal sur­
faces appear since then depends
different directions from the origin 
the variation with r is the same as 
in Fig. 18 but the function must be 
multiplied by a constant factor 
depending on the direction. For 
some directions this factor is zero.
The resulting nodal surfaces are 
partly planes through the z-axis, 
and partly conical surfaces with 
the z-axis as the axis of the cones.
For Z = 3 and m = 1, these nodal 
surfaces are given in Fig. 19. The 
variation of the yf/ function with 
direction depends on m and Z but 
not on n. Since the number of 
nodal surfaces caused by this de­
pendence on direction is I, in all cases the total number of 
nodal surfaces is n — 1.

Thus in quantum mechanics the principal quantum num­
ber is given a meaning that is easily visualized—namely, the 
total number of nodal surfaces + 1. The azimuthal quan­
tum number I gives the number of nodal surfaces going 
through the mid-point. It is clear that the number of nodal 
surfaces can only be integral. Thus while integral quantum

on direction also. In

11 In formula (I, 28), P1"1 (cos = 1.
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numbers are introduced into the Bohr theory as assumptions 
quite incomprehensible in themselves, they appear in wave 
mechanics as something quite natural.

As we have seen above, itself has no immediately 
apparent physical meaning, but 5R4'* = has. The 
probability of finding the electron in a volume element dr is 
given by dr. The variation of is naturally similar 
to that of / (Fig. 18). The dotted curves in Fig. 20 repre­
sent, for the same n and I values as in Fig. 18, that part of 

which depends on r (all drawings made to same scale); 
they represent simply the squares of the corresponding 
functions of Fig. 18. The zero positions thus lie at the 
same r values as for However, since = | ^ |2 is 
always positive, the zero positions are, at the same time,
also the positions of the minima of ^*.

The solid lines in Fig. 20 represent multiplied by r2 
(again all drawn to same scale). This has the following 
meaning: The dotted curves of Fig. 20 show the variation 
of along a definite radius vector. If we now wish to de­
termine how often a given r value occurs independent of the 
direction of the radius vector, we must integrate over 
the whole surface of the sphere for that value of r. This 
gives a factor proportional to r2, since the surface of a sphere 
equals 47rr2. This is shown by the solid curves of Fig. 20. 
It is seen from the dotted curves with I = 0 that the prob­
ability of finding the electron near the mid-point of the 
atom is greater than at some distance from the mid-point. 
In spite of this, however, the electron is, on the whole, more 
often at a point which is some distance from the mid-point, 
since there are many more possibilities for such a point (all 
points of the spherical shell of radius r). Therefore the 
largest maximum in the solid curves of Fig. 20 lies at a 
noticeable distance from the zero point (origin). The elec­
trons are found most frequently at this distance, the dis­
tance of greatest electron probability density, which has 
approximately the same magnitude as the major semi­
axis of the corresponding Bohr orbit (also indicated in Fig. 
20). However, according to wave mechanics, any other
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distances r (even those that are considerably greater) have 
a probability different from zero. The electron is, so to 
speak, smeared out over the whole of space. However, because 
of the exponential decrease toward the outside, the prob­
ability of finding the electron at any great distance outside 
the region of the Bohr orbit is very small, although not 
exactly equal to zero.

Since we no longer have distinct electron orbits, it is 
perhaps better to speak of electron clouds about the nucleus. 
Fig. 21 is an aid in visualizing these electron clouds and 
gives, for different values of n, I, and m, an approximate

n — 2, m — ± 1 n = 2, m = 0 n — 3, m «■ ± 1 n — 3 m — 0
I = 1

□ □EÎÎ3
n = 3, m = ± 2 n = 3, m = ± 1 n = 3, m = 0 n = 4, m = 0

I = 2

Fig. 21. Electron Clouds (Probability Density Distribution) of the H Atom 
or Hydrogen-like Ions in Different States Rafter White (51)J. The scale is 
not uniform for all the figures but decreases with increasing n. States which 
differ only in the sign of m have the same electron cloud.



I, <1 Wave Mechanics 45

picture of what one might expect to see when one is looking 
at an H atom with an imaginary microscope with enormous 
magnification.

In the figures, the brightness indicates roughly the density 
of the electron clouds. These clouds have a rotational sym­
metry about a vertical axis in the plane of the figure 12 (the 
z-axis mentioned earlier). The states with I = 0 and 
n = 1, 2, 3 are spherically symmetrical. For n > 1, alter­
nate light and dark rings appear, corresponding to the 
above-mentioned nodal spheres of the function. The 
cloud is subdivided into spherical shells.13 For I > 0, one 
can see in Fig. 21 the nodal cones which, for the particular 
value 1 = 1, degenerate into a plane perpendicular to the 
z-axis. Different pictures are obtained for different values 
of m and equal n and I. With increasing n and I, the pic­
tures become more and more complicated (cf. n = 4, I = 2, 
m = 0).

However, these are the pictures of the atoms (in par­
ticular, the H atom) which, according to our present-day 
knowledge, we have to use. The term electron cloud, which 
is customarily given to the pictures, must not be interpreted 
as meaning that, in the case of H for example, one electron 
occupies at one time the whole of the space occupied by this 
cloud. On the contrary, in wave mechanics the electron is 
considered as a point charge, and the density of the cloud at 
a specified point gives only the probability of finding the

12 This results from the fact that the dependence of the wave function 
on the azimuthal angle <p is given by e”"’’ [equation (I, 28)], which by multi­
plication with the complex conjugate gives a constant—namely, 1. When it 
is stated that has nodal planes through the z-axis, this statement holds for 
the real and imaginary parts of individually, since cos m<p or sin m<p has just 
2wi zero positions in the region 0 to 2r. There are consequently m nodal 
planes. However, the more accurate theory shows that, in forming
the complex & function must be introduced—not the real or the imaginary 
part alone (cf. p. 34).

13 We must emphasize again that, in spite of the greater density at the 
middle of the cloud (indicated by the greater brightness in Fig. 21), the 
electron is most often in the outermost spherical shell, since this has a much 
greater extent. If the electron has n = 3, it is, therefore, mostly at a greater 
distance from the nucleus than it is for n = 2 or n = 1.



46 Simplest Line Spectra and Atomic Theory [I, 4

electron at that point. In order to observe the picture one 
should, strictly speaking, observe a large number of H atoms 
in the same state. Since, however, the orbit of the electron 
cannot be definitely determined according to wave me­
chanics, we can in many cases make calculations as though 
the electron were smeared out over the whole space.

According to ordinary wave mechanics, just as in Bohr’s 
theory, the energy of a stationary state for the H atom and 
hydrogen-like ions depends solely upon n. States of differ­
ent I (having different minor axes of the elliptical orbit in the 
Bohr theory) but equal n have the same energy. They are 
degenerate. This degeneracy is, however, removed when we 
allow for the relativity theory. A small difference in energy 
then occurs between states with different I and equal n; this 
difference, as also in Bohr’s theory, gives rise to the fine 
structure of the Balmer lines. However, a complete agree­
ment of calculated and observed fine structure is obtained 
only by allowing also for electron spin,14 which will be dis­
cussed in Chapter II. The degeneracy between states with 
equal n but different I, which results if the relativity theory 
Or electron spin is not considered, occurs only in the case of a 
point charge in a pure Coulomb field of force (H atom). 
However, in the general case, for example with the alkalis 
(see section 5 of this chapter), such degeneracy disappears. 
States with different I can then have noticeably different 
energies for the same value of n. The type of eigenfunction 
or electron cloud remains the same as in Figs. 18, 20, and 21. 
When more electrons are present, to a first very rough ap­
proximation, the electron cloud is simply a superposition 
of the probability density distributions, of the individual 
electrons (Fig. 21).

The fact that, for a given n and I, there are still a number 
of different eigenfunctions according to the value of m 
(namely, m = — I, — I + 1, — I + 2, • • •, + I, making

14 The spin also follows as a necessary consequence of Dirac’s relativistic 
wave mechanics.
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21 + 1 different eigenfunctions) also holds in the general 
case. Even then these states have exactly equal energies. 
This is connected with the fact that, when no outer field is 
present, states with different spatial orientations of the 
system have equal energy and are degenerate with respect 
to one another. This is called space degeneracy, which we 
shall discuss in greater detail when dealing with the Zeeman 
effect (Chapter II).

Neither of these degeneracies occurs for n = 1, since then 
the only possible value for I is I = 0, and the only possible 
value for m is likewise 0. (See scheme, p. 39.)

Momentum and angular momentum of an atom according 
to wave mechanics. The representations in Fig. 21 give a 
picture of the probability of finding an electron at a given 
position in space, or, in other words, the shape of the elec­
tron cloud about the nucleus. They tell nothing, however, 
about the motion of the electron or its velocity at different 
points in space. The Heisenberg uncertainty principle in­
forms us that the simultaneous position and velocity of an 
electron cannot be given with any desired accuracy—that 
is, the velocity of the electron cannot be given for each 
point. However, we can reach at least some conclusions 
about the velocity or the momentum of the electrons in an 
atom; for example, we can calculate the velocity distribution 
over the various possible values just as we calculated the 
probability distribution of the various positions of the elec­
tron in the atom (Figs. 20 and 21).

To illustrate, Fig. 22 gives the probability that the elec­
tron will have the velocity or the momentum given by the 
abscissae for the ground state of the H atom (n = 1, I = 0) 
and for an excited state (n = 2, I = 0) [Elsasser (52)]. 
The curves correspond to the solid curves of Fig. 20. Ac­
cording to Fig. 22, the most frequently occurring velocity in 
the ground state is 1.2 X 108 cm./sec.; in the first excited 
state, 0.4 X 108 cm./sec. For the latter state, a velocity of
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1.1 X 108 cm./sec. does not occur, although greater and 
smaller values are both present.

Fig. 22. Probability Distribution of Momentum and Velocity in the States 
n = 1, I = 0, and n = 2,1 = 0, of the H Atom. The curves give the square 
of the momentum wave function given by Elsasser (52). The value of the 
momentum in units of h/2iraji = 1.96 X 10~19 gr. cm./sec., or the value of the 
velocity in cm./sec., is shown as abscissae. The ordinate is proportional to 
the probability of finding the electron in the H atom with the given value of 
momentum or velocity.

Quite definite statements may be made regarding the 
angular momentum of an atom. The co-ordinate associated 
with the angular momentum is the angle of rotation. The 
latter, in contrast to a cartesian co-ordinate, is completely 
uncertain—a result which follows from the rotational sym­
metry of the charge distribution. It is, therefore, not in 
contradiction to the uncertainty principle that the angular 
momentum corresponding to a given stationary state has an 
absolutely definite value. Calculation shows that the 
numerical value of the angular momentum is ^1(1 + 1) hftir, 
or approximately l(h/2-rr). (The approximate value will be 
used in most of our subsequent considerations.) This fact 
gives at the same time a descriptive meaning to the quantum 
number I: it is the angular momentum of the atom in units of 
h/2-ir. For I = 0, the angular momentum of the atom is 
zero. That is the reason for introducing I instead of k — 1.
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In the Bohr theory, k represented the angular momentum of 
the electron in a given orbit; we now represent the angular 
momentum by I = k — 1. While the value k = 0 did not 
occur in the Bohr theory, in wave mechanics the value 
I = 0 (angular momentum = 0) does occur and corresponds 
to k = 1. In the Bohr theory, angular momentum = 0 
meant the so-called pendulum oscillation orbit in which the 
electron would have had to go through the nucleus, and 
this was excluded as impossible. Now, an angular mo­
mentum equal to zero means simply that the electron cloud 
does not rotate; the electron does not need to fall into the 
nucleus because of this. The value I = 0 does not mean 
that absolutely no motion takes place, but only that the 
motion is not such that an angular momentum results (cf. 
Fig. 22).

The fact that even in wave mechanics each stationary 
state of the atom has a perfectly definite angular momentum 
shows that the atom can still be regarded as consisting of 
electrons rotating about a nucleus, as in the original Bohr 
theory. (We must not, however, speak of definite orbits.15) 
Consequently the Bohr theory is adequate in many cases. 
In particular, we can in many instances use the angular 
momentum I and the other angular momenta in the same 
way as in the Bohr theory, the results being confirmed by 
exact wave mechanical calculations.

In the following discussion the angular momentum vectors 
will be indicated by heavy (boldface) type to distinguish 
them from the corresponding quantum numbers, printed 
in regular type. Thus I means a vector of magnitude 
^1(1 + 1) A/2tt ~ l{h/2Tr).

That I is connected with the angular momentum can further 
be understood from the following. According to De Broglie 
[equation (I, 16)J: 16

16 Just because of the fact that is quite uncertain, an absolutely definite 
value can be given to the angular momentum.
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where me is the electron mass, p the momentum, and X the cor­
responding De Broglie wave length. If we wish to introduce the 
angular momentum pv into the De Broglie equation, X must be 
measured in the corresponding co-ordinates, that is, the angle 
of rotation <p. From the expression previously given for the H 
atom (I, 28), it follows that 'P = contains the factor
e«(mp-2Tr'<) «= quantum number). According to the usual wave
theory, this factor represents a wave propagated in the direction 
of increasing or decreasing <p according to the sign of m—that is, 
a wave which travels around the z-axis with angular velocity

Its wave length is 27t/to, since, when <p increases by 2-ir/m, 
acquires its original value once more. Substituting 

this wave length18 in the expression p = A/X gives g,s the angular
momentum about the z-axis:

h
^ = m2,

For a given n and I, m can have the values — I, — I + 1, • • •, + L 
These are, therefore, the angular momenta about t*he z-axis in 
units of h/2-r. All of these states have the same energy. This 
evidently means that the angular momentum itself is Z(â/2%) 
and has components equal to to(A/27t) along the z-axis, depending 
on its orientation to this axis. (Cf. Fig. 41, p. 99, in which J 
replaces I. and M replaces m.) More accurate wave mechanical 
treatment shows that the angular momentum is ^1(1 + 1) h/2ir 
and not l(h/2ir). £Cf. Condon and Shortley (13).] In Chapter 
II the above relations will be discussed in greater detail.

Transition probabilities and selection rules according to 
wave mechanics.. In wave mechanics, as in the BoEr 
theory, the transition of an atomic system from one sta­
tionary state to another is associated with the emission of 
light according to the Bohr frequency condition. However, 
this occurrence can be treated from a far more unified 
viewpoint by wave mechanics (Dirac) than by the Bohr 
theory. If an atom is in an excited state, the probability 
of its transition to a lower state can be calculated. The 
atom remains for a certain time in the upper state (mean 
life). The transition to the lower state follows after a time 
which is in inverse proportion to the transition probability: 
the greater the probability, the shorter the time. The

11 The magnitude of this wave length can also be immediately obtained 
when we consider that the real part of the / function of the H atom has m 
nodal planes.
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life in a given excited state for the individual atoms varies 
exactly as do the lives of individual atoms of a given 
radioactive substance. The mean life is usually of the 
order of 10-8 sec. The intensity of the emission or the 
absorption of light by a large number of atoms depends 
on the magnitude of the transition probability. Definite 
predictions about the polarization of the emitted light can 
also be made in certain cases £see Condon and Shortley 
(13)J.

Detailed calculations show that, for the H atom and also 
for more general cases, an important selection rule operates 
—namely, that the intensity is extremely small except when 

AZ = + 1 or — 1 (I, 29)
That is to say, practically only those states can combine 
with one another whose I values differ by only one unit. 
This selection rule corresponds exactly to the earlier selec­
tion rule for k. Thus Fig. 13 can be used also for a wave 
mechanical representation of the transitions for an H atom. 
There is no selection rule for the quantum number n. Any 
value of An is possible for a transition:

An = 0, 1, 2, 3, • • •
The different values of . An correspond to the different 
members of a series.17

The simplest classical model capable of radiating electromag­
netic waves is an oscillating electric dipole (Hertz oscillator). 
Electromagnetic waves are radiated with the same period with 
which the electric charge flows back and forth in such a dipole 
(for example, in a linear antenna). The intensity of the radiation 
depends upon the magnitude of the alteration of the dipole 
moment. The dipole moment is a vector whose components are 
given, in the case of a system of point charges, by the following 
expression:18 ZXz>- According to wave mechanics,

17 For H, a transition with An = 0 would correspond to a transition between 
fine structure terms with equal n; for n = 2, the transition has a wave number 
of only 0.3 cm'1, or a wave length of about 3 cm. Observations of absorption 
of this wave length in activated hydrogen are still doubtful [see Betz (53); 
Haase (140) J.

18 As is well known, the magnitude of the vector is td for two charges (+ t 
and — «) separated by a distance d.
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the probability density of the electron may be given for any point 
in the atom. This may, for most practical purposes, be regarded 
as though, on the average, a certain fraction of the total charge e 
(given by the probability density) is at the point under considera­
tion. That is, we can treat the atom as though the electric 
density at a point is: p = e'Pd'*. Therefore, in the case of one 
electron (hydrogen atom) the components of the electric moment 
for the whole atom for a stationary state n are:

Px = J e^„4<n ''x dr •,

Pv = y e’W»*!/ dr

Pz = fTT/z dr (L"30)
where dr is tfgain an element of volume. Since the nucleus itself 
is taken as the origin of co-ordinates, i'ts coptribution need not 
be taken into consideration. The integrals are independent’ of 
time because the time factors for T,, and Tn* cancel; on account 
of the symmetry of the charge distribution, the integrals are 
actually zero. There is consequently neither a static dipole 
moment nor one altering with time. This means, in agreement 
with experiment, that even,according to the classical theory the 
atom does not radiate while in a stationary state; whereas in 
Bohr orbits it should radiate (if we had not made the a lditional 
ad hoc assumption that it does not radiate), since the atom with 
the electron in these orbits has a dipole moment varying with 
time.

Dirac has shown'that the radiation emitted by an atom in the 
transition from state n to state m may be obtained by replacing 
4'n4'n* in equation (I, 30) by ^„K*, regarding the resulting P 
as an electric moment (transition moment) and then completing 
the calculation in the classical manner. Since contains the 
time factor (j, 21), and the time factor g+z» »(£»•/«<,
'LL? and Pxnm = em*x dr (and correspondingly, Pynm, 
Pznm) are no longer constant in time but have the time factor 
e-2Ti[(£„-£’„,)/AK. ^hat js, they vary with just the frequency 
that would be obtained from the Bohr frequency condition 
v = (En — Em). The result is an emission or absorption of
this frequency in a purely classical way. An analogous state of 
affairs holds for a system containing a number of particles. It 
is necessary only to sum the integral over the different particles; 
for example,

Pxnm = E Q I TnTin*X/: dr (1,31)
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According to what has been said, we can put, for the variable 
electric moment associated with the transition from n to m:

pnm _ 2ri [(E„—t J2)

where Rnm is a vector with components

Rxnm = J dr, Rvnm = ■ ■ •, Rznm = ■■■ (I, 33)

The vector Rnm gives the amplitude of the vibration of the transi­
tion moment Pnm associated with the transition»from n to m.

Remembering that the intensity of light radiated from an atom 
is equal to the number of transitions per second (that is, the 
transition probability) multiplied by hv'nm, we obtain (using 
the classical formula for the intensity of electromagnetic waves 
radiated by a vibrating electric dipole) the expression:

Anm = 3^ „ZRnmRmn (J, 34)
for the probability of the transition from n to m where v = v'/c 
is the wave number. The transition probability therefore de­
pends upon the quantities R'1"'. R""‘ itself is determined by
the eigenfunctions of the two states involved [see (I, 33) J. Thus 
we see that a knowledge of the eigenfunctions is particularly 
important for the calculation of transition probabilities. The 
quantities R'‘"‘ can be aiTangct} in a square array (vertical 
columns n, horizontal columns to), which is called a matrix. 
■ft"'"'are the matrix elements. When R'‘"‘ = 0 for a.given pair 
of values of n and to, the transition from n to to is forbidden. 
Detailed calculation shows that combinations between all states 
for which I does not differ by ± 1 have R""' - 0; that is, the 
selection rule AZ = ± 1 holds. Other selection rules can be 
similarly derived. Such selection rules always depend upon the 
symmetry properties of the atomic system under consideration 
and of the corresponding eigenfunctions. In Chapter II, sec­
tion 3, the derivation of the selection rules for the magnetic 
quantum number M will be given as an illustration. (Cf. also 
p. 68 arid p. 154.)

Quadrupole radiation and magnetic dipole radiation. A sys­
tem of electric charges such as that illustrated in Fig. 23 has no 
dipole moment (^«,1; = 0). In spite
of this, the system gives an external •_______ ț_____ , £
electric field, which, however, falls off *e + 2e -e
more rapidly with increasing distance Fig. 23. Example of a Quad- 
than that of the dipole, which itself rupole.
falls off more rapidly than that of the
monopole (the potentials are proportional to 1/r3, 1/r2, 1/r, respec­
tively). An assemblage of charges such as that in Fig. 23 is called 
a quadrupole. Its action is characterized by a quadrupole moment.
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which in the above case is given simply by ^e.-Xi2, where x is the 
axis along which the charges are located. It is immediately seen 
that this expression is not zero. In general a quadrupole is more 
complicated than the one given in Fig. 23, and likewise the quad­
rupole moment is usually more complex. The general case will 
not, however, be discussed here.

Just as a variable dipole moment leads to radiation {dipole 
radiation), so also does a variable quadrupole moment lead to 
radiation {quadrupole radiation). The latter is, however, con­
siderably weaker. The transition probability, similarly to the 
above, is obtained by substituting e.iM',,* dr for in ^«.x,2, 
and integrating. Therefore quadrupole radiation depends upon 
the integral dr, whereas dipole radiation depends upon
fx^nK* dr. Because of this difference, transitions which are 
strictly forbidden for dipole radiation may occur—though quite 
weakly—due to quadrupole radiation. The ratio of the transition 
probabilities of ordinary dipole radiation to ordinary quadrupole 
radiation is found to be about 1 : 10-8.

Finally, it may happen that, for a transition, the variation of 
the electric dipole moment will disappear, whereas that of the 
magnetic dipole moment does not (cf. Chapter II, p. 111). Ac­
cording to classical theory, a variable magnetic dipole moment 
such as that produced, for instance, by an alternating current in 
a coil gives rise to electromagnetic radiation. Correspondingly, 
in wave mechanics, it gives rise to a transition probability which 
may be different from zero even if the ordinary dipole transition 
probability is zero. Again, the transition probability due to 
magnetic dipole radiation is small compared with that due to 
electric dipole radiation (1 : IO-5).

Actually, cases have been observed in which transitions that 
are strictly forbidden by the electric dipole selection rules take 
place due to quadrupole or magnetic dipole radiation. (See 
Chapter IV.)

5. Alkali Spectra
The principal series. The absorption spectra of alkali 

vapors (Fig. 2) appear quite similar in many respects to the 
absorption spectrum of the H atom (Lyman series). They 
are only displaced, to a considerable extent, toward longer 
wave lengths.19 These spectra also consist of a series of 
lines with regularly decreasing separation and decreasing 
intensity. This series is called the principal series. It

19 We disregard for the moment the splitting of the lines of the heavier 
alkalis, with which we shall deal in Chapter II. This splitting is still so small 
for Li that it cannot be noticed with the usual spectroscopic apparatus.
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cannot, however, be represented by a formula completely 
analogous to the Balmer formula. On the other hand, since 
the lines converge to a limit, we must be able to represent 
them as differences between two terms. One of these 
terms is a constant TPS (known as the fixed term} and has 
the frequency of the series limit. The other (known as the 
running term} must depend on a running number (order 
number) m in such a way that the term disappears as 
m —> oo.

It has been found that the series can be satisfactorily 
represented with R/(m + p}2 as the running term. R is the 
Rydberg constant, and p is a constant number < 1; p is 
called the Rydberg correction. It is the correction that, for 
the alkalis, must be applied to the Balmer term (p = 0 gives 
the Balmer term). The running number m takes values 
from 2 to °o. The quantity n* = m + p is called the effec­
tive principal quantum number. Thus the formula for the 
absorption series (principal series) for the alkalis 20 is:

A continuous spectrum follows at the series limit, as shown 
in Fig. 2.

Other series. In emission, other series in addition to the 
principal series may be observed for the alkalis. These 
series partly overlap one another. Fig. 3 (p. 5) shows the 
Na emission spectrum. The three most intense of the addi­
tional series have been given the names diffuse, sharp, and 
Bergmann series. The last is also sometimes called the 
fundamental series. The lines of the diffuse and the sharp 
series frequently appear diffuse and sharp, as their names 
indicate. The Bergmann series lies further in the infrared 
and consequently does not appear in the spectrogram in 
Fig. 3. The limits of these series and, therefore, their 
limiting terms differ from the limiting term of the principal

20 This formula does not hold so exactly as that for the H spectrum. More 
exact agreement with experiment can be obtained by adding to the denomi­
nator an additional term which depends on m.
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series, but the sharp and the diffuse series have a common 
limit (see Fig. 3). TSs is the common limiting term for the 
sharp and the diffuse series; T,iS, for the Bergmann series. 
The running terms are quite analogous to those of the prin­
cipal series, but the Rydberg correction has a different value 
for each series. Thus we have:

Principal Series:

Sharp Series:

Diffuse Series:

Bergmann Series

= T,,s -
R

(in = 2, 3,
(in + p)2

= Tss —
R

(in = 2, 3,
(in + s)2

= Tss -
R

(in = 3, 4,
(m + d)2

= Tbs —
R

(in = 4, 5,
(m + w

The values found empirically show that TPS = 72/(1 + s)2, 
TSs = R/(2 + p)2, T,JS = R/(3 + d)2; that is, the limiting 
terms belong to one of the series of running terms. If we 
put mP as a symbol for R/(m + p)2, mS for R/(m + s)2, and
so on, the series may be written:

Principal Series: v = IS — mP (m = 2, 3, • ■ •) (I, 35)
Sharp Series: v = 2P — mS (m = 2,3, ■••) (I, 36)
Diffuse Series: v = 2P — mD (in = 3, 4, • • •) (I, 37)
Bergmann Series: v = 3D — mF (m = 4, 5, ■ ■ •) (I, 38)

Theoretical interpretation of the alkali series. From
the four series of the alkalis it is evident that four different 
term series or four sets of energy levels exist, and these can 
be designated by S, P, D, F. In Fig. 24 these series are 
given for Li in the manner explained in an earlier section. 
The ground state of the alkali atom is 13, since in absorption 
only the principal series appears and this has 13 as the 
lower level. The 3 terms 23, 33, • • ■ follow after it. The 
lowest P state occurring is 2P, and it lies above the 13 term 
by an amount equal to the wave number of the first line of 
the principal series 13 — 2P. The series of P terms follow 
after it. The principal series in absorption corresponds to 
transitions from the ground state to the various P states;
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the converse holds for emission. The sharp series cor­
responds to transitions from the higher 3 terms to the 
lowest P state. The lowest D term lies still higher than the 
lowest P term (namely, by 2P — 3D), and, analogously, 
the 4F term is higher than 3/J. All term series go to the 
same limit, whereas of course the line series have different 
limits (cf. above).

The similarity of this energy level diagram (Fig. 24) to 
the generalized energy level diagram of H (Fig. 13, p. 20) is 
obvious. The main difference is that the members of the

Fig. 24. Energy Level Diagram of the Li Atom [after Grotrian (8) J. The 
wave lengths of the spectral lines are written on the connecting lines repre­
senting the transitions. Doublet structure (see Chapter II) is not included. 
Some unobserved levels are indicated by dotted lines. The true principal 
quantum numbers for the <S terms are one greater than the empirical running 
numbers given (see p. Gl); for the remaining terms, they are the same.
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different adjacent term series no longer have almost exactly 
the same height. This is to be expected, theoretically, for 
the terms of a single electron moving in a field which is not 
the Coulomb field of a point charge. The structure of the 
alkali spectrum therefore leads to the conclusion that, for 
the alkali atoms, a single outer electron moves about an atomic 
core 21 whose field shows marked deviations from the Cou­
lomb field of a point charge, which are due to the finite extent 
of the core. Furthermore, it follows that the S, P, D, F 
terms are distinguished from one another by the value of the 
quantum number I (I = 0, 1, 2, 3, - • •); that is, by the orbital 
angular momentum of the outer electron. On the basis of 
the old Bohr theory, each term series would correspond to a 
series of elliptical orbits, as in Fig. 10 (p. 18). The fact 
that the series of P terms begins with m = 2, the D terms 
with m = 3, and the F terms with m = 4 is also in agree­
ment with this assumption, since, if the order number m is 
identified with the principal quantum number n, m must be 
șî + 1 (see p. 38). The selection rule Al = ± 1 is also 
fulfilled; only neighboring term series combine with one 
another.

The Rydberg correction (the deviation from the hydrogen 
terms) is greater, the nearer the electron comes to the core 
in its orbit according to the old Bohr idea. The correction 
is greater still if the orbit penetrates the core (so-called 
penetrating orbits'), as then the effective nuclear charge Ze(( 
acting on the electron is appreciably altered. In the im­
mediate neighborhood of the nucleus the whole nuclear 
charge acts, but at a great distance it is shielded by the core 
electrons down to Zrf( = 1. Accordingly, the Rydberg cor­
rection should be greatest for 3 terms, smaller for P terms, 
still smaller for D terms, and so on (see Fig. 10). This is 
actually the case. The Rydberg correction is extremely 
small for F terms; that is, they are practically Balmer terms. 
In contrast, the Rydberg correction for 3 terms is so large

21 The stable electron group obtained by removal of the outermost electron 
or electrons is called the core or kernel.
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(for Li, 0.59) that we are not certain what the true principal 
quantum number is—that is, whether the ground term for Li 
has n = 1 or 2. The numbers in Fig. 24 are not the true 
principal quantum numbers of the emission electron. We 
shall find out later what these are.

The common limit of all term series (Fig. 24) corresponds 
to the removal of the outer electron (the emission electron), 
which is moving about the atomic core. Beyond this 
limit, as in the case of hydrogen, extends a continuous term 
spectrum which corresponds to the removal of the electron 
with more or less kinetic energy. The existence of this con­
tinuous term spectrum is proved from observation of con­
tinuous spectra extending beyond the limit of the line series 
(cf. Figs. 2 and 3). The height of the limit of the term 
series above the ground state 13 gives the energy of ionization 
{ionization potential) of the alkali atom. From Fig. 24 we 
can see directly that this is equal to the wave number of the 
limit of the principal series (see also p. 23); for Li, the 
ionization potential is 43,486 cm"1 or 5.363 volts.

Alkali-like spark spectra. Just as the spectra of He+, 
Li++, and Be+++ are similar to that of hydrogen, the spectra 
of the alkali-like ions (ions with the same number of elec­
trons) are very similar to the alkali spectra (Paschen, 
Fowler, Bowen, Millikan, Edlen, and others). The spectra 
of ions are usually called spark spectra and those of neutral 
atoms arc spectra, since the former are generally produced 
in an electric spark (or condensed discharge), and the latter 
in arcs. This corresponds to the fact that the excitation po­
tential of the spectra of ions is much greater than for the 
spectra of neutral atoms, on account of the necessity of 
producing ionization or multiple ionization of the atom in 
the former case. The spectra of singly, doubly, etc., 
charged ions are called spark spectra of the first, second, etc., 
order. The arc spectrum is indicated by the Roman nu­
meral I placed after the symbol for the element; the first 
spark spectrum is indicated by the Roman numeral II; and
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so on. The following groups analogous to the alkalis have 
been investigated:

Li I, Be II, B III, C IV, N V, O VI, F VII, Na IX 
Na I, Mg II, Al III, Si IV, P V, S VI, Cl VII 
K I, Ca II, Sc III, Ti IV, V V, Cr VI, Mn VII 
Rb I, Sr II, Y III, Zr IV
Cs I, Ba II, La III, Ce IV, Pr V

In section 2 it was shown that, in the series H I, He II, 
Li III, the spectra and the corresponding term values 
differed by a factor Z2. If the spectra of the above series of 
atoms and ions were completely similar to H, the wave 
numbers of the lines or of the term values should similarly 
differ only by a constant factor (Z — p)2, where Z — pis the 
effective nuclear charge acting on the outer electron 
(Z = atomic number or order number of element, and 
p = number of core electrons).

In each of the above series, Z — p goes through the 
integral number values 1, 2, 3, •• •. Therefore, if these 
alkali-like spectra were also hydrogen-like, division of all 
term values by the factor (Z — p)2 should result in the same 
values for each member. Actually, though the spectra are 
completely analogous in all details (the same number and 
type of terms), the individual term schemes do not coincide 
exactly after division throughout by (Z — p)2. Fig. 25 
shows this for the series from Li I to O VI. As previously 
explained, this result is due to the fact that the field in which 
the outer electron moves is not exactly the Coulomb field of 
a point charge and, therefore, the term values are not simply 
proportional to (Z — p)2, as in formula (I, 11). However, 
because of their close similarity to hydrogen, the D and F 
terms of all members of the above groups and some of the P 
terms do coincide approximately after division by (Z — p)2 
(cf. Fig. 25).

To the right of Fig. 25 is given the position of the H terms 
with n — 2, 3, 4, • • •, and a hypothetical term with n = 1.5. 
The effective principal quantum numbers of the terms can 
therefore be read from this scale. For the first P term of
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j series, this number is nearly 2; for the first D term, 
so on. Thus 2, 3, • • • are also the true princip 
turn numbers of the terms—that is, they are the pri 
quantum numbers which the electron would have if t 
of the atom were very small so that the terms we 
ical with Balmer terms.
contrast to the P, D, and F terms, the terms are f 
being hydrogen-like; for the various members of one 
bove series of elements, these terms have a noticeab 
■ent position after division by (Z — p)2. (Cf. Fig. : 
ie Li row.) However, even for these £ terms the tr 
ipal quantum numbers can be determined from Fig.: 
rom similar figures for the other series. With incre£
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ig. 25. Energy Level Diagrams of Li and Li-like Ions up to O VI.
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ing nuclear charge Z, the core is pulled strongly together and 
the external field becomes more and more like a Coulomb 
field with nuclear charge Z — p. The terms in the above 
series must therefore become more and more hydrogen-like 
with increasing Z — p. In Fig. 25 this effect is seen for P 
terms as well as for 8 terms; it is particularly marked for the 
latter. The effective principal quantum number for the 15 
term is 1.86 for N V and 1.88 for O VI, as compared to 1.6 
for Li; that is, it approaches the value 2, which is, therefore, 
the true principal quantum number for the emission electron 
of Li in the ground state and also for Be+, etc. In an 
analogous manner the true principal quantum numbers for 
the emission electrons in the ground states of Na, K, Rb, 
•and Cs and the corresponding ions are found to be 3, 4, 5, 
and 6, respectively.22

The Moseley lines. Another representation of the relation 
between the spectra of the alkalis and the alkali-like ions is often 
used. For the terms of hydrogen-like ions,

Plotting ->]T/R against the nuclear charge should therefore give a 
straight line going through the origin. The same is true for the 
hydrogen-like terms of the alkali-like ions when they are plotted 
against Z — p. In Fig. 26 the -JT/R values for some terms in 
the Li group are plotted in this way. We see that the hydrogen- 
like D and F terms coincide (within the limits of accuracy of the 
drawing) with the broken lines which represent the Balmer terms. 
P terms and S terms also lie on straight lines, but are displaced 
parallel to the corresponding lines for the Balmer terms (5 terms 
being displaced more than P terms). These lines are named after 
Moseley, who first discovered the corresponding relation for 
X-ray spectra. The extent of the parallel displacement is a 
measure of the incompleteness of the shielding of the nuclear 
charge by the core electrons. The slope of the line'equals 1/n; 
hence the slope can be used to derive the true principal quantum 
number. It is evident from Fig. 26, as well as from Fig. 25, that 
the true principal quantum number for the lowest 5 term (ground 
state) of ions of the Li group is 2. A similar state of affairs holds

B For more extensive treatment, see: (7), (8), (9), (11), (12), (13).
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for the Na, K, Rb, and Cs series, but the Moseley lines bee 
increasingly curved.

In the Moseley diagram, terms of equal principal quan 
number (for example, the lowest S and P terms of alkali- 
ions, as in Fig. 26) give parallel lines—that is, 1JT1/R — ^Tif 
a constant. It is easily seen from this that Ti — Ti is a lii 
function of Z — p. This is called the law of irregular dou 
or screening doublets. It is of importance since, when Ti - 
is known for two members of a series of ions (such as Li I 
Be II), the value Ti — Ti can be calculated for other mem 
of the series. For n = 2, Ti — Ti is the frequency of the 
member of the principal series. Thus, the wave length of 
line may be predicted for higher spark spectra of a series—a 
that is, of course, important in the analysis of these spectra, 
extended discussion of Moseley diagrams and the irregular dou 
law is given in Grotrian (8) and White (12).

Fig. 26. Moseley Diagram of the Terms of Li-like Ions.
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6. Spectrum of Helium and the Alkaline Earths
Helium. The emission spectrum of helium consists of a 

number of series in the visible region of the spectrum, as well 
as in the near and far ultraviolet regions. The number of 
these series is essentially the same as in the spectrogram for 
Mg given in Fig. 4, which will be further treated at the end 
of this section. There are twice as many line series as for 
the alkalis (cf. Fig. 3): two principal series in the visible and 
near ultraviolet (which have different limits), as well as two 
diffuse, two sharp, and two fundamental series. These 
series can again be represented by transitions in an energy 
level diagram, but the necessary terms are twice as numer­
ous as for the alkalis. There are two series of $ terms, two 
series of P terms, and so on.

In the energy level diagram of Fig. 27 the terms are dis­
tinguished by lS, 3S;1P,3P', and so on. (For the meaning of 
these symbols, see Chapter II.) Corresponding terms of 
the two systems with the same order number differ in their 
effective principal quantum numbers—that is, in the magni­
tude of their Rydberg corrections. The terms of one sys­
tem generally lie noticeably deeper than the corresponding 
terms of the other if the same limit is assumed for all the 
term series. This state of affairs was described by earlier 
investigators as due to two different kinds of helium; par- 
helium (indicated by the left upper index 1) and orthohelium 
(indicated by the left upper index 3). Parhelium differs 
from orthohelium in having, besides the states with n = 2, 
3, • • •, an additional deep-lying & state with principal 
quantum number 1. This is the normal state of the He 
atom. Transitions from higher P terms of parhelium (:P) 
to the normal state give rise to the far ultraviolet principal 
series at 584-504 Â; this series also appears in absorption 
^Collins and Price (54)]. Besides this principal series, 
there exists in the visible and near ultraviolet regions an­
other principal series of parhelium corresponding to the 
transition from higher 'P terms to the 2 state (cf. Fig. 27).
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Combinations of terms of the para system with those of 
the ortho system have not been observed.23 The term sys­
tem of He thus splits essentially into two partial systems, 
which do not combine with each other (right and left parts of 
Fig. 27). In particular, the lowest state of orthohelium, 
2 3*S, which lies 19.72 volts above the ground state 1 XS, does 
not combine with the ground state. Those terms which 
cannot go to a lower state with the emission of radiation 
and, correspondingly, cannot be reached from a lower state 
by absorption are called metastable. The 2 state is also 
metastable, since the selection rule AZ = ± 1 does not allow 
any transition to 1 1S. The metastability of the 2 3S state

Fig. 27. Energy Level Diagram for Helium. The running numbers and 
true principal quantum numbers of the emission electron are here identical. 
The series in the visible and near ultraviolet regions correspond to the indicated 
transitions between terms with n 2.

23 The weak intercombination line reported by Lyman at 591.6 A is an 
Ne line according to Dorgelo (55).
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is, however, stronger than that of the 2 *5 state, since the 
transition 2 3S —> 1 hS would contradict the prohibition of 
an ortho-para transition as well as AZ = ± 1. Transitions 
with AZ = 0 can occur in an electric field (for example, 
2 > 1 1S), but not ortho-para transitions (cf. Chapter IV).

The ionization potential of helium as obtained from the 
limit of the series 1 — m 1P (see Fig. 27) is 24.46 volts.
As previously stated, it was in no way possible to derive this 
value from the Bohr theory, but quantum mechanics gives 
the spectroscopic value within the limits of accuracy of 
calculation ^Kellner (56); Hylleraas (57) J. The same is 
true of the ionization potentials of the helium-like ions, Li+ 
and Be++, whose spectra stand in the same relation to the 
He spectrum as those of the Li-like ions to Li. The spectro­
scopic values for the ionization potentials of Li+ and Be++ 
are 75.28 and 153.1 volts, respectively.

An explanation of the splitting of the He term scheme 
into two practically non-combining systems could be ob­
tained from the old Bohr theory only in a very arbitrary 
manner. This splitting, however, follows necessarily from 
wave mechanics. A complete understanding of it is possible 
only by inclusion of the electron spin, which will be discussed 
later.

Heisenberg’s resonance for helium. The theoretical basis for 
the explanation of the splitting of the He term scheme was given 
by Heisenberg (58) when he applied wave mechanics to a system 
with two electrons. The wave equation for a system such as He, 
consisting of two electrons moving in the field of a fixed charge 2e 
(nucleus), is obtained from (I, 24) by substituting

2e2 2e2 e2
n r2 ri2 (I, 39)

if ri and r2 are the distances of the two electrons from the nucleus, 
and ri2 is the distance of the two electrons from each other. 
Hence, we obtain:
d2\p , d2ij/ I d2\f/ d2ip . d2\p , d2^/
dxi2 dyi2 dz\2 dx22 dy^ dz<f

9>ir2m /
r2

^ = 0 (1,40)+
n rn
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To zero approximation the repulsion of the electrons e2/ri2 may 
be disregarded. Then, equation (I, 40) is just the sum of two 
hydrogen wave equations with Z — 2. Each electron may there­
fore take any of the ordinary hydrogen energy values with Z = 2, 
and the eigenfunctions are:

-^22/222) = <Pn 1 (^-iylZl) <pn2("^2^/222)
where the <p’s are ordinary hydrogen eigenfunctions [^equation 
(I, 28) J. This result may easily be verified. nr and n2 are the 
principal quantum numbers of the two electrons. When electron 
1 is in its lowest energy state (wi = 1) and electron 2 in the state 
n2 = n, the eigenfunction can be written in an abbreviated form:

= (pi(l)«pn(2)
where the numbers 1 and 2 in parentheses stand for the co­
ordinates of electrons 1 and 2. Evidently the state in which 
electron 1 is excited to nr = n, and electron 2 is in the lowest state, 
with eigenfunction <p„(l) <pi(2), has exactly the same energy as the 
state <pi(l)<p„(2). This resonance degeneracy is removed if e2/ri2, 
the electrostatic repulsion of the two electrons in (I, 40), is con­
sidered. Because of the coupling between the two electrons, 
the system will periodically switch over from the state <pi(l)<p„(2) 
(electron 2 excited) to the state <p„(l)«pi(2) (electron 1 excited), 
and back again. This is quite similar to the case of two equal 
coupled- pendulums or two equal coupled electric oscillating 
circuits. If at first only one pendulum (or circuit) is excited, 
after a time only the other will be excited, and so on.

Mathematically, the eigenfunction of the perturbed system 
(including the electrostatic repulsion) to a first approximation is 
A<pi(l)«p„(2) + B!p„(l)<pi(2). Calculation shows that either 
A = B, or A = — B; hence we have (omitting the constant 
factor):

'h = ipi(l) <pn(2) + <p„(l) <pi(2) or
’/'a = <pi(l)<pn(2) — <p„(l)^i(2) (I, 41)

These two eigenfunctions correspond to two different eigenvalues, 
Ee and Ea, into which the originally twofold degenerate level is 
split by introducing the interaction. The first function is 
symmetric—that is, it remains unaltered by an exchange of the 
electrons (exchange of numbers 1 and 2 in parentheses); whereas 
the second is antisymmetric—that is, it changes sign for this 
operation.

In the mechanical example, the two eigenfunctions and 
correspond to the two stationary vibrations by superposition of 
which the observed exchange of energy between the two resonat­
ing pendulums (circuits) may be represented. These vibrations 
are: the symmetric vibration, in which the two pendulums (or cir­
cuits) are always in phase (ft); and the antisymmetric vibration
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in which they arc in opposite phases (f|). The frequencies of 
< he two vibrations are evidently different. Superposition of the 
two vibrations results in the periodic transfer of all the vibra­
tional energy from one pendulum (circuit) to the other.

Similarly, by superimposing

we obtain a continuous switching over from pi(l)<p„(2) to 
y„(l)<Pi(2). Namely, for t = 0,

*4 + 'Ll = <^4 + ’Ao = 2(^1(1) $5n(2)
whereas after a certain interval when e~2v‘(E,lh)t = + 1 and 
e-2^i(iia!hi t = — l at the same time (which is possible since 
E„ + Ea)

*4 + - iL, = 2<p„(l)sCl(2)
After a further equal interval of time, \PS + ’Pa will again equal 
2<pi(1;scn(2); that is, the second electron will be excited once more, 
and so on.

Actually, however, according to the statistical interpretation 
of wave mechanics, this superposition of 'Ps and 'Po cannot occur 
in one and the same atom. Either (with energy Ea} or ’’Pa 
( with energy E„) is excited in the atom. As shown by the func­
tions (I, 41), in each of these stationary states 4s and >Pa, both 
^i(l)v?„(2) and <pi(2)<pn(l) are contained; or, in other words, in 
each of these stationary states partly electron 1 is excited and 
partly electron 2.

The above considerations show that, to every one excited state 
of the hydrogen atom with certain n and I values, there correspond, 
in the system with two electrons (He), two excited states with 
somewhat different energies, due to Heisenberg’s resonance. 
One of these states is always symmetric; the other, antisym­
metric. For the ground state, the resonance degeneracy does not 
exist; the eigenfunction is ^i(l)yu(2), and there is only one state, 
which is symmetric. These theoretical results agree exactly with 
the observed energy level diagram of Fig. 27. The parhelium 
levels are the symmetric levels; the orthohelium, the antisym­
metric. Even quantitatively, the calculated energy levels and 
particularly the energy differences of the two term systems agree 
closely with the observed values.

There is, however, one important difficulty which cannot be 
solved at this stage; namely, it is found theoretically that the 
transition probability between symmetric and antisymmetric terms 
is exactly equal to zero. This may easily be seen in the following 
way: For electric dipole radiation, the transition probability 
(p. 53) is proportional to the square of
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where xk is one of the three co-ordinates of the A;th particle. In 
the present case, for two electrons this will be:

If we now consider the transition between a symmetric and an 
antisymmetric state, we have to substitute Tn = 'Pi, and

However, then the integraud and, therefore, the 
integral change sign when the two electrons are exchanged 
(exchange of index numbers 1 and 2), because then changes 
sign (cf. above), whereas 'P., and (.Ti + x2) do not. Since the 
value of the integral cannot depend upon the designation of the 
electrons, it follows that the integral must equal zero. This 
result holds, not only for the transition probability produced by 
ordinary dipole radiation, but also for any other type of radiation 
(p. 53), since the term replacing (xi + x2) would also be un­
altered by changing the index numbers. Even the transition 
probability induced by collisions with other particles (electron 
collision, and so on) will be exactly equal to zero, because the 
interaction term, necessarily, is always symmetric in the two elec­
trons of He. There is, consequently, no way of bringing about a 
transition between symmetric and antisymmetric energy levels. 
If all the atoms are at one time in a state of one system, as is the 
case for normal He (symmetric state), they should never go over 
to the other system, and hence the latter system should be un­
observable. This conclusion flatly contradicts the fact that both 
systems are actually observed. As will be seen later (cf. Chapter 
III, section 1), this is due to the presence of electron spin.

The alkaline earths. As in the case of He, the alkaline 
earths and the other elements in the second column of the 
periodic system have twice as many series and, correspond­
ingly, twice as many terms as the alkalis. This fact may be 
clearly seen by comparing the spectrograms of Na (Fig. 3) 
and Mg (Fig. 4). The Mg spectrogram, it is true, shows 
mainly diffuse and sharp series and only one line of one 
principal series. The other lines of this principal series and 
the other principal series lie in another region of (he 
spectrum.

The alkaline earths thus have two partial systems of 
terms which practically do not combine with each other and 
lie at different heights. As for He, only one of them, (he 
para system, has a low-lying state, the ground stale 'A.
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The lowest term of the ortho system, however, is a 3P term 
—not a 3S term. (Cf. the Ca energy level diagram, Fig. 
32, p. 77.) Just as with He, the two term systems con­
verge to the same limit. From the splitting of the energy 
level diagram into two partial systems, we may conclude 
that, as for He, there are only two electrons outside the atomic 
core of the alkaline earths. The same conclusion holds for 
the alkaline-earth-like ions. The energy level diagram and 
the difference between the two term systems will be con­
sidered in greater detail in Chapter II.



CHAPTER II

Multiplet Structure of Line Spectra and 
Electron Spin

1. Empirical Facts and their Formal Explanation

Doublet structure of the alkali spectra. As shown in 
Chapter I, the quantum numbers n and I just suffice to 
characterize the different term series of the alkalis (Fig. 24, 
p. 57). However, they no longer are adequate for He and 
the alkaline earths, since for these there are twice as many 
term series as for the alkalis—that is, there are two com­
plete term systems, which are distinguished by a left upper 
index 1 or 3 on the term symbol. The physical meaning of 
this method of distinction will be made clear in the subse­
quent discussion. Even if we provide an explanation by 
assuming that the atom under consideration exists in two 
different forms (for example, orthohelium and parhelium), 
the insufficiency of the quantum numbers thus far introduced 
becomes still more obvious when we examine the alkali 
spectra with spectral apparatus of greater dispersion. It is 
then found that each of their lines is double, as is generally 
known for the D line of Na. The line splitting increases 
rapidly in the series Li, Na, K, Rb, and Cs. It can be 
detected for Li only by using spectral apparatus of very 
high dispersion. However, for the D line of Na, the 
splitting is 6 Â. Fig. 29(a), page 74, shows this and 
some other Na doublets. The line splitting can naturally 
be traced back to a term splitting. Either the upper or the 
lower, or both of the terms involved are double, that is, 
split into two levels of slightly different energy.

To illustrate, Fig. 28 gives the energy level diagram of 
potassium. The scale used in the diagram is just sufficient

71
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to show the splitting. The ground state and other 3 terms 
are single; the P terms are split, the splitting decreasing 
with increasing order number. The components are drawn 
side by side. If the ground state were split and the P states 
were single, all the lines in the principal series (1>S — mP) 
would have the same splitting (in cm-1); but this is not the 
case. On the other hand, all lines of the sharp series 
(2P — mS) have the same splitting, since the common 
lower state 2P is split while the upper states mS are not 
split. The lines of the diffuse series (2P — mD) have the 
same splitting, for the same reason. The D terms them­
selves are split, but the splitting is so much smaller that it 
makes scarcely any difference in the case of potassium 
(see below).

Fig. 28. Energy Level Diagram for Potassium [Grotrian (8) J. Here m is 
the empirical order number of the terms (see p. 55). For S terms, the true 
principal quantum number of the emission electron (p. 62) is 3 greater than m; 
for P terms, it is 2 greater; for D and F terms, it is equal to m.
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Quantum number J. Since the quantum numbers thus 
far introduced do not suffice, we distinguish, at first for­
mally, the components of the doublets by an index number 
—that is, a new quantum number. We could write: I\ and 
P2. But, instead, we use as indices: for the P terms, | and 
2; for the D terms, 3 and Șand so on. The reason for this 
nomenclature will become apparent later. In Fig. 2.8 these 
symbols are written over the corresponding term series. 
In addition, a left upper index 2 (doublet) is given to all the 
term symbols (see below). The terms arc given a sub­
script I, although they are actually single. This new quan­
tum number (subscript) is designated as J, and was called 
the inner quantum number by Sommerfeld. The different 
values of J occurring are summarized in Table 3.

Table 3

J VALUES FOR DOUBLET TERMS

Term L J

5 0 12
l\

P 1 1 .1
\K

I) 2 \K
F 3

\K
a 4

Each individual term of the alkalis is now characterized 
by the three quantum numbers n, I, and J. In the future 
we shall write L instead of I when we wish to characterize the 
whole atom and not a single electron. The selection rule 
is the same as for I (Chapter I, section 4):

. AL = i 1
Selection rule for 7; compound doublets. The splitting 

of the D terms for potassium is so small that, for most 
purposes, they can be treated as if they were single. Ac­
cordingly, the D terms are not drawn separately in Fig. 28. 
Thus there will be practically no difference in the splitting
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of the sharp (2P — 2&) and the diffuse (2P — 2P) series. 
This also holds for Na, of which a few of the diffuse and 
the sharp doublets are shown in Fig. 29(a). The splitting 
of thd D terms becomes noticeable for Rb and Cs, as well 
as for the alkali-like ions Ca+, Sr+, and so on. If the indi­
vidual doublet term components could combine with one 
another without restriction, four components would be 
expected for each of the lines of the diffuse series (since each

Fig. 29. Examples of Line Doublets, (a) Some Na doublets (part of 
the Na emission spectrum reproduced in Fig. 3, taken with larger dispersion). 
(6) Compound doublet of Ca+. True principal quantum numbers are used to 
designate the terms.

component of the upper D term should combine with each 
of the two components of the lower P term). Actually, 
only three components are observed, as is shown in the 
spectrogram for a 2P — 2D transition of Ca+, in Fig. 29(6). 
Using the J values given above, we obtain agreement with 
experiment iffwe assume for the new quantum number J the 
selection rule:1

AJ = 0 or +1 or — 1 (II, 1)
Fig. 30 shows the energy level diagram (not drawn to 

scale) corresponding to the Ca+ doublet reproduced in Fig. 
29(6). Transitions allowed by the selection rule are given 
as solid vertical lines, the horizontal distance between the 
lines corresponding to their frequency difference. The

1 If we had distinguished the components of the P and D terms simply by 
the indices 1 and 2, a representation of the observed transitions would not have 
been possible with such a simple selection rule.
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*d{:

spectrum produced in this way is drawn schematically in 
the lower part of Fig. 30. For the transition, 2Di/2 — 2Pi/2, 
kJ = 2. This transition is forbidden by the selection rule, 
and actually does not appear in Fig. 29(b); however, it is 
shown by a dotted line in Fig. 30. As T
already stated, the splitting of the upper
D term is relatively small, and thus, 
using low dispersion, we obtain doublets 
only, as for the sharp series, since 
2F*3/2 — 2D3/2 and 2P3/2 — 2D6/2 practic­
ally coincide. Using greater dispersion, 
as in Fig. 29(b), we find that one com­
ponent of the doublet, and only one, is 
double. However, this group of lines is 
called, not a triplet, but a compound 
doublet, since it results from the com­
bination of doublet terms. The lines of 
the Bergmann series (2D — 2F) similarly 
consist of such compound doublets, 
which are incompletely resolved still 
more often than those of the diffuse
series. Allowed combinations for the different series are 
also indicated in Table 3.

Vt

Fig. 30. Origin of 
a Compound Doublet 
>P - SD. [Cf. Fig. 29 
(6).] Intensities are 
indicated by the thick­
ness of the lines.

Triplets and singlets of the alkaline earths and helium.
A more accurate investigation of the two systems of lines 
of the alkaline earths, using high dispersion, shows that the 
para system consists of single lines (singlets), whereas the 
ortho system consists of threefold fines (triplets'). The 
splitting of the latter increases rapidly with increasing 
atomic number of the element in the second column of the 
periodic system. For Hg, the splitting is so great that 
different fines of one and the same multiplet fie in different 
regions of the spectrum.

Similar to the spectrum of the alkaline earths, even under 
large dispersion, the fines of the para system of He appear 
single, whereas those of the ortho system appear as very
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close triplets.2 The symbols already used for He and the 
alkaline earths (left upper indices 1 and 3) are now under­
standable (see Fig. 27, p. 65). Fig. 31 shows spectrograms 
of some of the calcium triplets. As in the case of the alkalis,
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Fig. 31. Some Calcium Triplets (Ca I), (a), (6), and (cj Normal triplets,
(d) Anomalous triplet (see p. 165). These photographs were taken with fairly 
large dispersion (2Â/mm.).

the line splitting can be traced back to a splitting of the 
terms—this time into three components. Fig. 32 shows the 
energy level diagram for calcium, with this splitting taken 
into consideration.

As in the case of doublet terms, the components of the 
triplet terms can be distinguished by indices J, which 
must now be assumed to be integers and to have the values 
given in Table 4 (p. 78). The reason for this choice will 
be made clear, later. For the alkalis, we found that the & 
terms of the doublet system are single. Similarly, here the 
5 terms of the triplet system are single. In spite of that 
fact, they are given a J index which, in this case, is equal to 1. 
These S terms must be clearly distinguished from the & 
terms of the singlet system (*$) of the same element, which 
lie somewhat higher (cf. Fig. 32). The former combine 
only with triplet terms, although they themselves are single; 
the latter, only with singlet terms.

J For He, two of the components lie so close together that for a long time the 
lines were thought to be doublets.
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fee of the J selection rule (II, 1) gives the possible com- 
itions indicated in Table 4. For small resolution, all 
resulting lines of the triplet system are threefold, 

e then only the splitting of the lower term (which 
the greater) is effective. Even under greatest reso­
on the lines of the principal series (3& — 3P) and 
the sharp series (3P — 3$) are only threefold, since 

3$ terms are single. However, each line of the dif-
; series (3P — 3D) and of the Bergmann series (3D — 3P)

Singlets 
'So 'Pi P2

Triplets

ig. 32. Energy Level Diagram of Ca I CGrotrian (8) ]. The diagram shows 
the normal terms. (For the anomalous terms, see p. 164.) The n values 
true principal quantum numbers. The transitions corresponding to 
rograms (a) to (c) in Fig. 31 are included, among others, in this figure.
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Table 4

J VALUES FOR TRIPLET TERMS

Term L J

5 0
/ \

P 1 0
\

2
X|\

D 2 1 2 3 
\|X|\

F 3 2 3 4 
\|X|\

G 4 3 4 5
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Fig. 33. Origin of a Com­
pound Triplet. [Cf. Fig. 31
(6)J

then consists of six components. The spectrogram of 
Fig. 31(6) shows this for the second member of the dif­
fuse series. The two lines of the Bergmann series, shown 
in Fig. 31(a) and (c), under the same dispersion are still 
simple triplets, since the splitting of the 3F terms is con­
siderably less than that of the 3D terms, which is, in turn, 
considerably less than that of the 3P terms.

Fig. 33 shows, in greater detail, the origin of a compound 
r triplet (3P — 3D) in an energy 

level diagram analogous to Fig. 
30. Each of the components of 
the line triplet would be a narrow 
triplet if three of the lines (dotted 
lines in the diagram) were not 
forbidden by the selection rule. 
The group of lines obtained in 
this way agrees exactly with the 
observed spectrogram in Fig. 
31(6).

It follows from Fig. 33 that 
the separations of the pairs of 
lines a and 6, and d and e, must 
be equal. From the fact that 
this relation is satisfied by an

observed group of six lines in an unknown spectrum, we can 
conclude, conversely, that the lines actually belong together
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and form such a compound triplet. Apart from this there 
are other checks (intensity and interval rules, Chapter IV, 
section 4).

Prohibition of mtercombinations; intercombination lines.
As already stated, terms of the triplet system of He prac­
tically do not combine with the terms of the singlet system, 
and conversely. That is, a prohibition of intercombinations 
is observed. This also holds for the alkaline earths. How­
ever, for them, some intercombination lines (combinations 
between singlet and triplet terms) actually do appear, al­
though they are very weak compared to the allowed transi­
tions. The number and intensity of forbidden lines which 
do appear increase with increasing atomic number. Some 
of these intercombination lines are included in the energy 
level diagram for Ca I (Fig. 32). The best-known example 
of such an intercombination line is the Hg resonance line 
X2537, corresponding to the transition 3Pi —> 1S0 (Fig. 74, 
p. 202). (The Ca line X6573 is analogous.) This is one of 
the strongest Hg lines, but it is considerably weaker than the 
corresponding non-intercombination line *Pi —> 1S0 at X1849. 
It should be noted that the selection rule A«7 = 0 or ± 1 
holds also for these intercombination lines, with the addi­
tional restriction that

7 = 0 does not combine with J = 0 (H, 2)

Thus, for Ca or Hg, the lines 3P0 'So and 3P2 —> 'So either 
do not appear at all or appear extremely weakly.3

Higher multiplicities; term symbols. For many elements 
other than those dealt with thus far, not only singlet, 
doublet, or triplet terms, but also terms of higher multi­
plicity occur; and, correspondingly, higher multiplets of 
lines are observed—such as, quartets, quintets, and so on. 
Also for the higher multiplicities, it is found experimentally 
that terms of different multiplet systems usually do not

’ The selection rules do not hold quite rigorously. See also Chapter IV.
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combine with one another or combine only very weakly 
(prohibition of inter combinations}.

In accordance with the suggestion of Russell and Saun­
ders, terms are now generally distinguished by using the mul­
tiplicity as the left upper index of the letter giving the L 

value (S, P, D, • • ■); this prac­
tice is analogous to the method 
already used for singlets and 
triplets. The J value is given 
as the right lower index. Thus 
each individual component of a 
multiplet term can be charac­
terized. For even multiplicities, 
J takes half-integral values; 
for odd multiplicities, integral 
values. (The reason for this 
difference will be explained later.) 
Hence we have symbols such as 
2Pi/2 (read “doublet P one 
half”), 3D2, 3jSi, 4Fs/2, and so on. 
These symbols are also used for 
șinglet terms where the J value 
is equal to the L value; for ex­
ample, bS0, 'Pi, and so on. 
Sometimes the principal quan­
tum number, or even the whole 
electron configuration, precedes 
this symbol, as we shall see later.

If higher multiplicities occur, 
the spectra appear more and

more complex. In principle, however, there are the same- 
regularities as described earlier in this chapter—similar 
series of line multiplets (principal series, and so on), and 
the same selection rules; hence we need not go into further 
detail here (see Chapter IV).

As an illustration of a somewhat more complicated multi­
plet, a 4F — AD transition of the CH spectrum is given in

6/z

4P^
-72

. !/2

8 S KJ

$ «5 00 U0C- t- e- t©<£>
11~1 ITT

a be d e f gh

Fig. 34. *P — *D Transition 
for C+ at 6800 A. ’ The relative 
separations of term and line com­
ponents are drawn to scale from 
data given by Fowler and 
Selwyn (59).
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Fig. 34, similar to the compound triplet of Fig. 33. It 
should be noted that a 4P term has only three components. 
This fact and the given values of J are explained in the 
following section.

Alternation of multiplicities. The atoms of the elements 
B, Al, and the other earths, which follow the alkaline-earth 
column in the periodic system, have doublet terms like the 
alkalis, as their spectra show (see the energy level diagram 
of Fig. 73, p. 198). However, quartet terms also have been 
observed for them, and consequently their energy level 
diagram splits into two partial systems (doublets and 
quartets), just as in the case of the alkaline earths (singlets 
and triplets).

All the elements of the carbon group have singlets and 
triplets, and sometimes quintets; those of the nitrogen group 
have doublets and quartets, and sometimes sextets; those 
of the oxygen group have singlets, triplets, and quintets; 
the halogens have doublets and quartets; and the inert gases 
have singlets and triplets, as we have already seen for He. 
Even and odd multiplicities, therefore, alternate in successive 
columns in the periodic system.

Quite analogous to the alkalis and alkaline earths, there 
are, for the other elements, series of arc and spark spectra; 
for example, C I, N II, 0 III, whose spectra, apart from a 
shift to the ultraviolet, are completely similar to one another. 
The Sommerfeld-Kossel displacement law thus holds: The 
first spark spectrum of an element is similar in all details to 
the arc spectrum of the element preceding it in the periodic 
system; similarly, the second spark spectrum is similar to the 
first spark spectrum of the element preceding it, or to the arc 
spectrum of the element with atomic number two less, and 
so forth. On the other hand, arc and spark spectra of the 
same element are fundamentally different. The multi­
plicity and type of the terms of an atom or ion are thus de­
termined solely by the number of electrons. The nuclear 
charge affects only the position of the spectrum. The
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alternation of multiplicities may therefore be expressed in 
the following generalized form:

The terms of atoms or ions with an even number of electrons 
have odd multiplicities; the terms of atoms or ions with an 
odd number of electrons have even multiplicities. This rule 
holds also for elements not fitting into one of the eight 
columns of the periodic system; for example, the rare earths.

2. Physical Interpretation of the Quantum Numbers
Meaning of L for several emission electrons. For the H

atom and the alkalis (which have one emission electron), L 
is the same as I, which is itself proportional to the orbital 
angular momentum of the electron. For elements with a 
larger number of emission electrons, such as the earths or 
the elements of the oxygen group, the quantum number L 
was at first introduced purely empirically to distinguish the 
different term series (S, P, D, • • •) of a term system. Its 
numerical value and, from this, the symbol for the corre­
sponding term were obtained from the combination proper­
ties, the same selection rule being assumed for L as for I, 
that is, AL = ±1. Further information was obtained from 
the investigation of multiplet structure and of the Zeeman 
effect. In more general cases, transitions with AL = 0 are 
also observed (see Chapter IV). The question is: In the 
more general cases what meaning does L have in our model 
of the atom?

If we recall that a definite, constant orbital angular mo­
mentum I is ascribed to the emission electron of the H atom 
or of the alkali atoms, it appears very plausible, even in a 
complicated atom, to ascribe to each individual electron a 
definite, constant orbital angular momentum lit where li is a 
vector of magnitude 0, 1, 2, • • • in units h/2ir.

That this assumption is true to a first approximation 
follows from the consideration that in complicated atoms 
each electron may be thought of as moving in the smeared- 
out field of the other electrons. This smeared-out field is 
approximately spherically symmetrical, and an electron
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moving in a spherically symmetric field has, according to 
wave mechanics, quantum numbers n and I, where I is 
proportional to the angular momentum (see p. 46f.).

The individual angular momenta produce, when added 
vectorially, a resultant which depends on the number, mag­
nitude, and direction of the respective vectors. Classically, 
since these can take all possible directions, the resultant 
momentum can, in general, take all values up to 
the last when all Z, are in the same direction.4 Quantum 
mechanics, however, shows that for atomic systems the 
resultant orbital angular momentum, as well as the indi­
vidual angular momenta Z,-, can be only an integral multiple 
of h/2-ir.5 6 The resultant orbital angular momentum is thus 
L'(/i/27t), or more accurately ^L'(L' + 1) h/2ir where L' is 
taken temporarily as the corresponding quantum number. 
The individual Z, can therefore be oriented only in certain 
discrete directions to one another. For the case of two elec­
trons with orbital angular momenta Zj and Z2, the possible 
resultant L' values are given by:

= (Zi 4- Z2), (h + Z2 — 1), (li + Z2 — 2), • • •, |Zi — Z21
Fig. 35 (p. 84) shows the possible resultants for h = 2, 
li = 1. Thus we obtain as many different states of the 
atom as there are different L' values. They are distin­
guished by the orientation of the orbital planes to one 
another (to use the old Bohr mode of expression).

However, the individual e’ectrons do not move even ap­
proximately independent of one another, as do, for example, 
the planets in the solar system; rather, they exert strong 
forces on one another (interactions'), due partly to their 
electric repulsion and partly to the magnetic moments re­
sulting from their angular momenta (see section 3). These 
interactions have magnitudes which depend on the par­
ticular circumstances. For example, if the two electrons

4 In general, the smallest possible vapje for the resultant is 0. But it will be
greater than 0 if one li is larger than the sum of the magnitudes of all the others.

6 The basis for this conclusion is quite analogous to the basis for the integral 
value of I, given on page 41.
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have very different principal quantum numbers, the inter­
actions are relatively small on account of the large mean

Fig. 35. Addition of 
Zi and l2 to Give a Result­
ant Orbital Angular Mo­
mentum L for Zi = 2, 
l2 = 1, and L = 3, 2, 1.

separation; whereas they will, in gen- 
erab be rather large when the prin­
cipal quantum numbers are equal.

This interaction now has the effect 
that the direction of the individual 
angular momenta is no longer con­
stant with time (as in the case of the 
one-electron problem) but carries out 
a precessional movement (just as the 
direction of the earth’s axis carries 
out a very slow precession due to the 
interaction with the gravitational

field of the sun, which seeks, on account of the flattening
of the earth at the poles, to set the earth’s axis perpendic­
ular to the orbital plane). In classical as well as in wave
mechanics, the resultant angular mo­
mentum L' remains, however, constant 
in magnitude and direction during this 
precession of the individual momenta. 
The precession for the case of two elec­
trons is shown in Fig. 36. The greater 
the interaction, the greater will be the 
velocity of precession.6 If this veloc­
ity is of the same order as the angular 
velocity corresponding to the individ­
ual angular momenta themselves, the 
latter lose their meaning completely, 
since then the electron does not de­
scribe, even to a first approximation, a 
rotational motion about the individual

Fig. 36. Precession 
of Zi and Z2 about the 
Resultant L. Replacing 
Zi, Z2, and L by L, S, and 
J gives a picture of the 
precession of L and S 
about J. (See p. 90.)

angular momentum
vector as axis, but rather a much more complicated motion. 
For very strong coupling (very high velocity of precession), 
this motion reduces, in a first approximation, to a simple

8 In the case of the precession of the earth’s axis, the interaction is so small 
that the period of precession is 25,000 years.
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rotation about the processional axis (the axis of the resultant 
angular momentum). In this case only the resultant L' 
has an exactly defined meaning.

If the selection rules for the quantum number L' of the 
resultant orbital angular momentum are derived in the way 
outlined in Chapter I, section 4, it is found that the 
selection rule AL' = ± 1 usually holds, although AL' = 0 
can also occur. L' therefore has just the properties ob­
served for the empirically introduced L. Therefore L' must 
be identified with L. Thus the different term series S, P, 
I), ■ ■ ■ of an atom with more than one emission electron are 
distinguished by different values (0, 1, 2, ■ • •) for the resultant 
orbital angular momentum L of the electrons. Hence the 
selection rule

AL = 0, ±1 (II, 3)
holds. In addition, there is the rule that, so long as the 
interaction of the electrons is not very large, only those 
quantum transitions take place for which only one of the 
emission electrons makes a jump—that is, only one alters 
its I value, the alteration being in accordance with the 
selection rule (I, 29): AZ = ± 1. For example, a state of 
an atom with twro emission electrons with L = 1, h — 1, 
l< = 0 cannot combine with a state L — 2, Zi = 3, Z> = 3, 
although this combination would be allowed according to 
(II, 3) alone.

For strong coupling of the angular momentum vectors, 
the energy of the entire system will obviously differ accord­
ing to the orientation of the individual angular momenta to 
one another. Thus in the case of two electrons (considered 
above), the energies of (he states

— (Zi + Z2), (Zi + I2 — 1), (Zi + I2 — 2),
•••, |Zi-Z2| (11,4)

differ—the difference being greater, the stronger the cou­
pling (interaction). The observed magnitude of the energy 
difference is a direct measure of the strength of the coupling.

As we have shown above, when there is strong interaction 
in an atom, the individual angular momenta Z, no longer
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have any exact meaning as angular momenta; only their 
resultant L has an exact meaning. The momenta Z, are, 
however, still of importance in determining the number and 
type of the terms. Both in the Bohr theory and in quan­
tum mechanics, Ehrenfest’s adiabatic law holds: For a 
virtual, infinitely slow alteration of the coupling conditions, 
the quantum numbers of the system do not'change 7 and, in 
particular, the number of terms does not vary. Hence, if 
we “uncouple” the individual orbital angular momenta by 
assuming their interactions removed, we come, in the limit­
ing case, to the state in which each individual U actually 
has the meaning of an angular momentum and in which we 
can carry out the above vector addition. 'Thus we obtain 
the correct number and type of the resulting terms.

Consequently, for the case of a number,»qf electrons in an 
atom, we ascribe to each electron an I value that would cor­
respond to the angular momentum of this’ electron for in­
finitely small or vanishing coupling. Electrons with I — 0 
are called s-electrons; those with I — 1, p-electrons; those 
with I = 2, d-electrons; and so on (small letters being used 
in contrast to capital letters, which represent terms of a 
complete atom or ion). The principal quantum number of 
the electron is added to this, and we have such symbols as 
Is, 2p, 4d, and so on. At all events, even in the actual 
atom, the quantum numbers Z, still retain their importance 
for deriving the number and type of terms, but do not 
always correspond to angular momenta—at least not in the 
strict sense of the word.

Table 5 shows the term types given by various electron 
configurations (cf. Table 10, p. 132).

If all but one of the li are zero, the resulting L value will 
naturally be that of the single Z£. This single I then retains 
literally its physical meaning of an angular momentum.

7 The converse of this law is: Only such magnitudes can be quantized as 
remain constant (invariant) for adiabatic changes. According to Ehrenfest, 
this converse may be considered the fundamental law of the old quantum 
theory.
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Such, for example, is the case for most (normal) terms of the 
alkaline earths and He. The term type S, P, D, ■ • • then 
depends only upon the I value of this one emission electron, 
just as for the alkalis. However, even for the alkaline 
earths there are terms—the so-called anomalous terms (see 
Chapter IV, section 2)—for which two electrons have 
I 0. For elements of the carbon group and beyond, the 
occurrence of such terms with more than one electron 
having Z 0 is quite general.

Table 5

L VALUES AND TERM SYMBOLS FOR TERMS WITH 
DIFFERENT ELECTRON CONFIGURATIONS

Electron Configuration L Term Symbol

s p 1 P
p p 0 1 2 S P D
p d 1 2 3 PDF
dd 0 12 3 4 S P D F G

PP P 0 1112 2 3 S P P P D D F

When there are three electrons for which I =)= 0, the vector 
addition may be carried out simply by combining the I 
values of two electrons and then combining each of the 
resulting L values with the I of the third electron.

Physical interpretation of J: cause of multiplet splitting.
On the basis of the foregoing, a term with a given L is single. 
How can we then explain the observed splitting into multi­
plets of the terms with a given value of L? As we shall 
anticipate here (cf. the following section), investigations 
of the anomalous Zeeman effect have shown that the indi­
vidual components of a multiplet are distinguished from 
one another by the total angular momentum of the atom. In 
fact, using the above nomenclature for distinguishing the 
sub-levels (empirical quantum number J), the total angular 
momentum is found to be equal to J X h/2ir, where, as will 
be remembered, J is the quantum number at first intro­
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duced purely formally in order to distinguish the sub-levels. 
According to quantum mechanics, the exact value of the 
total angular momentum is, not J(/i/27t), but ^J(J + 1) 
X h/2-n-, as in the case of I. As before, the difference can 
in many cases be disregarded.

The total angular momentum of the atom is thus not 
equal to the resultant (integral) orbital angular momentum 
L, which is the same for all components of a multiplet term, 
but can take as many different values as the multiplicity of 
the term. Thus, to obtain the total angular momentum J, 
one has to add vectorially to L an additional integral or half- 
integral angular momentum vector S, whose exact meaning 
we shall leave undefined for the moment. According to the 
quantum theory, L and S cannot be oriented to each other 
in any arbitrary direction but only in certain directions 
(similar to the case of the individual /,), and therefore only 
certain discrete values of the resultant J are possible. The 
largest and the smallest values of / for a given pair of values 
L and S are obtained by a simple addition and subtraction 
of the corresponding quantum numbers L and >S.8 In this 
calculation only the magnitude of the resultant vector is of 
importance, since J, naturally, can only be positive. Inter­
mediate values of J are also possible, and these differ from 
the extreme values (sum and difference) by integral amounts, 
just as in the addition of the li to form a resultant L. In 
this case we have therefore:
J = (L + S), (L + S -1), (L + S- 2),

•••, |L - S| (11,5)
In other words, the rule is: the vector addition of L and 
S is such that the different possible values of their vector 
sum have integral differences. Fig. 37 illustrates this rule 
for the cases L = l, *S = ^;L = 1, £ = 1;L = 2, £ = 1; 
L = 1, S = %; L = 2, S = + When L > S, it is easily

8 This S, naturally, has nothing to do with the 5 of the M terms. The 
former is a quantum number; the latter, a symbol for L = 0. This nomencla­
ture is internationally used and must therefore be used here, although it may 
lead to confusion.
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seen from (II, 5) that the number of possible J values for a 
given value of L is

23 + 1
On the other hand, if L < S, the number of possible J 
values for a given value of L is

2L + 1
In particular, for 3 terms (L = 0, 2L + 1 = 1) there is 
only one value of J; namely, J = S.

*P Term *D Term
Fig. 37. Vector Addition of L and S to Give a Resultant J for Different 

Examples. For a given combination of L and S, all the possible orientations of 
L and S with respect to one another and the corresponding total angular mo­
menta are illustrated. The vector J is indicated by a heavy line. Its direc­
tion is fixed in space. The magnitude of the vector J (and, corresnon lingly,
of L and S) is taken as J(/i/27t), and not >//(,/ + 1) /i/2tt, as it sjiou Id be strictly 
speaking.

Note that, in drawing such figures, the direction of the first vector is quite 
arbitrary. It is only for simplicity that all these have been drawn vertically.
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The number of possible J values—that is, possible values 
of the total angular momentum—is equal to the number 
of components into which a term of given L is split. Evi­
dently when the angular momentum is different for two 
states, the energy will, in general, also be different, as we 
have already seen when dealing with the vector addition of 
the li. Now, we had previously associated some terms with 
'a system of higher multiplicity, though they themselves 
actually had a smaller number of components; for example, 
we had 3S terms, although the 5 terms are always single. 
The reason for this apparent inconsistency is now clear. 
The important thing for the behavior of a term is not the 
number of its components but the magnitude of its additional 
angular momentum vector S. For 3S terms, the quantum 
number of the additional angular momentum 5 equals 1, 
as for 3P and 3D terms. This value of £ gives three com­
ponents for P,D, • • • terms (cf. Fig. 37), but only one com­
ponent for $ terms since L = 0. In spite of this fact, the 
3S term behaves like 3P, 3D, ■ ■ ■ terms since for all of them 
£ = 1. The value 25 + 1 is generally called the multi­
plicity of a term, which gives the number of possible J 
values or the number of components only when L > S.

According to the above discussion, the vector additions 
in Fig. 37 represent the cases of 2P, 3P, 3D, 4P, iD terms. 
The 4P term has only three components (since L < S), but 
in spite of that is called a quartet term. Table 6 gives the 
multiplicities (25 + 1) for different values of 5.

As Table 6 shows, the multiplicity 25 + 1 is even when 
5 is half integral (for example, for the alkalis, 5 = |, and 
doublets result), but is odd when 5 is integral (for example, 
for the alkaline earths, 5 = 1 or 0, and triplets and singlets 
result). Conversely, in order to explain an observed even 
number of components (for example, doublets), we must 
necessarily assume that 5 is half integral; whereas, for an 
odd number of components, 5 must be integral.

Just as in the combination of the Z, to give L, a precession 
of the components L and S takes place about the resultant J
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Table 6

MULTIPLICITIES FOR DIFFERENT VALUES OF 5

5 Multiplicity of the Terms

0 Singlets
Doublets

1 Triplets
% Quartets
2 Quintets
% Sextets

(cf. Fig. 36, p. 84). The greater the interaction of L and 
S, the faster will be the precession and the greater will be 
the difference in energies of the states with different 7; 
that is, the greater will be the multiplet splitting. Further­
more, according to Dirac’s wave mechanical theory of the 
electron spin, Sommerfeld’s fine structure formula (I, 12) 
still holds if k is replaced by j' + j, where j corresponds to 
7 for the case of one electron. It thus follows from (I, 12) 
that, for the case of one emission electron, the doublet 
splitting is proportional to Zi. Strictly speaking, this con­
clusion should hold only for hydrogen-like ions, but qualita­
tively this rapid increase in multiplet splitting with increas­
ing Z will also hold for all other cases. This result is in 
agreement with experiment. For example, for Li (Z = 3), 
the splitting of the lowest 2P level is 0.34 cm-1, for Cs 
(Z = 55), it is 5540 cm-1; for Be (Z = 4), the total splitting 
of the first 3P level is 3.03 cm-1, for Hg (Z = 80), 6397.9 
cm"1. On the other hand, according to (I, 12), the splitting 
should decrease with increasing n and L. This effect is 
also observed. For a not too high atomic number, the 
multiplet splitting is, in general, relatively small; that is, 
the velocity of the precession of L and S about 7 is small. 
L and S therefore retain, to a good approximation, their 
meaning as angular momenta, even when the interaction is 
allowed for. However, for heavy elements, sometimes only
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J retains its meaning as an angular momentum (see 
Chapter IV, section 3).

If the components in a multiplet term lie energetically in 
the same order as their J values (smallest J value lowest) 
the term is called regular or normal and, in the converse
case, inrerled. For example, most of the P and D terms of 
the alkalis and the alkaline earths are regular doublets or 

triplets (Figs. 30 and 33). Similarly, the
J quartet terms of C+ in Fig. 34 (p. 80) are 

________3)2 also regular. Fig. 38 gives a 4D term as an

L = 2, s=3/2
Fig. 38. Ex­

ample of an In­
verted Term iD.
Corresponding to 
the interval rule 
(see p. 178), the 
separation of the 
components in­
creases from top 
to bottom, con­
trary to a normal 
term.

•example of an inverted term. The reason 
for the appearance of the inverted order of
the terms will not be discussed here [(cf. 
White (12) and Condon and Shortley (13)].

Selection rule for J. Wave mechanical 
calculation of the transition probability (cf. 
Chapter I, section 4) shows that the selec­
tion rule AJ = 0, ± 1 holds for the quan­
tum number J of the total angular momen­
tum of an atomic system. In addition, it 
is found that a level with J — 0 does not
combine with another level with «7 = 0.

These results agree exactly with the selection rules (II, 1) 
and (II, 2), which were derived purely empirically from 
spectroscopic observations (see p. 74 and p. 79).

Physical interpretation of S. What meaning can we now 
give to the additional angular momentum S in our atomic 
model? Historically, the first assumption held 'that this 
angular momentum was the angular momentum of the 
atomic core. The assumption has proved untenable, since 
for the alkalis, for example, the atomic core is formed by 
the ground state of the corresponding alkali ion and, ac­
cording to the spark spectrum, this is a 1S0 state (just as for 
the inert gases, according to the Sommerfeld-Kossel dis­
placement law) and thus has J = 0, L = 0, and 3 = 0. 
That is to say, an angular momentum of the atomic core
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cannot be present in the case of a neutral alkali atom. 
.Apart from this, it is difficult to see why the angular mo­
mentum of the atomic core should be half integral. But 
that J and therefore the additional angular momentum 8 
really must be half integral for even multiplicities is also 
confirmed definitely by the investigation of the anomalous 
Zeeman effect, as will be seen later. Goudsmit and Uhlen­
beck were thus led to the assumption that the additional 
angular momentum S is due to the electron or electrons 
themselves. According to this assumption, each electron 
performs a rotation about its own axis as well as a motion 
about the nucleus. This rotation is such that the angular 
momentum s has the same magnitude for each electron, 
ț (A/27t) ; 1 he rot at ion is usually called the spin, or the electron 
spiny The assumption of electron spin has been verified 
by an ext raordinarily large amount of experimental material 
and must be regarded today as entirely correct.9 10

When several electrons are present, the individual spin 
vectors s, combine with one another just as in the case of 
the li previously discussed. It is the resultant spin vector 
which, according to Goudsmit and Uhlenbeck, is identical 
with the above empirically derived, additional angular 
momentum vector S. Analogous to L, the resultant spin 
vector S can take only certain discrete values according to 
the quantum theory, the maximum value being obtained 
when all the s, are parallel. In that case, if Ar is the number 
of electrons, the corresponding quantum number is equal 
to N/2, since each electron contributes For other 
orientations of the s„ the following 3 values are possible:

N N 1 n2-1, 2-2, •••, J or 0

The smallest value is j or 0 according as 2V/2 is half integral

9 The rigorous quantum mechanical formula for the magnitude of the 
vector s would be V.s(s + 1) Ii/2tt; that is, with s = J; hj2ir.

10 The assumption appears as a necessary result of Dirac’s relativistic wave 
inechanics. However, this theory has thus far been completely worked out 
only for the one-electron problem:
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or integral. It follows that £ is half integral or integral ac­
cording as the number of electrons is odd or even. The em­
pirically obtained alternation law of multiplicities follows 
directly from this result, since the multiplicity is equal to 
23 + 1 and will therefore be even or odd, according as the 
number of electrons is odd or even (see p. 81).

The same conclusions that we have derived for the spin 
from analogy and consideration of the old quantum theory 
may also be reached by an accurate wave mechanical treat­
ment ^Condon and Shortley (13)]. Also, we can obtain 
these conclusions rather more simply and schematically (but 
less rigorously) by assuming that the spins of the individual 
electrons in an atom will be either parallel or antiparallel to 
one another. It is then obvious that the resultant will be 
half integral or integral according to whether the number of 
electrons is odd or even.

The exact theoretical derivation shows that, to a first ap­
proximation, states with different 3 (different multiplicities) 
do not combine with one another. This prohibition of 
intercombinations has also been observed empirically (p. 
79). We therefore have the selection rule for 3:

AS = 0 (II, 6)
Both theory and experiment show that this selection rule is 
adhered to less and less strictly as the atomic number in­
creases.

The alkalis have one electron outside the atomic core (see 
Chapter III). Consequently S = |, and doublet terms 
result, in agreement with experiment.

The alkaline earths and He have two electrons outside the 
atomic core. Their spins can be either parallel î Î or anti- 
parallel II to one another; that is, 3=1 or 0, and there 
result triplet as well as singlet states. Each state with a 
given L can, in general, occur as a triplet state as well as a 
singlet state. The ground state, which occurs only as a 
singlet state, forms an exception (cf. the energy level di­
agrams of Figs. 27 and 32), which will be explained in the 
next chapter.
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With three electrons outside the core, £ can have the 
values j and j, corresponding to î t Î and Itt. This gives 
quartets and doublets.

Table 7 lists the possible term multiplicities for various 
numbers of electrons.

Table 7

POSSIBLE MULTIPLICITIES FOR VARIOUS NUMBERS 
OF ELECTRONS

Number of 
Electrons Possible Multiplicities

1 Doublets
2 Singlets, triplets
3 Doublets, quartets
4 Singlets, triplets, quintets
5 Doublets, quartets, sextets
6 Singlets, triplets, quintets, septets
7 Doublets, quartets, sextets, octets
8 Singlets, triplets, quintets, septets, nonets

According to the preceding discussion, the spectrum of the H 
atom should also be a doublet spectrum. Actually, it has been 
shown that the hydrogen fine structure can only be explained 
quantitatively by taking account of this fact. The relations 
are, however, complicated in this case by the fact that the separa­
tion of terms with different I (and equal n) is of the same order 
as the doublet splitting. We shall not go into these complications 
[see White (12) ] but merely note that, according to this interpre­
tation, the lines of the Lyman series are not single, as assumed in 
Fig. 13, but consist of twro components like the lines of the 
principal series of the alkalis. (The experimental investigation 
of the fine structure of the Lyman lines offers many difficulties 
because the lines lie in the vacuum region, and has therefore not 
yet been carried out.)

The fact that multiplet splitting does occur shows that 
an interaction between L and S exists. It is, in general, 
small for a not too great atomic number. This interaction 
is due to the fact that a magnetic moment is associated with 
the electron spin, just as with any rotation of charges. 
The magnetic moment of the spin is influenced by the 
magnetic moment associated with the orbital angular mo-
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mentum L, the magnitude of this interaction depending 
upon their orientation to each other. Therefore, as already 
mentioned, a precession of L and S about the direction of 
the total angular momentum J takes place (cf. Fig. 36, 
p. 84).

For the magnitude of the magnetic moment of the elec­
tron, Goudsmit and Uhlenbeck made the assumption that 
it is twice as great as follows from the classical connection 
between magnetic moment and angular momentum. The 
meaning of this assumption will be amplified in section 3 
of this chapter.

As already noted, states with different 5 (different multiplicities 
but with other quantum numbers the same) have appreciably 
different energies (cf. Figs. 27 and 32). For a not too high 
atomic number, the energy difference is appreciably greater than 
the energy difference between the individual components of a 
multiplet. Although it might appear that this energy difference 
of terms with different multiplicities is due to the different inter­
actions of the spins resulting from their different orientations, the 
interaction of the spin vectors s, due to their magnetic moments 
cannot possibly be very much greater than that of L and S. In 
fact, theoretically it should be appreciably smaller. The energy 
difference of the various multiplet systems must, therefore, have 
another origin, which will be dealt with in Chapter III.

3. Space Quantization: Zeeman Effect and Stark Effect
General remarks on Zeeman effect and space quantiza­

tion. The necessity for the assumption of an angular 
momentum or spin of the electron itself and, in particular, 
its double magnetism is made especially clear in the explana­
tion of the Zeeman effect of spectral lines. This effect may 
be described as follows. When a light source is brought 
into a magnetic field, each emitted spectral line is split into 
a number of components. To a first approximation, the 

.splitting is proportional to the strength of the magnetic
J field. Fig. 39 shows three examples of such splitting.

The splitting of the lines is evidently due to a splitting of 
the terms in the magnetic field. The influence of a mag­
netic field on energy levels is, perhaps, most clearly under-
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stood by considering how a magnetic needle behaves in a 
magnetic field. The potential energy of the magnetic 
needle depends upon its direction with respect to the mag­
netic field. Therefore, if the needle is displaced from (he

I

(«) (6) (c)
Fig. 39. Examples of Line Splitting in a Magnetic Field (Zeeman Effect) 

[after Back and Lande (6)].
(a) Normal Zeeman triplet of the Cd line 6438.47 Â ('P — ■/) transition). 

Above, the exposure was so made that only light polarized parallel to the field 
direction could reach the plate (single component at the position of the original 
line). Below, the components were polarized perpendicular to the field; they 
lie symmetrical to the original line.

(f>) Anomalous Zeeman splitting of the two D lines of Na, 5889.96 A and 
5895.93 Â (2»S' — 2P transition). Above, with magnetic field. Below, without 
magnetic, field.

(c) Anomalous splitting of the Zn line 4722.1G Â (’Pi — ’»S'i transition).

direction of the field and then released, it will vibrate back 
and forth about its equilibrium position (the position of 
minimum potential energy—that is, when the needle is in 
the direction of the field) and can be brought to rest only 
by the dissipation of its energy. Like the magnetic needle, 
the atom generally has a magnetic moment y. The rotation 
of electric charges which, even according to wave mechanics, 
takes place in the atom always leads to the production of a 
magnetic moment in the direction of the axis of rotation. 
This effect follows the same laws that operate when a cur­
rent flows through a wire ring (circular electric current). 
The greater the angular momentum of the atom, the greater 
will be the magnetic moment y. Because of the inherent 
connection between magnetic moment and angular momen­
tum, we have to take into account the gyroscopic forces 
when we discuss the behavior of an atom in a magnet ic field.
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Fig. 40. Precession of 
the Total Angular Momentum 
J in a Magnetic Field H 
about the Field Direction as 
Axis.

The effect of these gyroscopic forces is that the rotational 
axis of the atom (direction of y) does not vibrate back and 
forth about the position of minimum energy, but executes a 
precessional motion with uniform velocity about the direc­

tion of the field (so-called Larmor 
precession}. This precession is 
shown diagrammatically in Fig. 40.

Just as for the combination of 
the li vectors, the velocity of pre­
cession depends upon the strength 
of the coupling; that is, in this 
case the velocity depends upon the 
field strength H of the magnetic 
field. It is directly proportional 
to the latter. (This holds also for 
the vibration frequency of a mag­
net.) So long as no energy is dis­

sipated, the precession continues at a constant angle to the 
field direction; that is, J has a constant component M in 
the direction of the field. The energy in a magnetic field 
(as for the magnetic needle) is:

W — Wo — HVfI (II, 7)
where y^ is the component of the magnetic moment in the 
field direction and Wo is the energy in the field-free case. 
When y or J is perpendicular to the field direction, W = Wo.

Just as two angular momentum vectors in an atomic 
system cannot, according to quantum mechanics, take any 
arbitrary direction with respect to one another but only 
certain discrete directions, so an angular momentum vector 
can take only certain discrete directions in a magnetic field. 
This means that J (and therefore y) is space quantized in a 
magnetic field. Just as the resultant in the afore-mentioned 
case of two angular momentum vectors can take only inte­
gral or half-integral values, so in this case the component M 
of the angular momentum J in the direction of the field can be 
only an integral or half-integral multiple of hj‘2ir. It will be
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integral when J is integral, or half integral when J is half 
integral. Thus the following relation holds:

M = J, J - 1, J-2, ■■■,--J (11,8)
This gives 27 + 1 different values.

The left half of Fig. 41 illustrates the possible orientations 
of J to the direction of the magnetic field H for J — 2 and 
J = I- The precession which J carries out about the field 
direction, as in Fig. 40, can take place only at one of the 
given angles to the field direction. For J = j, only the 
directions parallel or antiparallel to the field are possible.

Corresponding to this space quantization, the energy of 
the system in a magnetic field cannot take any value

A H Without Field With Field

M

Fig. 41. Space Quantization of the Total Angular Momentum J in a 
Magnetic Field H for J = 2 and J = +. To the left are the possible orienta­
tions to the magnetic field. To the right, in an energy level diagram, the 
corresponding energy values arc indicated.
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between Wo + H |v I and Wo — H [y |; but it can take only 
2J + 1 discrete values. The right half of Fig. 41 shows this 
term splitting in a magnetic field. According to (II, 7), 
the splitting is proportional to the field strength. It is, in 
first approximation, symmetrical about the undisplaced 
term. All the energy differences between the individual 
components are the same, since H#h is proportional to M 
(cf. below) and the possible M values have whole-number 
differences.

The space quantization itself is independent of the field 
strength. It remains even when the field strength de­
creases to zero, although then all the 2J + 1 different states, 
differing in orientation, have equal energy: they are de­
generate.

This degeneracy in the field-free case is the same as that 
already mentioned for the H atom (p. 47). There we had a 
21 + 1 fold space degeneracy. Now, in the general case, 
J replaces I. Without field, there are consequently 2,7+1 
different eigenfunctions which belong to the same eigen­
value; with field, there are 2J + 1 slightly different eigen­
values or energy values belonging to these 27 + 1 different 
eigenfunctions.11

The existence of space quantization is shown most strik­
ingly by the Stern-Gerlach experiment in which a beam of 
atoms is sent through an inhomogeneous magnetic field. In 
such a field, a body with a magnetic moment is subject, not 
only to a force moment tending to turn the direction of the 
magnetic moment into the field direction, but also to a de­
flecting force due to the difference in field strength at the 
two poles of the body. Depending on its orientation, the 
body will therefore be driven in the direction of increasing 
or decreasing field strength. Suppose we now send through

11 In the field-free case, any linear combination of the 2J + 1 eigenfunctions 
is an eigenfunction of the same energy value. The eigenfunctions irith field 
will be approximately equal to those without field only when one lias chosen the 
“correct” linear combinations of the field-free eigenfunctions that are appropri­
ate for the problem; that is, when one has placed the z-axis of formula (I, 2S; 
in the direction of the field.
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such an inhomogeneous field atoms possessing a magnetic 
moment (Fig. 42). If atoms with all possible orientations 
to the field are present, a sharp beam should be drawn out 
into a band. Actually, a splitting of the beam into 2J + 1 
different beams takes place. In Fig. 42, J is assumed to be 
| and a splitting into two beams results. This experiment 
shows unambiguously that in a magnetic field not all orien­
tations to the field, but only 2J + 1 discrete directions, are

Fig. 42. Schematic Representation of the Stem-Gerlach Experiment. A 
beam of atoms possessing a magnetic moment (J = comes from the left, 
passes through an inhomogeneous magnetic field between the poles N and S, 
and falls on the receiving plate A. The directions of the angular momenta of 
t he atoms arc indicated by the small arrows.

It must be noted that, whereas the rigorous quantum theoret­
ical value for the magnitude of J is -\/7(7 + 1) h/2ir (cf. p. 88), 
the rigorous value for the component M of 7 is Af(/i/27r), not 

+ 1) A/2ir. Therefore the maximum component of the 
vector 7 in the direction of the field is 7(A/27t) and not >IJ(J + 1) 
X h/2-jr. This may at first seem rather puzzling because in classical 
mechanics the maximum component of a vector in a given direc­
tion is equal to the magnitude of the vector. In fact the magni­
tude of a vector in classical mechanics may be defined either (a) 
by the usual square root of the sum of the squares of the three 
components, or (6) as the largest value its component can have on 
some fixed axis. In classical mechanics, the two definitions are 
equivalent and hence the distinction between (a) and (b) is 
never made explicit. In quantum mechanics, the two are not 
equivalent—the magnitude being V7(7 + 1) h/2ir in the sense of
(a), and J(h/2ir) in the sense of (b), as stated above.

Thus in quantum mechanics the component of 7 is always 
smaller than its magnitude, which means that the angular momen­
tum vector cannot point exactly in the direction of the field (fixed 
axis). This is illustrated on the right in Fig. 43 for J = j and
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Af=+^

M=+l

Af=0

7=1

t-
fc/27T

-I

Fig. 43. Space' Quantization for 
J = and J = 1. To the left is the 
naive representation (see Fig. 41) taking 
the magnitude of the total angular mo­
mentum equal to J(/i/2n-). To the right 
is the exact representation taking the 
magnitude equal to 'J J (J + 1) A/2ir.

J = 1, whereas on the left the more naive representation of Fig. 
41 is given. For larger values of J the difference between the two 
ways of representation—that is, between definitions (a) and (6)— 
becomes smaller and smaller in accordance with the correspond­
ence principle (see p. 28). For the cases where only the com­

ponents of the angular mo­
menta matter, definition (6) 
is sufficient even in quantum 
mechanics. For some cal­
culations, however, it is 
necessary to use definition 
(a). (See below.)

The difference between (a) 
and (5) in quantum me­
chanics is intimately con­
nected with Heisenberg’s 
uncertainty relation. If the 
angular momentum could 
point exactly in the direc­
tion of the field, it would of 
course mean that the other 
two components were equal 
to zero. As then all the 
three components of the 
angular momentum would 
have exact values, it follows 
from Heisenberg’s uncer­
tainty relation that the three 
corresponding co-ordinates 
(the angles about the x-, y-, 
and z-axes) are completely 
undetermined. This is only 
possible if the probability 
distribution is spherically 
symmetrical—that îs, if the 
angular momentum is zero 
(J-S state; cf. p. 135). As 
soon as the angular momen­
tum J is different from zero, 
only one of the three com­

ponents px, pv, px can have an exact value, px = Af(/i/2ir); whereas, 
for the other two, only the sum of the squares is known, px + p„2 
= J2 — p? = J(j + 1)(A/2tt)2 — Af2(/i/27r)2, which can never be 
equal to zero.

With increasing magnetic field strength and therefore in­
creasing velocity of precession, /loses its meaning of angular 
momentum. This is similar to the previously considered
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case of the vectors For strong fields, only M retains 
a strict physical meaning, since there results what is essen­
tially a rotation of the system about the direction of the 
field.

Normal Zeeman effect. The magnetic moment resulting 
from the revolution of a negative electric point charge is 
given classically by:

y - (II, 9)

where p — angular momentum and m — mass of the 
charged particle. Because of the negative sign of the 
charge, the magnetic moment has the opposite direction 
to the angular momentum. For atoms, the angular mo­
mentum is J(h/2ir) Qor more accurately, ^J(J + 1) h/2nf\- 
The magnitude of the magnetic moment is thus:

>IJ(J + 1)]J I or more exactly, — 2mc 2irM - — 2mc 2ir
For J = 1, the magnetic moment is accordingly:

_ e h
2mc 2ir

which is known as the Bohr magneton and has the value 
0.9273 X 10“*° erg. oersted. The component of y in the 
field direction is; e h

= ~ 2mic2^M (II, 10)

Substituting this value of yw in (II, 7), we find that the 
energy in a magnetic field is:

1 eHW — Wo + hoM, where o (II, 11)’ 2ir 2mc
Here o is the so-called Larmor frequency, which may be 
shown to be the frequency of precession. From (II, 11) 
we see that the state with smallest energy has its angular 
momentum antiparallel to the field direction (M < 0). 
Because of the negative sign in (II, 9), the magnetic mo­
ment is then in the field direction.

From (II, 11) it follows that terms with different J values 
will have different numbers of components (2J + 1) in a
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magnetic field, but that the separation of consecutive com­
ponents must be the same for all terms of an atom for a 
given field strength. This separation is ho. If two terms 
combine, it may be shown theoretically (cf. below) that the 
selection rule for M is:

AM - 0, ±1 (II, 12)
with the addition that the combination

M = 0 —-> M = 0 is forbidden for A./ — 0 (II, 13)
Because there is equal splitting for all terms, the number 

of line components is always 3 since all lines with equal AM

Without Field With Field
M

V
Fig. 44. Normal Zeeman 

Effect for a Combination J =3 
—► J = 2. The arrows repre­
senting the transitions form three 
groups (indicated by brackets). 
The arrows in each group have 
equal length and give rise, there­
fore, to one and the same line in 
the splitting pattern (lower part 
of figure).

coincide (see Fig. 44). Lines 
with AM = 0 fall in the posi­
tion of the original field-free 
line; lines with AM — ± 1 lie to 
the right and left at a distance

Abnorm = - = 4.6G99 X 10-5 X H c
This kind of splitting is called 
the normal Zeeman effect. It 
is observed only for singlet lines 
(S = 0). [Cf. Fig. 39(a), p. 
97.]

It should perhaps be added 
that, for observations made 
in a direction perpendnMilar 
to the field, the lines with 
AM = 0 are polarized parallel 
to the field (7r-components); 
the lines with AM = ± 1,
perpendicular to the field 

(a-components). [Cf. Fig. 39(a).] These Results are in 
agreement with more detailed calculations, as given below.

The selection rule for the magnetic quantum number M will now 
be briefly derived, according to the methods previously men­
tioned (p. 51 f.), as a simple example of the wave mechanical 
derivation of selection rules. Let^' — x'eiM''1’ anAyf/" = x"e,M 
be the eigenfunctions of the upper and lower states, respectively.
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With the field direction taken as the z-axis, the dependence of 
the eigenfunction on the,azimuthal angle p is completely allowed 
for in the factor eiMv. £The form of the dependence on p given 
previously for the H atom is generally true (p. 39).] Thus p 
does not occur in x- The matrix element R, associated with 
the transition, has components

W’x dr = Jx’x*»ew-M"Ux dr 

and similarly for y and z.
We introduce co-ordinates z, p (distance from z-axiă), and p. 

Then dr = p dp dz dp; x = p cos p; y = p sin p. Considering 
first the z component of the matrix element, it is:

J* W'zdr =ff j'x'x*"e^M'-M"^zpdpdzdp

‘ =ffx'**"zPd2dpfei(M’~M")vdv

This integral is different from zero only when
2ir

does not vanish. Such is the case only when M' = M". Thus
the z component of the transition moment will always vanish 
unless M' = M” or, in other words, light polarized in the z 
direction (direction of the field) will be emitted only when the 
selection rule AM = M' — M" = 0 is obeyed.

The x component of the matrix element becomes:
£yp'^*"xdT = £J*j'xx*"^™' M"^'fp cos pp dp dz dp 

= J'J' XX*" P2 dz dp J' cos p dp

which is different from zero only if the second integral does not 
vanish. By using cos p = + e~i,p), the second integral
becomes:

1 J'ei(M'-M''+i)Vdp + e^M'-M"~1^dp

This vanishes unless the exponent in at least one of the two 
integrals = 0; that is, we have the selection rule AM = + 1 or 
— 1. The same result is obtained for the y component. For 
both components of the transition moment perpendicular to 
the field direction, we therefore have the selection rule AM = ± 1. 
In this way we obtain not only the selection rules but also the 
polarization rules. The components of the splitting pattern with
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AM — 0 are polarized parallel to the field direction; those with 
AM = dt 1, perpendicular to the field direction. These results 
are in agreement with experiment. (^Cf. Fig. 39(a).] A more 
detailed treatment, which we shall not discuss here, leads to the 
additional rule that the transition M = 0 —> M = 0 is forbidden 
for transitions with AJ — 0.

Anomalous Zeeman effect. For all lines that are not 
singlets, the so-called anomalous Zeeman effect is observed. 
[See Fig. 39(b) and (c), p. 97.] It consists of a splitting 
into many more than three components with separations 
that are rational multiples of the normal splitting Avn 
(Runge’s rule). This effect can be explained only by as­
suming that the magnitude of the term splittings for a given 
field strength is not the same for all terms but differs ac- 
cordirg to the values of L and J. We may account for 
this formally by replacing equation (II, 11) by:

W = Wo + hoMg (II, 14)
where g, which is called Lande’s g-factor, is a rational number 
which depends upon J and L. It is quite obvious that, even 
if we retain the above selection rule AM = 0, ±1, the 
number of line components obtained in a magnetic field will 
now depend upoh the number of term components (2J + 1).

Consider, for example, the D lines of sodium, which cor­
respond to the transitions 2Pi/2 —> 2$i/2 and 2P3/2 ~^2Si/2. 
Since M has only two values for each of the terms 2Pi /2 and 
2jSi/2, and has four values for 2P3/2, it is clear that with a 
different g value for each of the three terms the number of 
components of the splitting pattern for one D line of Na will 
be different from that for the other. As Fig. 45 shows, we 
obtain four and six components, respectively, in agreement 
with experiment. [Cf. Fig. 39(b).] Conversely, the ob­
served difference in the splitting patterns of Di and D2 
shows that the two P levels, 2Pi/2 and 2P3/2, differ from each 
other in the magnitude of their total angular momentum 
(the orbital momentum being the same), since it is this 
which is space quantized. Thus J is actually to be identi­
fied with the total angular momentum, as we have already
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assumed in the foregoing discussion. Finally, the fact that 
2Fi/2 —> 2Si/2 gives exactly four components shows that,

2F«
M Mo+ •- 6 + Vq

! i

+ u +1

42P?r

I 1 I I I

2S%
'i +1 

'■2 "I

□Z
O' a 7T 7T O Omm

<

Fig. 45. Anomalous Zeeman Effect of the Sodium D Lines, !Pi/j-► sSi;j 
and 2P3/2 —2Si/2. [Cf. Fig. 39 (6), p. 97.] The components designated by a 
have AM = =fc i; those designated by tt have AM = 0. It should be noted 
that, contrary to Fig. 44, arrows indicating transitions with equal AM no longer 
have the same length, because of the difference in the splitting in the upper 
and lower states.

actually, J must be taken equal to j in both cases. With
no other choice of J values is 
it possible to obtain a splitting 
of each of the terms into two 
components. For example, if J 
were equal to 1 for both terms, 
the terms would split into three 
components each, and the line 
into six components (cf. Fig. 46). 
In a similar manner, the cor­
rectness of the other J values in 
Tables 3 and 4 can be shown (p. 
73 and p. 78). Fig. 46 gives 
the explanation of the splitting 
for a 3$i —»3Pi transition, a 
spectrogram of which is repro­
duced in Fig. 39(c).

We saw above (II, 14) that 
the anomalous Zeeman effect

(TO

Fig. 46. Anomalous Zeeman 
Splitting of a 3Si —► 3Pi Transi­
tion. [Cf. Fig. 39 (c), p. 97.] 
According to the selection rule 
(II, 13), the transition M = 0 
—► M = 0 is forbidden, since at 
the same time Aj = 0. This 
transition is indicated by a dotted 
line.
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can be explained formally by introducing the factor g =(= 1 
into formula (II, 11) for the splitting of a term in a magnetic 
Held, where g depends on L and J. The original formula 
(II, 11) with g = 1 for all terms was based on the assump­
tion that the magnetic moment was given by the classical 
formula (II, 9). This assumption must, therefore, be in­
correct for atoms showing an anomalous Zeeman effect (for 
which g 4= 1)- So long as we consider only a revolution of 
point-like electrons about the atomic nucleus, it is difficult 
to understand any deviation from formula (II, 9). But 
even on the basis of the classical theory, the rotation of a 
non-point electron about its own axis would lead to a ratio 
of mechanical angular momentum to magnetic moment 
different from that given by (II, 9). Thus we can well 
imagine that the magnetic behavior of the spin of the elec­
tron is not the same as that arising from orbital motion.

The extent of the departure from the normal orbital type 
can be obtained, for example, when the behavior of the 
ground state 2S of the alkalis in a magnetic field is consid­
ered, since in this state J results wholly from the spin of one 
electron. It is found empirically that, for this 23 state,

AIT = ± hoi
that is, <7 = 2; whereas, if «7 = s = | had a normal magnetic 
behavior, we ought to have:

AIT = ± hoi
or g — 1. However, the empirical splitting ATT = hoi is ob­
tained for the 2S term if we assume that the magnetic moment 
of the electron due to its spin is one whole Bohr magneton,

_ e h 
2mc 2ir

and not
e h 1 

2mc 2ir 2
as would be the case if the electron behaved normally. The 
assumption that the electron has a magnetic moment of one 
whole Bohr magneton (whose direction is opposite to that 
of the spin), in spite of the fact that its spin is only
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was first put forward by Goudsmit and Uhlenbeek, simul­
taneously with the hypothesis of electron spin, and leads to 
a complete explanation of the splitting in all other cases as 
well as in the special case considered above. It is clear that 
in the general case g depends on the values of L, S, and J, 
and will differ from the limiting values g = 1 for *S = 0, and 
g - 2 for L = 0. Theoretically it is found (cf. below) 
that the following formula holds (Lande):

■7(7 + 1) + S(S + 1) - L(L + 1) 
2 J (7 + 1)

Suppose an atom has the values of L, 
S, and J given in Fig. 47. The length 
of these vectors is proportional to
VL(L + 1). aWFFÎ), and <7(7"+T), 
respectively, if we take the rigorous 
formula. The magnetic moments y/, 
and ys associated with L and S are in­
cluded in the same figure. The resulting 
magnetic moment would lie in the direc­
tion of J if the magnetic moment y.s 
connected with tin' spin were normal, 
since then y.s/S would equal yr/L. 
Actually, the magnetic moment of the 
spin is twice as large as if it were normal; 
that is,

yș _ 2y;>
S ~ L

The resultant y therefore falls, not in the 
direction of J, but in the direction shown, 
which is different from J and precesses 
with L and S about the direction of the 
total angular momentum. Since this 
precession is, in general, much faster 
than the Larmor precession, usually only 
the component of y in the J direction, 
y j, need be considered in calculating the 
magnetic effect. This is (see Fig. 47):

(II, 15)

Fig. 47. Addition of 
Magnetic Moments in an 
Atom (in Explanation of 
the Lande (/-formula). 
The length of the vector 
yr, is taken equal to L. 
Therefore ys is double the 
length of S. It should be 
noted that the direction 
of the angular moment um 
vectors is opposite to that 
of the corresponding mag­
netic moments.

In this,
Uj = Vl cos (L, J) + ys cos (S, 7) (H, 16)

VL

VS

- 24 £ '' “"d

2e h
2mc 2tt (II, 17)
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Here the minus sign indicates, as before, that the magnetic 
moment has the opposite direction to the corresponding angular 
momentum vector.

In the calculation of the magnetic splitting, it is yn, the com­
ponent of in the direction of the field, which matters. In 
order to obtain (II, 14) instead of (II, 11) for the energy in a 
magnetic field, we have to replace formula (II, 10) for y# for­
mally by

e h 
2mc 2tt

My« 9

This substitution means we have to take as definition for g

V' = - 2mc S 18)

The factor g can be calculated from (II, 10) when both cos terms 
are known. From Fig. 47, using the obtuse-angled triangle 
formed by L, S, and J, we obtain, with the help of the cosine faw:

cos (L, J)

cos (£, J)

J(J + 1) + L(L + 1) — + 1)
2>/J(J + 1) VL(L + 1)

J(7 + 1) + S(S + 1) - L(L + 1) fTT 1<n 
2 W + 1) V£(S + 1)

Substituting (II, 17), (II, 18), and (II, 19)‘in (II, 16), and omit- 
6 Ating the factor 7;— —, we find:2mc 2tt

>lL(L + 1) 
>!J(J + 1)

cos (L, J) + 2W + 1) 
VJ(J + 1)

cos (S, J)9 =

J (J + 1) + L(L + 1) — S($ + 1)
2 J (J + 1)

I 2[J(J + 1) + $(iS + 1) — L(L + 1)J
2J(J + 1) (II, 20)

This last expression shows clearly the meaning of the factor 2 in 
the second term. If the factor 2 were not present, that is, if the 
electron spin were magnetically normal, g would obviously equal 1. 
But, by including the factor 2, we obtain from (II, 20) the Land6 
formula already given in (II, 15). Thus g is a rational number 
which is generally different from 1, in agreement with experiment. 
For J = S and L = 0, g = 2, a value that we have already used.

If, in the derivation of the gr-formula, we had used simply 
J(h/2ir), L(h/2Tr), *S(/i/27r) for the magnitudes of the vectors, 
instead of the accurate quantum mechanical values, obviously a 
different formula would have been obtained. The fact that the 
Land6 p-formula gives extraordinarily close agreement with
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Fig. 48. Origin of the Mag­
netic Moment for a 2Pi,2 State. 
(Cf. Fig. 47.)

experiment is further evidence of the correctness of the quantum 
mechanical formula for the magnitudes of the angular momentum 
vectors.

From (II, 15) the g values for 2Pin and 2P3/? are 2 and 
Using these values, the energy level diagram for the Zeeman 
splitting of the sodium D lines has been drawn in Fig. 45, and is 
in quantitative agreement with experiment. [(Cf- F’K- 39(6).]

It might at first appear remarkable that the term 2Pi,2 shows 
any splitting at all. According to our earlier discussion, for 
2Pi/2 the vectors L and S are in opposite directions [cf. Fig. 37, 
p. 89] and, since L = 1 and S = j, we would expect zero mag­
netic moment because of the double magnetism of corre­
spondingly, no splitting should result. The above formula gives, 
however, g =)= 0. A magnetic moment will therefore be present. 
When the accurate wave mechan­
ical values for the angular momen­
tum vectors are taken, J, L, and S 
for 2Pi/2 do not fall in a straight line 
but produce the diagram shown in 
Fig. 48. It is seen that the two 
magnetic moments of L = 1 and 
5 = | do not compensate each 
other. When the length of L repre­
sents at the same time the magni­
tude of yr, vs is twice as long as 
S, and v has the indicated direction 
and magnitude. The whole system 
of vectors precesses about J. The 
magnetic behavior depends only 
upon v j. the component of v in the 
direction of J. We can easily see 
from Fig. 48 that v/ is not zero 
and, correspondingly, the splitting 
differs from zero. The difference
between the old quantum theory and the new quantum 
mechanics is particularly striking in this case.

The foregoing considerations have shown that when L and & 
in a stationary state differ from zero, the magnetic moment v 
is not constant, but continually changes its direction (precesses 
about 7). The possibility of magnetic dipole radiation, mentioned 
previously, depends on this fact.

In addition to the term splitting, the relative intensities 
of the individual components in the transitions can also be 
predicted theoretically. [Cf. Hund (7); Condon and 
Shortley (13).]
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The line splitting will vary according to the values of J, 
L, and S in the upper and lower states—that is, according 
to the term type in the upper and lower states. Conversely, 
the investigation of the Zeeman effect forms a very effective 
means of establishing the type of term taking part in a 
transition. This is particularly useful for complicated line 
spectra. For example, it enables us to find which lines 
belong to a Rydberg series since they must all show the 
same Zeeman effect. ^Further details may be found in 
Back and Lande (6).]

From the above discussion it is clear that the double mag­
netism of the electron is fundamental to the explanation of the 
anomalous Zeeman effect and phenomena related to it. 
Actually, the double magnetism of the electron, as well as 
the spin of the electron itself, may be derived from Dirac’s 
relativistic wave mechanics without the use of any addi­
tional assumptions. The fact that such a large body of 
complicated phenomena (Fig. 39, p. 97, shows only (he 
simplest examples) can ' be dealt with completely and 
quantitatively must be regarded as one of the remarkable 
achievements of wave mechanics.

Paschen-Back effect. With increasing field strength, 
when the magnetic splitting becomes greater than the mult i- 
plet splitting, Paschen and Back found that the anomalous 
Zeeman effect changes over to the normal. This has the follow­
ing reason: When the magnetic splitting becomes greater 
than the multiplet splitting, the precessional velocity o of 
J in the magnetic field about the field direction becomes 
greater than the precessional velocity of S and L about J 
(see above). The resultant motion is, therefore, better 
described as an independent precession of S about the field 
direction and a similar precession of L about the field direc­
tion, the motion being somewhat disturbed by the coupling 
of L and S. Hence we say that L and S are uncoupled by 
the magnetic field. To a first approximation, each of these 
vectors is therefore space quantized in the magnetic field
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independently of the other with components M L and M s, 
respectively. For each value of Ml = L, L — 1, L — 2, 

• ■ — L, Ms can take each of the values <S, »S — 1, ■ ■
— S. The magnitude of the term splitting is then, to a 
first approximation:

AW = hoML + 2hoMs (II, 21)
(S has double magnetism) and is, therefore, again an integral 
multiple of the normal splitting,
as in (II, 11).

For Ml, we have the same 
selection rules as for M, and for 
the same reasons as those given 
earlier:

AMl = 0, ±1 (II, 22)
For Ms, the following selection 
rule is obtained from theory:

AMS = 0 (II, 23)
Taking into account these selec­
tion rules and using (II, 21), a 
normal Zeeman triplet is ob­
tained for a transition between 
two multiplet terms in a strong 
magnetic field. Fig. 49 shows 
this for a 2P —> 2$ transition (for 
example, the D lines of Na). It 
should be compared with Fig. 45 
(p. 107), which applies to the 
same transition in a weak field.
In a more rigorous treatment a 
correction term of the form 
ahMsM l must be added to A IF 
in (II, 21), because of the inter­
action of L and S which is naturally still present. As a 
result of this, each component of the normal line t riplet will 
generally give a narrow doublet, triplet, etc., according as 
the original field-free transition was a doublet, triplet, etc.,

Fig. 49. Paschen-Back Ef­
fect for a 2P -*■ 2S Transition. 
Here transitions with equal AM 
or AMl nearly coincide, whereas 
in the normal Zeeman effect they 
exactly coincide. [Cf. Fig. 44, 
p. 104.] Thus, in the figure 
shown here, each component of 
the “normal” triplet has two 
components.
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transition. The reason for this line splitting is apparent from 
Fig. 49 for the case of a doublet transition.lla More com­

plicated splitting patterns are obtained
I by using intermediate fields. [^Incom­

plete Paschen-Back effect. See Back
/ and Land6 (6); White (12).]
/ It is readily seen that the total

/ 5 number of term components is the
/ same in both strong and weak fields:

/I, (2L + 1) X (28 + 1), in agreement
> $ with the Ehrenfest adiabatic law (men­

tioned previously).

Fig. 50. Stark Effect 
Splitting of the Helium 
Line X4388 [after Foster 
(132)]. Above, the ex­
posure was so made that 
only light polarized par­
allel to the field direction 
could reach the plate. 
Below, only light polar­
ized perpendicular to the 
field could reach the 
plate. In each pattern 
the field increases from 
top to bottom.

Stark effect. As Stark first dis­
covered, a splitting of the spectral lines 
also takes place in an electric field. 
Fig. 50 illustrates the splitting of the 
He line X4388 in the two directions 
of polarization (parallel and perpen­
dicular to the field). In each pattern 
the strength of the field increases from 
top to bottom. ^For experimental 
details, see Foster (132).] As will be 
seen, the patterns are not symmetrical 
about the original line, in contrast to 
the Zeeman patterns. The splitting of 
the lines in an electric field can natu­
rally be traced to a splitting of the 
terms. The relationships are, how­
ever, not quite so simple as for the 
Zeeman effect, and therefore the Stark 
effect is of no particular value as a 
help in the analysis of a spectrum. 
On the other hand, apart from its in­

trinsic interest and as an application of quantum theory 
the Stark effect plays a very important part in the theories 
of molecule formation from atoms, of the broadening of
spectral lines, and of dielectric constants.

n“ The two components of the central “line” in this case coincide almost 
exactly since ahMs.M i. is zero for both upper states; but iu higher approxima­
tion they would not coincide.
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Fig. 51. Production of 
an Electric Dipole Mo­
ment in an Electric Field 
(Stark Effect) and Preces­
sion of J about the Field 
Direction. The shaded 
surface represents the or­
bital plane of the atom. 
The angular momentum 
vector is perpendicular to 
that plane.

The components of the angular momentum J can take 
only the values + J, J — 1, J — 2, •••, — J with respect 
to any preferred direction. This rule holds also for the 
direction of an electric field. Thus space quantization 
takes place also in an electric field. If, and how, the states 
with different M differ from one another energetically de­
pends upon the kind of field acting.

An electric field does not act on the magnetic moment 
associated with J. The result of the action of an electric 
field is, rather, that the atom becomes electrically polarized, 
as shown schematically in Fig. 51.
The positively charged nucleus K be­
comes separated from the center of 
gravity 3 of the negative charges by 
an electric field E. There results an 
electric dipole moment, proportional to 
the field, whose magnitude depends 
upon the orientation of the orbit, that 
is, of the angular momentum J, to the 
field. The atom seeks to set itself in 
the direction of smallest energy, just 
as in the case of a magnetic field.
Because of the gyroscopic forces, this 
produces a precession of J about the 
field direction such that the com­
ponent M of J is constant (see Fig.
51). The stronger the field, the more 
rapid will be the velocity of preces­
sion. The energy shift is given by 
the product of the field strength and 
the dipole moment—a result anal­
ogous to that of the magnetic case.
However, since the dipole moment is itself proportional to 
the field strength, the term shift in the Stark effect is propor­
tional to the square of the field strength. Closely connected 
with this relation is the fact that, in an electric field, the 
term components, which differ only in the sign of M, have
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XX ; I

Fig. 52. Stark Effect 
of the D Lines of Na.
Field-free terms and 
transitions arc indicated 
by broken lines.

the same energy. Obviously the dipole moment produced 
by the field will not be altered by reversing the direction of 
rotation (change from + M to — M), and consequently 
the energy shift for + M and — M is the same. Thus there 
is qualitatively an essential difference between the Stark 
effect and the Zeeman effect. The number of term com­
ponents in an electric field is therefore J + j or J + 1, ac­
cording as J is half integral or integral.

If the behavior of an atom (other than hydrogen) in an 
electric field is calculated according to quantum mechanics, 

as first done by Foster (61) for the 
case of helium, it is found that the 
magnitude of the shift of the terms by 
an electric field depends, in a rather 
complicated manner, on the quantum 
numbers of the given atomic state and 
its distance from neighboring terms. 
In general, the component with small­
est | M | lies lowest (that is, M = 0, or 
M = ± I).

Fig. 52 illustrates the Stark effect of 
the D lines of Na. This case has been 
thoroughly investigated experimen­
tally and agrees closely with the accu­
rate theoretical formulae [see Condon 
and Shortley (13); Ladenburg (60)]. 
From the illustration it may be seen 
that the splitting of the lines and terms 
is, in contrast to the Zeeman effect,

not symmetrical about the field-free positions. In the case 
of the D lines of Na, a shift to longer wave lengths takes 
place. In the case of He (cf. Fig. 50), some components are 
shifted to longer and some to shorter wave lengths.12

If the field becomes so great that the velocity of precession

11 That the shift in this case is in both directions (though in general it is in 
only one direction) is due to the fact that, for He, a number of terms are fairly 
close to one another (cf. below).
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about the field direction is greater than the velocity of pre­
cession of L and S about J, an uncoupling takes place, as in 
the Paschen-Back effect. L and S are then independently 
space quantized with respect to the field direction in such 
a way that the components are ML and M s. States with 
\Ml\ = L, L — 1, • • •, 0have noticeably different energies. 
For each of these states, Ms can take the values + S, S — 1, 
■■■, -S. When ML = 0, states with different Ms do not 
have different energies, since no electric dipole moment can 
be induced in the electron itself. When ML +0, on the 
average a magnetic field in the direction of the electric field 
results from the precession,
because of the magnetic mo­
ment associated with L. This 
produces, as a secondary 
effect, an energy difference for 
the states with different Ms- 
Fig. 53 shows these relations 
for a 3D term in an energy 
level diagram; they are espe­
cially important in the theory 
of the electron structure of 
molecules.

J
n 3- 
3D 2-

1 "

Without Field With Field

=b

V\I
Ma M,

*2

■ +1■ o■ -l ±1

I.

Fig. 53. Stark Effect in a 
Strong Electric Field for a 3D Term 
(Analogous to the Paschen-Back 
Effect).

Although the Stark effect was 
first discovered for hydrogen and 
although it is particularly large 
in this case, theoretically it is 
more complicated because of the 
fact that states with different L
and equal n are degenerate with one another, except for relativity 
and spin effects. Disregarding this last influence, Bohr’s theory- 
had already given the observed splittings both qualitatively and 
quantitatively. In fact, this application was one of the striking 
successes of Bohr’s theory. Wave mechanics gives exactly the 
same formulae. Both theories show that a level with given n 
splits, in an electric field, into 2n — 1 equidistant levels. This 
splitting increases linearly with field strength (linear Stark effect) 
and takes place symmetrically with respect to the field-free 
position of the terms. For the upper state of Ha, the total split-
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ting amounts to 7.8 cm-1 for a field of 10,000 volt/cm. In the 
case of non-hydrogen-like atoms, the splitting is in general very 
much smaller.

In order to obtain theoretically the Stark effect splitting of H 
and H-like ions for low field strengths, relativity and spin effects 
have to be considered, and these then give an unsymmetrical 
splitting of the individual fine structure components.

For hydrogen, at very high field strengths a quadratic effect is 
superimposed on the linear effect, and results essentially in a one­
sided shift of the whole splitting pattern. The experimentally 
observed magnitude of this effect is in agreement with wave 
mechanical calculations but not with the old Bohr theory [Rausch 
von Traubenberg (133) J.

For atoms with several electrons, the linear Stark effect be­
comes important if the splitting due to the quadratic effect is 
comparable to the energy difference between states with different 
L and equal n, as is the case for H and H-like ions even for very 
weak fields. For atoms other than hydrogen, the linear effect 
may easily occur for the higher series numbers. In fact, Fig. 50 
illustrates that result. This spectrogram also shows another im­
portant fact which is connected with the above. With increasing 
field, theory shows that the selection rule AL = ± 1 for the terms 
of one emission electron no longer holds exactly because L loses 
more and more its meaning as angular momentum. Thus in an 
electric field transitions may take place which would be forbidden 
in the absence of a field; for example, S — S, S — D, P — P, 
P — F, and so on. The He line X4388 (Fig. 50) corresponds to 
the transition 2 *P — 5 lD. But in an electric field the neigh­
boring transitions 2 rP — 5 1P, 5 5 xCr likewise take place.
These give rise to the lines to the right in Fig. 50. It is seen that 
these lines gradually vanish toward weaker fields, and also ap­
proach positions different from the non-forbidden lines to the left 
in the figure. For strong fields, the whole pattern tends to become 
symmetrical, as for the hydrogen-like spectra, because then the 
splitting is large compared with the separation between 5 *P, 
lD, 1F, lG.

In certain cases the fields due to ions present in a discharge, or 
even interatomic fields, are sufficient to cause the appearance of 
such forbidden transitions (cf. also Chapter IV).

Statistical weight. There is no means of further splitting
the individual term components present in a magnetic
field.13 They must therefore be regarded as actually simple
—that is, no longer degenerate. These different states are

11 Here it is assumed that the degeneracy between states with different I but 
equal n for H atoms and H-like ions has already been removed—for instance, 
by an electric field.
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ascribed the same a priori probability, or the same statistical 
weight; that is, it is assumed that they will appear equally 
often under the same conditions. This assumption has 
always been found to be correct.

As the magnetic field grows weaker and weaker, naturally 
the equality of the statistical weights of the individual term 
components does not change. For the limiting case H —> 0, 
groups of such term components coincide. The resultant 
term which is thus formed has a statistical weight that is as 
many times larger than the weight of a simple term as the 
term itself has components in a magnetic field. Hence, if 
we take the statistical weight of a simple term equal to 1, 
then the term with angular momentum J has a statistical weight 
2J + 1, since this is the number of simple term components 
of which it consists in a magnetic field—and, therefore, also 
in the absence of a magnetic field—corresponding to the 
different possible orientations of J. More generally ex­
pressed, the statistical weight of a term is equal to its degree 
of degeneracy .14

For two states with different J values, J\ and J 2, the 
probability that the atom will be found in one of these states 
is given by the ratio (2Ji + 1) : (2J2 + 1). This is true if 
the states in question have approximately equal energies so 
that their Boltzmann factors e~ElkT are equal.

However, not all degeneracies are removed by an electric 
field. Terms with equal positive and negative M have 
equal energy. Thus, with the exception of M = 0, each 
term in an electric field is doubly degenerate—that is, it still 
has a statistical weight 2.

An important alteration in the absolute value of the 
statistical weight results from nuclear spin, and will be 
discussed further in Chapter V.

Among other applications, statistical weights are of im­
portance in the calculation of the intensities of spectral lines 
(see Chapter IV), of the specific heat of gases, and of chem­
ical constants.

14 In wave Tneehn.nip.al terms, the statistical weight is, accordingly, equal to 
the number of independent eigenfunctions belonging to a given energy value.



CHAPTER III

The Building-Up Principle and the Periodic 
System of the Elements 

1. The Pauli Principle and the Building-Up Principle

We have previously considered the terms of atoms with 
several electrons—in particular, those with several emission 
electrons. We shall now treat this topic in greater detail 
and investigate how the energy level diagram and the 
ground state of any atom can be theoretically derived.

Quantum numbers of the electrons in an atom. A single 
electron moving in a spherically symmetrical but non- 
Coulomb field of force (for example, the emission electron 
of an alkali) can always be characterized by two quantum 
numbers, the principal quantum number n and the azimuthal 
quantum number I. According to quantum mechanics, n 
can be considered as an approximate measure of the extent 
of the region in which the electron preferably remains. 
Different values of n (1, 2, 3, • • •) correspond to widely 
different energy values. I gives the angular momentum of 
the electron in its orbit and, for a given value of n, can take 
all integral values from 0 to n — 1. The energy difference 
between states with different I and equal n is, in general, 
not so great as that between states with different n. The 
possible states of an electron can thus be divided into 
principal groups or levels which differ from one another in 
their n values, and into sub-groups or sub-levels which have 
a given n but different I values. This division is clearly 
indicated in the energy level diagram of lithium (Fig. 24, p. 
57). Even for given n and I values, several different states 
of an electron are possible: first, due to the various possible 
orientations of the vector I (for example, in a magnetic 
field), and, second, due to the electron spin s = j which can

120
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set parallel or antiparallel to a magnetic field (for example, 
that of Z).

In an atom with several electrons, the motion of each indi­
vidual electron can also be regarded, to a first approxima­
tion, as a motion in a centrally symmetric but non-Coulomb 
field of force. This field results from the overlapping of 
the Coulomb field of the nucleus and the mean field of the 
other electrons. Therefore, to this approximation a definite 
value of n and I can also be ascribed to each electron in a 
complicated atom. The approximation will be particularly 
good when we are considering a single electron with large n, 
as is usually the case for most of the higher terms of an 
atom (terms of an emission electron). Then the action of 
the remaining electrons may really be described, to a close 
approximation, as due to their mean field. In contrast to 
this, if we are dealing with a number of electrons which have 
equal n and are thus approximately equidistant from the 
nucleus, taking a mean field gives a relatively poor ap­
proximation, since the action of the other electrons on a 
given electron is strongly dependent on their momentary 
positions. In this case, the field in which the given electron 
moves can, in general, no longer be considered (even 
approximately) to be centrally symmetric and the quantum 
numbers n and I have no longer any exactly definable 
meaning. In spite of this, they can still be used to obtain 
the number and type of the terms, on account of the 
adiabatic law (see Chapter II, section 2).

The normal state of an atom is that state in which all the 
electrons are in the lowest possible orbits. The lowest 
possible orbit of a single electron in a centrally symmetric 
field is the Is orbit (n = 1, Z = 0), w’hich is also called the 
K shell. Accordingly, one might perhaps think that, for 
the normal state of uranium, all the 92 electrons are in this 
K shell, and analogously for all other atoms. However, 
such a conclusion can easily be shown to be incorrect; for, 
if the electron configuration of the ground state of an atom 
altered regularly with the atomic number, it would ob­
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viously be quite impossible to explain the observed periodicity 
of the chemical and spectroscopic properties of the elements. 
Furthermore, according to this assumption, the ground state 
of any atom would have to be an $ state, which is not the 
case according to the analysis of the different spectra. For 
example, B and A1 have a 2P state for the ground state. 
We have already noted that, in the case of Li, all three 
electrons are not in the K shell; one (the emission electron) 
is in a 2s orbit (Li shell, n = 2, I = 0), as can be concluded 
from a comparison of the Li spectrum with those of Li-like 
ions (cf. Chapter I, section 5).

Pauli principle. In order to understand the building-up 
of the periodic system and the periodicity in the properties 
of the atoms and in their energy .level diagrams, we must 
introduce a new assumption. This is the Pauli exclusion 
principle, which prevents the filling of the various shells 
with an arbitrary number of electrons. To formulate the 
principle conveniently, let us imagine the atom to be 
brought into a very strong magnetic field, which is so strong 
that not only is the normal Paschen-Back effect operative 
(uncoupling of L and S), but also the different li and the 
different are uncoupled from one another in such a way 
that all the L and all the Si are space quantized independ­
ently of one another in the direction of the field. That' is, 
for each single electron, the components of I in the direction 
of the field can take one of the values mi = I, I — 1, I — 2, 
• • •, — I, whereas the components of s can take one of the 
values m„ = ± j. The number of possible states, with 
which we are concerned here, will not be altered by the 
assumption of a strong magnetic field.

Pauli’s principle now states: In one and the same atom, no 
two electrons can have the same set of values for the four quan­
tum numbers n, I, mi, and m,.1

1 The same conclusions will result if, instead of assuming an extremely strong 
field, we assume that the interactions between the individual electrons are so 
reduced that even a weak field produces the independent space quantization 
of the li and the Moreover, instead of the four quantum numbers n, I,
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It follows that only a limited number of electrons can 
have the same set of values for the quantum numbers n. 
and I. The detailed meaning of this fact will become clear 
in the following discussion.

The Pauli principle does not result from the fundamentals 
of quantum mechanics, but is an assumption which, al­
though it fits very well into quantum mechanics, cannot for 
the time being be theoretically justified.

If ^(xiyiZi, • • •, xnynzn) is the eigenfunction of a system con­
taining n electrons, generalizing our previous considerations, we 
obtain

dxi dyi - • • dzn
for the probability of finding the system in a configuration with 
the coordinates of the individual electrons within the limits ii and 
Xi + dxi, 7/1 and y\ + dyi, • • •, zn and z„ + dzn. Since there is 
no way of distinguishing individual electrons, must be inde­
pendent of the numbering of the electrons. Therefore, if any 
two electrons are exchanged (exchange of the corresponding 
indices in W* = |^|2.must remain unaltered. Such is the 
case either if / itself is unaltered or if it simply changes sign; that 
is, \j/ must be symmetric or antisymmetric with respect to an 
exchange of any two electrons. £For a more rigorous proof, see 
Condon and Shortley (13); cf. also p. 67.]

The quantum mechanical formulation of the Pauli principle is: 
The total eigenfunction of an atom with several electrons must be 
antisymmetric in all its electrons. That is, of the two systems of 
states mentioned above, only the one which is antisymmetric 
actually occurs. It may be shown that this formulation is 
identical with the statement of the principle given above.

At first it would appear to follow from this quantum mechanical 
formulation of the Pauli principle that, of the two term systems of 
He previously considered, only the antisymmetric, to which the 
ground state does not belong, could occur (Chapter I, section 6).

mi, and m„ we can also use the quantum numbers n, I, j, and where j is 
the total angular momentum of a single electron (that is, j = I ± I) and »«,• is 
the component of j in the direction of a field (m, = j, j — 1, • • •, — j). See 
Chapter IV. We can easily show that this gives the same number of possible 
states for an electron; with n = 2 and I = 1, it gives the following states:

j J 1

— îl + I — 2i — + a

There are thus six states (see p. 127).
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The assumption of electron spin is necessary to explain the fact 
that actually both systems occur. If the spin is included, the 
total eigenfunction is obtained by combining the hitherto con­
sidered total eigenfunction (co-ordinate function) with a further 
eigenfunction /3, the spin eigenfunction. To a first approximation, 
the new total eigenfunction Let /3+ be the spin func­
tion of a single electron with the spin directed upward, and P~, 
correspondingly, the spin function of an electron with the spin 
directed downward—that is, if the spin was originally directed 
upward, |/3+|2 gives the probability of finding the values + j or 
— | for the spin of the electron in any given direction; similarly, 
if the spin was originally directed downward, the probability will 
be | /3~ f2. Consequently there are the following four possibilities 
for the total spin function of the two electrons 1 and 2:

î Î frW 
î I Pi+fa~
It
11 Prfa­

in a magnetic field such as that associated with I, the states
represented by the first and fourth eigenfunctions have different 
energies, which are also different from those of the second and 
third, although the latter are degenerate with each other. If the 
mutual interaction of the two spins is taken into account, a 
splitting of the originally degenerate states into two different 
states with eigenfunctions fa+fa~ + fa~fa+ and fa+fa~ — fa~fa+ 
occurs. This effect is quite analogous to the Heisenberg res­
onance phenomenon (Chapter I, section 6). We therefore have 
the following four spin functions of the two electrons:

Pl = Pl+P2+
Pn = Pi+Pt~ + PrPi+
Pm = Pi+P2~ — Pi~P2+
Piv = PrP2~

Only one of these eigenfunctions is antisymmetric in the elec­
trons—namely, Pm', the others are symmetric. However, the 
total eigenfunction yj/ = yf-fi can now (and this is the important 
point) be antisymmetric for both term systems—that with sym­
metric as well as that with antisymmetric yf. We have only to 
recall that the product of a symmetric and an antisymmetric 
eigenfunction is antisymmetric, whereas the product of two sym­
metric or of two antisymmetric functions is symmetric. Then, 
if the one antisymmetric P is combined with the symmetric yf, 
or if one of the three symmetric fas is combined with the antisym­
metric yf, the total eigenfunction f will be antisymmetric; that is,



III, 1] Pauli Principle 125

according to the Pauli principle, both term systems can actually 
appear. (See Table 8.)

Table 8

SYMMETRY OF THE EIGENFUNCTIONS OF HELIUM

Co-ordinate F unction
3

Spin Function
V

Total Eigenfunction Term System

Symmetric (Symmetric Symmetric (Does not occur)
(Antisymmetric Antisymmetric Singlet system

Antisymmetric fSymmetric Antisymmetric Triplet system
(Antisymmetric Symmetric (Does not occur)

The term system whose co-ordinate function is symmetric has 
a statistical weight of 1 (only one spin function fan belongs to it, 
singlets); the system with antisymmetric co-ordinate function 
has a weight of 3 (three spin functions, triplets). The former cor­
responds to 5 = 0; the latter, to S = 1. The three symmetric 
spin functions correspond to the three possible orientations 
Ms = + 1, 0, — 1, of the spin vector S = 1 in an external mag­
netic field or in the field due to the orbital motion when L + 0.

The occurrence of both term systems is thus entirely due to the 
existence of spin. However, the latter has nothing to do with 
their energy difference. This already exists for the co-ordinate 
functions, without considering spin, and results from the electro­
static interaction of the electrons (see Chapter I, section 6).

The different multiplet systems of atoms with more than two 
electrons may be obtained by analogous, though more complex, 
considerations. [Hund in (Id); Condon and Shortley (13).j

Prohibition of intercombinations. A total prohibition of inter- 
combinations exists between states with antisymmetric total 
eigenfunction and states with symmetric total eigenfunction. 
This can be shown in the same manner as in Chapter I, section 6. 
If an atom is once in an antisymmetric state, it must remain in 
that state for all time. The fact that Pauli’s exclusion principle 
holds for all atoms proves that they are all in the states with 
antisymmetric total eigenfunction. Transitions to states with 
symmetric total eigenfunction never take place; hence these 
states do not occur.

The prohibition of transitions between states with symmetric 
and antisymmetric co-ordinate functions \f,s and \pa (the prohibition 
of transitions between states of different multiplicity) holds only 
approximately—that is, so long as it is possible to use the separa­
tion since then the matrix element R™ (p. 53) can be
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separated into two factors, one of which depends only upon 
The latter factor, as we have seen, is zero for a transition between 
states with symmetric and antisymmetric \f/, and thus the com­
plete transition probability is zero. As soon as the coupling be­
tween spin and orbital'angular momentum becomes appreciable, 
such a separation ^' = is no longer strictly possible, and 
therefore Rnm no longer splits into two factors, one of which be­
comes zero for a combination between two terms of different 
multiplicities. The smallness of the multiplet splitting shows 
that the coupling between spin and orbital angular momentum is 
weak for elements with low atomic number. Consequently the 
rule prohibiting intercombinations holds almost absolutely for 
them (AS = 0). With increasing atomic number, it holds less 
rigorously.

Application of the Pauli principle. Table 9 shows, for 
the possible states of an electron in an atom, the divisions 
into groups and sub-groups up to n = 4 (cf. scheme, p. 39). 
The order given is, in general, the energy order of the states. 
Each of the before-mentioned sub-groups with given n and I 
is once more subdivided according to the value of mt. All 
of the latter sub sub-groups of states have the same energy 
for a given n and given I value in the absence of a magnetic 
field. Actually, each of these values (given n, I, mi) should 
be once more subdivided into two sub-groups with n, = + j 
and ma = — j. For the sake of simplicity, this subdivision 
is not carried out in Table 9. Instead, the presence of an 
electron in a cell (n, I, mi) is represented by an arrow whose 
direction (up or down) indicates whether ma is + j or — j. 
On the basis of the Pauli principle, only two electrons can 
be in each such cell (n, I, mi), and then only when they have 
antiparallel spin directions, since otherwise these two elec­
trons would have the same four quantum numbers n, I, 
mt, ma.

The number of electrons in a sub-group (n, Z) is given by 
the exponent of the symbol representing the sub-group. 
For example, (2p)2 or 2p2 represents two 2p electrons. The 
maximum number of electrons which can have the same n 
and I and yet not violate the Pauli principle is given by the 
number of arrows in Table 9 between the corresponding
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Table 9

POSSIBLE STATES OF AN ELECTRON

K L M N

n 1 2 3 4

I 0 0 1 0 1 2 0 1 2 3
a a P a P d a P d f

m, 0 0 - 1; 0 ș+ 1 0 - i; ok i - 2Î- ii o i+ d+2 0 — o l - 1Î 0 ;+ 1;+ 2 li 0 i+ ii+ 2Î + ?
m, II 11 11:11:11 11 11; II Hl ti i ii in: ii • ii 11 11 II: 11 11:11:11:11:11 ii; ii: ii: ii: ti tii ii

K L. L. Af, Mt N, Nt Nt

vertical lines. This maximum number is obviously equal 
to 2(21 + 1), since 21 + 1 is the number of possible mt 
values for a given I. The entrance of any additional elec­
tron into such a sub-group (n, Z) is forbidden by the Pauli 
principle, since the additional electron would then neces­
sarily have the same mi and me as one of the electrons al­
ready present. When a sub-group or shell contains the 
maximum number of electrons, it is called a closed shell.

The ground state of an atom is the one in which all electrons 
are in the lowest possible energy states. On the basis of 
the Pauli principle, this is not (ls)N, where N is the total 
number of electrons, but it is the state in which all the 
lower shells are filled only so far as the Pauli principle allows. 
Thus in the ground state not all of the electrons are equiv­
alent; rather, they can be differentiated as inner and outer 
electrons. Excited states of an atom result, in general, 
when the outermost and least firmly bound electron (emis­
sion electron) is raised to any of the higher orbits or 
levels. There are also excited states in which two or more 
of the outer electrons are simultaneously in higher orbits, 
or in which one of the inner electrons is raised to an outer 
orbit (see Chapter IV). However, such states are observed 
relatively seldom in the optical line spectra of the lighter 
atoms, but are found more often in the spectra of the 
heavier elements.

The terms of an atom of nuclear charge Z + 1 may be 
obtained in the following way: the nuclear charge Z of the
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preceding element in the periodic table in its ground state 
(or perhaps also in an excited state) is increased by 1, and 
then an additional electron is added to one of the shells not 
yet filled. Beginning with hydrogen, the terms of all the 
elements in the periodic system can be derived in this way 
(Bohr, Mainsmith-Stoner). The principle underlying this 
procedure is called the building-up principle. It is clear 
that the electron configurations of the ground states will 
show a periodicity, since, after a certain number of electrons 
have been added, the outermost electron will be once more, 
for example, an s-electron. Correspondingly, the other 
configurations of the outer electrons recur periodically.

2. Determination of the Term Type from the Electron 
Configuration

The above method gives us only the electron configura­
tion (n and I values of the individual electrons); thus far it 
does not tell us the term type of the ground state and the 
excited states. The term type is obtained by adding 
together the respective angular momentum vectors I and s 
of the individual electrons. For this purpose it is necessary 
to make some definite assumptions about the mutual cou­
pling or interaction of the individual angular momentum 
vectors.

Russell-Saunders coupling. The assumption that seems 
to apply to most cases is the Russell-Saunders coupling, 
which we have already used implicitly in the preceding 
chapter. In this coupling it is assumed that, when several 
electrons are present in an atom, each with a definite li and 
each with st- = |, the individual Z, vectors are so strongly 
coupled with one another that states with different resultant 
L have very different energies. Further, it is assumed that 
the individual s, vectors are so strongly coupled with one 
another that states with different resultant S have a con­
siderable energy difference. As explained in Chapter II, 
for strongly coupled vectors, only the resultant (in this case
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L or S) has an exact meaning as angular momentum. The 
vectors that are strongly coupled with one another must 
always be added together first. The resultants L and S, 
according to the Russell-Saunders coupling, are then less 
strongly coupled with one another and their resultant is J. 
Each allowable value of L can be combined with each 
possible <S; that is, the spins can take all orientations which 
are possible on the quantum theory for each state character­
ized by a definite value of L. The interaction between L 
and S gives the multiplet splitting of each term, which 
without this interaction would be simple.

The Russell-Saunders coupling can be written symbolically:
(si,s2, •••)(?!, h, •••) = (S,L) = J (111,1)

It should be noted here that the considerable difference between 
the energy levels of corresponding terms of different multiplicity 
(different 5) is actually due, not to a strong magnetic interaction 
of the respective s,, but to the Coulomb interaction of the elec­
trons and the Heisenberg resonance phenomenon (p. 66), which 
is entirely independent of spin. The spin merely makes possible 
the actual appearance of the different term systems (p. 124). In 
spite of this we can proceed, in practice, as though the energy 
difference were due to the magnetic interaction of the spins.

In Chapter IV we shall consider still another kind of coupling 
of the individual angular momentum vectors which occurs for 
heavy elements.

Terms of non-equivalent electrons. Non-equivalent 
electrons are electrons belonging to different (n, Z) sub­
groups (cf. Table 9). In order to determine the terms re­
sulting from two non-equivalent electrons, we must, first 
of all, find the possible values of the resultant L. In the 
case of a p-electron and a d-electron, L = 3, 2, 1 (cf. p. 87); 
that is, the two electrons form F, D, and P terms. The 
spins of the two electrons can be either parallel or anti­
parallel. is therefore 1 or 0, which means that triplet as 
well as singlet terms result. In all, there will be six terms: 
1P, rD, 1F, 3P, 3D, 3F. Similarly, two non-equivalent 
p-electrons give the terms: 1S, 1P, 1D, 3S, 3P, 3D.

If a third non-equivalent electron is added, its I must be added 
vectoriallv to the previously calculated L\ and s must similarly
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be added to S. If, for example, an s-electron is added to pd, 
the L values remain the same. The possible $ values are now j, 
I, |; that is, the possible terms are: 2P, 2D, 2F, 2P, 2D, 2F, 4P, 4D, 4F. 
Two different doublet terms for each L will be formed, since 
p-electrons and d-electrons with parallel as well as antiparallel 
spins can give S = j with the addition of an s-electron. On the 
other hand, £ — j can be obtained in only one way—namely, 
when all three spins are parallel to one another (quartet). The 
three spin configurations for spd are î|t,|tî,îîî- If the third 
electron that is added is an /-electron (I = 3), the possible L 
values are 34-1,3 +2, 3 + 3 (where the sign + indicates vector 
addition). This gives the following L values: 2, 3, 4; 1, 2, 3, 4, 5; 
0, 1, 2, 3, 4, 5 6. As before, the possible <S values are j, j, j. 
Thus we obtain: W), 2P(4), 2Z>(6), W), 2<?(6), 2# (4), 2/(2), 
SS(1), 4P(2), 4Z>(3), 4F(3), 4G(3), 4H(2), 4/(l), where the numbers 
in parentheses indicate the number of the corresponding terms. 
For example, 4P(2) means two 4P terms. Even in the above 
comparatively simple case the total number of terms belonging to 
the same electron configuration (pdf') is considerable.

These and other examples are given in Table 10 (p. 132).

Terms of equivalent electrons. When we are dealing 
with equivalent electrons (having the same n and the same 
I), some of the terms derived for non-equivalent electrons 
are no longer possible. For example, for two equivalent 
p-electrons (p2), not all the terms (fS, 1P, 4D, 3S, 3P, 3D) 
previously derived for two non-equivalent p-electrons are 
possible. In considering non-equivalent electrons, we 
assumed that no account need be taken of the Pauli prin­
ciple in adding together the individual I and s values; it 
was supposed that each orientation allowed by the quantum 
theory did actually occur. This assumption is in fact 
justified, since, when the electrons have different n or I 
values, the Pauli principle is already satisfied. When, 
however, the two electrons have equal n and equal I, that is, 
when they are equivalent, they must at least differ in their 
values of mi or ma. When, for example, the two p-electrons 
(p2) both have I with the same direction, which gives a D 
term, mt is the same for both (+ 1, 0, or — 1) and therefore, 
according to Pauli’s principle, the two electrons cannot both 
have m, = + j, or both m, = — %. That is, their spins
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can only be antiparallel for a D term, giving 1D only, 
and 3D is not possible, although it would be with non­
equivalent electrons. Further consideration shows that 
two equivalent /^-electrons give only the terms 1S, 3P, 1D 
(see below). Similarly, three equivalent p-electrons give 
*S, 2P, 2D. These and additional examples are given in 
Table 11 (p. 132).

Particular mention should be made of closed shells—that 
is, shells in which the maximum number of equivalent elec­
trons is present. In order to fulfill the Pauli principle, all 
the electrons must be in antiparallel pairs (S = 0). In 
addition, L = 0, since the state can be realized in only one 
way in a magnetic field—namely, with ML = = 0.
Therefore, a closed shell always forms a 'So state.

In deriving the terms of an electron configuration that 
consists of one or more closed shells and a few additional 
electrons (for example, 2pc 3s2 3p3), the closed shells can be 
left entirely out of consideration. The terms are the same 
as for the electrons that are not in closed shells; for, in deter­
mining the resultant L and S, the respective I, can be added 
together in any desired groups to form partial resultants, 
and these can be added together to give the total resultant. 
Since the partial resultants for closed shells are zero, they 
have no influence on the total resultant.

From the latter statement the following may be derived: 
the term 1S0 for a closed shell must result when the shell is 
divided into two parts, the term types for each part derived, 
and the resulting angular momentum vectors added to­
gether. For example, adding the angular momenta of the 
terms of p2 vectorially to the corresponding quantities for pi 
must give those for a p6 hS0 state, that is, zero. From this 
it follows that the quantum numbers $ and L must be the 
same for these two electron configurations; that is, the 
terms of the configuration p4 are the same as those of p2. 
This result can also be obtained directly (see Table 11). 
Generalizing, we can say that the terms of a configuration xq 
are the same as the terms of a configuration xr~q where r is
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the maximum number of rr-electrons, that is, 2(2/ + 1). 
(See p. 127.) For example, the terms of p5 are the same as 
those of p; they give only one -P term; or, the terms of d7 
are the same as those of d3 given in Table 11.

Table 10

TERMS OF NON-EQUIVALENT ELECTRONS

Electron
Configuration

Terms

s s
s p 
s d
P V 
p d 
d d
s s s
s s p 
s s d 
s pp 
s p d
PPP 
pp d

>N, 3S
>P, 3P

3D
lS, 'P, 1D, 3S, 3P, 3D
'P, 'D, 4F, 3P, 3D, 3F
4S, 'P, 'D, 'F, lG, 3S, 3P, 3D, 3F, 3G
2S, 2S, 4S
2P, 2P, 4P
2D, 2D, 4D
2S, 2P, 2D, 2S, 2P, 2D, 4S, 4P, 4D
2p 2J) 2f 2p 2£) 2p 4p if) if
2S(2), 2P(6), 2D(4), 2F(2), 4V(1), 4P(3), 4Z>(2), 4F(1)
2S(2), 2P(4), 2D(6), 2F(4), 2G(2), 4S(1), 4P(2), 4D(3), 4P(2),

pdf
4C(1)

2N(2), 2P(4), 2.0(6), 2P(6), 2<7(6), 2P(4), 2J(2)
<5(1), 4P(2), 4D(3), 4P(3), 4<7(3), 4P(2), 47(1)

Table 11

TERMS OF EQUIVALENT ELECTRONS

Electron
Configuration Terms

s2
p2
p3
P*
pi

„ P6
d2
d3
d4
d3

bS
1N, 1D, 3P
2P, 2D, 4S
'S, 'D, 3P
2P
'S
'S, 'D, 'G, 3P, 3F
2P, 2D(2), 2F, 2G, 2H, 4P, 4F
i.S(2), 1D(2),’1P, 3C(2), U, 3P(2), 3D, 3P(2), 3G, 3H, 3D 
2S,2P, 2O(3), 2P(2), 2G(2), 2H, 21,4P, 4D, 4F, 4G, 3S
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We shall now derive, in greater detail, the terms of equivalent 
electrons for a special case. According to the adiabatic law al­
ready used, we should be able to derive all possible terms by using 
any desired alteration of the coupling conditions. In the 
Paschen-Back effect, L and S are space quantized with respect 
to the field direction, independently of each other, with com­
ponents Ml = L, L — 1, • • •, — L, and Ms = <S, S — 1, • • •, 
— <S. Ml and Ms represent the components of the total orbital 
and spin momenta in the field direction. On the other hand, for 
complete uncoupling of the individual electrons from one another, 
the individual li and s, are space quantized with components 
mi = I, I — 1, I — 2, • • •, — I, and m, — ± Under these 
coupling conditions Emi and 22 represent, respectively, the 
components of the total orbital and spin angular momenta in the 
field direction. Therefore, according to the adiabatic law, Șjmi 
must equal Ml, and 22 must equal Ms, for all the configurations 
which the electrons under consideration are allowed, according to 
the Pauli principle, to assume in the cells of Table 9. Exactly the 
same ML and Ms must be obtained as from the L and £ values of 
the resulting terms, and, conversely, these may be derived from 
the calculated 22 wz and 22^ values.

Table 12 gives the possible configurations for the case of two 
equivalent p-electrons,2 as well as the corresponding values 
22^i = Ml and 22^s = Ms (see p. 134).

In order to determine the resulting terms, it is useful to begin 
with the highest value of 'Șjmi = Ml, which must be equal to the 
highest occurring value of L. In the present case, the highest 
value of ML is 2 and thus a D term results. Since this ML occurs 
only with Ms = 0, the term is 12). Apart from ML = 2, 
AfL = + 1, 0, — 1, —2 also belong to this term, each having 
Ms = 0. They are indicated by A in the last column of Table 
12. There are two terms each with ML = ± 1, Ms — Q, and 
three with ML = 0, Ms = 0. Which of them is selected for the 
components of the lD term is of no special importance for this 
derivation. Of the remaining Ml and Ms values, the maximum 
Ml is + 1 and the largest Ms is + 1. These values must belong 
to a 3P term, since only for such a term can the largest values of 
Ml and be + 1. Ml = 0 and — 1 also belong to this 3P 
term, each of the Ml values having Afs = +1, 0, — 1. Alto­
gether, for 3P we obtain nine configurations. In Table 12, these 
are marked +. One configuration remains: ML = Q, Ms = 0', 
this is indicated by X. It can give only a term. Thus, two

2 It must be noted that, because of the identity of electrons, the configura­
tion f 1 in a single cell is not different from 1; whereas, if the two electrons are
in different cells, the configuration 11 is different from 11. Only the various 
states—not the electrons themselves—can be identified. This assumption may 
be considered a supplement to Pauli’s principle [cf. Slater (134) J.
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equivalent p-electrons give the terms YD, 3P, *S and no others. 
The terms of the other configurations listed in Table 11 may be 
derived in a similar manner.

Table 12

DERIVATION OF TERMS FOR TWO EQUIVALENT p-ELECTRONS

mi
2m i = Ml 2m, = Ms

+1 0 - 1

Î1 + 2 0 A
1 Î + 1 + 1 +
1 1 + 1 0 A
1 t + 1 0 +
I 1 + 1 - 1 +
t Î 0 + 1 +
1 1 0 0 A
1 t 0 0 +
I 1 0 - 1 +

11 0 0 X
1 t - 1 +1 +
Î 1 - 1 0 A
1 t -1 0 +
1 1 - 1 - 1 +

î 1 - 2 0 A

A procedure similar to the one outlined here for equivalent 
electrons can also be followed in the case of non-equivalent elec­
trons. However, the method previously used (p. 129) is much 
simpler.

If we have a configuration containing equivalent as well as non­
equivalent electrons (for example, p3sd) the corresponding partial 
resultants must be taken from Tables 10 and 11. These are then 
added together to give a total resultant in which each term of one 
partial configuration (ps in the example) is combined with each 
term of the other (sd in the example). In general a large number 
of terms result. In the above relatively simple example, there 
are 28 terms: 25(2), 2P(4), 2£>(5), 2P(4), 2G(2), iS. 4P(2), 4£>(4), 
1F(2), 4G, 6D.

The angular momenta I and s of the individual electrons 
have a well-defined meaning only when they influence one 
another but slightly (in principle, not at all). If this were 
actually the case, all terms with the same electron configu­
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ration would have the same energy (cf. p. 83). Actually 
they have not. In many cases, considerable energy differ­
ences occur; these are larger, the larger the interaction.

In this connection two rules operate. The first wTas 
formulated by Hund: Of the terms given by equivalent elec­
trons, those with greatest multiplicity lie deepest, and of these 
the lowest is that with the greatest L. For the cases given in 
Table 11, this term is the last one in each line. The 
second rule states: Multiplets formed from equivalent elec­
trons are regular when less than half the shell is occupied, 
but inverted when more than half the shell is occupied. For a 
proof of this rule, the reader is referred to Condon and 
Shortley (13).

Electron distribution with a number of electrons present.
It has already been stated that, when a number of electrons 
are present in an atom, the wave mechanical charge distri­
bution is given, to a first approximation, by a superposition 
of the charge distributions of the individual electrons (cf. 
Fig. 21, p. 44). It is clear that superposition of the elec­
tron distributions of s-electrons, each having a spherically 
symmetrical charge distribution, must give a spherically 
symmetrical total charge distribution for the resulting <S 
term. A more detailed wave mechanical calculation shows 
that 3 terms resulting from somewhat more complicated 
electron configurations (possibly containing p-electrons and 
d-electrons) also have a spherically symmetrical charge 
distribution. This holds in particular for closed shells, 
which always give 1S0 terms; the spherical symmetry holds 
rigorously for these shells, even when the interaction of the 
electrons is taken into exact account.

The more accurate wave mechanical calculation of the 
charge distribution for atoms with a number of electrons is 
too complicated to be further considered here. The Har- 
tree method of self-consistent fields has shown itself to be 
particularly useful, but likewise will not be dealt with here.
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In Fig. 54 are given the results of such calculations for 
the radial charge distribution curves for the ground states of 
the Li+, Na+, and K+ ions. Since these ions have closed 
shells only, the charge distribution will be completely 
described by the curves. The distribution for the ground 
state of the hydrogen atom is given (drawn to the same 
scale) for comparison. Fig. 54 corresponds in all details to 
the solid curves of Fig. 20 (p. 43). The summation of 
rVr2 over all electrons, ZzVr2, is indicated here; whereas, 
in Fig. 20, rVr2 was drawn, since only one electron was 
present. The curves in Fig. 54 thus give the mean charge 
distribution (that is, the sum of the probability densities of

Fig. 54. Radial Charge Distribution for the Ground States of H, Li+, 
Na+, K+. The curves for Na+ and K+ are drawn according to the work of 
Hartree and his co-workers (62) and (63); the curve for Li+, according to 
Pauling and Goudsmit (9). All curves are drawn to the same scale.
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the individual electrons) for the given ions, referred to the 
whole spherical shell of radius r. The charge distribution 
has pronounced maxima at certain distances from the 
nucleus. For Li+, there is only one maximum, correspond­
ing to the one closed shell (n = 1, K shell). The mean 
distance of the electrons from the nucleus is 0.28 A, which 
is considerably smaller than for the H atom (0.79 A) be­
cause of the greater nuclear charge. At the same time the 
height of the maximum is greater. This difference is due 
to the fact that the eigenfunctions have naturally been so 
normalized that the probability of finding an electron some­
where in the atom is equal to the number of electrons; that 
is, the area under the curves (Fig. 54) must be equal to the 
number of electrons. In the case of one electron, the 
probability = l.3 Thus, owing to the contraction in the 
direction of the abscissae and the increase in the number of 
electrons, the height of the curves must increase with 
increasing Z. In the case of Na+ there are two maxima, the 
first of which is mainly due to the electrons in the K shell, 
and the second to the closed L shell (n = 2). Because of 
much higher nuclear charge, the mean distance of the K 
electrons from the nucleus is only 0.07 A; that of the L 
electrons, 0.41 A. K+ shows still another maximum, due to 
the additional M shell. For the electrons of the M shell, 
the mean distance is 0.82 A. The maxima for the K and L 
shells are again pushed farther inward. Corresponding 
results are obtained when still more shells are added (Rb+ 
and Cs+).

It is seen that we can also speak of a shell structure of the 
atom from the wave mechanical viewpoint. Such a state of 
affairs holds for all atoms and ions. However, the distribu­

3 The normalization is generally so carried out that y'r2^r2 dr = 1, and not 
4ir/7Vr2 dr = 1 (where 4tit2 dr = volume of spherical shell). The factor 4ir 
is introduced into the normalization of the directional part of the eigenfunction. 
Therefore, for one electron the function averaged over the different
directions in space is equal to -7- ^r2. Thus, we can also say that the curves 4ît
in Fig. 54 represent 4îtt2S^*.
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tion of most of the electrons that are.not in closed shells is 
not spherically symmetrical, but is similar to the electron 
distributions for a single electron given in Fig. 21, p. 44.

3. The Periodic System of the Elements
The electron configurations and the term types of the 

ground states for all the elements of the periodic system are 
given in Table 13, pages,140-141 (cf. Table 9).

H (hydrogen). The lowest orbit of the one electron of 
the H atom is a Is orbit. The ground state is therefore a 
2*Si/2 state. The higher states correspond to the various 
other pairs of n and I values. They are, according to the 
value of I, 2S, 2P, 2D, ■ ■ ■ states. However, for equal n, 
the states nearly coincide (see Chapter I). The spectrum 
is a doublet spectrum, since $ = s = j. The same is true 
for He+, Li++, and so on, except that the terms are 4, 9, • • • 
times larger.

He (helium). This element has a nuclear charge 2 and 
can have 2 electrons. On the basis of the Pauli principle, 
both electrons can go into the K shell (n = 1) only when 
they have antiparallel spin directions (Î1), since, if the 
spins were parallel, all four quantum numbers would be the 
same for the two electrons (n = 1, I = 0, = 0,
m, = +|). Therefore, in the ground state & = 0, and, 
since both electrons are Is electrons, L = 0. Thus the 
ground state is a state (closed shell). A triplet state is 
not given by this electron configuration. An excited state 
results when an electron (the emission electron) goes to a 
higher orbit. Then both electrons can have, in addition, 
the same spin direction; that is, we can have & = 1 as well 
as 5 = 0. Excited triplet and singlet states are possible 
(orthohelium and parhelium). The lowest triplet state 
has the electron configuration ls2s; it is a 2 3>Si state. It 
is the metastable state already referred to (p. 65). The 
corresponding singlet state is 2 bS0 and lies somewhat higher.
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We can easily see how the two term systems of helium are 
obtained in this way (cf. Fig. 27, p. 65).

Li (lithium). If an electron with n = 1 is added to the 
helium-like Li+ ion, this electron would have the same four 
quantum numbers as one of the electrons already present. 
This is forbidden by the Pauli principle. The K shell is 
thus complete with two electrons, and with it also the first 
period of the periodic system. The third electron can only 
go into the next shell (n = 2,1 = 0), or to a still higher shell 
(see Table 9, p. 127). The Li terms are doublet terms, like 
those of hydrogen, since S = s = The ground state 
(ls22s) is a 2jSi/2 term. In the first excited state the emission 
electron has n = 2, I = 1 (Table 13); a 2P state results. 
The combination of this state with the ground state gives 
the red resonance line of Li (a doublet like the D lines of Na). 
The principal quantum number n does not alter in this 
transition, which according to page 51 is allowed.

Sometimes the electron configuration is written in front 
of the term symbol in order to give a more accurate repre­
sentation of the term of an atom containing a number of 
electrons; for example, for the term just discussed, ls22p 2P.

Be (beryllium). In the lowest state of the next element, 
beryllium, the additional electron can have the same quan­
tum numbers n = 2, I = 0, mi = 0, as the electron pre­
viously added in the case of Li, but must then have opposite 
spin. The ground state of Be is thus 1S, since all the elec­
trons have I = 0 and form pairs (closed shells only). Ac­
cording to the Pauli principle, a corresponding 3*S state (two 
electrons with parallel spins) does not exist. However, 
just as soon as one of the outer electrons has quantum 
numbers n, I different from those of the other, its spin can be 
either parallel or antiparallel to that of the other. Thus 
there is a triplet term corresponding to each higher singlet 
term (for example, ls22s3d 3D, 1D), analogous to He. The 
L value of the term is equal to the I value of the outermost 
electron. The singlet and triplet line series ordinarily



Table 13

ELECTRON CONFIGURATIONS AND TERM TYPES FOR THE 
GROUND STATES OF THE ELEMENTS 

(Numbers and symbols in parentheses are uncertain.)
M N O

Element
2» 2p 3a 3p 3d 4a 4p 4d 4f os op Hd 5f op

Ground
Term

1. H
2. He

‘Sl/2
'So

3. Li 2 1 *Sj ;j
4. De 2 2 ’So
5. B 2 2 1 ’Pi n
6. C 2 2 2 •Po
7. N 2 2 3 *Sa/»
8. 0 2 2 4 •Pj
0. F 2 2 5 ‘Pa/:

10. Ne 2 2 0 'So
11. Na 2 2 0 1 ’Si /i
12. Mg 2 2 0 2 1So

13. A1 2 2 0 2 1 •Pl It

14. Si 2 2 0 2 2 •Po

15. P 2 2 0 2 3 4Sa;i

10. S 2 2 0 2 4 •Pl

17. Cl 2 2 0 2 5 •Pall

18. A 2 2 0 2 0 ‘So

19. K 2 2 0 2 0 1 sSi /t

20. Ca n 2 0 2 0 2 ’So
21. Sc 2 2 0 2 0 1 2 •D„t

22. Ti 2 2 0 2 0 2 2 •Ft

23. V 2 2 0 2 0 3 2 *Ft,t

24. Cr 2 2 G 2 0 5 1 •s,

25. Mn 2 2 0 2 0 5 2
20. Fe 2 2 5 2 0 0 2 ‘Dt

27. Co 2 2 0 2 0 7 2 4Ft/t

28. Ni 2 2 0 2 0 8 2 •Fa

29. Cu 2 2 0 2 0 10 1 ’Si /2

30. Zn 2 2 6 2 0 10 2 ’So

31. Ga 2 2 0 2 0 10 2 1 •Pin

32. Ge 2 2 0 2 0 10 2 2 •Pi

33. Ae 2 2 0 2 0 10 2 3 *Sa/*

34. Se 2 2 0 2 0 10 2 4 •Pl

35. Hr 2 2 0 2 0 10 2 5 2Pa/2
30. Kr 2 2 0 2 0 10 2 0 >So
37. Rb 2 2 0 2 0 10 2 G 1 ‘Sl/2
38. Sr 2 2 0 2 0 10 2 0 2 ’So
39. Y 2 2 0 2 0 10 2 0 1 2 •Dan

40. Zr 2 2 0 2 0 1C 2 0 2 2 *Fz

41. Cb 2 2 0 2 0 10 2 0 4 1
42. Mo 2 2 0 2 0 10 2 0 5 1 •Sa

43. Ma 2 2 0 2 0 10 2 0 (5) (2) (•So;:)
44. Ru 2 2 0 2 0 10 2 0 7 1
45. Rh 2 2 0 2 0 10 2 0 8 1 •Ftf/2
40. Pd 2 2 0 2 0 10 2 0 10 ’So
47. Ag 2 2 0 2 0 10 2 0 10 1 •Sm

48. Cd 2 2 0 2 0 10 2 0 10 2 'Sn

49. In 2 2 0 2 0 10 2 0 10 2 1 •Pm

50. Sn 2 2 0 2 0 10 2 0 10 2 2 •Po

51. Sb 2 2 0 2 G 10 2 © 10 2 3 ’S3/2
52. Te 2 2 G 2 ,0 10 2 0 10 2 4 •Pl

53. I 2 2 0 2 0 10 2 6 10 2 5 iPsf2

54. Xe 2 2 0 2 0 10 2 0 10 2 0 'So

18

140



Table 13 (Continued)

ELECTRON CONFIGURATIONS AND TERM TYPES FOR THE 
GROUND STATES OF THE ELEMENTS 

(Numbers and symbols in parentheses are uncertain.)
K L M N O P 0 Ground

1a4p 4d 4/ 5tt 5p 5d 5/ 5q 0m tip fwf 6/ 0*7 6A 7>-• Term

55. Cd 2 8 18 2 6 10 2 6 1 ’Si /*
56. Ba 2 8 18 2 6 10 2 6 2 'St
57. La 2 8 18 2 0 10 2 0 1 2 ; ■D,,,

58. Ce 2 8 18 2 6 10 (1) 2 6 (1) (2; : : (•tf.)
59. Pr 2 8 18 2 6 10 (2) 2 0 (1) (2) : : S'K)

60. Nd 2 8 18 2 0 10 (3) 2 6 (1) (2) : • m

01. Il 2 8 18 2 0 10 (4) 2 0 (1) (2) : •
62. Sm 2 8 18 2 6 10 6 2 6 2 : : ’Fa

03. Eu 2 8 18 2 6 10 7 2 0 2 : : BSi'-i

04. Gd 2 8 18 2 6 10 7 2 6 1 2 : •D

05. Tb 2 8 18 2 6 10 (8) 2 0 (1) (2) : (•H)

66. Dy 2 8 18 2 6 10 (9) 2 6 (1) (2) : ;
67. Ho 2 8 18 2 6 10 (10) 2 0 (1) (2) : :. Ci)
68. Er 2 8 18 2 6 10 (11) 2 6 (1) (2) : : (•£)
69. Tm 2 8 18 2 6 10 13 2 6 2 : : iFi;i

70. Yb 2 S 18 2 6 10 14 2 6 2 : : ’So
71. Lu 2 8 18 2 6 10 14 2 6 1 2 : ’Di/t

72. Hf 2 8 18 2 6 10 14 2 6 2 2 ; ’Ft

73. Ta 2 8 18 2 6 10 14 2 6 3 2 :
74. W 2 8 18 2 6 10 14 2 6 4 2 : ’Dt

75. Re 2 8 18 2 6 10 14 2 6 5 2. : •Si/2
76. Os 2 8 18 2 6 10 14 2 6 6 2 : ’Dt

77. Ir 2 8 18 2 6 10 14 2 0 7 2 • ’F

78. Pt 2 8 18 2 6 10 14 2 6 9 1 : •D>

79. Au 2 8 18 2 6 10 14 2 6 10 1 ’Si/t

80. Hg 2 8 18 2 6 10 14 2 6 10 2 ’So
81. T1 2 8 18 2 6 10 14 2 6 10 2 1 ’Put

82. Pb 2 8 18 2 6 10 14 2 6 10 2 2 ’Pa

83. Bi 2 8 18 2 6 10 14 2 0 10 2 3 *Sl/l

84. Po 2 8 18 20 10 14 2 6 10 2 4 ’Pt

85. — 2 8 18 2 6 10 14 2 6 10 2 5 2P3/2

86. Rn 2 8 18 2 6 10 14 2 6 10 2 6 *Sq

87. — 2 8 18 2 6 10 14 2 6 10 2 6 1 2Sl /2
88. Ra 2 8 18 2 6 10 14 2 6 10 2 0 2 ’So
89. Ac 2 8 18 2 6 10 14 2 0 10 2 6 (1) (2) • (’Dart)
90. Th 2 8 18 2 6 10 14 2 6 10 2 6 (2) (2) • (’Ft)

91. Pa 2 8 18 2 6 10 14 2 6 10 2 6 (3) (2) (’Ftn)

92. U 2 8 18 2 6 10 14 2 6 10 2 6 (4) (2): (‘Do)

observed (see Chapter I) result from transitions of this 
emission electron. There can also occur terms for which 
both outer electrons are in orbits other than the lowest 
(n = 2, I = 0). Under these circumstances several terms 
will, in general, result from a given electron configuration 
(see section 2 of this chapter). These are the so-called 
anomalous terms of the alkaline earths, which cannot be ar­
ranged in the normal term sequences. (Cf. also Chapter IV 
—particularly Fig. 61, in which the complete energy level 
diagram for Be is reproduced.)

141
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B (boron). Again on the basis of the Pauli principle, the 
fifth electron cannot be added to the so-called Lr shell 
(n = 2, Z = 0), but must be added at least to the L2 shell 
with n = 2, I = 1 (cf. Table 9, p. 127). Since all the elec­
trons of boron (except that in the L2 shell) form pairs 
(closed shells), a doublet spectrum is normally produced. 
The ground state is 2P (not 2S, as for Li), since now L = I 
= 1. Otherwise the energy level diagram is similar to 
that for Li. (Cf. the energy level diagram of aluminum in 
Fig. 73, p. 198, which is quite similar to that of boron.) 
However, boron can also have terms in which only one 
electron is in the 2s shell, and the other two are i«l the 2p 
shell or higher orbits. Then all three outer electrons can 
have parallel spins; that is, $ can be j. Quartet terms and 
also anomalous doublet terms result. Up to the present 
time, these quartet terms have not been observed for B, 
although they are known for C+, which has the same 
number of electrons as B, and for A1 ^Paschen (64)].

C (carbon). In the lowest state of carbon, two electrons 
are in the 2p shell (I = 1). According to the preceding 
section, this gives three terms: 3P, *D, 'S; of these 3P is the 
lowest and is therefore the ground state of the C atom. 
The rD and *S terms do not lie very far above the ground 
state, since they belong to the same electron configuration.

When one of the two emission electrons of the C atom 
goes from the 2p orbit to a higher orbit, normal series of 
singlet and triplet terms result. The number of term series 
is, however, much greater than for boron and the preceding 
elements in the periodic system, since now several terms can 
result for each electron configuration (Table 10). Fig. 55 
gives the energy level diagram for C I, so far as it is known. 
It is drawn in a manner which differs from that of the 
preceding energy level diagrams because of the presence of 
different terms belonging to the same electron configuration. 
Terms belonging to the configurations ls22s22p np (n = 2, 
3, • • •), 2p ns (n = 3, 4, • • •), and 2p nd (n = 3, 4, •)
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tinder one another, with the singlet term 
3 left and the triplet terms to the right, 
terms of the same electron configurați' 
together. We see from the figure thj 
£ terms result for 2p np if n > 2 (cf. Tat 
iraw closer together as n increases (cf. 
these normal terms', additional relative!
are possible, which result when an elec 

m the 2s shell (which is complete in the | 
e 2p shell, for example, ls22s2p3. In th 
west term of this configuration all foui 
ave parallel spins and the result is a 5<S;

jy Level Diagram for C I. The unobserved 3p *5 ter 
cated with a dotted line.



Building-Up Principle; Periodic System [III

has thus far not been observed. Other terms of 1 
onfiguration are represented to the right in Fig. J
litrogen). The succeeding element, nitrogen, in 
electron configuration has three electrons in the 
ip3). According to Table 11, these give the ter: 

2P; of these, according to the Hund rule (p. 13

Fig. 56. Energy Level Diagram for N I.
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lies lowest and is therefore the ground state of the N 
atom, in agreement with experiment. In this state all the 
three 2p electrons have parallel spins. Higher excited 
states result when one electron goes from the 2p orbit to a 
higher orbit. Series of quartet and doublet terms are 
thereby produced; and the number of term series is again, 
as with carbon, much larger than for Li.

Fig. 56 represents the N I energy level diagram in a man­
ner similar to that of the CI diagram, Fig. 55. A few terms, 
drawn to the right of the dotted line, do not go to the normal 
series limit (cf. Chapter IV). In addition, a term 4P for 
which one electron is brought from the 2s shell to the 2p 
shell is indicated. If an electron goes from the 2s shell to 
higher orbits, sextet terms can result, since the five electrons 
can then have parallel spins. Such terms have not yet been 
observed for N I.

O (oxygen). The lowest possible orbit for the added elec­
tron in the case of oxygen is 2p; hence four equivalent 2p 
electrons are present, and produce the terms 3P, 'D, XS, 
just as for carbon (Table 11, p. 132). Again, 3P is the 
lowest and is the ground state for oxygen. According to 
the Pauli principle, the spins of the four outer electrons 
can never all be parallel in the 2p shell. They can, how­
ever, all be parallel when one electron is brought from the 2p 
shell into higher shells, and then excited quintet terms, as 
well as singlet and triplet terms, are formed. The oxygen 
lines lying in the visible region are combinations of these 
quintet terms. The energy level diagram of the oxygen 
atom will be treated in detail in the next chapter (cf. Fig. 
59, p. 163).

F (fluorine). For this element, one electron is lacking to 
complete the L2 shell. The ground term is therefore the 
same as for boron with its one electron in the L2 shell, 
namely 2P. The difference now is only that the 2P 
ground term of F is an inverted term (2P3/2 lies lower than 
2P1/2), whereas the ground term for B is regular. This 2P
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term is the sole low-lying term of fluorine. For all other 
terms, the principal quantum number of at least one elec­
tron is raised. Excited doublet and quartet terms then 
result (cf. the energy level diagram of Cl, Fig. 74, p. 199).

Ne (neon). This element has six 2p electrons, and for 
it the 1/2 shell and also the whole L shell are filled. As a 
result, the ground state is bS0 (cf. He and Be). Excited 
states result when one electron goes from the L2 shell to a 
higher orbit. As in the case of helium, the energy necessary 
for this transition is very great, since the principal quantum 
number must be altered. In addition, for a single electron 
in an orbit with n = 3, the nuclear charge is almost com­
pletely shielded by the nearly complete inner L2 shell, and 
hence the excited terms.are rather hydrogen-like; whereas, 
for the electrons in the closed 2p shell (ground state), the 
nuclear charge is much less completely shielded, and there­
fore the ground state lies considerably lower than the cor­
responding hydrogen term n = 2 (cf. Chapter VI). In 
fact, it actually lies lower than the hydrogen term n = 1. 
The large first excitation potential, together with the term 
type of the ground state (15), is responsible for the character 
of an inert gas (Chapter VI). The excited states of Ne are 
singlet and triplet states, as for He.

Succeeding periods of the periodic system. On the basis 
of the Pauli principle, after eight electrons have'been added 
(Ne), no more electrons can enter the L shell, since any 
additional electron would necessarily have the same four 
quantum numbers as one of the electrons already present 
(cf. Table 9, p. 127). The eleventh electron must therefore 
go into the M shell (with n = 3). The lowest possible state 
has I = 0. The ground state of the element Na (with 
nuclear charge 11) is therefore ls22s22p63s 2Si/2. Apart 
from the insertion of the L shell (2s22p6) and the alteration 
in principal quantum number, this is exactly the same as 
for Li.
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We understand from the preceding discussion the funda­
mental reason why the second period of the periodic system 
is completed with Ne (cf. Table 13, p. 140).

As already stated, the number of terms and the term 
types are not altered by a closed shell. This fact, together 
with the Pauli principle which first made possible the con­
cept of a closed shell, provides the essential basis for the 
theoretical explanation of the periodicity of the properties 
of the chemical elements (ef. Chapter VI, section 3).

Apart from the altered principal quantum number and 
the built-in closed L shell, the eight elements (Na, Mg, Al, 
Si, P, S, Cl, A) following Ne have exactly the same electron 
configurations in the ground state as have the preceding eight 
elements. According to the building-up principle, the 
excited states should also be quite analogous, except for a 
slight difference introduced by the possibility of excitation 
to a d level without change in principal quantum number. 
All this is in full agreement with experiment. For the terms 
of these elements, we need only refer to Table 13.

At argon, the Mi and M2 shells (n = 3, 1 = 0, 1) are 
filled; but it can be seen from Table 9 that the whole M 
shell is not filled at this stage, since I can also be 2. For 
I = 2 (M3 shell), mi = + 2, + 1, 0, — 1, — 2, and hence 
there can be ten electrons in the M3 shell. However, as 
the argon spectrum shows, the energy necessary to bring 
an electron from the M2 shell to the M3 shell is very great— 
even somewhat greater than that required to bring an 
electron into the N1 shell (4s orbit). The latter, that is, the 
first excitation potential of argon, is also considerable (11.5 
volts), and this, together with the fact that the ground state 
is a ’£ state, makes argon an inert gas (see above). If 
another electron is added with a corresponding increase in 
nuclear charge, it goes into a 4s orbit, since according to the 
evidence of the argon spectrum the 4s orbit lies lower than 
3d. This explains the early occurrence in the periodic 
system of another alkali metal, namely K, with a ground
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state 2*S. Thus the third period, as well as the second, 
contains only eight elements.

For Ca, two electrons are in the 4s orbit. Ca corresponds 
to Mg, which has two 3s electrons. If after Ca the building- 
up process should go on as after Mg, we would expect the 
next electron to enter the 4p shell. But the spectra show

4 6 6

Fig. 57. Rough Representation of the Energies of the Shells for Different 
Unclear Charge Z (to Explain the Filling Up of Inner Shells). The arrows at 
the bottom of the figure (numbered 4, 5, and 6) point to the values of Z at 
which the fourth, fifth, and sixth periods of the periodic system begin.

n=2
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that, for the succeeding elements (Sc to Ni), the 3d shell 
is first filled (cf. Table 13). The reason for this is explained 
in Fig. 57. The energy of the different shells (n = 2) is 
given here very roughly for small (~ 20) and large (~ 90) 
nuclear charge Z, with a correspondingly altered scale. 
For large Z, the shells with the same principal quantum 
number lie relatively close to one another; whereas, with 
decreasing Z, the field becomes less and less hydrogen-like 
(particularly for the outer shells) and consequently shells 
with the same n separate from one another (indicated by the 
connecting lines), until in some cases they are no longer 
grouped together.

For example, with small Z, the 3d shell lies somewhat 
above the 4s shell (see above). With increasing Z, the 3d 
shell tends to be lower; eventually it is lower than the 4s 
shell. This happens first when Z = 21, and therefore the 
3d shell (M2) is first filled for the elements following Ca (cf. 
Table 13). At the same time the 4s shell does not always 
remain filled with two electrons; for example, the Cr I spec­
trum shows that the lowest term (7*S3), formed from 3d54s, 
is lower than the lowest term from 3d44s2, because of the 
not very different heights of the 3d and 4s shells. In the 
same way the 3d104s 2S term for Cu lies lower than the 
3d94s2 2D term. Thus the 3d shell is completely filled for 
the ground state 2S of Cu. In this state Cu, having one 
s-electron outside the closed shells, is similar to the alkalis. 
This similarity is in agreement with the common form of 
the periodic system in which Cu is placed in the alkali 
column. The succeeding elements (Zn, Ga, Ge, As, Se, Br) 
have electron configurations and energy level diagrams 
analogous to those in the second and third periods, apart 
from an altered principal quantum number for the outer 
electrons and an additional closed 3p63d10 shell (cf. Table 
13). The 4s and 4p shells are completed at Kr, and this 
ends the first long period of the periodic system with its 
(10 + 8) elements.
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Now the performance begins again, just as at the begin­
ning of the first long period. When more electrons are 
added with a corresponding increase of nuclear charge, it is 
not (as might be expected) the 4d or 4/ shells that are first 
filled, but rather the 5s shell, which lies lower for these 
nuclear charges (cf. Fig. 57). This gives the elements Rb 
and Sr. The 4d shell lying at about the same height as 
the 5s shell is then filled for the succeeding elements, Y 
to Pd (similar to the 3d shell). When this is completed, 
the next lowest shells, the 5s and 5p shells (see Fig. 57), 
are filled, and give the elements Ag to Xe, which correspond 
exactly to the elements Cu to Kr. This completes the 
fifth period, or second long period, with (10 + 8) elements.

The inner 4f shell is still unoccupied (see Table 13 and 
Fig. 57). The 4f shell is first occupied after the 6s shell has 
been broken into by Cs and Ba, and the 5d shell by La. 
The rare earths then follow, exactly 14 in number, this 
being the maximum number of electrons in the 4f shell. 
When this is filled, the 5d shell is filled from Lu to Pt, and 
then the 6s and 6p shells. The resulting elements, Au to 
Rn, correspond once more to the elements Cu to Kr. 
With Rn, the sixth period of the periodic system with its 
32 (= 8 + 10 + 14) elements is completed. The elements 
following from the unknown element 87 to uranium corre­
spond to the first elements of the fourth, fifth, and sixth 
periods. The elements for which a building-up of inner shells 
takes place are grouped within dotted lines in Table 13.4 *

Inert gases (except for He) always occur with the closing 
of an s2p6 * group, as seen from Table 13. For n > 2, inert

4 It should be noted that the elements Y to Pd do not correspond exactly to
the elements Sc to Ni (although in both cases a d shell is built up), since,
owing to the approximately equal heights of the s and d shells under considera­
tion (3d and 4s : 4d and 5s), a sort of competition occurs between the two which
leads to different results for different principal quantum numbers. Conse­
quently the ground terms are not always completely analogous to one another.
For example, the ground state of Pd is the 4d10 state, whereas the ground 
state for Ni occurring one period (18 elements) earlier is 3d8 *4s2 3F. This cor­
responds to the chemical behavior. The elements of these columns of the peri­
odic table have by no means such similar properties as have, for example, the 
halogens or the alkalis.
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gases do not follow the completion of a whole shell with 
a given value of n, because of the fact that the d orbits lie 
considerably higher than the s and p orbits for the same 
value of n—in fact, just about as high as the s and p orbits 
having n one higher (see Fig. 57). On account of this, the 
excitation potential for closed s and p shells is large (inert 
gases), whereas it is small for elements for which a whole 
shell with n > 2 is filled (for example, Pd, no inert-gas 
character).

The order of the different inner shells for an element of 
high atomic number is normal (Fig. 57, right). For ex­
ample, when electrons are added one after another to the 
lowest possible orbits for a uranium nucleus (Z = 92), the 
nineteenth electron comes into a 3d orbit and not into a 4a 
orbit, as with K (Z = 19). The normal order for the nine­
teenth electron is already reached by Sc (Z = 21). This is 
shown by the second spark spectrum of Sc, which has a 2D 
state for its ground state and not a 2S state; that is, the 
outermost electron (the nineteenth) is here a d-electron and 
not an s-electron (and similarly in other cases).

A more detailed discussion of the periodic system is given 
in the following books: Grotrian (8); Pauling-Goudsmit (9); 
White (12). It has, however, been made quite clear that 
the whole periodic system of the elements can be unambiguously 
derived by using the building-up principle in conjunction with 
the Pauli principle. The length of the long and short 
periods is given exactly, together with the existence of the 
rare earths, which had previously appeared to contradict 
the periodicity. The rare earths correspond to the build­
ing-up of an inner shell, similar to the Fe, Pd, and Pt groups.



CHAPTER IV

Finer Details of Atomic Spectra
1. Intensities of Spectral Lines

The intensity of an emission spectrum line corresponding 
to the transition from n to m is given by the product:

Wnmhv'nm

where Wnm is the number of transitions taking place per 
second in the light source, and hv’nm is the energy of the 
radiated quantum. Wnm is the product of Nn, the number 
of atoms in the initial state n, and Anm the number of transi­
tions per second of an atom. Anm is the so-called Einstein 
transition probability. Thus a knowledge of the two magni­
tudes Anm and Nn is important in the calculation of in­
tensities.

The intensity of absorption for the transition m to n 
(that is, the absorbed energy per unit time of the frequency 
v nm) is.

TVmBnmhv nmPv

where Nm is the number of molecules in the initial state m, 
p, is the radiation density of the frequency v'nm, and Bnm is 
the transition probability for absorption.

The transition probability for absorption is proportional to 
the transition probability for emission. According to Ein­
stein, we have:

Bnm <?
8irhv',?m (IV, 1)

Qm

where gn and gm are the statistical weights of the states n 
and m.

The transition probabilities can be calculated, according 
to wave mechanics, from the eigenfunctions belonging to 
the atomic states taking part in the transition (see p. 52).

152
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From these eigenfunctions can also be obtained the seleo- 
tion rules, which will be summarized in the following.

General selection rules (dipole radiation). The selection 
rule for the total angular momentum 1 is A7 = 0, ± 1, with 
the restriction that J = 0 +-> J = 0 (4-> means “cannot 
combine with”). This holds for any type of coupling (see 
section 3 of this chapter). For the component M of 7 in a 
preferred direction (for example, the direction of a magnetic 
field), the following rule holds: AM = 0, ±1, with the 
restriction that M = 0 +-> M = 0 for A7 = 0 (see p. 104). 
For Russell-Saunders coupling, which holds at least ap­
proximately in the great majority of cases and which we 
have always used above, AS = 0 (prohibition of inter­
combinations, p. 94). Under the same conditions, the 
selection rule for the orbital angular momentum L is 
AL = 0, ± 1. At the same time, AZ must be ± 1 for the 
electron making the quantum jump (see p. 85).

Special selection rules (dipole radiation). Transitions in which 
the quantum numbers of only one electron change are always by 
far the most intense. Transitions in which two or more electrons 
jump at the same time are considerably weaker but are not forbidden 
by any strict selection rule. In order to formulate the selection 
rules for such transitions, it is useful to divide the terms of an 
atom into even and odd terms, according as 52li is even or odd. 
The summation is to extend over all the electrons of the atom. 
The odd terms are distinguished from the even by a superior o 
added to the term symbol, or sometimes the subscripts g 
(= gerade, meaning “even”) and u (= ungerade, meaning “odd”) 
are used. For example, the ground state of the O atom, 
ls^s^p4 3P, is an even state, and may be written simply 3P or 
sometimes 3Pg. The ground state of the N atom, ls22s22p3 4£3/2, 
is an odd state, and may be written 4S°3/2 or 4S3/2u.

Țhe division of the terms into odd and even has the following 
wave mechanical meaning. As indicated'before, the number of 
nodal surfaces which go through the origin of co-ordinates (the 
nucleus) is equal to I for the eigenfunction of a single electron; 
that is, the number is even or odd according as I is even or odd. 
This means at the same time, however, that the eigenfunction 
either remains unaltered (I even) or changes sign (Z odd) by

1 This rule does not hold for a strong magnetic field or for quadrupole
radiation (cf. below).
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reflection at the origin (inversion),2 that is, when + x, + y, + z 
are replaced by — x, — y, — z. When several electrons are 
present, the total eigenfunction is approximately equal to the 
product of the eigenfunctions of the individual electrons, and it 
therefore follows that the total eigenfunction is even or odd according 
as Y.lieven or odd; that is, remains unaltered by reflection at the 
origin or changes sign. This property of the eigenfunction holds 
even when the li sltg no longer approximately quantum numbers 
(angular momenta), as a more detailed wave mechanical investi­
gation shows Ecf. Condon and Shortley (13) J.

The transition probability between two states n and m is now 
given by dr, and correspondingly for the other co­
ordinates (see p. 53). The integrand is obviously an odd func­
tion when and \pm are either both even or both odd; that is, the 
integrand, and with it the value of the integral, change sign by 
the transformation of co-ordinates + x, + y, + z to — x, — y, 
— z. Since, however, the value of an integral cannot possibly 
change by an alteration of the system of co-ordinates, the above 
integral must be exactly equal to zero (see similar argument, 
p. 69). On the other hand, if \f/n is even and 4/m is odd, or vice 
versa, the integrand will be an even function and the integral will 
generally differ from zero.

Thus the strict selection rule for dipole radiation is: Even terms 
can combine only with odd, and odd only with even (Laporte rule). 
For the particular case of two electrons i and fc, the Laporte 
rule may be formulated: When AZ,- =± 1, AZfc must be 0 or 
+ 2 or — 2, and vice versa. A special case of the Laporte 
rule is the prohibition of the combination of two terms of the same 
electron configuration. (For example, according to this, the three 
lowest terms of the N atom, ls22s22p3 SS, 2D, 2P cannot combine 
with one another.)

Additional special selection rules are: (1) In a strong magnetic 
field (Paschen-Back effect), AMl = 0, ± 1, and AMs 0, but 
A J need no longer be 0, ± 1. (2) For (j, j) coupling (cf. below),
Aji = 0, ± 1 for the electron performing the quantum jump.

Forbidden transitions. As we have already noted, transitions 
violating the above selection rules do sometimes occur with very 
small intensity. The following are possible grounds for these 
transgressions:

Case 1. The selection rule under consideration may be true 
only to a first approximation.

Case 2. A transition may be forbidden as dipole radiation but 
may be allowed as quadrupole radiation or magnetic dipole radiation, 
and may therefore appear, even though very weakly.

* The nodal surfaces for Z = 3 (drawn schematically in Fig. 19, p. 41) will 
help to make this clear. It should be remembered that has opposite signs 
on different sides of a nodal surface.
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Case 3. The selection rules under consideration (for dipole 
radiation) may be strictly true in the absence of electric or mag­
netic fields. They may, however, be transgressed when such 
fields are applied externally or are produced by neighboring atoms 
or ions (enforced dipole radiation} ,2a

Case 1. An example is the selection rule AS = 0, which holds 
unconditionally only under the assumption of vanishing coupling 
between L and S, and therefore holds less and less rigorously as 
the coupling between L and S increases; that is, the higher the 
atomic number and thus the larger the multiplet splitting, the 
stronger will be the intercombination lines which appear. For an 
atomic number as high as that of Hg, these forbidden transitions 
are rather intense (for example, the Hg line 2537 Â).

Case 2. The second case comes into operation with the selec­
tion rule AJ — 0, ± 1 (J = 0 -H J = 0) and with the Laporte 
rule. According to quantum mechanics, these selection rules 
should actually hold quite accurately. The fact that transitions 
violating them do appear, though wTith very small intensity, is 
due to the possibility of quadrupole radiation or magnetic dipole 
radiation (cf. Chapter I, p. 54). As stated earlier, quadrupole 
radiation depends on the integral dr, which (as x2 is
an even function) will always vanish except when \pn and are 
both even or both odd. A similar relation holds for magnetic 
dipole radiation. Hence we have, for these two types of radia­
tions, exactly the opposite selection rule to the Laporte rule, 
namely: Even terms combine only with even, and odd only with odd. 
From this it follows directly that ordinary dipole radiation, on the 
one hand, and quadrupole radiation or magnetic dipole radiation, 
on the other, cannot take part simultaneously in one and the 
same transition.

Further calculations show that, for quadrupole radiation, the 
selection rule for J is: AJ = 0, ±1, ±2, with the addition that 
J' + J" = 2, where J' and J" are the J values of the upper and 
lower states (that is, J = 0 +-»J = 0; J = j +-> J = |; J = 1 
-|-»J = 0). For magnetic dipole radiation: &J = 0, ±1; and 
J = 0 +-> J = 0 (as for ordinary dipole radiation). For L, the 
selection rules are (Russell-Saunders coupling): AL = 0, ± 1, 
± 2 (L = 0 +-> L = 0) and AL = 0, ± 1, respectively. The 
selection rule for S is: AS = 0, and this holds to the same degree 
as for ordinary dipole radiation.

To illustrate, terms of the same electron configuration can com­
bine with one another according to the selection rules for quadru­
pole radiation as well as for magnetic dipole radiation, whereas 
they could not combine according to the selection rules for 
ordinary dipole radiation (see above).

The ratios of the intensities of magnetic dipole radiation and 
quadrupole radiation compared to electric dipole radiation arc, 

Two further causes of violations of selection rules have recently been 
discussed: Case 4: Coupling with the nuclear spin [Mrozowski (15S), see also 
footnote 3, p. 156 and Chapter V], and Case 5: Simultaneous emission of two
lieht quanta TBreit and Teller (15911



156 Finer Details of Atomic Spectra Civ, l

respectively, of the order 10-5 : 1 and 10~8:1, provided that there 
is no intercoinbination.

Case 3. The occurrence of lines in an electric field which con­
tradict the selection rules AL = 0, ± 1, or AZ = ± 1 is an 
example of the third case (enforced dipole radiation). Under 
these circumstances the intensity of the forbidden lines may 
even become comparable to the intensity of the allowed lines.

It is important to note that the selection rules for the Zeeman 
effect for quadrupole, magnetic dipole, and enforced dipole 
radiation differ from those for ordinary dipole radiation, and also 
from one another. Consequently an investigation of the Zeeman 
effect gives an unambiguous criterion for the kind of transition 
under consideration. Details will not be given here Esee Rubino- 
wicz and Blaton (65)].

In absorption, forbidden transitions can be observed by using a 
sufficiently thick layer of absorbing gas. For example, the inter­
combination line *5 — 3P of the alkaline earths can be observed 
in this way. The intensity of the corresponding line for Hg is 
so great that a very thin layer suffices for the observation (cf. 
above). Because of the J selection rule, only the component 
1S0 — 3Pi usually appears.3 (Cf. the energy level diagram of Hg, 
p. 202.) The forbidden lines of the alkalis, 12*S — m2D (for 
small values of ni), have also been observed, with small intensity, 
in absorption. Segre and Bakker (68) have shown, from a study 
of the Zeeman effect of these lines, that they are undoubtedly due 
to quadrupole radiation, and not to enforced dipole radiation. 
On the other hand, Kuhn (69) has observed the higher members 
of the same series in absorption in the presence of an external 
electric field, but they have not been observed in the absence of a 
field. Thus we are dealing here with enforced dipole radiation.

In emission, transitions due to enforced dipole radiation are 
sometimes observed in electric discharges where electric fields are 
always present (external fields or ion fields). Here, also, it is 
chiefly the higher members of the series that appear since the 
higher terms are influenced much more strongly by the Stark 
effect than the lower (see p. 118). With the alkalis, for example, 
the series 2P — mP, 2S — mS, 2S — mD are observed.

On the other hand, forbidden transitions which are not caused 
by electric fields are more difficult to observe in emission. When

3 By using considerably thicker absorbing layers of Hg (107-fold), the for­
bidden line X2269.80, corresponding to the transition '<So — ’Pa, may also be 
observed [Lord Rayleigh (66) J. The occurrence of this line contradicts the 
selection rules for ordinary dipole radiation, as well as those for quadrupole 
and magnetic dipole radiation. (The upper state is odd, and the lower even.)
According to Bowen [cited in (67) J, the transition is apparently due to the
influence of nuclear spin. The line X2655.58, corresponding to the transition
l»So — ’P», has been observed in emission [Fukuda (141)]. It also contradicts 
the above-mentioned selection rules.
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the probability for a given transition is extremely small, the 
corresponding upper state has a very long life (provided no other 
allowed transitions take place from that state). Therefore in 
an ordinary light source, before an atom in such a metastable 
state radiates spontaneously, it has the opportunity to collide 
many times and thus to lose its excitation energy without radiat­
ing (collisions of the second kind, p. 228).4 * * This influence of 
collisions can be kept sufficiently small only under special condi­
tions; for example, at extremely low pressures or by the addition 
of a gas whose atoms or molecules either are not able to remove the 
excitation energy of the metastable state or can remove it only 
with difficulty. Since the life of a state which is actually meta­
stable to dipole radiation is of the order of seconds (as compared 
to 10~8 seconds for an ordinary excited state), it is almost im­
possible in terrestrial light sources to reach a pressure so low as to 
avoid the effect of collisions—especially since, at low pressures, 
collisions with the wall of the vessel lead to loss of excitation 
energy. However, suitable conditions are present in cosmic 
light sources.

Bowen (70) first showed that the nebulium lines, which had been 
observed in the spectra of many cosmic nebulae but were long 
a complete mystery, were to be explained as forbidden transitions 
between the deep terms of O+ (4S, 2D, 2P), O++ (fP, 1D, 1S), and 
N+ (3pt ip, igy Thg deep terms of these ions are shown in Fig. 
58 (see p. 158). Transitions between them involving dipole 
radiation are strictly forbidden by the Laporte rule, since they are 
terms belonging to the same electron configuration: ls22s22p3 for 
O+, ls22s22p2 for O++ and N+. The positions of these energy levels 
have been known with great accuracy for a long time from al­
lowed combinations with higher terms. Bowen showed that the 
wave lengths of the forbidden lines, calculated from the combina­
tion of these terms, agree exactly (within the limits of experimental 
accuracy) with the wave lengths of the unexplained nebulium 
lines. Thus it was proved that the nebulium lines result from 
forbidden transitions in the O II, O III, and N II spectra, and 
it was no longer necessary to assume the presence of a new ele­
ment in these nebulae. Actually, in cosmic nebulae the condi­
tions are extremely favorable for the occurrence of these forbidden 
transitions. It is estimated that the densities in the nebulae are 
of the order of 10-17 to 10-20 gr. per cc. Assuming a plausible 
value for the temperature (approximately 10,000° K), the time 
between two collisions suffered by an atom is then 101 to 104 
seconds. Thus, when O+, O++, or N+ ions, which certainly are 
present, go into these low metastable states by allowed transitions

4 If other allowed transitions are possible from this state, a forbidden transi­
tion is even less likely to occur, since long before that transition the ordinary
dipole transition to some other level would have taken place.
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from higher states, they remain there uninfluenced until they 
radiate spontaneously. A large fraction of the more highly ex­
cited ions must come eventually into these states, and practically
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Fig. 58. Origin of the Most Important Nebular Lines (Transitions Be­
tween the Low Terms of O II, O III, and N II). The triplet and doublet 
splitting is drawn to a much larger scale than the rest of the figure. Term 
values are written to the right. The O III lines, 5006.8 A and 4958.9 Â, are 
the most intense nebular lines and are sometimes designated Ah and N2.

every ion goes from them to the ground state by radiation. This 
explains why the nebulium lines are very intense in nebulae, 
whereas they are not observed in terrestrial light sources, in which 
the other allowed O II, O III, and N II lines appear strongly.

In the last few years, additional weaker nebular lines have been 
identified by various investigators in a similar manner as for­
bidden transitions of S II, S III, Ne III, Ne IV, Ne V, A IV, A V, 
and Cl III. The identity of a few others still remains doubtful 
Esee Bowen (71)].

In an analogous way, McLennan (72) and Paschen (73) have 
explained the green and red. auroral lines as corresponding to for­
bidden transitions (bS —* rD and lD —» 3P, respectively) of the 
neutral O atom? (Cf. the energy level diagram in Fig. 59.)

According to Condon (74), the intense nebulium lines 2Vi and 
Nz, ascribed to O++, are due to magnetic dipole radiation. Cor­
responding to this, the component 1D2 —> 3Po does not appear 
(cf. the above selection rules). Since we are dealing at the same

6 This naturally suggests that the lines observed in the spectrum of the 
solar corona, which have not been found in any terrestrial light sources, may 
be explained in a similar way as forbidden transitions. However for many 
years they defied all attempts of identification. Only very recently Edlen 
(146) [see Swings (147) J succeeded in identifying them with forbidden transi­
tions between the low terms of Fe X, Fe XI. Fe XIII, Fe XIV, Fe XV, 
Ni XII, Ni XIII, Ni XV, Ni XVI, Ca XII, Ca XIII, Ca XV, A X, and A XIV.
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time with an intercombination (singlet—triplet), the mean life 
of the upper state is even greater than for quadrupole radiation 
without intercombination. On the other hand, the green auroral 
line, as well as the corresponding nebular lines lD2 — lSo, is due 
to quadrupole radiation (AJ = 2, no intercombination).

The auroral lines have also been obtained in the laboratory in 
suitable light sources [McLennan and Shrum (75); Paschen (73) J; 
for example, in discharges through argon with a small addition 
of oxygen. The destruction of the metastable atoms is con­
siderably hindered by the argon. This artificial production of 
the green auroral line made possible the study of its Zeeman 
effect. From this it follows definitely that a quadrupole transi­
tion is involved [Frerichs and Campbell (76) J. Since it is a 
singlet transition, the normal Zeeman effect with three com­
ponents would have been expected for dipole radiation. Actu­
ally, two additional components were observed at twice the dis­
tance from the middle line—an effect in agreement with the 
theory for quadrupole transitions.6

General remarks on the intensity ratios of allowed lines.
Apart from the selection rules by which certain transitions 
are completely, or almost completely, forbidden, certain 
theoretical predictions can be made concerning the intensity 
ratios of allowed lines. In a series of lines which differ in 
the value of the principal quantum number for the upper 
state, the intensity generally decreases regularly toward the 
series limit. Theoretically, the variation in intensity can 
be calculated according to wave mechanics (see p. 50), and 
so far as these calculations have been carried out, there is 
agreement with experiment.

According to the earlier part of this chapter, the intensity 
depends on the number of atoms in the initial state as well 
as on the transition probability. In order to ascertain the 
intensity, two limiting cases may be distinguished:

Case 1. In the case of thermal equilibrium or the tempera­
ture excitation of the spectral lines, if En is the excitation 
energy of the state n above the ground state, the number 
of atoms or molecules in the state n is proportional to 
e-En/kT (Boltzmann). However, this rule holds only so

• The middle component does not appear for exactly transversal or longi­
tudinal observations, but does occur for observations incline.d to the direction 
of the magnetic field.
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long as the statistical weight or a priori probability is 1 
(cf. p. 119). If the weight is gn, the probability of finding 
the state n is gn times as great; that is, the number of atoms 
in the state n is proportional to g„e~EnlkT. If m is a second 
state with excitation energy E„„ then

Nn _ gne~EnlkT 
Nm gme~EmlkT (IV, 2)

where Nn and Nm are the number of atoms in states n and 
m, respectively. If m is the ground state of the atom 
(Em = 0), the number of atoms in the state n becomes:

Nn = Nm e~En,kT 
gm (IV, 3)

The intensity of the line vnm is proportional to this quantity 
in the case of thermal equilibrium.

Case 2. In the case of many electric discharges where 
excitation results from collisions with electrons of all pos­
sible velocities, the Boltzmann factor plays no very signifi­
cant part. Or, expressing this in another way, the tem­
perature of the electron gas is so high that e~E'kT can be 
taken equal to 1 for most of the states in question. Then

Nn   gn
N m gm (IV, 4)

Thus, while the states of lowest excitation energy are the 
most frequent for temperature excitation (owing to the 
Boltzmann factor), in electric discharges the higher excited 
states are, within certain limits, approximately as frequent. 
In both cases, for states with practically equal excitation 
energies, Nn/Nm = gnlgm since e~En’kT is then approxi­
mately equal to e~EmlkT-, that is, the intensities are deter­
mined mainly by the statistical weights.

The first doublet of the principal series of the alkalis 
illustrates the point (for example, the D lines of Na). 
The lower state is single. The two components of the 
upper state, 2P3/2 and 2Pi/2, have statistical weights 4 and 2. 
Owing to the approximately equal excitation energies, for 
temperature excitation as well as in a discharge, the number
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of atoms in the 2P3/2 state is twice the number in the 2I\/2 
state. The intensity ratio of the two lines in emission 
should therefore be 2:1, and this actually is observed. 
The same holds for absorption, since then the number of 
transition possibilities is twice as great for one component 
as for the other.

Sum rule. The generalization of these considerations for 
complicated cases is the Burger-Dorgclo-Or ostein sum rule: The 
sum of the intensities of all the lines ~of a multiplet which belong to 
the same initial or final state is. proportional to the statistical weight 
2J + 1 of the initial or final state, respectively. By way of illus­
tration the following scheme for a 2P — 2D combination may be 
derived [see Table 14; cf. Figs. 29(6) and 30, p. 74 and p. 75], 
The sum of the intensities of the transitions with 2Pi/i are to 
those with 2P3/2 as5:(l+9) = 2:4; that is, in the ratio of 
the statistical weights. Similarly for 2D, (5 + 1) : 9 = 4 : 6. 
Conversely, from these two relations the relative intensities may 
be calculated.

Table 14

INTENSITIES FOR A 2P - TRANSITION

2£b/2 2Pe/2

27 + 1 4 6

2Pl/2 2 5 —
2F*3/2 4 1 9

From the sum rule the following general rules can be derived: 
(a) The components of a multiplet for which J and L alter in the 
same manner are more intense than those for which they alter un­
equally. (6) The components belonging to a large J value are more 
intense than those with small J. These rules are especially impor­
tant for the practical analysis of a multiplet (cf. Figs. 31, 33, and 
34; see also section 4 of this chapter).

The sum rule is not sufficient for an unambiguous determination 
of the intensities of compound triplets or higher multiplets. In 
such cases we must use the general theoretical intensity formulae 
derived by Sommerfeld, Honl, and de Kronig [see (5a) and (13)], 
which naturally contain the sum rule. These formulae, as well 
as the sum rule, hold only for Russell-Saunders coupling (small 
multiplet splitting). Intensities in more general cases and for 
non-Russell-Saunders coupling have been treated in recent in­
vestigations but this work will not be dealt with here. A discus­
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sion of the intensity rules for Zeeman components must also be 
omitted [consult White (12); Condon and Shortley (13) J.

2. Series Limits for Several Outer Electrons, Anomalous Terms, 
and Related Topics

Series by excitation of only one outer electron. When the 
outermost or valence electron for an alkali atom is raised to 
orbits with higher values of n and then allowed to return to a 
lower state, there result different emission series whose limits cor­
respond to the complete removal of the valence electron. In 
absorption, only one series of lines (doublets) is obtained, the 
principal series, whose limit gives directly the ionization potential 
of the atom. The state of the ion resulting from the removal of 
the outermost electron has only closed shells; it is the bS0 ground 
state (inert gas configuration, see Table 13). This state is single, 
and therefore the series limit is single; all term series go actually 
to the same limit. Similar relations hold for the alkaline earths 
and the earths (boron group), where, likewise, the removal of the 
outermost electron leads to the ground state of the ion. How­
ever, different relations hold for the elements of the carbon 
group and the following groups. For these elements, the ion 
which is obtained by removing the outermost electron has an 
electron configuration which gives excited terms in addition to 
the ground state. For example, for C the remaining ion can be in 
a 2Pi/2 or 2P3/2 state; for N, in a 3P, 4D, or bS state; and so on.

We shall consider in more detail the case of the oxygen atom. 
According to the building-up principle (Chapter III), we can 
predict the qualitative energy level diagram that will be obtained 
when we add an additional electron to the lowest electron con­
figuration of the ion, ls22s22p3. In this case the lowest electron 
configuration of the ion corresponds to three different terms, bS, 
2D, and 2P (as for N). Different term series are thus obtained 
for the neutral 0 atom according as the emission electron is added 
to the terms 4S or 2D or 2P in the different free orbits with various 
n and I values. The number of terms is thus considerably larger 
than for Be or B, for example.

If an s-electron is added to the 4S ground state of the O+ ion, 
3S and 6S terms are obtained by vector addition of the I of the 
added electron to the L of the ion, and of the s to the S (see p. 
129 f.). For each of these terms there is an entire series corre­
sponding to the different possible values of the principal quantum 
number (n = 3).

If a p-electron is added to 4S, a series of 3P as well as a series of 
5P terms is obtained. According to the Pauli principle, for 6P 
the n value of the added p-electron must be at least 3 (see 
Table 13); but for 3P, n can also be 2. The state 2p SP is the
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ground state7 of the 0 atom. Similarly, 3D and 5D, or 3F and 3F 
series are obtained by the addition of a (/-electron or an /-electron, 
respectively. Parts of these series are shown graphically at the 
left of Fig. 59 (terms not observed are indicated by dotted lines).

If an s-electron is added to the excited 2D state of the ion having 
the same electron configuration (ls22s22p3) as 4S, there result 
series of lD and 3D terms whose limit, however, lies above the

Fig. 59. Energy Level Diagram of the O Atom, with Different Series 
Limits. The n values given are the true principal quantum numbers of the 
emission electron. The term to the extreme right (2s2p6 3P) does not belong 
to any of the indicated series limits. Dotted lines indicate terms not yet 
observed.

limit of the previously considered terms by an amount equal to 
the excitation energy of the 2D state of the ion (see Fig. 59, center). 
From 2D, by adding a p-electron further series of terms are ob­
tained: 3P, 3P, 3D, 3D, 3F, 3F; correspondingly, by adding a 
(/-electron: 3S, 3S, 1P, 3P, 1D, 3D, 3F, 3F, 3G. In an exactly
similar manner, the series 3P, 3P, 3S, 1P, 3P, 1D, 3D, • • • result
from the 2P state of the ion (Fig. 59, right), the series limit being 
still higher.

In general, the term values are so chosen for atomic spectra 
that ionization with the ion left in its lowest state corresponds to a 
term value 0 and terms of smaller energy are counted positive

7 For simplicity, only the symbol for the emission electron is given.
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(see Chapter I). Terms corresponding to excited ion states which 
lie above the first ionization limit will thus be negative.

When it is necessary to distinguish terms belonging to series 
with different limits, the term type of the corresponding ion can 
be included in the designation; for example, 2p3(2D)4p 1D2, and 
similarly in other cases. All terms of the same multiplicity and 
the same electron configuration resulting from a given term of 
the ion are called a polyad. For example, all triplet terms, 3P, 
3D, 3F, of the configuration 2p3(2D)np of oxygen would be called a 
triad. They generally lie fairly close together. All the transi­
tions between the terms of two polyads are called a supermultiplet 
[cf. Condon and Shortley (13) j.

Term series going to different limits (such as have been amplified 
here for the O atom) appear for all those atoms (and ions) that 
possess several terms for the lowest electron configuration of the 
ion. A great many such cases have already been investigated, 
and each has confirmed the theoretical conclusion that the separa­
tions of the series limits must be equal to the observed term differ­
ences of the corresponding ion. The existence of these additional 
terms leads to a considerably larger number of line series in emis­
sion and absorption than is observed for simpler atoms. For 
example, according to the selection rules (AS = 0; AL = 0, ± 1; 
AZ = ±1), the ground state of the 0 atom can combine with the 
terms ls22s22p3(4S) ns 3S°; 2p3(4S) nd 3D°; 2p3(2D) ns 3D°; 2p3(?D) 
nd3S°, 3P°, 3D°; 2p3(2P) ns3P°; 2p3(2P) nd 3P°, 3D°', whereas, for 
instance, the ground states of Na and Mg can combine with only 
one term series, n 2P and n ^P, respectively.

Series by excitation of two electrons; anomalous terms. Apart 
from the terms for which only one electron is excited, other terms 
are possible for which two (or even more) electrons are in shells 
other than those for the ground state. Such terms are actually 
observed and are called primed or anomalous terms. They were 
first observed for the alkaline earths and the alkaline-earth-like 
ions. In their spectra, were found multiplets which could not 
be arranged in the normal triplet series and which did not 
show the normal structure of a compound triplet. Fig. 31(d), 
p. 76, shows a spectrogram of an anomalous triplet of Ca, which 
should be compared with the normal compound triplet in Fig. 
31(6). The lower part of Fig. 60 shows the same schematically. 
The relationships between the separations and between the in­
tensities for a normal compound triplet (see p. 78) are not ful­
filled here. However, these and similar multiplets may be ex­
plained (as indicated in Fig. 60) as due to a combination of two 
3P terms with not very different splitting (taking into account the 
selection rules for J and the intensity rules). If the explanation 
is correct, the energy level diagram shows that the separations of 
the components a to c and d to f must be exactly equal. This is
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Fig. 60. Origin of an 
Anomalous Triplet of the 
Alkaline Earths.

actually observed to be the case and the separation gives the 
splitting 3P2 — 3Pi of the lower term. It now appears that this 
splitting and also the splitting 3Pi — 3P0 (separation of the lines 
c and e) agree exactly with those of the
lowest 3P term of the alkaline-earth j
metal under consideration (Ca, in Fig.
60) which have been known for a long 
time. The foregoing means that the 
lower state of this multiplet is the lowest 
sp 3P state. The upper state is an ano­
malous term which does not belong to 
the normal term series and is designated 
as 3P'.

The fact that this anomalous term 
combines with the known 3P term, 
although it is itself a P term,8 contra­
dicts the selection rule AL = ± 1, which 
must hold for terms for which only one 
electron has I =f= 0. It follows that the 
anomalous term corresponds to an excita­
tion of two electrons. When this is the 
case, AL = 0 is also possible, provided 
that AZ = ± 1 for the one electron 
making the quantum jump (transition 
between even and odd terms). This con­
clusion is supported by a large number of
further arguments which cannot be taken up here [consult 
White (12) J. Agreement with experiment is obtained when the 
assumption is made that, in the 3P' term, both outer electrons are 
excited for Be to 2p orbits, for Mg to 3p orbits, for Ca to 4p 
orbits, and so on. According to the foregoing (p. 131), two 
equivalent p-electrons give the terms: lS, 3P, rD. Here we are 
dealing with the 3P state since it can combine with the sp 3P 
term in the way shown in Fig. 60. Writing the symbols in full, 
for Be we have the transition ls22p2 3P —> ls22s2p 3P; for Ca, 
4p2 3P —> 4s4p 3P [see Fig. 31(d) J. Since only one electron jumps, 
these transitions are allowed and are very intense. Owing to the 
Laporte rule, the p2 3P state cannot be reached by absorption 
from the s2 ground state. It is probably also impossible to 
excite it directly in a discharge by electron collision from the 
ground state. Possibly it is reached through the sp 3P state by 
two successive electron collisions.

The two other terms, and 1D, with the same configuration, 
p2, have likewise been found for Be and for other cases, although 
their identification is not so certain since they are singlets.

8 The values of J necessary to explain the splitting pattern show that the 
term cannot be any other than a P term.
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iplet splitting for the anomalous p2 3P term must 
lately the same magnitude as that for the normal 
ce the p-electrons have the same principal quai

This is in agreement with experiment [cf. Fig! 
)1

Energy Level Diagram of Be I with Anomalous Term $ 
ind Kruger-(78)]. The normal singlet and triplet series are ( 
(cf. Fig. 32 for Ca I); the anomalous term series, to the right, 
vn with dotted lines have not been observed. Apart froi 
D, 3P, for n > 2, the terms 3S, 3D, 1P are also possible for th< 
ls22p np, but thus far have not been observed. For n > 2, 
figurations 2p ns and 2p nd are also possible; of these, ho1? 
rst member of each has been observed (indicated at the ex 
e figure), n is the true principal quantum number.
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The observed energies of these anomalous terms correspond 
also with the theoretical expectations. They should lie, roughly, 
twice as high above the ground state as the normal sp 3P term, 
since two electrons have been brought into the 2p orbit (for Be) 
instead of one. An inspection of the Be energy level diagram in 
Fig. 61 shows that this is actually the case.

The following is another somewhat more accurate estimation of 
this excitation energy. If the explanation of anomalous terms is 
correct, we should expect for Be, for example, that-the wave 
number of the transition ls22s2p 3P — ls22p2 3P would approxi­
mately agree with the wave number of the line obtained when 
one 2p electron is left completely out (that is, with the ls22s 
2S — ls22p 2P transition of the Be+ ion), since it can hardly be 
assumed that the 2p electron can influence the energy of the two 
terms very differently. Actually, this relation is ■well fulfilled 
(see Fig. 61).

Thus the term ls22p2 of Be and the analogous terms of the other 
alkaline earths and of the alkaline-earth-like ions lie rather 
close to the first ionization limit. Apart from the term ls22p2, 
analogues are obviously to be expected for which one electron 
goes to higher orbits, 3p, 4p, and so on (that is, a whole series ls22p 
np, corresponding to the series ls22s np). The limit of the former 
series is the ion term ls22p; that is, an excited state of the ion 
quite similar to the foregoing, but with the difference that this 
term no longer has the same electron configuration as the ground 
state of the ion. Two members of this series have been found for 
Be (see Fig. 61). These terms have negative term values; that is, 
they lie above the lowest ionization potential. Due to this, only a 
few of them have been observed in this and similar cases. Before 
an atom in such a state can radiate, pre-ionization (auto-ioniza­
tion) usually takes place. (This topic will be discussed further 
at the end of the present section.) Series of terms corresponding 
to the above also result when ns or nd replaces np.

Similar anomalous terms have been found for many atoms and 
ions. Relatively few occur for the lighter elements since they lie, 
for the greater part, above the lowest ionization limit. However, 
these terms are very numerous for the heavier elements since, for 
them, some of the outer shells frequently have not much more 
energy than the ground state, and hence the energy for the simul­
taneous transition of two electrons to a higher shell is often not 
particularly large. That they are so numerous also depends on 
the fact that the corresponding ion has a large number of low- 
lying terms. This is one of the reasons for the essentially greater 
complexity of the spectra of the heavier elements as compared to 
those of the lighter.

Excitation of inner electrons. Very closely connected with 
the foregoing are the spectra resulting from the excitation of inner
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ergy Level Diagram of Zn P [Beutler and Gugj 
)f the energy level diagram of Zn II is drawn to the ri) 
the left starts from the ground state of Zn as zero, 
it starts from the ground state of Zn+ as zero.
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electrons. Such spectra have recently been investigated in detail 
by Beutler (79). They provide a connecting link between optical 
and X-ray spectra. As is well known, the latter correspond to 
transitions involving the innermost electron shells of an atom. 
Beutler found, in absorption, transitions from the ground state of 
the atom to states in which one of the electrons of the outermost 
closed shell (which must be designated as an inner electron) goes 
to a higher orbit. He has designated these spectra P spectra, as 
an extension of the usual designation for the ordinary spectra of 
neutral atoms as I spectra (for example, Hg I). The essential 
point is that, contrary to the case just treated, only one electron 
needs to alter its quantum numbers in order to reach the corre­
sponding excited state (I6 term) from the ground state. However, 
it must be an inner electron, and this difference distinguishes such 
terms from normal terms. Since only one electron has to jump, 
these terms may be reached by absorption.

An illustration from the zinc spectrum will help to make this 
point clearer. The electron configuration of Zn in the ground 
state is ls22s22p63s23p63d104s2. The normal spectrum results 
when one electron goes from the 4s shell to higher orbits; anoma­
lous terms result when both electrons go from the 4s shell to 
higher orbits. The P term series results when one electron goes 
from the closed 3d shell into higher orbits. Such terms lie very 
high—appreciably higher than the ionization limit of the normal 
atom. The lowest state to be excited in this way is • • • 3d94s24p. 
Beutler found a whole series with np (n = 4, 5, • • •), and a cor­
responding series with nf. Naturally, many terms belong to each 
configuration (cf. Tables 10 and 11 on p. 132). Of these terms, 
only three ('Pi, 3Pi, 3Di) can be observed in absorption from the 
ground state (bSo), because of the selection rules A J = 0, ± 1 
(J = 0 -H J = 0).9 Term series with ns or nd in the place of 
np or nf cannot be observed because of the selection rule AZ = ± 1.

Fig. 62 shows the observed Zn P terms. All of the predicted 
terms except the nf 3Di terms have been observed. The terms lie 
above the lowest ionization limit of the normal atom. The energy 
level diagram is drawn from this point up. The energy level 
diagram of the Zn+ ion is indicated at the right of the figure. 
The series limit (n —» °°) of the P terms under consideration must 
correspond to the 3d94s2 state of the Zn+ ion. This is a term of 
the ion (2D) for which an inner electron is excited (according to 
Beutler, a II4 term). A continuous absorption spectrum joins 
the series limit just as for a normal series, and corresponds to 
ionization leaving the ion in the II4 state mentioned. In X-ray

9 The deviation from Russell-Saunders coupling is already so great that the
selection rules AS = 0 and AL = 0, ± 1 no longer hold strictly.
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nomenclature this spectrum would be called an absorption spectrum 
from the Mt shell.

Beutler and his co-workers have already found similar absorp­
tion spectra for a large number of atoms. The series limits do 
not necessarily correspond to a IP term of the ion. For K, for 

example, the upper states of a P 
series are 3p54s ns, and this gives the 
ordinary excited state 3p54s of K+ 
when n —> oo.

Naturally there also exist terms 
which correspond to the excitation of 
shells lying still farther in. They 
are correspondingly designated P, P, 
• ■ •. For Tl, absorption lines have 
been found whose transitions corre­
spond to such terms. These spectra 
bridge the gap to X-ray spectra and 
might well be called X-ray spectra.

Summarizing the results of the 
preceding discussion, we conclude: 
in theory, term series of a neutral atom 
result from the addition of an electron 
not only to the ground state of a singly 
charged ion but also to each excited 
state of the singly charged ion, whether 
or not it has the same electron con­
figuration as the ground state, 
whether it is normal or anomalous, 
or whether or not it belongs to the b 
terms. In general, this leads to a 
great number of terms. The fore­
going considerations of course also 
apply to the spectra of ions.
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Fig. 63. Perturbed 3F 
Terms of Al II Compared with 
the Hydrogen-like Terms 
4Rln3 and with the *F Terms. 
The perturbing term is in­
dicated by a dotted line.

Term perturbations. Sometimes 
deviations from the normal posi­
tions (expected according to the ordi­
nary series formula) are observed in 
certain line series belonging to atoms 
and ions with several emission elec­
trons. These deviations are known 
as perturbations. As an example the

1F3 and 3Fi terms of the Al II spectrum are given to the right and 
left of Fig. 63. For comparison, the terms 4JZ/n2 are drawn in the 
center of the figure. They should follow very closely the variation 
of the F terms of Al II, since F terms are usually hydrogen-like.10

10 The factor 4 enters the formula since we are dealing with the first spark 
spectrum.
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Wc can sec that this is largely the casc for the terms through­
out the entire region. On the other hand, for the3F4 terms this 
is true only for large and small values of n, whereas pronounced 
deviations from the normal position appear in the region n = 5 to 
n — 7. There is actually one more term present than would be 
expected.11

The reason for this phenomenon is a resonance process quite 
analogous to the Heisenberg resonance for He (p. 66), which 
led to the energy difference between singlet and triplet terms. 
When it happens that two terms of different electron configura­
tions of the same atom or ion have approximately the same en­
ergy, the states influence each other. In the case of He, the 
eigenfunctions of the resulting states are mixtures of the eigen­
functions of the two originally degenerate states Q^i(l)yn(2): 
electron 2 excited, and <p„(l)<pi(2): electron 1 excited; cf. p. 67]. 
Similarly, here, a mixing of the eigenfunctions results. If and 
^2 are the zero approximation eigenfunctions of the two states of 
nearly equal energy with different electron configuration, the 
eigenfunctions of the two resulting states will be, to a first approxi­
mation (as shown by more detailed calculations not given here):

tpi = oi/'i -(- 6^2 and = cV'i H-
Thus each of the resulting states has, so to speak, both electron 
configurations (though not in equal amounts as for He, where 
a = b = c and d = — a). This mixing may also be regarded as 
an oscillation of the atom between the two states (the two elec­
tron configurations). There is at the same time a shifting of both 
terms away from each other, as for He. Theory shows that these 
perturbations can occur only between terms which have equal J 
and, in the case of Russell-Saunders coupling, equal L and 5. 
In addition they must either both be odd or both even.

In fact, in the example of Al II an anomalous term 
(ls22s22p63p3d 3F°) is to be expected, and it will be of the same 
type as the term of the normal 2p63s mf 3F° series and may lie 
somewhere between n = 6 and n — 7 (dotted line in Fig. 63, 
center). Its eigenfunction mixes with that of the neighboring 
normal terms, and, furthermore, the latter will be displaced away 
from the position of the perturbing term. The perturbing term 
itself forms the extra term. On account of the mixing of the 
eigenfunctions, we cannot ascribe an unambiguous electron con­
figuration to terms in the region of perturbation.

Pre-ionization (auto-ionization). The phenomenon of pre- 
ionization or auto-ionization [Hhenstone (81)] is very closely re­
lated to perturbations. As we have already pointed out, many

11 In addition, there is at the same time an abnormally large triplet splitting 
of the ’F terms (not shown in Fig. 63).
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Fig. 64. Pre-ionization of 
the Terms Lying above the 
First Ionization Potential of 
an Atom or an Ion. To the 
left are shown the discrete 
terms that lie at the same 
height as the continuum 
which joins the series of 
terms drawn to the right.

of the terms resulting from the excited states of an ion (for example, 
practically all P terms) have negative values; that is, they lie 
higher than the lowest ionization potential of the atom or ion in 
question. They thus overlap the continuous term spectrum 
which joins the normal sequence of terms. This is shown 
schematically in Fig. 64. As in the case of perturbations, we 
have here two different states of an atom which have the same 
energy: the discrete anomalous state, and the continuous ionized 
state with a corresponding relative kinetic energy of ion plus elec­
tron (indicated by the dotted arrows in Fig. 64, right). As before, 
a mixing of the eigenfunctions takes place—that is, an oscillation 

between the two states of equal 
energy.

However, when the system has once 
oscillated from the discrete state into 
the continuous state lying at the same 
height, a return oscillation is not pos­
sible, since the electron has already 
left the atom. This can also be ex­
pressed in the following way: A radi­
ationless quantum jump takes place 
from the discrete state to the contin­
uous state lying at the same height 
(shown by the horizontal arrows in 
Fig. 64), and results in an ionization 
of the atom. Analogous to a similar 
phenomenon for molecules (pre-disso­
ciation), this effect should be called

pre-ionization but in the literature is usually referred to as auto­
ionization.

In the case of perturbations, a shifting of the levels takes place. 
Similarly here, theory shows that a broadening of the discrete levels 
is to be expected. Actual observations show that lines in which 
such negative terms participate are in many cases considerably 
broadened, although in some cases they are sharp (narrow). It 
may be shown theoretically that the greater the probability of a 
radiationless transition, the greater the broadening. A noticeable 
broadening (greater than the normal Doppler breadth) will take 
place only when the probability of a radiationless transition is 
very great compared with the probability of a transition to an 
energetically lower state with radiation. This means at the same 
time that emission lines which originate from levels broadened 
in this way should be either very weak or entirely missing, a con­
clusion that agrees completely with experiment. It was stated 
above that negative terms are very difficult to observe in emission.

We shall now consider why some of the absorption lines are 
fairly sharp and some of the emission lines are relatively intense 
even when the above conditions for pre-ionization are fulfilled.
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This has, in principle, the same explanation as the facts that some 
normal lines are strong and others weak, and that the continuous 
spectrum which joins the absorption series diminishes fairly 
rapidly in intensity with decreasing wave length. The radiation­
less transition probability depends on the eigenfunctions of the 
two states involved, in a similar manner to the transition proba­
bility with radiation. There are also selection rules for radiation­
less transitions. It should be noted that in the continua which 
extend beyond the different term series, the angular momenta S, 
L, and / retain their meaning unaltered and the property even-odd 
is also defined. The selection rules are the same as for perturba­
tions (see above): AJ = 0, AS = 0, AL = 0, and even terms do not 
combine with odd. The discrete terms lying above the lowest 
ionization potential cannot, therefore, go over by a radiationless 
transition into the continuum joining any arbitrary term se­
quence; instead, they can go only into specific continua. If these 
definite continua do not exist, pre-ionization cannot occur. In 
addition, the radiationless transition probability becomes smaller 
with increasing distance from the series limit, since the eigen­
function is a periodic function with a nodal distance (wave length) 
which becomes smaller and smaller with increasing distance from 
the limit. Therefore the value of the transition integral ap­
proaches nearer and nearer to zero. This conclusion corresponds 
to the fact that absorption lines, whose upper states lie at a fairly 
great distance from a series limit, are very sharp.

Similar radiationless quantum jumps occur also in the X-ray 
region. When a X-electron is removed from an atom by K 
absorption, the ion is left in a highly excited state (upper state of 
Ka and Kf). This state lies considerably higher than the lowest 
ionization potential of the ion—actually higher than the ioniza­
tion energy for the removal of an L-electron. Therefore, instead 
of the atom emitting a Ka quantum as a result of the transition of 
an electron from the L shell to the K shell, the energy set free by 
this transition can be used to liberate one of the remaining L-elec- 
trons. Such a radiationless quantum jump was first discovered 
by Auger, and is called after him the Anger effect or Auger process. 
This name is sometimes used as a general term for all such 
processes—for atoms as well as molecules.

3. Other Types of Coupling
Thus far we have always used Russell-Saunders coupling 

(p. 128), which assumes that the interaction of the individual L 
and the individual s: is so strong between themselves that they 
combine to give a resultant L and S. L and S then combine with 
a smaller coupling to give a resultant J. This assumption holds 
for a large number of elements, particularly for all the lighter 
elements, as may be seen from the fact that, for them, the multi-
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plet splitting is usually small compared to the energy difference 
of the levels having the same electron configuration but different 
L. The splitting is likewise small compared to the energy differ­
ence of corresponding levels which differ only in their 
multiplicities.

Because of its validity in so many cases, Russell-Saunders 
coupling forms the basis for the usual nomenclature.

(j,j) Coupling. When we assume the opposite case to Russell- 
Saunders coupling—namely, not that there is a strong interaction 
of the li with one another and the Si with one another, but rather 
that there is considerable interaction between each Z, and the s, 
belonging to it—we obtain so-called (7, j) coupling: Each Z, 
combines with the corresponding Si to give a ji, the total angular 
momentum of the individual electron.12 The individual ji are less 
strongly coupled with one another and form the total angular 
momentum J of the atom. Such coupling can be written 
symbolically:

(ZiSi)(Z2S2)(Z3S3)• • • = (jij2j3- •■') = J (IV, 5)
There is no definite L and S for this coupling. However, J 
remains well defined. The same holds for M.

Let us consider, as an example, the configuration ps, which 
gives a 3P0 1,2 and a lPi state on the basis of Russell-Saunders 
coupling. Assuming (j, j) coupling, however, the resultant is 
formed first from h = 1 and Si = j. This gives ji = j or j. 
From the supposition of strong coupling between I and s, these 
two states have very different energies. j2 can take only one 
value, namely, J, since Z2 = 0. Because the-coupling between ji 
and j2 is assumed to be small, we have, to a first approximation, 
two terms which have equal j2 and which differ in the two above 
ji values. The two states may be characterized briefly as 
(jhjt) = (1,1) and (1,1)- To the same approximation, we 
likewise have two terms for Russell-Saunders coupling: one *P 
and one 3P term. (See Fig. 65, in which the two limiting cases 
are drawn to the extreme left and right.) When the small (7*, 7) 
interaction is taken into account, a slight splitting of each of the 
two levels, (71,72) = (|, j) and (|, j), into two components occurs 
(two possible orientations,of j2 with respect to jj). For (j, j), J is 
2 or 1; for (j, j), J is 1 or 0. For Russell-Saunders coupling, when 
we allow for the small (£, S) interaction, 3P splits into its three 
components, J = 0, 1, 2 (Fig. 65, left).

Thus we see that the number of terms is eventually the same 
for both types of coupling and that the J values are the same also.

12 The component of 7' in a magnetic field is m,-. For the application of the 
Pauli principle, in this case it is more convenient to employ n, I, j, and mj 
than it is to use n, I, mi, and m, (cf. footnote 1, Chapter III).
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Hence an unambiguous correlation is possible (dotted lines in 
Fig. 65). 'Therefore terms can be designated in the Russell- 
Saunders manner in spite of the fact that they may have prac­
tically (7, 7) coupling. However, this method of designation has 
then only a very limited value. First of all, it no longer eorre- 

J ix.iz

----------------l/2, V2

Fig. 65. Relative Positions of the Terms of a ps Configuration. To the left, 
Russell-Saunders coupling; to the right, (J, j) coupling.

sponds to the relative position of the terms. Second, the prohibi­
tion of intercombinations AS’ = 0 and the selection rule AL = 0, 
± 1 no longer hold, since L and <S are no longer definite quantum 
numbers. The terms combine according to the Laporte rule and 
the selection rules; AJ = 0, ±1; AJ,- = 0, ± 1 (see section 1).

For cases in which pp, pd, or other configurations are present 
instead of the case of one p-electron and one s-electron, the rela­
tionships are naturally much more complicated. Neither these 
nor the completely altered (/-formula for Zeeman splitting for 
(7, 7) coupling will be considered further here. [(Consult White 
(12); Condon and Shortley (13).J

Transition cases. Pure (7,7) coupling occurs relatively seldom. 
Instead, we usually have to deal with transition cases which cor­
respond to the region at the center of Fig. 65. The figure shows 
that in this region the splitting of the terms does not follow exactly 
either Russell-Saunders or (j, j) coupling. In Fig. 66 the posi­
tions of the first excited 3P terms and the corresponding 'P terms 
of the elements of the carbon group are given. These two terms 
are due to an electron configuration ps. Carbon has practically 
pure Russell-Saunders coupling, as has Si. However, Ge, Sn, 
and Pb approach closer and closer to (7, 7') coupling; this effect is 
indicated especially by the term with J — 2, which moves from 
the neighborhood of the lowest term with J = 0 into the neigh­
borhood of the uppermost term with J — 1 (JPi) (see p. 175).

It must be emphasized that, when (7’, 7) coupling occurs for 
one term, it need by no means hold for the whole term system of 
the atom in question. This coupling holds preferentially for 
excited states. Practically pure (7, 7) coupling is present in the 
above case of an excited state of Pb, but does not hold for its 
ground state. The outer electrons in the ground state have the
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■p

•poz Ge Sn Pb
Fig. 66. Observed Relative 

Positions of the First Excited 3P 
and 1P Terms of Elements of the 
Carbon Group. Transition from 
Russell-Saunders to (j, j) cou­
pling. The scale is different for 
the various elements, but has been 
so chosen that the separation be­
tween each uppermost and lowest 
term in the diagram is the same 
for each element.

configuration p2; therefore the lowest terms are, in order, 3P, 'D, 
lS, just, as for C (see p. 142). The triplet splitting, it is true, is 
considerable, though not so large that the terms cannot be dis­
tinguished according to Russell-Saunders. The same holds for 
Sn and Ge, whereas their excited states (Fig. 66) already approach 
fairly closely the case of (7, j) coupling (the higher excited states 
approaching it even more closely).

Thus with increasing atomic number first the higher excited 
states show a transition to (/, /) coupling, because, for an electron 

with large principal quantum 
number, the coupling with the 
other electrons is rather weak. 
Even with fairly small atomic 
number this coupling may be 
weaker than the coupling of I and 
s for this electron. Therefore a 
resultant j is first formed for this 
electron, which then interacts 
weakly with the angular momenta 
of the other electrons. In the 
case of elements of the carbon 
group (shown in Fig. 66), only one 
additional electron is present with 
I + 0 (namely, a p-electron). 
This electron forms its own j, 
and (Ji j) coupling results for 
large principal quantum numbers 
of the emission electron. The 
two j values of the p-electron in 
the core correspond to the two 
components of the 2P ground term 
of the ion to which the terms of 
the neutral atom converge.

If several electrons with I + 0 
are present, as well as an emis­
sion electron with high n, the 
former will have Russell-Saunders

coupling with one another for a not too high atomic number; 
that is, they give an Lc and an Sc of the atomic core with a re­
sultant Jc, which will then be weakly coupled with the j of the 
emission electron. This coupling can be written symbolically:

Si

(Zx/2- • -)(S1S2- • •)(*, s) = (Lc, Sc)(l, s') = (7c, 7) = 7 (IV, 6)
Such a case occurs for the excited states of Ne, for example, in 
spite of a rather small atomic number.

Still other modes of cou pling are possible but will not be dealt 
with here.
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When approximation to (j, j) coupling makes it impossible to 
ascribe definite Russell-Saunders term symbols to the observed 
terms in a given case, the latter are distinguished by their J 
value, if necessary with a superior 0 added as an upper index to 
indicate that the term is odd. When the symmetry of the ground 
state is known, whether a term is odd or even can easily be estab­
lished on the basis of the Laporte rule, which holds absolutely for 
any type of coupling.

4. The Interval Rule; Analysis of Multiplets
General remarks concerning the analysis of atomic spectra.

According to what has already been said, the analysis of atomic 
spectra such as the alkali or alkaline-earth spectra, consisting of 
simple series, presents no difficulties. Une needs”only to identify 
among the observed lines those lines that belong to certain series, 
and then to relate these series according to the theoretical prin­
ciples. However, the analysis of a complicated spectrum when 
several outer electrons participate is by no means so simple. It is 
particularly difficult for the beginner to understand how to pick 
out the regularities from the perplexing abundance of lines in such 
a spectrum (cf. Fig. 6, p 7), how to assign the lines to definite 
series and definite terms, and how this can ever lead to an un­
ambiguous result. We shall touch on these topics briefly in this 
section.

First of all, the regularities which have been discussed in earlier 
chapters and which form the basis of the analysis will be sum­
marized.

1. It must be possible to arrange the lines in Rydberg series of 
the form already given (see also p. 197). The different members 
of such a series may lie in entirely different spectral regions.

2. Lines belonging to one and the same series show the same 
Zeeman effect; only singlet lines show the normal Zeeman effect.

3. Apart from singlet lines, it should be possible to group the 
lines together as multiplets. [We are disregarding here the case 
of (j, j) coupling.] The discovery and analysis of such multiplets 
is the first main task in the analysis of a spectrum. In this step 
the following points are of importance:

(a) In a multiplet, constant differences must occur between 
pairs of lines. This follows from the explanation given previously 
in connection with compound triplets (p. 78). For example, in 
the quartet transition for C+ shown in Fig. 34, the following 
separations must be exactly equal to one another: b — a = h — d, 
d — c = g — e; and, conversely, d — a = h — b, e — c = g — d. 
These separations correspond to term differences of the upper and 
lower states, respectively. When, therefore, the lines of a multi­
plet are put in a square array (see Table 15) such that lines in 
each vertical row have lower states with equal J, and those in
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each horizontal row have upper states with equal J, the differ­
ences between the lines in two horizontal or two vertical rows must 
be exactly constant. The table shows that this is actually the 
case, within the limits of experimental error. In the scheme only 
the diagonal from upper left to lower right and the two parallels 
to it are occupied by lines, due to the selection rule AJ = 0, ± 1.

(b) According to our earlier discussion (p. 161), in a multiplet, 
those transitions for which J and L alter in the same sense are the 
most intense; of these, the most intense is that with greatest J. 
Table 15 shows that this rule holds also for the C+ quartet.

Table 15

<P - TRANSITION FOR C+ [FOWLER AND SELWYN (59)]
(Wave-number differences are given in italic type. Numbers in paren­

theses are estimated intensities. Superior letters a, b, c, etc., refer to Fig. 34, 
p. SO.)

4P1/2 4P,/2 4Put
*7)i/2 14,729.79(2)’ 28.73 14,706.06(0)’

14-82 14-61
*7)3/2 14,744.61(2)» 23.04 14,720.67(3)-' 44-05 14,675.72(0)“

25.10 25.03
4D6/2 14,745.77(4)* 45.02 14,700.75(3)*

36.30
4 Dili 14,737.05(6)/

(c) In the Zeeman effect, each multiplet level splits into 2J + 1 
components. The number of components for each line is given 
by the splitting of the upper and lower terms and by the selection 
rules (II, 12) and (II, 13). Conversely, it is always possible to 
use the Zeeman splitting to obtain the J values for the upper and 
lower states of the respective lines. Investigation of the Zeeman 
effect is, however, not always practicable.

(d) When an investigation of the Zeeman effect is not practi­
cable, an interval rule (discussed in the following) is employed 
in the determination of J.

Lande interval rule. Under the assumption of Russell- 
Saunders coupling, the ratios of the intervals in a multiplet can 
be easily calculated in the following way: The magnetic field pro­
duced by L is evidently proportional to VL(L + 1), and the com­
ponent of S in the direction of this field is -\/jS(»S + 1) cos (L, S'). 
Therefore from (II, 7), the interaction energy is

= A<L(L + 1) jS(S + 1) cos (L, S)
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where A is a constant. From Fig. 47 (p. 109) it follows [similar 
to equation (II, 19)3 that

cos (L, S) J(J + 1) - L(L + 1) - S(S + 1)
2y[L(L + 1) V»S(iS + 1)

Consequently the interaction energy is:

J (J + 1) — L(L + 1) — ,SQS + 1)

As Ij and ,S are constant for a given multiplet term, the intervals 
between successive multiplet components are in the ratio of the 
differences of the corresponding ./(,/ + 1) values. But the 
difference between two successive ./(./ + 1) values is 2J + 2. 
Consequently, for a multiplet term the interval between tiro suc­
cessive components (J and J + 1) is proportional to J + 1. This 
interval rule was first formulated by Lande. Deviations from 
this rule occur with increasing deviation from Russell-Saunders 
coupling. According to the interval rule for example, the sepa­
rations of the components of a *D term with J — v, j, j, .J are in 
the ratio 3:5:7. For the il) term of C+ (Table 15), these sepa­
rations are 14.72, 25.07, 36.30; and are in the ratio 2.94 :5: 7.24. 
The interval rule is thus verified to a fair approximation in this 
case, and similarly in other cases.13 The multiplet intervals in 
all the illustrative diagrams have been drawn in accordance with 
the Lande interval rule.

Example of a multiplet analysis. In order to locate multiplets 
in a complicated atomic spectrum, it is necessary first, by syste­
matic trial, to discover pairs of lines with exactly equal wave- 
number differences. As can be seen in Table 15, these pairs 
usually occur , in double sets. When a number of such double 
sets have been found, they must be arranged in a scheme similar 
to the one used in that table. For a given multiplet, only such 
double sets come under consideration as have one line in common. 
In arranging the various pairs in the scheme, one must consider 
that in all the horizontal rows the wave numbers of the lines 
decrease or increase continuously from left to right; the same 
applies, correspondingly, for the vertical columns. Practically, 
it is usually easy to arrange the lines in such a scheme when the 
lines in the spectrum form separated groups (multiplets); how­
ever, this is always theoretically possible even when different 
multiplets overlap one another.

Table 16 gives such a scheme for a multiplet of Fe, which 
is shown in Fig. 6 (p. 7). As can be seen, the wave-number 
differences (given in italic type in the table) of pairs of lines, such

13 An exception is provided, for example, by He (see footnote 2, Chapter II).
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as i — g and f — c, agree exactly. To be sure, the separations 
h — g and m — d occur only once. Nevertheless, that the lines 
h and m belong to the multiplet follows from the fact that the 
same differences appear for other Fe multiplets having the same 
upper or lower states.

Table 16

Fel MULTIPLET [LAPORTE (82)]
(Wave-number differences are given in italic type. Numbers in paren­

theses above the wave numbers of the lines are estimated intensities. Su­
perior letters a, b, c, etc., refer to Fig. 6, p. 7.)

i + 1 i + 2 i +3 i +4

k + 1

k + 2

k + 3

k +4

(40)*
25,960.89

104-51

(40)»
25,862.38

215.52

(10)e
25,646.86

(60)*
168.92 26,031.30 

215.55

(60/ (80)* 1
168.91 25,815.77 251.13 20,073.50

294-45 294-46

(8)k (60/ (125)'
25,521.32 257.73 25,779.05 351.30 26,130.35 

411.21 411-19

(J5)a (15)d , (200)m
25,367.84 351.32 25,719.16 448.50 26,167.66

The types of terms combining with one another must now be 
determined. We know that J increases or decreases by 1 for 
successive horizontal and vertical rows. The direction of in­
creasing J is determined by observing the direction of increasing 
separation of the lines in the horizontal and vertical rows, since, 
according to the interval rule, the multiplet intervals increase 
with increasing J. The relative values of J are, therefore, those 
given in Table 16. They include a constant i or k, which is thus 
far undetermined. The absolute values of J are obtained when 
the ratio of successive intervals for the upper and lower states is 
calculated. In the present case, the numbers, for the upper state, 
104.51, 215.53, 294.45, 411.20, are approximately in the ratio
1 : 2 :3 :4; whereas those for the lower state, 168.92, 257.73, 
351.31, 448.50, are in the ratio 2 : 3 : 4 : 5. From this it follows 
that i=l and k = 0. Consequently, the J values of the upper 
state are: 0, 1, 2, 3, 4; those of the lower state are: 1, 2, 3, 4, 5. 
When L > S, the number of term components is 2S + 1. In 
the present case this number is 5, and therefore S = 2. The 
supposition that, here, L > S follows from the fact that the two 
states have an equal number of components, although they
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have different J values.14 iS With <S = 2 and with the above J 
values, we find that L = 2 in the upper state and that L = 3 in 
the lower state. The transition is thus a bF — &D transition. 
The intensities provide a check on the correctness of the J and 
L values (see above).

The foregoing considerations do not alter when the upper and 
lower states are interchanged; that is, when Table 16 is reflected 
at the diagonal through the upper left corner. A decision as to 
which is the upper or the lower state can be obtained only by 
comparison with other multiplets of the same spectrum or by 
absorption experiments. The arrangement actually used in the 
table was verified in both ways. Since the v values in a vertical 
row in Table 16 decrease with increasing J in the upper state, it 
follows that the upper state is an inverted term. The same holds, 
in a similar manner, for the lower state. Thus, for both terms, 
the components with smallest J lie highest.

After a large number of multiplets of the same spectrum have 
been analyzed in this way, we can arrange similar terms in Ryd­
berg series: Rl(m + a)2 (see p. 55). Terms for which this ar­
rangement is possible differ from one another only in the principal 
quantum number of one electron. The energy level diagram of 
the atom is thus obtained, and, when sufficient terms of a Rydberg 
series are known, the ionization potential can be obtained very 
accurately by extrapolation to n = «. (Cf. Chapter VI, section 
1.) When the carrier (emitter) of the spectrum is known, a 
qualitative energy level diagram may be constructed on the basis 
of the building-up principle, and then the observed combinations 
may be arranged in this diagram.

14 The number of components for L < 5 is 2L + 1. Two terms with equal
iS can, therefore, have the same number of components less than 2S + 1 only 
when they have the same L; that is, the same J values.



CHAPTER V

Hyperfine Structure of Spectral Lines
When individual multiplet components are examined with 

spectral apparatus of the highest possible resolution (inter­
ference spectroscopes, large concave gratings in the higher 
orders), it is found that in many atomic spectra each of 
these components is still further split into a number of 
components lying extremely close together. This splitting 
is called hyperfine structure. The total splitting is only of 
the order of 2 cm-1 (that is, in the visible region of the 
spectrum approximately 0.4 Â) and is in many cases con­
siderably smaller. In Fig. 67(a), (6), and (c) we give as illus­
trations the “lines”: 4122 Â of Bi I (photogram), 5270 Â 
of Bi II, and 4382 Â of Pr II.

As we- have seen in the preceding chapters, the assump­
tion of orbital and spin angular momenta of the individual 
electrons of an atom explains completely the multiplet 
structure thus far mentioned. It is, however, difficult to 
imagine an additional degree of freedom of the extra- 
nuclear electrons of an atom which would account for the 
still further splitting (hyperfine structure) just mentioned. 
We are therefore led to assume (following Pauli) that this 
hyperfine structure is caused by properties of the atomic 
nucleus. This assumption is confirmed by a more thorough 
investigation of the phenomenon.

The influence of the nucleus may be due either to its mass 
(isotope effect), or to a new property, an intrinsic angular 
momentum or nuclear spin, which can be considered similar 
to the electron spin. Both influences have been found.

1. Isotope Effect
As is well known, most chemical elements consist of a 

number of isotopic atoms, each of which has an approxi-
182



V, 1] Isotope Effect 183

mately whole-number atomic weight. Different isotopes 
of an element have the same number and arrangement of 
extra-nuclear electrons, and consequently have the same 
coarse structure for their spectra. They are, however, dis­
tinguished from one another by their mass.

Isotope effect for the H atom. We have seen in Chapter I 
that, because of the simultaneous motion of nucleus and 
electron about the common center of gravity, the Rydberg 
constant depends on the nuclear mass. The H spectrum 
thus depends upon the nuclear mass. Urey and his co- 
workers first found (1932) that each of the Balmer lines 
H„, H/j, H7, and H» has a very weak companion on the short 
wave-length side at distances of 1.79, 1.33, 1.19, and 1.12 A, 
respectively. The wave lengths of the additional lines 
agree completely (within the limits of experimental error) 
with the values obtained from the Balmer formula when 
the Rydberg constant for a mass 2 is used instead of for a 
mass 1 (p. 21). The calculated separations are 1.787, 
1.323, 1.182, and 1.117 Â. The existence of the hydrogen 
isotope of mass 2 (heavy hydrogen) was first shown in this 
way. It should perhaps be added that the heavier isotope is 
present to the extent of only 1 in 5000 in ordinary hydrogen.

(a) (b) (C)

Fig. 67. Hyperfine Structure of Three Spectral Lines, (a) Photogram of 
the “ line ” 4i22 Â of Bi I, with 4 components. Total splitting 0.44 A 
[Zeeman, Back, and Goudsmit (83)]. (5) Spectrogram of the “line”
5270 Â of Bi II, with 6 components. Total splitting 1.37 Â [Fisher and 
Goudsmit (84)]. (c) Spectrogram of the “ line ” 4382 A of Pr II, with 6
components. Total splitting 0.30 A [White (85)].
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Isotope effect for more complicated atoms. As soon as several 
electrons are present, the isotope effect can no longer be calculated 
in such a simple manner as for the H atom. We shall discuss here 
only the qualitative results. The fine structure of the Li res­
onance line, which is not a simple doublet, was explained a 
number of years ago as due to the isotopic shift of Li6 and Li7 
[Schuler and Wurm (86) J. This interpretation has been verified 
by the intensity ratio of the corresponding lines in the hyperfine 
structure pattern, which agrees with the abundance ratio of the 
isotopes.

Another case that was among the first to be explained is the Ne 
spectrum, part of the lines of which consist of two components. 
Apart from the somewhat rare isotope Ne21, Ne has two principal 
isotopes, Ne2n and Ne22, whose abundance ratio (9 : 1) agrees 
with the intensity ratio of the two line components and to which 
the two line components are thus to be ascribed. This interpre­
tation was further confirmed by the separation of the two isotopes 
by diffusion [Hertz (87) J. The separated isotopes show only.the 
one or the other component of the doublet.

It might be expected that with increasing atomic number the 
isotope effect would become smaller, since the motion of the 

nucleus becomes more and more un­
important. However, it has actually 
been found [Schuler and Keyston 
(88); and others J that even for ele­
ments of rather high atomic number 
a noticeable isotope effect is present, 
which is of the same order of magni­
tude as the influence of nuclear spin. 
(Cf. section 2 of this chapter.) As 
an example, Fig. 68 shows schematic­
ally the isotope effect of the 6215 Â 
“line” of Zn. The intensity of the 
components is indicated by the height 
of the vertical lines in the diagram. 
It corresponds to the abundance of 
the three1 principal isotopes: Zn64, 
Zn66, Zn68. Worth noticing is the 
fact that the lines of the three iso­

topes lie equidistant, in the order of their masses.
In general, it is not always easy to separate the two effects 

(isotopy and nuclear spin). For this purpose the intensity of the 
components is important. An unambiguous decision is always 
possible when the Zeeman effect can be studied. For a pure 
isotope effect, each of the individual components will show the 
Zeeman effect for the extranuclear electrons quite independently

Zn®

Zn”'

-189

Zn

-95
10 * cm"

Fig. 68. Isotope Effect 
for the 6215 A “ Line ” of 
Zn II (Schematic). Fre­
quency differences in units of 
10-3 cm-1 referred to the 
most intense line (right) are 
given as abscissae. Total 
splitting < 0.2 cm-1 [Schuler 
and Westmeyer (89)].

1 The much rarer isotope Zn67 has been observed for another line, X7479.
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of one another, whereas hypermultiplets, resulting from nuclear 
spin, should show an essentially different Zeeman effect (see 
below). Apart from this, it is naturally possible to make an un­
ambiguous differentiation when the spectra of separated or partly 
separated isotopes can be investigated. In this way the isotope 
effect in the hyperfine structure of Pb has been carefully investi­
gated by using leads from different radioactive origins (with 
different atomic weights and therefore different proportions of 
the individual isotopes). [See Kopfermann (90).J

A quantitative explanation of the isotope effect is not simple, 
since, with the exception of the H atom, it is not given merely by 
the altered Rydberg constant. A detailed wave mechanical 
calculation shows that, for the lighter atoms (Li, Ne, and so forth), 
an explanation can be obtained on the basis of different masses 
alone and is at least of the right order of magnitude [Hughes and 
Eckart (91); Bartlett and Gibbons (92)]. However, for the 
heavier elements, the effect is traced back to the change of nuclear 
radius with mass [Pauling and Goudsmit (9); Bartlett (93)].

In this connection it is interesting to note that Schuler and 
Schmidt (135) found in the case of samarium that the three even 
isotopes Sm160, Sm1B2, Sm154 do not give equidistant lines as do the 
isotopes of Zn (Fig. 68) and practically all other elements. The 
separation of Sm150—Sm1M is double that of Sm162—Sm154. Since 
the usual isotope shift for heavy nuclei is due to a regular increase 
in nuclear radius (cf. above), the large change between Sm150 and 
Sm162 points to a larger than usual increase in radius, which may 
indicate a fundamental change in the building-up of the nucleus 
at this atomic weight.

2. Nuclear Spin
In many cases the isotope effect is not sufficient to explain 

the hyperfine structure. The number of hyperfine struc­
ture components is often considerably greater than the 
number of isotopes. In particular, elements which have 
only one isotope in appreciable amount also show hyperfine 
structure splitting. This is, for example, the case with Bi 
and Pr (cf. Fig. 67). Likewise, the number of components 
of different lines is frequently quite different for one and 
the same element. These hyperfine structures can be 
quantitatively explained, however, when it is assumed (as 
for the electron) that the atomic nucleus possesses an in­
trinsic angular momentum with which is associated a magnetic 
moment. This angular momentum can have different
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magnitudes for different nuclei and also, of course*, for 
different isolopes of I he same element.

Magnitude of the nuclear spin and its associated mag­
netic moment. If it is assumed that wave, mechanics 
holds for nuclei, the nuclear spin can be only an integral 
or half-iniegral inulliple of hl2tr. We write for it I(h/2ir), 
where I is the quantum number of the nuclear angular 
momentum,2 which can be integral or half integral. For 
the simplest nucleus, the proton, investigations of the H2 
molecule (spectrum, specific heat) have shown that its 
spin I equals 2. The proton has therefore the same angular 
momentum as the electron. Naturally, different values 
might be expected for heavier nuclei since they contain, 
among other component parts, several protons.

A magnetic; moment is associated with the nuclear spin 
(as with electron spin), since the nucleus is also electrically 
charged and the rotation of electrically charged particles 
gives rise to a magnetic moment. ('lassically, the magnetic; 
moment resulting from the* rotation of charges is (ej2inc)p 
(see Chapter II). For an angular momentum p = 1 h/2ir 
and ?n = the mass of the electron, one Bohr inagneton 
results (BM). If we substitute the mass of the proton for 
m and if p = 1 h/2-ir, we obtain a magnetic moment of 
1/1840 BM, which is called one 7iuclcar magneton (NM). 
Therefore, classically, the magnetic moment of the proton 
should be 2 NM, or 1840 times smaller than that of the 
electron, which should similarly be j BM. Actually, this 
relationship holds for neither the proton nor the electron. 
Analogous to the procedure with the extranuclear electrons, 
the discrepancy is formally explained by introducing a 
nuclear g-f actor and putting the magnetic* moment of the 
nucleus equal to:

e j h 
$ 2mvc 2-n- g-INM

2 The more accurate formula for the magnitude of the nuclear angular 
momentum is + 1) h'2ir, just as for J (see p. 88). For the sake of sim­
plicity, we shall use the expression I{kl2ir) in what follows.
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where mp is the proton mass. Note that g is counted posi­
tive when the magnetic moment falls in the direction of the 
nuclear spin (as is generally to be expected for the rotation 
of positive charges), and is counted negative when it falls 
in the opposite direction.

Since the g values for the nuclei are numbers of the order 
of 1, the magnetic moment of the nucleus is always about 
2000 times smaller than that of the electron.

Vector diagram allowing for nuclear spin. Previously 
L and S were combined to give the total angular momentum 
J of the extranuclear electrons. Now J and I must simi­
larly be combined to give a resultant, in order to obtain the 
total angular momentum F of the whole atom, including nuclear 
spin. As before, the corresponding quantum number F 
can take values

F = J + I, J+ 1 — 1, 
This gives, in all, 27 + 1 
cording as J < I, or J > I. 
Fig. 69(a) shows the addi­
tion for the case of J = 2,
I = j. It corresponds 
completely to the addition 
of L = 2 and $ = j in 
Fig. 37 (p. 89).

Because of the magnetic 
moment of the nucleus, a 
coupling between J and I 
results (similar to that 
noted previously between 
L and S) and produces a 
precession of the vector 
diagram (Fig. 70) about 
the total angular momen­
tum F as axis. Due to 
this, a small energy differ­
ence between states with

J+ 1-2, \J — I\ (V, 1) 
>r 21 + 1 different values, ac-

F

(&) ........

Fig. 69. Vector Diagram and Cor­
responding Energy Level Diagram Al­
lowing for Nuclear Spin, (a) Vector 
addition of J and I to give the total an­
gular momentum F for the case J = 2, 
I = +. (6) Energy level diagram for
J = 2, I = Și- To the left, without al­
lowing for hyperfine structure splitting; 
to the right, allowing for it. The split­
ting of the states with different F is 
drawn in accordance with the interval 
rule (see Chapter IX', section 4).
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4/

different F exists. However, since the magnetic moment
of the nucleus is approximately 2000 times smaller than 
that of the electron, the precession is 2000 times slower
than that of L and

Fig. 70. Precession of 
the Angular Momentum 
Vectors about the Total 
Angular Momentum F for 
the Component F = 5 of 
a lFt Term with 1=2. 
The solid-line ellipse 
shows the precession of 
I and J about F. The 
dotted-line ellipse shows 
the much faster preces­
sion of L and S about J, 
taking place at the same 
time.

S about J (also indicated in Fig. 70), 
and correspondingly the energy differ­
ences are very much smaller. These 
are the small differences observed in 
the hyperfine structure of spectral 
lines. Fig. 69(6) shows the energy 
level diagram of the term with J = 2 
and I = j.

From equation (V, 1), it follows 
that in general the number of hyper­
fine structure components of which an 
atomic term consists is different for 
different terms of the same atom. 
Terms with J = 0 are always single. 
If I = j, all other terms show a split­
ting into two components. If I is 
greater than j, terms with J < I have 
2J + 1 components, whereas those 
with J > I have 27 + 1 components
(cf. above).

( The greater the nuclear magnetic moment, the greater 
will be the splitting. The latter is also dependent on the

I type of atomic state under consideration. For example,
if the emission electron is in an s orbit, the splitting is much
greater than for a p orbit with the same principal quantum 
number, since the electron in an s orbit apprbaches closer to 
the nucleus. This dependency can be calculated in detail 
theoretically, but will not be taken up further here [^consult 
Condon and Shortley (13) J.

Selection rule for F; appearance of a hypermultiplet.
The same selection rule holds for the total angular momen­
tum F Qsee Pauling and Goudsmit (9) J as holds for the 
total angular momentum of the extranuclear electrons:
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AF = ± 1, O and F = O +-> F = O (V, 2)

From this it follows that a hypermultiplet, although its 
splitting is much smaller, will have a similar appearance to 
an ordinary multiplet (cf. Figs. 29 and 31, p. 74 and p. 76), 
particularly since the same interval rule holds for both.

In Fig. 71(a), (6), and (c), energy level diagrams for those 
lines of Bi I, Bi II, and Pr II are shown whose spectro­
grams have already been given on page 183. The spin of 
the Bi nucleus is I — !>. In the upper and lower states of

1 1

Bil Z=4122A

1=^2

F

ll 1,1 11

F4l j=v2 
5j/=%

Fig. 71. Energy Level Diagram Showing the Hyperfine Structure for the 
Three Spectral Lines Reproduced in Fig. 67. (a) Bi I X4122 line, (b) Bi II 
X5270 line (upper and lower states must be interchanged), (c) Pr II X4382 
line.
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the Bi I line X4122, J = j; for the Bi II line X5270, J = 1 
in both states. This gives in the first case 4 components, 
and in the second case 7 components. The J values are not 
known exactly for the Pr II line X4382, but must, at any 
rate, be very large. With I = § and the assumption that 
the splitting is exceedingly small in the lower state, 6 line 
components result; of these, 4 consist of 3 unresolved com­
ponents each, and one consists of 2 unresolved compo­
nents [see Fig. 71(c)].

Determination of I and g from hyperfine structure. As­
suming the above theoretical relations and selection rules, 
we can, conversely, derive from the observed hyperfine 
structure the magnitude of the nuclear spin of an atom.

In principle, the procedure is the same as that given above for 
the analysis of an ordinary multiplet. However, here we have 
an advantage: usually the J values of the terms involved 3 are 
known, as is also the fact that all the terms must have the same 
I value. Once again we have to arrange the hypermultiplet in a 
square array (cf. Table 16, Chapter IV). If the same number of 
components is obtained for two terms with different J values, 
this number gives directly 21+1. Such is the case in the above 
example of Pr II, where a great many different lines have 6 
components, as shown in the diagram [Fig. 71(c)]. It therefore 
follows that I = 4 [cf. White (85)]. If, however, the number of 
components varies for different terms, the number of components 
must be equal to 2J + 1, as in the example of Bi [Fig. 71(a) 
and (b)]. In such cases, when there are more than 2 components, 
we first obtain F from the interval rule, and from this I (see 
Chapter IV, section 4). For the Bi II line in the figure, the inter­
vals in the lower state are 1.756 and 2.152, and in the upper state 
0.459 and 0.562, as derived from the observed pattern. They are 
both approximately in the ratio 9 : 11; that is, the F values must 
be I, -V, as indicated in the figure. From the fact that there 
are 3 components each, it follows that J = 1 and therefore 
I = f. A similar procedure could always be rather easily car­
ried out if it were not for the overlapping of the lines—a situation 
that often is complicated by the smallness of the splitting, the 
limited resolving power of the spectral apparatus, and the finite 
width of the lines.

• Conversely, with a known nuclear spin, we can determine the J values of 
unanalyzed multiplets by investigating their hyperfine structure.
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When the value of the nuclear spin I has been obtained, the 
^-factor and the magnetic moment of the nucleus can be derived 
from the magnitude of the splitting by using the theoretical 
formulae.

Zeeman effect of hyperfine structure. In a magnetic field a 
space quantization of F takes place precisely as given above for J. 
The quantum number MP of the component of the angular 
momentum in the field direction can take only the following 
values:

MP = F, F - 1, F - 2, • • •, - F (V, 3)
The 2F + 1 values of Mp correspond to states of different energies 
in a magnetic field. Because of the precession of / and / about F 
(see Fig. 70), the direction of the magnetic moment of the extra- 
nuclear electrons lies, on the average, in the direction of F. The 
energy differences of the 2F + 1 states with different Mp are 
thus of the same order of magnitude as for the ordinary Zeeman 
effect [cf. formula (II, 14) J. As before, the states are equidistant. 
With increasing field strength, the precession of F about the field 
direction becomes faster and the energy difference between the 
various term components becomes greater. Fig. 72 shows, to the 
left, the splitting of the two hyperfine structure components of a 
term with J = j and I = f in a weak field. (The order of the 
components with F = 1 is the inverse of the order with F = 2,

j=v2 /=%

Fig. 72. Zeeman Splitting of the Hyperfine Structure Components F = 1 
and F = 2 of a Term with / = / = %. To the left, the splitting is in a
weak field; to the right, in a strong field.
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since in the first case J is antiparallel to F.) On the basis of the 
selection rule AMf = =t 1, 0 = 0 +-> MF = 0, for AF = 0),
which is analogous to (II, 12) and (II, 13), each individual com­
ponent of a hypermultiplet gives a Zeeman splitting corresponding 
completely to the spectrograms previously given for the anom­
alous Zeeman effect (Fig. 39). In actual investigations this effect 
is scarcely ever observed, since the hyperfine structure splitting 
itself is generally close to the limit of possible resolution (see 
however the more recent work of Rasmussen (148) and Jackson 
and Kuhn (149).

When the magnetic field is so great that the velocity of pre­
cession of F about the field direction becomes greater than that 
of J and 7 about F, a Paschen-Back effect takes place, as for ordi­
nary multiplet structure. In the case of hyperfine structure, on 
account of the weakness of the coupling between J and I, the 
Paschen-Back effect occurs at very much lower field strengths 
^han for ordinary multiplet structure. J and I are then space 
quantized in the field direction independently of one another and 
with components Mj (corresponding to M, above) and Mi. 
The space quantization of J gives the ordinary Zeeman effect 
studied in Chapter II, with line separations which, with sufficient 
field strength, are considerably greater than those of the field-free 
hyperfine structure components. Each term with a given Mj is, 
however, once more split into a number of components corre­
sponding to the different values of Mi. Since Mi can take 
values I, I — 1, I — 2, • • •, — I, there are 21 + 1 components. 
This number of components is the pame for all terms of an atom, 
since I is constant for a given nucleus. The splitting in a strong 
field is shown to the right of Fig. 72 for the simple case J = |, 
I = |. The splitting of the levels with different Mi is small 
compared to the separation of the levels Mj = + j and 
Mj = — j. It is not due to the interaction of the nuclear spin 
I with an external magnetic field H, since this is 2000 times 
smaller than that of J with H; but is due to the interaction be­
tween Z and 7, which is also present in a strong magnetic field and 
contributes a term AMjMi to the energy, similar to the ordinary 
Paschen-Back effect (p. 113). The 27 + 1 components of a 
term with a given Mj are thus equidistant. A is the constant 
determining the magnitude of the field-free hyperfine structure 
splitting. The difference from the ordinary Paschen-Back effect 
is that the term corresponding to the term 2hoMs of equation 
(II, 21) can be disregarded here for all practical purposes, because 
of the factor 1/2000. This also accounts for the difference 
between Figs. 72 and 49.

For a transition which, without field, gives rise to one hyper­
multiplet, the selection rules in a strong field are: AMj = 0, ± 1 
[identical with (II, 12) J and AMi = 0 (corresponding to 
AMS = 0). The first of these rules gives the ordinary anomalous 
Zeeman effect if at first we disregard nuclear spin. Because of 
nuclear spin, however, each of the magnetic levels with a certain
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Mj value has 21 + 1 equidistant components, the separations 
being different in the upper and lower states. Therefore, con­
sidering the selection rule AM r = 0, each anomalous Zeeman 
component is split into 21 + 1 lines. This splitting does not 
depend upon the field strength so long as the latter is sufficiently 
great to produce an uncoupling of J and I. Thus, simply by 
counting up the number of line components, the nuclear spin I can 
be determined quite unambiguously from photographs in a suffi­
ciently strong magnetic field. This elegant method for the deter­
mination of nuclear spin from hyperfine structure was first em­
ployed by Back and Goudsmit for Bi. In a strong magnetic 
field each of the Zeeman components of Bi consists of 10 com­
ponents due to nuclear spin, and therefore I must be equal to f 
(a result already obtained above, though with less certainty, from 
the interval rule).

Statistical weight. It follows from the foregoing discussion 
that a hyperfine structure term with a given F has a statistical 
weight 2F + 1. In hypermultiplets, this statistical weight is 
important for the determination of intensity ratios, which in 
turn serve as a check on the analysis of hyperfine structure.

The total statistical weight of a term with a given value of J 
(that is, the total number of single components in a magnetic 
field, if nuclear spin is included) is:

(27 + 1) X (2/ + 1)
since we have seen that in the Paschen-Back effect each Zeeman 
term (single without nuclear spin) splits into 21 + 1 components. 
The statistical weight is thus increased, by a factor 21+1, over 
that previously given (p. 119) where nuclear spin was not allowed 
for. As this factor is the same for all states of an atom, our 
earlier discussion of intensities in ordinary multiplets still applies.

Determination of nuclear spin by the Stern-Gerlach experi­
ment. Rabi and his co-workers, employing the foregoing con­
siderations on the Zeeman effect of hyperfine structure, have de­
veloped a very beautiful method for the determination of nuclear 
spin with the aid of atomic rays. For example with the alkalis, 
disregarding nuclear spin and using any arbitrary field strength, 
there will be a splitting of an atomic ray into two rays (Mj = + 1 
and Mj = — |), because of the 2S ground state. If a nuclear 
spin is present, for a weak field, F (not 7) is space quantized. In 
this case the magnetic moment of the atom has, on the average, 
the direction of F, and therefore the atomic ray is split into 
2F + 1 (not 2J + 1) components, where F is the largest of the 
possible F values (for J = ? and I = $, there are 5 components 
instead of 2).

On the other hand, in a strong field the components of the 
magnetic moment (which are the deciding factors in the splitting
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of the ray) take only two values, given by Mj = + | and 
Mj = — The magnetic moment connected with I does not
have any appreciable influence on the splitting of the atomic ray, 
because of the uncoupling of J and I. Thus a splitting into only 
two rays takes place. Using a strong inhomogeneous field, Rabi 
and his co-workers first produce such a splitting into two rays. 
One of the rays is shielded off, and the remaining ray (which 
may have, for example, Mj — + |) contains atoms with Mi = I, 
I — 1, — I. All such atoms, however, have practically the
same magnetic moment and, therefore, practically the same 
deflection. This ray is then sent through a second field, which is 
weak and extremely inhomogeneous. When the second field is 
so weak that no Paschen-Back effect can take place, / is no longer 
uncoupled from J, and there occurs a comparatively large splitting 
into as many rays as there are MF values in the ray. There are 
just 2/ + 1 values of MF, since the states wdiich had Mj=—± 
in a strong field are no longer present. In this way the magnitude 
of the nuclear spin is found simply by counting up the number of 
component atomic rays, as in the Zeeman effect for hyper­
fine structure. For Na, Rabi and Cohen (94) have found 
I = i (see Fig. 72).

If the variation in the splitting pattern of the atomic ray in the 
transition from weak to strong fields is investigated in greater 
detail, the nuclear magnetic moments may also be determined, 
since the uncoupling of J and I is reached sooner for smaller 
magnetic moment (cf. above). A more direct method consists in 
the application of the ordinary Stern-Gerlach experiment either 
to atoms whose outer electrons have zero magnetic moment, or to 
diatomic molecules with zero magnetic moment which contain the 
atoms in question. Much more accurate results have been ob­
tained more recently by Rabi and his coworkers (150) (151) (152) 
by means of the molecular beam magnetic resonance method.

The results of these procedures for individual nuclei will be 
given here only for the proton and the deuteron, the nucleus of 
the heavy hydrogen atom. The proton, whose spin I = j, gives 
a value of 2.7890 NM [see (151) and (152)J, which is remark­
ably high; whereas the magnetic moment of the deuteron, whose 
spin I = 1, is only 0.8565 NM [see (151) arid (152)3- 
mentioned methods are listed in Table 17. For the sake 
of completeness, values obtained by band spectroscopic 
methods have also been included in the table.

Importance of nuclear spin in the theory of nuclear structure.
It is clear that significant conclusions as to the structure of the 
nucleus may be obtained from the determination of nuclear spin 
and the magnetic moment belonging to it, just as a fundamental 
knowledge of the arrangement of the extranuclear electrons was
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Table 17

OBSERVED VALUES FOR NUCLEAR SPIN

Isotope I z Isotope I 7. Isotope

IP >2 36 Kr8» 0 59 Pr"'
IP 1 37 Rb88 5A 62 Sm?
He4 0 Kb87 ?2 63 En'8'
Li» 1 38 Sr8» 0 En133
Li7 ?2 Si*7 A 65 Tb'89
Be9 ?2(?) Sr88 0 67 Ho'»8
('12 0 39 ygy >2 69 Tin'69
X" 1 41 Ch93 ?2 70 Vb'71
O1» 0 42 Mo9294 0 Vb'73
I’’'9 A Mo95 *2(?) 71 Lu178
Ne20 0 Mo9» 0 Lu'7»
Ne22 0 Mo97 >2(?) Lu'731
Na23 A ^[yU8. 100 0 72 IIP771
Mg2< 0(?) 47 Ag1»7 z'2 HP’hi
A l27 ^2 Ag.oo h 73 Ta181
p3l /2 48 Cd110 0 74 W182
S32 0 Cd111 W'83
Cl35 A Cd112 0 \Y'84
Cl37 ^2 Cd113 ’/2 W'8»
K39 A Cd114 0 75 Re188
K4‘ K Cd11» 0 Re187
Ca40 Of?) 49 In113 ^2(?' 77 Ir191
Sc45 V2 In118 A Ir193
V81 V2 50 Sn117 z'2 78 Pt194
Mn“ h' Sn119 >2 Pt198
Co59 7/2 51 Sb121 A Pt19»
Cu63 A Sb123 z’2 79 Au197
Cu“ 52 Te12» 0 80 Hg'98
Zn»4 0 Te128 0 Hg'99
Zn»» 0 Te'3» 0 Hg2™
Zn»7 53 J127 Hg2»1
Zn»» 0 54 Xe129 V2- Hg2»2
Ga»9 % Xe131 A Hg204
Ga71 % Xe132 0 81 T|203

As7» A Xe134 0 Tl2»8
Se78 0 Xe138 0 82 Pb2»4
Se8» 0 55 Cs133 A Pb2»»
Br79 % 56 Ba135 A Pb207
Br81 % Ba13» 0 Pb2»8
Kr82 0 Ba137 A 83 Bi2»9
Kr83 q / 

z2 Ba138 0 91 Pa231
Kr84 0 57 La139 A
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obtained from the evaluation of their angular momenta. How­
ever, the relationships for nuclei are more difficult to find since, 
for each nucleus, only one nuclear spin can be determined—that 
belonging to the lowest state of the nucleus. Excited nuclear 
states occur only for natural or artificial disintegration processes 
and cannot be investigated optically—or, at least, only with 
great difficulty. It is due to this that we have not yet made 
much progress with the systenlatization of the spin values occur­
ring for different nuclei (representation by the spin of the indi­
vidual nuclear components). For speculative work in this field, 
Schuler (100), Land6 (101), Bartlett (102), and Bethe and 
Bacher (138) should be oonsulted.

Apart from conclusions regarding the spin and the magnetic 
moment of the nucleus and also the'nuclear radius, the investiga­
tion of hyperfine structure may provide i "ormation about a 
possible asymmetry of the nucleus, as was recently pointed out by 
Schuler and Schmidt (139). In some cases mere occur in hyper- 
multiplets deviations from the interval rule which are ascribed to 
a quadrupole moment of the nucleus—that is, to a deviation from 
spherical symmetry.



CHAPTER VI

Some Experimental Results and Applications
1. Energy Level Diagrams and Ionization Potentials

In earlier chapters, examples have been given of a number 
of energy level diagrams obtained from analyses of corre­
sponding line spectra. They were the energy level diagrams 
of the atoms H (Fig. 13); He (Fig. 27); Li (Fig. 24); K 
(Fig. 28); Be (Fig. 61); Ca (Fig. 32); C (Fig. 55); N (Fig. 
56); 0 (Fig. 59). In order to show at least one example 
from each of the columns of the periodic table, the energy 
level diagrams of Al I and Cl I are reproduced in Figs. 
73 and 74 (pp. 198 and 199).

In addition, the energy level diagram of Hg, which is 
important for many practical applications, is reproduced 
in Fig. 75 (p. 202). It is qualitatively similar to Ca (Fig. 
32), except that the triplet splitting is very much larger (cf. 
also the Hg spectrogram in Fig. 5, p. 6).

Finally, Fig. 76 shows the energy level diagram of Ni I 
as an illustration of the complicated term spectrum of one 
of the elements for which a building-up of inner shells takes 
place (see p. 203).

If for an atom several terms T of the same series have 
been found, they can be represented by a Rydberg formula:

(z - pYR 
(wi + a)2 (VI, 1)

where T is measured against the lowest term (m = running 
number, Z — p = number of charges of core; see pp. 55 
and 60 f.). In order to calculate the two, unknown con­
stants A and a, at least two members of the term series must 
be known, although more known terms are preferable. For 
m —> oo, T = A; that is, the constant A empirically found 
is the ionization potential of the atom or ion in question 

197



experimental Results and Applications

n cm-1. If an absorption series is obser 
A is the wave number of the series limil 
results obtained in this way for the varl 
;iven in Table 18 (pp. 200-201), which c 
,he ionization potential of the normal 
but also that of the single- and multiple-i 
ms II to V). Higher ionization potentia 
3 not included, although they are known i

nergy Level Diagram of Al I [Grotrian (8)]. n is 
turn number of the emission electron. Only the norm 
cated, all of which go to the same limit. Series of £ 
s and quartets) have been observed by Paschen (64).
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cases. The evaluation of ionization potentials is partic­
ularly important for practical applications.1

Energy level diagrams of atoms and ions with one, two, 
and three valence electrons are given fairly completely in 
Grotrian (8). Complete tables of all terms of atoms and 
ions observed up to 1932 have been collected by Bacher 
and Goudsmit (22), whose data have been used for most 
of the energy level diagrams reproduced in this book.

Fig. 74. Energy Level Diagram of Cl I [Kiess and de Bruin (103)].
Terms belonging to the same electron configuration are drawn under one 
another. Apart from the ground state, the different multiplet components 
are not drawn separately in the diagram.

1 For the sake of completeness, there are included in Table 18 some values 
of ionization potentials which have been obtained by other methods (electron 
collision measurements, and so on) for want of spectroscopic data. Uncertain 
values are indicated by ~.
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All values are base:! on the new conversion factor 1 volt = 8037.5 cm-1 
(sea p. 10). Uncertain or estimate 1 values are indicate i by ~.

Table 18

IONIZATION POTENTIALS OF TIIE ELEMENTS (IN VOLTS)

Element I II III IV V

1 H 13.595 — — — —
2 He 24.581 54.405 — — —

3 Li 5.390 75.622 122.427 — —
4 Be 9.321 18.207 153.85 217.671 —
5 B 8.296 25.119 37.921 259.31 340.156
6C 11.265 24.377 47.866 64.478 392.0
7 N 14.545 29.606 47.609 77.4 97.87
8 0 13.615 35.082 55.118 77.28 113.7
9 F 17.422 34.979 62.647 87.142 114.22

10 Ne 21.559 40.958 63.427 96.897 126.43

11 Na 5.138 47.292 71.650 — —
12 Mg 7.645 15.032 80.119 109.533 —
13 A1 5.985 18.824 28.442 119.961 154.28
14 Si 8.149 16.339 33.489 45.131 165.5
15 P 10.977 19.653 30.157 51.356 65.01
16 S 10.357 ■ 23.405 35.048 47.294 62.2
17 Cl 12.959 23.799 39.905 54.452 67.8
18 A 15.756 27.619 40.68 ~61 ~78

19 K 4.340 31.811 45.7 — —
20 Ca 6.112 11.868 51.209 67.2 —
21 Sc ~6.7 ~12.9 24.753 73.913 91.8 :
22 Ti 6.835 ~13.6 ~27.5 43.237 99.84
23 V 6.738 14.2 ~26.5 ~48.5 ~64 :
24,Cr 6.761 ~16.7 — — ~73.0 :
25 Mn 7.429 15.636 — — ~76.0 :
26 Fe 7.86 16.240 30.6 — — :
27 Co 7.876 17.4 — — — :
28 Ni 7.633 18.2 — — — :
29 Cu 7.723 20.283 — — —
30 Zn 9.392 17.960 ~39.7 — —
31 Ga 5.997 20.509 30.7 64.1 —
32 Ge 8.126 15.93 34.216 45.7 93.43
33 As 10.5 20.2 27.297 50.123 62.61
34 Se 9.750 21.691 34.078 42.900 73.11
35 Br 11.844 ~19.2 35.888 — —
36 Kr 13.996 ~26.5 36.94 ~68 —



Ionization Potentials

sa are based on the new conversion factor 1 volt = 80 
p. 10). Uncertain or estimated values are indicated 1

Table 18 (Continued)

HON POTENTIALS OF THE ELEMENTS (IX

I II III IV

4.176 27.499 ~47 ~80
5.693 11.026 — —

~6.6 12.4 20.5 —
6.951 14.03 24.10 33.972
— — 24.332 —
7.383 — — —

~7.7 — — —
8.334 19.9 — —
7.574 21.960 36.10 •—
8.991 16.904 38.217 —
5.785 18.867 28.030 58.037
7.332 14.629 30.654 40.740
8.64 ~18.6 24.825 44.147
9.007 21.543 30.611 37.817

10.44 19.010 — —
12.127 21.204 32.115 ~46

3.893 32.458 ~35 ~51
5.2097 10.001 — —
5.614 11.43 19.17 —

~6.57 — 19.70 36.715
5.6 ~11.4 — —
5.67 11.24 — —
6.16 — — —
6.25 12.11 — —
7.98 — — —

~8.7 — — —
9.2 — — . —
9.0 ~19.3 — —
9.223 20.1 — —

10.434 18.752 34.5 ~72
6.106 20.423 29.8 50.8
7.415 15.04 32.1 38.97
— 16.7 25.56 45.3-

10.746 — — —

5.278 10.145 — —
29.5
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J. Magnetic Moment and Magnetic Susceptibility

agnetic moment of an atom. According to the dis 
an of the Zeeman effect in Chapter II, the magneți 
ent y/ of an atom in a given state has the averag 
litude

y/ = + 1) gno
e no is the Bohr magneton (p. 103) and g is the Land

Singlets
ls0 *p, *p2 X

Triplets

8S, 8P„ 8P, SP2 tD1 BZ>2 an3 "Pcriî1

, 75. Energy Level Diagram of Hg I [Grotrian (8) ]. The wave lengt 
more intense Hg lines are given (cf. Fig. 5, p. 6). The symbols 6 
ritten near each level, indicate the true principal quantum number ai 
alue of the emission electron.
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76. Energy Level Diagram of Ni I [Russell (104)]. In general, tin 
luai multiplet components are drawn separately, except for a few posi 
where too many terms nearly coincide with one another. Difleren 
of the same electron configuration (drawn above one another) do no 

y go to the same limit. The lowest series limit (lowest ionizatiol 
iial) is indicated by a dotted line.
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^-factor. v/ has the opposite direction to J. For Russell- 
Saunders coupling g depends on J, L, and 5 of the atomic 
state under consideration in the way given by (II, 15). 
Russell-Saunders coupling holds to a close approximation for 
the ground states of practically all atoms.

On account of the double magnetism of the electron, the 
instantaneous direction of the magnetic moment does not 
generally fall in the direction of J for states with & =f= 0, 
but carries out a more or less rapid precession about this 
direction (cf. Figs. 47 and 48). However, the above mean 
value for the magnetic moment in the / direction can usually 
be used.2 For J = 0, the magnetic moment becomes 0.

In a magnetic field the atom and its magnetic moment can 
take only 2J + 1 different directions. The precession of J, 
as well as that of yj, about the direction of the magnetic 
field is faster, the stronger the magnetic field. The com­
ponent of the magnetic moment in the field direction is 
Mgn0 (M = J, J - 1, / - 2, • • •, - J).3

The most direct determination of the magnetic moment is 
based upon the deflection of an atomic ray in an inhomo­
geneous magnetic field (see Stern-Gerlach experiment, 
Chapter II, section 3). From the magnitude of the splitting 
of the rays (corresponding to the different orientations), 
the velocity of the rays, and the value of the inhomogeneity 
of the magnetic field, the magnetic moment of the atom 
considered can be evaluated.4

Paramagnetism. When a gas which consists of atoms 
possessing a magnetic moment different from zero is in a 
magnetic field, the states with smaller energy (with negative 
M) are more strongly occupied than the states with larger 
energy, as a result of the Boltzmann distribution law. This

s For accurate investigations, the component of the magnetic moment 
which is at right angles to J must sometimes be taken into account. £Cf. Van 
Vleck (36).]

3 Often the maximum value of these components, J Qua, is given as the mag­
netic moment of the atom (and not the component y/ in the direction of J).

4 Primarily one measures the components of the magnetic moment in the 
field direction and not hj itself (see footnote 3, above).
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means that the atoms align preferentially with their magnetic 
■moment in the field direction, as would be expected. The 
stronger the magnetic field, the greater will be the energy 
difference for the various orientations in the field and, 
therefore, the greater the difference in the number of atoms 
occupying each state. For a given field, the difference in 
these numbers will be greater, the lower the temperature, 
since the arrangement of the atoms will be less hindered by 
unordered heat motion. The fact that in the presence of a 
magnetic field, on the average, more atoms will align with 
their magnetic moments parallel to the field direction than 
antiparallel to it results in a magnetic moment per unit 
volume, P, whose action is added to that of an external 
field and which can be experimentally determined. The 
gas is paramagnetic. P (the intensity of magnetization) 
is proportional, to a first approximation, to the field strength 
H, and is inversely proportional to the absolute temperature 
T. The proportionality factor depends mainly on the 
magnitude of the magnetic moment of the atom considered. 
The theoretical formula for a not too large H and a not too 
small T is:5

F =------- 3ĂT-------H 3kT (VI, 2)

where Nl is the number of molecules per cc. The coefficient 
of H

K =--------3kT--------= ~3kT~ (VI’ 3)

is called the paramagnetic susceptibility.6 It is inversely

5 An additional term independent of temperature occurs in the more accu­
rate formula. This term is due in part to the influence of the component of y 
perpendicular to J (mentioned in footnote 2, above), and in part to diamagnet­
ism (see p. 207). In most cases, though not in all, this term is negligible 
compared to the main term given in (VI, 2).

6 Very often, instead of k, the molar susceptibility is given:
G

x = (t — 
p

where G is the molecular weight and p is the density. In order to obtain x. 
in formula (VI, 3) N, the number of molecules per mol, is substituted for Nl-
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proportional to the temperature (Curie’s law). The para­
magnetic behavior of a substance in the gaseous state can 
be predicted according to (VI, 2) and (VI, 3) when J and g 
have been determined from the spectrum; or, conversely, 
from (VI, 3) an experimental value for the magnetic moment
hj of an atom may be derived (cf. Table 19, p. 209).

*
Paramagnetic saturation. The Zeeman splitting in the 

magnetic fields practically attainable is so small that for 
room temperatures (and, increasingly, for higher tempera­
tures) the energy difference between the levels M = + J 
and M = — J is exceedingly small compared to kT. Con­
sequently, under these conditions, the difference in the 
numbers of atoms occupying these two states is very small. 
At room temperature and H = 20,000 oersted, for the 
alkalis, for which J = S — j and g = 2, the ratio of the 
number of atoms oriented parallel and antiparallel to the 
field is 100 : 99.1. The orienting of the atoms in the direc­
tion of the field increases with increasing field strength and 
decreasing temperature. When M = — J for all atoms, a 
further increase in the magnetic moment per unit volume 
(P) in the direction of the field is no longer possible—that is, 
a state of paramagnetic saturation is reached. At room tem­

perature, the field strength 
necessary for the pro­
duction of this state 
(in contrast to ferromag­
netic saturation) is so 
great that it cannot be re­
alized (cf. the above ex­
ample) . Saturation can 
be reached only at very 
low temperatures. How­
ever, all substances whose

atoms have a magnetic moment different from zero are 
then in the solid state (see below).

Fig. 77. Dependence of Magnetiza­
tion P on Field Strength and Absolute 
Temperature, H/T (Langevin). The 
dotted horizontal line corresponds to 
paramagnetic saturation.
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Fig. 77 gives the dependence of the magnetization P on 
HjT, according to a formula of Langevin.7 Formula 
(VI, 2) applies only to the linear part of the curve near the 
origin. It is seen that, with increasing HjT, P does not 
increase above a limiting value corresponding to saturation.

Diamagnetism. Apart from the orienting effect which 
the magnetic field has upon the individual atomic magnetic 
dipoles, the field also exerts an induction effect on all atoms; 
that is, a current flowing in a closed circuit is induced in 
each atom, in accordance with the Faraday law of induction. 
This current, of course, arises from an acceleration or re­
tardation of the electrons in their orbits superimposed on 
the ordinary motion of the electrons. The superimposed 
induction currents are so directed that their magnetic 
moment is in the opposite direction to the external field. 
Thus, in contrast to the paramagnetic directional effect, the 
diamagnetic induction effect produces a magnetic moment 
per unit volume antiparallel to the field. This effect is, 
however, very small and can be conveniently observed only 
when no paramagnetic directional effect is present—that is, 
when the atom considered has no magnetic moment 
(J = 0). This is the case for all inert gases as well as for 
most molecular gases.

Paramagnetism of ions in solutions and in solids. Very 
few atoms having J + 0 (that is, atoms having a magnetic 
moment) occur free in the gaseous state; thus the above 
theoretical results can be tested only for a few gases. Up to 
the present time, measurements of susceptibility have been 
carried out only on the vapors of the alkali metals. These 
measurements agree, within the limits of experimental error, 
with formula (VI, 3), where J = S = % and g = 2 ^Gerlach 
(105)].

Because of the difficulty of investigating other para-
7 This formula is derived according to the classical theory. Allowing for 

the quantum theory makes necessary only a slight correction. [Cf. Van 
Vleck (36).]



208 Experimental Results and Applications EVI, 2

magnetic atoms in the gaseous state, we have to resort to 
the investigation of paramagnetic ions in solutions and in 
crystals to test the theory. However, most salts and solu­
tions of salts are diamagnetic, since the ions present in them 
have the inert gas configuration, J = 0 and thus hj = 0. 
Examples are Na+, Ca++, 0 , Cl-, and so on. (See also
section 3 of this chapter.) However, ions with a magnetic 
moment (J 4= 0) do occur for those elements in which a 
building-up of inner shells is taking place (see Chapter III). 
The corresponding salts and their solutions are conse­
quently paramagnetic. The rare earths, for example, 
usually occur as trivalent ions, which generally do not have 
the inert gas configuration (inner 4/ shell is not filled; cf. 
Table 13, p. 141). The resulting state of the ion usually 
has L 4= 0, 5 4 0, J0 and, therefore, hj 4= 0. The 
paramagnetism shown by the salts and salt solutions of the 
rare earth»follows, very nearly, the Curie law:

constant

From this observation it must be concluded that these 
ions in solution or in the crystal have the possibility of 
orienting themselves more or less freely, as have atoms in 
the gaseous state. Such a conclusion is plausible in view 
of the fact that, in solutions and, similarly, in crystals, the 
individual ions are rather widely separated from one another 
either by the diamagnetic solvent or by other larger ions 
which are themselves diamagnetic (for example, SO4— and 
water of crystallization). There is also the further fact that 
the magnetic moment is produced by inner electrons. Even 
quantitatively, there is close agreement between the ob­
served susceptibilities and the values calculated, according 
to (VI, 3), from the J and g values for the ground state of 
the ion. To be sure, the ground states of the rare-earth ions 
have, for the most part, not yet been determined spectro­
scopically; they can, however, be theoretically predicted on
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the basis of the building-up principle and the Hund rule 
(p. 135).

In Table 19 the ground states and the number of electrons 
present in the incomplete 4f shell are given. The g values, 
as obtained from the Lande (/-formula, are listed also, to- 
gether with g^J(J + 1). According to the foregoing 
g^J(J + 1) is the magnetic moment of the ion in units of 
Ho. In the column next to these calculated values appear 
the means of the experimental values for the magnetic mo-

Table 19

CALCULATED AND OBSERVED VALUES FOR THE MAGNETIC 

MOMENTS OF THE RARE EARTH IONS

Ion State S

fij IN UNITS OF Mo

Calculated 

Value 

g>]J(J + 1)

Observed

Value

La+++ *50 % 0.00 Diamagnetic

Ce+++ 4/ »FWS 2.54 2.51
pr+++ 3.58 3.53

Nd+++ 4/’ Ve/2 Xi 3.62 3.55
H+++ 4/4 % 2.68 —

Sm+++ 4/6 'H./J 0.84 1.46

Eu+++ 4/6 7F0 % 0.00 3.37

Gd+++ 4f »Sm 2 7.94 8.Oo
Tb+++ 4/8 7F« K 9.72 9.3,

Dy+++ 4/* *H,5/2 X 10.65 10.5,

Ho+++ 4/1° «/„ % 10.61 10.4

Er+++ 4/n i/16/2 % 9.60 9.5

Tm+++ 4/i2 ’H, 7.56 7.3s

Yb+++ 4/1’ sF7z2 4.53 4.5

Lu+++ 4/i‘ «So % 0.00 Diamagnetic

ments. The latter have been obtained by different authors 
from observations of magnetic susceptibilities of the solid 
sulphates M2(SO4)3,8H2O, according to formula (VI, 3). 
With the exception of Sm+++ and Eu+++, the agreement is 
very satisfactory. The discrepancies in these two cases 
have been completely accounted for by a refinement of the
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theory, proposed by Van Vleck and Frank [cf. (30) J, who 
have calculated as values for t hese ions 1.55 and 3.40.s

When the susceptibilities of the ions in the iron series from Sc 
to Ni are calculated in the same way, at first no agreement with 
experimental values is obtained. This apparent discrepancy is 
due to the fact that, for these ions, the multiplet splitting in the 
ground state is so small that, at room temperature, not only the 
lowest component but also the higher components are present in 
appreciable amount. Consequently, we must calculate the mag­
netic moment for all the components. The mean values obtained 
by using suitable weighting (corresponding to the Boltzmann 
factor) agree more closely with experimental values, insofar as 
accurate data are available. [Cf. Hund (7); Van Vleck (36).J

Magnetocaloric effect; production of extremely low 
temperatures. The paramagnetism of ions (in particular, 
the fact that this paramagnetism follows the Langevin-Curie 
law to very low temperatures even in the solid state) has 
recently led to an important application—namely, the 
production of extremely low temperatures (following a 
suggestion of Giauque and Debye).

When a magnetic field is applied to a paramagnetic sub­
stance, there is at the first instant a uniform distribution of 
the magnetic moments over all possible directions. In order 
that an atom, whose magnetic moment was originally anti- 
parallel to the field direction, may be able to align itself in 
the field direction, energy must be taken away—the amount 
being greater, the stronger the field. This removal of 
energy is accomplished only by thermal collisions or, in the 
case of solids, by heat vibrations. The heat energy is 
thereby raised, and consequently a rise in temperature takes 
place when a magnetic field is applied. This is called the 
magnetocaloric effect. Corresponding to the fact already

8 Their calculations involve making a more exact allowance for the fact that 
the instantaneous direction of the magnetic moment does not coincide with J 
(see p. 204) and that, further, other multiplet components of the ground state 
are excited at the room temperature at which observations are made. Corre­
spondingly, the values of the magnetic moment for Sm+++ and Eu+++ given 
above gre only effective values and do not represent the magnetic moment of 
the free atom in the ground state, as the values for the other ions do for which 
the correction mentioned makes no appreciable difference.
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mentioned that in the stationary state at room temperature 
only a very small percentage of the atoms take a preferred 
direction in a magnetic field, the magnetocaloric effect is so 
small at room temperature that it cannot be observed.9 
With decreasing temperature, the amount of heat produced 
becomes more and more noticeable compared to the total 
heat content of the body. The effect has actually been 
observed at very low temperatures.

The converse of this process—that is, a cooling by adiabatic 
removal of the magnetic field—has also been observed and is 
due to the consumption of energy in reproducing the com­
pletely unordered direction distribution of the individual 
elementary magnets. This cooling effect has recently been 
used for the production of extremely low temperatures.

To simplify matters, let us suppose that the ions have 
J = | so that only two magnetic sub-levels M = + j and 
M = — | are present. Due to the interaction with the 
inhomogeneous electric and magnetic field in the crystal 
(the field between the ions), there exists a small energy 
difference AE'o between the two sub-levels, even for H = 0. 
Only those substances are useful for the magnetic cooling 
method for which AE0 is so small that, even for the lowest 
temperatures reached by the ordinary methods (of the order 
of 1°K), approximately the same number of atoms are in 
the two ^sub-states.

If now a sufficiently strong magnetic field H is applied, 
the splitting between the levels M = + j and M = — j 
becomes much larger [namely, 2y0H-, cf. equation (II, 7) J, 
and therefore, if thermal equilibrium has been reached— 
that is, if the heat produced by the ordinary magnetocaloric 
effect has been taken away—most of the atoms will be in 
the state M = — j and only a very small fraction (e“2^/l:r) 
in the state M = + |. If at this stage the field is removed, 
at the first instant, even for 77 — 0, most of the atoms are 
in the state M = — j and energy has to be supplied from

9 A magnetocaloric effect is observed for ferromagnetic substances at room 
temperature. The theory of this effect is rather more complicated.
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the heat vibrations of the crystal lattice in order to reach 
the equilibrium distribution of the atoms between the 
M = + | and M = — j states—that is, the temperature of 
the substance is lowered. The decrease in temperature is 
considerable since, as can be shown, the energy of the lattice 
vibrations is small compared to AE0. However, this 
method only works if AE0 is sufficiently small, because for 
large AE0) even at zero field, the equilibrium distribution 
gives most of the atoms in the state M = — j. Thus, only 
substances such as the rare-earth salts that obey Curie’s 
law to very low temperatures are suitable for the process. 
In this way de Haas and Wiersma (106) have reached a 
temperature as low as 0.0044°K.

At zero field the ratio N+m : N-m of the number of atoms in 
the states M = + I and M = — j is given by e~ăB»lkT, which 
for suitable substances is appreciably smaller than 1 only for 
temperatures 1°K. If A+i/2 : JV_i/2 is < 1, it means that the 
substance has a magnetic moment and therefore conversely, by 
measuring the magnetic moment, A+1/2 : 2V_i/2 can be measured 
and the temperature determined according to the relation

= e-^E0ikT (VI, 4)
7V_i/2

For the field H, N+w : 2V-i/2 = e~2mH,kTi where Ti is the initial 
temperature (about 1°K). For large H values, e~2mHlkTi is much 
smaller than e~^EolkTi. Since, at the first instant after remov­
ing the field, lV+i/2 : JV_i/2 is unchanged ( = e-^oHikTi^ the ap_ 
parent temperature Ta [which corresponds to the N+m : V_i/2 
value according to (VI, 4)J is much lower than Ti because 
AE0 2ij.0H. Ta can be immediately calculated from

g—AEo/kTa —— g—} IcTi

which means that
ăEo^Tj zyj gX

la 2»0H
Due to the fact mentioned above .that the heat energy of the 
lattice vibrations is very small compared to AF0, the true tem­
peratures obtained after equilibrium has been reached are not 
very different from the Ta values.10 It is seen from equation 
(VI, 5) that Ta is lower, the smaller AF0 and the larger H.

10 Recently Heitler and Teller (142) have shown that at temperatures 
below 1°K the heat exchange is so slow that usually equilibrium between 
lattice vibrations and is not reached. This would mean that the observed
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3. Chemical Applications
Periodicity of chemical properties. In Chapter III it 

was shown how the periodicity of the spectroscopic prop­
erties of the elements of the periodic system results from the 
building-up principle together with the Pauli principle. In 
other words, it was explained how, at certain intervals, ele­
ments recur with qualitatively the same energy level dia­
grams and, therefore, qualitatively the same spectra. These 
periods coincide with the periods of chemical properties, on 
the basis of which the periodic system was originally formu­
lated. This circumstance—that chemically similar ele­
ments are also spectroscopically similar—strongly suggests 
that the foundation of spectroscopic periodicity on the 
building-up principle likewise provides the foundation for 
chemical periodicity. Some general grounds for the fact 
that such is actually the case will first be given.

The chemical properties of an element depend, without 
doubt, on the behavior of the outer electrons of the atom, 
since when atoms approach, these outer electrons strongly 
influence one another. This leads to chemical reaction, 
molecule formation, and the formation of liquids or solids. 
The inner electrons are mainly inoperative in chemical 
processes, since they are much more tightly bound than the 
outer electrons (because of higher effective nuclear charge). 
The energies necessary to influence appreciably the inner 
electrons are thus very much greater, as is shown by the 
higher spark spectra and the X-ray spectra. Apart from 
that, the distance of the inner electrons of an atom from the 
electrons of another atom is greater and, therefore, the ex­
tent of the interaction is necessarily smaller than for the 
outer electrons.

Naturally the nucleus and the inner electrons do indirectly 
influence the chemical properties of atoms. The nucleus is
low temperatures refer to the orientation of J only (ratio Ar+i/2 : Ar_iz->), 
whereas the lattice vibrations still correspond to a higher temperature. But, 
since the energy of the lattice vibrations does not form an appreciable part 
of the total heat content, one is yet justified in claiming that these low tem­
peratures have been reached.
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responsible, by its charge, for the total number of electrons of an 
atom, and the inner electrons affect the energy relationships of 
the outer electrons by a partial shielding of the nuclear charge. 
Apart from that, the nuclear mass can sometimes influence 
reaction velocity.

The chemical properties of an element are thus essen­
tially the properties of the outer electrons of an atom11 and 
must depend on the arrangement of these electrons, on 
their quantum numbers, on the way in which their angular 
momentum vectors are added together—that is, on just 
those quantities which we can predict theoretically on the 
basis of the building-up principle and which we can evaluate 
empirically with the help of spectra. The foregoing is the 
real reason why spectroscopically similar elements are also 
chemically similar, and why chemical periodicity and 
spectroscopic periodicity coincide.

In principle it must, therefore, be possible to derive 
theoretically all the chemical properties of any atom, with 
the help of the complete energy level diagram obtained from 
spectra (including electron configurations). Up to the 
present time, on account of mathematical difficulties, no 
great progress has been made toward the completion of this 
program.

Although the complete theory is not yet developed, it is 
already possible to draw, from the observed energy level 
diagrams of some of the elements, a number of conclusions 
of importance in chemistry and to obtain an understanding 
of some of the characteristic properties of these elements. 
It is not the object of this book to give a complete treatment 
of these applications. Instead, we shall discuss a few 
characteristic examples from which it will be realized that 
even the more complicated considerations of the previous 
chapters are of importance for a fuller understanding of 
certain chemical facts.

Types of chemical binding (Valence). The chemical be­
havior of an atom is characterized mainly by its valence

11 This connection was first recognized by Kossel.
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number, or valency; that is, the number of univalent atoms 
with which an atom can enter into chemical combination 
at the same time (or double the number of divalent atoms, 
and so on). An atom has often several valencies. For 
example, Cl has valencies of 1, 3, 5, and 7.

Two main types of chemical valence must be distin­
guished. (1) It has been found that the members of one 
large group of chemical compounds—in particular, the in­
organic salts—are built up from positive and negative 
ions. The forces which hold them together are the ordinary 
Coulomb forces of attraction between positive and negative 
charges. This type of compound is called an ionic com­
pound or a heteropolar compound. The term electrovalent 
compound is also used. In order to understand the forma­
tion of these compounds, it is first of all necessary to con­
sider in greater detail the ionization potential (position of 
the ground term). (2) In contrast to these ionic com­
pounds are the compounds belonging to the second large 
group—for example, the elementary molecules H2, O2, N2; 
most organic molecules; and others which are built up not 
from ions but from atoms. Because of this structure, they 
are called atomic or homopolar compounds. The term 
covalent compound is also used. An actual understanding 
of the forces holding these atomic compounds together was 
first made possible by quantum mechanics. For this pur­
pose it is necessary to take account of the term type of the 
ground state of the atom, together with the type and position 
of the other low-lying terms.

The ionization potential. In Table 18 (p. 200) are listed 
the first and higher ionization potentials obtained spectro­
scopically for the elements. The dependence of the ioniza­
tion potential of the neutral atom on the atomic number is 
given graphically in Fig. 78. The most noticeable regu­
larity is that the curve has a steep maximum for the inert 
gases and a minimum for the alkalis. The opposite chem­
ical behavior of these two groups of elements is due largely
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to this fact. The underlying reason for it is that the alkalis 
have a single electron outside closed shells, whereas the inert 
gases have no electrons outside closed shells. An electron 
can be removed from a closed shell only with difficulty; 
a single electron in an outer shell is, on the other hand, 
easily removable.

For a single electron outside closed shells, the nuclear 
charge is so completely shielded that Ze{{ is approximately 1. 
Therefore the energy of this outer electron corresponds ap­
proximately to that for hydrogen in an orbit with the cor­
responding principal quantum number. Apart from n = 1, 
these energies (term values) are small (of the order of 3 
volts), and consequently the ionization potentials of the 
alkalis are also small, since for them n = 2. The decrease 
in ionization potential in the alkali group is explained by 
the increase in n. On the other hand, for the inert gases 
and also, though to a somewhat less degree, for the halogens 
(which have completely or nearly completely closed outer 
shells), the nuclear shielding for an electron in such a shell 
is very much smaller, since all the electrons in the shell are 
at approximately the same distance from the nucleus. 
Therefore the ionization potential is very much greater than 
it would be for a single electron with the same principal 
quantum number.

The ionization potentials of the other elements lie be­
tween those of the alkalis and the halogens. For the alka­
line earths the first ionization potential is somewhat greater 
than for the alkalis, but the second ionization potential is 
still comparatively small for the same reason that the first 
ionization potential of the alkalis is small. Therefore the 
alkaline earths can occur relatively easily as doubly charged 
positive ions (in contrast to the alkalis). Correspondingly, 
the elements of the third column may occur as triply 
charged ions.

Electron affinity. While the alkalis, alkaline earths, and 
earths easily give up electrons to form positive ions, the
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halogens and the elements of the oxygen group readily take 
on electrons to form negative ions. They have a positive 
electron affinity; that is, although they are electrically neu­
tral, energy is liberated when the outermost shell is filled 
up by adding one or two additional electrons. The reason 
for this positive electron affinity is the same as for the 
relatively high ionization potential of the halogens— 
namely, the incomplete shielding of the nuclear charge in 
the outermost shell of electrons. Thus, although the atom 
as a whole is obviously neutral, an additional electron (or 
even two) can be held in the outer shell. In contrast, for 
the inert gases no further electron can come into the outer­
most shell (Pauli principle). It can at best go into an orbit 
lying farther out, in which, however, the nuclear charge is 
almost completely shielded. Consequently, it is not held 
in this orbit and the electron affinity of the inert gases is 
zero. The alkalis, alkaline earths, and the earths are quite 
similar in this respect, and their electron affinity is also 
practically zero.

Experimentally an exact determination of the electron 
affinity is rather difficult and usually only possible indirectly. 
We shall not go into the various methods for its determina­
tion, but give simply a summary in Table 20 of the results 
thus far obtained.12

It is to be expected that the excited states of a negative ion will 
not be stable since, as soon as the electron is in an orbit of higher 
quantum number than the ground state, the nuclear shielding is 
practically complete and therefore the additional electron is no 
longer held/ Consequently discrete electron affinity spectra have 
never been observed. Even the continuous emission spectrum 
corresponding to the capture of an electron by a neutral atom, 
such as a halogen atom, has not ykt been observed with certainty 
[cf. Oldenberg (112)J, although Franck and Scheibe (113) have 
been successful in showing the reverse of this process: a continuous 
absorption spectrum by negative ions (electron affinity spectrum). 
Negative ions are present in high concentrations in solutions of 
the alkali halides. Scheibe (114) found that, in all solutions con-

11 Compare the corresponding table by Mulliken (111), and a paper on the 
electron affinity of iodine by Sutton and Mayer (110).
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Table 20

ELECTRON AFFINITIES

Element
Electron Affinity

Reference

VoltF 
fi VliP

kcal./mol.

II 0^745?' 46.50 ‘ (57) (153)
F 4.13 95.3 (107)
('1 3.72 85.8 (154)
Br 3.49 80.5 (155)
I 3.14 72.4 (156)
0 3.07 70.8 (157)
S 2.8 65 (108)

taining the I- ion, there occur two relatively small continuous 
absorption bands whose separation is 7600 cm-1. This separa­
tion agrees exactly with the doublet separation of the iodine atom 
in the ground state as found spectroscopically. According to 
Franck and Scheibe, the explanation is, therefore, that by light 
absorption an electron is separated from the iodide ion in the 
solution. The energy required for this varies according as the I 
atom remains in a 2P3/2 state or a 2P]/2 state (two series limits; 
see Chapter IV, section 2). The difference is just equal to the 
doublet separation. One would therefore expect two positions 
of absorption (continua) corresponding to the two different 
processes. This is found experimentally. The absolute positions 
of the continua can also be correctly calculated by a more detailed 
treatment of the process (allowing for hydration and so on). 
Analogous effects are found for Br~ and Cl~. This is one of the 
few cases in which the elementary act in a light absorption process 
in solution has been unambiguously explained.

Ionic compounds. The small ionization potentials of the 
alkalis, alkaline earths, and earths are responsible for their 
electropositive chemical character; the considerable electron 
affinity of the halogens and the elements of the oxygen 
group, for their electronegative character. Owing to the 
Coulomb attraction between ions, the elements of these 
two groups form typical ionic compounds with one another. 
In solution they occur as positive and negative ions, re­
spectively. The number of electrons that an atom can 
easily give up or take on decides the number of partners with
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which it can form such ionic compounds, and is known as 
the heteropolar valency (electrovalency). The maximum 
numerical value of this valency depends on the number of 
electrons present outside closed shells, or on the number of 
electrons lacking to make up a closed shell. The alkalis which 
have one electron in an unclosed shell are correspondingly 
univalent. On the other hand, the alkaline earths (for 
example, Ca) have two easily removable electrons which 
are outside closed shells (cf. Table 18, p. 200). These two 
electrons can therefore be taken up either by an electro­
negative atom lacking two electrons for a closed shell (for 
example, 0 or S) or by two atoms each lacking one electron 
(for example, Cl). The alkaline earths are therefore di­
valent. Thus it can be understood, for example, that CaO 
and CaCl2 are formed, but not CaO2 or CaCl3. The singly 
positively charged Ca+ can, however, form a moderately 
stable compound with Cl-, as observation of the compound 
CaCl shows. Similarly, the earths B, Al, Ga, In, Tl have a 
maximum valency of 3, but can have valencies of 1 and 2, 
as observed for Ga and In. Correspondingly, the halogens 
are univalent, since they lack one electron for a closed shell; 
and. the elements of the oxygen group are divalent, since 
they lack two electrons for a closed shell.

On the basis of the Pauli principle, a given number of 
electrons lying outside a closed shâll or required to make up 
a closed shell recur periodically in the system of elements 
as the atomic number increases. The same is therefore true 
for heteropolar valence. This shows very clearly the value 
of the Pauli principle for an understanding of the periodicity 
of the chemical properties of elements.

In the early development of the subject it was generally 
assumed that all chemical compounds were more or less 
ionic (Kossel); that is, that their component parts were 
bound together as ions.13 For example, according to this 
assumption, in CC14 four singly charged negative Cl ions

13 Cf. van Arkel and de Boer (37).
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should be bound to a C ion with four positive charges, and 
correspondingly in other cases. We know now, however, 
that apart from this ionic binding there is also true atomic 
binding, in which the components are bound to one another as 
atoms (see below). In principle, a given number of atoms 
(or ions), such as C + 4C1, can form one and the same mole­
cule either in a state with atomic binding or in one with 
ionic binding. The molecule will be an ionic compound or 
an atomic compound in the ground state according to which 
state has the lower energy. We can therefore say qualita­
tively that an ionic compound is more probable, the smaller 
the difference between the ionization potentials involved 
(for CC14, for example, the work to remove the four outer 
electrons of C) and the electron affinity of the negative ion 
or ions. A consideration of the following cycle may help to 
make this clear.

— 290 kcal.
CCb —--------- > C + 4 Cl

+ 3358 kcal \ _ 3oG8 kcal
C++++ + 4 ci-

The energy required to transform C + 4 Cl into 
C++++ + 4C1- is: 148.0 - (4 X 3.72 = 133.1 volts or 
3068 kcal. (cf. Tables 18 and 20). On the other hand, it is 
known that 12.5 volts or 290 kcal, are required to split CC14 
into C + 4C1. If the ground state of CC14 really originated 
from ions, (3068 + 290) kcal, should be set free when it is 
formed from ions. We can, however, calculate the theoret­
ical amount of energy which would be set free by the com­
bination of a singly positively charged ion with a singly 
negatively charged ion, on the basis of the Coulomb law 
(V = e2/r0), using a plausible value for the smallest separa­
tion of the two ions r0. This energy is at most 8 volts or 
185 kcal. If we had a fourfold positively charged ion and 
a fourfold negatively charged ion, the energy would be 
4 X 4 = 16 times as great. However, in dealing with 
C++++ and 4 Cl-, the mutual repulsion of the Cl- ions must 
be taken into account. A more detailed calculation shows
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that a value 12 times that for singly charged ions should be 
used. This gives 96 volts or 2200 kcal., which is consider­
ably smaller than the above 3340 kcal. CC14 cannot there­
fore be an ionic compound.

Corresponding considerations for NaCl lead to quite 
different conclusions. The analogous cycle is given below.

— 97 kcal.
NaCl -------------> Na + Cl

+ 129.7 kcal. \ / - 32.7 kcal.
Na+ + Cl-

The work required to transform Na + Cl —» Na+ + Cl- 
is now only 32.7 kcal., and, since the heat of reaction for 
Na + Cl —> NaCl is 97 kcal., 129.7 kcal, would be obtained 
by combining Na+ + Cl- —> NaCl. This is, however, 
quite a plausible value for the amount of energy that would 
be liberated by bringing together two such ions. It is 
thereby shown that NaCl, in contrast to CC14, may very 
well be an ionic compound. That it really is an ionic com­
pound receives confirmation from the fact that the observed 
heat of reaction agrees quite well with the results of quanti­
tative calculations by Born and Heisenberg for such an 
ionic compound. This is apart from other evidence such 
as the dissociation into ions in solution.

The foregoing considerations cover only the investigation 
of the question whether a /ree molecule, in- the gas state is an 
ion molecule or an atom molecule. However, the same 
do not necessarily apply to the compound'- in the liquid 
state or in aqueous solution or in the crystal state. The free 
molecule of HC1, for example, is certainly an atomic com­
pound. However, in aqueous solution it is dissociated into 
H+ + Cl-. AgCl is an atomic compound in the vapor state, 
but in the solid it forms an ionic lattice. The reason for 
this difference is that in the lattice several ions exert an at­
tractive force on a given ion. Consequently, the amount of 
energy liberated per mol by the coming together of the ions 
to form a lattice (lattice energy) is relatively much greater
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than the energy set free in the formation of an ionic mole­
cule in the gas state. Therefore in the solid state the ionic 
linkage may sometimes give a lower energy state than the 
atomic linkage, though the reverse is true for the gaseous 
state. The difference between an aqueous solution and the 
gas state (for example, for HC1) is due mainly to the hydra­
tion of the ions—that is, to the fact that a number of water 
molecules are arranged about each ion, their dipoles being 
radially directed. This means a considerable gain in 
energy for the ionic state and is the main reason for the 
dissociation into ions. In spite of this, CC14 does not occur 
in the ionic form in the liquid, solid, or dissolved states, be­
cause of the highly endothermic nature of the ionic state 
of the free molecule.14

Atomic compounds (homopolar valence). The fact that 
neutral atoms can attract one another strongly, as shown 
by the formation of such molecules as H2 and N2, could not 
be understood on the basis of the Bohr model. An explana­
tion for this fact was first provided by quantum mechanics. 
In particular, the saturation of homopolar valencies was 
difficult to explain oh the old theory (for example, that a 
hydrogen molecule no longer attracts a third hydrogen 
atom) in contrast to ionic binding where saturation is easily 
explained purely classically as electrical neutralization.

The first successful theoretical attack on the treatment 
of homopolar chemical binding was made by Heitler and 
London (115). For the simplest case dealt with, that of 
H2, they found that two normal H atoms attract each other 
only when the spins of the two electrons are antiparallel to each 
other; whereas they repel each other when the spins are parallel. 
The value of the heat of dissociation of the molecule ob­
tained theoretically agrees approximately with experiment.

According to this theory, the large binding energy is caused, 
not by the interaction of the spins, but by a resonance process 
.similar to that for the He atom (see p. 67). At large separations

14 Further examples and details may be found in Rabinowitsch and Thilo 
(38).
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of the two atoms a degeneracy is introduced by the equivalence 
of the two electrons, since the state: electron 1 with nucleus A, 
and electron 2 with nucleus B (see Fig. 79), has the same energy 

as the state: electron 2 with nucleus A and 
electron 1 with nucleus B {exchange degen­
eracy). The eigenfunctions belonging to 
these states are: ^(1)^(2) and ^(2)^>B(1), 
where and <pn are hydrogen eigenfunctions 
referred to A and B, respectively (see p. 39). 
As the two atoms approach each other, an 
exchange of the two electrons takes place

with increasing frequency ^transitions from <pa(1)<pa(2) to 
¥>a(2)<pb(1), and conversely^; that is, a periodic transition from 
the one state to the other results. Just as for He, this process can 
be represented as the superposition of two stationary vibrations:

'Pa — ^a(1)<pb(2) + <pa(2)<pb(1) 
'Pa = 9?a(1)<Ps(2) — <Pa(2)<£>b(1)

Wave mechanically the system can be in only one of the two 
states, either the state characterized by yp„ or the state character­
ized by 'pa. The former remains unchanged by the exchange of 
electrons 1 and 2 (is symmetric in the electrons); the latter changes 
sign (is antisymmetric). Just as in the case of He, the two states 
have different energies Ee and Ea, the energy difference being 
greater, the greater the coupling (that is, the smaller the separa­
tion of the nuclei). In contrast to He, here the state ip, has 
smaller energy. Fig. 80 shows the variation of E„ and Ea with 
changing nuclear separation. In the same way as for He, the 
influence of the spin consists, not in its effect on the energy, but 
in its effect through the Pauli principle. According to that 
principle, the total function must always be antisymmetric in all 
the electrons (see p. 123). Therefore only the state ypa with energy 
Ea can be realized without spin. But, as Fig. 80 shows, Ea in­
creases continuously with decreasing nuclear separation, which 
means repulsion of the two atoms. However, since by including 
the,spin function the total eigenfunction can be made antisym­
metric even for the symmetric co-ordinate function (in the same 
way as for He), the symmetric state \pa with energy E„ can yet 
occur. E, first decreases with decreasing separation, and an 
attraction (molecule formation) takes place (lower curve in Fig. 
80). The minimum of Ea (the potential energy for the motion of 
the nuclei) corresponds to the equilibrium position of the nuclei. 
Quantitative calculations yield the right value for the equilibrium 
distance, known accurately from the H2 spectrum, as well as for 
the heat of dissociation (separation of the minimum from the 
asymptote). According to the Pauli principle, can occur only 
with the antisymmetric spin function—that is, with antiparallel
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spin directions of the two electrons (||); whereas can occur 
only with parallel spin directions (ft). The former is a singlet 
state; the latter, a triplet.

Fig. 80. Dependence of the Potential Energy of Two H Atoms on Nuclear 
Separation.

The extension of the Heitler-London calculation for H2 
to more general cases has shown that the deciding factor 
for the homopolar valence of an atom is the multiplicity of 
its ground state or its low-lying terms, or, expressed in 
another way, the number of unpaired electron spins. Ac­
cording to Heitler and London, this latter number is directly 
equal to the valency of the atomic state considered. It is 
equal to 2S where 3 is the quantum number of the resultant 
spin. We can therefore say that the valency is one less than 
the multiplicity.

Correspondingly, He and the other inert gases have a 
valency 0 in accord with experiment, since their ground 
state is a singlet state. The alkalis have a valency 1 
(doublets). The alkaline earths should again have valency 
0 in the ground state (bS). However, there is an excited 
triplet state (S = 1) lying not far above the ground state, 
and therefore the alkaline earths can sometimes have a
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homopolar valency 15 of 2. The earths have as ground state 
2P and, thus, a valency 1. There is, however, a quartet 
state lying not very high above the ground state 
(ls22s2p2 4P); that is, a state with three free valencies. 
Carbon is divalent in the ground state 3P. Again the ob­
served tetravalency of C is traced back by Heitler and 
London to an excited state in which one electron is brought 
from a 2s orbit to a 2p orbit, the ls22s2p3 Estate (see p. 143), 
for which all four outer electrons have parallel spins. The 
theory is further developed in a corresponding manner for 
other elements.

The multiplicities and valencies for the ground states 
and some of the excited states of the elements of the 
different columns of the periodic system according to this 
representation are tabulated in Table 21. The valency in 
the ground state is printed in heavy, boldface type. It is 
especially worthy of note that, whereas the elements of the 
0 and F groups have a number of different valencies, in 
agreement with experiment, the elements 0 and F them­
selves show only the valencies 2 and 1, respectively, of the 
ground state. This is naturally explained by the fact that, 
to raise their multiplicity, an electron must be brought into 
a shell with higher principal quantum number, whereas with 
the other elements in the same columns this is not necessary.

Table 21

HOMOPOLAR VALENCY

Group in 
Periodic 
System

I
Alkalis

II
Alkaline
Earths

III
Earths

IV
Carbon
Group

V
Nitrogen
Group

VT
Oxygen
Group

VII
Halogens

Multiplicity 2 1 3 2 4 1 3 5 2 4 6 13 5 7 2 4 6 8
Valency 1 0 2 1 3 0 2 4 1 3 5 0 2 4 6 13 5 7

It is furthermore important to note that for any one 
column either only even or only odd valencies occur, since

15 Practically, this homopolar valence is of no importance, since most com­
pounds of the alkaline earths are ionic.
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only odd or only even multiplicities occur. An alternation 
law holds for the homopolar valence just as for multiplici­
ties: For an even number of electrons the valency is even, 
whereas for an odd number of electrons it is odd.

The saturation of homopolar valencies follows naturally 
from this representation as a saturation of the spins—a pair­
ing off in antiparallel pairs. If an additional H atom ap­
proaches an H2 molecule having antiparallel spins, no addi­
tional pair is formed and consequently there is no further 
gain in energy—that is, no bonding action. More compli­
cated cases can be treated in a similar way.

The Heitler-London mode of representation is thus in 
principle simple, but its use involves • some fundamental 
difficulties which must now be mentioned. The Heitler- 
London theory is rigorously derived only for atoms which 
are in & states and is true for these only when there are no 
other atomic states in the neighborhood. The calculations 
for P states do not lead to any simple results. Actually, P 
states occur quite frequently as ground states, and there 
often are, also, other states in the neighborhood of the 
ground state (for example, for C, N, and 0).

Because of these difficulties, two further methods for the 
treatment of homopolar binding have been worked out: 
the method of Slater and Pauling, and the method of Hund 
and Mulliken.

Slater and Pauling calculate the interaction of the indi­
vidual electrons of the different atoms instead of the inter­
action of the atomic states. From this point of view the 
chemical behavior of an atom depends not so much on the 
term type as on the electron configuration. Terms with the 
same electron configuration are treated as one state. Using 
this method of treatment, one can deduce the fact that cer­
tain valencies always occur at a definite angle to one 
another; for example, in H20 the two OH directions are 
approximately at right angles to each other, and similarly 
for the three NH directions in NH3. The tetrahedral 
symmetry of the four valence directions for C is obtained by
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taking into account the electron configuration sp3 as well 
as s2p2.

The Hund-Mulliken method attempts to explain chemical 
binding from a consideration of the behavior of individual 
electrons in the field of the different nuclei (many-center 
problem).

A detailed discussion of these modern valence theories 
will not be attempted here. [See Hund in (Id); Pauling- 
Wilson (32); Sponer (39).J All that we wished to show 
was that the chemical behavior of an element depends on the 
term types and electron configurations of its lower energy states 
—that is, on the angular momenta of the atom. Thus a 
knowledge of the energy level diagram of an element is of 
great importance for an understanding of its chemical 
behavior.

Activated states and collisions of the second kind; ele­
mentary chemical processes. So-called activated states of 
atoms and molecules often play a very important part in 
chemical reactions. These are simply excited atomic or 
molecular states. The excitation energies are the energies 
of activation. Owing to their larger energy content, excited 
atoms (or molecules) have in general a much higher reac­
tivity than normal atoms. Furthermore, there is (he addi­
tional effect that excited states often have more free valen­
cies than the ground state (see above). In such cases the 
atom is more reactive, the smaller the excitation energy to 
this state. The inert gases are distinguished by a particu­
larly high first excitation energy.- They are therefore en­
tirely unreactive in tîhe ground state.16

A knowledge of the spectroscopically obtained excitation 
energies of atoms (and molecules) is thus of particular im­
portance for the understanding of elementary chemical 
processes. A few examples will be considered briefly. A

16 The first excited state of He is at 20 volts. When helium has, been 
brought to this state—for example, by an electric discharge—it has a very high 
reactivity and can form a molecule with a second normal He atom. This is 
shown by the Hea bands emitted by the discharge.
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systematic treatment is possible only with the help of a 
more complete knowledge of molecular spectra and molec­
ular structure than can be assumed here.

When a collision between two atoms or molecules occurs, 
we distinguish between collisions of the first and the second 
kind. In collisions of the first kind a change of kinetic energy 
of translation into excitation energy takes place by collision 
(corresponding to excitation by electron collision); that is, a 
process:

A + B + kinetic energy —> A + B* (VI, 6)
where A and B are two different (or identical) atoms in 
the ground state and B* is the atom B in an excited state. 
The necessary kinetic energy may be present if the tempera­
ture is sufficiently high or if the atoms are artificially ac­
celerated, possibly as ions 17 (excitation by atom or ion 
collision). Collisions of the second kind (Klein-Rosseland) 
are more important for our purpose. They include not 
only the exact reverse of collisions of the first kind; that is, 
a process:

A + B* —> A + B + kinetic energy (VI, 7) 
but also all other processes in which an atom or molecule gives 
up excitation energy by colliding with another partner; for 
example:

A+£*->A* + £ (VI, 8)
The conversion of excitation energy into chemical energy— 
for example, into the dissociation energy of a molecule—is a 
further possibility.

The most thorough investigations of such collisions of the 
second kind have been made for Hg. When a number of 
Hg atoms have been brought into the. excited 3Pi state by 
irradiating the Hg vapor with the 2537 Â line (see Fig. 75, 
p. 202), the Hg vapor reradiates the 2537 line as fluorescence. 
If now Tl vapor, for example, is added to the Hg vapor, it 
is observed that Tl lines occur in the fluorescence spectrum

17 We might also think of atoms or molecules with a particularly high velocity 
resulting from a chemical reaction.
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as well as the Hg 2537 line ^Franck and Cario, see (lc) J. 
Only those Tl lines occur whose excitation energy is less than 
that of the Hg 3Pi state. Apparently the collision process

HgCPx) + Tl(2P1/2) HgOSo) + Tl* (VI, 9)
has taken place. Such a process is called sensitized fluores­
cence. Any excess excitation energy of the Hg over that 
of the metal atom is changed into kinetic energy of the two 
partners after collision.

When gases whose excitation energy for fluorescence is 
greater than that of the line 2537 Â (for example, He, H2, O2, 
CO, N2) are added to the Hg vapor, naturally no sensitized 
fluorescence appears, although an increasing quenching of 
the fluorescence takes place with increasing pressure. This 
quenching can have different origins. Either the whole 
excitation energy can be converted to inner energy by colli­
sion without leading to subsequent radiation; or the Hg can 
go from the 3Pi state to the metastable 3P0 state by collision 
and only the small difference in energy be transferred to the 
collision partner; or, finally, a chemical reaction can take 
place.18 All these cases have been observed. By O2, for 
example, a transfer of Hg(3Pj) atoms into the *3 ground 
state is brought about19; by N2, a transfer to the metastable 
3P0 state.20 The case of Hg vapor plus hydrogen has par­
ticularly interesting and important chemical applications. 
In this case the quenching of the fluorescence of 2537 Â is 
particularly strong and the Hg(3Pi) atoms are transferred 
directly to the ground state. At the same time atomic 
hydrogen is found to be present. Two elementary processes

19 The case of the exact reverse (VI, 7) of the collision of the first kind might 
have been expected for the inert gases which cannot take up inner energy of the 
order of the excitation energy of Hg(3Pi). Actually, this process of changing 
the total excitation energy into kinetic energy of the collision partner takes 
place very seldom, and hence has not yet been proved with certainty. See 
Hamds (118).

19 Part of the Oj reacts chemically with excited Hg: Hg* + O2 —► HgO + O. 
See Bonhoeffer and Harteck (119).

” The evidence that metastable Hg atoms are produced may be obtained, 
for example, by investigating the absorption of Hg lines having this state as 
the lower state.
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are assumed in order to explain this:
Hg(3Pi) + H2 —> HgOSo) + H + H + kinetic energy (VI, 10} 
Hg(3Pi) + H2 —» HgH + H + kinetic energy (VI, 11)

That the second process occurs as well as the first is shown 
hy the observation of the HgH spectrum [see (120); (121)]. 
The excitation of the resulting HgH follows by a second 
collision process, as in sensitized fluorescence:

Hg(3P) + HgH -* HgCS) + HgH*

The process (VI, 11) is the prototype of an elementary 
chemical process for which the excitation energy of the 
colliding partner is the deciding factor. The reaction 
(formation of HgH from Hg + H2) would not be possible at 
ordinary temperatures without excitation, since it would be 
much too strongly endothermic.

Exactly the same elementary processes (VI, 10) and 
(VI, 11) are possible with the metastable 3P0 state, and 
have in fact been observed when N2 as well as H2 was added 
to Hg vapor, the N2 causing preferentially a transfer from 
3Pi -> 3P0.

Two general laws are of importance for these elementary 
processes. The first one states that for a collision of the 
second kind, the yield is greater, the less the energy which needs 
to be thereby converted to translational energy [see (122); 
(123)]. Thus we find, for the Hg sensitized fluorescence 
of metal vapors, that those lines are particularly intense 
whose excitation energy is approximately the same as that 
of the Hg(3Pi) state, or possibly of the Hg(3P0) state. 
Similarly, the strongest quenching on the Hg fluorescence 
is exerted by those added gases which have a corresponding 
excitation energy. A theoretical basis for this law has been 
given by Kallmann and London (124).

The second general law is that, for a collision, the total 
spin of the two collision partners must remain unaltered before 
and after the collision [Wigner (125)]. For example, 
Beutler and Eisenschimmel (126) found that in the collision
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of excited Kr in the 3P state with normal Hg(1*S0), triplet 
terms are preferentially excited in the Hg when the Kr 
returns to the singlet ground state by collision:

Kr(3P) + HgOS) -> Kr(*S) + Hg (triplet state)

Thus before and after collision the total spin £ = 1. 
Collisions of the second kind in which Kr alters its multiplic­
ity but riot the Hg occur much less often. The basis for 
this prohibition of intercombinations is the same as for 
transitions within a single atom involving radiation (see 
p. 125). This prohibition also holds to the same approxima­
tion as the ordinary intercombination rule, becoming less 
and less strict for higher atomic numbers.

In all collision processes in which excited atoms take part, 
the lifetimes of the excited states are important since 
the collision must occur before a transition to the ground 
state takes place with radiation. Therefore metastable 
states are often more effective than states which are not 
metastable and which have a life only of the order of IO-8 
sec., particularly when not every gas kinetic collision is 
effective or when an interaction of two excited atoms is 
necessary for the process.

We have considered above what is really an elementary 
chemical process—namely, the dissociation of H2 by ex­
cited Hg. We shall now consider two further examples of 
important elementary processes in which excited atoms play 
a role.

Investigations of molecular spectra have shown that, by 
irradiation of O2 with light of wave length below 1750 Â, 
a normal 0 atom in the 3P state and an excited 0 atom in the 
1D state are produced [see Herzberg (127); cf. Fig. 59, 
p. 163 J. The resulting 0 atoms react with the molecules 
present, and this leads, for example, to ozone formation. 
However, this reaction has not yet been explained with 
certainty. When hydrogen is added to the oxygen, the O 
atoms can also react with H2 molecules [cf. Neujmin-Popov 
(128) J. The reactions which might be expected to take
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place are:
O(3P) + H2 —> OH + H — 1.3 kcal. (VI, 12)
0(H)) + H2 —» OH + H + 43.8 kcal. (VI, 13)

Reaction (VI, 12) is weakly endothermic; it therefore does 
not generally occur, and this has in fact been shown in ex­
periments by Harteck and Kopsch (129), who used atomic 0 
produced in an electric discharge. The observed H2O or 
H2O2 formation by irradiation of an O2-H2 mixture is thus 
probably due to reaction (VI, 13), in which the excited 
metastable O(XD) atom brings the activation energy di­
rectly with it. Similar experiments have been done with 
NO2 + H2 [Schumacher (130)]. We know from the 
spectrum that NO2 decomposes into NO + O(3P) by irra­
diation with light in the region 3800 Â but, in contrast to 
this, gives NO + O(1D) by irradiation with light < 2450 Â 
[Herzberg (131)]. Thus again the above two reactions 
can take place if hydrogen is added. It was found that no 
water formation takes place by irradiation at the longer 
wave length, although such formation does take place by 
irradiation with the light of shorter wave length.

One of the photochemical reactions most often investi­
gated is the formation of HC1 from H2 + Cl2. It is known 
from the molecular spectrum that the primary process is:

Cl2 + hv -> Cl(2P3/2) + Cl(2P1/2)

Thus there result one Cl atom in the ground state and one 
in an excited metastable state [cf. the energy level diagram 
in Fig. 74 (p. 199)]. When the Cl atom collides with an H2 
molecule, the reaction Cl + H2 —> HC1 + H is possible. 
With Cl in the ground state this reaction is about one kcal, 
endothermic, and will therefore, in general, not take place 
at room, temperature. On the other hand, the reaction is 
exothermic for the excited Cl atom in the 2Pi/2 state (excita­
tion energy 2.5 kcal.) formed by irradiation of Cl2 with 
light, and can therefore very well take place in this case.

Thus we have considered two elementary chemical reac­
tions which are encountered in experiment and which can, in
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general, take place only with excited atoms. It is clear that a 
full discussion of these reactions was possible only after the 
excitation energy of the states had been evaluated by means 
of the somewhat complicated analyses of the corresponding 
atomic spectra.

In conclusion it should perhaps be mentioned that an 
accurate determination of the heats of dissociation of the 
molecules O2, N2, the halogen molecules, and others was 
first possible after the atomic excitation energies had been 
evaluated. A knowledge of the values of these heats of dis­
sociation is obviously of extreme importance in discussing 
elementary chemical processes and in calculating the heat 
evolution of individual reactions.
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Ca (Calcium), 76, 77, 140, 148, 

164 ff., 195, 200, 220
Ca II, 74
Cb (Columbium),'140, 195, 201 
CC1<, example of an atomic com­

pound, 220 ff.
Cu (Cadmium), 140, 195, 201 
Ce (Cerium), 141, 201, 209 
Centrally symmetric non-Coulomb
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diagram of an atom, 228 ff.
Chemical elementary processes, 228 ff. 
Chemical properties, relation to outer

electrons, 213
Chemiluminescence, 2 ff., 228 ff. 
Circular orbits in the H atom, 16 
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55, 169, 172
Conversion factors for energy units,

9Î.
table of, 10

Cooling by adiabatic demagnetiza­
tion, 210 ff.

Co-ordinate functions, 124 ff., 224 
Core, atomic, 58 ff., 62, 70, 92 ff. 
Corona lines, 158
Correspondence principle, Bohr, 28 
Cosmic nebulae, 157 ff.
Coulomb field (potential), 15, 37, 46,

120
Coupled vibrations, 67
Coupling (see also Interaction): 

types of, 128, 173 ff. (IV, 3)
Cr (Chromium), 140, 149, 200 
Cs (Cesium), 60, 62, 91, 141, 150,

195, 201
Cu (Copper), 140, 149, 195, 200 
Curie law, 205 ff., 208, 210, 212

D

d-electrons, 86, 129 ff., 149
d, Rydberg correction, 5b
D lines of Na, 5,-71, 74, 97, 106, 107,

111, 116, 160 ff.
D terms, 56 ff., 73 ff.
De Broglie waves, 29 ff., 36 ff. 
Degeneracy, 46 R-, 67, 119, 224 
Derivation of terms of p2, 134 
Deuteron, 194 ff.
Diamagnetism, 207 
Dielectric constant, 114

Diffraction: 
atomic rays, 30 
corpuscular rays, 30 
De Broglie waves at a slit, 37 
electrons (cathode rays), 30, 37 
molecular rays, 30

Diffuse series, 55 ff., 64, 72, 77 ff. 
Dipole, electric, 51 ff., 115 
Dipole moment, 51 ff., 115 
Dipole radiation, 51 ff., 153

enforced, 155 ff. 
magnetic, 54, 111, 154 ff., 158

Dirac theory of light emission, 50 ff. 
Dirac wave mechanical theory of the

electron, 91, 93, 112
Discharge, electric, 3, 59
Displaced (anomalous) terms, 141, 

164 ff-
Displacement law (Sommerfeld-Kos- 

sel), 81 ff., 92
Dissociation:

heat of, 224 ff., 234 
into ions in solution, 222 ff.

Doppler effect for spectral lines, 4,172 
“Double” magnetism of the electron,

96, 108 ff., 112
Doublets, 71 ff., 74 

compound, 73, 74, 75
Doublet structure: 

of the alkali spectra, 71 ff., 74, 94,
139

of the H spectrum, 95, 138
Dy (Dysprosium), 141, 209 

E
e, elementary charge, 9 ff.
Earths (B, Al, etc.), 81, 142, 216, 226 
Effective nuclear charge (Zeff), 5Sff.,

216
Effective principal quantum number, 

55, 60 ff.
Ehrenfest adiabatic law, 86, 114, 121, 

133
Eigenfunctions, 33 ff., 38 ff., 67, 

153 ff., 171 ff.
of the H atom, 38 ff., 40

Eigenvalues, S3, 37 ff.
Einstein transition probability, 152
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Electrical discharges, 3, 59 
Electric density of an atom, 42, 43,

44, 52
Electric field:

influence on the atom (Stark 
effect), 114 ff.

transgression of selection rules in, 
66, 118, 156

Electric moment (dipole moment), 
51 ff., 115

Electroluminescence, 2 ff.
Electromagnetic waves, emission of, 

51
Electron affinity, 216 ff. 

spectrum, 218 ff. 
table, 219

Electron as point charge, 45 ff. 
possible states in an atom, 127

Electron capture, 23
Electron clouds, 44 ff., 52, 135, 136 ff. 
Electron collision experiments, 15,

25, 199, 229
Electron configuration: 

of the ground state, 121 ff., 128,
138 ff. (Ill, 3), 226 

table, 140-141
term type from, 86 ff., 128 ff. (Ill, 

2)
Electron diffraction, 30, 37 
Electron distribution, 34 ff., 4%< 43,

44, 52, 135, 136 ff.
Electro-negative elements, 219 
Electron mass, 17
Electron orbits, 15, 16 ff., 18 ff., 44, 

46, 49, 58, 121 ff.
Electrons in an atom, 82 ff., 120 ff., 

129 ff.
Electron spin, 66, 93, 108, 120, 124, 

129, 225
and valence, 223 ff.

Electron structure of molecules, 117 
Electron volt, 9 
Electro-positive elements, 219 
Electrostatic interaction of the elec­

trons, 67, 125
Electrovalency, 215, 219 ff. 
Elementary chemical processes, 228 ff.

Elements:
of atomic theory, 11 ff. 
periodic system of the, 81 ff., 128,

138 ff. (Ill, 3), 213 ff.
Elliptical orbits, 17, 18, 58, 121 
Emission electron, 59, 82 ff., 122, 127,

141, 162
Emission spectra, 3, 55, 152, 156 
Energy level diagrams (see also each

element), 23 ff. (I, 3) 
derivation of, 120 ff., 162 ff., 181

Energy levels, 14, 56
Enforced dipole radiation, 155 ff. 
Equivalent electrons, 127, 130 ff.
Er (Erbium), 141, 209 
Eu (Europium), 141, 195, 201, 209 
Even terms, 153 ff., 177 
Exchange degeneracy, 224 
Exchange of electrons, 67, 69, 123 ff.,

224
Excitation energy, importance of, for 

elementary chemical proc­
esses, 228 ff.

Excitation of inner electrons, 167 ff. 
Excitation potential, 15, 25 
Excited states, 15, 25, 50, 127, 228 ff. 
Exclusion of equivalent orbits (see

also Pauli principle), 123 

F
/-electrons, 150
/, Rydberg correction, 56
F (Fluorine), 140, 145 ff., 195, 200, 

219
F, quantum number of the total 

angular momentum with 
nuclear spin, 187 ff.

F, selection rule for, 188 ff. .
F, term symbol, 56 
Fe (Iron), 7, 140, 179 ff., 200 
Fe group of the periodic system, 149 
Fine structure constant, 19, 27 
Fine structure of the H-lines and

terms, 26 ff., 46, 51, 95, 118
Fixed terms, 55
Fluorescence, 2 ff., 27, 229 ff. 
Forbidden lines (transitions), 28, 75,

79, 118, 154 ff.
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Franck-Hertz experiments, 15, 25 
Frequency condition, Bohr, 14, 20,

50, 52
Frequency of light, 8, 14
Fundamental series, 55 ff., 64, 75, 

77 ff.

G

//-factor, Lande, 106 8., 202, 209 
for nucleus, 186 ft., 190 ff.

p-formula, Lande, 109, 175, 209
g, statistical yveight, 152, 160
Ga (Gallium), 140, 149, 195, 200, 220 
Gd (Gadolinium), 141, 201, 209 
Ge (Germanium), 140, 149, 175 ff.,

200
Goudsmit-Uhlenbeck assumption of 

electron spin (see also Elec­
tron spin), 93, 108

Graphical representation by energy 
level diagrams, 23 ff. (I, 3)

Ground state (ground term), 15, 25, 
56, 120 ff., 127 ff., 204

of the elements, 1408. 
table, 140-141

Gyroscopic forces, 97 ff., 115 

H
h, Planck’s constant, 9, 14
H (Hydrogen), 5, 11 ff. (I, 1), 20, 23, 

24, 26, 37 8., 95, 136, 138, 
200, 219

H atom:
according to wave mechanics, 37 ff., 

95
doublet structure (hydrogen fine 

structure), 95, 138
electron clouds (probability density 

distribution), 42, 43, 44
isotope effect (heavy hydrogen), 

183
Stark effect, 117 ft.

H eigenfunctions, 38 ff., 40, 41 
H fine structure, 26 ff., 46, 51, 95, 118 
H-like ions, 20 ff., 26, 37 ff.
H1, H2 = D (proton and deuteron),

194
H2, dissociation by excited Hg, 230 ff.

H2 molecule, 223 ff.
Halogens, 81, 145, 218, 226 
HC1, 222 ff., 233
He (Helium), 64, 65 ff., 75 ff., 94, 114, 

123 ff., 138, 158, 195, 200, 
225, 228

according to wave mechanics, 66 ff., 
123 ft.

He II, 20 ft., 138
He-like ions, 66
Heat vibrations of crystal lattice, 212
Heavy hydrogen, 183
Heisenberg resonance, 66 ff., 123 ff.,

129, 171
Heisenberg uncertainty principle, 

36 ft., 47
Heitler-London theory of homopolar 

binding, 223 ff.
Hertz oscillator, 51
Heteropolar valence (compounds), 

215, 220
Hf (Hafnium), 141, 195
Hg (Mercury), 6, 75, 79, 91, 141, 155, 

195, 197, 201, 202, 229 ff.
Ho (Holmium), 141, 195, 209 
Homopolar valence (compounds),

215, 223 ft.
Hund-Mulliken method for dealing 

with chemical binding, 228
Hund rule, 135, 209
Hydration of ions in aqueous solu­

tion, 219, 223
Hyperbolic orbits, 22
Hyperfine structure, 182 ff. 
Hypermultiplets, 183, 188 ff., 189

I
I (Iodine), 140, 195, 201, 219 
I- ion, absorption of the, 218 ff.
I, nuclear spin quantum number,

186 8.
In (Indium), 140, 195, 201, 220 
Indeterminacy principle (see Uncer­

tainty principle, Heisenberg)
Inert gas, 81, 146, 150 ff., 215 ff., 225 
Inner electrons, 127, 167 ff., 213 
“Inner” quantum number (see also

J), 73
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Intensity of spectral lines, 50 ff., Ill, 
119, 152 ff. (IV, 1), 193

Interaction (coupling): 
between J and /, 187 ff. 
between f, and S;, 174 ff. 
between L and S, 90 ff., 95 ff., 112,

128 ft., 173
electrostatic, of the electrons, G7, 

125
of ji’s, 174 ff-
of f.’s, 82 ft., 128 ff., 173
of the spins, 96, 129, 173

Interaction energy, 178 ff. 
Interatomic fields, 118 
Intercombination lines, 65, 68 ft., 79,

94, 125 ft., 153, 155, 159
Interference of De Broglie waves, 

30 ff., 37
Interval rule, Lande, 178 ft., 190 
Inversion, 154
Inverted multiplet, 92, 135, 181 
Ion collision, activation by, 229 
Ionic compounds (ion molecules), 215,

219 ff.
Ionic lattice, 222
Ionization, 22, 59, 162, 172 
Ionization potential, 15, 21, 59, 66,

162, 181, 197 ft., 215 ft., 217 
of atoms and ions, table, 200-201

Ions, paramagnetism of, 207 ff.
Ir (Iridium), 141, 195 
Irregular doublets, law of, 63 
Isotope effect, 182 ff. (V, 1)
Isotopes, 182

J
j, quantum number, 123, 174ft- 
j, selection rule for, 154, 175 
(J,j) coupling, 154, 174 ff- 
J, quantum number (total angular

momentum of the electrons), 
73 ff., 77 ft., 87 ft., 98 ft., 
106, 119

J, selection rule for, 73 ff., 79, 92, 
153 ff., 175

J values:
for doublet terms, table, 73 
for triplet terms, table, 78

K

k, azimuthal quantum number, 17, 
27 ff., 38

k, selection rule, 27 ff.
K (Potassium), 60, 62, 72, 140, 147, 

170, 195, 200
K+, radial charge distribution in the 

ground state, 136
K electrons (K shell), 121 ft., 137 
Kr (Krypton), 140, 149, 195, 200

L

l, azimuthal quantum number (orbit­
al angular momentum of 
an electron), 38 ff., 45 ff., 58, 
73, 82 ft., 120, 128

I, selection rules for, 51, 58, 65, 153 
L, quantum number (resultant orbit­

al angular momentum), 73, 
82 ft., 87, 96, 112 ff.

L, selection rule for, 73, 82, 85, 118, 
153

L shell (L electrons), 137, 146 
L value of terms of different electron

configurations, table, 87 
Li, Li shells, 142
La (Lanthanum), 141, 150, 195, 201, 

209
Land6 (/-factor, 106ft., 202, 209 
Land6 (/-formula, 109, 175, 209 
Landd interval rule, 178ft., 190 
Langevin curve, 206 
Laporte rule, 154, 157, 165, 175, 177 
Larmor frequency, 103, 112 
Larmor precession, 98, 103, 109, 112 
Lattice energy, 222 
Lattice vibrations, 212 
Li (Lithium), 54, 56, 57 ff., 61, 71,

91, 122, 139 ft., 184, 195, 
200

Li+, radial charge distribution in the 
ground state, 136

Li++, 20 ft., 138
Li-like ions, 60, 61, 63
Lifetime of excited states, 51, 157, 

232
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Light, emission by an atom, 13 ff., 
50 ff., 152

Light quantum, 14, 34 ff.
Light sources, 2 ff.
Limit:

of a series of lines, 12, 22, 23, 55, 159 
of a series of terms, 22, 57, 162 ff.

(IV, 2), 197
Linear Stark effect, 117 ff.
Line series (sec also Series in line

spectra), 11 ff., 22, 25, 51, 
54 ff., 04, 69, 159, 162, 169

Line width, 4, 114, 172 ff.
Low temperatures, production by

adiabatic demagnetization, 
■210 ff.

Lu (Lutecium), 141, 150, 195, 209 
Luminescence, 2 ff.
Lyman series:

for the H atom, 12, 25, 27 ff., 95 
of hydrogen-like ions, 21

M

m, magnetic quantum number, 39, 
47, 50

m, running number, 12, 55, 72, 197
m.j, magnetic quantum number, 123,

174
mi, magnetic quantum number, 122, 

126 ff., 130 ff., 133 ff.
m„ magnetic quantum number, 122, 

126 ff., 130, 133 ff.
M, magnetic quantum number, 98 ff., 

103 ff., 115 ff.
M, selection rule for, 104 ff-, 153 
M shell (M electrons), 127, 137,

146 ff.
Mf, quantum number, 191 ff.
Mr, selection rule for, 192 
Mj, quantum number, 191 ff.
Mt, selection rule for, 192
Mj = M, quantum number, 191 ff.
Ml, quantum number, 113, 117
Ml, selection rule for, 113
Ms, quantum number, 113, 117
Ms, selection rule for, 113
Mi, Mt, Mt shells, 147

ț*, magnetic moment (see Magnetic 
moment)

yy, magnetic moment in the direction 
of J,. 109 ff., 202, 209

yt, magnetic moment of L, 109 ff. 
y.s, magnetic moment of S, 109 ff.
Ma (Masurium), 140
Magnetic dipole radiation, 54, 111, 

154 ff., 158
Magnetic field, splitting of spectral 

lines (Zeeman effect), 96, 
97 ff.

Magnetic moment: 
of a 2Pin state, 111 
of the electron, 95 ff., 108 
of the extranuclear electrons of an

atom, 83, 90 ff., 109 ff., 
202 ff. (VI, 2)

of the nucleus, 185 ff., 191, 194
Magnetic susceptibility, 202 ff. (VI, 2) 
Magnetization P, 205 ff. 
Magneto-caloric effect, 210 ff. 
Magneton:

Bohr, 103, 108, 186, 202 
nuclear, 186

Magnitude of angular momentum 
vectors, according to quan­
tum mechanics, 101 ff.

Mass:
of the electron, 17
of the proton (H nucleus), 17

Matrix, 53
Matrix element, 53, 105, 125 ff. 
Matter waves, 29 ff., 36 ff.
Maximum number of electrons in a

shell, 127
Metastable state, 65, 138, 157 ff., 232 
Mg (Magnesium), 6, 64, 69, 140, 147,

165, 195, 200
Mixing of eigenfunctions, 67 ff., 171 ff. 
Mn (Manganese), 140, 195, 200 
Mo (Molybdenum), 140, 195, 201 
Molecular spectra (band spectra), 4, 7 
Molecule formation, theory of, 114,

215 ff.
Moment:

electric, 51 ff., 115
magnetic (see Magnetic moment)



«52 Index

Momentum, 47 ff.
probability distribution of, 48

Monopole, 53
Moseley lines (Moseley diagram), 62,

63
Multiplet analysis, example of, 179 ff. 
Multiplets:

higher, 79 ff., 177 ff. 
intensities in, 161 ff. 
inverted, 92, 135 
normal (regular), 92, 135

Multiplet splitting, magnitude of, 91, 
95 ff., 126, 129

Multiplet structure of line spectra, 
71 ff.

Multiplicity, 79 ff., 89 ff., 94 ff., 225 ff. 
and valence, 225 ff. 
law of alternation of, 81 ff., 94 ff-,

227

N

n, principal quantum number, 16, 18, 
41, 51, 58, 120

n, selection rule for, 51
n*, effective principal quantum num­

ber, 55, 60 ff.
nr, radial quantum number, 17 
nv (see fc)
N (Nitrogen), 140, 144 ff., 153, 162, 

195, 200
N II, 157 ff.
N V, 61
N group in the periodic system, 81, 

226
N (Avogadro number), 9ff.
Na (Sodium), 5, 23, 54 ff., 60, 62, 71,

74, 140, 146 ff., 194, 200
Na+, radial charge distribution in the 

ground state, 136
NaCl, example of an ionic compound,

222
Nd (Neodymium), 141, 209 
Ne (Neon), 140, 146, 184, 195, 200 
Ne III, IV, V, 158
Nebulae, cosmic, 157 ff.
Nebulium lines, 157 ff.
Negative terms, 164, 172 
Ni (Nickel), 140, 149, 203, 210

Nodal surfaces of 41, 45, 154 
Non-Coulomb field, centrally sym­

metric, 58, 120
Non-equivalent electrons, 129 ff., 132 
Normalization of 35, 137 
Normal multiplet, 92, 135 
Normal state (ground state), 15, 25,

56, 120 H., 127 ff., 140 ff., 
204

table, 140-141
Normal Zeeman effect, 97, 103 ff. 
Nuclear angular momentum (see also

Nuclear spin), 156, 182, 
185 ff. (V, 2)

Nuclear charge, effective (Zeff), 58 ff., 
216

shielding of, 62, 216 ff.
Nuclear {/-factor, 186 ff., 190 ff.
Nuclear magneton, 186
Nuclear mass, effect on hyperfine

structure (isotope effect), 
182 ff. (V, 1)

Nuclear radius, influence on hyper­
fine structure, 185

Nuclear spin, 156, 182, 185 ff. (V, 2) 
determination of, 190 ff., 193 ff. 
influence on statistical weight, 119,

193
table of observed values, 195

Nuclear structure, theory of, 194 ff.

O

O (Oxygen), 140, 145, 153, 162, 
163 ff., 195, 200, 219, 232 ff.

O II, III, 157, 158
O VI, 60, 61
O group in the periodic system, 81, 

219, 226
Odd terms, 153 ff., 177
One-electron problem, 15 ff., 32 ff., 

117
Orbital angular momentum, 17 ff., 

47 ff., 58, 82 ff., 153
Orbits of the electrons, 15, 16 ff., 

18 ff., 44, 46, 49, 58, 121 ff.
Order number, 12, 55, 72
Order of a spark spectrum, 59
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Ordinal number/ (atomic number), 13 
Orthohelium, 64 ff-, 75, 125, 138 
Ortho system of the alkaline earths,

70, 75
Os (Osmium), 141, 201
Overtones, 32 ff.

P

p-electrons, 86, 126, 129 ff. 
p, Rydberg correction, 55 
P (Phosphorus), 140, 147, 195, 200 
P, magnetization, 205 ff.
P terms, 56 ff., 64, 72 ff. 
ir-components, 104 ff. 
y)> function, 32 ff.

nodal surfaces, 41, 45, 154 
normalization of, 35, 137 
physical interpretation, 34 ff., 42 ff.

Pa (Protoactinium), 141, 195 
Paramagnetic saturation, 206 ff. 
Paramagnetism, 204 ff-

of ions, 207 ff.
Para system of the alkaline earths, 

69, 75
Parhelium, or parahelium, 64 ff., 75, 

125, 138
Paschen-Back effect, 112 ff., 122, 133, 

154
analogue in electric field, 117 
of hyperfine structure, 192 ff.

Paschen series of the H atom, 12, 24 
Pauli principle (Pauli exclusion prin­

ciple), 120 ff. (III, 1), 130 ff., 
138, 142, 145, 151, 218, 220,
224

Pb (Lead), 141, 175 ff., 185, 195, 201 
Pd (Palladium), 140, 150, 201 
Pd group in the periodic system of the

elements, 150
Penetrating orbits, 58
Periodicity of chemical and spectro­

scopic properties of the ele­
ments, 122, 128, 147, 213 ff., 
220

Periodic system of the elements, 81 ff., 
128, 138 ff. (Ill, 3), 213 ff.

Perturbation of term series, 170 ff.

Pfund series of the H atom, 12, 24 
Phosphorescence, 3 
Photochemical reactions, examples of,

232 ff.
Photo effect, 23 
Photoluminescence, 3 
Physical interpretation:

of the / function, 34 ff., 42 ff. 
of the quantum numbers, 82 ff.

(II, 2)
Planck’s constant (h), 9, 14 
Po (Polonium), 141 
Polarization:

of an atom in an electric field, 115 
of'Spectral lines, 51, 104 ff.

Polyads of terms, 164
Possible states of an electron in an 

atom, 126 ff.
Pr (Praseodymium), 141, 195, 209 
Pr II, hyperfine structure, 183, 189 
Precession:

in a magnetic field, 98, 112 ff., 204 
of J and I about F, 187, 188, 191 ff. 
of S and L about J, 84, 90 ff., 96,

109, 112, 188 
of the I, about L, 84 ff. 
of the magnetic moment, 109, 111,

191 ff., 204
velocity of, 84, 98, 112, 192 

Pre-ionization (auto-ionization), 167,
171 ff.

Principal quantum number n, 16, 18,
41, 51, 58, 120 

effective n*, 55, 60 ff. 
true, 59, 61 ff.

Principal series, 54 ff., 64, 72, 77, 162 
Probability density distribution, 34 ff.,

42, 43, 44, 52, 135, 136 ff. 
Probability distribution of the mo­

mentum (velocity) in an H 
atom, 47, 48 ff.

Production of extremely low tempera­
tures, 210 ff.

Prohibition of combinations:
of a symmetric and an antisym­

metric state, 68 ff. 
of terms of the same electron con­

figuration, 154
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Prohibition of intereombinntions (in­
tercombination lines), 65, 
68 ff., 7.9, 94, 2^.5 IT., 153, 
155, 159

for collision processes, 231 ff.
Proton, spin and magnetic moment, 
Proton mass, 17
Pt (Platinum), 141, 150, 195, 201 
Pt group in the periodic system, 150

Q
Quadrupole, 53 ff.
Quadrupole moment of nucleus, 196 
Quadrupole radiation, 5Jt, 2.54 ff-, 159 
Quantum conditions, 14, 16 ff., 29 
Quantum jump, 14, 85, 153

radiationless, 172 ff.
Quantum mechanics (wave mechan­

ics), 28 ff. (1,4), 104 ff., 110, 
123 ff., 153 ff., 215, 223 ff.

Quantum numbers (see also the indi­
vidual quantum numbers), 
16 ff., 38 ff., 42 ff-

of a single electron in an atom, 122, 
126 ff.

physical interpretation of, 82 ff. 
(H, 2)

Quantum states, 24 ff., 32, 38, 52 
Quartets, 79, 80, 90 ff., 95, 178 
Quenching of fluorescence, 230 ff.
Quintets, 79, 91, 95, 180 ff.»

R
Ra (Radium), 141, 201
Radial quantum number (nr), 17 
Radiation from an atom, according

to wave mechanics, 52 ff.
Radiationless quantum jump, 172 ff. 
Rare earths, 82, 150, 208 ff.
Rb (Rubidium), 60, 62, 140, 150, 195,

201

Re (Rhenium), 141, 195
Recombination of ion and electron, 23 
Reduced mass, 16 
Reflection at the origin, 254 
Regular multiplets, 92, 135 
Relativity theory, influence on the H

spectrum, 19, 27, 38, 118

Resonance degeneracy, 67 
Resonance fluorescence (radiation), 27 
Resonance lines of an atom, 27, 139 
Resonance process, 66 ff., 171 ff. 
Resultant orbital angular momentum

L, 73, 82 ff., 87, 96, 112 ff.
Resultant spin S of the extranuclear 

electrons, 88, 92 ff., 108 ff., 
125, 128 ff., 225

Rh (Rhodium), 140, 201
Rn (Radon), 141, 150, 201 
Rosette motion, 19 
Ru (Ruthenium), 140 
Runge rule, 106
Running number (w), 12, 55, 72, 197 
Running term, 55
Russel-Saunders coupling, 128 ff., 153, 

155, 161, 169, 173 ff., 204
Rutherford-Bohr model of the atom, 

13
Rydberg constant, 11, 20 ff., 55 ff., 

183
Rydberg correction, 55, 58, 64 
Rydberg-Ritz combination principle,

13, 27
Rydberg series (see also Series in line 

spectra), 55 ff., 177, 181, 197

S
s-electrons, 86 ff., 127, 130, 138 
s, Rydberg correction, 56 
S (Sulphur), 140, 147, 195, 200, 219 
S II, III, 158
S, quantum number (resultant spin 

of the extranuclear elec­
trons), 88,92 ff., 108 ff., 125, 
128 ff., 225

5, selection rules for, 94, 125 ff., 153, 
155

»S terms, 56 ff., 62 ff., 64 ff., 72 ff., 
77 ff., 89

^-component, 204 ff-
Saturation:

of valence, 223, 227 
paramagnetic, 206 ff.

Sb (Antimony), 140, 195, 201 
Sc (Scandium), 140, 149, 150, 195,

200, 209
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Schrodinger equation, S3 ff., 37, 66 
Screening doublets, law of, 63 
Se (Selenium), 140, 149, 195, 200 
Selection rules:

for (j,j) coupling, 154, 175 
for perturbations, 171 
for radiationless transitions, 173 
general, 27 ff., 50 ff., 153 ff. 
special (see each quantum number)

Sensitized fluorescence, 230 
Separation energy of the electron, 15 
Series formulae, 55 ff.
Series in line spectra, 4, 11 ff., 22, 25,

51, 54 ff., 64, 69, 159, 162,
169

by excitation of an inner electron,
167 ff.

by excitation of one outer electron,
58 ff., 64 ff., 69 ff., 162 R.,
167 ff.

by excitation of two electrons,
164 ff.

Series limits, 12, 22, 23, 55 ff., 159,
162 ff. (IV, 2), 198 

Sextets, 81, 91, 95, 145 
Sharp series, 55 ff., 64, 72, 77 ff. 
Shells:

closed, 127, 131, 135, 139, 146,
150 ff., 169, 216 ff., 220 

of the extranuclear electrons of an
atom, 127, 135 ff., 151 

Shielding of nuclear charge, 62, 216 ff. 
Si (Silicon), 140, 147, 175 ff., 200 
Singlets, 75 ff., 80 ff., 90 ff., 95, 104,

125
Slater-Pauling quantum mechanical 

treatment of valence, 227 ff.
Sm (Samarium), 141, 195, 201, 209 
“Smearing out” of the electrons (see

also Electron clouds), 44 
Sn (Tin), 140, 175 ff., 195, 201 
Solar corona, lines in, 158 
Solutions:

dissociation into ions, 222 ff. 
hydration of ions in, 219, 223 
light absorption by, 218 ff.

Sommerfeld fine structure constant,
19, 27

Sommerfeld fine structure formula, 
19, 27, 91

Sommerfeld “inner” quantum num­
ber (see also J), 73

Sommerfeld-Kossel displacement law, 
SI ff., 92

Space degeneracy, 47, 50. 100 
Space quantization, 50, 96 ff., 112R.,

191 ff.
Spark spectra, 59, 81
Spectra, examples of (see also indi­

vidual elements), 5, 6, 7, 23, 
74, 76, 97, 183

Spectral analysis, 4 ff•
Spectrograms (see Spectra)
Spin:

conservation of, in collision proc­
esses, 231 ff.

of the electron, 66, 93, 108, 120, 
124, 129, 225

resultant, of the extranuclear elec- 
.trons (see S)

Spin eigenfunction, 124 ff-, 224 
Spin interaction, 96, 129 
Splitting of spectral lines and terms:

in a magnetic field (Zeeman effect), 
96 ff. (Ill, 3), 191 ff.

in an electric field (Stark effect), 
114, 115 ff.

in hypermultiplets (hyperfine struc­
ture), 182 ff.

in multiplets, 71 ff.
Sr (Strontium), 140, 150, 195, 201 
Stark effect, 114, 115 ff.

linear (H atom and H-like ions), 
117 S.

Stationary states (quantum states), 
17, 31 ff., 62, 68

Stationary vibrations, 67, 224 
Statistical weight, 118R., 125, 152,

159 ff., 193
Stern-Gerlach experiment, 100, 101, 

193 ff., 204
String, vibrating, 32 ff.
Subordinate series (see Diffuse series; 

Sharp series)
Sum rule, 161
Supermultiplet, 164



256 Index

Susceptibility, magnetic, 202 ff. (VI, 
2)

Symbols:
for electron configurations, 86, 

126ff.
for terms, 56, 7.9 ff., 126 ff., 139

Symmetric eigenfunctions, or states, 
67 ff., 123 ff., 224 ff.

T

T, term, 13 ff., 55 ff.
Ta (Tantalum), 141, 195
Tables (see list, p. xiv)
Tb (Terbium), 141, 195, 209 
Te (Tellurium), 140, 195, 201 
Temperature excitation of spectral

lines (thermal radiation), 
2 ft., 159 ff.

Term perturbations, 170 ff.
Terms, IS, 55, 79 ff., 120

anomalous, 141, 164 ff-
even and odd, selection rule, 154
negative, 164, 172
number of, 86, 121, 170 
odd and even, selection rule, 154 
of equivalent electrons, 130 ff.

tables, 132, 134
of non-equivalent electrons, 127, 

ISO ft."
table, 132

of the same electron configuration 
(relative energies), 135

representation of spectral lines by, 
12 ff., 55 ff.

Term series, 13, 56 ff., 64, 71, 162 ft. 
for several outer electrons, 162 ff.

Term splitting in a magnetic field 
(Zeeman effect), Pffff. (II, 
3), 97, 156, 159, 184 ff., 
191 ff.

Term symbols, 56, 79 ff., 126 ft., 139 
Term systems (see Singlets; Doublets;

etc.)
Term types:

from electron configuration, 86 ff., 
128 ff. (Ill, 2)

Term types {Continued):
of the ground states of the elements

in the periodic system,
138 ff. (Ill, 3), 140, 141 

Th (Thorium), 141, 201 
Thermal equilibrium, 159 ff.
Ti (Titanium), 140, 200 
TI (Thallium), 141, 195, 201, 220,

229 ff.
Tm (Thulium), 141, 195, 209 
Total angular momentum F, in­

cluding nuclear spin, 187 ff. 
Total angular momentum J of the 

extranuclear electrons, 87 ff.,
SSff., 106 ff., 153 

Total eigenfunction, 123 ff., 154 
Total spin S of the extranuclear

electrons, 88, 92 ff., 109 ff.,
128 ff., 225

Transition moment, 52 ft., 105 
Transition probability, 50 ff., 68 ff.,

105, 152
tor radiationless transitions, 172 ff. 

Transitions, forbidden, 28, 75, 79,
118, 154 ft.

Triad of terms, 164
Triplets, 75, 76 ft., 90 ff., 95, 125

anomalous, 76, 164, 165 ff. 
compound, 78 ff.

True principal quantum number, 59,
61 ft.

Two-electron problem, 66 ff.

U

U (Uranium), 141
Uncertainty principle, Heisenberg,

36 ft., 47 
Uncoupling:

of J and / in a magnetic field, 192 
of li and s,-, 122
of L and S by a magnetic field

(Paschen-Back effect), 112 ff. 
of L and S by an electric field,

117
Units, 8 ff.
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v
V (Vanadium), 140, 195, 200 
Valence, 214 ff-, 220, 223 ff.

types of, 215
Vector diagram allowing for nuclear 

spin, 187 ff.
Velocity distribution in an atom 

(wave mechanical), 47, 48
Vibrating string, 32 ff.
Vibrations, coupled, 67

W

W (Tungsten), 141, 195
Wave equation, Schrodinger, 33 ff., 

37, 66
Wave function 32 ff.
Wave length of De Broglie waves, 29 
Wave mechanics (quantum mechan­

ics), 28 ff. (I, 4), 104 ff., 
110, 123 ff., 153 ff., 215,
223 ff.

Wave number, 8 ff., 14

X

X (Xenon), 140, 150, 195, 201 
X-ray spectra, 1, 169 ff., 173 
X-ray terms (see X-ray spectra)

Y

Yb (Ytterbium), 141, 209 
Yield, in collision processes, 231 ff.
Yt (Yttrium), 140, 150, 195, 201

Z

Z, atomic number (nuclear charge), 
13

Zcff, effective nuclear charge, 58 ff., 
216

Zeeman effect, 96 ff. (II,' 3), 97, 156, 
159, 184 ff., 191 ff.

anomalous, 93, 97, 106 ff. 
normal, 97, 103, 104 
of hyperfine structure, 191 ff.

Zn (Zinc), 140, 149, 184, 195, 200 
Zn I», 168 ff.
Zr (Zirconium), 140, 201


