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Preface to Second Edition

HE present edition of this work contains a number of cor-

rections and additions; Birge’s new set of fundamental
constants has been adopted throughout,”and various tables,
especially the table of ionization potentials, have been brought
up to date.

The author is indebted to Professor J. W. Ellis of the Univer-
sity of California at Los Angeles for a list of errors and correc-
tions; several of the author’s students have also been helpful in
pointing out certain mistakes.

The author is grateful to Dover Publications for their initiative
and interest in making this book available again in a revised
photo-offset edition in spite of war-time difficulties.

G. 1L

SaskaToON, Sask., August, 1944,

Preface

HE present work is the translation of a volume published in
German by Theodor Steinkopff about a year ago.! Atomic
Spectra and Atomic Structure constitutes the first part of a more
comprehensive course on atomic and molecular spectra which
the author has prepared and given recently.

Though in the past few years several excellent accounts have
been written on the subject of atomic spectra (cf. bibliography),
there is still a need for an elementary introduction that is espe-
cially adapted to the beginner in this field and also to those who
require a certain knowledge of the subject because of its appli-
cations in other fields.

For these two groups of readers the discussion of too many
details and special cases does not seem desirable, since it is likely
to obscure the fundamentally important points. Consequently,
in this book the main stress is laid on the basic principles of the
subject. Great pains have been taken to explain them as clearly
as possible. To this end numerous diagrams and spectrograms
are given as illustrations. Always the experimental results serve
as the starting point of the theoretical considerations. Compli-
cated mathematical developments have been avoided. Instead,
the results of such calculations have been accepted without proof,
reference being given to sources where proof can be found.
Throughout the work an effort has been made to emphasize the
physical significance of the theoretical deductions.

v



vi Preface

Rather liberal use has been made of small type in the printing
of certain portions of the text. These, together with the foot-
notes, contain theoretical explanations and details that may very
well be omitted in a first reading without interfering with an
understanding of the fundamental points. Throughout the book,
in making this distinction between small and ordinary type, the
author has kept in mind the needs of those readers who wish to
obtain a thorough knowledge of only the more important prin-
ciples. The part printed in ordinary type is self-sufficient and
adequate for that purpose.

In view of the applications, particularly to the study of molec-
ular spectra and molecular structure, some points have been more
extensively treated than others that might appear more impor-
tant from the point of view of atomic spectra alone. In general,
completeness has not been attempted except in Tables 17 and
18, which give, respectively, nuclear spin values and ionization
potentials. In these tables, results published up to the begin-
ning of the present year have been considered.

A discussion of X-ray spectra has been omitted, as one can be
found in almost any advanced physics text.

Naturally in the course of the translation the author has used
every opportunity to improve the original German presentation.
It is believed that in many instances the explanations have been
clarified. Also, certain recent findings have been added.

The author is greatly indebted to Dr. J. W. T. Spinks for his
willingness to undertake the translation and for his prompt and
careful work in carrying it out. He also owes many thanks to
Dr. R. N. H. Haslam, who was kind enough to read the entire
proof and made numerous and valuable suggestions for improving
the presentation. Finally, the author wishes to express his appre-
ciation to Dr. E. U. Condon, Editor of the PrRENTICE-HALL
Puvsics Series, and the staff of Prentice-Hall, Inc., for their
helpful co-operation during the publication of this volume.

G. H.

! G. Herzberg, Atomspektren und Atomstruktur (Dresden, 1936).




Introduction

URING the last few decades the investigation of atomic
and molecular spectra has had a decisive influence on
the development of our present ideas of atomic and molec-
ular structure. This investigation has shown above all
that only certain discrete energy states are possible for an
atom or molecule. The investigation of atomic spectra in
particular, with which we shall occupy ourselves in this
book, has given us information about the arrangement and
motion (angular momenta) of the electrons in an atom.
Furthermore, it has led to the discovery of electron spin and
to a theoretical understanding of the periodic system of the
elements. The data on the fundamental properties of
different atoms obtained by means of spectra form a basis
for an understanding of molecule formation and the chem-
ical and physical properties of the elements.

In this book we shall be concerned exclusively with
optical line spectra in the restricted sense of the term—that
is, with atomic spectra in the region from 40A to the far
infrared, and not with X-ray spectra, which extend from
approximately 100 A to lower wave lengths. The essential
difference between optical line spectra and X-ray spectra is
that the former correspond to energy changes of the outer
electrons of an atom, and the latter to energy changes of the
tnner electrons.

Observation of spectra. The separation of light into its
spectral components can be accomplished either by refrac-
tion or diffraction. Both phenomena depend upon the wave
length, but in opposite ways: the greater the wave length,
the greater is the diffraction of light; but the greater the
wave length, the smaller. is the refraction of light. For the
separation of light by diffraction, gratings are used; for
separation by refraction, prisms. Both methods may be

1



2 ' Introduction

employed except in the region below 1250 A, where a grating
is necessary. The prism method has the advantage of
greater light intensity, whereas the grating method gener-
ally affords greater resolving power.! The construction and
use of spectroscopes and spectrographs will not be dealt
with here. Information on these topics is given in bibli-
ography references at the end of this book: (1a), (2a), (3),
(4), (11), (14).

Spectra in the far infrared can be investigated only with
thermopiles or bolometers; however, below 13,000 A photo-
graphic plates are generally used. By using a photographic
plate a large region of the spectrum may be obtained at one
time.

Lenses, prisms, and windows of glass can be used only in
the region from 3u to 3600A. At lower wave lengths, glass
absorbs light almost completely and this necessitates the
use of quartz or fluorite. Quartz begins to absorb ap-
preciably at 1800A, and therefore fluorite must be used
below this wave length. Fluorite itself begins to absorb
strongly at 12504, so that below this wave length only
reflection gratings can be used, with complete exclusion of
lenses and windows.? Since air absorbs strongly at 19004,
the whole spectrograph must be evacuated for photographs
below this wave length. Also, in this region the gelatin on
the photographic plates absorbs, and makes necessary the
use of specially prepared plates.3

Light sources. There are many possibilities for the pro-
duction of light for spectroscopic investigations. The
principal ones are temperature radiation and all kinds of
luminescence—electroluminescence, chemiluminescence, and
fluorescence.

In temperature radiation of gases, the atoms or molecules
are excited to light emission by collision with other atoms or

! Shortly before the short wave-length limit of transmission, a prism can
in some cases provide a greater resolving power than a grating.

3 Melvin (40) has recently found that LiF transmits down to 1080 A.

3 These difficulties disappear for the very penetrating X-rays below 4 A.
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molecules, the necessary energy being derived from the
kinetic energy of the colliding particles. Therefore a high
temperature is required. Such emission occurs, for ex-
ample, in flames, although it is then often mixed with
chemiluminescence. Excitation of gases by high tempera-
ture alone is obtained, however, in any electric furnace of
sufficiently high temperature—for example, in the King
furnace. :

Luminescence includes all forms of light emission in which
kinetic heat energy is not essential for the mechanism of
excitation. FElectroluminescence includes luminescence from
all kinds of electrical discharges—such as sparks, arcs, or-
Geissler tubes of different kinds operating on direct or alter-
nating current of low or high frequency. Excitation in
these cases results mostly from electron or ion collision; that
is, the kinetic energy of electrons or ions accelerated in an
electric field is given up to the atoms or molecules of the gas
present and causes light emission. Chemiluminescence re-
sults when energy set free in a chemical reaction is converted
to light energy (see Chapter VI). The light from many
chemical reactions (for example, Na 4+ Cl;) and from many
flames is of this type. Photoluminescence, or fluorescence,
results from excitation by absorption of light (for exampie,
in fluorescein, iodine vapor, sodium vapor, and so on). The
term phosphorescence is usually applied to luminescence
which continues after excitation by one of the above
methods has ceased.

Emission and absorption. By any of the foregoing
methods, characteristic emission spectra can be obtained for
each substance. They usually vary for a given substance
according to the mode of excitation.*

To obtain the absorption spectrum of a substance, light
with a continuous spectrum (as that from a filament lamp)
is passed through an absorbing layer of the substance being

1 Conversely, conclusions as to the mode of excitation may be drawn from
the kind of spectrum observed.
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investigated and is then analyzed with a spectrograph. We
obtain light lines (absorption lines) or bands on a dark
background on the photographic plate.® (See Fig. 2.)
The intensity of the absorption can be altered by varying
the thickness of the absorbing layer, or, in the case of gases,
by changing the pressure.

Examples. Examples of simple and complicated optical
line spectra are given in Figs. 1, 2, 3, 4, 5, 6. In the spectra
of H, Na, and Mg (Figs. 1-4), regularities are immediately
apparent, whereas with Hg and Fe such regularities are not
easily recognizable. Actually, both the complicated and
the simple spectra consist of series of lines, or series of line
groups (cf. the figures), whose separation and intensity de-
crease regularly toward shorter wave lengths. When the
number of these series is large, a complicated spectrum
results. Two such series are indicated in the Hg spectrum
(Fig. 5). Fig. 7 shows a typical example of a band spectrum
(PN) for comparison with the line spectra. It obviously
shows a completely different type of regularity. This
difference led quite early to the assumption that line spectra
are ematted or absorbed by atoms, band spectra by molecules.
This assumption has in the course of time been completely
justified, notably by the fact that with it all the details of
a spectrum can be explained satisfactorily. It has also been
independently verified by the experiments of W. Wien on
canal rays, and by the determination of line width, which,
as a result of the Doppler effect, depends on mass.

Spectral analysis. As already stated, each chemical
element gives rise to a characteristic line spectrum by
suitable excitation (flame, arc, spark, electric discharge).
Conversely, the appearance of a line spectrum can be used
as an analytical test for the presence of an element—a test
which has the advantage that extraordinarily small amounts
of an element can be detected. This method of analysis,

5 Obviously, the reverse holds for visual observation—dark lines appear on
a light background.
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a Hﬁ H-y H5 Hm

Fig. 1. Emission Spectrum of the Hydrogen Atom in the Visible and Near
Ultraviolet Region [Balmer series, Herzberg (41)]. 1T, gives the theoretical
position of the series limit.
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Fig. 2. Absorption Spectrum of the Na Atom [Kuhn (42)]. The spectro-
gram gives only the short wave-length part, starting with the fifth line of the
prinecipal serics.  The lines appear as bright lines on a dark continuous back-
ground, just as on the photographic plate.
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Fig. 6. Part of the Fe Arc Spectrum with Large Dispersion (2.7 z\/mm.). The
multiplet indicated helow 1s deseribed fully in Chapter 1V, section 4.
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8 Introduction

called spectral analysis, has recently been considerably de-
veloped [see bibliography: (15), (16), (17), (18), (19)7], but
the results will not be discussed here. Rather, we shall
concern ourselves with the structure of atomic spectra and
the conclusions which can be drawn regarding atomic
siructure. However, a knowledge of the structure of the
spee{rum is of some importance to the spectro-analyst,
particularly in the -choice of suitable lines for spectro-
analytical tests.

Units. In the infrared, wave lengths are usually meas-
ured in {erms of w: 1p = 107 mm. In the ordinary optical
region, wave lengths are measured in Angstrom units:
1A = 10~ em.  TFor wave lengths above 20004, the value
in air under standard conditions, Xair ¢ is generally used,
while Av. is usually employed for wave lengths below 2000 A
since these wave lengths are almost always measured with
a vacuum spectrograph.

For the purpose of investigating regularities in spectra
and their connection with atomic structure, it is very helpful
to use, instead of the wave length of a given line, the fre-
quency or a value that is proportional to the frequency.
The frequency (number of vibrations per second) is:

’ Cuir Cvac
y = =

Mair Avac
where ¢ is the velocity of light. That is, »" is usually a very
large number. (For Av.. = 10004, »’ = 3 X 10%.) Be-
cause of this and also because the accuracy of A sometimes
1s markedly greater than that of ¢, wave numbers are gener-
ally used in spectroscopy:
v 1 1

y = = =

Cvac >\v-.tc nuirknir

¢ When n is the relractive index of air for the wave length concerned,

| )\vuc

Therelore A,y is somewhat smaller than Ayge.
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where 7n.i: is the refractive index for the wave length
considered. The value v is simply the reciprocal of the
wave length wn vacuo—that is, the number of waves in
1 e¢m. in vacuo. (Dimensions, cm™; for Ava = 10004,
vvae = 100,000 cm™!.) In order to obtain the vacuum wave
number, we must first convert the wave length in air to the
wave length in vacuo by multiplying by n.i, and then
take the reciprocal value. This computation is much
. simplified by using such tables as the Kayser Tabelle der
Schwingungszahlen (21).
" As will be further explained in Chapter I, the frequency
v’ and the energy E of a light quantum are related by the
fundamental equation E = hy’, where h is Planck’s constant
(h = 6,624 X 107" erg sec.). The frequency or the wave
number can therefore serve as a measure of the energy.
When a single atom or molecule emits light of wave number
v, the emitted light quantum has an energy E = ks’ = hcw.
Therefore 1 em™ is equivalent to 1.9858 X 107'¢ ergs per
molecule. If we consider the elementary act for one mol
instead of a single atom or molecule, we must multiply by
the number of molecules in one mol, N' = 6.0228 X 10%.
Then 1 em™! is equivalent to 11.960 X 107 ergs per mol, or
2.8575 cal. per mol. using the chemical atomic weizht scale.
Finally we must mention the electron-volt, which is very
widely used in atomic physics. One electron-volt is the
energy of an electron which has been accelerated through a
potential of 1 volt.” The kinetic energy acquired by an
electron of charge e falling through a potential V (in
electrostatic units) is eV ergs. With e = 4.8025 X 1071
electrostatic units and one volt = 1/299.776 electrostatic
units, it follows that one electron-volt is equivalent to
1.6020 X 1072 ergs per molecule, which corresponds to
8067.5 em™ or 23,053 cal. per mol. All these conversion
factors are collected together in Table I.

7 The voll used here is the absolute volt, which differs slightly [rem the in-
ternational: 1 voltj,, = 1.00034 voltays.
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TasLE 1
CONVERSION FACTORS OF ENERGY UNITS

Unit em™! ergs/molecule | cal./molepen | electron-volts
lem=t, ... 1 1.9858 X 1071¢ | 2.8575. 1.2395% v"'°‘l'—
1 erg/molecule . | 5.0358 X 101 1 1.4390 X 10| 6.2421 X 101
1 cal./moliem . . | 0.34996 6.9494 X 10777 1 4.3379 X 1078
1 electron-volt . | 8067.5 1.60203 X 1072 23053 1

The valucs for ¢, h, N and ¢ are taken from Birge (144).
Tlese values differ rather considerably from those used in the.
original printing of this book; but they are only insignificantly
different from those used in the author’s Molecular Spectra and
Molecular Structure I: Diatomic Molecules.



CHAPTER 1

The Simplest Line Spectra and the Elements
of Atomic Theory

1. The Empirical Hydrogen Terms

The Balmer series and the Balmer formula. The
simplest line spectrum is that of the H atom, which is itself
the simplest atom (see Fig. 1). This spectrum consists, in
the visible and near ultraviolet, of a series of lines whose
separation and intensity decrease in a perfectly regular
manner toward shorter wave lengths. Similar series are
emitted by the alkali atoms, though in greater number and
overlapping one another (see Fig. 3). The spectra of all the
other elements likewise consist of such series, which, how-
ever, on account of much overlapping, are not always so
easily recognizable.

The apparent regularity of the so-called hydrogen series
was first mathematically formulated by Balmer. He found
that the wave lengths of the lines could be represented
accurately by the formula:

Ny’
n12 —4
where n, = 3,4, 5, -- -, and G is a constant. The equation
is now generally written in the form:

/1 1
”—R<§‘n_12>

where » is the wave number of the line (see Introduction,
p. 8). In this equation a single constant R, the Rydberg
constant, appears and has the value 109,677.581 cm™
(= 13.595 volts).! In spite of the simplicity of the formula,
extraordinarily close agreement is obtained between expari-

1 (Y. Birge (143).

A= G

11
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§‘q%’- v mental and calculated values, the
g o TsTJ f: agreement being within the limits
?gﬂ 20,000] - —— 7 wz  of spectroscopic accuracy (1 : 107).
2 | pooooq TR

gﬁ 10000 10,00 —— m:? Other hydrogen series. When
25 | [ ¥5  the number 2 in the Balmer formula
%E ¢ isreplaced by n, =1, 3, 4, 5, ---,
53 o and n, is allowed to take the values
g8 Tl 2,3, 54,5 55,6 ;6
8 2 £ 7, ---, respectively, other series of
5;{ " =1 wave numbers or wave lengths are
B wowor obtained. The spectral lines of H
.:' ; corresponding to these series have
o actually been observed and are found
BB om| 20 to have exactly the predicted wave
:.%’ lengths. The first series (n, = 1)
8 & was discovered by Lyman in the far
Eg ultraviolet; the others, in the infra-
§ 5 50,000 2000 red, by Paschen (n, = 3), Brackett
gg (ns = 4), and Pfund (n, = 5).

a5 All these line series of the H atom
§ 2 w00 can be represented by one formula:
8%

: y = n% — n% 1, 1)
E' 1600 .

23 wnwml | where n, and n, > n, are integers,
S and n, is constant for a given series.
E’- With increasing values of the order
: number n,;, v approaches a limit
3. i e ve = R/n.2. That is, the separation

of consecutive members of a given
series decreases so that » cannot
0001 exceed a fixed limit, the series limait.

"8aul] 9y} }0 ss2UNOIY) 9y} £q A[yInoa pajevaIpul SI

g

43

g §  In principle, an infinite number of
e ‘= lines lie at the series limit.

f: 100,000 1000 g Fig. 8 gives a schematic represen-
E’ tation of the complete H spectrum.
'g: Representation of spectral lines
EE e by terms. According to formula
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(I, 1) the wave number of any linc of the H-atom spec-
trum is the difference between two members of the series,
T(n) = R/n?* having different values of n. Thesec mem-
bers are called lerms. The lines of other elements also
can be represented as the difference between two such terms.
This conclusion follows empirically from the fact that they
likewise form series. Thervefore, quite generally the for-
mula for the wave number of a lince is:

v=T, — T, (I, 2)
However, the term 7" usually has a somewhat more com-
plicated form than that for the H spectrum. In addition,
the first and second members of the formula are obtained
from different term series (see below).

The converse of the fact that each spectral line can be
represented as the difference between two terms is embodied
in the Rydberg-Ritz combination principle, which states that,
with certain limitations, the difference between any two
terms of an atom gives the wave number of a spectral line
of the atom. For example, the difference between 7T'(4)
and T'(10) for hydrogen gives the sixth line of the Brackett
series.

2. The Bohr Theory of Balmer Terms

The fundamental relation between the terms of an atom
and its structure was first recognized by Bohr. Even
though the Bohr theory is new extended and altered in some
essential respects by the new wave or quantum mechanics,
we must deal with it briefly at this point, since a knowledge
of this theory considerably simplifies an understanding of
modern theories. In fact, a number of phenomena in spec-
troscopy can be dealt with by using the Bohr theory alone.

Basic assumptions. According to.the Rutherford-Bohr
theory, the atom consists of a heavy nucleus with a charge
Ze, about which Z electrons rotate. (Z = the ordinal
number in the periodic system of the elements—that is, the
atomic number.) In order to explain the characteristic
light emission by atoms, Bohr proposed two basic assump-
tions. (1) Of the infinite number of orbits of an electron
about an atomic nucleus, which are possible according to
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classical mechanics, only certain discrete orbits actually
occur. These fulfill certain quantum conditions. Further-
more, in contradiction to the classical Maxwell theory, the
electron, in spite of accelerated motion, emits no electro-
magnetic waves (light) while in one of these discrete orbits.
(2) Radiation is emitted or absorbed by a transition of the
electron from one quantum state to another—by a quantum
Jump—the energy difference between the two states being
emitted or absorbed as a light quantum of energy hv’
(h = Planck’s constant, »’ = frequency). The light quan-
tum is emitted when the atom goes from a state of higher
energy to one of lower energy, and is absorbed in the
converse case (conservation of energy). The relation
hv' = E,., — E,, therefore holds, E, and E,, being the
energics of the upper and lower states, respectively. This
relation is the Bohr frequency condition. The index n of E
distinguishes the different orbits and their energy values
from one another. i

The wave number of the emitted or absorbed light is
obtained from the frequency condition;

¢ hc¢ heg
From the similarity between equations (I, 2) and (I, 3)—
in both cases v is the difference between two quantities
which can take only discrete values, that is, which can be
numbered by integers—we see that, apart from a factor, the
terms of equations (I, 1) and (I, 2) are equal to the energies
of the quantum states. The E values contain an arbitrary
additive constant. If we take the additive constant so that
E = 0 when the electron is completely removed from the
nucleus, the energy values of the different quantum states
will be negative, since, by the return of an electron to such
a state, energy will be liberated. (A positively charged
nucleus attracts electrons.) The terms in (I, 1) and (I, 2)
are positive quantities (for hydrogen, T'=R/n?). Therefore

Enl En,

h=-%c 1= %

(I, 3)
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Here — E = W is the work that must be done in order to
remove an electron from a given orbit to infinity (separation
energy). Apart from the factor ke, the terms are therefore
equal to the separation energies of the electron in the given
states. For the lowest state of the atom, the ground state,
the separation energy is called the tonization energy, or the
1onization potential, which accordingly is equal to the largest
term value of the atom. Similarly, apart from the factor
he, the term differences are equal to the energy differences
of the given atomic states.

This connection between term values and energies is
shown experimentally in the work of Franck and Hertz.
They observed that, when collisions between electrons and
atoms take place, an inelastic collision—that is, an energy
transfer from the electron to the atom—can occur when, and
only when, the kinetic energy of the electron is greater than
that calculated from the term difference for the transition of
the atom from the ground state into an excited state. The
amount of energy lost by the electron is exactly equal to the
excitation energy of the atom as calculated from the spec-
trum. Furthermore, after such a collision, there can be
observed the emission of a spectral line corresponding to the
transition from the excited state to the ground state. [Cf.
Geiger-Scheel (1¢).]

Electron orbits in the field of a nucleus with charge Ze.
Taking first the simplest case, in which the orbits are circles
of radius r, we apply Newton’s fundamental law: force
= mass X acceleration. Here the force is Coulomb’s at-
traction Ze?/r?; the acceleration is the centripetal accelera-
tion v?/r. Hence

Ze  mv? Zé
- or -

s e T, 4)
where m and v are, respectively, the mass and the velocity
of the electron. Thus far we have applied only classical
mechanics, which leads to the conclusion that every value

of r is possible, depending on the value of ».
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According to Bohr (see earlier {ext), only certain orbits
actually do occur and these are selected by the postulate that
the angular momentum mvr s an integral mulliple of h|2x;
that is,

mer = n h ) wheren ='1,2, 3, --- (I, 5)
2r

This is an assumption which cannot be further justified.
Here n is called the principal quanfum number. For a
given value of n, the values of r and v are now unambigu-
ously fixed by equations (I, 4) and (I, 5). For r, we obtain:
r=mn 47r2'ﬁw2Z (I, 6)
It is apparent that the radii of the possible orbits are pro-
portional to nZ. '
In Fig. 9, for the case of hydrogen (Z = 1), the first few
orbits from n = 1 to n = 4 are drawn to scale. For the
smallest possible orbit;
that is, with n = 1:
h2
"= Tome
This radius is of the
same order of magnitude
as the radius of the atom
given by kinetic theory.
There are three refine-
— ments of this simplified
. 02 45 8 10X10"° em, theory.
T S o n Vo s for e B (1) In reality the
electron revolves, not
about the nucleus itself, but about the common center of
granty; also, the nucleus revolves about that center.
Therefore the mass of the nucleus enters into the equations.
It may be shown [cf. Sommerfeld (5a) ] that equation (I, 6)
still holds if m is replaced by the so-called reduced mass:
mM
Y

= ay = 0.529A
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where M is the mass of the nucleus. Here u is approxi-
mately equal to m because M/(m + M) is very nearly
equal to 1. (m = 9.1066 X 10~ gm. and, for hydrozen,
M = 1.6725 X 10~%* gm.)

(2) In general, not only circular orbits but also ellzptical
orbits -are possible (compare above). Evidently the one
condition mentioned above is not sufficient to fix unam-
biguously both axes of the ellipse. Therefore Sommerfeld
introduced a new and more general postulate than the
original one of Bohr—namely, for the stationary states
the so-called action integral & pidg: extended over one
period of the motion must be an integral multiple of A.

f pidg; = n;h I, 7

Here n; is a whole number, p; any generalized? momentum
which depends on the corresponding co-ordinate g;. This
postulate implies the previous one: If dg; = d¢ where ¢ is
the angle of rotation, then p; = p,, the angular momentum
of the system. According to classical mechanics, the
angular momentum of any isolated system is a constant.
Therefore

2r
$redo=np, [Tdo=2mp, = ki m=1,2,3 1,89)
(1]

that is, as before, the angular momentum is an integral
multiple of h/2x. However, for an ellipse, r is not constant
and therefore we have from (I, 7) an additional condition:

fpfdr:nf'h; n=2012.-.- (I!Q)

where p, is the linear momentum in the direction of r.
Here n. is called the radial quantum number; n,, which will
henceforth be replaced by £k, is called the azimuthal quantum
number. Just as previously by (I, 5) the continuous range
of r values was reduced to (I, 6), now, by conditions (I, 8)
and (I, 9), the possible values of the major and minor axes

? This term is not defined here because it is not particularly essential for the

following considerations. For a complete explanation, the reader is referred to
the texts on advanced dynamics.
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of the elliptical orbits are reduced to the following [cf.
(5a), (10)]:

a=_P_."_om

4miue? 7 Z

h? nk ag
T iy Z 7
where the principal quantum number n is now defined as
n =k + n,. Herek may take the values 1,2, --- n(k =0
was considered impossible in this theory since for zero
angular momentum the electron would have to traverse the
nucleus). Consequently n = k. For n =%, a =b; in
other words, we have the circular orbits discussed in con-
nection with Fig. 9 (with the same meaning for n). From
relation (I, 10) it follows that a/b = n/k. The principal
quantum number 7 is thus a measure of the major axis of the
elliptical orbit, whereas the azimuthal quantum number is a

n2

nk (I, 10)

n=5 n=5

k=3
Courtesy J. Springer, Publisher.

Fig. 10. Elliptical Bohr-Sommerfeld Orbits for the H Atom with &k = 1,
2, and 3 [from Grotrian (8)]. The positive nucleus is at the focus O of the
el.lipse. The energy difference between orbits with equal » but different k is
veli.! small. The smallest value of n for a given kis n = k. Same scale ag
in Fig. 9
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measure of the minor axis. On the other hand, according to
(I, 8), k(= n,) gives the angular momentium of the atom in
the specified state vn units h/2x. Fig. 10 shows the elliptical
orbits (drawn to scale) for hydrogen, with various n values,
for £ = 1, 2, and 3.

(3) Sommerfeld also applied relativistic mechanics to the
motion of the electron. He found that the orbit is an
ellipse, the axis of which rotates uniformly and slowly about
the center of gravity (rosette motion) instead of remaining
stationary.

Energy of Bohr’s orbits (Balmer terms). For circular

orbits, the total energy is:

2
E = potential energy 4 kinetic energy = — Z_e + =

Using formula (I, 4), we obtain:
Zée? Ze2 _Z¢é¢
E=- r + 2r
This equation holds also when the motion of the nucleus is
considered. Substituting from (I, 6) the value for r and
using u instead of m, we obtain:
2n%uet 77 '
E.= -5 (I, 11)
The same expression is obtained for the energy of the
elliptical orbits [cf. Sommerfeld (5a)]. Thus the energy
does not depend on the azimuthal quantum number £—that
is, on the minor axis of the ellipse.
However, if relativity is also considered, a very slight
dependence on k& results—namely (as found by Sommerfeld),
_ omuet P S22 (1 3
pom - ZE L[ 2L 3)]
where a = 27e?/hc = 7.2977 X 1073 is the so-called Sommer-
feld fine structure constant.?
The second term in brackets is very small because of the
term «?; hence, for most purposes the simplified formula
(I, 11) may be used. The state of lowest energy evidently

! Further terms with af, etc., are included in the exact formula, but are
usually negligibly small.
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has n = 1. This state, according to Bohr’s theory, is the
stable ground state of the hydrogen atom (smallest orbit
in Fig. 9).

From equation (I, 11) and Bohr’s frequency condition
(I, 3), it follows that the wave numbers of the emitted specitral
lines are given by:

1 2m2uet 1 1
V=h_c(En1—Eﬂz)=_7l'Z2<

e r () @1)
where 7, and n, are the principal quantum numbers of the
upper and lower states.

The formal agreement of this formula with the empirical
Balmer formula (I, 1) for the hydrogen series is obvious.
By substituting the known values of y, e, ¢, h, and Z in the
numerical factor of equation (I, 13), we obtain the Rydberg
constant R, which formerly had been obtained purely
empirically from the Balmer spectrum. For hydrogen
R = 2x%e'/ch?, and the agreement between the calculated
and observed values is as close as can be expected from the
accuracy with which the above constants are known. The
formula for the Balmer series is obtained from (I, 13) by
using n, = 2. This series thus results from the transitions
of the hydrogen atom from different higher energy states
withn; = 3,4, .-+, to the state n. = 2. In the remaining
hydrogen series the lower state has a different principal
quantum number. (See also Fig. 12 and discussion in
section 3 of this chapter.)

Spectra of hydrogen-like ions. Taking Z = 2 in (I, 13)
gives the spectrum which would be emitted by an electron
moving about a nucleus with charge 2; that is, the spec-
trum of Het. Analogously, for Z =3 and Z = 4, we
obtain the spectra of Lit* and Be**+. The general
formula is:

v=RZ2<L—-1—>, where B =

n22 nlz

27%uet
ch?

The mass of the nucleus enters into R because of the de-

1, 14)

L 4
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pendence of R on u. Substituting g, we obtain:

M
R=R‘°<M+m>

where R, is the value of R obtained for an infinitely heavy
nucleus—that is, when m is used instead of x in the formula
for R (I, 14). It follows that R varies slightly for He, Li,
and Be. The values for R, calculated from Ry by using
accurate values for the masses [see Bethe (48)], are given
in the second column of Table 2.

TaBLE 2

RYDBERG CONSTANTS AND FIRST MEMBERS OF LYMAN
SERIES FFOR HYDROGEN-LIKE IONS

Hydrogen-like Ton R {cm™) va,1 (em™) A2 tene (A)
H 109,677.581 82,259.56 1215.664

Het ' 109,722.263 329,188.7 303.777

* Litt 109,728.723 740,779.8 134.993
Bettt 109,730.624 1,317,118.1 75.924

* Referring to the isotope of mass 7,

Apart from this small correction and apart from the
factor Z?, corresponding to a strong displacement to shorter
wave lengths, the spectra of these ions are identical in all
details with the hydrogen-atom spectrum. The third and
fourth columns, respectively, of Table 2 give for these ions
the calculated wave numbers and wave lengths of the lines
corresponding to the first line of the Lyman series (n = 2 —
n = 1).* These and other lines indicated by (I, 14) have
been found at exactly the calculated positions. From
formula (I, 11) it follows that for He*t the separation energy
W, of the electron from the lowest level (the ionization po-
tential) will be very nearly four times that for the hydrogen
atom, where it is equal to Ry = 13.595 volts. For Litt
it will be nine times as great, and for Be*t*t sixteen
times.

4 The relativity correction of (I, 12) has been allowed for in the calculation

of the table, taking k¥ = 2 for the upper state (k = 1 would give a slightly
different wave number).
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Continuum at the series limit. As already stated, the
energy of an atomic state is known apart from an additive
constant. The latter is chosen so that E = 0 when the
electron is completely removed from the atom; therefore all
stable atomic states will have negative E values. A positive
value of E would, accordingly, indicate more energy than
that for the system with its parts infinitely separated and at
rest; that is, the two parts possess relative kinetic energy.
They approach or separate with a velocity (kinetic energy)
that does not disappear—even at infinity.

According to classical mechanics (disregarding radiation)
the electron in this case moves, not in an ellipse, but in a
hyperbola. This behavior is similar to that of heavenly
bodies that come from space with a great velocity and
describe a hyperbolic orbit about the sun as focus (for
example, the orbit of a comet). Since, according to the
quantum theory, only the periodic motions in the atom are
quantized, these hyperbolic orbits can occur without any
limitation; in other words, all positive values of E are possible.
Hence, extending from the limit of the discrete energy
levels, there is a continuous region of possible energy values:
the discrete term spectrum is followed by a continuous one.
Just as in elliptical orbits, according to Bohr (but in con-
trast to classical theory) electrons will not radiate in hyper-
bolic orbits. Radiation results only through a quantum
jump from such a state of positive energy to a lower state of
positive or negative energy. When the relative kinetic
energy is AE, for a transition to the discrete state n,,
formula (I, 13) changes to:

y =t 1, 15)
As AE can take any positive value, the series of discrete lines
whose limit is at R/n,?is followed by a continuous spectrum,
a so-called continuum. Such a continuum actually occurs
with the Balmer series in absorption in the spectra of many
fixed stars, and is also observed in emission spectra from
artificial light sources [ Herzberg (41)]. In absorption. it
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corresponds to the separation of an electron from the atom
(photoeffect) with more or less kinetic energy (depending
on the distance from the limit); in emission, it corresponds
to the capture of an electron by a proton, the electron going
into the orbit with principal quantum number 7,.

The beginning of the continuum, the series limit, cor-
responds to the separation or the capture of an electron with
zero velocity (AE = 0). If the transition takes place from
the ground state to the ionized state (absorption in cold
gas), the wave number of the series limit gives directly the
separation energy (tonization potential).

The intensity of the continuum falls off more or less
rapidly from the limit. Fig. 11 gives as an illustration the
continuum. for the Balmer series in emission.

H, H, - CONTINUUM

.. Fig. 11. Higher Members of the Balmer Series of the H Atom (in Emis-
sion) Starting from the Seventh Line and Showing the Continuum [Herzberg
(41)]. H_, gives the theoretical position of the series limit. The l;()ho'oogmph
was more strongly exposed than Fig. 1, and consequently some weak molecular
lines not belonging to the Balmer series are also present—for example, one in
the neighborhood of the position of H,,.

In Fig. 2 the continuum can be seen beyond the series
limit for Na in absorption. The ionization potential for
Na may be obtained directly from this limit (5.138 volts).

3. Graphical Representation by Energy Level Diagrams

Energy level diagram and spectrum. Consideration of
the hydrogen spectrum and of hydrogen-like spectra has
already shown that in a discussion of the spectrum the terms
are of far greater importance than the spectral lines them-
selves, since the latter can always be derived easily from the
former. In addition, the representation by terms is much
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simpler since the number of terms is much smaller than the
number of spectral lines. For example, there is only one
series of terms for H, but there is an infinite number of series
of lines.

A descriptive picture of the terms and possible spectral
lines is obtained by graphical representation in a Grotrian
energy level diagram. Fig. 12 shows the energy level
diagram for the H atom. The ordinates give the energy,
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Fig. 12, Energy Level Diagram of the H Atom [Grotrian (8)].
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and the energy levels or terms Ryu/n? which occur are drawn
as horizontal lines. The separation of the levels decreases
toward the top of the diagram and converges to a value 0 for
n — o, Theoretically there is an infinite number of lines
in the neighborhood of this point. A continuous term
spectrum joins the term series here (indicated by cross-
hatching). At the right, the energy scale is given in cm™,
increasing from top to bottom (term values are positive).
As previously explained, the value 0 corresponds to the com-
plete separation of proton and electron (n = «). To the
left is a scale in volts beginning with the ground state as
zero. This volt scale can be used directly to obtain the
excitation potential of a given level by electron collision
—that is, the potential through which electrons must be
accelerated in order to excite H atoms to a given level on
collision (see Franck-Hertz experiment, p. 15).

A spectral line results from the transition of the atom
from one energy level to another. Accordingly, this line is
represented in the energy level diagram of Fig. 12 by a
vertical line joining the two levels. The length of the line
connecting the two levels is directly proportional to the
wave number of the spectral line (right-hand scale). The
thickness of the line gives a rough measure of the intensity
of the spectral line. The graphical representation of the
different series is readily understood from the figure, as is
also the fact that the lines approach a series limit.

The absorption spectrum of an atom at not too high a
temperature consists of those transitions which are possible
from the lowest to higher states. Fig. 12 shows that for H
atoms this spectrum is the Lyman series with a continuum
starting at the series limit (see above). In general, there-

fore, H atoms will not absorb at longer wave lengths than
1215.7A.5

® The appearance, in absorption in some stellar spectra, of the DBalmer
series whose lower state is not the ground state of the atom, is due to the fact
that, on account of the high temperature of the stellar atmosphere, a con-
siderable portion of the atoms are in the first excited state.
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Since the terms for hydrogen-like ions differ from those of
the H atom only by the factor Z2 (apart from the very small
difference in Rydberg constant and relativity correction
term), quite analogous energy level diagrams may be drawn
for them. Practically the only difference is a corresponding
change in the energy scale.
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Fig. 13. Energy Level Diagram of the H Atom, Including Fine Structure
[Grotrian (8)]. The Balmer series is indicated, as usual, with Ha, Hg, H,,
and 8o on. The broken lines refer to forbidden transitiors:
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When an atom reaches an excited state by the absorption
of light, it can return to a lower state or to the ground state
with the emission of light. Thisis called fluorescence. The
longest wave length capable of exciting fluorescence is
known as the resonance line for the atom concerned. Fig.
12 indicates that, for H, this line is the first line of the
Lyman series. The resulting fluorescence is called reso-
nance fluorescence, or resonance radiation.

Consideration of the quantum number k&, and the fine
structure of the H lines. Each of the simple levels in Fig.
12 with a given value of n actually consists, according to
equation (I, 12), of a number of levelslying very close to one
another. Inthe Bohr theory these levels differ in the length
of the minor axis of the ellipse—that is, in the azimuthal
quantum number k. For a given value of n, n such sub-
levels are present. Because of the small value of the factor
a?, the levels lie so close together that their splitting cannot
be shown in the figure.

In Fig. 13, therefore, the levels with different & are drawn
side by side at the same height, whereas states with equal k
and different n are drawn above one another.® The number
of sub-levels increases with increasing n. According to the
Rydberg-Ritz combination principle, each sub-level should
be able to combine with any other sub-level; in other words,.
their energy difference should correspond to a spectral line.
Consequently each hydrogen line should consist of a number
of components corresponding to different possible origins
from the various term components.

Selection rule for k. Using spectral apparatus of great
resolving power, it has indeed been possible to resolve the
Balmer lines and also several Het lines into a number of
components; however, the number of components is much
smaller than might be expected on the basis of the com-
bination principle. This discrepancy is due to the fact that

® Such a group of levels, drawn over one another, corresponds to the group
of ellipses with the same value of k in Fig. 10 (p. 18).
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the number of possible combinations is limited by certain
so-called selectron rules. Such rules play an equally im-
portant role in all other spectra. Most of the selection rules
are not absolutely rigid, since so-called forbidden lines often
appear, though very weakly. (See Chapter IV.)

These selection rules can be derived if we take into con-
sideration that, for large quantum numbers, the quantum
theory must coincide with the classical theory, and then
assume that the rules so derived for large quantum numbers
also hold for small quantum numbers (Bohr’s correspondence
principle). The details of this derivation will not be given
here. The result, however, is that, in the present case, k
may alter only by + 1 or — 1. According to this selection
rule, in Fig. 13 only those transitions indicated by solid
lines between neighboring term - series can occur. The
combinations indicated by broken lines are forbidden. For
each line of the Lyman series, there is consequently only one
possible origin; for each line of the Balmer series, there are
three possible origins; for the Paschen series, five; and so on.
However, observations show certain deviations from this
theory; for example, there appear certain components which
are forbidden according to the & selection rule. This dis-
crepancy was first explained by several new assumptions,
which will be discussed in Chapter II, section 2.7

In Fig. 13-and similar illustrations that appear later in
this book, the wave number of a transition obviously is
given, not by the length of the obligue line representing it,
but by the vertical distance between the two levels.

4. Wave Mechanics or Quantum Mechanics

The Bohr theory of the atom gave a surprisingly accurate
quantitative explanation of the spectra of atoms and ions
with a single electron. But, for atoms with two electrons
(He), serious discrepancies with experiment were en-
countered. Quite apart from these and other discrepancies

7 Extended discussions of the hydrogen fine structure are given by Sommer-
feld (5b); Grotrian (8); White (12).
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there was the difficulty of understanding the quantum
conditions themselves. The attempt to solve this problem
found expression in wave mechanics (De Broglie, Schro-
dinger) and quantum mechanics (Heisenberg, Born, Jordan,
Dirac), which were put forward almost simultaneously and
proved to be different mathematical formulations of the
same physical theory. In the following discussion the wave
mechanical formulation will be principally used wherever
the Bohr theory proves inadequate.

Only a brief and necessarily incomplete account of the
elements of wave mechanics will be given here. For further
details one of the numerous texts in the bibliography should
be consulted.

Fundamental principles of wave mechanics. According
to the fundamental idea of De Broglie, the motion of an
electron. or of any other corpuscle is associated with a wave
motion of wave length:

h

where A = Planck’s constant, m = mass, and » = velocity
of the corpuscle. For an electron, replacing these symbols
with numerical values, we obtain:

12.263 A

A = I, 17
!_V ( ] )
where V eleciron energy 1in volts 300 o v . or

example, for electrons of 100-volt energy the De Broglie
wave length 1s 1.2264.

In order to calculate the motion of an electron, we must
tnvestigate the accompanying wave motion instead of using
classical point mechanics. However, classical mechanics
can be applied to the motion of larger corpuscles for the
same reason that problems in geometric optics can be
calculated on the hasis of rays, whereas actually the prob-
lems deal with waves. Wave mechanics corresponds to
wave opties. Accordingly, if we use appropriate wave
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lengths, we should expect diffraction phenomena also for
corpuscular rays. From formula (I, 17), electrons with not
too great energy should have a wave length of the same
order as X-rays. The above prediction by De Broglie was
confirmed in experiments
first carried out by Davisson
and Germer. The experi-
ments show the correctness
of De Broglie’s fundamental
principles. Fig. 14 is an ex-
ample of diffraction rings
produced by the passage of
a beam of electrons through
a silver foil. Diffraction
takes place at the individual
silver crystals. The figure

Fig. 14. Photograph of Electron

Diffraction by a Silver Foil. Elec-
trons with a velocity of 36,000 volts
correspondmg to a wave length o

0.0645 A, were used in the experiment
[after Mark and Wierl (49)].

agrees in all details with a
Debye-Scherrer X-ray photo-
graph. Stern and his co-
workers also have shown

that analogous diffraction
phenomena are exhibited by atomic and molecular rays.

According to De Broglie, the frequency »’ of the vibra-
tions may be calculated from the Planck relation

. E=h
where E is the energy of the corpuscle.

For a given mode of motion it is necessary to decide
whether we are dealing with progressive or standing waves.
Progressive waves correspond to a simple translational mo-
tion of the corpuscles considered (potential energy V = 0).
In this case, just as for waves propagated in a very long
string, any frequency is possible for the wave motion—that
is, any energy values are possible for the corpuscle. How-
ever, when the corpuscle takes up a periodic motion as a
result of the action of a field of force (potential energy
V < 0) and has not sufficient energy to escape from this

(I, 18)
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field (for example, circular motion or oscillatory motion
about an equilibrium point), the wave returns to its former
path after a certain number of wave lengths.

Fig. 15 shows this behavior diagrammatically for a
circular motion. The waves which have gone around 0, 1,
2, - - - times overlap and will, in general, destroy one another
by interference (dotted waves in Fig. 15). Only in the °

Fig. 15. De Broglie Waves for the Circular Orbits of an Electron about the
Nucleus of an Atom (Qualitative). Solid line represents a stationary state
(standing wave); dotted line, a quantum-theoretically impossible state (waves
destroyed by interference).

special case where the frequency of the wave and, therefore,
the energy of the corpuscle are such that an integral number
of waves just circumscribe the circle (solid-line wave) do the
waves which have gone around 0, 1, 2, - - - times reinforce
one another so that a standing wave results. This standing
wave has fixed nodes, and is analogous to the standing
waves in a vibrating string which are possible only for cer-
tain definite frequencies, the fundamental frequency and its
overtones (cf. Fig. 16). It follows, therefore, that a station-
ary mode of vibration, together with a corresponding state of
molion (orbit) of the corpuscle, is possible only for certain
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energy values (frequencies). For all other energy values (fre-
quencies), the waves destroy one another by interference,
and consequently, if we assume the relation between wave
and corpuscle indicated by the observed diffraction phenom-
ena, there is no motion of the corpuscle corresponding to
such energy values. Even quantitatively the results are
"the same as in Bohr’s theory; namely, the interference
condition in Fig. 15 is evidently
n\ = 27, wheren =1,2,3, «--

With (I, 16) this result leads directly to Bohr’s original
quantum condition (I, 5), from which the Balmer terms
were derived. However, here this condition and, with it,
Bohr’s discrete stationary states result quite naturally from
the interference conditions.

Mathematical formulation. In order to determine more
rigorously the stationary energy states or stationary wave
states, we must set up the
wave equatton (Schrodinger)

(a) vy just as in the case of the
vibration of a string. Let ¥
(6) 27, be the wave function which

is analogous to the displace-
ment y of a vibrating string

(c) N3 from its equilibrium position.
(In alater paragraph we shall

) o~ 4 deal with the physical mean-
~— ing of W¥.) Since we are

dealing with a wave motion,
Fig 16. Vibrations Jf a String: ¥ waries periodically with
time at every polnt 1n
space. We can therefore write:
¥ = ¢ cos (2mv't) or ¥ sin (27v't)
These expressions are combined in the usual convenient
form:
V= et (I, 19)
Here y depends only upon the position (z, y, 2) and gives the
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amplitude of the standing wave at this point. For the
vibrating string the corresponding amplitude functions are
shown in Fig. 16.

Schridinger’s differential equation for the amplitude y of
the atomic wave function is:

2 2. 2
@ - =0 @20
In this equation, m is the mass of the particle, E the total
energy, and V the potential energy. This Schridinger equa-
tion replaces the fundamental equations of classical mechanics
for atomic systems. The frequency v’ of the vibrations in
(I, 19) is obtained from the fundamental assumption (I, 18):

E=h'
and hence we can also write:
U = Yo 2ri(Eine (1, 21)

When it is assumed, similar to the case of the vibrating
string, that ¢ is everywhere single valued, finite, and con-
tinuous, and vanishes at infinity, then the Schridinger equa-
tron (I, 20) 1s soluble, not for unrestricted values of E, but only
for specified values of E, the so-called eigenvalues. The cor-
responding wave functions are called the eigenfunctions of
the problem. They represent the stationary states for
which the wave motion is not everywhere destroyed by
interference. The discrete energy values of an atom which
are experimentally observed in the spectrum appear here as
the eigenvalues of the atomic wave equation.

Without the above boundary conditions the wave equa-
tion could be solved for any value of E (that is, any fre-
quency), but the solution would not be unique. For ex-
ample, we would obtain different values of ¥ for a point
according to whether the inclination to a fixed axis were
given by the angle ¢, or 360° + ¢, and so on. The different,
¥ values at each point would destroy one another by inter-
ference (cf., also, Fig. 15 and accompanying discussion).

The amplitude curves (eigenfunctions) for the vibrating
string, whose differential equation is much simpler, are
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represented in Fig. 16. The eigenvalues are the frequencies
of the fundamental vibration and its overtones: vy, 2v,,
3vg, ---. Other frequencies are impossible.

The eigenfunctions for the wave equation of the H atom
are given graphically in Fig. 18 and discussed on page 38.

Equation (I, 20) is, as stated above, the differential equation
for the amplitude ¢ of the wave function ¥. The wave equation
for ¥ itself, which contains both the spatial co-ordinates and
the time, is:

2 2 2 2 :
h <6‘I’ v | 92V thav (1, 22)

8n2m \ Jx* + oy? + dz? 27 ot
In all the cases with which we have to deal in the following discus-
sion, this equation can be solved by substituting ¥ from equation
(I, 21), which immediately leads to (I, 20) for the amplitude
function y. Therefore, in the following considerations equation
(I, 20) may always be taken as the starting point.

It should be noted that the imaginary quantity 7 occurs in
(I, 22). Hence it is essential, according to (I, 21), for ¥ to be
complex. The function ¥ sin 2w (E/h)t would not solve the time-
dependent Schrodinger equation (I, 22).

Equations (I, 20) and (I, 22) refer only to the one-body prob-
lem. If the system contains several particles, these equations
must be replaced, respectively, by:?

Rt 1 <a2\1r PV 62\I/> ih 9 ¥

g im\az Tage T oz ) T VY =5, (123

)+ Ve =

and

1 /0% | oy |, o 8x? _
ZE<31k2+ayk2+azk2> +W(E - V)l# =0 (I, 24)

where m; is the mass of the kth particle whose co-ordinates are
Tk, Yx, 2k. Therefore ¥ and ¢ are functions of 3N co-ordinates—
that is, they are functions in 3N dimensional space (configuration
space) if N is the number of particles.

Physical interpretation of the ¥ function. According to
Born, the value of ¥ for a given value of the co-ordinates is
related to the probability that the particle under consideration
will be found at the position given by the co-ordinates; in other
words, the probability is given by |¥ |2 or ¥-¥* where ¥*is
the complex conjugate of ¥. The corresponding relation
for light—namely, that the number of light quanta at a

8 For the derivation of these equations, see Sommerfeld (5b).



I, 4] Wave Mechanics 35

given point is proportional to the square of the amplitude
of the light wave at that point—is readily understood when
it is remembered that, according to elementary wave theory,
the light intensity is proportional to the square of the ampli-
tude of the light wave and, on the other hand, is naturally
proportional to the number of light quanta, since each light
quantum contribut®s Ay’ to the intensity.

When ¥,, ¥,, ¥, --- are eigenfunctions of a vibration
problem, ¥ = Z¢;¥; is also a solution of the differential
equation. With a vibrating string this means that a num-
ber of overtones, and possibly also the fundamental, can be
excited at the same time, as is usually the case. On the
other hand, when we have ¥ = Z¢;¥; for an atomic system,
this does not mean that the different characteristic vibra-
tions ¥,, ¥,, - - - are excited in one and the same atom with
amplitudes ¢,, ¢,, - -, but it corresponds to the following
state of knowledge concerning the system: The relative
probabilities of being in the states given by ¥, or ¥, or
V3 --- are in the ratios|ci|?: |ec2|?: |cs]?---. A given
atom can be found in only one state. London (50) ex-
presses this result by saying that the ‘‘as well as’ of
classical physics has become ‘““either . .. or” in quantum
mechanics.

From the probability interpretation of ¥¥* it follows that
JY¥* dr = 1(where d7 is an element of volume',)since the prob-
ability that a given particle will be found somewhere in space is 1.
The condition previously stated, that ¥ must vanish at infinity
and be everywhere finite, also follows from this. Eigenfunctions
¥, for which f¥¥* dr £ 1 must be divided by a factor so
chosen that S'W.¥* dr = 1 (normalization). Likewise, it can
readily be shown mathematically that

f\l/,.\l/m* dr = 0, for n £ m (I, 25)
That is, eigenfunctions belonging to different eigenvalues are
orthogonal to one another. The system of eigenfunctions is

therefore a normalized orthogonal system.

*In fact it follows that ¥ must vanish more rapidly at infinity than 1/r.
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The Heisenberg uncertainty principle. The Heisenberg
uncertainty principle is very closely related to wave theory.
In order to determine as accurately as possible in wave
mechanics the velocity or momentum of a particle, the De
Broglie wave length must be defined as accurately as

possible, since
L4

>

p=mv=

This equation is the converse of (I, 16). In order to meas-
ure A accurately, the wave train must be greatly extended,
and in the limiting case must be infinitely extended if we -
wish to give N or p an absolutely exact value. Then, ac-
cording to wave mechanics, the position at which the par-
ticle under consideration will be found is completely uncer-
tain, since the probability of finding it at a definite point is
¥¥*and, when the wave is infinitely extended, this quantity
has everywhere the same value yy*. If then p is exactly
measured, the corresponding position will be completely
uncertain.

Conversely, when we wish to define the position of a
particle as accurately as possible, the wave function must
be so chosen that it differs from zero only at one given point.
According to Fourier’s theorem, there can be produced a
function limited to a small region by the overlapping of sine
waves, but only by the overlapping of many waves of
different wave lengths. In the limiting case (completely
defined position), the wave lengths must take all values
from 0 to «; this makes the wave length and, therefore,
the momentum completely uncertain.. We arrive then at
the law: Position and momentum cannot be stmultaneously
measured exactly. Heisenberg has formulated this relation-
ship somewhat more precisely: When Ag and Ap are the
uncertainties with which ¢ and p can be measured simul-
taneously, the product Ag-Ap cannot be of a smaller order
of magnitude than Planck’s quantum of action.

Ag-Ap T h (1, 26)
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This holds for any co-ordinate and the corresponding
momentum.

The Heisenberg principle will now be verified for a simple case.
Consider the diffraction of a matter wave at a slit of width Aq
(Fig. 17). Through this slit the position of the particle is known
with an accuracy Aq. The point within the slit through which
the particle passes is completely un-
certain. The particles are deflected
by the slit and will form a diffraction
pattern on a screen. How a single par-
ticle behaves behind the slit is, in prin- P %
ciple, indeterminate within certain T ==="27 "]
limits. For example, if the particle
appears at 4, it has acquired an addi-
tional momentum Ap in the vertical
direction above the original momen- Brolzil%él%avgiftagﬁst’l?tO(fU]ie
tum where Ap = psin @. According : €S, -
to the ordinary diffraction theory, the certainty Principle).
diffraction angle « is of the order A/Ag (the smaller the slit and
the greater the wave length, the greater the diffraction). Substi-
tuting, we obtain Ap ~ pA\/Aq. But, according to De Broglie,
P\ = h, and therefore Ap-Aq ~ h. Thus, when the position is
limited by the slit to a region Ag, the momentum in the same
direction is uncertain to at least an extent Ap = k/Aq since, for
each of the points in the diffraction pattern, we can give only the
probability of the particle’s hitting the screen at that point.

Wave mechanics of the H atom. In order to deal in
wave mechanics with the H atom or hydrogen-like ions, the
Coulomb potential — Ze?/r must be substituted for V in the
wave equation (I, 20). Z is the number of charges on the
nucleus (for H, Z = 1). The differential equation

o o I |, 8r'm Ze?

£§+W+¥5+T<E+—T—>¢’=O I, 27)
(m = mass of the electron) must then be solved under the
conditions that ¢ is everywhere single valued, continuous,
and finite.

The calculation, which is simple in principle, will not be
dealt with here.’® It gives the result that the differential
equation can be solved for all positive values of £ but not
for all negative values of E. More particularly, it is found

1 For textbooks on wave mechanies, see bibliograpby: (5b) and (23) to (32)-
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that only those negative values of E for which

with n = whole number,

h2 n2 n2 )
lead to a solution. For all values other than these, the De
Broglie waves in a Coulomb field completely destroy one
another by interference. Thus the possible energy values
for a hydrogen atom and a hydrogen-like ion as given by
wave mechanics are exactly the same a$ those given by
the Bohr theory [cf. equation (I, 11)]. It will be remem-
bered that the latter were in quantitative agreement with
the experimentally observed spectra of the hydrogen atom
and hydrogen-like ions. Making allowance for the fact
that the nucleus also moves has the same effect as in the
Bohr theory: in the energy formula the reduced mass u =
mM/(m 4+ M) must be used instead of the electron mass m,
where M is the mass of the nucleus. The influence of rela-
tivity has been disregarded in (I, 27).

It should perhaps be stated here that, while wave me-
chanics agrees with the old Bohr theory in this case, it really
has made a distinct advance beyond that theory: first, it is
in agreement with many experiments which the Bohr theory
contradicts; and second, in contrast to the Bohr theory, all
the results can be derived from one fundamental assumption
(the Schrodinger equation).

To each eigenvalue of the Schrédinger equation—that is,
to each stationary energy state—there belongs, in general,
more than one eigenfunction. These eigenfunctions are
distinguished by two additional quantum numbers I and m,
which are always integers. One of them, [, corresponds
to the Bohr quantum number k, which was a measure of
the minor axis of the elliptical orbit. The quantum
number [ is called the azimuthal quantum number, or the
reduced azimuthal quantum number. If the relativity
theory is considered, there is also a very small difference in
energy for states with different [ but equal n.” The value of
l, together with k, is indicated in the energy level diagram
for hydrogen (Fig. 13). For a given value of n, [ takes the
values0,1,2, ---,n — 1;thatis,l = £ — 1. The quantum
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number m, called the magnetic quantum number, takes the
values — I, — 1+ 1, — 14+ 2, ---, + lfor a given pair of n
and ! values. This gives the following scheme:

|

nil

2 3 4

o 1 |6 1 2 o 1 2 3
0/ —10 +1[0: =10 +1:-2-10 +1 +20i-1 0 +1-2 -1 0 +1 +2-3 -2 -10 +1 +2 43

Each m value in the last line corresponds to one eigen-
function different from the others. For each value of =,
there are as many different eigenfunctions as there are num-
bers in the last line below the n value under consideration.

The mathematical form of the eigenfunction is the following: .
Vaim = Ce#(2p)" L2 (2p) Pi™ (cos 6)eime (I, 28)

referred to a system of polar co-ordinates r (distance from the
origin), # (angle between radius and z-axis), and ¢ (azimuth of r-z
plane, inclination to a fixed plane). Here p is an abbreviation for
Zr[nag; that is, for the lowest state of the H atom (Z = 1,n = 1),
p is equal to the distance from the origin measured in terms
of ax as unit (radius of lowest Bohr orbit = 0.528 A). L2t (2p)
is a function (Laguerre polynomial) of 2p; its form depends on n
and I. P}™! (cos §) is a function of the angle 8 (the so-called
associated Legendre polynomial), and has a different form ac-
cording to the values of m and I.

The eigenfunctions can be split into two factors, one of
which depends only upon the distance r from the origin,
and the other only upon the direction in space. For the
values n = 1, 2, 3, the dependence on r is shown in Fig. 18
(see p. 40). For a given value of n, the function shows a
different form for different values of I; similarly, it shows a
different form for a given value of [ and different values of n.
The form of the function is, however, independent of m.
In Fig. 18 the radius of the corresponding Bohr orbit is
represented by a vertical line on the abscissa axis. In all
cases, ¥ finally decreases exponentially toward the outside
and is already very small at a distance which is, on the
average, about twice the radius of the corresponding Bohr
orbit. For n > 1, ¢ goes once, or more than once, through
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the value zero before the exponential decrease sets in; that
is, on certain spherical surfaces about the nucleus, the ¢
function is always zero. These are the nodal surfaces of the
¥ function corresponding to the nodes of a vibrating string
(see Fig. 16). For I = 0, the number of nodal spheres is
n — 1, as is shown in Fig. 18. Since in these cases the
eigenfunctions y are also spherically symmetrical,!! they are
represented completely by Fig. 18.

For 1 > 0, the number of nodal spheres is smaller (see
Fig. 18) and equals n — [ — 1. However, new nodal sur-
faces appear since ¥ then depends on direction also. In
different directions from the origin
the variation with r is the same as
in Fig. 18 but the function must be
multiplied by a constant factor
depending on the direction. For
some directions this factor is zero.
The resulting nodal surfaces are
partly planes through the z-axis,
and partly conical surfaces with
the z-axis as the axis of the cones. .

For | = 3 and m = 1, these nodal ¢ BE poy o?:hdglns;:{,‘:;:,i
surfaces are given in Fig. 19. The Eigenfunction Independentof

< s . . r (for 1 =3, m=1). The
variation of the y function with three nodal surfaces are: the

direction depends on m and ! but Plene of the paper, and the
not on n. Since the number of two sides of each nodal sur-
nodal surfaces caused by this de- face, y has opposite signs.
pendence on direction is /, in all cases the total number of
nodal surfaces is n — 1.

Thus in quantum mechanics the principal quantum num-
ber is given a meaning that is easily visualized—namely, the
total number of nodal surfaces + 1. The azimuthal quan-
tum number [ gives the number of nodal surfaces going
through the mid-point. It is clear that the number of nodal

surfaces can only be integral. Thus while integral quantum

1 In formula (1, 28), P™ (cos 0)eim® = 1.
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numbers are introduced into the Bohr theory as assumptions
quite incomprehensible in themselves, they appear in wave
mechanics as something quite natural.

As we have seen above, ¥ itself has no immediately
apparent physical meaning, but ¥Y¥* = yy* has. The
probability of finding the electron in a volume element dr is
given by yy*dr. The variation of yy* is naturally similar
to that of ¢ (Fig. 18). The dotted curves in Fig. 20 repre-
sent, for the same n and [ values as in Fig. 18, that part of
Y¢* which depends on r (all drawings made to same scale);
they represent simply the squares of the corresponding
functions of Fig. 18. The zero positions thus lie at the
same r values as for y. However, since yy* = |y |? is
always positive, the zero positions are, at the same time,
also the positions of the minima of yy*.

The solid lines in Fig. 20 represent yy* multiplied by r?
(again all drawn to same scale). This has the following
meaning: The dotted curves of Fig. 20 show the variation
of yy* along a definite radius vector. If we now wish to de-
termine how often a given r value occurs independent of the
direction of the radius vector, we must integrate yy* over
the whole surface of the sphere for that value of ». This
gives a factor proportional to 72, since the surface of a sphere
equals 4772, This is shown by the solid curves of Fig. 20.
It is seen from the dotted curves with I = 0 that the prob-
ability of finding the electron near the mid-point of the
atom is greater than at some distance from the mid-point.
In spite of this, however, the electron is, on the whole, more
often at a point which is some distance from the mid-point,
since there are many more possibilities for such a point (all
points of the spherical shell of radius ). Therefore the
largest maximum in the solid curves of Fig. 20 lies at a
noticeable distance from the zero point (origin). The elec-
trons are found most frequently at this distance, the dis-
tance of greatest electron probability density, which has
approximately the same magnitude as the major semi-
axis of the corresponding Bohr orbit (also indicated in Fig.
20). However, according to wave mechanics, any other
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distances r (even those that are considerably greater) have
a probability different from zero. The electron s, so to
speak, smeared out over the whole of space. However, because
of the exponential decrease toward the outside, the prob-
ability of finding the electron at any great distance outside
the region of the Bohr orbit is very small, although not
exactly equal to zero.

Since we no longer have distinct electron orbits, it is
perhaps better to speak of electron clouds about the nucleus.
Fig. 21 is an aid in visualizing these electron clouds and
gives, for different values of n, I, and m, an approximate

Fig. 21. Electron Clouds (Probability Density Distribution) of the H Atom
or Hydrogen-like Ions in Different States [after White (51)]. The scale is
not uniform for all the figures but decreases with increasing n. States which
differ only in the sign of m have the same electron cloud.
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picture of what one might expect to see when one is looking
at an H atom with an imaginary microscope with enormous
magnification.

In the figures, the brightness indicates roughly the density
of the electron clouds. These clouds have a rotational sym-
metry about a vertical axis in the plane of the figure ! (the
z-axis mentioned earlier). The states with [ = 0 and
n = 1, 2, 3 are spherically symmetrical. For n > 1, alter-
nate light and dark rings appear, corresponding to the
above-mentioned nodal spheres of the ¢ function. The
cloud is subdivided into spherical shells.”* For I > 0, one
can see in Fig. 21 the nodal cones which, for the particular
value [ = 1, degenerate into a plane perpendicular to the
z-axis. Different pictures are obtained for different values
of m and equal n and I. With increasing n and [, the pic-
tures become more and more complicated (cf. n = 4,1 = 2,
m = 0).

However, these are the pictures of the atoms (in par-
ticular, the H atom) which, according to our present-day
knowledge, we have to use. The term electron cloud, which
is customarily given to the pictures, must not be interpreted
as meaning that, in the case of H for example, one electron
occupies at one time the whole of the space occupied by this
cloud. On the contrary, in wave mechanics the electron is
considered as a point charge, and the density of the cloud at
a specified point gives only the probability of finding the

12 This results from the fact that the dependence of the wave function ¢
on the azimuthal angle ¢ is given by ¢*™¢ [equation (I, 28)7], which by multi-
plication with the complex conjugate gives a constant—namely, 1. When it
is stated that ¢ has nodal planes through the z-axis, this statement holds for
the real and imaginary parts of ¢ individually, since cos me or sin m¢ has just
2m zero positions in the region 0 to 2x. There are consequently m nodal
planes. However, the more accurate theory shows that, in forming yy*,
the complex y function must be introduced—not the real or the imaginary
part alone (cf. p. 34).

13We must emphasize again that, in spite of the greater density at the
middle of the cloud (indicated by the greater brightness in Fig. 21), the
electron is most often in the outermost spherical shell, since this has a much

greater extent. If the electron has n = 3, it is, therefore, mostly at a greater
distance from the nucleus than it is forn = 2orn = 1.
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electron at that point. In order to observe the picture one
should, strictly speaking, observe a large number of H atoms
in the same state. Since, however, the orbit of the electron
cannot be definitely determined according to wave me-
chanics, we can in many cases make calculations as though
the electron were smeared out over the whole space.

According to ordinary wave mechanics, just as in Bohr’s
theory, the energy of a stationary state for the H atom and
hydrogen-like ions depends solely upon n. States of differ-
ent [ (having different minor axes of the elliptical orbit in the
Bohr theory) but equal n have the same energy. They are
degenerate. 'This degeneracy is, however, removed when we
allow for the relativity theory. A small difference in energy
then occurs between states with different [ and equal n; this
difference, as also in Bohr’s theory, gives rise to the fine
structure of the Balmer lines. However, a complete agree-
ment of calculated and observed fine structure is obtained
only by allowing also for electron spin,! which will be dis-
cussed in Chapter II. The degeneracy between states with
equal n but different I, which results if the relativity theory
or electron spin is not considered, occurs only in the case of a
point charge in a pure Coulomb field of force (H atom).
However, in the general case, for example with the alkalis
(see section 5 of this chapter), such degeneracy disappears.
States with different ! can then have noticeably different
energies for the same value of n. The type of eigenfunction
or electron cloud remains the same as in Figs. 18, 20, and 21.
When more electrons are present, to a first very rough ap-
proximation, the electron cloud is simply a superposition
of the probability density distributions of the individual
electrons (Fig. 21).

The fact that, for a given » and [, there are still a number
of different eigenfunctions according to the value of m
(namely, m =—1, —1+1, —1+2, --., 4+ I, making

1 The spin also follows as a necessary consequence of Dirac’s relativistic
wave mechanics.
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2l 4 1 different eigenfunctions) also holds in the general
case. Even then these states have exactly equal energies.
This is connected with the fact that, when no outer field is
present, states with different spatial orientations of the
system have equal energy and are degenerate with respect
to one another. This is called space degeneracy, which we
shall discuss in greater detail when dealing with the Zeeman
effect (Chapter II).

Neither of these degeneracies occurs for n = 1, since then
the only possible value for l is I = 0, and the only possible
value for m is likewise 0. (See scheme, p. 39.)

Momentum and angular momentum of an atom according
to wave mechanics. The representations in Fig. 21 give a
picture of the probability of finding an electron at a given
position in space, or, in other words, the shape of the elec-
tron cloud about the nucleus. They tell nothing, however,
about the motion of the electron or its velocity at different
points in space. The Heisenberg uncertainty principle in-
forms us that the simultaneous position and velocity of an -
electron cannot be given with any desired accuracy—that
is, the velocity of the electron cannot be given for each
point. However, we can reach at least some conclusions
about the velocity or the momentum of the electrons in an
atom; for example, we can calculate the velocity distribution
over the various possible values just as we calculated the
probability distribution of the various positions of the elec-
tron in the atom (Figs. 20 and 21).

To illustrate, Fig. 22 gives the probability that the elec-
tron will have the velocity or the momentum given by the
abscissae for the ground state of the H atom (n =1, [ = 0)
and for an excited state (n = 2, I = 0) [Elsasser (52)].
The curves correspond to the solid curves of Fig. 20. Ac-
cording to Fig. 22, the most frequently occurring velocity in
the ground state is 1.2 X 10% cm./sec.; in the first excited
state, 0.4 X 10% cm./sec. For the latter state, a velocity of
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1.1 X 108 cm./sec. does not occur, although greater and
smaller values are both present.

A
2F
1k
h
0.5 . 1.0 ang'r.cm./sec.
0
. 1.0 2.0 X 10%cm./sec.
3 L
92l
1k
1.0 _k_
0 0.6 - in.a“m’.cm./sec.
s 1l0 S 2!0 C 'X 108cm. /sec.

Fig. 22. Probability Distribution of Momentum and Velocity in the States
n=11=0,and n = 2,] = 0, of the H Atom. The curves give the square
of the momentum wave function given by Elsasser (62). The value of the
momentum in units of A/2xrag = 1.96 X 10~V gr. cm./sec., or the value of the
velocity in cm./sec., is shown as abscissae. The ordinate is proportional to
the probability of finding the electron in the H atom with the given value of
momentum or velocity.

Quite definite statements may be made regarding the
angular momentum of an atom. The co-ordinate associated
with the angular momentum is the angle of rotation. The
latter, in contrast to a cartesian co-ordinate, is completely
uncertain—a result which follows from the rotational sym-
metry of the charge distribution. It is, therefore, not in
contradiction to the uncertainty principle that the angular
momentum corresponding to a given stationary state has an
absolutely definite value. Calculation shows that the
numerical value of the angular momentum is VI(I + 1) &/2,
or approximately I[(h/27). (The approximate value will be
used in most of our subsequent considerations.) This fact
gives at the same time a descriptive meaning to the quantum
number [: it ts the angular momentum of the atom in units of
h/27. For Il = 0, the angular momentum of the atom is
zero. That is the reason for introducing ! instead of £ — 1.
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In the Bohr theory, k represented the angular momentum of
the electron in a given orbit; we now represent the angular
momentum by ! = k — 1. 'While the value £ = 0 did not
occur in the Bohr theory, in wave mechanics the value
I = 0 (angular momentum = 0) does occur and corresponds
to k = 1. In the Bohr theory, angular momentum = 0
meant the so-called pendulum oscillation orbit in which the
electron would have had to go through the nucleus, and
this was excluded as impossible. Now, an angular mo-
mentum equal to zero means simply that the electron cloud
does not rotate; the electron does not need to fall into the
nucleus because of this. The value | = 0 does not mean
that absolutely no motion takes place, but only that the
motion is not such that an angular momentum results (cf.
Fig. 22).

The fact that even in wave mechanics each stationary
state of the atom has a perfectly definite angular momentum
shows that the atom can still be regarded as consisting of
electrons rotating about a nucleus, as in the original Bohr
theory. (We must not, however, speak of definite orbits.1%)
Consequently the Bohr theory is adequate in many cases.
In particular, we can in many instances use the angular
momentum ! and the other angular momenta in the same
way as in the Bohr theory, the results being confirmed by
exact wave mechanical calculations.

In the following discussion the angular momentum vectors
will be indicated by heavy (boldface) type to distinguish
them from the corresponding quantum numbers, printed
in regular type. Thus ! means a vector of magnitude

VI + 1) h/27 ~ L(k/2r).

That 1 is connected with the angular momentum can further
be understood from the following. According to De Broglie
[equation (I, 16)]:
ho_h

my P

A=

> >

or p=

15 Just because of the fact that ¢ is quite uncertain, an absolutely definite
value can be given to the angular momentum.
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where m, is the electron mass, p the momentum, and A the cor-
responding De Broglie wave length. If we wish to introduce the
angular momentum p, into the De Broglie equation, N must be
measured in the corresponding co-ordinates, that is, the angle
of rotation ¢. From the expression previously given for the H
atom (I, 28), it follows that ¥ = ye 2"¥"* contains the factor
eitme~2rv') (m = quantum number). According to the usual wave
theory, this factor represents a wave propagated in the direction
of increasing or decreasing ¢ according to the sign of m—that is,
a wave which travels around the z-axis with angular velocity
2mv'/m, Its wave length is 27 /m, since, when ¢ increases by 2r/m,
eilme—20v')  gcequires its original value once more. Substituting
this wave length!® in the expression p = h/\ gives gs the angular
momentum about the z-axis:
__h
Pe = m O

For a given n and I, m can have the values — 1, — I+ 1, -+-, + L
These are, therefore, the angular momenta about the z-axis in
units of h/2x. All of these states have the same energy. This
evidently means that the angular momentum itself is I(h/27)
and has components equal to m(k/2r) along the z-axis, depending
on its orientation to this axis. (Cf. Fig. 41, p. 99, in which J
replaces [, and M replaces m.) More accurate wave mechanical

treatment shows that the angular momentum is VI(I + 1) h/2x
and not I(k/27). [Cf. Condon and Shortley (13).] In Chapter
IT the above relations will be discussed in greater detail.

Transition probabilities and selection rules according to
wave mechanics.. In wave mechanics, as in the Bohr
theory, the transition of an atomic system from -one sta-
tionary state to another is associated with the emission of
light according to the Bohr frequency condition. However,
this occurrence can be treated from a far more unified
viewpoint by wave mechanics (Dirac) than by the Bohr
theory. If an atom is in an excited state, the probability
of its transition to a lower state can be calculated. The
atom remains for a certain time in the upper state (mean
life). The transition to the lower state follows after a time
which is in inverse proportion to the transition probability:
the greater the probability, the shorter the time. The

16 The magnitude of this wave length can also be immediately obtained

when we consider that the real part of the y function of the H atom has m
nodal planes.
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life in a given excited state for the individual atoms varies
exactly as do the lives of individual atoms of a given
radioactive substance. The mean life is usually of the
order of 1078 sec. The intensity of the emission or the
absorption of light by a large number of atoms depends
on the magnitude of the transition probability. Definite
predictions about the polarization of the emitted light can
also be made in certain cases [see Condon and Shortley
(13)].

Detailed calculations show that, for the H atomn and also
for more general cases, an important selection rule operates
—namely, that the intensity is extremely small except when

Al=+1 or —1 1, 29)

That is to say, practically only those states can combine
with one another whose [ values differ by only one unit.
This selection rule corresponds exactly to the earlier selec-
tion rule for k. Thus Fig. 13 can be used also for a wave
mechanical representation of the transitions for an H atom.
There is no selection rule for the quantum number n. Any
value of An is possible for a transition:

an=0,1,23, ---

The different values of An correspond to the different
members of a series.!”

The simplest classical model capable of radiating electromag-
netic waves is an oscillating electric dipole (Hertz oscillator).
Electromagnetic waves are radiated with the same period with
which the electric charge flows back and forth in such a dipole
(for example, in a linear antenna). The intensity of the radiation
depends upon the magnitude of the alteration of the dipole
moment. The dipole moment is a vector whose components are
given, in the case of a system of point charges, by the following
expression:®® 3 e,x;, D ey, 2 €:2;. According to wave mechanics,

7 For H, a transition with An = 0 would correspond to a transition between
fine structure terms with equal n; for n = 2, the transition has a wave number
of only 0.3 cm™, or a wave length of about 3 cm. Observations of absorption
of this wave length in activated hydrogen are still doubtful [see Betz (53);
Haase (140)].

!% As is well known, the magnitude of the vector is «d for two charges (+ ¢
and — ¢) separated by a distance d.
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the probability density of the clectron may be given for any point
in the atom.  This may, for most practical purposes, be regarded
as though, on the average, a certain fraction of the total charge e
(given by the probability density) is at the point under considera-
tion. That is, we can treat the atom as though the electric
density at a point is: p = e¥¥*. Therefore, in the case of one
electron (hydrogen atom) the components of the electric moment
for the whole atom for a stationary state n are:

.J’z = fe‘I’n\I/,.*Cc dr v
P, = f vty dr

Po= [evovzzdar (1,30)

where dr is dgain an element of volume. . Since the nucleus itself
is taken as the origin of co-ordinates, its coptribution need not
bhe taken into consideration. The integrals are independent of
time heeause the time factors for ¥, and ¥,* cancel; on account
of the symmetry of the charge distribution, the integrals are
actuallv zero. There is consequently neither a static dipole
moment nor one altering with time. This means, in agreement
with experiment, that even,according to the classical theory the
atom does not radiate while in a stationary state; whereas in
Bohr orbits it should radiate (if we had not made the a lditional
a: hoe assumption that it does not radiate), since the atom with
the electron in these orbits has a dipole moment varying with
time.

Dirac has shown'that the radiation emitted by an atom in the
transition from state n to state m may be obtained by replacing
¥,¥,* in equation (I, 30) by ¥,¥,* regarding the resulting P
as an electric moment (transition moment) and then completing
the calculation in the classical manner. Since ¥, contains the
time factor e=27«(Ex/M¢ (T  21), and ¥,.* the time factor et27i(Em/bt
V. ¥,* and P, = ¢S V,¥,*xzdr (and correspondingly, P,*",
P.»m) are no longer constant in time but have the time factor
e milEn—Em) k1t that is, they vary with just the frequency
that would be obtained from the Bohr frequency condition

r_1 : . .
vio=g (En — En). The result is an emission or absorption of

this frequency in a purely classical way. An analogous state of
affairs holds for a system containing a number of particles. It
is necessary only to sum the integral over the different particles;
for example,

P =3 e | YoV¥n*Tidr (I, 31)
k
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According to what has been said, we can put, for the variable
electric moment assoctated with the transition from n to m:

Prm — ¢Rrme—2ril(En—Em)/h]t (I, 32)

where R"™ is a vector with components
Raem = f abmrdr, Rpm= ..., Rom=-.. (I,33)

The vector R*™ gives the amplitude of the vibration of the transi-
tton moment P*™ associated with the transitiomsfrom n to m.

Remembering that the intensity of light radiated from an atom
1s equal to the number of transitions per second (that is, the
transition probability) multiplied by #v',., we obtain (using
the classical formula for the intensity of electromagnetic waves
radiated by a vibrating electric dipole) the expression:

_ 64ért

Anm vsanRmn (I, 34)

for the probability of the transition from n to m where v = »'/c
is the wave number. The transition probability therefore de-
pends upon the quantities R**. R"" itself is determined by
the cigenfunctions of the tiwo states involved [sce (I, 33)].  Thus
we see that a knowledge of the eigenfunctions is particularly
important for the calculation of transition probabilities. The
quantities R** can be artanged in a square array (vertical
columns n, horizontal columns m), which is cailed a matrix.
R are the matrix elements. When R = 0 for a_given pair
of values of n and m, the transition from n to m is forbidden.
Detailed calculation shows that combinations between all states
for which I does not differ by &= 1 have R*» = 0; that is, the
selection rule Al = £ 1 holds. Other selection rules can Dbe
similarly derived. Such selection rules always depend upon the
symmetry properties of the atomic system under consideration
and of the corresponding eigenfunctions. In Chapter 11, sec-
tion 3, the derivation of the selection rules for the magnetic
quantum number 3 will be given as an illustration. (Cf. also
p. 68 and p. 154.)

Quadrupole radiation and magnetic dipole radiation. A sys-
tem of electric charges such as that illustrated in Fig. 23 has no
dipole moment (3 e;x; = 0). In spite

of this, the system gives an external P —
clectric field, which, however, falls off -¢ +2¢ -¢
more rapidly with increasing distance Fig. 23. Example of a Quad-
than that of the dipole, which itself rupole.

falls off more rapidly than that of the

monopole (the potentials are proportional to 1/73, 1/r2, 1/r, respec-
tively). An assemblage of charges such as that in Fig. 23 is called
a quadrupole.  Its action is characterized by a quadrupole moment,
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which in the above case is given simply by > e;z.% where z is the
axis along which the charges are located. It is immediately seen
that this expression is not zero. In general a quadrupole is more
complicated than the one given in Fig. 23, and likewise the quad-
rupole moment is usually more complex. The general case will
not, however, be discussed here.

Just as a variable dipole moment leads to radiation (dipole
radiation), so also does a variable quadrupole moment lead to
radiation (quadrupole radiation). The latter is, however, con-
siderably weaker. The transition probability, similarly to the
above, 1s obtained by substituting ey.y¥-* dr for e; in > ex?,
and integrating. Therefore quadrupole radiation depends upon
the integral S 2%.¢»* dr, whereas dipole radiation depends upon
Sy ¥n* dr. Because of this difference, transitions which are
strictly forbidden for dipole radiation may occur—though quite
weakly—due to quadrupole radiation. The ratio of the transition
probabilities of ordinary dipole radiation to ordinary quadrupole
radiation is found to be about 1 : 1078,

Finally, it may happen that, for a transition, the variation of
the electric dipole moment will disappear, whereas that of the
magnetic dipole moment does not (cf. Chapter II, p. 111). Ac-
cording to classical theory, a variable magnetic dipole moment
such as that produced, for instance, by an alternating current in
a coil gives rise to electromagnetic radiation. Correspondingly,
in wave mechanics, it gives rise to a transition probability which
may be different from zero even if the ordinary dipole transition
probability is zero. Again, the transition probability due to
magnetic dipole radiation is small compared with that due to
electric dipole radiation (1 : 10—%).

Actually, cases have been observed in which transitions that
are strictly forbidden by the electric dipole selection rules take

place due to quadrupole or magnetic dipole radiation. (See
Chapter IV.)

5. Alkali Spectra

The principal series. The absorption spectra of alkali
vapors (Fig. 2) appear quite similar in many respects to the
absorption spectrum of the H atom (Lyman series). They
are only displaced, to a considerable extent, toward longer
wave lengths.!®* These spectra also consist of a series of
lines with regularly decreasing separation and decreasing
intensity. This series is called the principal series. It

1» We disregard for the moment the splitting of the lines of the heavier
alkalis, with which we shall deal in Chapter II. This splitting is still so small
for Li that it cannot be noticed with the usual spectroscopic apparatus.
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cannot, however, be represented by a.formula completely
analogous to the Balmer formula. On the other hand, since
the lines converge to a limit, we must be able to represent
them as differences between two terms. One of these
terms is a constant Trs (known as the fized term) and has
the frequency of the series limit. The other (known as the
running term) must depend on a running number (order
number) m in such a way that the term disappears as
m — o,

It has been found that the series can be satisfactorily
represented with B/(m 4+ p)? as the running term. R is the
Rydberg constant, and p is a constant number < 1; p is
called the Rydberg correction. It is the correction that, for
the alkalis, must be applied to the Balmer term (p =0 gives
the Balmer term). The running number m takes values
from 2 to ». The quantity n* = m + p is called the effec-
twe principal quantum number. Thus the formula for the
absorption series (principal series) for the alkalis 20 is:

R
(m + p)?
A continuous spectrum follows at the series limit, as shown
in Fig. 2.

v=Tps —

Other series. In emission, other series in addition to the
principal series may be observed for the alkalis. These
series partly overlap one another. Fig. 3 (p. 5) shows the
Na emission spectrum. The three most intense of the addi-
tional series have been given the names diffuse, sharp, and
Bergmann series. The last is also sometimes called the
fundamental series. The lines of the diffuse and the sharp
series frequently appear diffuse and sharp, as their names
indicate. The Bergmann series lies further in the infrared
and consequently does not appear in the spectrogram in
Fig. 3. The limits of these series and, therefore, their
limiting terms differ from the limiting term of the principal

* This formula does not hold so exactly as that for the H spectrum. More

exact agreement with experiment can be obtained by adding to the denomi-
nator an additional term which depends on m.
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series, but the sharp and the diffuse series have a common
limit (see Fig. 3). Tsis the common limiting term for the
sharp and the diffuse series; Ty, for the Bergmann series.
The running terms are quite analogous to those of the prin-
cipal series, but the Rydberg correction has a different value
for each series. Thus we have:

PRrINCIPAL SERIESs: v=Tps — (n _If_ e (m=23, )

SHARP SERIES: v="Tss — —R— (m=23--)
(m + s)?

DIFFUSE SERIES: v=Tss — k (n=34,-)
(m + d)?

BERGMANN SERIES: v = Tgs — E (m=4,5,---)
(m + f)?

The values found empirically show that Tes = R/(1 + s)?,
Tss = R/(2 4+ p)?, Tys = R/(3 + d)?; that is, the limiting
terms belong to one of the series of running terms. If we
put mP as a symbol for R/(m + p)?, mS for R/(m + )%, and
so on, the series may be written:

PriNcIPAL SERIES: v =18 — mP m=23,--) (d,35)
SHARP SERIES: v =2P —mS m=23,---) (d,36)
DIFFUSE SERIES: v =2P —mD (m=34,---) (37
BERGMANN SERIES: v=3D — mF (m=4,5,---) (,38)

Theoretical interprretation of the alkali series. From
the four series of the alkalis it is evident that four different
term series or four sets of energy levels exist, and these can
be designated by S, P, D, F. In Fig. 24 these series are
given for Li in the manner explained in an earlier section.
The ground state of the alkali atom is 1§, since in absorption
only the principal series appears and this has 1S as the
lower level. The S terms 28, 3S, - - - follow after it. The
lowest P state occurring is 2P, and it lies above the 1S term
by an amount equal to the wave number of the first line of
the principal series 1S — 2P. The series of P terms follow
after it. The principal series in absorption corresponds to
transitions from the ground state to the various P states;
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the converse holds for emission. The sharp series cor-
responds to transitions from the higher S terms to the
lowest P state. The lowest D term lies still higher than the
lowest P term (namely, by 2> — 3D), and, analogously,
the 4F term is higher than 3D. All term series go to the
same limit, whereas of course the line series have different
limits (cf. above).

The similarity of this energy level diagram (Fig. 24) to
the generalized energy level diagram of H (Fig. 13, p. 26) is
obvious. The main difference is that the members of the
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. Fig. 24. Energy Level Diagram of the Li Atom [after Grotrian (8)]. The
wave lengths of the speetral lines are written on the connecting lines repre-
senting the transitions. Doublet strueture (see Chapter I1) is not included.
Some unobserved levels are indicated by dotted lines. The true prineipal
quantum numbers for the S terms are one greater than the empirical running
numbers given (sec p. 61); for the remaining terms, they are the same.
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different adjacent term series no longer have almost exactly
the same height. This is to be expected, theoretically, for
the terms of a single electron moving in a field which is not
the Coulomb field of a point charge. The structure of the
alkali spectrum therefore leads to the conclusion that, for
the alkali atoms, a stngle outer electron moves about an atomic
core 2! whose field shows marked deviations from the Cou-
lomb field of a point charge, which are due to the finite extent
of the core. Furthermore, it follows that the S, P, D, F
terms are distinguished from one another by the value of the
quantum number 1 (1 =0, 1,2, 3, ---); that is, by the orbital
angular momentum of the outer electron. On the basis of
the old Bohr theory, each term series would correspond to a
"series of elliptical orbits, as in Fig. 10 (p. 18). The fact
that the series of P terms begins with m = 2, the D terms
with m = 3, and the F terms with m = 4 is also in agree-
ment with this assumption, since, if the order number m is
identified with the principal quantum number n, m must be
=1+ 1 (see p. 38). The selection rule Al = & 1 is also
fulfilled; only neighboring term series combine with one
another.

The Rydberg correction (the deviation from the hydrogen
terms) is greater, the nearer the electron comes to the core
in its orbit according to the old Bohr idea. The correction
is greater still if the orbit penetrates the core (so-called
penetrating orbits), as then the effective nuclear charge Z.;
acting on the electron is appreciably altered. In the im-
mediate neighborhood of the nucleus the whole nuclear
charge acts, but at a great distance it is shielded by the core
electrons down to Z. = 1. Accordingly, the Rydberg cor-
rection should be greatest for S terms, smaller for P terms,
still smaller for D terms, and so on (see Fig. 10). This is
actually the case. The Rydberg correction is extremely
small for F terms; that is, they are practically Balmer terms.
In contrast, the Rydberg correction for S terms is so large

2 The stable electron group obtained by removal of the outermost electron
or electrons is called the core or kernel.
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(for Li, 0.59) that we are not certain what the true principal
quantum number is—that is, whether the ground term for Li
has n = 1 or 2. The numbers in Fig. 24 are not the true
principal quantum numbers of the emission electron. We
shall find out later what these are.

The common limit of all term series (Fig. 24) corresponds
to the removal of the outer electron (the emission electron),
which is moving about the atomic core. Beyond this
limit, as in the case of hydrogen, extends a continuous term
spectrum which corresponds to the removal of the electron
with more or less kinetic energy. The existence of this con-
tinuous term spectrum is proved from observation of con-
tinuous spectra extending beyond the limit of the line series
(cf. Figs. 2 and 3). The height of the limit of the term
series above the ground state 1.S gives the energy of 1onization
(tonization potential) of the alkali atom. From Fig. 24 we
can see directly that this is equal to the wave number of the
limit of the principal series (see also p. 23); for Li, the
lonization potential is 43,486 cm™! or 5.363 volts.

Alkali-like spark spectra. Just as the spectra of He*,
Lit*, and Bet++ are similar to that of hydrogen, the spectra
of the alkali-like ions (ions with the same number of elec-
trons) are very similar to the alkali spectra (Paschen,
Fowler, Bowen, Millikan, Edlen, and others). The spectra
of ions are usually called spark spectra and those of neutral
atoms arc spectra, since the former are generally produced
in an electric spark (or condensed discharge), and the latter
in arcs. This corresponds to the fact that the excitation po-
tential of the spectra of ions is much greater than for the
spectra of neutral atoms, on account of the necessity of
producing ionization or multiple ionization of the atom in
the former case. The spectra of singly, doubly, etc.,
charged ions are called spark spectra of the first, second, elc.,
order. 'The arc spectrum is indicated by the Roman nu-
meral I placed after the symbol for the element; the first
spark spectrum is indicated by the Roman numeral I1; and
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so on. The following groups analogous to the alkalis have
been investigated:

LiI, BeII, BIII, CIV, NV, O VI, F VII, Na IX
Nal, MgII, AlTII, SiIV, PV, S VI, Cl VII

K1, Call, ScIIl, Ti IV, VV, Cr VI, Mn VII

Rb 1, SrII, Y III, Zr IV

CsI, Ball, La III, Ce IV, Pr V

In section 2 it was shown that, in the series H I, He II,
Li ITI, the spectra and the corresponding term values
differed by a factor Z%. If the spectra of the above series of
atoms and ions were completely similar to H, the wave
numbers of the lines or of the term values should similarly
differ only by a constant factor (Z — p)? where Z — pis the
effective nuclear charge acting on the outer electron
(Z = atomic number or order number of element, and
p = number of core electrons).

In each of the above series, Z — p goes through the
integral number values 1, 2, 3, ---. Therefore, if these
alkali-like spectra were also hydrogen-like, division of all
term values by the factor (Z — p)?should result in the same
values for each member. Actually, though the spectra are
completely analogous in all details (the same number and
type of terms), the individual term schemes do not coincide
exactly after division throughout by (Z — p)%. Fig. 25
shows this for the series from LiI to O VI. As previously
explained, this result is due to the fact that the field in which
the outer electron moves is not exactly the Coulomb field of
a point charge and, therefore, the term values are not simply
proportional to (Z = p)? as in formula (I, 11). However,
because of their close similarity to hydrogen, the D and F
terms of all members of the above groups and some of the P
terms do coincide approximately after division by (Z — p)?
(cf. Fig. 25).

To the right of Fig. 25 is given the position of the H terms
withn =2, 3,4, ---, and a hypothetical term with n = 1.5.
The effective principal quantum numbers of the terms can
therefore be read from this scale. For the first P term of
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i'series, this number is nearly 2; for the first D term,
so on. Thus 2, 3, --- are also the true princig
tum numbers of the terms—that is, they are the pri
quantum numbers which the electron would have if t.
of the atom were very small so that the terms we
ical with Balmer terms.

contrast to the P, D, and F terms, the S terms are f
being hydrogen-like; for the various members of one
bove series of elements, these terms have a noticeab
‘ent position after division by (Z — p)2. (Cf. Fig. !
1e Li row.) However, even for these S terms the tr
ipal quantum numbers can be determined from Fig.
rom similar figures for the other series. With incres
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ig. 25. Energy Level Diagrams of Li and Li-like Ions up to O VI.
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ing nuclear charge Z, the core is pulled strongly together and
the external field becomes more and more like a Coulomb
field with nuclear charge Z — p. The terms in the above
series must therefore become more and more hydrogen-like
with increasing Z — p. In Fig. 25 this effect is seen for P
terms as well as for S terms; it is particularly marked for the
latter. The effective principal quantum number for the 18
term is 1.86 for N V and 1.88 for O VI, as compared to 1.6
for Li; that is, it approaches the value 2, which is, therefore,
the true principal quantum number for the emission electron
of Li in the ground state and also for Be™, etc. In an
analogous manner the true principal quantum numbers for
the emission electrons in the ground states of Na, K, Rb,
‘and Cs and the corresponding ions are found to be 3, 4, 5,

and 6, respectively.??

The Moseley lines. Another representation of the relation
between the spectra of the alkalis and the alkali-like ions is often
used. For the terms of hydrogen-like ions,

7/ \/?_é
T on? R n

Plotting VT'/R against the nuclear charge should therefore give a
straight line going through the origin. The same is true for the
hydrogen-like terms of the alkali-like ions when they are plotted
against Z — p. In Fig. 26 the NT/R values for some terms in
the Li group are plotted in this way. We see that the hydrogen-
like D and F terms coincide (within the limits of accuracy of the
drawing) with the broken lines which represent the Balmer terms.
P terms and S terms also lie on straight lines, but are displaced
parallel to the corresponding lines for the Balmer terms (S terms
being displaced more than P terms). These lines are named after
Moseley, who first discovered the corresponding relation for
X-ray spectra. The extent of the parallel displacement is a
measure of the incompleteness of the shielding of the nuclear
charge by the core electrons. The slope of the line ‘equals 1/n;
hence the slope can be used to derive the true principal quantum
number. It is evident from Fig. 26, as well as from Fig. 25, that
the true principal quantum number for the lowest S term (ground
state) of ions of the Li group is 2. A similar state of affairs holds

B For more extensive treatment, see: (7), (8), (9), (11), (12), (13).
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for the Na, K, Rb, and Cs series, but the Moseley lines bec:
increasingly curved.

In the Moseley diagram, terms of equal principal quan
number (for examplé, the lowest S and P terms of alkali-
jons, as in Fig. 26) give parallel lines—that is, VT1/R — T,/
a constant. It is easily seen from this that Ty — T is a lin
function of Z — p. This is called the law of irregular dow
or screening doublets. It is of importance since, when T, -
is known for two members of a series of ions (such as Li I
Be II), the value Ty — T» can be calculated for other mem
of the series. For n = 2, T, — T, is the frequency of the
member of the principal series. Thus, the wave length of
line may be predicted for higher spark spectra of a series—a
that is, of course, important in the analysis of these spectra.
extended discussion of Moseley diagrams and the irregular dou
law is given in Grotrian (8) and White (12).
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Fig. 26. Moseley Diagram of the Terms of Li-like Ions.
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6. Spectrum of Helium and the Alkaline Earths

Helium. The emission spectrum of helium consists of a
number of series in the visible region of the spectrum, as well
as in the near and far ultraviolet regions. The number of
these series is essentially the same as in the spectrogram for
Mg given in Fig. 4, which will be further treated at the end
of this section. There are twice as many line series as for
the alkalis (cf. Fig. 3) : two principal series in the visible and
near ultraviolet (which have different limits), as well as two
diffuse, two sharp, and two fundamental series. These
series can again be represented by transitions in an energy
level diagram, but the necessary terms are twice as numer-
ous as for the alkalis. There are two series of S terms, two
series of P terms, and so on.

In the energy level diagram of Fig. 27 the terms are dis-
tinguished by 1S, 3S; 1P, 3P;and so on. (For the meaning of
these symbols, see Chapter II.) Corresponding terms of
the two systems with the same order number differ in their
effective principal quantum numbers—that is, in the magni-
tude of their Rydberg corrections. The terms of one sys-
tem generally lie noticeably deeper than the corresponding
terms of the other if the same limit is assumed for all the
term series. This state of affairs was described by earlier
investigators as due to two different kinds of helium; par-
helium (indicated by the left upper index 1) and orthohelium
(indicated by the left upper index 3). Parhelium differs
from orthohelium in having, besides the states with n = 2,
3, ---, an additional deep-lying S state with principal
quantum number 1. This is the normal state of the He
atom. Transitions from higher P terms of parhelium (‘P)
to the normal state give rise to the far ultraviolet principal
series at 584-504 A; this series also appears in absorption
[Collins and Price (54)]. Besides this principal series,
there exists in the visible und near ultraviolet regions an-
other principal series of parhelium corresponding to the
transition from higher 'P terms to the 2 1S state (cf. Fig. 27).
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Combinations of terms of the para system with those of
the ortho system have not been observed.? The term sys-
tem of He thus splits essentially into {wo partial systems,
which do not combine with each other (right and left parts of
Fig. 27). In particular, the lowest state of orthohelium,
23S, which lies 19.72 volts above the ground state 1 S, does
not combine with the ground state. Those terms which
cannot go to a lower state with the emission of radiation
and, correspondingly, cannot be reached from a lower state
by absorption are called metastable. The 2 1S state is also
metastable, since the selection rule Al =+ 1 does not allow
any transition to 11S. The metastability of the 23S state
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Fig. 27. Energy Level Diagram for Helium. The running numbers and
true principal quantum numbers of the emission electron are here identical.
The series in the visible and near ultraviolet regions correspond to the indicated
transitions between terms with n = 2.

2 The weak intercombination line reported by Lyman at 591.6 A is an
Ne line according to Dorgelo (55).
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is, however, stronger than that of the 2 1S state, since the
transition 238 — 11S would contradict the prohibition of
an ortho-para transition as well as Al =+ 1. Transitions
with Al = 0 can occur in an electric field (for example,
21§ — 118), but not ortho-para transitions (cf. Chapter I'V).

The tonization potential of helium as obtained from the
limit of the series 1S — m 1P (see Fig. 27) is 24.46 volts.
As previously stated, it was in no way possible to derive this
value from the Bohr theory, but quantum mechanics gives
the spectroscopic value within the limits of accuracy of
calculation [Kellner (56); Hylleraas (67)]. The same is
true of the ionization potentials of the helium-like 1ons, Lit
and Be*™, whose spectra stand in the same relation to the
He spectrum as those of the Li-like ions to Li. The spectro-
scopic values for the ionization potentials of Lit and Be*t
are 75.28 and 153.1 volts, respectively.

An explanation of the splitting of the He term scheme
into two practically non-combining systems could be ob-
tained from the old Bohr theory only in a very arbitrary
manner. This splitting, however, follows necessarily from
wave mechanics. A complete understanding of it is possible
only by inclusion of the electron spin, which will be discussed
later.

Heisenberg’s resonance for helium. The theoretical basis for
the explanation of the splitting of the He term scheme was given
by Heisenberg (568) when he applied wave mechanics to a system
with two electrons. The wave equation for a system such as He,

consisting of two electrons moving in the field of a fixed charge 2e
(nucleus), is obtained from (I, 24) by substituting
2 2 2
p-_2_2_¢ (1, 39)
T1 T2 T12
if 71 and r; are the distances of the two electrons from the nucleus,
and ri2 is the distance of the two electrons from each other.
Hence, we obtain:
Y aw a%p Y 9%y
6:!:1 + + 6I2 + 6y2 6222

2 2 2
+81rm<E,+2e +2_6_i>¢=0 (1, 40)

h? T1 T2 T12
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To zero approximation the repulsion of the electrons €/ri; may
be disregarded. Then, equation (I, 40) is just the sum of two
hydrogen wave equations with Z = 2. Each electron may there-
fore take any of the ordinary hydrogen energy values with Z = 2,
and the eigenfunctions are:

Y(T1y121, T2yee2) = @n,(T19121) @ny (T2Y222)

where the ¢’s are ordinary hydrogen eigenfunctions [equation
(I, 28)]. This result may easily be verified. n; and n, are the
principal quantum numbers of the two electrons. When electron
1 is in its lowest energy state (n; = 1) and electron 2 in the state
ne = n, the eigenfunction can be written in an abbreviated form:

where the numbers 1 and 2 in parentheses stand for the co-
ordinates of electrons 1 and 2. Evidently the state in which
electron 1is excited to n; = n, and electron 2 is in the lowest state,
with eigenfunction ¢,(1)¢1(2), has exactly the same energy as the
state ¢1(1)a(2). This resonance degeneracy is removed if €?/r1s,
the electrostatic repulsion of the two electrons in (I, 40), is con-
sidered. Because of the coupling between the two electrons,
the system will periodically switch over from the state ¢:(1)¢a(2)
(electron 2 excited) to the state ¢,(1)¢1(2) (electron 1 excited),
and back again. This is quite similar to the case of two equal
coupled- pendulums or two equal coupled electric oscillating
circuits. If at first only one pendulum (or circuit) is excited,
after a time only the other will be excited, and so on.

Mathematically, the eigenfunction of the perturbed system
(including the electrostatic repulsion) to a first approximation is
Ae1(1)pn(2) + Bea(1)p1(2). Calculation shows that either
A =B, or A = — B; hence we have (omitting the constant
factor):

‘% = ‘Pl(l)‘/’n(z) + ‘Pn(l)‘pl(2) or

Vo = ¢1(1)@a(2) — ¢a(1)e1(2) (I, 41)
These two eigenfunctions correspond to two different eigenvalues,
E, and E,, into which the originally twofold degenerate level is
split by introducing the interaction. The first function is
symmetric—that is, it remains unaltered by an exchange of the
electrons (exchange of numbers 1 and 2 in parentheses); whereas
the second is antisymmetric—that is, it changes sign for this
operation.

In the mechanical example, the two eigenfunctions ¥, and .
correspond to the two stationary vibrations by superposition of
which the observed exchange of energy between the two resonat-
ing pendulums (circuits) may be represented. These vibrations
are: the symmetric vibration, in which the two pendulums (or cir-
cuits) are always in phase (11); and the antisymmetric vibration
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in which they arc in opposite phases (t|). The frequencies of
the two vibrations are evidently different. Superposition of the
two vibrations results in the periodic transfer of all the vibra-
tional energy from one pendulum (circuit) to the other.
Similarly, by superimposing
U, = e 2rilEant and U, = e 2riEa/h)t

we obtain a continuous switching over from ¢:1(1)¢.(2) to
¢ea()e1(2). Namely, fort = 0,

v, + v, = ‘»[’s + ‘pa = 2¢1(1)§9n(2)
whereas after a certain interval when e 2mdE/Mt = 4+ 1 and
e~trilla/t = — 1 at the same time (which is possible since
E.#$ E,)

¥, + Vo = ¢s — Vo = 2991:(1)85’1(2)

After a further equal interval of time, ¥, + ¥, will again equal
2¢01(1)a(2); that is, the sccond electron will be excited once more,
and so on.

Actually, however, according to the statistical interpretation
ol wave mechanies, this superposition of ¥, and ¥, cannot occur
in one and the same atom. FEither ¥, (with energy E,) or ¥,
(with energy E,) is excited in the atom. As shown by the func-
tions (I, 41), in each of these stationary states ¥, and ¥,, both
e1{1)¢(2) and ¢1(2)@a(1) are contained; or, in other words, in
cach of these stationary states partly electron 1 is excited and
partly clectron 2.

The above considerations show that, to every one excited state
of the hydrogen atom with certain »n and [ values, there correspond,
in the system with two electrons (He), two excited states with
somewhat different energies, due to Heisenberg’s resonance.
One of these states is always symmetric; the other, antisym-
metric. Ior the ground state, the resonance degeneracy does not
exist; the eigenfunction is ¢1(1)¢1(2), and there is only one state,
which is symmetric. These theoretical results agree exactly with
the observed energy level diagram of Fig. 27. The parhelium
levels are the symmetric levels; the orthohelium, the antisym-
metric. IEven quantitatively, the calculated energy levels and
particularly the energy differences of the two term systems agree
closely with the observed values. '

There is, however, one important difficulty which cannot be
solved at this stage; namely, it is found theoretically that the
transition probability between symmelric and antisymmetric terms
1s exactly equal to zero. This may easily be seen in the following
way: For elcctric dipole radiation, the transition probability
(p. 53) is proportional to the square of

Z €k f ‘I’n\I’m*xk dr

k
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where z; is onc of the three co-ordinates of the Attt particle. In
the present case, for two electrons this will be:

€ [\I/,.\Ifm*(:cl + 172) dr

If we now consider the transition between a symmetric and an
antisymmetric state, we have to substitute ¥, = ¥, and
¥,, = ¥,. However, then the integrand and, thercfore, the
integral change sign when the two electrons are exchanged
(exchange of index numbers 1 and 2), becausc ¥, then changes
sign (cf. above), whercas ¥, and (xr; + z.) do not. Since the
value of the integral cannot depend upon the designation of the
electrons, it follows that the integral must equal zcro. 'This
result holds, not only for the transition probability produced by
ordinary dipole radiation, but also for any other type of radiation
(p. 53), since the term replacing (x: + z2) would also be un-
altered by changing the index numbers. Even the transition
probability induced by collisions with other particles (electron
collision, and so on) will be exactly equal to zero, because the
interaction term, necessarily, is always symmetric in the two elec-
trons of He. There is, consequently, no way of bringing about a
transition hetween symmetric and antisymmetric energy levels.
If all the atoms are at one time in a state of one system, as’is the
case for normal He (symmetric state), they should never go over
to the other system, and hence the latter system should be un-
observable. This conclusion flatly contradicts the fact that both
systems are actually observed. As will be seen later (ef. Chapter
III, section 1), this is due to the presence of electron spin.

The alkaline earths. As in the case of He, the alkaline
earths and the other elements in the second column of the
periodic system have twice as many series and, correspond-
ingly, twice as many terms as the alkalis. This fact may be
clearly seen by comparing the spectrograms of Na (Iig. 3)
and Mg (Fig. 4). The Mg spectrogram, it is true, shows
mainly diffuse and sharp series and only one linc of one
principal series. The other lines of this principal series and
the other principal series lie in another region of the
spectrum.

The alkaline earths thus have two partial systems of
terms which practically do not combine with each other and
lie at different heights. As for He, only one of them, the
para system, has a low-lying state, the ground state 'N.



70 Simplest Line Spectra and Atomic Theory [I, 6

The lowest term of the ortho system, however, is a *°P term
—mnot a 3S term. (Cf. the Ca energy level diagram, Fig.
32, p. 77.) Just as with He, the two term systems con-
verge to the same limit. From the splitting of the energy
level diagram into two partial systems, we may conclude
that, as for He, there are only two electrons outside the atomic
core of the alkaline earths. The same conclusion holds for
the alkaline-earth-like ions. The energy level diagram and
the difference between the two term systems will be con-
sidered in greater detail in Chapter II.



CHAPTER 1I

Multiplet Structure of Line Spectra and
Electron Spin

1. Empirical Facts and their Formal Explanation

Doublet structure of the alkali spectra. As shown in
Chapter I, the quantum numbers n and [ just suffice to
characterize the different term series of the alkalis (Fig. 24,
p. 57). However, they no longer are adequate for He and
the alkaline earths, since for these there are twice as many
term series as for the alkalis—that is, there are two com-
plete term systems, which are distinguished by a left upper
index 1 or 3 on the term symbol. The physical meaning of
this method of distinction will be made clear in the subse-
quent discussion. Even if we provide an explanation by
assuming that the atom under consideration exists in two
different forms (for example, orthohelium and parhelium),
the insufficiency of the quantum numbers thus far introduced
becomes still more obvious when we examine the alkali
spectra with spectral apparatus of greater dispersion. It is
then found that each of their lines is double, as is generally
known for the D line of Na. The line splitting increases
rapidly in the series Li, Na, K, Rb, and Cs. It can be
detected for Li only by using spectral apparatus of very
high dispersion. However, for the D line of Na, the
splitting is 6 A. Fig. 29(a), page 74, shows this and
some other Na doublets. The line splitting can naturally
be traced back to a term splitiing. Either the upper or the
lower, or both of the terms involved are double, that is,
split into two levels of slightly different energy.

To illustrate, Fig. 28 gives the energy level diagram of
potassium. The scale used in the diagram is just sufficient

71
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to show the splitting. The ground state and other S terms
are single; the P terms are split, the splitting decreasing
with increasing order number. The components are drawn
side by side. If the ground state were split and the P states
were single, all the lines in the principal series (1S — mP)
would have the same splitting (in em™!); but this is not the
case. On the other hand, all lines of the sharp series
(2P — mS) have the same splitting, since the common
lower state 2P is split while the upper states mS are not
split. The lines of the diffuse series (2P — mD) have the
same splitting, for the same reason. The D terms them-
selves are split, but the splitting is so much smaller that it
makes scarcely any difference in the case of potassium
(see below). -

20,000

25,000

30,000 1

35,000

Fig. 28. Energy Level Diagram for Potassium [ Grotrian (8)]. Here m is
the empirical order number of the terms (see p. 55). For S terms, the true
principal quantum number of the emission electron (p. 62) is 3 greater than m;
for P terins, it is 2 greater; for D and F termws, it is equal to m.



I1, 1] Empirical Facts 73

Quantum number J. Since the quantum numbers thus
far introduced do not suffice, we distinguish, at first for-
mally, the components of the doublets by an index number
—that is, a new quantum number. We could write: I’, and
P,. But, instead, we use as indices: for the P terms, } and
3;for the D terms, § and §; and so on. The reason for this
nomenclature will become apparent later. In I'ig. 28 these
symbols are written over the corresponding term series.
In addition, a left upper index 2 (doublet) is given 1o all the
term symbols (see below). The S terms are given a sub-
script 3, although they are actually single. This new quan-
tum number (subscript) is designated as J, and was called
the inner quantum number by Sommerfeld. The different
values of J occurring are summarized in Table 3.

TABLE 3

J VALUES FOR DOUBLET TERMS

Term L J
S ;
™\
P 1 1
NN
D 2 2 I\
F 3 \5_; :
. ANAN
( 4 ol

Each individual term of the alkalis is now characterized
by the three quantum numbers 7, I, and J. In the future
we shall write L instead of [ when we wish to characterize the
whole atom and not a single electron. The selection rule
is the same as for [ (Chapter I, section 4):

AL = +1

Selection rule for J; compound doublets. The splitting
of the D terms for potassium is so small that, for most
purposes, they can be treated as if they were single. Ac-
cordingly, the D terms are not drawn separately in Fig. 28.
Thus there will be practically no difference in the splitting
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of the sharp (?P — 28) and the diffuse (P — %D) series.
This also holds for Na, of which a few of the diffuse and
the sharp doublets are shown in Fig. 29(a). The splitting
of the D terms becomes noticeable for Rb and Cs, as well
as for the alkali-like ions Ca™, Sr*, and so on. If the indi-
vidual doublet term components could combine with one
another without restriction, four components would be
expected for each of the lines of the diffuse series (since each
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Fig. 29. Examples of Line Doublets. (a) Some Na doublets (part of
the Na emission spectrum reproduced in Fig. 3, taken with larger dispersion).
() Compound doublet of Ca+., True principal quantum numbers are used to
designate the terms.

component of the upper D term should combine with each
of the two components of the lower P term). Actually,
only three components are observed, as is shown in the
spectrogram for a 2P — 2D transition of Ca™, in Fig. 29(b).
Using the J values given above, we obtain agreement with
experiment if e assume for the new quantum number J the
selection rule: !
AT =0 or +1 or —1 (11, 1)
Fig. 30 shows the energy level diagram (not drawn to
scale) corresponding to the Ca* doublet reproduced in Fig.
29(b). Transitions allowed by the selection rule are given
-as solid vertical lines, the horizontal distance between the
lines corresponding to their frequency difference. The
1If we had distinguished the components of the P and D terms simply by

the indices 1 and 2, a representation of the observed transitions would not have
been possible with such a simple selection rule.
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spectrum produced in this way is drawn schematically in
the lower part of Fig. 30. For the transition, 2D, — 2Py,
AJ = 2. This transition is forbidden by the selection rule,
and actually does not appear in Fig. 29(b); however, it is
shown by a dotted line in Fig. 30. As
already stated, the splitting of the upper
D term is relatively small, and thus, !
using low dispersion, we obtain doublets |
only, as for the sharp series, since i
2P3/2 — 2D3/2 and 2P3/2 — 2D5/2 practic- :

|

J

5%
n(—y———T %
DA — %

Yy

ally coincide. Using greater dispersion,

as in Fig. 29(b), we find that one com- P
ponent of the doublet, and only one, is —l
double. However, this group of lines is
called, not a triplet, but a compound
doublet, since it results from the com- -
bination of doublet terms. The lines of Fig. 0. Origin of
the Bergmann series (2D — 2F) similarly ;'chﬂj%‘?“ﬁlgf%‘;g.b%
consist of such compound doublets, (5).] Intensities are
which are incompletely resolved still ;‘;‘;fﬁ}e&ﬂigg:_tmk'
more often than those of the diffuse

series. Allowed combinations for the different series are

also indicated in Table 3.

Triplets and singlets of the alkaline earths and helium.
A more accurate investigation of the two systems of lines
of the alkaline earths, using high dispersion, shows that the
para system consists of single lines (singlets), whereas the
ortho system consists of threefold lines (iriplets). The
splitting of the latter increases rapidly with increasing
atomic number of the element in the second column of the
periodic system. For Hg, the splitting is so great that
different lines of one and the same multiplet lie in different
regions of the spectrum.

Similar to the spectrum of the alkaline earths, even under
large dispersion, the lines of the para system of He appear
single, whereas those of the ortho system appear as very

T
I
!
1




76 Multiplet Structure and Electron Spin [1I, 1

close triplets.? The symbols already used for He and the
alkaline earths (left upper indices 1 and 3) are now under-
standable (see Fig. 27, p. 65). Fig. 31 shows spectrograms
of some of the calcium triplets. Asin the case of the alkalis,
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Flg 31. Some Calcium Triplets (Ca I). (a), (b), and (¢) Normal triplets.
(d) Anomalous triplet (see p. 165). These photographs were taken with fairly
large dispersion (2 A/mm.).

the line splitting can be traced back to a splitting of the
terms—this time into three components. Fig. 32 shows the
energy level diagram for ealcium, with this splitting taken
into consideration.

As in the case of doublet terms, the components of the
triplet terms can be distinguished by indices J, which
must now be assumed to be integers and to have the values
given in Table 4 (p. 78). The reason for this choice will
be made clear later. For the alkalis, we found that the S
terms of the doublet system are single. Similarly, here the
S terms of the triplet system are single. In spite of that
fact, they are given a J index which, in this case, is equal to 1.
These S terms must be clearly distinguished from the S
terms of the singlet system (1S) of the same element, which
lie somewhat higher (cf. Fig. 32). The former combine
only with triplet terms, although they themselves are single;
the latter, only with singlet terms.

1 For He, two of the components lie so close together that for a long time the
lines were thought to be doublets.
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lse of the J selection rule (II, 1) gives the possible com-
itions indicated in Table 4. For small resolution, all
resulting lines of the triplet system are threefold,
e then only the splitting of the lower term (which
;he greater) is effective. Even under greatest reso-
on the lines of the principal series (38 —3P) and
the sharp series (3P — 3S) are only threefold, since
5S terms are single. However, each line of the dif-
» series (*P —*D) and of the Bergmann series (3D — 3F)

Singlets

8 3
Dl E,S.Z

20,0004

25,000 1

30,000 1

35,000

40,000

ig.32. EnergyLevel Diagram of CaI [Grotrian (8)]. The diagramshows
the normal terms. (For the anomalous terms, see p. 164.) The n values
true principal quantum numbers. The transitions corresponding to
rograms (a) to (¢) in Fig. 31 are included, among others, in this figure.
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TABLE 4

J VALUES FOR TRIPLET TERMS

Term L J
S 0 1
Z 1IN
: O\b&\
D 2 1\2|)(3
b X
G 4 3 4\5

then consists of six components. The spectrogram of
Fig. 31(b) shows this for the second member of the dif-
fuse series. The two lines of the Bergmann series, shown
in Fig. 31(a) and (c), under the same dispersion are still
simple triplets, since the splitting of the *F terms is con-
siderably less than that of the 3D terms, which is, in turn,
considerably less than that of the *P terms.

Fig. 33 shows, in greater detail, the origin of a compound
triplet (P — 3D) in an energy
level diagram analogous to Fig.
30. Each of the components of
the line triplet would be a narrow
triplet if three of the lines (dotted
lines in the diagram) were not
forbidden by the selection rule.
The group of lines obtained in
1 this way agrees exactly with the
o observed spectrogram in Fig.
abe de f‘ . 31(b).

. It follows from Fig. 33 that
— the separations of the pairs of

Fig. 33. Origin of 2 Com- lines a and b, and d and e, must

l(’z?)‘fl]ld Triplet. [Of. Fig. 31 ¢ equal. From the fact that

this relation is satisfied by an
observed group of six lines in an unknown spectrum, we can
conclude, conversely, that the lines actually belong together
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and form such a compound triplet. Apart from this there
are o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>