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PREFACE

THIs book describes in detail a number of optical interference
techniques developed by the writer since 1942. These experi-
mental procedures have already led to results of value in a num-
ber of different fields. They are partly refinements of established
classical techniques which are over fifty years old, but it is just
these very refinements that constitute an advance and permit
of a precision in observation and in measurement much ahead
of the earlier work.

The basis of all the methods described is the correct use of
multiple-beam interference. By this means it is possible to
study surface topography, and thin films, down to molecular
dimensions, and indeed although only light waves are used,
sizes of crystal lattice spacings can be measured in favourable
instances.

A notable feature is the simplicity of means with which such
high magnifications (of the order of half a million) and such
high resolution (in some cases only 5 A.U.) are achieved. In a
sense the techniques described give results complementary to
those of the electron microscope, for whilst the latter is most
frequently used to magnify areas, the interference method gives
great magnification in height and depth. Although recent
elaborate electron-microscope stereoscopic methods claim to
measure heights of the order of 100 A.U., yet the complexity
(and expense) of such a procedure is not to be compared with
the simplicity of the optical method, which in any case is more
than 10 times as sensitive, and surpasses too the elaborate
shadow-casting technique of electron microscopy.

Although it is but five years since the first of these inter-
ference techniques was developed, the methods described have
already produced results of value in the study of crystal surface
topography, the mechanism of cleavage, optical and dielectric
properties of mica, optical properties of metallic films, surface
characteristics of plastics, optical properties of thin films, etc.

Further lines of development now being pursued concern
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metallic polish and optical properties of thin films. Since the
technique clearly has applications in chemistry, crystallo-
graphy, crystal physics, and metallurgy, this book is definitely
not addressed to the optics specialist. For this reason some
space has been devoted to the elementary optics of inter-
ference and the derivation of Airy’s formula is included as an
appendix to Chapter II.

I take this welcome opportunity of expressing thanks to my
research students for assisting in preparing the many photo-
graphs used as illustrations. They have actively contributed
to the development of the subject and I have freely made
use of work carried out with them jointly under my direction.
Especial contributions have been made by P. G. Morris with
mica, W. L. Wilcock with diamond, A. Khamsavi with selenite,
calcite, and thin films, W. K. Donaldson with light filters and
reflecting films, J. Brossel with properties of fringes, and A. Faust
with plastics.

S.T.
May 1947
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CHAPTER I
TWO-BEAM INTERFERENCE

Fizeau fringes

It is the object of this treatise to show how precision optical
interference methods can be used for the study of (1) the surface
topography of reasonably smooth surfaces, including crystals,
plastics, metals, ete.; (2) some properties of thin films; (3) certain
optical properties of metals.

The methods described are capable of high precision with the
simplest of means, and measurements on features of only mole-
cular dimensions can be carried out. These interference tech-
niques employ what will be called localized multiple-beam fringes,
which are a sensitive optical refinement of the ordinary classical
‘two-beam’ interference so widely used in optical and engineer-
ing workshops for the examination of glass and metal surfaces
and for many metrological purposes.

The study of the contour of an approximately plane smooth
surface by using optical interference dates back to 1862, in which
year Fizeau [1] introduced his celebrated procedure. The use of
‘Fizeau’ fringes is so widely known that it is necessary to refer
to it only briefly.

It is shown in elementary books that when optical inter-
ference takes place in a thin transparent wedge of refractive
index p, straight-line fringes occur at wedge thicknesses ¢ given
by nA = 2utcos¢, in which ¢ is the angle of incidence of the
light, A the wave-length, and n the order of interference. It is
normally necessary to view such a wedge in reflection, for then
the amplitudes of the two interfering beams are almost identical
and the fringe ‘visibility’ is good. For example, with glass some
4 per cent. of the incident light is reflected from each face and ,
these two beams give fringes which have visibility effectively {'
unity, i.e. there is no light half-way between bright fringes. In
transmission, fringes of similar intensity and distribution are
superposed upon an intense background and are consequently
hardly visible.

49802 B



2 TWO-BEAM INTERFERENCE CH. I

With a very thin film (e.g. soap bubble or a thin air film
between glass plates) reflected fringes are readily seen with an
extended reasonably monochromatic source (e.g. sodium flame),
but as the thickness increases, it is necessary to restrict ¢ to a
single value, i.e. a critically parallel light beam must be used.

A typical Fizeau fringe set-up is shown in Fig. 1. The source 4
is a green filtered mercury arc and an image of this is projected

A B C D E F

N
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by the lens B on to the circular aperture C, of the order of 1 mm.
in diameter. C is at the focus of a good lens D. A parallel beam
of light passes through the glass plm and strikes the wedge F
at normal incidence. (The wedge angle is so small that incidence
is effectively normal on both front and back faces of F.) The
light is reflected back from F', forming an auto-collimated image
on C when alinement is correct. The glass plate E, which may
be half-silvered, reflects light into the good lens G and at the
focus of the latter at H is a small aperture behind which the eye
is placed and fringes are seen. The plate E leads to considerable
loss of light, and an alternative arrangement (which uses one lens
only) is that shown in Fig. 2a, in which a slight deviation from
the normal takes place. The source is at 4, the eye at B. Fig.2b
shows a version retaining normal incidence at the expense of
light. In this, 4 and B can be interchanged. The lens focal
lengths should be about 50 cm.

Let the wedge be an air film produced by placing the surface
PC to be studied close to a standard optical flat QC, then as
p = cos¢ = 1, fringes will be formed which represent a contour
map of the topography of the surface of PC. A fringe represents
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the locus of points for which # is constant, hence each fringe is
the locus of points for which ¢ is constant. The fringes are thus
classed as ‘fringes of equal thickness’ and appear to be localized
in the interference film.

On moving along the wedge from one fringe to its neighbour
the thickness of the air space has changed by A/2. It would at

TF1c. 2.

first appear advantageous to use as short a wave-length as pos-
sible. This is in fact often not the case, for the reference flat is
invariably surfaced in green mercury light. Let it be worked flat,
for example to 1/5th of a light-wave at 5,000 A.U. (error 1,000
A.U.). Clearly at 4,000 A.U. this error is ; of a light wave. The
gain in using a shorter wave-length is annulled by the greater
relative imperfection of the standard.

Now elementary calculation shows that when two equal beams
of light interfere, the intensity within the fringes follows the
distribution of a cos? curve, in which the light and dark areas
are equal. This distribution is shown graphically in Fig. 3. The
half-width of the fringe w is defined as the width 4 B at half the
intensity of the maximum and is clearly CD, where CD is the
distance between orders. If the fringe maxima can be located to
within w/10, that is within the shaded area, the attainable preci-
sion is thus CD/20 = A/40. This degree of precision is generally
quoted in the literature, but it is clearly an upper limit and
also obviously refers to relatively large areas, for small local
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variations within a fringe width are not likely to be detected
at all. Whilst, in the most favourable case, A\/40 may represent
the accuracy in setting on a fringe, the ability to resolve small
imperfections is not nearly as good.

Within their limitations, the simple Fizeau fringes afford con-
siderable information about the topographical structure of the

/
/
/
V
/
/
C

Fic. 3.

surface. The fringes are true contour lines, as in a geographical
contour map, the height interval between contours being A/2.
It is often easy to tell which are hilland which are valley features,
for by gently pressing PQ together (Fig. 2a) it is found that the
fringes move towards P@. The region of lowest order is thus
determined and higher order means higher ¢ value, so that there
is no ambiguity. If the wedge angle cannot be altered, then
special methods must be employed. These will be described
later.

Newton’s rings

A special case of thin film fringes of equal thickness, and one
of much historical importance in optics, is that of Newton’s
rings.f These are obtained by resting the curved face of a long
focal length plano-convex lens on a piece of glass which replaces
the wedge in Fig. 2b. Since the two surfaces are close together,
critical collimation can be dispensed with. An extended source
can replace 4 and the lens can be removed.

It is clear why circular rings arise, for obviously the contours
of a spherical lens will be circles. If r is the radius-of a given nth

1 First discovered by Hooke, but later studied by Newton.
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ring and R the radius of curvature of the convex lens surface,

it may be shown that 2
7= nA,

if p is the refractive index of the medium between the glass
surfaces.

The radii are proportional to the roots of the natural
sequence of numbers 1, 2, 3, 4,.... This holds for successive dark
rings, the centre point of contact (n = 0) being dark because of
phase change at reflection at one of the surfaces. The intensity
distribution across the system is a cos? distribution and this
limits the sensitivity, in the manner already considered. Often
the optical components are not in perfect contact, in which case
a slightly modified formula must be used.

Haidinger’s fringes

A special case of interference arises when ¢ is constant, i.e. the
surfaces are plane and parallel. In this case the eye at B in
Fig. 2a sees uniform illumination, the intensity of which depends
upon pt and is zero when ut = nA (zero, because of the phase
change of 7 which takes place on reflection at PC). If, however,
the aperture 4 is removed and an extended source substituted,
then interference rings can be seen with an eyepiece at B. In the
formula nA = 2utcos¢, ¢ is now constant and ¢ variable, and
clearly for certain values of ¢, » will be integral, leading to inter-
ference. All light falling on the plate at angle ¢ will contribute
to this particular fringe. Thus all the light incident on the sur-
face of a cone of semi-angle ¢ will form a fringe of given order =.
Clearly interference rings form, and it is easy to show that the
ring diameters are proportional to the square roots of the natural
sequence of numbers.

As the two interfering beams are parallel (because the two
surfaces are parallel), the fringes appear to be at infinity and can
‘be seen by a telescope set on infinity, achieved by introducing an
eyepiece at B. Alternatively the rings can be seen with the eye
if relaxed on infinity.

These rings, discovered by Haidinger [2] in 1849 using thin
slips of mica, have also a cos? distribution. Since each fringe
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corresponds to a given value of ¢, they are called ‘fringes of
equal inclination’, to distinguish them from the Fizeau ‘fringes
of equal thickness’.
Twyman-Green interferometer

For many years the Fizeau fringe technique remained the

most widely used method for testing optical surfaces. Another
important method was developed in 1916 by Twyman and Green

A .
.
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,
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4
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[3]. This is similar to the Fizeau method, but employs a Michel-
son interferometer to divide the beam in the manner shown in
Fig. 4. The essential features only are shown. The lens B pro-
duces a parallel beam from the point source A. The light falls
on the dividing mirror C, beams of equal amplitude being sent
normally to the mirrors D and F. The light returns and is
recombined by the lens G. At an aperture H are seen fringes
of equal thickness. The object to be studied is E, and typical
fringe contours appear at H if E is not plane parallel. The
arrangement has been adapted to the examination of prisms and
lenses. As in the Fizeau arrangement, two beams only are used
and the fringe distribution is consequently of the cos? type, with
its restricted applicability.

Multiple-beam fringes
In the next section it will be shown that interference produced
by a large number of beams (multiple-beam interference) leads to
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a great increase in precision. It isreadily seen by analogy with a
grating why this should be so. The spectrum lines produced -
by a grating consisting of two apertures only are broad, and
effectively cos? in shape. But with a grating consisting of no
more than 50 apertures the secondary maxima between principal
orders are very weak and a great sharpening of the main maxima
takes place. The principle of multiple-beam interference is the
basis of the celebrated Fabry-Perot [4] interferometer (1897),
and multiple-beam Fizeau fringes were also used by Benoit,
Fabry, and Perot [5] in their classical determination of the
metre, but, as will be shown later, the optimum conditions for
the best sensitivity were not then achieved.

It seems that Adam Hilger Ltd. were among the first to em-
ploy multiple-beam Fizeau fringes for the examination of optical
flats. This technique was in use prior to 1929 [6], but again the
best arrangement was not realized in practice.

The multiple-beam effect is produced by coating the surfaces
producing interference with a high reflecting thirr film of silver
through which a fraction of the light can be transmitted. The
details of technique will be given later.



CHAPTER 11
MULTIPLE-BEAM INTERFERENCE

Airy’s formula

THE theory of the multiple-beam interference taking place in a
plane parallel plate (a flat plate of uniform thickness) was first
given by Airy [7] and will be briefly indicated here. Let 4,Bin
Fig. 5 be parallel reflecting surfaces enclosing a medium of re-
fractive index u. Let fractions of a beam, which has unit ampli-

tude, incident in the direction P@), be reflected and refracted at
@, the quantities R and T being the reflected and transmitted
fractions. The beam @S is reflected at S, and if the reflection
coefficient at B is assumed to be the same as that at 4, then a
fraction RT is reflected along SV and emerges in this direction.}
Thus there are transmitted along SX, WY, etc., parallel rays of

intensity T2, R*T?, RAT?,....
If these are allowed to fall on a collecting lens, all the beams
will combine at the focus of this lens. Now each successive beam

lags behind the first beam a distance 2ufcos¢, in which ¢ is
the angle of incidence and ¢ the distance between the parallel

1 To simplify the calculation, refraction effects are disregarded, i.e. AB are
to be treated as free unsupported reflecting surfaces.
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surfaces. The phase lag 6 between successive beams is constant

such that %r
8 = —2ulcosd.
A

The Haidinger rings formed at the focus of the collecting lens
are modified by the multiple-beam combination. It can readily
be shown that the ring diameters are not affected, but that the
fringe-intensity distribution changes and is no longer of the cos?
type.

If the transmitted series of beams of geometrically decreasing
intensity (decreasing by factor K?) and phase increasing arith-
metically by & is summed to infinity, the resulting intensity at
any point in the field corresponding to 6 can be shown to be (see
appendix to this chapter):

T 1
(1—RE 11 [dB/(1—R)jsin® 5"

The quantity sin?48 can only vary from 0 to 1, at which I has
maximum and minimum values respectively. When sin?4é =0,

T2

max — (—1——R)2

I =

If there is no absorption at the reflecting surfaces, then
T=1-R and I ., =1,

i.e. the intensity of the fringe maximum is equal to that of the
incident light, no matter what the values of R and T
If, however, a fraction 4 be absorbed at each surface, then

1= A+4+T+R,

d I T 2 1 2
‘“‘ e = (72) = (rrarm)
This is an important quantity and will be brought back into

the discussion later.
When sin? 16 = 1, and there is no absorption, I is a minimum

and has the value

; _[ " 1 ]_ T __1—R)2
min = | T_REXTF4R/(1—R2| ~ 1+ RE  \I+ R
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With absorption,
I - 1-R A\
min T \1+R 1+R)°
14 R\?
1—R|

The whole fringe shape is thus quite independent of absorption.

. Imu.x 3 i i ___.4R
I can be written as equal to T Fsin’ls’ in which F is (1—R)®

and was called by Fabry the ‘coefficient of finesse’.

but the ratio I, /I ;, Temains (

Effect of varying reflecting coefficients

It was first pointed out by Boulouch [8] that a profound
change in the appearance of the interference fringes takes place

7

Fia. 6.

both in reflection and in transmission when the reflecting coeffi-
cient is increased considerably above the value 0-04 charac-
teristic of glass at normal incidence. As R approaches unity the
transmission fringes become successively sharper and the back-
ground intensity falls to a smaller and smaller value. The fringe
shapes for B = 0-7 and 0-9 are shown in Fig. 6. Boulouch suc-
ceeded in demonstrating the effect, but it remained for Fabry
and Perot (loc. cit.) to bring to a full realization the importance
of this fact. The increase in reflecting coefficient is obtained by
the deposition of a thin film of silver on the surfaces involved.
Itisnecessary toreduce the absorption to a minimum—otherwise
the intensity is reduced too far for practical use. Indeed, the
technique of silver deposition for interferometry is concerned
as much with the production of low absorption as with high
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reflection. Evaporation techniques have now been developed
which permit of reflection coefficients of up to 94 per cent. with
about 1 per cent. transmission and 5 per cent. absorption. With
such films very sharp fringes result, provided that all the effec-
tive beams are collected with the image-forming lens.

If the reflecting coefficients of the two surfaces differ and are
R,, R,, the formulae given above hold if Risreplaced everywhere

by J(B, B,).

The Fabry-Perot interferometer

The Fabry-Perot interferometer is so well known that a brief
survey only will be given here. Fabry and Perot fully developed
Boulouch’s proposal. Their instrument consists of two high-
grade optical flats coated with high reflecting coefficient silver
films. The two flats are adjusted parallel and separated (accord-
ing to requirements) by a distance which usually varies from 1
to 200 mm. in practice. When monochromatic light, from an
extended source, is directed on to the interferometer, modified
transmission Haidinger fringes are formed. For any angle of
incidence the successive multiple reflected emergent beams are
all parallel to this incident direction (since the two flats are
parallel). If these beams are collected with a lens the Airy sum-
mation at the lens focus is automatically secured. Hence in the
focal plane appear highly sharpened rings, as shown in Fig. 7
(green mercury line). The ring diameters are proportional to the
focal length of the image-forming lens and inversely as ¢, where
t is the separation of the two flats. As is well known, these
fringes have considerable practical importance in such fields as
metrology, high-resolution spectroscopy, wave-length determi-
nation, etc.

The Fabry-Perot fringes appear to be at infinity and have not
yet found application in surface studies. However, closely re-
lated non-localized fringes have been developed for this purpose
and will be described in a later chapter.

The fringes occur at angular diameters given by integral values
of » in the expression nA = 2utcos¢. In effect the sharpening
of the rings makes the instrument behave as an angular filter.
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In the Fabry-Perot interferometer, fringe width, resolving
power, and intensity of the background between the maxima are
all of importance. In these studies background intensity is of
little interest, the important feature being fringe width.

Fia. 7.

Fringe width

It is usual to refer to the half-width as the width at half the
peak intensity. This is readily calculated from the Airy formula
by the simplified approximation given by Burger and van
Cittert [9].
I — Imn,x

14+ Fsin?43’

the fringes are so sharp that over the half-width 8 is small enough
to replace its sine, hence -

1

max Imn.x
TF1FSE T (R/(1— B8
At the half-width I = 11, by definition, giving
1—-R

SZW. N

Writing

I =
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Since the fringe falls off symmetrically on either side of the
maximum to {I,, the fringe phase angle corresponding to the
fringe half-width is twice the above, i.e. 2{(1— R)/vR}. The phase
interval between successive orders is 2z, hence the fringe half-
width as a fraction of an order is

1—R
W=_Tr

Table I gives approximate values of W for a number of values
of R.

TaBLE I
R 0-04 07 0-8 0-85 09 0-925 0-94
w 3 & 1T ) % 25 E0

It is possible to work with R = 0-94, which gives fringes 25
times narrower than two-beam fringes for which W = }. The
quantity W = J; enables settings to be made to A/1000 if again
a tenth of a fringe width is taken to be the setting-error. With
the green mercury line (A = 5460) this corresponds to the re-
markably small value of only 54 A.U. Infact, owing to the steep
fall of intensity, settings can be made to 1/20th of the fringe
width, corresponding to an error of less than 3 A.U., when
multiple-beam Fizeau fringes are used. This quantity is of
atomic dimensions, and therein lies the importance of the
technique.

The above calculations apply strictly to plane parallel surfaces
in which all the effective beams are used. In practice this cannot
be secured because of (a) surface imperfections, (b) lack of per-
fect parallelism, (c) finite apei‘tﬁ(re. With the Fabry-Perot inter-
ferometer, fringe widths approach the theoretical values only in
rare instances. It is particularly to be noted that all the surface
imperfections are integrated and cause broadening for every
fringe.

Multiple-beam Fizeau fringes [10, 11, 12]

Airy’s formula can be written as:

I = Imux
"~ I+ Fsin?a{(2ut cos ¢)/A}’
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If v is taken to be unity (air gap), then there are three possible
variables, ¢, ¢, A, if the value of R is maintained constant.

With ¢, A constant we have fringes of equal inclination, i.e.
Fabry-Perot, fringes.

Clearly with ¢, A constant an identical fringe-intensity distri-
bution results and we have multiple-beam fringes of equal thick-
ness, provided some means can be dev1sed by which all the
beams are summed.

It will be shown later that with ¢, ¢ constant and A
variable, another type of fringe arises. This has particularly
valuable applications when both ¢ and A are made to vary simul-
taneously.

The summation of all the beams in the Fabry-Perot interfero-
meter is easy to achieve, for all the beams (which are parallel)
are brought to the focus of the collecting lens, and in theory an
Airy distribution should obtain. In practice this is approxi-
mated to. In multiple-beam Fizeau fringes this is not the case.
At normal incidence Fizeau fringes are localized in the inter-
ference film, but the multiple beams can only be considered to
combine locally under certain critical illumination conditions
which will now be examined.

The phase condition

Consider first the mode of formation of localized fringes with
two interfering beams (Fig. 8). Let a parallel beam of light
between C and I fall at normal incidence on NO, the extreme
rays meeting LM at D and J. Consider another ray (normal
incidence) from A, which after successive reflection at B and E
meets the ray from C at D. At the point D, conjugate with D
is formed an image of the localized interference fringe.

In like manner the beams FGHJ and IJ interfere at J and
form a conjugate fringe image at J,.

The parallel rays DP, J R meet to form a point image X, at
the principal focus of the lens, and since all rays incident between
C and I also arrive at X, no fringe is formed there; only an
image. In a similar way D@ and J§ form a point image at X,.
In accordance with the Abbe theory of the microscope, X; and
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X, can be regarded as true point sources, leading to fringe forma-
tion in the plane J, D;.

Fi1a. 9.

Consider now, as shown in Fig. 9, the path difference between
the two beams arriving at D. To a rough first approximation,
6 being small, ED — (14262,

EB = t(1—262%),
AB = t(1—462),
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making the path difference 2¢—4t6%. It will be noted that the
two beams uniting at D are associated with different points on
the same surface, i.e. B and D.

Suppose now that instead of two beams arriving at D, the
reflecting coefficient is such that successive multiple beams are
of sufficient intensity to influence the resulting interference.
Consider, as in Fig. 10, a direct beam 1 and two successive

1 |
|
|
i
°|
37¢ I
|
|
______ |
2T BT /,,J
<\\\\
|---..A__ .......................

Fia. 10.

multiple beams 2 and 3. Since the incident beams are parallel
and meet at D, they must impinge on the first surface at dis-
tances progressively farther from A. The beam 2 is deflected
first through 26 then through 46, but the beam 3 is deflected first
through 20, then successively 40, 68, 86, and so on for higher
orders.

Itis clear that the path difference between successive reflected
beams is not constant but alters progressively with the order of
reflection. By extending the previous calculation for two beams
it is readily shown that to a rough approximation the path
difference between the first and nth beams is 2nt—4n30%. Thus
the phases of beams of higher order gradually get out of step
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with the first beam, and instead of assisting the Airy summation
series begin ultimately to oppose it. Indeed, when the retarda-
tion is A/2, such a beam tends to destroy the condition of sharp-
ness.

A more exact derivation of the phase lag has been carried out
by J. Brossell at the Manchester University Laboratory, who
gives the following simple general method:
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Let AC, CB of Fig. 11 represent the wedge and also the wave
fronts reflected at each surface. Then CD,..., CD, represent the
successive wave fronts after multiple reflections. For the nth
beam the angle D,CB = 2nf.

Consider the path differences of the first and nth beams at
the point P(z,y).

This is 8 = PN— PM = PN —z.

Now PN = zcos2n8+ysin 2n6.
Thus 3 = xz(cos 2n0—1)+ysin 2n0.
Expanding the cosine and sine (2rn6 being small) gives
2
5 = 2nt(1— e 02)—2xn202.

By viewing fringes at the surface BC, x is made zero and the
retardation lag behind the arithmetical value becomes

. -2-??(271,2—{—1)0215,

4080.2 Cc
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which for the large values of n to be considered effectively equals
4n30%, the approximate value stated previously. Brossell’s
method has considerable advantages in other connexions not to
be pursued here.

It will be shown later that reflecting coefficients can be pro-
duced which are so high that 60-80 effective beams contribute
to the interference effect. If we assume that the 60th beam, say,
has fallen behind the first by A/2, then beams of this order oppose
the Airy summation and clearly reduce definition. Taking this
as a convenient limit gives $n36% = A/2. If X is the number of
fringes per cm. on the wedge surface, 6 = AX/2,

3
and therefore = Y Ch
For a wave-length in the green (5-5 X 10-5 ¢cm.) and n = 60,
P
7-92X2

This value for ¢ is the maximum permissible for close approxi-
mation to the Airy condition. In some instances fringes may be
1 cm. apart (X = 1). More frequently they are 1 mm. apart
(X = 10) or even 0-1 mm. (X = 100). Table II gives the corre-
sponding critical values of ¢.

TasLE II
Number of fringes per cm. X . . 1 10 100
Critical ¢, mm. . . . . . 1-26 0-012 0-0001
dgp mm.T . . . . . . 0-25 0-025 0-0025

1 See next section.

The calculation is not strictly applicable to the third case since
t is less than a light-wave and the approximations are invalid.

However, an important feature emerges, namely that the
separation between the two surfaces must be as small as possible.
This is the critical fact which has been overlooked by earlier workers.
When high magnifications are used it is essential to have fringes
separated by less than a millimetre, for otherwise there are
insufficient fringes in the field of view. It is clear that the
separation between the surfaces must be reduced to the order
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of a few wave-lengths of light at most, otherwise definition suffers
severely. This is one of the most important points in the
technique.

Linear displacement of beams

The magnitude of the phase-lag effect depends upon the linear
displacement of the successive beams along the surface. This is
not only determined by the wedge angle 6, but also by the angle
of incidence if this is other than normal. Clearly it is desirable
to employ normal incidence unless the experiment forbids it.

The displacement of the beams is a matter of considerable
importance when the surface under examination has a complex
topography. It is essential to view interference from beams
which have scanned as small an area as possible if confusion
due to beams from different topographical features meeting at
arbitrary points is not to occur.

The higher order beams come from regions progressively far-
ther away from the first beam. To a first approximation the
linear separation on the wedge surface between the first and nth

beams is d. — 920
. =

. 3
T mX

(by substituting § = }AX and 3/t = 2n°AX?).

For n = 60 this becomes

dgo = & mm.

The values of dg, for X = 1, 10, 100 are given in the third
row of the previous table showing critical ¢ values. It is seen
from this that if ¢ is of the order of 1/1000 mm., as is desirable
for the phase condition, then the 60th beam comes from a region
only 1/400 mm. away from the first beam. Thus all the relevant
beams come from a region which is within the resolving limit of
a typical low-power microscope objective. The interference pat-
tern is then a correct picture of the topography. It will be noted
that the value of ¢ required is substantially the same as that
necessitated by the phase condition.
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Errors in collimation

Fabry [13] drew attention to the broadening effects due to
lack of parallelism in the incident beam. This arises either
through maladjustment of focus or through the finite size of the
source stop. The broadening as a fraction of an order can be
calculated as follows:

For normal incidence

n = 2t/A.
For incidence at angle ¢ this diminishes to
Sn — 2t c)(\)sqS’
giving n = %(l—cosdﬁ = 2%.2sin2%q5.
" Since only small values of ¢ are contemplated,
= /\Sn

Tt

The fringes usually have a half-width of about 1/40th order,
and if the fringes are not to be increased in width by more than
a fifth of this, 6n = 1/200, giving for A = 5X 10~ cm.,

_ 5x10-*

radian = 3x 107
Vt vt
Table I1I gives approximate values of ¢ and of the permissible
stop diameters d for use with a 10 cm. focal length lens over the
range of values of ¢.

degree.

TasLE 11T
¢ mm. 1 0-1 0-01 0-001
$° i by 1 3
d mm. 0-2 0-6 2 6

With longer focal lengths, larger stops are permissible. Since
the previous calculation shows that the typical case of fringes
1 mm. apart requires a value { = 0-01 mm., such an arrangement
can tolerate a 2 mm. source with a 10 cm. lens, with which
collimation errors are not serious.
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The experimental conditions for the production of highly
sharpened multiple-beam Fizeau fringes are thus, that

(1) The surfaces must be coated with a highly reflecting film
of minimal absorption.

(2) This film must contour the surface exactly and be highly
uniform in thickness.

(3) Monochromatic light, or at most a few widely-spaced
monochromatic wave-lengths should be used.

(4) The interfering surfaces must be separated by at most a
few wave-lengths of light.

(5) A parallel beam should be used (within a 1° 3° tolerance).

(6) The incidence should preferably be normal.

In the following appendix the derivation of the Airy formula
is given.
APPENDIX TO CHAPTER II
The Derivation of the Airy Formula

The following is a simplified derivation of the Airy summation formula.
Consider the multiple beams brought to the focus of a lens, where the
two silvered surfaces are parallel, distant ¢ apart. It is assumed that
there is no absorption. Let a plane wave front, of wave-length A, fall on
the interferometer, at an angle ¢. Let T and R be the transmission and
reflecting cocfficients at each silver surface, the amplitudes of the respec-
tive beams being Tt and R}. Consider first the reflected light. Then the
amplitudes of the successive multiple reflected beams which emerge and
are collected by the lens are R}, R}¥T, RIT RiT,..., etc. The emerging
waves being parallel, sum at the lens focus. Each beam has a path
difference 2utcos¢ behind its predecessor so that the phase difference
between each beam is

8= E; 2utcosd.

Let the incident wave be represented by sinwr and the final result
and by Dsin(wr—A), then we can write

Dsin(wr—A) = Risinwr+ RIT sin(wr—8)+4 R¥T sin(wr—28)+
Expanding the sin terms and equating coefficients of sin and cos terms
gives DcosA =-Rt4 RiT(cos8+ R cos 26+ R2cos 35 +...),

Dsin A = R¥7T(sin8+ Rsin 26+ R2sin 35 +...).
These two combine in the usual manner to give
Deld — RY | R¥T(ei®+ Rei?8 |- R2%1%4 )
16

— RY+RIT %
R RIT .
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To simplify this, multiply and divide the imaginary part by (1— Re~%),
making 17,1601 _ Re—ib
Deit = Ri+q 1R —geeiﬁ()t 1 —R;e—i)ﬂ)
R}T(cosd+isind— R)
1—2Rcosd+ R?
The real and imaginary terms can be separated thus:
RiT(cosd—R) +R¥T sin &
1—2Rcos8+R? ' 1—2Rcos8+ R?’
RiT(cos6—R)
1—2Rcosd+ R?’
RiTsind
1—2Rcosd+ R?’
The intensity D2 is the sum of the squares of (1) and (2), i.e.
[—R* RiT(cosd—R) ]2_'_[ RiTsind ]2
1—2Rcosé+ R? 1—2Rcosd+ R?

_ 4Rsin?}d

" 1—2Rcosd+ R?

. 4Rsin?38

T (1—R)*+4Rsin%$d’
This represents Airy’s formula for the reflected intensity and is a quan-
tity that will be required later. Let B2 be the transmitted intensity, then

=-Ri |

DcosA+iDsinA =-Ri+

Hence DcosA =-Rt4 (1)

DsinA = (2)

D? =

B =1—-D2
_|__4Rsn®}8 _ _ (I—Rp
- 1—2Rcos8+R?~ 1—2Rcosd+ R?
(1—R)?

=~ (1—RP+4Rsin’}s’
But 1— R = T if there is no absorption,

2 T
hence B? = (I=R)*+4Rsin?3s’
. Ta 1
ie. B =ti—mpe (1+{4R/(1—R)2}sin2 éS) ’

which is Airy’s formula for the transmitted intensity.

When sin?}d = 0 this is & maximum and has the value 7'?/(1— R)?,
which is unity since T' = 1— R, hence without absorption the transmitted
fringe maxima have intensity equal to that of the incident light, no
matter what the reflecting coefficient may be. This occurs when

2utcosd = nA.

The minima occur at 2utcos¢ = (n+3)A, i.e. when sin?38 = 1. This
makes B? = T?/(1+ R)?, which can also be written B2 = {(1— R)/(1+ R)}>.
Clearly when R is high the minima are very weak.

The following graphical method (shown to the writer by R. G. Lunnon
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in 1927) is a simple elegant method for deriving the shape of the trans-
mitted fringe distribution given by the Airy formula (reflected fringes,
being complementary, are obtained by inverting the curve obtained).
_ (I1—R)

~ 1—2Rcosd+ R?’

construct a triangle within a circle of radius unity as shown in Fig. 12a
in which XY = 1. Let the distance XZ be equal to the reflection
coefficient R and let angle YXZ = 8. Then ZY? = 1—2Rcosd+ R2.

Since Bt

(a)
U U
(b) (c)

Fia. 12.

Thus clearly as ¥ sweeps round the circle (i.e. as § goes through to
complete an order) then 1/ZY? will be a measure of the variation of B?
with 5. Hence a plot of 1/ZY? against & will give the fringe shape. The
absolute intensity values can rcadily be obtained by multiplying the
ordinates by (1— R)2.

It can casily be seen from this method how the fringe shape depends
on R. Take the case where R approaches unity, as illustrated at (b).
For small § value (near nw) YZ is quite small so that 1/YZ?2 is large,
but as can be seen Y Z increases at a rapid rate as Y sweeps round, hence
the intensity drops rapidly.

But in Fig. 12¢, where R is small, the quantity Y Z is initially large
and only increases slowly as ¥ moves round, hence broad maxima result.



CHAPTER III
THE SILVERING TECHNIQUE

Introduction

THE writer has given elsewhere [14] a detailed account of the
techniques used for the preparation of mirrors for Fabry-Perot
interferometers. The technique described here is similar, but
there are simplifications. Two major problems in using the
Fabry-Perot interferometer are fortunately avoided. These are
(1) source-intensity difficulties arising when weak spectrum lines
are being studied, a factor which often severely restricts the
permissible thickness of silver and limits the fringe sharpness
obtainable; (2) in spectroscopic Fabry-Perot studies it is fre-
quently necessary to cover a wide wave-length range and con-
siderable difficulty is experienced in finding mirrors which have
high reflection (and also low absorption) over a wide colour
range.

Fortunately in topographical studies precision fringes are
generally needed only over the range between the red and green
(say 7,000-5,000 A.U.), and in this region it is possible to obtain
and use reflecting coefficients exceeding 0-90 by using evaporated
silver. For interferometry, evaporated silver is superior to sput-
tered silver, so that only the silver evaporation technique will
be described.

Surface cleaning

When a reflecting film is to be evaporated on to a surface a
condition of cleanliness is of paramount importance. Oil and
impurity films reduce the reflecting coefficient somewhat and
increase the absorption a great deal, both of which are un-
desirable. The cleaning treatment to be used depends upon
the nature of the surface about to receive the silver. Typical
surfaces will be considered in turn.

(a) Optical flats of glass or quartz
A preliminary washing with soap and water will remove gross
amounts of grease contamination from handling. With costly
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accurately worked flats, the usual process of cleansing with
concentrated acids and alkalis should be avoided. In any case
quartz ‘is soluble in caustic soda. Tenacious oil films can be
removed in the simple degreasing plant described later, but this
israrely necessary. A suitable chemically mild efficient cleansing
agent is strong H,0,, which removes many organic materials and
is also an excellent solvent for removing silver from a surface
that requires recoating. Cleansing is carried out by rubbing
gently (cold) with damped pieces of well-boiled linen and then
polishing with a dry specimen of the same material.

The ‘breathing test’ is a good index of the degree of cleanliness
achieved. By gently breathing on the surface, moisture con-
denses into a film of minute droplets and this shows a ‘figure’
revealing imperfectly polished areas. An oil-free surface con-
denses moisture in an invisible film. Even a monomolecular
grease film breaks this up into droplets and the surface appears
grey matt. This is the normal condition after cleaning. Ray-
leigh showed that a piece of glass passed rapidly through a flame
becomes film-free, and preheating a polished surface to 250° C.
hasa similareffect. It hasbeenshown that the cleansing mechan-
ism of the flame is due to thermal ions and that this same
cleansing effect is obtainable in a vacuum by means of a glow
discharge, in a manner to be described later.

(b) Cleavage surfaces

Freshly cleaved crystal surfaces (e.g. mica, selenite, calcite)
are quite clean and require no treatment other than degassing
in a vacuum, and possibly gentle ion bombardment.

(c) Restistant surfaces \

Resistant surfaces (e.g. diamond, polished or natural) can be
cleaned with fairly severe reagents. Ion bombardment is used
as the final treatment.

(d) Metals

Unless etching is required, metal surfaces must be carefully
treated. After polishing, a safe procedure is to degrease with
ethylene trichloride. The ethylene trichloride is gently boiled in
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a beaker closed with a watch-glass. The metal is suspended
above the liquid and the vapour condensing on it removes the
greases efficiently, the contaminated liquid dropping down into
the beaker. Ionic bombardment is the final agent.

The evaporation technique
The deposition by evaporation of mirrors suitable for multiple
beam interferometry was developed first by Ritschl [15]. The
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two methods described below are improvements on this pro-
cedure. In both cases the silver is evaporated from a suitable
filament in a high vacuum (preferably at least 10-° mm. of Hg).
Two evaporating plants have been used, a horizontal and a
vertical. With the horizontal plant the two mirrors required
can be made simultaneously, whereas with the vertical arrange-
ment, materials other than silver can be deposited (e.g. the
cryolite used for specific purposes to be described later). The
horizontal plant is shown in Fig. 13.

A metal cylinder 80 cm. long and 8 cm. in diameter is closed
at both ends, the joints being made vacuum tight with rubber
gaskets. Insulated metal rods pass through the metal end-
pieces, which are also provided with windows. A pumping
system, such as a Metrovac 02, 03 combination diffusion pump,
is used for evacuation.

The surfaces to be coated, FF, are mounted on a framework
and at the centre of this is a filament which carries the silver.
The filament developed and described here has been found satis-
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factory. Two variants of a suitable form of filament are shown
in Figs. 14a and 14b. A strip of molybdenum, 3 mm. wide, is
bent into a loop or several loops of diameter some 4 mm. A piece
of silver is placed within the loop, practically filling it. On
passage of current the silver melts and owing to its high surface-
tension fills the loop on both sides with the result that both

LO,

Fia. 14.

receiving surfaces are faced by a vertical relatively large disk
of molten silver, and deposition takes place rapidly, despite the
long distance. Since only the edge of the filament strip faces the
receiving surfaces, the ratio of the area of silver to that of
molybdenum is considerable. This reduces the evaporated
molybdenum to negligible proportions.

The technique of deposition is as follows. The system is
pumped to about 0-1 mm. pressure with a rotary pump, at
which stage the silver is pre-fused, melts, and degasses. The
mean free path is so small that no silver can reach the surfaces.
A high-voltage glow, provided by a large spark coil, is then
passed between the electrodes. This is important, for it provides
the ions for cleaning by ionic bombardment. After some 15
minutes the diffusion pumps are set in operation, and when at
least 10-®* mm. pressure is reached evaporation is begun. It
takes only 1 to 2 minutes to deposit the amount of silver
required. This is estimated by viewing a bright lamp through
the windows and evaporating to a standard of transmission,
either visually or by photocell. The final colour and intensity
(a deep blue) can only be learnt by experience. Purity condi-
tions are important.

Uniformity of the silver deposit

The uniformity of the silver deposit is of paramount impor-
tance. The amount of condensation, in a perfect vacuum from
a point source, at any point on a plane surface is inversely
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proportional to the square of the distance of the point from the
source and to the cosine of the angle between the normal to the
plane and the line joining the point in question to the source.
If P is the density at a point for which this angle is ¢, then
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P = pcos®} where p is the density at the point on the surface
where the normal from the source meets it.

For this reason a distance of 35 cm. was chosen for the
separation of source and condensation surface. Suppose the
surface to be examined is a disk of 1 cm. radius, then cos®} for
the circumference is 0-9988.

The density at the circumference is therefore less than that at
the centre by only 0-12 per cent. Clearly over most of the disk
the silver can be considered uniform, even with a point source.
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However, even this is much improved upon by the employment
of an extended disk source. The most stringent interference tests
fail to reveal any serious variations in average silver thickness
over such a surface, whilst no local variations can be detected at
magnifications of X 400.

The vertical evaporator is shown schematically in Fig. 15.
A tall narrow bell jar, over 35 cm. long, stands upon a phosphor-
bronze base, the junction being vacuum tight. The jar sits in
an annular recess upon a gasket of neoprene rubber, and the
base sits upon an oil-diffusion pump, the opening of which has
a baffle protector. Insulated water-cooled electrodes EE pass
through the base and carry a thick molybdenum heating-strip.
There are several electrodes linked up to three separate molyb-
denum strips, each of which can carry its own metal charge.
By means of the vacuum-tight cone C a shutter S can be swung
in and out of position over the filament. The surface F, receiving
the silver, rests upon a glass tripod 4. The top of the bell jar
can be sealed either with a rotating cone to permit movement
of F or alternatively with a metal plate P which hasin it a small
observation window W and an electrode H, used for the de-
gassing discharge. o

“Before deposition is begun the filament is heated with shutter
S in position over the strip. Any impurities are burnt off and
thus prevented from reaching F. Such impurities can have a
serious influence in increasing film absorption. The shutter is
removed after heating the strip for half a minute and deposition
then begun.

The reflectivity of silver films

With careful attention to purity, it is possible to obtain with
silver a reflection coefficient of 0-94 in the green and a reasonable
transmission (1 per cent.). No other metal is so efficient (in
theory one might expect sodium to be better, but a sodium film
is not a practical possibility). It is quite unnecessary to evaluate
numerically the actual reflectivity, since what is required is the
highest reflectivity consistent with the thickness permitted by
the light source available.
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It will be shown later that for topographical interferometry
the light sources now available are much brighter than those
normally used in hyperfine structure studies with the Fabry-
Perot instrument. The result of this is that thicker silverings
are permissible, with consequent higher reflectivity and there-
fore sharper fringes. The reflectivity R, transmission 7', and
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absorption 4 depend upon film thickness for green light in the
manner shown in Fig. 16.

At a thickness of about 500 A.U. the reflectivity reaches 0-90.
The absorption, shown by the shaded area, is large for low
reflectivities, reaches a minimum when R is 0-75, and then
increases slowly. An increase in thickness beyond 500 A.U.
produces a small increase in reflectivity but a relatively con-
siderable increase in absorption.

The influence of absorption on transmitted intensity is shown
by Fig. 17, in which {T'/(T+ A4)}?is plotted against reflectivity.
The values used for the calculation have been determined in the
writer’s laboratory by W. K. Donaldson. The rapid fall in
intensity with increase in R is clearly shown and at R = 0-94
only 1 per cent. of the light is effective. With badly prepared
silver films the transmission may be much less.
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A film thickness giving B = 0-94 is clearly prohibitive unless

very intense

sources are available. This is fortunately the case.

For the estimation of the film efficiency an empirical rapid
method involving both reflectivity and absorption is available.
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Silver is deposited on to two glass disks, some 5 cm. in diameter,
and these are held close together, almost parallel, and close to the
eye. A bright filament lamp distant about 1 metre is viewed
through them and by slightly tilting one plate a succession of
multiple images can be seen. The colour characteristics and the
count of images suffice to indicate the quality and usefulness of
the silvering. If the incident beam is supposed to have unit
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intensity, the nth image has intensity 7'2R?" and unless R is high
the intensities fall off rapidly. With high absorption 7' is low
and the whole series is weakened.

A good pair of mirrors with transmission of a few per cent. and
reflectivity of over 0-90 shows over 80 clearly defined images.

A further guide is the colour characteristic. The higher-order
images become progressively more and more yellow since the
longer wave-lengths have higher reflectivity. The better the film,
the slower the approach to yellow and the more blue is to be seen
in the initial images.

Although the thickness of a satisfactory silver film is about
500 A.U., it appears to contour the surface structure very closely,
at least to within 10 A.U. This will be proved later when discuss-
ing studies made on mica. Electron microscopy offers further
confirmation.

It will be shown later that white-light fringes have many
valuable applications, and it is found that the maximum reflec-
tivity (for very thick films, equivalent to solid silver) depends
upon the wave-length. There is a regular fall in reflectivity from
the infra-red down towards the blue. At A 10,000 the reflectivity
issome 0-98 and has fallen to 0-95at A 6,000. At A 5,000 it is 0-93,
at 14,000 it is 0-90, from which point on it drops with great
rapidity to about 0-04 (i.e. like glass) in the neighbourhood
of A3,000. It then rises again. In the visible region between
A4,000-A 7,000 it is possible to use silver to give sharp white-light
multiple-beam fringes. It is usually advisable to operate near to
the region A 5,000, for the reflectivity is high here and the disper-
sions of the spectrographs employed are usually good in this
region. Fringe definition with red light is much superior to that
with blue light, but this is only partly due to the silvering.
Prism spectrographs have a higher dispersion in the blue than
in the red, and this makes blue fringes appear relatively broader
than red fringes. One frequently aims at as high a fringe disper-
sion as possible, i.e. the fringes are spread over as wide a wave-
length range as can be tolerated without excessive broadening.
In applying such a procedure it must be remembered that fringe
definition always falls steadily towards the blue end of the spectrum.
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It is only possible to obtain reflectivities in the blue approach-
ing 0-90 if very dense silver films are used. Under such circum-
stances the transmission throughout the spectrum is usually too
low for practical application. The blue fringes alone can, how-
ever, frequently still be photographed because of the much
greater sensitivity of photographic plates for blue light.



CHAPTER 1V
SILVER-MODIFIED NEWTON’S RINGS

Light sources

THE modified Newton’s rings formed when a suitable silver film
is deposited upon the two opposing surfaces illustrate a number
of characteristic properties of multiple-beam Fizeau fringes and
will be discussed for this reason [17].

The most convenient source for Fizeau fringe interferometry
is a mercury lamp. For such a source efficient filters are avail-
able which pass either (a) the green line, A 5,461, or (b) the yellow
lines 15,770, 5,790, or (c) the green and yellow lines together.
There are three convenient mercury sources: (2) a vacuum arc;
(b) a high-pressure arc of the ‘Osira’ type; (c) a high-pressure
‘point-source’ arc of the ‘Sieray’ type. The line width in the
vacuum arc is due largely to hyperfine structure and is less than
an Angstrom unit. The line width in the ‘Osira’ type arc when
run with normal current is sufficiently small to be of no conse-
quence provided that the separation between the interference sur-
faces is less than 0-01 mm. With the high-pressure ‘Sieray’ point
source the line width increases with the operating current and
may exceed 5-10 A.U. Even with low currents, however, this
source is so brilliant that thick silver films can be tolerated and
thus reflecting coefficients of at least 0-90 employed.

Newton’s rings

The multiple-beam Newton’s rings given by the green line
are shown in Fig. 18 with the optical arrangement shown in
Fig. 19; the light is incident normally, the source being at 4 and
the fringes at B. The inherent surface defects on the glass
surfaces are rendered visible by the uneven character of the
much sharpened rings. The change in level on moving from ring
to ring is §A. It is clear that irregularities less than 1/150th of
an order can certainly be measured and this quantity, less than
20 A.U., is of molecular dimensions.

For any given ring, of order =, we have nA = 2t (if p = 1), so
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that dt = dn.lA. To evaluate a small change in thickness dt,
it is only necessary to determine the fraction of an order, dn,
produced by that change.

Fic. 18.

It is to be noted that these rings are transmassion fringes.
If viewed in reflection, with the arrangement of Iig. 1, the
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complementary system, fine dark lines on a bright background,
is seen. Such a system would also arise if a silvered lens rested
upon an opaque metal reflecting surface.
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Non-normal incidence

Interesting new interference phenomena appear when the
parallel beam of light is incident at angles other than the normal.
These phenomena have a bearing on the interferometric practice
to be adopted generally and will therefore be discussed in some
detail.

If the lens-plate combination is tilted through an angle ¢ it
follows from the geometry that the circular fringes will become
elliptical. Furthermore it can be shown either from simple
geometrical construction or more elaborately, as Feussner [18]
has done, that a change in location of the fringes takes place.
Observation and theory both show that the transmitted elliptical
rings lie on regular curves, one half of the system before and the
other half behind the interference film. As a result of this
peculiar focal location, a photographic plate set normal to the
light beam records only a few fringes simultaneously in focus.

To a first approximation the fringes can be considered as
wedge fringes, since each fringe is localized and arises from
multiple reflections over a small area. The effective wedge-angle
is not constant but increases progressively with fringe order
number. It can be considered that at any point the interference
is that of a wedge, the angle of which is the angle made by the
tangent to the lens, at the point in question, with the plane
glass surface.

Considering the Newton’s rings (or, for simplicity, a single
ring only) as arising from a double wedge, it is clear from the
construction shown in Fig. 20 that at non-normal incidence the
wedge AOB leads to a fringe at the point X, whilst the wedge
COD leads to a fringe located at Y. Hence one-half of the ring
system will be in front of and the other half behind the inter-
ference film.

The fringes corresponding to the next order will lie on the
same sides as above, but as the equivalent wedge-angle has
changed, the distance of the fringe from the interference film
changes. The following approximate theory of the fringe loca-
tion is in qualitative agreement with the observed positions.

Feussner has shown that the fringes formed by multiple reflec-
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tion of light incident at an angle ¢ on to a wedge of thickness d
and wedge-angle 8, with refractive index u, appear at a distance
D from the wedge given by

sin ¢ cos’p d
p2—sin2p 6°

For an air film this reduces to D = (d/0)sin ¢. It is legitimate to

D =

A4
B Y

A \\
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X

Fra. 20.

Fia. 21.

apply this to the Newton’s ring fringes, using for each fringe the
film thickness as d, and the angle between the plane and the
tangent as 6.

For the nth ring the wedge thickness is {47 (see Fig. 21),
where nA = 2(t+7)cos ¢, and 7 accounts for possible imperfect
contact between the glass surfaces. The angle § between the
tangent and the plane is given by sinf = 6 = p,/R = 2¢/p,,
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where p, is the radius of the nth ring. The distance D, of the
nth ring from the interference film is thus

. 4T
DI’L == Sln¢—g P,n.

Since the fringes are viewed in the direction of incidence, they
appear as ellipses, and the measured radius of the smaller axis
7, is p, cos¢, so that

T T
D, = 3 (1+t_) tan ¢.

The argument applies to both halves of the pattern, located on
opposite sides of the interference film. (v can be taken for this
analysis to include the phase change at reflection as well as the
metrical distance between the surfaces, i.e. it is the ‘optical’
distance.)

Examining this in detail, the following conclusions can be
drawn. At the centre of the system (where ¢ = 0) the fringes
will be at infinity. As ¢ increases, that is, as the ring order
number increases, the distance D, diminishes with rapidity and
ultimately the fringes lie on a line with slope (tan¢)/2 if the
distance D, is plotted against the observed ring radius r,.
Observations confirm this.

As the angle of incidence of the light is gradually increased a
new effect, namely doubling of the fringes, begins to make its
appearance. This can just be detected at an incidence of 20°.
At 30° the doubling is clearly marked, and as the incidence
increases the separation between the two components grows
steadily. One component appears to detach itself and move
across towards the next higher order. The march of the outer
component with increasing incidence is shown clearly in Fig. 22.

Attention may be drawn to three special characteristics. As
the incidence increases

(a) the doublet separation grows regularly ;

(b) when first resolved, both components have the same
intensities, but as the outer higher-order fringe moves
away it becomes progressively weaker, finally vanishing
as it approaches the next order;
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(¢) as the incidence increases, the outer component becomes
progressively sharper and sharper, being extremely narrow
at the higher angles of incidence. (This is to be observed
best in the small region where the focus is correct.)

Fig. 22.

Although at normal incidence the fringes are quite sharp and
narrow, the sharpness of both members of the doublet increases
still farther with incidence. The stronger fringes sharpen
up much more slowly than the weaker outer systems. This



40 SILVER-MODIFIED NEWTON’S RINGS CH. IV

difference in fringe width can only be interpreted as meaning
that the reflection coefficients for the two sets are increasing with
incidence at different rates, for the fringe width is sensitive to
the value of the reflecting coefficient.

This observation suggests that the two sets of rings consist
respectively of light polarized at right angles and parallel to the

(©) (B) (4)
F1c. 23.

plane of incidence, the outer sharper rings being formed by the
beam which has the magnetic vector parallel to the plane of
incidence. This is proved to be correct by the introduction of a
Nicol prism or polaroid disk into the incident beam. The effect
is shown clearly in Fig. 23.

This shows the appearance of the fringes with angle of inci-
dence 55°. A triple shutter was placed over the photographic
plate and the sections A4, ‘B, C exposed in turn. B shows the
fringes with no Nicol or polaroid in the field. At 4 the Nicol
or polaroid is set to pass the vibrations which are polarized in
the plane of incidence and at C polarized perpendicular to the
plane of incidence. If a Nicol is used, care must be taken not
to alter the angle of incidence through the deviation of the prism.
A polaroid disk obviates this difficulty. The exposures have
been adjusted to bring out the effect of the polarizer, and the
weaker parallel vector component, at 4, has been given twice
the exposure of the stronger at C, the correct intensity ratio
being seen at B. T
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The origin of the doubling of the rings

The doubling of the fringes arises because of the phase change
taking place at reflection at a metallic surface. It is well known
from classical electromagnetic theory that in the case of non-
normal incidence the phase change is different for parallel
and perpendicularly polarized light. At normal incidence the
differential phase change is zero. As the incidence increases
the differential phase change grows, and this effectively alters
the optical path between the metal surfaces.

In general, as represented in Fig. 21, the lens is not in perfect
contact with the glass plate. Let the two glass components be
separated by a distance 7 in a medium of unit refractive index,
and let ¢ be the effective path change at a single reflection. Then
the path difference between the succeeding beams, which add
up to form the series due to multiple reflections, is

2t cos p+ 27 cos p+ 2e = nA,

in which ¢ is the angle of incidence. If p, is the radius of the

nth ring, then
R
2= —2 —2
p2 cosd)(n)\ 7 COS p— 2e),

from which it follows that an increase in the ring diameter arises
from a negative phase change, i.e. one which effectively reduces
the optical path.

On differentiating, de = }Adn, giving the differential phase
change (de/A) as 4dn, which is half of the observed fraction of an
order separation between the two fringe components. This is
independent of the ring order number, the radius of curvature,
and does not explicitly involve ¢ although it is a function of the
angle of incidence.

The differential phase change at reflection can thus, for the
first time, be directly and objectively determined from a fringe
displacement. In the former, now classical, determinations of
this quantity, the phase shift was not directly observable but
was derived from measurements of the degree of elliptical polari-
zation of the light reflected from the metallic film. The fringe-
doubling appears in both the transmitted and the reflected
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systems and the behaviour is identical. A striking feature in
both is the rapid falling off in intensity of the fringes due to the
beams polarized with the magnetic vector in the plane of inci-
dence. This is evidence of a differential absorption coefficient.

The evaluation of dn

The accurate determination of the order-change dn is one of
the principal sources of error in Fizeau fringe interferometry. In
general the surface examined has an irregular topography, as a
result of which the Fizeau fringes have a variable dispersion.
If this dispersion varies rapidly, accuracy inevitably suffers. If,
on the other hand, a region of reasonably constant, or alterna-
tively, uniformly and slowly varying, dispersion can be selected,
then precision is attainable by adopting the method of approxi-
mation originally proposed by McNair [19] for the Lummer plate
interferometer.

Let A,4', A", A”,... represent the positions of a series of fringes,
exhibiting a regular change in dispersion due to a curved surface,
and let B, B’, B", B”,... be the second subsidiary system. To a
close approximation the fraction of an order separation dn is
given by

dn = A’ = A"B’ = etec.
¥ BB'+A4'A") 3B'B"4+A4"4")

A local irregularity can seriously disturb these relationships
and it will be shown later how this difficulty is overcome by
using different fringe types. It is implicitly assumed here that
dn is less than one and also that the correct allocation to orders
is known. Thus it is taken for granted that the fringe separation
is A'B" and not B’4A”. In this particular example there is no
ambiguity since the increase of fringe separation with angle of
incidence can be tracked through from zero separation at normal
incidence. This is a rare and unusual case and special techniques
are often required to allocate the orders correctly.

The differential phase change

The differential phase change depends only slightly upon the
thickness of the silver film. The fringes reproduced in Fig. 23
were obtained with a silver film of thickness about §2, i.e.
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about 550 A.U. The way in which this phase change depends
upon the angle of incidence is shown in Fig. 24, in which angle
of incidence is plotted against the phase, given as a fraction of
a wave. The experimental curve is I. A theoretical curve II is
that given by MacLaurin [29]. The curve III shows the differ-
ence between these.

Up to 60° incidence the experimental and theoretical curves
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run closely parallel, the theoretical being systematically lower
than the experimental by the small amount of 0-007. This
difference is undoubtedly real, for the experimental precision is
high and it can be shown that any uncertainty in the film thick-
ness has a much smaller effect.

Beyond 60° there is a more marked departure from theory.
The experimental curve shows a point of inflexion, the position
of which was found with accuracy by increasing the number of
observations in this neighbourhood to one per degree. After
inflecting, the experimental curve converges slowly on the
theoretical one as the angle of incidence increases to high values.

The difference between the curves I and II is plotted below
as curve I11. This difference curve cannot be attributed to any
false estimate of film thickness and represents a real discrepancy
between theory and observation. Thus, whilst to the first order
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theory is vindicated, there exists a second-order difference, the
main characteristic being the point of inflexion which occurs in
the neighbourhood of 63°.

A possible source of the discrepancy is the effect of transition
at the surfaces. The refractive index does not change abruptly
at the front or the back surface of the silver film. A film 0-1A
thick is perhaps little more than 200 atoms deep, and in no sense
can this be considered as uniform throughout its depth. Oxide
surface films and contamination films on the glass doubtless play
their part in distorting the surface structures of these thin silver
films. The microcrystalline structure is not taken into account
in the classical electromagnetic treatment of MacLaurin, and
this fact alone may account for the discrepancy. The two curves
appear to converge beyond an incidence of 80° and it would have
been of interest to pursue this to see whether they meet or cross,
but this could not be achieved because of the already extremely
weak intensity of the variable component at 80° incidence.

Thus, by the use of multiple-beam interferometry, new measure-
ments of optical properties of thin metallic films can be obtained
with ease and without expensive apparatus. The dependence of
the effect on film thickness, the effect of varying the metal, and
the nature of the interface material (e.g. liquids can be intro-
duced between the surfaces), can all be readily investigated.

It is clear both from theory and observation that the differen-
tial phase displacement is strictly zero only at normal incidence.
Below 20° the doubling is not resolved but the effect appears as
a fringe broadening. It has already been shown that for collima-
tion purposes angles up to 3° can be tolerated, and with such
angles the broadening due to differential phase change can be
disregarded.

The doubling due to differential phase change appears in some
of the experiments to be described later.



CHAPTER V

CRYSTAL TOPOGRAPHY USING FIZEAU FRINGES
QUARTZ, MICA, SELENITE, CALCITE

Introduction

THE use of two-beam interference methods for the examination
of crystal surfaces is a fairly old technique. Thin mica slips for
use as windows in alpha-particle experiments were usually
selected by this procedure. Siegbahn [21] reported on the
examination of crystal surfaces by this means in 1933, and more
recently Kayser [22] has described observations made on dia-
mond surfaces. Buckley [23] also noted the formation of Fizeau
fringes in thin plates of potassium chromate (1932).

As already emphasized, however, the fringe-intensity distribu-
tion with only two beams is quite inadequate for the resolution
of fine detail. The first application of multiple-beam methods to
the examination of a natural crystal face was made with a highly
lustrous (100) face of a left-handed quartz crystal [23]. The
details will now be given since a number of general principles
are involved.

Quartz

The particular crystal examined possessed a (100) face with
a high natural polish, about 1 sq. cm. in area, and is illustrated
face on and in profile in Fig. 25. Examination with a hand lens,
using critical illumination, revealed a number of surface mark-
ings included in Fig. 25a. Since it is necessary to produce inter-
ference at normal incidence, the incident parallel beam must
traverse the path PQR shown in Fig. 25b. This required the
light to pass through the severely striated vertical pyramid face,
which largely destroyed effective collimation with the result
that the fringes were considerably broadened. This serious
defect was remedied by contacting a thin microscope slide at @,
on to the striated surface, using Canada balsam as a medium.
This treatment effectively destroyed the striae, and correct colli-
mation was restored.
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The (100) surface was coated with a suitable thickness of
silver and then mounted against a similarly silvered optical flat.

4
\ 4 R
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Fig. 25.

The optical flat

For topographical studies the optical flat used must be of very
high quality. The types often used for high-grade Fabry-Perot,
interferometers are thick disks of quartz, fused silica, or glass,
usually flat over a large area (5 cm. disk) to within A/60 at least.}
Locally the error ts much less as revealed by observations described
later.

The higher the magnification used, the less important is general
curvature, but the more important are local small-scale errors.
Experience shows that a flat made of polished glass has an
extremely good local structure. It appears that the glass flows
during polishing, leaving a surface smooth locally to within
molecular dimensions apart from characteristic polish scratches.
In all topographical studies using an optical flat there is a
residual very small fine-grain fringe structure equivalent to
effective height changes of molecular dimensions, and this is due
to fine polish marks on the flat. Apart from such fine-grain detail,
a ready check on topography is available by simply matching
the crystal against different portions of the flat. Hilgers have
made for the writer a group of 1} in. flats, 3 mm. thick, of which
the central  in. disk has been worked flat to better than A/40.
These flats are locally, over appreciable areas, certainly smooth
and flat to within at least A/200, probably much better.

t Flat errors are usually given in terms of the green mercury line.
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The fringe contour

Two typical contours, with low magnification, are shown in
Figs. 26 and 27. Such pictures will be called interferograms.
Although apparently different, they represent the same
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topography, as illustrated by Fig. 28, which represents the large
ridge feature on Fig. 26. If this is intercepted by equidistant
kﬁgzontal planes, as in the familiar contour maps of geography,
the contour pattern obtained is that of Fig. 28a. If, on the
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other hand, the feature is intercepted by equidistant planes
making a positive or negative angle with the horizontal,
then the respective contours are those shown in (b) and (c).
This alteration of the plane of reference of the contours is ob-
tained by tilting the flat relative to the crystal, and a set
of such pictures can materially assist the interpretation. An
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improvement on this composite building up of features will be
described later.

The first fact to decide is which are hill and which are valley
features. This is settled by pressing hé—ﬁtly on one side of the
crystal, bringing flat and crystal nearer together at that point.
The fringes move towards the thicker part of the air wedge and
thus ambiguity about hill and dale features is resolved. It isnot
always possible to apply this simple procedure and alternative
methods are available and will be described later.

The next important feature is the determination of surface
angles, and to achieve this a number of methods may be used.
The previous example will be considered, the object being the
determination of the angle between the large faces of the ridge
of Fig. 28.

In the first method fringes are set as in Fig. 29 a, in which,
by suitable adjustment of the reference flat, the fringes on one
side of the ridge run perpendicular to the ridge edge, AB. By
producing the fringe XY to cut the next order at Z, it is clear
that the surface containing Z has dropped (or risen) through A/2
in the length YZ. The angle between the two faces is A/2Y Z,
using the accepted convention that the angle between crystal
faces is the angle between the normals. Correcting for the
magnification of the image on the photographic plate, it is
MA/2Y Z), where M is the magnification. This method is
suitable for angles of the order of one minute of arc upwards.

A second method is to set the fringes roughly symmetrically,
as in Fig. 29 b, and to measure the distances XY and YZ. The
angle between the faces is approximately

Al 1 1

é(ﬁ+ﬁ)
for supposed unit magnification. If YZ and XY are approxi-
mately equal (and this is a matter of setting the flat), then an
error in drawing ZX normal to 4 B is of little consequence, for
the increase in length of YZ is almost exactly compensated by
the decrease in X7Y.

A third and general method (due to W. L. Wilcock) requires

4980.2 B
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(®)

the measurement of the angles « and B and the length P@ in
Fig. 29¢. The angle between the faces is then

A
3PQ (cot o + cot B),

which is equivalent to the previous case.
For quite a small local kink, such as at B in Fig. 294, it is
seen that by measuring , the angle between 4 B and P@), and
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the distance Y between adjacent fringes (the dispersion) then
the local surface slope is

A A

% = Wtan P

With a larger feature the former methods apply.

The sensitivity of the method will be evident. If issmall the
slope may be written (A/2)(y)/Y), in which Y can be made 1 cm.
(high dispersion fringes as in Fig. 26). Suppose that a iy value
of 1° is measurable, then the angle measurable is approximately
A/100, corresponding to only 0-12 second of arc. It is to be noted
that the smallest angle measurable over a centimetre of face
with a goniometer (Rayleigh limit) is A, and this also presupposes
a strip broad enough lo give a signal distinguishable from other
signals.

The technique leads to a magnification of detail which is great
in one direction only, i.e. in the direction of height or depth.
The whole contour of the crystal shown in Fig. 25 is encom-
passed within a depth of some four light-waves, i.e. 1/5000 cm.
Observed angles between various faces on it vary from 0-50 to
9-00 minutes of arc. Variations exist on moving along the length
of a ridge, and it is further quite clear from Figs. 26 and 27 that
the sides of some of these ridges are curved, e.g. the radius of
curvature. of the main left-hand ridge feature is of the order of
60 metres.

It is of interest to draw attention to the sensitivity of this
procedure for the determination of a small angle. It should be
noted too that very small angles can be evaluated over quite
small areas of the surface. Comparison with the Rayleigh limit
is of interest. For a face 1 mm. wide the smallest angle that can
be measured by simple reflection (Rayleigh limit) is 2 minutes
of arc; for narrower faces the angle is proportionately greater.
It will be noticed that 1 mm. corresponds to about 1/10th of the
whole pattern registered in Fig. 27. No goniometer could pos-
sibly show up such fine detail, in particular the detection of such
features as variation of angle along a ridge. The superiority of
these measurements over those obtainable with the goniometer
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is of course due to the employment of multiple beams. The
Rayleigh criterion for resolution applies to sin? intensity distri-
bution, and it is the employment of a much more advantageous
intensity distribution which permits such a higher degree of
resolution to be achieved.

It seems clear that these major features must be regarded as
fine-scale vicinal faces.

It may be noted that plane faces are the exception rather than
the rule. Despite the apparent considerable scale of the major
contour features, when the enormous magnification is recalled
it will be recognized that in fact the crystal face is fairly flat,
since contours extend only over four light-waves.

Minor features

Comparison between the various fringe patterns reveals data
concerning the minor markings on the surface. Interpretation
shows that these markings are mainly of three broad types,
namely (i) simple almost parallel striations, (ii) ankle bend
marks of the form A, which are a characteristic feature of the
(100) face of quartz, and, (iii) features closely similar to (ii) but
with the base closed to form an obtuse triangle, so, 2\

(1) Striations

The striae are only well marked on the sides of the major
ridge. Some are much fainter than others. Where the fringes
pass over the more clearly marked striations a small kink
appears. Each observable kink is a significant detail, correlating
with a visual striation mark. From the direction of the kink
(whether the acute angle is in the direction of increasing or
diminishing order of interference) it can be decided whether the
striation represents a Tutora small ridge. Measurement shows
that the depths (heights) of striae are between 0-04 and 0-05 of
an order, i.e. only some 100 A.U., which corresponds to 20 silica
molecules.

(ii) The A -shaped markings
Little information can be directly derived about these mark-
ings. A discontinuity in level takes placein their neighbourhood.
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It can be concluded that in the near neighbourhood of the marks
there are abrupt small changes in level, of the order of a small
fraction of a wave.

(iii) The triangular markings

Data of some interest were obtained about these. Complete
triangular fringe patterns are visible and represent small tetra-
hedral pyramids with their bases resting on the surrounding
main surface. These tetrahedra are projections, not pits.
Measurements made on one of these gave some 0-17 of an order
as the approximate height of the pyramid, i.e. some 450 A.U.
As the size of the pyramid base is a relatively large, easily seen
triangular marking, it follows that the faces are inclined at very
small angles to each other.

A significant point is that the small triangles closely resemble
the major triangles. The face angles on the small pyramids are
therefore close to those enclosed between the sides of the major
feature ; the pyramids can be regarded as a ridge meeting a
triangular facet, or alternatively the major ridge feature can be
regarded as a tetrahedral pyramid. It is reasonable to conclude
that both features are identical but on different scales. It is
probable that the small pyramidal projections represent the
nuclei of growth of the (100) face, which have of course been
arrested. The crystal growth of layers from such nuclei has been
recently directly observed in many crystals. (Further structural
details are shown in the reflection interferograms, Figs. 91 and
92.)

That the visual markings have been proved to have depths
(heights) which are only a very small fraction of a wave-length
is a matter of some interest optically. The fact that they are so
easily seen requires explanation. It cannot be assumed that the
markings appear only because of a differential reflectivity be-
tween the marked area and the surrounding surface. This follows
as the various markings can still be clearly seen after silver
has been deposited on the crystal face. The reflecting coefficient
is then uniform, i.e. that of the silver. Proof of this lies in the
fact that the fringes retain their sharpness whilst passing over



54 CRYSTAL TOPOGRAPHY USING CH. V

the relatively large marked features. It can be concluded that
a differential surface quality enables the markings to be seen.
If it be assumed that the surfaces within the areas of the mark-
ings are ribbed or striated, either microscopically or even sub-
microsébpicﬁfy, then in a sense they will behave as crude
gratings, whilst the surrounding lustrous areas act as plane
mirrors. Two facts support this explanation. The angle of
illumination required to render the markings clearly visible with
a hand lens is somewhat critical and small changes in the angles
make the markings appear to-(;ha,nge over from bright to dark,
a typical grating characteristic. Furthermore, the markings are
more clearly seen when the crystal surface is viewed through a
colour filter. It is only necessary to postulate the association
of a high lustre with the true (100) face to account for the differ-
ence in character of the faces of the small tetrahedral pyramids,
since the latter are vicinal faces.

It is possible that some of the observed markings can be seen
because of the light diffracted from their edges, in accordance
with Rayleigh’s views on the visibility of discontinuities. This
is a very probable explanation of the visibility of the ridge edges
(junctions of vicinal faces) and of the striated markings. It is
not likely to be the explanation of the visibility of the small
tetrahedral pyramids since these extend over appreciable areas
and it is quite clear visually that the whole of the area, and not
only the boundaries, has a marked non-lustrous character. If
the pyramids consist of stepped ridges, and this is probably the
case, then in a sense the Rayleigh mechanism can be considered
to operate from each sub-microscopic step. In this case the final
effect is not very different from that of the pseudo-grating con-
sidered above.

It will be seen that the interference technique is likely to
provide information concerning crystal growth in general if
applied to this subject.

Mica cleavage

The previous section described the application of multiple-
beam methods to the examination of a natural crystal face. In
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what follows it will be shown that when applied to cleavage
faces of crystals much information is revealed. Mica will first
be considered since it has a perfect cleavage, the surfaces of
which possess a high natural polish. The procedure here
described can be applied widely to many of the other crystals
exhibiting perfect cleavage. A well-cleaved piece of good quality

mica has a smooth surface, but on it, cleavage ‘lines’ are clearly
visible with a hand lens, frequently radiating out in an arbitrary
direction from an area close to the point of insertion of the needle
used to initiate cleavage.

A freshly cleaved mica surface is quite clean and no cleansing
treatment other than ionic bombardment degassing is used when
silvering. Typical interferograms from the surfaces of musco-
vite mica sheets are shown in Fig. 30 (magnification X 2) and
in Iig. 31 (magnification X 15).

When thin sheets of silvered mica are mounted close to a
silvered optical flat they are found to behave as highly sensitive
diaphragms and are susceptible to small air shock-waves. The
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fringes are rarely quite still. This is particularly noticed in
regions of high dispersion. (So sensitive a diaphragm, which
indicates displacements of the order of A/100, might have some
useful applications.) The difficulty may be overcome by lightly
pressing the mica against the flat, with a sheet of glass. Then
the separation between the silvered surfaces is very small and

Fic. 31.

the fringe definition is excellent. This affords complete stability
over long periods, but there is loss in control in adjusting the
tilt of the mica surface relative to the flat. Sufficient control
is provided, however, by light local pressure on the glass
backing.

The stronger fringes in Fig. 30 belong to the green mercury
line, the weaker doublet being the yellow lines. To assist identi-
fication, photographs are often taken without filters. Despite
the obvious complexity of the patterns, three characteristic
salient features are evident, and such features appeared on all
the mica samples examined.
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(i) The surface contains hills and dales (in some cases quite
small pits). Different samples vary only in degree, but not in
character. Fig. 30 shows, for example, numerous hills, some
1/200th mm. in height, whereas the sample of Fig. 31 is much
more nearly plane.

(ii) A striking characteristic is the existence of sharp clear-cut
cleavage lines representing discontinuities in level. These vary
considerably in length and are often fairly straight. In some
samples they run in one general direction, in others they inter-
sect, at times with large angles up to almost 90°.

(iif) There exist large areas between the cleavage lines which
are of great optical uniformity. One must distinguish between
(a) distortion into hills and dales, and (b) local irregularities.
The smooth run of the fringes between the cleavage lines shows
that, although the surface may be badly distorted locally into
a sharp curve, it remains smooth and uniform. Of interest is
the manner in which some cleavage lines pass straight over
hill-and-dale features.
~ Owing to the manner of mounting it is not easy to determine

which are hills and which are valleys. This can be achieved,

however, by two methods. One method employing white-light
fringes is described later. The second is that developed by

J. Brossell [24] and is based on the following.

The interference within the air gap obeys the relation

nA = 2tcos¢$, in which n is the order of interference with a

film of thickness ¢, A the wave-length, and ¢ the angle of light

incidence. For a point source at the focus of a lens, giving a

parallel beam at normal incidence, sharp fringes are formed as

shown in Fig. 32a. Suppose now an extended source replaces
the point source, then values of ¢ greater than zero (the normal
incidence value) now exist in the beam. The fringes thus
broaden, but on one side only, namely in the direction of
—increasing ¢. This occurs because cos¢ < 1 for all beams other
than normal, so that for these a given order n requires a larger
value of ¢, which serves to reveal the directions of hills and dales.

The effect of using a considerably extended source with the

same mica surface as used for Fig. 32a is shown in Fig. 32b.



58 CRYSTAL TOPOGRAPHY USING CH.V

The hill-and-dale features reveal much of interest when a
systematic examination is made of different varieties of mica,
but this aspect will not be discussed here.
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The allocation of orders and step direction can be determined
by using both the green and yellow (and also perhaps the violet)
radiations of the mercury arc. It is unnecessary to make exact
measurement to determine these two factors. Visual inspection
of the pattern often suffices. This is made clear by Fig. 33, in

4
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which the strong line is the green and the dotted ones the yellow.
In Fig. 33 a the lower system 4'B’C’... is displaced to the right
from the system ABC... by the amount A4’ = BB' = CC('....
In Fig. 33 b the grouping 4’ is the same as that of B, B’ the
same as that of C, etec.: hence the lower system is displaced to
the left by the amount 4'B = B'C = C'D....
A.U.
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If the yellow lines are not included the two residual green line
patterns would be identical, and correct allocation of orders is
then impossible. In those areas in which a number of fringes fall
together within a region not severely distorted by rapid varia-
tion in dispersion, the McNair approximation method already
described permits a precision determination of the step to be
made.

The contour of a traverse across 6 mm. of a typical cleaved
sheet of muscovite is shown in Fig. 34. In the best of cases
it is possible to measure the step to within an accuracy of
3 A.U. This requires the measurement of the fractional order
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displacement to within 0-001. This can be done, for although
the fringe width is about 0-02 of an order, yet owing to the
method of setting, a displacement measurement can be made
with an error of no more than 1/20th of the fringe width.

It is important to note that both resolving power and preci-
sion considerably exceed that in the corresponding Fabry-Perot
interferometer by virtue of the fact that the fringes displace
above and below a dividing line. This is of course a well-known
feature in measurement, such a fiduciary displaced system being,
for example, used in a similar way in the Rayleigh refractometer.

An important feature concerns the value of a step measured
successively from a run of fringes along a cleavage line. If
measurements are made in those regions not badly distorted by
hills and dales, it is found that the fringe displacement along the
length of the cleavage line is uniform, indicating that the step
is constant, so that the two faces separated by the cleavage line are
parallel or, if curved, have the same curvature.

The general hill-and-dale contour of the whole surface sets a
limit to the accuracy with which this can be determined, but it
appears that the parallelism is fairly exact locally, at least over
a number of adjacent fringes, and certainly to within a very
small fraction of an order.

The local uniformity between the cleavage lines of mica

and the steps

The local uniformity between cleavage lines is a feature of
considerable crystallographic interest. The following can be
deduced from Fig. 35, relating to three different samples of mica.
The green line fringes are over-exposed to bring out the yellow
mercury doublet, the separation of which is less than 1/7th of an
order. The local ‘wriggles’ in each fringe are of the order of
perhaps 1/15th of the doublét separation indicating local fluctua-
tions of the order of about 1/100th of a fringe. This amounts
to 1/200th of a wave and is clearly the limit set by the optical
flat. Thus it can be concluded that, disregarding general super-

posed curvature, the mica surface must be uniform to better
than 30 A.U.
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Sir W. L. Bragg (private communication) has pointed out that
these cleavage lines and steps are almost certainly to be identi-
fied with the invisible steps inferred to exist on some mica sur-
faces from experiments made by Friedel on the growth of
ammonium iodide crystals upon such surfaces (see Bragg,

Fic. 35.

Atomic Structure of Minerals, 1937, p. 210). On some samples
the crystals orient themselves oppositely along invisible dividing
lines, and it has been concluded that over the area of identical
orientation the mica surface has cleaved tr\u«i to within a single
molecular plane. According to Bragg, as the mica cleaves along
the plane in which the K atoms are situated, and as the height
of the molecule (strictly the ¢ spacing) is 20 A.U., it follows that
all the cleavage steps should be integral multiples of 10 A.U.,
since the K atoms are centrally situated.

The interference data can now be compared with these con-
clusions. The smallest steps recorded from mica interferograms
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are 20 A.U. in height, i.e. exactly the ¢ spacing (effectively one
‘molecule’).

The following typical set of measurements show five steps in
which the precision of measurement is high, since they occur in
areas nearly plane. The fractional order displacement is known
to 0-001, which corresponds to an error of the very small value
of 3 A.U. It is a striking fact that these steps are exact integral
multiples of 20 A.U. (within the error). In Angstrom units
they are

Steps in A.U.
41 100 158 180 341
2x20-5 5x20 8x19-8 9% 20 17x 20

Furthermore, these steps all being small multiples of 20 A.U.,
there is no question about the certainty of the integral ratios.
It is clear that the steps are simple multiples of whole ‘molecules’.
There is amongst these five, no evidence of 10 A.U. being the
fundamental unit. This might only be a matter of chance, for
clearly if 10 A.U. happens to be the unit, it is simply a question
of whether amongst five random steps all will have an even
number of units. Other evidence seems to incline to favour
20 A.U. as the unit.

It should be noted that this in no way contradicts the ammo-
nium iodide crystal growth experiments. The successive double
layers of mica are related by a glide plane of symmetry parallel
to (010). The orientation on the surface for any step may have
an inclination on either side of this symmetry plane. On adjoin-
ing steps the orientations may be the same, and then the crystals
of ammonium iodide experiments would in fact not reveal a step.
Three illustrations of crystal growth are given by Bragg. One,
lepidolite, shows a clear step, hence this is a half-integral mul-
tiple of 20 A.U. But another sample shows no ‘invisible’ step.
It does not follow that the surface is uniform, it may in fact have
on it a number of steps, each an integral multiple of 20 A.U. The
mica samples used here would give ammonium iodide patterns
similar to this second sample. The third crystal growth illustra-
tion (phlogopite) shows orientations of either kind equally
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numerous, from which it might possibly be concluded that here
we have a typical area in which there are many small-length
cleavage steps of narrow width between steps. Such charac-
teristic areas have appeared on some of the samples examined
interferometrically. _

Not only is there agreement between the general conclusions
as regards steps, obtained by interferometry and by crystal
growth experiments, the same is true of surface uniformity. The
existence of uniformity between the invisible cleavage lines
given by the superposed crystal growth orientation is not quite
a safe inference, for, as already pointed out, there exist steps
which are integral multiples of 20 A.U., and from the point of
view of crystal growth such steps would have no effect on
orientation and thus be missed, giving a false picture of uni-
formity.

It was concluded from the smoothness of the doublet yellow
fringes that, between cleavage lines, the surface is, however,
actually uniform to at least 30 A.U. Thus the uniformity can
be objectively demonstrated with fringes, although only deduced
from the crystal orientation (though the orientation observa-
tions are subject to the doubt already mentioned). It seems that
the conclusion drawn from the crystal growth, namely that
between the cleavage lines the surface runs true to a molecular
Plane, is substantiated.

Decisive evidence on this point is given in a later section,
where it is shown with certainty that some mica samples cleave
true to a single molecular plane over areas exceeding 20 sq. cm.

The silver contour

A feature of fundamental importance to the whole technique
is illustrated both by the smoothness of the fringes and the
uniformity of the cleavage step value observed along the length
of aline (see, for example, Fig. 31). Measurement shows that,
along the length of a cleavage line, the value of the step is con-
stant to within limits of error. Crystallographically this was to
be expected. Yet its observation yields information on a critical
point. It follows from the measured uniformity of step that the



64 CRYSTAL TOPOGRAPHY USING CH. V

silver must have exactly contoured the surface, probably to
within the crystal lattice distance of silver. What is meant by
this statement is illustrated in Fig. 36.

Suppose A BCD is the mica surface and that the silver deposits
itself as 4’B’C’D’. One can, for convenience, imagine specular
reflection taking place from some equivalent surface 4" B"C"D".

4 7/
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m
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(Strictly speaking, reflections take place within the whole depth
of the film, but it is unreasonable to push the application of this
model to its limit.)

It appears certain that the difference in level between 4”B”
and C"D" (also that between A4’B’ and C’D’) is identical with
that between 4B and CD. In this 8ense the silver exactly
contours the surface. It is not postulated that the deposition
locally at the edge B’C’ (or B"C") has the same shape as BC—
indeed it is highly probable that it has not. For this reason a
limit is set to the linear magnification that can be used in view-
ing fringes. Experiments have been carried out on crystal
features of diamond which indicate that X 400 can be tolerated
with no evidence of serious disturbance from silver variation.
This would imply that any irregularity round B"C” has a
relatively small lateral extension.

Further evidence will be adduced later proving that the silver
contouring is adequately perfect for the technique.

The cleavage of selenite

Selenite crystals (gypsum) have a perfect cleavage so closely
resembling that of mica that in the early history of crystallo-
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graphy the two materials were frequently confused. Yet when
the cleavage surfaces are examined by multiple-beam interfero-
metry, the differences are strikingly evident and reveal in a clear
manner the potency of the technique.

The specimens of selenite available gave fairly good specular

Fia. 37.

reflection (before silvering) over some 2 sq. cm. Typical con-
" tours, representing about 1 sq. em., are shown in Figs. 37 and
38, and contrast strikingly with the mica ones. The main
distinguishing features of the patterns are:

(i) A large number of roughly parallel cleavage lines. The
large angles between some cleavage lines exhibited by some
micas do not appear, although in isolated cases angles up to
15° appear.

(ii) The characteristic hillocks and valleys shown by all mica
specimens are absent. Instead the selenite shows a cylindrical
curvature. The curvature is relatively large, the radius being
some 4-6 metres, for one particular sample. The cleavage lines
are in the same direction as the curvature.

(iii) The separate fringes are very ragged and show multiple
4080.2 F
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kinks. Between the straight cleavage lines the fringes are
nowhere smooth, as was the case with mica, but are disjointed
and irregular, although retaining their individualities as sepa-
rate, reasonably sharp, fringes (Fig. 37 particularly).

Fia. 38.

The detail of the separate fringe structure is shown in Fig. 38,
where the dispersion has been increased by bringing the crystal
surface nearer to parallelism with the optical flat.

The cleavage-line discontinuities in selenite

The ragged nature of the fringes reduces the precision of
measurement compared with that for mica, though it is still
considerable. The contour of a typical traverse across 7 mm.
of the crystal, at right angles to the cleavage lines, is shown in
Fig. 39. The numbers of ‘molecules’ in the steps are approxi-
mate whole numbers, for the accuracy is insufficient to give an
exact figure.

There exists a close superficial resemblance with the typical
mica contours. A very large number of steps smaller than those
recorded above were observed, but they are not illustrated in
Fig. 39 since they extended for only short lengths and tended
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to become merged into the general ragged nature of the fringes.
It will be noted that the X-ray dimension of the selenite cell in
the direction perpendicular to cleavage is 15 A.U., which com-
pares with the 20 A.U. of mica.
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Variation of step along a selenite cleavage line

A marked difference between mica and selenite is that the
value of the step, in many cleavage lines, changes regularly on
moving along a line. This means that the two surfaces separated
by the cleavage line are not parallel, having a relative slope
along the direction of the line. A particularly marked case is
shown by the data given in Fig. 40, which is the plot of the
value of the cleavage step along a 3 mm. length of a cleavage
line. This shows that there is a small relative curvature between
the two faces superposed on a general slope. Taking one surface
as the horizontal plane, the other starts off below this, crosses
over, and a downward step becomes an upward step.

The case illustrated in Fig. 40 is an extreme example, for
in the majority of the cleavage steps measured any relative
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curvature that may exist between the adjacent faces is so small
that it is sufficiently close to consider that the two surfaces
are merely inclined relative to each other in a linear manner.



CH.V FIZEAU FRINGES 69

The character of the surface is illustrated by an approximately
perspective diagram, Fig. 41, which represents the contour with
the third dimension added. The axes OX, OY, OZ are mutually
perpendicular, the scales along the two horizontal directions are
the same, the magnification being great only in the vertical
direction. The deviations of the surfaces from the horizontal
plane are shown by the blackened wedge sections. The thlckness
of the slab along the OY direction is 1 mm.

The angles between the inclined faces are very small, and it
is only the high magnification in the Z direction which enables
them to be measured. It may be noted that an angle of 0-011
minute of arc for one of the strips is given by a crystal strip
only 0-8 mm. long and 0-4 mm. wide.

The state of the surface between the selenite cleavage lines

The peculiar state of the surface between the long cleavage
lines is revealed by the higher dispersion regions, especially near
to the centre of the cylindrical fringe pattern. The figures show
why with lower dispersion the fringes have so ragged an appear-
ance. It can be seen that the areas between the major cleavage
lines consist of a large number of small facets, each of which is
an elongated strip. The long axis of the strip is in the direction
of the major cleavage lines. The strips vary in length from quite
small strips to lengths up to 1 mm. The widths also vary widely,
and although most are of the order of only 1/50 mm. wide,
some attain a width of the order of 1/10 mm. These strips do
not lie in the same plane but are stepped in a haphazard way,
positively and negatively, the steps being only small fractions
of an order in most cases. It is clear that the strips differ in
height by only a few molecules. It will be shown later that many
steps are only one molecule high.

There is no evidence of any regularity in this distribution
of small strips, or in their heights. Occasionally an individual
narrow strip will project out of a fringe by as much as 1/10th of
an order, indicating that there is a difference in height by some
300 A.U,, i.e. some 20 ‘molecules’. In general the differences
are considerably less.
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The individual small elongated strips practically all lie with
their major axis in the general direction of the long cleavage
lines, but in some cases there are appreciable abrupt angles
between adjacent small strips. The general direction of the large
majority proves that the strips must be regarded as subsidiary
cleavages superposed upon the main areas defined by the major
cleavage lines. The strip edges are sharp, indicating true dis-
continuity.

Selenite is a hydrate, and the crystal had been exposed to a
vacuum for some 30 minutes during the silver-deposition proce-
dure. It must be considered whether some slight surface de-
hydration effect might account for the ragged surface. The
crystal never warms up above room temperature during the
silvering procedure, so that the dehydration, if any, might be
expected to be minute. On the other hand, the facets are only
a few molecules deep, often only one molecule deep. It seems
certain, however, that dehydration has nothing to do with the
effect. The fact that the individual strips show such sharp
cleavage edges, and are in the same general direction as the
major cleavage lines, disposes of this view. The subsidiary
strips must certainly arise during cleavage, indicating a true
secondary structure.

Thus the cleavage mechanism differs from that of mica in
that there are two distinct factors: () the major strong cleavage
strips extending over distances of the order of centimetres; and
(b) the secondary weak cleavage patches which are in most cases
only a fraction of a millimetre in length. In mica the cleavage
takes place at a weak bond between potassium (or sodium) and
oxygen, whereas in selenite the weak bond is between water and
oxygen. This difference may be connected with the different
cleavages. On the other hand, whether or not the subsidiary
patches in selenite are related to a crystal ‘mosaic’ remains yet
to be determined.

The contrast between the mica and selenite cleavages is further
accentuated by the common occurrence of a relative slope be-
tween the two faces on either side of a cleavage line in the case
of selenite. It is also fairly certain that in selenite the change
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in level as one moves along a cleavage line is not continuously
smooth but rather stepwise and ragged, because the subsidiary
patches are so much shorter than the main cleavage lines and
they lie at variable heights.

It is clear now that the three-dimensional diagram in Fig. 41
is only a simplified schematic representation of the true state
of the surface.

The cleavage of calcite

Calcite cleaves perfectly in three directions to form the well-
known rhombs, and an examination of a calcite cleavage face
has revealed a feature of crystallographic interest. The Fizeau
fringes for the face in question are shown in Fig. 42 and are
characteristic. The calcite exhibits a series of fairly parallel
cleavage lines between which are smooth fringes recalling the
smooth continuity of the mica fringes. It appears that between
the major lines the calcite might also be expected to cleave true toa
molecule. Since the lattice spacing is only 6 A.U., this dimension
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cannot be subject to numerical confirmation. Some perfectly
uniform areas extending over 2X 2 mm. have been observed.
Fig. 43 is a print with fringes running nearly parallel to the
cleavage lines.

It is probable that the cleavage pattern is evidence of some
form of mosaic block pattern within the body of the crystal,

Fic. 43.

somewhat in the nature of the lineage formation postulated by
Buerger. Thus a highly uniform cleavage area over some con-
siderable extension is probable evidence for the existence of a
local block of a perfect single crystal. By this means, therefore, it
should be possible to select a high-quality crystal for use in an
X-ray spectrometer, since the calcite crystal is used for this
purpose.

The majority of the cleavage lines resemble those in mica in
that the value of the cleavage step remains constant along the
length of the line; but in rare instances this is departed from.
In a few particularly noteworthy cases a curious effect has been
observed. Application of light pressure to the crystal surface
(by pressing on the optical flat) alters the heights of these par-
ticularly sensitive cleavage strips. In one of the narrow strips
(strip dimensions 2 mm. X 0-1 mm.) bounded by two cleavage
lines, pressure causes the whole strip to move as if rotating about
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one end, the strip dipping down into, or rising up out of, the body
of the crystal by avery smallamount. Each successive application
of pressure leads to an unpredictable movement of the strip.
A typical movement canlead to a change inlevel of some 100 A.U.
The strip appears to be gliding through this very small distance,
tilting through an angle of 1” of arc.

Cleavage proceeds along a plane until the boundary of that
particular single crystal is reached. At this boundary the cleav-
age jumps and a step results. The gliding of individual blocks
mentioned above supports this view. It is highly probable that
the perfect rhombohedral cleavages of calcite permit this gliding
to take place. The observed shapes of the cleavage strips vary
considerably in different crystals, being broad rectangles in
some and narrow strips in others (e.g. 3 mm. X 0-03 mm.).

A tentative mechanism for the cleavage can be proposed on
the basis of these observations. Within a single crystal, cleavage
once begun carries on over a true molecular plane until reaching
the boundary. At this discontinuity the cleavage jumps and a
cleavage step forms. If this view is correct, the extensive cleav-
age areas in some micas are evidence of the formation of large
blocks of perfect single crystals.

It will be seen from the discussion that the multiple-beam
interference method has already thrown some light on the
mechanism of cleavage, and if intensively applied should give
information about the whole problem of surface structure and
mechanical strength.



CHAPTER VI

CROSSED FIZEAU FRINGES
DIAMONDS

Microscope technique

THE multiple-beam fringes can be examined with a microscope
provided the phase conditions previously discussed are not
violated. It is clear that to view high-magnification Fizeau
fringes the wedge angle must be increased if several fringes are
to cover the field of view, which is usually essential.

If fringes are to be 1 cm. apart upon a microphotograph at
% 100, the distance between fringes on the silvered surface is
0-01 cm., and this necessitates as small a value of ¢ as can be
attained if the phase condition is to be satisfied. The angle 8
between the surfaces is AX/2 where X is here 100, which makes

= 0-15° for the green mercury line.

Now the nth beam makes an angle £ = 2n6 with the first beam
and for n = 60 this gives ¢ = 18°. The light entering the micro-
scope is unsymmetrically distributed, being all on one side of the
direct beam; thus to a rough approximation a cone of semi-angle
18° is to be collected. This requires a numerical aperture of the
order 0-45.

A good average half-inch objective has a numerical aperture
0-40, which is perhaps just on the limit for collecting most of the
effective beams. Thus it can be concluded that for magnifica-
tions below X 100, a }-in. NA = 0-40 objective (with X 8 eye-
piece) suffices to collect most of the essential beams. For higher
magnifications a bigger numerical aperture lens must be used,
otherwise fringe definition will suffer. This is not a question of
microscope resolution in the ordinary sense, although it is
related to it, for clearly if fringes are 1/10 mm. apart the micro-
scope is being expected to resolve 1/500 mm. if a fringe width
of 1/50th order is to be sharp.

Fortunately the reduction of gap required for the phase
condition permits the employment of an intense high-pressure
mercury-arc source and as a result high light intensities are
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available permitting good exposures to be obtained in relatively
short times.
Fizeau fringes with a diamond

The fringes obtained with diamond crystals illustrate the
general application of the microscope technique. The diamonds

Fia. 44.

selected were ‘portrait’ stones, i.e. those in which a pair of
opposite, parallel octahedron faces is abnormally developed,
leading to a crystal in the form of a plane parallel plate. The
diamond was cleaned, silvered, and mounted against a silvered
flat, which could be brought as close as desired to the crystal
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surface, and with three light springs any required tilt between the
surfaces could be obtained. The separation between the slightly
inclined surfaces was reduced to a few light-waves.

The Fizeau fringes shown in Fig. 44 were photographed by
means of a Leica camera attachment to the microscope, and
green and yellow fringes are shown. The area covered was about
2 sq. mm.

Attention is drawn to the extreme sharpness of the fringes,
and it will be realized that irregularities and steps of the order
of a few Angstroms only can be measured with confidence.

However, the very sharpness of the fringes constitutes a defect
in that only a small fraction of the total area is scanned by
fringes on any single interferogram. To obtain a reasonably
complete topographical survey it would be necessary to take
a considerable number of such pictures, and from them (with
a good deal of labour) the surface structure could be built up.
This method was indeed used in examining the quartz crystal
formerly described.

The crossed fringe technique, to be described below, overcomes
this difficulty in a simple manner, reduces labour considerably,
and adds a great deal to the power of the method.

High-dispersion Fizeau fringes

Suppose the wedge angle is reduced until the two surfaces are
as near parallel as possible. Residual angles remain, due to the
inherent topographical features. On removal of the colour filters
a high-dispersion complex pattern, as in Fig. 45, results, and this
exhibits a complete picture of the crystal surface, revealing
with high contrast a wealth of structural detail not observable by
ordinary micrographic methods. It is emphasized that Fig. 45
is an interference pattern of high sensitivity, as shown by the
following considerations.

Fizeau fringes between parallel plates lead to a uniform tint
of intensity determined by the separation of the plates in accor-
dance with the Airy formula, maxima occurring for nA = 2¢, at
which 7 is integral. A change in separation produces a change
in intensity. Consideration of the fringe shape shows that the
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maximum sensitivity occurs if ¢ is selected such that approxi-
mately half the peak intensity is in the field of view.
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Since F is large, sind can be replaced by 8, giving

2

8='_F_§.

Suppose now that a 10 per cent. change in intensity is pro-
duced by a change of ¢ to ', corresponding to a new value &’
(where 8" = 4xt’[A):

I
,4 — maX
045 Inax 14 Fsin2 13"’
- in 5 — 2411
giving = 3F0
2411 A
'—t = -2
hence t'—t ( 3 )4”1“,

. A
which equals G0 VoY closely.

For R = 0-94 this equals A/1,940 since F' = 1,044, for which,
to a close approximation,

t'—t=3A.U.

Since a 10 per cent. change in intensity is readily recognizable,
the method is clearly one of extreme delicacy.

Yet the interferogram as it stands cannot be interpreted, for
there is no indication as to any possible overlap of orders and
in any case for numerical computation precise microphotometric
density determinations would be required. The solution to this
difficulty is given by crossed fringes, as described below.

Crossed fringes

If the ordinary sharp and the high-dispersion fringes are
crossed, i.e. photographed in succession on top of one another
on the same plate, then the result is as shown in Fig. 46.

The power of such a technique is strikingly obvious, for the
various twists and turns of the sharp, narrow, precision high-
definition fringes of Fig. 44 receive immediate interpretation and
conversely the broad features of Fig. 45 can now be subjected
to precise numerical evaluation.
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A still more striking combination is shown by the triple crossed
fringe system illustrated in Fig. 47. Here the high-dispersion
fringes have superposed upon them two independent sets of
narrow wedge fringes, placed roughly at right angles to each

Fia. 46.

other, such an arrangement being obtained by successive suit-
able adjustment of wedge angles. This compound picture is so
complete that a large number of important and interesting
features can be numerically evaluated from the one photograph.
The gain in ease of interpretation and the saving in labour is
considerable.

It would be out of place here to go into the interpreta-
tion of the mass of detail shown by this picture, a report
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of which has been given elsewhere [26], but some of the main
features will be discussed, illustrating, as they do, general
principles.

Triangular pits

There has existed some controversy for fifty years as to the
origin of the shallow-pit triangular markings frequently seen on
octahedral diamond faces. Many such markings are visible in
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Fig. 45. One in particular will be discussed and is shown en-
larged in Fig. 46.

It will be seen that the fringe beginning at A is straight until
reaching the ridge marked X Y. The application to one corner of
gentle pressure shows that a displacement to the right means an
elevation on the surface and identifies XY as a ridge. However,
the fringe through the large triangle is a linear continuation of 4.
Thus the base of the triangle is at the same level (to within
molecular limits) as the extensive outer area above X Y. 1t is
clearly entirely unreasonable to expect etching to go down
exactly to this outer level. The triangle must arise from growth
and is due to the incompletion of growth sheets in the region
below XY. If it is postulated that growth takes place in three
directions, inclined at 60° to each other, the arresting of such
growth will lead to the formation of equilateral triangular pits,
as observed.

It is of interest to note that this shallow pit is 400 A.U. deep.
Pits ranging from some 60 to 600 A.U. deep (30-300 atom layers)
have been measured on this particular surface.

Curvature of faces

Referring back to Figs. 46, 47, it is seen from the fringes that
(1) growth sheets and their heights can be rapidly evaluated;
(2) the majority of the growth sheets are curved. Again a con-
troversial pointissettled. Curvature of diamond facesis common
and has been attributed variously to etch and to growth. The
sheets evidently grow in stepped pyramid manner, as shown by
a section illustrated in I'ig. 48, and these when not resolved fully
will lead to effective apparent curvature without postulating
solution. There are irregular pits in Fig. 45 different from the
rectilinear triangles. These irregular pits are most likely due
to solution oretch. The curvature of the bases of growth triangles
and of the tops of growth sheets, yet associated with rectilinear
edges, affords proof that curvature and growth go together.

This particular diamond was removed and both the crystal
surface and the flat resilvered at intervals. On setting up again

the crystal would not be matched each time against exactly the
4980,2 G



82 CROSSED FIZEAU FRINGES CH. VI

same area on the flat. However, the interference pattern ob-
tained remained unchanged, showing that the topography re-
corded is attributable to the diamond only.

It can be noticed that within some of the highly sensitive
uniform tint regions there appear secondary fine-grain structure
factors. These are of two kinds: (a) regular narrow fine-scale
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striations; (b) irregular ‘honeycomb’ patterns. The regular striae
are undoubtedly crystallographic and characteristic of the dia-
mond, for they appear within triangular areas and are crystallo-
graphically oriented, being parallel to a triangle edge. They
therefore belong to the true topography.

The other ‘honeycomb’ details are more difficult to account
for. They may be due to (1) the crystal, (2) the silver, (3) the
flat. These honeycomb patterns look like diffraction effects and
might be due to silver clumps acting as diffracting centres. With
respect to this view it should be noted that such effects were not
noticed on the fringes formed by doubly silvered mica. It has
been shown now that the honeycomb patterns arise from fine
scratch polish-marks on the optical flats used. This will be
proved later in the sections dealing with white-light fringes.
They do not therefore belong to any topographical features of
the diamond surface.

One other irregularity may be mentioned since it is observed
at times. A characteristic about some silver surfaces deposited
upon crystals is that, unless the surface is very clean before
deposition, the silver film begins to break up after some days and
minute pin-holes appear in it. These become immediately
noticeable in the photographs as strong black spots surrounded
by diffraction haloes. They are quite characteristic and are a
firm indication that resilvering is necessary.
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A scrutiny of one of the crossed fringe interferograms shows
in an interesting way that the uniform tint fringes are only sensi-
tive when the separation is correctly chosen such that the light
intensity is close to half the maximum. Why this should be so is
illustrated in Fig. 49, in which, for clarity, an exaggerated fringe
width has been drawn. A change in phase 6 at 4 (due to a change

Fic. 49.

in thickness at the correct situation) leads to a fall of intensity
represented by P@. The same phase change at B has practically
no effect on the very low intensity transmitted in this region.

Reference to the crossed fringe interferogram will reveal this
in many regions. One can see, for example, in the light (cor-
rectly illuminated) regions in the section shown in Fig. 50, how,
when a straight line fringe shows only a slight curvature, the
whole field behind it may yet reveal a marked change in inten-
sity. On the other hand, within the dark (insensitive) regions,
the straight line fringes often display violent kinks and curva-
tures with no alteration in background illumination taking place,
in accordance with Fig. 49.

It is for this reason that an unfiltered arc is used for the
production of the high-dispersion fringes, for the different wave-
lengths help to fill in the empty regions and give sensitivity
over a much bigger fraction of the field of view. Successful
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interferograms have been obtained using a special mercury arc
containing added cadmium, thus increasing the number of lines
in the field, yet not causing too much confusion.

So sensitive is the set-up when used for high dispersion, that
photographic exposures must be kept to a minimum in order to
reduce any possible minute disturbance due either to shock

Fic. 50.

or temperature change. The brilliance of the source can be
heightened by raising the current, since the associated increase
in line width is of little consequence.

A good achromatic (preferably apochromatic) objective is
necessary if the completely unfiltered mercury arc is used, other-
wise the blue and yellow patterns do not coincide and this causes
confusion. For this reason a mercury-cadmium arc, with the
blue filtered out, is likely to be superior in general to an unfiltered
simple mercury source.

In making the crossed fringe exposure care must be taken not
to over-expose (rather to under-expose) the high-dispersion
pattern, for the light from this pattern photographically tends
to broaden the sharp fringes later superposed on them. The
procedure is simple when photographing with a microcamera
which has an auxiliary eyepiece permitting the pattern to be
viewed even whilst photographing. The silvered surfaces are
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set in the high-dispersion region and the camera shutter then
opened. After completion of exposure, without touching the
camera, the silvered surfaces are suitably tilted by a slight touch
on an adjusting spring and the second exposure made, super-
posed on the first. The exposure times for the two systems are
usually different and trial exposures require to be taken sepa-
rately before the combination photograph is made.

Fia. 51.

Further studies on diamonds

It is clear from the crossed fringe interferograms already
reproduced that each picture contains a mass of information.
It is not the purpose of this discussion to consider individual



86 CROSSED FIZEAU FRINGES CH. VI

crystals, but to illustrate principles and methods; hence the
many interesting crystallographic features will not be reviewed
here. Reproductions are shown in Figs. 51, 52 of crossed fringe

Fic. 52.

patterns given by two other diamonds (also portrait stones).
The contrast in types is noticeable.

As illustrating the interesting new features which can be
revealed, attention is drawn to the projections at the bases of
the triangular growth markings shown in Fig. 51 the details of
which are reviewed later. A considerable number of micro-
photographs of diamond surfaces have been variously published
by many authors at different times. A scrutiny of a large
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number of these fails to reveal this peculiar feature on any of
them. This does not imply that it does not exist; on the contrary
it is an index of the sensitivity of the interference method for
revealing sub-microscopic detail.

Comparison with the phase-contrast microscope

Within recent years there has been an important development
in microscope technique, the invention of the Zernike phase-
contrast method. Zernike has pointed out that microscopic fine
detail can be regarded as being of the nature of either an
amplitude-grating or a phase-grating. In an amplitude-grating
the object consists of alternate transparent and opaque strips
which are to be resolved, i.e. the amplitude of transmitted light
varies as one progresses along the surface of the object. The
phase-grating consists of a transparent body in which phase
changes in the transmitted light are produced by different path
lengths in the material under observation.

Zernike has shown that by changing the phase of the direct
zero-order spectrum in the Abbe diffraction pattern, the contrast
of detail in the image of such a transparent grating is much
enhanced. As is now well known, he achieved this by introduc-
ing on his microscope objective a diaphragm of thin collodion,
selected to produce the correct phase change. By this means
detail-producing phase retardation is rendered visible.

However, it must be realized that this is in effect analogous
to a two-beam interferometric procedure although the improve-
ment is considerable.

The multiple-beam high-dispersion fringes can be considered
as being equivalent to a super-phase difference microscope in
that intense contrasts appear for minute phase changes. Very
small raised features which are slightly visible in the Zernike
microscope can and do exhibit most intense contrasts when
viewed with high-dispersion multiple-beam interference fringes.

This explains how sub-microscopic detail can be revealed,
and it is indeed possible that an extensive examination of other
diamonds would reveal that features such as are recorded here
are not exceptional and are possibly quite common.
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Comparison with the electron microscope

It is of interest at this stage to contrast multiple-beam
interference methods with the results given by the electron
microscope. The first difference is, of course, that of cost and
complexity. The complicated nature of the electron microscope
is in striking contrast to the simplicity and inexpensiveness of
the interferometric method. In a sense the two procedures are
complementary. The optical method is probably the more
sensitive. For the electron microscope essentially gives great
magnification and high resolution over surface area, whilst the
interference fringes give great magnification and resolution in
height and depth only. The electron microscope can resolve, at
considerable cost, some 50 A.U. The fringes, at very little cost,
resolve 5 A.U. The electron microscope usually requires an
elaborate technique for taking moulds of surfaces, whilst the
optical method can often be directly applied. It is to be noted
that by the adoption of an elaborate stereoscopic technique,
usually produced by tilting the object, it has been claimed that,
with the electron microscope, depth features of the order of
100 A.U. can be measured. Whether these claims are fully
justified is not yet clear.

The actual linear magnifications produced by the high-
dispersion white-light fringes to be described later (p. 96)
exceed those usually reported for electron microscopes. Two
fringes can be 10 cm. apart on a plate and this distance corre-
sponds to A/2, i.e. approximately 2,500 A.U. The linear magnifi-
cation is then some x 400,000. Far greater magnifications can
be produced (hundreds of times) in special instances, as, for
example, in the non-localized circular fringes (Chap. XV).

Polished diamond

The diamond interferograms discussed above were given by
natural diamond surfaces which had only been subjected to
cleaning processes by chemical reagents. The resistivity of
diamond to chemical attack even after prolonged contact with
acids and alkalis is well known.

It was of interest to examine a highly polished diamond face.
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A diamond ‘flat’ was obtained and examined, the interferograms
being as shown in Figs. 53, 54. The fringe structure is ragged,
and in the high-dispersion region in Fig. 53 can be seen a regular
succession of parallel streak markings. This plate shows fringes

FF1c. 53.

with the green mercury line. These may be crystallographic or
they may be simple polishing scratches. In any case their orien-
tation and parallelism is such as to indicate that they are parallel
to the ‘softer’ direction on the surface. Fig. 54 shows the yellow
mercury fringes, the area being 2 sq. mm.

The surface is very different from that of a polished piece of
glass, which gives evidence of local flow. A somewhat related
effect has been observed in the comparison of the fringe quality
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given respectively by crystalline quartz and fused silica flats.
The fused silica flats are locally smooth; the hard crystalline
quartz shows a fine-grain structure.

Finally it may be noted that observations with diamonds are
at times liable to suffer complication from ghost images. These

Fiac. 54.

arise from the very high natural reflectivity of the unsilvered
back face of the diamond. This has a reflectivity of 18 per cent.,
and from such a surface a ghost of appreciable intensity can be
formed. If recognized the ghost introduces no particular compli-
cations. The ghost can be seen in Fig. 53. Polished diamonds
are of much importance in instrument bearings, etc., and a more
detailed study of such polished surfaces by interferometry
should prove profitable.



CHAPTER VII
DOUBLY SILVERED FILMS: FIZEAU FRINGES

General properties

I~ the experiments previously described an optical flat was nsed
as plane of reference. Clearly any method for avoiding this will
prove of value, and in special instances this can be achieved.
Thus it is easy to obtain thin slips of cleaved mica, and if both
sides are silvered the phase condition will not be violated and
sharp fringes will result, without the intermediary of a flat.
Since the topographical features of any mica surface are always
complex due to a combination of flexure and cleavage, it might
have been anticipated that the Fizeau fringes formed with a
doubly silvered slip would be still more complex because of
superposition from both faces. This is, however, not the case in
mica, for the reason given below.

Experiments can conveniently be made with thin slips vary-
ing from 1/50 to 1/150 mm. thick. Such sheets are flexible and
sensitive to air shock, hence in most obs<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>