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CHAPTER 1

The Algebra of Linear Transformations
and Quadratic Forms

In the present volume we shall be concerned with many topics in
mathematical analysis which are intimately related to the theory
of linear transformations and quadratic forms. ' A brief. résumé of
pertinent aspects of this field will, therefore, be given in Chapter 1.
The reader is assumed to be familiar with the subject in general.

§1. Linear Equations and Linear Transformations

1. Vectors. The results of the theory of linear equations can be
expressed concisely by the notation of vector analysis. A system

of n real numbers z; , z, , - - - , z, is called an n-dimensional vector or a
vector in n-dimensional space and denoted by the bold face letter x;
the numbers z; (z = 1, - - - , n) are called the components of the vector

x. If all components vanish, the vector is said to be zero or the null
veclor; for n = 2 or n = 3 a vector can be interpreted geometrically
as a ‘“position vector” leading from the origin to the point with the
rectangular coordinates z;. For n > 3 geometrical-visualization is
no longer possible but geometrical terminology remains suitable.

Given two arbitrary real numbers A and u, the vector Ax 4 uy = z
is defined as the vector whose components z; are given by z;
= Az; + wy;. Thus. in particular, the sum and difference of two
vectors are defined.

The number
(1) x'y=112/1+"'+I,.y,.=yla:1+---+yng;n=y.x
is called the “4nner product” of the vectors x and y.

Occasionally we shall call the inner product x-y the component of
the vector 'y with respect to x or vice versa.

If the inner product x-y vanishes we say that the vectors x and y
are orthogonal; for n = 2 and n = 3 this terminology has an imme-

1



2 I. LINEAR TRANSFORMATIONS AND QUADRATIC FORMS

diate geometrical meaning. The inner product x-x = x* of a vector
with itself plays a special role; it is called the norm of the vector.
The positive square root of x* is called the length of the vector and
denoted by | x| = 4/x%. A vector whose length is unity is called a
normalized vector or unit veclor.

The following inequality is satisfied by the inner product of two
vectorsa = (a;, -+, a,)and b = (by, -+, ba):

(a-b)* < a’p’

or, without using vector notation,

(Fo) = (£ (5

where the equality holds if and only if the a; and the b; are propor-
tional, i.e. if a relation of the form Aa + ub = 0 with \* + 4* = 0is
satisfied.

The proof of this “Schwarz inequality” follows from the fact that
the roots of the quadratic equation

Zl(a.-:c+ b)? = zzzaf-+2:c2a.~b,-+}:lb3 =0

to- tam] =1 Y-

for the unknown x can never be real and distinct, but must be imagi-
nary, unless the a; and b; are proportional. The Schwarz inequality
is merely an expression of this fact in terms of the discriminant of
the equation. Another proof of the Schwarz inequality follows im-
mediately from the identity

> a3 b — (Z a.-b.>2 12 (ah — b

teml fem 1 11 jeml keml
Vectors x;, X2, - -+, X, are said to be linearly dependent if a set
of numbers A\;, A2, -+ -, A (not all equal to zero) exists such that

the vector equation
MEi oo 4+ ApZm =0

is satisfied, 1.e. such that all the components of the vector on the left
vanish. Otherwise the vectors are said to be linearly independent.
The n vectors e, , e,, :-- , e, in n-dimensional space whose com-

1 This relation was, as a matter of fact, used by Cauchy before Schwarz.



LINEAR EQUATIONS AND LINEAR TRANSFORMATIONS 3

ponents are given, respectively, by the first, second, - - - , and n-th
rows of the array

0 0

0 0 --- 1,
form a system of n linearly independent vectors. For, if a relation
A + -+ + e, = 0 were satisfied, we could multiply® this relation

by ex and obtain A\, = O for every h, since e = 1 and e;-e; = 0 if
h # k. Thus, systems of n linearly independent vectors certainly
exist. However, for any n + 1 vectors u;, u,, ---, upy; (in n-
dimensional space) there is at least one linear equation of the form

piy + v o0 Frpngitnp = 0,

with coefficients that do not all vanish, since n homogeneous linear
equations

n+1
Zluik#i=0 k=1,---,n)
for the n 4+ 1 unknowns g, , w2, - -+, #aq1 always have at least one

nontrivial solution (cf. subsection 3).

2. Orthogonal Systems of Vectors. Completeness. The above ‘““co-
ordinate vectors” e; form a particular system of orthogonal unit
vectors. In general a system of n orthogonal unit vectors e;,e;, - - -, e,
is defined as a system of vectors of unit length satisfying the relations

er=1 eyve,=0 (h = k)

for h, k, = 1, 2, ---, n. As above, we see that the n vectors
€, e, ---, e, are linearly independent.
If x'is an arbitrary vector, a relation of the form

CX — €1 — -+ — Ca8p = 0

with constants ¢; that do not all vanish must hold; for, as we have
seen, any n + 1 vectors are linearly dependent. Since the e; are
linearly independent, ¢, cannot be zero; we may therefore, without

1To multiply two vectors is to take their inner product.



4 I. LINEAR TRANSFORMATIONS AND QUADRATIC FORMS

loss of generality, take it to be equal to unity. Every vector x can
thus be expressed in terms of a system of orthogonal unit vectors in
the form

(2) X =2ce+ - + CnCn*
The coefficients ¢; , the components of x with respect to the system
e, €, - -, e,, may be found by multiplying (2) by each of the vec-

tors e; ; they are
C; = X-€e;-

From any arbitrary system of m linearly independent vectors

Vi, V2, *-*, Vm, we may, by the following orthogonalization process
due to E. Schmidt, obtain a system of m orthogonal unit vectors
€, €, ---,€,: First set ¢ = vi/|vi|. Then choose a number
!

¢1 in such a way that v, — cie; is orthogonal to e, , i.e. set ¢y = Vp-e;.
Since v; and v, and therefore e; and v;, are linearly independent,
the vector v — cye; is different from zero. We may then divide this
vector by its length obtaining a unit vector e, which is orthogonal
toe,. Wenext find two numbers ¢, , c; such that v; — cie; — cpe.
1s orthogonal to both e; and e, , i.e. we set ci = Vire;and c; = vi-e;.
This vector is again different from zero and can, therefore, be nor-
malized; we divide it by its length and obtain the unit vector e;.
By continuing this procedure we obtain the desired orthogonal system.

For m < n the resulting orthogonal system is called incomplete,

and if m = n we speak of a complele orthogonal system. Let us
denote the components of a vector x with respect to €;, ez, - - - , e, by
€1,¢, -, ¢n as before. The self-evident inequality

(X —cer— "+ — Cm€m)° >0

is satisfied. Evaluating the left side term by term according to the
usual rules of algebra (which hold for vectors if the inner product of
two vectors is used whenever two vectors are multiplied), we_ find

-2 D e+ ci=x—22c 4+ 2.¢>0
tel

or

3) x> D c,
Tam
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where m < n and ¢; = x-e; ; the following equality holds for m = n:

(4) X =2 ¢l
tam]

Relations (3) and (4)—(4) expresses the theorem of Pythagoras in
vector notation—have an intuitive significance for n < 3; they
are called, respectively, Bessel’s tnequality and the completeness rela-
tion. °Relation (4), if it is satisfied for every vector x, does in fact in-
dicate that the given orthogonal system is complete since (4) could not
be satisfied for a unit vector orthogonal to all vectors e; , e;, - - , en,
and such a vector necessarily exists if m < n.

The completeness relation may also be expressed in the more general
form

m

(5) xx' = 2, aci,
which follows from the orthogonality of the e;.

So far these algebraic relations are all purely formal. Their sig-
nificance lies in the fact that they occur again in a similar manner in
transcendental problems of analysis.

3. Linear Transformations. Matrices. A system of n linear equa-
tions

anZy + a2 + - + G1aTa = Y1,

©) any + anT: + -+ GnZa = Y2,

AnT1 + QasZ2 + ¢+ AanZn = Yn,

with coefficients ay , assigns a unique set of quantities 1, ¥2, - -, ¥n
to every set of quantities z;,2;, --+, Zo. Such an assignment is
called a linear transformation of the set z,, z», -+ - , Z, into the set
Y1, Y2, ", Yn, or, briefly, of the vector x into the vector y. This
transformation is clearly linear since the vector A;y: + AJy2 corre-
sponds to the vector \;x; + AoX,.

The most important problem in conuection with linear transforma-
tions is the p' oblem of inversion, the question, in other words, of the
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existence of a solution of a system of linear equations. The answer
is given by the following fundamental theorem of the theory of linear
equations, whose proof we assume to be known:

For the system of equations

anzy + 6wz + -+ + anTh = Y,

Ty + ants 4+ -+ + @nZTn = Y2,

QT + GnaT2 + - + CanZn = Yn,
or, briefly,

(7) iaikxk=yi (1:=1,"',7l),

kel

with given coefficients ai , the following alternative holds: Evther 1t
has one and only one solution x for each arbitrarily given vector vy,
in particular the solution x = 0 for y = 0; or, alternatively, the homo-
geneous equations arising from (7) for y = 0 have a posilive number
p of nontrivial (not identically zero) linearly independent solutions
X,,X2, -, X, , Which may be assumed to be normalized. In the lalter
case the “transposed’ homogeneous system of equations

(8) k}:;a(-,,x,:=o G =1,--+,n),
where ayx = ax:, also has exactly p linearly independent nontrivial so-
lutions X1 , X5, - - - , X, . The inhomogeneous system (7) then possesses
solutions for just those vectors y which are orthogonal to X1 , X5, - - -, X, .
These solutions are determined only to within an additive term which is
an arbitrary solution of the homogeneous system of equations, i.e. if X
18 a solution of the inhomogeneous system and X, is any solution of the
homogeneous system, then x + X, 18 also a solution of the inhomogeneous
system.

In this formulation of the fundamental theorem reference to the
theory of determinants has been avoided. Later, to obtain explicit
expressions for the solutions of the system of equations, determinants
will be required.
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The essential features of such a linear transformation are contained
in the array of coefficients or matriz of the equations (7):

an G2 - Q1a

an Q2 --* Q2n

(9) A= (auc) =
Ant Qn2 Qnn
with the determinant
ay Qe Qin
an 0 Qa2n
A= |a.»;,| =
Qny Qp2 Qpn

It is sometimes useful to denote the transformation itself (also called
tensor' or operator) by a special letter A. The elements a; of the
mati.x A are called the components of the tensor. The linear trans-
formation (7) may be regarded as a “multiplication” of the tensor A
by the vector x, written symbolically in the form

Ax = y.

Many results in the algebra of linear transformations may be ex-
pressed concisely in terms of matrices or tensors, once certain simple
rules and definitions known as matriz algebra have been introduced.
First we define matrix multiplication; this concept arises if we sup-
pose that the vector x, which is transformed in equations (7), is itself
the product of a tensor B with components b, and another vector w:

_z; bijw;, = i k=1 --,n).
J=

Multiplying w by a tensor C we obtain the vector y. The matrix C
which corresponds to the tensor C is obtained from A and B by the
rule of matriz multiplication, C = AB, which states that the element
¢,; is the inner product of the i-th row of A and the j-th column of B:

(10) Cij = kz; aibi; ¢ji=1--,n).

1Tn modern usage the term ‘“‘operator” is customary to denote linear trans-
formations.
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The tensor or transformation C is therefore called the inner prod-
uct or simply the product of the tensors or transformations A and B.
Henceforth tensors and the equivalent matrices will not be distin-
guished from each other. Note that matrix products obey the
associative law

(AB)C = A(BC),

so that the product A;4; - - - Ay of any number of matrices written in
a fixed order has a unique meaning. For4; =4, = --- = A, = A
we write this product as the h-th power A* of the matrix A. Itis,
on the other hand, essential to note that the commutative law of mul-
tiplication is in general not valid; AB, in other words, differs in
general from BA. Finally the matrix AA + uB is defined as the
matrix whose elements are Aa; + by ; thus the null matrix is the
matrix in which all components vanish.' The validity of the dis-
ributive law

(A4 + B)C = AC + BC

is immediately evident.
The unit matriz is defined by

1 0 0
01 0
E - (eu‘) I P
0o 0 ... 1
It is characterized by the fact that the equation
AE = EA = A

holds for an arbitrary matrix 4. The unit matrix corresponds to
the identity transformation

Zi = Y; @Z=1,---,n).
The zero-th power of every matrix A is defined as the unit matrix:
A’ = E.

1 Note that in matrix algebra it does not necessarily follow from the matrix
equation AB = (0) that one of the two factors vanishes, as can be seen from

10 00
theexamp]e A= (0 0),B = (0 1) .
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Since the powers A of a matrix are defined, we can also define
polynomials whose argument is a matrix. Thus, if

flz) =a+azx+ - + anz™

is a polynomial of the m-th degree in the variable z, then f(A4) is
defined by

f(4) = wE + a4 + -+ + amd”™

as a (symbolic) polynomial in the matrix A. This definition of a
matrix as a function f(4) of A can even, on occasion, be extended to
functions which are not polynomials but which can be expressed as
power series. The matrix e*, for exa.mple may be defined by

Bee' =Bt 4t o+ a5

Note that in such a series one first considers the sum of the first N
terms and then investigates whether each of the n’ elements of the
resulting matrix converges to a limit with increasing N; if this is the
case, the matrix formed from the n’ limiting values is considered to
be the sum of the series. In the particular case of the matrix e* it
turns out, as will be shown below, that the series always converges.

A particularly important relation is obtained for a matrix S defined
by a geomelric series with partial sums S, given by

Spn=E+A+ A"+ -+ A".

Multiplying the equation which defines S» by A, we obtain the
equation

SwA + E = 8, + A™,
from which it follows that
Sn(E — A) = E — A™H

Now if the matrix S, approaches a limit S with increasing m, so
that A™"" tends to zero, we obtain the relation

S(E — 4) =

for the matrix S defined by the infinite geometric series

S=E+ A+ A"+ - ZA
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Under what circumstances an infinite geometric series of matrices or
a Neumann series, as it is occasionally called, converges will be in-
vestigated in the next section.

Matrix polynomials may be handled very much like ordinary poly-
nomials in z. For example, an identity between two polynomials in
z implies the corresponding identity for an arbitrary matrix A. Thus
the identity

£24+2+3+4=C+DE+2)+ 2+ 2)

corresponds to the relation

A* 4+ 24+ 34 +4E = (A’ + E) (A + 2E) + (24 + 2E)
valid for every matrix A. The factorization
f@) =+ az+ - +ana” = anlz — ) @ - @) - (3~ 2m),

where z;, 2, , * - - , Tm are the zeros of the polynomial f(x), leads to the
matrix equation

flA) = aE + a4 + -+ + and™
= an(d — 2,E)(A — 7,E) --- (A — z,E)

for every matrix A.

Every matrix A with components a; , which may in general be
complex, is associated with certain other matrices. If dy is the com-
plex number conjugate to as , then the matrix A = (du) is called
the conjugate matrix; the matrix A’ = (ax;) obtained by interchanging
corresponding rows and columns of A is called the {ransposed matrix
or the transpose of A and A* = A’ = (a.:) the conjugate transpose
of A. The conjugate transpose is thus obtained by replacing the
elements by their complex conjugates and interchanging rows and
columns.

The equation

(ABY = B'A’

is immediately verifiable. A matrix for which A = A’ is called
symmelric; a real matrix which satisfies

AA' = F
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is called orthogonal. Finally, a complex matrix is called unitary if
it satisfies

AA* = E.

The inversion of the linear transformation (7) is possible for arbi-
trary y., as is known from the theory of determinants, if and only if
the determinant A = | a,, | does not vanish. In this case the solution
is uniquely determined and is given by a corresponding transforma-
tion

(11) Iy = Z" diky;, (’L = 1, ey n).

k-l

The coefficients d.x are given by

where A;; is the cofactor to the element a;; in the matrix A. The
matrix A = (d«) is called the reciprocal or inverse of A and is dis-
tinguished by the fact that it satisfies

AA = AA = E.

We denote this uniquely determined matrix by A" instead of A;
the determinant of A~ has the value A™". Thus the selution of a
system of equations whose matrix A has a nonvanishing determinant
is characterized, in the language of matrix algebra, by a matrix B =
A™" which satisfies the relations

AB = BA = E.

4. Bilinear, Quadratic, and Hermitian Forms. To write the linear
equations (7) concisely we may employ the bilinear form which cor-
responds to the matrix A. This bilinear form

n

(13) A(u,z) = .Zk:l AarUsTh

is obtained by multiplying the linear forms in z,,zs, ---, Zo ON
the left-hand side in equation (7) by undetermined quantities
Uy, Up, -, U, and adding. In this way we obtain from the system
of equations (7) the single equation

(14) Ay, z) = E(u, y)



12 I. LINEAR TRANSFORMATIONS AND QUADRATIC FORMS

valid for all u; here E(u,y) = D ~1u;is the bilinear form correspond-
ing to the unit matrix, the unit bilinear form. The symbolic proeduct
of two bilinear forms A (u, z) and B(u, z) with matrices A and B is
defined as the bilinear form C(u, z) with the matrix C = AB; the
h-th power A*(u, z) is often called the h-fold iterated form. The
“reciprocal bilinear form” A~ (u, ) with the matrix A~ may, accord-
ing to the theory of determinants, be written in the form

(15) A7Nu,7) = — A(uT’x)-,
where
0 Un
Iy i da n
A(u, :D) = = — Z Agzug .
............... i kml
Tp Ap1 Qna

( The symmetric linear transformations, characterized by the condi-
tion ay = ai;, are of special interest. To investigate them it is
sufficient to consider the gquadratic form

n

Alz,z) = D, auzas (axi = aa)

t k=l
which is obtained from the bilinear form by putting u; = z,. For,

from a quadratic form A(z, z) one can obtain a symmetric bilinear
form

Z Gauzs = 3 Z aA(:IJ z)
¢ 1 [

A(:v + u,rz + u) — Az, z) — A(u,u)
2 )

which is called the polar form corresponding to the quadratic form
A(z, z).

If A(u, ) = Q7w @atx is an arbitrary nonsymmetric bilinear
form (with real coefficients), then AA’(u, r) and A’A(u, z) are always
symmetric bilinear forms; specifically we have

AA'(u,z) = Z <Z QirTi Z a,m,)

kw1 te=]l

A'A(u, z) = Z <Z QikZ Z auu1>

tm]l \keml
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The corresponding quadratic forms

AA'(z,3) = i (Zn: aikxs'>2)

kel \ tml

n n 2
A'A(z, z) = El <k21 aaa:;,) ,
which are sums of squares, assume only non-negative values. Forms
of this kind are called positive definite quadratic forms.
An important generalization of the quadratic form is the Hermitian
form. A Hermitian form is a bilinear form

n

Ay, 2) = 2 aawa

(g9 T §

whose coefficients a; have complex values subject to the condition

Age = Agy -

Thus a Hermitian form assumes real values if the variables u; are
taken to be the complex conjugates of z;; it is usually written in
the form
QT T = Z AiZiT .
=1 ikl

H(z, z) =

t,

To an arbitrary bilinear form

Ay, 7) = -;1 QT
with complex coefficients there correspond the Hermitian forms

n 2
Eaibti

te1

n

AAX(z, %) = AA'(z, %) = 2

kw1

and

A*A(z, %) = A'A(z, %) = 2

t1

n 2
D Gk .

k==l

If the variables of a bilinear form

Az, y) = 2. auziyp
t k=1
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are subjected to the two transformations

n n
I = Z‘i cii{; and Ye = Z bum
J-

l=1

with matrices C and B, respectively, we obtain

A(z, y) = _kZl AQixTiYr = kE a.‘kCijbszﬂlt

1,7,k =l

n n

?

- lpﬂf'f’" ; D = Z QixCisbur .
- t k=l

Thus A is transformed into a bilinear form with the matrix
(pi) = C'AB,

whose determinant is, according to the theorem on the multiplica-
tion of determinants, equal to ABF. In particular, if A is a quadratic
form

K(z,z) = Z kpezpxq
Pg=1

with the symmetric matrix K = (k,,) and the determinant K = | k,, |,
and if we set C = B, and transform the variables z we obtain a
quadratic form with the symmetric matrix C’KC whose determinant
is K’

5. Orthogonal and Unitary Transformations. We now consider
the problem of finding ‘“‘orthogonal” linear transformations L

(16) Ip = Z; logyq = Lp(y) (p =1--- ,n):
=

with the real matrix L = (I,,) and the determinant A = | [, |, i.e.
transformations which transform the unit quadratic form

E(z,z) = )z,
p=1

into itself, thus satisfying the relation
(17) E(z,z) = E(y, y)

for arbitrary y.
Applying our rules of transformation to the quadratic form
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A(z, r) = E(z, ), we find that requirement (17) yields the equa-
tions

(18) L'EL = L'L = LL' = E; L'=rLr"

as a necessary and sufficient condition for the orthogonality of L.
Thus the transposed matrix of an orthogonal transformation is identi-
cal with its reciprocal matrix; therefore the solution of equations (16)
is given by the transformation

(19) Yp = Zl lipTg = L;(:l:),
q-

which is likewise orthogonal. We see that an orthogonal trans-
formation is one whose matrix is orthogonal as defined in subsection 3.
Written out in detail, the orthogonality conditions become

(20) 2b=1 2l =0 (P = g

or, equivalently,

(21) ):; G = 1, Zl Ll = 0 (p # q).
To express an orthogonal transformation in vector notation we pre-

scribe a system of n orthogonal unit vectors 1;,1,, - - -, 1, into which

the coordinate vectors e,, e, - -, e, are to be transformed. Then

the vector x is represented by

X = 1€ + To€2 + -+ + Tp€p = 1/111 + yalo + -+ +ynln-
Multiplying by e, we obtain z, = D e y.(€5l,); hence

lpe = €p-ly.

From (18) it follows that A* = 1, i.e. that the determinant of an
orthogonal transformation is either 41 or —1. Therefore the deter-
minant of an arbitrary quadratic form is invariant with respect to
orthogonal transformations.

Furthermore, the relation L'(AB)L = (L’AL)(L'BL) follows from
(18) for the matrices A, B, and L of any two bilinear forms and any
orthogonal transformation. This means that the symbolic product
of a number of bilinear forms may be transformed orthogonally by
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subjecting each factor to the same orthogonal transformation. In
particular, it follows that the orthogonal transforms of two reciprocal
forms are also reciprocal.

The generalization of these considerations to Hermitian forms

H(z, ) = Z "
P,g=1
leads to unitary transformations. A unitary transformation

$p=zlmyq p=1,--n)

qml

is defined as a transformation (with complex coefficients l,,) which
transforms the unit Hermaitian form

n n
Z | z, lz = Z ZpTp
p=l pm=l

into itself, i.e. for which

leplz‘—‘pzllyplz'

Pl
In exactly the same way as above one obtains the matrix equation
LL* = L*L = FE

as a necessary and sufficient condition for the unitary character of
the transformation whose matrix is L. Here L* = L’ is the conjugate
transpose of L. L must therefore be a unitary matrix as defined in
subsection 3. Specifically, a transformation is unitary if the follow-
ing conditions hold:

(22) Zl | Lo Iz = 1, Zl Lobe = 0 (p # ¢,
or, equivalently,

(23) 2; | 1 |* = 1, > lly =0 (p # q).

veml

The determinant of a unitary transformation has the absolute
value 1, as follows immediately from the equation LL* = E.
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§2. Linear Transformations with a Linear Parameter

In many problems the system of equations of a linear transforma-
tion takes the form

(24) :v;—)\,;t.-k:ck=y,- (i=1,---,n)
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