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PREFACE

STIMULATED by a course of post-graduate lectures on the Partial
Differential Equations of Mathematical Physics which Professor
E. T. Whittaker gave sixteen years ago in the Mathematical Institute
of Edinburgh University, one of the authors of the present work
(B. B. B.) planned a comprehensive treatise covering the whole of
this field. Unfortunately, ill health and pressure of other duties have,
so far, prevented the completion of this scheme. In the meantime
the subject has been treated from different points of view by Bate-
man (1932), Courant and Hilbert (1924 and 1938), and Webster
(1927).

During the same period there have been great advances in mathe-
matical physics, especially in the various developments of quantum
mechanics. As these new theories are still developing rapidly, it
would perhaps be unwise to attempt at the present juncture another
general treatise on the mathematics of physics: and, after much
consideration, we have decided to abandon the original plan and to
replace it by the publication of a number of monographs, each
complete in itself, on various special topics not adequately treated in
existing books.

The present monograph deals with the mathematical theory of
Huygens’ principle in optics and its application to the theory of
diffraction. No attempt is made to give a complete account of the
various methods of solving special diffraction problems. We are
concerned only with the general theory of the solution of the
partial differential equations governing the propagation of light
and we discuss some of the simpler diffraction problems merely
as illustrative examples. For an account of the more technical
developments of the theory of diffraction we refer the reader to
the excellent articles by von Laue and Epstein in the Encyklopidie
der mathematischen Wissenschaften (Band V, 3. Teil) and that of
Wolfsohn in the Handbuch der Physik (Band XX—‘Licht als
Wellenbewegung’).

The standard of knowledge of pure and applied mathematics ex-
pected of the reader is roughly that of the undergraduate who has
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completed the compulsory part of an honours course and is about to
take up some specialized study.

We wish to express here our great indebtedness to Professor
Whittaker for the original stimulus which led us to this work and
for his continued interest, encouragement, and advice. We also
desire to thank the Delegates of the Clarendon Press for undertaking
this book and their Staff for their unfailing skill in printing it.

B. B. B.
E.T.C.

PREFACE TO THE SECOND EDITION

ADVANTAGE has been taken of the preparation of a new edition of
this monograph to add a chapter on the application of the theory of
integral equations to problems of diffraction by a plane screen. This
method goes back in principle to the work of Lord Rayleigh in the
second volume of his book on ‘The Theory of Sound’, and has gained
importance during the war in the use of diffraction theory in radio
problems. It is hoped that this chapter will prove a useful introduc-
tion to the growing literature of the subject.

The first four chapters of the book are virtually unchanged, apart
from the correction of minor errors and misprints and the addition
of references to more recent work.

My thanks are due to the Delegates of the Clarendon Press for
publishing a second edition and to their Staff who continue to main-
tain their reputation for fine printing.

June 1949 E. T C
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I

THE ANALYTICAL REPRESENTATION OF
HUYGENS’ PRINCIPLE

§ 1. The principle of Huygens
§ 1.1. Huygens’ geometrical theory of wave-propagation in optics

IN his T'raité de la Lumiére, published in 1690, Huygens discussed
the process of the propagation of light by the aid of a new principle,
which has since been generally known by his name. At that timet}
light was regarded as a disturbance in a medium, the aether, of much
the same general character as sound in air. Huygens supposed that,
at any instant ¢ = ¢,, a point-source of light generates a disturbance
which is propagated into the surrounding medium as an isolated
spherical wave} which expands with a large constant velocity, the
velocity of light. This initial disturbance develops into the distur-
bance at the subsequent instant ¢ = ¢, through a succession of states
at the intermediate instants, and a knowledge of the state at any
intermediate instant ¢ = ¢’ suffices to determine the state at the
instant ¢ = ¢,. Thus, if we regard each element of the isolated wave
at the instant ¢t = ¢’ as the centre of a new disturbance, the actual
effect at the instant ¢ = ¢, is the resultant of all these secondary
effects, the actual wave the envelope of the secondary waves.

The principle, stated in this form, is somewhat vague, and so,
before we go on to discuss the difficulties of Huygens’ geometrical
theory of wave-propagation in optics, it is convenient to follow
Hadamardj| and analyse the principle in the form of a syllogism.

A. (Major premiss.) In order to determine the effect at the instant
t = ¢, of a luminous phenomenon caused by a given disturbance at
the initia] instant { = ¢,, we may calculate the state at some inter-
mediate instant ¢ = ¢’ and from that deduce the state at the instant
t=t,.

B. (Minor premiss.) If at the instant ¢ = ¢;, or, more precisely,

t For the history of the development of the theories of light, see E. T. Whittaker,
History of the Theories of Aether and Electricity (Dublin, 1910).

1 An isolated spherical wave, or pulse as it is sometimes called, is a disturbance
of the medium localized on the surface of a sphere.

|| See Hadamard's lecture ‘Le Principe de Huygens’, Bull. de la Soc. math. de
France, 52 (1924), 610-40, or his book Lecturcs on Cauchy’s Problem (Yale, 1923),
53-6.

4617 B



2 THE ANALYTICAL REPRESENTATION OF [cHAP. I

in the short interval t,—e < ¢ < ¢,, we produce a luminous distur-
bance localized in the immediate neighbourhood of a point O, the
effect at the subsequent instant ¢ = ¢’ is localized in a very thin
spherical shell with centre O and radius c(t'—t,), where ¢ is the
velocity of light.

C. (Conclusion.) In order to calculate the effect at the instant
t = t, due to a luminous disturbance localized at O at the instant
t = t,, we may replace the initial disturbance by a suitable system
of luminous disturbances taking place at the intermediate instant
t = t’ and distributed over the surface of the sphere with centre O
and radius c(t'—¢,).

When analysed in this way, Huygens’ principle is seen to involve
three propositions, and different authors have attached the name
‘Huygens’ principle’ indiscriminately to any one of the three. In
the present book we are concerned with proposition C and its
generalizations involving luminous disturbances which cannot be
generated by the superposition of spherical waves.

Proposition 4 would probably be accepted as immediately obvious:
it is nothing other than the principle of determinism which runs all
through classical mathematical physics. Nevertheless, the fact that
the solutions of the differential equations which govern the propaga-
tion of light do satisfy this proposition is of considerable interest, for
it leads to certain remarkable relations connecting these solutions. ¥

Proposition 4 is what the philosophers would describe as one of
the laws of thought—its contrary is inconceivable. Proposition C
is a physical law capable of very wide generalization. Proposition B,
on the other hand, has a very special character, since it is a property
peculiar to certain special types of luminous phenomena. It states
that an isolated spherical light wave has clean-cut propagation; for
if such a wave is due to a disturbance localized at the origin and
acting only during the very short interval t{,—e < ¢ < ¢,, the effect
at a distance c¢T' is null until the instant ¢ = {;+-7—e and is null
again after the instant ¢t = ;4 T'; an isolated spherical wave leaves
no residual after-effect. We cannot generalize proposition B to cover,
for example, two-dimensional wave-motions; for, in two dimensions,
an initial disturbance always gives rise to a residual after-effect.

1 Hadamard, Bull. de la Soc. math. de France, 52 (1924), 241-78; Acta Math. 49

(19286), 203—44; Journal de Math. 8 (1929), 197-228. See also E. Hille, Functional
Analysis and Semi-Groups, (New York, 1948), Ch. XX.



§1] HUYGENS' PRINCIPLE 3

To sum up, although the premisses 4 and B do imply the con-
clusion €, an argument of this type is incapable of generalization
owing to the great restrictions under which the proposition B holds.
We shall prove a general form of proposition C, and then show that
B is a consequence of C for the special type of spherical wave
considered by Huygens.

Throughout the book we are concerned only with the generaliza-
tions of C which are, in effect, governed by the partial differential
equation of wave-motions. For the still wider generalizations con-
cerning other differential equations we refer the reader to Hada-
mard’s Yale lectures already cited.

§ 1.2. The difficulties of Huygens’ theory

In applying his geometrical theory of wave-propagation Huygens
encountered certain difficulties which he was able to overcome only
by making special ad hoc hypotheses. In the first place, he found
that he could account for the rectilinear propagation of light only by
assuming that a secondary wave has no effect except at the point
where it touches its envelope. Secondly, the envelope of the secondary
spherical waves consists of two sheets, one on each side of the surface
on which the secondary sources of disturbance lie. It would seem,
therefore, that one of Huygens’ isolated waves would be propagated
not only forwards but also backwards. To get over this difficulty
Huygens had to assume that only one sheet of the envelope is to
be considered.

If we wish to avoid making this last assumption, we must give up
the purely geometrical theory and have recourse to analysis. To
illustrate this, let us consider plane waves of sound of small ampli-
tude. We shall prove in § 3.2 that an initial disturbance is actually
propagated in.both directions unless certain conditions are satisfied.
Only when the initial values ¢, and s, of the velocity and condensation
are connected by one or other of the relations g,4-cs, = 0 do we get
a plane wave which is propagated in a definite direction.}

A similar conclusion holds for electromagnetic waves in a vacuum:
in a progressive plane electromagnetic wave-motion whose wave
fronts are perpendicular to the vector n and move in the direction

1 See a letter from Fresnel to Poisson (Euvres complétes de Fresnel, 2, 227:
quoted by Poincaré, Theorie math. de la Lumiére, 1 (1889), 81; Croze, Annales de
Physique, 5 (1928), 371-439 (380-1)) on this point. For a similar result concerning
general sound waves, see Love, Proc. London Math. Soc. (2), 1 (1903), 37-62 (54).
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of n, the electric and magnetic vectors d and h must be equal in
magnitude and n, d, and h must form a set of right-handed orthogonal
axes.

§ 2. Huygens’ construction as a contact-transformation
§ 2.1. The definition of a contact-transformation

A surface element at a point P of space is specified by the coordi-
nates (z,y,z) of P and the direction cosines (/,m,n) of the normal
to the element. Let a transformation from the set of variables
(z,y,2,l,m,n) to the set (z’,y’,z',l',m',n’) be regarded as turning
this surface element into another surface element at P’ (z',y’,2'),
the normal to which has direction cosines (I',m’,n’). There are co?
surface elements through any given point P; to each corresponds
in general a surface element through a different point P’, since the
coordinates (z’,¥’,z’) depend on (I, m,n) as well as on the coordinates
of P.

From the equations which define (z',y’,2',l',m’,n’) in terms of
(2,y,2,1,m,n) it may be possible to eliminate completely the direction
cosires 8o as to obtain one or more relations between the coordinates
of P and P’.

There are three cases to be considered:

(@) There may be only a single relation

Qx,y,2,2",y',2') = 0.

When (z,y,z) are given, this equation, regarded as an equation in
(’,y',2’), represents a surface. Thus each point P, or, more pre-
cisely, the set of surface elements through P, is transformed into a
surface Qp.

(b) There may be two relations

Ql(z) y; Z, x” y’)zl) = 0) Q2(x’ ?/,Z,x') ?/’:z’) = O‘

Then each point P is transformed into a curve.

(c) There may be three relations, in which case each point P is
transformed into a point P’.

Let us restrict our attention to transformations of the type (a),
and consider the effect of applying such a transformation to the
surface elements of a given surface S. It may happen that, no matter
what surface § is chosen, the transformed surface elements build up
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another surface §’; if this is so, the transformation is called a contact-
transformation.t It can be shown that, in this case, the surface S’
is the envelope of the surfaces Qp corresponding to the individual
points P of S.

A contact-transformation of this type is precisely the sort of trans-
formation which appears in Huygens’ geometrical construction. For
each point of the wave-front S at the instant ¢ is transformed into a
sphere of radius ¢(t’—t), and the wave-front 8’ at the instant ¢’ is the
envelope of these spheres. The equations of the transformation are

' = z+c(t'—1t)l, I'=1,
y' = y+c(t'—t)m, m' = m,
z' = z4c(t'—t)n, n' = mn.

§ 2.2. The analogy with dynamical systems

In the modern theory of general dynamics, contact-transformations
play an important part, since the history of any dynamical system
may be regarded as the gradual self-unfolding of a contact-trans-
formation. Consider a dynamical system in which (g;,9,,...,9,) are
the generalized coordinates specifying the state at the instant ¢; let
(py, Po»--» D,) be the corresponding generalized momenta. Then if
(91, 932>---»9,) and (pq, Ps,-.., P,) are the values of the coordinates and
momenta at the instant ¢, the transformation of the set of variables
(91, 92s--»9n; D1, P2>---»P,) into the corresponding set of accented
variables is a contact-transformation.]

Placing this result beside the statement that the simple geometrical
construction suggested by Huygens is a contact-transformation, it is
natural to conjecture that the general analytical expression of
Huygens’ principle ought to involve a contact-transformation,
generalizing the result just enunciated for finite systems to dynamical
systems with an infinite number of degrees of freedom.

Actually Huygens’ ideas have not been developed on these lines.
The reason for this is that, in the practical applications of Huygens’
principle, radiation, the disturbance in the medium which we may
for convenience call the aether, generally proceeds from sources.

t The name is due to S. Lie. It was suggested by the evident fact that, if two
surfaces are in contact, so also are their transforms by a contact-transformation.

1 For the theory of the application of contact-transformations to dynamics, see

E. T. Whittaker, Analytical Dynamics (Cambridge, 1917), Ch. XI et seq.; Prange,
Encyc. der math. Wissenschaften, Band 1V, 1,, Heft 4.
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These sources are, from the dynamical point of view, singularities at
which energy is introduced into the aether; the existence of these
singularities prevents us from developing Huygens’ principle in the
way which would be natural if we were dealing with a self-contained
conservative dynamical system. |

In particular, the solution of a dynamical problem with a finite
number of degrees of freedom is a solution valid for all values of ¢,
both subsequent and antecedent to the instant ¢,, whereas in radia-
tion problems we cannot trace the radiation back beyond the instant
when it issued from the source. The formulae which will be useful
in the practical applications of Huygens’ principle will generally be
formulae which are valid only at instants ¢ subsequent to some initial
instant #,; the results obtained by substituting values of ¢ less than
t, need bear no relation whatever to the actual phenomenon.

§ 3. The propagation of sound waves in air
§ 3.1. The differential equations of sound waves of small amplitude

Huygens’ principle. in its crudest form takes no account what-
ever of the phenomenon of polarization, although this phenomenon
was discovered by Huygens himself in his experimental work on
Iceland spar. Until the time of Young and Fresnel, light was regarded
as a disturbance in a medium analogous to that of sound in air. We
know now that the propagation of light is of an entirely different
character from that of sound. To specify a light wave, we need
to know the three components of the ‘light-vector’, whereas a
sound wave is specified by a single quantity, the scalar velocity
potential. There is, then, no precise analogy between the propagation
of sound and the propagation of light.

We now proceed to consider the problem of expressing in an
analytical form the principle of Huygens for a scalar phenomenon,
namely, the propagation of sound waves of small amplitude. This
will serve as an introduction to the vector form of Huygens’
principle, which is based on the electromagnetic theory of light.
It will, moreover, provide a justification for Huygens’ principle in
optics as that subject was understood in the days before Young
and Fresnel.

We begin with a brief sketch of the theory of the propagation of
sound waves of small amplitude. We denote the velocity of the
medium at the point (z,y,z) at the instant ¢ by q, where ¢ is
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negligible. We suppose that the motion is irrotational, so that q is
derived from a velocity potential « by the equation
.q = —gradu, (3.11)

where grad « denotes the vector with components (éu/ox, du/oy, ou/éz).
A knowledge of q alone does not specify the state of the medium at
(x,y,z) at the instant ¢; it is necessary to know in addition the pressure
p and the density p of the medium. Actually it is more convenient
to consider, instead of p, the condensation s, defined by

p = po(1+$),
where p, is the densily in the undisturbed state. In dealing with
sound waves of small amplitude, the square of s is negligible.
The motion is governed by two equations, a kinematical and a
dynamical equation. The kinematical equation is the equation of

continuttyt p4-div(pq) = 0.
For sound waves of small amplitude this reduces to
divqg = —s. (3.12)

The dynamical equation is the expression in vector form of Euler’s
Dynamical Equations,} namely

pd+(pq-V)q = —gradp.
It being assumed that p is a function of p alone, this equation
simplifies to d
Pod = __(d_P) grad p,
P/o
where the suffix 0 denotes the value in the undisturbed state. From
this we have q = —c?grads, (3.13)

where ¢2 = (dp/dp),. The constant c has the dimensions of a velocity.
From equations (3.11), (3.12), and (3.13) it follows that

Z—f _ v o i/%// (3.14)

where V2 is Laplace’s operator]|
0% o* o2
i T o T
1 See, for example, Ramsey’s Hydrodynamics (1920), 5 (1).

2 2 2
1 Ibid. 17 (1). The symbol V denotes the vector operator 15;+ja—y+k5;;

the full-stop denotes the scalar product.
|| It is the square of the vector operator V which occurs in the preceding footnote.
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Hence the velocity potential u satisfies the equation
1 0%
Vi = - —.
T
This is called the equation of wave-motions, any solution of it a wave-
function. Evidently s and each component of q are wave-functions.

§ 3.2. Plane waves of sound
A wave function % which depends only on ¢ and one of the Cartesian
coordinates, x say, satisfies the equation
u 1%
ozt ¢ oF’
which is called the one-dimensional wave-equation. Its general

solution is u = f(ct—z)+ F(ct+z), (3.21)

where f and F denote arbitrary functions.
The particular solution

u = f(ct—z) (3.22)
is the velocity potential of a disturbance which is propagated parallel
to the axis of z with velocity c; for the disturbance at the instant ¢ at
a point of coordinate z is the same as that at the initial instant
t = 0 at the point of coordinate x—ct. In other words, the expression
(3.22) is the velocity potential of a plane sound wave which is propa-
gated without change of type parallel to Ox with velocity c¢. The
constant c is then called the velocity of sound. In virtue of equations

(3.11) and (3.14), the particle velocity g (which is parallel to Oz) and
the condensation s are given by

g = cs = f(ct—z);
thus c is not the velocity of the constituent particles of air but is the
velocity of propagation of the disturbance as a whole.

In the same way, F(ct+=x) is the velocity potential of a plane
sound wave which is propagated parallel to Oz with velocity —c.
The general motion with velocity potential (3.21) is the resultant of
superposing two plane waves travelling parallel to Oz with velocities
+ec.

The arbitrary functions in the velocity potential

¢ = flct—z)+ F(ct+=x)

of the general plane wave of sound can be determined if we are given
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the values ¢, and s, of the velocity and condensation at the initial
instant ¢ = 0 for all values of z. For we have

=f(—x)—F'(x), csp=[f(—2)+F'(z),
and so 2f’(—:v) = ¢y, 2F'(x) = —qu+c3,- (3.23)

These equations determine f and £ apart from an unimportant
additive constant.

From (3.23) we see that, if ¢, and s, have general values, neither
S nor F is identically zero and so the wave is propagated in both
directions. Only when one of the functions g,4-cs, is identically zero
do we get a wave of sound which is propagated in one direction.

§ 3.3. Isotropic spherical waves of sound
The equation of wave-motions

2 — 1 o%u

e o

expressed in terms of spherical polar coordinates (r,8,$) has the

form ), 904 + 1 8% +cot0 ou + 1 2w 1 8%
or? +r or ' 12002 ' 12 20 ' 728in%0 a¢® 2 a2

In particular, if the wave-function « depends only on 7 and ¢, it

satisfies the equation
Pu 20w __123%

ot Tror oot (3.31)

A solution of this equation is the velocity potential of sound waves
of small amplitude in which the disturbance at any given instant
is the same at all points of any sphere whose centre is at the origin;
that is, a solution of (3.31) is the velocity potential of isotropic

spherical waves.
Since (3.31) can be written in the form

02 1 o2
a—rg(ru) = pe a—tz(fu),

the function ru satisfies the equation of plane waves, and so the
velocity potential of isotropic spherical waves is

u = {f(ct—r)+F(ct+r)}/r, (3.32)

where f and F are arbitrary functions.



10 THE ANALYTICAL REPRESENTATION OF [cHAP. 1

The particular wave-function
w = ; Flet—r) (3.33)

is the velocity potential of isotropic spherical waves diverging from O.
The constant ¢ is still called the velocity of sound, since it is the
velocity with which the disturbance as a whole is propagated. But
the actual mode of propagation differs from that of plane waves in
that there is a change of type.

The law of propagation of the condensation s is simple. For, since

s = cir Flet—r), (3.34)

the quantity rs is propagated outwards without change of type with
constant velocity c: hence s diminishes like 1/r as the disturbance
diverges from O.

The particle velocity q is directed radially outwards and is of

magnitude 1 1 \
q= r—zf(ct—r) + ;f’(ct—r). (3.35)

Thus ¢ is in general the sum of two terms: the first,

1

;éf(ct——r), (3.36)
predominates when 7 is small; the second,

L fe—n), (3.37)

predominates when 7 is large. Thus when an isotropic expanding
spherical wave diverges from O, the particle velocity does not undergo
a mere attenuation but actually changes its type.

It follows from (3.34) and (3.37) that ¢ = cs fora diverging isotropic
spherical wave of large radius, just as for a progressive plane wave.
We should then expect that a progressive plane wave and a diverging
isotropic spherical wave of large radius would have very similar
characters; but this is not the case, as we now show.

Let us consider an isotropic diverging disturbance which is con-
fined to a spherical shell: inside and outside the shell the condensation
and the velocity are zero. From (3.34) and (3.35) we have

r}(q—cs) = f(ct—7r),
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so that f(ct—r) vanishes everywhere except in the shell. Hence, by
(3.34),

f srdr = J?Elf’(ct—r) dr = [—%f(ct—r)]z

a

and this vanishes if @ and b are respectively less than and greater
than the inner and outer radii of the shell. From this it follows that
s cannot be of one sign throughout the shell; in other words a spherical
wave of positive condensation cannot exist alone.t This does not hold
for a progressive plane wave, since the velocity potential is constant
but not necessarily zero in regions in which the velocity and con-
densation both vanish.

§ 3.4. Simple and double sources
If 7 denotes distance from a fixed point P’, the expression

1 r
U = ;f(t_;,) (3.41)
is the velocity potential of an isotropic spherical wave-motion in
which the waves expand from the centre P’. Evidently » and also
the velocity and condensation are infinite at P’, which is therefore
a singular point of the wave-motion. Moreover, air is flowing across
a sphere of centre P’ and radius r at the rate

and this tends to 4nf(¢) as » > 0. Hence the motion is characterized
by the fact that air is being introduced at P’ at the rate} 4=f(¢).
For this reason we say that (3.41) is the velocity potential of a sitmple
source at P’ and we call f(¢) the strength of the source.

More general wave-functions can be constructed by adding together
the velocity potentials due to several different simple sources. Let
us consider, for example, a simple source of strength f(t) at
P’ (z',y,2') and another of strength —f(t) at the adjacent point
(' +1h,y’ +mh,2'+nh), where (I,m,n) are the direction cosines of

+ This was first pointed out by Stokes in 1849. See Rayleigh, Theory of Sound,
2 (1896), 101.

I The function f(¢) is not necessarily positive. If f(t) i3 negative at any instant,
it merely means that air is then being abstracted at P’. A most important case

arises when f(t) = cosnt, which varies periodically through positive and negative
values.



12 THE ANALYTICAL REPRESENTATION OF [crAP. 1

the line joining the two sources. The velocity potential (3.41) of the
source at P’ is of the form

u = ¢(z—z',y—y',z—2,1).
Hence the velocity potential due to the two sources is

u = d(z—z',y—y',2—2',t)—p(x—a'—1lh,y—y'—mh,z2—2'—nh,t)

0 0 0
=l 4tmZl4al —a' y—y,z—2 t)+...
{la:c may naz}hf;(a: ', y—y',z—2,t)

9
%y

where the terms omitted are of the order of A2, If we write

kf(t) = F(t)
and keep F fixed whilst we make A tend to zero, we obtain the
velocity potential
2 7 011 r
U = (la—km@—}—na—z};ﬁ’(t—z), (3.42)

which we may roughly describe as being due to two very large sources
very close together. We call (3.42) the velocity potential of a double
source or, more briefly, a doublet of moment F(t); the line through P’
with direction cosines (I, m,n) is called the axis of the doublet.

For example, the velocity potential of a doublet at the origin,
whose moment is F(¢) and whose axis is the axis of z, is

1 7 1 Yz
u=—{-Flt—|+=—F'[t—-|}=.
FFl—t) =)
From this we see at once that a double source does not emit
isotropic spherical waves.

d o\h r
= (la—x+m —|—'n-5£} f(t—_)+"',

2 (v

§ 3.5. Poisson’s solution of the equation of wave-motions
The simple solutions of the preceding section can be generalized in
another way, namely, by considering volume distributions of simple
sources. If the volume element da'dy’'dz’ at (2’,y’,2’) is a simple
source of strength f(x',y’,2")F(t)dx'dy’dz’, the disturbance at (x, v, 2)
at the instant ¢ is specified by the wave-function
f',y',2) F(g_g) dz'dy'dz,

7

where r2 = (z—a' )2+ (y—y' )2+ (z—2')%
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Integrating over the whole volume V containing the sources, we
obtain the more general wave-function

u(x! ?/, z, t) == ffj‘ ‘f(—a:—’i/—’z‘—) F(t —':;:) dx’dy'dz’,
V

it being supposed that (z,y,z) is not a point of V. If we transform
to spherical polar coordinates with (z,y,z) as pole, this becomes

u(z,y,2,t) = fff f(x+lr,y+mr,z+nr)F(t—£) r8in 0 drdﬂd(ci,.m)

where (I,m,n) are the direction cosines of the line from (z,y,z) to
(«',y',2').

In particular, we may suppose that the volume distribution of
simple sources is active only for a very short interval of time, so
that F(t) is zero except when —e < ¢ < 0; moreover, by multiplying
by a suitable constant, we can choose F(t) so that

J‘ F(t)dt = 4; 5

If we now make ¢ - 0 in (3.51), we obtain the wave-function
27
u(x,y,2,t) = fdg‘) f db f(x+lct, y+met, z+nct) sinf, (3.52)
0
and this may be written in the more concise form

u(P;t) = tMp (S}, (3.53)

where Mp { f} denotes the mean value of f over the sphere of radius r
and centre P.
From (3.53) we have

3_“%2 — M, ,,,{f}+t—MP A}
Hence u(P;t) >0, 8u(P 4 > f(2,9,72)

as t > 0. Thus (3.53) is the wave-function which satisfies the initial
conditions » = 0, du/ot = f whent ¢t = 0.

1 More precisely, this is true when f satisfies certain conditions of continuity.
In general, the value of 4 when ¢ = 0 and the limit as ¢ — 0 are not necessarily equal.
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If w is a wave-function, so also is du/ét since the wave-equation is
a linear equation with constant coefficients. Hence

0
v = =(tMpfg)) (3.54)
is a wave-function which satisfies the initial condition v = g. More-
over, .
i MP a{g}‘H MP a9} (3.55)
Now from (3.52) we have
2

0 0 0 0 s
aMP,a{g}=%ff{la—a:,+ma7+ng;}g(x,y,z)sde@qu

- ke[
4rcl?

r=ct

- 1 2 ! ’ ’
_4ﬂct2ffngdxdydz

r<ct
2l (g
= ?{V g(x,y,2)+..} >0

ast— 0. Since 92M/ot? is bounded ast— 0, it follows from (3.55) that

v = 2 (tMp )

satisfies the initial conditions v = ¢, dv/ét = 0 when ¢ = 0.
Finally, by adding (3.63) and (3.54), we obtain the wave-function

0
u(P;t) = tMpa{f}+ 5 (tMp 49}) (3.56)
which satisfies the initial conditions

u = g(,y,2), = f(z,¥,2)

at

when ¢t = 0. This formula, which is due to Poisson,{ expresses the
value of a wave-function « in terms of the values of » and du/ot at
some fixed previous instant.

t Poisson, Mémoires de I'Acad. Roy. des Sci. IIT (1819), 121. Other proofs have
been given by Liouville, Journal de Math. 1 (1858), 1; Boussinesq, Comptes rendus,
94 (1882), 1465 ; Rayleigh, Theory of Sound, 2 (1896), 97 et seq. The proof given here
is not rigorous: we justify it later as a special case of a more general theorem of
Kirchhofi. Poisson’s formula has been extended to the case of wave motions in a
space of constant curvature by E. Hélder, Leipziger Berichte, 19 (1938), 55-66.



§3] HUYGENS' PRINCIPLE 156

That the solution (3.56) holds only when ¢ is positive is of im-
portance: it arises from the fact that the solution was generated by
sources acting only when —e <t <0, and these can evidently
produce no effect when ¢ is negative.

§ 3.6. Velocity waves and condensation waves

In the case when u is the velocity potential of sound waves in air,
the velocity vector q and the condensation s are given by

ou
= —gradu, cls = —.
q gr 7

Hence the function f in Poisson’s solution (3.56) determines the
initial condensation, the function g the initial distribution of velocity.

If the air is initially at rest, g is identically zero, and Poisson’s
solution reduces to its first term

u = tMp 4{f}.

The corresponding sound wave is due to an initial condensation in
a medium initially at rest, and so may be called a condensation wave.
If the condensation is initially zero everywhere, the solution reduces

to its second term 2
U= a(tMP,d{g});

the corresponding sound wave may be called a velocity wave.

Example. u is a wave function, and U is defined by
U(r,ct) = M, {ulz,y,z,ct)}.
Prove that U(r,ct) = {p(ct+7)+i(ct—r)}/r,

where ¢ and i are arbitrary functions. Deduce Poisson’s formula for u.

§ 3.7. The verification of Huygens’ principle for expanding isotropic
spherical waves
The velocity potential of isotropic spherical waves with centre O

is of the form 1 1
U= —RFI(R—ct)-}-—RFz(R+ct), (3.71)

where F| and F, are arbitrary functions and where R denotes the
distance from O. We can determine F, and F, from the initial values
of u and du/ét, and, as the form of (3.71) shows, an initial disturbance
splits up in general into two isotropic waves, one converging to O,
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the other diverging from O. An expanding spherical wave is obtained
only when the initial values of u and ou/dt satisfy the relation

Rou o(Ru)

faod =0

c o OoR

We shall consider here the case of an isotropic expanding spherical
wave-motion in which the initial disturbance is specified by

(3.72)

w = %F(R) t = 0),

where F(R) is non-zero only when R, << R < R,; thus the initial
disturbance is null except in the shell bounded by the two spheres
S; (R = R,) and §; (R = R,). Then by (3.72) the initial value of
du/ot is

in the shell and is zero elsewhere. We show that Huygens’ descrip-
tion of the propagation of this disturbance is in agreement with the
analytical solution given by Poisson, namely,

u(P;t) = tM{f}+ 2 (ML{g))
where f=—2F@®), g= %F(R),

and M denotest a mean value taken over the sphere S with centre P
and radius ct. (See Fig. 1.)

Fia. 1

Let R, be the distance of P from the origin. Then if P is outside
8§,, the disturbance at P is null, except possibly during the interval

t We omit the double suffix P, ct indicating the centre and radius of the sphere
over which the mean values are calculated. No confusion will be caused by this.
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(Ry— R,)/c <t < (Ry+ R,)/c; for at an instant outside this interval
of time the sphere S of radius ¢t does not cut into the shell to which
the initial disturbance is confined, and so the mean values of f and
g are both zero. Similarly, if P is inside S,, the disturbance is null
except possibly during the interval (R,— R,)/c <t < (Ry+ R,)/c.
It remains to consider Poisson’s solution when S does cut into the
shell bounded by S, and S,.

Let 6 be the angle between any radius vector r at P and the line
PO; we then have

R? = Ri+r?—2R,rcosb, R,rsinfdf = RdR.
Hence

Mig} = Z};J.fgsmﬁdﬁw =% gsin 8 do

f RR) iR,

where the limits of integration will be found later. This gives

0 1 , 3R'
500y = o (PR 2 — Py * 3,

Similarly,

Ry
tM{f}=.2’_cffsinod9= —%fFlgf)dR

1 , ’
= 5 FE)—F(R))}

Substituting in Poisson’s formula, we have

) (Ry) 10R,) F(R;) 1 2R,
wP;t) = 232{ —z—af}— 5R, {1 z‘aT} (3.73)

There are three cases to be considered, viz. (a) P outside §,, (b) P
inside 8§, (c) P between S; and S,.
(@) P outside S;; (B, > R,).
(1) ¢t < Ry—R,. Then u = 0 since S does not cut into the shell.
(ii) Ry— R, <ct < R,—R,. In this case, we have
R, =R, R, = Ry—ct,
F(Ry—ct) F(R,)

4617 C

and so u(P;t) =
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This agrees with the known value

u(P;t) = Mﬁ—“?

0

only if F(R,) = 0, i.e. if F(R) is continuous at R = R;,. We shall,
in what follows, assume that the initial data are continuous,{ so
that F(R,) = F(R,) = 0.

(ili) Ry—R, <ct < Ry+R,. Then R; = R,, R, = R,, and so
u(P;t) = 0.

(iv) Ry+ R, <ct < Ry+R,. Then R{ = R,, R, = ct— R,; again
u(P;t) = 0.

(v) Ry+ R, <ct. In this case u(P;t) = 0 since S does not cut
into the shell.

Thus Poisson’s formula verifies Huygens’ geometrical construction
in the case when P lies outside the shell, provided that the initial
data are continuous.

(b) P inside S,; (R, < R,).

(i) ¢t < R,—R,. Then u = 0, since 8§ does not cut into the
shell.

(ii) B,— R, < ct < R,—R,. In this case we have

R, =R, R,=ct—R,;

since F(R,) = 0 by hypothesis, we have u(P;t) = 0.

(iii)f R,—R, <ct < R,+ R, Then R;=R;; R,= R,, and
u(P;t) = 0.

(iv) R+ Ry, <ct < Ry+R,. Then R, = R,, R, = ct— R,; hence
u(P;t) = 0.

(v) Ry+ R, <ct. In this case, the effect at P is null, since S does
not cut into the shell.

Poisson’s formula does not give rise to a returning wave, as the
crude geometrical form of Huygens’ principle would. Thus in the
present analytical formulation there is no need of a special hypothesis
discarding the inner sheet of the envelope of the secondary wave-
fronts.

t For a discussion of wave-motions with discontinuities at the wave fronts, see
Love, Proc. London Math. Soc. (2), 1 (1903), 37-62, 291-344 ; Rayleigh, ibid. 2 (1904),
266-9. The present example is taken from the first of these papers.

! We assume here that R, > §(R,—R;). If not, the argument needs slight
changes.
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(c) P lies between S, and S,; (R, < Ry < R,).

A similar argument shows that

1
yoA
until the instant ¢t = (R,— R,)/c, and that the disturbance is there-
after null at P.

The disturbance we have just considered is confined at the instant
t to the shell bounded by the spheres R = R,+ct, R = R;+4ct. In
particular, if R,— R, is very small, we have in effect a solitary
spherical expanding wave of the type considered by Huygens. The
initial disturbance is confined to a very thin layer on the surface of
the sphere S,. At the subsequent instant ¢ the disturbance is confined
to a ldyer of the same thickness on the surface of the sphere
R = R,+-ct, which is the outer sheet of the envelope of spheres of
radii ct, whose centres lie on S,. Thus Huygens’ geometrical construc-
tion, with its restriction that only one sheet of the envelope is to be
considered, is justified by Poisson’s analytical solution of the equation
of wave-motions.

Moreover, Huygens’ statement that a secondary wave is of effect
only at the point where it touches the envelope also follows. For
when the layer is very thin, Poisson’s integrals for M{f} and M{g}
are extended over a very small area on S near the point P, where
OP cuts S,; and if P is in the wave-front at the instant £, the
secondary wave, with centre P, and radius ct touches the envelope
at P.

In a similar wayt we can justify Huygens’ construction for an
isolated spherical converging wave or an isolated plane wave; but
only if the initial values of the velocity potential and condensation
are suitably chosen. In other words, to justify Huygens’ principle
for isolated waves, we must have recourse to analysis and take into
account the dynamics of the medium in which the wave-motion
occurs.

u(P;t) = — F(Ry—ct)

Example. Apply Poisson's solution of the equation of wave-motions under
the initial conditions
_ F(R)

u=— (R, < R < R)), =0 (R> R, R < R,),

t See Croze, Annales de Physique, 5 (1926), 370-439 (383-98).
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where F(R) is continuous at R; and R,. Discuss the nature of the solution
so obtained. (Love.t)

§ 4. Huygens’ principle for monochromatic phenomena

§ 4.1. Fresnel’s extension of Huygens’ principle

In his memoir on Diffraction, which won the Paris Academy’s prize
in 1818, Fresnel} made an important extension of Huygens’ principle,
in that he replaced Huygens’ isolated spherical waves by purely
periodic trains of spherical waves and made use of the principle of
interference. On this theory, light ought to appear, not necessarily
on the envelope of the secondary waves, but at every point where
these secondary waves reinforce one another; on the other hand, there
should be darkness wherever these secondary waves destroy one
another. In this way, Fresnel was able to account, not only for the
rectilinear propagation of light of very short wave-length and the
laws of reflection and refraction, but also for certain diffraction
phenomena.

Fresnel, at this stage, still regarded light as a disturbance in an
aether analogous to sound in air. He did not yet realize that the
phenomenon of polarization made such a theory untenable. (His
elastic-solid theory of the luminiferous aether, in which light con-
sisted of transverse vibrations, dates from 1821.) Accordingly, we
shall discuss here the theory as applied to sound waves of small
amplitude; the application to the scalar theory of light is merely
a matter of changing the terminology.

Let us consider sound waves of a very general character, which
are generated by making a certain part of the medium execute forced
vibrations, not necessarily ‘monochromatic’. Such a wave-motion is
evidently much more complicated than that which arises when a
portion of the fluid is initially disturbed from its equilibrium state
and the disturbance is allowed to propagate itself freely; for a wave-
motion of the former type is the result of superposing an infinite
succession of wave-motions of the latter type. It seems likely that
in a wave-motion produced by the forced vibrations of a portion V
of the fluid, the effect at the instant ¢ at the point P outside ¥ would
depend on the velocity and condensation at each point @ of V at

1 Loc. cit. 44.

1 Mém. de I’ Acad. 5 (1826), 339; reprinted in Fresnel's (Xuvres complétes, 1, 247.
For the history of this development, see E. T. Whittaker, History of the Theories
of Aether and Electricity (1910), 113-15 and Croze’s paper already cited.
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the instant {—P@Q/c. This idea, which is implicit in the work of
Fresnel,T attained a rigorous analytical formulation in Kirchhoff’s
integral theorem.

In the case of ‘monochromatic’ forced vibrations the matter is
somewhat simpler. Let us consider for definiteness the case con-
sidered by Fresnel, namely that of a ‘monochromatic’ source of
expanding waves. If the source is at the origin, the wave-motion is
characterized by the velocity potential

U= lei"("—c’) (4.11)
r
or, rather, by its real part.] In this motion the sphere S, whose
equation is r = r,, is a wave-surface; for all the particles of the fluid
on 8 at the instant ¢ are being affected by the disturbance which
left the source at the instant t—rg/c.

The disturbance which reaches S at the instant ¢ continues to be
propagated outwards and reaches the wave-surface S’ of radius 7,
at the instant , ,

t' = t4(rg—ro)/c.

It seems natural to regard the vibrations of the particles on S at
the instant ¢’ as being due to the vibrations of the particles on § at
the instant ¢, instead of being due to the pulsations of the source
at the instant t’'—rg/c.

This is, in fact, the assumption which Fresnel made. He supposed
that each element of the wave-surface S acts as a secondary source
which is sustained by the displacement and velocity given to the
particles of the surface element by the primary wave. The resultant
effect is produced by the interference of these secondary waves.

If Fresnel’s theory is to provide a valid extension of Huygens’
principle, the secondary sources must produce not only the correct
effect outside S but also a null effect inside S. Fresnel believed that
this could be done only by taking account of the dynamical effect
of the condensation and of the velocity in the primary wave at each
point of §; that is, by supposing that each secondary source emits
a ‘condensation wave’ and a ‘velocity wave’. Thus an analytical
formulation of Huygens’ principle which involved only one of these

1 See Croze, loc. cit. 398-405.
1 Asis usual in this sort of work, it is simpler to work with complex wave-functions,
and then to take real parts at the end of the analysis.



22 THE ANALYTICAL REPRESENTATION OF [crAP. 1

two types of secondary wave would give rise to a non-null effect
within § and would have no physical justification.

Unfortunately Fresnel was unable to cairy out this programme
completely. He considered only the case when the wave-surface S
is of large radius compared with the wave-length A. In this case (cf.
§ 3.3) the velocity ¢ and the condensation s at points of S are con-
nected approximately by the relation

q = cs.

He thought that it would then suffice to attribute to the elements
of S the same velocity as is communicated to them by the primary
wave in order to obtain the correct effect at points outside S and at
a large distance from it. Actually considerations of this nature lead
to incorrect results unless one makes, as Fresnel did, the following
additional assumptions:

(i) the elements of S execute vibrations whose amplitude is to the
amplitude in the primary wave asis 1 :A;

(ii) the elements of S are oscillating a quarter of a period ahead
of the primary wave.

The necessity for these two additional assumptionst led many to
regard Fresnel’s theory merely as a convenient means of calculation
which lacked any sound physical basis.

Various attempts have been made to overcome the phase difficulty.
For example, Gouy] replaced each element dS by a small pulsating
sphere (of surface area 2d.S), which emitted monochromatic isotropic
waves. This does give the correct phase; but as it also gives rise to
an effect inside S which is not null, it cannot be accepted as a satis-
factory formulation of Huygens’ principle.

Nevertheless, it is the case, as we shall see in § 4.4, that a careful
analytical formulation of Fresnel’s original idea, that each element
of § gives rise to a condensation wave and a velocity wave which
can be determined on dynamical principles, leads to correct results
without any arbitrary assumptions regarding the phase and ampli-
tude of the secondary sources. Moreover, the formula obtained in
this way is in complete agreement with Helmholtz’s analytical

t Fresnel also assumed that the effect at a point P outside S is due only to the
secondary sources on the part of S visible from P, and not to the secondary sources

all over S. This assumption makes little difference when the wave-length is small.
¥ Comptes rendus, 111 (1890), 910-12; Annales de Physique (6), 24 (1891), 145.
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formulation of Huygens’ principle for monochromatic phenomena,
which we now discuss.

§ 4.2. Helmholtz’s formula
The velocity potential of sound waves of small amplitude satisfies
the equation of wave-motions
o, 1 0%
T cror’
If the disturbance is ‘monochromatic’, u will be of the form-" ve-tk<,
where v is independent of ¢ and is a solution of

(V2+k%)v = 0. (4.21)
This equation reduces to Laplace’s equation when k& = 0; and the
formula of Helmholtz,} which we are about to prove, then reduces
to the well-known Green’s equivalent layer formula in the theory of
attractions.
We start with Green’s identity

jff (vVPw—wV) dxdydz = J‘f (vz—if—wz—z) ds, (4.22)
v N

where S is a closed surface bounding the volume V and 9/ov denotes
differentiation along the outward normal to §. This identity is
certainly valid] when v and w and their first- and second-order partial
derivatives are continuous within and on 8§, or, as we shall say in
future, when v and w are regular within and on S. If » and w satisfy
(4.21) and the prescribed conditions of continuity, (4.22) becomes

)

In particular, if w = e*"/r, where r denotes distance from the fixed
point P, we have

ff {”a_y(T)_Ta_v} ds —o, (4.23)
S

provided that P and the singularities|| of v lie outside S.

t Journal f. Math. 57 (1859), 7.

1 Here, and throughout this book, we take the simplest sufficient conditions for
the validity of Green's identity. Lighter sufficient conditions can be obtained as in
Kellogg's discussion of the Divergence Theorem (Foundations of Potential Theory
(Berlin, 1929), Ch. 1V).

|| By a singularity of ¥ we mean a point at which v or one of its first or second
partial derivatives is discontinuous.
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If P lies inside S but the singularities of v are still outside, equation
(4.23) no longer holds, since w becomes infinite at P. To avoid this
difficulty, we apply Green’s identity (4.22) to the volume }| bounded
externally by S and internally by the sphere o, of centre P and small
radius e. This gives

0 [e*r\ etk v
[ falF)-F 5
S
ikr ikr
- [[ 13-
N ov\ r r ov
=H {vi(ﬁ')_ﬁ'a_”} s
or\ r r or
= hmff {vefir(zk——)—‘ikr 6_'0} ds
T or

since the integral over § is independent of . But since v and ov/or
are continuous at P and the element of surface on ¢ is €*sin § dfd¢,
the value of this limit is —4nv(P).

We have thus proved the following theorem of Helmholtz:

Let v be a solution of (V24k?)v = O whose first- and second-order
partial derivatives are continuous within and on a closed surface S,

and let Py — J~J~ {-enr_la-z_:’;_ a_v(e"")} ds, (4.24)

where r 18 distance from a fixed point P and 8/0v denotes differentiation
along the outward normal to S. Then the value of I(P) is 4mv(P) or
zero according as P lies inside or outside S.

In this theorem the sources of the disturbance specified by the
‘monochromatic’ wave-function ve-t4¢ lie outside a certain closed
surface. In most of the applications all the sources lie at a finite
distance and the effect at a distant point is to be expressed as an
integral over a surface containing the sources. Accordingly we must
modify the theorem to cover the case when all the sources lie inside
a closed surface.

The function v is now a solution of (V2442)v = 0 whose first- and
second-order partial derivatives are continuous on and outside a
closed surface S. We choose R so large that the sphere X, whose
equation is r = R, encloses §; and we denote by ¥, the volume
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bounded externally by X and internally by S. Then if the normal
v is drawn into ¥, the value of
ikr
e
r

- [+ ] 53]

is —4mv(P) or zero according as P is or is not a point of V.
The normal v at points of S is the ordinary outward normal.
Hence, in the notation of (4.24),

J(P) = I(P)— H?{Z_;’_ikwr;} ds
z

= I(P)— ff eikR {r(gg—ikv)}r=kdw — jf e* Ry} _rdw,

where dw is the solid angle subtended by an element of the sphere X
at its centre P. Now make R — c0. The term

I ot o

tends to zero if v — 0 as r —» oo, uniformly with respect to the polar
angles 6 and ¢; in particular, it tends to zero if

|rv] < K asr—>o0. (4.25)
The term jf etkR {r (a—v—zkv), dw
or r=R
tends to zero if T(Z—:_)—ikv) >0 asr—>o0 (4.26)

uniformly with respect to 6 and ¢. Condition (4.25) is called by
Sommerfeldt the ‘ Endlichkeitsbedingung’, condition (4.26) the ‘ Aus-
strahlungsbedingung’. We shall return later to point out the im-
portance of (4.26); at the moment, we merely remark that, when it
is satisfied, the wave-function ve—%¢< is the velocity potential of a
system of expanding waves.

When (4.25) and (4.26) are satisfied it follows that the value of
I(P) is —4mv(P) or zero according as P lies outside or inside the
closed surface S containing all the sources. Hence we have:

t Jahresbericht der D.M.V. 21 (1912), 309-53 (326-34). See also W. Magnus, ibid.
52 (1943), 177-88; F. Rellich, ibid. 53 (1943), 57-65, where it is shown that condition
(4.25) is not necessary; F. V. Atkinson, Phil. Mag. (40), 1949, 645-51.
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Let v be a solution of (V24k2w = 0 whose first- and second-order
partial dertvatives are continuous outside and on a closed surface S,and let

|rv] < K,
ov .

— —ik 0
r(a?_ 2 v)—>

uniformly with respect to 8 and ¢ as r — co. Let

e*rov 0 etk
I(P —_———V— as,
»=[[{Fa—a5)

where r is the distance from a fixed point P and 0/ov denotes differentia- .
tion along the outward normal to S. Then the value of I(P) is —4mv(P)
or zero according as P lies outside or inside S.

Example. ¢ and i are two solutions of (V2+4k?)v = 0 which satisfy the
following conditions:

(i) ¢ and its first- and second-order partial derivatives are continuous within
and on the closed surface S;

(ii) ¢ and its first- and second-order partial derivatives are continuous
outside and on S, and i satisfies Sommerfeld’s conditions at infinity.

Prove that, if ¢ = 4 on S, the value of
eﬂ.r a¢ 3¢,
311 3V

is 4w(P) or 4mj(P) accordmg as P is inside or outside S. Show also that
if /oy = &fijov on S, the value of

) (eikr)
[[e-02(S) as
s
is —4nd(P) or —4m)(P) according as P is inside or outside S.

§ 4.3. Restrictions on the use of Helmholtz’s formula
Helmholtz’s formula

1 eikr o [etkr
oP) = - f J {‘FT—cpa_v (7)} ds (4.31)
expresses the value of the solution v of
(V2+E2)p = 0, (4.32)

regular within a closed surface S, at any point P inside S in terms
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of the values ® and ¥ taken by » and 9v/ov on 8. We can, however,
express v(P) in terms of ® alone, by the equationt

1 G
oP) = —o l f 0% as, (4.33)

where G denotes the Green’s function with singularity at P.

We see from (4.33) that a knowledge of the boundary values of v
alone on S determines v inside S, and, moreover, determines » in
general uniquely. In particular, we can find from (4.33) the boundary
values of dv/ov on S. Thus a knowledge of @ alone determines ¥,
and in general does so uniquely. Conversely, it can be shown that
a knowledge of ¥ alone determines ® and, in general, does so uniquely.
Hence the functions ® and ¥ in (4.31) are related and cannot be
assigned arbitrarily and independently of each other.

Of course, when ® and ¥ are arbitrarily assigned, the expression
on the right-hand side of (4.31) does satisfy the differential equation
(4.32), since it is obtained by the addition of particular solutions of
the form e**/r and its normal derivative. But these arbitrary values
of ® and ¥ are not necessarily the boundary values of v and dv/dv.

There is, however, an exceptional case to which the theory of
Green’s function is not applicable, and in this case a knowledge of
one of the functions ® and ¥ does not determine the other. To see
how this arises, let us suppose that u = vcoskct is the velocity
potential of sound waves of small amplitude, so that v satisfies
equation (4.32). Then if 8 is a rigid boundary, the air inside S
possesses certain normal modes of vibration, corresponding to a
sequence k,, k,,... of values of k, the eigenvalues of the problem.
The velocity potential « = v, cosk, ct corresponding to one of these
normal modes satisfies the boundary condition dv,/ov = 0 on 8.
Hence the problem of finding the solution of

(V4-k2 = 0,
regular within S, given the boundary values of ov/dv on §, is an
indeterminate problem; for, if V is one solution,

v = V+Ao,
is also a solution for all values of the constant 4. Similarly, there

t Seo Pockels, Uber die particlle Differentialgleichung (A +k*)u = 0 (Leipzig, 1891),
p- 280. The equation (4.33) does not provide an analytical formulation of Huygens’
principle since, as we shall soe later, it does not give a null effect outside S.
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exists another sequence %y, k,,... of values of k such that the problem
of finding the solution of

(V24-k2)p = 0,

regular within S, given the boundary values of v on 8, is also an
indeterminate problem.

To sum up, except when the constant % is one of the eigenvalues
k, and k,, a knowledge of one of the boundary functions ® and ¥
in (4.31) determines the other uniquely, and together they determine
v uniquely. '

These exceptional cases do not occur in the exterior problem. It is
true that there are solutions of the equation (V24 k2)v = 0, for certain
special values of k, which are regular outside S and satisfy the
boundary condition » = 0 (or dvfov = 0) on S and the condition of

finiteness o] < K (4.34)

at infinity. But all these solutions (eigenfunctions) represent standing

waves and do not satisfy Sommerfeld’s Ausstrahlungsbedingung,

namely that (
r

g—ikv) >0 (4.35)

uniformly with respect to the polar angles 8 and ¢ as r - co.

By imposing the additional condition (4.35), we can apply the
Green’s function argument to the exterior problem and assert that,
for any value of k, a knowledge of one of the boundary values ® or
¥, taken on S by a solution v of (4.32), regular outside S, and its
normal derivative, determines the other uniquely, and that together
they determine v by means of the formula

o(P) = —éﬂ {\F%—d)é%(e_:_)’ ds.

§ 4.4. The physical meaning of Helmholtz's formula
Let u = ve~tkd

be the velocity potential of sound waves in air due to ‘monochro-
matic’ sources all lying inside a certain closed surface S. Helmholtz’s
formula expresses the value of u at a point P outside S as due to
a certain distribution of simple and double sources over S. Our proof
of this was of an entirely analytical character; we now give an
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alternative proof by means of the dynamical arguments suggested
by Fresnel.t

Let @ be a typical point of S, at a distance r, from P; let v be the

Fia. 2

unit vector drawn along the inward normal to S at . The particle
velocity at @ has a component in the outward-normal direction

00 g-iket,

ov
Hence air flows across the element dS at @ at the rate

O et 4,8,

14

In addition to producing a flux across dS, the sources within S
also change the pressure at @ from the equilibrium pressure p to
p+8p. If p is the equilibrium density of air, §p is given by

dp = pc3s,
where s is the condensation, and so
dp = —pikcve—ikd,
Hence there is a thrust on the area dS at  of magnitude
—ptkcve-t*tdS.

Now suppose that the sources and all the air inside S are
destroyed. In order to get the effect outside S specified by the
velocity potential ve-*<, we must introduce sources over § with the
following properties:

(@) Air is created at each element dS at the rate

ov

v

e-iketdg,

t Croze, Annales de Physique, 5 (1928), 370 (408-11). See also Larmor, Proc.
London Math. Soc. (2), 19 (1921), 169-80.
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(b) A force —pikcve-iketdS perpendicular to dS acts on the air
in contact with d8.
The creation of air at dS makes this element a source of strength

47 ov
the corresponding velocity potential at P is

1 P aeangg, (4.41)

dr, Ov

It is well knownt that a concentrated force Fe-t ¢ acting at @
along the outward normal to S gives rise to a sound wave of velocity

potential +F @ etklry—ct)
" 4mpke 3_11{ 7y }
Hence when the force is given by (b) above, the resulting velocity
potential at P is ihelry —cl)
_v ﬂ{e’ i } (4.42)
4w ov| 1,

The total effect of the sources on dS is obtained by adding the
velocity potentials (4.41) and (4.42). Of these, the first is determined
by the normal velocities of the air particles on dS and so represents
the velocity wave. The second depends on the condensation in the
primary wave at ¢ and so represents the condensation wave (§ 3.6).

The effect of all the sources on S is obtained by adding (4.41) and
(4.42) and integrating over §; this gives

1k(ry —cl) tk(ry—ct)
u(P;t) = 1 ¢ a—v—v—a- i ds,
4 rp ov ov\ 7
S

which is Helmholtz’s formula in the case when P lies outside a closed
surface S containing all the sources. By a similar argument we can
show that Helmholtz’s formula also holds when P lies inside a closed
surface S containing none of the sources.

Fresnel believed that, if all the sources were inside S, the secondary
sources on each separate element dS would produce a null effect at
points within S. This is evidently not the case. The effect inside §
produced by the action of all the secondary sources on § is however
null, as can be seen by the following simple argument.

Suppose that P is a point inside S. Introduce a diaphragm C

1t Lamb, Hydrodynamics (Cambridge, 1916), 496.
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dividing the space inside S into two regions, of which one contains P
and the other contains all the sources. The rim of C divides S into
two areas

v v

S urces|C 0P

Fi1a. 3

S’ and 8", as shown in the figure. We now apply Helmholtz’s
formula to the two surfaces 8’4 C and 8"+ C. This gives

w(Pit) = — f f {eﬂ'("_d’a_”_vi(em"'d’)} ds,  (4.43)

TR ov o\ n,
th(ry—ct) tk(ry—cf)
w(P;t) = — f f {e @—vﬁ(e )} ds.  (4.44)
Ty ov\ 7

Evidently on C the outward normals to the closed surfaces §'+C
and 8"+ C are in opposite senses. Hence, when we add (4.43) and
(4.44), we obtain

th(ry —cl) tk(r, —cl)
o__” {e : @_vﬁ(e : )}ds;
n ov v\ n

in other words, the effect inside S is null.

Apart from the fact that the secondary source on each separate
element dS does not produce a null effect inside S, we now see that
Helmholtz’s formula presents an analytical form of Huygens’ prin-
ciple in the sense understood by Fresnel. It is not merely a convenient
analytical formula, but has a sound dynamical basis; the secondary
sources are real in the sense that their amplitude and phase are
determined dynamically by the velocity and condensation in the air
at points of the surface S.

If it were possible to find a distribution of sources on S, different
from that of Helmholtz, which would give the correct effect at points
outside S and a null effect inside S, such a distribution would have
no physical meaning whatever, since it could not be obtained by
considering the dynamics of sound waves in air. Actually no such
alternative distribution exists. For if there were such a distribution,
we could obtain by subtraction another distribution which would
give a null effect everywhere. But a distribution of sources on §
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giving a null effect everywhere would itself be null, contrary to our
assumption. Hence Helmholtz’s distribution of sources is the only
one with the required property.

§ 4.5. Retarded values

It is often convenient to make use of the idea of the ‘retarded
value’ of a function. If ¢ is a function of the coordinates (z,y,z)
of a variable point @ and of the time ¢, say

¢ = ¢(:l:, y’z,t),

and if 7 is the distance of ) from a fixed point P, we write

[¢] = ¢(:B, Y,z t—g)
and call [¢] the retarded value of ¢.

§ 4.6. Stokes’s diffraction formula and the theory of Fresnel

We now derive from Helmholtz’s integral an important approxi-
mate analytical formulation of Huygens’ principle, due to Stokes;
this approximation is valid when the wave-length is very small
compared with the other distances involved.

Let us consider in the first instance the case of expanding mono-
chromatic isotropic spherical waves with complex velocity potential

eik(f—C')
U = :

Fic. 4

If we take S to be the wave-surface r = r,, it follows from Helm-
holtz’s theorem that the value of

ik(ry—cl) tkr tkro tk(ry —ct)
I_=__LJ‘J‘{e 1 3(e °\ e 0 [etkln-c s
47 ry  Org\ 7, To 01y 2
S
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is u(P;t) or zero according as P lies outside or inside S. This integral
transforms into

I= ——jf gtk(r;+—ﬁ_c‘){zlc(l-{—cosz,l:)——-}- 0051/;}

_ o
aro

Now, by hypothesis, the wave-length 2x/k is small compared with
ro and r,, and so 1/r, and 1/r; are negligible compared with k. This
gives the approximate formulaf

where cosy = cos LPQ@n =

1 ) ik
—_ th(ro+ri—c) ~™7 (] 4.61
I yp ff e 7'07'1( +cosy) dS, (4.61)
which is substantially Fresnel’s diffraction formula.
. ei’dfo—d)
But since U=
To

on S, we have there
th(ro—ct) ik(ro—cl)
ou e (zlc 1) i
To

on 7o
since we are neglecting 1/r, in comparison with k. Hence
ou . e‘ik(fo +r1—cf)
7] -ems
on

b
To

Yo
Substituting in equation (4.61), we have
w(P;t) = ——ff [3“] 1+°°S‘l‘ds (4.62)
when P is a point of the region into which the wave-surface S is
progressing.

The case of a monochromatic progressive plane wave-motion is
rather more difficult. We start with a complex velocity potential
U = eikiz—l),
but have to take real parts before proceeding to a certain limit. We
shall denote the real part of U by w.

1 Note that, if A is the wave-length, the contribution of the element dS is of the

form el.kr. tmi etkir—ct)
~———— (14-cos ¢)

L&
At first sight this seems to 1mpl_v, as Fresnel believed, that the secondary sources
oscillate a quarter of a period ahead of the primary wave.
4617
D
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Without loss of generality we may take the wave-surface S to be
the plane z = 0; if P has coordinates (z,,y,,2,), there are two cases
to be considered according as z, is positive or negative. We apply
Helmholtz’s theorem, taking as the surface of integration S the
boundary of the volume in which ;, << R and = > 0: S consists of

x, positive Fi1a. 6 x, negative

a plane area 8, and a portion of a sphere S,, as shown in the two
figures. In either case Helmholtz’s integral is

et 9 _ep O [€5Fm
I= ——ff { —(e"‘(“’-w)—e"‘(” e }dS,
ry ov ov\ 1y

and this has the value U(P;t) or zero according as x, is positive or
negative.
The integral over §, is

e*T 0 ikwcy . giktz—c 0 (€7
ff { " aa:(e )+e o, . cos¢« ds.

If we neglect 1 /r1 in comparison with k, we obtain the approximation
I —_ — J‘f etk(z+r1—cl)(1+005¢) dS = —— ff 1+008¢I|:3U:| dS

where square brackets again indicate a retarded value.
The integral over S, is

L =— f J‘ {eum i (e 1k(z—d))i_.__eik(:—cl) X2 e_"“ﬁ } is
N ory ar\

f f B e e o
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Now the integrand has a constant value on all the circles in which
S, is cut by planes parallel to .S;, and so we can carry out the integra-
tion by dividing S, into zones bounded by these circles. The area
on §, bounded by the two circles x = z,4-¢£, ¢ = x,+ £+48¢€ is 27 R 8¢,
and r, = Ron S,; hence

gtk R+z,—cl)
LY

R
f ekE(ikE—ik R+ 1) dé

¢ik(R+z1—cf) ” R R4=x
Z  [etk(E— ik(R—chy2t T 1
o R, = 3R

Combining these formulae for I, and I,, we have the approximate
formula
-1 J'J‘ 1+cos¢[3U] s te IHR_C,)R-FxI (4.63)
7

We cannot make R tend to infinity in (4.63), since the second term
on the right-hand side does not tend to a limit. This difficulty can be
overcome by taking real parts and choosing special values for R.

If we write u = cos k(x—ct), it follows from (4.63) that

u(P;t) = —_ff 1+c°“¢[a“] ds +ﬁi"_1cosk(R—ct)

(4.64)
if P is a point of the region into which the wave-surface § is ad-

vancing. If we give R the special value ct+(m+4)n/k, where m is
a positive integer, (4.64) becomes

w(P;t) = J‘J‘ l—l—cos«,b[au] is.

Hence, if we make m tend to 1nﬁmty,
) = — L [ [ 1Hcosyfou
w(P;t) = — - f f = [ém] ds, (4.65)
s

where the integration is, in a sense, over the whole wave-surface S
but has to be calculated by the special limiting process indicated.

We have thus proved that, for monochromatic plane or spherical
waves with velocity potential u,

w(P;1) = ff 1+cgs¢[8u] ds.

where P is a point of the region into which the wave-surface S is
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progressing. This formula is usually known as Stokes’s diffraction
formula.t For the application of the formula to the approximate
solution of diffraction problems, we refer the reader to the standard
text-books.

§ 5. Wave-motions in three dimensions
§ 5.1. Kirchhoff's formula

In the earlier part of this chapter we have given the two analytical
formulations of Huygens’ principle for sound waves associated with
the names of Poisson and Helmholtz. Poisson’s formula justifies the
principle in the case of an isolated wave due to an initial disturbance;
Helmholtz’s formula holds in the case of a ‘monochromatic’ distur-
bance. We now show that these formulae are particular cases of a
general theorem due to Kirchhoff, concerning sound waves of any
structure and origin.

We have seen that, if u — pe—iket

is a ‘monochromatic’ wave-function with no singularities within or
on the closed surface .S, then the value of u at a point P (z,,¥,,2,)
within § at the instant ¢ is given by

gikr—cl)\  gikir—ct) oy
w0 =g [[ fal57)-5a)

where r is the distance from P to a typical point (z,y,z) on S and
o/on denotes differentiation along the inward-drawn normal to S.
The value of the integral is zero when P is outside S.

Introducing the ‘retarded’ values} of the various functions in-
volved, we find that Helmholtz’s formula can be written as

= & [ o 2[)- o
o -affeRtea) e

=& ] (542 5 1E]

since %—;‘ = —ikcu and therefore [%’c{] = —tkc[u].

t It was given by Stokes in his momoir on the ‘Dynamical Theory of Diffraction’

(Trans. Camb. Phil. Soc. 9 (1849), 1; Math. and Phys. Papers, 2, 243).
1 See § 4.5.
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The formula we have just obtained is due to Kirehhoff. It ex-
presses u(P;t) as a surface integral in which the period 2x/(kc) does
not occur explicitly, and so it is true for any period. Now an arbitrary
function of ¢ can be expressed as a sum of periodic constituents by
means of a Fourier series or a Fourier integral. It follows that, since
Kirchhoff’s formula is linear in %, it holds for any solution of the
equation of wave-motions, not merely for solutions corresponding to
monochromatic disturbances.

We have thus obtained the following theorem:}

Let u(z,y,z,t) be a solution of the equation
1 2%
T
whose partial derivatives of the first and second orders are continuous

within and on a closed surface S, and let (x,,y,,2,) be a point within S.
Then

et = [ (202 &[] o

where r 18 the distance from (x,,¥,,2,) to a typical point of S, o/on
denotes differentiation along the inward mormal to S, and square
brackets indicate retarded values. If, however, the point (x,,y,,2,) lies
outside S, the value of the integral is zero.

This theorem can also be applied when % has no singularities in
the volume ¥V bounded internally by a closed surface S and externally
by a sphere X whose equation is 22+4y2+422 = R?; if we denote by
o/on differentiation along the normal drawn into V, the value of the
sum of the integrals over S and X is u(z,,¥,,z,,t) or zero according
as (x,,Y,,%;) is or is not a point of V||

Now make R — o0; we then obtain a theorem valid when « has
no singularities outside a closed surface S for all values of ¢ from
—oo up to the instant under consideration, provided only that the

t+ We do not go into a deteiled application of the theory of Fourier series or
integrals, as it is possible to give a direct proof of Kirchhoff’s formula without using
Helmholtz’s formula. See § 5.2.

1 See Kirchhoff, Berliner Sitzungsber. (1882), 641; Annalen der Phys. 18 (1883),
663; Vorlesungen ii. math. Phys. 2 (Optik), 23. The theorem has been generalized by
W. R. Morgans in Phil. Mag. 9 (1930), 141, to cover the case when S is a moving
surface.

[| It must not be a point on S or X.
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integral over Z tends to zero. This last condition is certainly satisfied
if u behaves like f(ct— R)/ R for large values of R, where f(ct) and f’(ct)
are bounded near ¢ = —o0. The result so obtained is:

Let u(x,y,z,t) be a wave-function which has no singularities outside
a closed surface S for all values of t from —oo up to the instant under
consideration, and which behaves like f(ct— R)/R at a large distance R
from the origin, where f(ct) and f'(ct) are bounded near t = —oo. Then
if (21,91,2,) 18 @ point outside S, Kirchhoff’s formula holds, provided
that 8jon means differentiation along the outward normal to S. If
(%1, Y1,2,) ts inside S, the value of the integral is zero.

These two theorems constitute Kirchhoff’s integral formulation of
Huygens’ principle. As in the case of Helmholtz’s formula, the
boundary values of » and du/én on S cannot be arbitrarily assigned
independently of each other. (See § 4.3.)

§ 5.2. A direct proof} of Kirchhoff’s formula

Let S be a closed surface within and on which the function v(z, y, z)
and its partial derivatives of orders one and two are continuous, and
let r denote the distance from a fixed point P (z,,v,,2,) outside S.
Then, by Green’s transformation, we have

fs f {”62(;)‘; Zv_v} 45 + U f %V”” v =0,  (521)

where V is the volume bounded by S and v the normal to S directed
out of V.
Let u(z,y,z,t) be a solution of

1o
T ¢k o

which has no singularities inside or on S, and let us take

v = u(a:,y, z,t—g) = [u]

2u

in the formula (5.21). Differentiating with respect to z, we have

ov (3 10r 8) ( r)
————— ua:,y,z,t—E

ox  \oz c oz ot
ou lor[ou].
—_ === 5.22
[82:] ca:c[at]' (5.22)

t This proof is somewhat similar to one published by Gutzmer, Journal f. Math.
114 (1895), 333.
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ov ou| 1lor[ou
d theref — == ===, .
and therefore e [6v] . 3v[3t] (5.23)

From (5.22), we have
0 [ou du lar 32_u
ox| oz ox® | ¢ x| oxat|’
o[ou] _ [ow] 1or[otu
oxlet|  |oxot| cox|ot|
and so

32v_ o*u 2or[ o%u +1 or\%[ o%u 10%[ou
ox2  |ox®| cox|oxat| ' c2\ox/ | o2 coxtlat|

Adding the three equations of this type, we obtain
or [ o%u 1[o% or 1[ou %
2 — 2]~ —] — — ] —= —_—
Viv = [V Z ax[azat] +c2[at2] Z (62:) [at] ot

_ 2 u 2Jou 2 z or 62_u
T cRlar]| cr|ot| ¢ &ox|axat)
where ) denotes summation over the three variables z, y, z
The integrand of the volume integral in equation (5.21) is therefore

1 2 [2%u 2 [ou] 2 o—a[ 0%
V= _|—<|—=|=|—= |, 5.24
r v czr[ 8t2] crz[at] c Z r2 [axat] (5.24)
If we could transform the expression on the right-hand side into
a divergence, we could turn the volume integral in equation (5.21)

into a surface integral by Green’s theorem. To do 8o, we proceed as
follows:

0 {z rfoull _ 0 (zx—x,\[ou +:c x, 0[ou
ox| 2 {at]| — ax\ 2 J| ot 2 ox| ot
1Tou]  2(z—x,)*[0u +x—x1 Pul  (z—xy)? 6211,
—rla rd ot 2 |ozat| o |a?
Adding the three equations of this type, we obtain

0 [x—x,[ou 1[ou] 1f[0%* z—z, i’?_’z_t]
Zaz{ 2 [at]} [E]_E?[a_ﬁ]"' 2’72*[3:;& ‘

Thus (5.24) becomes

2 0 [x—x,[ou
Vi = —= ot
TVv Zax{ e [3t]}’




40 THE ANALYTICAL REPRESENTATION OF [cHAP. X

‘and therefore

[[[imr -2 520203
e e

Substituting in (5.21) from (5.23) and (5.25), we obtain

[Jazf)-2[5]-25l5) o5 e

which is Kirchhoff’s formula in the case when P and all the singu-
larities of u lie outside S. _

If, however, P lies inside S and all the singularities of « lie outside,
equation (5.21) has to be replaced by

” H{ 3v( )—;z—:}dS+uf;vzvdV=o,

where V] is the volume bounded externally by S and internally by
the small sphere ¢ with centre P and radius e. A repetition of the
previous argument gives

[+ [ 02f)-s)-22lg) 5o

If we now make € tend to zero, remembering that 9/ov = —o/or
on o, we obtain

et =~ [ [ 50) (5] -7 515 ] =

which is Kirchhoff’s formula in the case when P lies inside S and
all the singularities lie outside.}

The proof of Kirchhoff’s formulae in the case when all the singu-
larities lie inside the closed surface S now proceeds as in §5.1.

§ 5.3. The theorem of determinacy of the solutioni

The formulae of Kirchhoff enable us to express the value of u at
a point P on one side of a closed surface § and at the instant ¢, in
terms of the surface values of » and its first partial derivatives at

¥ The minus sign is due to the difference of definition of the normals » and n.
1 Love, Proc. London Math. Soc. (2), 1 (1903), 37-62 (42-3).
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previous instants. Actually the data are redundant, inasmuch as a
knowledge of the surface values of w alone for all values of ¢ is
sufficient to determine those of du/ot, and is, in fact, sufficient, with
a knowledge of the initial values of » and du/ét, to determine u
throughout the whole region of space in which it satisfies the equation
of wave-motions and the prescribed conditions of continuity. This
statement constitutes a part of the theorem of determinacy of the
solution of the equation of wave-motions; it follows from it that, if
and du/ot are given everywhere initially and u is given for all values
of ¢t on the surface S, du/on can have only one definite value at any
point of § at any given instant. The surface values of du/on would
also suffice in the same way for the determination of u; this consti-
tutes the other part of the theorem of determinacy.
To prove this theorem, let

v [ G+ )+ () ala)) e

where integration is over the volume V, bounded by 8§, in which the
wave-function u satisfies the conditions of continuity. Then

1 ou a% ou 9%
f f f {02 o o | ox 6x8t+"'} dadydz
= 82u V2 3 3u 3u
- ou 3u
N o

by Green'’s theorem Integrating with respect to ¢ from the initial
instant ¢ = 0, we have

ou ou
_ =_fdt”6_a_tds

Now if there were two wave-functions satisfying the same initial
and boundary conditions as well as the prescribed conditions of
continuity, their difference would be a wave-function u for which
W, vanishes, and, moreover, either du/on or du/ét would vanish on
8 for all values of ¢, according as the surface values of du/on or u are
given. It follows that, for such a function, W is zero for positive



42 THE ANALYTICAL REPRESENTATION OF [cBAP. I

values of t. But since W is the integral of a function which is never
negative, the integrand

<

is zero everywhere in V. From this it follows that « is constant in
V. Being initially zero, « must then be zero for all positive values of ¢.
Hence there are not two wave-functions which satisfy the same initial
and boundary conditions and the same conditions of continuity.

To extend the theorem to space outside a closed surface, it is
necessary to prescribe the asymptotic behaviour of the wave-
functions under consideration.

§ 5.4. The physical interpretation of Kirchhoff’s formula
The velocity potential due to a simple source of strength f(¢) is

w=f{i=1) = Jren

Hence the velocity potential at a point P outside a closed surface S
due to a distribution over S of simple sources of strength f(¢) per

unit area is
1
U = -[f]d8, (5.41)

where r is the distance from P to a typical point of S and f may
depend on the position of the element d.S as well as on ¢.

Again, the velocity potential due to a doublet of strength F(t)
whose axis is directed along the unit vector n is

- o) = el

Thus the disturbance at P outside S due to a distribution of doublets,
directed normally to § and of strength F(f) per unit area, is speci-

fied by u_”{_clrg_;[ ] %(;)[F]} ds, (5.42)

where d/on means differentiation along the outward normal to S;
F may also depend on the position of the element dS.

It is readily seen} that across a sheet of doublets directed
normally to S of strength F' per unit area, there is a discontinuity

t Cf. Larmor, Proc. London Math. Soc. (2), 1 (1903), 1-13 (6-7).
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in u of amount 4= F and no discontinuity in du/dn; whereas in crossing
a sheet of simple sources of strength f per unit area, there is a dis-
continuity —4#f in du/én and no discontinuity in 4. Thus if we wish
to have a distribution of sources and doublets on S such that the
disturbance shall change suddenly from a null one just inside S to
that specified by » and du/on just outside 8, then the distribution

must consist of sources of strength — 41 2—” per unit area and normally
m on

directed doublets of strength «/4w per unit area: and, by (5.41) and
(5.42), these produce outside S a disturbance specified by

1 1fou 1 or|ou o (1
= =] -5 aF ] ) o
s
This expression must represent # outside S, which is precisely
Kirchhoff’s result. Henee Kirchhoff’s integral formula asserts that

the disturbance outside a closed surface S due to real sources inside S
18 the same as would be produced by a fictitious distribution of sources

over 8 of strength — % Z—: per unit area, together with normally directed

doublets of strength u/4m per unit area.

The proof of Kirchhoff’s formula given in §5.2 and the argument
of Larmor which we have just sketched both deal with the analytical
theory of solutions of the equation of wave-motions. In the case
when the wave-function u is the velocity potential of sound waves
of small amplitude, the dynamical argument of §4.4 is applicable
with slight changes and leads at once to Kirchhoff’s formula. Thus
Kirchhoff’s formula must be regarded as the analytical formulation
of Huygens’ principle for sound waves in air.

Kirchhoff’s distribution is not the only distribution of secondary
sources on the closed surface S which gives the same effect at a point
P outside S as is given by the primary sources within §. For we can
superpose on it any distribution which gives a null effect outside S,
such as the Kirchhoff distribution corresponding to any set of
primary sources outside S. But the distribution of secondary sources
obtained in this way does not give a null effect inside S and so, if
this distribution had any physical meaning, an expanding wave-front
would appear to be propagated not only forwards but also backwards,
which is impossible.

Kirchhoff’s distribution is, in fact, the only distribution of
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secondary sources which gives the correct effect at points outside S
and a null effect inside. For if it were not, it would be possible to
construct, by subtraction, a distribution of secondary sources which
would have a null effect everywhere.

The analysis of this chapter still leaves open the question of the
validity of Huygens’ principle in Optics. For, as we have already
remarked, a theory which regards the propagation of light as
analogous to that of sound is quite inadequate, since a luminous
disturbance is characterized by a vector, not a scalar. A very close
representation of the physical propagation of light was attained by
Stokes in his memoir on the ‘Dynamical Theory of Diffraction’, in
which the aether was regarded as an elastic solid whose state is
specified everywhere and at every instant of time by the strain or
displacement and the velocity of each element of volume: each
element of volume thus disturbed is regarded as a source from which
a secondary disturbance is propagated, and the law of the disturbance
in a secondary wave is found on purely dynamical principles. The
resultant disturbance at any point at a subsequent instant is then
expressed as a volume integral. Whilst it is true that this volume
integral can be reduced mathematically to a surface integral, similar
to that which occurs in Kirchhoff’s theory, the exact physical repre-
sentation of the propagation of light according to the elastic solid
theory is lost in the reduction.

We shall not refer further to this theory as it has been replaced
by the electromagnetic theory developed in Chapter III.

Ex. 1. u is a wave-function whose singularities all lie on one side of
a plane S. Prove that the value of » at a point P on the other side of S can
be expressed in the forms

- = — L1 6_“]
(1) u(P;t) = 27rffr[3n ds,
s
involving only simple sources, and
.. 1 or au”
(11) u(P;t) = J-J- []h _56—7:.5 ds,

involving only doublets. Show also that neither of these distributions give
a null effect at a point on the same side of S as the singularities of u.
[Consider Kirchhoft’s integral for P’, the image of P in S.]

Ex.2. Prove that, if  [u] = u(:r, Y, 2, t—g),
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where r is the distance from (z,,¥;,2,), then
] 9 ) . [au
('é‘a‘:’{"a_'zl [U] = % .
Hence prove that,} if « is a wave-function, the value for du/éz at (z,,v,,2;)

is obtained either by differentiating the Kirchhoff integral for » with respect
to x; or by forming the Kirchhoff integral for du/oz.

Ex. 3. By means of Kirchhoff’s formula prove that, if u is a solution of
the equation of wave-motions,

wpin =& [ (oo (2,202 s

where S is the sphere of centre P and radius ¢t and ( ), indicates that the

expression inside the brackets is to be evaluated at the instant ¢ = 0.

(Poincaré.)

Ex. 4. A spherical expanding wave is defined by the initial values
__F(R) ou _ cF'(R)
“="R o R
By means of Poincaré’s formula (Ex. 3), show that at a point P at a distance
R, from O and at the instant ¢,

_ [(R—ct)*— R} ]Ri
“="sRR, LBy

Apply this to the case when F(R) = 0 except when R; < R < R,, and
deduce the results of § 3.7. (Love.)

Ex. 5. Deduce Poisson’s formula

w(P51) = tMp ol f}+ o (tMyolg)

(t = O).

for a wave-function satisfying the initial conditions
ou
u=49g, N =f (t=0)
from Poincaré’s formula (Ex. 3).

§ 6. Wave motions in two dimensions
§ 6.1. The equation of cylindrical waves
A wave-function  which does not involve one of the Cartesian

coordinates, z say, represents a disturbance which is the same in all
planes perpendicular to Oz. Such a disturbance is usually called

+ This theorem shows that Kirchhoff's formula is consistent. It is of importance
in electromagnetic theory, where we may apply Kirchhoff's formula either to the
components of the electric and magnetic vectors or to the scalar and vector potentials
and then use the formulae

= —-l-ﬁ—grad¢, h = curla;
c

by the theorem, both methods givo the same results.
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a cylindrical wave, since the wave-fronts are cylinders with generators
parallel to Oz; the corresponding wave-function satisfies the equation
of cylindrical waves
u  Pu 1 %
R il
This differential equation is also called the equation of two-dimen-
sional wave-motions, since it occurs in problems, such as the problem
of the normal vibrations of a membrane, which are actually two-
dimensional.
Let us consider the solution of the wave-equation

o2 Pu w1 0%

(6.11)

— - - 6.12
ox? +6y2 oz % o2 ( )
in the case where the initial conditions
ou
U = g(z’ y)’ ?t =f(x»y) (t = O) (6-13)

do not involve the variable z. If the solution were

u = ¢(z,9,2,1),
involving the variable z, then

u = $(2,y,2+h,1)
would also be a solution for any value of the constant 4; and this is
impossible since there is only one wave-function which satisfies the
conditions (6.13). Hence a wave-function which satisfies initial
conditions not involving the variable z must be a cylindrical wave-
function.

From this it follows that a method of determining a wave-function
in three dimensions under given conditions can also be used for
finding cylindrical wave-functions. This method is called by Hada-
mard the Method of Descent, for it involves descending from three
spatial dimensions to two.

There is, however, an important difference between wave-motions
in two and three dimensions. To see how this difference arises, let
us consider first the three-dimensional wave-motion under the initial
conditions

U= g(xsy’z)s 63_7: =f(:v,y,z) (t = 0)’

where f and g vanish whenever
R? = 2242422 > a?;
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the initial disturbance is thus confined to the region B < a. By
Poisson’s formula

u(P;t) = tM{f}+a%(tM{g}),

we see that the disturbance at a point P at a distance R > a from
the origin is null until the instant ¢ = (R—a)/c, and that it is again
null when ¢ > (R+a)/c. Thus the disturbance at P lasts for a time
2a/c; in other words, we have a clean-cut disturbance.

Let us compare this result with the cylindrical wave-motion
defined by

u=gy), = =fay) ¢=0)

where f and ¢ vanish whenever
rt = 2%y > a?;

the initial disturbance is thus confined to the cylinder » < a. An
application of Poisson’s formula shows, as before, that at a point P
at a distance r > a from the axis of z the effect is null until the instant
t = (r—a)/c. But after this instant the disturbance at P is never
null; for the sphere with centre P and radius ct always intersects the
cylinder » = a, no matter how large ¢ may be, and so the mean values
which appear in Poisson’s formula are not zero. Thus, if the distur-
bance in a two-dimensional wave-motion is initially confined to the
region z2+4y? < a?, the head of the wave is sharply defined; but
instead of having a sharply defined rear, such a wave-motion pos-
sesses a ‘tail’. This characteristic of a two-dimensional wave-motion
is sometimes called diffusion.

In most cases this residual after-effect would be expected by the
physicist. For in such problems the sources of disturbance are line
sources extending to infinity in a three-dimensional space: even
though such line sources may act only for a finite time, the distur-
bance from each element of a line source travels with a finite
speed and so the whole disturbance can never pass any given point
completely. There are, however, some problems, such as the problem
of the vibrating membrane, in which physical intuition would not
lead us to expect diffusion.

From the purely mathematical point of view, the phenomenon of
diffusion is of great interest. As Hadamardt has shown, it also occurs

1 See his Yale Lectures on Cauchy’s Problem (1023), 236.



48 THE ANALYTICAL REPRESENTATION OF [chaP. 1

in more general partial differential equations and its occurrence is
intimately associated with the properties of Hadamard’s ‘elementary
solution’.

Ex. 1. Prove by means of Poisson’s formula that the cylindrical wave-
function which satisfies the initial conditions

) u = g(z,y), oufot = f(z,y) (¢t =0)
is
d 20
u(z, Y, t) = ff (m+rcos€,y+rsinﬂ);/{rc—3’a;_d:,}

o 27

+

rdfdr
+oms atffg(a:-{-rcoso y+rsm0)4{ By

Ex. 2.t Prove that a line source of strength f(¢) along Oz generates
expanding cylindrical waves specified by

t—rjc

1 dé
“= 5 | 1O gy

where 2 = z24y?, provided that f'(t) = 0 when ¢ < —a.
If the source acts only during the interval 0 < ¢ < T, verify that the head
of the wave is propagated cleanly and that there is a ‘tail’

T
“ = Grgar | 1O#
0

when ct—r is large compared with cT'.

Ex. 3. The function u satisfies the differential equation
o _ 10
oxr® c® ot
and the initial conditions u = ¢(z), du/dt = y(x) when ¢ = 0, where ¢ and
are non-zero only in the small interval x’ < = < 2”. Discuss the behaviour

of u at the point = x, as ¢ varies, and show that there is a residual after-
effect

u = 2%_[./:(1) dr. (Hadamard.)

§ 6.2. Weber’s solution for ‘monochromatic’ cylindrical waves
Although it is possible to determine cylindrical wave-functions by
applying the method of descent, it is usually more convenient to
discuss the equation of cylindrical waves,
®u  *u 1 *u
5 o A

t See Lamb, Hydrodynamics (Cambridge, 1918), 201.
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on its own merits as a two-dimensional problem, without introducing
a third Cartesian coordinate z. All the formulae concerning wave-
motion in three dimensions have their two-dimensional analogues,
but the proofs of the two-dimensional formulae are usually much
more difficult.

We prove first a formula, due to Weber, which is the analogue of
Helmholtz’s formula for ‘monochromatic’ wave-functions. Helm-
holtz’s theory depended on the existence of a monochromatic
spherical wave-function ¢*®R-)/R. To extend his theory to two
dimensions, we must find a monochromatic cylindrical wave-function
% = ve~*, where v is a function of » = ,/(z*4y?) alone. Since the
equation of cylindrical waves in plane polar coordinates is

Pu 1ouw 1% 1%

A E e
it is evident that » is a solution of
dzv 1dv 2
=0, 6.21
dr2+r dr+k ( )

and this is Bessel’s equation of order zero and independent variable kr.

The solution Jy(kr) of equation (6.21) has no singularity for any
finite value of r. It follows that the cylindrical wave-function
Jo(kr)e=t¢ is not the velocity potential due to a sourcef at a finite
distance, and so is unsuited to our purpose.

The other well-known solution Yy(kr) of (6.21) is also unsuitable for
a different reason. The most convenient solutions to use in the theory
of cylindrical waves are the Hankel functions, which may be defined
by the equations}

@

w
femrcosh-r d'r H(z) kr) — fe-ikrcosh-r d-r,
0

(6.22)

when kr is positive. These functions are linearly independent; they
behave near the origin like 4 (2¢/7)log r, but have no other singularity
at a finite distance. The Hankel functions can be expressed in terms
of Bessel functions by the equations

HP(kr) = Jykr)+iXo(kr),  H@(kr) = Jofkr)—iX(kr).  (6.23)

t The reader who regards cylindrical waves as existing in a three-dimensional
space will understand by the word ‘source’ a uniform distribution of centres of dis-
turbance along a line parallel to Oz and extending to infinity in both directions.

t See, for example, Watson, Theory of Bessel Functions (Cambridge, 1922), 73,
180, 198.

4617 E

2
H‘l)(kr) ==
)

0
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When r is large, it can be shown that

w

HP(kr) ~ i %ei(’"—i’f), H@P(kr) ~ i é‘e—i(kr—h-r). (6.24)
kr wkr
Hence H{V(kr)e~%¢ represents cylindrical waves diverging from the
origin, whereas H{(kr)e-i represents cylindrical waves converging
to the origin. It follows from (6.23) that Y, (kr)e—** represents stand-
ing waves, and so is unsuited to our purpose. The function which
plays in the theory of cylindrical waves the same part as e®®—<)/ R
plays in the theory of spherical waves is H{U(kr)e-t,
The most general cylindrical wave-function of period 2#/(kc) is of
the form -
U = pe,
where v does not depend on ¢ and is a solution of
(V24-k2)y = 0. (6.25)

Now let I' be a closed contour bounding the region D in the (z,y)
plane. If v and w are two functions whose first- and second-order
partial derivatives are continuous within and on I', Green’s trans-
formation gives

rf (v%_w%ﬂ) ds = Lf (vV20—wVv) dady, (6.26)

where 9/0v means differentiation along the normal to I' drawn out of
D. If v and w are both solutions of equation (6.25), this formula

becomes
f va—w wa—v ds=0
v |

In particular, by taking w = H{(kr,), where r, denotes the distance
from P(z,,y,), we obtain

J' {va—iﬂﬁn"(kﬁ)—ﬂﬁ”(kﬁ)z—f} ds =0 (6.27)

provided that P and the singularities of v lie outside I'.

If, however, P lies inside I' and the singularities of » lie outside,
equation (6.27) no longer holds since H{V(kr,) has a logarithmic singu-
larity at P. In this case we apply Green’s transformation to the
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region D, bounded externally by I' and internally by a circle o of
centre P and radius e. Formula (6.26) becomes

J.(vaa—?-:—wg—:)ds+ f(v%)—w%v)ds.z ff (vWiw—wV) dady.
T a Dy

Proceeding as before, we obtain

f ‘vaﬁﬂg,l)(krl)_ﬂgn(krl)a_”,ds
Y ov
T

2 2
— f {vglﬂgn(krl)—ﬂgn(krl)ﬁ}ds

1

) P ov
= tim [ o2 Bk~ Hp(ery) 22 s

since the integral round I' does not depend on e. Now on o the
dominant parts of H{V(kr,) and g—ﬂ {D(kr,) are respectively (2i/m)loge
1

and 2i/(we); moreover v and its first derivatives are continuous at P.
It folows at once that
lim | = 4w(P).

e—+0
g

We have thus proved the following theorem:
Let v be a solution of the equation
W :
IV L9 Lk — 0
ox? + oy? TEY
whose partial derivatives of the first and second orders are continuous
within and on a closed curve I'; and let

I = f{véa;Ha”(krl)—Hg”(krl)Z—:} ds, (6.28)

where 1, 18 the distance from a fixed point P and /v means differentia-
tion along the outward normal to I'. Then I = 0 or 41v(P) according
as P lies outside or inside T'.

This is Weber’st analogue of Helmholtz’s theorem. There is a
corresponding theorem in the case when v has continuous partial
derivatives of the first and second orders everywhere outside a
closed curve I'. This is most easily obtained by applying the previous
argument first to the case when v has no singularities in the annulus

t Math. Ann. 1 (1869), 1-36.
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bounded internally by I' and externally by a circle X, whose equa-
tion is r = R. The value of

f + f {vafﬂan(kro—ﬂalwkrn3—”} ds,
v ov
r X

where d/év means differentiation along the normal out of the annulus,
then turns out to be 4:v(P) or zero according as P is or is not a point
of the annulus. The required result follows by making R — co, pro-
vided that the integral over X tends to zero; and a sufficient condition
for this is that » should behave like H{V)(kr) for large values of . The
details, which involve a use of the asymptotic property (6.24) of
H®(kr), are left to the reader.

In the formula (6.28) we may evidently replace H{"(kr) by any
other Bessel function which behaves like (2¢/m)logr near the origin,
and, in particular, by the function X (kr). This leads to the form of
the result actually proved by Weber.

§ 6.3. Volterra’s analogue of Kirchhoff’s formula
We proved in § 6.2 that, if v = ve~*¢ is a cylindrical wave-function
in which v does not depend on ¢, then

1 2 ov
oP) = - f {va_vﬂgn(krl)—ﬂgv(krl)a_v}ds
r
when P lies inside the closed contour I' But, by (6.22), we have

H(l)(k,-) — E etkrcoshr dr — e1kr0 d0
0 m m — l)

@

It follows that °

1 [ fow [, a9 o[ . df
) — htd tk(ri0—ct) T thri0—cf)
u(P; t) 21rf {av f e = vo-|e J(Oz—l)} ds,
1 1

where P lies inside the closed contour I' which contains no singu-
larities of u; but when P is outside I', the value of the integral is zero.
If we put r, 0§ = ¢, we obtain

[ ]

NI dyp o[ dyp
u(P;t) = -2;! {5.[6“.,'_@«/('/12—71 avfeiu¢_d)J(¢2—r1 }ds

1
a

= 1 9 —iktet—yy ___ Y di 8 3 _iked—y) __ ¥ dy ]
oy {6 [ et g avf N = |

i
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where, if f = f(z,y,r,), we write
o _gm do ¥ _ o

v oxdv oyov S o v’
the variables z, y, and r, being regarded as independent. By a slight
change of notation, this becomes

et = 5 | (2-2) [ ofert—t) g s o

The equation (6.31) expresses the ‘monochromatic’ cylindrical
wave-function ¥ = ve-% as an integral in which there is no explicit
mention of the period 2=/(kc), and so it holds for any period what-
ever., Moreover, as it is linear in u, (6.31) also holds for any cylindrical
wave-function obtained by adding ‘monochromatic’ solutions of
different frequencies. But as an arbitrary function of ¢ can be
expressed as a sum of periodic constituents by means of a Fourier
series or integral, the equation (6.31) holds for all cylindrical wave-
functions. This result, which is due to Volterra,t is the analogue of
Kirchhoff’s theorem for two-dimensional wave-motions.

By a similar argument, we can show that Volterra’s formula holds
when (z,,y,) lies outside a closed curve I' containing all the singu-
larities of u, provided that v denotes the normal drawn inwards and
provided that » behaves suitably at infinity.

The phenomenon of ‘diffusion’, to which attention was drawn in
§ 6.1, is evident from Volterra’s formula (6.31). For whereas in Kirch-
hoff’s formula (§ 5.1) the value of a three-dimensional wave-function
at P at the instant ¢ depended on the disturbance at points @ of
a surface S at the instant t— P@/c, the value of a cylindrical wave-
function is expressed in terms of the disturbance at points @ of a
curve I' at the instant {—P@/c and all previous instants.

§ 6.4. Note on the proof of Volterra’s formula

Whilst it is possible under certain conditions to justify the appeal
made in § 6.3 to the theory of Fourier series and integrals, it is
most desirable to give a direct proof of the analogue of Kirchhoff’s
formula. Volterrat has proved directly a more general thcorem
which includes the result of § 6.3 as a particular case.

t Acta Math. 18 (1894), 161. Volterra’s formula has been used by Sommerfeld
(Zeits. f. Math. u. Phys. 46 (1901), 11-97 (§ 9)) in his discussion of the diffraction of
X.-rays.

1 Rend. dei Lincei (5), I, (1892), 161, 285; Stockholm Lectures (1912).
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In this more general theorem, which can be regarded as the
analogue of the Riemann-Green theory of one-dimensional wave-
propagationt, (z,y,t) are interpreted as Cartesian coordinates in a
three-dimensional space. On a certain surface ¢ we are given the
values taken by a cylindrical wave-function » and its first partial
derivatives.} Then

oudr ouody 1 ouoat .
u(xly ?/nh) ff \/{62 t—'tl ——7'2} {ax oy +@ a—b—z' a_t -5-,”} ds
J‘J‘ {t—tl ar } ds,
211 at, J{cz(t—tl 2—r| r ov c” v
where r? = (x—xl) +(y—y)%

in this formula o, is the area cut out of o by the cone r = c(t—t,)
and 9/dv denotes differentiation along the normal to o.

The surface o in this theorem has to satisfy certain conditions,
which we shall not attempt to discuss. We may, however, remark
that, in deducing the formula of § 6.3 from the general theorem, we
take o to be a cylinder whose generators are parallel to Ot and which
has the curve I" as cross-section. Volterra’s proof of the more general
theorem just enunciated and a later proof due to Hadamard are
both too difficult to give here.

Quite recently Professor Marcel Riesz has discovered an elegant and
simple method for dealing with problems of this type. We conclude
this chapter by showing where the difficulties in the work of Volterra
and Hadamard lie and how Riesz has been able to avoid these
difficulties by making use of the theory of analytical continuation
of a function of a complex variable. For the sake of simplicity we
restrict ourselves to the initial value problem, when Volterra’s surface
o reduces to a plane perpendicular to the axis of ¢.

§ 7. Marcel Riesz’s solution of the equation of cylindrical waves
§ 7.1. An analogy with potential theory
Let u be a solution of Laplace’s equation

_ *u 0% 32u
V= bt (7.11)

ox?

t For an account of this theory see, for example, Goursat, Cours d'Analyse, 3
(1923), 137-55.

! We recall that a knowledge of u and one non-tangential partial derivative
determines the other two partial derivatives of the first order.
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which has no singularities within or on a closed surface S, and let
. 1
- E—2P +y—yo) +(e—2)3
where P (x,,,, 2,) is a fixed point inside S. Then if V is the volume

bounded externally by S and internally by a small sphere S, with
centre P, we have

fff {quv—vvzu} dl‘dydz — 0;
vV

(7.12)

from this it follows by Green’s transformation that

J[ 530

where 0/dv denotes dlﬁ'erentla.tlon along the normal out of V. If we
now make the radius of S, tend to zero, we obtain

P)__”{ ou_ _} ds. (7.13)

When this equation, which is a special case of Helmholtz’s formula,
of § 4.2, is applied to gravitation, it states that the potential at a
point P inside S due to matter outside § is the same as the potential
due to ‘Green’s Equivalent Layer’ of matter and normal doublets
on 8. Alternatively we may regard (7.13) as providing the solution
of the boundary value problem for Laplace’s equation in which the
valuest of  and ou/ov are given on S. It is the latter interpretation
of the Green’s equivalent layer theorem which interests us here.

If we replace x and y by sz and iy respectively, u becomes a
solution of the equation of cylindrical waves

ou O*u 0

Liw) =% _9%_ 9% _ 7.14
and » becomes the particular solution of this equation
1 (7.15)

B \/{(z—zo)z—(z—xo)z—(y—yo)2}°
By analogy with potentia] theory, we should expect that an applica-
tion of Green’s transformation to the identity

f j f {uL(v)—vL(u)} dedydz = 0 (7.16)
V

1+ The boundary values of u and du/2v are not independent.
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would enable us to find « in terms of the boundary values of « and
du/év on a surface S. But if we attempt to carry out this process, we
immediately meet difficulties which do not appear in potential theory.

In the first place, the function » defined by (7.15) is real only

When @—o)+(y—to)* < (—20)"
Accordingly we take the volumef ¥V to be bounded by part of the
eone (z—o)*+ (Y —9o)* = (—2,)? (7.17)

and by the area which this cone cuts out of S; then v is real every-
where in V.

The more serious difficulty is that, when we choose V in this way
and apply Green’s transformation to (7.16), we obtain an integral
of the required form over a part of S together with an integral over
the cone (7.17), and the latter integral is infinite since v and its
derivatives are infinite on the cone.

There are two classical ways of avoiding this difficulty. Volterra}
replaced v by its integral with respect to z,; in fact, he wrote

v = f dz = cosh-1 [2=2|
(z—20)* — (2 —20)*— (y—¥0)*} V{(@—20)*+ (y—y0)?}
in the identity (7.16). This function has no singularity on the cone,
but has a line of singularities on the axis of the cone. By cutting out
the singularities on the axis by means of a small coaxial cylinder
and then applying Green’s transformation, Volterra obtained a
formula for

_[ u(Zg, Yo, 20) 429

in terms of the boundary values of » and du/év, and readily deduced
the required expression for u(z,,¥,,2,). The values of » and du/dv
on the cone do not appear in the solution on account of the properties
of Volterra’s function v.

Hadamard,|| on the other hand, used the identity (7.16) with

1
\/{(2—20)2_‘(‘”—xo)2—(y—yo)2},

t This should be compared with the corresponding step in the Riemann-Green
theory of hyperbolic equations in two independent variables.

1 Rend. det Lincei (5b), I, (1892), 161, 285. See also Vollerra’s Stockholm Lectures
(1912).

|| See, for example, his Yale Lectures on Cauchy’s Problem (1923). An excellent
account of his method is given in Courant and Hilbert, Methoden der math. Physik, 2
(1938), 43842,

V=
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and applied Green’s transformation. He did not try to avoid the
occurrence of divergent integrals, but developed a new method of
picking out the ‘finite part’ of a divergent integral.

Professor Marcel Riesz} has shown how all the difficulties
of Hadamard’s method disappear if we introduce an additional
complex parameter «. The real part of « can be chosen so large that
Green’s transformation is immediately applicable; the determination
of the finite part of Hadamard’s integral is then replaced by the
process of continuing analytically an analytic function of the com-
plex variable «. We give below an account of Riesz’s method as it
applies to a simple yet typical problem in the theory of cylindrical
waves.

§ 7.2. Integrals of fractional order
The repeated integral of order n

fj?.. xj:lf(x )dz,dx,_, ...dz,

can be easily transformed into the simple integral
1 . 1
= —)n- dt. 7.21

The latter expression has a meaning for non-integer values of n
provided that Rln > 0, and so provides what is usually called the
Riemann-Liouville definition of the integral of f(z) of fractional
order n. Professor M. Riesz’s method of solving the equation of
cylindrical waves depends on an extension of this idea to functions
of more than one variable.

For simplicity, we shall consider here the following problem:

To find the value at the point (xy,y,) and at the instant iy (> 0) of
the solution of the equation

o*u o*u 0?
3t2 a? ay?: — f(x’ Y, t)) (7.22)

given the values of u and du/ot everywhere at the instant t = 0.

+ Comptes rendus du congrés int. des math. 2 (Oslo, 1936), 44-5; Acta Math. 81
(1949), 1-223. See also E. T. Copson, Proc. R.S. Edin. (A) 61 (1943), 260-72, Proe.
Edin. Math. Soc. (2) 8 (1947), 25-36; N. E. Fremberg, Kungl. Fysiogr. Sallsk.
Lund Forkandl. 15 (1945), No. 27, Meddelanden fran Lunds Universitets Matematiska
Seminarium, 7 (1946); H. Malmheden, ibid. 8 (1947); L. Garding, Annals of Math.
48 (1947), 785-826.

L(u) =
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Actually it is more convenient to regard (z,y,t) as rectangular
Cartesian toordinates: our problem is then to find the value of the

solution of L(u) = f(z,y,t)

at a point P (zy, ¥,,1,), given the values of « and du/ot on the plane
t = 0. The definition of the fractional integral appropriate to this
problemt is then as follows:

The oth integral of u is

Iu(zg, Yo, ty) = m(i——T) fff w(z, y, )= dxdydt, (7.23)
D

where T = (t—to)P— (5—o)— (y—¥o)?
and D 1is the volume bounded by the plane t = 0 and the cone I' = 0.

If we assume merely the integrability of u, we can easily show that
the function I*u so defined is an analytic function of the complex
variable «, regular when Rla > 1. In the application we have in
view, we shall make further restrictions on the nature of # and
shall be able to continue I*u analytically into the wider doman
Rla > —1.

The integral on the right-hand side of (7.23) is, in form, similar to
the Riemann-Liouville integral (7.21), but the reason why I%u is
called the ath integral of u lies deeper than mere similarity of form.
It can be shown that, for quite a wide class of functions «,

(82 02 02 )Iz ( ) ( )
— e uxo,yo,to =’uxo,y0,t0’
o2 oxt oyl

and so the operator 12 is the inverse of the differential operator] L,.
Moreover, we write I* rather than I, since the parameter « obeys
the law of indices

I“Iﬁu(a:o, Yo to) = Ia+ﬁu(x0, Yos to)-

Because of these two properties we can regard I°u as being a
generalization of the Riemann-Liouville integral of fractional order,
though this aspect of the function does not concern us here.
Ex. 1. The function F(X,Y,Z), where X2+Y? < Z?, is defined by the
equation
F(X,Y,Z) = ”f (22—a?—y?)P(Z —2)* — (X —z)?— (Y — )%} dadydz,
J

t See § 7.6.
1 The suffix in L, indicates that x, y, t in L are replaced by z,, ¥,, {, respectively.



§7] HUYGENS' PRINCIPLE 59

where V is the volume specified by the inequalities
eyt <2, (X—2P+(Y -y <(Z—2f O0<z<g 2.
Prove that FX,Y,Z) = F(0,0,a),
where a = +,/(Z*—X2_Y?),
Hence show that

I'(2p+2)I'(2¢+2)
F(X,Y,Z) = 2n(Z2— X2 _Y?2)ptat3/2 .
( ) = 2n( ) T(2p+29+5)

Ex. 2. Use Ex. 1 to prove that
I IPu(zy, yortg) = I=+Pu(xy, Yo, to)-

§ 7.3. A transformation of Iy

We have already remarked that, if « is integrable, the function I*u
is an analytic function of «, regular when Rla > 1. But if we assume
that « has continuous first partial derivatives, we can continue I*u
analytically into an analytic function, regular when Rl > —1. As
a first step in this analytical continuation, we need the following

Lemma. If Rla > 1 and u 18 continuous,
1 zx~-2
I u(xO, Yo to) - %—FZGTI) fff u(z: Y, tO_T)T dzdydz! (7°31)
| 4

where V is the hemispherical volume defined by
1t = (2—2)*+(y—¥o)*+22 < 8§, 2=0.

Under the conditions of the lemma, we can write the triple integral
(7.23) defining I*u as a repeated integral, namely

Ze
1
T*u(xo, Yo, to) = Il (a—1) f dt ff u(z,y, t)[ -3 dzdy,
0 !

where X is the area in which
(@—2o) 2+ (¥ —Y0)* < (t—1p)*.
If we make the substitution ¢ = {,—r, we obtain

Tu(zy, Yo, o)
to
1
— 9l (a—1) f dr H w(z, Y, ty—r{ri— (T —2,)*— (y—yo)?}* V2 dady,
0 piy

where X’ is the area
(x—xo)2+(3/_?/o)2 <t
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This equation can be written in the form

Lo
1
I*u(zy, Yo, ty) = 57T =) f dr J‘f u(z,y,ty—r)2*-3 dxdy,
0 4

where (x—x9)2+ (y—y,o)>+22 = 1.

We now regard (z,y,z) as Cartesian coordinates in a new space.
The area X’ is then the projection of the hemisphere S specified by

(x—20)*+(y—yo)>+22 =12, 22>=0,

on the plane z = 0, and the element of area on this hemisphere is

ds = gdzdy.

Hence

za—z

Lo
1
0 S

1 2x—2
o [ ot i,
V

which proves the lemma.

§ 7.4. The analytical continuation of /ou

We now transform the triple integral (7.31) to polar coordinates
defined by

x = xy+rsinfcos, Y = Yo+rsinfsing, z = rcosé
and, for brevity, we write
@ = u(xy+rsinfcos ¢, y,+rsinfdsing, t,—r).

Then we have
t, 2

i
Iu(zy, Yy, ty) = m f dr f dé f are-lcos*-20sin @ d#,
6 o 0 (7.41)

the representation as a repeated integral being valid since » is con-
tinuous. We also make the additional assumptions that the three
partial derivatives u,, u,, and v, are continuous.
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If Rla > 1, we may integrate by parts, to obtain
im
1
f % cos*~20sin 6 df = pom—y { [@ cos®- 10] + f fgcos*-14 dG}
0

ir
1
= o‘—__lu(xo,y.,, to— r)+ —_ f (@,,cos ¢+, sin ¢)r cos*d db.
0

Hence we have

ly
1
I u(zy, Yo, ty) = I_"@ f u(Zg, Yo, to—7)r* 1 dr +
0

1 . o L
+ 2aT(a) f f f (,c08 -+, 8in $)r*cos*d drdfdg.
A further integration by parts gives
Tulzo, Yo, to)

1y
1 1
F(a—l— 1) [u(xo’ Yo, to_r)ra]:; + m f ul.(xm Yo, to—r)r“ dr -|_
0

+ 2n11‘(a) fff (tiz, c08 $4-11,,8in p)rcos*0 drdbds.

We have thus proved that, if u and its first partial derivatives are
continuous and if Rla > 1, Riesz’s fractional integral of order « can
be written in the form

Iy, Yos to)
o

1
= mu(zo’yo, )o+ I'a +1) f %, (To, Yos Lo—7)r* dr +

ty 27 §or

Zwi’(a fff(u cos ¢+, sin ¢)r>cos*d drdfds. (7.42)

The function /*u, as originally defined, is an analytic function of
the complex variable «, regular when Rla > 1. The expression on
the right-hand side of (7.42) is, however, an analytic function regular
when Rla > —1, and so this equation provides the analytical
continuation of I*u across the line Rla = 1. When u and its first
partial derivatives are continuous, we define /*u by equation (7.42)
in the domain Rla > —1.
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In particular, we have

to
I%u(xy, yo, ty) = u(Zy, Yo, 0)+ _[ % (o, Yor Lo—7) dr
0

- ’M(.’Eo, yo, to). (7.43)
The transformation I° is then the identical transformation.

Example. Prove that
oz o o2
(3_%—%%_83/2)1 2y = I*u.
§ 7.5. Riesz’s solution of the initial value problem
The problem is to find the value of the solution of
62u 3zu 32u
Liw) = 24%_o%_ o4 7.51

at the ‘point-event’ (zq, ¥, %), given the values of v and ou/dt when
t = 0. We suppose that f, > 0, so that the problem is an initial
value problem; the case when {, < 0 can be similarly treated but is
of less importance.
Asin § 7.2, we write
I = (t—1p)*—(@—)*— (y—¥0)*

and we denote by D the volume in (z,y,t) space bounded by the
cone I' = 0 and the plane ¢t = 0. If (I, m,n) are the direction cosines
of the outward normal to S, the boundary of D, we have, by Green’s
transformation,

J[[ k)L dedyi

_H{ (u@_”_)_l( %—”%)—m( '%_”@)} ds, (1.52)

a result which is certainly valid when » and v possess continuous
partial derivatives of the first and second orders. In this identity
we take u to be the required solution of (7.51) and

0 = -2
where Rla > 5 to ensure the validityt of (7.52). Since
L(v) = a(a—1)[=-32

t The validity of (7.52) could be proved for smaller values of Rla. There is no
point in doing so as we shall ultimately use analytical continuation.
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this gives
f [[ fala—Dule-92—fre-vi2} dadydt -
b
= [[ Tta— 1Tz —zq)+ m(y—yo)+n(t—ty)}+
2
ou ou
(a-1)2[] =
+r 3z+m8y 3t” as.

Now S consists of two parts, a portion of the cone I' = 0 and the
area X specified by

(x—xo)* F(y—yo)* < 8§, t=0;

and the integrand of the surface integral vanishes on the cone.
Hence

f f f {a(a— 1)ulNe-902 {1112} dodydt
D
ff {I‘(“ 1)/2——(431—1)(t—t(,)l"("‘-“)/zu} dzdy,
t=0
or, in Riesz’s fractional-integral notation,
1 ou
gy Ju+2f (a—1)2 7" y— 1)t p(a-a)/zu dxzdy.
Pru—totf = ooy | {Pem g Hamre-sg  dsdy
z (7.53)
Position in X can be specified by polar coordinates (p, ¢), where

T = zy+pcosd, Y = Yo+psing O<p <ty 0<< < 2n).
The given initial values of » and 8u/8t are then functions of p and ¢,

w=Upd), Z=Vpd) =0

say. With this notation, (7.563) becomes
Toy— Jo+2f

= m ff {(tg—pz)(a—l)lzy+(a_l)to(tg_Pz)(a—s)/zU}P dpqu
R

or

Toy = Jo+2fy 27rl"( Y ff (12— p2)@-Vi2V p dpdp |-

T 2?(0@‘1’) a, ff (t3—p®)*-V2Up dpd. (7.54)
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By § 7.4, I*u is an analytic function of «, regular wheén Rla > —1,
since, by hypothesis, » and its first partial derivatives are continuous.
The three terms on the right-hand side of (7.54) are gvidently also
regular when Rla > —1. Hence, by analytical continuation, the
equation (7.54) which was proved under the assumption Rla > 5 is
valid when Rla > —1. In particular, when « = 0, we have

Iou — I”f+—1—[ [ a=pv dzay+ - [ | a0 dxdy],
2m o,
p b))
and so, by (7.43),

ulwy vt = g [ [ [ Feu (e~ —@—zo— (—yo?) dudydt-+
D

+%f f (%)t=o{t3—(x—xo)2—(y—yo)ﬁ}“ dedy + 4
x

l i - S P 2 (o 2 _id d . .
T om o, fz f (W)e=o{ts — (€ —2o)*— (y—yo)*}* dirdy.  (7.55)

13

This is Volterra’s formula expressing the value of a solution of L(u) = f
in terms of the values of  and ou/ot whent = 0. When f = 0, (7.55)
reduces to a special case of the general theorem enunciated in § 6.4,
viz. the case when o is a plane.

We cannot simplify the last term on the right-hand side of (7.55)
by differentiating under the sign of integration, since that would give
rise to a divergent integral; but by a slightly more elaborate pro-
cedure we can express (7.55) in a form which does not involve the
differential coefficient of a double integral. Let us write

U(¢) = Ulto, ),

so that U is the value of u on the boundary of £. Then equation
(7.563) becomes

1
Iou = Io+3f 4 I (ot 1) [ ff (3 —p*) D2V p dpdd +
b

2w
+ [ 1 —pre-(U Do dpdp +15 [ U dg ). (1.59)
b 0

Now suppose that U possesses a continuous partial derivative with
respect to p; then _
U—U = —(ty—p)Ui(7,¢),
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where p < 7 < {,, and so the term involving U—U in (7.56) is an
analytic function of «, regular when Rla > —1. Putting « = 0, we
obtain

u(xo, Yo to) = _1‘ f(x’ Y, t){(t_to)z_ (x_xo)z_(y_yo)2}—} dzdydt +
2
D
1 ou -
o fz [ &) s~y asdy -

_§1; ff {(wh=0— ﬁ}to{tﬁ—(x—xo)z_(y_yo)z}_g dady +
z

27
1 f -
+Tfuw.
™
0

This transformation of Volterra’s formula is a particular case of a
general formula of Hadamard.+

§ 7.6. The advantages of Riesz’s method

The first and most obvious advantage of Riesz’s method is that
it avoids the awkward limiting processes which appear in the theories
of Volterra and Hadamard, by introducing an arbitrary complex
parameter « and using analytical continuation.

" The second advantage lies much deeper. We remarked in § 6.1
that there is a striking difference between the solution of the equation
of wave-motions in two and in three dimensions; for in three dimen-
sions wave-propagation is clean-cut, whereas in two dimensions it
is diffused. More generally, diffusion always occurs in space of an
even number of dimensions, but may or may not occur in space of an
odd number of dimensions. This difference depends ultimately, as
Hadamard has shown, on the different characters of the elementary
solution of the equation of wave-motions in spaces with an even or-
odd number of dimensions. Hadamard’s theory of the finite part of
a divergent integral can be applied in any space with an even number
of dimensions. But when the number of spatial dimensions is odd,
Hadamard’s theory does not apply; we have to use either Hadamard’s
method of descent or else the idea of the logarithmic part} of a
divergent integral.

t See Hadamard’s Yele Lectures on Cauchy's Problem (1923), 208, equation (60).

1 See, for example, Courant-Hilbert, Methoden der matk. Physik, 2 (1938), 443-8,
for a discussion of the three-dimensional case.

4617 ¥
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Professor Marcel Riesz’s method, on the other hand, does not
involve any distinction between spaces of an even and odd number
of dimensions. The solution is, in fact, independent of the number
of spatial dimensions.

Let us suppose we wish to find the solution of

Ly =2v_Zu v Tu
ot ox} oxd ox2, 4
at (29, x9,...,29,_;,t°), given the values of % and its ‘conormal’ deri-
vative on a certain hypersurface S in (z,,,,...,%,_,,t) space. The
function /*u is now defined to be

Tou(z9, 29,...,1°) = }Tl(Tz) fff w(xy, Tg,..., L) I@-™2 dy, dz, ... dL,
b

= f(2y, %g,..., Tpy_y, t)

where = (t_t0)2_mz (&, —x0)?

r=1
and D is the volume bounded by § and the hypercone I' = 0. The
constant H,(x) is equal to #™-2/22¢-11"(1a) (14 3a—3m).

The function I*w so defined possesses all the properties of the
simpler function (7.23). It is regular when Rla > m—2, and can be
continued analytically into Rla > —1 when u is sufficiently well
behaved. Riesz then proves the identity

Jou = Jas2f 1 J‘ (@ p(a+2—m)/2_uan°‘+2‘m)lz) is,

H_ (a+2) ov ov
z

where X is the part cut out of S by the hypercone and v denotes the
outward ‘conormal’. By analytical continuation, this identity holds
when o« = 0 and provides Riesz’s ‘solution invariantive’ of the
generalized equation of wave-motions.

Finally, we wish to draw attention to the work of Dr. M. Mathisson,
who discovered a new method of solving the initial value problem
for equations of normal hyperbolic type,} and gave} a criterion for
the existence or non-existence of diffusion.

Ex. 1. When Rl > 1, the function J*u is defined by

Jou(xy, Yo, to) = %T}x—l—) fff u(z,y, t)cosh{kv ')~ 32 dxdyd:
D

in the notation of §7.2. Show that, if 4 and its first partial derivatives are

t Math. Annalen, 107 (1933), 400-19; Comptes rendus, 208 (1939), 1776-8.
+ Acta Math. 71 (1939), 249-82. See also Hadamard, Annals of Math. 43 (1942),
510-22,
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continuous, J*u can be continued into an analytic function regular when
Rla > —1, and that, when this continuation is carried out,

JO%u(, Yo» to) = u(Tg, Yo» Lo)-
[Express J*u as & power series in %.]

__cosh kT
— AT
2w % azu
2
2 T TF =Za

Ex. 3. Prove that the solution of the initial value problem for the equation

Ex. 2. Prove that

is a solution of

————— ¥ = f(z,9,1)

v
U(Tgy Yos by) = _J;!‘J.f( Yyt coshk rda:dydt+

coshk«/I‘o
+277 ff ot t=0 dady +

costhI‘o
27,3,0”( PRLLALLF A

where I, is the value of T" when ¢ = 0.
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HUYGENS’ PRINCIPLE AND THE DIFFRACTION OF LIGHT

§ 1. Kirchhoff’s theory of diffraction
§ 1.1. Kirchhoff’s application of Helmholtz’s formula

AccorpING to geometrical optics, rays of light are straight lines.
With this assumption, light from a point-source incident on a non-
reflecting opaque screen gives a sharply defined shadow, which it is
convenient to call the geometrical shadow. Actually it is observed
experimentally that the light is propagated up to the screen as if the
screen were absent, but that, beyond the screen, light enters the
geometrical shadow. This phenomenon, which violates the laws of
geometrical optics, is known as the diffraction of light.

It was Fresnel who first discovered the real cause of diffraction,
namely the mutual interference of the secondary waves emitted by
those parts of the original wave-front which were not obstructed
by the diffraction screen. But, in order to obtain satisfactory results,
Fresnel had to make somewhat arbitrary assumptions on the nature
of the secondary waves.tf Most of the difficulties of Fresnel’s theory
were overcome by Kirchhoff, who used Helmholtz’s formulation
of Huygens’ principle for monochromatic phenomena.f We give
here a brief critical account of Kirchhoff’s work, || and refer the reader
to the standard works on physical optics for a detailed discussion
of special diffraction problems.

Before we can apply Helmholtz’s formula to monochromatic dif-
fraction problems, we have to overcome two rather serious difficulties:
we have to express mathematically what is meant by, a point-source
of light, and we have to give mathematical conditions for a screen
to be opaque and non-reflecting.

In the first place, the notion of a point-source of monochromatic
light is a somewhat idealized one. On the electromagnetic theory of
light it would be reasonable to regard it as a Hertzian electric
oscillator or as a Fitzgerald magnetic oscillator.tt XKirchhoff was,
however, working with the older theory which regarded the aether

1 Ch.1, § 4.1. 1 Ch.1J, § 4.2,

Il For Kirchhoff’s own account of his theory, see his Vorlesungen tiber math. Physik,
2 (Optik), (Leipzig, 1891).

11 See Whittaker, History of the Theories of Aether and Electricity, 345-7T, 360-2.
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as an elastic solid, and he assumed that the displacement vector in
the aether is of the formt

A gikir—ct)

r
when monochromatic light is emitted by a point-source at r = 0,
A being a constant complex vector. The intensity of the light is then
measured by A « A/r2, where A is the complex vector conjugate to A.
He then applied Helmholtz’s formula to each component of the
displacement vector separately.

Following Kirchhoff, we shall assume in this chapter that mono-

chromatic light from a point-source L can be represented by one or
more wave-functions of the form

etkr—i)

— . e—iket —

Uy = vpe = —

when there is no diffracting screen, r being the distance from L.

We have to find the corresponding wave-function u = ve—%*¢ when
diffraction occurs.

Let us suppose, then, that monochromatic light from a point-source

L defined in this way is diffracted by an opaque non-reflecting body

whose boundary is the closed surface S. Let .S, be a small sphere with

centre L; then if P is a point exterior to § and §,, Helmholtz’s

formula gives

eik(r;-ct) av a eik(r;—cl)
— v ds
4 F) ff-l_ff‘ o vav( "1 )} ’
S S,

where 7, is the distance from P to a typical point of a surface of
integration and /v denotes differentiation along the inward normal.
This formula would give the value of u everywhere if we knew the
boundary values of v and dv/dv on S and S, and it is in the determina-
tion of these boundary values that our second difficulty arises.
Actually the surface S, causes no trouble; for it is evident that,
when the radius of S, is small, the screen has no effect at points of
Sy and 80 v = v,, dv/dv = Ov,/ov there. There is, however, a serious
difficulty in that we know very little about what happens on §;
roughly speaking, all we can say is that the part of § invisible from

t Actually Kirchhoff used the real part of this complex vector. The use of the
complex vector simplifies the analysis.
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L is very feebly illuminated. Kirchhoff made the following assump-
tions, which, though reasonable, are nevertheless quite arbitrary:

(1) v = v,, Ov/ov = dyy/ov on 8, the part of S visible from L;

(ii)) v = 0, dv/ev = 0 on §,, the part of § invisible from L.
In words, he assumed that there is no change in the light on S, and
that S, is quite dark. In this way, Kirchhoff obtained the formula

ik(ri—cl) o o [etklri—cl)
47m(P)=”+” {e rl‘alvo—%a_v(e T-_)} ds. (L11)
1
S, S,

(See Fig. 6.)
Before discussing the validity of Kirchhoff’s assumptions we
introduce a modification of his formula (1.11) which is often more

L
v pe

Fig. 7

convenient to apply. Let us suppose for simplicity that the tangent
cone from L to S has contact along a single connected curve I', which
divides S, from S,. I" may be either a simple closed curve or an arc
which extends to infinity at both ends; for definiteness we consider
only the former case, and leave the modifications when I' extends
to infinity to the reader.

We now construct an unclosed surface £ with I' as rim with the
following properties:

(i) X and S, form a closed surface 2’;

(ii) L lies inside X', P outside.
(See Fig. 7.) The surface S, can be continuously deformed into X'
without crossing L or P, and this deformation does not alter the
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value of the integral over §;,. Thus in formula (1.11) we can replace
S, by X’. Taking into account the opposite directions of the normal
v to S8 and X’ on their common part, we find that

ik(ry —cl) ik(ry—cl)
dmu(P ”e TP, 2T W gs, (112)
71 o ov 7

where v denotes the normal from the ‘dark’ to the ‘illuminated’ sidet
of Z.

In the simplest type of diffraction problem, light passes through
a hole in an opaque non-reflecting plane screen. The surface X can
then be taken to be a plane area bridging the gap in the screen. The
extension to more complicated plane screens can be left to the reader.

Example. Prove that Kirchhoff’s formula (1.11) can also be written in the
form

exk(r,—ct) 3‘0 o eik(r,—ct)
w(P) = u(P) + - ” - voa—( )}dS,
1 | 4 Vv 7'1

where v is the normal from the 1llum1nated to the dark side of S,.

§ 1.2. Criticisms of Kirchhoff’s theory

All we know from experiment is that the part of the screen invisible
from the source is very slightly illuminated; Kirchhoff assumes it
to be perfectly dark. This assumption makes the boundary values
of v and dv/év on the screen discontinuous across the curve I', which
is certainly not the case physically. It might further be objected
that Helmholtz’s formula was proved on the basis of continuous
boundary values, so that it is not evident without further investiga-
tion that the function %(P) does satisfy Kirchhoff’s boundary condi-
tions. In point of fact, it does not. For Poincaréf has shown that
Kirchhoff’s boundary values of v are incompatible with his boundary
values of || dv/ov.

To prove this, let @ be a point within S, and let r, denote distance
measured from ¢. Then, since v, and e?*n/r, have no singularities
outside the closed surface X4-S,,

f [+ f | {em, - °:v(eih')} ds = 0. (1.21)

1 This is the most convenient way of describing the sense of v. Of course, as X is
not a screen, both sides of X are, in fact, illuminated.

1 Théorie mathématique de la lumiére, 2 (Paris, 1892), 187-8.

I Wo recall that a knowledge of the boundary values of v suffices to determine
those of évjov. (Ch. I, § 4.3.)
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Similarly, if ve-t ig the wave-function satisfying Kirchhoff’s
boundary conditions,

[+ [[[s-refe)os -

But by the boundary conditions, the latter equation reduces to

J‘J‘ {e""a vy [ehn }dS— 0
ov 3V Ty -

Hence (1.21) becomes

etkn gy, 9 [etkn
[[fmeaif)s-e o

This is, however, impossible. For we can construct a diffraction
problem in which S, plays the part of X in the analysis of the pre-
ceding section and, by (1.12), the right-hand side of (1.22) should
be, not zero, but the non-zero value of ue*c at @ in this new
problem.

In spite of this difficulty, Kirchhoff’s formula does give results
which agree very well with experiment. Some authors explain this
by saying that the formula gives the first step in an accurate solution
by successive approximations. The next step would be to obtain
a second approximation by substituting in Helmholtz’s formula the
boundary values given by Kirchhoff’s first approximation; and so
on indefinitely. If this iterative process were a rapidly convergent
one, the success of the method would be explained; but the iteration
has never been carried beyond the first stage and the convergence
never discussed.

Other authors, notably Kottler, regard Kirchhoff’s formula as an
accurate solution, not of a boundary value problem, but of a ‘saltus
problem’. A brief account of this work is given later.

§ 1.3. The Fresnel-Kirchhoff approximate diffraction formula

It turns out to be difficult to apply the accurate Kirchhoff formula
(1.12) to special diffraction problems. However, in most problems,
the wave-length A is very small compared with the other distances

involved, and we can then use a simple approximation which we now
obtain.



§1] DIFFRACTION OF LIGHT 73

If L is a point-source of light characterized by the wave-function
etkr—/r Kirchhoff’s diffraction formula can be written in the form

tkro tk(ry—ct) tk(ry—cl) tkry
= [ a5 ) a2 o
To r r, on\r,

where 7, is the dlstance from L to a typical point @ of T and o/on
denotes differentiation along the normal n from the illuminated to

the dark side of Z. (See Fig. 8.) Since

or,
on

or.
= cos f,, 5-1 = cos b,
n

where 6, and 8, are the angles the normal n makes with L@ and P_Z)
respectively, the equation (1.31) may be written as

41Tu(P) ff e‘lk(ro+f1—cl){____ (cos 0 —COoS 0 ) (cos 01 COSs 00)}

Fia. 8

Now, by hypothesis, the wave-length 2x/k is small compared with
ro and r;, and so we may neglect 1/r, and 1/r, in comparison with %
in (1.32). This give's

e‘lk("u+f1—d)
u(P) = — ff k(cos8,—cos 8,) dS, (1.33)
ToTy
a result more usually Wntten in the form
w(P) = ff etktrotn—h—4mi(cos ) —cos 8, ) —- a8 . (1.34)
ToTy

This approximation is usually called the Fresnel-Kirchhoff diffraction
formula. (Cf. Ch. I, § 4.6.)

As Larmort has remarked, the formula (1.34) ‘puts in evidence
the factor of attenuation (r,7,)-! and the phase depending on the
path r,4-r,’. Moreover, it is a consequence of Kelvin’s Principle of

t Proc. London Math. Soc. (2), 19 (19193, 169-80 (174).
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Stationary Phase that, when £ is large, the important part of the
integral (1.34) arises from the part of the range of integration near
which the phase of e+ ig gtationary, and so the Fresnel-Kirch-
hoff formula ‘shows that it is only the elements 88, that lie near the
line joining the source to any point, which produce the disturbance
at that point’.

§ 2. Maggi’s transformation
§ 2.1. Helmholtz’s integral over an unclosed surface

We have seen that when Kirchhoff applied Helmholtz’s formula
to diffraction problems, he was led to an equation (1.12), which
expresses a component of the light-vector as an integral of Helm-
holtz’s type, extended over a certain unclosed surface X. We now
show that such an integral can be expressed as a line integral over I',
the rim of X, and carry out the transformation in detail in the two
most important cases which arise. The resulting expression as a line
integral provides the most suitable way of applying Kirchhoff’s ideas
accurately.

We recall that the value taken at a point P on one side of a closed
surface S by a monochromatic wave-function « of period 2n/(kc) due
to sources on the other side of § is given by

o= ][5 8{) .

where 8/dn is differentiation along the normal out of the region con-
taining P. But if P and the sources are all
on the same side of S, the value of the
integral is zero. It follows that, if we deform
S continuously, the value of the integral is
unaltered, provided that, in the deformation,
S does not cross P or any of the sources.

Now consider the case when there is only
one source at the point L. Take any simple
closed curve I in space and through it draw
two unclosed surfaces 8, and S, each having I" as rim; we suppose that
S, intersects the segment LP but that S, does not. Then, by the
formula of Helmholtz,

thry ikry
smu(P) = f f {‘i_a_“—u% (e_r" )} ds
1

S$,+ 8,

Fic. 9
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Now keep §; fixed and continuously deform S, in such a way that
it never crosses L or P. Then since the integral over S,+5S, is un-
altered, the value of the integral over S, does not change and so it
depends only on the form of the rim I"' and not on the actual shape
of §,. This means that it must be possible to express the integral
over S, as a line integral round I, say

ff {ezkh o _ ., _(eikrl)} dS = f (a, dz +a,dy +a, dz).
r 7
I

If we denote by n’ the unit vector normal to S, drawn in the
opposite sense to n, we have, by Helmholtz’s formula,

(] (2o
[ [T e

= —dnu(P)+ f (a, dx +-a, dy--a, dz).
I

To sum up: if u is a monochromatic wave-function of period 2=/(kc)
due to a source at L, and if S is an unclosed surface with T as rim,

J'J' {eﬂm on_ _(eier)} dS = —dneu(P)+ f(a dxz +-a,dy +a.dz),

r, on 2
(2.11)

where € = 0 if the segment LP does not cut S, e = 1 if @t cuts S once.
The normal n is supposed to be drawn from the ‘illuminated’ to the
‘dark’ side of S.

In the diffraction problem which will concern us most, we have
u = etklr—t/r. where 7, is distance from the source L.

We shall find an explicit formula, due to Maggi,{ for the vector a
in this case. We may evidently suppose that the segment L P does not
cut S; then, dropping the time factor e—** the formula (2.11) can
be written in vector notation as

”B-n ds = fa-tds, (2.12)
S T

1 Annali di Mat. (2) 16 (1888), 21-48. See also Kottler, Annalen der Phys. 70
(1923), 405-56 ; Rubinowicz, ibid. §3 (1917), 257-78.
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where t is the unit vector along the tangent to I' and

gikry eikre\ ik, gikrs
= , —_ d , 2.13
B 1 grad( To ) To gre ( " ) ( )
a=a,ita,jtak. (2.14)

If we adopt the usual convention that the directions of t and n are
connected by the right-hand screw law, an application of Stokes’s

theorem gives . — la.ndsS,
L f B.-ndS J;f curla.n

and so a is a solution of  curla = B. (2.15)

o P

—_—

L 5 2 /S >z

Fia. 10

Suppose that the distance between L and P is 2f. Then we can
choose our axes so that L is (0, 0, —f), P (0, 0, f). As our problem
is a ‘bipolar’ problem, it is most convenient to introduce spheroidal
coordinates (A, u, v) defined by the equations
x = fsinhAsinpcosy, y = fsinhAsinusiny, 2z = fcoshAcospu.
The surfaces A = constant are confocal ellipsoids of revolution with
L and P as foci, p = constant confocal hyperboloids of revolution
with the same foci, and the surfaces v = constant are planes through
the line LP. We make the orthogonal curvilinear coordinates
(A, 1, v) quite definite by the conventions

A>0, o<, 0 < v < 2m.
In this system of coordinates we have

ro = LG = f(cosh A+cosp), ry = P@Q = f(coshA—cos ).

—
If we denote by r the position vector OQ, or/o] is a tangent vector
to the curve p = constant, v = constant. Denoting its magnitude

by k,, we have hy = fy/(cosh®—cos?u);
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or
aA

where i, is a unit vector tangent to u = constant, v = constant.
Similarly we define unit vectors i, and i; by

or or
5——h2 2 37—k ig,

where hy = f\J(cosh?2A—cos?y),  hy = fsinh Asinp.

The three vectors i,, i,, i; are mutually orthogonal vectors, though
they change their directions in space as the point at which they are
drawn varies. Any vector A at a point @ can be resolved into com-
ponents 4,, A,, 4,4 in the directions of the vectors i,, i,, and i at @;
these components are defined by

A - A1i1+A2i2+A3i3.
The differential of r is given by

and so we may write = h,i,,

dr = an + 2 a0 + gy — hyiydA Lhyiydp hylydv.
oA o ov
Since the magnitude of dr is ds, the element of length in space, it
follows that ds? — h2d)® +hdp? +hidv2.
'By well-known formulae, we now have
T\ A\, ] T A\ 7y }’
1
s { (ashe) 5 (a1,

and similarly for the other components. The equations (2.15) to
determine «,, a,, a; are then

0 o k h ikry ikro eikre 9§ [eikry
—(aghg) ——(azhy) = =2 {e 3)\(6 )— —(1‘ )}’ (2.16)

(curla), =

op ov hy \'n, ry OA

P h h etk etkro etkre 9 [eikry

g pt: bkt § AARNRNRAN DANIS DI il 2.17
8v(al ) — (aa a) = hy { r 6/.1.( ) 7o 3#( r )}’ ( )
0 - 0
8—/\(% hz)—a(al k) =0, (2.18)

since 7, and r, are independent of ». (2.18) gives
_ %
ou’

alh1=£v Ay g =
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where ¢ is an arbitrary function of A, u, v. We can, however, take
¢ to be identically zero; for if not, a would involve an added term
grad ¢, which would disappear on integration round I'. Hence
a, = a, = 0.

To simplify the remaining equations, we observe that, if

P(r) = e*/r,
then
sinya%;o) = ——sinhhw’ Sinpa(/;(:l) _ Sinhkaé(rl);
® ©
moreover, (sinh2A+-sin?u)fi(rf(r,) = e2ikfcosh )

The equations (2.16), (2.17) then reduce to

éax(aa hy) =f Sinz.""a'ax{'»b(ro)'ﬁ(ﬁ)} = a%{f sin®u (o) (7'1)}’
%(aa hy) = —fsinhz)\% Wlrair)} = — % {fsinh2\ g(rol(ry)}

= a—i;{ SoinZu (ro)b(ry)}.

Integrating, we obtain
e'l'k(fo+"|)

ashy = feintu y(rahb(r) = foin®u """,

0°1

1 th(ry+7y)
Shp ¢ (2.19)

and so a=a4lg = —~ is.
38 7 sinhd ryr; °

It remains to put this in a form independent of our special choice

of coordinates.
We have

. 1/{,0x .oy o0z . . .
ig=—li—=4+j=+k=-} = — .
3 ha( £ +i E™ + 3v) isinv-4jcosvy
Thus i; is perpendicular to the plane LPQ, and so is a constant
multiple of ry x r;. But since
ro, = r+fk, r, = r—fk,

we have

roxr; = —2fr xk = —2f2sinh Asin (i sinv—j cosv),
To XTI,

and s io=_ "0771 .
? 37 2f%inhAsinp
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Substituting in the formula for a, we obtain
giktrotr)  roxr)
7oy 2f%sinh2X’
Again, it is easily seen that
2f%sinh?A = r r,+r,-1,,

eikrotr)  poxr,
ToTy ToT1+Toe Ty
We have thus proved that, if S is an unclosed surface with rim T,
J‘J‘ {ezkrl P (e’lkfo) —eikr, i(e”‘“ } 1S — J‘ etkiro+7y) (ro X rl),t dg,
r (2.111)

provided that the segment LP does not intersect S. The modification
when LP does intersect S is evident.

(2.110)

and so, finally, a=

Example. p is a fixed unit vector and u = exp(zkr .p). Prove that

feikr,

u = lim r Vi1’

1oy
where r, = r+fp.
Hence show that

eikry 5 . . o (el ,)}
ff{ ~ %exp(zkr-p)—exp(zkr-p)— dsS
s

_ fe!rp{zk(r-p +7)} PxTy) -t
7 "n+pn

r
provided that the vector through P in the direction —p does not intersect S.

§ 2.2. Geometrical optics as a limiting form of physical optics

There is a general theorem due to Kirchhofft which states that
geometrical optics is a limiting form of physical optics. More pre-
cisely, the diffuse boundary of the shadow in diffraction phenomena
becomes the sharp shadow of geometrical optics as the wave-length
of the light tends to zero. Kirchhoff’s proof was based on his theory
of diffraction as outlined in § 1.1, and depended on a transformation
of Helmholtz’s integral and the use of what would now be called the
Riemann-Lebesgue lemma.} But, owing to the generality of his work,

t Vorlesungen %. math. Phys. 2 (Optik), 35. See also Encyc. der math. Wissen.
V,, 437; Sommerfeld and Runge, Ann. d. Phys. (4) 35 (1911), 277-98; Friedlander,
Proc. Camb. Phil. Soc. 43 (1947), 284-6.

1. We refer here to the ‘Hilfsatz’ on p. 33 of Kirchhofi's Vorlesungen. Actually the
‘Hilfsatz’ is not correctly stated.
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it is not easy to present Kirchhoff’s argument in a satisfactory form.}
In the present section we show how Maggi’s transformation of
Helmholtz’s integral enables us to prove Kirchhoff’s result under
conditions which are sufficiently general for most purposes.
Let us suppose that L is a point-source} of light which can, in
some way, be specified by the wave-function
etkr—ct)

This light is diffracted by a non-reflecting opaque body with bound-
ing surface S. By (1.12) the effect at a point P is specified by the

wave-function
ikr, o ik(ry—ct) 1k(r1—cl) ikr
= 5w ) e
ro ry on\r,

where X is an unclosed surface whose rim is the curve I' along which
the tangent cone from L to S touches S, and 8/dn denotes differentia-
tion along the normal|| drawn from the ‘illuminated’ to the ‘dark’
side of X.

of

Fia. 11

Applying Maggi’s transformation, we obtain

U = euo—4—1ﬂ_ f a.tds, (2.21)

where € = 0 or 1 according as P is or is not in the geometrical shadow.

1 The difficulty is to show that the ‘Hilfsatz’ or the Riemann-Lebesgue lemma
is applicable.

1 The proof when the light consists of plane waves (L at infinity) follows similar
lines and is omitted here.

|| The sense of the normal in formula (1.12) has been reversed.
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To prove Kirchhoff’s theorem, we have to show that the line integral
in (2.21) tends to zero as the wave-length 27/(kc) tends to zero, i.e. as
k — oo.

Using the spheroidal coordinates of § 2.1, we have

dr d d
— dv _ Sinzﬁ k(2 cosh A—ct) BV
andso  a-t=a haﬁ "~ f(cosh2A—cos?u) ds’
Hence the integral to be discussed is
. — | e2ikscosh siny d 9 99
If a-tds If ¢ f(cosh2A—cos?u) " (2.22)

the time factor e~%¢ being omitted.

We now make the following assumptions:

(i) P is not on the boundary of the geometrical shadow. This im-
plies that A > 0 on I', and so the integrand in (2.22) is a continuous
function of A and p which can be differentiated as often as we please.

(ii) On no arc of I is A constant. This means-that no arc of I lies
on & spheroid r,+r, = constant.

(ni) I' is a simple closed curvef on which A, u, v are continuous
functions of the arc s, which can be differentiated as often as we
please.

(iv) I" can be divided into arcs on which A is strictly monotonic.
By (iii), dA/ds is of one sign on such an arc and vanishes only at its
ends.

Of these assumptions, (i) and (ii) are necessary for the truth of the
theorem, whilst (iii) and (iv) are conveniently simple sufficient
conditions.

Consider an arc y on which cosh A increases steadily from a to b;
by (i), @a > 1. The integral along v is

— . — 2ikfcoshA Sinzy' @
I'= f a-tds f ¢ f(cosh2A—cos?y) ds as

Y

_ | ginu smzp. dv ds d
f ¢ f(u*—cos®u) ds du %

t The case when I' is & simple curve extending to infinity is ruled out here for
simplicity. The reader will see that the result still holds in this case provided that
the integral along I' is absolutely convergent.

4617 G
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where u = coshA, n = 2kf. We write this in the form
¢ ds
I = | emrud(u)— du.
| et u
a
We must next discuss how s depends on .
Take any two numbers a’ and b’ such that ¢ <a’ <b' <b.
Then, by the inverse function theorem, s is a steadily increasing
function of u in the interval a’ < u < b’, and can be differentiated

as often as we please. Hence, by an integration by parts beginning
with

"
1 ds niu
w | p0 g der

we see that the contribution to I of the interval (a’, b’) tends to zero
as n - oo.

To deal with the interval (a,a’) we measure s from « = a and
observe that, by (iv), an expansion

u = ata,s"ta,, s+,

where m is a positive integer greater than unity, holds in an interval
0 < s < 8p; we can choose a’ so that @’ < u(s,). By reversion of
series we deduce an expansion

8 =r§1br(u—a)'/’",

valid when a < % < a/, the real positive mth root being understood
here. It then follows that

ds 1 < m
Blu) = = — Zl . (u—aymm.

We have now to consider the behaviour of

a’
< du
f e’niu z cr(u_a)f’m_
u—a
s r=1
as n —> oo.

We can divide the infinite series into twa parts. To the sum of
those terms for which r > m, our previous argument depending on
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integration by parts can be applied, and it turns out that they have
no effect when n — co. If » << m, we have

a n(a’—a) im1
rim—
einu(u_a)rlm—l du — eina+ivv dv
nr/m.
a ]
. - o]
ina ina
€ eivyrim-1 g, € ebmirimD r s
nr/m nr/m m

0
on using a well-known integral valid when 0 <<r < m. Hence
f ei"“¢(u)% du—->0

as n — oo. A similar argument shows that the integral over (b’,5)
also tends to zero. Thus, finally,

lim | a-tds =0

k— o
for each finite arc y of I' having the property assumed under
condition (iv).

We have thus proved that, under quite general conditions,

U = euo—éfa-tds
r

— €U,

as the wave-length 27/(kc) tends to zero. In other words, the limit
of the wave-function « has a sharp discontinuity on the edge of the
geometrical shadow; in the shadow there is absolute darkness.

By our assumption (ii) we ruled out of consideration the case when
there is an arc of I' on which A has a constant value. This excluded
case is of some experimental interest. Let us suppose that y is an
arc on which A has the constant value . Then

. sin’u
a.t ds = e2tkfcosha dv,
f f(cosh?ax—cos®u)
¥ Y

and this certainly does not tend to zero as k - co. Thus, when an arc
of T lies on one of the spheroids r,+7; = constant, there is always
illumination at the point P, even if it is in the geometrical shadow,
no matter how small the wave-length is.

This result agrees with experiment. For Fresnel observed that,
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when there is a source of light on the axis of a circular screen, there
is always brightness on the axis beyond the screen, no matter what
the wave-length may be.

§ 3. Diffraction by a black half-plane
§ 3.1. The diffraction of plane waves of monochromatic light

The simplest type of diffraction problem is that in which plane
monochromatic light is incident on a plane black screen, i.e. on a very
thin non-reflecting opaque plane surface. In spite of its simplicity
a problem of this type is of considerable experimental interest: for
it can be realized by means of a spectrometer in which the collimator
and telescope are both focused on infinity and are separated by the
diffraction screen. We consider here the simplest problem of this
type, namely that in which the black screen is of infinite extent and
is bounded by a straight edge. .

Let us suppose that the incident monochromatic light is specified
by the wave-function w = e—ik@ted),

or rather by its real part. The wave-surfaces are all perpendicular
to Ox and are travelling with velocity —c parallel to Ox. If P is
a point at which zcosa+ysina < 0, where —in < o < 1w, Helm-
holtz’s formula gives

Y[ R R

where integration is over the whole plane § whose equation is

zcosa+ysina = 0

and n is the unit vector —i cos a—j sin @ normal to S.

If, however, a black screen covers up the part of § on which y is
negative, the wave-function U specifying the effect beyond S is
obtained, according to Kirchhoff’s assumption, by putting

u = dufon = 0

on the screen. Hence (3.11) then becomes

om-L[[FEE)- ST o

where S, is the part of § on which y > 0. (See Fig. 12.)
We now apply to (3.12) Maggi’s transformation in the form




§ 3] DIFFRACTION OF LIGHT 85

appropriate to plane waves. As the source L is the point at infinity
on the z-axis, the formula of § 2.1, Ex., gives

U(P) = _;_ﬂfa-tds (3.13)
J

A

4
Directron of propagatron
of the /oé'me waves

z
V74 Y
A Y
A
P \\ >
r \ L (9t nfivty)
\
sJSereen
A
A )
A Y
Fic. 12

when P is in the geometrical shadow; in this formula I is the straight
edge of the screen (the axis of z), t the unit vector tangent to I', and

etk(r —t)

a= ixr,.

ry(ry—iery)
If P has coordinates (z;,¥,,?,), we have
—_
r, = PQ = —iz,—jy, +k(z—2,)

when @ is a point on I'; hence

But since n = —icosa—jsina, the right-hand screw rule gives
t':k, and SO (ixl’l)-t= _yl.

Hence (3.13) becomes
1 L eik(f] —L‘l)
T dnm ri(ry+2,)

— @®

UP) = Yy, dz. (3.14)

It is more convenient to use, not the cartesian coordinates of P,
but its cylindrical coordinates (p, $,2;) with Oz as axis. This gives

Ty = pcosg, y, = psing, r}=p’+(z—2z)%



86 HUYGENS’ PRINCIPLE AND THE [cHAP. 1T

If we substitute these values in (3.14) and then change the variable
of integration to =, where

2z = z;+psinhr,
we obtain

a

1kp cosh r—iket % 3.15
U(p) = f cosh r4cos ¢ ar. ( )

— @

The formula (3.15) holds only when P is in the geometrical shadow.
If the incident light falls directly on P we must add to the right-
hand side the term »(P). Hence

@®

1 . . sin ¢

P) = Py——_ tkpcoshr—iket 77V 3.16

UP) = eu(P) 4 f ¢ cosh 7-cos ¢ dr, (3.16)

where € = 0 or 1 according as P is or is not in the geometrical
shadow. We shall write equation (3.16) in the form

U = u*+ub, (3.17)

where u* is written for eu, the wave-function according to the laws
of geometrical optics. The term P then represents the effect of
diffraction.

§ 3.2. Some analytical transformations and approximations

As we have just seen, when plane monochromatic light is incident
on a black half-plane, the wave-function u?, where

@

uB — 1 ezk@coshf—cl)_ﬂ_d (3.21)

27 cosh 7+ cos ¢
0

gives the correction which has to be added to the wave-function u*
of geometrical optics in order to account for the diffraction of light
into the geometrical shadow. The formula (3.21) is rather difficult
to apply as it stands. In the present section we obtain two trans-
formations of the formula which are much easier to handle, and we
deduce approximate formulae valid when p, the distance from the
edge of the screen, is either very small or very large compared with
the wave-length 2=/k.

The function uZ is evidently a periodic function of ¢ of period 2.
We consider then only the range —7# < ¢ < m; the part of this
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range in which —7 <¢ << a—3}n forms the geometrical shadow.
The two formulae we shall prove are

o+t

1 . sin ¢
B _ ik(pcosh{—cn) "V 4 3.22
w 2 ¢ cosh {+cos ¢ ¢ ( )
0
and

kp
e L e—ik(pcos¢+d)|:¢_%ﬂsin¢ f eitcos b £) dg], (3.23)

0
where H{)(¢) denotes the Hankel function Jy(€)+1Yy(€).

7“
7
27/ R* 27/ 00 +37/
’.’.—.—o
’.
e :
0 c_ A $
Fiag. 13

To prove (3.22) we consider the contour integral

f egikpcosh %
cosh {+cos¢

taken round the closed contour C of the figure. Since the integrand,
regarded as a function of the complex variable {, has all its singu-
larities on the imaginary axis, the value of the integral is zero.
Hence
R Rtjmi R+imi
+ j etkpcoshy % SIn‘ﬁ f ekpeoshy "% Bm?‘
cosh {+cos qS cosh {+cos ¢

° (3.24)
But on the side of C parallel to the imaginary axis, we have
{ = R+1i9, and so

0 R

R+jmi ing
tkpcoshl i
P, ¢ cosh{-}—cosqsdgl
i
< | e~kpeinh Rsiny [sin ¢| f |sin ¢ |
= f ¢ |cosh(R+19)|—|cos ¢| dn < sinh R— |cos ¢| an.
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Rt mi
Hence J. -0 as R-oo.
R

Making R tend to infinity in (3.24), we obtain

@ . @+ imi .

f etkpcosh sin 4" dl = f etkpcosh{ i 95 dt

: cosh {+cos ¢ cosh{+cos¢ ~’
0 0

the path of integration in the latter integral being the dotted curve
in the figure which is asymptotic to the line » = 4». If we substitute
in (3.21), we find that |
© +§mi
uB — — i eikpcosh {—ct) sin ¢

T 27 cosh —]-—cog
0

di,

which is equation (3.22).
The simplest way of proving (3.23) is to show that u? satisfies the
differential equation

B
ou” +icospuB = }sind H{Y (kp)e—i e,
o(kp)
It is more convenient to derive ou®B/d(kp) from equation (3.22)
since we then obtain an absolutely convergent integral instead of a

conditionally convergent one. We then have
B w+i7ﬂ: . - .
o’ _ _ 1 [ empcome tSingoosht
d(kp) 2m cosh {4 cos ¢
0
provided that this integral converges uniformly with respect to p;
this is certainly the case since the integrand behaves like

e—kpsinh f’

where { = £+ 4mi and ¢ is large and positive. Hence we have

© +{mi
,_?yi?‘ + 7 COS ¢ ub = — L f gikpcosh {—chgip (]S dg.
o(kp) 2m
0
Using the formulat o+t
Hal)(:t) — E f gizcosh [ d{’
™

0

1 Watson, Bessel Functions, 180 (8).
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we obtain the required differential equation
oubB
A(kp)

From this it follows that
uB — uB(O)e""Pc“‘l‘—l—iSln¢e‘1k@°°s¢’+cof ezfcosg‘»H(l)(f) dé.

-t cos¢>uB = }sin ¢ H{V(kp)e-t*. (3.25)

But, by (3.21), o
uB(0) = _1 f e—ikel __ sin ¢ dr — _ ¢ e~ikel
27

cosh 7 cos ¢ 2m

0
provided that —7w < ¢ <<=. Hence we have

kp
uB = _él;e—ik(pcosq'awl)[d,_%ﬂsinqg J' eifcosg‘:H&l)(g) df] (3.23)
0

if —7m <¢ <, a formula due to Dr. Erdélyi.

The equation (3.23) enables us to find very easily an approximate
formula for «® valid when p is small compared with the wave-length,
i.e. when kp is small. For

HP(E) = J(6)+i%,() = Zlogé+0(1)
as £ — 0, and so |

k .
f g P(E) d¢ = Q;z kplog(kp)-+ O(kp).
0

— g-e-*g—ising kplog(kp)+ Okp)],  (3.26)

Hence uB =

when kp is small.
To find an asymptotic formula for »? valid when kp is large, we
go back to (3.22). Making the substitution

i cosh { = 1+4-v,
we have bt
gkt =T sin ¢
b = — 7 ___ gikpcoshl " 77 C
2m f cosh {+cos ¢
0
1 e sin 6
= — —¢iklp—ch+imi —kpv .. d
o f ¢ (1+cos ¢+1v)/(2v+1v?) v
— L gikpetisimi [ gt sin¢
2 (14 cos ¢+1v)/( 2v+w2)
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the rotation of the path of integration through a right angle being
justified by Cauchy’s theorem.t It follows by Watson’s lemma] that

a

1 . ) sin ¢
D o, — ___ othklp—ch)+imi ~kpv d
v e f e I Fcospy@o) **
as kp - oo. Hence
1 . -
B oAy — . tkp+ini—ikct 3.27
u 2J(2ﬂkp)tan%¢e (3.27)
when p is large compared with the wave-length, provided that

—_ < ¢ <
In conclusion we observe that 4® can be expanded as a Fourier
series of the form||

- =]
i
n=1
where the upper or lower sign is taken according as ¢ is positive or
negative and » = 0, }, or 4 according as 0 < |[¢| < im, |$| = im,
or }7 < |$| <=w. The function AP (£) is a ‘cut’ Hankel function,
that is, it is the function

HP(€) = Jp(€)+iT,(8)
deprived of terms involving negative powers of §.

Although this expansion leads at once to the approximation (3.26),
its real interest lies in the occurrence of the ‘cut’ Hankel functions
in a physical problem. The function «? is a solution of the equation
of cylindrical waves, and so we should expect the Fourier series for
uB to be in terms of the normal functions for cylindrical waves.
These normal functions are, as is well known,

YR L S
H™(kp) 008”956 , (3.29)
where H{M(kp) = J,(kp)£iY,, (kp),

the upper or lower sign being taken according as m = 1 or 2: more-
over, when kp is large, these functions behave like

2 . 2 1 . i
(”T’P)%exp ‘:}: z(kp — n:— w)—zkct} sin ne,

cos

1 The argument consists essentially in considering the integral round the complete
boundary of the fourth quadrant of the circle [v] = R, and then making R tend to
infinity.

1 Watson, Bessel Functions, 236.

|| Copson and Ferrar, Proc. Edin. Math. Soc. (2), 5 (1938), 169-68. See also Watson,
ibid. 5 (1938), 174-81; Erdélyi, ibid. 6 (1939), 11.
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so that (3.29) represents an expanding or contracting cylindrical
wave-motion according as m = 1 or 2.

The expansion (3.28) consists, however, of a term representing a
plane wave-motion together with terms of the form

h Y (kp)sin ng e~ket
which cannot be formed from the normal functions (3.29) and do
not satisfy the equation of cylindrical waves. A phenomenon of this

type was first noticed by Whipplet in his work on diffraction by
a wedge.

§ 3.3. The diffracted waves

So far, we have shown that the diffraction of plane monochromatic
light by a black half-plane is characterized by the wave-function

U = u*4uB,

where u* represents the effect according to the laws of geometrical
optics and u® is the correction term which takes account of diffrac-
tion. We now consider the function U in more detail.

Although u* is discontinuous across the geometrical shadow, U is
continuous, since u® has a discontinuity which compensates the
discontinuity of u*. For we have

lim wu* = e~tklp+et), lim u* = 0;
¢—m—0 ¢—>—m+o0
also, by (3.23),
lim uB = —}e-tklp+ed), lim uB = je-tkp+eh),
—7—0 ¢—>—7m+0
Hence lim U= lim U = }e-ikpteh),

¢—>nm—0 ¢—>—m+0
which proves that U is continuous across the boundary of the
geometrical shadow. There is thus no sudden change from light to
darkness, but a gradual change.
Moreover, in the geometrical shadow, U = uP and so the intensity
of illumination is measured by

U = [uP[2 ~ —_tan?}g,
8wkp

when p islarge compared with the wave-length. Since the intensity in
the incident light has measure unity, the illumination of the geo-
metrical shadow is very feeble, but there is nowhere absolute darkness

t Proc. London Math. Soc. (2), 16 (1917),.94-111 (104).
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since tan?1¢ is never zero in the shadow. The intensity gradually
decreases as we move farther into the shadow.
When p is large compared with the wave-length

so that the diffracted wave is a non-isotropic cylindrical wave propa-
gated outwards from the edge of the screen. This means that the
edge of the screen should appear to be luminous when observed from
points in the geometrical shadow, a result which can be verified
experimentally. Outside the shadow the effect is masked by the
incident light. Actually diffraction by a black half-plane is purely
an edge effect; for neither «* nor «? depends on the angle of incidence
« and so U is the same for all black screens having the same edge
and the same geometrical shadow.

Lastly, we observe that outside the geometrical shadow the two
wave-motions specified by »* and «F interfere and produce inter-
ference fringes—the diffraction pattern. But when p is large com-
pared with the wave-length, the amplitude of «? is very small except
near ¢ = 7. Thus the diffraction pattern is observable only near the
boundary of the geometrical shadow.

The actual diffraction pattern can be calculated by a careful
approximation to u® near the boundary of the shadow. In spite of
the defects of the theory, the results agree quite well with the
experiments.

§ 3.4. The diffraction of spherical waves by a black half-plane

The problem we have just discussed is the limiting case of the more
general problem of the diffraction of monochromatic spherical waves
by a black half-plane, which we shall now consider. The incident
light is generated by a point-source L and is characterized by the
wave-function 1

u = — eik(ro—cl)’
7o
where 7, is distance measured from the source.

We choose axes of coordinates so that L lies on the axis of z and
the straight edge of the screen lies along the z-axis. Then the screen
covers the half-plane zcosa+ysina = 0, y < 0, where the angle «
lies between 4-4n. On Kirchhoff’s theory, the effect at a point P
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beyond the plane of the screen is characterized by the wave-

function
1 o eikrl eikrl u
v =g [ el )5
S,

where 8, is the half-plane z cosa+ysina = 0, ¥ > 0; in this formula
r, is the distance measured from P and n is the unit vector

—icosa—jsina
normal to ;.

'y ‘y
5
« —>-
N x
/2 \
\
\
\
/ \
P sJereen
\
\
Fia. 14
If we apply Maggi’s transformation (§ 2.1) to Kirchhoff’s integral,
we obtain 1
U(P) = eu(P) — - f a-tds, (3.41)
v
r

where T is the straight edge of the screen and ¢ = 0 or 1 according
as P is or is not in the geometrical shadow. In this equation

€k, o eikrotri—~<h  roxr ‘
ToT1  ToT1+ToTy
Let L and P be at distances p, and p, respectively from the
edge of the black screen, so that their coordinates are (p,, 0, 0) and
(pycos ¢, p;sing, z;). Then
r, = —ip,+kz, r, = —ip, cosd—jp,sinp+k(z—2z,),
sincex = y = O on I". Hence
To*Ty = popy CO8P+2(z—2y),
Iy x Iy = izp; sin g+jpy(z—2,)—jzp, cos ¢+ Kpyp; sin g,
(Fo X Ty) -t = pop, sing,

(3.42)
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and so (3.41) becomes

1 giktrotry—cl) sin
P = )= [ b e
—® (3.43)
We now make the substitutions
z = posinh T, z—z,; = p,sinh 7,
so that ro = pocoshzy, r, = pycoshr,.
It follows from (3.43) that
ik(R—cl) i
vy = eu(P)—;l; f PoP1 coesh-r0 cosh fl'cosh('ro—siilﬂ:j—{-cosd: 4z,
” (3.44)
where R = ryr,. Lastly, we take a new variable of integration
T = rg+7, = sinh-1Z } sinh-1°"*,
Po P1
It is easily shown that
dr _ R
dz  pgpycoshrycoshry
and that R? = p%+p3+22+42p, p, cosh 7.
Thus, finally, o meh
TR e .
U(P) = cu(P)—p [ © - coshsffcos jdr (3.45)

This formula, which should be compared with the corresponding
formula (3.16) for plane waves is due to Rubinowicz.t
Equation (3.45) is usually written in the form
U = u*+}ub,

where u* is the wave-function according to the laws of geometrical
optics and u? is the correction term which has to be added to account
for the diffraction of light into the geometrical shadow. As in the
case of plane waves, neither «* nor u? depends on the angle «, and
so U is the same for all black screens having the same straight edge
and the same geometrical shadow: more briefly, diffraction by a black
half-plane is an edge effect.

1 Annalen der Phys. 53 (1917), 257. The proof given here is due to Kottler
(ibid. 70 (1923), 405).
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§ 3.5. The diffracted wave and Fresnel’s integrals

When monochromatic spherical waves are diffracted by a straight
edge, the diffraction wave is, as we have just proved, characterized
by the wave-function

ik(R—cl)
uf — — L [0 sing g (3.51)
27 cosh 7+4-cos ¢
0
where R? = p3+pi+2i+2p,p, coshr.

We now considert the asymptotic behaviour of ¥Z where p, and p,
are large compared with the wave-length 27/k.

Since k is very large compared with 1/p, and 1/p,, the important
part of the integral (3.51) is due to that part of the range of integra-
tion near which the phase of e*Z is stationary, and so is due to the
part of the range of integration near r = 0. Now when 7 is very

small, we have
R=R, +POP1

correct to the second order in =, where

R, = \/{(P0+P1)2+2§}-
It follows that

2 1 e1k(R,—ct) . i, .
wr = — Ly tangqsfew o (3.52)
kpop1 c
where q = = 2cos 4.
We have now to discuss the behavxour of
3 (] dT
Flg) = f P (3.53)

0

for large positive values of g.
By rotating the path of integration in (3.53) through 45° by means
of Cauchy’s theorem, we obtain

ety
F(q) = f eq 1:1_—2_'_—5&&.

0

1 The subsequent analysis is a modification of a similar investigation made by
Whipple (Proc. London Math. Soc. (2), 16 (1917), 103). The main difference is the
rotation of the path of integration in (3.53) which simplifies the justification of what
follows,
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Hence we have

a

F(q) — e—imi f e— 7T _AQT._
= e—Ha"P'+1im) f g i) ,___;_"
0

= e~ia'd +im) J dr f dr 2me-n'a"-ih,

[cHAP. 11

As this repeated integral is absolutely convergent, we may invert

the order of integration, to obtain

F(q) = e-t@y'+im f dn 2qein'¥ J’ e dr
q 0
= “/_"e-—i(q'nﬁ'ﬂﬂ)f e’ d¢
g ¥

q

= Jewvinfig))

where f(£) denotes the complex Fresnel integral

)= [ e dt.
£

(3.54)

Finally, if we substitute for F(q) from (3.54) in (3.52), we find that

L)
ul = —

+ — g g, n e gy,

when the wave-length 27/k is small compared with the distances
po and p, of the source and the point of observation from the edge

of the screen.
The intensity of the diffracted wave is measured by

e = E R e

A qualitative discussion of the variation of intensity can then be
carried out geometrically by means of the curve (known as Cornu’s

Spiral), whose parametric equations are

X = [cos(?)d, Y = [sin(g?)d¢;
4 £
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for the distance from the origin to the point of parameter ¢ on this

curve is |f(gy)|.
Ex. 1. Show that the equation (3.45) can be written in the form
o [ eik(R—ot) PopySing

U(P) = ew(P) -2

= | F=r [ - BB

]

where R} = (Po+P1)z+z.{v R} = (Po—P1)2+z?’ r = PL.
Ex. 2. u is the wave-function of a line of simple sources through the
point L parallel to Oz. Prove that
u = mHP (kry)e—iket,
where 73 = pa+pi—2pypy cOB.
Hence show that, if the light from this line-source is diffracted by the black
half-plane xcosa+ysina = 0, y < 0, then

0(F) = culP)—ti | BWR) .

where R? = p}-+p3+ 2p,p, coshr.

§ 3.6. The asymptotic behaviour of the diffracted wave

An alternative method of obtaining the asymptotic behaviour of
the diffracted wave when p, and p, are large compared with the
wave-length depends on a transformation of the result of Ex. 1
above. This example shows that

2 [ etR—h Po P 8in ¢
B_ 2 0P1 3.61
¢ n | B (B — RE(B*— R ok, (3.61)
where R = (potp)? 47,

RE = (po—p1)*+21,
r = PL = \f{p}+pi—2popy cos $+2%}.
In equation (3.61) we make the substitution R = R,(1+7) and
then apply Cauchy’s theorem to rotate the path of integration
through a right angle. This gives

ckRy T ]

B_ _2 T ) d
u TrPOPISln¢ € ! {R%(l +T)2_72}J{2T+12}J{R§(1+T)2—.R§}

= — ?. Po P1 sin ?S e?:k(Rx—CO'H‘m: X
w

e-kRuu dy

X f (B (1 +ou)y—riy2ut it (R (1+iu)— B3}’

H

4617
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When the wave-length is small compared with p, and p,, kR, is large;
the asymptotic expansion of % can then be obtained by applying
Watson’s lemma.t The dominant term is

uB = — 2po py 8in & .. gth(Ri—ch+}mi f e—kRiu _dﬁ_
T (B r)(BI— R J@u)
. 0
_ 2pgpy 8in & eikRi—chims [ T}
(B —re)( B — ) 2R,
Hence follows the approximation
B ___ B0 am e (3.62)

N/(S"Tle Po Pl)

This result does not hold when P is near the boundary of the geo-
metrical shadow, on which ¢ = 4.

§ 4. Kottler’s theory of diffraction by a black screen

Instead of regarding Kirchhoff’s solution of the problem of diffrac-
tion by a black screen as a fairly accurate first approximation to
a boundary value problem, Kottler} has shown that it is the rigorous
solution of a somewhat different problem; in fact, it is the solution,
not of a boundary value problem, but of what we may term a ‘saltus
problem’.

Let us consider the case of diffraction by a thin black screen in
the form of a surface S bounded by a rim I'; for simplicity, we take I
to be a simple closed curve and leave the reader to make the
appropriate modifications when I' either extends to infinity or con-
sists of several closed curves. We suppose that one face, S, say, of
this screen is illuminated, and that the other, S_, is dark. We shall
regard S, and S_ as constituting a single degenerate closed surface §’.

If the undisturbed light is specified by the wave-function %, then,
according to Kirchhoff, the effect when the screen is present is
specified by a wave-function u satisfying the boundary conditions

ou  0u,
U=1uy, -—=—-— onis,,
“ on on +
u=0, 3_u= on S_
on

Kottler uses a different definition of blackness; he says that S is a

t+ Watson, Bessel Functions, 236. I Annalen der Phys. 70 (1923), 405-56.
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black screen if w and du/on are discontinuous across S, the dis-
continuity being defined by
oul®  ou
ult = u,, —| =
[u]” 0 on| on
the actual values of v and du/on on the two sides of S’ are unknown.
As an example of this idea, let us suppose that the incident light
18 monochromatic light due to a simple source at the point L, the
undisturbed wave-function being

—_ —tket — pik(ro—ct
Uy = Vye = eWro—/r,.

The wave-function « will be of the form ve~¢, where v is independent
of t and satisfies, the following conditions:

(i) v is a one-valued function of the coordinates of the point of
observation P, and satisfies the equation

V2v+4-k?v = 0,
except when P is at L or on §’.
(ii) v becomes infinite at L, its principal part near L being 1/r,.

(iii) » has a discontinuity across the degenerate closed surface S’

specified by o1+
= —_— =
A

where U and V are known functions, and n is the normal from
S, toS_.
(iv) v behaves like e¢?*"/r on a sphere of large radius r.

Let D be the volume bounded externally by a sphere X of large
radius R, and internally by the degenerate closed surface S, the
small sphere o, with centre L and radius ¢, and the small sphere o,
with centre P and radius ;. Then by the usual application of Green’s
transformation, we have

[+ [+ [+ [Tlal) - as=o won

where n denotes the normal drawn into D.

We consider separately the four terms on the left-hand side of
equation (4.01). By hypothesis (iv), the integral over I tends to zero
as R — co. The integral over o, tends to —4nv(P) as ¢, - 0, where
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v(P) denotes the value of v at P. By hypothesis (ii), the integral over
o, has the limit, as ¢, > 0,
1 gy(P
P = )

Fia. 16

4mo(P) = 4mroy(P)+ f f {v_(e”"')_e'k" a”} ds.  (4.02)

Hence

Ty on

It remains to consider the integral over the two faces of S'.

[j-11+1f
- [l )
- [l ) (2]
- [l )

by condition (iii). It follows from (4.02) that

o(P) = f f{ an(e:l) er': V} S,  (4.03)

where n is the normal to S, drawn from the illuminated to the dark
side.
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In the problem of diffraction by a thin black screen having the
form 8, Kottler’s hypothesis is that

U = v, V = oy,/on.
Hence, by (4.03), his solution of the problem is
tkry tkry
o(P) = 0(P)— - f f {00%(6_71_)_% %”0} dS.  (4.04)
s

Equation (4.04) is the formula Kirchhoff gave for diffraction by
a black screen (§ 1.1, Ex.). But whereas Kirchhoff’s formula pur-
ported to give a solution of a boundary value problem in which the
boundary data turned out to be incompatible, Kottler derived the
same formula rigorously from a different definition of ‘blackness’.
It is impossible to give a satisfactory physical definition of a thin
black screen; Kottler’s work shows us what analytical definition of
‘blackness’ gives rise to Kirchhoff’s formula.

It should be noticed that it is not possible to apply Kottler’s
definition of ‘blackness’ to a thick screen. A further assumption is
needed, namely that the illuminated part of a thick screen behaves
like a thin screen and that the shape of the dark part is of no
importance.



III
HUYGENS’ PRINCIPLE FOR ELECTROMAGNETIC WAVES

§ 1. Huygens’ principle and Maxwell’s equations

§ 1.1. The formulae of Larmor and Tedonef

KircHHOFF’s formula gives an analytic representation of Huygens’
principle for a field specified by a single scalar potential such as
the velocity potential of sound waves in air. But the original and
still the most important applications of the principle relate to fields
of radiation which, owing to the property of polarization, cannot be
represented by a single scalar potential. To deal with radiation, it is
in fact necessary to have recourse to the electromagnetic theory of
light. Whilst it is true that Kirchhoff’s formula can be applied to
each of the components of the electric and magnetic vectors, this
does not constitute a valid formulation of Huygens’ principle as it
possesses no physical interpretation. We shall therefore consider the
analytical formulation of Huygens’ principle for an electromagnetic
field in free aether, regarded as a single entity.

Let the electric and magnetic forces be given vectorially by

d =id +jd,+kd,,

h =ik +4jh, kb,

it being supposed that d and h are measured in electrostatic and

electromagnetic units respectively. Then Maxwell’s equations of the
electromagnetic field in free aether are

ccurlh = d, divh = 0, }

. (1.11)
ccurld = —h, divd =0,

where ¢ is the velocity of light. It follows from these equations that
each component of d and h satisfies the wave equation

1 0%
et o’

2

As we have already remarked, each of these six components can be
represented by a Kirchhoff integral, depending on the boundary
+ Woe are greatly indebted to Professor E. T. Whittaker for drawing our attention

to the importance of the work of Larmor and Tedone, and for allowing us to make
free use of his lecture notes in § 1 of this chapter.
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values of the component under consideration. But it turns out, as
we shall see, that the secondary disturbances obtained in this way
are not solutions of Maxwell’s equations, and so such a representation
of the electromagnetic field is not satisfactory from the physical point
of view; each secondary source in Huygens’ principle ought to give
rise to an electromagnetic wave. We must then consider, not the
equation of wave-motions satisfied by each component of d and h,
but Maxwell’s equations as a whole.

Consider an electromagnetic field specified by the vectorsd and h
which have no singularities in the region D bounded by the closed
surface §. We wish to find a surface distribution of electric and
magnetic charges, etc., on § which will give rise to the actual electro-
magnetic field in D and a null field on the other side of S. This way
of approaching the problem was first suggested by Larmor.t

At a point P on S we can resolve d into a tangential component
d, and a component d,, in the direction of the inward normal unit
vector n; similarly for h. Our proposed distribution must be such
that the corresponding components of d and h are discontinuous
across . Now in order to produce a zero field outside and a tan-
gential component h, just inside, there must be an electric current
flowing at P of strength k,/(4w); vectorially the current in the
element dS at P is

I =%Tnxh,=£;nxh. (1.12)
This current gives rise to a surface distribution of electric charge
which proves to be just sufficient to produce the required dis-
continuity in the normal component of d.

The discontinuity in d,, in crossing S at P will be produced only
by the part of S very near to P, and this neighbourhood of P can
be regarded as a plane in the usual way. We take Oz to be in the
direction of n, Oy to be the direction of h,, Then

h =jh,+kh, n=Kk
so that I = —ih,[(4n).

t Proc. London Math. Soc. (2), 1 (1903), 1-13. For an interesting but entirely
differont method of attacking this problem, see Love, Phil. Trans. (A), 197 (1901),
1-45. Stratton and Chu (Phys. Rev. 56 (1939), 99-107) have proved a vector ana-
logue of Green's Theorem, from which they deduce an analogue of Helmholtz’s
formula without using scalur and vector potentials or the Hertzian vector. See also
Stratton, Electromagnetic Theory (New York, 1941), 464.
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The increase of charge per unit time on the surface element dzdy

is then
, 10k, , 1
o dzdy = ym Ed:cdy =i d,dzdy

by Maxwell’s equations. Hence the charge per unit area is

o=4ﬂicdz=é&d-n. (1.13)

Thus the effect of the current is to produce a charge d.n/(4xc) per

unit area distributed over 8§, the charge being measured in electro-

magnetic units. But a surface charge of density d.n/(4sx) in electro-

static units produces a discontinuity d.n in the normal electric force,
i.e. it produces the required discontinuity ind,,.

Since Maxwell’s equations are invariant under the transformation

d->h, h-> —d,
we require a magnetic current in § of density

1

K= —lnxd (1.14)
4

and a magnetic charge T = ih-n (1:15)
dmc

per unit area to produce the required discontinuities in the normal
component of h and the tangential component of d.

The field at a point P, (z,, ¥y, 2,) Within S, due to the electric current
I and electric charge o, is given by the equationst

d, = —grado(b—%A,

h, = curl A,
where ® and A are the scalar and vector potentials
dS 1 as
= ff [CU]7=Eff [d-n]=2, (1.161)
5 s
dsS 1 asS
A= _” [I]T:Eff [nxh]=2, (1.162)
s s

t+ The operators curl, and grad, refer to variation of the position of the point
Po (To) Yo 20)-
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where 7 is the distance from F, to a typical point P (z,y,2) of S, and

square brackets denote retarded values. (See Ch. I, § 4.5.)
Similarly the field at F,, due to the magnetic current K and magnetic

charge 7, is given by

h, = —gr&do‘I’—%B,
wheret
1 ds
s
1 ds
B = _Eff [nxd]—r-. (1.172)
s

The field due to the electric and magnetic currents and charges
distributed over S is
d =d,+d,, h =h,+h,

and so is given by
d = —gradod)—%A—curloB, (1.18)

h= —gra,do‘F—%B—i—curloA. (1.19)

Equations (1.18) and (1.19), where @, ¥', A, and B are defined by
(1.161), (1.162), (1.171), (1.172) as integrals over the surface S, pro-
vide the required analytical expressions for Huygens’ principle in an
electromagnetic field. We shall call these formulae the Larmor-Tedone
formulae.

It might be expected that, from their mode of derivation, the
secondary waves emitted by the surface elements according to the
Larmor-Tedone formulae would be electromagnetic waves satisfying
Maxwell’s equations, but this is however not the case. The Larmor-
Tedone formulae suffer from precisely the same defect as Kirchhoff’s
formula did. We return to this point in § 2.2.

§ 1.2. The complex form of the Larmor-Tedone formulae

If we introduce the complex vector}
q =d+h,

t Professor Max Born calls ¥ and B the scalar and vector antipotentials.

1 Bateman (Electrical and Optical Wave Motions (Cambridge, 1915), p. 4) points
out that if we use a complex time factor e~#¢! with a complex electromagnetic vector,
it is necessary to take q = d-h in order to avoid confusion in equating real and
imaginary parts. A simpler way would be to keep @ = d+7h and to follow engineer-
ing practice in writing the time factor as e—kct,
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Maxwell’s equations take the simple form
ceurlqg = 14, divg = 0. (1.21)

The use of this vector enables us to write the Larmor-Tedone
formulae very compactly; for, if we write

Q = 9}, C = A+1B,
we have the following theorem :

Let S be a closed surface within and on which the complex electro-
magnetic vector q(z, ¥, z, t) and its first partial derivatives are continuous.
Let r be the distance from Fy(xq, Yo, 2,) to a typical point P of S and
let n be the unit normal vector at P, drawn inwards. Then, if

0= _gmdoQ_%C—i—icurloC, (1.22)
where
4mQ) = ff [q-n]i;—q, (1.23)
s
o= [[mear® o
s

the value of Q is q(x,, ¥y, 2, t) Or 2ero according as Py lies inside or
outside S.

§ 1.3. Tedone’s proof of the Larmor-Tedone formulae

The way in which the analytical formulation of Huygens’ principle
for an electromagnetic field was obtained in § 1.1, though valuable
as affording insight into the physical meaning of the expressions
which occur, can hardly be regarded as sufficient from the logical
point of view. The following analytical proof is based on one due
to Tedone.t

Let the direction cosines of n be (A, u, v). We shall denote by a/ox
a partial differentiation with respect to = as it occurs explicitly,
ignoring the fact that r depends on z, and by d/dx a partial
differentiation with respect to z taking into account the dependence
of r on z.

We shall suppose that d and h and their first partial derivatives

t Rendiconti dei Lincei, 26 (1917), 286-9.
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are continuous in the volume D bounded by S, and, in the first instance,
that F, lies outside S. Then, by Green’s transformation, we have

H g, % = — fpff ;‘i{[‘-’%}dzdydz
I e

lor o
15 19,1} duiyds

= — f f f ;Q[aq;”] da:dydz-l—a—zo ff f [QT”]dxdydz,
D D

since 2 = (=) + (Y —Yo)*+(2—2)
The x component of the vector C defined by (1.24) is given by

4niC, = f f {—v[qy]+#[qz]}§

- Hf[ .‘%”f‘éydqayo f”[ dedydz
_ f J‘ J‘ [6qz 3qy] dzdydz
r
-2 f [[ a2 f f [ taa etz
— [ [ a2,
D

after using the complex form of Maxwell’s equations. Hence

4miC = curloF_gF, (1.31)

where F = f f f [q]d*‘iydz. (1.32)
D

By a similar argument

d
0 = [ [ Qe tuta a7

i, [ e[t
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The second term on the right-hand side vanishes by Maxwell’s
equations, and so 4nQ) — div,F. (1.33)

The equations (1.31), (1.32), (1.33) also hold when F, is a point of
D, but the proof just given has to be modified since 1/r becomes
infinite at F,. In this case we apply Green’s transformation to the
volume D’ bounded externally by S and internally by a small sphere
2 with centre F, and radius e. We then obtain

4mi(C+C') = curl, F—zF

4n(Q+Q') = div, F,

[
pa

= ” [q-n]dTS,
J‘J‘J‘[ ]dxdydz

The equations (1.31), (1.32), (1.33) follow at once, since
C—-0 Q-0 F->F

where

as e —> 0.
We now consider the vector

Q= _gra,dOQ—%C—l-icurloC (1.34)

which appears in the Larmor-Tedone formula. By (1.31) and (1.33)
we have

47Q = —grad, leoF-l— curl F—]— F-|—cur1 curl, F——curl F

1o
Vi__ _IF,
( 026t2)

since curl curl X = grad div X—V2X.

Hence = _E( 2—01258;) fff[ ]d:vdydz' (1.35)
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But by the well-known properties of retarded potentials the expres-
sion on the right-hand side of (1.35) has the value q(z,, ¥y, 2o, ¢) O
zero according as F, is or is not a point of D. This completes the
analytical proof of the Larmor-Tedone formula.

§ 1.4. A modification of the Larmor-Tedone formulae

The case when all the singularities of the electromagnetic field lie
inside the closed surface S may be discussed by applying to the
result of § 1.2 an argument which will by now be familiar (cf. Chapter
I, § 5.1). The result is as follows:

Let the complex electromagnetic vector q and its first partial derivatives
be continuous on and outside the closed surface S, and let rq > 0 as
r— 0. Let n be the unit vector, normal to S, drawn inwards. Then of

Q= —gradOQ——iC—l—icurloC,
’
where 47Q) = ff [q.n]‘%s, 4miC = ‘[J‘ [n xq]dTS,
s s

the value of Q 18 —q(xy, Yo, 29,t) OF zero according as (To, Yo, 2,) lies
outside or inside S.

§ 2. The failure of the Kirchhoff and the Larmor-Tedone
formulae

§ 2.1. The connexion between the Larmor-Tedone formulae and the
Kirchhoff formula
The Larmor-Tedone formula for Q,, is

40, = — L f [ogarutat a2+ g f [ ta1—vtan T+

42 f [ a1 —wtad % 5 f [ braa—nan %

For definiteness we con51der here the case when q is regular inside
and on 8, so that (A, u,v) are the direction cosines of the inward
normal. We shall write this formula as

47Q, = L+ L+ 1,
where I, I,, I, denote the parts of 47, involving A, u, or v
respectively. Then

A=—%UA[M‘§+%U Ng 24 2 ” Ng 2

(2.11)
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Let 6/0x denote partial differentiation with respect to z ignoring
the fact that » depends on z, and let d/dx denote partial differentiation
when we take account of the dependence of  on z. Evidently

Eloel = | |- e

mdso o] | 5| -5 e 2 (}) (2.12)
Also 3—%[,]——%%[ z]—ldr[ 2,
and so 2 %] = L - (3) (2.13)
From (2.12) and (2.13) we have

fodl-dy ew

Similar formulae hold for differentiation with respect to the other
variables.

Applying (2.13) to the first term in 7; and the analogues of (2.14)
to the second and third terms, we obtain

1 dr aq d[q
I = Ay v
= [N B )+ 5] - £ 2]+
s
%] _d[¢
w2l -alr) o
. oq, 09, .. _% , . .
But since @—]--g_dlvq o and divqg = 0,

this reduces to

d- -2 v o

(2.15)

Applying the same argument to

I——a—%H“[v]dShat” ula) 2~ ayoH plal 2,



we obtain

= [ lafe] - 2] il el o

But since 1§, = {aag;’ %} ,

this becomes

e [ 2 v ) s s

In the same way, we may prove that

= [ 2f2] -l as o

If we add equations (2.15), (2.16), (2.17) and denote, as usual,
differentiation along n by 9/on, we find that

4nQ, = f [{=51%] - a+iaa ()} as+

]| _92e:)\, 2[B],, 2]
+ [T -gl3]-als)ealelalt]) o
The second term on the right-hand side vanishes by Green’s theorem,
and so we have reduced the Larmor-Tedone formula for @, tot

4nQ, = f [{=[%]- L e 2 ()} as.

But this is precisely Kirchhoff’s integral for the wave-function g¢,;
it represents 4mq.(xy, ¥y, 20,t) Or zero according as P lies inside or
outside S. Vectorially, we may write this transformation in the form

o [J |32 G o

+ ” (nxwx[j_—‘]ds.
S

T A shorter ‘proof’ could be given by considering first the monochromatic case
and then using Fourier’s Theorem. Cf. Ch. I, § 5.1 on p. 36.



112 HUYGENS’ PRINCIPLE FOR [cHAP. 1T

The first term is Kirchhoff’s integral representing the vector 4mq or
zero, whilst the second term vanishes since S is a closed surface.
This result is due to E. T. Whittaker. .

§ 2.2. The inadequacy of the Kirchhoff and Larmor-Tedone formulae
for dealing with diffraction problems

We have just seen that the formulae of Kirchhoff and of Larmor
and Tedone are equivalent, in that both express the components of
the electric and magnetic vectors as integrals over a closed surface;
the two formulae differ by a quantity which vanishes in virtue of
Green’s theorem. In the application to diffraction problems, integra-
tion is not over a closed surface but over a cap bridging the gap in
the diffracting body; an application of Stokes’s theorem shows that
in this case the two formulae give different results. The question
arises, ‘Which is the correct formula to apply to diffraction prob-
lems?’ It turns out that neither is suitable; for the vectors d and h
given by either formula when § is not a closed surface do not satisfy
Maxwell’s equations.

We demonstrate this by considering the special case when §
is the half-plane z = 0, y > 0, and the given field is that of a
plane wave, viz.

d,=0, d,=0, d, = e-ika+eD),

hy=0, h, =e-ikztd  f =0,

v

This is the problem of the diffraction of plane monochromatic light
incident normally on the ‘black’ half-plane z = 0, y < 0.

In the first instance we use Helmholtz’s formula, the form of
Kirchhoff’s integral suitable for dealing with monochromatic pheno-
mena. The resulting field turns out to be

d, =0, d,=0, d,="U,
h, =0, h,=U, k, = 0,
where U= u*+uP

in the notation of Chapter II, equation (3.17). Now U involves ¢ only
in the presence of the time factor e-%*<; hence, by Maxwell’s equa-
tions, U should be of the form Ae-t=+t) where A is a constant. The
term u* is of this form, but «Z is not. Hence the field given by
Kirchhoff’s integral does not satisfy Maxwell’s equations.
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In applying the Larmor-Tedone formulae, we observe that, by
§ 2.1, the field obtained is of the form

neoged [ (-3 SL2) il 21E)

etc., where the superscript K indicates the field given by Kirchhoff’s
formula. Using Stokes’s theorem, we have

g[8 (8]

etc., where I' is the rim of S, i.e. the axis of z described in the positive
sense. In our case the formulae reduce to

D, = DK, H:=H§—Lf[’ﬁ] dz,
47 r
r

D, = Dy, H,=H 5 )

D, = D§ s H, = HF.
The field given by Kirchhoff’s formula we have already found; it
follows that the Larmor-Tedone formulae give

D, =0, D, =0, D, = u*4u?,
H, =, H, = u*+4u?, H =0,
where v = __1_ eik(f—d)% — _l etkpcoshr—iket ..
4 r 4

by the transformation z = 2,+psinhr of Chapter II, § 3.1. Using
the result given by Watson in his Bessel Functions, p. 180 (10), we get

v = —%H{,”(kp)e—"’“".

This field can be obtained by adding to the field of geometrical
optics, namely d — ku*, h=ju*
which satisfies Maxwell’s equations, the field specified by
d = ku?, h = iv+jub.
To prove that the latter field does not satisfy Maxwell’s equations,
it suffices to consider the two equations
od, od,  10h,  oh, oh, _10d,

oz oz c a’ ox oy ¢ ot

4617 1
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Since »® and v involve ¢ only in the factor e-i</ these equations

reduce to ot = itn, B v it
ox oxr oy .
but these imply that év/dy = 0, which is certainly not the case.
Thus neither the Kirchhoff formula nor the Larmor-Tedone
formulae, applied to the components of an electromagnetic field with
an unclosed surface of integration, give solutions of Maxwell’s
equations.

§ 3. Kottler’s formulation of Huygens’ principle for electro-
magnetic waves

It is not surprising that Kirchhoff’s formula, applied to each of the
components of d and h, should not give vectors satisfying Maxwell’s
equations when 8§ is an unclosed surface. For the secondary waves
emitted by each element of S are not electromagnetic waves; an
electromagnetic wave is obtained only by the superposition of the
secondary waves due to all the elements of a closed surface.

The reason why the Larmor-Tedone formulae also fail is not quite
so obvious; the example of § 2.2 shows that the secondary waves
emitted by each surface element are not electromagnetic waves,
though one would expect them to be in virtue of the physical
argument by which the formulae were derived.

We recall that, according to Larmor, each element of S carries

(i) an electric current-sheet of density

I— Llnxh,
4

(ii) an electric surface charge of density
o= —1— d-n,
dmc
(iii) a magnetic current-sheet of density
1
K= —-—
4‘”n xd,
(iv) a magnetic surface charge of density

1

—h-n,
47rc

T —

all in electromagnetic units.
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Kottlert has pointed out that, if we wish each element of a surface
S to emit electromagnetic waves, we must consider, not only the electric
and magnetic charges and currents on dS, but also, possibly, electric and
magnetic line charges on the boundary of dS. The effects of these line
charges cancel out when S is a closed surface; but if § is not closed,
additional terms due to the line charges on the rim of S are added.
to the Larmor-Tedone formula.

Let us consider then an unclosed surface § with rim I'. Unless
the vector I at every point of I' is tangential to I, each element ds
of I' must carry a charge which varies with the time in such a way
as to provide the charge carried away by the component of the
current normal to ds.

At any point O of I, n, the unit vector normal to S, and ds, the
elementary tangent vector to I', are at right angles. Choose axes so
that ds is along Oz, n along Oz. The current-density at O has

components 1
I = ——h

1
2= Tt ATt

the former is tangential to I" at O, the latter normal to I'. The charge
carried away from dz in time ¢ is then

14
1
an@a

Hence if the line-density of electric charge on dx is X in electro-
magnetic units, we have

t
zmz_iaf%a
4

t
or, vectorially, Xds = —:11— ds. f h dt.
m

But as O was any point of I', this formula gives the line-density of
electric charge at every point of I'. Similarly we can show that the
line-density of magnetic charge is ® in electromagnetic units, where

[ 4
@dm:id&fd&.
47

t Annalen der Phys. 71 (1923), 457-508. This paper contains an interesting critical
discussion of the various attempts to provide a rigorous electromagnetic theory of
diffraction by a black screen of arbitrary form. See also Stratton and Chu, loc. cit.
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Naturally these formulae hold no matter how small the surface S
may be. In particular, if we wish each element of a surface to emit
electromagnetic waves satisfying Maxwell’s equations, we must sup-
pose it to carry, not only electric and magnetic current-sheets and
surface charges, but also line charges of electricity and magnetism
on its boundary. The effects of these line charges cancel when we
consider the resultant of the electromagnetic waves due to all the
elements of a closed surface, but they must be retained if we wish
the secondary sources to behave like real sources of electromagnetic
disturbances. Moreover, in the theory of diffraction by a black screen,
we are concerned with integration over an unclosed surface, and the
line charges on the boundaries of the surface elements are then of
importance, since they give rise to a non-vanishing integral along the
rim of the surface.

The introduction of line charges on the boundary of each surface
element necessitates a modification of the formulae of § 1.1. The
field due to the electric current-sheet and the electric charges is now

d, = —gra,d0<b—%A, h, = cur] A,

where

qa__” [d- ]___ ftf h- ds (3.01)
A=$ff [nxh]"-i.;_g. (3.02)
S

Similarly, the field due to the magnetic current-sheet and magnetic
charges is 1.
d, = —curlyB, h, = —grado‘i"—EB,

where.
W:lff [h- ]—+_ ff d. ds—, (3.03)
47
S
B— _l ” [nxd]d—S. (3.04)
t The formula for @ can also be deduced from the relation = —c divgA.

Similarly for ¥ below.
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The total field is then given by
d = —grado(D—%A—curloB, (3.05)

h = —grado‘F—%B—{—curloA. (3.06)

We shall refer to the equations (3.01)~(3.06) as Kottler’s formulae.
We can most simply describe the field specified by Kottler’s

formulae as being the field obtained by adding to that of Larmor

and Tedone the terms due to the effect of the line charges on I', viz.

t—rfc

c dt
d = 2 grad, ff h.ds %
P
t—rfc d
h= —‘ligra,d0 ff d. ds-E
m
T

These extra terms vanish when § is a closed surface.
Example. Prove that the complex form of Kottler’s formula is

q= —gradoQ—lC.J-i-icurloC,

47Q) = ff[q n]—+u: ff q- ds—
411~£C=Lf[nxq]7.

§ 4. The diffraction of electromagnetic waves by a black screen

where

§ 4.1. Kottler’s definition of a black screen

We have seen that the problem of the diffraction by a black screen
of waves, characterized by a single scalar potential, can be regarded
either as a boundary value problem or as a saltus problem. Kirch-
hoff’s formula solves the saltus problem accurately in the case of
a thin screen, but gives only a first approximation to the solution of
the boundary-value problem.

The same difficulty arises in the case of electromagnetic waves,
and in a somewhat more acute form, since it is very difficult to
formulate the electromagnetic properties of a black screen. One way
out of the difficulty is to regard the screen as perfectly reflecting,
and then neglect the effect of the reflected wave (cf. Chapter 1V,
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§ 3.1). Alternatively, we can define ‘blackness’ in terms of the
discontinuity across the screen of the vectors d and h. This idea
has been developed by Kottler (loc. cit.).

Let us suppose that we have a point-source of light at the point L,
and that this light is diffracted by a thin black screen in the form of
a surface S with rim I'. We suppose that one face, S, say, of the
screen is illuminated, and that the other, S_, is dark. We denote by
d, and h, the electric and magnetic forces when the screen is absent.
We have to find solutions d and h of Maxwell’s equations, with the
following properties:

(i) The vectors d —d, and h—h, are regular at L.
(i) On 8, [d]* =d,, [h]! =

(iii) At infinity, d and h vanish to an appropriate order.

We regard S, and S_ as constituting a single degenerate closed
surface §’, and apply the complex form of Kottler’s modification of
the Larmor-Tedone formulae to the volume bounded externally by
a sphere X of large radius R and internally by S’ and a small sphere
X, with centre L. Remembering that each surface element carries
line charges on its boundary, we obtain the result

q(P) = —gr&dQ—%C—}-icurlC, (4.11)

where

4nQ — ”[qn] +ff[qn]
+H[qo 022 i H ap-dsZ,
4miC = ”[nxq]—+ H[n q% +H[n a2

where n on § means n,. (See Fig. 16.) Moreover, we can omit the
terms depending on X, since they tend to zero as R — oo, by hypo-
thesis (iii). An application of the Larmor-Tedone formula to the
closed surface X, gives

q,(P) = —gradQ’—%C'—l—icurlC’, (4.12)

4nQ) — ff [qo.n]g, 4mC’ = ff [n XQO](}?S-
Y. o

where
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Hence, by (4.11) and (4.12), we have

Q(P) = qo(P)—gra,d(Q—Q’)—%(C—C’)—l—icurl(C—C’). (4.13)

Fia. 16

Now, by hypothesis (i), q—q, is regular at L. Hence if we make
the radius of X, tend to zero, we obtain from (4.13) the equation

q(P) = qo(P)—gra,on—%Co+icurl C,, (4.14)
where
4nQ, = jf [4o° n]-—}—w fj do* ds— (4.15)
4miCy = ff [n qu]_r—; (4.16)
S

the normal n is drawn from the dark to the illuminated side of S
and the direction of description of I' is related to n by the right-hand
screw law. Equations (4.14), (4.15), (4.16) solve the problem of
diffraction by a ‘black’ screen.

It is often more convenient to use integrals, not over the
diffraction screen, but over surfaces bridging the gaps in the screen.
We discuss here the simplest case, when I is a simple closed curve.
We construct a surface S; with I as rim, such that S+, is a closed
surface which encloses L but not P. The direction of the normal
vector n on ] is chosen so that n and the direction of description of
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I' are connected by the right-hand screw law; this means that n is
drawn from the ‘illuminated’ to the ‘dark’ side of S,. (See Fig. 17.)

P /
‘S;\\ —— - -
Fic. 17

If we apply the Larmor-Tedone formula to the closed surface
8+8;, bearing in mind the difference in the directions of n on § and
S,, we obtain

qo(P) = gradQ, + %Cl—i curl G,,

4wﬂl=fsf[qo-n]—— H[ o2
4miC,y = £f [nx%]T— :Lf [n ><(lo]T

Substituting for q¢(P) in (4.14), we obtain

where

q(P) = —gradQ—lc-i—icurlC, (4.17)
where
47Q) = ff [qo-n]—-|-1,c ff dy* ds-— (4.18)
4mC = —"J [n xq°]7’ (4.19)
S

which provide the required modification of formula (4.14).

§ 4.2. The diffraction of plane waves by a black half-plane

As an examplet we consider the diffraction of plane waves of light
by a black half-plane. We suppose that the half-planeisz = 0,y < 0,
and that that the light is incident normally} on the screen.

1+ For an account of the application of the theory to the diffraction of electro-
magnetic waves from a Hertzian oscillator, we refer the reader to Kottler's paper.

1 There is no loss of generality in making the assurption, since, on the present
theory, diffraction by a black screen is an edge effect.
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If the incident light is plane-polarized perpendicular to the edge
of the screen, the electric and magnetic forces are given by
d, = ke—tk@+el) h, = je-ik@+eD
before diffraction—more precisely by the real parts of these ex-
pressions. After diffraction, the field is specified by
d =d,+d,, h = h;+h,,
where d, and h, are the vectors given by the Larmor-Tedone formulae
applied to the surface x = 0, ¥y > 0, and d, and h, are the terms

due to Kottler’s line charges on the rim I' of the screen.
We have already proved (§ 2.2) that

d, = K(ee—tkz+eh |y B),
h, = iv}-j(ee-tH=+h |y B),

where ¢ = 0 or 1 according as P is or is not in the geometrical

shadow, .
uB = — _l_ eik(pcoshT—ct) _& dT,
dm cosh 74 cos ¢
—o
and v = _4_1 H (kp)e—iket,

We write these expressions in the form

d, = d*+ku?, h, = h*4iv+ju?,
where d* and h* form the field according to the laws of geo-
metrical optics.

The terms due to the line charges on I' turn out to be

d, =0,
h, — -—%Cgr&d H(kp)e=et = LHO (kp)e-e4(i cos +j sin §),
or h, = w(icos¢+jsing)
say. The total effect after diffraction can therefore be written ia the
form d = d*+d>, h = h*+h5,
where dB = ku?,

hB = i(v4wcos¢)+j(uP+wsin ).
To obtain the effect when the incident light is plane-polarized
parallel to the edge of the screen, so that
d, = —je-tkz+d) h, = ke—tk=z+eh,
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we recall that Maxwell’s equations are invariant under the trans-

formation d - h, h - —d. The total effect is in this case therefore
d = d*+d5, h = h*+h3,

where df = —i(v+w cos¢)—j(uP+wsing), hB = kuB.

So far we have been working with complex wave-functions. To
deal with a real problem, the final step is to take real parts of these
complex functions: but the change from light polarized perpendicular
to the edge of the screen to light polarized parallel to the edge of the
screen is still obtained by the transformationd -~ h, h - —d. When
we are using real wave-functions the intensity of light is measured
by d?+h2 It follows that when plane-polarized light is diffracted
by a black half-plane, there is no difference in intensity of the
diffracted light corresponding to a difference in the planes of polariza-
tion. In this respect diffraction by a black half-plane differs from
diffraction by a perfectly reflecting screen, a point to which we return
in Chapter IV.

§ 4.3. The behaviour of the diffracted wave at large distances

To discuss the behaviour of the diffracted light when p, the distance
from the edge of the screen, is large compared with the wave-length
27 /k, we use the asymptotic formulae

1 .
B ~ —_—— 1;
u 2‘/(2ﬂkp)tan<}¢e ,
. 1 .
— —1;H@ —ikel o, __ 14
v Y HY (kp)e 24(2”kp)e ,
. 1 .
— (1) —thet ~_ il
w = }HP(kp)e 2J(2wkp)e ,
where = k(p—ct)+3m.

The first of these formulae was proved in Chapter II, § 3.2, the other
two are immediate consequences of the asymptotic expansions of the
Bessel functions.

It follows that, when the incident light is plane-polarized perpen-
dicular to the edge of the screen,

4B ~ _k P3P i

T 2y(2mkp)

. . tanid
hB ~ (—isin¢+jcos¢) 24(2”16;)(3 L
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Thus, at large distances, the electric force in the diffracted light is
parallel to the edge of the screen, and the magnetic force is in the
transverse direction perpendicular to the edge of the screen.

The corresponding result when the incident light is plane-polarized
parallel to the edge of the screen is obtained by the transformation
d—->h h—> —d.

In both cases the edge of the screen appears luminous, and the
intensity of the diffracted light is proportional to

1
— tan?14¢,
8mkp i

which agrees with the result obtained on the scalar theory in
Chapter II.
The Poynting flux-of-energy vector in the diffracted light is

tan? ¢
167kp

Hence, at large distances, the flux of energy is directed radially out-
wards from the edge of the screen. In particular, at points of the
illuminated face of the screen, the flux of energy in the diffracted
light is along the screen. Kottler’s definition of ‘blackness’ is thus
satisfactory in so far as no energy is reflected from the screen.

SLde h® ~ (icos$+jsing)
T
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SOMMERFELD’S THEORY OF DIFFRACTION

§ 1. Sommerfeld’s many-valued wave-functions
§ 1.1. Introduction

I~ his work on diffraction by a black screen Kirchhoff was attempt-
ing to solve a boundary-value problem, but he met the difficulty that
it is impossible to give a correct physical statement of the conditions
of the problem. He therefore made what seemed to be a reasonable
assumption, namely that the field on the illuminated part of the
screen was the same as in the incident light and that the field on the
dark part was null. Unfortunately it turned out that his solution
did not satisfy his boundary values, which were actually incom-
patible. The results of his theory agreed quite well with experiment,
so that most authors regarded Kirchhoff’s solution as a fairly
accurate first approximation.

"Wicn we deal with a perfectly reflecting screen, a quite different
state of affairs arises, since the boundary conditions at the surface
of the screen are well known from the electromagnetic theory of light.
At the surface of a perfect reflector the electric force is normal to
the surface and the magnetic force tangential: and it is quite easy
to solve such problems as that of the reflection of light from a perfectly
reflecting plane mirror by constructing solutions of Maxwell’s equa-
tions which satisfy these boundary conditions.

Theoretically it should be possible to solve diffraction problems
relating to perfectly reflecting screens in the same way, but the
analytical difficulties are considerable. It is only in the case of two-
dimensional problems that much progress has been made. The
fundamental idea, due to Sommerfeld, of using many-valued solu-
tions ‘of Maxwell’s equations has been applied successfully to the
problems of diffraction by a perfectly reflecting half-plane or wedge.
In the present chapter we give an account of Sommerfeld’s method,
and work out as an example the problem of the diffraction of plane
monochromatic light by a half-plane.

§ 1.2. The case of an electrostatic field

As a preliminary to a discussion of the diffraction of electro-
magnetic waves by a perfectly reflecting screen, the consideration
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of a similar problem in electrostatics is likely to prove instructive,
since Maxwell’s equations include the equations of an electrostatic
field as the particular case when h is zero and d is independent of
the time ¢.
The potential V in a two-dimensional electrostatic problem is a
solution of Laplace’s equation
eV &V _

o o (1.21)

which is constant on the surface of a conductor. Certain problems
in electrostatics can be solved by the method of images. Let us

Angle 27/3
K& Angle w/3
of
of of
~fe -[o
_[. _[.
Of .[

Fia. 18

consider, for example, the two-dimensional problem in which the
fieldf is produced by a charge E at (z,,y,), where y, > 0 in the
presence of an earthed conductor along the axis of x. This field is
null in the half-plane y < 0: but in the region y > 0 the field is the
same as if the conductor were removed and an additional charge — &
placed at the point (z,, —y,), which is the image of (z,,y,) with
respect to the conductor. A similar method will give the field due
to a charge placed between two earthed conductors whose equations
are § = 0 and § = =/n in polar coordinates, » being a positive integer.

This method of images fails completely when we try to find the
two-dimensional potential due to a charge in the presence of an
earthed conductor along the radius § = 0 or, more generally, that
due to a charge placed in the angle between two earthed conductors
whose equations are § = 0 and § = mn/n, where m (> 1) and n are

t Strictly we should describe this field as being due to a uniform line-charge
parallel to an earthed plane conductor.
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integers without common factor. For the image process introduces
additional charges into the part of the plane considered. The
diagrams illustrate the two cases of a charge placed in angles =/3
and 27/3 respectively.

A similar difficulty arises when we try to discuss the reflection of
light by a perfectly reflecting half-plane or wedge: the image process
introduces additional sources of light into the part of space outside
the wedge.

In electrostatics the difficulty may be overcome by means of the
theory of conformal representation. We recall that, if V is a solution
of Laplace’s equation (1.21), there exists a conjugate function U such

that U+iV = f(z), (1.22)

where f(z) is an analytic function of the complex variable z = z1y.
If the complex variables zand Z = X 1Y are connected by a relation

z = $(2), (1.23)

where ¢(Z) is an analytic function of Z, areas in the z plane are
mapped conformallyt on the corresponding areas in the Z plane.
If we apply this transformation to the complex potential U+:iV we

obtain UiV = f{$(2)},

so that V is also an electrostatic potential in the Z plane. Equipoten-
tial curves are transformed into equipotentials and, in particular,
earthed conductors into earthed conductors. If V is the potential
due to a charge ¥ in the presence of a system of earthed conductors
in the z plane, it can be shown that the transformation (1.23) turns
V into the potential due to a charge E’, not always the same as E,
at the corresponding point of the Z plane in the presence of the
transformed system of earthed conductors.}

As an application of these ideas, we find the potential due to a
charge E at the point z, in the plane of the complex variable

z = x4y = rebt,

there being an earthed conductor along the positive half of the real
axis. The variable 8, which is usually called the argument of z, is
undetermined to an additive multiple of 27; we fix it by requiring
_ T A n}apping is ‘conformal’ if it leaves unaltered the angle between any two
itersecting curves.

1 See Jeans, The Mathematical Theory of Electricity and Magnetism (Cambridge,
1915), 264-83.
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that 6 shall lie between 0 and 27. The two faces of the conductor
can then be described as lying along the radii § = 0 and 6 = 2.
Now apply the transformation

Z = 2t = rietfl2) (1.24)

where 7t has its positive value. The restriction on 8 implies that the
argument of Z lies between 0 and =. Hence this transformation
provides a (1, 1) conformal mapping of the whole z plane, apart from
the radius § = 0 (or 27), on the part of the Z plane in which ¥ > 0,
and the radii § = 0 and 6 = 27 are turned respectively into the
positive and negative parts of the real axis. We have then to find
the potential due to a charge E’ at a point Z, in the region ¥ > 0,
there being an earthed conductor along the line ¥ = 0.

If the conductor in the Z plane were absent the potential would

be given by UiV — —2%E log(Z—Z,);
but when the conductor is present we have
V=0 (Y <0),
Z—2Z,

U4V = —2iE’lo = (Y =0),
+ ¢ g 7Z—Z, ¥ =0)
the extra term being due to the charge — E’ at the image point Z,.
To obtain the potential due to the charge K at z, in the presence
of an earthed conductor along § = 0, we apply the transformation
(1.24). This givest

UtiV = —2%Elog 2~V

Nz—Vz,’
where the arguments (or phases) of the complex numbers +z and
vz, lie between 0 and =, and +z, denotes the complex number con-
jugate to +z;.

Now consider the function U+:V defined in (1.25) as a function of
the complex variable z, 4z; and +z, being kept fixed. If we relax the
restriction that the argument of z shall lie between 0 and 2, vz has
two values whose arguments differ by =, and so the function U4V
is a two-valued function of z.

The analytical difficulties of handling a two-valued function may
be overcome by introducing the idea of a Riemann surface. Take
two superimposed copies of the z plane, and cut each of them along

(1.25)

t That E’ = E follows from a consideration of the behaviour of U4V near the
point z,.
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the positive part of the real axis. Then bind the lower edge of the
cut in the upper sheet to the upper edge of the cut in the lower sheet,
and finally bind together the remaining edges. In this way we have
constructed what is called a two-sheeted Riemann surface. If we
start at any point on the upper sheet and describe a circle about the
origin, we reach the congruent point in the lower sheet; a second
circuit about the origin brings us back to our starting-point.

We distinguish between the two sheets of the Riemann surface by
writing z = re% and requiring that 6 shall lie between 0 and 27 in
the upper sheet, between 27 and 4# in the lower sheet. With this
convention we define vz as being equal to the function

£(r,6) = riett,
where rt has its positive value. Then evidently

f(r) 0+27T) = —f(T, 0))

so that what we previously regarded as the two values of vz are the
values taken by f(r,0) at congruent points in the two sheets. The
function vz defined in this way is a continuous one-valued function
of position on the Riemann surface.

We now return to the function

Nz— Wz,
Nz— Nz’
where +z, is the complex number conjugate to +z;. With our new
definition of ¥z, U+iV is a one-valued function of position on the
Riemann surface. In our physical problem 6 lies between 0 and 2,
and so z lies in the upper sheet: accordingly we describe the upper
sheet as physical space, the lower sheet as non-physical space.

The function U—+:V has two singular points on the Riemann
surface, namely 2, and z,. Of these, z;, the point at which the charge
E is placed, lies in physical space, but z, does not. For if

U+iV = —2iElog

Nz = ae®t (0 < a <),
we have Vzy = ae~t
and so 2, = a%e?™, 2, = ae~2,
Hence z, is the point of the lower sheet congruent to
Z, = aPe¥m-ak
in the upper sheet.
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To sum up: in order to obtain by the method of images the potential
due to a charge ¥ in the presence of an earthed conductor along the
line # = 0 we have to consider a two-sheeted Riemann surface of
which only the upper sheet corresponds to physical space. The image
charge — K lies in the lower sheet.

In a similar manner we can apply the method of images to find the
potential due to a charge placed in the angle between two earthed
conductors along the lines § = 0 and § = m=/n, where m (> 1) and
n are integers without common factor. Since this angle can be turned
into an angle =/n by the transformation

Z = lm
we shall have to use an m-sheeted Riemann surface on which the
function zY™ is one-valued.

§ 1.3. The introduction of a ‘Riemann space’ into diffraction problems

From the analogy with two-dimensional problems in electrostatics
Sommerfeld saw that, in order to treat a diffraction problem as a
boundary-value problem, it was necessary to consider many-valued
solutions of Maxwell’s equations which are single-valued functions
of position in a ‘ Riemann space’, this space being an imaginary space
which bears the same relation to ordinary three-dimensional space
as a Riemann surface bears to a plane. Such ‘Riemann spaces’ must
not be confused with the Riemannian spaces considered in modern
differential geometry.

For suppose we have a screen with rim I'. We construct a ‘Riemann
space’ out of a number of superimposed ordinary three-dimensional
spaces. The sheets of this ‘ Riemann space’ are joined together along
the boundary of the geometrical shadow, so that we pass from one
sheet to another by crossing the shadow. The rim I' plays the same
part as the point O did in our simpler Riemann surface in § 1.2.
Physical space near the screen does not all belong to the same sheet
of the ‘Riemann space’, since we can get from one side of the screen
to the other only by crossing the boundary of the shadow. It follows
that light incident on the screen leaves physical space and enters
non-physical space. On the other hand, the reflected light originates
in non-physical space and can be observed only when it crosses the
screen into physical space.

On account of the analytical difficulties nearly all the problems

which have been solved in this way are two-dimensional problems.
4617 K
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§ 1.4. Two-dimensional solutions of Maxwell’s equations

An electromagnetic field is said to be two-dimensional if the effect
is the same in all planes perpendicular to a given straight line. If we
take this line to be the axis of z, the electric and magnetic vectors
d and h are independent of z and so Maxwell’s equations reduce to

1y % 1 — %,
c * oy’ ¢ oy’
1g, — ok Ly %
’ v ’
c ox c ox (1.41)
Yy oy O 1y, — %y %,
c® ox oy’ c’® ox oy’
o, oy oh, _ o,
ox ' oy ’ ox ' oy
These equations fall into two groups. In the first group, namely
ad, 1,
s JOY
ox ¢V
y ¢ (1.42)
1g, — %y %k
c?® ox oy’
_ %y | OBy
ox = oy’
only %, h,, and d, occur; whereas in the second group,
ok, _ _1
ox ¢ ¥
oh, 1
—f=-d,
% ¢ (1.43)
1y, — %y, %
c ox 0y
_ .,
oxr ' oy’

only d,, d,, and h, occur.
If kg, b,

and d, satisfy (1.42), it is evident that the vectors
d =4d.k,

h = h,ith,j
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satisfy the equations (1.41). Hence the group of equations (1.42)
specify an electromagnetic disturbance polarized perpendicular to
Oz. Similarly, if d,, d,, and h, satisfy (1.43), the vectors
d =d,itd,j, h = hk,

specify an electromagnetic disturbance polarized parallel to Oz. The
general solution of (1.41) is obtained by adding solutions of (1.42)
and (1.43).

By eliminating 4, and k, from (1.42) we find that the third equation

becomes od, | o, 10,

ox? oy ct o’
and that the fourth equation is satisfied identically. Thus d, satisfies
the equation of cylindrical waves, and, if we can determine d,, the
components %, and %, are given by the first two equations of the
group. Similarly, if we eliminate d, and d, from (1.43), the third
equation of the group becomes

o%h, %, 10o%h,

i T o
and the fourth equation is satisfied identically. Thus &, also satisfies
the equation of cylindrical waves, and a knowledge of 4, determines
d,and d,.

The problem of finding a two-dimensional electromagnetic field
reduces in this way to that of solving the equation of cylindrical
waves, but the boundary conditions which have to be satisfied at
the surface of a perfect reflector depend on whether the field is
polarized perpendicular to or parallel to the axis of 2.

At the surface of a perfectly reflecting ¢
screen the electric force is in a direction
normal to the surface, the magnetic force
in a tangential direction. In a two-dimen- x
sional problem a perfectly reflecting screen
is a cylinder with generators parallel to
Oz. It follows that, if the field is polarized >
perpendicular to Oz so that

dx = du = hz = 0, Fi1c. 19
we have to find a solution d, of the equation of cylindrical waves which
vanishes on the surface of the screen. But if the field is polarized
parallel to Oz, so that h, = h, = d, = 0, the boundary condition is
d,cosy+d,sing = 0

\
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in the notation of the figure. By equations (1.43) this reduces to

sinu/:%%—cosn,l«aa—’;’ =0,

. oh,
that is, =

where 8/on denotes differentiation along the normal to the screen.
Thus our problem is to find a solution 4, of the equation of cylindrical
waves whose normal derivative vanishes on the screen.

It will be observed that, when the field is polarized parallel to Oz,
h, satisfies the same couditions as the velocity potential of sound
waves in air in the presence of a rigid boundary.

§ 1.5. Sommerfeld’s many-valued solutions] of the wave-equation

We now introduce the many-valued wave-functions which Som-
merfeld used to solve two-dimensional problems of diffraction by a
wedge or half-plane. If we take the straight edge of the wedge or
half-plane as axis of z, we have to solve

O%u 0w 10%
T o o
under the appropriate boundary conditions. Actually it is more
convenient to use polar coordinates (p,¢), in terms of which the
equation becomes 2w 1ou 1% 12%
ot (pop  progt Ear

As the problem is two-dimensional we need to consider, not a
‘Riemann space’, but only the Riemann surface constructed in the
following way. We take p superimposed planes each slit along the
radius ¢ = ¢’+, where ¢’ is any given angle between 4-7; we then
bind the edge ¢ = ¢'+m—0 of each cut to the edge ¢ = ¢'+ 740 of
the cut in the plane below, and finally bind the remaining edges of
the top and bottom sheets. We thus obtain a Riemann surface of
p sheets with the origin as branch-point; we can pass from one sheet
to the next by the cross-bridge at ¢ = ¢’+x. The diagram shows
the connexion of the sheets in the case p = 4, as seen looking along
the cross-bridges towards the origin.

(1.51)

t The relevant papers are Math. Ann. 45 (1894), 263 ; 47 (1896), 317. Gétt. Nach.
(1894), 338; (1895), 287. Proc. London Math. Soc. (1), 28 (1897), 395. Zeitschrift
f. Math. u. Phys. 46 (1901), 11. See also Carslaw, Proc. London Math. Soc. (1), 30
(1899), 121 ; Lamb, ibid. (2), 8 (1910), 422; Hanson, Phil. Trans. (A) 237 (1938), 48.
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If we start from any point on this Riemann surface and make p
complete circuits about the origin, we return to our starting-point.
In doing so, the polar angle ¢ is increased by 2p». We specify the
particular sheet in which the point (p,¢) lies by saying that it lies
in the nth sheet if ¢ lies between ¢'+47+42(n—1)r. The coordinates
(p,$) and (p, ¢+ 2pm) specify the same point.

I I
I 1
1] i

v v
Direction of increasmy ¢
Fic. 20

Our first task is to find solutions of the wave-equation which are
one-valued on this Riemann surface.t We start by considering the
simplest case p = 1, so that the wave-functions in question are
periodic in ¢ of period 27. The simplest such solution is that which
represents ‘plane waves’, viz.

eikpcos(¢—a)+ikcl,

where « is a constant, real or complex. A more general solution is
obtained by multiplying by a function of « and then integrating with
respect to «. In particular,

kel i
__ € atkp cos(d—a) _e__ da

T eta__pid

integrated round any closed contour in the plane of the complex
variable « satisfies the wave-equation. If we write « = ¢+ this

becomes giket [ gil
= | et oL (1.52)
L
The integrand in (1.52) has simple poles at the points
{ = ¢'—¢+2nm.

When the contour L is a simple closed contour about the pole
{ = ¢'—¢, the solution (1.52) reduces to
Uy = eikpoos(d-¢)tiket (1.53)

t The present discussion is based on that of Carslaw, loc. cit.
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which represents monochromatic plane-waves. Moreover % remains
equal to u, when L is continuously deformed, so long as L remains
closed and does not cross any of the singularities. In particular, we
may take L to be the contour in Fig. 21. (In the figure it is assumed
that ¢'—¢ lies between 4-=; if it does not, there is, in any case, one
pole ¢’ — ¢+ 2nm lying between 4, and the same conclusion follows.)

Aq
£ £

‘\ o¢
|

I T 0 T ir E

GH

A8
Fi1c. 21

On the line 4B we have { = {—iR, where ¢ varies from « to S
and 0 <a <fB <. Since
cos { = cos £ cosh R4-7sinésinh R,

‘ f | 21r(eR fe—kpblnfbinhﬂdg

B
f e—kpRsin § df

we see that

<

O |-~

as R oo. Again, on the line CD, we have { = £41.8, where £ varies
from 74y to7+8 and 0 <8 <y < =. Hence

Tty
e~ S kpsin£sinh S d¢
— e
< oimem |
CcD 748

4
< l e-kpSeinb Jg
™
3
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as § - oo. Similarly, the integrals along FF and GH tend to zero
as these segments recede to infinity, remaining parallel to the real
axis.

A7

Y \LH/A[

———— ¢i£‘ L ———————

-2r |7 0 T r
LY [y A

Fic, 22

It follows from this argument that we can take the contour L to
be that of Fig. 22. But it is evident that the portion L, is obtained
from L, by translation through a distance 27 and, since the integrand
has period 2w, the integrals along L, and L, cancel. Hence

gtket i eil
= peosl . T
%o 2 f ¢ el —_eild'—¢) di.
L.} L,
For brevity, we shall call the two curves L, and L,, taken together,
the path 4.
We next consider the case p = 2. The expression
giket
47

eikpcos(nﬁ—a)__g:a,l,z_ - da (1.54)
giolz__gip'e "% '

integrated along any fixed complex path, is a solution of the equa-
tion of wave-motions, provided that we can perform the necessary
differentiations under the sign of integration. It follows that, if 4
is the path just defined, the function

ekl [ cost et d 1.55
u(P,¢)=4ﬂfe iz gitd ~$)j2 ¢ (1.59)

A

satisfies the wave-equation; for it can be expressed as a sum of two
expressions of the form (1.54).
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The wave-function (1.55), regarded as a function of ¢, does not
have period 2=. For

—ei(¢,_¢)lz d€3 (1'56)

ket il
u(p, p+2nm) = e4—7_r j e“"PCOSC(;u2 e
3
where A’ is obtained from 4 by a translation to the left through
a distance 27 (Fig. 23): and as the integrand in (1.55), regarded as a
function of {, does not have the period 2w, u(p,$) and u(p, d+ 27)
are in general unequal. By a similar argument, we can show that
u(p, $) is, nevertheless, periodic in ¢, but that its period is 4». Thus
the wave-function defined by (1.55) is not a one-valued function in
the ordinary plane, but is a one-valued function on the two-sheeted
Riemann surface. Moreover, it is finite and continuous for all real
values of p.
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Keeping the point (p, ¢) in the first sheet of our Riemann surface
we have

Fia. 23

0 etket thpcos! eill2 i
ulp, ) +ulp, $+2m) = — f ¢ ol o
A+ 4
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But if the polygonal path L; is obtained from L, by a translation

to the left through a distance 4, this equation gives
giket gikpcost eill2 i
eiliz__gid —pyz >’

u(p, d)+ulp, p+27) = o

A+ A4+ L-Li
since the integrals along L, and — L, cancel. Now the only singu-
larities of the integrand are simple poles at the points
{ = (¢'—¢)+dnm.

Hence if we deform the contour A+ A4'+ L,— L, into a simple closed
curve L surrounding the point { = ¢’'—¢, we obtain

u(P»¢)+u(Pr <}'>+ 2m) = eikpcos(¢—¢')+ikcl’

by the calculus of residues, and so

u(p, $)+ulp, +2m) = uq(p, $). (1.57)

This relation connects the values of the function « at corresponding

points of the two sheets of the Riemann surface.
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Still keeping the point (p, ¢) in the first sheet, the path 4’ can be
deformed into the two-branched path B (Fig. 24) without altering the

value of the integral (1.56). Now
leikpcos§| — gkpsinfsinhy
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and sin ¢ sinh 7 is negative on B. Hence

u(p, p+27) >0
as p—> co. From (1.57) it follows that, as p — oo,

u(p, ) —uo(p, $) > 0.
The same type of argument can be applied to the function

iket T
“=5 ] ool o Al (1.58)
4
where p is any positive integer. This function has the following
properties:

(i) it 28 a solution of the equation of wave-motions which is p-valued

in the ordinary plane;

(ii) on the p-sheeted Riemann surface it is one-valued, finite, and

continuous;

(iii) as p - 00, u — 0 in all sheets except the first;

(iv) on the first sheet, u—uy—> 0 as p — o0;

(v) the sum of the p values taken by u at any point in the first sheet

and the corresponding points in the other sheets is u,.

In the first sheet of the Riemann surface the wave-function (1.58)
behaves like the wave-function u, of plane waves, at any rate at large
distances from the origin.

The corresponding solution for cylindrical waves expanding from
a line-source at (p’, ¢’) ist

w — gthet H@{k\/(p2+p'2—2pp’ cos {)} e at
T Omp | O UWNWPITTRTTOPP ilip_ i@ —dip
A

where H{® denotes the Bessel function of the third kind J,—¢X,.

§ 1.6. A transformation of the formulae for the case p = 2
If (p, ) is a point in the first sheet, we have
etili2

wlpyd+2m) = & [ etrooost gy (1.61)
P 4y el _ i —prz > :

B
where B is the two-branched path of Fig. 24. This path can be

deformed into the two lines Rl { = —=, Rl { = —3# without alter-

t Cf. Carslaw, loc. cit. 147 et seq. Carslaw also discusses the corresponding
three-dimensional problem with a point-source.
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ing the value of the integral. Hence if we write [ = —n{iy,
{ = —3n+1i7n on these lines, equation (1.61) becomes

-]

— etket —ikpcosh ie~ ie~ 2 :
u(p, p+42m) = o fe ikpcoshy e e vdn.

—

This reduces to

u(p, p+27) = et we ikpooshy _____ 41
ptin =3 f cos }{¢"—¢—in)
— etket [ ~tkpcosh 1
—Z;fe ’ 77{cos;-qs —¢— +
0
+ : }d
cos }(¢—¢+in)
— ezkcl e—zkpcosh-qCOSh %7] cos %_i ‘ﬁ
7r cosh n+cos(¢’ —d)
0
Hence we have u(p, p+27) = Xuy(p, ¢), (1.62)

where

X = l cos %((ﬁ'—(ﬁ) f e—ikp(coshn+cos(¢'_¢)) cosh %1}
w

cosh 7+ cos(¢’ ¢)

If we now make the substitution r = sinh 47, the formula for X
becomes

X = lCOS %((}S'—qﬁ) f e—2ikp{r’+cos’(¢'_¢)/2;
™
0

dr
)

It follows that

[}

g p— _2_1'.16 COS% ¢’_¢)e—2ikpcos’(¢’—¢)l2 f e—2ikpt d‘r,
op T

0
the differentiation under the sign of integration being justified by the
uniform convergence of the resulting integral. Using a well-known

result, we have

"

T ar g
N dp

a
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where T = cos }(¢'—¢)/(2kp)

and « is independent of p. Hence

mif
Xﬁe4frwﬁ

A

o

and so, by (1.62),
ulp, $+-2m) = < o, ) f e~ d).

But since u(p, ¢+ 27) > 0 as p - oo, the lower limit « is —o0; therefore
—-T
eﬂl,‘ va
u(p, p+2n) = v uo(p, P) f e—" dA. (1.63)

The point (p, $+2n) is in the lower sheet of the Riemann surface.
To obtain the value of u at the corresponding point (p,¢) of the
upper sheet, we use the relation

ild
u(p, §)+ulp, $+2m) = uglp,$) = % uglp,9) f e @,
It follows that um@__—%m@faﬂ@
or, by a change of variable,
T
wild .
u(p, $) = %— uy(p, #) f e~ dA. (1.64)
kK

Finally, we observe that

—T = cos }(¢'—d—2m)y(2kp).

Hence (1.63) and (1.64) can be comprised in the single formula

T
if
up,d) = wlpd) [ e a, (1.65)
where T = cos §(¢'"—¢)\/(2kp)

no matter in which sheet of the Riemann surface the point (p,¢)
lies.
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§ 1.7. Some properties of Fresnel’s integral

In § 1.6 we expressed Sommerfeld’s two-valued wave-function in
a form involving the function

t
Z(t) = f e dt.

This function has real and imaginary parts
t t
X()= [ costds, Y(t)= — [ sin?dy,
which are known as Fresnel’s integrals. In order to discuss qualita-
tively the behaviour of Z(¢) it is simplest to make use of the curve,
known as Cornu’s spiral; which has parametric equations

= X(t), y = Y(¢t).

For our purposes we need to know rather more about Z(t) when
¢ is large than can be found by consideration of a graph. To get an
approximate formula for Z(t) when ¢ is large and negative we inte-
grate by parts twice; this gives

t t
| S e | R
Z(t)_—fz—z,tde _—ﬁ—f‘mde
e~ - 3 e
= —%g Tl f 4_t4€ dt = — 2—t+")o( ), say
13 fa 1
L — — 4+~ — = —
Here I.”O(t)l ~ 4t3+4: t‘ 2t3
Hence, when ¢ is negative,
Z(t Lt 1.71
0 = — 5 +molt) (1.71)
where [70(8)] < 1
T = —5pm-

When ¢ is positive we have

Z(t) = f e~ dt = f e—i dt — J’ e~ dt = me-mM—Z(—t).
—¢ ‘o
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By (1.71) we find that

_in
= —7":/4__6__
2) = Nmemit =% 4 (), (1.72)
1
where )] < o

§ 2. The diffraction of plane-polarized light by a reflecting
half-plane

§ 2.1. Sommerfeld’s solution

Let us suppose in the first instance that the plane of polarization
is perpendicular to the edge of the screen. If we choose the axes so
that the screen is the half-plane x = 0, y < 0, the incident light is

specificd by g eitpensip—rwinet = uy(p, §; ), (2.11)

where ¢’, the angle of incidence, may be supposed, without loss of
generality, to lie between +4w. We have to find a solution d, of the
equation of wave-motions which behaves like %, when p is large
compared with the wave-length 27/k, and which vanishes on the
screen.
At first sight it would appear that the appropriate solution ought
to be d, = u, where
u = uy(p, b; ¢')—ug(p, $; m—¢’). (2.12)
But this solution vanishes all over the plane = 0 and so solves,
not the problem of diffraction by a half-plane, but the problem of

reflection by a perfectly conducting plane. If, however, we replace
u, by Sommerfeld’s two-valued wave-function

gy €T Y i _ix
up,d: $) = T wlp.di 8) [ e (2.13)
where T = cos }(¢—¢' )W/ (2kp),
and consider the wave-function
Ulp,$; ¢') = ulp, b; ¢')—ulp, ¢; 3m—4¢’), (2.14)

then d, = U provides the solution of our problem, it being supposed
that in physical space ¢ lies between — 37 and 3#. This solution is
obtained by applying the method of images to Sommerfeld’s two-
valued wave-function, just as the simpler solution (2.12) was obtained
from u,. There is a slight difference, in that the angle of incidence
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of the reflected wave must be 37—¢’, not 7—¢’, since this wave
originates in non-physical space.

yﬂ
5 Direction of
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Each of the wave-functions u(p, $; ¢'), u(p, d; 3m—¢’) has its own
associated Riemann surface, the cross-bridges in physical space being
¢ = n+¢’ and ¢ = —¢’ respectively. These cross-bridges divide
physical space into three sectors §;, S,, and S;, as shown in the figure,
Of these S, and S, belong to the upper sheet, S; to the lower sheet of
the Riemann surface associated with u(p, ¢; ¢’); but S, belongs to the
upper sheet, and S, and S; to the lower sheet of the Riemann surface
associated with u(p,$; 3mw—¢’). In both cases 8, and §; belong to
different sheets. This means that the incident light, which is specified
by u(p, $; $'), at any rate at large distances from the screen, remains
in the upper sheet on crossing the screen and so disappears from
physical space; on the other hand, the reflected light specified by
—u(p, ¢; 3m—¢’) originates in non-physical space and enters physical
space by crossing the screen into the sector S,. There is, however,
no discontinuity of U(p,¢; ¢’) in physical space except across the
screen.

We have, however, somewhat anticipated the fact that U(p, ¢; ¢')
does provide the solution of our diffraction problem. In the first
place, U is a solution of the equation of wave-motions and evidently
vanishes on the two sides of the screen, viz. the radii ¢ = —4= and

b= im.
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Secondly, when p is large compared with the wave-length 2=/t and
(p, ¢) lies in the sector §,, it follows from (1.71) and (1.72) that

Ulp, $; ') = uolp, ¢; ')+ O0(kp) .
Thus U(p,$; ¢') gives a field which is practically unaffected by the
presence of the screen at points in the sector S, at large distances
from the origin.
Next, in the geometrical shadow S; we have

Ulp,$; ¢') = O(kp)~t
when p is large compared with the wave-length. Thus the geometrical

shadow is practically dark.
Finally, in the sector S,

Ulp, $; ¢') = ugle, $; ¢')—uo(p, b5 m—¢')+ Okp) 4,
where p is large compared with 27/k. Hence in the sector S; we have,
in effect, the ordinary field of equation (2.12) above due to the
incident and reflected light.

The function U(p,¢; ¢’') does satisfy all the conditions of the
diffraction problem. A closer examination of the order-terms O(kp)—t
will give the diffracted light.

If, however, the plane of polarization of the incident light is
parallel to the edge of the screen, the original field is

by = uolp, $; ¢')
where ¢’ is the angle of incidence, supposed to lie between 4- 3.
The diffraction problem is solved by taking &, = V, where V is a
wave-function which behaves like u, when p is large compared with
the wave-length and which satisfies the boundary condition oV /o¢ = 0

on the faces ¢ = —3}n and ¢ = §n of the screen. An argument
similar to that used above shows that
Vip,¢; ¢') = u(p, $; ¢)+ulp, ¢; 3m—¢') (2.15)
satisfies'these conditions. When kp is large, we have
(1) in S,
Vip,b; ¢') = ugle, b3 ')+ Olkp)~H;
(ii) in S,
Vip,$; ¢") = Olkp)4;
(iii) in S,

Vip,$; ¢) = uglp, ¢; ¢')+uolp, 5 m—¢)+O(kp)~H.
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These equations can be interpreted in a manner similar to that given
above, and a closer examination of the order terms will give the
diffraction effect.

§ 2.2. The diffracted light

The function T = cos }(¢—¢')4/(2kp), which occurs in the wave-
function u(p,$; ¢’), vanishes on the radius vector ¢ = ¢’'+=. To
avoid difficulties which this might cause, we consider only the part
of physical space which lies outside the parabola 7e?T? = 1; this
involves no loss of generality when we consider the effect when kp is
large, since we are cutting out only a finite part of each radius vector
except the critical one. In the parts of §; and S, which lie outside this

parabola 1
T > E—%;
but in the part of S; outside the parabola
1
T < — m .

Again, since the function 7" = cos {(¢+¢'—3m)/(2kp), which
occurs in the wave-function u(p, ¢; 3w—¢’), vanishes on the radius

Direction of
wncident: light

r2

-
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vector § = —¢’, we leave out of consideration the part of physical
space within the parabola me27"2 = 1. In the part of S; which lies
outside this parabola, we have

1

T>E—\/—1T'

4617 L
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-but in the parts of S, and S; outside the parabola,
' 1
T < —

We denote by S;, S,, S; the parts of S;, S,, and S, respectively which
lie outside both parabolas.

By using the results of §§ 1.6 and 1.7 we readily obtain the following
approximate formulae:
e—ikp+ikel—tmi

ulp, 5 ¢') = uolp, 43 ') — 5 — 1(@—¢')(2nkp)
_ e—ikp+ikct—twi (m S')
2 cos Hg— ¢ W(2mkp) >

e—tkp+ikel—tmi
Up, $; 3m—¢") = wlp. b T4+ g GG F )
e—ikp+ikci—tmi

“erds 31—4) = ST F ) Srond Sa)

the error in each case being less than iwe’. We now apply these
approximations to the diffraction problems considered in the pre-
ceding section.

When the incident light is polarized perpendicular to the edge of
the screen, the total resultant field is given by

d, = df+d7,
where d} represents the effect according to geometrical opticst and
g7 — e—ikp+ikel—ymi

g = — W{sec 3(p—¢')+-cosec }($+4-¢')}  (2.21)

gives the diffracted light in the regions S|, S,, S; with an error less

than 4=e3. To the same order, the magnetic vector in the diffracted
light is found to be

(in 8, and S,),

u(p, $;.¢') =

(in 8y),

e— tkp+ikel—}mi

h — —(isin$—j cos) = o {se H#—)-+coseo i+

When the incident light is polarized parallel to the edge of the
screen the total resultant field is given by
hz = h: +hf ’
where h} represents the effect according to geometrical optics and
B_ e—tkp+ikct—}mi

hE = — N {sec }(¢—¢')—cosec }(¢+4')}  (2.22)

t By this, we mean that thero is the ordinary incident and reflected light in S,,
only the incident light in S,, and darkness in S,.
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gives the diffracted light in the regions 8;, S,, S; with an error less
than }ne3. To the same order the electric vector in the diffracted

light is found to be
e—zkp+zkct e

dB = (isin¢g—jcosg) BN {sec }(¢—¢')—cosec }(¢+¢")}.

The diffracted light rays are all perpendicular to the edge of the
screen since, in both cases, the diffracted light diverges from the edge
like a non-isotropic cylindrical wave. Thus, when the eye is focused
on the edge of the screen, the edge should appear luminous although
it is not a true source of light. This phenomenon can actually be
observed in the geometrical shadow where it is not masked by the
much greater intensity of the incident light. In the region S, the
incident and diffracted light interfere and produce the interference
fringes observed experimentally near the boundary of the geometrical
shadow. (Cf. Ch. II, § 3.3).

The amplitude of the magnetic vector in the diffracted light is
given by the approximate formulae

4, = 2«2 o7y 50 Hp— ) cosec b +-4)

or A4,=

5 iy 500 =) —cosee 14 +4),

according as the incident light is polarized perpendicular or parallel
to the edge of the screen. The ratio of these amplitudes is
21 — —cot(im+ 3¢ Joot(kn-+ 1),
L
This should be compared with the equation A, = 4, obtained in
the theory of the black screen (Chapter III, § 4.2).

The angle between the diffracted ray at a point P and an incident
ray produced through P is called the angle of diffraction, the plane
of these rays the plane of diffraction. In the present case the angle
of diffraction at (p, ) is

6 =¢—¢'—m,
the plane of diffraction being the planeof incidence. With thisnotation,
A , /
L = cot(fr+ 3¢ )tan(ir-+ 15+, (2.23)
1

We notice at once one important difference between this theory
and the theory of the black screen; for the diffraction effect at a
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point P due to a black half-plane depends only on the angle of
diffraction and not on the angle of incidence, whereas with a reflect-
ing screen it depends on both.

Although the diffracted light is not plane-polarized, it does behave
like plane-polarized light at large distances, and so we may still call
the plane which contains the diffracted ray and the magnetic vector
hB the plane of polarization.

The plane of polarization of the diffracted light is parallel to that
of the incident light in the two cases we have considered so far. We
now consider the more general case of plane-polarized incident light
in which the plane of polarization makes an angle a with the plane
of incidence z = 0. The incident field is then

d = (isin ¢’ sin a—j cos ¢’ 8in a- k cos a)eikpcos—¢)+ikel,
h = (—isin¢’ cosa+j cos ¢’ cos a+K sin a)etkp cosid—¢)+ikel,
The resultant fieldt turns out to be

d = d*+d5, h = h*+h?3,
where d*, h* is the field of geometrical optics, and
hZ = —{A4 isingcosa—A, jcosecosa+ A ksin a}e-tkptike-tni

(2.24)
is the approximate magnetic force in the diffracted light.

The amplitude of h¥ is
A = \J{A? cos®a-- A%sin?a}

2 /
=A, A/ {0082a+ tmtla(f;(r ;7; %_f ;;ﬁ;b )sin2a}.
The intensity of the diffracted light is proportional to A% and so
varies with «. Moreover, since 0 <8 << {m—¢’ in the geometrical
shadow, the intensity is a maximum when « = 4=, that is, when the
incident light is polarized parallel to the edge of the screen. This
effect does not occur with a black screen since A, = 4, in that case.
The plane of polarization of the diffracted light (2.24) at the point
(p,:2') is
—A,zsindsina+A4,ycosdsina+4  (z—z')cosa = 0.
This plane makes an angle
tan-! (‘%”_ tan a)

t This is obtained by supposing that the incident light is the result of superposing
a field with « = 0 on a field with a = #=.
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with the plane of diffraction z = 2’, so that the plane of polarization
is rotated in diffraction by a perfectly reflecting screen.t Since

4, tan}(dn+-8+4')

4, tani(in+¢’) ’
the direction of rotation depends on the angle 8. In the geometrical
shadow A4;/4, > 1 since 0 <& << 3r—¢’, and so the plane of
polarization is more nearly perpendicular to the plane of diffraction
in the diffracted than in the incident light.

The phenomenon of the rotation of the plane of polarization in
diffraction was first discovered theoretically by Stokes,} who found
experimentally a rotation in the sense opposite to that which we have
just found—a result of considerable interest from the point of view
of the elastic-solid theory of light with which Stokes worked. The
experiment was repeated by Holtzmann, L. Lorenz, and Quincke
with very divergent results. All these experiments were conducted
with a grating, and, as Poincaré pointed out,|| the effect looked for
may be masked by a rotation due to refraction. The experiments
of Gouy with a very acute-angled reflecting wedge give a rotation
in the sense which the present theory indicates. The experiments
of Wientt with very sharp steel blades require a more rapid increase
of 4,: 4, with é than is given by (2.23), which may be due to the
finite thickness{] of the blade or to its not being a perfect conductor.

§ 3. Diffraction of plane-polarized light by a black half-plane

§ 3.1. Voigt’s theory
When plane-polarized light specified by

d = Kkeikpcosi@-¢)+iket

is incident on a reflecting screen 2z = 0, y < 0, the effect is specified,
as we have seen, by

d = Kk{u(p, ¢; ¢')—ulp, $; 3m—¢')}.

+ There is no rotation with a black screen, as is confirmed by experiments of
Gouy. Ann. de chim. et de phys. (6), 8 (1886), 145.

1 In his paper on the ‘Dynamical Theory of Diffraction’, T'rans. Camb. Phil. Soc.
9 (1849), 1, repriated in Stokes’s Papers, 2, 243.

|| Théorie math. de la Lumiére, 2 (1892), 213-26.

11 Wied. Ann. 28 (1886), 117.

11 The problem of diffraction of plane electromagnetic waves by a thick half-
plane has been discussed by Hanson, Phil. Trans. (A) 229 (1930), 87-124. His method
is to consider two parallel thin half-planes whose distance apart is small. See also
A. E. Heins, Quarterly App. Math. 5 (1947), 157-66; 6 (1948), 215-20.



150 SOMMERFELD'S THEORY OF DIFFRACTION [cHAP. IV

In this equation the first term represents the effect of the incident
light, the second the effect of the reflected light. Voigtt suggested
that, if the screen is black, the effect should be obtained by omitting
the term due to the reflected light, so that

d = ku(p, ¢; ¢'). (3.11)
Similarly, when the incident light is polarized parallel to the edge
of the black screen, h = ku(p, 4; 4.

There is no theoretical reason for making this assumption, since an
opaque non-reflecting screen must absorb all the incident light, which
is impossible if it is very thin. It is, however, interesting to work out
the consequences of the assumption, especially as it gives results
which differ from those obtained by using Kottler’s modified Larmor-
Tedone formula.

In the first place, it suffices to consider only the case when the
incident light is polarized perpendicular to the edge of the screen,
since the results when the plane of polarization is parallel to the edge
can be obtained by the transformation

d—>h, h—> —d.

It follows immediately that there will be no rotation of the plane of
polarization, just-as in Kottler’s theory.

The field specified by (3.11) can be written in the form

d = d*+d5, h = h*4h3,

where (d*, h*) represents the field of geometrical optics and (dZ,h?)
the field of the diffracted light. In the part of physical space
(—37m < ¢ < 3n) outside the parabola
9kp cos? J($—4') = 1/(me?),
I e-thptikel—imi

2 cos §($— ¢ )(2kp)’

e—ikp+ikel—tmi
605 }($— ' W (@rkp)’
with an error less than }we3. The diffracted light, as before, diverges
like a non-isotropic cylindrical wave from the edge of the screen; the
apparent brightness of the edge again agrees with experiment.

There is, however, an important difference from the theory of the
reflecting screen in that the diffracted light depends only on the angle

t Gott. Nach. (1899), 1.

we have
dB = —

hB = —(isin¢d—j cos<f>)2
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of diffraction 8, so that diffraction is here purely an edge effect. The
amplitude of the diffracted light is

1

_ ) 12
4 2 sin 48,/(2mkp) (3.12)
This should be compared with the amplitude
1
4= 2 tan 48./(27kp) (3.13)

given by Kottler’s formulae or by Kirchhoff’s scalar theory in its
exact form.

Actually, (3.13) agrees with experiment better than (3.12), so that
Voigt’s black screen is not black enough. It has been suggestedt
that matters could be improved by increasing the number of sheets
p of Sommerfeld’s Riemann surface; for then light would be less
likely to enter physical space from non-physical space. In particular
by making p - oo, we obtain Voigt’s ‘blackest’ screen. The corre-

sponding solution is then
kel [ dt
d = kgk_. etkpcos{ .
&m {—¢'+¢
where A is the two-branched path of Fig. 23 on p. 136.
By using Cauchy’s theorem it can be shown that, in this field,
d = d*+d>,
where d* is the electric force according to the laws of geometrical
optics and © '
dB — —9ketket f e—tkpcoshr
0
(where § = ¢—¢’) is the electric force in the diffracted light.
The approximate formula

dF = —k

(3.14)

n2—024 72
("2_02+12)2+40212 dT’ (315)

9 re—ikp+ikel—tmi

() k)

valid when p is large compared with the wave-length 2#/k, can be
deduced from (3.15) by the principle of stationary phase. Hence the
amplitude of the diffracted light with Voigt’s ‘blackest’ screen is

A= - (3.16)

o1+ 2%)4(27#@)’

when p is large.
t See, for example, Sommerfeld, Zeits. f. Math. u. Phys. 46 (1901), 11-97, § 5.
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Formulae (3.12), (3.13), and (3.16) all give the same approximate
amplitude 1/{3.,/(2nkp)}, when §, the angle of diffraction, is small, but
do not agree when the angle of diffraction is large.

§ 3.2. The unsatisfactory state of the theory of the black screen

Sommerfeld’s theory of diffraction by a perfectly reflecting screen
can be regarded as a satisfactory one. The boundary conditions
satisfied by his solution are easy to formulate on theoretical grounds,
and the structure of his ‘Riemann space’ is fixed by the conditions
of the problem. On the other hand, although each of the theories of
diffraction by a black screen gives results which agree fairly well with
the available experimental evidence, not one of them rests on a sound
theoretical basis.

Voigt’s work suffers from two disadvantages: the electric and
magnetic vectors satisfy no prescribed boundary conditions and the
number of sheets in the ‘Riemann space’ is quite arbitrary. Kottler
tried to overcome these difficulties by regarding the problem as a
saltus problem instead of a boundary-value problem. After a critical
study of Kottler’s work, Ignatowskyt has concluded that there is no
definition of a black screen applicable in all cases, and he asserts.
that each black-screen diffraction problem must be discussed inde-
pendently on its own merits.

The real difficulty lies in the fact that the black screen.is an
idealization which cannot be attained experimentally and which has
no precise definition in electromagnetic theory. What is needed is
a rigorous theory which does not assume that the screen is perfectly
reflecting but takes into account the properties of the material of
the screen. An empirical way of finding the effect due to a screen
which is neither perfectly black nor perfectly reflecting is to suppose
that the reflected wave has its amplitude and phase reduced in some
definite way, due to the imperfections of the reflecting power of the
screen. This amounts to multiplying the term representing the
reflected wave in Sommerfeld’s solution by a complex constant.
The effect of this modification of Sommerfeld’s theory has been
worked out in some detail by Raman and Krishnan.}

t Annalen d. Phys. 77 (1925), 589-643.
t Proc. R.S. (A), 116 (1927), 254.
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DIFFRACTION BY A PLANE SCREEN

§ 1. Introduction
§ 1.1. Recent results in the theory of diffraction

SINCE 1939 there have been many interesting developments in the
theory of diffraction. Work in the theory of sound was concerned
mainly with the diffraction of sound pulses. Friedlandert discussed
the problem of diffraction by a perfectly reflecting half-plane; using
the formulae of Sommerfeld and Lamb, he considered the problem
in some detail and gave interesting numerical results for different
shapes of pulse. E. N. Fox} considered the diffraction of sound
pulses of arbitrary form by an infinitely long strip or slit; he used an
integral equation method, and his solution by successive substitu-
tions converges rapidly and is well suited for obtaining numerical
results.

The first use of integral equations in diffraction theory seems to be
due to Rayleigh,|| who deduced approximate solutions for the diffrac-
tion of plane waves normally incident on a perfectly reflecting plane
having an aperture or slit whose dimensions were small compared
with the wave-length. A little later, Schwarzschild{ formulated the
problem of diffraction at a slit virtually by means of a pair of simul-
taneous integral equations. Actually Fox’s integral equation can be
obtained from Schwarzschild’s (for normal incidence) by a Laplace
transform; but in the case of monochromatic waves considered hy
Schwarzschild, the convergence of the process of successive substitu-
tions is too slow to be of practical use.

More recently Magnus}} reduced the problem of diffraction of plane
waves by a half-plane to the solution of what is now called a Wiener-
Hopf integral equation, which he solved by using an infinite series
of Bessel Functions. In America during the war Schwinger and
others showed that certain diffraction problems of importance in

t+ Proc. Roy. Soc. (A) 186 (1946), 322-67.

t Phil. Trans. (A), 241 (1948), 71-103; 242 (1949), 1-32.

| Phil. Mag. 43 (1897), 259-72; Proc. Roy. Soc. (A), 89 (1913), 194-219.

tt Math. Ann. 55 (1902), [77-247.

tt Zeitschrift f. Phys. 117 (1941), 168-79. See also Copson, Quarterly J. Math.

(Oxford), 17 (1946), 19-34. where the integral equation is solved by complex Fourier
transforms.
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radar can be formulated as Wiener-Hopf integral equations, which
they solved by means of complex Laplace transforms.}

In the present chapter an account is given of the application of
integral equation methods to plane diffraction problems, mainly in
the theory of sound. The extension to electromagnetic problems is
more complicated .}

§ 1.2. The radiation condition

In this chapter we shall be concerned with wave-functions of the
form u = ve', where w > 0. The function v is independent of ¢, and
satisfies the equation (V220 = 0. (1.21)

The factor e** will usually be omitted.

If u is the velocity-potential of sound waves, k is real and positive,
except in the case when the gas has slight viscosity; in this excep-
tional case, k is a complex number of the form p—ig where p and ¢
are positive and ¢ is small. Similarly if % is a component of the
electric or magnetic vector in monochromatic waves, & is real and
positive, except when the medium has slight conductivity; in the
exceptional case, k is again of the form p—1ig.

The assumption that k is complex simplifies the analysis con-
siderably. It will be recalled that, in Chapter I, it was found neces-
sary to introduce two conditions, due to Sommerfeld,|| in order to
ensure that the exterior boundary-value problem for equation (1.21)
had a unique solution and represented expanding waves. The situa-
tion is much simpler when k¥ = p—igq; for then the velocity-potential
of waves diverging from a point source is

leiwl—ikr — _l_ei(wl—pr)—qr
7 r
whereas that for waves converging to a focus is

leiwl+ikr — lei(wl+pr)+qr,

a r

+ Amongst the papers which have appeared are J. F. Carlson and A. E. Heins,
Quarterly App. Math. 4 (1947), 313-29, 5 (1947), 82-8; A. E. Heins, ibid. 5 (1947),
157-66, 6 (1948), 215-20; A. E. Heins and H. Feshbach, Journal Math. Phys. 26
(1947), 143-55; H. Levine and J. Schwinger, Phys. Rev. 73 (1948), 383-406; J. W.
Miles, Journal Acoustical Soc. America, 20 (1948), 370-4. An account of Schwinger’s
work is promised in & forthcoming M.I.T. Radiation Laboratory publication, Theory
of Guided Waves.

t See Copson, Proc. Roy. Soc. (A), 186 (1946), 100-18; Magnus, Jahresbericht der
D.M.V. 52 (1943), 177-88; J. W. Miles, Journal Appl. Phys. 20 (1949), 760-71.

|| See pp. 25, 28, where, however, a different convention concerning the time-
factor is used.



§1] DIFFRACTION BY A PLANE SCREEN 155

It follows that a wave-function which represents waves divergent
from a distribution of sources at a finite distance must vanish at
infinity, being of the order of e-9"/r when r is large. On the other
hand, a wave-function which contains terms representing convergent
waves must tend to infinity as r tends to infinity. The physical reason
for this is evident, since the medium dissipates energy; ¢ is usually
called the attenuation constant.

When k = p—iq, Sommerfeld’s conditions can therefore be replaced
by the simpler condition, that a wave-function, which represents
only divergent waves, and its first partial derivatives are uniformly
bounded as 7 tends to infinity. Under this simple condition the
exterior boundary-value problems for equation (1.21) have unique
solutions, given by the formulae of the next section. In particular,
a wave-function which satisfies this condition and has no singularity
anywhere in space is null.

§ 1.3. The solution of boundary-value problems by means of Green’s
function
When sound waves with velocity-potential v;, the time-factor e
being understood throughout, are incident on a perfectly reflecting
body bounded by a closed surface S, the problem of reflection and
diffraction consists in determining the velocity-potential v, of the
scattered waves. The function v, satisfies the following conditions:

(i) it is a solution of (V24k2)v = 0 with no singularities outside S;
(i) it satisfies the radiation condition at infinity;

(iii) on the surface S, ov,/on = — ov;/on where n is the outward
normal unit vector.

This is a boundary-value problem in which the value of dv,/on on §
is given; it is usually called the exterior Neumann problem.

It is well known that a function which satisfies conditions (i) and
(ii) is uniquely determined by the boundary values on § either of v
or of ov/on; in fact,

o(P) =L ” p) 2% P“’P)dS (1.31)

and o(B) = — 4% f f "’”;f)GZ(R,, P)ds (1.32)
S
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where G, and G, are the Green’s functions of the first and second
kinds,t and d8 is the element of surface at the integration point P.

These formulae are, however, of little use, not merely because the
determination of the appropriate Green’s function is often difficult,
but because its determination is actually equivalent to the solution
of a boundary-value problem of the very type we are considering.
For instance, G,(F,, P) is the total velocity-potential at P of the
incident and scattered waves when the incident waves are due to a
point source at F,. If this diffraction problem were solved, then (1.32)
would give the solution of all other diffraction problems with the
same reflecting surface S.

A further difficulty arises in the discussion of the diffraction of
electromagnetic waves by a perfectly reflecting surface §. When
monochromatic waves with electric and magnetic vectors d* and h®
are incident on S, we have to find the scattered field d*, h® which
satisfies the following conditions:

(i) the scattered field satisfies Maxwell’s equations
itkd = curlh, ¢kh = —curld, divd =0, divh = 0;

(ii) each component of d® and h® satisfies the radiation condition;

(iii) on the reflecting surface S,

d*xn= —dixn, h*.n = —hi.n,

.since the tangential component of the total electric force d = d+4d*
and the normal component of the total magnetic force h = h*{+ h?
vanish on S.

The difficulty to which we referred is that, if v were a rectangular
Cartesian component of d* or of h? the boundary conditions (iii)
would not, in general, determine either v or dv/on on §. Hence, even
if we could solve the scalar diffraction problems involved in the
determination of the Green’s functions, the formulae (1.31) and (1.32)
would,- in general, not suffice to determine the scattered electro-
magnetic field. Moreover, the difficulty is not avoided by using vector
solutions of Maxwell’s equations, such as the formulae of Larmor
and Tedone, since these formulae require a complete knowledge of d®
and h? on S. There is no special merit in a vector solution; for if the
correct boundary values could be inserted in (1.31) and (1.32), the
resulting expressions for d° and h® would automatically satisfy Max-

t See, for example, Bateman, ’artial Differential Equations of Mathematical Physics
(Cambridge, 1932), 140.
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well’s equations, since the boundary-value problems have unique
solutions. Unfortunately, it is, in general, not possible to do this,
since only the tangential component of d? and the normal component
of h® are known on a reflecting surface.

§ 1.4. Reflection by a plane

When the reflecting surface is a plane, the Green’s function for-
mulae (1.31) and (1.32) become very simple, and can be made the
basis of an analytical formulation of problems of diffraction by a
plane screen in terms of integral equations. The formulae are as
follows:

Let v be a solution of (V2+k?v = 0 which has no singularities in the
half-space = 0 and satisfies the radiation condition at infinity.T Let
v = O(y,2), dw/ox = ¥Y(y,z) when x = 0. Then, when xy> 0,

V(Zg, Yo Z0) = ——5 ff d( y,z) dydz (1.41)
0
and YT, Yoy 29) = — =— fj W( y,z) dydz (1.42)
where R = +\/{xo+(y_yo)2+(z_zo)2}

and integration is over the whole plane x = 0.

The proof depends on Helmholtz’s} formula. Let S be the surface
bounding the hemisphere » < a, > 0; and let (z,, ¥, 2,) be a point
inside S. Then

e—kR 9y 0 [e—i*
L

where R is the distance from (z,, ¥,, z,) to the integration-point (z, y, 2)
on S. If, however, z, < 0, the value of this integral is zero.
The contribution of the curved part of S to the surface-integral is

1 2 el . 6R}]
EH [er {R5+(l+sz)v5 dw
S

where dw is the element of solid angle subtended by dsS at the origin.
But since |e-i*®| = ¢—¢R and since v and dv/ér are uniformly bounded

t Either in the original sense if £ > 0, or in the sense of § 1.2 if ¥k = p—iq. The
latter is used in the proof. ) )
1 See p. 24. Since the time-factor is now ei«!, e=$*R appears instead of eitR,
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as r - oo, this integral evidently tends to zero as a - co. Hence we
have, when z, > 0,

1 e~kE gy 0 [e~tkR .
(%o, Yo» 20) = o ff [T %—’U%( R )]x=odydz (1.43)

where integration is over the whole plane = 0. But, since n is the
outward normal to 8, it follows that

ov ov
==Y }
on ox (%:2)

Also, since R = +,/{(x—xy)*+ (y—yo)*+(2—2z,)%}, we have

o [e—ikR 2 [e~ikR
wl w) =l 7

Hence, if we insert the given boundary values in (1.43), we obtain
e—ikR e

v(x 2y) = — 1 Y(y, z) dydz 1.9 D(y, 2) ide dz
0 Y0 %) = Eff Y, R Y —Ea_xoff Y R yaz,
(1.44)

where R now denotes +,/{z3+ (y—y,)*+(2—2,)%}

If, however, z, is negative, the left-hand side of (1.44) has to be
replaced by zero. Hence, if we suppose z, > 0 and write —xz, for z,
in the right-hand side of (1.44), we find that

e—ikR

o—_L”\F( ¢ e L 2 f¢>( ) dydz
=g || Yo e o [ | o 5y
(1.45)
The required results follow by adding and subtracting (1.44) and
(1.45).
There is a corresponding theorem for the half-space z < 0, in which

the signs of the expressions on the right-hand sides of (1.41) and (1.42)
are changed.

When sound waves with velocity-potential v;(z,y,2) are incident
on the positive side of the perfectly reflecting infinite plane z = 0,
the velocity-potential v,(z,y,z) of the reflected waves satisfies the
condition d(v;+v,)/éx = 0 on x = 0. Hence, if we put

1F(y: z) = _[avi/ax]::=0’

equation (1.42) will give v, for 2, > 0. This is not, however, of much
importance since the method of images shows at once that

v(x,Y,2) = v(—x,y,2).

Again, if electromagnetic waves d¢, h? are incident on the positive
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side of the perfectly reflecting plane x = 0, the electric and magnetic
vectors d?, h® in the reflected waves satisfy the boundary conditions

dy=—d;, di=—d, h=—h
on z = 0, so that (1.41) would determine d}, d, and A%, and the

remaining components could then be found by Maxwell’s equations;
but again the method of images is simpler.

§ 2. Diffraction of sound by a plane screen
§ 2.1. The formulation of the problem as an integral equationt

Let us consider the case of an infinite perforated screen occupying
the plane x = 0 and containing apertures of arbitrary shape and size,
the screen itself being perfectly. reflecting. Let ‘monochromatic’
sound waves be incident on the positive side of this screen, the
velocity-potential of the incident waves being v,(z, y, z) in the absence
of the screen. These waves are reflected and diffracted by the screen,
‘the velocity-potential of the reflected and diffracted waves being
vy(z,y,2). The total velocity-potential in the actual problem when
the screen is present is

'U(.’E,y,Z) = vi(x,y,z)—{—vs(x, y,Z). (211)
The velocity-potential v, has to be chosen to satisfy the radiation
condition at infinity and the boundary-condition dv/dx = 0 on the
material of the screen but not in the apertures.

Since the problem is linear we can superimpose the corresponding
mirror-image problem, in which waves with velocity-potential
v,(—x,y,2) are incident on the negative side of the screen; in this
problem, the total velocity-potential is v(—z,y,2). In the combined
problem the boundary condition on the screen is satisfied auto-
matically by v;(z,y,z)+v;(—=,y,2); hence we can now remove the
screen without altering the problem. But this implies that

v(z,y,2)+v(—x,y, g) = vy(z,y,2)+v;(—x,9,2). (2.12)
This shows incidentally that if we can find v for z > 0, we can deduce

at once the value of v for z < 0.
If we now let x tend to zero by positive values, (2.12) gives

v(+0,y,2)+v(—0,y,2) = 2v/(0,y, z).
The values of » on the front and back faces of the screen are different,

t The corresponding general theorems for sound pulses are given by E. N. Fox,
Phil. Trans. (A),-241 (1948), 71-103.
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but v is continuous through each aperture. Hence, if (0,y,2) is a
point in one of the apertures,

v(0,y,2) = (0,9, z),

that is, the total velocity-potential in an aperture is equal to the
incident velocity-potential there. In other words, v, vanishes in each
aperture. The boundary-conditions satisfied by v, are therefore of
the following unusual type:

(i) 0, _ _
ox ox
on both faces of the screen, and

(ii) v, vanishes in each aperture.
This enables us to reduce the diffraction problem to the solution of
an integral equation, in the following way.t

Let ‘monochromatic’ sound waves of velocity-potential v,(x,y,z) be
wncident on the positive side of an infinite perforated perfectly reflecting
screen occupying the plane x = 0. Let the apertures in the screen be
denoted by 8, the screen itself by S,. Then the total velocity-potential is

given by

1 e—ikR
v(xo, Yo, Zo) = V5(To, Yo, Z0) + Vi — %o, Yo, 20) — 5= fff(ys z) dydz
2w R
S,
(2.13)
when zy > 0, and by
1 e—ikR
(%o, Yo, 20) = 5= f(y,2) dydz (2.14)
27 R
S
when z, < 0, where
R = +J{a§+ (y—yo)*+(2—2,)%-
The function f(y,z) satisfies the integral equation
~ikRo _
[ 0.5 dydz = 270,00, 40,2 (215)
0
8,

when (0, y,, 2,) 18 a point of S; and
Ry = +J{(y—yo)*+(z—20)%.

To prove this, we observe that, if we write
ov, . ov;
I

t See Rayleigh, Phil. Mag. 43 (1897), 259-72; Proc. Roy. Soc. (A), 89 (1913), 194
219 for the case of normally incident planc waves.
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then, by condition (i), f(y,2) vanishes on S, and is unknown on &S,.
It follows from (1.42) that, when z, > 0,

—ikR
V4(Zg, Yo, 29) = ff [80 Y, z)] ¢ dydz —
z=0 R

S1+S|
— 5= f f fly, 2=

Now the first term on the right-hand side of this equation is the value
v, would have in the half-space z, > 0 if f(y, z) were identically zero,
that is, if there were no apertures in the screen; and so this term is
simply the velocity-potential v;(—x,,¥,,2,) of the waves reflected
by a screen filling up the whole plane + = 0. Hence

Vs(Zo, Yos 20) = V;(—Zp, Yo» Z0) — fff Y, z)

dydz

dydz (2.16)

The integral equation (2.15) follows at once, since v, vanishes on S;
by condition (ii).

Lastly, since the total velocity-potential in z, > 0 is given by
v = v,;+v,, equation (2.13) is-an immediate consequence of (2.16), and
(2.14) then follows from (2.12).

§ 2.2, Two-dimensional problems

If the incident waves have a velocity-potential v;(z, y) independent
of z and if the apertures in the screen are all bounded by lines parallel
to the axis of z, the motion is evidently the same in all planes per-
pendicular to Oz, and the total velocity-potential v is independent
of z; the problem is then a two-dimensional one. In such a case, the
theorem of § 2.1 simplifies since the integration with respect to z can
be carried out by using the formula

[ oy @ P e |
fe—zkd(a +;)J(a2§_C2)= fe—zkacoshﬂdgz_mng)(ka),

which is valid when ¢ > 0 and k = p—iq where ¢ > 0. This leads
to the following theorem:

Let ‘“monochromatic’ sound waves of velocity-potential v;(x,y) be inci-
dent on the positive side of an infinite perfectly reflecting screen lying
in the plane x = 0. Let the apertures in the screen be bounded by straight
lines parallel to the axis of z, so that the avertures cut the plane z = 0

4617 M
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n a set of straight lines L, lying on the axis of y. Then the total
velocity-potential is

v(Zg, Yo) = Vi(Tg, Yo) +v:i(—Zp, Yo) + 32 ff(y)Héz’(kp) dy (2.21)
Ly

when x, > 0, and is
v(zo,90) = — ¥ [ fY)HP(kp) dy (2.22)
Ly

when 2y < 0, where  p = +J{x§+(y—yo)*}
The function f(y) satisfies the integral equation

[ FHP Iy —y,]) dy = 2iv,(0,3,) (2.23)
L,
when (0,y,,0) is a point of L,.

§ 3. Diffraction of electromagnetic waves
§ 3.1. Two-dimensional electromagnetic problems
We proved in § 1.4 of Chapter IV that there are two types of two-
dimensional solution of Maxwell’s equations
tkd = curlh, +kh = —curld, divd =0, divh =0

for monochromatic electromagnetic waves. If the axes are chosen
so that the field is the same in all planes perpendicular to the axis
of z, the two types are as follows:

(i) A field polarized parallel to the axis of z

hy="h,=0, h,=1kv, d,= ov/oy, d,= —ov/ox, d,=0,
(3.11)
where v(z,y) is a solution of (V2+4£%)y = 0. For such a field, av/on
vanishes on the surface of a perfect reflector. The function v satisfies
the same conditions as the velocity-potential of sound waves, and

the corresponding diffraction problem is that already discussed in
§ 2.2.

(ii) A field polarized perpendicular to the axis of z
d,=d,=0, d,=1tkw, h,= —ow/dy, h,= dw/ox, h,=0,
(3.12)
where w(z,y) is a solution of (V24-k%)w = 0. For such a field,

w vanishes on the surface of a perfect reflector, a type of boundary
condition we shall discuss in the next section.
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§ 3.2. The case when the wave-function vanishes on the screen

Let us consider again the case of an infinite perforated screen
occupying the plane x = 0 and containing apertures of arbitrary
shape and size, the screen itself being of such a material that the
total wave-function w vanishes on the screen.t Let ‘monochromatic’
waves be incident on the positive side of this screen, the wave-
function of the incident waves being w;,(z,y,z) in the absence of the
screen. These waves are reflected and diffracted by the screen, the
wave-function of the reflected and diffracted waves being w,(z, y, z),
so that the total wave-function in the actual problem when the screen
BRSNS w,9,2) = wile, g, 2) L w9, 2) (3.21)
The wave-function w; is a solution of (V2+k?)w, = 0, and has to be
chosen to satisfy the radiation-condition at infinity and the boundary-
condition w = 0 on the material of the screen but not in the apertures.

Since the problem is linear, we can superimpose the corresponding
mirror-image problem in which waves with wave-function

_wi( —TY, Z)
are incident on the negative side of the screen; in this problem the

total wave-function is —w(—z,y,z). In the combined problem, the
boundary condition on the screen is satisfied automatically by

wy(x,Y,2)—w,(—,Y,2);
hence we can now remove the screen without altering the problem.
But this implies that
w(z,y,z)—w(—z,y,2z) = wi(z,y,2)—w,(—z,Y,2), (3.22)
a relation which enables us to find w for x < 0 when w is known for

z > 0 and which also shows, by making z — 0, that w is continuous

across the plane xz = 0.
If we differentiate (3.22) with respect to x and then make x tend

to zero by positive values, we find that

Sk b
ox =40 ox =-0 ox z=0

The values of dw/ox on the front and back faces of the screen are

t A simple physical interpretation is that w = &v/éx where v is the velocity-poten-
tial of sound-waves.
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different, but éw/éx is continuous through each aperture. Hence if
(0,y,2) is a point in one of the apertures,
ow _ aw,
ox ox
at this point. This implies that éw,/0x vanishes in each aperture.
The boundary-conditions satisfied by w, are therefore
(i) éw,/ox vanishes in each aperture, and
(ii) w, = —w; on both faces of the screen.
This leads to the following theorem:7

Let ‘monochromatic’ waves of wave-function w,(x,y,z) be incident on
the positive side of an infimite perforated screen occupying the plane
x = 0, the material of the screen being such that the total wave-function
vanishes on the screen. Let the apertures in the screen be denoted by S,,
the screen itself by S,. Then the total wave-function s given everywhere

by

W(Zg, Yos 20) = W(To, Yo zo)——' ff 9y, z) dydz (3.23)
where R = +{xd+(y—yo)*+(—2)}-
The function g(y, z) satisﬁes the integml equation
f f 94,2) = 2m0,(0,4 %) (3.24)

when (0, y,, 2,) ts a point of S, and
Ry = J{(y—yo)*+ (z—2)*}-
To prove this, we write

ow,
ox

so that, by condition (i), g(y, z) vanishes on S, and is unknown on S,.
Hence, by (1.42),

Wy Yor 20) = — o f f oy, 7)o dyds, (3.25)

L=+0= 9(y,2)

when 2z, > 0. If we make z,— —|—O, the integral equation (3.24)
follows from condition (ii). Also, since w = w;+w,, equation (3.23)
1s an immediate consequence of (3.25) when z, > 0; the result for
z, < 0 then follows from (3.22).

t Cf. Rayleigh, loc. cit.
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The corresponding two-dimensional result is:

Let ‘monochromatic’ waves of wave-function w;(x,y) be incident on
the positive side of an infinite perforated screen lying in the plane x = 0,
the material of the screen being such that the total wave-function vanishes
on it. Let the apertures in the screen be bounded by straight lines parallel
to the axis of z, so that the screen cuts the plane z = 0 in a set of straight
lines L, lying on the axis of y. Then the total wave-function is given
everywhere by y

(o, Yo) = Wi, Yo) +4i [ 9W)HP kp) dy (3.26)
La
where p = +{zf+y—v0)}
The function g(y) satisfies the integral equation
[ 9 HP kly=yl) dy = 2i,(0, 3,) (3.27)
L,

when (0,y,,0) is a point of L,.

This last result can also be proved by a simple physical argument.
Let us suppose that monochromatic waves in which A%, A}, and d} are
the only non-zero components of d and h are incident on the positive
side of a perfectly reflecting screen in the plane x = 0; the incident
field is then independent of z. The apertures in the screen are taken
to be bounded by straight lines parallel to the axis of z. Then, as
Poincaré pointed out many years ago, an alternating current-sheet
flows in the screen in the direction of the z-axis. If the current-density
is I(y), this induced current gives rise to an electromagnetic field
d?, h?, in which the only non-zero component of d¢ is
dydz — —mk f 1) HP (kp) dy.

L,

kR

] —_ — e
oo y) = —it [ [ 1)

. S’
The total electric force is then

4wy, Yo) = difzo, yo)—k [ 1)HP(kp) dy
L.

when y, > 0. But since d, vanishes on the screen, the current I(y)
satisfies the integral equation

di(0, yo) = k [ Iy)HP(kly—y,!) dy
L,

when (0, %,, 0) is a point of the screen. This is the integral equation
(3.27).
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§ 3.3. Babinet’s Principle

Two plane screens which together would just fill up a plane are said
to be complementary; the apertures in the one screen are then con-
gruent to the material of the other. When identical electromagnetic
waves fall on complementary perfectly reflecting plane screens, com-
plementary diffraction patterns are formed behind them. Babinet’s
principle asserts that the sum of the electric forces at congruent points
in the two diffraction patterns is equal to the electric force at the
same point if there were no screen. This form of the principle is often
based on the classical Kirchhoff theory of diffraction.

An examination of the results of Rayleigh and others for special
diffraction problems shows that Babinet’s principle in this form is
not even approximately true. This was noticed in 1941 by H. G.
Booker, who observed that in a rigorous formulation of Babinet’s
principle it is necessary to assume that complementary fields are
incident on complementary screens; and he proved the principle in
this form by considering waves in a two-sheeted space.t This comple-
mentarity of incident fields and screens is closely associated with the
complementary character of the theorems we have proved in §§ 2.1
and 3.2. In the former, the boundary-condition is the vanishing of
the normal derivative of » on the screen, in the latter, the vanishing
of w. But the integral equation of § 2.1 relates to the apertures S;,
that of § 3.2 to the material S, of the screen.

The rigorous form of Babinet’s principle may be enunciated as
follows:§

Let the electromagnetic field in which d = F, h = G be incident on
the positive side of a perfectly conducting plane screen in the plane x = 0;
the holes in the screen are denoted by S, the metal of the screen by S'.
Let the total field in x << 0 be d?, hl.

Let the complementary field|| in which d* = —G, ht = F be incident
on the positive side of the complementary perfectly conducting plane
screen in the plane x = 0; the holes in the screen are S’, the metal of the
screen S. Let the total field in x < 0 be d?, h2.

Then Babinet’s principle is that

di4+h?2=F, ht1—d2=G.

t Journal Inst. Elec. Eng. Part III A, 93 (1946), 620-6.

1 Copson, Proc. Roy. Soc. (A), 186 (1946), 116, where a proof of the general case
will be found.

|| It will be recalled that Maxwell’s equations are invariant under the transforma-
tiond - h,h— —d.
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For simplicity we consider here only the two-dimensional case.
In the first screen the apertures are bounded by straight lines parallel
to the axis of z, and cut the plane z = 0 in a set of segments L on
the axis of y; the metal of the screen cuts the same plane in a set of
segments L', so that L and L’ together fill up the axis of y. In the
complementary screen, L’ is the trace of the apertures, L of the metal
of the screen.

The most general field which is the same in all planes perpendicular
to the axis of z is

ov ov .
d:=6—y, d]/: —a_x’ dz=2kw,

ow ow .
h$= —5, hy='a7, hzzik’v.

Since the field complementary to this is
A= 4= g =ik,
oy ox

ov ov .

h$=-5§, hﬂz—%’ h, = tkw,

it is evident that we need consider only the case when w is identically
zero. The general result will follow by superposition.

In the first problem the only non-zero components of the incident
field are i i
di=2 @ = ik,

oy ox
It follows from § 2.2, that the only non-zero components of the total
field behind the screen are

ovl ovl

d}:='@, d]l/= —'—a—x, h; == ikvl. (3.31)
The function ! is defined by
g, y0) = — 3 [ f)HP(kp) dy (3.32)
L

where f(y) satisfies the integral equation

[ F)HP(kly--yol) dy = 2iv%(0, 3,) (3.33)
L

when (0, y,, 0) is a point of L.
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In the complementary problem, the only non-zero components of
the incident field are

ovt

hi:-—, ;‘;:——, d;= —kvt.
oy ox
It follows from § 3.2 that the only non-zero components of the total
field are 9 2
=" % g e (3.34)
oy ox
The function v? is defined by
V@0, Yo) = V{0, yo)+ 6 [ 9)H(kp) dy (3.35)
7
where g(y) satisfies the integral equation
[ 9@)HPkly—y,)) dy = 2iv#(0, yo) (3.36)

L
when (0, y,, 0) is a point of L.

Comparing (3.33) and (3.36) we see that f(y) and g(y) are equal.
Hence, by (3.32) and (3.35), we have v!+v% = ¢¢. Therefore, by (3.31)

and (3.34), we have vt

oy
ovt
ayig =~ 2,

hl—d? = ik,
when z < 0, the other components of d!+ h? and h!— d? being zero.
This proves the theorem in its two-dimensional form.

§ 4. Sommerfeld’s Diffraction Problem
§ 4.1. The diffraction of plane sound waves
We shall now apply the integral equation method to the problem
of the diffraction of plane sound waves with velocity-potential
v, = eikxco5a+ikyslna (_%,n. < a< %’n‘)

incident on the positive side of a rigid screen whose position is defined
by z = 0, y << 0. The total velocity-potential behind the screen (i.e.
where z is negative) is given by

vi@,y) = — i [ fOHP(kp) dt (4.11)
0

where p = J{x?+(y—1t)%}.
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The function f(¢) is the value of dv/dx at (0,t) where ¢ > 0, and
satisfies the integral equation

@

[ FOHP(EIy—1)) dt = 2ietveina (y > o). (4.12)

0

This equation, which was discovered by Magnust in a slightly
different connexion, is called a non-homogeneous Wiener-Hopf
equation.] Although it appears to be of the form

[ feyy—e) de = g(y)

whose theory is well known, it is actually quite different and is much
more difficult to solve; for g(y) is given only when y > 0, and the
solution f(¢) has to be identically zero when ¢ < 0.

The integral equation (4.12) is solved by the use of generalized
Fourier integrals,|| which are analytic functions of a complex variable
w = u+tv and are defined, under certain conditions of integrability,
by the equations

a0

P (w) = ﬁ fp(a:)eiw”-' dz (4.13)
0

0

f p(z)ewr dx. (4.14)

—@m

1
Fw) = 155

The function P, (w) is regular in an upper half-plane v > ¢, whereas

P_(w) is regular in a lower half-plane v < ¢’. If these half-planes have
a common strip, it is convenient to write P(w) = P,(w)+P_(w) in

t Zeitschrift f. Phys. 117 (1941), 168-79. See also Copson, Quarterly J. Math.
(Oxford), 17 (1946), 19-34.
1 The theory of the homogeneous Wiener-Hopf equation

[roUy—0 =1v) >0
0

will be found in Paley and Wiener, Fourier Transforms in the Complex Domain (New
York, 1934), 49-58; Titchmarsh, 7'heory of Fourier Integrals (Oxford, 1937), 339-42.
We cannot give any reference to the theory of the non-homogeneous equation, though
much the same ideas are involved.

|| Titchmarsh, loc. cit. 4-6.
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that strip. The function p(z) can be expressed in terms of P, (w) and
P_(w) at any point of continuity by the equation
ia+mo b+

1 . 1 )
P<I>=m.f P, (w)e=t=v dw + 7 f P_(w)e=i=2 du,
e - (4.15)

wherea > ¢, b < ¢'.
Let us write the equation (4.12) in the form

[ rouy— dt = gy)+hiy)

for all y, where f(y) and g(y) are zero for y < 0, and k(y) is zero for
y > 0; this, of course, implies that F (w), G_(w), and H, (w) are also
zero. The kernel l(y—t) is HP(k|y—t|). If we multiply this equation
by e¥ and integrate from —oo to 400, we obtaint

@ @

JEmG. ) +H w) = [ e [ flly—1) didy

—a

= f fi) jP etwv](y—t) dydt

= J' f(t)ert dt i?e"wzl(z) dz

Y
—w

= 2xF, (w)L(w).

If we assume that k = p—iq where ¢ > 0, the integral defining @ (w)
is uniformly and absolutely convergent in any closed region in the
half-plane v > gsina. Carrying out the integration, we have

@

1 iy . 24 1
G — 2 tkysin a+iwy Y .
) = 5 f ie dy (W) e
0
the last expression provides the analytical continuation of G (w) all
over the w-plane.

The Fourier transform of the integral equation is therefore

2

2aF, (w)L(w) 4 Wt ksine

—\J(2m)H_(w) = 0, (4.16)

t+ We shall content ourselves in this section only with the formal analysis, and
refer the reader to Copson’s paper for more rigorous details.
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where L(w) is the Fourier transform of the kernel,

- o]

| @) ay.

—

Since the integrand behaves like —(2:/7)log|y| near y = 0, this
integral converges uniformly at ¥ = 0 in any finite region of the
w-plane. Moreover, sincef

HP() ~ (3)*e—az—m
ur4

when |z is large and — 27 < argz < =, the modulus of the integrand
is asymptotically equal to

{L.}%e-wlm
m|ky|

when [y| is large, and so the integral converges uniformly and abso-
lutely at the upper and lower limits in any closed region in the strip
—q¢ < v <gq. Hence L(w) is an analytic function, regular in the
strip —g < v < ¢. By using a result due to Basset,} it can be shown
that L) — 2\4 1
T \m JE—w?)’

where the square root reduces to £ when w = 0.

The next step is to find the half-planes in which F,(w) and H_(w)
are regular, and the asymptotic behaviour of these functions. Now,

when y > 0, o o, o
w=(%) =3,

= tkcosaetkvsinay d(y)

say. Hence we have

F+(w) _ zf/;};:)a f ei(w+ksin a)y dy_{_cl)+(w).

0

The integration can be carried out when v > gsina, and gives

1 kcosa
Fi(w) = —\/(277) w+ksina+(b+(w).

Now, by the radiation condition of § 1.2, ¢(y) is bounded in any

1 Watson, Theory of Bessel Functions (Cambridge, 1922), 198.
1 Ibid. 388 (10).
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interval y > a’; if we assume in addition that |¢(y)| is integrable
over any finite interval 0 < y < a’, we have, forv > ¢ > 0,

] a’ ] .©
O, (w)| < —— | e=v|d(y)] dy +——r— d
.| < of Y| dy -+ f eV (y) | dy

1 ¢ A ¢
- d - —cy o
<J(2")JI¢(y)l y+J(2ﬂ)Je v dy

where A is an upper bound of |¢(y)|. The integral defining @ (w) is
therefore uniformly and absolutely convergent in v >> ¢ > 0; hence
@, (w) is regular in v > ¢ > 0. It follows that F, (w) is an analytic
function whose only possible singularity in » > 0 is a simple pole at
w = —ksina;t moreover F, (w) is bounded as |w|>ooinv > ¢ > 0.
Actually we do not use all this information; it suffices to assume that
F, (w) is regular in » > a, where a = max(0, ¢sin «), and is bounded
as |w| > oo in v > ¢ > a. That F,(w) has a simple pole at

w = —ksina,

with residue —k cos a/,/(27), emerges in the solution.
Next, we observe that, if y = —y’ < 0,

M—y) = [ FOHP(y +1)} dt
0
where f(t) = tkcos aetkteinat 4(t),

Butsince  HP{ky'+0)} — O{(y +1)-le-aw'+0}

when y’ is large, we have
M—y')=o0 J. {|fe| cos o eateinat |b(t) Je~atv'+) di
0

= o(e—qu')

as we should expect on physical grounds; hence if ¥’ > a’ > 0, there
exists a constant 4’ such that

(—y")| < A'e~'

t Since — 47 < a < 4=, this pole may lie in v < 0.
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If we assume in addition that |h(—y’)| is integrable over any finite
interval 0 < ¥’ < a’, we have for v < ¢’ < ¢

< Jen f M=l + Jr )f ey

The integral defining H_(w) is therefore uniformly and absolutely
convergent in v < ¢’ < ¢, and so H_(w) is an analytic function which
is regular in v < ¢ and bounded in » < ¢’ < q.

The equation (4.16) is now of the form

F (w) 1 .

Je—wt) T Jemmthsme) -0 =0 (417)
Here F,(w) is regular in a half-plane v > a = max(0,¢sina), and
H_(w) in a half-plane v < ¢, but 1/,/(k*—w?) is regular only in a strip
—q < v < q. The next step is the important one: under certain
conditions, an analytic function M(w), regular and non-zero in a
strip —g < v < ¢, can be written in the formt N, (w)/N_(w) where
N, (w) is regular and non-zero in v > —gq, N_(w) in v < ¢q. In the
present case, we have evidently

1 1
JE—u®) = J(k—w)/ Vi),

where 1/,/(k—w) is regular and non-zero in v > —q, /(k+w)inv < g,
the principal values of the square roots being taken.

1 The proof is briefly as follows. If 0 < y < gq, it can be proved by Cauchy’s
Theorem that the principal value of log M(w) is given by

1 7Y tog M 1 togM
log M(w) = — o8 (Z)dz——_ o8 (z)dz
2m z—w 2m z—w
—m—1iy —w+iy
= R(w)—F(w)

when —y < v < y, provided that, as |w| > 00 in —y < v < y, {log M(w)}/w tends
to zero uniformly with respect to v. The first term Fj(w) is regular in v > —y, the
second Fi(w) in v < y; and M(w) = efiW)jePrw) = N (w)/N_(w).
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If we multiply through equation (4.17) by /(k+w), we obtain

Jk—w) " {J(2m)(w+ksina)

The first term is regular in an upper half-plane

3H_(w)J(k+w) = 0.

7

v > a = max(0,¢sina),

the last in a lower half-plane v << g. The middle term is regular in
the strip ¢sina < v < ¢; but it can be written in the form

N k+w)—.J(k—Fksin «) AJ(k—ksin o)
N (2m)(w+ksin ) J(2m)(w+ ksin «)
where the first term is now regular in v < ¢, the second in v > ¢ sin .
Hence we have
F, (w)
J(k—w)

J(k—ksin )
N @r)(w+ksin )

— }H_(w)(k+w) —

_|_

J(E+w)—J(k—Ek sin )
J@m)(w+ksina)

But now the left-hand side is regular in v > a, the right-hand side

in v < ¢, and these two half-planes have a strip a < v < ¢ in com-

mon. Hence each side is the analytical continuation of the other;

together they define an integral function P(w), so that

F (w) J(k—ksina)
J(k—w)+4'(2n)(w+ksm a) Plw),
Jk+w)—J(k—ksina)
L (k) — VEn o0 py)

These equations, together with the known asymptotic behaviour of
F (w) and H_(w), show that P(w) is O(|w|%) as l[w| >c0inv >c¢c > a
and is O(|w|t) in v < ¢’ < ¢q. Hence P(w) is O(|w|}) as |w| - 0o and
is therefore, by the extension of Liouville’s Theorem,} a polynomial
of degree < 4, and so is constant. But since P(w) tends to zero as
|w| > 00 in v > ¢, it is identically zero. This proves that

_ JUe—ksin o)y (k—w)

Bw) = = e wtksina) (4.18)
_ [2\}; _(k—ksina) 1
H-(w) = (17) {1 J(k+w) }w—}-ksina'

t Titchmarsh, The Theory of Functions (Oxford, 1932), 85.
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By (4.15), we have
b+

1 )
flt) = ——— F (w)e—* dw
«/(277) ib!co

where the path of integration lies in the half-plane of regularity of
F,(w). From (4.18), we see that F, (w) is regular in v > —g¢q, apart
from a simple pole at —ksina. Hence the required solution of
Magnus’s integral equation (4.12) is

4o
1 Jk—Esin o)/ (k—w)
w-+ksina

f(t)= e~ dy (4.19)

where gsina < b < gq.

§ 4.2. Completion of the solution

In the diffraction problem discussed in § 4.1, the total velocity-
potential behind the screen (i.e. where x is negative) was proved to
be

vz, y) = —¥i ff (y—t) dt (4.21)

where m(y) = HP{k(x*+y*)}.

The function f(¢), which vanishes for negative values of ¢, is neverthe-
less given for all values of ¢ by the equation

b+

f(@) = x/(2 f F, (w)e— " dw

where gsina < b < q. If we substitute this expression for f(¢) in
(4.21) and invert the order of integration, we obtain

bto ©
v(z,y) = 2\/(2 ) f fF (w)e=*im(y—t) didw
. 'l,b—+CD_ ®
= _N+2ﬂ f F (w)e—wv f etz (z) dzdw
b+ )
= —% f F (w)M(w)e ¥ dw (4.22)

h—wo
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where Mw) = ﬁ f em(z) dz

1 [
=—— | ewH®@AE, /(x2+22)} dz.
5 i Pk (et +20)
This integral represents an analytic function of w, regular in the strip
—g < v < g; carrying out the integration, we havet
— _2_ %—1_ —tlzIV(k2-w?3)

M(w) = (ﬂ) T (4.23)
where the branch of ,/(k*—w?) is taken which is equal to % when
w=0.

If we substitute the values of ¥, (w) and M(w) given by (4.18) and
(4.23) in (4.22) we obtain as the total velocity-potential in z < 0

b+
— __l_ —ﬂa:w(k!_w')_iyw«/(k—kSina) dw .
vEy) = 2m f ¢ Jk+w) w+tksina’ (4.24)
ib—w

and if we translate the path of integration to the position v = ¢
where —¢ < ¢ < ¢sina, taking account of the pole at —ksin «, this
becomes
v(z’ y) — etkzcoBatikyslna__
ic+ o
1 g1z )iy Jk—ksina)  dw

2mi JE+w) wksina

ic—>

From this, we can deduce the velocity-potential in z > 0 by means
of equation (2.12), which reduces here to

v(z,y)+v(—2z,y) = etkrcosatikysina | p—tkrcosa+ikysina,
this gives
v(z, 3/) — eika:cosa+ikysma+
i+ ]
+L e—ﬂxl»«’(k"—w’)—imu“/ (k—ksina) dw ‘
2 Jik4+w) w+ksina
i€—aw
To sum up: when plane sound waves with velocity-potential
v; = etkzcosa+ikysina (_%ﬂ, <a< %11-; = P—iQ)I

t+ The result is a particular case of equation (2) on p. 416 of Watson’s Theory of
Bessel Functions. )

1 The corresponding result for k > 0 can be found by making ¢ tend to zero. The
path of integration in (4.25) becomes the real axis suitably indented at —% and
—ksina.
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are incident on the positive side of a rigid screen whose position is defined
by x = 0, y < 0, the total velocity-potential is

v = v;+,
the velocity-potential v, of the reflected and diffracted waves being
ic+ o
1 2O . k—Esi d
'Us(z, y) = :t2_17—z f e—tlzV(k —W)—zWJ(J(k+S$ a) w+ku;ina’ (4.25)

ic—m
where the upper or lower sign is taken according as x is positive or
negative and —q < ¢ < ¢sina.
This solution can be identified with that given by Sommerfeld by
deforming the path of integration and using Cauchy’s theorem.

§ 5. Schwarzschild’s Diffraction Problem
§ 5.1. Diffraction by two screens

Let us suppose that sound waves with velocity-potential v, are
incident on two perfectly reflecting screens, the one being bounded
by a closed surface S, the other by a closed surface S,. The velocity-
potential v, of the scattered and diffracted waves is such that the
normal derivative of v;,4 v, vanishes on §; and S,. Now a solution
of (V24k2)v = 0 which has no singularities outside S, and satisfies
the radiation condition, is uniquely determined by the values of its
normal derivative on §;; in fact

o(B) = f f &(B) gavp P ds,

where GQV) is the Green’s function of the second kind for the region
outside §;. And similarly for §,, we have

wB) = — ¢ [ [ 22 e, By ds,

If we consider the pair of equations

(P = f f (2 2o, Byas, )

= [ [ 2B oy,

the function », = v,+v, satisfies all the conditions of the problem.
4617 N
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For it is a solution of (V24-k%wv = 0 which has no singularities out-
side S, and S, and satisfies the radiation-condition; moreover when
F, is on §;, we have

o0(B) _ _an(B) v (R)

371/1 3”1/1 a’n’l ’

so that the normal derivative of v;+v,+v, vanishes on §;; and
similarly on S,. But the equations (5.11) and (5.12) involve the un-
known normal derivatives of ¥, on §; and v, on S,. These unknown
functions satisfy a pair of simultaneous integral equations; for, if F,
is a point of §,, it follows from (5.1 1) that

vy(P,) 20(R) | 2P| 6G(F, B)
32'”'2 %ff{ on, } 23’”: SdS, (613)

and similarly, if P, is a point of S,

avgnll’) L J‘J‘ {3v2(P) avl(P)} 8G(2;(nf1’1,P)d82.

(5.14)

If we could solve these integral equations for &v,/on, and ov,/on,,
then the function v, = v»,+v, would solve the problem of diffraction
by the two screens S; and S,.

The function G{V(P,, P) is the total velocity-potential at P when
waves from a point-source at F, are incident on the screen §;; it is
the solution of the problem of diffraction by the screen S;. Hence,
if the problems of diffraction by S, and S, separately have been solved,
equations (5.13) and (5.14) constitute an analytical formulation of
the problem of diffraction by both screens simultaneously. For
example, we could use the known solution of the problem of diffrac-
tion by a half-plane to reduce the problem of diffraction by an infinite
slit in a perfectly reflecting plane to that of solving simultaneous
integral equations; and the solution of these integral equations by
successive substitution is, in fact, the solution obtained on more
physical grounds by Schwarzschild in his 1902 paper already quoted.

§ 5.2. The integral equations of Schwarzschild’s problem

As the determination of the normal derivatives of the Green’s
functions which appear in Schwarzschild’s work on the problem of
diffraction by an infinite slit is rather difficult, we shall not pursue
that line but shall derive equivalent results from the theorems proved
earlier in this chapter. We consider the problem of the diffraction
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of plane waves at a slit in a plane screen, the edges of the slit being
perpendicular to the direction of propagation of the waves.

Let us choose the axes of coordinates so that the screen lies in the
plane x = 0 and so that the edges of the slit are the lines z = 0,
y = 0and x = 0, y = —k; the wave-function of the incident waves

is then tkx co8 tky eln
w; = etkx a+ikyeln o

where —}n < « < 47. If we consider the case when the total wave-
function w is required to vanish on the screen, we have a two-
dimensional problem of the type considered in § 3.2, with solution

w(a:o,yo)=e"’“°"°”+"""°"‘““+%z{ j + f } f)HP(kp) dy  (5.21)

where PP = T3+ (y—yo)*
The function f(y), which is the unknown value of 8(w—w;)/éx on the
screen, satisfies the integral equation

—h @
[ [+] }f(y)Hs,2><k|y—yol)dy= igthuasin o
0

when y, > 0 and when y, << —h; but the expression on the right-
hand side of the integral equation is unknown for —A < y, < 0.

Since the integral equation really involves two unknown functions,
viz. f(y) for y > 0 and f(y) for y < —h, we write f(—y—h) = g(y),
and obtain

ff(y)H82)(k|y—y0|) dy—+ f g(y)ng)(kly‘f‘?/o‘f‘hl) dy = 924etkve 8in a
0 0

where y, > 0 or y, < —h. When y, > 0, the equation takes the
form

f F@)HP (kly—yol) dy+ f g HPk(y+yo+h)} dy = 2ietkvesine,
(5.22)

But when y, < —h, we write y, = —h— 7y where 5, >> 0; this gives
[ @ EPEly-+no+hl) dy+ [ gD Ely—nol) dy = 2iekasssin,
0 0

Replacing 7, by y,, we obtain a second integral equation

f g HP kly—yo|) dy+ f FEHP k(Y +yo+h)} dy = 2ie~Kuerheine,
d (5.23)
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where y, > 0. The functions f(y) and g(y) are, therefore, the solutions
of the simultaneous integral equations (5.22) and (5.23), though, in
the case of normal incidence (« = 0), f(y) and g(y) are identical and
there is only one integral equation.

The integral equations, as they stand, are not of a known form,
but they can be simplified by using Fox’s formulat

w .
e—tky+z+h)

HP{(y-+yo+ 1)} = - f —

(12) Egottt—yol) dz
valid when £ > 0 and when k = p—iq with ¢ >'0. This gives

[ {f@)+CuNHP Kly—y,|) dy = 2ietnsoz (g, > 0),
0

[ @)+ FyRHP(kly—y,|) dy = 2ie-tkwshsina (y, > 0),
0

where

. 1 r e—ik(u+z+h) z+h
Fo) = [0S JEE) e w>o,
0

1 e—ky+z+h) P + /)
G d 0).
) = Jg(>y+z+h (e w>o

The first pair are Wiener-Hopf equations of the type considered in
§ 4.1, and have solutiong

f@)+Gly) = =(y,q),
9(y)+ F(y) = etkhsinog(y, —q)

. J(k ksina)y(k—w) ...
@y a) = — 21r f w+ksin o e dw

where

with gsine < b < gq. It remains then to solve the integral equations

a

1 e—tkly+z+h) z2+h
fly) = (y,a)——fg() TR ( )dz (5.24)

@®

g(y) — e—tkhsin a,w.(y, -—a) l J‘f(z) e—thk(y+z+h) (z-gl/—h) dz, (5.25)
™
0

y+z+h
where y > 0.

t E. N. Fox, PLil. Trans. (A), 241 (1948), 71-103, Appendix A.
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A first approximation to the solution is

fly) = w(y,0),  gly) = e-khsinag(y _q).

This corresponds physically to taking the Sommerfeld formulae for
the waves scattered by the two half-planes considered separately and
neglecting the diffraction by each half-plane of the waves scattered
by the other. A second approximation can then be obtained by
substituting the first approximations in the right-hand sides of
equations (5.24) and (5.25), and so on indefinitely. This process of
successive substitution leads to series-solutions of the form

fly) = ;ffn(y), g(y) = ?g,xy)

[ o3

1 ~tk(y+z+h) )
where faly) = - f In-1(2) ey TR (27; )dz,

0
1 3 —tk(y+z+h) h
0nt) = = [ faal®) &
0

y+z+h ] ) @

with foly) = w(y,a),  goly) = e~khoinag(y, —a).

These series can be shown to converge, but the gonvergence is so
slow that the solutions do not appear to be of much practical use in
the case of greatest physical importance when £ is real. So far, no
one has found solutions of the integral equations in finite terms.}

Very similar integral equations occur in Fox’s solution of the
problem of diffraction of sound pulses by an infinitely long strip; but
in his work, ¢k is real and positive. As a result, the series-solution
converges rapidly, and he shows that the third approximation leads
to satisfactory numerical results.

§ 6. Approximate solutions

§ 6.1. Rayleigh’s approximate solutions

The rigorous solution of diffraction problems by the integral equa-
tion method has, so far, proved feasible only when the Wiener-Hopf
theory is applicable. The method can, however, be used to obtain

1 Schwarzschild discussed this type of convergence problem for the case when &
is real.

1 The slit problem has been solved in series of Mathieu functions by Morse and
Rubenstein, Phys. Rev. 54 (1938), 895-8.
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approximate solutions, an idea which goes back to the work of
Rayleigh.t

Let us consider the case when sound waves with velocity-potential
v, are incident on the positive side of a perfectly conducting screen
in the plane x = 0, the aperture in the screen being §; and the origin
of coordinates a point of the aperture. By the theorem of § 2.1, the
total velocity-potential at a point (z, y, z) behind the screen (x < 0) is

e = & [[ 1015

where R = x2+(y—y )2+ (z—2)2.
The function f(y, z) is the solution of the integral equation

[Juwor

when (0,7, 2) is a point of S;, where
Pt = (y—y' )+ (z—2")>
Let us suppose that the aperture S; lies everywhere at a finite
distance, and consider the effect at a point P(—Ir, —mr, —nr) behind
the screen where [24-m24+n2 = 1. If the distance r of P from the

origin is large compared with the dimensions of the screen, we have
R = r+my’+nz’ approximately, and equation (6.11) then reduces to

dy’dz (6.11)

‘dz" = 27v,(0,y,2) (6.12)

e—tkr

v(z,y,2) = A(m,n) (6.13)

where A(m,n) = ZL ff [y, z)e—my+n2) dydz,
v

The wave-motion at great distances behind the screen is. thus a
spherical wave whose amplitude 4(m,n) varies with the direction of
the radius vector OP.

If we assume in addition that the dimensions of the aperture are
small compared with the wave-length 2x/k, the formula for the
amplitude simplifies to

4= o [ [ .2 ayas,
8

t Phil. Mag. 43 (1897), 259-72; Proc. Roy. Soc. (A), 89 (1913), 194-219. These
papers will be found in Rayleigh’s'Scientific Papers 4 (1903), 283-96; 6 (1920), 161-86.
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which is independent of direction. Moreover, in this case, v, is sensibly
constant over the aperture, and the integral equation becomes

[[ 1021 dyaz = 2m0,0.0
p
S

when (0,y,2) is a point of S;. The expression on the left-hand side
of this equation is the electrostatic potential of a distribution of
density f(y,z) on S,. But this potential has the constant value
27v,(0,0,0) on §;; hence 274 is simply the total charge on a con-
ducting disk which is at potential 27v,(0, 0,0) and has the size and
shape of the aperture. Therefore 4 =-Mv,(0,0,0) where M is the
capacity of such a conducting disk. In particular, if the aperture is
a circle of radius a, the velocity potential at a great distance behind
the screen is approximately

v =22400,0,00 "~

m
When we turn to the corresponding problem in which the boundary
condition is the vanishing of the total wave-function on the screen,
the theorem of § 3.2 proves to be unsuitable since it involves integrals
over the screen and not over the aperture. It is more convenient to
use the expression

w(wy,Z)—%afff(

for the wave-function at a point behmd the screen. (Cf. § 1.4.) In
this formula, f(y,z) is the unknown value of w in the aperture, and
has to satisfy two conditions:
(i) f(y,z) vanishes on the boundary of §,, since w is continuous and
vanishes on the screen, and
(il) f(y,z) has to be chosen so that
ow  ow;
or ox
on 8,, where w,(z, y,z) is the wave-function of the waves incident on
the positive side of the screen.
It follows that, if the aperture lies entirely at a finite distance, the
wave-function at a point P behind the screen at a distance r large
compared with the wave-length is approximately

2 e~ tkr
w= %{B(m,n) " ,

(6.14)

‘dz’ (6.15)
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where (—!, —m, —n) are the direction-cosines of OP; the amplitude of
the waves is

B(m,n) = %T f f Fly, 2)e—Hmu+n2) dydz,
S,

To complete the approximate solution of the problem, it remains
to determine f(y,z) and B(m,n). Now if we write w = 0¢/dx where

%)

then ¢ is a solution of (V2+4%2)¢ = 0, and so the second condition -

becomes o2 ¢ 62 ¢ " 8w
T T w
on 8;. The expression on the right-hand side is a known function of
y and z, and the problem reduces to a somewhat unusual two-
dimensional boundary-value problem for the non-homogeneous equa-
tion (6.16); but this line of attack has, so far, proved of little use.
If, however, the dimensions of the aperture are small compared
with the wave-length, the amplitude simplifies to

Bzifff(y,z) dydz
5,

which is independent of the direction, and the motion behind the
screen at a great distance from the aperture is the same as that due
to a doublet at the origin with its axis perpendicular to the screen.
The problem of determining f(y,z) and B simplifies slightly; for
ow;/ox is sensibly constant over the aperture and the term 2%} in
(6.16) can be neglected. We have therefore to find a function f(y, z)
which vanishes on the boundary of S and is such that

B0 = _J'J‘f( dy’dz

satisfies on §; the equation
&
ayZ

where C is the value of ow,/ox at the origin. In the particular case

when the aperture is a circle of radius @ and centre O, it is possible

'dz’,

(6.16)

L

022
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to give an explicit solution; for it can be readily verified that
2C
f2) = == J@—y2—2)
satisfies these conditions, and the amplitude is therefore

C 2Ca?
B = = jf J(@*—y2—22) dydz = 2
S

m

The wave-function behind the screen is thus given approximately by

e
3w\ ox [yox\ T
2tka’ (%) T pihr
3n \ox /), r?
at a distance large compared with the wave-length.

Rayleight remarks that ‘while in the first problem the wave
divergent from the aperture is proportional to the first power of the
linear dimension, in the present case the amplitude is very much less,
being proportional to the cube of that quantity.” He observes further
that from any solution it is possible to derive others by differentia-
tion. If, for example, we take the value of v in the first problem and
differentiate it with respect to z, we obtain a function which satisfies
(V24+k?)w = 0 and which vanishes on the screen. ‘It would seem at
first sight as if this could be no other than the solution of the second
problem, but the manner in which the linear dimension of the aperture
enters suffices to show that it is not so. The fact is that although
the proposed function vanishes over the plane part of the wall, it
becomes infinite at the edge, and thus includes the action of sources
distributed there:’

Lastly, we note that Rayleigh showed that this difference between
the effects of the two types of boundary condition also occurs in the
two-dimensional problem of diffraction by a very fine slit. It turns
out that, if polarized light is incident on a slit whose width is very
small compared with the wave-length, ‘there is a much more free
passage when the electric vector is perpendicular to the slit than
when it is parallel to the slit, so that unpolarized light incident upon
the screen will, after passage, appear polarized in the former manner’.

(6.17)

t Loc. cit. Rayleigh obtains the amplitude without determining f(y, z) by con-
sidering the corresponding problem for the motion of an incompressible fluid. See
also Lamb, Hydrodynamics (Cambridge, 1916), 510-13.



186 DIFFRACTION BY A PLANE SCREEN [cHAP. V

§ 6.2. The variational principle of Levine and Schwinger

The diffraction of sound-waves is usually treated approximately on
the assumption that the dimensions of the obstacle or aperture are
small compared with the wave-length, whereas the exact opposite
normally occurs in optics, and the results are accordingly very
different in character. The development of short-wave radio made
it necessary to investigate problems in which the obstacle or aperture
has dimensions comparable with the wave-length, and neither of the
classical approximations apply. In the absence of rigorous solutions,
Levine and Schwinger} have devised a variational method based on
the integral equations already considered but avoiding the need for
solving the equations.

It follows from § 6.1 that, if plane waves of sound with velocity-
potential v; = ae®z-pv—2 where A > 0 and A24u%4-1% = 1, are
incident on the positive side of a screen in the plane x = 0, the total
velocity-potential at a point P behind the screen is

e—tkr
J- J Sun(y, 2)e~Hmu+n2) dydy (6.21)

V=

where (—I, —m, —n) are the direction cosines of OP and the distance
r from O to P is large compared with the wave-length. The function
Su(y, 2) satisfies the integral equation

JJ

when (0,y,2) is a point of the aperture S;. The waves at a great
distance behind the screen are therefore spherical waves of amplitude

A(m,n; p,v) = % f f Suy, 2)e~tmy+n2 dydz, (6.23)

'dz’ = 2mae—tkpy+va) (6.22)

The amplitude is a symmetrical function of the variables (m,n)
and (u,v); for if we substitute for e-*¥mv+n2) from the integral equa-
tion with (p,v) replaced by (m,n), we obtain

A(m,n; p,v) = — f f Jff,;, ¥ 2)fnn(¥',2) ——dy'dz’dydz,
(6.24)

1t Phys. Rev. 74 (1948), 958-74; 75 (1949), 1423-31. They consider the case when
the wave-function is required to vanish on the screen, and use a rather different
notation. The analysis in the former paper is rather obscure, as many of the integrals
involved appear to diverge. Seo also J. W. Miles, ibid. 75 (1949), 695—6.
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and hence A(m,n; p,v) = A(p,v; m,n).

This symmetry implies that the amplitude at (—Ir, —mr, —nr) due

to incident waves with velocity-potential ae’*z-1v-¥2) g equal to the

amplitude at (—Ar, —ur, —vr) due to incident waves getktz—my-n2)
It follows from (6.23), (6.24) and the symmetry relation that

—tkp
atm s o) [ [ [ [ st 2ty ) = dy iy
S) S]

=a ff fp,v(y’ z)e-—ik(my+nz) d?/dz fJ‘ fm,n(y', z’)e—ik(,_:.y’+vz") dy’dZ’,
Sy S,

each side of the equation being equal to 47°aA42. Let us now consider
the variation 84 produced by small variations &f,, and &f,, , about
the correct values f,, and f,, , given by the integral equation. It is
given by

54(m,m; ) i | ﬂ f,L,,<y,z)f,,.,n<y',z'>%f"”dy'dz'dydz
— —A(m,n; p,) y i f 80 ) ', 7) +

—ikp
sl 2oy 2} = Ay A dydz-+

—l—a ff Sfy'v(y, z)e—ik(ml/+ﬂz) dydz ff fm,n(y’y z’)e—ik([-l-y'+vz') dyrdzl+

S, S,
“+a fj fy’v(y, z)eik(my+nz) dydz ff Sfm,n(y,: z/)e—ik(py’+vz’) dy’dz’.
S, S,

The terms involving &f, , on the right-hand side are

ff Sfp.,v(y7 z)[ae-—ik(my+nz) ff fm,n(y’, z')e‘ik(l‘-”'*"’z') dyldzl_

S] Sl

—ik
—A(m,n; p,v) fffm'n(y’,z’) 6—75 dy'dz’ | dydz,
S,

which vanishes for all 8f, , in virtue of equations (6.22), (6.23) and the



188 DIFFRACTION BY A PLANE SCREEN [cHAP. V

symmetry relation; and similarly for the terms involving o6f;, ,. Thus
84 = 0. Hence if

A(m,n; p,v)

f [ Sustyse-ssmssns aya f f Ty, 2 )em40055%) dy '’

j.f fff#v(y’ 2) fnly'2) dydzdy'dz ,
i (6.25)

and if f, , and f,, , satisfy the integral equation, then 4 is stationary
in the calculus of variations sense for small variations of f, , and f,, ..

Conversely, let us suppose that A4, defined by (6.25), is stationary
in the calculus of variations sense. It then follows that f, , and f,,
must satisfy the integral equations

e—’lkp .
ff fm,n(y’, Z') _— dy’dz' = 2mrae—tkmy+n2)
P
S

—tkp .
fJ' fy,v(y’)z’) e dy'dz’ — 21TK/ae_zk(py+vz)’ (6:26)
P

where (0,y, 2) is a point of S, and « and «’ are the constants defined

by
Omic — J' J‘ Frnly', 2 )e=F00 49 Qo' dz’ | A(m, m; i, ),
S,

2w’ = f f Juny's 2" )eHmv+ns) dy'dz’ [ A (m, m; p,v).
$

Comparing (6.26) and (6.23), we see that the f, , of (6.26) is «’ times
the f,, of (6.23); but since the expression on the right-hand side of
(6.25) is homogeneous of degree zero in f,,, we may take «’ (and
similarly «) to be unity without loss of generality. Hence f,, and
Jfonn satisfy the integral equation, and A is the amplitude of the waves
at a large distance behind the screen.

We have thus proved that the expressiont A(m,n; u,v) defined by
(6.25) ts the required amplitude if and only if it is stationary for small
variations of f,, and f, ,. This is the variational principle of Levine
and Schwinger.

It is the amplitude A, rather than the function f, ,, which is of

t It will be observed that A4 is proportional to the amplitude a of the incident
waves, as would be expected.



§e] DIFFRACTION BY A PLANE SCREEN 189

physical importance; the great value of the variational principle is
that it enables one to find the amplitude approximately by assuming
for f,. . and f,, physically plausible expressions involving certain
arbitrary constants and then choosing these constants to make 4
stationary. In this way, Levine and Schwinger have solved nu-
merically the problem of the diffraction of plane waves incident
normally on a circular aperture for values of the characteristic
parameter

ka = 2m(radius of aperture)/(wave-length)
between 0 and 10, and have found excellent agreement with the

rigorous results obtained by C. J. Bouwkamp, in his 1941 Groningen
dissertation, using expansions in terms of spheroidal wave-functions.
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