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PREFACE

This book contains the lectures given at the International Summer School on
Collective motion and Nuclear Dynamics held in Predeal, Romania, in the period of
August 28-September 9. The Nuclear Physics Schools, organised by Institute of Physics
and Nuclear Engineering are well known to physicists throughout the world due to their
long hystory and good reputation. The first edition took place in 1964 in Bucharest
and after a break of five years the series has been continued regularly every two years
in Predeal. For some administrative reasons in 1978 the location of the school was
changed from Predeal to Poiana Brasov. Since 1991 we moved back to Predeal and
that happened not only because we wanted to restore the tradition but also to have
back the excellent conditions we had before 1978. Unfortunately this revolutionary
desire was only partly fulfilled since the new priviledged class of Romania does not yet
realise the importance of physics among other intelectual activities.

The school held in 1995 was devoted to the stydy of collective features and dy-
namics of nuclear system from both theoretical and experimental angles. A large variety
of subjects were chosen. Indeed, we aimed at covering fields ranging from classical to
pure quantum mechanical formalisms, from standard nuclear structure to nuclear dy-
namics for finite temperature and relativistic effects of nuclear systems, from deuteron
and alpha to heavy clusters, from exotic nuclei lying far away from the stability line to
superdeformed nuclei. Qutstanding speakers were invited to present an overview of the
results in their field and to sketch the most appealing perspectives.

It is well known that nuclear physics "imported” some formalisms from other fields
but also "exported” some efficient theoretical tools. Examples of such events were also
presented at our school. Thus we had an exhaustive lecture about the use of quantum
groups for nuclear structure problems where a completely new mathematical technic is
transferred to nuclear physics. On the other hand many theoretical achievements in the
description of nuclear systems were borrowed by a relatively new field studying atomic
clusters. This field was present at our school through a nice talk about fissioning atomic
clusters.

In contradistinction to the previous editions, now we did not accept lectures longer
than two hours. Therefore the style of our meeting may be placed between those of
conferences and traditional schools. Due to this fact we had a relatively large number
of invited lectures (37). All of them were supposed to appear in this volume. We regret
very much for being unable to receive two distinguished lectures, in due time. Besides
invited lectures many short seminars were given. These will be published in a special
issue of Romanian Journal of Physics.
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The present edition, like the previous three ones, took place under the special
circumstances generated by the so-called transition to the market economy. Due to
this social and economical phase transition , our institute, like many other institutions,
crosses a very difficult financial crises. In this context organising an international school
is an inconsistent and not an opportune social phenomenon. We were able, however, to
save the School due to some external grants. Thus, we have received a generous financial
help from OAE (office for External Activity ) of ICTP Trieste, Ministry for Research
and Technology, Ministry for Youth and Sport and from Academy of Romania. We
take this opportunity to express our deep gratitude to these International and National
organisms.

During the preparation of this School I received a constant help and friendly
advices from Director General of IFA Prof. T. Necsoiu, Director of IFIN, Prof. V.
Zoran and Deputy Director of IFIN, Prof. A. Calboreanu. I am very grateful to them
for their continous support. I shared the work implied by organising this meeting with
my collaborators Prof. D. Bucurescu (co-Director of the School), Drs. D. S. Delion and
I. I. Ursu (Scientific Secretaries). They were very efficient and contributed substantially
to the succes of the school.

I hope this volume will be very useful to a large cathegory of nuclear physicists.
Also I am convinced that the scientific level of the lectures, the academic atmosphere
and the beauty of the mountain surrounding the place are three strong attractors for
participants to the next editions.

A. A. Raduta
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1. NUCLEAR STRUCTURE



PAIRING AND CORIOLIS EFFECTS IN DEFORMED ODD-MASS NUCLEI

A. COVELLO, A. GARGANO, and N. ITACO

Dipartimento di Scienze Fisiche, Universita di Napoli Federico I
and Istituto Nazionale di Fisica Nucleare
Mostra d’Oltremare, Pad. 20, 80125 Napoli, Italy

ABSTRACT

The many-particles plus rotor model provides an appropriate frame-
work for the study of strongly deformed nuclei. We discuss here a version
of this model in which the pairing correlations between the valence nu-
cleons in the intrinsic deformed field are treated by a new method, the
chain-calculation method. This method has the power to reduce the com-
putational work drastically while yielding practically exact results. The
model is applied to the two odd-mass nuclei !®3Er and 13Er focusing at-
tention on the lowest-lying decoupled band. The role of the recoil term as
a mechanism that produces attenuation of the Coriolis coupling is empha-
sized. The results of our calculations for both nuclei turn out to be in good
agreement with experiment.

1. Introduction

The study of pairing and Coriolis effects in strongly deformed nuclei is a central
theme in nuclear structure theory. A particularly appropriate theoretical basis for
this study is provided by the many-particles plus rotor (MPR) model.! =3 The main
difficulty with this model is the treatment of the pairing correlations between the
valence nucleons in the intrinsic deformed field. On the one hand the model space
dimensionalities generally preclude a standard diagonalization procedure, on the
other hand the use of the BCS approximation may well result in a poor description
of the intrinsic structure.4

We overcome this difficulty by making use of a new method,® the chain-
calculation method (CCM), which provides a highly effective way for cutting down
the size of the energy matrices while yielding extremely accurate results. This opens
up the possibility of assessing the real scope of the MPR model.

In this paper, we focus attention on odd-mass nuclei and apply the MPR model
to the two isotopes 83Er and 1%°Er. Of particular interest in these nuclei is the
lowest-lying decoupled band which originates from the 4,3/, shell-model state. The
study of this band provides in fact the opportunity to shed light on the role of the
various terms of the model Hamiltonian.



In Sec. 2 we give an outline of the MPR model. Our calculations are described
in Sec. 3 while the results are presented and discussed in Sec. 4. Sec. 5 presents
some concluding remarks.

2. Many-particles plus rotor model

In the strong coupling representation the model Hamiltonian describing a sys-
tem of N valence particles coupled to an axially-symmetric rotor is written

Hypr=Hi+ Hiner + He (1)
where
H]:A(Iz—fg), (2)
Hintr=H0+Hpair+Hreca (3)
Heee = A(J2 - J32) ’ (4)
Ho= AL J_+1.74), (5)

with standard notation. The recoil term H,.. 1s of particular relevance in the MPR
model, 2 as it contains both one-body and two-body terms. In fact, the angular
momentum J due to the valence particles has the form

N
1=350), (6)

which implies that H,.. becomes

N N 2

i<k

The eigenstates of Hy + Hintr can be written in the form

[2I +1
‘I')IWQT = W [D{VIQ(w)XQr + (_)I+QDII\/!—Q(“))X§'1'] ) (8)

where the intrinsic wave functions x,, are solutions to the eigenvalue equation



(HO + Hpair + Hrcc)XQr = gQrXQ-r- (9)

Once Eq. (9) is solved the Coriolis term can be diagonalized in this represen-
tation. In the next section we shall discuss in some detail our treatment of the
intrinsic Hamiltonian and of the Coriolis coupling.

3. Calculations

We now describe our calculations for 193Er and 1°Er. Let us first consider the
Hamiltonian

N
H=H0+Hpair=ZHap(i)'*'Hpaira (10)

i=1

which in second quantization takes the form

H=) N, -G) AlA,, (11)

vv!

where
Nu =a:’,a"+a%a;, (12)
A = alal . (13)

The index v stands for all quantum numbers specifying the single-particle states
while 7 denotes the time reversal partner. In cases where Q is essential, v will
represent only the asymptotic quantum numbers [Nn3A].

We describe the intrinsic deformed field Hy by a nonspheroidal axial and re-
flection symmetric Woods-Saxon potential.” Thus we write

H, = —% A +V(r) 4+ V,o(r; spin) , (14)
—V,

Vir) = 1 +exp|(r — R(8))/a]’ (15)

R(8) = Ry [1 + Bo + P2Y20(0) + B4Yie(8)] , (16)

Vso(r;spin) = —k o - [grad V(r) x p/H]. (17)



For both '%Er and '%°Er we have considered nineteen valence neutrons dis-
tributed over eighteen levels chosen in such a way that on both sides of the Fermi
surface lies the same number of single-particle states. The adopted single-particle
level schemes are listed in Table I. The level energies have been calculated using a

Table I. Single-particle energies (MeV).

163Er

Q7 [NnjzA] Relative Energy

Q"'[Nn; A]

165Er

Relative Energy

+

W W N = N[ N N[
+ +
_ 4
1N
(=]
(=)
k=]

[= w1
|
‘o
o
=&

+

WW = IO NI DT - = R Do Nw N

0.0

0.469
0.838
1.080
1.322
1.471
1.858
2.175
2.523
2.896
3.203
3.798
4.356
4.757
5.921
6.071
6.380
6.837

+

W W= NIW N N N[
+ +
e . S N
Y
(]
[en)
S

[= i
|
=
o
o

+

+

+

NN W N= N0 NN R NN = N N oy R N
|

0.0

0.202
0.707
0.986
1.032
1.592
1.901
2.240
2.552
2.682
3.458
4.207
4.563
5.264
5.968
6.186
6.559
6.700

unique value of the potential depth Vy and of the radius parameter rg, namely
Vo = 43 MeV and r¢ = 1.29 fm. These values are in agreement with those reported
in Ref. 8, taking into account that we use a single value of ry for the central and



spin-orbit terms. The deformation parameter 3, is taken to be 0.320 and 0.335
for 13Er and °Er, respectively.?~!2 The values of the spin-orbit strength «, the
diffuseness a and the deformation parameter 84 are: x = 0.425 fm?, a = 0.68 fm,
B4 =0.052 for !*3*Er and k = 0.387 fm?, a = 0.65 fm, $4=0.062 for %°Er. These
values of « and a are within the range of those reported in the literature,®3 while
the values of §; come quite close to those obtained from the equilibrium shape
calculations of Ref. 14 for this region.

It should be noted that in the model spaces used for !*3Er and 165Er we include

the five lowest-lying states originating from the 1,3/, level, leaving out the two

states H+[615] and %4-[606]. These latter, lying very high in energy, are not

expectec21 to contribute significantly to the wave functions of the lowest positive-
parity bands. The only two other positive-parity states, %+[400] and %+[402], that
might contribute to this band are also included.

As already mentioned in the Introduction, we treat the pairing correlations
between the valence particles by the CCM. A detailed description of this approach
as well as a test case evidencing its degree of accuracy are to be found in Refs. 3
and 5. We only emphasize here that our solutions of the pairing Hamiltonian are
practically exact. As for the pairing strength G, we use a value of 0.190 MeV for
163Er and 0.189 MeV for ®5Er, which give an odd-even mass difference for neutrons
in agreement with the experimental values of 0.975 and 0.905 MeV, respectively.

We now turn our attention to the recoil term (7), which in second quantization
reads

Heee= A[Y Fualas+ Y RunsRuasal,al, 00,0, (18)
vy! Vivav3avy
where
F,, = (vli* - j3hv'), (19)

(Vlj—lul) if Qu <Qu'a
R, =< (V]|j-lv) £ Q,>Q,, (20)
(@lj-lv') ifQ,=Q, = %
Here we are concerned with the treatment of odd-A nuclei. In this case we
diagonalize H,.. within the set of seniority-one (v = 1) states obtained by treating

the Hamiltonian (11) by the CCM. The intrinsic wave function has therefore the
form

Xar = D rulB, ). (21)
Bu
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The states |f, u2) are v = 1 eigenstates of the pairing Hamiltonian, the label u
referring (here and in the following) to the quantum numbers of the blocked level
and the index f standing for all the other quantum numbers necessary to completely
specify the states. In our formalism these pairing eigenstates are expressed® as

18, uQ) = ZK g AD™ L (AD™alg)0). (22)

The basis states on the r.h.s. of Eq. (22) contain an odd particle in the level (uQ)
while the remaining (n; + ... 4+ n;) pairs are distributed in all possible ways over
the chosen ! doubly degenerate single-particle levels. As mentioned above, in our
case [=18and n; +...+n; =9.

The matrix elements of H,.. between v = 1 states are given by

(,B,pQ|H,ec|ﬂ',p’Q)=A{6,,#: [2ZFWT;;, > R ,T““ ,]+

v>0 v,v’' >0

1-(1- ‘5ﬁﬂ )6## ]Fun pﬂ z R"u’Ruusss',,}a (23)
>0

where the quantities S and T are expressed in terms of the coefficients K appearing
in Eq. (22).

Let us now discuss briefly the effects produced by the recoil term. We first
consider the diagonal matrix elements. The first two sums in Eq. (23) are almost
independent of the level blocked by the unpaired particle!® and, as a consequence,
do not significantly affect the spectrum of the odd nucleus. The third term reduces
to the single-particle matrix element F,, (SSS = 1). This term may be particularly
large for levels originating from the so-called intruder states (in the case considered
here this is the spherical 7,3/, state). It has the effect to push up in energy the band-
heads associated with these levels. The last quantity in Eq. (23), ), R? Sﬂﬂu,
represents the correction arising from the other valence nucleons. Through the co-
efficients Sgﬁ it depends on the pair distribution of particles and in some cases can
significantly reduce?!® the single-particle contribution, F},,, of the recoil term.

As regards the off-diagonal matrix elements, they may have § # §' and/or
4 # p'. From our study of the Er isotopes it turns out that the matrix elements
with g # p' may be particularly significant only in connection with the AN = 2
coupling between N = 4 and N = 6 states. Through the matrix elements with
B # B' different eigenstates of the pairing Hamiltonian may be brought into the
intrinsic wave function. In this way the recoil term affects the distribution of pairs
over the single-particle levels.1®
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As a final step we take into account the Coriolis interaction (5). Its matrix
elements are given by

1
(‘I’{wnr|Hc|‘I’{wn'r') = —A{ Z [(I+ 'QI)(I -+ 1)] 2Rmz’éﬂ’ﬂ+1
py'

prip’ o

3 1 ,
+I-YT+Q + 1)] *Ryubara_y + (=) (I+ 5)RuwSaybary } P, .. (24)

where

QQ’ Q (0 !
Pr“.’.l“l = Z fﬂrﬂfﬂl.’.lpl SSS, . (25)
Bs

We see that the matrix elements (24) are written as the product of two factors.
The first one corresponds to the contribution of the odd particle while the second
takes into account the many-particle correlations induced from both the pairing
and the recoil interaction. Since the quantities P,ﬂ‘ﬁ.l, w are all <1, they produce an
attenuation of the Coriolis coupling.

For the rotational parameter A, we take the value 14 keV for ®*Er and 13
keV for !®3Er. These values are intermediate between the values obtained from
the E,+ — Ey+ energy difference in the neighbouring even-even isotopes and those
derived from the spectra of the four low-lying negative-parity bands in both 18*Er
and 18Er.

4. Results

We now come to discuss the results of our calculations for 1%3Er and 1%5Er. In
both these nuclei there are five low-lying bands, four with negative parity (essentially
rotational in character) built on the 1~ [521], $7[521], 27 [523] and 3} " [505] single-
particle states, and one with positive parity originating from the 7,3/, shell-model
state.

It is this experimental situation that we have tried to reproduce within the
framework of the MPR model as described in the previous section, concentrating
our attention on the decoupled i;3/, band for which the recoil term is of particular
relevance.

As regards the spectra of the negative-parity bands, which are practically purely
rotational, a very good agreement with experiment is obtained up to about 1.5 MeV
excitation energy (relative to each bandhead), the largest discrepancy being about
60 keV. It should be stressed that for these bands the calculations with and without
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recoil yield practically the same results. By way of illustration, the spectrum of the
27 [523] band in '®3Er is presented in Fig. 1.

1600 -
23/2-
23/2-
1400 -
21/2-
/ 21/2-
1200
19/2- —_—19/2-
1000 -
>
5]
-
m - - —_— -
800 L 17/2 17/2
- 15/2-
600 - 15/2
13/2- ——13/27
400 -
11/2- ———1/2°
2001 —9/2" —9/2"
7/2- —_ /2"
0k — 5/ — 52"
Cale. Expt.

Fig. 1. Experimental and calculated spectrum of the 2™ [523] band in !$*Er. The
experimental data are from Ref. 11.
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In Fig. 2 we show the spectrum of the lowest positive-parity band of 183Er.

27/2%
1600 |- 29/2+
29/2+
1400 - 29/2+ 27/2+
27/2+
1200
25/2+
23/2%
1000 25/2%
N
& 25/2% 23/2F
M) +
800 - 23/2
21/2+
- 19/2+
600
21/2+ —19/2%
19/2+
400 |- 17/2+
17/2% ———15/2%
17/2% —15/2%
15/2+
200
13/2+ 13/2%
+
13/2:: i 11/2
11/2
—9/2t —9/2%
o Yot m— 2
572+ 5/2t 5/2%
(a) (b) Expt.

Fig. 2. Experimental and calculated [(a) without recoil; (b) with recoil] positive-
parity spectrum of '63Er. The experimental data are from Ref. 11.

We see that the right level ordering and an overall satisfactory agreement with
experiment is obtained up to J = 22—1 It should be stressed that this is not the case
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when the pairing correlations are treated by the usual BCS method. In fact, the
use of this approximation makes it necessary to introduce an ad-hoc attenuation
factor.®* The comparison between case (a) and (b) shows the relevance of the recoil
term. Concerning the higher-spin states, which lie above 1 MeV excitation energy,
our calculation fails to reproduce the observed pattern. This is certainly a point
which deserves further investigation. As a first step, states of seniority higher than
one (v = 3) should be taken into account.

The origin of the difference in the spectra of the positive parity band is to
be found in the strong Coriolis coupling and in the attenuation of such a coupling
produced by the recoil term. In Table II we report the values of the intrinsic energies
for the positive-parity states originating from the 2,3/, level (they are characterized
by [NnjA] since there is no appreciable mixing of states corresponding to different
blocked levels). From this table we see that the recoil term produces an increase
in the intrinsic level spacings. In Table III we give the attenuation factors P'?‘f,"

Table II. Values of the intrinsic energies £,q — (g42)5/2+ (keV) for 163pr
calculated : (a) without recoil; (b) with recoil.

p (a) (b)
[660]1F 1245 1504
[651)3* 761 955
[642)3F 0 0
[633]2F 1032 1054
[624]2F 2634 2650

(see Eq. 25), which show the effect of the recoil term on the off-diagonal Coriolis
matrix elements. Therefore, we see that both effects produce a reduction of the
Coriolis coupling. As regards the wave functions of the states of the decoupled
band, they result in a rather complex mixture of the %+[660], %+[651], §+[642] and
%+[633] states. This mixture, however, is significantly reduced by the recoil term.
Finally, in Table IV we compare with experiment the band-head energies. We see
that the agreement is at most within 20 keV.



Table III. Values of the quantities P‘:ff,', as given by Eq. (25), calculated for

163Er: (a) without recoil; (b) with recoil.

ue W (a) (b)
[660)1* (651)2* 0.99 0.96
[651)2* [642]3* 0.95 0.86
(642]3* (633]27F 0.91 0.84
(633" [624)27 0.99 0.99

Table IV. Experimental (Ref. 11) and calculated band-head energies (keV)

for 163Er.

Bandhead Calc.
g - 0
s+ 85
% - 96
% N 367
- 434

o

13

Fig. 3 and Tables V, VI and VII present the results obtained for 1**Er. We see
that the situation is quite similar to that which emerged for !*3Er, the overall agree-
ment with experiment being of comparable quality. It may be noted, however, that
the spectrum of the decoupled band is even better reproduced while the theoretical
band-head energy of the 1 [521] band lies 170 keV below the experimental value.
There are, however, some indications that this state may have a small v-vibration
admixture.!” As in the case of 1%3Er, the spectra of the negative-parity bands are

also very well reproduced by the theory.
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1200

1000

T

800

E(keV)

600 -

T

400

200

25/2+

23/2+

21/2+

19/2+

17/2%

15/2+

13/2%
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(2)

25/2+

23/2+

21/2+

19/2t

17/2+

15/2%

13/2+
11/2%

9/2+
7/2+
5/2+

(b)

25/2%

23/2+

21/2+

19/2+

17/2t

15/2+

13/2t
11/2+
9/2t
7§2+
5/2+
Expt.

Fig. 3. Experimental and calculated [(a) without recoil; (b) with recoil] positive-

parity spectrum of !®5Er. The experimental data are from Ref. 12.

Table V. Values of the intrinsic energies £, — Ejgaz)s/2+ (keV) for 1°°Er.

pQ (a) (b)
[660)1* 1502 1798
(651)2F 970 1241
[642)5* 0 0
(633)2* 946 911
[624]2F 2593 2604
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Table VI. Values of the quantities PO a5 given by Eq. (25), for'®®Er.

pp'>
pQ pe (a) (b)
[660]1* (651)2F 1.00 0.98
(651)3F (642]3* 0.99 0.94
[642]5F (633)2F 0.82 0.75
633]2° (624)2% 0.99 0.99

Table VII. Experimental (Ref. 12) and calculated band-head energies (keV)

for 185Er.

Bandhead Expt. Calc.
5” 0 0
st 47 51
- 243 242
3 297 127
11— 551 530

~|

5. Closing remarks

In this paper, we have discussed the MPR model as a framework for the de-
scription of deformed odd-mass nuclei. We have applied this model to the study of
the low-energy bands in the strongly deformed nuclei 1%*Er and 1®°Er. A salient
feature of our calculations is the very accurate treatment of the pairing correlations
in the intrinsic deformed field. As a result, the role played by the recoil term has
been clearly evidenced.

The results of our calculations for both nuclei have turned out to be in good
agreement with experiment. Of particular interest is the fact that the 7,3/, decou-
pled band is well reproduced up to rather high values of the angular momentum. In
fact, this is not possible with the BCS approximation unless an ad-hoc attenuation
factor of the Coriolis term is introduced. This shows that an accurate treatment of
the intrinsic structure is essential if one wants to assess the real scope of the MPR
model.
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Here we have considered odd-A nuclei including in the calculations only v = 1

eigenstates of the pairing Hamiltonian. As a next step we intend to take into account
the v = 3 states as well as to extend our calculations to doubly-even nuclei.
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M1 EXCITATIONS IN DEFORMED NUCLEI: A THEORETICAL SURVEY
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Mostra d’Oltremare Pad. 19, 1-80185, Napols

ABSTRACT

A general definition of the scissors M1 summed strength inspired by the geometrical
two-rotor model is given. Such a definition is shown to be consistent with the
observed deformation properties of the mode. It is here adopted in the realm of
algebraic interacting boson models to study the same deformation properties and
then used to produce the results of schematic random-phase approximation. These
include the possible existence of a low and high energy mode in deformed as well as
superdeformed nuclei. It is pointed out that the harmonic oscillator basis adopted
in schematic random-phase approximation plays the role of a Hartree-Bogoliubov
basis. In virtue of this properties the M1 states are free of spurious rotational
admixture. The effect of selfconsistency on the scissors energy weighted M1 sum
rule is also discussed. The problem of spurious rotational admixture is discussed
in the context of realistic random-phase approximation. A calculation of this kind
formulated in the laboratory frame as a way of avoiding such a problem is discussed.

1. Introduction

Since their first discovery in *8Gd through a high resolution (e, ¢’) experiment!,
the low lying M1 excitations, known as scissors mode according to the picture
provided by the the geometrical two-rotor model?, have been object of extensive
experimental and theoretical investigations.

The mode was confirmed in a (7,7’) experiment® and, since then, observed in
all deformed nuclei!. A fine structure study of the M1 strength made possible by
a combined analysis of (e, €’) and (v,7’) experiments®, has shown that the mode is
fragmented into several peaks closely packed around a prominent one. Comparative
studies based on (e, €’) and (p, p’) experiments®~® have established the orbital nature.

A renewed interest toward the subject has been stimulated recently by two
important discoveries.

Combined (e,€’) and (v,%') experiments carried out on a chain of even Sm
isotopes have shown that the integrated M1 strength depends quadratically on
the deformation parameter® and is strictly correlated with the strength of the E2
transition to the lowest 2% state!®. The same deformation law was confirmed in Nd
isotopes!! and ascertained by now to hold for all nuclei of the rare earth region'2.

At the same time, inelastic proton scattering experiments on **Sm and other
deformed nuclei'?, have detected a sizeable strongly fragmented M1 spin strength
distributed over an energy range of 4 to 10 MeV so as to give rise to a double-hump!*.
Such a pattern is specially pronounced in **Sm.
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The deformation law has been described with different degrees of accuracy in all
phenomenological or schematic models adopted in the past to study the mode!5~4
as well as in realistic microscopic calculations?5—3,

The phenomenological descriptions, though successful in the analysis of the gross
features of the mode and in giving useful physical insights, cannot account for
detailed properties such as the fragmentation of the M1 strength. Moreover, they
are completely inadequate for studying spin excitations. A unified and complete
analysis of orbital and spin excitations can be made only in a fully microscopic
context.

In heavy deformed nuclei, the microscopic studies have been carried out in Tam-
Dancoff (TDA) and, mostly, in random phase approximation (RPA). The early RPA
calculations®, being carried out in the intrinsic frame, suffered with uncertainties
induced by approximations not completely under control®?. A notable uncertainty
was induced by the occurrence of spurious rotational admixture®. This could be
removed either by properly modifying the quadrupole-quadrupole interaction®® or
by a Schmidt orthogonalization of the basis states® or by adopting a self-consistent
basis®3% A RPA calculation formulated in the laboratory frame as an alterna-
tive way of avoiding the occurrence of redundant rotational states has been also
proposed?®,

Spin excitations have been studied with good success in TDA3% as well as in
RPA?"2837.38  There is however no conclusive answer to the interpretation of the
observed two-peak structure. It is indeed not clear whether the two peaks cor-
respond to different proton and neutron excitations*®+" or are of isovector and
isoscalar nature?’.

In these lectures we will devote most of our attention to the orbital low M1
excitations. We will give a definition of scissors mode which is inspired by the ge-
ometrical TRM and study the consistency of such a definition with the observed
deformation properties (sect. 2). We will then briefly show (sect.3) how this def-
inition applies to some phenomenological models, namely the generalized coherent
state model (GCSM)¥* and to the proton-neutron interacting boson model (IBM-
2)%. In sect.4 we will study the relation to schematic RPA. In this connection
we will see that a new scissors mode at high energy mode is predicted. In sect.5
we will study the problem of selconsistency in proton-neutron schematic RPA and
its effects. We will see that its states are free of spurious rotational admixture, a
property which will be exploited to compute the scissors energy-weighted M1 sum
rule. Sect.6 deals with realistic RPA. Special attention is devoted to the connec-
tion between rotational symmetry breaking and spurious admixture in the M1 RPA
states. An RPA approach formulated in the laboratory frame is discussed as a way
of solving the problem. A brief conclusion is drawn in the final section.

2. Definition of Scissors Mode

The definition of the scissors strength proposed here is inspired by the geomet-
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rical TRM.
2.1. Semiclassical description and general definition of scissors mode

The basic assumption of the model? is that protons and neutrons form two
axially symmetric rotors interacting via a potential V(J) dependent on the angle
29 between the symmetry axes. The Hamiltonian has then the form

1 1

- 72
=33, a5 TV, &)

Hrr Jp? +
where S, and J, are the proton and neutron moments of inertia, J_;, and J, their
angular momenta. In order to separate the relative motion between the two rotors
from the rotation of the whole nucleus one must express the Hamiltonian in terms
of the total and relative angular momenta

J=dy+Jn, S=J,—J,.. (2)

Apart from a Coriolis-like term which can be neglected, the Hamiltonian decouples
into a rotational and an intrinsic part. This, for small values of ¥, assumes the form
of a two-dimensional harmonic oscillator Hamiltonian

1 1
H=H, = -25;(53 +53) + 5Ca(97 + 93), (3)
where 94 (k = 1,2) play the role of z and y variables and (k = 1,2)
_ e _ gy . 4
are their conjugate momenta. The TRM physical constants are
(p) ~(n)
gat: = 43}3" C!’ = sacwz = 4C" C', (5)

gp + S, ! 01(9P) + C,(,")

where C{”) = w?S,. The same quantities can be defined through the harmonic
relation holding for the TRM Hamiltonian, namely

L e85 3 (1 15,10) P=w, C=w Y [(a15.10) ] (6)

g.sn: 8st: u=%1 u==1

The scissors mode is the first excited state, with quantum numbers n = 0 and
K™ = 1*. It falls at an excitation energy given by the frequency w and is mainly
excited by a magnetic dipole operator of the form

3
Vaz @7 + g™ un

/ 3 1
E(QRJ“ + Egrsu.)/"'N ) (7)

M(M1,p)
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where
1
9R = E(gp‘}'gn)’ 9r = 9p — Gn, (8)
Making use of the harmonic relations (6) we obtain the M1 strength
3
B(M1) T=—Z | (1 1 5u10) I 67 iy = 1o Soc w7 1y - (9)
p—:!:l 7'l'

The defining eq. (6) can be written in the form

So= ¥ <OSiz==SI0>,  C=1 ¥ <0|[sLIES]0> . (0)
0

p==%1 - 2 p=%1

These equations, first obtained in a sum rule approach?! provide a general definition
of the TRM constants, valid in any context. By using closure indeed, we obtain

1
Se= L —I<nulSul0>F , € =Fwal<nulSilo>[. (11)
ny

nu n

The scissors energy weighted M1 sum rule follows now immediately

LwnBu(M1) T = = an |< nplSul0 >* g7 uiy

— i 2.2 ~i 2.2 2
= B X < 0| [St,[H,S,] 10> g2k ~ S9!y (12)

This sum rule holds in the macroscopic as well as in the microscopic domain. Under
the experimentally supported assumption of small fragmentation of the mode, we
obtain for the summed strength the expression defining the TRM M1 strength (eq.
9). It follows that the TRM formula, with <,. and C given by eq. (11), represents
a general definition of the scissors M1 summed strength.

2.2. Consistency with the deformation properties

It is useful to express all TRM quantities in terms of the shape variables ay,
instead of the angle ¥. To this purpose let us consider a proton (neutron) density
of the form suitable to an axially deformed shape

0-(7) = or [r — R(1 + o Y2o(#))] (13)
where 7 = p,n and
r 167
o) = fr = ||z (14)

The proton (neutron) density is subjected to the normalization condition

< Q) >= [ e (AIrPYau(dF = arud R (15)
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where Q(P ) and gg") are normalized to the number of protons and neutrons respec-

tively. Under a rotation by 9, (J, = 9, ¥, = —9) around the z—axis, the proton
(7 = p) and neutron (7 = n) densities undergo the following change

o-(R5}7) = e [ -R1+ Y oYy, (f))] (16)

p=%1

ady) = D) (9, )ody) = — \ﬁ 00, = \[ frd. ()

to leading order in 9, . This key relation enables us to express the TRM Hamiltonian
(3) in terms of shape variables, namely

where

H=—-5*+ 019’

2Jac

3 |7r2,.|2+ Lo 3 Jesal? (18)

B, =5 p=%1
where 7, are conjugate to az,. The new parameters are

4B, B 4C,C,
Bsc=#, C = ——2—2 19
B, + B, Cp+Cn (19)

Old and new constants are related by

3, = 36,8, , ¢ =38,C, (20)

It follows that the scissors M1 strength has a quadratic dependence. Using indeed
the above relations we obtain from eq. (9) for 8, = 8, =

B M1) 1= 12 B wf(g, — ) 1. (21)
The &2 behaviour of such a scissors M1 strength has been studied quantitatively
in Ref.? by making an empirical estimate of the mass parameter. The following
expression was obtained

By (M1) 1 =~ 0.004 wA®® 6% g2u3,. (22)

Numerical calculations carried out by putting g, = 0 and g, = g, = 2gr = (22)/A
yield results in good agreement with experiments®~1!. In particular theoretical and
experimental summed M1 strengths have similar saturation properties (Fig.1). A
systematic analysis carried out recently'? has shown that the M1 strengths com-
puted by such an empirical formula are in overall agreement with experiments for
all nuclei of the whole rare earth region.
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Fig. 1. Summed M1 strength computed by the empirical TRM formula versus the fractional
number P introduced by Casten4?.

3. Phenomenological descriptions

The TRM M1 strength, in the form given by eq. (21), represents the semiclassi-
cal limit of several phenomenological models. We will discuss briefly the connection
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with GCSM and IBM-2

$.1. Relation to the GCSM

In the GCSM™ an interacting quadrupole boson hamiltonian which does not
preserve the number of bosons is adopted. This Hamiltonian is treated by means
of states obtained by projecting the good angular momentum out of intrinsic states
constructed by operating with quadrupole bosons on a coherent state representing a
boson condensate. The model has been used with success to describe the properties
of the low energy levels of spherical, transitional and deformed nuclei.

The M1 mode has been described by a state obtained by angular momentum
projection from an intrinsic wave function of the form

Q.st: = (bI. ® bp)J=K=l¢0 (23)

where bl (b, ),(r = p,n) are quadrupole boson creation (annihilation) operators
acting on a coherent ground state of the form

By = ezpld > (blo — b,0)]]0 > . (24)

Here d is a deformation parameter which can be related directly to the E2 strength.
In the limit of strong deformation we have indeed

1
d 7§kpﬂ (25)

where the constant k, in the harmonic limit becomes

k, = (BPCP)1/4 = (Bp“")ln- (26)

In this limit the GCSM M1 strength can be written in the scissors form??

B(MY) 1= &g = -Gk = o Bub*g’uy (21)
having used B, ~ B/2 ~ ¥(3?/6. This is just the TRM eq. (21),

The numerical calculations?? have been carried out once the model parameters
have been fixed so as to reproduce some selected levels of the ground, 8 and v bands
and the E2 transition strength. The results of such a parameter free calculation
are quite good. The M1 strength follows closely the observed quadratic law and
saturates correctly with deformation.

3.2. Relation to IBM-2

The above strength is consistent with the TRM definition. Since the TRM
ground state has vanishing angular momentum, we can indeed write the harmonic
relation for the mass parameter (6) in the following way

—

Sew =< §?>=—- <L, - [, > (28)
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Using now egs.(4) and (6) of ref.2® we get

< Ng>
F,ow =< S >=12P
w N —1 (29)
where N = N, + N,. Upon insertion into the TRM strength (eq. 9) we get
. 3 2 2.2 . 9 < Ng> 2 2
B(M1) 1= (0| S* | 0)(gr — 0.Vl = - P (or — 0.y (30)

where N, and N, are the number of valence proton and neutron pairs, < N; >
is the average number of quadrupole bosons in the ground state, P = 2N, N, /N
the fractional number introduced by Casten*?. This is the most general IBM-2 M1
summed strength consistent with the conservation of F'—spin symmetry. It yields
the expression derived in the SU(3) limit as a spectal case (ng =< Ny > /N = 2/3).

We can render the relation to the semiclassical scheme more explicit by the
following procedure. Let us write

Ni= NP+ NP =dl-dp+ - dn (31)

having denoted by d! and d, the quadrupole boson creation and annihilation oper-
ators respectively. Being a scalar, Ny can be referred to the intrinsic frame. In the
classical limit, the harmonic approximation holds. We can then transform to shape
variables by means of the canonical transformation

1
2B,w

The 4 = 1 components are the shape variables entering into the TRM Hamiltonian
(eq. 18). We can therefore assume w to be the energy of the scissors mode.

In dealing with an axially symmetric system it is appropriate to take as intrinsic
ground state an harmonic oscillator wave function which is coherent only in the
proton and neutron g = 0 components of ag,). We have d, o1, = 8,0d, 3. where d.,

are pure c-numbers. It follows that 8, =< a%) >.= ZQST)d’T In the strong coupling
limit we then obtain

o) =alNdt, +4d,,) , oO= (32)

(B, (B )] L
== {2 Pa )2 2 2
Putting 3, = 362B, as in the TRM approach, we obtain the result
< Ny>= (3, + 3o = %sw = 5 Bup’ (34)

With the help of this equation and eq. (30) we can write the IBM-2 summed
strength in the TRM form (9) with a mass parameter given by
S 4SS,

g.1c=2P[v_1— 3 ’

3, = N,/N. (35)
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Fig. 2. Fractional number of IBM-2 d bosons versus the mass number.

The procedure just outlined enables us to state an explicit relation between the
number of quadrupole bosons in the IBM-2 ground state and the Bohr-Mottelson
deformation parameter 8. In virtue of this relation, the IBM-2 strength appears to
be quadratic in the deformation parameter consistently with experiments. Such a
property is hidden when the same strength is expressed in the IBM-2 formalism.

To test the validity of the semiclassical expression of the IBM-2 M1 sum rule
we use eq. (34) to compute the fraction of quadrupole bosons in the ground state
of the nuclei of the whole rare-earth region and compare with the values extracted
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from the experimental M1 strengths'? using eq. (30) withg, = 1 and g, = 0.

In the calculation we assume equal deformation for protons and neutrons and
constant B and w throughout the whole rare-earth region. We choose for the energy
the value w = 3MeV. We fix B by imposing the equality n( ) = &“p) in 1°8Gd. For
this nucleus in fact the experimental M1 strengths give almost exactly the SU(3)
value n‘(f:p) = 2/3.

Semiclassical and experimental values of the fraction of quadrupole bosons are
plotted versus A in Fig.2. The two quantities have a similar behaviour. The com-
puted fraction of quadrupole bosons increases rapidly up to a maximum value and
then decreases slowly with A in good agreement with experiments.

4. From the semiclassical approach to schematic RPA: A low and a high
energy mode

The definitions given for the TRM constants in section 2 can be adopted also in
a microscopic context. We will actually apply them to get the results of schematic
RPA and will show that they coincide with the semiclassical results.

4.1. Semiclassical approach

In the semiclassical approach the restoring force constant can be determined
from the symmetry energy mass formula

=—b/ d"— b /_59:' 8on)’ & (36)

where b, ~ 50MeV and go is the nuclear density normalized to the mass number.
The density variation is computed by making use of egs. (16) with the result

691 = Q‘r("’-r) - QT(O) = k‘rggr) E ) 2Y2-‘n (37)
pu=%1

where the constant &, is fixed by the normalization condition (15) and a( ) is given

by eq. (17). Upon insertion into eq. (36) we obtain

AV = %002, (38)
where 08

C~ ?b,Aaz . (39)

If the mode is assumed to arise from a relative motion between two irrotational
fluids we can attach to each of the two rotors the velocity fields

Up = _6)(11’ Up = _6Xn (40)

where

Xr =0 Tq,x3, Oy, + 68 .23, o, (41)
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where Q;, (i, = z,,y,) are the proton and neutron angular velocities. We get a two
rotor Hamiltonian of the form given by eq. (1) and therefore an intrinsic one given
by eq. (3) with an irrotational moment of inertia

2

%,C = S‘,',.,. = (52 S‘r;g , S‘,-.'g o~ gmAR2 (42)

The energy of the mode and the corresponding strength are given by

wy = ¢ ~139.4 A™'/3 MeV, (43)

irr

lﬁiwgi"w 2 ud ~0.1262 A3 g2 42, (44)

By(M1)t

The strength is quadratic in the deformation parameter, but the energy is far higher
than the observed one. We obtain indeed for '**Sm w ~ 26 MeV and B(M1) t~
4.7 p% , having put g, = 0 and g, = 2gr = 2Z/A. Although the M1 strength is
reasonably close to the experimental value, the energy lies in the region of the giant
isovector quadrupole resonance. It is indeed the energy of the K™ = 1* component
of the isovector quadrupole resonance mode.

In order to get a low energy mode as required by experiments, we could use a
rigid body moment of inertia as done in the original formulation?. We know on the
other hand from that paper that the resulting M1 strength is six times larger than
the experimental summed strength. It seems therefore hopeless to get close to the
experimental data if we remain entirely within the classical domain.

4.2. Microscopic approach

Let us assume that nucleons move in a deformed mean field described by an
anisotropic harmonic oscillator potential with frequencies w, and wj; such that
wiws = wl and wy ~ 4143 MeV.

4.2.1. High energy mode
We use now eq. (6) in the specific form

1 1
5 <52>=g 3 Y Kk Sul )P = wi +ws 2w (45)

3¢ ph€2wp utl

where | ) is the particle-hole vacuum. The sum is restricted to the AN = 2 particle-
hole excitations. This condition yields

1
6(4.)0

Fue =T =By, Fg= e 3 [(Se)l? = %mARz . (46)

ph€duwo

which is the irrotational mass parameter obtained in the semiclassical approach
(eq. 42). Let us now decompose the restoring force constant into a kinetic and a
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potential component

+) . o) _ o) et
C —C +C C (1+a+)) a+=$ (47)
The unperturbed part can be obtained from the defining eq. (46)
(+) 2,28 2
Co"’ =~ Dipr(2wo)? ~ —5-boA6 (48)

where by ~ 17.5MeV. The potential component follows from its relation to the
energy symmetry potential V; ~ 130 MeV which yields b, = V;/4 ~ 32.5MeV.
The total strength is b, = by + b ~ 50MeV exactly as in the semiclassical case.
Consequently the total restoring force C, coincides with the semiclassical quantity
given by eq. (39). It is to be noted that a; = C(+)/ +) = = b;/bp ~ 1.9. This is in
complete agreement with the estimate made within the unified theory of Bohr and
Mottelson®? for the isovector quadrupole giant resonance.

Energy and strength are therefore given exactly by the semiclassical eqs. (43)
and (44) respectively. The gap between semiclassical and microscopic descriptions
is thereby filled.

4.2.2. Low energy scissors mode

For the low energy mode we make use of the defining eq.7 with the following
requirement

2 _
S‘,C<S >_g

> X K ph|Su )~ bwo (49)

3¢ phebwp p=%1

where the sum is restricted to the AN = 0 particle-hole space. This yields a rigid
body moment of inertia S, = Si;. The unperturbed restoring force constant is
now o8

CL) ~ (w0)? iy = = b A (50)

with b((,—) ~ bg/4. The potential component can be fixed*® from the ratio between
the nuclear isovector and isoscalar average potential strengths V; and V5, a- =
el = 67 /85 = —Vi/(4Vh) ~ 0.6. The final result is

w_ = ‘/ C- = dwoy/1 + a_ ~ 5364~ BMeV
rlg

B_(M1) 1 =~ 1 8,.gw_ ~ 0.0458 A*3g2u3, . (51)
Ly
The strength so determined is close to that derived in the TRM in its original
formulation? and, as pointed out already, is unrealistically larger than the observed
summed strength. It will turn nonetheless useful for superdeformed nuclei.
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We may alternatively impose for the low energy mode

5. < S >= E(esp) + E(esp + who) (52)

where ¢,, is the single particle energy referred to the chemical potential A. It is
natural to choose for A the value A = (éwp)/2. With this choice the previous
equation becomes

S < 8% >=2E = \/(dwo)? + (24)2 (53)
Using closure we obtain for the mass parameter
dw dw
Soe = Sy ﬁ(u(fsp)v(fsp + Swo) — (v(€ap)ulesp + 8w0))*Srig = (2—;)38‘"-!1 , (54)

having made use of the standard expressions of the amplitudes u and v with A =
(éwo)/2. The resulting energy and strength are

C_ 3 Jl.u'
w-=1/3 p ~ (2E)y/1 +a_, B_(M1) T~ mw—grig(T;)sgfl‘?V (55)

or more explicitly

3
w_ ~1.26Q2AW1 + 22,  B_(M1) = 0.001(2A)A5/3HLI;93#}V (56)

where z = dwy/(2A). According to these equations the strength goes like §° for small
deformations (z < 1) and becomes linear for very large deformations (z > 1).

Had we averaged the two quasi-particle energies and the moment of inertia with
respect to A*® we would have obtained exactly the schematic RPA strength derived
by Hamamoto and Magnusson? Such a strength is quadratic for weak deformations
but deviates from the quadratic law as the deformation parameters increases. Nu-
merically the two procedures lead to very similar results. Putting in fact g, = 1,
we obtain in both cases a M1 strength approximately quadratic in § at least in
the range of deformations observed in Sm isotopes. In the most deformed nuclei,
however, we obtain a value which is about a factor two larger than the experimental
summed strength. A quenching gyromagnetic factor is needed. This can be effec-
tively obtained only from realistic RPA calculations, like the one carried out in %,
which account for spin admixture.

4.8. Scissors modes in superdeformed nucle:

We have seen that, in its reformulated version, the TRM predicts a low and a
high energy mode. In the first mode protons and neutrons behave approximately as
superfluid systems, in the second as irrotational fluids. Being the modes switched
by deformation, the predictions of the model should apply in principle to superde-
formed nuclei.
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If K is a good quantum number, the transition goes from K to K + 1. The M1
operator couples the state | IM K) to the states | 'M'K +1) with [' = I -1,1,I+1.
Using the standard expression for the transition matrix elements® with the TRM
intrinsic wave function? and assuming / > K we obtain for the summed strength

3 1
EI, B(Ml,IK—}IK+1)_16 g,ch 19 KN - (57)

According to this expression the strength decreases with increasing K. If we assume
that the superdeformed state has K = 0, we gain the standard scissors expression
(eq- 9. We may use egs. (44) obtaining for the high energy mode of the superde-
formed 32Dy (6 ~ 0.62)

wy ~ 26 MeV, B, (M1) 1~ 26.1 p, |, (58)

where we have put g, = 0 and g, = 2gp = 2Z/A.
For the low energy mode we may assume rigid rotors and use eqs. (56) with
g» =0 and g, = 1, obtaining for the same superdeformed nucleus

w_ ~6.1 MeV, B_(M1) 1~ 22.6 p} . (59)

The above numbers are in agreement with the RPA results of ref.**. They have been
obtained under the assumption that, in going from deformed to superdeformed
nuclei, protons and neutrons in their relative motion remain irrotational at high
energy but undergo a transition from a superfluid to a rigid-body phase at low
energy. Such an assumption is fully consistent with the conclusions drawn in ref.4.

We like to stress that, according to our equations based on the use of the TRM
scissors wave function, these strong transitions occur only if the intrinsic superde-
formed state has K = 0. If such a state has a non vanishing but small K or contains
K admixture the corresponding strength should be still sizeable.

4.4. Equivalence with schematic RPA

When expressed in terms of shape variables the intrinsic TRM Hamiltonian
coincides with the harmonic Hamiltonian adopted within the unified theory® Let
us indeed switch from the normalization (15) to the new one

< Qh, >= / o(F)r Yo (F)dF = ay, - (60)

This induces in turn a renormalization of the mass and restoring force parameters.
These assume the form

Sy _2r m
Sac = Ba=3ﬂ2(%AR2)2_ 3 AR2
Cs = C ——C—=c§,°)+cg”, (61)

© 3BT ARY)?
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where

0 o 87 ™ o 1™V
@ 7 3 ARY’ “ 3AR'
The above quantities are just the mass parameters and coupling strengths derived
within the unified theory approach*® We have indeed adopted effectively the unified
theory philosophy already in the description of the mode discussed in sect.3.
The link with schematic RPA is now obtained simply through the standard
condition*3

Yol = 3 D 1(Qau(1))pnl? Q2(1) = Q¥ — @5 (63)

I b ph

(62)

Useless to say, an explicit RPA calculation would yield exactly the results obtained
in the previous subsections.

5. Proton-neutron schematic RPA: Selfconsistent mean fields

Schematic RPA has some virtues which we are going to discuss. Let us assume
that Z protons and N neutrons move in a spherical harmonic oscillator mean field
and interact through a quadrupole-quadrupole force. The Hamiltonian is therefore
of the rota.tional invariant form

H = Zh( 4= XZ (Q(P) (P) + Q(n) Q(n)) ZXP"Z (Q(P) Q(n) + Q(n) Q(p)) (64)

where xpp = Xnn = X and Xpn,

and (7 = p,n)
("') Z q(") Z T(T)Y(T) (66)

5.1. Selfconsistent mean field and double-stretched coordinates
In the Hartree approximation we obtain for the i;, proton or neutron deformed
mean field

T 1 T
V( )= —2mw§r2 - ﬂ,mwgqgo) (67)
having put

X < Qgp) > +Xpn < Q"‘) >= —fB,muwi , x < QW > +Xxpn < Qg’(’,) >= —f,mw)(68)

The Hartree potential can be written in the form of an anisotropic harmonic oscil-
lator potential

1

T 7)? T)? 1 7)?
VO = Smai(r)(a +287) + gmwi(r)at” (69)



with frequencies

2 1 4
wi(r) = wo\fl + 557 ™~ wy (1 + 557) ) wy(T) = “’OV 1 - 551 = wo (1 - %57)(70)

where 4, = /45/(167) ;. The same potential can be put in the "spherical” form

1 ~\T ~\T ~\T
v = §mw§ (z(l 7 + :l:g 7 + a:;(, )2) (71)

if we use double stretched coordinates***® z; = w;/wy z;. These are to be used in
the quadrupole operator entering into the (QQ) Hamiltonian so as to preserve its
spherical character. This transformation indeed insures that the Hartree field is not
further distorted once the interaction is switched on. by the quadrupole-quadrupole

potential. We have in fact
< Q) >=< Qi >=0 (72)
if we impose the conditions

A3 = =l 3 2
1 2 3

where 7 = Y"7(n; + 1/2). The explicit form of the @) operators is

~ wyw
Qe = —Qu

Wo

2
~ w
Q2 = —;Q:&:z

Wy

. 1 NG
Qio = ] (wf +2w3) Qo — 32 (wf — wd) r*Yoo (74)

Since the double stretched quadrupole operator, contains also a monopole term, the
new (QQ) potential results composed of pure quadrupole-quadrupole plus monopole-
quadrupole and monopole-monopole terms.

5.2. Consequences of selfconsistency

A quasi-particle RPA calculation formulated in the AN = 0 4 2 space has been
carried out using these double stretched coordinates’. It is shown that, in virtue
of the self consistent conditions (eq.68), the schematic quasi-particle RPA gives a
vanishing root. This is the eigenvalue of the redundant rotational mode. Such a
state results to be completely removed from the intrinsic ones. One obtains indeed

<n, K" =1%L,|0 >x P(z) =2+ az’ + bz +¢c=0 (75)
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where P(z) = P(w?) = 0 is the eigenvalue equation giving the roots of the M1
physical states.
The calculation gives also the important M1 — E2 relation

(P (p)? [o, 2 @ )7
1 60 62 [&‘) ( + 6 )]
B 1= 5 (@ )

-B(E2) (76)

where ¢, denotes the AN = 0 (k=0) and AN = 2 (k=2) particle-hole energies. The
relation can be easily generalized so as to account for pairing.
The above relation shows that the isoscalar state does not carry any M1 strength.

Its energy is in fact w = \/ ( ()? 4 lp )z) /2, The same equation can be used to get an

indirect estimate of the M1 strength of the high energy mode if the corresponding
E?2 strength is known*®.
For the high energy mode we have

wt) > 0 /1 + ay. (77)

Putting €p ~ dwo and €; ~ 2wy we obtain
B(M1) $~ 1.4582A~3B(E2) 1~ 0.5862A"**B,,( E2) t (78)

Where we have exploited that the strength of the K™ = 1% mode is 2/5 of the
total strength. For **Sm the experimental E2 strength is*®* B(E2) 1= 2610. Using
§ = 0.275 we get

B(M1) 1= 0.0015B:.,( E2) 1=~ 3.97u% (79)

5.8. Double stretched coordinates and scissors sum rule
The double stretched coordinates have been adopted also to compute the scissors
energy weighted M1 sum rule (eq. 12)%8. We obtained

ac 3 s c ac
Sew(M1) = —— (81 + 5357 + 557) g iy (80)

The first tern comes from the Hartree field and is given by

Sc 1 n
St =2 % < 0|[SL,[Ho, 5,1} 10 >=3mu} (6, < Q) > +6, < Q%) >)  (81)

p==+1

which is what obtained in ref.?*. The second piece comes from the two-body inter-
action which involves the monopole operators. This cancels exactly the one-body
contribution. We get indeed

S5 = —3mwf (8, < Q) > +6. < QR >) (82)
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It remains therefore only the contribution from the pure quadrupole-quadrupole
potential, apart from modifications induced by the use of stretched coordinates.
This is given to lowest order in § by

SEw(M1) = —%xpn (Z BY(E2) 1 -3 BL(E2) T) (83)

which is the result of ref.?®. Stretched coordinates are responsible for higher order
terms which however are not negligible!®. Experimentally® the E2 strength to
the lowest 2% state is orders of magnitude larger than the strengths of the other
transitions. If these are ignored one gets

9
W I B(M1)) 4w BM1)H) ~ —4—1rx,,"33°’(152) 1 (84)

One may get an indirect estimate of the M1 strength of the high energy mode by
making use of the M1 — E2 relation (78). one may notice that this high energy
strength is quadratic in deformation. Since the E2 strength depend obviously on
8% it follows that

B(M1)7) 42 (85)
The sum rule approach presented here gives a quite general theoretical proof of

the quadratic deformation law holding for the M1 strength of the low-lying scissors
mode.

6. Realistic RPA

For a study of the detailed properties of the mode, realistic RPA calculations
are required. As already mentioned, many problems have been encountered in the
past in carrying out intrinsic RPA calculations®?. A notable one was the occurrence
of spurious rotational admixture®. We will discuss this point briefly.

6.1. Spurious rotational admizture

In any calculation carried out in the intrinsic system, including deformed RPA,
the unperturbed ground state breaks spherical symmetry so that

J41]0 ># 0. (86)

In RPA, however, this rotational state separates out at zero energy if the starting
Hamiltonian is rotationally invariant. In this case we have in fact

(H — EO)J+1|0 >= [H, J+1]|0 >=0 (87)

Being indeed a solution of the RPA equations, the state given by eq. (86) is orthog-
onal to the other RPA states.

The problem is therefore solved if the deformed mean field is derived self-
consistently from the two-body part of a rotationally invariant Hamiltonian. This
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explains why the M1 states derived in schematic RPA are free of spurious rotational
admixture (sect.5).

In most calculations, however, the deformed field is not obtained selfconsistently.
Rotational symmetry is therefore not preserved by these Hamiltonians so that

[H,Ja] #0 (88)

and therefore

< K™ =1*[J;11]0 > 0 (89)

This point was first pointed out in Ref.®. In order to give a clue to the solution
of this problem we insert our harmonic oscillator deformed mean field (eq. 67) into
eq. (88) obtaining

[Ho, Jia] o< QFF) + Q% (90)

In order to restore rotational invariance one must modify the isoscalar quadrupole-
quadrupole interaction V{™=% so that

[Ho+ V=9 J,]=0 (91)

This is what obtained approximately in Ref.3? following a prescription given by
Pyatov et al.’°. The net result was to fix the coupling constant of the isoscalar
quadrupole-quadrupole interaction.

6.2. RPA in the Laboratory frame

A way of avoiding the above difficulties would be to formulate the RPA directly
in the laboratory frame. This has been attempted in a recent calculation?® by using
a projected single particle basis which, though reproducing the Nilsson spectra to
a good approximation, is composed of states of good angular momentum. The
technique for constructing such a basis has been developed elsewhere®'®2, The
underlying ideas will be sketched below.

Let us write the deformed Nilsson Hamiltonian in the form

hnis(8) = hoph — mwiBQa0 (92)

where h,p, stands for the spherical Nilsson component. Let us now consider the
rotational invariant particle-core Hamiltonian:

H = hsph + Hcore - kc Z(b: + b—u)Q;u (93)
I

where H.,. is an interacting quadrupole boson Hamiltonian describing a phe-
nomenological core and the third component is a particle-core coupling term. We
now use a core coherent state which turns the boson operator b, into c-numbers, to
take the mean value

< ¢y|h|¢‘y >=< ¢g|(ﬁ - Hcore)|¢y >= haph — 2ke d Q20. (94)
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This can be identified with the deformed Nilsson Hamiltonian (33) if we put 2 d k. =

mw¢ B. Inspired by this property we consider particle-core angular momentum
projected states of the form

q)aIM(d) = NaIP]{!I[‘Pald)g] (95)

where .1 = @1 are spherical single particle states, AV, is a normalization factor,
P}, a projection operator of standard form. We then considered these states as
eigenstates of an effective Fermionic single particle Hamiltonian h.;s whose eigen-
values are assumed to be the mean values

€l = (Q,,[M(d) | h | QaIM(d)) . (96)

These energies depend not only on (nlj) but also on I which plays here the same
role as |2| in the Nilsson basis. The corresponding "eigenstates” are mutually
orthogonal with respect to I and M. They are not exact eigenstates of the particle-
core Hamiltonian (34) and therefore do no reproduce exactly the Nilsson spectrum.
For a given deformation however, it is possible to obtain the Nilsson level scheme to
a good approximation by a suitable choice of the strength k.. The correspondence
with the Nilsson states is not one to one. Because of the degeneracy in M, 21 +1
states of the present basis will correspond to a |?] = I Nilsson state. We can keep
however all M-degenerate projected single particle states given by eq. (36) as long
as we normalize them to 2/(2] + 1) rather than 1.

4 T T T
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Fig. 3. Summed M1 strength versus deformation square for Sm isotopes in RPA with a projected
basis.



We adopted these projected basis to carry a QRPA calculation in the laboratory
frame using a spherical one body term with single particle energies given by eq.
(37) and a two-body potential composed of monopole pairing treated in BCS ,
quadrupole and spin interactions.

We carried out calculations for Sm isotopes. We found that practically all
excitations of mainly orbital nature fall below 4 MeV while the spin levels are
above. Fig. 3 shows that the summed M1 strength of the orbital excitations below
4 MeV is linear in 6%, in good agreement with the experimental data. As in the
other microscopic approaches the deformation law is obtained only after pairing has
been included. Also the M1 spin distribution with its characteristic double-hump
structure observed recently!? in *Sm is fairly well reproduced.

7. Concluding remarks

We have shown that the TRM expression of the M1 strength can be taken as the
definition of the scissors M1 strength once the parameters entering into the TRM
Hamiltonian are properly redefined. Such a definition, which is consistent with the
observed deformation properties of the low lying M1 excitations on phenomenologi-
cal ground, applies to several approaches including the interacting boson models like
the GCSM and IBM-2. When used in these contexts the TRM definition describes
the deformation properties of the mode in good agreement with experiments.

The definition can also be applied to get the M1 strength in schematic RPA. In
this context a high energy mode in addition to the low energy one observed in all
deformed nuclei is predicted. An indirect evidence in favour of this excitation has
been found recently?®. It applies also to super-deformed nuclei for which strongly
collective excitations of the same nature are predicted.

We have pointed out that the deformed harmonic oscillator potential in schematic
RPA can be considered as a selfconsistent potential in the Hartree approximation.
In virtue of such a property, no rotational admixture appears in the states describ-
ing the M1 excitations if doubled stretched coordinates are adopted. These new
coordinates generate quadrupole-monopole terms in the Hamiltonian which cancel
the contribution coming from the deformed mean field to the energy weighted M1
sum rule.

For a detailed description of the properties of the M1 excitations it is necessary
to exploit the full shell model structure as in realistic RPA. These calculations,
being carried out in the intrinsic system, have run in the past into difficulties which
have been now removed. As an alternative way of avoiding them, a RPA calculation
carried out in the laboratory frame using a projected single particle basis has been
discussed. This calculation relies on approximations whose validity needs to be
studied. The results obtained are however encouraging.
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EXTENSION OF MOSZKOWSKI MODEL TO PROTON-NEUTRON SYSTEMS:

a) SCISSORS MODE b) GAMOW-TELLER-2v3 DECAY.

A. A. RADUTA
Institute of Physics and Nuclear Engineering
Bucharest, PO Boz MG-6, Romania

ABSTRACT

Two extensions of the Moszkowski model to a composite system of protons and
neutrons are considered. One is used for describing the scissors mode while with
the other one calculates the Gamow-Teller amplitude for the 2033 decay. In both
cases, most of results obtained by realistic calculations are recovered. Moreover
some new results are pointed out.

1. Introduction

Schematic models are very useful since they allow to simulate the realistic cases.
This goal is achieved either by analytical solutions or by minimal computational
efforts. Moreover, in realistic calculations some important effects might be hidden by
the inherent details. Thus, schematic models might unveil new properties of nuclear
systems. On the other hand some approaches aimed at describing a many body
system might be easily tested by using such a simplified scheme. To give an example,
many features of boson expansion formalisms were studied ! within the schematic
model of Lipkin and Meshkov 2.

All these three virtues -simulation, reveals new aspects of the quantal systems, may
serve as testing model-are obvious signatures for the schematic model proposed by
Moszkowski 3. The collective features of a many body system can be described within
either a phenomenological or a microscopic formalism. A relation between these
methods can be established when a set of collective variables is expressed in terms
of single particle coordinates. One of the first attempts along this line was proposed
by Moszkowski in Ref. 3. Therein the connection between the unified model and the
nuclear shell model is studied within a schematic approach. A many body system
is moving in a mean field consisting of a two dimensional harmonic oscillator plus a
spin-orbit term. The particles interact among themselves by a quadrupole-quadrupole
force. The quadrupole operator comprises not only the moments of coordinates but
also the quadrupole moment of linear momenta. Increasing the strength of the two
body interaction, the structure of the eigenstates of the model Hamiltonian varies
smoothly from a vibrational to a rotational type.

Moskowski model (MM) was used by several authors with different purposes.
Thus the pairing properties of a spinless particle system described by MM were stud-
ied in Ref. 4. A different application of the Moszkowski model was proposed by
Marshalek , who uses a boson expansion preserving the angular momentum at any
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stage in order to evaluate perturbatively the first corrections to the vibrational and
rotational energies. The temperature effects on the RPA (random phase approxi-
mation) states provided by the MM Hamiltonian were studied by J. da Providencia
and his coworkers in Ref. 6. The broken rotational symmetries are restored by a
cranking procedure. Replacing the operators involved in MM Hamiltonian by the
corresponding g-deformed operators, the resulting Hamiltonian was studied within
the RPA approach 7. It was the first time that a q-deformed many body system was
treated by the RPA approach. This is a nice example to show how schematic models
are used for developing a new approach for a many body system.

Here I will present two extensions of the MM formalism to a composite system of
protons and neutrons. The pairing interaction for like nucleons is also considered.

The quadrupole operator involved in the two body interaction of the model Hamil-
tonian, is a tensor of rank one with respect to a group R3, describing rotations in a
fictitious three dimensional space. This observation suggests that the p-n extension
of MM (EMM) might be suitable for describing the magnetic "dipole” ( M1 ) states.

Replacing the two body QQ interaction with the Gamow-Teller (GT) proton-
neutron interaction one obtains a new model Hamiltonian which is used to describe
the 2v30 process. As we shall see, this schematic model provides a new explanation
for the GT amplitude supression.

The results obtained for the two extensions of Moszkowski model, will be presented
according to the following plan. A short review of the MM is given in Section 2. A
possible extension of the MM to the proton-neutron (p-n) system is considered in
Section 3 where the model Hamiltonian is successively treated by particle-hole RPA
and semiclassical procedures. The pairing interaction is introduced in subsection
C. Numerical results and the final conclusions for the scissors like excitations are
presented in Section 4.

Another extension of the Moszkowski model, which is suitable for the description
of the 2vB decay, is described in Section 5. The formalism developed in Section 5
is applied in Section 6 to calculate several observables. Here we also summarise the
main results concerning the double beta decay.

2. Mozkowski model: short review

The MM model ! considers a system of nucleons moving in a mean field consisting
of a two dimensional oscillator potential plus a spin orbit term

Hsp = Hho + Hacn (21)
1 mw? -
H 0o = 2 2 0 2 2 - _ '
h 5 (pz +p,) + 5 (z* +y?), H,, Cls,

and interacting among themselves through a quadrupole-quadrupole force Hgg. Here
m denotes the nucleon mass and wq is the potential frequency. In order to write
Hgq in a convenient form some preliminar remarks are necessary. Since the angular
momentum has only one nonvanishing component (I.) the only effective component



of spin is s,. The eigenstates of Hj, can be writen as follows:

1
[nenyo >= ———=(af)™*(a})™|0 > x,, o=+, 2.2
v

,/n,,!ny!(a

the creation operators along the x and y axes, respectively. xi+ denotes
1
21

with o}, af
the eigenstates of s, corresponding to the eigenvalues +

checked that Hj, commutes with the quasispin operators

respectively. It can be

1 1 1 1
t, = Z[mwo(:c2 -y + ;n—w_o(p: - Pz)]y ty = -2-[mwozy + m_wOP=Pu]’ (2.3)
1

1
t; = 512 = i(zpy - ypx)a
which are generators of an R; group describing rotations in a fictitious three dimen-
sional space. Consequently, the eigenstates of Hy, can be classified by the :rrep of
this group:

N N

!INmo > = E(—é—+1)|NmU >=t(t+1)|Nmo >, o=4=, (2.4)

1
t,|Nmo > = Emleo' > m=—-N,—-N+2,..,+N.

The eigenvalues of Hy, are *
En =(N+ l)wy, N=n;+n,. (2.5)

Obviously, the states |[Nmo > have the degeneracy 2(N + 1). This degeneracy is
partially removed by switching on the s.o. term which may be written as:

H,, = —C[t(+) — t.(-)], (2.6)

where the argument o(+) indicates the fact that the operator should be considered
in the space spanned by |[Nmo >.

The states with the same N form a shell. States from different shells can not be
related by any of the generators ¢, (k = z,y, z). The operator H,, can be considered
as a one body term of a many body Hamiltonian which can be written in the second
quantization form:

1
Hyp = 500+ 0 ) | cimoenme = C(L(+) = Tu(=)), (2.7)
where
Tu(o) = Z < Nmolt,|Nm'e > i, cnmo, p= 1,2, (2.8)

*Here one uses the units of i = 1.
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The components of the total quasispin operator are:
Ty = Tu(+) + Tu(-), (2.9)

It is worth noticing that ¢, and t, are the components of the quadrupole moment
depending only on z and y coordinates. Hence the Q@Q interaction in the (z,y) plane
can be written as:

X
Haq =~ X(T\T- + T_T,) = = (T* = T?) (2.10)
The MM Hamiltonian is defined by
HM“ = Hgp + HQQ. (2.11)

One distinguishes two limiting cases. When C = 0, one obtains the two dimensional
version of the Elliot model ® which is suitable for describing the collective rotations and
quadrupole vibrations of a many body system. Indeed, for this case the eigenvalues
of Hp,s are given by:

1
Erm = wo(N, + %) - %XT(T F1)+ XM, (2.12)

where N, denotes the number of particles in the shell N while M is the eigenvalue of
L, =2T,, (2.13)

and takes the values 0,+2,+4,...,+£2T. For a given T, the set { Erpm}n defines a
finite rotational band. Consider now an even number of particles N, = 2v filling the
oscillator shell in a pairwise fashion in the order: m = N, N —2, N —4, ... The ground
state of this system corresponds to the maximum value of T, which is

To=v(N+1-v). (2.14)

From 2.12, it results that the ground band states are two fold degenerate.

The other regime, when the long range interaction is missing (X = 0), simu-
lates the shell model description in realistic situations. One notes that the single
particle states belonging to a given shell have the same ”t” but different "¢,”.The
corresponding energies depend on " M” quantum number and therefore the states are
"deformed”. The rotational symmetry of the many body system is also broken. Since
in the two dimensional case there is no spin flip, T; is conserved. However T is not
conserved. For C > 0 the lowest energy is reached in the many body state:

To To o To
_ L Lo 2.15

The excited many body states are equally spaced with w = C.
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The case when both terms are present in the model Hamiltonian allows for a
transition between vibrational and rotational regimes controlled by the parameter

1
z = =XT,. 2.16
c° (2.16)
The two limits correspond to z = 0 and =z = oo respectively. Whithin the Hartree
approximation the phase transition is achieved for £ = 1.

3. Extended Moszkowski model. Description of scissors mode.

The generators t; are tensors of rank 2 with respect to the group R3; while under
the R; transformations they behave as tensors of rank one. Here, we shall use the
tensorial properties corresponding to the group R3. To begin with, let us consider
the operators

5t - af +ia} gt = af —ia}t
+3 ’ -

VIR N B

and denote by S, :E,S_ 1 their hermitian conjugates, respectively. These operators

(3.1)

have some very useful properties which will be enumerated below. a) They are bosons
operators, i.e.

[Sa3,5%,) = 1. (3.2)

b) S"' and S+, are the components +1 and —] respectively, of a tensor of rank
L w1th respect to the group R3. c¢) This property is not preserved by the hermltla.n
conjugatlon operation. Indeed, the operators —S L S_; are the components — 2, +—
of a tensor of rank 1. d) The R; generators can be easily expressed in terms of SI,_

2

operators:

1
t, = —E(S“S)M, u==+1,0. (3.3)

Actually, this is a Schwinger-like boson representation of the SU2 quasispin

operators®~!!, The Casimir operator ? is a scalar and can be written as:
Nyy+N_y Noy+ Ny
P= (4, (3.4)
2 2
with

The eigenstates |n;n,0 > with n,. + n, = N of Hj, can be written as linear
combinations of the states

(ST™(S2)"
|mno >= ?w >0, m+n=N, o =164+ 16, . (3.6)
m!n
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Thus the N multiplet may be described by 2(N + 1) states |m,n,o > with (m,n) €
{(N,0),(N —-1,1),...(0, N)} and ¢ taking the values + for spin up and down, respec-
tively.

If in addition H;, is switched on, one obtains a set of N +1 energy levels which are
equally spaced and doubly degenerate. Such a spectrum is shown in fig. 1. Denoting
by |0 > the fermionic vacuum, the creation operator for one fermionic single particle
state is defined by

ct0 >4=lic >, i=(m,n), o=+ (3.7

In order to study the pairing correlations of the particles occupying the single
particle states one needs to know how a state |mno > transforms under the action of
the time reversal operator

T=KC, K= -io,, C— complex conjugation. (3.8)

It can be easily checked that

Tt T = (< ey = Chi @' = 560 = 50 (39)
In fig. 1 one sees that the time reversed states are degenerate. Therefore they may
be paired.

The formalism we are going to develop in the next Sections, uses the single particle
states |[to >= |mno > with m + n = N. The time reversed corresponding states are
lic >=|nm — o > (=)

Since H),s contains, as a two body force, a dipole-dipole interaction (we remind
the reader that the tensors are defined with respect to ®3 group) we believe that by
extending Hps,s to a proton-neutron system we may easily study the M1 (again M1
is a dipole transition operator under any R; transformation) states and see whether
the known features of the realistic case can be simulated by this schematic model.

Thus, we shall suppose ! that the pn system is described by the following model
Hamiltonian:

\ 1 T T’ T T
Hyn = ) [worN; = Co(T(+) =T = 5 D X TOT 4+ TOTEY), (300)

T=p,n !

where the upper index (7)(= (p), (n)) suggests that the operator T} defined by (2.13)
is to be considered in the space of 7 single particle states. Also, we denoted by N,
the particle number operator for the 7 system. The isovector and isoscalar channels
of the two body interaction have the strengths X; and Xj, respectively.

1 1
Xy = E(XPP - Xpn)v Xo = E(pr + er)' (3-11)

The components of angular momentum having these symmetries are

f] = T(p) — T‘(n),fo = T = T‘(p) + T’(n), (312)
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respectively. The two body interaction term (H,) can be written in terms of 77 and
T, operators, as follows:

H2 = —Xo(T2 i Tzz) - Xl (T12 - lez). (313)

Obviously such a separation can be extended to H,.. Unfortunately, the split of
H,, into two pieces, one describing the "intrinsic” motion of the system ( depending
on T;) while the other one is associated with the rotational collective motion, has
only a formal meaning. Indeed, the operators Tor do not commute with Ty , and
consequently one can not construct an SU2 x SU2 basis for studying the eigenstates of
H,,. If that were the case, to each intrinsic state one would associate a full rotational
band. However, as we shall see later on, the two motions are decoupled for a certain

value of the ratio %

A. RPA-particle hole treatment.

Consider now a system of 2w, protons and 2vo neutrons filling the lowest levels
of the major shells N,, N,, respectively. Since the operators T, are tensors of rank
1 with respect to the group Rj, they can relate only adjacent single particle states.
Moreover, due to the Pauli principle only particles from Fermi levels can be promoted
to the next state. Therefore the operators T:(hr) have the expressions:

(3.14)
with

a(r) = \/wo(Np — 7m0+ 1)brx + V/vo(Nn — vo + 1)é5,. (3.15)

Here the index "h” stands for hole while "p” for particle like states. To avoid confu-
sions we use the index "x” for protons and »” for neutrons and leave the index ”p”
for the set of quantum numbers characterising the particle states.

Within the RPA particle-hole approach one defines the operators

T4 = %{Xﬁ*’(c;(w)cmw)ic:_(w)ch_(vr))

+ X (g (ens(v) £ - (V)en- (1)) + Y (e (m)epi (1) £ () (7))

+ Y ()eps (v) £ (V) ep- (), (3.16)
so that they satisfy bosonic commutation relations and describe harmonic modes for
the model Hamiltonian The phonon states are two fold degenerate (w; = w_ = w)

and the energy is given by the following equation:

wt - wz[C: + C? — 2X,,(a*Cp + B2C,) + CpCr(CpChn
2Xpp(a’Ca + b2Cy))] + 4a*b*CpCr(Xpp + Xpn ) (Xpp — Xpn) =0, (3.17)

where the following abreviations have been used

a=a(r), b=a(v). (3.18)
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Depending on the strengths of the two body interactions, the equation 3.17 may have
at most two distinct positive solutions. Two particular cases deserve special attention.
i) Crn =C, =C, Xpn==xX,, (i.e. one channel is missing).
The equation 3.17 becomes

(@? = C?)(W? — C* + 2X,,C(a® + B)) = 0. (3.19)

Note that the unperturbed p-h energy is a solution of the RPA equations. The second
solution exists provided the following relation is obeyed.

% C

L . 2
PP = 2(a? + b?) (3.20)

When the equality sign is achieved, w = 0 is a solution for 3.19. Note that this value
of X,y is half of that for which the phase transition, from spherical to deformed shape,
takes place in a Hartree-Fock treatment.

ii) Taking for the ratio k = X;/Xq, the particular value

_ —C,Cr + 2Xo(a2Cy + B2C,)
- 2X0[8(12b2X0 - (a"’Cn + b2Cp)],

(3.21)

one of the two non-negative solutions (wp) is vanishing. The bosons corresponding to
the energies wy (k = 0,1) are hereafter denoted by I'(4+)(k). The corresponding am-
plitudes are also carrying this additional argument. Defining the hermitian variables

0 = —%(aX},i)(O) +bXB(0)7'TE,)(0), k==, 3, (3.22)

the following relations can be easily checked:
(Hpns 06) = 0, [0k, Ti] =4, [0k, Tw] =0, k#Kk. (3.23)

Therefore 8 is the conjugate variable of T;. The model Hamiltonian can be written
in terms of the RPA bosons:

1 1
Hyn = 5Co82 + 5,07 + w1 (Tf, (T (1) + TE (DT (1), (324

where C;,C, are real numbers and can be determined from the consistency conditions.
The bosons F(+:t) satisfy the equations:

[Fa)va] = [F(++)’Tz] =0, [F?-_),T,,] = [F?-—)’TZ] = 0. (3'25)

Consequently, the following relations hold:

(Hpn, T2) # 0, [Hpn,Ty) #0, [Hpn,T:) =0. (3.26)
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Concluding, the present procedure allows for separating the spurious modes. However
the RPA states do not have good "angular momentum”.

Since T,(g = 0,+£1) are generators for the group R3, they may be considered as
components of the operator describing the pseudo M1 transition 0% — 1&), where
the states 0% and 1(+i) are associated with the vacuum |0 > and the first RPA states

( i)IO > respectively, which are to be considered as intrinsic states. The reduced
probability for the transition between the states |0*) and |1(i)) defined in the labo-
ratory frame, is given by:

3
B(M1;0* — 1},)) = Bwaz(:FX,(,*) + Y22 (3.27)

Here we accounted for the fact that the m.e. in the laboratory frame is twice as much
as in the intrinsic frame. Indeed, the factor two is determined by the contribution
of the rotational degrees of freedom to the transition matrix element. The nuclear
magneton is denoted by u3.

B. Semiclassical treatment of scissors mode.
The ground state properties may be alternatively described by solving the equa-
tions provided by the variational principle

t
5/ < Y| Hpn — at,|¢ > dt' =0, (3.28)
0

where 1) belongs to the Hilbert space S, associated with the many body system. If
¥ spans the whole space S, solving (4.15) is equivalent to solving the Schrodinger
equation. Here we confine the variational space to the manifold of states:

¥ = ¥p(a, B)a(7,6) (3.29)

with
d)P(a’ ,B) = NP(a’ ﬂ)eaT_(+)+pT+(_)|javja) + >P Ijb, _jba - >P1 (330)
¢n(7)6) = Nﬂ(776)61T_(+)+6T+(-)|jcvjci + >ﬂ |jC’ _jC7 - >ﬂ ¢ (331)

The parameters a, 3,v,6 are complex functions of time. The variational principle
provides a set of differential equations for them and their complex conjugate functions
o, f*,7*,6*. Np(a,B), Nu(7,6) stand for the normalization factors of ¥, and ¥,
respectively. The many body states |j;, %, £ > (¢ = a, 8,7, 6) are eigenfunctions
for Tz(:i:) and T,(%). Since for a vanishing two body interaction, the ground state is

T(P) T(P) TO(P) Tép) Téﬂ) TO(") TO(") Té")

S > I e >

The pseudo-angular momenta j,, ji, jc, jo may take the values:

—>. (332

. ' T(P) ‘ ' T(")
Ja=Jb=°T; Je=ja= ; - (3.33)




It i1s worth noting that 1 3.29 is a product of four functions which are coherent
states for the SU2 groups associated with the proton and neutron systems with spin
up and down respectively. The product of these groups is the dynamical group of
the model Hamiltonian. In each of the above mentioned factor states, the product
of dispersions of a certain component of angular momentum and its conjugate angle
bas a minimum value. Due to this fact 1 is a good candidate for describing a ground
state which is assumed to have a semiclassical nature. The semiclassical treatment
accounts for oscillations around a ground state which has four subsystems with good
angular momenta while the p-h formalism has no such restriction for the ground state.
Although the procedure is not able to account for the angular momentum fluctuation
in the ground state, due to the intuitive meaning of the classical variables, it allows
for a better understanding of the nature of the states. In particular one expects a
straight connection with the two rotor model ' which interprets the orbital M1 state
as a scissors mode.

In Ref. 12 we have shown that the p-h formalism describes the small oscillations
of the system around a "spherical” Hartree-Fock ground state. By contrast, as will
be shown in this section, the semiclassical treatment is suitable for the description of
small oscillations around a static and deformed Hartree-Fock ground state.

In what follows it is convenient to write the equation 3.28 in terms of the conjugate
varioables (z;, ;) (with 7 = a, b, ¢, d) defined by:

—2j . : : :
Ty = ———— k=a,bc,d; a=p.e¥, B=pe?, v=pce', §=pge¥i. (3.34)
(1 +4})
Indeed, for the new variables the classical equations of motion acquire a canonical
form:

on__, o
oz; i 0p;
where ”dot” denotes the time derivative operation and H is the average of H on
¥. The relations 3.35 confer the variables (z;, ;) the role the conjugate phase space

coordinates describing the four classical degrees of freedom.
An equivalent form for the equations 3.35 is:

= #;,i=a,b,c,d, (3.35)

{‘Ti'?H} = zi, {(,0,,7'{} =i 1=a, b,c,d, (336)

where {, } denotes the Poisson bracket having the standard definition.
In order to relate the classical and quantal properties of the nuclear system it is
useful to introduce the complex coordinates

Tkt upx
\/§ )

The new coordinates obey the equations of motion

k=a,b,c,d. (3.37)

{C:,Ck} =1, {C,,H}=Ci, {Ci,H}=C;. (3.38)
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The average of any fermionic operator on the trial function ¥ 3.29 can be easily
expressed in terms of the complex coordinates Cf, Ci. The idea of algebras mapping
is used not only for dequantising the quantum motion but also for quantising the
classical motion of the nuclear system. Indeed, the mapping

Ci—bl, Ciobe, i{,}—[,] (3.39)

of the classical

(Ci,Ci I {, 1) (3.40)

and boson
(b:, bk, L, [ ) ])

Weyl algebras realises a quantization of the classical motion. I and 1 are identity
function on the phase space and identity operator in the boson space, respectively.
By this mapping any function of the phase space coordinates becomes an operator
depending on the bosons b}, by. The transformation 3.39 induces a boson mapping
for the classical Hamilton function H. Let us denote by H, the image of H. Writing
H, in a normal order with respect to the boson vacuum, one obtains for H, a series
of bosons b}, b; whose lowest order has the form:

Hy=Ho+ Y wibfbi. (3.41)
1=a,b,c,d
We do not give here the expressions of Hy and w;. Instead, we shall adopt the
harmonic approximation at classical level. Moreover the trial function is considered
for f=a", 8§ =~
1/) = d)p(aa a-)¢n(717-)' (342)

Such an expression is suggested by the fact that the unperturbed states
]j) m,+ >, IJ) -m,— >,

are degenerate. Using then the coordinates (z;,y;), defined by 3.34 with ¢ = a,c the
classical energy function becomes

H = 2Cpja+2Cnje — 2Xpp(Ja + je) + 22a(Cp + Xpp(47a — 1))
. 1 1
+ 2z(Cn+ Xpp(d5c — 1)) + (4 — j_)pr:”: + Xppro(4 - J_)

a c

—  8Xpn €08 @q €OS Pe[TaZe(—Ta — 2ja)(—2Zc — 2jc)]%. (3.43)

This function reaches a minimum value for
; Cn
S vy
Xpp(4jc — 1)

v .

C o
Ig=—) P +l), ¢a :0, ;i':c: —*—1)7 (pc=0 (344)

(pr(4ja - 1)

The second order expansion of { around the minimum point can be easily obtained.
To save the space we do not give its expression here. Changing the variables,

1 = Tq — an D1 = Pa — ¢ay g2 = T — ic, P2 = Pc — ¢C7 (345)
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the equations of motion preserve the canonical form

gk = Bpk Z Aupl, Pr=—5—= Z Buq, (3.46)
;

where the nonvanishing matrix elements Ag, Bi have simple expressions of the
strengths Cyp, Cpn, Xpp, Xpn and ja, jo: The normal modes are defined as linear combi-

PP
nations
Ci= ) (Reai — Skax), (3.47)

k=1,2

of the complex coordinates

(Y. (e ./ SN (3.48)

10'— ]
vz TR

The amplitudes Ry, Sk are determined so that the following equations hold:
{C*,H} =wC", {C*,C}=1. (3.49)

'—
a, =

The dispersion equation for w is:
w* + w?Ay1(Bn + Ba) + (B Ba; — BL) A%, = 0. (3.50)

As explained before, the classical motion can be quantized by associating to C* the
boson b* and to C the hermitian conjugate one, b. To calculate the transition prob-
ability between the ground state (which is a vacuum for the RPA bosons b (k=1,2)
and the first excited state b} |0 >, one needs to quantize the average < ¢|T£pl)|1/) >.
To achieve this aim one expands this quantity around its minimum point and retains
only the linear term which is quantised by following the procedure mentioned above.

The states related by the M1 transition operator are defined in the laboratory
frame by:

V3

07) = (5)H0 >, EM) = So(Dhy + Dl _Jbfl0 > (331

8m? )
The final result for the reduced probability characterising the transition [0%) — |1{ M)
is:

3 .
Sria(RY =519k, k=12, (3.52)

where the upper index ”(k)” accompanying the amplitudes R; and S; suggests that
they correspond to the RPA energy wy.

Now let us focus our attention on the isovector-isoscalar admixture in the structure
of the normal modes. To this goal we perform the canonical transformation.

B(M1;0* - 1) =

Q=9t®  _0-® p_4 Pate _ P9 (3.53)

2 2 0= 2 2



To these degrees of freedom one associate the complex variables

Q—-:P q—1p Q+:P q+:p
A" = , @ = ,A= , a= . 3.54
V2 VRN vz (354
The normal modes coordinates are defined by:
C*=RA"+ra"—SA—sa, C=(C"), (3.55)

with the amplitudes R, r, S, s determined so that the equations 3.49 are satisfied. The
dispersion equation for the mode energies is identical to 3.50. This is a consequence
of the fact that the transformation 3.53 is canonical. For a particular value of the
ratio X;/Xo, the dispersion equation 3.50 takes a factorised form:

(w? — Q2)(w? — Q2) = 0, (3.56)

where (y and €, can be analitically expressed in terms of the static values of the
phase space coordinates.

The normal coordinates Cj,Cp corresponding to the energy €2 have vanishing
r and s amplitudes. On the contrary, the coordinates Cj,C, are characterised by
R =S5 =0. It can be rigorously proved that the following inequality holds:

Q1 > Q. (357)

This ordering relation reflects the fact that the isovector interaction is repulsive while
the isoscalar one is attractive. We conclude that this schematic model allows for a
full separation of the isoscalar and isovector modes. It is worth noting that such a
separation does not necessarily mean a vanishing energy for the isoscalar mode. In
the previous subsection we have shown that vanishing value for the isoscalar energy
is not a sufficient restriction for getting RPA states with good angular momentum.

Now let us see what are in fact the classical coordinates we have used in this
subsection. To this aim we calculate the averages of T®), T(") on the trial function.
The results are:

.2 (r
< P|ITOp >= 5 sz COS g = ]S_ ) cos Pk
1+ pi

. . 2pk . (7).
< 1,b|T!$ N >= Ik -If’pz sin p = ]i)sm Pk,
k

2

~ Pk
140}
From the above relations it results that ¢,(i.) is the angle between the projection
of the pseudo-angular momentum of the proton (neutron) system in the (x,y) plane

and the Ox axis. The angle M defines the bisector line of the angle (;Y),ﬁ")),

while L“’“;—‘P‘l defines the angle between the above mentioned bisector line and .-7?(1")-

< Y|ITN >= ji T=p,n;k = ab, + cbrn. (3.58)
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Therefore the isovector mode is just the scissors mode as was defined by Lo Iudice
and his collaborators in Ref. 13. The quantity 1—?—3‘;— plays the role of deformation.
k

C. QRPA formalism
In this Section we shall study a system of nucleons interacting among themselves
not only by the long range term simulating the Q@ interaction but also by a pairing
force. Therefore, the Hamiltonian describing such a system will be
Y o G + .+
H =Hp — AN, — AN, — 7 Cin € Cj51Clo" (3.59)

s,5,00'

where H,, is defined by 3.10, N, stands for particle number operator of the system
7(= p,n) and A, denotes the corresponding chemical potential. We treat first the one
body and pairing terms. This piece of H is brought to a diagonal representation by
means of Bogoliubov transformation

af, (1) = Uk(r)ei, (1) = Vi(m)eg, (1), are(T) = Un(T)cko(T) (3.60)
- W(n)eb(r), 7=pn; k=(mn), oc=+,—, 0<mn<N,.

The coefficients U and V are obtained by solving the pairing equations for gap energy
and particle number conservation.

The pairing interaction which is introduced here has some distinctive features. The
first distinction refers to the fact that the particles have spin and consequently the
single particle spectrum is a set of equidistant double degenerate levels. A particularly
nice property of the present interaction is that it transforms a set of equidistant
energy levels characterizing the noninteracting system into a non-equidistant set of
quasiparticle energies. Moreover since pairing correlations smear out the Femi sea,
any two successive levels may be related by a dipole transition operator. This is at
variance with what happens in the particle representation where the Pauli principle
allows only for the transitions involving the Fermi sea and the first level above it. This
means that while in the absence of pairing the system behaves like one with only
one degree of freedom (relative to the particle-hole excitations), the paired system
has several channels open for excitation. Consequently one expects that the QRPA
approach produces a fragmentation of the M1 strength which contrasts with what
happens for the uncorrellated system where only one dipole state exists.

The QRPA approach defines the operators

rt = Z [Xﬂ+1 ™ l( )(a;;n+(7')a:+1,m-1,-(7') + ajv-t-l,n+1,+(7-)a:m—(7-))

T,mn

+ Yrs,t;l'm_l(T)(an+1.m—l.—(7')amn+(7) + tnm—(T)em—1,n41,+(7)]s (3.61)
so that the following equations are fulfilled

[H,T*] =wl*, [[,T*]=1. (3.62)
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Table 1. The values of the major shell quantum number for protons (N,,) and neutrons (/V,), the
number of protons (2mo) and neutrons (2v4), the angular momentum (in units of k) carried by
protons (Jo = (INp — mp + 1)mg) and neutrons (j. = (Nn — Vo + 1)1p) and the strength of the
pairing interaction(GP = Gy, in units of MeV) which are used in our applications are listed.

N, N, 2o 2v Ja Je Gp =G,

6 8 6 8 6 10 0.6

The first equation 3.62 yields an homogenous system of equations for the amplitudes
X and Y. The compatibility condition for this system provides a dispersion ecuation
for w.

The QRPA equations have at most N, + N, real solutions for w. These will be
distinguished by the label s. Also, the amplitudes X,Y corresponding to the s-th
energy will be accompanied by the additional index s. The associated boson I't 3.61
is denoted by I'Y. The QRPA vacuum and the first excited states are defined by

I,0>=0, |1 >=T}0> (3.63)

These are viewed as intrinsic parts of the ground state |0%) and the dipole states
[1}) defined in the laboratory frame, respectively. The reduced probability for the

transition |0*) — |17) (induced by the intrinsic operator TE’:‘)
B(M1;0% = 17) = 2 Yo AR p) = Yo ™ () ek (3.64)

™
4 m+n=Np

) has the expression:

The distribution of the M1 strength among the states 1} will be numerically studied
in the next section.

4. Numerical results and discussions.

Here we present the results obtained for the input data given in table 1. We
performed successively the ph RPA and QRPA for a set of values for the isoscalar in-
teraction strength Xo. For each value of Xj, the strength of the isovector interaction
was fixed so that the isoscalar state has the energy equal to zero. The semiclassical
treatment was performed by varying the value of the proton-proton two body interac-
tion, i. e. X,,. The strength for the proton-neutron interaction X,, was determined
by enforcing the isoscalar energy be equal to zero. The calculated observables are
the energies and the reduced probability for exciting the RPA states from the ground
state thr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>