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Foreword by Albert Einstein

LTHOUGH & number of technical expositions of the theory of rela-

tivity have been published, Dr. Bergmann’s book seems to me to
satisfy a definite need. It is primarily a textbook for students of
physics and mathematics, which may be used either in the classroom
or for individual study. The only prerequisites for reading the book
are a familiarity with calculus and some knowledge of differential
equations, classical mechanics, and electrodynamics. -

This book gives an exhaustive treatment of the main features of the
theory of relativity which is not only systematic and logically com-
plete, but also presents adequately its empirical basis. The student
who makes a thorough study of the book will master the mathematical
methods and physical aspects of the theory of relativity and will be
in a position to interpret for himself its implications. He will also be
able to understand, with no particular difficulty, the literature of the
field.

I believe that more time and effort miight well be devoted to the
systematic teaching of the theory of relativity than is usual at present
at most universities. It is true that the theory of relativity, par-
ticularly the general theory, has played a rather modest role in the
correlation of empirical facts so far, and it has contributed little to
atomic physics and our understanding of quantum phenomena. It is
quite possible, however, that some of the results of the general theory of
relativity, such as the general covariance of the laws of nature and their
nonlinearity, may help to overcome the difficulties encountered at
present in the theory of atomic and nuclear processes. Apart from this,
the theory of relativity has a special appeal because of its inner con-
sistency and the logical simplicity of its axioms.

Much effort has gone into making this book logically and pedagog-
ically satisfactory, and Dr. Bergmann has spent many hours with me
which were devoted to this end. It is my hope that many students
will enjoy the book and gain from it a better understanding of the ac-
complishments and problems of modern theoretical physics.

A. EINSTEIN
The Institute for Advanced Study



Preface

His book presents the theory of relativity for students of physics
Tand mathematics who have had no previous introduction to the
subjectt and whose mathematical training does not go beyond the
fields which are necessary for studying classical theoretical physics.
The specialized mathematical apparatus used in the theory of rela-
tivity, tensor calculus, and Ricci calculus, is, therefore, developed in the
book itself. The main emphasis of the book is on the development of the
basic ideas of the theory of relativity; it is these basic ideas rather than
special applications which give the theory its importance among the
various branches of theoretical physics.

The material has been divided into three parts, the special theory of
relativity, the general thcory of relativity, and a report on unified
field theories. The three parts form a unit. The author realizes that
many students are interested in the theory of relativity mainly for its
applications to atomic and nuclear physics. It is hoped that these
readers will find in the first part, on the special theory of relativity, all
the information which they require. Those readers who do not intend
to go beyond the special theory of relativity may omit one section of
Chapter V (p. 67) and all of Chapter VIII; these passages contain
material which is needed only for the development of the general theory
of relativity.

The second part treats the general theory of relativity, including the
work by Einstein, Infeld, and Hoffmann on the equations of motion.
The third part deals with several attempts to overcome defects in the
general theory of relativity. None of these theories has been com-
pletely satisfactory. Nevertheless, the author believes that this report
rounds out the discussion of the general theory of relativity by indi-
cating possible directions of future research. However, the third part
may be omitted without destroying the unity of the remainder.

The author wishes to express his appreciation for the help of Pro-
fessor Einstein, who read the whole manuscript and made many valuable
suggestions. Particular thanks are due to Dr. and Mrs. Fred Fender,
who read the manuscript carefully and suggested many stylistic and
other improvements. The figures were drawn by Dr. Fender. Margot
Bergmann read the manuseript, suggested improvements, and did
almost all of the technical work connected with the preparation of the
manuscript. The friendly co-operation of the Editorial Department of
Prentice-Hall, Inc. is gratefully acknowledged.

P. G. B.
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Introduction

Almost all the laws of physics deal with the behavior of certain objects
in space in the course of time. The position of a body or the location
of an event can be expressed only as a location relative to some other
body suitable for that purpose. For instance, in an experiment with
Atwood’s machine, the velocities and accelerations of the weights are
referred to the machine itself, that is, ultimately to the earth. An
astronomer may refer the motion of the planets to the center of gravity
of the sun. All motions are described as motions relative to some
reference body.

We imagine that conceptually, at least, a framework of rods which
extends into space can be rigidly attached to the reference body. Using
this conceptual framework as a Cartesian codrdinate system in three
dimensions, we characterize any location by three numbers, the coérdi-
nates of that space point. Such a conceptual framework, rigidly con-
nected with some material body or other well-defined point, is often
called a frame of reference.

Some bodies may be suitable as reference bodies, others may not.
Even before the theory of relativity was conceived, the problem of
selecting suitable frames of reference played an important part in the
development of science. Galileo, the father of post-medieval physics,
considered the choice of the heliocentric frame to be so important that
he risked imprisonment and even death in his efforts to have the new
frame of reference accepted by his contemporaries. In the last analysis,
it was the choice of the reference body which was the subject of his
dispute with the authorities.

Later, when Newton gave a comprehensive presentation of the physics
of his time, the heliocentric frame of reference had been generally
accepted. Still, Newton felt that further discussion was necessary. To
show that some frames of reference were more suitable for the descrip-
tion of nature than others, he devised the famous pail experiment: He
filled a pail with water. By twisting the rope which supported the pail,
he made it rotate around its axis. As the water gradually began tc
participate in the rotation, its surface changed from a plane to a para-
boloid. After the water had gained the same speed of rotation as the

xiit



xiv INTRODUCTION

pail, he stopped the pail. The water slowed down and eventually came
to complete rest. At the same time, its surface resumed the shape of
a plane.

The description given above is based on a frame of reference con-
nected with the earth. The law governing the shape of the water’s
surface could be formulated thus: The surface of the water is a plane
whenever the water does not rotate. It is a paraboloid when the water
rotates. The state of motion of the pail has no influence on the shape
of the surface.

Now let us describe the whole experiment in terms of a frame of refer-
ence rotating relatively to the earth with a constant angular velocity
equal to the greatest velocity of the pail. At first, the rope, the pail,
and the water ‘“rotate” with a certain constant angular velocity with
respect to our new frame of reference, and the surface of the water is a
plane. Then the rope, and in turn the pail, is “stopped,” and the water
gradually ‘“‘slows down,” while its surface becomes a paraboloid. After
the water has come to a ‘“‘complete rest,” its surface still a paraboloid,
the rope, and in turn the pail, is again made to ‘“rotate’ relatively to
our frame of reference (that is, stopped with respect to the earth); the
water gradually begins to participate in the ‘“rotation,” while its surface
flattens out. In the end, the whole apparatus is ‘“‘rotating” with. its
former angular velocity, and the surface of the water is again a plane.
With respect to this frame of reference, the law would have to be formu-
lated like this: Only when the water “rotates” with a certain angular
velocity, is its surface a plane. The deviation from a plane increases
with the deviation from this particular state of motion. The state of
rest produces also a paraboloid. Again the rotation of the pail is
immaterial.

Newton’s pail experiment brings out very clearly what is meant by
“suitable’’ frame of reference. We can describe nature and we can
formulate its laws using whatever frame of reference we choose. DBut
there may exist a frame or frames in which the laws of nature are funda-
mentally simpler, that is, in which the laws of nature contain fewer
elements than they would otherwise. Take the instance of Newton’'s
rotating pail. If our description of nature were based on the frame of
reference connected with the pail, many physical laws would have to
contain an additional element, the angular velocity w of the pail relative
to a ‘““more suitable” frame of reference, let us say to the earth.

The laws of motion of the planets become basically simpler when they
are expressed in terms of the heliocentric frame of reference instead of
the geocentric frame. That is why the description of Copernicus and
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Galileo won out over that of Ptolemy, even before Kepler and Newton
succeeded in formulating the underlying laws.

Once it was clearly recognized that the choice of a frame of reference
determined the form of a law of nature, investigations were carried out
which established the effect of this choice in a mathematical form.

Mechanics was the first branch of physics to be expressed in a com-
plete system of mathematical laws. Among all the frames of reference
conceivable, there exists a set of frames with respect to which the law
of inertia takes its familiar form: In the absence of forces, the space
codrdinates of a mass point are linear functions of time. These frames
of reference are called inertial systems. It was found that all of the
laws of mechanics take the same form when stated in terms of any one
of these inertial systems. Another frame of reference necessitates a
more involved physical and mathematical description, for example, the.
frame of reference connected with Newton’s rotating pail. The charac-
terization of the motions of mass points not subject to forees is possible
in terms of this frame of reference, but the mathematical form of the
law of inertia is involved. The space coérdinates are not linear func-
tions of time.

Since the laws of mechanics take the same form in all frames of refer-
ence which are inertial systems, all inertial systems are equivalent from
the point of view of mechanics. We can find out whether a given body
is “accelerated” or ‘“‘unaccelerated”’ by comparing its motion with that
of some mass point which is not subject to any forces. But whether a
body is “at rest”’ or “in uniform motion” depends entirely on the inertial
system used for the description; the terms “at rest” and ‘“‘in uniform
motion” have no absolute meaning. The principle that all inertial sys-
tems are equivalent for the description of nature is called the principle
of relativity.

When Maxwell developed the equations of the electromagnetic field,
these equations were apparently incompatible with the principle of rela-
tivity. For, according to this theory, electromagnetic waves in empty
space should propagate with a universal, constant velocity ¢ of about
3 X 10 cm/sec, and this, it appeared, could not be true with respect
to both of two different inertial systems which were moving relatively
to each other. The one frame of reference with respect to which the
speed of electromagnetic radiation would be the same in all directions
could be used for the definition of “absolute rest” and of “absolute
motion.” A number of experimenters tried hard to find this frame of
reference and to determine the earth’s motion with respect to it.

All these attempts, however, were unsuccessful. On the contrary, all
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experiments seemed to suggest that the principle of relativity applied
to the laws of electrodynamics as well as to those of mechanics. H. A.
Lorentz proposed a new theory, in which he accepted the existence of
one privileged frame of reference, and at the same time explained why
this frame could not be discovered by experimental methods. But he
had to introduce a number of assumptions which could not have been
checked by any conceivable experiment. To this extent his theory was
not very satisfactory. Kinstein finally recognized that only a revision
of our fundamental ideas about space and time would resolve the im-
passe between theory and experiment. Once this revision had been
made, the principle of relativity was extended to the whole of physics.
This is now called the special theory of relativity. It establishes the
fundamental equivalence of all inertial systems. It preserves fully their
privileged position among all conceivable frames of reference. The so-
called general theory of relativity analyzes and thereby destroys this
privileged position and is able to give a new theory of gravitation.

In this book we shall first discuss the role of different frames of refer-
ence, from a classical point of view, in mechanics and to some extent in
electrodynamics. Only when the student understands fully the dead-
lock between theoretical conclusions and experimental results in classical
electrodynamics can he appreciate the necessity of revising classical
physics along relativistic lines. Once the new ideas of space and time
are grasped, “relativistic mechanics’’ and ‘“‘relativistic electrodynamics”
are easily understood.

“ The second part of this book is devoted to the general theory of
relativity, while the third part discusses some recent attempts to ex-
tend the theory of gravitation to the field of electrodynamics.
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CHAPTER |

Frames of Reference, Codrdinate Systems,

and Coordinate Transformations

We have spoken of frames of reference and have mentioned Cartesian
codrdinate systems. In this chapter we shall examine more closely the
relationships between different frames of reference and different co-
ordinate systems.

Coordinate transformations not involving time. As a specific in-
stance, let us consider a frame of reference connected rigidly with the
earth, that is, a geocentric frame of reference. In order to express
quantitatively the location of a point relative to the earth, we introduce
a coordinate system. We choose a point of origin, let us say the center
of the earth, and directions for the three axes; for instance, the X-axis
may go from the earth’s center through the intersection of the equator
and the Greenwich meridian, the Y-axis through the intersection of the
equator and the 90°E-meridian, and the Z-axis through the North Pgle.
The location of any point is then given by three real numbers, thé co-
ordinates of that point. The motion of a point is completely described
if we express the three point coérdinates as functions of time. A point
is at rest relatively to our frame of reference if these three functions are
constant.

Without abandoning the earth as the body with which our frame of
reference is rigidly connected, we can introduce another codrdinate
system. We may, for instance, choose as the point of origin some well-
defined point on the earth’s surface, let us say one of the markers of the
United States Coast and Geodetic Survey; and as the direction for the
X-axis the direction due East; for the Y-axis, the direction due North;
and for the Z-axis, the direction straight up, away from the earth’s
center, the earth assumed to be a sphere.

The relationship between the two codrdinate systems is completely
determined if the cotérdinates of any given point with respect to one co-
ordinate system are known functions of its coérdinates with respect to
the other coodrdinate system. Let us call the first codérdinate system S

3



4 FRAMES OF REFERENCE [ Chap. |

and the second coérdinate system S’, and the coérdinates of a certain
point P with respect to S (z, y, z) and the codrdinates of the same point
with respect to S’ (z/, ¥/, 2’). Then, 2z, ¥/, and 2’ are connected with
z, y, and z by equations of the form:

' =cnzr + ey + cuz + 7,
y’= Coa T +szy+0232+f/’, (1-1)
2 = car + Y + ez + 2.

(&', y', 2’) are the codrdinates of the point of origin of S with respect
to S’. The constants c. are the cosines of the angles between the axes
of S and &', ¢y referring to the angle between the X- and the X'’-axis,
cie to the angle between the Y- and the X’-axis, ¢ to the angle between
the X- and the Y’-axis, and so forth.

The transition from one cotrdinate system to another is called a
coordinate transformation, and the equations connecting the point co-
ordinates of the two coodrdinate systems are called transformation
equations.

A coodrdinate system is necessary not only for the description of loca-
tions, but also for the representatiqn of vectors. Let us consider some
vector field, for example, an electrostatic field, in the neighborhood of
the point P. The value and direction of the field strength E at P is
completely determined when we know the components of E with respect
twme stated codrdinate system S. Let us call the components of E
at'¥® with respect to S, E., E,, and E.. The components of E at P
with respect to another system, for instance S’, can be computed if we
know the transformation equations defining the coérdinate transforma-
tion S into S’. These new components, E,, E, , and E,, are inde-
pendent of the translation of the point of origin, that is, the constants
zo, yo, and zo of (1.1). E. is the sum of the projections of E., E,,
and E, on the X'’-axis, and E, and E, are determined similarly,

E; = cul: + cE, + ciE. ’
E; = 021E: + C22Ey + cZ’iEz ’
E; = cukl; + CazEy + cnkE, .

A law which expresses the components of a certain quantity at a point
in terms of the components of the same quantity at the same point
with respect to another codrdinate system is called a transformation law.

Coordinate transformations involving time. We have thus far con-
sidered only transformations which lead from one coérdinate system to
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another one rigidly connected with the same reference body, such as the
earth. But codrdinate transformation offers an important method for
investigating the relationship between two different frames of reference
which move relatively to each other. In such a case, we represent each
of the two frames by one coérdinate system.

Let us compare a frame of reference rigidly connected with the earth
and another one connected with Newton’s pail, which we assume is
rotating with constant angular velocity. We can introduce two co-
ordinate systems which enable us to describe quantitatively the location
of any point with respect to either frame of reference. Let us call these
two coordinate systems S (this S is not identical with the former S)
and S*, respectively, and let us choose the points of origin so that they
both lie on the axis of the pail and coincide; the Z-axis and the Z*-axis
may be identical and pointing straight up. If the pail rotates with a
constant angular velocity « relative to the earth, and if at the time
t = 0 the X-axis is parallel to the X*-axis, the coérdinate transforma-
tion equations take the form

z* = cos wt-x + sin wl-y,
y* = —sinwt - 2 + cos wit-y, (1.2)
2=z J (Fig. 1)

Egs. (1.2) have a form similar to egs. (1.1), except that the cosines are
no longer constant, but functions of time. The relative motion of the
two frames of reference expresses itself in the functional dependence “of
the cix on time.

Eqgs. (1.2) express the relationship between two frames of reference
which are rotating relatively to each other. Very often we are interested
in the relationship between two frames of reference which are in a state
of uniform, translatory motion relative to each other. In that case, it
is convenient to choose the two cooérdinate systems S and S* so that
their corresponding axes are parallel to each other and so that the points
of origin coincide at the time ¢ = 0. The transformation equations
have the form:

¥ =1 — v,
y* =y — o, (1.3)
2=z — v,d,

where v, , v, , and v, are the components of the velocity of S* relatively
to S.

The form of the transformation equations (1.2) and (1.3) depends, of



6 FRAMES OF REFERENCE [ Chap. |

course, on the relative motion of the two frames of reference, but it
also depends on certain assumptions regarding the nature of time and
space: We assume that it is possible to define a time ¢ independently of
any particular frame of reference, or, in other words, that it is possible
to build clocks which are not affected by their state of motion. This

V4 Az*

x*

X

Fig. 1. The coordinate system S* with the codrdinates (z*, y*, z*) rotates
relatively to the codrdinate system S with the coérdinates (z, y, z) with the
angular velocity w.

assumption is expressed in our transformation equations by the absence
of a transformation equation for . If we wish, we can add the equation

=1, (1.4)

expressing the universal character of time explicitly.

The other assumption concerns length measurements. We assume
that the distance between two points—they may be particles—at a
given time is quite independent of any particular frame of reference;
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that is, we assume that we can construct rigid measuring rods whose
length is independent of their state of motion. Egs. (1.3) show with
particular clarity how this assumption is expressed by the form of the
transformation equations. For the distance between two points P; and
P, with the coordinates (x1, y1, 21) and (x2, 2, 22) is

2=V (z2 — )" + (2 — )’ + (2 — 27, (1.5)
and obviously
Viw — 2+ (2 — 90)° + (22 — 22)°
=V — oD’ + @ —y)) 4 @ — 2D’

is satisfied for any time ¢.
We shall have to consider these assumptions again at a later time.

(1.6)




CHAPTER I
Classical Mechanics

The law of inertia, inertial systems. The branch of physics which
from the first was most consistently developed as an experimental science
was Galilean-Newtonian mechanics. The first law to be formulated
was the law of inertia: Bodies when removed from interaction with other
bodies wnll continue in their states of rest or straight-line uniform motion.
In other words, the motion of such bodies ts unaccelerated.

To express the law of inertia in mathematical form, we designate the
location of a body by its three coordinates, x, ¥, and z. 'When a body is
naot at rest, its coérdinates are functions of time. According to the law
of inertia, the second time derivatives of these three functions, the ac-
celerations, vanish when the body is not subjected to forces, that is,

i=0, g§=0 = z=0. (2.1)
2

We use the usual notation % for % The first integral of egs. (2.1) ex-

presses the constancy of the three velocity components,
=4, g = Uy, 2 =1,. (2.2)

The equations expressing the law of inertia contain coérdinates and
refer, therefore, to a certain coordinate system. As long as this co-
ordinate system is not specified, the italicized statement does not have
a precise meaning. For, given any body, we can always introduce a
frame of reference with respect to which it is at rest and, therefore,
unaccelerated. The real assertion is, rather: There exists a coordinate
system (or coérdinate systems) with respect to which all bodies not subjected
to forces are unaccelerated. Coérdinate systems with this property and
the frames of reference represented by them are called inertial systems.

Of course, not all frames of reference are inertial systems. For in-
stance, let us start out from an inertial codrdinate system S, and carry
out a transformation (1.2), leading to S*, a system .rotating with a
constant angular velocity w relative to S. In order to obtain the
transformation laws of egs. (2.1) and (2.2), we differentiate the trans-

8
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formation equations (1.2) once and then a second time with respect
to t. The resulting equations contain z, ¥, 2, z*, y* 2*, and the first
and second time derivatives of these quantities.

We assumed that the codrdinate system S is an inertial system. We
substitute, therefore, for &, ¢, and 2 and for #,.7, and Z the expressions
(2.1) and (2.2) respectively. Thus, we obtain for the starred co-
ordinates and their derivatives

&* = wy* + 1, cos wt + 4, sin wt,

7* = — wzr* 4+ 4, cos wt — 1, sin wt, 2.3)

and
£ = o' z* + 2wy,
* = o' y* — 2wk, (2.4)

2 =0. .

It turns out that in the coérdinate system S* the second time deriva-
tives do not all vanish. Occasionally it is desirable to work with frames
of reference in which accelerations occur which are not caused by real
interactions between bodies. These accelerations, multiplied by the
masses, are treated like real forces, often called “transport forces,”
“inertial forces,” and so forth. In spite of these names, these expres-
sions are not actual forces; they merely appear in the equations formally
in the same way as forces do. In our case, the first terms, w’z*, w’y*,
multiplied by the mass, are called ‘“‘centrifugal forces,” and the last
terms, also multiplied by the mass, are the so-called Coriolis forces.

On the other hand, there are also types of coordinate transformations
which leave the form of the law of inertia (2.1) unchanged. As a case
in point, we shall consider first a transformation which involves no
transition to a new frame of reference, of the type (1.1). The differentia-
tion of eqs. (1.1) with substitution of %, £, and so forth, from egs. (2.1)
and (2.2) produces the equations

. -} -] o e’
* I' = Cnn Uz + Cmuy + Ciauz; = uz,
» -] O o o,
¥ = cuts + Crtly + Coati: = Uy, (2.5)

. o o o o/
2 = catls + Cnly + Cull; = U,
and

L=y =7 =0. (2.6)
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The velocity components transform just as we would expect a vector
to transform, and eqs. (2.1) are reproduced in the new coérdinates with-
out change.

Another transformation preserving the law of inertia is the type (1.3).
It corresponds to the transition from one frame of reference to another
one which is in a state of straight-line, uniform motion relative to the
first frame. Taking the second derivatives of egs. (1.3), we obtain

i* = g, g* =4, 2 = z; (2.7)
and if the motion of the body satisfies the law of inertia (2.1) in the co-
ordinate system S, we have also:

F=g*=2=0, (2.8)

while the first derivatives of the starred coordinates (if eqs. (2.2) apply
to the unstarred codrdinates) are

. %k
=, — v, =1 )

y — Uy = '&:; (2.9

o

ok
y._
=0 —v, =10, .

Eq. (2.8) shows that the law of inertia holds in the new system as well
as in the old one. Eqs. (2.9) express the fact that the velocity com-
ponents in the new coordinate system S* are equal to those in the old
system minus the components of the relative velocity of the two co-
ordinate systems themselves. This law is often referred to as the (clas-
sical) law of the addition of velocities.

Frames of reference and coordinate systems in which the law (2.1) is
valid are inertial systems. All Cartesian codrdinate systems which are
at rest relative to an inertial coordinate system are themselves inertial
systems. Cartesian coordinate systems belonging to a frame of refer-
ence which is in a state of straight-line, uniform motion relative to an
inertial system are also inertial systems. On the other hand, when we
carry out a transition to a new frame of reference which is in some state
of accelerated motion relative to the first one, the corresponding co-
ordinate transformation does not reproduce eqs. (2.1) in terms of the
new coordinates. The acceleration of the new frame of reference rela-
tive to an inertial system manifests itself in apparent accelerations of
bodies not subject to real forces.

Galilean transformations. If the form of a law is not changed by
certain coordinate transformations, that is, if it is the same law in
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terms of either set of codrdinates, we call that law ‘nvariant or covariant
with respect to the transformations considered. The law of inertia (2.1)
is covariant with respect to transformations (1.1) and (1.3), but not
with respect to (1.2).

Transformations (1.1) and (1.3) are of the greatest importance for our
further discussions. They are usually referred to as Galilean transforma-
tions. According to classical physics, any two inertial systems are con-
nected by a Galilean transformation.

The force law and its transformation properties. We shall now discuss
the transformation properties of the basic laws of classical mechanics.
These laws may be formulated thus.

When bodies are subject to forces, their accelerations do not vanish, but
are proportional to the forces acting on them. The ratio of force to accelera-
tion 1s a constant, different for every individual body; this constant is called
the mass of the body.

The total force acting on one body s the vector sum of all the forces caused
by every other body of the mechanical system. In other words, the total
interaction among a number of bodies vs the combination of interactions of
pairs. The forces which two bodies exert on each other lie in their connect-
ing straight line and are equal except that they point in opposite directions;
that s, two bodies can either attract or repel each other. The magnitude of
these forces is a function of their distance only; neither velocities nor ac-
celerations have any influence.

These laws apply to such phenomena as gravitation, electrostatics,
and Van Der Waals forces, but electrodynamics is not included because
the interaction between magnetic fields and electric charges produces
forces whose direction is not in the connecting straight line, and which
depend on the velocity of the charged body as well as on its position.

But whenever the italicized conditions are satisfied, the forces can be
represented by the negative derivatives of the potential energy. The
latter is the sum of the potential energies characterizing the interaction
of any two bodies or ‘“mass points,”.

V = Vie(sir), L < k,
; k=zi-:+1 Hsu) ’ (2.10)

Sik = \/(ivi - Ik)2 + (y; - yk)2 + (Zi - Zk)z-

The indices z and k refer to the interaction between the ¢th and the kth
mass points, and s; is the distance between them. The functions
Vi(sa) are given by the special nature of the problem, for example,
Coulomb’s law, Newton’s law of gravitation, and so forth.
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The force acting on the 7zth mass point is given by

_ 1% _ ",dV,-k:c.;—:z:k}
f"z B ax; B k;l dsix Sik ’
;1'% = ’ dV,‘k Yi — Yk .

S L A e > 4. (211
f'u 9y ; dsix Sik ’ . ( )
f’ =_<£=_ ﬂ/dVikZ,'—Zk

e c')z,- k=1 ds,-k Sk ’

/

The set of equations (2.11), by its form, implies that the force com-
ponents due to the interaction of the 7th and the kth bodies alone are
equal, except for opposite signs. that is,

Vi 9V
a:c.- 6:0,, )

Therefore, the sum of all forces acting on all » mass points vanishes,

éfi.z = éfi.u = };f,-,, = 0. (2.12)

The differential equations governing the motions of the bodies are

m; & = fi,z,\\
mifi = fiy, (2.13)
mi2; = fiz,

where m; is the mass of the 7th body.

We are now going to show that the system of equations determining the
behavior of a mechanical system, (2.10), (2.11), and (2.13) is covariant
with respect to Galilean transformations.

Let us start with eq. (2.10). V depends on the distances s of the
various mass points from each other. How do the s; change (trans-
form) when a cooérdinate transformation (1.1) or (1.3) is carried out?
In order to answer that question, it must be kept in mind that the co-
ordinates of the ¢th and of the kth body are to be taken at the same
time; in other words, that the distance between the two bodies is itself
a function of time. Of course, the codrdinates of the various mass
points transform independently of each other, each set (z;, y:, z:) by
itself, according to the transformation equations (1.1) or (1.3), re-
spectively.

Considering these points, 1t is seen immediately that transformation
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(1.3), corresponding to the straight-line, uniform motion, leaves the
coordinate differences, for example, z; — =z , unchanged, or,

Tr — Tp = T — Tn. (2.14)
Therefore, the s themselves take the same form in the new coérdinate
system S* which they have in S.

The transformation equations (1.1) express the relationship between
two codrdinate systems which are at rest relative to each other and whose
axes are not parallel. Obviously, the distance between two points is
expressed in the same way in either coérdinate system; so that

Vi(zi — 2 + (g — yo)’ + (2 — 22)° l
= V(i — o) + i — ) + Gl —a)®,; (2.15)
Sig = S:k- J

A quantity which does not change its value (at a given point) when a
codrdinate transformation is carried out is called an invariant with
respect to that transformation. The distance between two points is an
invariant.

We have seen that the arguments of the function V, the s , are in-
variant with respect to Galilean coérdinate transformations. There-
fore, the function V itself, the total potential energy of the mechanical
system, is an invariant, too; expressed in terms of the new coérdinates,
it has the same form and takes the same values as in the original co-
ordinate system. Eq. (2.10) is eovasant~ with respect to Galilean
transformations. (W

Let us proceed to egs. (2.11) and again begin with transformation
(1.3). The right-hand sides of eqs. (2.11) contain the derivatives of a
quantity which we already know is an invariant. These derivatives
with respect to the two sets of codrdinates are related to each other by
the equations
A1 v _ oV v _ oV

W s a (2.16)
and therefore, the right-hand side of egs. (2.11) is invariant with respect
to transformations (1.3). Whether the same holds true for the left-hand
side, we shall be able to decide after discussing the transformation
properties of egs. (2.13). It is clear, however, that the equation remains
valid in the new codrdinate system only if both sides transform the
same way. Otherwise, it is not covariant with respect to the trans-
formation considered. We shall have to find out whether the trans-
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formation properties of the right-hand side of eqs. (2.11) are compatible
with those of the left-hand side of egs. (2.13), as both determine the
transformation properties of the forces, f; .

Let us first transform the right-hand side of eqs. (2.11) by a trans-
formation (1.1). Applying the rules of partial differentiation, we obtain

2% aVv oV 1'%
= —tu+ —Ca + —Can,
617{ 61:,- 0 i azi
oV oV oV 1%
= —C12 -+ — *Ca2 + —5°C32, ( (217)
dy; 9Oz oY 9z;
aVv av 2% oV
= — i3+ —5Cu + —-Ca3.
9z; dz; Ay 9z;

The 3n equations (2.17) can be separated into n groups of 3 equations
each, these groups being identical save for the value of <. Each group
transforms as the components of a vector, that is, each component in
one system is equal to the sum of the projections upon it of the three
components in the other system.

Whether the left-hand sides of egs. (2.11) also have vector character
must be decided after discussion of the transformation properties of
eqgs. (2.13).

The left-hand sides of egs. (2.13) are products of masses and accelera-
tions. We have already stated that in classical physics the mass is con-
sidered to be a constant of a body, independent of its state of motion
and invariant with respect to coérdinate transformations.

That the accelerations of a body are invariant with respect to trans-
formatign (1.3) we have already scen in eq. (2.7). Thercfore, the left-
hand sides of egs. (2.13) transform with respect to (1.3) in the same way
as the right-hand sides of egs. (2.11).

Turning to transformations (1.1), we know that

&; = cudi + cu¥i + cwi:, and so forth, (2.18)

but because the c,, have the significance of cosines of angles, and because
the value of a cosine does not depend on the sign of the angle,

cos ¢ = cos (—a),
it is also true that
&; = cudi + cali + ca: , and so forth. (2.18a)

Again, the left-hand sides of egs. (2.13) transform in exactly the same
way as-the right-hand sides of (2.11), in this case as n vectors.

Egs. (2.13) can be considered as the equations defining the forces
f;. We conclude, therefore, that the forces themselves transform so
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that both eqs. (2.11) and (2.13) are covariant. With respect to spatial,
orthogonal transformations of the coordinate system, the forces are vectors,
and they are invariant with respect to transformations . representing a
straight-line uniform motion of one system relative to the other. These rela-
tions can be expressed in a slightly different form. By eliminating the
quantities f; from egs. (2.11) and (2.13) we can combine them into new
equations of the form

ﬂ-f + mi; = 0,W

6:0,-

av L

—ay‘- -+ my; = O, > (219)
-‘?Z + mz; = 0.

62,'

These equations contain the essential physical statements of egs. (2.11)
and (2.13), but do not bring out so clearly the force concept.

The result of the above consideration is that the two sides of each of
equations (2.11) and (2.13) transform in the same way, and that, there-
fore, these equations remain valid when arbitrary Galilean transforma-
tions are carried out.

Equations which do not change at all with the transformation (that
is, the terms of which are invariants) are called tnvariant. Equations
which remain valid because their terms, though not invariant, transform

according to identical transformation laws (such as the terms %I—/ and

T3
]

mi; , and so forth, in egs. (2.19)) are called covariant. At

The covariance of equations is the mathematical property which
corresponds to the existence of a relativity principle for the physical
laws expressed by those equations. In fact, the relativity principle of
classical mechanics is equivalent to our result, that the laws of me-
chanics take the same form in all inertial systems, that is, in all those
coordinate systems which can be obtained by subjecting any one inertial
system to arbitrary Galilean transformations.

The other branches of mechanics, such as the treatment of continuous
-natter (the theory of elastic bodies and hydrodynamics) or the me-
chanics of rigid bodies, can be deduced from the mechanics of free mass
points by introducing suitable interaction energies of the type (2.10),
and by carrying out certain limiting processes. It is evident, even
without a detailed treatment of these branches of mechanics, that the
results obtained apply to them as well as to the laws of motion of free
mass points.



CHAPTER 1l
The Propagation of Light

The problem confronting classical optics. During the nineteenth cen-
tury, a new branch of physics was developed which could not be brought
within the realm of mechanics. That branch was electrodynamics. As
long as only electrostatic and magnetostatic effects were known, they
could be treated within the framework of mechanics by the introduction
of electrostatic and magnetostatic potentials which depended only on
the distance of the electric charges or magnetic poles from each other.

The interaction of electric and magnetic fields required a different
treatment. This was brought out clearly by Oersted’s experiment. He
found that a magnetized needle was deflected from its normal North-
South direction by a current flowing through an overhead North-South
wire. The sign of the deflection was reversed when the direction of the
current was reversed. Obviously, the magnetic actions produced by
electric currents, that is, by moving charges, depend not only on the
distance but also on the velocity of these charges. Furthermore, the
force does not have the direction of the connecting straight line. The
concepts of Newton’s mechanics are no longer applicable.

Maxwell succeeded in formulating the laws of electromagnetism by
introducing the new concept of “field.” As we have seen in the pre-
ceding chapter, in mechanics a system is completely described when the
locations of the constituent mass points are known as functions of time.
In Maxwell’s theory, we encounter a certain number of “field variables,”
such as the components of the electric and magnetic field strengths.
While the point coérdinates of mechanics are defined as functions of the
time coordinate alone, the field variables are defined for all values both
of the time coordinate and of the three space codrdinates, and are thus
functions of four independent variables.' -,

1 In the mechanics of continuous media, we find variables which resemble field
variables: The mass density, momentum density,stress components, and so forth;
but they have only statistical significance. They are the total mass of the av-
erage number of particles per unit volume, and so forth. In electrodynamics,
however, the field variables are assumed to be the basic physical quantities.

16
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In Maxwell’s field theory it is further assumed that the change of the
field variables with time at a given space point depends only on the
immediate neighborhood of the space point. A disturbance of the field
at a point induces a change of the field in its immediate neighborhood,
this in turn causes a change farther away, and thus the original disturb-
ance has a tendency to spread with a finite velocity and to make itself
felt eventually over a great distance. ‘“Action at a distance’”’ may thus
be produced by the field, but always in connection with a definite lapse
of time. The laws of a field theory have the form of partial differential
equations containing the partial derivatives of the field variables with
respect to the space coordinates and with respect to time.

The force acting upon a mass point is determined by the field in the
immediate neighborhood of the mass point. Conversely, the presence
of the mass point may and usually does modify the field.

Since the structure of Maxwell’s theory of electromagnetism is so
different from Newtonian mechanics, the validity of the relativity prin-
ciple in mechanics by no means implies its extension to electrodynamics.
Whether or not. this principle applies to the laws of the electromagnetic
field must be the subject of a new investigation.

A complete investigation of this kind would have to establish the
transformation laws of the electric and magnetic field intensities with
respect to Galilean transformations, and then determine whether the
transformed quantities obey the same laws with respect to the new
coordinates. Such investigations were carried out by various scientists,
among them H. Hertz and H. A. Lorentz. But we can obtain the most
important result of these investigations by much simpler considerations.
Instead of treating Maxwell’s field equations themselves, we shall con-
fine ourselves at present to one of their aspects, the propagation of
electromagnetic waves.

Maxwell himself recognized that electromagnetic disturbances, such
as those produced by oscillating charges, propagate through space with
a velocity which depends on the electric nature of the matter present in
space. In the absence of matter, the velocity of propagation is inde-
pendent of its direction, and equal to about 3 X 10" e¢m sec™. This is
equal to the known speed of light; Maxwell assumed, therefore, that
light was a type of electromagnetic radiation. When Hertz was able to
produce electromagnetic radiation by means of an electromagnetic appa-
ratus, Maxwell’s theory of the clectromagnetic field and his electro-
magnetic theory of light were accepted as an integral part of our physical
knowledge.

Electromagnetic radiation propagates in empty space with a uniform,
constant velocity (hereafter denoted by ¢). This conclusion can be
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formulated without taking into account the involved interrelation be-
tween magnetic and electric fields. That is why it is valuable for us, for
we can study the transformation properties of this law of propagation
without working out the transformation laws of the field variables.

It is now possible to decide whether the laws of the electromagnetic
field are covariant with respect to Galilean transformations. Let us
consider a coordinate system S, with respect to which the law of the
uniform speed of light holds. If we carry out a Galilean transformation
of the type (1.3), corresponding to a uniform translatory motion of the
new system S* relative to S, then the speed of the same light rays cannot
be equal to ¢ in all directions in terms of the new system S*. If the
direction of a light ray is designated by the cosines of its angles «, £,
and v, measured from the three axes of S, its velocity components with
respect to S are '

Uz = C-COS a,
U, = c-cos B, 3.1)
U, = C+COS 7,
with
Jo8” @ + cos’ B + cos’ vy = 1. (3.2)

According to eq. (2.9), the velocity components with respect to the new
system S* are
*

U; = CCOS a — Vg,

u: =ccos B — v,, (3.3)

Uy = ccosy — v,
and the speed of light depends on its direction as indicated by the
equation

Vil £ u +ul

=V + v — 2¢(v; cos @ + v, cos B + v, cosv). (3.4)

It equals ¢ only for a certain cone of directions with the vector v as its
axis. In the direction of v, the speed of the light with respect to S*
will be equal to ¢ — v, and in the opposite direction it will be ¢ 4 v.
It appears, thus, that the principle of relativity is incompatible with
the laws of electromagnetic radiation, and therefore with the theory of
electromagnetic fields. If confidence in Maxwell’s equations is at all
justified, there must exist one frame of reference, presumably an inertial
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system, with respect to which the field equations take their standard
form. Any frame of reference which is in a state of motion relative to
this standard frame would have to be considered as a less suitable frame,
at least from the point of view of electromagnctism, even though the
relative motion might be a uniform, straight-line, translatory motion.
The principle of relativity, as we have formulated it in the preceding
chapter, would apply only to mechanics, not to the whole of physics.

This conclusion would not have been accepted without resistance.
Mechanics was generally regarded as the most trustworthy part of our
physical knowledge, and the principle of relativity was held to be a
fundamental feature of the whole of nature. Several attempts were
made to overcome these difficulties. We shall now consider the more
important ones.

The corpuscular hypothesis. One hypothesis was that the speed of
light equals ¢ with respect to @ frame of reference connected with the
source of radiation, just as the speed of a bullet fired from a moving
train would be referred to a frame connected with the train.

This assumption is, of course, incompatible with a field theory of
light, as it was proposed by Maxwell, and would be rather suggestive of
a corpuscular theory of the type which Newton had believed in. But it
is consistent with the principle of relativity. The law of propagation
contains explicitly the velocity of a material body, the source of light.
Thus, the speed of light relative to an inertial system would transform
just like the velocity of a material body, and the law of propagation
would be covariant with respect to Galilean transformations.

But experimental evidence spoke against this hypothesis. If the
speed of light depended on its source, then double stars should give rise
to peculiar phenomena. Two double stars are separated by a very small
distance compared with their distance from our solar system. They
also have comparatively great velocities relative to each other. We
would, therefore, expect that whenever they are in such a position that
one of them is rapidly moving away from us while the other’s motion
is directed toward us, the light emitted by them simultaneously should
arrive here at very different times. Consequently, their motion around
each other and together through space would appear to us completely
distorted. In some cases, we should observe the same component of the
double star system simultaneously at different places, and these “ghost
stars” would disappear and reappear in the course of their periodic
motions. X

These effects would be proportional to the distance of the doublestar
system from the earth, for the time of arrival would be equal to the dis-
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tance divided by the speed of light. If » is the variation of velocity of
one component of the double star, one would have

t=d/ec, At/Ac ~ —i, At~ =2
1 1. - ¢ c
(d is the distance between double star and earth, ¢ is the speed of light,
and ¢ is the mean time for light to reach the earth). Reasonable

assumptions for the order of magnitude of the quantities v, d, and ¢ are:
¢ ~ 10" em® sec?,
» ~ 10° cm sec™,
d > 10" c¢m;
therefore,
At > 10° sec.

As there are many double star systems for which d exceeds 10 em and
which have periods less than 10° sec, the resulting effects could not
escape observation.

However, no trace of any such effect has ever been observed. This is
sufficiently conclusive to rule out further consideration of this hypothesis.

The transmitting medium as the frame of reference. Another hy-

! pothesis was that, whenever light was transmitted through a material

! medium, this medium was the “local”’ privileged frame of reference.

Within the atmosphere of the earth, the speed of light should be uniform
with respect to a geocentric frame of reference.

This hypothesis, too, is unsatisfactory in many respects. Let us
assume, for the sake of the argument, that it is the transmitting medium
and its state of motion which determine the speed of light. Suppose,
now, that electromagnetic radiation goes from one medium in a certain

" state of motion to a second medium in a different state of motion. The

" speed of light would be bound to change, this change depending on the
relative velocity of the two media and on the direction of the radiation
(also, of course, on the difference of indices of refraction). If this experi-
ment should be carried out with increasingly rarefied media, the inter-
action between matter and radiation would become less and less, as far
as refraction, scattering, and so forth, are concerned, but the change of u
would remain the same. In the case of infinite dilution, that is, of a
vacuum, we should have a finite jump ina without apparent cause.

There is also experimental evidence bearing on this hypothesis. In
order to obtain information on the influence of a moving medium on the
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speed of light, Fizeau carried out the following experiment. He sent a
ray of light through a pipe filled with a flowing liquid, and measured the
speed of light in both the negative and positive directions of flow. He
determined these speeds accurately by measuring the position of inter-
ference fringes.

The experiment showed that the speed of light does depend on the
velocity of the flowing liquid, but not to the extent that the velocities of
the light and of the medium could simply be added. If we denote the
speed of light by ¢, the velocity of the liquid by v, and the index of
refraction by n, we should expect, according to our present assumption,
that the observed speed of light is

c
n

u=-==0v, 3.5)
the sign depending on the relative directions of the light and the flow.
The actual result was that the change of speed of light is, within the
limits of experimental error, given by

u=%:l:v<1—n—1-2>. (3.6)

This experimental result is consistent with the first objection. For,
as the medium is increasingly rarefied, the index of refraction n ap-
proaches the value 1, the dependence of « on v becomes negligible, and,
in the limiting case of infinite dilution, u becomes simply c.

Another effect which indicates that the speed of light does not depend
on the motion of a rarefied medium of transmission is that of aberration.
Fixed stars at a great distance change their relative positions in the sky
in a systematic way with a period of one year. Their paths are ellipses
around fixed centers, with the major axis)in all cases approximately 41"
of arc. Stars near the celestial pole carry out movements that are
approximately circles, while stars near the ecliptic have paths which are
nedrly straight lines.

Fig. 2 illustrates the way the star is seen away from its “normal”
position (the center of the ellipse) at two typical points of the path of
the earth around the sun.

Aberration can be explained thus (Fig. 3): As the telescope is rigidly
connected with the earth, it goes through space at an approximate rate
of 3 X 10° cm sec™. Therefore, when a light ray enters the telescope,
let us say from straight above, the telescope must be inclined in the
indicated manner, so that the lower end will have arrived straight below
the former position of the upper end by the time that the light ray has
arrived at the lower end. The tangent of the angle of aberration, «,
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must be the ratio between the distance traversed by the earth and the
distance traversed by the light ray during the same time interval, or the
ratio between the speed of the earth and the speed of light. This
ratio is

Vearth ~ 3 X 106

—4l
c 35 108~ 10

the angle corresponding to that tangent is 20.5”, the amount of greatest
aberration from the center of the ellipse.

To Star

Apparent
Direction \

To Star

Fig. 2. The apparent change in position of a fixed star during a year (aberra-
tion). This change is exaggerated in the figure and amounts to not more than
about 20”.5.

This explanation of aberration again contradicts the assumption that
the transmitting medium is decisive for the speed of light. For if this
assumption were true, the light rays, upon entering our atmosphere,
would be “swept” along, and no aberration would take place.

The absolute frame of reference. All these arguments suggested the
independence of the electromagnetic laws from the motion of éither the
source of radiation or the transmitting medium. The other alternative,
it appeared, was to give up the principle of relativity and to assume that
there existed a universal frame of reference with respect to which the
speed of light was independent of the direction of propagation. As
mentioned before, the equations of the electromagnetic field would have
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taken their standard form with respect to that frame. As the accelera-
tions of charged particles are proportional to the field, this frame could
be expected to be an inertial system, so that the accelerations would tend
to zero with the field.

The experiment of Michelson and Morley. On the basis of this
assumption, Michelson and Morley devised an experiment which was
designed to determine the motion
of the earth with respect to the
privileged frame of reference in
which the speed of light. was to be
uniform. The essential idea of
their experiment was to compare
the apparent speed of light in two
different directions.

Before studying their experimen-
tal set-up, let us discuss the ex-
pected results from the standpoint
of this new hypothesis. The earth
itself cannot be the privileged
frame of reference with respect to
which the equations of Maxwell
hold, for it is continually subject
to the gravitational action of the
sun; and in a frame of reference
connected with the center of grav-
itation of our solar system, the
velocity of the earth is of the
order of 3 X 10° ecm sec™'. It
changes, therefore, about 6 X 10°
cm sec” ' in the course of one half-
year relatively to a frame of reference which approximates an inertial
system better than the earth does. Therefore, even if the earth
could at any time be identified with the state of motion of the privi-
leged frame of reference, it would have a speed of 6 X 10° cm sec™
half a year later relative to the privileged system.

In any case, it has a speed of at least 3 X 10° cm sec™" relative to any
inertial system through 6 months of the year. The speed of light is
about 3 X 10" cm sec™’. If it is possible to compare the speed of
light in two orthogonal directions with a relative accuracy better than
107, and if the experiments are carried out over a period exceeding 6
months, the effects of the motion of the earth would become noticeable.

We proceed now to a description of Michelson and Morley’s experi-

Fig. 3. Explanation of aberration.
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ment (Fig. 4). Light from a terrestrial source L is separated into two
parts by a thinly silvered glass plate P. At nearly equal distances
from P, and at right angles to each other, two mirrors S; and S, are
placed which reflect the light back to P. There, a part of each of the
two rays reflected by S; and S., respectively, are reunited and are
observed through a telescope F. Since the light emanating from L has

1\
> F

N e L,
T ]
P S,
l
S

Fig. 4. The Michelson-Morley apparatus.

travelled almost equal distances, L — P — §; — P — F and
L — P — §; — P — F, respectively, interference fringes are observed,
and their exact location depends on the difference between the dis-
tances /; and L, .

So far, we have assumed that the speed of light is the same in all
directions. If this assumption is dropped, the position of the inter-
ference fringes in I will also depend on the difference in the speeds along
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Iy and I;. Let us assume that the earth, and with it the apparatus, is
moving, relatively to the “absolute’” frame of reference, along the direc-
tion of I; at the rate of speed v. With respect to the apparatus, the
speed of light along the path P — S, equals (¢ — v), and along the path
S;— Pitis (¢ + v). The time required to travel the path P — §; — P
will be

L L — 2l1/C
c—v c+v 11—/’

The relative speed of the light travelling along the path P — S, — P
will also be modified. While the light travels from P to S., the whole
apparatus is moving sideways a distance §,

)

t1=

3.7

L

v v
—_— = -, 6 = - —_——— (3‘8)
VE+§ ¢ cv/1 — /e
and the actual distance travelled by the light is
— l
L=vVE+ s = = (3.9)

Vi— /e

On the way back, the light has to travel an equal distance. The total
time required by the light for the path P — S, — P is, therefore,
2L/c
b= — . (3.10)
After the apparatus has been swung 90° about its axis, the times
required to travel the paths P — S; — P and P — S, — P are, respec-
tively,

Zl — 2l1/C
1 — 2/c2
\/1/ vle (3.11)
s 2bL/c
b= 1 — v?/ct’

The time differences between the two alternative paths are, therefore,
before and after the apparatus has been swung around,

2/c ( A )
At =t — b = — L), 3.12
' V1= ¥/ \\V1 — v*/c ’ (812)
and
- - - 2/6 < ly >
' V1= v?/c? ' V1 — /e ( 2)
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The change in At which is brought about by rotating the apparatus is,
thercfore,
- 2/c 1
V1 — v*/c ' : V1 = v?/c
As (v/c)’ is of the order of magnitude of 107°, we shall expand the right-
hand side of eq. (3.13) into a power series in (v/ ¢)? and consider only the
first nonvanishing term. We obtain the approximate expression

- 1> . (3.13)

2
Al — Al = —% (I + B) 3;-2 (3.14)

We should expect the interference fringes in the telescope to shift
because of this change in the time difference A¢{. The amount of this
shift, expressed in terms of the width of one fringe, would be equal to

(At — At) divided by the time of one period of oscillation, % ,

As v v
—=—W+hk5. (3.15)
§ ¢ ¢

v is the velocity of the earth relative to the ‘‘absolute” frame of

reference, presumably at least of the order 3 X 10° cm sec™. (v/c)? is,
therefore, of the order 10", Z— is the wave number, and for visible light,
about 2 X 10* cm™. We have, therefore,

As I+ 1
5~ TEx 10 em (8.15a)

By using multiple reflection, Michelson and Morley were able to work
with effective lengths I; and L of several meters. Any effect should
have been clearly observable after all the usual sources of error, such as
stresses, temperature effects, and so forth, had been eliminated. Never-
theless, no effect was observed.

An impasse was at hand: No consistent theory would agree with the
results of Fizeau’s experiment, the Michelson-Morley experiment, and
the effect of aberration. A great number of additional experiments were
performed along similar lines. Their discussion can be omitted here,
because they did not change the situation materially. What was needed
was not more experiments,’but some new theory which would explain
the apparent contradictions.

The ether hypothesis. Before launching into an explanation of that
new theory, the theory of relativity, we mention a hypothesis which



Chap. 1] THE PROPAGATION OF LIGHT <7
today has only historical significance. Physicists had been accustomed
to think largely in terms of mechanics. When Faraday, Maxwell, and
Hertz created the first field theory, it was only natural that attempts
were made by many physicists to explain the new fields in terms of
mechanical concepts. Maxwell and Hertz themselves contributed to
these efforts. Within the realm of mechanics itself, there existed a
branch which used concepts and methods resembling those of field
physics, namely, the mechanics of continuous media. So the electro-
magnetic fields were explained as the stresses of a hypothetical material
medium, the so-called ether.

There are many reasons why this interpretation of the electromag-
netic field finally had to be abandoned. Among them are: the ether
would have to be endowed with properties not shared by any known
medium; it would have to penetrate all matter without exhibiting any
frictional resistance; and it would have no mass and would not be
affected by gravitation. Also, Maxwell’s equations are different in
many ways from the equations to which elastic waves are subject.
There exists, for instance, no analogy in electrodynamics to the “longi-
tudinal”’ elastic waves.

At the end of the nineteenth century, however, the ether was regarded
as a most promising and even necessary hypothesis. Naturally, at-
tempts were made to apply this concept to the problem discussed in this
chapter, namely, to find that co6rdinate system in which the speed of
light is equal to ¢ in all directions. The idea of the ether suggested that
it might be the codrdinate system in which the ether is at rest. That
theory, however, does little to solve the fundamental difficulty. All
that it does is reword the problem; for, in order to find out what the state
of motion of the ether really is, we would have no other means than to
measure the speed of light. The outcome of the Michelson-Morley
experiment would, therefore, suggest that the ether is dragged along
with the earth, as far as the immediate neighborhood of the earth is
concerned. The motion of small masses, such as in Fizeau’s experiment,
would carry the ether along, but not completely. But these hypotheses
could not account for aberration. The existence of the aberration effect
would be consistent with an ether hypothesis only if the earth could
glide through the ether without carrying it along, even right on its
surface, where our telescope picks up the light.



CHAPTER IV

The Lorentz Transformation

Several decades of experimental research showed that there was no
way of determining the state of motion of the earth through the “ether.”
All the evidence seemed to point toward the existence of a ‘‘relativity
principle” in optics and electrodynamics, even though the Galilean
transformation equations ruled that out.

Nevertheless, Fitzgerald and especially H. A. Lorentz tried to pre-
serve the traditional transformation equations and still account theo-
retically for the experimental results. Lorentz was able to show that
the motion of a frame of reference through the ether with a velocity v
would produce only “second-order effects’; that is, all observable devia-
tions from the laws which were valid with respect to the frame connected
with the ether itself would be proportional not to »/c, but to (v/c)

One of these expected second-order effects was that, in a system
moving relatively to the ether, a light ray would take longer to go out
and back over a fixed distance parallel to the direction of the motion
than over an equal distance perpendicular to the motion. The Michel-
son-Morley experiment was designed to measure that effect. In order
to explain the negative outcome of the experiment, Fitzgerald and
Lorentz assumed that scales and other “rigid” bodies moving through
the ether contracted in the direction of the motion just sufficiently to
offset this effect. This hypothesis preserved fully the privileged char-
acter of one frame of reference (the ether). The negative result of the
Michelson-Morley experiment was not explained by the existence of an
“optical relativity principle,” but was attributed to an unfortunate com-
bination of effects which made it impossible to determine experimentally
the motion of the earth through the ether.

Einstein, on the contrary, accepted the experiments as conclusive evi-
dence that the relativity principle was valid in the field of electro-
dynamics as well as in mechanics. Therefore, his efforts were directed
toward an analysis and modification of the Galilean transformation
equations so that they would become compatible with the relativity
principle in optics. We shall now retrace this analysis in order to derive
the new transformation laws,

28



Chap. IV ] THE LORENTZ TRANSFORMATION 29

In writing down transformation equations, we always made two
assumptions, although we did not always stress them: That there exists
a universal time ¢ which is defined independently of the coordinate sys-
tem or frame of reference, and that the distance between two simulta-
neous events is an invariant quantity, the value of which is independent
of the coérdinate system used.

The relative character of simultaneity. Let us take up the first
assumption. As soon as we set out to define a universal time, we are
confronted with the necessity of defining simultaneity. We can com-
pare and adjust time-measuring devices in a unique way only if the
statement ‘“The two events A and B occurred simultaneously’”’ can be
given a meaning independent of a frame of reference. That this can be
done is one of the most important assumptions of classical physics; and
this assumption has become so much a part of our way of thinking, that
almost everyone has great difficulty in analyzing its factual basis.

To examine this hypothesis, we must devise an experimental test
which will decide whether two events occur simultaneously. Without
such an experiment (which can be performed, at least in principle), the
statement ‘“The two events A and B occurred simultaneously’ is devoid of
physical significance.

When two events occur close together in space, we can set up a
mechanism somewhat like the coincidence counters used in the investi-
gation of cosmic rays. This mechanism will react only if the two events
occur simultaneously.

If the two events occur a considerable distance apart, the coincidence
apparatus is not adequate. In such a case, signals have to transmit
the knowledge that each event has occurred, to some location where
the coincidence apparatus has been sct up. If we had a method of
transmitting signals with infinite velocity, no great complication would
arise. By “infinite velocity” we mean that the signal transmitted
from a point P; to another point P, and then back to P; would return
to P; at the same time as it started from there.

Unfortunately, no signal with this property is known. All actual
signals take a finite time to travel out and back to the point of origin,
and this time increases with the distance traversed. In choosing the
type of signal, we should naturally favor a signal where the speed of
transmission depends on as few factors as possible. Ilectromagnetic
waves are most suitable, because their transmission does not require
the presence of a material medium, and because their speed in empty
space does not depend on their direction, their wave length, or their
intensity. As the recording device, we can use a coincidence circuit
with two photon counters.
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To account for the finite time lost in transmission, we set up our
apparatus at the midpoint of the straight line connecting the sites of
the two events A and B. Each event, as it occurs, emits a light signal,
and we shall call the events simultaneous if the two light signals arrive
simultaneously at the midpoint. This experiment has been designed
to determine the simultaneity of two events without the use of specific
time-measuring devices. It is assumed that simultaneity as defined by
this experiment is “transitive,” meaning that if two events A and B
occur simultaneously (by our definition), and if the two events A and C
also occur simultaneously, then B and C are simultaneous. It must
be understood that this assumption is a hypothesis concerning the
behavior of electromagnetic signals.

Granted that this hypothesis is correct, we still have no assurance
that our definition of simultaneity is independent of the frame of refer-
ence to which we refer our description of nature. Locating two events
and constructing the point midway on the connecting straight line
necessarily involves a particular frame and its state of motion.

Is our definition invariant with respect to the transition from one
frame to another frame in a different state of motion? To answer this
question, we shall consider two frames of reference: One connected
with the earth (S), the other with a very long train (S*) moving along
a straight track at a constant rate of speed. We shall have two ob-
servers, one stationed on the ground alongside the railroad track, the
other riding on the train. Each of the two observers is equipped with
a recording device of the type described and a measuring rod. Their
measuring rods need not be the same length; it is sufficient that each
observer be able to determine the point midway between two points
belonging to his reference body—ground or train.

Let us assume now that two thunderbolts strike, each hitting the
train as well as the ground and leaving permanent marks. Also sup-
pose that each observer finds afterwards that his recording apparatus
was stationed exactly midway between the marks left on his reference
body. In Fig. 5, the marks are denoted by A, B, A*, and B*, and the
coincidence apparatus by C and C*. Is it possible that the light sig-
nals issuing from A, 4* and from B, B* arrive simultaneously at C and
also simultaneously at C*?

At the instant that the thunderbolt strikes at A and A*, these two
points coincide. The same is true of B and B*. If eventually it turns
out that the two bolts struck simultaneously as observed by the ground
observer, then C* must coincide with C at the same time that A coin-
cides with A* and B with B* (that is, when the two thunderbolts
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strike).! It is understood that all these simultaneities are defined with
respect to the frame S.

Because of the finite time needed by the light signals to reach C and
C*, C* travels to the left (Fig. 5, stages b, ¢, d). The signal issuing
from A, A* reaches C, therefore, only after passing C* (stages b, ¢);
while the light signal from B, B* reaches C before it gets to C* (stages
¢, d). As a result, the train observer finds that the signal from 4, 4*
reaches his coincidence apparatus sooner than the signal from B, B*
(stages b, d).

A Ic* B’
(@ A I'c B
/1IN Ic* B' )
b 7y > Ic ~ B!
Yy Ic* Bl )

IA* Ic* B*l )

(d A o~ s > Bl

Fig. 5. The two events occurring at 4, A* and at B, B*, respectively, appear
simultaneous to an observer at rest relative to the ground (S), but not to an
observer who is at rest relative to the train (S*). At (a) the two events occur,
(b) the light signal from A, A* arrives at C*, (c) the light signals from both events
arrive at C, and (d) the light signal from B, B* arrives at C*,

This does not imply that the ground has a property not possessed
by the train. It is possible for the thunderbolts to strike so that the
light signals reach C* simultaneously. But then the signal from A, 4*
will arrive at C after the signal from B, B*. In any case, it is impos-
sible for both recording instruments, at C and at C*, to indicate that
the two thunderbolts struck simultaneously.

1 Otherwise, the distances A*C* and B*C* would not appear equal from the
point of view of the ground observer; we shall explain later why we do not assume
anything of this kind.
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We conclude, therefore, that two events which are simultaneous with
respect to one frame of reference are in general not simultaneous with
respect to another frame.”

The length of scales. Our conclusion affects the evaluation of length
measurements. We have assumed that the ground observer and the
train observer are able to carry out length measurements in their re-
spective frames of reference. Two rods which are at rest relatively to
the same frame of reference are considered equal in length if they can
be placed alongside each other so that their respective end points E,
E* and FF, F* coincide. Two distances which are marked off on two
different reference bodies moving relatively to each other can be com-
pared by the same method, provided these distances are parallel to
each other and perpendicular to the direction of the relative motion.
However, if the two distances are parallel to the direction of relative
motion, and if they are travelling along the same straight line, their
respective end points will certainly coincide at certain times. The twa
distances EF and E*F* are considered equal if the two coincidences
occur simultaneously. But whether they occur simultaneously de-
pends on the frame of reference of the observer. Thus, in the case of
the thunderbolts, the two distances AB and A*B* appear equal to the
ground observer; the train observer, on the other hand, finds that 4
coincides with A* before B coincides with B*, and concludes that A*B*
is longer than AB. In other words, not only the simultaneity of events,
but also the result of length measurements, depends on the frame of
reference.

The rate of clocks. The frame of reference of the observer also deter-
mines whether two clocks at a considerable distance from each other
agree (that is, whether their hands assume equivalent positions simul-
taneously). Moreover, if the two clocks are in different states of mo-
tion, we cannot even compare their rates independently of the frame of
reference. To illustrate this, let us consider two clocks D and D* one
stationed alongside the track and the other on the train. Let us assume
that the two clocks happen to agree at the moment when D* passes D.
We can say that D* and D go at the same rate if they continue to agree.

2 Qur definition of simultaneity is, of course, to a certain degree arbitrary.
However, it is impossible to devise an experiment by means of which simultaneity
could be defined independently of a frame of reference. From the outcome of
the Michelson-Morley experiment, we conclude that the law of propagation of
light takes the same form in all inertial systems. Had the outcome of the
Michelson-Morley experiment been positive, in other words, if it were possible
to determine the state of motion of the ‘“‘ether,” we should naturally have based

our definition of simultaneity on the frame of reference connected with the ether,
and thereby have given it absolute significance.
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But after a while, D* and D will be a considerable distance apart; and,
as we know from our earlier considerations, their hands cannot assume
equivalent positions simultaneously from the points of view both of
the ground observer and of the train observer.

The Lorentz transformation. The above considerations help us to
remove the apparent contradiction between the law of the propagation
of electromagnetic waves and the principle of relativity. If it is im-
possible to define a universal time, and if the length of rigid rods cannot
be defined independently of the frame of reference, it is quite conceivable
that the speed of light is actually the same with respect to different
frames of reference which are moving relatively to each other. We
are now in a position to show that the classical transformations con-
necting two inertial systems (Galilean transformation equations) can be
replaced by new equations which are not based on the assumptions of
a universal time and the invariant length of scales, but which assume
at the outset the invariant character of the speed of light.

In the derivation of these new transformation equations, we shall
accept the principle of relativity as fundamental; that is, the transforma-
tion equations must contain nothing which would give one of the two
coordinate systems a preferred position as compared with the other
system. In addition, we shall assume that the transformation equa-
tions preserve the homogeneity of space; all points in space and time
shall be equivalent from the point of view of the transformation. The
equations must, thercfore, be linear transformation equations. This is
why we considered the two distances A*C* and B*C* equal in terms of
S-coérdinates as well as in S*-coordinates (see page 31).

Let us consider two inertial coordinate systems, S and S*. S* moves
relatively to S at the constant rate v along the X-axis; at the S-time
t = 0, the points of origin of S and S* coincide. The X*-axis is parallel
to the X-axis and, in fact, coincides with it. Points which are at rest
relative to S* will move with speed v relative to S in the X-direction.
The first of our transformation equations will, thus, take the form
(4.1)

* — -
z* = alz — vb). v . g
where a is a constant to be determined later.

It is not quite obvious that a straight line which is perpendicular to
the X-axis should also be perpendicular to the X*-axis (the angles to
be measured by observers in S and S* respectively). But if we did
not assume that it was, the left-right symmetry with respect to the
X-axis would be destroyed by the transformation. For similar reasons,
we shall assume that the Y- and the Z-axes are orthogonal to each
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other, as observed from either system, and that the same is true of the
Y*- and Z*-axes.

As mentioned before, we can compare the lengths of rods in different.
states of motion in an invariant manner if they are parallel to each
other and orthogonal to the direction of relative motion. If their re-
spective end points coincide, it follows from the principle of relativity
that they are the same length. Otherwise, the relationship between S
and S* would not be reciprocal.

On the basis of this, we can formulate two further transformation
equations,

y* =y,
(4.2)

¥ =z,

To complete this set of equations, we have to formulate an equation
connecting t*, the time measured in S*, with the time and space coordin-
ates of S. t* must depend on {, x, y, and z linearly, because of what
we have called the ‘“homogeneity” of space and time. For reasons of
symmetry, we assume further that ¢* does not depend on y and =z.
Otherwise, two S*-clocks in the Y*Z*-plane would appear to disagree
as observed from S. Choosing the point of time origin so that the
inhomogeneous (constant) term in the transformation equation vanishes,
we have ”

* = 6t.+ ya. (4.3)

Finally, we must evaluate the constants « of eq. (4.1) and 8 and ¥
eq. (4.3). We shall find that they are determined by the two condi-
tions that the speed of light be the same with respect to S and S¥*,
and that the new transformation equations go over into the classical
equations when v is small compared with the speed of light, c.

Let us assume that at the time ¢ = 0 an electromagnetic spherical
wave leaves the point of origin of S, which coincides at that moment
with the point of origin of S*. The speed of propagation of the wave
is the same in all directions and equal to ¢ in terms of either set of
coordinates. Its progress is therefore described by either of the two
equations

£+ 9+ 27 = (4.4)
o + ¥ + 2 = (4.5)

By applying eqgs. (4.1), (4.2), and (4.3), we can replace the starred
quantities in eq. (4.5) completely by unstarred quantities,

EBt + vz)t = o’z — o) + o + 2 (4.6)
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By rearranging the terms, we obtain
(8 — V) = (" — )2’ + o + 22 — 2w’ + c*By)zt. (4.7)

This equation goes over into eq. (4.4) only if the coefficients of #* and z°
are the same in eqs. (4.7) as in eqs. (4.4), and if the coefficient of z¢ in
eq. (4.7) vanishes. Therefore,

EB — ot = cz’
’ 4.8
va’ + fBy = 0.

We solve these three equations for the three unknowns «, 8, and v by
first eliminating o”. We obtain the equations

o —cyi=1

BB + vy) =1,
\ (4.9
cy(B + vy) = —o.
Then we eliminate v and obtain for 8° the expression
1
2 —_— —_—
g = YR (4.10)

B is not equal to unity, as it is in the classical transformation theory.
But by choosing the positive root of (4.10), we can make it nearly equal
to unity for small values of v/c; its deviation from unity is of the second
order. « is given by the equation

_ Q2
y=1=F_ P (4.11)
vB c’
and finally, « is obtained from the equation
o = —cBy/v = B (4.12)

Again we choose the positive sign of the root.
By substituting all these values into egs. (4.1), (4.3), we get the new
transformation equations,

R vt
.\/1 _ vz/c'-”
¥y =y,
z¥ = z, r (413)
{
t — i);, z
o= °
V1 - v?/c?
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These equations are the so-called Lorentz transformation equations. For
small values of v/c, they are approximated by the Galilean transforma-
tion equations,

T = x — v,
¥t =1,
(4.14)
2* =z,
* =1

The deviations are all of the second order in »/c¢ (or z/ct). We can
therefore test the Lorentz transformation equations experimentally only
if we are able to increase (v/c)® beyond the probable experimental error.
Michelson and Morley, in their famous experiment, were able to in-
crease the accuracy to such an extent that they could measure a second-
order effect and prove experimentally the inadequacy of the Galilean
transformation equations. T

When we solve the equations (4.13) with respect to z, v, 2, and ¢, we
obtain :

5 = x* + ot*
iz

y =v%

z = z*, (4.15)
* +2,,:1:*

= —— % |
V1 — /e

Comparing egs. (4.15) with egs. (4.13), we conclude that S has the rela-
tive velocity (—v) with respect to S*. This is not a trivial conclusion,
for neither the unit length nor the unit time is directly comparable in
in S and S*.

The velocity of a light signal emanating from any point at any time
is equal to ¢ with respect to any one system if it is equal to ¢ in the
other system, for the coérdinate and time differences of two events
transform exactly like z, y, 2, and ¢ themselves.

The Lorentz transformation equations do away with the classical
notions regarding space and time. They extend the validity of the
relativity principle to the law of propagation of light.

So far, we have fashioned our transformation theory to fit the out-
come of the Michelson-Morley experiment. How does this new theory
account for aberration? We have to compare the direction of the in-
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coming light with respect to two frames of reference, that of the sun and
that of the earth. The amount of aberration depends on the angle
between the incoming light and the relative motion of these two frames
of reference. We shall call that angle «. Both coérdinate systems are
to be arranged so that their relative motion is along their common
X-axis, and that the path of the light ray lies entirely within the XY-
plane. With respect to the sun, the path of the light ray is given by

x = ct-cos a, y = ct-sin a. (4.16)

With respect to the moving earth, we find the equations of motion by
applying the inverted equations of the Lorentz transformation, (4.15).
Eq. (4.16) takes the form

* 4+ vt* = c(t* + v/ -2*) cos a,

o (4.17)
v* V1 — ¥/t = c(t* + v/c’-z*) sin a.
By solving these equations with respect to z* and y*, we get
¥ = ct* M = cl* cos a*,
1 —v/c.cos a
] (4.18)
—— sin a .
L J— t* _ 2 —_ t* *.
y* = ct*/1 — /¢ [ o/ccosa — o sine
The cotangent of the new direction is
ctg a* = ctg a — v/c-cosec @ (4.19)

V1= /e

According to the classical explanation given on page 21, the angle
would turn out to be

ctg o* = ctg @ — v/c-cosec a. (4.20)

If we wish to compare eq. (4.19) with eq. (4.20), we have to keep in
mind that »/c is a small quantity (about 10™*). Therefore, we expand
both formulas into power series with respect to v/c. We get

ctg a*a = ctg a — v/c-cosec a + 1(v/c)’ctg @ + -+, (4.19a)
and
ctg a*ess = ctg a — v/c-cosec a. (4.20a)

The observed effect is the first-order effect, while the relativistic second-
order effect is far below the attainable accuracy of observation. The
relativistic equation (4.19) is, therefore, in agreement with the observed
facts.
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We can explain Fizeau's experimeni by connecting the coérdinate
system S with the earth and S* with the flowing liquid. With respect
to S*, the liquid is at rest, and the equation of the light rays must be
of the form

* = ¢/n(t* — &). (4.21)
Applying the Lorentz transformation equations (4.13), we obtain
z—ot =c/n-[(t —v/c’x) — tsn/1 — /¢ (4.22)

We obtain thz velocity of the light ray with respect to S by solving this
equation with respect to z,

¢ 1/n'—1
=< —-“L2— 0|t t. 4.23
l:n I % o/ne vj| + cons (4.23)
Again the observable first-order effect is in agreement with the
experiment.

The “kinematic” effects of the Lorentz transformation. We shall
now study in more detail the effect of the Lorentz equations on length
and time measurements in different frames of reference.

Let us consider a clock that is rigidly connected with the starred
frame of reference, stationed at some point (zo, ¥, 2y ). Let us com-
pare the time indicated by that clock with the time ¢ measured in the
unstarred system. According to eq. (4.15), the unstarred time co-
ordinate of the clock is given by

v/c-ay + t*

t= Lo S0 T
V1 — /e
An S-time interval, (, — &), is therefore related to the readings ¢> and
*
&, of the clock as follows:

b—t = (s — §)/V1 = &¥/e (4.24)

Thus, the rate of the clock appears slowed down, from the point of view
of S, by the factor /1 — 12/c2. But not only that. Observed from
the unstarred frame of reference, different S*-clocks go at the same
rate, but with a phase constant depending on their position. The
farther away an S*-clock is stationed from the point of origin along
the positive X *-axis, the slower it appears to be. Two events that occur
simultaneously with respect to S are not in general simultaneous with
respect to S*, and vice versa.

We can reverse our setup and compare an S-clock with S*-time.
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The clock may be located at the point (21, y1, 21), and the starred time
is connected with the time indicated by the S-clock through the
equation

poo L v/cz-xlr
V1= /¢

Again the readings of the S-clock are related to an S*-time interval
as follows:

tp — & = (b — 0)/V1 — 2/ (4.25)

It appears that the S-clock is slowed down, measured in terms of S*-time,
and that it is ahead of an S-clock placed at the origin, if its own
z-cobrdinate is positive.

How is it that an observer connected with either frame of reference
finds the rate of the clocks in the other system slow? To measure the
rate of a clock T which is not at rest relatively to his frame of reference,
*an observer compares it with all the clocks in his system which T
passes in the course of time. That is to say, an S-observer compares
one S*-clock with a succession of S-clocks, while an S*-observer com-
pares one S-clock with several S*-clocks. The S*-clock passes, in the
course of time, S-clocks which are farther and farther along the positive
X-axis and therefore increasingly fast with respect to S*; consequently,
the rate of the S*-clock appears slow in comparison. Conversely, an
S-clock passes S*-clocks farther and farther along the negative X*-axis
and therefore increasingly fast with respect to S. The rate of the
S-clock appears slow compared with S*-clocks. —

In the case of length measurements, conditions are somewhat more
involved, because the transformation equations contain y and z in a
different way than z, the direction of relative motion. A rigid scale
that is perpendicular to the direction of relative motion has the same
length in either coérdinate system. However, when the scale is parallel
to the X-axis and the X*-axis, we have to distinguish whether the scale
is at rest relative to one coordinate system or to the other. Let us
first consider a rod rigidly connected with S*, the end points of which
have the coordinates (z1 , 0, 0) and (x3 , 0, 0). Its length in its own
system is

*
l*=132

— . (4.26)

3

An observer connected with S will consider as the length of the rod the
coordinate difference (zz — 1) of its end points at the same time, i.
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The codrdinates x5 and xz; are related to 2, z;, and ¢ by equations
(4.13), yielding

x* _ T, — vt
1 = P ———
V1 — /e
(4.27)
5= To — Vi
9 - —F .
V1 = /¢
Therefore, the coérdinate differences are
* * Ta — I
Ty — T = —F————, (4:28)
* ' V1 — t/c
If we denote the length (z2 — z;) by [, we obtain
L =1 —v2/c 1% (4.29)

The rod appears contracted by the factor 4/1 — 2/c*. This effect is
called the Lorentz contraction.

A calculation that reverses the roles of the two coérdinate systems
shows that a rod at rest in the unstarred system appears contracted in
the starred system.

Thus, we have the rules: Every clock appears to go at its fastest rate
when 1t 1s at rest relatively to the observer. If it moves relatively to the
observer with the velocity v, its rate appears slowed down by the factor
V1 — ?/c2.  Every rigid body appears to be longest when at rest rela-
tively to the observer. When it 1s not at rest, it appears contracted in the
direction of its relative motion by the factor \/1 — v?/c, while its dimen-~
stons perpendicular to the direction of motion are unaffected.

The proper time interval. In contrast to the classical transformation
theory, we no longer consider length and time intervals as invariants.
But the invariant character of the speed of light gives rise to the exist-
ence of another invariant. Let us return to equations (4.1), (4.2), and
(4.3), and conditions (4.8). We shall consider two events having the
space and time codrdinares (z:, y1, 21, &) and (22, ¥z, 22, 1), respec-
tively. The difference between the squared time interval and the
squared distance, divided by ¢, shall be called 3, or

= (f — ) — (1;—2[(12 o) (g — )t 4 (2 —2)] (4.30)

Correspondingly, we define a similar quantity with respect to S*,

e = (s — ) — 1/S(zz — 21)" + (2 — y1)’ + (& — 21)’]. (4.31)
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Now we express 713 in terms of S-quantities, according to eqs. (4.1),

(4.2), and (4.3), just as we did in the discussion of eq. (4.5), and obtain
1

s = (8 — /)L — 0)? — = (@’ = & v*) (2 — 21)°

¢ (4.32)

+ (2 — y1)* + (22 — 21 + 2(a’v/c® + By) (z2 — 21) (ta — 11).

Because the constants a, 8, and ¥ satisfy conditions (4.8), we find that
5 is an invariant with respect to the transformation equations
(4.13), or,

*2 2

T2 = Ti2. (4.33)

It is also invariant with respect to spatial orthogonal transformations
(1.1).

Hereafter, we shall call all the linear transformations with respect to
which 73 is invariant, Lorentz transformations, regardless of whether the
relative motion of the two systems takes place along the common
X-axis or not. Obviously, the invariance of 7,5 implies theinvariance
of the speed of light, for the path of a light ray is characterized by the
vanishing of 7,3 for all pairs of points along its path.

What is the physical significance of this quantity =5 ? If there
exists a frame of reference with respect to which both events take place
at the same space point, then 71, (the positive square root of 7,3) is the
time recorded by a clock at rest in that frame of reference. 7y is
therefore called the proper time interval (or eigen time interval).

Does there always exist a frame of reference with respect to which
two events take place at the same space point? If we were dealing
with the classical transformation equations, the answer would be yes,
unless the two events took place ‘““simultaneously.” But the equations
of the Lorentz transformation, (4.13), become singular when v, the
relative velocity of the two frames, becomes equal to the speed of
light. For values of v greater than ¢, equations (4.13) would lead to
imaginary values of z* and ¢*. The Lorentz transformation equations
are, thus, defined only for relative velocities of the two frames of refer-
ence smaller than ¢. Therefore, if two events occur in such rapid suc-
cession that the time difference is equal to or less than the time needed
by a light ray to traverse the spatial distance between the two events,
no frame of reference exists with respect to which the two events occur
at the same spot.

Whenever the two events can be just connected by a light ray which
leaves the site of one event at the time it occurs and arrives at the site
of the other event as it takes place, the proper time interval 7,2 between
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them vanishes. Whenever the sequence of two events is such that a
light ray coming from either event arrives at the site of the other only
after it has occurred, 75 is negative. Then we introduce instead of

9 . . 2 2 2
712 the invariant g2 = —c¢ 712,

o= (@ — o) + W — )+ (22— 2)" — (e — ). (4.34)

Either 112 or o2 is real for any two events. Whenever ¢ is real, we can
carry out a Lorentz transformation so that #; — ¢ vanishes. In other
words, there exists a frame of reference with respect to which the events
occur simultaneously. In that frame of reference, the spatial distance
between the two events is simply o12 .

Frequently, either 71, or oy, is referred to as the space-time interval
between the two events. The interval is called #Zme-lzke when 74 is
real, and space-like when o2 is real. 'Whether the interval between the
two events is time-like or space-like does not depend on the frame of
reference or the codrdinate system used, but is an invariant property
of the two events.

We mentioned before that the Lorentz transformation is defined only
for relative velocities smaller than the speed of light. If a frame of
reference could move as fast as or faster than light, it would be, indeed,
impossible for light to propagate at all in the forward direction, much
less with the speed c.

The relativistic law of the addition of velocities. Is it possible to find
two frames of reference which are moving relatively to each other with
a velocity greater than ¢ by carrying out a series of successive Lorentz
transformations? To answer this question, we shall study the super-
position of two (or more) Lorentz transformations. We shall introduce
three frames of reference, S, S*, S**. S* has the velocity v relative
to S, and S** has the velocity w relative to S*. We want to find the
transformation equations connecting S** with S. Starting with the

equations
R

N vt v =y
V1 — 2/’ ’
2'
* = -\/-t—]_ —0/62/172, 2* = Z, L
— v°/C
(4.35)
* — wi* (
¥ = ———-\/1 ——wz/cz’ y** = y*r
PRk — t* — w/cz-:z:* S = g%
- A1 = wz//cz’ - ’ )
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we have to substitute the first set of equations in the second set. The
result of the straightforward calculation is

o= T ul
V1 — uz/c2’
y* =y,
— % (4.36)
Pk t— u/cz
V- @
with
v+ w
u = m—z . (4.37)

Thus, two Lorentz transformations, carried out one after the other,
are equivalent to one Lorentz transformation. But the relative velocity
of S** with respect to S is not simply the sum of » and w. As long as
both v/c and w/c are small compared with unity, u is very nearly equal
to v + w; but as one of the two velocities approaches ¢, thedeviation
becomes important. XEq. (4.37) can be written in the form

_ _ (1 = v/c)(1 — w/c)
u—-c[l 14+ vw/c? :|

In this form, it is obvious that u cannot become equal to or greater
than ¢, as long as both » and w are smaller than ¢. Therefore, it is
impossible to combine several Lorentz transformations in one involving
a relative velocity greater than c.

Eq. (4.37) can be interpreted in a slightly different way, for a body
which has the velocity w with respect to S* has the velocity « with
respect to S. Then eq. (4.37) can be regarded as the transformation
law for velocities (in the X-direction). In this case, it would be pref-
erable to write it

(4.37a)

* _ u —v

wr =
1 — ww/c?’

(4.38)
where w has been replaced by u*. We conclude that a body has a
velocity smaller than ¢ in every inertial system if its velocity is less
than ¢ with respect to one inertial system.

The Lorentz transformation equations imply that no material hody
can have a velocity greater than ¢ with respect to any inertial system.
For each material body can be used as a frame of reference; and if it
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is removed from interaction with other bodies and does not rotate
around its own center of gravity, it defines a new inertial system.
Then, if the body could assume a velocity greater than ¢ with respect
to any inertial system, this system and the one connected with the
body would have a relative velocity greater than c.

The proper time of a material body. We have spoken before of the
space-time interval between two events. The application of this con-
cept to the motion of a material body and to the space-time points
along its path is particularly important for the development of rela-
tivistic mechanics. Since the velocity of a material body remains
below ¢ at all times, such an interval is always time-like. If the mo-
tion of the body is not straight-line and uniform, we can still define the
parameter along its path by the differential equation

o

dr* = di* — i_ (dz® + dy* + d2D)

o)+ @ @) o

7 is the time shown by a clock rigidly connected with the moving body,
really its “proper time” (its own time). When eq. (4.39) is divided by
dt* and the root is taken, we obtain the relation between coérdinate
time and proper time,
d R
(;1.- = ‘\/1 — u2/c2’ (4.40)
where u is the velocity of the body. This relation is valid for acceler-
ated as well as unaccelerated bodies.
Both dr and 7, which is defined by the integral

T = fx/l — u?/c2dt, (4.40a)

are invariant with respect to Lorentz transformations, though d¢ and
% are not.

PROBLEMS

1. On page 39 we have discussed one method of measuring the length
of amoving rod. We could also define that length as the product of
the velocity of the moving rod by the time interval between the instant
when one end point of the moving rod passes a fixed marker and the
instant when the other end point passes the same marker.
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Show that this definition leads also to the Lorentz contraction for-
mula, equation (4.29).

2. Two rods which are parallel to each other move relatively to each
other in their length directions. Explain the apparent paradox that
either rod may appear longer than the other, depending on the state
of motion of the observer.

3. Suppose that the frequency of a light ray is » with respect to a
frame of reference S. Its frequency »* in another frame of reference,
S*, depends on the angle a between the direction of the light ray and
the direction of relative motion of S and S*. Derive both the classical
and the relativistic equations stating how »* depends on » and the
angle a.

For this purpose, the light may be treated as a plane scalar wave
moving with the velocity c. '

Answer:
v = »(1 — cos a-v/c),
* 1 — cosa-v/c . 2
Viel. = V¥ — ;———mm = »(1 — cos a-v/c + 3(v/c)* — ---).

The first-order effect common to both formulas is the ‘““classical”’ Doppler
effect, the second-order term is called the “relativistic”” Doppler effect.
It is independent of the angle «.

4. H. A. Lorentz created a theory which was the forerunner to the
relativity theory as we know it today. Instead of trying to extend the
relativity principle to electrodynamics, he assumed that there exists one
privileged frame of reference, with respect to which the ether was to be
at rest. In order to account for the outcome of the Michelson-Morley
experiment, he assumed that the ether affects scales and clocks which
are moving through it. According to this hypothesis, clocks are slowed
down and scales are contracted in the direction of their motion. It is
possible to derive the quantitative expressions for the factors of time-
and length-contraction with the help of these notions.

(a) Assuming that the Galilean transformation equations are appli-
cable, derive the rigorous expression for the time that a light ray needs
to travel a measured distance [ in both directions along a straight path
in a Michelson-Morley apparatus, provided that the velocity of the
apparatus relative to the privileged system is » and that the angle
between the path and the direction of v is a.

_ ﬂ\/l — 1¥/c?.sin?
c 1 — v?/c? )

Answer: t (4.p1)
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" (b) Now we introduce Lorentz’ hypothesis and assume that equation
(4.p1) holds for the true, contracted length !/ and the true, distorted
angle . The time indicated by the observer’s clock is not the real
time ¢, but the clock time, t*. Furthermore, we measure the length with
scales that are contracted themselves; that is, what we measure is not
the true, contracted length [, but the apparent, uncontracted length I*.
The relation between the clock-time ¢* and the apparent length [* is

t* = -2——l*, (4.p2)

c
according to the outcome of the Michelson-Morley experiment. We
call the factor of time-contraction 6 and the factor of length-contraction
in the direction of v, A. Derive the relations between ¢ and ¢*, [ and ¥,
and determine A and 6 so that eqs. (4.p1) and (4.p2) become equivalent.

Answer:
t* = ft,
I* = l4/sin? @ + A2 cos? a (4.p3)
A=0=+1—0/c

(¢) In order to obtain the complete Lorentz transformation equations
(4.13), introduce two coordinate systems, one at rest and one moving
through the ether (S and S*). Determine the apparent distances of
points on the starred coérdinate axes from the starred point of origin.
Finally, find out how moving clocks must be adjusted so that a signal
spreading in all directions from the starred point of origin and starting
at the time { = ¢* = 0 has the apparent speed ¢ in all directions.




CHAPTER V

Vector and Tensor Calculus in an n Dimensional
Continuum

The classical transformation theory draws a sharp dividing line be-
tween space and time coordinates. The time co6rdinate is always trans-
formed into itself, because time intervals are considered in classical
physics to be invariant.

The relativistic transformation theory destroys this detached position
of the time codrdinate in that the time coérdinate of one coérdinate
system depends on both the time and space coérdinates of another sys-
tem whenever the two systems considered are not at rest relative to
each other.

The laws of classical physics are always formulated so that the time
coordinate is set apart from the spatial coordinates, and this is quite
appropriate because of the character of the transformations with respect
to which these laws are covariant. It is possible to formulate relativistic
physics so that the time codrdinate retains its customary special posi-
tion, but we shall find that in this form the relativistic laws are cumber-
some and often difficult to apply.

A proper formalism must be adapted to the theory which it is to
represent. The Lorentz transformation equations suggest the uniform
treatment of the four codrdinates z, y, 2z, and {. How this might be done
was shown by H. Minkowski. We shall find that the application of his
formalism will simplify many problems, and that with its help many
relativistic laws and equations turn out to be more lucid than their non-
relativistic analogues.

Classical physics is characterized by the invariance of length and
time. We can formally characterize relativistic physics by the invari-
ance of the expression

e = (t; — t)° — 012[(:1:2 — 2P+ (g — y)* 4 (22 — 2. (5.1)

The invariance of this quadratic form of the coérdinate differences
restricts the group of all conceivable linear transformations of the four
47
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coordinates z, ¥, 2z, and ¢ to that of the Lorentz transformations, just as
the invariance of the expression

st = (2 — z)" + (3 — ' + (2 — 2)° (5.2)

defines the group of three dimensional orthogonal transformations. The
four dimensional continuum (z, ¥, z, t), with its invariant form 2’ can
be treated as a four dimensional “‘space,” in which 7, is the ““distance”
between the two “points” (x1, 41,21, ) and (22, 2, 22, k). This pro-
cedure permits the development of a sort of generalized vector calculus
in the “Minkowski world,” and the formulation of all invariant rela-
tions in a clear and concise way.

We shall begin the study of this mathematical method with a recapitu-
lation of elementary vector calculus, focusing our attention on its formal
aspects. Then we shall generalize the formalism so that it becomes
applicable to the space-time continuum.

Orthogonal transformations. Let us start with a rectangular Car-
tesian coordinate system and call its three cooérdinates z;, ., and z;
(instead of z, y, and z). Call the coérdinate differences between two
points P and P’, Az,, Az,, and Az;. The distance between the two
points is given by

3
§ =2 Az (5.2a)
i=1
If we carry out a linear co6rdinate transformation,

3
T = Z cirZTr + 5::, t=1,2,3, (5.3)

k=1

the new coérdinate differences are
, 3
Az: = ) culzy, ©=1,2 3. (5.4)
k=1
These equations can be solved with respect to the Axy ;

3
Azy = ) cisdzi, k=12 3. (5.5)

3=l

Eq. (5.2a) expresses itself in terms of the new codrdinates thus:

s = D circuAziAzy. (5.6)

Hk =1
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The new codrdinate system is a rectangular Cartesian system only if
eq. (5.6) is formally identical with eq. (5.2a), that is, if

3 0 if k=1
;Cl‘kc.‘z—{l f k=l.} (5.7)

These equations take a more concise form if we use the so-called
Kronecker symbol &;; , which is defined by the equations o

5“ = 0, k = l,
(5.8)
o = 1, k=1
Eq. (6.7) takes the form
3
D ciken =8, k1=123. (5.7a)

i=l

Eq. (5.7a) is the condition which must be satisfied if the transformation
equations (5.3) are to represent the transition from one Cartesian coérdi-
nate system to another. )

We can easily formulate the condition to be satisfied by the c;: them-
selves. By substituting eqs. (5.4) in egs. (5.5) we obtain

3

Az = 2 cucalr, k=123, (5.9)

i,1l=1

and because this equation holds for arbitrary Az, we find
3
D crica =0, k1=1,23. (5.10)
t=1

Now we can multiply egs. (5.7a) by ¢;» and sum over the three possible
-values of . We obtain, because of (5.10),

3 a

Z C:k C:'zczm = 9,1’5 = Z OrCim = Chom - (5.11)

tl=1 l=1

By substituting cx; for ¢iz , and so forth, in egs. (5.7a), we obtain

5_} Cri C1s = O, kE,l=1,23, (5.7b)
and eqs. (5.10) take the form

23_:1 CaCit = O, kE1l=1,2,3. (5.10a)

Either egs. (5.7b) or (5.10a), together with egs. (5.3), define the group
of orthogonal transformations.
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.

Transformation determinant. We shall now investigate the trans-
formations (5.3) and (5.7b) a little further.
The determinant of the coefficients ci ,

Ciiy, C12, Ci3
Co1, Co2,y Co3 |,
Ci1, C32, Ca3

is equal to #1. To prove this statement, we make use of the multipli-

cation law of determinants, which states that the product of two deter-

minants | ax | and | bi | is equal to the determinant | D a;;by |. Now
]

we form the determinant of both sides of egs. (5.7b),

3
Z CriCls

1=l

= | 5] (5.12)

According to the above-mentioned multiplication law, the left-hand side
can be written

3
E Cri Cig

~ = Ickil’lc:ll = Ickil'lcul = lck,-lz. (5.13)
fem

3

14
Z Cri C1
i=1

The value of the right-hand side of eq. (5.12) is equal to unity, since

1 00
|6mn| =|0 1 0| =1. (5.14)
0 01
Therefore, we really have
| exi | = %1, (5.15)

The value 41 of the determinant belongs to the ‘‘proper”’ rotations,
while the value —1 belongs to orthogonal transformations involving a
reflection.

Improved notation. In the great majority of equations occurring in
three dimensional vector (and tensor) calculus, every literal index which
occurs once in a product assumes any of the three values 1, 2, 3, and
every literal index which occurs twice in a product is a summation index.
From now on, therefore, we shall omit all summation signs and all
remarks of the type (¢, k¥ = 1, 2, 3), and it shall be understood that:

(1) Each literal index which occurs once in a product assumes all its
possible values;
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(2) Each literal index which occurs twice in a product is @ summation
index, where the summation s to be carried out over all possible values.

Thus, we write egs. (5.3) and (5.6) like this:
-’52 = CuZx + 53: ’
£ = cichATiAT] .
Summation indices are often called dummy indices or simply dummdes.

The significance of an expression is not changed if a pair of dummies is
replaced by some other letter, for example,

CirTr = CuTy .

Vectors. The transformation law of the Az, (5.4), is the general
transformation law of vectors with respect to orthogonal transforma-
tions, or, rather: A vector is defined as a set of three quantities which
transform like codrdinate differences:

a,i = Ckig . (516)

When the vector components are given with respect to any one Cartesian
codrdinate system, they can be computed with respect to every other
Cartesian coérdinate system.

The norm of a vector is defined as the sum of the squared vector com-
ponents.

We shall prove that the norm is an invariant with respect to orthogonal
transformations, or, that

Gy = a:d; . . (5.17)

Substituting for a, its expression (5.16), and making use of eq. (5.10a),
we obtain

7
Ay = Cri@iCri@; = 8;;a:a; = Q. ,

which proves that eq. (5.17) holds for orthogonal transformations.

The scalar product of two vectors is defined as the sum of the products
of corresponding vector components,

(a-b) = ab;. (5.18)

That this expression is an invariant with respect to orthogonal trans-
formations is shown by a computation analogous to the proof of eq.
(5.17). The norm of a vector is the scalar product of the vector by
itself.

The word scalar is frequently used in vector and tensor calculus in-
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stead of invariant. ‘“‘Scalar product’” means ‘‘invariant product.”.
Sums and differences of vectors are, again, vectors,

a; + b; = si,

(5.19)
a;: — b; = d;.

That the new quantities s; and d; really transform according to eq.
(5.16) follows from the linear, homogeneous character of that trans-
formation law.

The product of a vector and a scalar (invariant) is a vector,

s-a; = b;. (5.20)

The proof is left to the reader.

The discussion of the remaining algebraic vector operation, the vector
product, must be deferred until later in this chapter, because its trans-
formation properties are not quite like those of a vector.

Vector analysis. We are now ready to go on to the simplest differ-
ential operations, the gradient and the divergence. In the three dimen-
sional space of the three coordinates z;, let us take a scalar field V,
that is, a function of the three codrdinates x; which is invariant with
respect to coordinate transformations. The form of the function V of
the coérdinates will, of course, depend on the codrdinate system used,
but in such a way that its value at a fixed point P is not changed by the
transformation.

What is the transformation law of the derivatives of V with respect
to the three coodrdinates,

V.= (5.21)
617,;

We must express the derivatives with respect to z; in terms of the
derivatives with respect to z;,

oV _ =i oV, (5.22)

aIk axk axi
According to eq. (5.3), the x; are linear functions of the x;, and vice
versa. Therefore, the dz,;/dz; are constants, and they are the constants
cir defined by egs. (5.5). ~We have, therefore,

Vo = C:k‘V.i
and, according to eq. (5.11),
Ve = eV (5.23)
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The three quantities V; transform according to eq. (5.11); therefore,

they are the components of a vector, which is called the 'gradjent of the

scalar field V.

Three functions of the coordinates, Vi(z: , x2 , 3), are the components of a
vector field if at each space-point they transform as the components of a
vector. The functions T’} of the coérdinates z. are, thus, given by the
equations

Vilz) = caVi(x,), (5.11a)

where the z, are connected with the z, by the transformation equations.
The gradient creates a vector field out of a scalar field.

The divergence does the opposite. Given a vector field V;, we form
the sum of the three derivatives of each component with respect to the
coordinate with the same index,

divV = V,‘,i . (5.24)
We have to show that this expression is an invariant (or scalar),
Viw = Vii. (5.25)

The procedure is exactly the same as before. We replace the primed
quantities and derivatives by the unprimed quantities,

Vl,:.k’ = Cr’nk(cklvl).m = Csz:nsz,m . (5.26)

Because of eq. (5.10), this last expression is equal to the right-hand side
of eq. (5.25).

The divergence of a gradient of a scalar field is the Laplacian of that
scalar field and, of course, is itself a scalar field,

divgrad V=V, = V'V. (5.27)

Tensors. In many parts of physics we encounter quantities whose
transformation laws are somewhat more involved than those of vectors.
As an example, let us consider the so-called ‘‘vector gradient.”” When
a vector field V; is given, we can obtain a set of quantities which deter-
mine the change of each component of V; as we proceed from a point
with the coérdinates z; in an arbitrary direction to the infinitesimally
near point with the coérdinates z; + éz;. The increments of the three
quantities V; are

oV = V,-,kBa;k y (528)

and the nine quantities V, are called the vector gradient of V;. We
can easily derive its transformation law in the usual manner:

Vo = Cin(CmiV)k = CmiCat Vi - (5.29)
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The vector gradient is one example of the new class of quantities
which we are now going to treat, the tensors. In general, a tensor has
N indices, all of which take all values 1 to 3. The tensor has, therefore,
3" components. These 3" components transform according to the trans-
formation law

Tf’nna vee = CmiCpiCal * =+ Tikl cev n (5.30)

The number of indices, N, is called its rank. The vector gradient is a
tensor of rank 2, vectors are tensors of rank 1, and scalars may be
called tensors of rank 0.

One very important tensor is the Kronecker symbol. Its values in
one codrdinate system, when substituted into eq. (5.30), yield the same
values in another coordinate system,

Bt = CriC1i8i; = CriCii = Oki, (5.31)

according to eq. (5.7b).
The sum or difference of two tensors of equal rank is a tensor of the
same rank. We formulate this law for tensors of rank 3:

Tar + Uit = Vira, (5.32)
Tir — Ui = Wit (5.33)

The proof is the same as for the corresponding law for vectors, eq. (5.19).
The product of two tensors of ranks M and N is a new tensor of rank

(M 4+ N),
TiaoUtmee = Vieootme. - (5.34)

The rank of a tensor may be lowered by 2 (or by any even number)
by an operation called “contraction.”” Any two indices are converted
into a pair of dummy indices. For instance, we can contract the tensor
Tix1... to obtain the tensors T%.;... or Ti.... The proof that these
new contracted tensors are again tensors is very simple. For the first
example given here, it runs as follows.

-

’

Taul--- = CgiCekCim * ° * Tikm--- «
Because of eq. (5.10a), the right-hand side is equal to
Teote.. = 8iCim =+ Tikm... = Cim =+ Tiimeee s (5.35)

When we contract the vector gradient (tensor of rank 2), we obtain the
divergence (tensor of rank 0). The operations product, (5.34), and the
contraction can be combined so that they yield tensors such as T Uy,
TikUkm y TikUik ’ TikUki .

Tensors may have symmetry properties with respect to their indices.
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If a tensor is not changed when two or more indices are exchanged,
then it is symmetric in these indices. Instances are

tive = teir,
Likim = Litkm = titm = likim = tetim = brikm .

The first tensor is symmetric in its first two indices; the second tensor is
symmetric in its first three indices.

When a tensor remains the same or changes the sign of every com-
ponent upon the permutation of certain indices, the sign depending on
whether it is an even or an odd permutation, we say that the tensor is
antisymmetric (also skewsymmelric or alternating) with respect to these
indices. Instances are

e = —lea,
bikim = tiim = tiikm = —likm = —kitm = —likim »

All such symmetry properties of a tensor are invariant. The proof
is extremely simple and shall be left to the student.
The Kronecker tensor is symmetric in its two indices.

Tensor analysis. When a tensor is differentiated with respect to the

coordinates, a new tensor is obtained, the rank of which is greater by 1.
The proof again consists of simple computation:
T,,,m...,ar = cfs(c,,..-c,.k e Tik---).l = CmiCnk *°* C,zT.’k...,z . (536)
When the resulting tensor is contracted with respect to the index of
differentiation and another index, for example, T... s, it is often called
a divergence.

Tensor densities. The “vector product’” of two vectors a and b is
usually defined as a vector which is perpendicular to a and to b and
which has the magnitude |a |-| b |-sin (a, b). As there are always two
vectors satisfying these conditions, viz., P, and P, in Fig. 6, a choice
is made between these two vectors by the further condition that a, b,
and P shall form a ‘“‘screw’ of the same type as the coordinate axes in
the sequence z, y, z. In Fig. 6, the vector P, satisfies this condition,
but only because the chosen coordinate system is a ‘‘right-handed”
coordinate system. If we carry out a ‘reflection” (for example, give
the positive X-axis the direction to the rear of the figure instead of to
the front), P, becomes automatically the vector product of a and b.

The vector product is, thus, not an ordinary vector, but changes its
sign when we transform a right-handed coérdinate system inte a left-
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handed system, or vice versa. Such quantities are called ‘“‘azial vec-
tors,” while ordinary vectors are called ‘“polar vectors.”

I

X

Fig. 6. The vector produet. Inaright-handed codrdinate system, P, represents
the vector product of a by b.

With respect to a Cartesian codrdinate system, the components of P
are given by the expressions

P, = asb3 — aabz,
P2 = QA3 b]_ — a1 ba, (537)

P3 = a,1b2 —_ azbl.

Similarly, the curl of a vector field V; is defined as an “axial vector”
with the components
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C,= Vi2 — Vaa,
C, = Vis— Vi, (5.38)
C, Vor— Via.

L]
From the point of view of tensor calculus, we can avoid the concept

of “axial vector’” by introducing vector product and curl as skewsym-
metric tensors of rank 2,

Py = abr — a;d;, (5.37a)
and
Ca = Vi — Vig. (5.38a)

It can be shown that all equations in which “‘axial vectors’’ appear can
be written in the covariant manner with the help of such skewsymmetric
tensors. Nevertheless, this treatment does not show very clearly the
connection between the transformation law of a skewsymmetric tensor
of rank 2 and that of an ‘“axial vector.” We can conform closely to
the methods of elementary vector calculus by introducing in addition
to tensors a new type of quantity, the ‘“lensor densities.”

The tensor densities transform like tensors, except that they are also
multiplied by the transformation determinant (5.15). As long as this
determinant equals 41, that is, when the transformation is a “‘proper
orthogonal transformation” without reflection, there is no difference
between a tensor and a tensor density. But a density undergoes a
change of sign (compared with a tensor) when a reflection of the cooérdi-
nate system is carried out. The tensor densities have, thus, the same
relationship to tensors as the “axial vectors’” have to the “polar vectors.”
Their transformation law can be written thus:

I,,,m = CmiCnk *** I Cab I Tikeer o (5.39)

The laws of tensor density algebra and calculus are: The sum or
difference of two tensor densities of equal rank is again a tensor density
of the same rank. The product of a tensor and a tensor density is a
tensor density. The product of two tensor densities is a tensor. The
contraction of a tensor density yields a new tensor density of lower rank.
The derivatives of the components of a tensor density are the com-
ponents of a new tensor density, the rank of which is greater by 1 than
the rank of the original density.

The tensor density of Levi-Civita. We found that the Kronecker
symbol is a tensor, the components of which take the same constant
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values in every coordinate system. Likewise, there exists a constant
tensor density of rank 3, the Levi-Civita tensor density, defined as
follows. 8.1 is skewsymmeltric in its three indices; therefore, all those com-
ponents which have at least two indices equal vanish. The values of the
nonvanishing components are =1, the sign depending on whether (3, k, [)
18 an even or an odd permutation of (1, 2, 3).

We have yet to show that é.; are really the components of a tensor
density. To do that, let us consider a tensor density D.; which has the
components §;; in one codrdinate system. If it turns out that its com-
ponents in some other coérdinate system are again é;;, our assertion
is proved.

The components of Dj; in another codrdinate system are

’

Dyns = | Cab | CmiCarCardint - (5.40)

As the skewsymmetry of Dy, is preserved by the cooérdinate trans-
formation, we know that all components D,,,, with at least two equal
indices vanish. We have to compute only components with all three
indices different. The component Djs; is given by the expression

Diss = | Ca | Cricarcarbini .- (5.41)

The right-hand side is simply the square of | ca |, and equal to unity.
For .1, is defined so that ciicacsidir: is just the determinant | cq |-

Now that we know that Dis, is equal to unity, the remaining com-
ponents are obtained simply by wusing the symmetry properties.
They are

Diza = D;:u = D:,m = —D{32.= —D;m = —D;:zl . (5.42)

In other words, the D,.., are again equal t0 dms , and the proof is
completed.

Vector product and curl. With the help of the Levi-Civita tensor
density, we can associate skewsymmetric tensors of rank 2 with vector
densities:

w; = 38k (5.43)
The converse relation is
Wer = Or1:10; . (5.44)

Applying eq. (5.43) to the vector product and to the curl, defined by
egs. (5.37) and (5.38), respectively, we obtain

Pi = diniarb ' (5.37b)
€ = diarx . (5.38b)
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Because these two vector densities PB; and €; transform like vectors
except for the change of sign in the case of coérdinate reflections, they
are treated as vectors in vector calculus, but they are referred to as
“axial”’ vectors, implying that they have something to do with
“rotation.”

They really do have something to do with rotation. The angular
momentum, for instance, is the vector product of the radius vector and
the ordinary momentum,

Ji = diipr . (5.45)

In the case of a reflection, it transforms as an ordinary vector would,
except for its sign. Assume that of the z; only z, does not vanish, and
that p has only the component p,. Then the angular momentum has
only the component 33 . We can carry out a reflection in three different
ways: We can replace z, by (—x;) or we can do the same thing with z,
or with z3, the other two codrdinates remaining unchanged in every
case. 3 changes its sign in the first two cases, and it remains unchanged
when z; is replaced by (—z3). A genuine vector would change its sign
only when z; is replaced by (—z3).

Generalization. Now that we have reviewed briefly vector and tensor
calculus in three dimensions with respect to orthogonal transformations,
we are in a position to generalize the concepts obtained so that they
will be applicable to the problems we shall discuss later. The generaliza-
tion is to be carried out in two steps. First, we have to extend the
formalism so that it applies to any positive integral number of dimen-
sions; second, we shall have to consider coérdinate transformations other
than orthogonal transformations.

n dimensional continuum. The first generalization is almost trivial.
Instead of three coérdinates z,, 22, z3, we have n codrdinates,
T+ - Tn, describing an n dimensional manifold. We assume, again,
that there exists an invariant distance between two points,

s = AziAz;, (5.2b)

where the summation is to be carried out over all n values of the
index 7. Eq. (5.2b) is invariant with respect to the group of n dimen-
sional, orthogonal transformations,

I: = CuTk + 57: N (5.38,)
where the c;: have to satisfy the conditions

CirCit = Okr . (5.10b)
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All indices take all values 1 - -- n, and summations are to be carried
out from 1 to n. The determinant | ¢, | is again equal to =+1.
Vectors are defined by the transformation law

an = Cpiai, (5.16a)

and their algebra and analysis are identical with the algebra and analysis
of three dimensional vectors.

Tensors and tensor densities are defined as in three dimensional
space, except that all indices run from 1 to n. 4§, is again a symmetric
tensor. '

The Levi-Civita tensor density is defined as follows. 8;....1s a tensor
density with » indices (of rank n), skewsymmetric in all of them. ‘- The
nonvanishing components are =41, the sign depending on whether
(¢, k, --+ , 8) is an even or an odd permutation of (1, 2, ---,n). The
“vector product” is no longer a vector density. With the help of the
Levi-Civita tensor density, we can form from a skewsymmetric tensor
of rank m (m < n) a skewsymmetric tensor density of rank (n — m).
Only when 7 is 3 is the ‘“‘conjugate’ tensor density to a tensor of rank 2
a vector density.

General transformations. The ‘“length’” defined in the Minkowski
space, (5.1), does not have the form (5.2b). We shall, therefore, no
longer restrict ourselves to transformations which leave egs. (5.2b) in-
variant, but shall take up general coordinate transformations. Since
the Lorentz transformations are much less general than the coérdinate
transformations which we are about to consider, it may appear that we
are deviating from our main purpose. But we shall need the general
coordinate transformations in the general theory of relativity; and,
since they are as simple in most respects as the more restricted group of
Lorentz transformations, we shall thus avoid needless repetition.

Let us consider a space in which we can introduce Cartesian coordinate
systems so that the length is defined by eq. (5.2b), Then let us pass
from a Cartesian coérdinate system to another coordmate system which
is not Cartesian. The new codrdinates may be called £, £, -+ - , £* (the
superscripts are not to be mistaken for power exponents). We have,
then,

‘Ei=fi(x17”°xn)7 7:=1."n.’ (546)

where the n functions f* are arbitrary, except that we shall assume that
their derivatives exist up to the order needed in any discussion; tha.t the
Jacobian of the transformation,

o’

oz,

det




Chap. V] VECTOR AND TENSOR CALCULUS 61

vanishes nowhere; and that the £ are real for all real values of the
Iy In.

s* is not, in general, a quadratic form of the A#’, as it is of the Az; .
But the square of the distance between two infinitesimally near points
remains a quadratic form of the coérdinate differentials. In terms of
Cartesian coordinates, this infinitesimal distance is given by

ds’ = drxwdzs (5.47)

and dz can be expressed in terms of the df’,

dry = —F dt', (5.48)

Substitution into eq. (5.47) yields

2 a:lfk 69:,,

- oF ot
ds’ is a quadratic form of the dt', regardless of the coérdinate system
used. This suggests that the coordinate differentials d‘ and the dis-
tance differential ds will, in the field of general coérdinate transforma-
tions, take the place of the coordinate differences Az; and the distance s,

which are adapted to Cartesian cooérdinates and orthogonal trans-
formations.

ds dt* dE. (5.49)

Vectors. Let us see how the coordinate differentials transform in the
case of a general coordinate transformation. Let £ F ! be two sets of
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