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PREFACE

My earlier volume, Relativity, Gravitation, and World-Structure, was
published in 1935. No sooner had it appeared than the subject under-
went a rapid transformation, by which the merely kinematic results
of the first volume were given a dynamical interpretation. In a series
of eight papers published in the Proceedings of the Royal Society from
1936 to 1938, and in other papers published in the Journal of the London
Mathematical Society, the Astrophysical Journal, the Philosophical
Magazine, the Proceedings of the Royal Society of Edinburgh, the
Monthly Notices of the Royal Astronomical Society, and especially in
a joint paper with Dr. G. J. Whitrow published in the Zeitschrift fir
Astrophystk in 1938, I constructed on a kinematic basis a theory of
dynamics, a theory of gravitation, and a theory of electromagnetism,
isolated the two scales of time, and gave the work some philosophical
interpretation. But no connected account of the general sequence of
ideas in full detail has yet appeared, though an account of a sub-
stantial portion of the work was included in Dr. Martin C. Johnson’s
Time, Knowledge, and the Nebulae (Faber and Faber, 1945). The
present volume aims at linking together the various scattered re-
searches, but it is no mere summary of papers already published as
it contains a reworking of the whole theory and many new results,
in particular the expression of the ¢{-equations of motion of a particle
in Lagrangian form, and a novel application of the theory to photons
which removes certain observational difficulties encountered by
Hubble in his studies of the expanding universe.

The present volume is a sequel, not a substitute. It contains so
much of the earlier volume as is necessary to make the present volume
self-contained, but I have nothing of the earlier volume to withdraw.
I do not consider that the many criticisms to which the earlier volume
and the various later research papers have been subject deserve any
detailed reply, as they rest mainly on either misunderstandings or
prejudices, and it has been my object to avoid any note of controversy
in the present volume as far as possible.

I should like to own my indebtedness to the work of Dr. G. J.
Whitrow, whose helpful discussions of almost every point have been
of great value. Dr. Whitrow has also contributed numerous original
papers to the development of the subject. He has done me the final
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kindness of reading through the proof-sheets of the present volume.
An independent development of some of the lines of thought here
presented, with fuller mathematical rigour, has been given by
Professor A. G. Walker. Though I am not in agreement at all points
with Professor Walker’s line of development, I have benefited greatly
by reading his papers.

E. A M.
WADHAM COLLEGE, OXFORD

June, 1947
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PART I
KINEMATICS
I
THE IDEAS OF KINEMATIC RELATIVITY

1. Origin of the investigations. Dynamics is the science of the
description and theory of the motions of bodies. In order to describe
the motion of a body, at least two concepts are necessary: the con-
cept of a frame of reference and the concept of a scale of time.

A frame of reference is not a disembodied spirit. It must itself be
defined with reference to the body or bodies whose motion it is
proposed to discuss. The question at once arises whether there are
any bodies in the universe which can be taken as fundamental frames
of reference; are there any bodies whose motions are fundamental,
in the sense that the simplest description of the motions of other
bodies is obtained by using the first set as frames of reference ?

The answer given by the orthodox theory of relativity is well
known: it is that there are no fundamental frames of reference in
the universe. All coordinate systems or frames of reference are
equally valid for the description of the universe. The descriptions
of individual examples of motion will be simpler or more complicated
according to the frames of reference chosen; but the description of
the laws of nature can be put in a form independent of the particular
frame of reference chosen, and the same for all possible frames of
reference. This answer, by its generality and by the negative character
of its enunciation (‘There are no preferential frames of reference’)—
negative statements (as pointed out by Sir Edmund Whittaker) have
often proved of great value in the history of science, as in geometry
and in thermodynamics—this answer, I say, has attracted the assent
of some of the greatest minds of our time; and it has accumulated
a considerable body of experimental evidence in its support. But
it is impossible to establish a negative, by induction, with complete
certainty. I should be the last to deny the abstract possibility of its
truth. But an even more general answer is abstractly possible, and
is worth consideration.

The contents, the material bodies, of the universe are not homo-

geneously distributed through space. Like city- and village-dwelling
3605,63 B
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mankind, the population of the universe is not spread uniformly, but
is concentrated in aggregates known as galaxies, of which the great
concourse of visible and invisible stars related to our own Milky Way
forms one example. These galaxies seem to be the unit bricks out
of which the universe is constructed. Many of them are spiral in
structure, and are known as spiral nebulae. The more distant have
not been resolved into stars by the telescope and camera, but the
nearer ones have been shown, chiefly by the work of the great
American observatories, to consist of stars, star-clusters, and gaseous
nebular clouds, and to include Cepheid variable stars and novae,
as these are observed in our own galaxy. Moreover, the different
galaxies seem to be roughly comparable in size with one another.
They are separated by vast distances, the intervening spaces being
relatively devoid of matter. Each galaxy appears to have a centre,
or nucleus. The various nuclei, judged by the displacement to the
red of the lines in their spectra, appear to be all receding from us,
and consequently from one another. The speed of recession increases
with distance from ourselves, being, according to the researches of
E. Hubble, directly proportional to the distance from ourselves.
The average speed of recession is at the rate of 550 kilometres
per second per million parsecs, a parsec being 3-26 light-years or
3:08 x 103 km., or 3-:08 X 10'® em. The mass of each galaxy is of the
order of a small multiple of 10" suns. The linear dimensions of a
typical galaxy, say, our own, are 15,000 to 20,000 light-years in
radius, the shape being that of a flattened spheroid. The separations
of the nuclei of the galaxies are of the order of 2 million light-years.
The present mean density of the smoothed-out universe near our-
selves is estimated as 1028 gm. cm.—3,} but, when allowance is made
for obscuring matter and the increasing size of estimates of the
masses of the nebulae, it may be as large as 10~2? gm. cm.—3

These galaxies throng the fields of the most powerful telescopes,
and long-exposure photographs show no apparent thinning out with
distance. The faintest of them fade into an unresolved background.
They are literally countless, and though some theories profess to give
a figure for the total number of galaxies, my own belief is that the
number is infinite. The reasons for this belief will appear in the
sequel.

The galaxies constitute the natural frames of reference for the

1t Hubble, The Observational Approach to Cosmology, 1931.
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description of the motions of the contents of the universe. Their
nuclei form a network of fundamental points, relative to any one
of which the motions of any other bodies in the universe can be
described. Whether we like it or not, we have no other natural
frames of reference in the universe, and they are, in fact, being used
by astronomers as the basis of the system of observed proper motions
of the stars.

It therefore suggests itself that instead of assuming that all frames
of reference are equivalent, we should make the less restrictive
assumption that only the nuclei of the galaxies be taken as equiva-
lent. We do not exclude the possibility that other frames of reference
may be found to be also equivalent to these; we merely confine
ourselves to deductions from the assumed equivalence of the galactic
nuclei. That is to say, we can assume as a working hypothesis that
the laws of nature, such as the law of motion of a free particle, are
the same from whatever galactic nucleus they are described.

There is a further consideration, which militates against the view
of orthodox relativity, that nature contains no preferential frames of
reference. It has been the view of many thinkers, in paiticular Mach,
that the laws of nature are a consequence of the contents of the
universe being what they are; that the law of gravitation, for
example, depends on the amount and distribution of the matter of
the universe. Now the contents of the universe will have a different
description according to the frame of reference used. The description
of the universe by an observer at the centre of our own galaxy would
be different, for example, from its description by an observer at the
same place but moving with, say, one-third the speed of light. If so,
we may expect that the descriptions of the laws of nature by two such
observers would be different. They would be reconcilable, of course,
but different. It is a consequence of this view that the laws of nature
will only have the same descriptions when the universe has the same
descriptions from the Vantage points of the observers in question.
Only those vantage-points, frames of reference, observers—call them
what you will—are equivalent from which the contents of the
universe have the same description.

Whether the actual universe is such that its contents are described
in the same way from every nebular nucleus taken as observing-point
is very unlikely. But if so, then it is unlikely that the laws of nature
have the same descriptions by such different observers. What we
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need, to construct a science of laws of nature, is an ideal universe,
in which the various nebular nuclei or fundamental particles provide
identical descriptions of its contents. To the extent to which the
actual universe approximates to the ideal one, to that extent will
the laws of nature be describable in identical terms from the different
nebular nuclei. To the extent to which the actual universe deviates
from the ideal one, the laws of nature will be different as described from
the different nebular nuclei; but we can readily proceed to a more
realistic state of affairs, if we want to, by embroidering perturbations
or variations on the ideal universe. It is necessary, however, first, to
have a pattern, a norm of behaviour, a standard of comparison, be-
fore we can begin to discuss effects of non-homogeneity of description.

We take then, as fundamental points of reference, the nuclei of
an idealized system of receding nebulae, such that the descriptions
of the whole system, and consequently the laws of nature, are the
same from all. This procedure, of starting with a universe in some
sense homogeneous, has in fact been adopted by all cosmologists.
It gives us a homogeneous stage for our play. It would be as purpose-
less and uninteresting to start with an irregular universe as it would
be to enunciate geometrical theorems on the surface of an irregularly
crumpled tablecloth. But it may be asked why we do not content
ourselves with assuming that the laws. of nature are the same from
every nebular nucleus, with assuming in fact the ordinary form of
the principle of uniformity of Nature, instead of assuming as well,
in our idealized system, that the description of the contents of the
universe is the same from each nebular nucleus. The answer is that
this would preclude one of the main objects of our inquiry, which
is to ascertain, in the broadest sense, the general laws of dynamics
and related laws of nature. We do not wish to assume laws of nature,
or take them for granted, or borrow them from experiment. We wish
to infer, from the contents of the idealized universe, what would be
the laws of nature in that universe. In order to talk about laws of
nature at all, there must be a set of equivalent frames of reference;
and if the laws of nature depend on the contents of the universe,
then these contents, for the idealized universe, must have the same
description for all fundamental observers.

It is to be noted that the kind of homogeneity we postulate for
the idealized universe is a homogeneity of distribution of nebular
nuclei, on the large scale. We do not ignore the fact that the matter
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of the universe is concentrated in the vicinities of these nuclei, but
we treat these nuclei as particles, and later discuss the smaller scale
inhomogeneity occasioned by the actual distribution of matter near
these nuclei.

It is further to be noted that the postulated homogeneity of
distribution of nebular nuclei—the postulate that an observer at
each such nucleus has the same view of the distribution of matter-
in-motion in the universe—is not of the nature of an experimental
or observational assumption at all. It is of the nature of a definition,
a definition of the type of system it is proposed to consider. Just as
we cannot expect to establish theorems in plane geometry without
saying what we mean by an un-crumpled plane; just as we cannot
expect to establish theorems in spherical geometry without introduc-
ing and defining a sphere, so we cannot expect to establish theorems
in dynamics without first defining a system of frames of reference.
We could choose different systems, but the system which first claims
our attention is a system resembling the system of the galaxies, but
defined to have an aspect of homogeneity. The interest of the result-
ing dynamics lies in the closeness of its resemblance to empirical
dynamics, just as the interest of Euclidean geometry lies partly in
its resemblance to empirical geometry. The mutually separating
system of particles we define as constituting our frames of reference
need not be pictured as large in the sense that the universe is large.
We shall see that in some modes of its description it occupies the
interior of an expanding sphere, and this need not be pictured as
any bigger than a child’s expanding balloon. No arguments based
on its absolute size occur at any stage of our subsequent development.

2. Scaleoftime. The second desideratum in constructing a dynamics
is a scale of time. But once we have determined on an expanding
cloud of fundamental particles as our frames of reference, the possi-
bility arises of using this same expanding cloud of particles to provide
scales of time. A priori we can take any dynamical phenomenon
whatever, and use its unfolding progress to define a scale of time.
There is no natural uniform scale of time, because we cannot say
what we mean by the word uniform in relation to time; we cannot
catch the fleeting minute and put it alongside a later minute. Some-
times it is said that a uniform scale of time is defined by a periodic
phenomenon. But this is to beg the question: it cannot tell us whether
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two succeeding periods are ‘equal’. But in a fundamental inquiry
into the principles of dynamics it would be a culpable want of
economy of thought to introduce a new dynamical phenomenon to
give access to a scale of time. The system which has provided our
frames of reference can be used to define a scale of time: if we can
give a meaning to saying that the fundamental particles are all
separating at constant velocities, this will give us a scale of time to
work with. We shall have to examine Whethe_r—-;hen two members
A and B of the system are separating at constant velocity, then 4
and another member C can also be said to be separating at constant
velocity. We must also examine whether we can attach a meaning
to setting up the same scales of time at different places in the system.
Though we cannot define uniform time, we shall find that we can
define congruent time-keepers, at different places, by means of our
system of mutually separating fundamental particles.

It may be asked at this stage whether we have not ﬁnduly circum-
scribed the minimum number of concepts necessary to construct a
dynamics; is not a scale of length also necessary ? The answer is that
a method of measuring lengths is necessary, but that once a scale
of time has been set up, the very fact that we need a method of
percéption of the objects whose distances we wish to ascertain
compels us to consider light, and once the sending of light signals
is at our disposal it is again uneconomic and redundant to introduce
an independent scale of length. If we were to introduce a so-called
rigid measuring-rod, we could not say what we meant by its main-
taining the same length when transported, or when pointed in
different directions. The ideally rigid measuring-rod is as incapable
of definition as the clock measuring uniform time. To introduce
further notions derived from experience, when the concepts of a ¢loud
of receding particles together with the concept of light-signalling are
sufficient, would be to depart from William of Occam’s principle, entia
non sunt multiplicanda praeter necessitatem. The most elementary
analysis of the process of perception, combined with the individual’s
awareness of something he calls the passage of time, suffice, in con-
junction with the separating cloud of particles, to provide measures
of length and distance.

3. The substratum. The possibility of making progress in abstract
dynamics with the aid of the concept of the expanding cloud of
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fundamental particles arose from an accident of intuition. As ex-
plained in my earlier book, Relativity, Gravitation, and World-
Structure, I was considering the observational phenomenon of the
recession of the galaxies when I suddenly noticed that the explana-
tion of this was obvious. A set of random motions, in a finite volume
of otherwise empty space, will inevitably result in the expansion of
the volume occupied by the moving particles. For the outward-
moving particles will tend to cross the original boundary of the
swarm, and the inward-moving particles will traverse the interior
of the volume only to emerge at some other place. Moreover, if each
member of the swarm is moving with uniform speed, when an
adequate time has elapsed the fastest particles will be found on the
outside of the now expanding swarm, followed by the next fastest,
and so on, only the slower-moving members being in the vicinity
of the original volume. There will be velocity-segregation, and the
distances traversed by the particles from their original positions will
be proportional to their velocities. The fact of the expansion, and
the velocity-distance proportionality, are at once accounted for.
Moreover, for such an expanding swarm, there is a natural zero of
time, namely, the instant at which the system is first given, since,
save in improbable circumstances of motion, the instant at which
it is first given is also the instant of minimum volume of the
system.

The next stage was one which would have occurred to anyone.
It was to refine this picture of a swarm of particles in an isolated
region in otherwise empty space, by imposing an aspect of homo-
geneity, of the type mentioned above. One simply assumed, as a
matter of definition of the swarm to be considered, that the swarm
did not contain any preferential particles. For the kinematics of the
swarm one naturally assumed the kinematics of Einstein, embodied
in the famous Lorentz formulae. The result was to obtain a velocity-
distribution for the swarm, and a spatial-temporal distribution,
which removed the objectionable feature of the original intuitive
picture, namely, the being isolated in empty space, by making the
swarm fill the whole of ‘accessible’ Euclidean space, the accessible
portion being confined to the interior of an expanding sphere, which,
by the properties of the Lorentz transformation, could be considered
as having any member of the swarm for its centre.

The idealized system of mutually separating particles that resulted
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I call now a ‘substratum’. It has all the properties of infinite space,
in that a particle inside it, no matter how fast it moves, can never
reach its boundary. Its boundary is indeed entirely inaccessible
to its own members. The radius of this boundary, reckoned from
any arbitrary member of the system as centre, is proportional to the
time, as reckoned by that member at the instant under consideration.
The system is in a continual state of dilution with the flow of time,
due to its expansion; it is not homogeneous in density-distribution
in the view of any member of it, but it ¢s homogeneous in the sense
that at the same epoch in the experience of any two particle-members
of it, the densities near them are the same. The substratum, being
a system of frames of reference in motion, plays the part for dynamics
that a plane plays for Euclidean geometry: it is the stage, the scene,
the theatre for the theorems of dynamics. Just as you cannot prove
theorems in geometry without being able to refer to a point any-
where in the Euclidean plane, so you cannot prove theorems in
dynamics without having at your disposal frames of reference every-
where in space. The substratum provides such frames.

4. Emergence of two scales of time. My former book, already
mentioned, was designed to explore the cosmological consequences
of the isolation of the substratum as a model of the expanding uni-
verse. But no sooner was it published than I found that I had hardly
begun to deal with the consequences for dynamics. It appeared
possible, as I have shown in numerous technical papers, to construct
accounts of dynamics, gravitation, and electrodynamics valid for the
substratum, and to relate these to Newtonian, Lagrangian, and
Hamiltonian dynamics, and Maxwellian electrodynamics. The most
important result that emerged was that the scale of time that is the
basis of Newtonian dynamics is not the scale of time in which the
universe is expanding, not, that is to say, the scale of time that is
the basis of the Lorentz formulae, or Maxwellian electrodynamics.
Einstein’s dynamics, which uses the same scale of time for both
mechanics and optics, suffers in consequence from a confusion of
ideas which will be examined in the course of the present book.

When I was an undergraduate at Cambridge it was always said
by my fellow undergraduates that dynamics was a dead subject.
I hope that the investigations of this book will show how mistaken
we were in those days.
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5. Contrast with classical physics. It must be recognized firmly
by the reader that the ideas underlying the investigations in this
book differ fundamentally from the ideas of mathematical physics
as ordinarily understood; they make a clean breach with the ideas
of traditional physics. The typical element in a branch of traditional
physics is an empirical law of nature. Whether it is obtained, as
Kepler’s laws were obtained, by an inductive analysis of a mass of
observational data, or whether it is obtained by a flash of inspired
intuition, as Newton’s laws of motion and Einstein’s law of gravita-
tion, it is essentially a statement of fact about the world, a statement
from which consequences can be deduced, these further consequences
having also the status of facts unless disproved by observation.
Moreover, such laws of nature are usually enumerated in quantitative
terms; usually, but not always. A branch of traditional theoreti-
cal physics contains the element of abstract reasoning, but its
syllogisms are based on premisses which are supposed to hold true in
Nature.

But Kinematic Relativity, the name given to the class of ideas
with which this book in part deals, does not begin with statements
of quantitative fact. It does indeed assume, for each observer intro-
duced, an awareness of something he calls the passage of time, by
which he can place events in his own consciousness, that is, events
constituting his own perceptions, in a temporal order. Without the
incorporation into our work of this empirical but inescapable fact,
there could be no description of change. A kinematics or dynamics
would not be possible. Again, in this book I assume empirically that
the number of spatial dimensions is three. It would be a simple
matter to conduct the investigations of this book assuming any
desired number of spatial dimensions; for example, by the methods
of this book we could infer the form of the law of gravitation in a
world of » spatial dimensions. But for reasons which will appear
in a moment, I confine attention to the case of three spatial dimen-
sions. Again, in order that the ego may discuss entities external to
himself, it is necessary that he shall have means of perception. I call
the means of perception light, but I assume no empirical properties
of light. I also introduce the concepts of particle and observer.
Such is the apparatus introduced. But this is far removed from
assuming any empirical laws of nature. With this apparatus, I pro-
ceed to define systems of particles in motion, observed or capable
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of being observed by observers, and then to derive theorems about
them. The whole process is akin to the construction of an abstract
geometry, only the elements in it, instead of being points and lines
and surfaces, are particles in motion. The theorems are the un-
deniable consequences of the definitions (it is well known that axioms
are concealed definitions). Just as the mathematician never needs
to ask whether a constructed geometry is true, so there is no need
to ask whether our kinematical and dynamical theorems are true.
It is sufficient that the structure is self-consistent and free from
contradiction; these are in fact the only criteria applied to a modern
algebra or geometry. The interest then in the first instance lies in
the revolutionary result that it actually proves possible to enunciate
and prove theorems stating that in the presence of such-and-such
abstract systems of particles such-and-such other particles will move
in ways that can be specified. I say ‘will move’, not in any way
appealing to empirical verification, but just meaning that such
motions are logical consequences of the structure originally defined.
No meaning can be attached to verifying a particular geometry,
save in the sense of testing logically its self-consistency; and no
meaning can be attached to verifying the dynamical theorems of this
book. Many of them will appear very strange compared with the
theorems of empirical dynamics, just as many of the theorems of
non-Euclidean geometry seem strange and even absurd. Attempts
were made in the early days of non-Euclidean geometry to pour
ridicule on its results, and similar attempts have been made to pour
ridicule on some of the kinematical and dynamical results exposed
in this book. But theorems of non-Euclidean geometry are well
known to lose their strangeness when it is realized that they are
essentially theorems of Euclidean geometry stated for a non-flat
plane. And the theorems of the dynamics based on Kinematic
Relativity will be shown to lose their strangeness when the scale
of time in terms of which they are stated is suitably transformed.
Indeed, this is more than a parallel. The process by which theorems
of Lobatchewskian geometry are translated into theorems of
Euclidean geometry is essentially one by which the interior of a
Euclidean circle is projected into the infinite Lobatchewskian
plane, and the transformation of time-scale which we shall chiefly
employ projects the interior of the initial expanding sphere of moving
particles into the whole of an infinite space of hyperbolic character.
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We superpose motion on geomelry, and the result has in the first
place all the abstract interest attaching to the construction of any
geometry, with the enhancement of interest due to the incorporation
of the novel feature of motion.

But in the second place, just as Euclidean geometry has a special
interest from its happy coincidence with the empirical geometry
based on particular empirical methods of measuring lengths, so the
dynamics constructed in this book has a special interest from its
wide field of agreement, when a suitable scale of time is chosen, with
the empirical dynamics of tradition—the dynamics of Newton,
Lagrange, Hamilton, and Einstein. This does not amount to the
verification of the theorems; the theorems hold good in their own
right. But it justifies the original choice of fundamental system
of frames of reference, number of spatial dimensions, temporal
sequence, and so on, used as concepts and definitions. Comparison
with the empirical dynamics has in fact a much greater interest
than comparison of Euclidean geometry with empirical geometry.
For whilst nothing new emerges from the latter, a good deal that is
new emerges from our comparison. The theorems of the dynamics
of Kinematic Relativity do not always coincide in form with
Einstein’s refinements on empirical Newtonian dynamics, and
suggest that in the long inductive journey from the observations
that are the basis of orthodox relativity to the final equations of
motion, there has been some going astray. This is not surprising
when we consider how much deeper is the science of motion than the
science of position, how much deeper is dynamics than geometry.
We shall track down the discrepancies to a confusion between scales
of time.

In the third place, the investigations have an interest in that they
help to give an answer to the question, Why do the laws of dynamics
hold good at all? Traditional physics, in starting with assumed laws
of nature, debars itself at the outset from any possibility of answering
this question. It can only be answered by starting with a set of
definitions which lead to theorems closely corresponding to the laws
empirically observed. There is then reason to believe that the
definitions not only are self-consistent, but define abstract entities
which are the counterparts of entities existing in Nature. We come
back to the Platonic doctrine of ideas. The laws of dynamics hold
good because particles in the presence of actual galaxies resemble
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the abstract particles of our theory moving in the presence of abstract
representations of galaxies. Only an abstract theory of motion can
provide the nexus between the empirical facts and the why of the
empirical facts.

To achieve so much, a considerable discipline is required from the
physically minded reader. What is a commonplace to a mathema-
tician is still unfamiliar to physicists. Physicists are not accustomed
to reasoning about abstract ideas of things; the empirical is always
intruding itself, openly or tacitly. To follow a kinematic argument
one has to submit oneself to a process of self-denial: one must
rigorously exclude all appeals based on intuition, explicit or implicit.
Mathematicians brought up in the school of rigorous analysis,
accustomed to proving, or more often disproving, the obvious, have
found far less difficulty with the type of investigation contained in
this book than the hard-headed experimental physicist, with his feet
firmly planted on the ground. The intellectual climate in which an
argument in Kinematic Relativity is conducted is markedly different
from that in which an argument of current mathematical physics is
conducted. In modern mathematical physics the investigator has
results from the whole field of physics—mechanics, optics, thermo-
dynamics, electrodynamics, quantum theory—at his disposal; he is
not concerned with whether one result is or is not logically anterior
to another. But in Kinematic Relativity we must not appeal to any
result, law, or theorem not already established in the course of the
1nvest1gat10n No matter how repugnant to ‘common sense’, one
must abide by the theorems obtained. For example, I was once asked
how I reconciled such-and-such a result with the ‘correspondence
principle’ of Bohr. But Kinematic Relativity is not acquainted with
any principles. It is an entirely unprincipled subject. Until it pro-
gresses to the point of evolving its own form of the correspondence
principle, this principle is irrelevant to its results. You might as well
ask how a result of non-commutative algebra could be reconciled
with the multiplication table.

This difference of climate accounts for the many irrelevant criti-
cisms which have been so continuously showered on the investiga-
tions. I say ‘irrelevant’, for it is the exception for a criticism to be
found helpful in correcting an actual mistake; and that is the only
way in which a criticism can be legitimate. I could have avoided
much of this criticism had I been content to proceed, at various



Chap.I,§ 5 THE IDEAS OF KINEMATIC RELATIVITY 13

stages, as traditional physics proceeds. For example, I could have
taken for granted the Lorentz formulae (as I did in my earliest
investigations) as part of the established material of empirical
physics. But to do so would have been to introduce an unnecessary
empirical element from the outset; and, secondly, would have de-
barred me from identifying the time-variable occurring in them.
Instead, I have throughout used them in the only sense in which
I believe them to be valid, that is, in the contexts for which they
have been established by Kinematic Relativity. Anyone who accepts
them in a wider sense will be perfectly entitled to assent to the
greater part of the investigations which follow. But he will not be
in a position to turn each formula in the book back into immediate
meaning in terms of sensory perception of light-signals.

6. Avoidance of concept of time-space. With these defensive
remarks, I proceed to the formal investigations. It should be stated
that nothing in this introductory chapter is to be taken formally.
The words used to describe the essential ideas matter little; the ideas
themselves shine out from the mathematics.

The variable chosen to measure the passage of time plays so
fundamental a part in what follows that I have throughout distin-
guished between this variable and variables denoting position. That
is, I have rarely used the concept of time-space. To speak of time as
on a similar footing to the three space variables is almost always
misleading, and it obscures the actual meanings of the various
relations obtained. Our equations will often divide themselves into
two groups, one a group expressing three-dimensional vector rela-
tions, the other scalar relations. It will prove essential to keep the
two groups distinet. It will also appear that additional clarity is
obtained by not sticking always to the restriction of expressing every
relation in 4-vector form. Some of the most fruitful relations will
be found to be three-dimensional ones which are not just the space-
parts of 4-vectors.

I must make it clear, lastly, that I have nothing to retract from
the investigations contained in my earlier volume already cited.
The field of inquiry of the present volume, though based on the
same set of ideas, is widely different. Emphasis is differently laid.
Also, when the former volume was written I was completely
ignorant of the directions the newer researches were to take.
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Certain problems were left unsolved in the earlier volume, and
the treatment there contained no attempt to translate the results
into more traditional dynamical forms. But the spirit of the
present volume is the same spirit that permeates the former volume,
namely, the spirit of not assuming results not obtainable by the
kinematic method.



1I
TIME-KEEPING. THE LINEAR EQUIVALENCE

7. Temporal consciousness. Consider a single observer, an ego.
He is conscious of something he calls the ‘passage of time’. The
phrase is to be taken as a unit. He is not conscious of something
he calls ‘time’, and then aware of its passing. He means that if
there are two events in his own consciousness, say, E, and E,, then
he can unfailingly say whether E, occurred ‘after’ £, or ‘before’ E,
or ‘simultaneously’ with E,. This is, of course, an over-simplification
of the awareness, by the observer, of a temporal sequence. For E,
may ‘overlap’ E;, or be included in E,. The simplification is analogous
to the analysis of positions on a surface into ‘points’, or that of pieces
oft matter into ‘particles’. Without a process of simplification or
idealization or abstraction of this kind, initial progress would be
unnecessarily complicated. We adopt, in fact, the undefined concept
of a ‘point-event’ at the observer; only when we have got the theory
resulting from the introduction of point-events in an advanced state
would it be profitable to consider more complicated types of event.
Let it suffice here to say that if actual events are deemed to possess
a ‘duration’, we can define point-events as the beginning and ending
of such durations, after the manner of Whitehead.

8. Definition of an arbitrary clock. We shall further conceive it
possible for the observer to interpolate, between any two non-
simultaneous events £, and E,, occurring in his own consciousness,
any number of further point-events; if E, is later than ¥,, we can say
that all the interpolated events are later than E, and earlier than E,,
and that they have the same ‘before’ and ‘after’ relations between
one another as any actual pair of point-events have. We are thus
led to the notion of a one-dimensional continuum of events at the
observer. Choosing one of these events and labelling it zero, we can
correlate all later events with the positive real numbers, and all
earlier events with the negative real numbers, in such a way that
the numbers ¢, and ¢, correlated with events £, and E, at the observer
satisfy the relation ¢, > ¢, if E, is later than E,. This correlation
can be effected arbitrarily, subject to the condition just mentioned.
Such an arbitrary correlation of events at the observer with real
numbers we call a ‘clock, arbitrarily graduated’, and the number ¢
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associated with any event Z at the observer we call the ‘epoch’ of
that event.

9. The first problem of time-keeping. The first problem of time-
keeping can then be stated as follows: If an observer or ego 4 has
graduated his temporal consciousness in arbitrary fashion, i.e. has
set up an arbitrary clock at himself, is it possible for a second
observer B, in any kind of motion relative to 4, to set up a clock
which can be described as ‘identical with’, or, better, ‘congruent to’
A’s clock, that is, to set up a clock which, in some sense to be made
precise, can be said to keep the same time as A’s clock?

For this problem to have a meaning it is necessary that 4 and B
shall be able to inter-communicate; and for it to be capable of
solution, it is necessary that 4 and B should be able to ‘read’ one
another’s clocks. We can picture 4 as assigning his temporal gradua-
tion of events at himself by setting up a ‘clock-face’ and arranging
a ‘hand’ to run round it, in an arbitrary fashion to be arranged by
himself. Observer B is to do the same at himself. Suppose noy that
B sees his own clock reading an epoch ¢, at the instant he sees A’s
clock reading an epoch ¢,. Let B graph ¢, against ¢;, obtaining a

relation ty, = 6(t;). - (1)

Again, let observer 4 see his own clock reading an epoch ¢, at the
instant he sees B’s clock reading an epoch #;. Let A graph ¢, against
t3, obtaining a relation t = B(Lh). 2)

The most primitive case in which we can hope to set up clocks
at 4 and B that may be called ‘congruent’ is when the relation of
A to Bis a symmetrical one. In that case we shall define the clocks
as being congruent if the functions § and ¢ are such that

0= ¢. (3)
(In the foregoing, the phrase ‘at the instant he sees’ means ‘simul-
taneously with seeing’, so that all that is required of either 4 or B
is that he shall be able to make an immediate judgement of simul-
taneity between two perceptions, namely, perception of the clock at
himself and perception of the clock that is not at himself.)
If relation (3) is not satisfied, the clocks as gradua.tet{ are not
congruent. The question arises, can B regraduate his clock so as
to make it congruent with 4’s?
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Let B regraduate his clock from reading ¢ to reading 7, where
T'=xt), ¢ =xXT).
The function y must be a monotonic increasing function of its

argument, to preserve the before-and-after relation for the newly
graduated clock, and so possesses a unique inverse. Then

ty=xX T2, t3=xUTs)
Hence relations (1) and (2) become
xUTe) = 0(t),  ty= ¢x(Ta)
The first of these may be rewritten as

Ty = x0(ty).
Hence B’s re-graduated clock will be congruent with 4’s if y is such
that XB = ¢X_1’
or x0x = ¢. (4)
This is an operational equation for y, given § and ¢. To solve it, put
x* = xb.
Then x*¥x* = 46. (5)

Hence the solution is obtained by taking the operational square root
of the operational product ¢6. A method of effecting this operation
has been given by Whitrow and the author.t It suffices here to
state that a solution y* can be found, and that it can be arranged
that this solution is everywhere differentiable. The solution holds
good through any interval in which 4 and B do not meet. Once y*
has been found, the regraduation function y follows from

X = x*67%

10. Light signalling as acts of perception. We have shown how
to set up identical or ‘congruent’ clocks at 4 and B solely from
the observations that A and B can make on one another, without
using the concept of the transmission of light between 4 and B. But
it is to be noted that when 4 and B have set up congruent clocks,
the clocks at any instant they are observed by either observer will
not be giving the same readings. This is best explained by assuming
that when 4 looks at B’s clock, and notes its reading, he is making
a perception of an event which occurred in some sense ‘previous’ to
the event of the actual perception, and that the transmission of the
knowledge of this event from B to A is effected by the propagation

1 Zeits. fiir Astrophys. 15, 270, 1938.
3595,63 C
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of what is usually called light. If, in fact, darkness supervenes in
the universe consisting of 4 and B, A will be unable to observe
B’s clock at all; therefore we may say that if 4 is enabled to read
B’s clock as reading t3, then B has, at the instant ¢; by his own clock,
sent a light-signal to A. Similarly, when B is enabled to read A4’s
clock as reading ¢, then A has, at the instant ¢, by his clock, sent
a light-signal to B. Again, we may suppose the instants ¢, and t;
by B’s clock to be simultaneous, i.e. t; = {3, in which case we may
say that 4 has sent a light-signal to B at time ¢, by 4’s clock, that
it has been reflected by B at the instant t, = t; by B’s clock, and
returned to A so as to arrive at A at time ¢, by A’s clock. This is
in turn equivalent to saying that 4 strikes a light at time ¢, by his
clock, and notes the reading t, (= t;) of B’s clock when he sees it
illuminated, and the reading ¢, of his own (4’s) clock at the instant
he sees B’s clock illuminated. It will be noticed that the only physical
property of light assumed in these procedures is that if B’s clock
is illuminated by A’s action, then A4 sees it illuminated at a time by
his (4’s) clock which is not earlier than the time of the action of
illuminating B’s clock. This simple property can be itself deduced
if we use a simple theory of causation, namely, that an effect cannot
precede its cause. We also assume that if 4 performs an action
which causes the illumination of B’s clock, then he sees B’s clock
illuminated just once and only once.

It will be seen that to set up the relation between 4 and B of
possessing congruent clocks, only the simplest acts of perception
of A by B and B by A are required. Were these simple acts
of perception excluded, 4 and B could scarcely be aware of one
another’s presence, and the problem of equipping them with con-
gruent clocks could not arise. If we choose to be interested in the
possibility of two different observers ‘keeping the same time’, we
must permit them to announce to each other the times they are
keeping, and our procedure involves nothing but this type of
announcement. Thus the last person to quarrel with our suggested
procedure should be the philosopher who reduces experience to the
reception of sense-data.

11. The second problem of time-keeping. Suppose that we have
an observer A4, in possession of a clock arbitrarily graduated, and
a number of other observers, B, C, D,... in any relative motion, and
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that A, having observed B, C, D,..., communicates to them such
information as enables them to graduate their clocks so that these
are each separately congruent to 4’s clock. We write these relation-

ships as B=4A, C=A4, D=A4,
The relation of congruence being a symmetrical one we can equally
well write A =B, A=0C, A =D,

The second problem of time-keeping is then to find the conditions
that B = C, and so on for every pair. In words, we want the
conditions that if B’s clock is congruent to 4’s, and C’s clock con-
gruent to A’s, then B’s clock shall be congruent to C’s, and so on.
These conditions may be expected to take the form of restrictions
on the relative motions of B, C, D,.... We solve this problem in
stages.

Let A, B, C be three collinear observers who remain collinear.
By this we mean that if B (supposed to be between A and C) at
any epoch ¢, by his clock receives signals s, and s, from 4 and C
respectively, then signals leaving B at epoch t, by B’s clock reach
C and A4 respectively at the same instants as the original signals
8; and s, reach C and A respectively.

We suppose that B = A4 and C = 4. Let a signal which leaves
A at t; by his (4’s) clock reach B at f, by B’s clock and reach C at
ts by C’s clock; further, let the signal reflected by C at time ¢; by
C’s clock reach B again at time f; by B’s clock and reach 4 at i,
by 4’s clock.

By the definition of clock congruence, since B = A there exists
a function 6,,(¢) such that

ty = B1a(ty), ts = O1(t).
Since C = A4, we have also

ty = O15(ty), ts = O13(ta).
We shall call the functions 6,,, 6,5, where the first suffix is smaller
than the second, signal functions of the first kind; and we shall write
their functional inverses as 8,;, 65, and call them signal functions
of the second kind. A signal function of the first kind, it will be seen,
gives the time of reception as a function of the time of emission,
by the two observers concerned; a signal function of the second kind
gives the time of emission as a function of the time of reception, by
the same observers.
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From the above relations,
t; = 913 021(t;): t; = 921 013(t;)'

The observers B, C will be equivalent, or possess congruent clocks,
if ¢3 is the same function of ¢, as #; is of #3, i.e. if

01305 = 05, 6;3. (6)
When this condition is satisfied, we write
01305 = 05,015 = 0. (7)

The relation (6) imposes a restriction on the function 6,5 given the
function 6,, (or 6,,). Now the function 8,5 is in some way a measure
of the ‘motion’ of C relative to 4. (When we come to introduce
coordinates, we shall put this measure of ‘motion’ into analytical
form.) Similarly, 6,, measures the motion of B relative to 4. It
follows that for C’s clock to be congruent with B’s, there must be
a restriction on the motion of C relative to A. In words, if, when
A has graduated his clock arbitrarily, and B, an observer in motion
relative to 4, has graduated his clock so as to be congruent with 4°’s
clock, a further observer C, collinear with A and B, graduates his
clock so as to be congruent to 4’s clock, then C’s and B’s clocks,
as thus graduated, will be congruent only if there is a certain restric-
tion on C’s motion, the restriction depending on the motion of B
relative to 4. This restriction is contained in the commutation
relation (6).

It is now easily verified from identities (7) that of the three func-
tions 6,,, 0,5, 0,3 and their inverses, any one commutes with any
other.

Consider now a set of observers 4, such that any three remain
collinear and such that any pair of them can graduate their clocks
so as to be congruent. We proceed to show that any pair of the
corresponding signal functions commute with one another. For,

since every pair possess congruent clocks, for any suffixes p, ¢, r
Opr = 0,0, = 0,,.0,,; (8)

hence 6,0 (05 050)0,5

qrsE

=860 054

ps-rs

= 0ps(0rp 0ps) (O b,5)
=40,0 (9)

8 " pg’
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12. Solution of the commutation identities. It was shown by
WhitrowT how to find the general solution of the identities (9). The
form of these identities suggests that we seek solutions 6 of the

(where 6, is a given function), which themselves commute in pairs.
It is easily found that such solutions § form a group. We shall
assume that this group contains an infinitesimal member, i.e. one
differing by as little as we please from the identical operator. Let
the function obtained by operating with the infinitesimal member

on t be 1+ew(t),
where ¢ is small. Take this to be a 0 satisfying (10). Then
Bo(t)+ewby(t) = Opf(t+ew(t)},

whence expanding the right-hand member by Taylor’s theorem and

letting € > 0 we get
Go(t) _ 1

wly(t)  w(t)
Define a new function Q(t), of inverse Q-1(t), by

dt
Q-Yt) = f o)’
‘@ (o "0
Then o= awn= | o
where T = 6,(t).
Hence Q-1(¢)+const. = Q-18,(t).
Writing this as Q-10,(t) = Q-1(8)+ Ay,

where ), is any constant, we have, on operating on each side with Q,

Ba(t) = QUQ1E)+-Ao),
or, putting Q(t) for ¢,
8,Q2(2) = QE+Ay)-
Given 6, (monotonic increasing) and taking (t) arbitrary in the
interval 0 << ¢ < A, subject to Q(A,) = 0,€(0), we can obtain the
value of Q for any value of ¢; the Q so constructed will be monotonic
increasing, and so will possess a unique inverse. Hence w(f) can be

Tt Quart. Journ. Math. (Ozford), 6, 249, 1935.
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found. Any other § must commute with the infinitesimal member,
and so must be of the form found for 6,, namely,

6(t) = Q{Q1()+A}, (11)

where A is some new constant. It is readily verified that any two
6’s of this form do in fact commute with one another. For example,

6, 0,(t) = Q{Q-10,(t)+A,}
—Q{Q “Lt) 4247}
— 6,6,(0).
Thus (11) is the complete solution of the identities (9) on the
assumption made. If we put

= yfi(e! a = e",
then -1(t) = logxﬁ
and so 6(t) = (eM 1(‘))
= harf=1(2). (12)

13. Linear equivalence. We now define a linear equivalence as the
set of collinear observers whose signal functions 8,,(f) are given by

t) = "/’apq ‘)b_l(t)’ (13)
where i is any given (monotonic increasing) function characteristic
of the whole equivalence and «,, is a positive real number charac-
teristic of the pair of observers corresponding to 8,,,, and «,,, takes all
positive values.

It follows that since

_ -1
‘)l’aqp‘tb ’
and since 6, = 0., we have
= l/a
Moreover, ap, = Oy Ogpe

Since Q and so ¢ are partly arbitrary, any number of linear equiva-
lences can be constructed containing two given observers.

14. Equivalence defined by three collinear observers. We now
prove that in general, if three observers belong to a linear equivalence,
then this linear equivalence is unique.

Suppose that the signal function connecting the two observers
A, B is expressible in the two forms

Q{Q-1(t)+-A},
and QHQ*-1(t)+pu}.



Chap.1I,§ 14 TIME-KEEPING. THE LINEAR EQUIVALENCE 23

This means that
Q{Q-1(t)4-A} = Q*Q*-1(t)+p}
for all ¢. For ¢ put Q(t) and then perform the operation Q*-1 on each

side. Then Q*1Q(14A) — Q*1Q(t)+-p.
Put Q*-1Q) = P,

or Q = Q*@.

Then O(t+A) = O(t)+p.

The general solution of this is
O(t) = at+0(t),
where ax = u,
and O is a periodic function of period A, so that
O(t+A) = O).

Now C is a member of a linear equivalence containing A and B.
Hence the signal function connecting 4 and C can be written in the

two forms QUQYH4N),  QHOFY(t)Lp).
Accordingly, by the same argument as before,
al’ =y, OE+X) = O).
Hence if A and A’ are mutually incommensurable, ®(t), having two

incommensurable real periods, must reduce to a constant. Hence
®(¢) is of the form

d(t) = at+b.
Hence Q(t) = Q*(D) = Q*(at+b).
Hence Q*(t) = Q{(t—b)/a},
whence i = Q(gy),
or Q*-1(ty = aQd-1(t)+0.

Hence the set of signal functions
QHO*-1(1)+A}

reduce to QHaQ-1(t)+b+ A},

ie. to Q(w),
a

ie. to Q{Q-Y(t)+Ala}.

But this is the set of signal functions generated by €.
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15. A linear equivalence is a kinematic entity, a definite corpus of
relationships, and it plays a fundamental part in time-determinations.
Just as geometry involves definitions of points, lines, and planes
(possibly through being the subjects of axioms) which play a part
in the subsequent theorems, so time-keeping involves the introduc-
tion of linear equivalences. Physically, a linear equivalence is a
collinear set of observers who can be equipped with compatible
clocks. We shall give examples of specific linear equivalences later.

16. Main theorem. We shall now prove that given two linear
equivalences generated by the functions ¢ and i, the ¢-equivalence
becomes identical with the y-equivalenice on regraduating the clocks
of the members of the ¢-equivalence in an appropriate way.

For let #,, be a typical signal function of the ¢-equivalence. Then
by the definition of the ¢-equivalence,

BpoT) = dopg $~HT),
where T is the time kept by a member of the ¢-equivalence. Now

regraduate the clocks of the members of the ¢-equivalence so that
any clock-reading 7' is renumbered ¢, where

b = X(T):
x being a monotonic function possessing a unique inverse. The
definition of a signal function implies that if a signal leaves P at

clock-reading 7 by P’s clock, is reflected by @ at clock-reading 7',
by @’s clock, and returns to P at clock-reading 7} by P’s clock, then

T'z = ﬂ'pq(Tl) = ¢apq¢_1(Tl)>

Ta = 19pq(Tiz) = ¢apq¢_1(T’2)-
Ift,, t,, t; denote the epochs of the same events when the clocks have
been regraduated, we have

ty = xboye b x~1(t),
ty3 = X‘?Sapq ¢—1X—1(t;)'

But these relations represent a linear equivalence amongst the clocks
reading ¢ with signal functions 6, given by

Opg = xbotpg ' x 7"
This equivalence will be identical with the given y-equivalence if

XPopg b Ix™ = YBpg bt
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for some correspondence between the «’s and B8’s. A sufficiently
general solution of this identity is

x() = k{1 (t)F] (14)
with g = Bog (15)
k and s being arbitrary.

Thus a linear equivalence remains a linear equivalence on clock
regraduation. And essentially there is only one linear equivalence.
All apparently different linear equivalences, generated by different
functions i, are merely different descriptions of the same kinematic
entity.

17. Coincidence at a point. It will now be shown that if two
members of an equivalence coincide at an epoch ¢,, then all the
members coincide at this epoch. For if the observers P and @
coincide at epoch ¢, by their clocks, then, by the definition of signal
functions, at this epoch

0pg Opqlts) = 1.
Hence if ¢ is the generating function of the equivalence,

l)l‘a%wq ‘)b—l(tl) = 1.
Hence agg Y1t,) = YY)
Now o2, # 1, for if a;,, were unity the two members of the equiva-
lence would be identical at all epochs. Hence

lﬁ_l(tl) =0,
or $(0) = ¢,.

Now consider any other two observers, P’, @', members of the
equivalence, with parameter «,,. Then

Oprg Opg(ts) = Yhagy 1 (t) = P(0) = 1y,
and thus P’ and @’ coincide at epoch ¢,.
Tt is not a necessary property of an equivalence that its members
possess an epoch of common coincidence; but if two observers ever
coincide, all coincide at that epoch.

18. Introduction of coordinates. To translate the definition of
an equivalence into our usual ways of describing motion, it is neces-
sary to introduce conventions by which an observer 4 can assign
coordinates to an observer B from his observations of B. This we
now investigate.
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If an observer A sends a light-signal at epoch ¢, by his clock, and
sees B at time ¢, by the same (A4’s) clock (i.e. receives the reflected
signal at time {,), then in some way the difference between ¢; and ¢,
is a measure of the separation of B from 4. TFor the ‘farther’ B is
from 4, the longer will it be before the return signal is received by 4.
Moreover, the average of f; and ¢, affords some measure of the epoch
A will be disposed to assign to the event of reflection at B. Observer
A can, of course, construct two independent numbers out of his
observations ¢, and ¢, in an infinite variety of ways. But their
difference and sum have each a property which makes them respec-
tively appropriate as measures of ‘distance’ and ‘epoch’ of an event
not at 4. For a constant added to the zero of A’s clock leaves the
difference of the observations unaltered, and it adds the same
constant to the average of the observations. Thus the measure of
distance would be unaffected by the change of zero of the clock used
by 4, and the measure of epoch would be increased by the same
constant.

Now let A choose a positive number ¢. Let him define as the epoch
of the event of reflection at B of the light-signal the number ¢

given by t= L(tstty), (16)

and let him define as the distance of the same event from himself
the number r given by

r = 3c(t3—1y). (17)
The numbers ¢ and r are called coordinates of the event of reflection
as reckoned by 4 using his own clock. It is clear that such coordi-
nates are conventional constructs. But such conventional constructs
can always be immediately transformed back again into the observa-
tions out of which they arose by the formulae

t, = t—rjc, ty = t+7/c. (18)

Until distance and epock have been defined, it is impossible to
define velocity. But we can now define the velocity of a particle
(in the line of sight) as dr/dt, where r and ¢ have the above meanings,
and r is considered as a function of ¢.

19. Velocity of light. Consider the set of associated values of 7 and ¢
corresponding to a signal sent out by A4 at.the fived instant ¢;. The
rate of increase of » with respect to ¢ for this signal will be defined
as the velocity of light for this signal. The value of dr/dt for fixed ¢,

A
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measures in fact the rate of increase of the distance to which the
signal has been propagated by the epoch ¢, according to 4’s clock.
By (18), for this set of values of r and ¢,

dr
_=c

(19)
This is the signal velocity assigned by A.

20. Observer B can perform similar observations with regard to 4,
and assign coordinates (7', t') to events at A. By agreement he chooses
the same positive number ¢ for converting clock-differences into
distance coordinates. It follows that, with these conventions, B will
also assign to the signal velocity the value c.

21. Epoch-distance relation and clock-running relation. Let
us consider in more detail the observations which 4 can make on B.
Let A make a set of observations of  and corresponding values of ¢
for some actual motion of B relative to 4, and let him plot r against
t, obtaining a function, say, r = c¢,,(t). This will be called the epoch-
distance relation for B’s motion as observed by 4.

Further, let A observe the reading of B’s clock at the event of
the reception by B of A4’s signal. This will be the actual reading
of B’s clock to 4 at the moment of illumination of B’s clock. Let ¢’
be the reading of B’s clock at the event to which A assigns the epoch-
coordinate . Let A plot ¢’ against ¢, obtaining a relation, say,
t' = f1o(t). This will be called the clock-running relation for B’s clock
as compared with 4’s, in A’s experiences.

Let B record his observations of A4 similarly. Let cé,,(t) and f,,(¢)
be the epoch-distance relation and the clock-running relation for 4’s
motion relative to B, as observed by B. Suffixing epochs and
distances by the observer at which events occur, and using primes
to distinguish B’s assignments or observations, we have

rp = C1a(lp), ts = fi2(tp),

7'y = choi(ts), tg = far(ta)-

Here ¢z and ¢, are observed clock readings; 75, t5 are A’s assign-
ments of coordinates to events at B; 7, t; are B’s assignments of
coordinates to events at 4.

If now the relation of B to A is a symmetrical one, and if B’s
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clock has been graduated so as to be congruent to 4’s, then we must

have b12 = Pa1s Ji2 = fa-

Call the first ¢, the second f.
Now consider a light-signal which is dispatched by A at time ¢,
by A’s clock, reaches B at time ¢, by B’s clock, is then reflected by

> ¢
t’ {
. < B

> /

Fia. 1.

B and reaches 4 at time ¢, by A’s clock, and is again reflected and
reaches B at time ¢, by B’s clock. Then, applying the conventional
definitions of coordinates, we have

tp = $(t3+1), rp = c(t;—1y),
and ty = Htatty),  ra = fo(ty—1y),
where (t5,75) are coordinates assigned by A4, (t);, 7)) are coordinates
assigned by B.
Eliminating the observed epochs ¢, and t; which are found at the
beginning and end of the process, we have

ty = tg+rg/c, o = t—14/C.
But rp = c(lp), ty = f(¢p),
a4 = op(ty), ty = f(ts)-
Eliminating the observations ¢, and t,, we have
'f(tia) = tg+o(lp), (20)
ftg) = t4—¢(ts). (21)

Now ¢, is arbitrary. This implies that either of the coordinates
tg or t, is arbitrary. Hence, if ¢/, is eliminated between (20) and (21),
the result must be an identity in £5; and similarly if ¢ is eliminated,
the result must be an identity in ¢,. That is to say, the pair of

relations f@) = y+d(y), fly) = z—(x), (22)

are such that each must be an identity in « or in ¥ when the remain-
ing variable is eliminated. Thus given ¢, f is determined. Hence
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for the most general relative motion of two symmetrically related
observers 4 and B, their clock-running relation is determinate.

22. Relation to signal functions. The second of (22) can be
written y = fHa—g(@).
Substituting in the first of (22), we get
f@) = fHe—d@)}+of He—¢(x))-
Putting f-1(z) for z, we get
x = fH{f @) —¢f @) +-¢f @) —¢f @)}
= (1 I —of .
Hence f-1+¢f -1 and f-1—¢f ! are inverse operators. Accordingly

we may pub Fiteft=0p, (23)
fr—¢ft=p (23")

Adding and subtracting,
7= p+p™), (24)
¢f 1 = Hp—p~) (25)

Then since we have written x for ¢4, y for g, we have

ty = ftg) = fly) = v—¢(x) = t4—(t4) = fts)—¢f (ta) = p~2(ta),
and likewise

b, = tg—d(tg) = f () —¢f ~t2) = p7'(t),

and ty = tatd(ta) = F )+ 8 71 Es) = plts)-

Thus te = p(ty),
ts = p(ta), (26)
ty = plts),

and therefore the function p(t) is precisely the signal function 6,,(¢)
connecting observers 4 and B. Thus, given 6 we can determine in
turn f and ¢.

23. Transformationformulae. Considernext therelations between
A’s and B’s assignments of coordinates to a distant collinear event
E. Let a light-signal leave 4 at epoch ¢, by A4’s clock, pass over B
at epoch ¢, by B’s clock, reach a distant particle P collinear with
A and B, be reflected at P, return to B at epoch t; by B’s clock,
and finally reach 4 at time ¢, by 4’s clock. Let E be the event of
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reflection at P, and let (f,z) be the coordinates assigned by 4 to £
as a result of his (4’s) observations, (¢’,z’) the coordinates assigned
by B to E as a result of his (B’s) observations. Then by the definitions
of the coordinates

t = $(tyt+1y)s x = fc(ty—1y),
= ilatts), & = Jolls—13).
Hence t, = t—uxc, ty = t+x/c,
ty = t'—2'/c, ty = t'+a'/c.
But ty = 055(t)),
t4 - BIZ(t:’!)
5 ’ £
— S (5.2)
4 7 T
R
Fia. 2.
Hence t'—2'[c = 0,,(t—x/c), (27)
42’ [c = Oy (t+2/c), (28)

where as usual 6,; = 0;;'. These are a pair of simultaneous equations
for ¢’, 2’ in terms of ¢, z, given the signal function 8,, connecting the
observers A and B. Relations (27) and (28) hold good whatever the
relative motion of 4 and B. The relative motion of 4 and B is
expressed by the function 8, as we shall now see.

24. Examples of linear equivalences and corresponding trans-
formation formulae. (1) The simplest possible generating function
of a linear equivalence is given by (t) = t. Then y~(t) = ¢t and

pq(t = ¢lapq¢l_1(t = Qpql- (29)
Hence, by (24), = ${0pq(t)+0p( )}
= ’2( pq+apq )t
2t
Hence ft) = o (30)

Hence, by (25),
$(3(x pq+°‘pq t) = He Opg—0tpg )b,

2 __
or P(t) = a:"q — Sl

pq+°‘ “%q"i'l .
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Thus the epoch-distance relation for this equivalence is

ch(t) = caf’q—lt (31)

oGt

This shows that to 4, B is moving with a certain uniform velocity,
namely, the constant c¢’(f). Call this ¥,,. Then

2
apg—1 Kvg
2, 4+1 ¢’ (32)
14V,
or = (22 ) (33)
pg

whence with ch(t) = Vp,t, (34)
we have f(t) = (1—V2,/c)kt. (35)

The linear equivalence determined by i(t) = ¢ is thus the aggregate
of all particle-observers moving with relative uniform velocity and
separating from one another at a common epoch ¢ = 0. The form
of f(¢) shows that any member of the equivalence reckons the clock
of any other member as running slow. We call this equivalence the
‘uniform motion equivalence’.

The transformation formulae corresponding to the uniform motion
equivalence are, by (27), (28), and (33),

" 14+-Vafe\},,
t'—a'fc = (l—Vlz/c (t—z/c), (36)
’ tia 1_]712/0)% 37
t'4a'fc = (———1+V12/c (t+=/c), (37)
which yield on solution for ¢ and 2’
, t—Vipx/c?
= 12%F 8
e %)
P F— Dyt (39)

(1—V3pfe?)t
These are the famous Lorentz formulae for the transformation of the
coordinates (¢,z) observed by an observer 4 into the coordinates
(t',2’) observed by a second observer B moving with uniform velocity
Vi, with respect to A. Moreover, since for three observers we have
the relation

it follows from (33) that

1+I€7r/c — 1+I£7G/C]‘+I{1r/c (40)
1—V, jc 1=V, jc1—V,[c

%pr = Cpq %gr>
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This is one of the forms of Einstein’s relative-velocity formulae. It

gives
B = e (41)
= T Tl

whence Yor— Vg (42)

T ATy Tyl

The latter gives the relative velocity of 4, and 4, as observed by
4,, in terms of the velocities of 4, and 4, observed by 4,,.

It is worth while to pause for a moment to consider what has gone
to the establishment of these formulae. They appear as the condi-
tions that two observers 4 and B make observations of a collinear
event E which are consistent with the observations that 4 and B
can make on one another, when the relation of 4 to B is symmetrical.
The only types of observation that it has been necessary to assume
are the actual perceptions of the event £ by 4 and by B, and the
perception of 4 and B by one another. No quantitative properties
of light have been assumed whatever. The only physical property
of light assumed is that when A strikes a light at himself he sees
the distant illuminated object (the distant clock) after the moment
of striking the light. Put in one way, this is equivalent to the
assumption of the finiteness of the velocity of propagation of light.
But strictly speaking, the latter is a deduction from the more
primitive property stated in the last sentence but one, and this in
turn may be regarded as a consequence of a primitive type of axiom
of causation, namely, that the effect (namely, the seeing by 4 of B’s
clock) is an event in 4’s experience which must be after and not
before its cause (namely, the striking of a light by 4). Without a
regularity of this primitive kind, the world would be a very topsy-
turvy one indeed. I repeat that only the most primitive elements
of perception have gone to the establishment of the Lorentz formulae;
and they are in fact the expression of the analysis of the act of per-
ception into its elements. We have not found it necessary to assume
the constancy of the speed of light, though this is an a posterior:
consequence of our analysis.

The Lorentz formulae will be used freely in later developments
in this volume. They will always be used in the sense in which they
have been established, namely, as formulae of transformation
between the members of the uniform-relative-motion equivalence,

S(t) = t.
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25. If we take the next simplest linear equivalence, generated by

P(t) = At3/t§~1, we get nothing new. For the signal functions, using
YY) = (1t§~1/A)Ye, come out to be

O0pq(t) = agyt,
and so are the same totality of functions as for y(t) = t. The relative

motion between members of the equivalence is again one of uniform
velocity.

26. Second example of an equivalence. (2) Consider the equiva-
lence generated by i(t) = ¢,log(t/t,). (We introduce an arbitrary
parameter t;,, of the same physical dimensions as ¢, so that ()
remains of the dimensions of an epoch.) Then y-1(t) = £ye', and

0,4(t) = t+t,logay,, (43)
0,,(t) = t—tylog a,,,. (44)
Hence F7HE) = H{O,,(0)+0,.1 ()} = ¢,
and so fit) =t (45)
Then 1) = HBp()— B2} = tolog g
or c$(t) = ctyloga,,, = const. (46)

Thus in this equivalence, the members are relatively stationary, and
the relation f(f) = ¢ shows that there is an absolute simultaneity

amongst all the clock members of the equivalence. The transforma-
tion formulae give

t'+2'fc = 0,,(t+2x/c) = t+x/c—tylog ay,,

t'—a'lc = 0,,(t—x/c) = t—x[c4tylog oy,
whence t' =1, (47)

2’ = x—ctylog oy, (48)
The parameter «,,, is thus a measure of the separation of the relatively
stationary members 4, 4, of the equivalence, and the relation
t' = t again shows that there is an absolute simultaneity, all members
of the equivalence attaching the same epoch to any event.

27. By the general theory it must be possible to find a regradua-
tion of the clocks of the uniform-relative-motion equivalence which
connects them with the stationary equivalence. By formula

(14), a ¢-equivalence ¢ = ¢ is transformed into the if-equivalence
3506.63 D
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Y = t,logtft, if we renumber the clock-reading ¢ to read 7, where
7 = x(t) and y is given by
x(t) = J{k{g7 ()]
= tolog(kt®/t,)
= stglog(t/ty)+const.
Choice of s and k correspond to an arbitrary choice of zero and scale-
factor in . We may consider in particular the regraduation of clocks
T = tolog(/to)+1o, (49)
which makes 7 = ¢, and dr/dl = 1 at ¢t = t,. The signal function
0p4(t) = ap,t, implying the signal relation
ly = Ayt
becomes on regraduation
to €7D = £, o, €T,
or Ty = T +t,log Ay
and the new signal function &,,(7) is
D7) = 7+tplog oy, (50)
which as before generates the relatively stationary equivalence.

28. An accelerated equivalence. (3) Any number of other
equivalences may be generated by suitable choice of generating
functions. It has been shown by Whitrow and the writer} that an
equivalence in which relatively accelerated members occur, dis-
covered by Leigh Page}, can be generated by the function
— tO
0= togy

The signal functions are given by
t

bpelt) = 1—(¢ft)log oy
To examine the relative motions in this equivalence, put
log azy = apg,
so that App = —Qpy
¢
1—(tftg)ay,

1 Zeits. fiir Astrophys. 15, 342, 1938.
1 L. Page, Phys. Review, 49, 254, 466, 1936.

YL(t) = toeolt (to > 0).

and - Bp,(t) =
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Thus, in the usual notation, if a signal leaves 4, at time ¢, by 4,’s
clock, reaches 4, at time ¢, by 4,’s clock, and returns to 4, at time
ts by 4,’s clock, then

1 — i o th
2T Y __(f It \;y ° 3= T .
1—(8:/te)@pq 1—(ta/to)ap,
Hence 1 1ty 1 1 _
tl t2 to t2 ta to
1 1 2
whence 11 g
tl t3 tO

Since ¢, <13, we must have a,, > 0. To determine the relative
motion, we have if ({,z) are the coordinates assigned by 4, to 4
at the event at A, which 4, records as at ¢,, then

t = (t3+t0), x = §e(tz—ty),

q

1 1 2a
whence — — Zpg
t—zfc t+z/c to
2
and therefore x—z-]-f—tl —12 = 0.
¢ ' ca

We note that at x = 0, { = 0, (dx/dt), = 0 and thus 4, moves from
relative rest at 4, at £ = 0. Now differentiate the last equation but
one, and put dz/dt = V. We get
1—Ve 14V _ 0
(t—=zfc)* (t+zfc)2

or 1—Vje (t—=zjc)* t_1)2
14Ve ~ Gtafcl \to)
But dt, = (1—V/c)dt, dty = (1+V/c)dt.
Differentiating the last equation but one to give the acceleration,
we get
__av_fdt,  dtg) c 1-Vije 14+V]e it
1V \t, t,) t ta ’
whence
1 iI_’_c _[(1=TV]e %l—I— 1+V/c %l}
(1—V2/c)t dt 1+Vie] t,  \1—=V/e] t,
= c{l_l} — 2¢772 — const.
bt 0

Thus the initial acceleration of A, is 2ca,/t,; the acceleration
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decreases as V increases, i.e. as ¢ increases. The paper cited investi-
gates several curious properties of this equivalence.

29. A non-intersecting accelerated equivalence. (4) An equiva-
lence of this description, in which the members never coincide with
one another, is given by

')b(t) = (tz_t(z))}: epq = {azq t2+t%(a2q_l)}*'
This may be investigated by the reader.

30. The two scales of time. By the main theorem on equivalences,
all the apparently different equivalences generated by different
functions ¢ are so many different descriptions of that unique entity,
the kinematic equivalence. The apparent differences arise from the
different possible ways in which the ‘clocks’ used by the particle-
members of the equivalence may be graduated. In particular, clock
graduations can be found so that an equivalence is described as
consisting of particles in uniform relative motion separating from a
point of common coincidence; and clock graduations can be found so
that the same equivalence appears to consist of relatively stationary
particles. We can thus use an equivalence to isolate two measures
of time, ¢ and 7, one of which (¢) is indeterminate to a multiple of
a mononomial power, the other (r) of which is indeterminate to a
change of scale and origin. The question arises whether either of
these may be identified with Newtonian time, the time of physies.
This, the next problem of time-keeping, will be the subject of Part II.
It can only be solved by deducing by kinematic methods the dynamics
of a particle.

But since the ‘uniform’ time of dynamics admits a change of origin
and a change of scale without affecting the form of the equations of
dynamics, we have a strong suggestion that it will be the time = that
is finally to be identified with Newtonian time. It can be shown,
in fact, that the relatively stationary equivalence is the only form
of equivalence which isolates a clock whose readings admit of a linear
transformation without altering the apparent description of the
equivalence.

31. Role of the constant #,. If, as we are anticipating, the r-scale
of time, or the time which renders the equivalence stationary, is
finally to be identified with the ‘uniform’ time of physics, it might
be thought that the r-measure of time was the more fundamental
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of the two considered. This, however, is not so. For it can only be
described with the aid of a parameter f,, which occurs in the
generating function of the r-equivalence, namely () = ¢,log (¢/t,)-
The ¢-form of the equivalence can be described, on the other hand,
by the simple generating function () = ¢, from which ¢, is absent.
The status of £, is not at all evident from the considerations so far
advanced. It will be shown later that so long as we confine attention
to descriptions using the {-measure of time, no parameter ¢, makes
its appearance; but that corresponding descriptions in the r-measure
of time always make mention of ¢;,. This is connected with the cir-
cumstance that the f-equivalence possesses a natural origin of time,
t = 0, the epoch of coincidence of all its members. The value of ¢
at any event may be called the age of the system at that: event.
From the clock-regraduation formula
T = tglog(t/te) 1o,

it is apparent that ¢ = 0 corresponds to - = —oo. The zero of time
is thus inaccessible on the 7-scale. The times = and ¢ agree at the
epoch ¢ = ¢,. Consequently, if we want the {- and r-scales to agree
at the present epoch, we must choose ¢, to be the value of the age
of the system on the ¢-scale, reckoned from the natural origin of
time.

But there is no unforced way of introducing ¢, if we begin with the
relatively stationary equivalence and 7-time, for there is no natural
origin of time on this scale. This will become clear when we come
to construct equations of motion. These can be constructed in
t-measures with ease, and accordingly we shall first construct a
dynamics in #-measure. It will prove to be very different from
Newtonian dynamics. But it will be shown to pass into Newtonian
dynamics on regraduating clocks from ¢ to 7.

32. Velocity-distance relations. We conclude this chapter by
showing how to deduce the velocity-distance relationship for any
equivalence, generated by an arbitrary positive monotonic function ¢
possessing a unique inverse. Since, by (22) and (23),

SO +E(E) = 0(), (51)

SR —Sf () = 6-(2), (52)

we have t-+$(2) = 0f(t), (53)
t—d(t) = 67 (). (54)



38 KINEMATICS Part I

Now let « denote the distance-coordinate at time ¢ of the second of
the two observers connected by the signal function 6(f). Then

x = cp(t). Hence t+afc = Pap-Y(2), (55)
t—zfc = Pa~Wh1f (). (56)
Hence ap~f(t) = Y~ (t+=/c),
a~ LY (1) = Y-1(t—z/c).
o _ Y (+2/c)
Hence a ¢ 1(t—ax/c)’ (57)

This is the desired relation between ¢ and z for the pair of observers
connected by the parameter «. Again, differentiating (55) and (56),
and putting dz/dt = v,
I+ofe = o Vf (0 b= () f(2),
1—vfe = a= M=V f(E) a0 F(2),
1tovfe  J'of7if(t)
58
T—ofe ~ Pt %)

Using (55), (56), and (57) to eliminate « from (58), we have

1t+ojc  y~Yt4x/c) 2 (t+=/c)

1—vjc ~ 'y-Yt—alc) Y~ (t—=z/c)
This gives the velocity » in the equivalence i in terms of the distance
x of the particle at epoch ¢.

whence

33. Examples. (1) The uniform motion equivalence, {i(t) = ¢. Then

1+v/c  t4z/c

l—vjec t—z/c’

or v = zft.
(2) () = Arjgr, N ) = (AN, () = sA(fte)*.
1+ov/c  t+z/c

Then 1—vjc ~ t—ajc’
or v = zft,
as in (1).

(3) Take P(t) = tolog(t/ty)+-b.
Then YI(E) = toet=Dlo,  1(t) = e~U-Dl,
and so Itvje =1,

1—vfec

or v = 0.

These results verify the earlier theory.
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THE THREE-DIMENSIONAL EQUIVALENCE

34. Generalization to three dimensions. The idea of a linear
equivalence is readily generalized to three dimensions. Take a pencil
of linear equivalences through a particle O, all the linear equivalences
being generated by the same function ¢, and reduce them all to
uniform relative motion by suitable regraduation of O’s clock and
the same regraduation of all the other clocks carried by the members
of the equivalences. Take a member 4, of one of these equivalences.
Then the particle-observers on any straight line through 4, are also
in uniform relative motion, and so constitute an equivalence, whence
4, is also the vertex of a set of uniform relative motion equivalences;
A,’s relation to the members of any linear set of particle-observers
through 4, is indistinguishable from O’s. Now regraduate back
again, recovering the J-equivalences. In this way the private three-
dimensional space of any member 4, of any of the original set of
equivalences is populated with equivalent particles possessing relative
motions compatible with their being equipped with congruent clocks.
We may call the resulting set of particle-observers a three-dimensional
equivalence, or, more briefly, an equivalence.

It must be emphasized that in an equivalence we pay attention
only to the nature of the relative motions, not to the density-
distribution of particles. That will come in later, as we advance from
kinematics to dynamics. So far we have been considering prescribed
motions; we have not yet considered how they can originate.

35. Transformation formulae in general. But before we advance
to dynamics, we should consider the general transformation of the
coordinates of an event, and not merely the transformation (27), (28)
of the previous chapter which is concerned only with an event
collinear with the two observers in question.

Let E be an event, 4 a given observer, a member of a general
equivalence. Choose an observer B, a member of the equivalence,
near the event E. Then 4 and B will have a certain relative motion
of approach or recession.

Let a light-signal leave 4 at epoch ¢, by A’s clock so as to exhibit
to A the event E in question; let A then see E at epoch 14, i.e. ¢, is
the epoch of return to A of the signal reflected at E. Similarly let
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a signal leave B at epoch t, by B’s clock, be reflected at the same
event E, and return to B at epoch t; by B’s clock. Let ¢, and ¢,
be the epochs assigned by 4 to the events at B which were recorded
by B as occurring at B at epochs ¢, and ¢;. Let z,¢ be the distance
and epoch assigned by 4 to the event £. Then

x = 3c(ty—1,), t = $(ts+1y),
so that t—zxfc =, t+x/c = t,. (1), (2)
Since 4 knows B to be ‘near’ E, A can regard z, the distance of £
from A, as equal approximately to the projected distance of E on
the line A B.

A and B now make the following diagrams, 4’s diagram being
constructed as though ke (4) were at rest, B’s diagram being con-

Lor/Y) Ear/’/ty

r_?

» A ,q
&% /ZI‘” &%y
A ‘ A, A, B

5 B
A's disgram B5 diagram

Fia. 3.

structed as though %e (B) were at rest. 4 now defines the transverse
coordinate y of K as derived from 4’s account of B’s observation ¢,
by the relation

(x—xp)*+y* = A(I—1y)%, (3)
and he gets an alternative coordinate n from B’s observation t; by
the relation (@—y)2 12 = 2(i—t,)". (4)

(We shall show later that y = y.)

Now consider B’s diagram of the state of affairs. B, from his
knowledge of A’s motion relative to him, can calculate the epochs
t; and t, which he would attach to the epochs of the events at 4 to
which A4 gives the epochs ¢, and ¢,; and B knows the distances z; and
xy he would attach to the events. Accordingly B defines coordinates
2’ and ¢’ of the event E (to himself) by means of the relations

&' +ay = c(t'—t), (5)

x'+xy = c(ty—t'). (6)

Observer B further defines small members y’ and 7’ by the relations
R A (7)

&2y’ = Xl —t' ). (8)
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But since (t;,x;) are the assignments by B of coordinates which
to A are (t;,0), we have, by the one-dimensional transformation
formulae of the previous chapter,

ti+aifc = Bya(ty). (9)

Similarly, ta—2yfc = O4(2y). (10)

But, by (5), ti+xi/c = t'—a'/e, (11)
and similarly, by (6),

ty—xyfc = t'+x'[c. (12)

Hence t'—x'fc = 0,,(t) = 0,,(t—x/c), (13)
by (1); and similarly

U'+a'Jc = Oy (ty) = 0y(t+-2/c). (14)

Thus the form of the general transformation formulae (27), (28) of
the previous chapter persists with our definition of the ‘small’
coordinate z’ of E.

We wish to determine the corresponding transformation formulae
connecting ¥ and y’, or n and »’. By (3),

-8 {3
(15)

From this we have to eliminate x, and ¢, in terms of coordinates
assigned by B. By (7), and the definitions of signal functions,

z , ,  (x'24-y'2)
tz'l'—cg = 012("2‘1'0) = 912 {t —#L
121 2 12\}
and tz—%z = 0,,(t,—0) = ezl{t’—(ficy—)}.

Hence, from (15),
2 ’ xl ’ xlz '2)b
o

Cc
7 12 I2 i
X [021(#—%)—921{::’—%”.

But 2’ and y’ are small numbers. Hence, using Taylor’s theorem,
we have

c2 c

ie. y = {012(8)020(" )y (16)

2 ’ 12 1 2\} ’ 12 _1_,'2\}
%= o) [E+ g 2 R,
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If the same calculations are pursued with » and ', we get by
similar processes 1 = {0a(t")0, (). (17)
Now we wish to have ¢’ equal to }(t,4t;). Hence (7) and (8) require
y' = n'. Hence y = 7.

36. Summary of transformation formulae. Summarizing, we
have the set of transformation formulae in the form

t'—x'jc = 0,5(t—x/c), (18)
t'4-a'fc = 0, (t+2x/c), (19)
y = {61:(¢")01 ()Y, (20)

where t’, 2, ' are the coordinates assigned to £ by an observer B
near K.

In general we see that the lateral coordinate ¥ is altered on trans-
formation from one member of the equivalence to another. But in
the case of the uniform motion equivalence, where

= (54, 0= (e

we see that y = y’. This is the transverse formula in the Lorentz
transformation. It is easily seen that in this case, the relation y = y’
holds for finite y, since the transformation functions 6,, and 8,, are
linear.

37. Passage from one arbitrary observer to another. Having
now passed from 4 to an observer B near E, we can readily pass
from any observer O, a member of the equivalence, to any other
observer O’, a member of the same equivalence.

Let O, a member of the equivalence, observe two neighbouring
events K, E,, and let O’ (a member of the same equivalence) be
passing through E at the epoch of occurrence of E. For O, the
coordinates of E are to be (¢,z), for O’, (t',0). Let the event E, be
(t+dt,xz+dx,y) for O, and (t'+dt’',x’,y’) to O’. Then by the trans-
formation formulae established,

t+zfc = 65(¢), t—xfc = 0,(t'),
= 012(t'+dt'+%’), trar— T 021(t'+dt'_‘%'),

and Y = 01,(t')02 (¢ )y

z+tdzx
c

t+-dt+
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From these
dx 2Ny dx , x ,
a+ T — (), =" — (o Do),
dx? N 2
Hence dtz—? = olz(t )021(t )(dt 2—%),

and thus, in all,
dt*— (da?+-y?)/c* dr'z — (®"2+y")
012(t)00(6) c? .
Now t’ is the epoch of E observed by O’ at E, and t'4-dt’ is equal,
in the notation of the previous section, to }(f;-+1¢;), and so also
depends on observations made by O’. Further, by (7) and (8) above,
(z'*+y'?) depends solely on O’’s measures. Hence the right-hand
side of (21) depends solely on O’. Hence the left-hand side must be
the same for all observers O. (It should be remembered that the
function 6,, and its inverse 6,; are different for every different O,
being the functions describing the motion of each O with respect
to 0'.)
The small number (dz?+y2) may be called the square of the spatial
separation of the events E, E,, in O’s private Euclidean space.
Calling it de?, we have that

2
ds? =

(21)

di?—de?/c?
012(')05, (¢)
is the same for all observers O, members of the equivalence.

We now want to express ds? in terms of coordinates used by O
alone and the generating function ¢ of the equivalence. Calling ‘z’
now ‘7’, the distance of £ from O, we have

ttrje = 015(8'+0) = oy h~(t'),

t—rfc = 05(F') = danp~H().
These two relations determine «;, and ¢’ in terms of ¢ and », which
are coordinates used by 0. Eliminating «,,, we have

Yty t—r/e) = {1 ()}
This determines t'. Now
O1a(t))051() = (' cusp ='W ox P (K~ ()%
and bE) = L),
Hence altogether W
— PN K U el 2 Gt 09}
W = W= o) ©
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and this is the same in form and value for all members O of the
equivalence. Moreover, its value is equal to dt'?—de’2/c?.

The number ¢’ is an invariant, the same for all O’s. Hence ds?
could be multiplied by any function of ¢’, and still retain its property
of being unaltered in form and value for all O’s. Let us therefore
attempt to determine a multiplier of ds? such that after multiplica-
tion its new value ds? is invariant under any regraduation of the
clocks of the equivalence.

38. Regraduation of clocks. As in the preceding chapter, let all
observers O, members of the equivalence, furnished as they are with
congruent clocks, regraduate these clocks from ¢ to 7', where ¢ = (7).
Under this regraduation, let the i-equivalence become a V'-equiva-
lence. Then as before, for the pair of signals ¢, — t,, ¢, = 5, between
any two members of the equivalence, we have

ty = O1a(t;) = Py f~1(ty),
ty = O15(ty) = oy h1(2y),

and thus
Ty = x7Uta) = x oy~ x(Th),
Ty = x7Mts) = x Wpoga b x(T).
We may thus take ¥ = x~1y,
or x = ¥

In the case of the observer O’ at the event K, to which he assigns
epoch coordinate ¢, ¢’ is an actual clock-reading, and so becomes on
regraduation 7", where

i = x(T') = y¥-YT1").
On the other hand, O’s coordinates for E, namely (¢,7), become new
coordinates (7T, R), where
t+r/c = x(T+ R/c), t—r/c = x(T— R/c). (23)

We can now construct the following short table for O’’s measures
of the coordinates of the events E and E,:

Type of coordinate ¢ r T R
Event E v 0 T 0
Event E; t'+dr 7’ T +dT’ R’

Formulae (23), being simply regraduation formulae, can be applied
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to O”’s clock-readings of the type ¢'4-7'/c, T'4 R'/c, and so, applying
them to the entries occurring in the table,
{d o' fc = y(T'+dT"+ R o),
t'+dt'—7r'Jc = x(T"+dT'— R'|c),
whence using ¢’ = x(1") we get, on approximating and multiplying,
dt'?—r'2[c? = (dT'2— R'?/c2){x'(T")}%
The differential coefficient y'(7) is given by
X (T7) = 1T\ 2(T"),
where ¥-Y(T") = 1/¥"'¥-Y1").
_ T )
vw-yry  ww-y1v)
dt'?—r"%/c*  dT'*— R'%/c?
e (PYHT
But 7', R’ are the (Sma]l) spatial distances between E and E’. Hence
we can write the last formula in the form
dt'?—de’?/c>  dT'*—dE"/c*
@)y YIRS
Rewriting (22), we can put it in the form

’ ’ /e t')}2
dst = dt'?—de'?[c? = (dt*—de?/c?) AL (, ,
‘ 19" = =00 o —rio)
and so similarly, in the W-equivalence
dS? = dT'*—dE"?/c?
— 2 d B2/ c2 {rY-{1)p
= W =B g Rie)w T (T — BJe)’
The last three formulae now show that

Hence x'(T")

Hence

dt  dr—de?fc? d2—de?/c?
WYrE) YR e (1))
ds? _ dT—dE?c dT?—dE?/c?

- Wy-y 1)y (YY) YY-YT+Rc)Y'Y-Y(T—R/c)
Call the common value of these fractions ds2. Then it follows that
the expression
dt>—de?/c?
e —rfe)p =t +r/e)
dT?—d E?/c?
~ UYL T—R/c)Y"'Y- T+ Rje)

ds? =
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takes the same value and the same form, for any two given neigh-
bouring events, for all observers O, members of the equivalence and

for all modes of graduating their clocks.

39. Choice of metric. We can call this ds? the (squared) interval
between the events E and X,; and, from the property we have
established for it, it can be adopted as the metric of space-time for
all observers O. It is a public space-time. We have established the
invariance of form and value of this ds? purely from the definition
and properties of the three-dimensional -equivalence.

The number de? is the square of the separation assigned by O,
using the {-mode of graduation of his clock, to two neighbouring
events counted as simultaneous on O’s convention as to simultaneity,
i.e. possessing for O the same epoch coordinate. The same holds
good of dE%. But it does not follow that because de? has been
calculated as if in a private Euclidean space for O, therefore dE? is
to be calculated as if in a private Euclidean space. The exact position
is best explained through examples.

40. Suppose again that a given observer O, a member of the equiva-
lence, regraduates his clock from ¢ to 7', where ¢t = x(7'). Then in
the usual way, if he assigns coordinates (¢,7), (7', B) to an event on
his two distinct modes of clock-graduation, he can write down

t—rjo = x(T— Rjc) = $¥-{(T— Rjo), (25)
t+rjc = x(T+Rje) = y¥-Y(T+ Rfe). (25)
From these, by taking differentials of each side and multiplying
together,
dt2—dr?/c® = x'(T—R/c)x' (T + R/c)(dT*—d R?/c?). (26)
But x'(T— R/c) = 4"V T — R/c)¥-Y(T— Rc)
_ Wie—ro)
Y'¥-YT—Rjc)
Similarly with arguments (7'+ R/c), (t+7/c). Hence, from (26)
dt>—dr?/c? _ dT%*—d R?/c?
Pyt E—rfe)p' e +r/e) T VY HT— Rje)¥" Y- T+ Rfe)’
This relation, unlike (24), is merely the result of the application of

the differential calculus to the definitions of coordinates in terms of
clock readings. Relation (27) refers only to a single observer; relation

(27)
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(24) refers to any pair of observers. Now combine (24) and (27), by
eliminating d¢* and d72. Then we get
de?—dr? . dE?2—dR?

JP Y t—rfeW Pt +rle) T WY-YT— R/c)Y"Y-Y(T+ Rjc)’
This relation connects O’s measure of a small transverse distance
using ¢-clocks with his measure of the same transverse distance using
T-clocks. The interval de? may be calculated by O in terms of any
set of spatial coordinates he cares to use; relation (28) then tells him
what is the corresponding rule for calculating dE? when he has
regraduated from ¢ to 7'.

(28)

41. Examples. For example, O may adopt a private Euclidean
space, in which case he calculates de? according to the rule
de? = dr:+r?(d6%+sin?0 d¢?),

where 0 and ¢ are appropriately defined angular coordinates. Then
when O regraduates from ¢ to 7', so that his y-equivalence becomes
the ¥-equivalence, the metric in the ¥-equivalence is, by (28),
Y'Y-YT— R/c)V'"V-Y(T+ R/c)

pt—rioppit+rfc)
Here 7, ¢ are to be expressed in terms of R, T' by (25) and (25).

It is apparent that d E? will not in general be Euclidean, and may
involve 7.

dE* = dR*+1r*(d62+sin%0 dg?) (29)

42. Take as a particular example the case where ) corresponds to
the uniform motion equivalence, )(¢) = ¢, and ¥ corresponds to the
relatively stationary equivalence, W'(7T') = tylog(7'/t,)+1%,: Then
WY T) = t,eT—llo, ¥(T) = t,/T,
WP-1(T) = e~Tlolls
YY-YT —R/c)Y" VYT + R/c) = e~ AT,

whilst Y'Yt —rfe) Pyt +r/c) = 1.
The general formula (28) then gives

de*—dr?  dE*—dR?

1 - 6—2(1'-40)/‘0 * (30)

The formulae of transformation of coordinates are
t—rfc = tyeT—to—Elols, (31)

t+7/c = toeT—lotRiclk, (32)
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The important point to notice is that O may choose a private
Euclidean space either in ¢{-measure or T-measure. If he adopts it
in Z-measure, then

de? = dr2+-r%(d6%+sin%0 d¢?),
and then, by (30),
dE? = dR*+ e~ AT ~tllor2(d§2-|sin2f dep?). (33)
But, by (31) and (32),
r = ctyeT-Wlginh R/ct,. (34)
Hence (33) gives
dE? = d R*>+(ct,)%sinh?( R/ct,)(d02+sin20 de?). (35)
Thus dE? corresponds to a hyperbolic space. But if on the other hand
O adopts a private Euclidean space in 7'-measure, then
dE? = dR24- R?(d6%+-sin%) d¢?),
and so, by (30),
de? = dr?2+eXT-WhR2(d02+ sin%0 dp?). (36)
Now, by (31) and (32),

_ t+4r/c
Rcty = %logt—r/c’
and eXT—lolte — (12—72/c?)/t2.
Hence (36) gives

de? = dr?4-c*(t>—r2/c?) (1 logt+r;c) (d0%+sin%8 de?). (37)

This is the space that O must use in -measure if he adopts a private
Euclidean space in T-measure. It will be noticed that (37), unlike
(35), involves the time-coordinate in the metric. The metric (37)
takes the same form for all observers O in the equivalence, but its
value, for a given pair of events, varies with the observer, just as in
the case where O adopts a private Euclidean space in the uniform
motion equivalence, de? = dx?+dy?+-dz? takes the same form for all
observers O, but its value differs from observer to observer. Thus
(37) represents a private space.

43. A public hyperbolic space. There is, however, a far more
important difference between (35) and (37) than the relative sim-
plicity of (35). Metric (35) can be shown to represent a public space,
i.e. this dE? has the same value for all observers O, as well as the

same form. To see this, we will first recover (35) from a different
point of view.
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44. Let us attempt to find a clock regraduation such that the new
epoch coordinate T' of an event takes the same value for all observers
in the equivalence. In particular, this epoch coordinate must be the
value assigned by the observer O’ at the event itself. Hence, using
the transformation formulae from O to O’ since O’ assigns a distance
coordinate zero to the event, and since the epoch coordinates 7' and
T’ used by O and O’ are to be equal, we have

T— Rle = 05 (T"—0) = 0,,(T), (38)
T+ Rfc = 6,(T"+0) = 6,(T). (39)
Hence T = }H0x(T)+0,0(T)} (40)

But after regraduation the generating function ¥ of the equivalence
may be taken to be y~%, where t = x(T') is the regraduation formula.

Hence 1 — Yy Mo (D)+ x o (D) (41)
This must not only be an identity in 7'; it must hold good for all
observers O, i.e. for all values of the parameter «;,. Hence the right-
hand side of (41) must be independent of «,,. Hence, to make the
term in ag;! cancel the term in «,,, ¥~%) must be a linear function of
a logarithm. We take then

X W(T) = tolog(T'[to)+to,
so that T=1t, log(ﬁ—_}f—(Tl+to, (42)
0

or X(T) = l)l'(tO e(T-4o)/fo)_
The regraduation ¢ = x(7') is now known. The new signal functions
0,,(T') are given by
012(T) = x Yoo p='x(T)

(Tt
to 0
Relations (38) and (39) then give for the new distance R

R = }c{0,5(T)—04,(T)} = ctylogay, = const.
We thus recover the relatively stationary equivalence. That is to
say, the relatively stationary equivalence is the only one which gives
rise to an absolute simultaneity, such that the various observers,

members of the equivalence, assign the same epoch to any given

event.
3595,63 B

= tylog e PL0)
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45. The metric of the relatively stationary equivalence, correspond-
ing to the observer O’s choice of a private Euclidean space in the
uniform motion equivalence, has been obtained above, (35). Now
the value of ds?, for the case () = ¢, reduces, by (24), to
2 2 2 N2 2
ds? = dt2—de?/c* = dtz—dr Tt (dﬁc—zl—sm bdé ).
But by (31) and (32),
di2—dr2[c? = e2T-lo(dT2—d R?/c?).
Moreover, 7 is given by (34). Hence, by actual change of coordinates,
(44) gives
ds? = eXT—-lo{dT2—d R?[c?— 1 sinh?( R/ct,)(d0%+-sin?0 d?)}.  (45)
In this relation ds? is the same for all observers, members of the
equivalence. But the coordinate 7" now has the same property.
Hence the value of the longer bracket in (45) is the same for all the
observers. But d7 is also the same for all the observers. Hence
d R?+ (cty)?®sinh?( R/ct,)(d0%+-sin20 d?) (46)
is the same for all the observers, members of the now relatively
stationary equivalence. But this is just dE?, the spatial metric of
the equivalence, as given by (35). Hence dE? represents a public
space.
In other words, if we choose for each observer O in the uniform
motion equivalence a private Euclidean space
de? = da?+dy*4-dz? = dr24-r}d0%+sin%0 dé?),
and then regraduate each observer’s clock so that the equivalence
becomesrelatively stationary, then the corresponding spatial measures
dE? of each observer by his regraduated clock are all equal and of
the same form. Moreover d £2 is independent of the epoch coordinate.
Lastly, the epoch coordinate of any given event is the same for each
observer. There is thus a public time and a public (hyperbolic) space.

(44)

46. Ambiguity of contemporary physics. We shall show in due
course that this public time and public space are the actual time
and space used in classical dynamics, whereas the time and private
spaces of the uniform motion equivalence are those used in optics
and in Maxwell’s equations. Contemporary physics thus has an
ambiguity running through it, inasmuch as it confuses the time-
variables used in two distinct domains of investigation.
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THE SUBSTRATUM

47. Recapitulation of the notion of an equivalence. An equiva-
lence, as defined in the two preceding chapters, is a class of types
of motion. The various members 4, B, C, etc., who satisfy the
conditions A = B = C =..., are such that if any one member con-
siders himself as ‘at rest’, the relative motions of all the others have
‘something in common’. This ‘something’ is the generating function
 of the equivalence. We have seen that the equivalence generated
by y(t) =t, for example, consists of particles in uniform relative
motion, which have separated from a common point at a common
epoch. We have seen also that any other equivalence, generated by
some specific function i, can be transformed into the uniform motion
equivalence by suitable clock-regraduation, and that accordingly
there is only one equivalence. Moreover, an equivalence comprises
a set of particle-observers whose clocks, in a well-defined sense, can
be described as congruent to one another, and which therefore possess
a common system of time-keeping. But so far we have not imposed
any density-distribution on the particles, members of the equivalence.

48. The free particle. Our next object is to identify one of the
possible modes of clock-graduation of an equivalence with the ‘uni-
form time’ of Newtonian physiecs. This ‘uniform time’ has the
property that a ‘free particle’ in ‘empty space’ is supposed to move
uniformly relative to an ‘inertial’ frame. But Newtonian physics is
silent as to what constitutes an inertial frame. An inertial frame in
practice is one that can be regarded as at local rest, and therefore
‘unaccelerated’. It is natural to regard the members of an equiva-
lence as defining standards of local rest, and we shall pursue the
consequences of this view.

The concept of ‘a free particle in empty space’ is, however, beset
with difficulties. Prima facie it implies that the particle in question
is not subject to any gravitational field, and therefore that it is at
a large distance from any attracting matter. But the attracting
matter of the universe is aggregated into galaxies, which extend in
unending number through space; and it is inconceivable that they
should ever possess a boundary. It is therefore impossible to con-
sider a particle at a great distance from all attracting matter when
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by ‘great distance’ we mean an indefinitely great distance. It is
therefore necessary to replace the concept of a ‘free particle in empty
space’ by the concept of a free particle in the presence of the universe
at large.

49. The homogeneous equivalence. In our abstract scheme,
having settled our modes of time-keeping, we shall have to consider
the motion of a free particle in the presence of an equivalence. But
if our analysis is to represent the effects of gravitation, it is clearly
necessary to impose a density-distribution on the equivalence. The
‘most natural density-distribution to select for investigation in the
first instance is clearly a homogeneous distribution, if such can be
defined. But a little investigation shows that a crude definition of
homogeneity in terms of equality of number of particles per unit
volume in the reckoning of any observer will not suffice. For a
distribution homogeneous in the experience of one observer will not
necessarily be homogeneous in the experience of another observer.
We cannot regard as satisfactory a definition of a homogeneous
equivalence as one such that N, the number of particles per unit
volume at epoch ¢ in the experience of a given observer O, is every-
where the same; for to another observer the various contents of
elementary volumes will be counted at different times ¢', since in
general another observer O’ will not regard as simultaneous, events
which are simultaneous to O. We must therefore generalize the
notion of homogeneity. We do this by imposing the condition that
N(r,t), the number of particles at distance r at epoch ¢ per unit
volume in O’s measures shall be the same function of » and ¢ to all
other observers, members of the equivalence. That is to say, that
if the density distribution is N(r,t) to O, and the same density-
distribution is N'(»',t') to O’, then N = N’ when (r,?), (+',t') are
respectively coordinates used by O and by O’ for the same event.
If it is possible to obtain such a distribution, we shall call it the
homogeneous equivalence; and because of its fundamental importance
in dynamics, we shall call the homogeneous equivalence a substratum.

50. Density distribution in hyperbolic space. Clearly when an
absolute simultaneity amongst the members of an equivalence exists,
the above definition of homogeneity must reduce to the ordinary
one: the density must not only be the same function of his coordi-
nates to every observer, but must take the same value everywhere.



Chep. IV, § 50 THE SUBSTRATUM 53

It follows that for the relatively sta,ti'onary equivalence, the corre-
sponding substratum density must be constant. The spatial metric
giving a public space for the relatively stationary substratum we
saw to be
dE? = d R*+c42sinh?( R/ct,)(d62+sin20 d¢?).
The volume element in this space is
(cty)®sinh?( R/cty)sin 0 dOdéd R,

and consequently the density-distribution for the relatively stationary
substratum must be of the form

N(ct,)?sinh?( R/ct,)sin 8 d6d$d R,
where N is a constant independent of 7.

51. The substratum in {-measure. The question arises, What is
the corresponding description of the substratum in uniform relative
motion, when {-measure is employed? For the substratum in uni-
form relative motion, the transformation formulae are of Lorentz
type, and the density-distribution can be found directly as follows.

52. Let O, O’ be two observers, members of the equivalence in
uniform relative motion. Let u, v, w be the velocity-components of
any member of the equivalence to O, %', v', w’ the velocity-com-
ponents of the same member to O’. Then by the velocity-transforma-
tion formulae, due originally to Einstein, if (U, 0,0) is the relative
velocity of O’ with respect to O, we have

o — u—U o — v(1—U?/c?)} w — w(l—U?/c?)

1—uU]/c?’ 1—uU/e? ’ 1—uU/cz

These velocity-transformation formulae follow at once by differentia-
tion of the Lorentz formulae connecting O and O’ (which we have
obtained independently in §§ 24, 36), namely

x'=_x——m1_ t':ﬂ_ y:y' z =2z
(=T A—TF/cE)’ ’ ’
with
_de o _dy
dat’ at’ dt’
W — dx ,  dy ,  dz

—_— 'v :—-, w —-—,-
dt’’ dt’ dt

Let now f(u, v, w) dudvdw be the number of particles in the homo-
geneous equivalence (or substratum) to O, with velocities lying
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between u and u-+}du, v and v4dv, w and w+dw. When O’ counts
the same particles, let him find fo.(v',v",w')du'dv'dw’. It is to be
noticed that since we are discussing the uniform relative motion
equivalence, there is no need to include mention, in f, of the epoch ¢;
for the velocities are constant. Then

fou, v, w)dudvdw = fo(u',v',w")du'dv'dw’.

But if the distribution is to be homogeneous, in the sense defined
above, we must have also

fo=fo=/,
say. Hence f must satisfy the functional equation
o(u', v, w')

flu,v,w) = f(u',v',w') o vw)

It is readily found that
o(u',v',w)  (1—U?/c?)?
Au,v,w)  (1—uU/c2)t
Hence f must satisfy
_ u—U  v(1=U%c2)} w(l—U?c?)}\ (1—U?/c?)?
flw,v,0) _f(l—uU/cz’ 1—uU/e2 ° 1—uUlc® | 1—uU/ct)¥’

for all values of |U| < ¢, and two similar functional equations with
(U, 0,0) replaced by (0, U,0) and (0,0, U). It can be shownt} that
the most general solution of these functional equations is

B dudvdw
{1 — (ue+v2+w?)/c?}?’
where B is an arbitrary constant. This is therefore the velocity-

distribution in the homogeneous equivalence in uniform relative
motion.

flu, v, w) dudvdw = (1)

53. Spatial distribution. To find the spatio-temporal distribution
corresponding to this, we notice that for sufficiently large values
of ¢, we must have

U ~ —

t J
For, the motion being uniform, we must have
xz = ul-+const., etc.

T A detailed proof was given in W. S. (1935).
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Inserting this in (1), we get that the number of particles inside
dzdydz is & do dy dz
t ¢t ¢
z x2\2°
03(1 T
This must be N dxdydz, where N is the particle-density at distance r

at time £, as reckoned by 0. The number of particles, in O’s reckon-
ing, at (z,y,2) at epoch ¢ is accordingly, when ¢ is sufficiently large,

Btdzdydz
c3(t2—r2/cz)2' (2)

N dadydz =

The density N at time ¢ in O’s reckoning will be found to satisfy
exactly the hydrodynamical equation of continuity

oN 0
7t-+ Z %(N'“) =0, (3)

with u = z/t, v = yft, w = z[t. (4)

Moreover, the motion (4) makes all the members of the substratum
coincide at ¢ = 0, in accordance with the general property of an
equivalence. Hence if P is the vector position of a typical member
of the equivalence at epoch ¢, N(P,t) dedydz the density-distribution
of the substratum at P at epoch ¢, then

Bt
c3(t2_P2/62)2’
whilst the velocity V of any member is given by

V = P/t (6)

Relations (5) and (6) will now be found to constitute an exact
solution of the problem of obtaining a homogeneous uniformly-
moving equivalence. It may readily be verified, in fact, that if from
(5) and (6) we calculate the particle-density distribution to another
observer O’ at epoch &' at position vector P’, then we find

Bt'dx'dy'dz’
Ca(tfz_sz/Cz)z‘

NP,t) = (5)

(7)

54. Properties of the substratum. The substratum or homo-
geneous equivalence in uniform relative motion has many remarkable
properties. In the first place it is not homogeneous in the ordinary
sense of homogeneity in the instantaneous present of any observer O.
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Instead, it is distributed with spherical symmetry round O, with
particle-density increasing from B/c3? at O to infinity at distance ct.
O is the centre of the distribution, in his own view, but if he moves
his headquarters to any other fundamental particle O’, a member
of the substratum, then it again appears to be distributed with
spherical symmetry round O’, and with density increasing outwards
from O’." To any observer, a member of the system, the system
appears to occupy the interior of an expanding sphere of radius ct.
There are no particles at the actual boundary, for such particles
would be moving with the speed of light. The set of particles there-
fore forms an open set of points. There is a natural origin of time,
t = 0, at which the system appears to have come into existence, at
the origin 0. But this origin may equally be taken to be at any
other member of the system. We can therefore call £ = 0 the ‘epoch
of creation’ of the system. Every particle is in radially outward
motion relatively to every other, with a speed proportional to its
distance. No meaning attaches to the questions ‘What was, before
creation?’ or ‘What is, outside the expanding sphere » = ct?’ The
system appears to create the space it needs, as it expands. To an
observer inside the system, the system has all the properties of
infinite space, for it is impossible to assume a velocity which will
tgke E;he observer outside the system. It is therefore illegitimate to
inquire what the system would look like from the outside; the only
legitimate observers are observers inside the system.

A distant, receding member, will assign to an event at himself an
epoch ¢', where, if ¢ is the epoch assigned by the observer at home,
we have t' = t(1—V?/c?)t. The particles near the confines of the
expanding system, for which V is nearly c, will therefore have very
early local time. Hence if the particles are conceived as having an
evolutionary history, the particles near r = ct will appear to be in
a very early stage of that history, very little removed, in fact, from
the epoch of creation. The phenomenon of the creation of the system
will appear to have only just taken place for particles near r = ct,
and the singularity in density at the origin at time { = 0 has its
counterpart in the singularity in density at the distance r = ct at
epoch ¢ in the experience of O. There are thus an infinite number
of members of the system which in the view of O appear to have
only just been created. But it may be shown that whatever velocity
O acquires, he can never overtake events with local epochs earlier
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than the epoch of the event of his leaving home. Thus the flow of
time to any observer is irreversible, and the whole system is in fact
irreversible.

55. Regraduation to give a relatively stationary substratum.
Such is the description of the substratum or homogeneous equiva-
lence to an observer using t-measure of time, that is to say, to any
observer (a member of the equivalence) whose clock is so graduated
that the rate of recession of any other member appears uniform.
Let us consider its description to the same members when they have
regraduated their clocks so as to convert the uniform motion into
stationariness.
We know that the desired regraduation of clocks is given by

T = tylog(t/te)+-to,
where T is the label of the instant labelled ¢ previously. The corre-
sponding transformation of coordinates we have seen to be given by

T—Rjc = tologt_tr/c+to, (8)
0
T+Rjc = tologt‘:’/°+to. (9)
These yield ’
t = toeT-locosh(R/ct,), (10)
7 = ctyeT-Wihginh(R/ct,), (11)
so that t2—1r2[c? = 2 eUT—lollo, (12)

When the observer adopts a private Euclidean space de® in ¢-
measure, he takes the number of particles in the elementary volume
r2drdw (where dw = sin 8d0d¢) to be

Bir?drdw
c3(t2_r2/62)2'
This number of particles is to be found in the element of volume

r2drdw at the given epoch ¢. The corresponding differentials d B and
dT are therefore given, by (8) and (9), by

(13)

. _todr/c
dT—dEfe = — 222, (14)
__ tedr/c 15
dT+dRjc = 7o’ (15)

where we have put dt = 0. The particle at (r4dr,t) is now found
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at (R+dR,T+dT), but since the particles are now regarded as
relatively stationary, the same particle will also be found at
(R+dR,T). Hence if we solve (14) and (15) for dR, this differential
will include all the particles previously included in dr at epoch ¢.
We get

_ totdr
d.R = ms
or dr = d ReT-Wlhgech(R/ct,). (16)

Now let v be the spatial density in the space of metric d &% which
corresponds to 7T-measure. Then since the number of particles in
corresponding elementary volumes is independent of the space
adopted, we have, by (13), on using (10), (11), and (16),

v(cty)?sinh?( R/cty) d Rdew

B(t,elT-Wlhcosh R/cty)(cty et *osinh B/cty)2eT~sech R/ctyd Rdw
C3(12 2T —Lolo)2 ’

which gives v = B/c33. (17)

This is the value denoted previously by N (§50) and, as there

anticipated, in the space dE? the density is constant, independent

of T and R. Moreover, it is equal to the density at the origin in
t-measure, at epoch ¢ = ¢,.

56. Description of the relatively stationary substratum. In
t-measure (uniform relative motion) the substratum is confined to
the interior of the expanding sphere » = ct, as we have seen. Now
the position r = ¢t corresponds in 7-measure (relatively stationary
equivalence) to R = co. Thus the effect of regraduating observers’
clocks from ¢ to 7' is to project the interior of the sphere r = ¢t in
O’s private Euclidean space into the whole of the public hyperbolic
space dE?, which extends to infinity. Instead of a singularity in
density at r = ct, we have now an everywhere uniform density, but
the total number of particles is infinite as before. Instead of being
concentrated towards the boundary r = ct, they are spread uniformly
through infinite space. Instead of a density increasing outwards, and
everywhere decreasing as time advances, we have a density stationary
__in time and constant in space. Instead of uniform outward motion
we have a state of relative rest. Instead of the epoch of any event
depending on the observer describing the event, we have a world-
wide simultaneity.
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57. Let ¥, be the (constant) recession velocity of a member of the
substratum in ¢-measure. Then ¥, = r/t. Hence if R, is the corre-
sponding (constant) distance coordinate in 7-measure, we have by

(10) and (11), Ty = ctanh Ryfct,. (18)

This verifies at once that a member of the substratum in ¢-measure
has a constant distance coordinate in 7-measure. Moreover, as
Vo~ ¢, Ry— c0.

58. Fundamental particles and fundamental observers. We
have called an equivalence in which the members are ‘homo-
geneously’ distributed a substratum. We shall call the members of
the substratum fundamental particles, and the observers associated
with them fundamental observers. Every fundamental observer is
equivalent to every other fundamental observer, and the clocks of
all fundamental observers are congruent to one another. Every
fundamental particle is equally the centre of all the others, and every
fundamental observer sees the other fundamental particles arranged
with spherical symmetry round himself in {-measure, or arranged
uniformly in 7'-measure. To the observer O, there is, in {-measure,
at every point r of the interior of the sphere » = ¢t a characteristic
velocity V given by V = r/t, in a direction outward from O. This
velocity is proportional to the distance from O, the coefficient of
proportionality being the reciprocal of the age of the system reckoned
from the natural origin of time.

It is clear from our construction of an equivalence that particles
with a motion other than the characteristic motion at any point are
not equivalent to fundamental particles, and that they cannot be
provided with clocks congruent to the clocks carried by the totality
of fundamental observers. Fundamental observers thus constitute
the totality of observers having a common system of time-keeping,
and thus they are the only observers whose descriptions of phenomena
inside the substratum can be expected to coincide.'The motion of
the fundamental observers (in {-measure), or their state of rest (in
T-measure) constitute the natural frames of reference for the descrip-
tion of phenomena; and it is only to such observers that the laws
governing such phenomena can be expected to be identical.

For example, not all frames in uniform relative motion are
equivalent, but only those which separated from the remainder at
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the singular event, t = 0. A frame in uniform motion relative to a
fundamental particle will not in general be equivalent to the frames
associated with fundamental particles. The principle of relativity
of uniform motion is thus confined to a much smaller class of frames
of reference than in current physics, when account is taken of
congruent time-keeping.

59. Application to the galaxies. The application of the theory of
the equivalence and the substratum is to the system of the external
galaxies. The displacements of their spectral lines to the red, inter-
preted according to the rules of the Doppler effect, indicate that they
are all receding from our own galaxy and from one another with
speeds proportional to their distances. We shall examine later the
behaviour of photons, and their frequencies, in the substratum, and
the interpretation of the red-shift when 7-measure is used. But
provisionally we can identify the external galaxies with fundamental
particles. Each nebular nucleus then determines a state of local rest,
and a system of time-keeping congruent with our own. The laws
governing phenomena, described by observers located at the nebular
nuclei, may be expected to be the same as the laws governing pheno-
mena in our own galaxy, viewed from the nucleus of our galaxy.
But frames in motion relative to a nebular nucleus will not in general
be equivalent to the nebular nucleus concerned, or to ourselves, even
if the motion be relatively uniform.

If this identification is justifiable, it would appear that the extra-
galactic nebulae separated from one another at a time ago given by
the ratio of the distance to the recession velocity as about 2x 10°
years. This in ¢-measure would be the ‘date of creation’. But an
infinity of other systems of time-keeping are equally legitimate, and
in particular, in 7-measure the ‘date of creation’ would be ‘minus
infinity’. It therefore becomes important to attempt to identify the
time-scales used in describing the different kinds of physical pheno-
mena with the time-scales of our abstract theory. It must be remem-
bered that choice of time-scale never affects phenomena, but only
the description of phenomena. For example, since in the ¢-description
of the substratum the local time for events near the frontier r = ct
is very early, i.e. near t = 0, so the evolutionary stage of members
of the substratum at great distances in 7-measure will also be very
early, in spite of the fact that the substratum is now static.
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60. Transition from kinematics to dynamics. So far we have
considered an equivalence or a substratum as a given set of particles
in motion. We have not examined whether, if a given state of
motion exists at epoch ¢ and there is a kinematically consequent
state of motion at epoch t+dt, then the one state will pass into the
other state. For example, will the state of uniform motion in the
t-description of the substratum in O’s private space continue of
itself? To answer these questions is to pass from kinematics to
dynamics. We therefore address ourselves in the next chapter
to the fundamental problem of dynamics, which is to ascertain
the motion of a free test-particle in the presence of the substratum.
We shall examine this question first in {-measure.



PART II
DYNAMICS

v
THE MOTION OF A FREE TEST-PARTICLE

61. Use of the Lorentz formulae. Our object is to obtain the
equation of motion of a free test-particle in motion in any manner
in the presence of the substratum.

Let the substratum be described in {-measure. That is to say, let
the time-scale be such that the fundamental particles are in uniform
relative motion. Take one fundamental particle O as origin. Then
the velocity vector V, of the fundamental particle at position vector
P with respect to O is given by

V,=P/t, (1)
at epoch ¢. Since the fundamental particles form an equivalence in
uniform relative motion, the coordinates assigned by any two funda-
mental observers to a given event will be connected by the Lorentz
formulae, Chap. II, equations (38) and (39). It is convenient to
establish first some consequences of these formulae.

62. Properties of the Lorentz formulae. Take temporarily two
observers in relative motion along the z-axis separating with speed U.
Then if they respectively assign coordinates (z,v,z,t), (x',y’,2',t’) to
a given event, the Lorentz formulae give

o — z—Ut ;L Y s t—Ux/c?
(I—Uz/cz)*, y - y7 — % - (I—Uz/cz)*,
where we have chosen the positive direction of the z-axis as from
the observer O using unprimed coordinates towards the observer O’
using primed coordinates. We verify immediately that
t2_x2+y2+z2 _ t’z_x'2+y'2+z'2.
c? c?

(2)

-,

(3)
The same result follows whatever is the direction of relative motion
of O and O'. Consequently for any event (¢, P), (¢, P’), we have

12—P2?/c2 = t'2—P'?/c. (4)
We shall call the common value of these expressions X. The quantity
X is an invariant, of the dimensions of the square of a time.
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63. Ifthe same observers O and O’ assign velocities (u, v, w), (u’, v, w’)
to a particle, we have seen that

,  u—=U ,_ v(1—=U?/c?)} ,_ w(1—-U%c?)t
VeI U T isare . YT isane s ®
Hence
w2424 w'? w2+ v:w? U? /
i i A (1———_'—(;2—+)(1—;2—)/(1—uU/02)2. (5")
We shall put
24 2 1 02 2
Y = 1_?‘4“1’;# =1_%, (5")
, u'2+v'2+w'2 V2 m
P =1-2 T 1 (5”)

It is evident that ¥ and Y’ are covariants but not invariants.
Now consider the expression
dx?+-dy?+dz?

c2

de?

b

where (t-+dt, x-+dx,y+dy,z+dz), (t,z,y,2) are two neighbouring
events. We readily find
_dx2+dy2+dz2 _ dt,z_dx’2+dy’2—|—dz’2

c? c?

at?

If now the two events occur on the path of a particle moving with
velocity V, then de = udt, dy = vdt, dz = wdt, and we have

Yidt = Y'tdy, (6)
so that Y1dt is an invariant. It follows that

dr dy dz cdt
Yidt’ Yidt’ Yidt Yidt

obeys the same laws of transformation in passing from O to O’ as

(z,y,2,ct).
That is to say, (%, %, %, %)

also obeys the Lorentz transformation. We shall call such assemblies
‘4-vectors’. Thus (P,ct) and (V/Y#,¢/Y?) are 4-vectors; we call P,
and V/Y* their ‘space-components’, ¢t and ¢/Y* their ‘time-com-
ponents’. (The coefficient ¢ is used to make all components of a given
4-vector of the same physical dimensions.)
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64. Now consider dX/dt. We have
aX P.V
o 2(t— c?
say. Hence Z/Y? is an invariant, since X and Y*dt are invariants.
The invariant Z/Y! is of the dimensions of time. It follows that Z
is a covariant. It follows also that
' Z[XY?

is an invariant, of zero physical dimensions. We shall call it £*.

) = 27, (7)

65. It is convenient to summarize this notation, which will be
adhered to throughout this book: (P,t) is an event as described by
a fundamental observer O, V is the velocity, to O, of any particle
passing through the position P at epoch {. Then

V = dP/dt, (8)
X=02-PY2, Y=1-V¥2 Z=1t—P.V/ez, (9)
¢ = 7%XY. (10)

The reason for this notation is to emphasize that X, Y, Z, £ are not
constants, but invariants or covariants. The use of the second
‘member ¥ of the triplet X, Y, Z, to denote 1—V?2/c? recalls the use
in ‘special relativity’ of 8 (the second member of the triplet «, 8, y)
to denote (1— U?/c?)t, where U is an observer’s velocity relative to
some other observer. But in the present notation, V always denotes
the velocity of a particle. Since X, Y, Z, £ are respectively of
dimensions 2, 0, 1, 0 in ¢, the physical dimensions of any proposed
combination of them is apparent at sight.

66. Problem of the free test-particle. We can nowinvestigate the
problem of the equation of motion of a free test-particle in the sub-
stratum. Consider a particle (not a fundamental particle) passing
through the position P at epoch ¢ with velocity V, all as measured by
an observer O at the origin. Then this free test-particle will have
some particular acceleration dV/d¢. This acceleration may depend
on P, ¢, V as arguments; and it may involve also the conventional
constant ¢ and the coefficient B defining the density in the sub-
stratum. The variables P, ¢, V must be considered as capable of
independent variation; for through any arbitrary position P, at an
arbitrary epoch ¢, we can suppose a free particle, passing, or pro-
jected, with an arbitrary velocity V. The complete trajectory of
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the free test-particle should be obtainable by integration of the
differential equation obtained by determining dV/dt, the instan-
taneous acceleration as measured by O, as a function of P, ¢, and V.
The question arises whether this function can be found without
appeal to any empirical physical laws. Ifit can, we shall have bridged
the gap between kinematics and dynamics, a gap hitherto as definite
as that between the mineral and vegetable kingdoms.

67. The question whether this problem is soluble without physical
appeal is a question in pure logic: if a free test-particle is moving
through the position P at instant ¢ with velocity V (all with reference
to a fundamental observer O as origin) in the presence of the sub-
stratum, is it possible to infer its acceleration dV/d¢ purely from the
definition and properties of the substratum ? That is, can we estab-

lish a dynamical theorem from the properties of the substratum defined
purely kinematically ?

68. The 4-vector form of the equations of motion of a free test-
particle. To investigate this, let us consider instead of the 3-vector

dV/dt, the corresponding 4"5323"?1' _—
g £ " =~ {os

/ 1 Jd‘ “V’ —_]__i i » : u .'-": (11)
;L YRanvy  TEanyy -
We wish to express this as a function of P, ¢, and V. Now this

4-vector can be resolved along the only 4-vectors at our disposal,

namely

(P,ct) and (X ") (12)

Y¥ Yi)
And when it is so resolved, the coefficients must be 4-scalars, for if
not, an inconsistency would arise when the observing headquarters O
was transformed to another fundamental observer O’. Moreover, the
coefficients must be such that (11), when expressed as a linear
function of the 4-vectors (12), is of dimensions one in length and
minus two in time. (We can of course alternatively consider all our
variables as having only time-dimensions, but we then need to ensure
that they continue to be consistent with one another under change
of ¢; this comes to the same thing; factors of the type ct are
conveniently described as having the dimensions of a length.)

Now the only invariant at our disposal of dimensions minus two
in time is 1/X; hence the only way in which the 4-vector (P, ct) can
appear in the expression for (11) is with «/X as coefficient, where «

3595.63 F
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is a 4-scalar or invariant of zero dimensions. The only invariants
at our disposal of dimensions minus one in time are Y*/Z and X-%;
it is immaterial in the sequel which of these we take; hence the
4-vector (V/Y?,¢/Yt) can only appear with BY}/Z as a coefficient,
where B is again a 4-scalar or invariant of zero dimensions. Hence
the expression for (11) as a function of P, ¢, V must be of the form
1d (V) P Ytv

vigw = x TPz w (13)

1 dfc ct Yt ¢
v dilis) = =X +F7 v (14)
Differentiating out the first left-hand side we get
1dV Vdfl P YV
“YaTr a(ﬁ) =xtiz (15)

Multiply this last scalarly by V/c2.. Then, since

df1 1/(V dV
a(ﬁ) = T’_i(c-ﬁ) (16)

(15) yields (%_I__I—Y)V av__aP.V, BV®

Y2 jc2'dt X ¢ ' Z ¢’
1 Vdv a B
or Vig @ = X(t——Z)—]——Z—(l—Y). (17)
1 VdV o B

t (14) gi e = =+
But (14) gives EYRT X+Z (18)

Comparing (17) and (18), we see that we must have

2 ip =0,
or B= —aXE;;. (19)
Hence the 4-vector form of the equations of motion, (13) and (14),
becomes
A %(I_‘,;) — %(P—V%, (20)
. % %(%) = %(ct—c%). (21)

The coefficient « is a 4-scalar of dimensions zero. The only 4-scalar
of dimensions zero at our disposal is £, or Z2/XY. Hence « must
be a function of ¢, say o« = G(f). (22)
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Hence the equations of motion (20) and (21) take the form

1 d(V\ G z
Y} tﬁ(ﬁ) _ T(P—VY)’ (23)
1 dfc G(¢) Z

69. Three-vector form of the equation of motion. These two
relations amount to four scalar relations of which the fourth (24) can
be deduced from the first three represented by (23). In other words,
the time-component relation (24) is a consequence of the 3-vector
space-component relation (23). This is readily seen by multiplying
(23) scalarly by V/c2, when it gives

1V AV, 1-YVdV _ G 7
Tead T  med- X {(t 2)— ?(I_Y)}’
1Vav _ GQ), Z
or WF'E{_T(t 7)’ (25)

which is just (24).
We can readily derive now an equation for dV/dt itself. For

(23) gives 1dV V _Vé
¥ il %) =Py

substituting in this for X Tn from (25) we get

A G(E){(P VZ) V(t_é)}= %O p_vy).

Ya~ X Y Y/ T X ) :
v _ Y .
.Y _ T , 26
Hence = X(P V)G () (26)

Lorentz transformatlon from O to any other fundamental observer
O’'. The same is true of (23) and (24), as is readily recognizable from
their form. The time-component corresponding to (26) is the identity

&0 — (e—et)Ge),

¢ being of course a constant.. Throughout our analysis we shall find
two strands of equations, the Lorentz-invariant 4-vector equations
of the type (23) and (24), in which the various terms are components
of 4-vectors, and Lorentz-invariant 3-vector equations of the type
(26), in which the terms are 3-vectors but not the space parts of
4-vectors.
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70. Conversely, from the 3-vector equation (26), it is possible to
deduce both (23) and (24). Scalar multiplication of (26) by V/c? gives
(24) at once, and then on constructing by direct differentiation the
4-vector component 1 d/V

Ytd\Yi)
and using (24) we recover (23).

71. The substratum as a dynamical system. From (26) a funda-
mental deduction can be made. The acceleration dV/d¢t vanishes if
V is such that P—V¢ = 0, i.e. if V = P/t. That is to say, if a free
test particle has the velocity of the fundamental particle in its
rieighbourhood, its acceleration is zero, and so it continues to accom-
pany the same fundamental particle. But this is as much as to say
that each fundamental particle behaves as a free particle. The
fundamental particles were first prescribed to move with the velocities
V, = P/t. We now see that they will maintain this motion of their
own accord. In other words, the substratum, originally defined as
a kinematic system, with prescribed motions, is also a dynamical
system, which will continue in the prescribed motion by itself. From
one point of view this is self-evident, since each fundamental observer
regards the particle on which he is situated as central amongst the
rest of the particles, and therefore without any tendency to be
accelerated in any one particular direction. But it is reassuring to
have an analytical proof.

72. The dimensional argument. A word may be said at this stage
concerning relation (22), « = G(§). If the substratum contained in
its description a scalar constant of the dimensions of a time, we could
combine this with X to obtain another argument of dimensions zero
in the time, and o might be of the form « = G(¢£, X). But the only
constants occurring in the description of the substratum are ¢ and B;
of these ¢ is of the dimensions of a velocity, and the value of B, which
is dimensionless, must be irrelevant to the properties of the sub-
stratum, since it is entirely arbitrary what we choose to count as
a particle. If the substratum had been constructed as a model of
the universe, any combination of ‘constants of nature’ of the dimen-
sions of a time might enter into the expression for « as a function
of X. But we are considering the substratum simply as an abstract
concept, not as a model of some physical system; and the motion
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of a free test-particle in its presence must be capable of being stated
in terms of the abstract properties of the conceptual substratum.
Since no ‘constants’ occur in the definition of the substratum except
the conventional ¢ and B, only these can occur in the description
of that property of the substratum which is represented by the
equation of motion of a free test-particle. And thus « can depend
on ¢ only. This line of argument was originally called ‘the dimen-
sional hypothesis’, but it has become clear that no hypothesis what-
ever is involved; the substratum is a kinematic entity, whose
properties must arise simply in virtue of the construction or definition
of the substratum. In particular, that property of the substratum
which is represented by the equation of motion of a free test-particle
must be derivable, if at all, without reference to constants of nature,
which play no part in the construction of the substratum.

73. Problem of the determination of G(£). The next question is:
Is it possible to go further and actually ascertain the form of G(¢)
in (23), (24), and (26)?

A little consideration shows that it is not so possible without
considering systems of particles in motion more general than a
substratum. In deriving (23), (24), and (26) we have used the cir-
cumstance that the acceleration of a free test-particle must be of
dimensions one in length and minus two in time; and we have used
the fact that from its definition all fundamental observers in the sub-
stratum are equivalent and in uniform relative motion. But we have
not fully used the fact that there is at each position P in the sub-
stratum, at every epoch ¢ > 0, a unique velocity V, = P/t. We have
used the fact that each fundamental observer O’ in the substratum
is equivalent to every other fundamental observer O’, but equations
of motion of the form (23), (24), and (26) will hold good for any
system which preserves the equivalence of all the fundamental
observers.

74. Hydrodynamical and statistical systems. Now the sub-
stratum in f{-measure, as considered in the previous chapter, is
essentially of hydrodynamical character. There is a unique velocity
of flow at each observer, namely the recession velocity V, = P/t,
and the particle-density distribution satisfies the hydrodynamical
equation of continuity. We can, however, consider more generalized
systems, which bear the same relation to a substratum as a gas
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bears to a liquid. We can consider a system such that at each point
P at epoch ¢, there is a velocity-distribution, and then arrange this
velocity-distribution so that it is described in the same way by every
fundamental observer. In the presence of such a distribution, the
equation of motion of a free test-particle will still retain the form (23),
(24), or (26), with presumdbly some function G(¢) depending on the
form of the velocity-distribution function. It is clear that until we
introduce the negative property of a substratum that it is not one
of these more general systems, we cannot expect to fix G(§).

1t is notoriously difficult to introduce a negative property, and so
to derive the form of G(£) from the property that the substratum is
not a statistical system with a velocity-distribution at each point,
but a hydrodynamical system with a characteristic velocity of flow
at each point. The only method I have found capable of doing this
is to study statistical systems compatible with the equivalence of
all observers O, and then reduce the statistical systems by a limiting
process to the hydrodynamical substratum, or, alternatively, give
a physical interpretation of the acceleration deduced for statistical
systems.

75. Fixation of G(¢) for a substratum. The details of this analysis
are given in Part III below, Chapter IX. The result is to establish
that for a substratum, the function G(¢) is given by

G(¢) = —1. (27)

Accordingly the equations of motion of a free test-particle in the
presence of the substratum (23), (24), and (26) take the form, in

4-vectors
’ 1 (Vv 1 z\ . o
viayy) = —x(F-Vg) o e 09
1 dfc 1 Z Y ,
ﬁa(ﬁ) = —;—c("t—“?)’ T (289
which in turn are equivalent to the 3-vector equation
av Y
o= _X(P_Vt)' (29)

As before, (28') is the time-component equation corresponding to
(28), and between (28) and (28’) there is one identical relation, so
that (28') is deducible from (28).
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76. An integral of the equations of motion. We shall now show
that f]-,

= const. (30)
is an integral of the equation of motion of a free particle. We have,
since g* — Z/XiYi,

by direct differentiation

1 dgt g(1dZ Z
i Y*{Zdt +(V )}

az vV P dV P dVv
e D S A A
Now dt R i R T
1d¢t &Y Z P V\ dV
Hence i Y%{Z“X"?(Z“?) ﬂ}
Substitute in this for dV/dt from (29). We get
1dgt 5{1_§ Yt (P2—(P. V)t (P.V)—V¥%
Yt de f*X* Xc? Z Y }
_ afl=t, E=X)—tt—2)_(—2)—H1-Y)
- f%Xé X XY?

Ll L8 1 am g m
Xtgr Xt axt X "Xt X
= 0.

It follows that £t is constant along the trajectory of a free particle.
We shall now define the inertial mass of a particle moving through
the position P at epoch ¢ with velocity V, relative to a fundamental
observer O at the origin, as M given by

M = mé, (31)
where m is a constant ‘characteristic of the particle. Written out,
this is . 2 o

M t—P. V/c (31')

Vz/cz pz/cz)i *

77. Some properties of the mass of a particle. Since { = const.
is an integral of the motion of a free particle, the mass M is constant
along the path of a free particle. The mass of the fundamental
particle at the origin is obtained by putting P = 0, V = 0 in (31"),
and taking m = m,, say, where m, is the constant characteristic of
fundamental particles. The result is

M = m, (32)
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Now consider the mass of the fundamental particle at F, at epoch ¢,
moving accordingly with speed Vo = Py/t. Putting V=V, = Po/t
in (31') we get again M= m, ! “ ’(33) -

Thus the masses of all fundamental particles are equal.

Now consider the mass of a particle at the origin moving with

speed V. Putting P = 0 in (31") we get
m

M= et (34)

is an essential difference between (34) and Einstein’s formula. In
the present work, since £! is an invariant, the mass M is an invariant,
taking the same value whatever fundamental observer O is chosen.
Relation (34) gives the particular case when the fundamental
observer O coincides, in position but not of course in velocity, with
the particle concerned. In Einstein’s formula, on the other hand, the
frame of reference and accordingly the velocity V are arbitrary;
the mass is effectively the fourth component of a 4-vector, and can
take any numerical value whatever depending on choice of frame
of reference. In the present dynamics the mass of a particle is per-
fectly definite, and independent of whatever fundamental frame of
reference is chosen. For example, in Einstein’s mechanics, distant
“fundamental particles, moving with speeds approaching ¢, would be
regarded as possessing very large masses; in the present dynamics,
all fundamental particles have the same mass. It will appear in the
next chapter that with an appropriate definition of rate of per-
formance of work, the energy E of a free particle in motion is given
by E = Mc? This again, though formally identical with Einstein’s
mass-energy relation, must be sharply distinguished from it. For on
Einstein’s mechanics, distant fundamental particles have large stores
of kinetic energy, owing to their motion of recession; on the present
mechanics, they have no more energy than a fundamental particle
anywhere.
Again, consider a particle at P at epoch ¢ at rest relative to the
observer O at the origin, so that V = 0. Then (31’) gives

= I—Pyemy .
The excess of this over m can be regarded if we like as potential
energy due to the gravitational field of the substratum. For with

M (35)
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our subsequent definition of work it can be shown to be 1/c? times
the work required to bring it from rest at the origin to rest at P at
epoch t. But it is perhaps preferable to notice that since P/t is the
velocity of the fundamental particle at P, (35) may be written in

the form m

- (=Vet’
which exhibits the mass of the particle at rest at P relative to the
observer at O as arising from its velocity relative to the fundamental
particle at P, which is moving with velocity V, = P/t. The funda-
mental observer O at the origin regards the particle in question as
at rest, and its energy accordingly as solely potential, but the funda-
mental observer P in the vicinity of the particle in question regards
its energy as kinetic, arising from its motion. Thus mass or energy
may be regarded at will as purely potential or purely kinetic, depend-
‘ing on choice of observer.

It is readily shown that & > 1 unless the circumstances of motion
are those of a fundamental particle. For we shall have ¢ > 1

M (35")

provided 7 > XY,
or (t—P.V/c?)? > (2—P?/c?)(1—V?/c?),
or t2(V2[c?)—24(P . V/c?)4-P?/c2—{P?V2—(P.V)*}/ct > 0.
This quadratic in ¢ will be always positive provided

(P.V/eR) < (V2/c?)[P2jct—{P2VE—(P.V)2}/et],
or (PAV)2(1—V2/c2) > 0.
This condition is satisfied unless V is parallel to P. In that case the
quadratic in ¢ reduces to

(Vi—P)* >0,

which is satisfied save when V = P/t, i.e. when the motion is that
of a fundamental particle. In that case £ = 1.

78. Variational principle for a free particle. The equations of
motion (28) and (28’), or (29), can be shown to be reproduced by
either of the variational principles
Yidt Y '

SJT =0, or 8fzdt= 0. (36), (36')
We first notice that from their form, each integrand is a 4-scalar,
‘and therefore the resulting equations of motion will be Lorentz-
invariant.
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Consider now the variational principle (36). The corresponding
Eulerian equations are

afo M) o ¥r_,

dt|oV\X? oP Xt 7

. . d \Y PY!?
which gives @(—X*—Y*) — 57 = 0.

1 d(V\, V Z ¥
or _X*%(Y*) Xy X

1d(V o o2
°r WEGQZ—X@—WQ’ 1)

which is (28). The variational principle (36) folows from the fact
that it may be written in the form
1 Yid: ”
ngtx*— , (36")
since £ = const. is an integral of (36). It can also be shown that
(37) may be derived from (36").

79. Interpretation of the equation of motion of a free particle.
The equation of motion (29) can be integrated completelyt and the
corresponding trajectory found in ¢-measure. It is of more signifi-
cance, however, to proceed now to derive the corresponding equation
of motion for the relatively stationary equivalence, and to interpret
the latter physically.

Previously, when we have considered the regraduation of clocks,
we have named the clock-readings ¢ before regraduation and T after-
wards. We shall henceforth use = to denote the regraduated clock-
reading in the relatively stationary equivalence, and to denote also
a typical time-coordinate derived from measures with the regraduated
clocks. Thus the regraduation which transforms the uniform relative
motion equivalence into the relatively stationary equivalence is

7 = tylog(t/tg) 1. (38)
Here ¢, is the epoch ¢ at which = ¢; and at the same epoch, since
(38) gives
dr _dt. (39)
ty ¢
we have dr = dit.

Thus at t = 7 = {;, the 7- and ¢-clocks agree in both epoch and rate.
1 Proc. Roy. Soc. 154 A, 48, 1936.
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If the event (£, P) in t-measure is described as (r,II) in r-measure,
then we have from the light-signals ¢; — t, - t5, 7, = 7, = 75,

|P| = Fe(t;—ty), t = $(t3-+ty),
| = §c(r3—m1)s T = §(134+71)s

whence approximately for distances |P| small compared with ot we
have

At t
P = — H - —
|P| ATI I i 1L},
s0 that P— ;_n. (40)
0
dp II ¢4l T dII
H V=20 2 222 _ 22, %,
enee dt i, +to dt t0+ dr’
P dlI
V- ==-2.
or ; . (41)

Thus, as seen before, the velocity relative to the neighbouring funda-
mental particle, V—P/t, becomes the velocity dII/dr in the relatively
stationary substratum.

For speeds |V| small compared with ¢, and distances |P| small
compared with ct, the equation of motion (29) reduces approximately

to
av P—Vit
—_— = 4
d P
—(V—-=]=0. 4
or dt( t) (43)
Referred to the relatively stationary equivalence, this becomes
d (dII
—|=—) = 0. 43’
d'r( d‘r) (43)

Thus the approximate equation of motion in r-measure is simply the

statement acceleration = 0, (44)

where the acceleration is measured relative to the relatively stationary
substratum. But this is the Newtonian equation of motion of a free
particle in empty space. It follows at once that  is the time-variable
of Newtonian physics.

This is a most important result. It shows that in the Newtonian
scale of time the fundamental particles, which correspond to the
nuclei of the galaxies, are to be considered as at rest. It shows
also, since 7 is a public time, the same (for a given event) for all
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fundamental observers, that Newtonian time gives an absolute
simultaneity throughout the universe. It shows that in Newtonian
measures there is an absolute standard of rest throughout the uni-
verse, and that the universe extends to infinity in all directions, and
contains an infinite number of extra-galactic nebular nuclei.

80. Acceleration in {-measure as a gravitational effect. The
transformation of clocks (38) has, further, transformed away the
acceleration on the right-hand side of the approximate equation of
motion (42). This acceleration, the value of dV/dt in {-measure, may
be considered as the gravitational pull of the substratum on the free
test-particle. The vector P—Vt is the distance of the particle P from
the apparent centre of the substratum in the frame in which P is
at rest. Calling this distance r, the approximate value of the accelera-
tion in the substratum is

av._  r

da

where ¢ as usual is the epoch of the event (P, ) measured from the
natural zero of time, i.e. ¢ is the age of the system to the observer
at 0. Let us identify this acceleration with the Newtonian attraction
that would be calculated for the vicinity of the centre of the sub-
stratum in the frame in which P is at rest. Since the particle density
of the substratum in ¢{-measure at the observer O is, by (5), Chap. 1V,
B/c33,the Newtonian attraction at distance r is that due to a spherical
mass of amount

dmmg Br3 |
c3t3
If y is the Newtonian ‘constant’ of attraction, then equating the

results of the kinematically calculated acceleration to the classically
calculated acceleration, we get

y §mmy, Brd r
A
.. c3t
This gives = .
& Y= om, B

Thus the Newtonian ‘constant’ should be actually variable in time,
inereasing proportionally to the epoch. The mass $7m, B has a simple
physical interpretation. If we take a sphere of radius equal to the
radius of the universe, ct, in {-measure, and fill it with matter, homo-
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geneously, of the same density as the mean density of the universe
near ourselves, we get a total mass of

my B

dm(ct)® x T immo B = M,,
say. This gives y = ™ "
MO ;

M, is the mass of the equivalent homogeneous universe. (The sub-
stratum, in ¢-measure, is not of course homogeneous, and its true
mass is infinite.) The numerical value of M, comes out at approxi-
mately the same number of grams as the number of grams usually
assigned to the actual universe in the ‘general relativity’ theory.
Taking ¢ = 2x10° years, = 2x10°Xx3-15X 107 seconds, and the
present value of y as 6:66 X 10-8 C.G.S. units, and the value of ¢ as
310 cm. sec.~1, the value of M, is given by

3 30 9y 3 7
M0=0_t=27><10 X2X10° X 315X 10 = 2-55 X 10% grams.
y 6:66< 108

We shall see later that when we come to transform the general
equation of motion of a particle in a gravitational field from ¢-measure
to 7-measure, then the ‘constant’ of gravitation appears in the form

)
’YO Mo >
and is thus a constant in the equations, although its numerical value
depends on {,,.

81. It is a consequence of our analysis that the general homogeneous
distribution of the nebulae in 7-measure exerts no net gravitational
pull on a free test-particle. Thus when Newtonianitime is employed,
a particle at large amongst the galaxies (save for the local gravita-
tional effects of any nearby galaxies) moves as if in Newtonian
‘empty space’, with zero acceleration and so constant velocity.

So far we have dealt only with the approximate consequences of
the regraduation of clocks for nearby particles moving with speeds
not approaching ¢. We must now transform the equation of motion
of a free particle rigorously. The simplest way of doing this is to
employ one of the variation principles already established, (36) or
(36).

82. Transformation of equation of motion of a free particle
to 7-measure. We have seen in Chapter IV that the complete



78 DYNAMICS Part TI

transformation of coordinates between f-measure and r-measure is
given by

t = ty el cosh Alct,, (46)

r = ctyeTlhginh A/ct,. (46)

We have also seen that when O adopts the private Euclidean space

de? given by de? — dr?4r¥(d6°+sin28 dg?), (47)
with public space-time ds? given by

ds? = dt*—de?/c?, (48)

then in 7-measure he must use a public hyperbolic space de* and
space-time do? given by

ds = er-ldg, (49)
do? = dr—de¥/c® = dr*(1—o?c?), . (50)
de? = dA%4-(cty)?sinh?(A/cty)(d6?+sin%0 dp?). (51)
But (45) and (46) give
Xt — to e(‘r—io)/lo’ (52)
whilst Yidt = ds. (83)
3
Hence YTZE = (f_:, (54)
and the variational principle (36), namely
5 J‘ Yidt _o, (55)
gives 3 f do = 0, (56)
v2
or Sf (1—6—2)% dr =0, (57)
where 22 is the square of the velocity in the hyperbolic space (51),
namely de\2
2 —[==
v = dr) . (58)
Similarly we can use the variational principle (36’). We have,
since
aXx
_Jt— == 2Z,
the equality 14X IS8

i ar
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But, by (52), dXt = er-tlhagdr, (59)
and, by (53) and (49),

Yidt = er-lodg. (60)
Hence, by (59) and (60),
dr v2\-1
b= 1——) =, 1y 61
g0 ( 02) (61)
Hence the variational principle (36’), namely
f dt=0 or afg—”t 0,
gives d f — do =0,

or 5 f (1_22) dr — 0. (62)

Result (56) shows that the path of a free particle in the hyperbolic

space-time (50) is a geodesic. Result (62) gives for the corresponding
Eulerian equations

d (oT\ oT
%(3/\-)—3_/\ =0, (63)
d (6T\ oT ,
i (55) 5 = © )
d (eT\ oT

= 0 6 I/
df(agb) o =" (639

where T = Ime2

I

We can always choose O so that initially § = 0, 45 =0, § =0,

¢ = 0. Then (63’) and (63") show that # and ¢ remain permanently
zero, and (63) gives then 22\

a2
Thus reckoned by a fundamental observer in the track of the free
particle, the free particle moves with zero acceleration in the hyper-
bolic space de?. This establishes the Galileo-Newton principle of

inertia for 7-time and the associated hyperbolic space, and again
identifies the time 7 as the uniform time of Newtonian physics.

=0, /79 (64)

83. Reasons for deriving equations of motion firstin{-measure.
It may be asked why we did not attempt to derive the equation of
motion of a free particle directly for 7-measure instead of deriving
it first in f-measure and then transforming. The answer is that it
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seems impossible to discover a compéfh’ng argument why the accelera-
tion in 7-measure should be a priori zero. There is no natural zero
of time in 7-measure, and so it is true we cannot expect the time-
variable 7 to enter into the expression for the acceleration d2A/d+2.
But there enters into the description of the substratum in 7-measure
a parameter ¢y, and the acceleration of a free particle might a prior:
be proportional to A/t3. No such parameter enters into the description
of the substratum in {-measure; instead, we have the coordinate ¢,
which plays, as we have seen, an important part in the equation of
motion in ¢{-measure. Again, the rules of transformation from one
fundamental observer to another are less powerful when the funda-
mental particles are relatively stationary than when they are in
uniform relative motion away from one another. Lastly, any direct
argument purporting to establish d2A/d+2 = 0 would be rightly
suspect, on the ground that the result of the argument was already
known beforehand. The equation of motion in ¢{-measure, on the
other hand, was obtained long before its interpretation in 7-measure
had been obtained.



VI
CONSTRUCTION OF A DYNAMICS

84. Object of the chapter. Once the equation of motion of a free
particle has been obtained it is possible to proceed to the construc-
tion of a dynamics. That is to say, if a particle’s motion does not
coincide with the motion of a free particle, the difference between
the two motions allows us to introduce a measure of the force acting
on the particle, which is then regarded as constrained. And once
we have succeeded in defining force, we can proceed to define a field
of potential, and the rate of performance of work on the particle.

We shall carry out this programme, first in ¢-measure, and later
transform our results into ~-measure.

85. Definition of force. We have seen that the equations of motion
of a free particle, in the form

1 dfV 1 Z
ﬁa(ﬁ) = "X(P_VY)’ 1)
1dfec 1 Z ,
m—t(ﬁ) = —x(“—"?)’ (1)
or in the equivalent form
av Y
= —x(P—V), ()
possess the integral &t = const., (3)

and we have identified the number m¢t as the mass of the particle
moving through position P at epoch ¢ with velocity V, as reckoned
by a fundamental observer O at the origin. It therefore suggests
itself that, as we want our ¢-dynamics to resemble classical dynamics
as far as possible, we should define the force 4-vector (F, F)) acting
on a particle whose acceleration does not coincide with the accelera-
tion of a free test-particle at the same position at the same epoch
moving with the same velocity, by the equations

1 df{ ,,V\_  méf, oZ
ﬁm(mf*ﬁ)— ~ (P VE)+F @)
1d c mét Z '

3695.63 G
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It is not difficult to verify that when we put F = 0, F, = 0, the
resulting equations possess the integral £ = const., and so reduce
to the equations of motion of a free particle, (1), (1'). For, if we put
F = 0 in (4), it reduces to

1d¢tV 1 d(V\_ 1y oZ
?%ﬁJrﬁEz(ﬁ)_—X(P Vy)'

This implies the relation, obtained also by putting F, = 0 in (4'),
]
1 d¢ c . 1 d(c) _ —l(ct—cg).

gdt Y Yid\Y? X Y
Multiplying the first of these scalarly by V/c? we get
1dE1-Y 1V AV _ 1 Z
gdt Y 'Y\ dt)] X Y/

But the second is simply

1déd1 1(VaVy = 1(, Z
Bayire s T T3y
Subtracting the last two equations we get
1 dét
250
£ dt

Hence F = 0, F, = 0 imply the equations of motion of a free particle.

86. Relation between F and F,. Moreover, since F = 0 implies
F,= 0, there must be an identical relation between F and F. To
find this, multiply (4) scalarly by V/c2.. We get

Tam T - R )
(4

Y dt Y2\t dt X Y c2
But (4') gives

1d(me) mg(V dV\ _ m&( Z\ F
Y & +F(};'E)_—T(t—?)+?

Comparing the last two equations, we have

c vV 1 d 244

This relation must not be confused with the relation giving the rate
of performance of work by the 4-vector force (F,F), about to be

obtained. It should be noted, in fact, that in deriving (5) we have
not used the definition of ¢* in terms of P, ¢, V.

F
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87. Rate of performance of work by (F, F)). We want to define a
4-scalar which will represent the rate of performance of work by the
4-vector force (F, F)) in pushing the constrained particle relative to
its immediate cosmic environment. To do this we need a 4-vector
to represent the velocity of the particle relative to its immediate
cosmic environment in the substratum. Consider the velocity-
derivative of Q = mc?t. We have

2y Py _ sV el
Yav_me Z+Y = mé 7 PZ. (6)

We shall show that Q represents the kinetic energy of the particle,
and therefore its 4-vector V-derivative may be expected to represent
in some way its momentum. Scrutiny of the right-hand side shows
that it vanishes for a fundamental particle, namely for V = P/t.
Since m¢! represents mass, we can take

v Y¥ Y?

(ﬁ_PE’ 7@‘“7) @
to be the 4-vector representing the velocity of the particle relative
to its immediate environment in the substratum. We shall accord-
ingly adopt as a definition of the rate of performance of work by
the 4-vector (F, F) representing force, the scalar product

v Y? c Y?: _ X
. 1 dW
and we shall call this Vi (9)

Substituting in expression (8) for F and F, from (4) and (4'), we
have

1 dW _ mg Z\ [V Y _Z\[c Y
Tidgr~ X {(P‘V?) ' (ﬁ""?) —(“ c?)(ﬁ_CtE)}Jr

V. ¥\ 1df V) (¢ Fh1d{ .c
Hm—P%) wale ) (7))}

On using the definitions of X, Y, and Z, we find that the first term
on the right-hand side reduces to
(XYt Z
mE'x (7 ﬁ)’
whilst the second term on the right-hand side reduces to
1 d(mf*)( Y Y Z) mgi(V Y*) 1 dv

rig\vt)\"rtz )T T

3 —

—=—P
Y Z
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Hence

1 dw Yt Z )\ m&#(V oYY 14V
Z Yt Z

w1 5 = 2} - e s TTrT T3 .
Y dt mcf(z X7t " T Y @

But by direct differentiation we have

1d “_mg%(y Z P av V dv
ra™ =iz x zatyra)
1 dW 1 d(mcih)
Hence Via -7 &
3
VA ¢! c YN 1d,_ .
AY P _F[l ) = 2 % merety. 10
or F (Yi PZ) Ft(Y* th) Y*dt(mcg) (10)

Since the left-hand side of this represents the rate of performance
of work done in pushing the particle relative to its surroundings in
the substratum, the right-hand side represents the rate of gain of
energy of the particle. It follows that, as anticipated,

Q — mett (11)
represents the energy of the particle.

88. The substratum as the seat of a conservative field of force.
Since £ = const. is an integral of the equation of motion of a free
particle, it follows that the energy of a free particle remains constant
during its motion. Further, if along two trajectories we have £ = ¢}
and ¢ = £, then the difference mc?(éf—¢&}) represents the work
required to transport the particle from the first trajectory to the
second. This is therefore independent of the path followed. The
substratum therefore possesses a property analogous to the con-
servative field of force of classical mechanics, namely that if a particle
in free motion is constrained so as to move from its trajectory along
any ‘circuit’ back to the continuation of the trajectory, the work
done by the constraining forces is zero.

89. Relation between mass and energy. In terms of P, ¢, V the
energy of a particle is the scalar

t—P.V/c? _
(1—V2/c2)}(12—P2/c2)t
Thus the energy of a particle due to its Position and velocity is c?
times its mass—a relation first found by Einstein. There is, however,
this difference, that in the present {-dynamics energy and mass are
both 4-scalars, whilst in Einstein’s mechanics they are represented

Mc2. (12)

Q = mc?
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by the fourth or time-component of a 4-vector of which the first three
components represent the momentum. Accordingly, in Einstein’s
dynamics the energy is not definite until an inertial frame has been
selected, and the value of the energy depends on the inertial frame
selected; whereas in the present {-dynamics the energy is the same
for all fundamental observers, who represent equivalent frames of
reference.

90. Properties of the expression for energy. Just as for mass,
we can take different particular cases of formula (12). For a particle
at rest at O, V= 0and P = 0, and Q reduces to mc2. Q also reduces
to mc? for any fundamental particle, V = P/t. This is a highly
satisfactory feature of the {-dynamics, for it means that the motions
of the fundamental particles do not represent stores of kinetic energy.
In its application to the universe of receding nebulae, this means
that the huge outward velocities of the dlstant nebulae do not

-

represent, stores of kinetic energy. '} i RS N

91. When P = 0, Q reduces to
mc?

(1—V2/c?)¥’
which coincides with Einstein’s expression for kinetic energy. But
it must be remembered that the V in this expression is the velocity
relative to the observer at the origin and is not arbitrary. It is only
the excess velocity of a particle relative to its immediate surround-
ings in the substratum which represents excess kinetic energy.
Formula (12) may be written approximately as

1vz 1 P2 P.V
Q—mc2(l+— +§E2-—W+...)

(13)

2 ¢c?
— mcz+%m(v_§)2+..., (14)

which shows explicitly that kinetic energy is associated with the
excess of the velocity V over the velocity P/t of the immediate
surroundings in the substratum. In this connexion it is interesting
to notice that if we put for the relative momentum

) vV T
— Yy =- i P
p,=Yigg=m (Yé r Z)’

3
(pr)t = —Y*'aicz = mgi(_c‘_(:t}‘i):
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then P;—(p,)] = mPc?¢(1 —) = e
r rlt ¢ c? ?
or O = m2eA+-c¥{p2—(p,)3). 5o 18)

For a fundamental particle both p, and (p,), reduce to zero.
For V=0, P £ 0, we have
2 2
0 — me ___me 16
T—PE — (1= Ve 19
where V, is the velocity of the fundamental particle with which the
moving particle instantaneously coincides. This again shows that
in (13) the origin of velocity is the fundamental particle in the
vicinity of the moving particle.

92. Introduction of a potential function to represent an ex-
ternal force. We have seen that (5) represents the identical relation
between the equations of motion (4) and (4’) and that (10) is the
expression for the rate of performance of ‘external work’ by the
‘force’. These show at once that when F = 0, then also ¥, = 0 and
& is constant, confirming that & = const. is an integral of the
motion of a free particle.

"It suggests itself next that we try to define a conservative field
of force y, superposed on the substratum, by means of relations

_ % _ %
F=—% Bi= o
in the hope that the two relations (5) and (10) will yield a relation
d
Z[x+e]=o. (17)

But y must be a homogeneous function of P and ¢t of such dimen-
sions that y/mc? is of dimensions zero. Hence, by Euler’s theorem on
homogeneous functions,

cta—x P ox _ 0.

cot ' oP
The two relations (5) and (10) then reduce to
dy _dimeg) dy  dimedh
g dt d ~  dt
d 0 7
h 2X _ X4y . 2X
where dt o v oP’

and these are self-contradictory.
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We have therefore to proceed on other lines. Consider the result
of adding together the energy-integral (10) and the pseudo-energy

integral (5). The result is
Y+ 2d

- == 2¢4
which may be written
g P_d (22
Fc F.? = o (me 3 )(EY) (19)

Compare this with the identical relation (5) between F and F
previously obtained, namely

_ @ e
F,c—F.V = d—t(mc L),

Subtracting these two relations we have

F.(V—T)—jt( zgi)(%z,q)

But V.(V—l_)) _ cz(l_y_ﬂ) — czy(ﬁ_l),
t t tY

Multiply the last equality by
( mé?),

Ydt
and subtract it from the preceding one. We get
vid, . P\ d ..
This suggests that we put
F = 2 3 (ma), (21)
— i
ox c 1d ) ,
= 4= — — — . 1
so that B +c3t+2Y* Ytds (mé?) 1)
ox P d 2¢4
——) = = . 22
We have then ( aP) (V t) 7 (mc2£Y) (22)

We now examine the forms the energy-integral (10) and the pseudo-
energy integral (5) take when F, F, are defined by (21), (21').
Inserting (21) and (21’) in (5), we get

Y\2 14d 0 1d
(F)ﬁ-ﬁdt( 29)+Y*( X"I‘ ) = ﬁa—t(mczfi),

or d%(x—l—mczf*) = 0. (23)
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Again, inserting (21) and (21’) in (10), we get
1 dy Y, 0 i 2 d Y ZYi
~¥ d—’f+7("'%:+‘7’f) ﬁ@‘m"z‘f*)(*#ﬁ 7)
1d
=g
The third term on the left-hand side vanishes identically. By (23),
the first term on the left-hand side is equal to the right-hand side.
We are left with

mc2£d).

ox , ,9x
=t =0 4

which is satisfied identically if y/mc? is a homogeneous function of
P and ct of dimensions zero. Relations (5) and (10) are accordingly
now consistent with the definitions (21) and (21’) of .

When F, F, are expressible in the forms (21), (21’) we say that the
external force is derivable from a potential y, a 4-scalar satisfying
(24) identically. Relation (23) then shows that x may be regarded
as the potential energy of the particle with kinetic energy Q or mc2£}.
Also relation (22) has the interesting physical interpretation that the
rate of increase of kinetic energy of the particle is equal to the
3-scalar work done by the gradient of the potential in pushing the
particle with velocity V—P/t relative to its immediate environment
in the substratum. Moreover, (21) and (21’) show at once that when
the external force (F, F)) vanishes, so that Q = mc?¢* = const. is an
integral, the gradients of the potential are zero, and there is no
external field, as is required for consistency.

Evidently the second term on the right-hand sides of (21) and (21’)
represents the effect of rate of change of mass M.

It must be emphasized that the actual details of the definition of
a potential function are immaterial; when we derive a specific
potential by kinematic methods, the actual form of the potential
function will depend on the definition adopted, but when the result-
ing force-vectors are inserted in the equation of motion, the motion
due to these force-vectors will be independent of the definition of
potential adopted. Our main application of the theory of potential
functions will occur when we derive the potential function for a pair
of gravitating particles.

93. Occurrence of the factor 2 in the formula connecting force
and potential gradient. The curious occurrence of the factor 2 in
front of the ‘rate of change of mass’ term in (21) and (21’) should
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be noted. Unnatural though it appears, it will be found in later
developments to be essential. With the expressions (21) and (21’)
for F, F,in terms of a 4-scalar potential y, the equations of motion
(4), (4') take the form, on differen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>