

ПЕРІЕХОМЕ N А

	Σελὶς
ΧΡΙΣΤΟΣ ΑΝΕΣΤΗ	1
ΚΥΡΙΕ ΕΛΕΗΣΟΝ	
- ⁵ Ηχος πλ. δ΄	3
- ⁵ Ηχος πλ. α΄	
- Έτερα εἰς ὅλους τούς ἤχους	6
ТҮПІКА	
- Άγιορείτικα (πλ. δ΄)	20
- Έτερα άγιορείτικα (πλ. δ΄), ἡ α΄ στάσις ἐπί τό πανηγυρικώτερον	31
- ⁵ Ηχος α΄	39
- Παλατινά	50
- ⁵ Ηχος πλ. α΄ (Παχωμίου)	61
- ³ Ηχος βαρύς	72
- Αἴνει ἡ ψυχή μου, ἦχος 6΄	83
- Αἴνει ἡ ψυχή μου, ἦχος δ΄	87
ΓΡΙΣΑΓΙΟΣ ΥΜΝΟΣ	
ΗΧΟΣ Β΄	92
- Δύναμις Καμαράδου	96
- Δύναμις Βαλασίου	98
- Δύναμις Ἀβαγιανοῦ	102
- Δύναμις Γ. Κρητός	104
- Δύναμις Κορώνη	107
$ ext{HXO}\Sigma ext{ A}'$	
- Καλογήρου	114
- Μανουήλ	120
- Παλάση	123

	ΗΧΟΣ Γ΄	128
	- Δύναμις Τ. Γεωργιάδη	132
	ΗΧΟΣ ΠΑ. Β΄	135
	ΟΣΟΙ ΕΙΣ ΧΡΙΣΤΟΝ	139
	ΤΟΝ ΣΤΑΥΡΟΝ ΣΟΥ	149
ΑΛ	ΛΗΛΟΥΪΑ ΤΟΥ ΑΠΟΣΤΟΛΟΥ	
	- Εἰς ὅλους τούς ἤχους (ἀργοσύντομα)	154
	- Έτερον, ἀργόν (ἦχος α΄) Ἰωάννου πρωτοψάλτου	162
	ΔΟΞΑ ΣΟΙ ΚΥΡΙΕ, ΕΙΣ ΠΟΛΛΑ ΕΤΗ	164
ХЕ	РОҮВІКА	
	ΗΧΟΣ Α΄, τοῦ ἐκδότου	165
	- Α. Κυριαζίδου	171
	- Μ. Χατζηαθανασίου	172
	- Θρ. Στανίτσα	175
	- ἀνδρέου ဪτου	177
	- Κ. Ψάχου	179
	- Θ. Φωκαέως	182
	ΗΧΟΣ Β΄, τοῦ ἐκδότου	185
	- Β. Κ. Νιχολαΐδου	191
	- Κ. Πρίγγου	193
	- Θ. Φωχαέως	195
	ΗΧΟΣ Γ΄, τοῦ ἐκδότου	198
	- Γ. Σχουρτανιώτου, πρωτοπρεσδυτέρου	207
	- Β. Κ. Νικολαΐδου	208
	- Γρηγορίου Πρωτοψάλτου	210
	- Θ. Φωχαέως	213
	ΗΧΟΣ Δ΄, τοῦ ἐκδότου	217
	- Άνδρέου Άγιορείτου	225
	- Θρ. Στανίτσα	226

		ζ′
	- Θ. Φωκαέως	229
	- Π. Ἐφεσίου	232
	ΗΧΟΣ ΠΛ. Α΄, τοῦ ἐκδότου	235
	- Νηλέως Καμαράδου	241
	- Κ. Πρίγγου	243
	- Θρ. Στανίτσα	245
	- Σωκρ. Παπαδοπούλου	247
	- Π. Ἐφεσίου	249
	- Θ. Φωκαέως	253
	ΗΧΟΣ ΠΛ. Β΄, τοῦ ἐκδότου	256
	- Γ. Σκουρτανιώτου, πρωτοπρεσδυτέρου	263
	- Δ. Μανούση	265
	- Θρ. Στανίτσα	267
	- Ά. Κυριαζίδου	269
	- Δ. Παναγιωτοπούλου	270
	- Θ. Φωχαέως	272
	ΗΧΟΣ ΒΑΡΥΣ, τοῦ ἐκδότου	275
	- Θ. Γεωργιάδου	283
	- Θ. Φωχαέως	285
	ΗΧΟΣ ΠΛ. Δ΄, τοῦ ἐκδότου	289
	- Δ. Παναγιωτοπούλου	301
	- Θρ. Στανίτσα	303
	- Θ. Φωκαέως	306
ХЕ	POΥBIKA EXONTA «ΠΑΣΑΝ ΝΥΝ ΒΙΟΤΙΚΗΝ»	
	- τΗχος α΄	309
	- ³ Ηχος γ΄	311
	- ³ Ηχος πλ. α΄	313
	-³Ηχος πλ. 6΄	315
	- ³ Ηχος πλ. δ΄, Ν. Θάνου	317

	ΤΗ ΜΕΓΑΛΗ ΠΕΜΠΤΗ, Τοῦ Δείπνου σου	319
	ΤΩ ΜΕΓΑΛΩ ΣΑΒΒΑΤΩ, Σιγησάτω	
ΛΕ	ІТОГРГІКА	
	ΗΧΟΣ Α΄	
	- Τοῦ ἐκδότου (ἑπτάφωνα)	325
	- Έτερα τοῦ αὐτοῦ	
	-"Ετερα τοῦ αὐτοῦ	
	- Β. Νικολαΐδου	340
	-"Αζιόν ἐστιν (διάφορα)	343
	- Μ. Χατζηαθανασίου	349
	-"Ετερα τοῦ αὐτοῦ	352
	ΗΧΟΣ Β΄	
	- Τοῦ ἐκδότου (ἁπλᾶ)	357
	- Έτερα τοῦ αὐτοῦ (μέ διατονικάς καταλήξεις εἰς τόν Βου)	
	- Θρ. Στανίτσα (δευτερόπρωτος)	
	- Χρ. Ταλιαδώρου	
	-"Αξιόν ἐστι, Φιλανθίδου	375
	-"Αξιόν ἐστι, Πρίγγου	376
	ΗΧΟΣ Γ΄	
	- Τοῦ ἐκδότου	378
	- Κ. Παπαγιάννη, πρωτοπρεσδυτέρου	384
	- B. Νιχολαΐδου	386
	- Άθ. Καραμάνη	392
	- Άνδρέου Άγιορείτου	395
	- Π. Λινάρδου	400
	$ ext{HXO}\Sigma \Delta'$	
	- Τοῦ ἐκδότου	403
	- Χ. Παπανικολάου	409

HXOΣ ΠΛ. Α΄ - Τοῦ ἐκδότου (ἀπλᾶ)	
- Κ. Παπαγιάννη, πρωτοπρεσδυτέρου	20
-"Ετερα τοῦ ἐκδότου	22
-"Ετερα τοῦ αὐτοῦ (ἐκ τοῦ Kε)	27
- Β. Νικολαΐδου (ἐναρμόνιος)	32
- Κ. Ψάχου (ἐναρμόνιος)	37
- Μ. Χατζηαθανασίου (φρύγιος)	40
-'Ι. Ναυπλιώτου (πατριαρχικά)	46
- Κ. Πρίγγου (κάτω Kε)	51
 - ἸΑθ. Βουρλῆ (ἀργοσύντομα)	55
-"Αξιόν ἐστιν (διάφορα)	60
ΗΧΟΣ ΠΛ. Β΄	
- Τοῦ ἐκδότου (ἁπλᾶ)	35
- Έτερα τοῦ αὐτοῦ (μέ διατονικάς καταλήξεις εἰς τόν κάτω Κε) 47	70
- X. Παπανικολάου	75
- Θρ. Στανίτσα - Πρίγγου	77
- Παλατινά	33
- Εὐστ. Τιμωνίδη - Δ. Βασιάδη	38
- Δ. Κατζιγκᾶ, ἱεροδιακόνου	1 (
-"Αξιόν ἐστιν (διάφορα)	96
ΗΧΟΣ ΒΑΡΥΣ	
- Τοῦ ἐκδότου (ἀπλᾶ))4
- Έτερα τοῦ αὐτοῦ (πεντάφωνα)	
- Έτερα τοῦ αὐτοῦ (ἐκ τοῦ ἄνω Ζω)	
- Έτερα τοῦ αὐτοῦ (ἐναρμόνιος ἐκ τοῦ Ζω)	
- Έτερα τοῦ αὐτοῦ (ἐκ τοῦ Γα)	
- K. Πρίγγου	
-"Αξιόν ἐστιν (διάφορα)	

ΗΧΟΣ ΠΛ. Δ΄	
 Τοῦ ἐκδότου (ἁπλᾶ) 	. 539
- Άθ. Βουρλῆ	. 543
- Έτερα τοῦ ἐκδότου	548
- Έτερα τοῦ αὐτοῦ (ἑπτάφωνα)	554
- Κ. Πρίγγου	559
-"Αξιόν ἐστιν (διάφορα)	
ΑΓΑΠΗΣΩ ΣΕ	
- 'Αργοσύντομα - 'Αργά	
ΘΕΙΑ ΛΕΙΤΟΥΡΓΙΑ Μ. ΒΑΣΙΛΕΙΟΥ	
ΚΑΤΑΒΑΣΙΑΙ, ΑΝΤΙ ΤΟΥ ΑΞΙΟΝ ΕΣΤΙΝ - ἀκινήτων ἑορτῶν	611
- Κινητῶν ἐορτῶν - Ὁ ἄγγελος ἐδόα	627
- Τόν οὐρανοφάντορα, τῆ α΄ Ἰανουαρίου	

ΧΡΙΣΤΟΣ ΑΝΕΣΤΗ

 Έτερον

'Αρχαῖον. 'Ως ψάλλεται ἐν Άγ. "Ορει. Ἡχος π ἢ ἢ Πα $X \stackrel{(i')}{\underset{\rho_1 \text{ 6TO}}{\overset{\circ}{\circ}}} \stackrel{(r)}{\underset{\sigma_S}{\overset{\circ}{\circ}}} \stackrel{(r)}{\underset{\nu_E}{\overset{\circ}{\circ}}} \stackrel{(r)}{\underset{\nu_E}{\overset{\varepsilon}{\circ}}} \stackrel{(r)}{\underset{\varepsilon}{\overset{\varepsilon}{\circ}}} \stackrel{(r)}{\underset{\varepsilon}{\overset{\varepsilon}{\circ}$ マン: (M) (K) (C) (C) (C) (C) ラッツ ع.. را خار الله) عبر عبر الله) عبر عبر الله) عبر عبر الله عبر الل $\frac{1}{\sqrt{\alpha}} = \frac{1}{\sqrt{\alpha}} = \frac{1$ $-(-5\frac{\pi}{3}) \sim (-5\frac{\pi}{3}) \sim$ $\frac{\eta\eta}{3} = \frac{6\alpha}{5} = \frac{\alpha\varsigma \kappa\alpha l}{4} = \frac{70l}{5} = \frac{0l\varsigma \epsilon}{6}$ ε εν τοι οις μνη μα 6ι $\frac{3}{\eta}$ $\frac{(\Delta)}{\eta v}$ $\frac{(\Delta)}{\chi \alpha}$ $\frac{(\Delta)}{\rho_1}$ $\frac{(\Delta)}{\epsilon \alpha}$ $\frac{1}{\epsilon \alpha}$ $\frac{1}{\epsilon \alpha}$ $\frac{1}{\epsilon \alpha}$ $\frac{1}{\epsilon \alpha}$ $\frac{1}{\epsilon \alpha}$ $\frac{1}{\epsilon \alpha}$ ٥ - ١١ - د د VO

<u>ĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'nĸ'n</u>

ΚΥΡΙΕ ΕΛΕΗΣΟΝ

τΗχος ὰ ϊ Νη	γ Λ
(N) (N)	٠ ٨ ٤
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۶ ۲.
4. K $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	าา -
5. K (N)	π ¶
6. Κυριε ελε η 60ν	ř Ž
Y $\pi \epsilon$ ρα $\gamma \Gamma$ α $\theta \epsilon$ ο το $\kappa \epsilon$ $\epsilon \omega$ $\epsilon \omega$ $\epsilon \omega$ γ	γ γ

"Ετερα

'Ως ψάλλονται ἐν Άγ. "Ορει κατά τάς ἑορτάς.

"Ετερα

$^{\tau}$ Ηχος $\overset{\lambda}{\pi}$ \ddot{q} Π α	π 9
$K^{(\pi)}$ ν	π 9
\mathbf{V} $\stackrel{(\pi)}{\sim}$ \leftarrow \leftarrow \leftarrow \leftarrow \rightarrow \rightarrow \rightarrow	17
2. \mathbf{K} 0 0 0 0 0 0 0 0 0 0	K: 9
4. K v ρ_{1} ϵ ϵ $\lambda \epsilon$ γ κ κ κ κ	K: 9
5. K $\begin{array}{cccccccccccccccccccccccccccccccccccc$	λ π 9
6. Κ υ ρι ε ε λε η 60ν Υ πε ρα γι α θε ο το κε 6ω 60ν (π) (κ) (π)	
	η μας π
Α μην	π 9
T T	

ETEPA

Είς ὅλους τούς ἤχους

$$\mathbf{K}$$

Ήχος Β'. $K \stackrel{(6)}{\sim} \stackrel{(8)}{\sim} \stackrel{$ (M) 3 2 00 0V (M). (Δ) Σ. (Δ) Σ. (Δ) ε λε 2 ... (2 ... (2 ... 60A "Ετερα Ήχος δα ἀτός $K \stackrel{(A)}{\stackrel{(A)}{\smile}} \stackrel{(A)}{\smile} \stackrel{(A)}$ Ku ρι ε ε λε η

 5 H χ o ς Γ' .

ህ ህ

$$K = \sum_{i=1}^{(r)} \sum_{i=1}^{($$

 $K_{0} = \sum_{i=1}^{(M)} \sum_{i=1$

$$K_{\nu} = \sum_{k=1}^{\infty} \sum_{k=1}^$$

"Ετερα

"Ετερα

ΤΗχος ὁ αὐτός (M) (π) (M) (M)

Ήχος πλ. Β'. Κυρι ε ε λε κυ ρι ε κ ε λε رى<u>ي.</u> ىي ج 60V "Ετερα *Ηχος ὁ αὐτός $K = \sum_{(\pi)}^{(\pi)} \sum_{\beta \in \mathcal{I}} \sum_{(\beta, \beta)}^{(\alpha)} \sum_{\beta \in \mathcal{I}}^{(\alpha)} \sum$ 355 <u>π</u> <u>- π</u> . Γ.

"Ετερα *Ηχος ὁ αὐτός

Ηχος ο αυτος

τηχος Βαρύς

 $K = \sum_{\nu=0}^{(z)} \sum_{\epsilon=0}^{z} \sum_{\epsilon=0}^{z} \sum_{\lambda \in \gamma} \sum_{\epsilon=0}^{z} \sum_{\epsilon=0}^{z}$

$$\frac{1}{100} = \frac{1}{100} = \frac{1}$$

λε η 60 ov

ТҮПІКА

Τά 'Αγιορείτικα Ήχος πα κη Ανουρία Νη

χ ,

Στάσις Α΄

υ λο γει η ψυ χη μου τον Κυρι ον ευ λο γη τος ει Κυ ρι ε λο γει η ψυ χη μου τον Κυ ρι ον και πα αντα τα εν τος μου το ο νο μα το α Ε υ λο γει η ψυ χη μου τον Κυρι ον και (٢) μη ε πι λαν θα νου πα σας τας αν τα πο δο σεις αυ του ον ευ ι λα τευ ον τα πα εας τας α νο

μι ας 60υ τον ι ω με νον πα 6ας τας νο 600G 60V 4. Τ ον λυ τρου με νον εκ φθο ρας την ζω η ην 6ου τον 6τε φα νουν τα 6ε εν ε λε ει Kal of Ktip Hols 5. Τ ον εμ πι πλων τα εν α γα θοις , _ _ _ ~ ~ ~ ~ ~ ~ (Δ) την ε πιθυ μι αν 60υ α να και νι 6θη .6ε ται ως α ε του η νε ο της 6ου (N) (Γ) (N) (P)

οι ων ε λε η μο ευ νας ο Κυ

(N) (Τ) (N)(L) ρι ος και κρι μα πα ει τοις α δι κου με νοις γνω ρι 6ε τας ο δου ους αυ του

Μω υ 6η τοις υι οις 16 ρα ηλ τα θε λη Ŋ μα τα αυ του $Q_{(\nabla)} = Q_{(\nabla)} = Q_{($ (Δ) ος μα κρο θυ μος και πο λυ ε λεος ουκ εις τε λος (N) ーニート+しゃっっっっっし ορ γι εθη εε ται ου δε εις τον αι ω να μη νι ει Ŋ -----υ κα τα τας α νο μι ας η μων ε ποι η δεν η μιν ου δε κα τα τας α μαρ C C C 2222 5 22 C C τι ας η μω ων αν τα πε δω κεν η μιν τι κα τα το υ ψος του ου ρανου α πο της γης ε κρα ται ω εε Κυ ρι ος το (Γ) (M) (N) (N)

(1) B νους αυ τον το λαι α πο δυ όμων ε μα κρυ νεν αφ η μων τας α νο μι ας η μων $12.\mathbf{K} \qquad \begin{array}{c} (\mathbf{x}) \\ (\mathbf{x$ α θως οι κτειρειπα τη ηρυιους ω (r) ティーニョットーニのシース κτει ρη εε Κυ ρι ος τους φο βου με νους αυ τον ο τι αυ τος ε γνω το πλα έμα η μων ε μνη 225022 εθη ο τι χους ε εμεν ν θρω πος ω εει χορ τος αι η με ここれのこうコラーニュ ραι αυ του ω εει α αν θος του α γρου ου τως ε ξαν θη 6ει K

2 - 22 00 N τον το πον αυ του (N) (L) (π) 15. Τ ο δε ε λε ος του Κυ ρι ου α πο του αι ω νος και ε ως του αι ω νος ε πι τους φο βου με νους αυ τον 16. K $\frac{1}{\alpha i}$ $\frac{1}{\eta}$ $\frac{1}{\delta i}$ $\frac{1}{\kappa \alpha i}$ i}$ $\frac{$ ころのとうとしていまっつうっし υι ων τοις φυ λαε εου ει την δι α θη κην αυ του και με μνη μενοις των εν το λων αυ του του ποι η εαι αυ τας 17. Κ υριος εν τω ου ρα νω η τοι Έτέρα θέσις εν τω ου ρα νω η

μα δε τον θρο νον αυ του βα ει λει α αυ του πα αν των δε επο ζει 18.Ε υ λο γει τε τον Κυ ρι ον πα αν っしょししんなるしょしとし τες οι αγ γε λοι αυ του δυ να τοι ι εχυ ι ποι ουν τες τον λο γον αυ του του α κου εαι της ሌ φω νης των λο γων αυ του 19.Ε υ λο γει τε τον Κυ ρι ον πα σαι αι δυ να μεις αυ του λει τουρ γοι αυ του οι عي د ع رحد ع د د د Ĵζ ποι ουν τες το θε λη μα αυ του (Γ) حر حر حر حر حر و حرار مرح حر 20. Ε υ λο γει τε τον Κυ ρι ον πα αντατα c c \(\alpha \) \(- \) \(- \) \(ερ γα αυ του εν παν τι το πω της δε επο τει ας

αυ του ευ λο γει η ψυ χη μουτον Κυ ρι ον (r) (π) (N) (r)ο ξα Πα τρι και Υι ω και α γι 2 2 3 N ω πνευ μα τι 22. K (Γ) (π) (N) (π) (π) (ሊ ω νας των αι ω νων Α μην $23.E \begin{array}{c} (r) \\ \nu \\ \lambda_0 \\ (\pi) \end{array} \begin{array}{c} \chi_0 \\ (N) \end{array} \begin{array}{c} \chi_0 \\ (r) \\ (r) \end{array}$ μουτον Κυρι ον και παν τα τα εν το ος μου το ο νο μα το α γι ον αυ του ευ λο γη τος ει B Κυ ρι ε

Στάσις Β΄

Ήχος ὁ αὐτός

(Γ)

(π)

(Ν)

1.Δ ο ξα τω Πα τρι και τω Υι ω και τω

3 > 2 d 2 - - - - - - - - - - 3 > Κυ ριον αινε 6ω Κυ ρι ον εν τη ζω η μου ψα λω τω θε ω μου ε ως υ πα αρχω 2. Μ πε ποι θα τε επ' αρ χοντας ε πι υι アンドラーー・ショーー・ジャップ ους αν θρω πων οις ουκ ε ετι εω τη ρι α 3.Ε ξε λευ σε ται το πνευ μα αυτου και ε 7 πι ετρεψειεις την γη ην αυ του 4. E ν ε κει νη τη η με ρα α πο λουν ται πα αν τες οι δι α λο γι σμοι αυ του こてったマーデーニショラ βο η θος αυ του η ελ πις αυ του ε πι Κυ

ρι ον τον θε ο ον αυ του ον ποι η εαν τα τον ου ρα νον και την $\stackrel{(\Delta)}{\sim}$ $\stackrel{(\Gamma)}{\sim}$ $\stackrel{(M)}{\sim}$ $\stackrel{(\Delta)}{\sim}$ $\stackrel{(\Delta$ 7. Τ ον φυ λαε σον τα α λη θει αν εις TOV α I ω $\gamma \alpha$ $\pi \sigma I$ $\sigma U \gamma \tau \alpha$ $\kappa \rho I$ $\mu \alpha$ $\tau \sigma I \varsigma \alpha$ δι κου με νοις δι δο ον τα τρο φην τοις C C 2 2 2 2 S πει νω 6ι (Γ) 8. K υ ρι ος λυ ει πε πε δη με νους Κυ -- 1/1-25 -- -- ριος 60 φοι τυ φλους Κυ ριος α νορ θοι κα τερ ραγ με νους Κυ ρι ος α γα πα δι καιους (L) (N) (L) (C) Κυρι ος φυλα ας σειτους προ ση λυ τους

9.0 ρ φα νον και χη ραν α να λη ψε ται Ŋ και ο δον α μαρτω λων α φα νι ει -----α ει λευ εει Κυ ρι ος εις τον αι ω να ο θε ος 60υ Σι ων εις γε νε αν και γε νε αν αι νυ υν και α ει και εις τους αι ω νας των αι ω νων Α μην ΛΟ μο νο γε νης Υι ος και Λο γος του θε ου α θα να τος α την η με τε ραν εω τη ρι αν εαρ κω θη ναι εκτης α γι ας θε ο το κου και α ει παρ θε νου Μα ρι ας α τρε

'Η Α' Στάσις

'Επί τό πανηγυρικώτερον

Ήχος π ι Νη 💃 τ

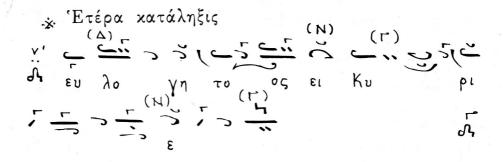
 $A \stackrel{(M)}{=} E \stackrel{(N)}{=} \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta}$ $\mu_{\text{DU}} \quad \text{Tov} \quad \text{Ku pi ov} \quad \epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\eta} \quad \text{Tog} \quad \epsilon_{\text{I}} \quad \text{Ku pi} \quad \epsilon$ $\epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta} \quad \mu_{\text{DU}} \quad \text{Tov} \quad \text{Ku} \quad \text{pi. ov}$ $\epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta} \quad \mu_{\text{DU}} \quad \text{Tov} \quad \text{Ku} \quad \text{pi. ov}$ $\epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta} \quad \mu_{\text{DU}} \quad \text{Tov} \quad \text{Ku} \quad \text{pi. ov}$ $\epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta} \quad \mu_{\text{DU}} \quad \text{Tov} \quad \text{Ku} \quad \text{pi. ov}$ $\epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta} \quad \mu_{\text{DU}} \quad \text{Tov} \quad \text{Ku} \quad \text{pi. ov}$ $\epsilon_{\text{U}} \quad \lambda_0 \quad \gamma_{\text{El}} \quad \eta \quad \psi_{\text{U}} \quad \chi_{\eta} \quad \mu_{\text{DU}} \quad \text{Tov} \quad \text{Vo}$

2. Ε υ λο γει η ψυ χη μου τον Κυ
ρι ον θκαι μη ε πι λαν θα νου πα εας τας

3. Τ ον ευ ι λα τευ ον τα πα 6ας

κου με νοις

- - - 1 - - 1 - - > 1 - > τας α νο μιας δου τον ι ω με νον πα -219213 K **6ας τας νο 6ους 6ου** 4. Τ ον λυ τρου με νον εκ φθο ρας την ζω (r) ションニーニーニッコーラン ην σου τον ετε φα νουν τα εε εν ε λε ει (M) B KOL OLK TIP HOLG 5. Τ ον εμ πι πλων τα εν α γα θοις っししに しっなっしーージ την ε πι θυ μι αν 60υ α να και νι 6θη ρι ος και κρι μα πα 61 τοις α δι 210 2210


χι. (٢) οί οί ε τας ο δους
γνω ρι 6ε τας ο δους αυ του τω Μω υ 6η τοις υι οις 16 ρα η ηλταθε λη μα τα αυ του 3 $\chi(\cdot S) = \frac{1}{\chi(\cdot S)} \times \frac{1}{\chi(\cdot S$ СС 1 (2 С) С 4 2 1 С С С 2 μων ο Κυ ρι ος μα κρο θυ μος και πο λυ ος ουκεις τε λος ορ γι εθη εε τοι ου δε εις τον αι ω να μη νυ ει Ŋ 1001-100012 \$ 2150100 μων ε ποι η δεν η μιν ου δε κα τα τας α μαρ τι ας η μωωνανταπε δωκενη μιν τι κα τα το υ ψος του ου

ししつ シュ スター・プロード ρα νου α πο της γης ε κρα ται ω εε Κυ (π) (N) -166 = 1 = 4 E16 6 - 1 = 5 = 5 = 5 ρι ος το ε λε ος αυ του ε πι τους φο (r) ᠕ νους αυ τον 2100100 χου ειν α να το λαι α πο δυ εμω ων ×2100000000000 κρυ νεν αφ η μων τας μα - 00 - 5 B α νο μι ας η μων (Γ) いらうこうショウ α θως οι κτειρειπα τηρ υι ους ドロートロートローショ ω κτειρη σε Κυ ρι ος τους φο βου με νους (7) 212日21---(一下に201三 εμαη μων ε μνη εθη ο τι χους ε εμεν

13. Α ν θρω πος ω δει χο ορ τος αι η με ραι αυ του ω σει α αν θος του α γρου ου τως ε ξαν θη 6ει 14.0 τ_{i} $\pi_{V} \in \varepsilon_{U}$ μ_{α} δ_{i} η_{λ} $\theta_{\varepsilon_{V}}$ ε_{V} α_{U} Δ_{i} $\Delta_$ 2100210010 ου α πο του αι ω νος και ε ως του αι ω νος ε πι τους φο βου με νους αυ τον (T) 6 01 0 0 - 1 - 0 0 1 0 0 αι η δι και ο 60 νη αυ του ε πι υι οις υι ων τοις φυ λας σου σι

こにこにからりうととにしている την δι α θη κην αυ του και με μνη μενοιςτων εν το λων αυ του του ποι η εαι αυ τας 17.Κ υ ρι ος κ τω ου ρα 1 τοι μα 6ε τον βρο νον αυ του και η βα 6ι λει α αυ του πα αντων δε 6πο (ει R 18. E ν λο γει τε τον Κυ ρι ον παν (Δ) (A) (A)(N) (r) 0 C C C σαι της φω νης των λο γων αυ του 19. E U 20 YEI TE TOV KU PI OV ここっこしょっちょうしょう πα εαι αι δυ να μεις αυ του λει τουρ γοι αυ του うから こう こう こう こう οι ποι ουν τες το θε λη μα αυ του 20.Ε υ λο γει τε τον Κυ ρι ον δί (Ν) (Γ) παν τα τα ερ γα αυ του εν ποιν τι το πω 20301-322 ሌ ψυ χη μου τον Κυ ρι ον 21. Δ ο ξα πα τρι και Υι ω και α γι ω Πνευ μα τι Л 0220-2222 Ŋ ω νας των αι ω νων Α μην υ λο γει η ψυ

(π) χ (μ) χ (μ) χ (μ) χ (μ) χ (μ) (

'Έτερα Ἡχος Α' ἢ Πα

 $\chi \qquad \pi q$

Στάσις Α΄

υ λο γει η ψυ χη μουτον Κυ ρι ον
ευ λο γη τος ει Κυ ρι ε ευ λο
γει η ψυ χη μου τον Κυ ρι ον και παν τα
τα εν το ος μου το ο νο μα το α γιον
αυ του

3. Τ ον ευ ι λα τευ ον τα πα 6ας τας α

-- 2222--2222-νο μι ας σου τον ι ω με νον πα σας τας 9 νο 60U ς 60U (π) 4. Τ ον λυ τρου με νον εκ φθο ρα ας την ζω η ηv 600 τv 6 $\tau \epsilon$ $\varphi \alpha$ v v v v e e e v e e e2 2 3 3 3 9 ει και οι κτιρ μοις ον εμ πι πλω ων τα εν α γα $\frac{1}{\theta_{\text{OLG}}} \int_{0}^{A} \int_{0}^{$ $\frac{3}{60\eta} \frac{3}{66} \frac{3}{700} \frac{3}{100} \frac{3}{$ 6. Π οι ω ων ε λε η μο ευ νας ο Κυ ρι ος καικρι μα πα ει τοις α δι κου με νοις $(\frac{\pi}{2})^{4} = \frac{\pi}{2} = \frac{\pi}{2}$

(m) Μω υ εη τοις υι οι οις le ρα ηλ τα θε λη N 9 μα τα αυ του 8.0

| (π) 4 | (π) os our eis te hos op yi ely se tai ou $\delta \epsilon$ 2225222 q εις τον αι ω να μη νι ει $9.0 \begin{array}{c} (\pi) \\ ($ π ου δ ε κα τα τας α μαρ τι ας η μων αν τα πε δω κεν η μιν $\frac{(\pi)}{\pi} = \frac{4}{5} \stackrel{\triangle}{\sim} \frac{(\Delta)}{\pi} = \frac{\pi}{10} \stackrel{\triangle}{\sim} \frac{(\Delta)}{\pi} = \frac{\pi$ (K) 子ションではローのシーで του ου ρα νου α πο της γης ε κραται ω 6ε

2 5 2 2 3 9 βου με νους αυ τον -- # 3133 # (# C 1 & 3 3 3 3 να το λαι α πο δυ εμων ε μα κρυ νεναφη 9 ひ1 デック て ニ ショック て て ニョュ ω κτει ρη εε Κυ ρι ος τους φο βου με νους ロッーー4つ(ショラッションラッツ す πλα εμα η μων ε μνη εθη ο τι χους ε εμεν 13. Α χ 4 πος 9 ω δει χορ τος αι η テンコーティーテンコンシュ με ραι αυ του ω εει αν θος του α γρου ου

222 ~ 3 9 τως ε ξαν θη δει 14.0 τι πνε ευ μα δι ηλ θεν εν αυ τω και $\frac{1}{2}$ $\frac{1$ (m), τι τον το πον αυ του 15. To $\delta \epsilon \epsilon \lambda \epsilon o \zeta \text{ tou } K u \rho l o u \alpha$ (α)

(α)

(α)

(α)

(α) πο του αι ω γος και ε ως του αι ω γος ニーニョョ ニロョビ ε πι τους φο βου με νους αυ τον 16. K at η δ t kat o ϵ v γ av τ ov ϵ ------πι υι οις υι ων τοις φυ λαε εου ει την δι α θη κην αυ του και με μνη με νοις των εν -22-25222 το λων αυ του του ποι η σαι αυ τας

17. K $\frac{(\pi)}{4} \underbrace{(\Xi)}_{\nu} \underbrace{(\Xi)}_{\rho_{\ell}} \underbrace{(\Delta)}_{\sigma_{S}} \underbrace{(\Delta)}_{\varepsilon_{V}} \underbrace{(\Delta)}_{\tau_{W}} \underbrace{(\Delta)}_{\sigma_{V}} \underbrace{(\Delta)}_{\eta_{1}} \underbrace{(\Delta$ τοι μα 6ε τον θρο νον αυ του και η βα 6ι $\overset{(n)}{\longrightarrow} \overset{(n)}{\longrightarrow} \overset{(n)}{\longleftarrow} \overset{(n)}{\longrightarrow} \overset{($ 9 λει α αυτου πα αντωνδε επο ζει 18.Ε υ λο γει τε τον Κυ ρι ον παν τες ποι ουν τες τον λο γον αυ του του α κου εαι της 222522 φω νης των λο γων αυ του 19.Ε υ λο γει τε τον Κυ ρι ον πα 6αι α δυ $\nu\alpha$ μ εις α υ του λ λ ει τουρ γ οι α υ του λ -1--2--2222 TT 9 οι ποι ουν τες το θε λη μα αυ του 20.Ε υ λο γει τε τον Κυ ρι ον παν τα

TA E EP YA AU TOU EV HAV TI TO HW $\frac{(\pi)}{\text{the se emo tel}} \rightarrow \frac{4}{3} \frac{1}{3} \frac{1}{3}$ η ψυ χη μου τον Κυ ρι ον
21. Δ ο ξα Πα τρι και Υι ω και α γι ω Πνευ μα τι 22. K (π) $\alpha = (\Delta)$ (π) -- 000 --A νας των αι ω νων Α μην K_{U} pi ov $K_{\alpha I}$ $K_{\alpha V}$ $K_{\alpha V}$ $K_{\alpha I}$ $K_{\alpha V}$ $K_{\alpha I}$ $K_{\alpha V}$ $K_{\alpha I}$ $K_{\alpha V}$ $K_{\alpha V}$ $K_{\alpha I}$ $K_{\alpha V}$ $K_{\alpha I}$ γη τος ει Κυρι ε

Στάσις Β΄ Ήχος Α΄ ἢ Πα α γι ω Πνευ μα τι Α ι νει η ψυ χη $\frac{}{\zeta\omega} \qquad \eta \qquad \mu \circ \upsilon \qquad \psi \alpha \qquad \lambda \omega \qquad \tau \omega \qquad \theta \varepsilon \qquad \omega \qquad \mu \circ \upsilon \qquad \varepsilon$ 222 - - 2 π ως υ πα αρ χω (π) 2. Μ η πε ποι θα τε επ αρ χον τας επι 一つひて"できっこっっっぱる υι ους αν θρω πων οις ουκ ε ετι εω τη ρι α 3. $E \xrightarrow{(\Delta)} \xi_{\varepsilon} \lambda_{\varepsilon \upsilon} \epsilon_{\varepsilon} \tau \alpha_{\varepsilon} \tau_{\varepsilon} \tau_{\varepsilon} \tau_{\varepsilon} \tau_{\varepsilon} \tau_{\varepsilon}$ こっしつのこうきょう 11 και ε πι ετρεψει εις την γην α αυ του (π) ν ε κει νη τη η με ρα α

- らひで、「 c c 2 2 - - ラン 2 2 2 2 4 πο λουν ται πα αν τες οι δι α λο γι εμοι αυ του $M \stackrel{(\kappa)}{\underset{\alpha}{\overset{(\kappa)}{\sim}}} \stackrel{\circ}{\sim} \stackrel{$ ε πι κυ ρι ον τον θε ον αυ του6. T (π) (Δ) (Δ) 2 2 9 αυ τοις 7. T ον φυ λας σον τα α λη θει αν εις τον αι ω να ποι ουν τα κρι μα τοις α (N) δι κου με νοις δι δον τα τρο φη ηντοιςπεινω ει 8.Κ υριος βλυ ει πε πε δη με νους Κυ ρι ος 60 φοι τυ φλους Κυ ρι ος (π) (Ν)
α νορ θοι κα τερ ραγμε νους Κυ ρι ος α γα = $\frac{1}{2}$ $\frac{1}{2}$ 55 ~ 6 π 9 προ 6η λυ τους (π) 9. Ο ρ φα νον και χη ραν α να λη ψε ται -----10. B α 61 λ ϵ ν 621 K ν ν ν ν ν ν Vε αν και γε νε αν 9 $K \stackrel{(\vec{\pi})}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{$ ω νας των αι ω νων Α μην κ 10 mo

νο γε νης υι ος και Λο γος του θε ου α θα να τος υ παρ χων και κα τα δε ξα με νος δι α ναιεκ της α γι ας θε ο το κουκαια ει παρ θε νου Μα ρι ας α τρε πτως εν αν θρωπη τω θα να τον πα τη 6ας ει εις ων της Aγι ας Τρι α δος ευν δο ξα ζο μενος

Έτερα

 $^{\tau}$ Ηχος δ΄ χρωματιχός $\ddot{\kappa}$ Δ ι $\ddot{\kappa}$ $\ddot{\alpha}$

Τά Παλατινά ι λο γει η ψυ χη μου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε (Δ)
(Μ) (Δ) (π) (Δ)
ευ λο γει η ψυ χη μου τον Κυ ρι ον και παν τα τα εν τος μου το Ο νο μα το α γι ον αυ του (Δ) 2.Ε υ λο γει η ψυ χη μου τον Κυ ρι ον (π) και μη ε πι λαν θα νου πα εας τας αν τα πο δο εεις αυ του <u>۸</u> ک 3. Τ ον ευ ι λα τευ ον τα πα 6ας τας α 2 2 2 k - - - - - 2 2 2 2 (π) νο μι ας εου τον ι ω με νον πα εας τας vo 60υς 60υ (Δ) 4. Τ ον λυ τρου με νον εκ φθο ρας την ζω η ην 6ους τον 6τε φα νουντα 6ε εν ε 2222 ει και οι κτιρ μοις 5. T ον εμ πι πλων τα εν α γα θοις την (π) (Δ) (Δ) ここってきょうう ται ως α ε του η νε ο της 60υ οι ων ε λεη μο ευ νας ο Κυ ρι ος και κρι μα πα ει τοις α δι κου με vois

-222----2225 τω Μω υ εη τοις υι οις Ιε ρα η ηλ τα θε λη μα τα αυ του ι κτιρ μων και ε λε η μων ο Κυ ニュμ, コニ, ニュンシング ρι ος η μα κρο θυ μος καιπο λυ ε λε ος (π) <u>۸</u> ب ے درورورو τον αι ω να μη νι ει (π) 9.0 υ κα τα τας α νο μι ας η μωνεποι η εενημιν ου δε κα τα τας α μαρτι ας η μων α αν τα πε δω κεν η μιν (π) τι κα τα το υ ψος του ου ρανου α πο της γης ε κρα ται ω δε Κυ ρι ος το ε

(π) γ (π) γ (α) γ (α) λε ος αυ του ε πι τους φο θου με νους αυ τον λαι α πο δυ εμων ε μα κρυ νεν αφη μων τας ہے دہر د و ج کے ہے α νο μι ας η μων 1. 2 - - 2 2 2 2 - - K α θως οι κτει ρει πατηρ υι ους ω κτει ρη σε Κυ ρι ος τους φο βου με νους αυ τον ο τι αυ τος ε γνω το πλα εμα η μων ε J μνη 6θ η ο τι χους ε 6μεν (π) (π) με ραι αυ του ω εει αν θος του α γρου ουτως ε ξαν θη 6ει

-----τι πνευ μα δι ηλ θεν εν αυ τω και ουχ υ πα αρξει και ουκ ε πι γνω εε ται ションシーニュ τι τον το πον αυ του 15. Ι΄ ο δε ε λε ος του Κυρι ου α πο του αι ω νος και ε ως του αι ω ニンシーションー ニッ νος ε πι τους φο βου με νους αυ τον πι υι οις υι ων τοις φυ λαε εου ει την δι حدد ع م ح م ح ح م ع م <u>م</u> α θη κην αυ του και με μνη με νοις των εν το λων (Δ) 220022 αυ του του ποι η εαι αυ τας Κ υριος εν τω ου ρα νω η τοι

(π) = (π) = (Δ) = (Δ)αυ του παν των δε επο ζει 18.Ε υ λο γει τε τον Κυ ρι ον πα αν TEG OI $\alpha\gamma$ YE λ OI α U TOU δ U V α TOI I $\epsilon\chi$ U I $\epsilon\chi$ U I $\epsilon\chi$ U I $\epsilon\chi$ U OUV TEG TOV λ O YOV α U TOU $\epsilon\alpha$ KOU $\epsilon\alpha$ I The $\phi\omega$ vh he two ho $\gamma\omega$ v au tou 19.Ε υ λο γει τε τον Κυ ρι ον πα sal al δυ να μεις αυ του λει τουρ γοι αυ TOU OI TOI OUV TES TO $\theta \epsilon$ $\lambda \eta$ $\mu \alpha$ αv Tov 20 Ε υ λο γει τε τον Κυ ρι ον παντατα ερ γα αυ του εν παν τι το πω της δε επο

τει ας αυ του ευ λο γει η ψυ χη μου τον Κυ ρι ον ο ξα Πα τρι και Υι ω και α _ , , , , , γι ω Πνευ μα τι ω νας των αι ω νων Α μην 23.Ε υ λο γει η ψυ χη μου τον Κυ ρι ον και παν τα τα εν το ος μου το Ο νο μα το α γιον αυ του ευ λο γη τος ει Κυρι ε

 Σ τάσις B' χ $\tilde{\chi}$ $\tilde{$

μου τον Κυ ρι ον Ται νε εω Κυ ρι ον εν τη ζω η μου ψα λω τω θε ω μου ε ως υ πα 2:0 αρ χω $2. M = \frac{(\Delta)}{\eta} = \frac{(\Delta)}{\pi \epsilon} = \frac{(\pi)}{\theta} = \frac{(\pi)}{\eta} = \frac{(\Delta)}{\eta} = \frac{(\Delta)}{$ υι ους αν θρω πων οις ουκ ε ετι εω τη ρι 3. $E^{\frac{3}{2}}$ ξε λευ δε ται το πνευ μα αυτου και 66666699 ε πι ετρε ψει εις την γην αυ του 5. Μ (α κα ρι ος ου ο θε ος Ι α κωβ (π) (Δ) こののことはこしてこうころう βο η θος αυ του η ελ πιις αυ του ε πι Κυ

ρι ον τον θε ον αυ του 6. Ι ον ποι η σαν τα τον ου ρα νον καιτην γην την θα λας σαν και παν τα τα εν αυ τοις (Δ) 7. $T_{(\pi)}^{(\pi)}$ ov φu $\lambda \alpha \epsilon$ $\epsilon \circ v$ $\tau \alpha$ α $\lambda \eta$ $\theta \epsilon i$ αv $\epsilon i \varsigma$ $\tau \circ v$ αι ω να ποι ουν τα κρι μα τοις α δι κου με νοις 17 δι δον τα τρο φην τοις πει νω 6ι 8.Κ υριος λυει πε πε δη με νους Κυ ο. Τι υ ρι ος λυ ει πε πε οη με νους Κυ ρι ος 60 φοι τυ φλους Κυ ρι ος α νορ θοι κα (π) κ (Δ) τερ ραγ με νους Κυ ρι ος α γα πα δι και ους 9.0 ρ φα νον και χη ραν α να λη ψε ται και

ο δον α μαρτω λων α φα νι ει 10. B α 61 λ EU 6E1 KU P1 05 E15 T0V α 1 ω (π) (Δ) (Δ) αι νυ υν και α ει και εις τους αι ω νας τον αι ω νων Α μην ο Ο Μο νο γε νης Υι ος και Λο γος του θε ου α θα να τος υ πα αρχων και κα τα δε ξα με νος δι α την η με τε ραν εω τη ρι αν εαρ κω θη ναι εκ της α γι ας θε ο το κου η και α ει παρ θε νου Μα ρι ας α τρε πτως ε ναν θρω πη σας σταυ ρω θεις τε χρι στε

"Ετερα

Μοναχοῦ Παχωμίου Κωνσταμονίτου (1983)

Hχος $\frac{\lambda}{\pi}$ \ddot{q} Π α υ λο γει η ψυ χη μου τον Κυρι ον ευ λο γη το ος ει Κυ ρι ε

(κ)

ευ λο γει η ψυ χη μου τον Κυ ρι ον και πα 9 ον αυ του 3 (π) = 3 = 2 3 = 3 = 2 ον και μη ε πι λαν θα νου πα εας τας αν τα -----9 πο δο δεις αυ του 3. T ov $\epsilon \nu$, $\lambda \alpha$ $\tau \epsilon \nu$ ov $\tau \alpha$ $\pi \alpha$ $\epsilon \alpha \varsigma$ $\tau \alpha \varsigma$

α νο μι ας σου τον ι ω με νον πα σας τας 9 VO 60UC 60U (π) にしばしにっしつりしょ 4. Ι ον λυ τρουμε νον εκ φθο ρας την ζω ην 6ου τον 6τε φα νου ουν τα 6ε εν ε λε ει ग 9 και οι κτιρ μοις επιθυ μι αν 6ου α να και νι 6θη <math>εε ται ως α ε του η νε ο της 6ου (π) (Δ) (Δ) Care coscos --- · · · · · · · ρι ος και κρι μαπα ει τοι οις α δι κου με νοις 7.Ε γνω ρι 6ε τας ο δου ους αυ του τω

(TT) こころことのしょ はっこし こ Μωυ εη τοις υι οις Ι ερα ηλ τα θε λη μα τα αυ του (π) (Δ) (δ)ی ء ہے، د د د ء د ریدے ہے د ος μακρο θυ μος και πο λυ ε λε ος ουκεις τε λος op γι εθη εε ται ου δε εις τον αι ω こっしゃ N 9 να μη νι ει (π) 9.0 υ κα τα τας α νο μι ας η μων ε ποι > ー ニ > ニ、こ > こ > こ > こ と η δεν η μιν ου δε κα τα τας α μαρτι ας η ----- $\mu\omega$ ων αν τα πε δω κεν η $\mu\iota\nu$ c > c > > c - 1 c c - c ρα νου α πο της γης ε κρα ται ω 6ε Κυ

_ = = = = = = ρι ος το ε λε ος αυ του ε πι τους φο βου με 9 νους αυ τον α πο δυ εμων ε μα κρυ νεν αφη μων τας 33-0-6 9 α νο μι ας η μων α θως οι κτει ρει πα τηρ α της α _, ここしのじょここしのーと κτειρη σε Κυρι ος τους φο βου με νους αυτον ο τι αυ τος ε γνω το πλα εμα η μων ε μνη ーニージ Tq τι χους ε εμεν αν θρωπος ω εει χο ορ $\frac{-}{*} \stackrel{\cancel{\downarrow}(\pi)}{=} \stackrel{\cancel{\Box}}{=} \stackrel{\pi'}{=} \stackrel{\cancel{\Box}}{=}$ Έτέρα θέσις Αν θρωπος

(m) τος αι η με ραι αυ του ω εει αν θος του α 3+3 - - - - 5 γρου ου τως ε ξαν θη 6ει 9 14.0 τ_{i} $\pi v \epsilon v$ $\mu \alpha$ δ_{i} $\eta \lambda$ $\theta \epsilon v$ ϵv αv $\tau \omega$ και ουχ υ παρξει και ουκ ε πι γνω σε ται ε ---τι τον το πον αυ του 15. Τ ο δε ε λε ος του Κυ ρι ου α πο ٥ -- "ج ٢ - ١ - ١ - ١ - ١ - ١ - ١ του αι ω νος και ε ως του αι ω νος ε πι 22----τους φο βου με νους αυ τον -522-60262600 υι οις υι ων τοις φυ λαε εου ει την δι α θηκην

αυ του και με μνη με νοις των εν το λων αυ του

N ٧ – ر ر ₂ 9 του ποι η 6αι αυ τας χ $\stackrel{(\pi)}{\sim}$ $\stackrel{(\pi)}{\sim}$ $\stackrel{(\kappa)}{\sim}$ (Δ) τοι μα δε τον θρο νον αυτου και η βα δι λει α ここ (22-- ※ q αυ του πα αν των δε επο ζει (K) 18. Ε υ λο γει τε τον Κυ ρι ον παν τες or ah he yor an ton $\frac{1}{2}$ $\frac{(\nabla)}{2}$ $\frac{1}{2}$ $\frac{$ ひっ こっこっこ ここう ココー ουν τες τον λο γον αυ του του α κου 6αι της N 9 φω νης των λο γων αυ του 19. Ε υ λο γει τε τον Κυ ρι ον πα σαι こしらひードッピーにってら αι Δυ να μεις αυ του λειτουρ γοι αυ του οι ποι 3 - - 3 - 3 - 3 ουν τες το θε λη μα αυ του

υ λο γει τε τον Κυ ρι ον παντατα - c > 2 2 c c (-, c > c z c c ερ γα αυ του εν παν τι το πω της δε επο τει こしろえ ーー こっしつ ラーー ας αυτου ευ λο γει η ψυ χη μου τον Κυ - 3 9 pl ov ω Πνευ μα τι (π) 9 αι ω νας των αι ω νων Α μην $\frac{(\pi)}{\nu}$ $\frac{\lambda_0}{\lambda_0}$ $\frac{\lambda_0}{\lambda_0}$ (K) aーニ、こと こ こっっ こ しのご μου τον Κυ ρι ον και παν τα τα εν το ος μου 2 -, -, 2 - 2 - 2 - 3 + c - 2 - 3 + c το Ο νο μα το α γι ον αυ του ευ λο

 $\frac{1}{\sqrt{\eta}} = \frac{1}{\sqrt{\eta}} = \frac{1$

Στάσις Β΄

χπq

1. Δ ο ξα τω π α τρι και τω Yι ω και τω α Yι ω και τω α Yι ω Yι ω και τω α Yι ω Yι Yι ω Yι ω

2. Μ η πε ποι θα τε επ αρχον τας ε πι υι

ους αν θρω πων οις ουκ ε 6τι 6ω τη ρι α

3. $E^{(\pi)}$ ξε λευ δε ται το πνευ μα αυ του και

ε πι ετρε ψει εις την γην αυ του

nq

λουν ται πα αν τες οι δι α λο γι εμοι αυ του 5.M (κ) (κ) ωβ βο η θος αυ του η ελ πις αυτου ε πι κυ ρι ον τον θε ον αυ του 6. T 0ν ποι π 0ν ποι π 0ν ποι π 0ν παν παν7. T ov φU $\lambda \alpha 6$ 60V $\tau \alpha$ α $\lambda \eta$ $\theta \epsilon I$ αV $\epsilon I \varsigma$ $\tau o V$ (Δ) (π) (Δ) (Δ) (π) (Δ) (Δ) (π) (Δ) (π) (Δ) (π) (Δ) (π) (Δ) (π) (Δ) (Δ) 8.Κ υ ριος λυ ει πε πε δη με νους

Kυ ρι ος 60 φοι τυ φλους Κυ ρι ος α νορ θοι κα τερ ραγ με νους Κυ ρι ος α γα πα (π) ٠١٥٥٥ ٥ ٥ ٥ --δι και ους Κυριος φυ λας σει τους προ εη 9 λυ τους 9.0 ρ φα νον και χη ραν α να λη ψε ται $(\Delta) \qquad (\pi) \qquad (\Xi) \qquad (\Delta) \qquad (\Delta)$ και ο δον α μαρτω λων α φα νι ει 10. B α 61 λ EV 681 KU PI OS EIS TOV α I ω $v\alpha$ o $\theta\epsilon$ $o\varsigma$ ϵov Σ_{I} ωv $\epsilon_{I}\varsigma$ $\gamma\epsilon$ $v\epsilon$ αv 2000 d και γε νε αν αι γυγ και α ει και εις τους αι ω νας των αι ω νων Α μην Ο Μο νο γε νης

Υι ος και Λο γος του θε ου α θα να τος υ παρ χων και κα τα δε ξα με νος δι α την η με τε ραν εω τη <math>ρι αν εαρ κω θη ναι εκ της α γι ας θε ο το κου και α ει παρ θε νου Μα ρι ας α τρε πτως εν αν θρω πη こししのしゃっとうこうこう εας εταυρω θεις τε Χρι ετε ο θε ος θα να τω θα να τον πα τη 6ας εις ων της Α γι ας Τρι α δος ευν δο ξα ζο με νος τω こうここっしていれて 60ν η μα

"Ετερα

Ήχος Βαρύς 😴 Ζω

x 2

Στάσις Α΄

(Z) 0/ c c c 5 5 - υ λο γει η ψυ χη μου τον Κυ こうととーニョンランジェ ρι ον ευ λο γη το ος ει Κυ ρι ε こったここ つー ランシュー ευ λο γει η ψυ χη μου τον Κυ ρι ον και $\frac{1}{3}$ $\frac{1}$ γι ον αυ του Ε υ λο γει η ψυ χη μου τον Κυ ρι ον και μη ε πιλανθα νου πα σας τας αν C C C 5 5 5

(Z) συ ευ ι λα τευ ον τα πα 6ας τας α

νο μι ας εου τον ι ω με νον πα εαςτας ر د د 60US 60U $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}$ $\lambda \epsilon$ ϵi ϵi (Z) (Z) (Z) (X) $\prod_{\substack{(Z) \\ \text{ol } \text{wh} \in \lambda \epsilon}} \frac{(Z)}{\pi} \frac{(Z)}{\mu \circ 60} \frac{(Z)}{\nu \alpha \varsigma} \frac{(Z)}{\sigma} \frac{(Z)}{\kappa \upsilon}$ ρι ος και κρι μα πα εί τοις α δι κου με VOIC

 $3 - \frac{1}{11} - \frac{\pi}{2} = \frac{\pi}{2}$ τοις υι οις Ιεραηλ τα θε λη μα τα αυ του $(Z) = (\pi)$ (π) (π) Κυ ριος μα κρο θυ μος και πο λυ ε λε ος ουκ εις τε λος ορ γι εθη εε ται (Z) ου δε εις τον αι ω να μη νι ει \sim 9.0 υ κα τα τας α νο μι ας η μων α μαρτιας η μων αν τα πε δω κεν η μιν κα τα το υ ψος του ου ρα νου

っっしょ ひっしっしっこっ α πο της γης ε κρα ται ω δε Κυ ρι ος το ニーションショーーニョッシュ ε λεος αυ του ε πι τους φο βου με νους αυτον να το λαι α πο δυ εμων ε μα Κρυ νεν αφη μων τας α νο μι ας η μων (C - C - C - S - S - A a 12. Κ α θως οι κτει ρει πα τη ηρ υι ους ω κτει ρη 6ε Κυ ρι ος τους φο βου με νους αυ でで ひしし 一 しっ うっっちー τον ο τι αυ τος ε γνω το πλα εμα η μων ε 2000 μνη εθη ο τι χου ους ε εμεν χ (Z) αν θρω πος 17 χ — Ο ω 6ει χορ シントニンシュートディンシュ τος αι η με ραι αυτου ω εει αν θος του α γρου

ου τως ε ξαν θη 6ει 14. Ο τι πνευ μα δι ηλ θεν εν αυ τω (Z) 30--202 ε τι τον το πον αυ του 15. Τ ο δε ε λε ος του Κυ ρι ου α (π) (π)πο του αι ω νος (Ζ) コンスーテンシーーニンシュ ユ νος ε πι τους φο βου με νους αυ τον 16.Κ αι η δι και ο 6υ νη αυ του ε πι υι οι οις υι ων ΄ τοις φυ λαε εου ει την δι α θη κην αυ του και με μνη με νοις των εν το 2002 --- 2002 λω ων αυτου του ποι η δαι αυ τας

17. Κ (Ζ) τος το συ ρα νω η τοι μα δε τον θρο νον αυ του και η βα δι λει (Z)こっちゅうこうこう α αυ του παντων δε επο (ει 18.Ε υ λο γει τε τον Κυ ρι ον πα αν τες οι αγγελοι αυ του 17 δυ να τοι ι σχυ $\frac{(z)}{6\alpha \iota \, \tau \eta \varsigma \, \phi \omega \, \nu \eta \varsigma \, \tau \omega \nu \, \lambda o \, \gamma \omega \nu \, \alpha \upsilon \, \tau o \upsilon}$ z19.Ε υ λο γει τε τον Κυ ρι ον πα σαι αι δυ να μεις αυ του λει τουργοι αυτου οι ποι ουν τες το θε λη μα αυ του 20.Ε υ λο γει τε τον Κυ ρι ον πα αν τα τα ε ερ γα αυ του το πωτης δε επο τει ας αυ του ευ λο γει η ψυχη μου τον Κυ ρι ον $21.\Delta$ $\frac{(Z)}{0}$ $\xi \alpha \pi \pi \pi \tau \rho i \kappa \alpha i \gamma i \omega \eta \eta \kappa \alpha i$ ω νας των αι ω νων Α μην $23.E^{\frac{(z)}{23.5}} \frac{5.5}{20} \frac{5.5}{20}$ τον Κυ ρι ον και παν τα τα ε εν το ος μου το 0 νο μα το α γι ον αυ του ευ λο (γ) γη το ος ει Κυ ρι ε ε

Στάσις Β΄

χ z Ήχος ὁ αὐτός 1.Δ ξα τω Πα τρι και τω Υι ω και τω α γι ω Πνευμα τι Α Ι νει η ψυ χη μου τον Κυ ρι ον αι νε εω Κυ ρι ον εν τη ζω - 2 2 2 6 6 2 2 5 2 2 6 - μου ψα λω τω θε ω μου ε ως υ - 2 2 2 πα αρ χω $2. M \frac{\Im(z)}{\eta} \frac{\Im(z)}{\pi \epsilon} \frac{\Im(z)}{\pi \circ i} \frac{\Im(z)}{\Im(z)} \frac{\Im(z)}{\Im(z)} \frac{\Im(z)}{\Im(z)} \frac{\Im(z)}{\Im(z)}$ 一一つこうできるとう υι ους αν θρω πων οις ουκ ε ετι εω τη 3. $E = \frac{1}{\xi \epsilon} \frac{1}{\xi$ 11 και ε πι 6τρε ψει εις την γη ην αυ του

(Z)4. Ε ν ε κει νη τη η με ρα α πο λου (Z) $\alpha \quad K\alpha \quad PI \quad OS \quad DO \quad O \quad \theta \in OS \quad I$ (π) α κωβ βο η θο ος αυ του η ελ πι ις αυ (z)τουε πι Κυ ρι ον τον θε ο ον αυ του 6. T ov $\pi \sigma \iota$ η 6 av $\tau \alpha$ $\tau \sigma$ $\tau \sigma \nu$ ou $\rho \alpha$ vov και την γην την θα λας σαν και πα αν τα <u>-1233</u> τα εν αυ τοις 7. Τ ον φυ λα α 6 60ν τα α λη θει αν εις ->-->>> # - ->>> - α δι κου με νοις δι δον τα τρο φηντοις πει

 $8. K \frac{23}{\nu} = \frac{3}{\rho_{1}} = \frac{3}{\lambda \nu} = \frac{3}{\lambda \nu}$ κυ ριος 60 φοι τυ φλους Κυ ριος (π) α νορ θοι κα τερραγ με νους Κυριος α γα πα δι και ους Κυ ρι ος φυ λαε εει τους προ εη λυ τους ここうこうこう ショップ και ο δον α μαρτω λων α φα νι ει και γε νε α αν

αι νυγ και α ει και εις τους αι ω νας ος και Λο γος του θε ου α θα να τος υ παρχων $\frac{7}{2}$ $\frac{1}{2}$ $\frac{1}$ ραν 6ω τη ρι αν 6αρ κω θη ναι εκ της α γι ας θε ο το κου και α ει παρ θε νου Μα ριας α τρε πτως εν αν θρω πη εας εταυρω $\frac{3}{\theta \alpha} = \frac{3}{2} = \frac{$ α δος συν δο ξα ζο μενος τω Πατρι και τω α γιω Πνευματι ω ω ωνη μα ας

<u>Exitation to the factor of th</u>

«Αΐνει ή ψυχή μου»

Στάσις Β΄

Ήχος 📆 Δί ο ξα τω Πα τρι και τω Υι ω και τω (M) (Δ) (M)(Δ) α γι ω Πνευ μα τι Αι νει η ψυ χη μου τον Κυ ρι ον αι νε ω Κυ ρι ον εν $\frac{1}{2}$ $\frac{1$ c c c = 2 2 2 2 ως υ πα αρχω 2. Μ η πε ποι θα τε επ α αρ χον τας ε πι υι ου ους αν θρω πων οις ουκ ε ετι εω τη (Δ) 3. Ε ξε λε ευ δε ται τω πνευ μα αυ του

και ε πι στρεψει εις την γην αυ του 4. Ε ν ε κει νη τη η με ρα απολουν (M) (Δ) (Δ) 5.Μ (α κα ριος ου ο θε ος Ι α κωβ 60 η θο ος αυ του η ελ πις αυ του ε πι (6) (Δ) (Δ) (Δ) (Κυ ρι ον τον Θε ον αυ του 6. Τ ον ποι η σαν τα τον ου ρα νον και 7. Τ ον φυ λας σον τα α λη θει αν εις τον αι ω να ποι ουν τα κρι μα τοις α δι κου με νοις δι δον τα τρο φην τοις πει νω 61

υ ρι ος λυ ει πε πε δη με νους Κυριος 60 φοι τυ φλους Κυ ρι ος α νορ θοι κα τερραγμε νους Κυ ρι ος α γα πα δι και ους Κυ ρι 3 3 3 5 C C = 5 5 5 ος φυ λα αε εει τους προ εη λυ τους 9.0 ρ φα νο ον και χη ραν α να λη ψε 3 - - 3 - 3 - - 3 A ταικαι ο δον α μαρτω λω ων α φα νι ει 10. B α 61 λ E EU GEL KU PL OG ELG TOV α L ω 12---ころうことにこうウェーーデ να ο θε ος 60υ Σι ων εις γε νε α αν και γε νε αν (Δ) (M) (Δ) (Δ) (M) ναςτων αι ω νων Α μην 5 0 Mo νο γε (A) 一 し つ ラー 、 こ っっつ 3 ~ 一 し っ こ νης Υι ος και Λο γος του θε ου α θα να τος

ν πα αρχων και κα τα δε ξα με νος δι α την η με τε ραν εω τη ρι αν εαρ κω θη ναι εκ της α γι ας θε ο το κου και α ει παρ θε νου Μα ρι ας α τρε πτως εν αν θρω $\frac{3}{\pi\eta} = \frac{3}{6\alpha\varsigma} = \frac{3}{6\pi\alpha\nu} = \frac{3}{6\pi\varepsilon} = \frac{3}$ $\frac{3}{\text{EIG}} \frac{1}{\text{EV}} \times \frac{3}{\text{THS A}} = \frac{3}{\text{YI}} \times \frac{3}{\text{ASTPI}} \times \frac{3}{\text{SOS}} \times \frac{(F)(A)}{\text{EV}}$

"Ετερον «Αΐνει ή ψυχή μου»

Ήχος Δ΄ Λέγετος βου $\chi = \frac{6}{\lambda}$ 1.Δ ο ξα τω Πα τρι και τω Υι ω και τω α γι ω πνευματι Α ι νει η ψυ χη μου τον Κυριον αι νε ω Κυριον εν τη ζω η μου ψα λω τω θε ω μου ε ως υ πα αρ χω 2. Μ η πε ποι θα τε επ α αρχοντας ε πι 一つこうこうなら一点のこと υι ους αν θρω πων οις ουκ ε ετι εω τη 3. E ξ_{ϵ} λ_{ϵ} ϵ_{0} ϵ_{0}

222--2222 του και ε πι 6τρε ψειεις την γη ην αυ του ν ε κει νη τη η με ρα α πο λουν $5. M \begin{pmatrix} \frac{(6)}{2} & \frac{1}{2} & \frac{1}{$ α κωβ βο η θο ος αυτου η ελπιις $6. T \begin{array}{c} (6) \\ \text{ov } \pi \text{ol} \ \eta \end{array} \begin{array}{c} \text{cav } \tau \alpha \end{array} \begin{array}{c} \text{c} \\ \text{tov ou } \rho \alpha \end{array} \begin{array}{c} \text{vov } \kappa \alpha \text{i} \end{array}$ την γην την θα λα σ σ και παν τα τα εν αυ τοις 7. Τ ον φυ λα α 6 60ν τα α λη θει αν εις $\frac{\Delta}{\Delta}$ $\frac{\Delta}$ δι κου με νοις δι δον τα τρο φηντοις πει

G λ 8. $K = \frac{(G)}{2}$ $\frac{(G)}{2}$ $\frac{(G)}{2}$ β (N)

γ (Z)

γ (Θ)

γ ριος α νορθοι κατερραγμε νους Κυ ριος α γα πα δι και ους Κυ ρι ος φυ λαε εει τους προ εη λυ τους 9.0 ρ φα νον και χη ραν α να λη ψεται και ο δον α μαρτω λων α φανι ει $10.\mathbf{B}$ ω να ο θε ος 60υ Σι ων εις γε νε χ 3 3 3 5 C 3. b X

2220--5223 αι ω νας των αι ω νων Α μην Ο Mo νο γε νης Υι ος και Λο γος του θε ου α θα να τος υ παρ χων και κα τα δε ξα με νος δι α την η με τε ραν ω τη ρι αν ω οαρ κω θη ναι εκ της α γι ας θε ο το κου και α ει παρ θε νου Μαρι ας α τρε πτως εν αν θρω πη σας λ σταυρω θεις τε χρι $\frac{3}{6\tau\epsilon} \quad 0 \quad \theta\epsilon \quad 0\varsigma \qquad \frac{2'}{2} \quad \frac{2}{2} \quad \frac{2}{2} \quad \frac{3}{2} \quad \frac{3}{2}$ τον πα τη 6ας ει εις ων της Α γι ας

TPI α Sos 600 So $\xi \alpha$ ζo $\mu \epsilon$ $vos \tau \omega$ $\pi \alpha$ TPI α Sos 600 So $\xi \alpha$ ζo $\mu \epsilon$ $vos \tau \omega$ $\pi \alpha$ TPI λ Kal $\tau \omega$ A γ I ω π I $v \epsilon$ $\epsilon \omega$ λ $\epsilon \omega$ 600 γ $\mu \alpha$

ΤΡΙΣΑΓΙΟΣ ΥΜΝΟΣ

Ήχος Β'.

Tό Σύνηθες. Ἡχος
$$\frac{\Delta}{\Delta}$$
 $\frac{\Delta}{\Delta}$ $\frac{\Delta}{\Delta$

Τό τρίτον

OS A S = 5 : $\lambda \varepsilon = \frac{1}{\lambda \varepsilon} \sum_{\alpha \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}} \frac{1}{\lambda \varepsilon} \sum_{\alpha \in \mathcal{A}} \sum$ $\frac{3}{\text{Tive}} = \frac{3}{\text{Eu ha ti}} \times \frac{4}{\text{K}} \times \frac{(4)}{\text{Al vuv kal a El kal}}$ ٥---εις τους αι ω νας των αι ω νων Α μην (Δ) (B) (C) $5 = \frac{6}{5} = \frac{(\Delta)}{\lambda \epsilon} = \frac{5}{7} = \frac{5}{5} = \frac{5}{5$ 5 3

μα ας

Έχ τοῦ Βήματος

Tó α' .

A (A) (

Τό β΄.

Tó γ'.

(C 5 3 & 3 5 = + 5 7 - 1 + 1 - 5 3- 5 / 3 (-5 3 ± 2 € Lε Α γι ο ος Α θα 2 = 1 + 6 = 1 - 2 = 1

$$\frac{2}{2} \frac{3}{2} \frac{1}{1} \frac{1}$$

Δ × 4 (Δ) - 14 (Γ) - 2 (. V' 1 Ω - 7 (...) θα γα το ος ٥ PE PI PI PE PE PEH TE PI PE PE EN TE

(B) = = 5 (3) = 5 (N) $-\frac{1}{2} \frac{1}{2} \frac{1$ ρε εμ τε ρι ρε εμ
-(Λ) $\mathbf{F}^{\mathbf{x}} \stackrel{(\Delta)}{=} (-5 \div \frac{4}{5}, -5) = -5$ σον ε (Δ) 60 (Δ) μ π π 1 (Σ) Ε π π 1 (Σ) رى ج در در د ق

Δύναμις. Σίμωνος Άβαγιανοῦ Ήχος 🚎 🖧 $N = \sum_{(\Delta)}^{(M)} \sum_{\nu\alpha}^{(N)} \sum_{\mu}^{\alpha} \sum_{\nu\alpha}^{(M)} \sum_{\mu}^{(M)} \sum_{\nu\alpha}^{(M)} \sum_{\nu\alpha}^{(M$ 5 - ··· (Δ) (M) (M) Δυ να μιις (M) (M) (M) (M) 2612 - 122 - 201 $\frac{1}{2} \frac{1}{2} \frac{1}$ ショニニュラシューニュ ニューションニュ Ύλγιος Ἰσχυρός. "Ομοιον.

Δ

$$E \xrightarrow{(M)} \frac{1}{\lambda \varepsilon} = \frac{1}{\lambda \varepsilon} \frac{(\Delta)}{1 + \frac{1}{\lambda \varepsilon}} + \frac{1}{\lambda \varepsilon} \frac{(\Delta)}{\lambda \varepsilon} + \frac{1}{\lambda \varepsilon} \frac{(\Delta)}{1 + \frac{1}{\lambda \varepsilon}} = \frac{1}{\lambda \varepsilon} \frac{(\Delta)}{1 + \frac{1}{\lambda$$

Δύναμις. Γεωργίου Κρητός.
$$\begin{tabular}{ll} \rat{$\stackrel{\circ}{\to}$} \begin{tabular}{ll} \r$$

$$A = \begin{pmatrix} (r) & (\Delta) & (R) & (R)$$

Τό αὐτό.

Δύναμις. Ξένου Κορώνη.

ΤΗχος
$$\frac{\partial}{\partial x}$$
 $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial x}$

A (A) ラニットラッドーランド+でララーニラ $T \overset{(M)}{\circ} \overset{(\Delta)}{\sim} \overset{$ ρ_{L} ρ_{E} ρ_{E} ρ_{E} ρ_{E} ρ_{OU} ρι ρε ρε (M) タナニッシュールラニューマラル pi pe εριριρι ρε (N) pipe pi pipe pi pi

3 5 - 3 0 0 TO TO TO TO ود ١٠٤٠ = ١٥٥٠ = ١٥٥٥ = ١٥٥٥ シャーランジンッデンシイデシションナー ρι ρε ρι ριρι ρε د رح در در $0^{\frac{\epsilon h}{4}} = \frac{1}{2} = \frac{1}{2}$ ショー こ 、 ら ニッショ 2 = 2 > 2 (- 2 2 = 1 - 2 = 2 = + = = = 12+ (2c 2"+ - c = (2) (2) (2) (2) (2) 22 2 05 シートンングショ 2, 30 = 2 2 3 = + 2 1 = $\frac{1}{4\epsilon} = \frac{1}{\alpha} = \frac{1}{4\epsilon} =$ 一点についりにのだらつつろ pi pe TE τε τε τε (-5 3 -1 4 1 5 5 - - 5 5 3 5 τε ρι ρι ρι τε ρι ρε TE PI PI TE PI PE

be be se se bi bi bi be be bi be Рε
 ρι
 ρε
 ρε
 εμ
 X 3 2 2 5 × 2 × 2 × 2 2 6 × 2 × 2

$$\frac{(M)}{\varepsilon} \frac{(\Delta)}{\lambda \varepsilon} \frac{(\Delta)}{\eta} \frac{(\Delta)}{60} \frac{(\Delta)}{0} \frac{(\Delta)}{\eta} \frac{(\Delta)}{\eta} \frac{(\Delta)}{\lambda \varepsilon} \frac{($$

Είς τό «Άγιος 'Αθάνατος» Κράτημα Ρυθμός έξάσημος ρι ρε ρι ρε ρι ρε τε (μ)

ρε ρι ρι ρι ρι ρε τε (μ)

ρε ρι ρι ρι ρι ρε τε (μ) τε τε ρι ρε ρι ρε ρι ρι pe pi pe シーニー・ランン マルーテントー br br br br be 9 31 3 β 1 π τε ρε ε ρι ρε ρι ρι ρι ρε β εμ τε ρε ε ρι ρε ρι

Κυριάχου 'Ιωαννίδου, τοῦ « Καλογήρου».

$$A \xrightarrow{(\pi)} \bigcap_{Q\alpha} \bigcap_{Q\alpha$$

ρου τε τε ρι ρε ρι ρε ε? ρι ρε الم الم $\Lambda \stackrel{(N)}{\stackrel{>}{\stackrel{\sim}{\sim}}} \stackrel{(\pi)}{\stackrel{\sim}{\sim}} \stackrel{(\pi)}{\stackrel{\sim}{\sim}} \stackrel{(N)}{\stackrel{\leftarrow}{\sim}} \stackrel{(N)}{\stackrel{\leftarrow}{\sim}} \stackrel{(\Gamma)}{\stackrel{\leftarrow}{\sim}} \stackrel{(N)}{\stackrel{\leftarrow}{\sim}} \stackrel{(N)}{\stackrel{\sim}{\sim}} \stackrel{(N$ $E^{(\pi)}$ **με** (Ν) (π) 022c-1=2-c2+-1c 2=== (3; = " = " = 6. 3" = 3333 -(+ 2 " = 2 2 2 2 5 5 = 2 2 2 2 5 (cc 9

OEC

$$\Lambda_{\varepsilon} = \frac{1}{\sqrt{2}} \sum_{i=1}^{\infty} \frac{1}{\sqrt{2}}$$

"Ετερον

 π

$$(π)$$
 $(π)$
 $(π)$

Δύναμις τοῦ αὐτοῦ.

Διεσχευασμένον εἰς δίχορον
$$\mathbf{N} = \mathbf{N} =$$

Έτερον Ἰωάννου Παλάση († 1942). Ἡχος Α΄ ζ Κατά ἀπόδοσιν Θρ. Στανίτσα

ο θε ο ος Α Α γι ο ος + $(\kappa) \xrightarrow{4} (\kappa) \xrightarrow{(\kappa)} (\kappa) (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times (\kappa) \times (\kappa) \times (\kappa) \times (\kappa)$ $= (\lambda) \times$ 2-デッシロニューンで 9 Δ ξα Πα τρι και Υι ω K $\alpha i \quad \forall v \quad$ (Δ) (K) (π) 5.0 2. 2 77 2 7ων αι και εις τους αι ω ψ(22- = - > > 2 (-2- = - > > 2)

Ύλγιος Ἰσχυρός. "Ομοιον.

 $A^{\stackrel{(\pi)}{\times} \stackrel{(\pi)}{\leftarrow} \stackrel$ $\frac{7}{7} = 5 = \frac{1}{7} = \frac{3}{9} = \frac{4}{7} = \frac{1}{10} = \frac{1}{10}$ シーニッシランニノーでは gg ニーに 「一」「一」「一」「一」」 ついこうこうに (m) に でった ($\frac{1}{\omega} + \frac{1}{\omega} = \frac{1}$ $E^{\frac{(\pi)}{\lambda\epsilon}} = \frac{\varepsilon^{(\pi)}}{\lambda\epsilon} + \frac{\varepsilon^{(\kappa)}}{\epsilon}$ ~ (2 - 21 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - - 12 - 1 0

Τό «Ύλγιος Ἀθάνατος...» εἰς ἑτέραν παραλλαγήν τοῦ Θρ. Στανίτσα.

γιος Α θα α

(π)
γιος Α θα α

(π)
γιος Α θα α

(π) ~ (M)

A θα να το - رحية ت 9 $E \xrightarrow{(\Delta)} \lambda \varepsilon \times \frac{1}{2} \times$ ον η μας οα (M)

(M)

(Δ)

$^{\prime}$ Ηχος Γ' .

Βάσει τοῦ Τρισαγίου Θρ. Στανίτσα (ἦχος δ΄ $\Delta^{\mathfrak{L}}$)

Δ ο ξα Πα τρι και Υι ω και α γι ω Πνε ευ μα τι (Δ) $(\Gamma)(\Delta)$ (Δ) (Δ) ((M) μα $N = \frac{5\pi}{2} = \frac{5\pi}{2} = \frac{5\pi}{2} = \frac{5\pi}{2}$ 3 3 + = 3 (3) 4 ··· (... μις V = 2622 2 = 6 x 622 = 2

" > (> c = (M) = (Δ) = -- + () 5 -- (2) **

(2) **

(2) **

(2) **

(2) **

(2) ** = > > > > (M) = (A) $\frac{\alpha}{\alpha} \left(\frac{(n)}{n} \right) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$ 25 100 - 100 - 000 oc 2 (CC C C Q X (N) 2 (L) (L)

5000 - 1 × = ようない。こうできるころの一点にいいい $E = \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} + \frac{1}{2\pi} \frac{1}$

Δύναμις Τριανταφύλλου Γεωργιάδη (†1934).

PI PE PI PI PI PI PE TE PE ~ ラーラー でいこ ファーディン ρε ρε εμ ρι ρι ρε ρι ρε ρι ρε ρε ρε ρε ρου τε ρι ρε ρι χ ات افران ات 27 $E = \frac{1}{\lambda \epsilon} \left(\frac{\pi}{\pi}\right) \left($ 11

Ήχος πλ. Β΄.

 $\frac{\lambda}{\pi} \quad \therefore \quad \widetilde{\Pi} \overset{\sim}{\alpha} \qquad \underbrace{\pi}$ $A \stackrel{(M)}{\stackrel{(M)}{\smile}} \stackrel{(M)}{\smile} \stackrel{$ A γ_{1} α_{2} α_{3} α_{5} $\Delta = \begin{cases} \frac{3^{(\pi)}}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{cases}$ $\frac{3^{(\pi)}}{8} & \frac{1}{2} & \frac$

A
$$\gamma_1$$
 ω π_{VE} ϵ_{D} μ_{α} τ_1
 K (α) (α)

 $(\Delta) \qquad (\pi) \qquad (\pi)$ (Δ) με γα με με γα με γα γα με $\frac{13}{\alpha}$ $\frac{4}{4}$ $\frac{1}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{4}$ $\frac{4}{12}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{4}{12}$ $\frac{1}{3}$ $\frac{4}{4} = \frac{1}{2} = \frac{1}$ シッタニュー こ ニュー ひこ こ ニュットサット μενα να με να με με να να με 7Γ 7 π えんこう ころ γα γα με (π) == 2/0 5

ΟΣΟΙ ΕΙΣ ΧΡΙΣΤΟΝ

Ήχος Α΄ ἢ Πα ت کے دے دینے + حینے دے جریبی کے بیانے کے بیان ο εα εθε Αλληλου ι 9 α (Δίς). Τό γ' . ε βαπτι 6θη τε Χρι 6το 100510550 9 $\Delta = \frac{3}{0} =$

Δύναμις. Γ. Σαρανταεχκλησιώτου.

THXOS A'
$$\ddot{q}$$
 $\Pi \alpha$

THXOS A' \ddot{q} $\ddot{q$

$$A = \frac{1}{2} \frac{1}{2}$$

Δύναμις. Διασκευή ἐκ τοῦ Π. Ἐφεσίου Ἡχος Α΄ ἢ Πα

 π

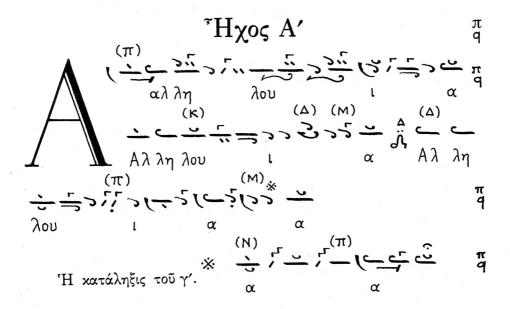
N = (μ) (μ) (μ) (π) (35(-5- : 3- = E 2 (N) (3) (3) (3) (- = 5 = 5 5 (3 5 = 1 + (- c -:(3,5 = 3 ; 6. $X = \sum_{\text{bi}} \frac{(\pi)}{3} = \sum_{\text{o}} \frac{1}{3} = \sum_{\text$ ニュョンコナニョンノンデュラマーニノンド

ΤΟΝ ΣΤΑΥΡΟΝ ΣΟΥ

Δύναμις. Δίχορον.

$$\mathbf{N} = \mathbf{N} = \mathbf{N}$$

一言っってきるできる。 シーティュージ П ро бки vou Κ πην α γι (Ε) (Β)


$$\frac{4}{4} + \frac{1}{4} \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{j=1}^{4$$

ΑΛΛΗΛΟΥΙΑ ΤΟΥ ΑΠΟΣΤΟΛΟΥ

 Σ ύντομα εἰς ὅλους τούς ἤχους.

Έτερον Γρ. Στάθη, Καθηγητοῦ Παν/μίου 'Αθηνῶν Μουσιχολογίας χαί ψαλτιχῆς τέχνης. Ήχος ὁ αὐτός (1994).

Έτερον Σίμωνος Καρᾶ († 2000).

$$A = \frac{1}{2} \frac{1}{2}$$

Έτερον Νεκταρίου Θάνου Λαμπαδαρίου (2001).

$$A = \frac{1}{\alpha \lambda \lambda \eta} + \frac{1}{\lambda \sigma \sigma} + \frac{1}{\alpha \lambda \lambda \eta} + \frac{1}{\alpha \lambda$$

Ήχος Β'.

$$\sum_{i} \frac{1}{\alpha} \left(\sum_{i} \frac{1}{\alpha} \left(\sum_{i} \frac{1}{\alpha} \left(\sum_{i} \frac{1}{\alpha} \right) \right) \right) \left(\frac{\Delta}{\alpha} \right)$$

"Ετερον Νεχταρίου Θάνου.

Ήχος
$$\frac{\Delta}{\alpha}$$
 $\frac{\Delta}{\alpha}$ παραμεσάζων διατονικός $\frac{\Delta}{\alpha}$ $\frac{\Delta}{\alpha}$

Ήχος Γ'.

"Ετερον Σίμωνος Καρᾶ.

$$A$$

Έτερον Νεχταρίου Θάνου.

Ήχος πλ. Α΄.

 $\frac{1}{\alpha} - (-3) \cos(\frac{4}{3}) \frac{1}{3} = \frac{1}{3}$

 $\frac{2}{\lambda}$ $\frac{1}{\lambda}$ $\frac{$

Έτερον Νεχταρίου Θάνου.

A A λ λ λ α A

Έτερον Σίμωνος Καρᾶ.

ΤΗχος Βαρύς.
$$= Zω$$
 $= Zω$ $= Zω$

Έτερον Νεχταρίου Θάνου.

$$A \xrightarrow{(r)} \underbrace{\vdots}_{(N)} \underbrace{(n)}_{(N)} \underbrace{(\pi)}_{(N)} \underbrace{\vdots}_{(N)} \underbrace{(\pi)}_{(N)} \underbrace{\vdots}_{(N)} \underbrace{\vdots}_$$

 $\frac{(r)}{\sum_{i=1}^{N}} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^$

 $^{\tau}$ Ηχος πλ. Δ' .

Έτερον ἀργόν.

'Ιωάννου Πρωτοψάλτου. Ήχος Α΄. πα $\frac{(M)}{\varepsilon} = \frac{(\pi)^3 \pi}{\Lambda^{\alpha} \lambda^{\gamma} \lambda^{\gamma} \lambda^{\gamma}} = \frac{\pi}{2} = \frac{\pi}$ C12 = 221 = 221 = 21 = 21 = 2 = 2 = ... -5一号の5~-=35~33(とうと π 3 ¬ 3 - 1 C = 53311-5-5/55-5-5/4 = 5 コニーランインテートコニュー

と(てラニューションとこうとをできて) (M) (M) (A) (A)2=222=26=22=21=24 (W) $\frac{(\pi)}{A} = \frac{3}{\alpha \lambda} = \frac{(M)}{\lambda \alpha} = \frac{(K)}{\lambda \alpha} = \frac{(K)}{\lambda \alpha} = \frac{(K)}{\lambda \alpha} = \frac{1}{\lambda \alpha} = \frac{(K)}{\lambda \alpha} = \frac{1}{\lambda \alpha} = \frac{1}{\lambda$ <u>こにこことにいいまままままってに</u>

Δόξα σοι Κύριε τοῦ Εὐαγγελίου

Hχος
$$\ddot{\alpha}$$
 Δi

$$\Delta \circ \qquad \dot{\alpha} \qquad \dot$$

PRINTING THE PRINT

ΧΕΡΟΥΒΙΚΑ ΚΑΤ' ΗΧΟΝ

$HXO\Sigma A'$.

1. Άπλοῦν, σύντομον. 💆 Πα 🗓 π (M) $T\alpha \qquad \chi \varepsilon \text{ pov } G_1$ $S_1 \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2$ χ ε ρου θ ι μ μ υ ϵ τι κ ως (π) (π) τη ζω ο ποι ςως ςως ο ωζ ητ ~ " (1 ~) (= 2) (- 2 (- 2 ()) + (kl c

 $= \frac{(\Delta)}{5} > 5 > \frac{(\pi)}{5} = \frac{5}{5} = \frac{5}$ 6α 80 OV TE EG

(M)

(Ε) $\kappa\eta$ ην α πο θω $\mu\epsilon$ θα $\mu\epsilon$ ニッシュンゲー260シー/でたった。(W) $\Omega \stackrel{(\pi)}{=} \frac{\alpha \nu}{\alpha \nu} \stackrel{(\pi)}{=} \frac{\alpha \nu}{\alpha$ τον βα οι λε α πο δε ξο με νοι νοι (κ)(Δ)(κ) ως δο ρυφορου με νο ον τα ξε σιν Α αλλη (N) (π) ション3にっつきたいらころにご

2. "Ετερον.

νοο ον προ σα υ μνο ον προ 6α (Δ)
(Δ)
(κ) $\frac{4}{5}$ (π) $\frac{4}{5}$ (π) $\frac{4}{5}$ (π) $\frac{4}{5}$ (π) $\frac{4}{5}$ (π) $\frac{4}{5}$ (π) $\frac{4}{5}$ (とうこうっと こ、ごっちこと ガ 6 a av Tyv 61 0 Ti α πο θω με θα με ρι q μναν 6ι λε (A)(K) Βα οι λε 2 (Δ) νοι 3μ ο 3 3 3 οπ

Ταῖς Άγγελικαῖς. Σελίς 166

3. "Ετερον.

Σύντομον πανηγυρικόν. Ήχος Α΄. 55 (3, c = α (N) (M) (M) (π) (π) - 2 (- 5 (ο ο ο ο τα χε γου (Μ) ση τα (κ) ρ 5 <u>ρ</u> 1, 3 - 2 - 1, 2 - 1, 2 (π)

- 1, 3 - 2 - 1, 3 - 1, 7 - 1, 7 (π)

- 1, 3 - 2 - 1, 3 - 1, 7 - $\chi \alpha$

«'Ως τόν Βασιλέα» Σύντομον σελ. 166 'Αργόν σελ. 184

The contains (κ) (κ)

Ά. Κυριαζίδου.

THXOS A'
$$\stackrel{\downarrow}{q}$$
 $\stackrel{\uparrow}{\Pi}\alpha$

THXOS A' $\stackrel{\downarrow}{q}$ $\stackrel{\uparrow}{\Pi}\alpha$

THXOS A' $\stackrel{\downarrow}{q}$ $\stackrel{\uparrow}{\Pi}\alpha$

THXOS A' $\stackrel{\downarrow}{q}$ $\stackrel{\downarrow}{\Pi}\alpha$

THXOS A' $\stackrel{\downarrow}{$

«'Ως τόν Βασιλέα» κλπ., σελ.166

M. Χατζηαθανασίου († 1948).

ΤΗχος Α΄ $\stackrel{\leftarrow}{q}$ Πα $\stackrel{(\pi)}{Q}$ $\stackrel{(\pi)}{Q}$ $\stackrel{(M)}{Q}$ $\stackrel{(\pi)}{Q}$ $\stackrel{$

$$(A) (R) = \begin{pmatrix} (A) \\ (A)$$

Θρ. Στανίτσα († 1987).

Ήχος Α΄ ξ Πα $N = \sum_{\epsilon} \frac{1}{2} \sum_{\epsilon} \frac{\pi}{4} \left[O \sum_{\epsilon} \frac{\pi}{2} \sum_{\epsilon}$ $550556\frac{1}{2}$, (N) (M) $(N)(\pi)$ $(N)(\pi)$ ("-= 5(22 = 11 222 = +022 = =

$$(F)$$
 (Δ)
 (A)
 (A)

«'Ως τόν Βασιλέα», σελ. 166

T
$$\alpha \mid \alpha \mid \alpha \mid \alpha \mid \gamma \mid \epsilon$$
 $\lambda \mid \kappa \mid \alpha \mid \alpha \mid \alpha \mid \alpha$
 (π)
 (π)

Άνδρέου Μοναχοῦ Άγιορείτου.

Ήχος Α΄ α Πα ιμ μυστι κω EL KO VL (-25-1622-21222) (0 EI KO VI 25 (-26 (a) (u) (u) " - "=" 25 22 - $\frac{2}{\omega} = \frac{2}{\omega} = \frac{2}$ (K) Δ" Δ" Δ(ες ε η ε η ε η ε η τοι δα α τον τοι δα

 $\frac{\pi}{2}$ $\frac{\pi$ ην α πο θω με θα με ρι μνα αν «Ώς τόν Βασιλέα», σελ.166 T 9 $T^{(\pi)}$ $\alpha \alpha \gamma \gamma \epsilon \beta i$ $\kappa \alpha i \alpha i \zeta \alpha o \rho \alpha$ ρου με νον τα ξε 61 $\frac{(\pi)}{\pi} = \frac{\pi}{2} = \frac{$

$$\frac{3}{\lambda\eta} \frac{3}{\lambda \sigma \upsilon} = \frac{3}{12} \frac{14}{12} \frac{(N)}{12} \frac{\pi}{12} \frac{\pi}{12}$$

$$\frac{K. 'A. Ψάχου.}{Hχος Α' \ddot{q} $\Pi α$

$$\frac{(M)}{3} \frac{(M)}{12} \frac{\pi}{12} \frac{\pi}{12}$$

$$\frac{(K)}{12} \frac{\pi}{12} \frac{\pi}{12} \frac{\pi}{12} \frac{\pi}{12} \frac{\pi}{12} \frac{\pi}{12} \frac{\pi}{12} \frac{\pi}{12}$$

$$\frac{(K)}{12} \frac{\pi}{12} \frac{\pi}$$$$

$$(M)$$

$$\alpha$$

$$(\pi)$$

デンジーに d ー " c でこうシンジン 16-23 d = 3 1/3 : 12 - 26 2 = d Tρι α (Δ) (Δ) (π) ($\frac{1}{2} = \frac{1}{2} = \frac{1}$

Θ. Φωχαέως.

Ήχος Α΄ α Πα رد) د ع ع ع + د « ت ت رد نوع - در برای ع ا ٣- ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠٠ - ١٥٠ たっしょうごしょういっちゃっちゃっと τη ζω ο ποι

(K) 3 FD (M) (K)
5-7-5-13-5-1-1-1-5-3 (M) (K) (K) (K) (K) $\frac{7}{100} \left(\frac{3}{100}\right) \left(\frac{$ 5 = 5 = 5 = 5 (= 5 = 6) = 5 (3 5 (M) (K), υ μνον προ 一年とことにいるようとのことになっている ες πα 2 (α) (κ) (κ) (κ) 6αν την βι ο (Δ) (κ) T1 610 でんうってらりっ ~ c c ん っころう (κ) (Δ) (κ) (M) (κ)

θα

(κ) Ε (κ) (Δ) (κ) (κ)

ت دوی کے د تری کے R μνα Ω ως τον βα 61 λε ランラニョンション(キャー 10 1年/21 ラーニー (11) λω ων υπο δε ξο NO ON TO 33 5 5 5 5 7 5 7 5 610 A $\frac{3}{\alpha\lambda}$ $\frac{1}{\lambda\eta}$ $\frac{3}{\lambda}$ $\frac{1}{\lambda}$ $\frac{3}{\lambda}$ $\frac{1}{\lambda}$ $\frac{$

ΗΧΟΣ Β΄.

1. Άπλοῦν, σύντομον. (N) (B) XE pou 61 14 (N) $\frac{1}{\omega} = \frac{1}{\omega} = \frac{1}$ 3" 0 4 0 3" 333" " 3" C 2 2 2 3 3 5

γι ο ον υ μνον προ εα (A) ニッシュニュット (A) (A) (A) (A) (A) προ εα δο ον τε $\frac{3}{6}$ $\frac{\Delta}{\pi}$ $\frac{\pi}{6}$ $\frac{\pi}$ θω με θα με ρι 20 25 = 3 (M) **()** ς τον βα ει λε λωων υποδεξο με νοι Τ αις α αγ γε λι και αις α ο ρα

 Έτερον. $\frac{\chi}{\Delta} = \frac{\chi}{\Delta} = \frac{\chi}$ μυ (r) (Δ) (ει κο νι (r) (Δ) (γ) (Δ) (γ) (Δ) (γ) (Δ) 7 Δ φ 1 3 c 3 = 5 (5 5 c 5 5 ر در د کو م د ده سر در د د م شر م -

ξο ον τε ες πα σα αν την $\frac{1}{\alpha} \frac{\pi}{6} = \frac{\pi}{10} = \frac{$ - 3 · (Δ) » (σ) β · (Δ) β · ($\Omega = \frac{1}{2} \sum_{\alpha \in \Delta} \frac{1}{$ Δ Των ο λω ων υ πο δε ξο Τοις 'Αγγελικαῖς»

σελ.186

3. "Ετερον.

Σύντομον, Πανηγυρικόν. Ήχος Β΄ ارو + مع شريد د اريد شرع د چ تيار ۱ و ارد パップラーニョンニョンナーー シュニョン (r) (Δ) (N) οι τα

χε ρου βι ιμ μυ 6τι κω

σ (β) (Μ) (Μ)

σ (β) (Μ) (Μ)

ως ει κο νι (φ ον τε ες και 一色光一点っ一点一つに

- τοι α

Τρι α OV TE 2232 602 500 6 2 2 200 3 200 60 av Thy Bi o ν΄ ο πο θω με θα με T $\alpha i \alpha \gamma \gamma \epsilon \lambda i \kappa \alpha i \alpha i c, \alpha \circ \rho \alpha$ λη λου

B. K. Νιχολαΐδου (1981)

2 (4) \$ (8) \(\frac{1}{2} \) \(\frac{1}{ μνο ον προ εα δο ον τε のっこいう(一きま) でいてこのっちにい $\frac{\mathcal{L}_{\kappa}}{6\alpha V} = \frac{\mathcal{L}_{\kappa}}{7\eta V} = \frac{\mathcal{L}_{\kappa}}{6\alpha V} = \frac{\mathcal{L}_{\kappa}}{7\eta V} = \frac{\mathcal{$ με θα με " = 2 3", 3 2 " = 3 πα εαν με ρι μνα αν Ως τον βα οι λε α των ο λων υ πο ー 、 しっちしてご言っこう SE {0 $T_{\text{aig ayye }\lambda_{1}} \times \text{aig } \alpha \circ \text{pa} \quad \tau \omega$ ος δο ρυ φο ρου με νον τα ξε Solv Ax An Aou 1 a ~ ··· (· O(

Κων/νου Πρίγγου († 1964)Ήχος 🚎 🖧 3(A) (A) (A) (A) シノーシーバーニャンニーニッジニット ر الماري الم (M) (A) (できょうだっとのシーで(シシュー 2(-5(3) = 3 v -1 - 5 3(-3) = - 170 (Δ) GTI KW WC Vι ζο ει κο Vι ζο ον τε

(Γ) (Λ)

さい、こうごこのったこのうちょうこっ τη ζω ο (r) (A) ςωο ποι ω Τρι α υ μνο ον προ 6α (r) (Δ) (r)(Δ) コケーニョラ(3パン)しっちっちょう A 4,70 = 150 2 350 cc = = = = = ποι $53\frac{\pi}{1}$ α π θ ω μ ϵ απο θω με θα με (r) (Δ) ρι με ρι μνα (r) (Δ) ラ10353555 «Ώς τόν Βασιλέα» **κλπ., σελ.186**

Θ. Φωχαέως. Ήχος 📆 Δι (M) (Q) (Z) (C) (A) (A) $(M) \qquad (A) \qquad (L) \qquad (Q) \qquad (Q) \qquad (M)$ シーニージーニーステニッシュニョージ -15. 25 C 25. (L) (V) (V) (Q) (Q) (Q) χε ρου βιιμ ニースタ:ニニョーロッイがとでして (でショーンランデュション ローロン(C KW コーニースをにったコーツで コニニニ シュニョン アニューニンシニ ποι 250 C 222 3 2 λ. 21 (- 2) - (- 2) = 5 (= 5 = 10 = = 5 = 5 = 5 = 5 = 5 = 5 = 5 4 = (c)(β) (γ) (Δ)

Tρι α ον υ μνον προ εα ララン+一二ララニ(cラ(cラ) = ララララ προ 6α δο ον τε (Δ)(1) シュニュマニュンシュニュルニュ ες (٢)(Δ) 6 a av 77 61 0 シュニュニューショッシューラッ α πο θω 2 (T) (A) 2"ニンシー(でシ(ラ)ニンシランシ θα με Pι

(r) (A) <u>~</u> (M) (A) 5 3 5 5 5 5 5 1 5 ς τον βα ει λε ショラニョショラーニョラニ(とうに (r) (A) (T) (A) (T) (A) (T) (A) 2/43 515-23622 λωων υπο δεξο $T = \frac{(\Delta)}{\alpha_{1}} = \frac{\pi}{\alpha_{1}} = \frac{\pi}{\alpha_{$ ρα τω ως δο ρυ φο ρου με νον Αλ λη λου ι α ξε 6ι ιν (Δ) (Δ) シャスランンニン Θέσεις Θ. Φωχαέως. την βιο τι κη ην α πο με... α ο ρα τωως δο...

HXO Σ Γ' .

1. Άπλοῦν, σύντομον. - -- - - - - + + - - - + + - - - + + (M) (r) (H) (H)25, 22 - 20 2 26-26-26 20 4-6. τη ζω (M) (E) = 5 = 5 (... C) = 6 (M) (r) μνον προ 6α 50 προ 6α δον τε (r)

προ 6α δον τ 6αν την βι ο τι κην (N)(F) $\theta \omega$ $\mu \varepsilon$ $\theta \alpha$ $\mu \varepsilon$ $\rho \varepsilon$ Ω ς τον βα ει λε α τω ων ο (r) λω υ πο δε ξο με T $\alpha i \varsigma \alpha \gamma \gamma \epsilon \lambda_1 \kappa \alpha i$ $\alpha i \varsigma \alpha i \varsigma$ 21つ一歩5二こう(よう)しっちっちご

2. "Ετερον. _{2.} τηχος Γ΄ ή Γα $O = \sum_{(M)} \frac{\chi_{\epsilon}}{\chi_{\epsilon}} = \sum_{(M)} \frac{\chi_$ (r) (π) (π) (π) (π) (π) (π) (π) $\int_{K\alpha l} \frac{(z)}{\pi \eta} \frac{(z)}{(\omega)} \frac{(z)}{$ γιοον υ μνο ον προ εα δον τε

ラーショナーにに、これで、これのでのの「中((z) σαντη ην βι ο τι $(r) = \frac{(z)}{\eta} = \frac{(z)}{\eta} = \frac{(r)}{\eta} = \frac{4}{\pi} = \frac{(r)}{\eta} = \frac{\pi}{\eta} =$ hε θα hε bι hλα Jα αλ R $\Omega = \frac{1}{5} =$ 30100 = 22 2 = 200 (22 = = α ο ρα τω ως δο ρυ φο ρου με (κ) (γ)

τηχος Γ΄ ἡἡ Γα ου (π) (M) (r) (χε ρου βι $\frac{2}{2} = \frac{1}{2} = \frac{1}$ (N) (M) (Γ) Ω μυ (σ) ξει κο Vι (σ) (σ) ود ١٤٠٠ ١٤٠١ ١٤٠٠ ١٤٠٠ ١٤٠٠ ١٤٠٠ ١٤٠٠ ELKO VI $\langle O \text{ OV } TE \rangle$ $\langle E \rangle$ $\langle E \rangle$ $\langle C \rangle$ \langle " # 3 !!] 5 3 ! () 5 !! (C = " (A) " 5 +

ον τρι 6α イナンでんならしこうコーニュランーデングラ προ 6α μνο ον υ μνο ον προ 6α ニッシュー とってニョッグング マー 600 TAV GL 0 (Z) τι κη (r) . με θα με ρι μνα ηα αν κ ことにいいいっちょうち () c TOV BOX 61 , XE Basi DE

«Ταῖς ᾿Αγγελικαῖς» σελ.199

4. "Ετερον.

Σύντομον πανηγυρικόν. Ήχος Γ΄ O (M) 5 (r) 3 = 5 1 3 = 5 1 (A) (N) Q 3 [] [Y C C (M) (F)
(N) XE POU GI JI TH HA CLIKO ME EI KO AT $\frac{Z}{Z} = \frac{Z}{Z} = \frac{Z}$

$$\frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

3 Τ αις α αγ γε $\frac{(z)}{z} = \frac{(z)}{z} = \frac{(z)}{z} = \frac{\alpha \cdot (z)}{z} = \frac{\alpha \cdot (z$ $\frac{1}{80} = \frac{1}{80} = \frac{1}{80} = \frac{1}{10} = \frac{1}{10}$

π. Γεωργίου Σκουρτανιώτου, πρωτοπρ.(1995).

(-5 5, 5 1 - 6 5 1 5 5 7 - CE +>>(=>,0) LE TPI OC το ον τρι 6α γι ο ον υ μνο ον προ 6α δον $\tau \varepsilon$ $\lambda \varepsilon$ $(2)^{\varepsilon \varsigma}$ $(4)^{\varepsilon \varsigma}$ θα με ρι μνα ηα αν

«'Ως τόν Βασιλέα» κλπ., σελ.199

«'Ως τόν Βασιλέα» κλπ., σελ.199

Γρηγορίου Πρωτοψάλτου († 1821). τηχος Γ΄ ἡἡ Γα $O^{(N)} \stackrel{(P)}{=} \frac{1}{3} = \frac{1}{3$ ニュンシニンニン(μ) (π) (π) (π) (π) 22-11にジューマン11に22-1022 (N) (L) (L)
(ν) (ν) (ν)
(ν) (ν) (ν) (ν)

一元ションラーニッショっっとににと $(\Delta) \qquad (M) \qquad (\Delta) \qquad (\pi) \qquad (\pi)$ (z)^{Τρι} α (でたしつりかにううニングス(まない) υ μνον προ 6α (Ν) (Γ) 221 20 22 22 22 2 625 1-2

(N) (N) (Δ) (Δ)(一一、カランニングラングラン、サーニ ρι μνα (r) N $\Omega = \frac{1}{\varsigma} =$ らんら ロッニッシーショニュシニュッニニュ ころうきゃいニーテンドニッグを受けてい (-50 35 35 - 5 5 5 5 5 5 7 6 5 α ει λε α $\frac{1}{3}\frac{2\pi}{3}$ $\frac{4}{5}\frac{\pi}{5}$ $\frac{\pi}{5}$ $\frac{\pi}{5}$

(N) (Γ) (Γ) (Σ) (Σ)

 $\chi_{\varepsilon} \qquad \chi_{\varepsilon} \qquad \chi_{\varepsilon$

(M) = # > - + + + + - (-5 = " ~ - + -) - = 3 = Ω = = Ω Ω (- = 2' - "3.0")

α

Τρι α シーショニーマンション $\frac{(M)}{2} = \frac{(A)}{q} = \frac{(A$ ο ον υ προ 6α
(Δ)(Ε)(Ε) -- (-- (-) - 2, (N) - 4, 5, 5, 5, 5, 5 με ρι μνα $\Omega = \frac{3\pi}{5} = \frac{3\pi}{61} = \frac$ 25000 = 500 3% =2050202=22=22===6 με Βασιλε (N) (M) (F) (F) こうシュンニング(シラー

T $\alpha i \zeta \alpha \gamma \gamma \varepsilon \lambda i \quad \kappa \alpha i \quad \gamma \alpha i \quad \alpha i \zeta \quad \alpha \alpha i \zeta \quad$

$HXO\Sigma \Delta'$.

 $\ddot{\Lambda}$ $\Delta \tilde{\iota}$

1. Άπλοῦν, σύντομον. γε (M) (Δ) (r) (π) (ω) (ω) (ω) μυ (ω) - π (ω) μυ (ω) - π (ω) μυ (και τη ζω ο ποι ζω ο (M) (M) (A) ποι ω

ふっきにいいにの一でに以上は一川井にがり ニュッションサートが、ランショウカサールンランション 2) (2) (π) γι ον τρι 6α (π) γι ον らいこうならテンコぞんううとこう υ μνο ον προ εα δο ον τε εαντην ωι ο τι α πο θω με θα με ρι μνα αν α πο θω με θα με $\Omega = \frac{\partial \omega}{\partial x} = \frac{\partial \omega}{\partial x$ らってテンシニ(でシュテンショニー υ πο δε ξο με νοι T $\alpha i \zeta \alpha \alpha \gamma \gamma \epsilon \lambda i$ $\kappa \alpha i \zeta \alpha \circ \rho \alpha$ $\tau \omega \zeta$ دے دری کے اور دری کے ا δο ρυφο ρου με νον τα ξε 3347 (in A) An Aou 1 a a a Αλ λη λου ι

2. "Ετερον. $^{\prime}$ H χ o ς Δ' $\overset{\prime}{\ddot{\Pi}}$ $\Delta\iota$ O ((A) (M) (A) (A) (A) ラボ(キュニュニュニューラランシュニシン μυ ετι κω ως

μυ ετι κω ως ころでは、こうでは、こうでは、こうこうできている。 (N) EI KO VI $\langle O \text{ OV TE EC} \rangle \langle O \text{ K} \rangle \langle O \text{ T} \rangle \langle O \text{ K} \rangle$ 一元以のででいい。一年からなりコニー

υ μνον προ εα δο ον τε ες πα εαν την βι ο τι κην α πο θω με ς (M) «'Ως τόν Βασιλέα» σελ.218 $(\pi) \qquad (M) \qquad (\Delta) \qquad (\Delta)$ (M)(g) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}$

$$(r)$$

$$\alpha$$

$$3. "Ετερον.$$

$$Hχος Δ' Λέγετος βου$$

$$(β)$$

$$3 = (β)$$

$$3 = (β)$$

$$3 = (β)$$

$$3 = (β)$$

$$4 = (β)$$

$$4$$

いっこうごとこれがいいっこう LETPI a SI TOV TPI 60 (6) γι ον υ μνον προ εα δο οντες Ω ς τον βα 61 λε α των ο λω らいてーデニンシングランジ ων υ πο δε ξο T $\alpha_{\text{IC}} \alpha_{\text{AVYE}} \lambda_{\text{I}} \alpha_{\text{YYE}} \lambda_{\text{I}} \kappa_{\text{AI}}$ (M) $\frac{1}{14}$ $\frac{A}{N}$ (A) $\frac{3}{12}$ $\frac{5}{12}$ $\frac{4}{12}$ $\frac{7}{12}$ $\frac{7}{12}$ ρυ φο ρου με νον τα ξε 6ι ιν Αλ An hou l

4. "Ετερον.

Σύντομον Πανηγυρικόν. Ήχος Δ΄ (A) (M) (A) (A) (B) 25 13 (β) 25 (γ) β 1 C C (M) (Δ) χε $\frac{5}{5} = \frac{2}{5} = \frac{2}{5} = \frac{1}{5} = \frac{1}$ κω ως ει κο VI ει κο VI ζον ζωο ποι ω Τρι α C, 53, 513 5 5 5 5 7, 4 5 5 7, 4 5 5 7, 4 5 5 7, 4 5 5 7, 5 5 7, 5 5 7, 5 5 7, 5

ην βιο τι κη ην απο θω με θα με ρι
(π) (Μ) A: A μνα $\Omega = \frac{1}{2} \sum_{\alpha} \frac{1}{\alpha} \sum_{\alpha} \sum_{\alpha} \frac{1}{\alpha} \sum_{\alpha} \frac{1}{\alpha} \sum_{\alpha} \frac{1}{\alpha} \sum_{\alpha} \frac{1}{\alpha} \sum_{\alpha} \frac{1$ Τ αις α αγγε λι καις α ο ρα (Δ) τω ως η δο ρυ φο ρου με νον τα

Άνδρέου Μοναχοῦ Άγιορείτου. Δ Ήχος Δ΄ ξι Δι 说 0 ティニーコミニニュニッジーレイー C = " 3" C A D = " C C (M) 20 - 100 = 1 $(\Delta) \begin{array}{c} \zeta \omega \\ (\Delta) \end{array} (\pi) \\ (M) \\ (K) \\ ($ ر در المراب الم

τον τρι 6α τον τρι $\epsilon \alpha$ (β) (ην α πο θω με $\Omega^{(\Delta)} \xrightarrow{(M)} (M) \xrightarrow{(\Delta)} (\Delta) \xrightarrow{\Gamma} (\Delta$ $(4)^{\frac{3}{2}}$ (M) (M) (M) (M) (M) (M)λωων υ πο δε ξο με

«Ταῖς ᾿Αγγελιχαῖς», σελ.218

Θρ. Στανίτσα.

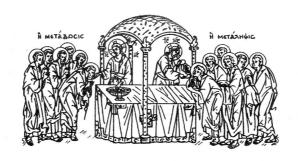
ΤΗχος Δ΄ ζι Δι Α γι α α κι (β)

Ο ι τα Χε ρου ου

こうらいないこうにこうにいる " () ς ες ες και ες κ τη ζω ο ποι η α (κ) τ (κ) τ (Δ) α α α δι Τρι α δι δι τον τρι 6α (4) 5 (4) (A) 2 (B) (M) (M) $\frac{1}{(\Delta)} = \frac{1}{(\Delta)} = \frac{1}$ βιο τι κη TI

(M) PI $\Omega = \frac{(M)}{4 - \frac{3}{3}} = \frac{(A)}{3} = \frac{3}{4 - 1} = \frac{3}{3} = \frac{$ T α_{i} $\alpha_$ 5 τως δο ρυ φο ρου με (β), τως (β) τω VOV $\tau \alpha$ $\xi \epsilon_{(r)}^{(\Delta)}$ $\xi \epsilon_{(r)}^{(M)}$ $\xi \epsilon_{(r)}^{(M)}$ A AA An Aou I a a a a

Θ. Φωχαέως. Ήχος Δ΄ Κ΄ Δι O (A) (M) (A) 255 = 350 = 350 = 350 = 350 一二ラランニューニューショニーラッドー ζο ον τε ες και


· ニュニュニューラックノートロックー - 22 ξ 22 - - (-2 (-2 2 2 2 - - 3) (2)
(W) την βι ο -= 155025 = 522 = 222 = 100 = (A)

Πέτρου 'Εφεσίου († 1840). Ήχος Δ΄ Κ΄ Δι 「一点 3 元 コンコラーシーショー ロ d 12 (3) CE C 55 20 20 3 5 (N) 2525(-5-20) 2525 = 2535 = 2555 χ_{ε} bon g_{ε} χ_{ε} bon χ_{ε} bon χ_{ε} χ_{ε} ニュニュール(ーローニョン(デュ(ーュニュ

$$(M) = \begin{pmatrix} (A) \\ (A$$

 $\frac{4}{13}$ $\frac{13}{15}$ $\frac{1}{15}$ $\frac{1}{15$

«'Ως τόν Βασιλέα» κλπ., σελ. 218 Θ. Φωκαέως, σελ. 231

Catalanta and a second a second and a second a second and a second and a second and a second and a second and

 $\begin{array}{ccc} HXO\Sigma & \Pi\Lambda.\,A'. \\ \frac{\lambda}{\pi} & \ddot{\mathsf{q}} & \Pi\alpha \end{array}$

 $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n$ 1. Άπλοῦν, σύντομον. (π) $(N)(\pi)$ $(N)(\pi)$ (N)((π) (π) $q = \frac{(\pi)}{\kappa}$ $\epsilon = \kappa \circ VI$ $\epsilon = \kappa \circ VI$ =シンタニックランタのとは、アンニーランニータ $(\kappa)(\Delta)$ $(\kappa)(\kappa)$ $(\kappa)(\kappa)$ $(\kappa)(\kappa)$ $(\kappa)(\kappa)$ $(\kappa)(\kappa)$ $(\kappa)(\kappa)$ $(\kappa)(\kappa)(\kappa)$ $(\kappa)(\kappa)(\kappa)$ $(\kappa)(\kappa)(\kappa)(\kappa)$ $(\kappa)(\kappa)(\kappa)(\kappa)(\kappa)$ ω και τη ζωο ποι ω (K) #(= = 13-5)=51-1, (5:1. 410: = =

 $(A) \qquad (F)(A) \qquad (F)(A) \qquad (G)(A) \qquad (G)($ τον τρι 6α (π) πα 6α αν τη ην βι ο τι κην α πο θω με コロシーニッコロニュニ θα ρι μναν $\Omega = \frac{(\kappa)}{\varsigma} = \frac{1}{\varsigma} = \frac{1}{\varsigma}$ "(2) 2 2 2 2 2 2 " = 2 2 [(2, = 2) = 6. λων υ πο δε ξο Τ αις α αγγε λι καις α ο ρα τω ως δο シニューニュニュラシュラ シュューシャ ρυ φο ρου<math>(κ) (κ) (κ(N) (π) $A\lambda \lambda \eta \lambda \partial u$ 30 7 2 - X 9

2. "Ετερον.

 $\frac{1}{\sqrt{2}}$ $\frac{(M)}{\sqrt{2}}$ $\frac{(Z)}{\sqrt{2}}$ $\frac{(Z)$ 第のコーシュランコナーランタコ イー 2 イージ رى ى كى شود د 9 Ω Θος το ον βα 61 λε α των ο $T = \begin{cases} \frac{4\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3}$ ころころによるなない。 τως δο ρυ φο ρου ο ρα Αλλη λου

3. "Ετερον.

Σύντομον Πανηγυρικόν. ή Τχος πλ. Α΄. χ π トラーニッショ 台にデニュシーニ ニックにうこういましょういきょうっつ (A)(K) -(-5) - (-5) + (-6) +ニンラーニン(一たのが)ンジニッタンショハーマショ «'Ως τόν Βασιλέα», σελ. 236

Νηλέως Καμαράδου († 1922).

$$(κ)$$
 $(α)$
 $(α)$

«Ταῖς ᾿Αγγελικαῖς», σελ. 236

Κ. Πρίγγου.

6 & 1 + C = 1 C = 2 C = 2 (- 2 (- 2 () 2) - 1 3 1 + 1 2 # 5 + 1 4 # 5 + 1 0 # 0 + 38 12 (Δ)(κ)(π), σ προ 6α δο 0 7ε ες πα 6αν (π) πην βι ο τι κη ην α πο θω (κ) (π) $(\kappa)(\pi)$ よったっパールーのうったったったっちゃ C--3-C+C|-#05-4-C **\$2** ς τον Βα οι λε α των ο ラニュンロニールのうらによしここ δε ξο T $\frac{(\pi)}{\alpha i \zeta}$ $\frac{(\kappa)}{\alpha}$ $\frac{(\kappa)}{\alpha$ 250 " HI - 1 - " 250 " 250 " - " 5 22 τως δο ρυ φο ρου με

$$\begin{cases} \xi \varepsilon & \text{siv} & \text{A} \lambda \lambda \eta \lambda \text{out} & \alpha & \alpha & \alpha \\ & \Theta \rho. & \sum \tau \alpha v (\tau \sigma \alpha). \\ & H \chi o \varepsilon & \tilde{\pi} & \tilde{q} & \Pi \alpha \\ & \chi & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \chi & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \chi & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \chi & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \chi & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \chi & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} & \tilde{q} \\ & \tilde{q}$$

حَرِيء م + مِن اَي جَوْر اَيْ اَيْ اَيْ اَي - مِن مِنْ عَالَى اللهِ المِلْمُلِي المِلْمُلِي المِلْمُ α Lε Τρι α δι τον τρι 6α

(Γ) (Δ) (Ζ)

γι ο ον υ μνον προ 6α うしてうしつ 井にゅしゃいっナニョニニってしっちし $\frac{1}{2} \stackrel{4}{\sim} \stackrel{7}{\sim} \stackrel{7}$ (こうごでいいのうきのうこともいうだ πο θω - (α) = (π) = (π) = (π) = (π) **()** ς τον βαει λε α των ο 9 πο δε ξο $T = \frac{(\pi)}{\alpha_{1}} \frac{\pi}{\alpha_{1}} \frac{(\kappa)}{\alpha_{1}} \frac{\pi}{\alpha_{1}} \frac{\pi}{\alpha_{1}} \frac{\kappa}{\alpha_{1}} \frac{\pi}{\alpha_{1}} \frac{\kappa}{\alpha_{1}} \frac{\pi}{\alpha_{1}} \frac{\kappa}{\alpha_{1}} \frac{\pi}{\alpha_{1}} \frac{\pi}{\alpha_{$ ρα τως δο ρυ φο ρου με νον

Σωκράτους Παπαδοπούλου († 1954).

332 — (C; 2 + ~ 2) 5 = (9) (K) (V) (V) (V) καιτηζω ο (κ) (м) (π) (π) (π) (π) 三点の一点一点一点 できる スニュンシュ サ デンラーの ニーンショーンシーン (でき $(m) \qquad (a) \qquad (a) \qquad (b) \qquad (b) \qquad (c) \qquad (c)$ (M)
προ 6α (δο ον τε
(Δ) (π) (Δ) ٥٠٠ المالية ες πα εααν τη ην βι ο (K) $(A)(K)^{p_1}$ (M) (M)μνα

Πέτρου Ἐφεσίου († 1840).

 $\frac{\zeta}{\zeta} > \frac{\zeta}{\zeta} = \frac{\zeta}$ 220年に51一二二二二十二十二日 (W) (K) >(π)
3 π > ラニッスは一手とんっとしてたんできんコンナニンで VI $\langle OV TE (K) \rangle \langle OV TE \rangle \langle OV TE$ 分言に事とした。ころらに一下スロッで (k) (k) (k) (k) (k) (k)

Θ. Φωχαέως (κ) (κ) (κ) (δ) (κ) (δ) (δニョラーニュニッションラーニーリーサー $\frac{1}{2} = \frac{1}{2} = \frac{1}$ しょうこうこ uε Τ αις αγ γε λι αγ γε λι και αις α ο ρα τως δο (Δ) (π) α $(\alpha$ α α α α α ρυ φο ρου με νο ον τα αλ λη λου (π) الحدد عد عد وحي ياردي ي

Θ. Φωκαέως.

 $\frac{(\pi)}{2} = \frac{3}{5} = \frac{1}{5} = \frac{3}{5} = \frac{$ 3(K) 35 (-5 (-5 (-5)- (-5)) (-5 (M) $\Gamma(\Delta)$ (Δ) (Δ) προ 6α δο μνονπρο προ 6α $\frac{1}{6\alpha} = \frac{1}{80} = \frac{1}{80}$ ο τι κη ηη ην α πο > " " - " = " > 5 (- 5 = - = " > 5 (- 5 =

ΗΧΟΣ ΠΛ Β'.

λ ... Πα

1. Άπλοῦν, σύντομον. (π) جة براء عروي με χε α με ες ρου βι ιμ μυ ετι κω ως νι 一一一一一一一一一一一一一一一一一一一一一 EL KO VI シンシュージャ エノーハー こうションナー ποι ζωο ποι ω (m) (m) (n) (n) (n)

$$(κ)$$
 $(κ)$
 $(κ)$

2. "Ετερον. Hχος $\overset{\lambda}{\pi}$ $\overset{\circ}{\dots}$ $\overset{\circ}{\Pi}\overset{\circ}{\alpha}$ چے ہے۔ عار حی ت $(\cdot, \frac{1}{2} - \frac{\pi}{4} - \frac{\pi}{2}) = \frac{\pi}{4} + \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{4} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{4} =$ عار ج کی ہے ۔ و ع ع ع ع کے رح نے کردے کردے کارہ (-2) + - 25(2) $\frac{1}{2}$ $+ \frac{1}{2}$ $\frac{1}{2}$ $\frac{1$ χ_{ϵ} pov g_{ϵ} in g_{ϵ} g_{ϵ} VI (ο ον ΤΕ Ες ΚαΙ Τη (ω ο τη ζω ο ニックッニョッ(シュニ・ナッデー、こ(ー)

ー1シュニッシーン: (κ) Tρι α σ = 1 = 1 = 200 (= 2 = 2000 + 2 = 1 = 2000 + 2 = 1 = 2000 + 2 = 1 = 2000 + 2 α πο θω με θα 気にででいずった いるだいこの πο δε ξο δο ρυ φο ρου

$$\frac{(n)}{(n)}$$
 $\frac{(n)}{(n)}$
 $\frac{(n)}{(n)$

Σύντομον Πανηγυρικόν. Ήχος πλ. Β΄. ζ 🛣

サンションショーニーニョンのできょうころの ου γιοον υ μνοον προ 6α
(Ν) (π) ου γιοον τε ες πα επ-コンダチー こ 【一 2 一 三 2 一 一 二 . . . με θα με ρι μνα (π) Ως τον βα 61 λε α τωων (N) λων υποδεξο με νοι

π. Γεωργίου Σχουρτανιώτου (1998).

 $\frac{1}{\kappa\eta}$ $\frac{\pi}{\eta}$ \frac μνα αν Ω ς τον βα ει λε α των ο λων υποδε νοι «Ταῖς Άγγελικαῖς» σελ. 257

Δημητρίου Π. Μανούση (1996).

Πρωτοψάλτου Άγ. Γεωργίου Νεομάρτυρος, πολιούχου Ίωαννίκων.

ع د چ مرادی تر دی کی می این در ع... ع فر م الم ع الله ع ا μνον προ οα οα οα οα οα ον προ οα ον τε ον ον τε ον ον τε ον ον ον τε ον οκη ην α πο θω με θα με عشراء تحشراء تم مرحد د μνα Ως τον βα 61 λε α τω ο λων υ πο δε ξο με νοι Τ αις α αγ γε λι και αις α ο ρα

Θρ. Στανίτσα.

$$(M)$$

Ά. Κυριαζίδου.

 (M) (M) (A) (M) (A) (M) (A) (A)

Δ. Ι. Παναγιωτοπούλου - Κούρου († 2001).

$$(\alpha)$$
 (α)
 (α)

Θ. Φωκαέως. $^{\tau}H$ χος $\overset{\lambda}{\pi}$ $\overset{\dots}{\dots}$ $\overset{\overset{\infty}{\Pi}\alpha}$ $O_{S_1 \xrightarrow{\mu} \mu} (\pi) (M) (\pi)$ $(\pi) (M) (\pi)$ $(\pi) (\pi) (\pi)$ $(\pi) (\pi) (\pi)$ $(\pi) (\pi) (\pi)$ $(\pi)(n)$ $(\pi)^3$ ٠٠٠ - ١٠ - ١٠٠ - ١٠٠ - ١٠٠ - ١٠٠ - ١٠٠ - ١٠٠ - ١٠٠ - ١٠٠ - ١٠٠ - μυ 6τι κω ως ει κο νι (α ον τε ες (πα) ει κο νι (π) ει κο νι (π) っとててデニュロッデニュンシーデュ

2 τρ 3 ξ = 5 (κ) (κ) (cc 3 2 c 1 2 c (M) 5π(c 5 ε κ ε (Δ) σον τρι εα γι ον υ (でとこか) ニューションニーマ μνον προ 6α μνον 222 " = 2 x 0 c (x) 22 2 ... 9 (K) ο τι κη ην α πο θω με θα シャナンルーシイーシイーショランだっ 2--1-2(c2(2),"=2 $\Omega^{(\pi)} \xrightarrow{(\alpha)} \sum_{\alpha \in \mathbb{Z}} \sum_{\alpha \in \mathbb{Z}}$ $\chi_{\epsilon} = \frac{(M)}{2\pi} \frac{(K)}{2\pi} \frac{\pi}{2\pi} \frac{(K)}{\pi} \frac{\pi}{2\pi} \frac{(K)}{\pi} \frac{\pi}{2\pi} \frac{\pi}{$ $\frac{(\pi)}{\lambda \epsilon} = \sum_{i} (M) = \sum_{\alpha} (\pi) = \sum_{i} (\pi) = \sum_{\alpha} (\pi) = \sum_$ α $T = \begin{cases} \frac{\partial \varepsilon}{\partial x} & \frac{\partial \varepsilon}{\partial$

ΗΧΟΣ ΒΑΡΥΣ.

 $\approx Z\omega$

«Ταῖς ᾿Αγγελιχαῖς» σελ. 278

2. "Ετερον.

εα γι ο ον υ μνο ον προ εα $-+\frac{1}{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\gamma} \sum_{\beta} \sum_{\gamma} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha}$ The second seco α πο θω με θα με ΄ς Ο - Ε Ο Ε΄ Ε΄ Κ΄ Ος τόν Βασιλέα» χ΄ T αι αις α αγ γε λι καις α ο ρα τω ως δο ρυ φο ρου 15 35 35 = 5 1 = 5 5 = 5 = 2 = 4 Aλ λη

με νον τα ξε ειν Αλ λη

3. "Ετερον.

Hχος Βαρύς
$$= Zω$$
 $= Zω$
 $= Zω$

3 = 5 > 5 π = 1 4 π (-5 1 (-5 (-5 π) π) π τρι α (M) (M) (A) (A)(Δ) μνον προ 6α με (M) 31311 = 3 μνα αν (Z) Ω ς τον βα ει λε α των ο λων

4. "Ετερον.

Σύντομον Πανηγυρικόν. "Ηχος Βαρύς. 45001055 Z le (Z)O 1. c = 22 = - (- 26 - 22 - " " (M) (π) 3, π >> 1 + (- - - 1) ε (z) ε (z) ε (z) ε (π) ε (π) (Z) (M) (Z) (π) (Z)

Θεοδοσίου Γεωργιάδου.

THXOS Bapis
$$Z\omega$$

THXOS Bapis $Z\omega$

TA

 $Z\omega$
 $Z\omega$

προ 6α δο υ μνον προ 6α δο ον τε ες

προ 6α δο υ μνον προ 6α δο ον τε ες

$$\frac{Z}{Z}$$

πα

 $\frac{Z}{Z}$

πα

 $\frac{Z}{Z}$

πα

 $\frac{Z}{Z}$
 $\frac{Z}{Z}$

«'Ως τόν Βασιλέα» κλπ., σελ. 276, 278

Θ. Φωκαέως.

こーでいていいいいいっこうにっちーゲー $33 \frac{\pi}{2} \left(-25 \left(\frac{3}{3} \right) \right) = 32 \frac{\pi}{2} 3 \frac{\pi}{2} \frac{$ 313 (65013665656566 2 = - - 2 2 2+2 = 2 × 2 × 2 × 2 = - = 2 (2) ディッグルでいることでは、(Z)

η ς 4 ς 5 ς 5 ς 5 ς 5 ς 2 χ μνον προ 6α δο ον τε ες πα εαντη ην βι ο τι κη ην αποθω => 1 2 40 \ (N) = 2 ρι μνα αν $\Omega = \frac{\int_{\alpha}^{\beta} \int_{\alpha}^{\beta} \int_{\alpha}^{\beta$ ٥١٥٥ عن الله ع الله عن الله ع = >1>C > 4 = 5 = 44 = 5 = 5 > λων υ πο δε ξο με αις αγγε λι αγγελικαι

HXOΣ ΠΛ. Δ': $\overset{\lambda}{\pi}$ $\ddot{\beta}$ Nη

1. Άπλοῦν, σύντομον. $(N) = \frac{1}{(N)} = \frac{1}{(N)}$ ρου βι ηι (M) μυ ετι κω ως ει κο νι ζο ει κο νι ζο (N) ποι ω (Δ) TOV TPI 60

(Δ) (Ν) (Δ) (Ν) (Δ) (Ν) (Δ) (Ν) (Δ) (Ν) (Φ) (Φν' Ω - : 25 5 5 - ε 5 5 5 5 6 (N) με ρι η α πο θω με (Δ) (N) (M) Σίος Σ μνα (N) Ω ς τον βα ει λε α τω ων ο λωωι υ πο δε ξο με νοι (Δ) ň $T = \frac{(N)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (A)$ $\frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) (CS)$ $\frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) (CS)$ $\frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) (CS)$ $\frac{(A)}{(N)} (SS) (CS) = \frac{(A)}{(N)} (SS) = \frac{($ χ̈́ 2. "Ετερον.

THXOS
$$\frac{\lambda}{\pi}$$
 $\frac{1}{3}$ $\frac{1}{3}$

>== == 10 == >> (> 5.0 += (v') = = = = > > 5 (M) (M) (TOV τρι 6α γι (π) (π)επισς τος -+ = 3 + τος = 3 τος + τη δο ον τες δο ον τες πα 6αν τη βι ο τι κη ニュッショニショニショニューション $\theta\omega$ $\mu\varepsilon$ $\theta\alpha$ (M)22+=222= ň πα 6αν με ρι μναν アルーでランシンシューー 3になら βα 61 λε (μ) (π) α (N) τω ων ο
λω ων υ πο δε ξο με λε σ νοι $T = \begin{cases} (N) & (N) \\ \alpha & (N) \\ (N) & (N) \end{cases}$ $= \begin{cases} (N) & (N) \\ (N) &$ λ_1 Kal

5 π α επ ς α (Δ) (N) ες γ Δ ς σ πη τη τη (Δ) 3 Γ 2 2 1 4 (- - - 1 (- - 2) 5 ζω ο ποι ω ή τρι α これにいる。 かんこう でんだって αν «'Ως τόν Βασιλέα» κλπ., σελ. 290

4. "Ετερον.

με (A) Ω ς το ον βα 61 λε υ τ ξο κε ξο με με «Ταῖς ᾿Αγγελιχαῖς», σελ. 290

Έτερον.

THXOS
$$\frac{\lambda}{\pi}$$
 $\frac{\lambda}{3}$ $\frac{N\eta}{N\eta}$ $\frac{$

- 5 11th = 10 = 5000 1^α (N) (F) (Δ)

Lε Τρι α δι οι γι ο ον υ (A) TE EG $\pi\alpha$ $6\alpha\nu$ $\tau\eta\nu$ 610 τ $\kappa\eta\nu$ α (π) (π) πο θω με θα $\sum_{\alpha \nu} \frac{1}{\alpha \nu} \sum_{\alpha \nu} \sum_{\beta \nu} \sum_{\alpha \nu} \sum_$ 2(-2(2) = X «Ταῖς ᾿Αγγελιχαῖς», σελ. 290

6. "Ετερον.

$$T = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}$$

Δ. Ι. Παναγιωτοπούλου.

(Δ)(N)
((M) (A) (A) (C) (C) (A) (A) وم - <u>عزیر عوات عیر عوات کی بری کی کے دی</u> + ری TOV TPL 600 γιο ον υ (Δ) (N) (-1-5-4, 1) 1 = - (-5-5-5-5-302+3

με ρι μνα αν πα εαν με ρι μναν $\Omega = \frac{(h)}{\zeta} + \frac{(\Delta)}{\zeta} = \frac{1}{\zeta} = \frac{1}{$ Τ αις α αγγε λι καις α ο ρα τω ως δο ρυφο ρου με νον τα ξε ει (A) (N) (M) (N) (N) (π) (N) (π) $= \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1$

Θρ. Στανίτσα.

 $\frac{5}{6} \frac{1}{2} \frac{1}$ ρι μνα $\Omega = \frac{(N)}{\varsigma \text{ TOV } \beta \alpha \text{ 61 } \lambda \epsilon} = \frac{(\Delta)}{3} = \frac{\pi}{3} = \frac{3}{3}$ λων υ πο δε ξο με νοι مروح و N T $\alpha_{i,\zeta} \alpha_{i,\gamma} \gamma_{\epsilon}$ λ_{i} $\kappa_{\alpha i}$ $\gamma_{\alpha i}$ αις αορα τω ως δορυ
(β)
(Ν)
(Ν)
(Δ)
(Ν)
(Δ)
(Ν)
(Δ)
(Ν) --- ξο 3 πον τα ξε 61 5 = 1 × A AA AA AOU I a a 5= 0 (= = =

Θ. Φωκαέως.

THXOS
$$\frac{1}{\pi}$$
 $\frac{1}{3}$ $\frac{1}{3}$

$$(P)(A) \qquad \alpha \qquad (M) \qquad (A) \qquad (A)$$

TOV Ba GI AE (N), >>(C) = (A) αις α αγ γε λι τως δο ρυ φο ρου με νον τα ξε

ΕΤΕΡΑ ΧΕΡΟΥΒΙΚΑ

Έχ τῶν προηγουμένων

Μέ τήν φράσιν «Πᾶσαν νῦν».

Hyor A'
$$\ddot{q}$$
 \ddot{q} \ddot{q}

$$(Δ)$$
 $(π)$
 $(π)$

"Ετερον.

3 35 - 3 3 0 - 5 (- 5 (3) 4 (Δ) (Δ)

Tp1 α (Δ) ov τρι 6α γιο ον υ ον τρι 6α イナインになる10mmの一部を1-5mg μνο ον προ εα (r) (ν)

υ μνο ον προ εα δον τε Uε ες πα εαν νυ υν δ ωι ο (A) (A)Ω ς τον βα ει λε عدي ع - بردي چ دري ع - برداري Bac 61 2E νοι σε ξο με νοι Έτερον.

 $^{\tau}$ H χ o ς $\overset{\lambda}{\pi}$ \ddot{q} Π α .

 η

 $(3) \qquad (M) \qquad (\pi) \qquad (\pi) \qquad (\pi) \qquad (\pi) \qquad (\pi)$ $(\pi) \qquad (N) (\pi) \qquad (M) \qquad (\pi) \qquad$ EL KO VI ZO OV TE =シンタニックランでのデーンだった。 ランデータ

γι ο ον υ τον τρι 6α (π) $\frac{(κ)}{(ω)}$ $\frac{(π)}{(π)}$ $\frac{(π)}{(π)}$ πα 6α αν νυ υν δι ο τι κην α πο θω με 202-500 こうこう με ρι μναν θα (K), C C - = >>>>+ C (A) Ως τον βα ει λε α των "(2) 2 (2 (π) 2 (λων υ πο δε ξο ラニュニーニックコラシュラションニージ) > ½ > = ; ... ; π

"Ετερον. $^{\tau}$ H χ o ς $\overset{\lambda}{\pi}$ $\overset{\sim}{\dots}$ $\overset{\circ}{\Pi}\overset{\circ}{\alpha}$ چے عارميٰ $O = \frac{1}{\sqrt{2}} =$ $(N) \qquad (M) \qquad (M) \qquad (M) \qquad (Z)$ $(\Sigma) \qquad (M) \qquad (M) \qquad (Z)$ $(\Sigma) \qquad (M) \qquad (M) \qquad (Z)$ $(M) \qquad (M) \qquad (M) \qquad (Z)$ $(M) \qquad (M) \qquad (M) \qquad (Z)$ $(M) \qquad (M) \qquad (M) \qquad (Z)$ νι (ο ον τε ες και τη ζω ο (Δ)^{τη} ζω ο ニクラニーションニューシューノニーに ニュニュニューションニニュニニュ

 $\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^$ $\alpha \xrightarrow{\Sigma} \stackrel{\Gamma}{ } \stackrel{\pi}{ } \stackrel{\pi}{ } \stackrel{\Sigma}{ } \stackrel{\Sigma}{$ 気にでのいうがーニーにいるだっと βα 6ι λε πο δε ξο

«Ταῖς ᾿Αγγελικαῖς», σελ. 257

Νεχταρίου Θάνου.

6αν νυ υν βι ο τι $\int_{\Omega} \frac{(\Delta)}{\alpha} \frac{(\pi)}{\alpha} \frac{(\pi)}{\alpha$ Ω ς τον δα ει λε α τω ων ο λωων υ(M) A $T = \frac{(N)}{\alpha (\zeta \alpha \gamma \gamma \epsilon)} \frac{(\Delta)}{\lambda l} = \frac{(\Delta)}{\alpha \gamma \gamma \epsilon} \frac{(\pi)}{\lambda l} = \frac{(\Delta)}{\alpha \gamma \gamma \epsilon} \frac{(\pi)}{\lambda l} = \frac{(\pi)}{\alpha \gamma \gamma \epsilon} \frac{(\pi)}{\alpha \gamma \epsilon} \frac{(\pi)}{\alpha$ (N) (Δ) (Δ) د روية ف N

TH AFIA KAI MEFAAH HEMITH

'Avtí Xepoubixoū. Thxos
$$\hat{\pi}$$
 ... $\hat{\pi}$

Le

 χ_{ϵ}
 χ_{ϵ}

 $\frac{(\pi)}{(\pi)} = 3 + \frac{3}{5} + \frac{5}{5} + \frac{5}{5} + \frac{5}{5} = \frac{5}{5} = \frac{5}{5}$ $\frac{3}{5} + \frac{5}{5} + \frac{5}{5} = \frac{5}{5$ +(2) \\ \frac{\alpha}{\sigma} = (\sigma \frac{\beta}{\sigma} \frac{\alpha}{\sigma} ο λη 6τη ης ο μο (κ) (Δ) (κ) ο ης ο μο λο γω ع ع ع ح ش - (ح ني ع - حري ع رع ع م م ي م ر ح (۳) (۲) (۲) (۲) ο μο λο γω ラスラーでに ラッション マーション 5 ρι μνη εθητι μου Κυ CCCOC - κυ ρι ε εν εν $(\frac{4}{2})\frac{3}{6}\frac{(\Delta)}{(\Delta)}$ 2 = 2 = 21 (c) = - 1 = 0 = - x = 20 ج- درديد

ΤΩ ΑΓΙΩ ΚΑΙ ΜΕΓΑΛΩ ΣΑΒΒΑΤΩ CC = 3 20130 = 2122= 243 $\frac{1}{2} \left(\frac{1}{2}\right) \frac{1}{2} \left(\frac{1}{2}\right) \frac{3}{2} \left(\frac{1}{2}\right) \frac{3}$ $\frac{\pi}{\pi}$ $\frac{\pi$ τω η με τα φο 6ου και τρο και τρο μου = 26= 26= 26= = = 52= = 52= = 52

- (A) (M) - (K) K CO >> > 5 2... > ... ον των και Κυ ρι ος τω ων $(\Delta)(M)$ κυ ρι ευ ο ον των προ 6ε ερ χ_{ϵ} $\tau_{\alpha i}$ $\tau_{\alpha i$ $\frac{1}{2}$ και δο θη $\frac{(\Delta)}{2}$ γαι ει εις βρω 2" ξ(π) = 13 (2) + (-25 = = = = 2) γου ουν ται δε του του οι χο του οι χο (Δ)(κ)(Δ) (κ) ノーマラニュランスララー των αγ γε pol (Δ) (K) $\frac{3}{6} \frac{\pi}{3} \frac{5}{3} \frac{\pi}{3} \frac{\pi}{3} \frac{3}{1} \frac{\pi}{3} \frac{3}{1} \frac{\pi}{3} \frac{3}{1} \frac{\pi}{3} \frac{3}{1} \frac{\pi}{3} \frac{3}{1} \frac{\pi}{3} \frac{3}{1} \frac{\pi}{3} \frac{\pi}$

$$\frac{(M)}{(A)}$$
 $\frac{(A)}{(A)}$ $\frac{(A)}{(A)}$

^{*} Άπαντα τά τῆς Προηγιασμένης, ὅρα: «᾿Αγγελικός χορός», τόμος Α΄, Ἑσπερινός, σελ. 285 κ. ε.

ΛΕΙΤΟΥΡΓΙΚΑ

HXOΣ A'. $\stackrel{L}{q}$ Πα

$$(π)$$
 $(π)$
 $(π)$

3. $\prod_{\alpha} \alpha \qquad p\alpha \in \chi \circ U \qquad K_{\alpha} \qquad p_{\alpha} \in \chi \circ U \qquad p_{\alpha} \in \chi $	π΄ ji
4. $\prod_{\alpha} (N) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi$	Ϋ́,
$5. \prod_{\alpha} (A) \xrightarrow{\rho} (A) \xrightarrow{\delta} (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)$	Ä
6. $\prod_{\alpha} (\alpha) = \frac{\alpha}{2\pi} (35) = \frac{\pi}{2} (35) = \pi$	π 9
Y $(π)$ $πε ρα γι α θε ο το κε εω εον η μας (π)$	к 9
Σ οι Κυριε Α μην	9
\mathbf{K} α ι τω πνευ μα τι 60υ $\mathbf{g}^{(\Delta)}$ \mathbf{K}	π 9
Α γα πη εω εε Κυ ριε η ι εχυ	٥
ς μου Κυ ρι ος ετε ρε ω μα μου (π) (Δ) (π) και κα τα φυ γη μου και ρυ	₹ 1.
και κα τα φυ γη μου και ρυ	7.
και ρυ 6 της μου + 3 - 1 (3 5 - (3 5 C)	η q

 $\frac{2}{2} = \frac{(N)}{2} = \frac{3}{2} = \frac{(N)}{2} = \frac{9}{12} = \frac{(N)}{12} =$ ευ λο γη με νος ο ερ χο με νος εν ο νο \mathcal{L} \mathcal{L} やんこうとんうころ $A \stackrel{\delta^{(n)}}{\widetilde{S}} 5 (-5 - \overset{\sim}{\smile})$ ک در اسمال معلم المعمل الم Σε ευλο γου μεν Σοι ευ $\xi_{\rm I}$ ov ε $\varepsilon_{\rm I}$ $\varepsilon_{\rm I}$

κον την α ει μα κα (π) πα να μω μη το ον και μη τε ρα η μων την τι μι ω τε των χε ρου ωι ιμ και εν δο ξο τε των χε ρου -102-1020 = doc == 2120 = 2.150 = 2.100 ραν α ευγ κρι - ο τ΄ ο ε ον Λο γον τε κου με γα Σε με γα λυ ر-565 دروت ق 9

"Ετερα.	
Ήχος Α΄ Ϋ Πα	π
$\frac{(\pi)}{2} = \frac{(\pi)}{3} + \frac{(\pi)}{2} = \frac{\pi}{3} $	ग
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Å
3. $K = \frac{\lambda}{\nu} = \frac{\lambda}{\nu}$	<u>\$</u>
4. K $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	ง' 11
5. Κ υ ρίε ε λε η 60ν	η
$\prod_{\alpha} (\pi) (N) \qquad (\pi) (N) $	71
$2. \prod_{\alpha \in A} (\pi) (N) (\pi) (\pi) (\pi) (\pi)$ $2. \prod_{\alpha \in A} (\pi) (\pi) (\pi) (\pi) (\pi) (\pi)$	Ä
3. Π α ρα εχου Κυ ρι ε	Ä
4. Π $\alpha \rho\alpha \epsilon \chi \circ \upsilon K \upsilon \rho \iota \epsilon$ $\alpha \rho\alpha \epsilon \chi \circ \upsilon K \upsilon \rho \iota \epsilon$ $\alpha \rho\alpha \epsilon \chi \circ \upsilon K \upsilon \rho \iota \epsilon$	77 77
5. $\prod_{\alpha} \frac{3}{\rho \alpha} \sum_{\alpha} 3$	∱

200 200 2 αν αι νε σε ως Ε χο μεν προς τον Κυ ρι ον $A = \begin{cases} (\Delta) & (\Delta)$ $\frac{\pi}{q}$ A

γιος Α γιος Κυ

ριος Σαββα ωθ πλη ρης ο ου ρα νο ος και η γη της δο ξης 60υ ω 6αν $\frac{1}{\sqrt{\alpha}}$ $\frac{$ τ_{i} κ_{i} ρ_{i} σ_{i} σ_{i

A

$$(\pi)$$
 (π)
 (π)

3 35 - - - 35 - - 35 - - 35 - - 36 - 31 του θε (N) (π) (π) (π) (π) (π) (π) (π) (π) (π) 6ι ιμ και εν δο ξο τε ραν τω ως των Σε α ευ υγ κρι την α δι α φθο ρως θε ο 2+ = 20 " " = 2 = 2 = 3 = 3 = (K) ον Λο γο ον τε κου " ω = ½ + ω = ½ + (π) ; = ω

"Ετερα. Ήχος Α΄ Ϋ Πα π $(M) (\pi)$ $0 \text{ pi } \epsilon \quad \epsilon \quad \lambda \epsilon \quad \eta \quad 60V$ 5.K (π) $(N)(\pi)$ $(N)(\pi)$ $(\pi)(\pi)$ α ρα εχου Κυ ρι ε N (N) (T) 2. Π α ρα εχου Κυ ρι ε 77 (N) (π)
α ρα εχου Κυ ρι ε 4. Π α ρα εχου Κυ ρι ε 5. Π · α ρα εχου κυ ρι ε 22

$$(κ)$$
 $(κ)$
 $(κ)$

 (π) $(N)(\pi)$ $A = \begin{cases} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y$ 77 9 (π) (π) $A = \frac{(\pi) (N)(\pi)}{\xi_1 \text{ ov } \epsilon \text{ 6TL iv } \omega \text{ } \omega \epsilon \alpha}$ λη θω ως μακα ρι ζει ειν Σε

την θε ο το α ει μα κα ρι 6το ον και πα να = 125/21/2/2 3/2-10-2 μω μη τω ως τω ων Σε ρα φιιμ την αδι α φθο ρως θε ο ον Λο γοι つだったこのですらして でんこう εαν την ον τως θε ο το TE KOU 22(C\(\frac{\pi}{\pi}\) 2 \(\frac{\pi}{\pi}\) 2 \(\frac{\pi}{\pi}\) 2 2 2 \(\frac{\pi}{\pi}\) 2 2 \(\frac{\pi}{\pi}\) 2 2 \(\pi\) \(\ (N) (N)VO

Β. Κ. Νιχολαΐδου Ήχος Α΄ Ϋ Πα υριε ε λε η 60ν η Κ υριε $(M)(\Delta)$ $\frac{3}{\epsilon} \frac{1}{\lambda \epsilon} \frac{1}{\eta} \frac{1}{60V} \frac{1}{\lambda} \frac{1}{\chi} \frac{1}{\chi}$ Κυριε ε λε η 60ν $\prod_{\alpha} (\pi) = \frac{3 \cdot \sqrt{3}}{\alpha} = \frac{3 \cdot \sqrt{4}}{\alpha} = \frac{3 \cdot \sqrt{4$ $\prod_{\alpha} (\pi) (\pi) (\pi) (\pi) (\pi) (\pi)$ $\alpha (\pi) (\pi) (\pi) (\pi)$ $\alpha (\pi) (\pi) (\pi) (\pi)$ $\alpha (\pi) (\pi)$ θεο το κε ω ω μας

Σ οι Κυριε 9 Α 31-10 9 K $\alpha 1 \tau \omega$ $\pi V \epsilon U \mu \alpha \tau \iota$ 600 71 9 Α γα πη 6ω 6ε Κυριε η ι 6χυυς μου $(\Delta)_{\rho}$ (π) Δ (π) Δ (π) Δ (π) (π) 2020 " = 2 = 2 = 2 = = μου και ρυ 6τη ης μου $\prod_{\alpha} \frac{(\pi)^{3}}{\pi} = \sum_{\alpha} \frac{3}{\pi} = \sum_{\alpha}$ 33 2050 9 Ε λε ον ει ρη γης θυ 6ι -- 3030 αν αι νε 6ε ως (π)

光のころ (π) Α γιος Α γιος Α γιος Κυριος Σαββα ωθ () = 200 -- 20 = 100 + = 2 = 3 πλη ρης ο ου ρα νο ος και η γητης δο ララでは 一つで うに つっし 一一 うじん ロー ω εαν να εν τοις υ ψι ετοις ευ λο γη με νος ο ερ χο με νος εν ο νο ματι Κυ ρι $A^{(\pi)} \overset{(\pi)}{\sim} \overset{(\pi)}{\sim} \overset{(\pi)}{\sim} A^{(\pi)} \overset{(\pi)}{\sim} \overset{(\pi)}{\sim$ χ Σ ε υ μνου μεν 6ε ευ λο γου (0) = (0)και δε ο με θα

 $(\Gamma \stackrel{\wedge}{\wedge} \frac{\partial \sigma}{\partial \sigma}) \stackrel{\circ}{\sim} \frac{\partial \sigma}{\partial \sigma} \stackrel{\circ}{\sim} \frac{\partial \sigma}{\partial \sigma}$

"Αξιόν ἐστιν.

Γρηγορίου Πρωτ., κατά ἐκτέλεσιν Β. Κ. Νικολαΐδου A ξι ον ε ετι ιν ως α λη θω ως μα κα ρι ζειν δε τη ην θε ο το $\frac{4}{3}$ $\frac{\pi}{4}$ $\frac{$ μη τον και μη τε ρα του θε ου -5 (c) = 1, (π, c) - - (-5" = 5+ C+2-222220-201-201-2016-2 τω ως τω ων εε ραν α ευγ κρι ρα φι iμ την α δι α φθο ρω ως $\frac{1}{10} \frac{1}{10} \frac$ $\frac{4}{5}$ $\frac{7}{5}$ $\frac{4}{5}$ $\frac{7}{5}$ $\frac{$

Έτερον. Συνεσίου Σιμωνοπετρίτου (1931).

Ήχος Α΄ Ϋ $A = \frac{\sum_{k=0}^{(\pi)} \sum_{k=0}^{(\pi)} \sum_{k=0}^$ κον την α ει μα κα ρι ετον μω μη - $\frac{4}{2}$ $\frac{3}{1}$ $\frac{4}{3}$ $\frac{4}{3}$ $\frac{3}{1}$ $\frac{3}{1}$ $\frac{4}{3}$ $\frac{3}{1}$ $\frac{4}{3}$ $\frac{3}{1}$ $\frac{3}{1}$ Έτερον. 'Ο κτάηχον. 'Αθ. Βουρλῆ (1976).

το ον και μη τε $(\pi) \qquad (N) (\pi) \qquad (\pi) \qquad$ $(\kappa) = (\kappa) = (\kappa)$ (Δ) (K) (K) (Δ) (Δ) $\frac{1}{\kappa \rho_{\rm I}} > \frac{1}{5} > \frac{1}{5$ $\frac{1}{2} \frac{4}{5} \cdot \frac{2}{2} \cdot \frac{1}{2} \frac{(\Delta)}{(\Delta)} = \frac{1}{2} \frac{(\Delta)}$ ρω ως θε ο ον Λο

 χq

Έτερον. Διαχευή έχ τοῦ ᾿Αραβιχοῦ.

⁴Ηχος ὁ αὐτός

 $\frac{3\pi}{100} \times \frac{\pi}{100} \times \frac{\pi$ bon gi ih kai en go ξ o te (κ) ? (κ) ? (m) 38 (π) κο ον Σε με γα ον τως θε ο το (r) (m) (π) 5 ... (C) λυ + 2" (π) ¹ - + 2" (π) ³ μ (M) ² π (M) (N) Lr 3 3 3 3 3 3 3

Έτερα. Μ. Ά. Χατζηαθανασίου († 1948)	
Ήχος Α΄ Ϋ Πα	π q
T (m) ここ・ - 3 コラン	n 9
υ ριε ε λεη 60ν	•
$2. K \stackrel{(\pi)}{\smile} c c + \frac{3}{\varepsilon} \stackrel{(\pi)}{\sim} \frac{3}{\varepsilon}$	77
2. U ρ_1 ϵ ϵ $\lambda \epsilon$ η $\epsilon o V$ (κ) $\frac{3}{2}$ (π)	
N -152+-53136	K
3.11 υριε ελεη 60ν	
ト ティーテンリング	π' 9
4. Λ υριε ε λεη 60ν (Δ) _{β 3} (π)	ĸ
5. K $ \begin{array}{c} (\Delta) \\ (\Delta)$	K:9
	π
$6.K = \frac{3}{2} = \frac{3}{3} = \frac{3}{3} = \frac{3}{50} = \frac{5}{10} = \frac{1}{10}$	9
$\frac{(\pi)^{3}}{5} = \frac{3}{5} = \frac{3}{5} = \frac{5}{5}$	ท
α ρα εχου Κυ ρι ε	9
(π) $\frac{3}{5}$ (π) $\frac{3}{5}$ (π) $\frac{3}{5}$ (π)	۲
2. Ι α ρα εχου Κυ ρι ε	77
$(\kappa) \qquad \qquad \frac{3}{5} \qquad \qquad \delta$	K : 9
3. Ι α ρα εχου Κυ ρι ε	9
(κ) 3 3 (π) (π)	K .: 9
3. $\prod_{\alpha} (\kappa) \frac{3}{\alpha} = \sum_{\alpha} (\kappa) \frac{3}{\alpha} = \sum$	

 (π) Ε λε ον ει ρη νης θυ ει α αν αι 23 25 5 5 6 9 $E \xrightarrow{(\Delta)} \chi_0 \underset{(\kappa)}{\text{hev proc toy Ku}} y_1 \xrightarrow{\delta \pi} y_2 \xrightarrow{\kappa} y_3 \xrightarrow{\kappa} y_4 \xrightarrow{\kappa} y_4 \xrightarrow{\kappa} y_5 \xrightarrow{\kappa} y_5$ Α γιος Αγιος Κυ ριος Σαββα $\frac{1}{2} \left(\begin{array}{c} \langle \Delta \rangle \\ \langle A \rangle \\ \langle A$ ωθ πλη ρης ο ουρα νος και η γη της δο ξης 60υ ω εαν να εν τοις υ ψι ετοις ευ λο γη με νος ο ερ χο με νος εν ο νο ματι Κυ ρι ου ω εαν να チョン しゃからいいにん ο εν τοις υ ψι (π) (N) (π) # A = = 5 (22 = 6

«"Αξιόν ἐστιν», σελ. 355

Έτερα. Τοῦ αὐτοῦ. Πανηγυρικά.

Ήχος Α΄
$$\ddot{q}$$
 Πα $\ddot{\chi}$ \ddot{q}

υ ρι ε ε λ ε η 60ν

2. Κ υ ρι ε ε λ ε η 60ν

3. Κ υ ρι ε ε λ ε η 60ν

4. Κ υ ρι ε ε λ ε η 60ν

 \ddot{q}
 \ddot{q}

«'Αγαπήσω σε Κύριε». Σύντομον, σελ. 350

Άργοσύντομον, σελ. 575. Άργόν, σελ. 585

 $\prod_{\alpha} \frac{(\pi)}{\pi} \frac{3}{5} \frac{3}{5} \frac{1}{5} \frac{2}{5} \frac{\pi}{5} \frac{3}{5} \frac{\pi}{5} \frac{2}{5} \frac{\pi}{5} \frac{\pi}$ ج فری کے اور ہے = سے کی دی دی دی کے اور ک μα Τριαδαομο ου ει ρl E ye or et by rich gir et ar at re $\frac{1}{6\varepsilon} \sum_{\omega \zeta} \frac{\pi}{q} K_{\alpha \iota} \frac{\pi}{\mu \varepsilon} \frac{\pi}{\tau \alpha} \frac{\pi}{\tau \omega} \frac{\tau}{\tau \omega} \frac{\pi}{\tau \omega} \frac$ Ε χο μεν προςτον Κυ ρι ον $\int_{(u)}^{u} \int_{(u)}^{u} \int_{(u)}^{u} \int_{u}^{u} \int_{u}^{u$ Α ξι ον και δι $\xi_{1} \text{ on } \kappa\alpha_{1} \text{ gr} \qquad \kappa\alpha_{1} \text{ on}$ $(\pi) \qquad (\kappa) \qquad (\chi) \qquad$ γιος Αγιος Αγιος Κυ Σαββα ωθ πλη ρης ο ου ρα νος και η γη της δο ξης εου ω εαν να εν τοις υ ψι ετοις ευ λο γη με νος ο ερ χο με νος εν ο νο μα τι Κυ ρι ου

ングに (4) (4) (K) (K) (A) ου η μων την τι μιω τε ραν των χε (κ) (π) (κ) (κ) (π) (κ) (π) (κ) (π) (π) (μ) (π) (μ) (π) (μ) ραν α ευγ κρι τω ως των Σε τω ων Σε τω ων Σε τω των τωνシニンパラーニ パッケージングラーニックーニー Λο γο ον τε κου $\frac{2\pi}{5}$ $\frac{\pi}{5}$ $\frac{\pi}{6}$ $\frac{$ 9

 $HXO\Sigma_{\Delta \iota}B'$.

$^{\circ}A\pi\lambda ilde{lpha}$	Δ
$U pi \epsilon = \lambda \epsilon \eta 60V$	ے ت
$\frac{2}{2} \left(\frac{\Delta}{\Delta} \right) \left(\frac{P}{\Delta} \right) \left(\frac{\Delta}{\Delta} \right) + \frac{3}{2} \left(\frac{2}{2} \right) \left(\frac{\Delta}{\Delta} \right) = \frac{2}{2} \left(\frac{2}{2} \right) \left(\frac{\Delta}{\Delta} \right) \left(\frac{\Delta}{\Delta} \right) + \frac{3}{2} \left(\frac{2}{2} \right) \left(\frac{\Delta}{\Delta} \right) \left(\frac$	ヹ゚
K = 20 -+ - (3 :5" = 2" = 2" = 2" = 2" = 2" = 2" = 2" =	۷′ ,۵ ^۲
3. IN 0 ple ε $\lambda \varepsilon$ η 600 4. K 0 ple ε $\lambda \varepsilon$ η 600 0 0 0 0 0 0 0 0 0	17
K 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ت:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۵
2. Π α ρα σχου Κυ ρι ε	Z' .;
3. $\prod_{\alpha} (\Delta) = ($	٧′ 8 *
4. Π α ρα σχου Κυ ρι ε	3.5

 $E^{(\Delta)}$ $\lambda \epsilon$ ov $\epsilon \iota$ $\rho \eta$ $\nu \eta \varsigma$ $\theta \upsilon$ $\epsilon \iota$ αv αι γε 6ε ως αι γε 5 <u>σ.</u> (5 5 <u>σ.</u> $K^{(6)}$ $\stackrel{(M)}{\rightleftharpoons}$ $\stackrel{(A)}{\rightleftharpoons}$ $\stackrel{(A)}$ E(Δ) (Μ)(Δ)
(Δ) (Ξ 3 Γ Ω
(Δ) (Ξ με εν προς τον Κυ ρι ον
(Δ)(Ξ) (Μ) (Δ) γιος A γιος A γιος Kυ ριος $\Sigma = \frac{3\pi}{5} = \frac{3\pi}{5} = \frac{7\pi}{5} = \frac{7\pi}$ -632-+ =12-=2226022=212 6701 019 εv λο γη με νος ο $\varepsilon \rho$ χο με νος $\varepsilon \rho$ χο $\varepsilon \rho$ $\varepsilon \rho$ € = - (-; " = (5 ; ο εν τοις υ ψι 6τοι οις

A 3 >5 - " : " !" ď, $\sum_{\mathcal{S}} \frac{(\pi)}{(2\pi)^{2}} \frac{(\pi)}{(2\pi)^{2}} \frac{\pi}{(2\pi)^{2}} \frac{\pi}{($ ευ χα ρι 6του μεν Κυ ρι ε και δε ο (r) (M) (Δ) 0 ος η hmλ Α ξι ον ε στι ιν ω ως α λη θω ως μα κα ρι (ει ειν 6ε την θε ο το ニューニュラングで ニー・ー ニュンター ニ α ει μα κα ρι 6τον και πα να μω $\frac{3}{5}$, $\frac{7}{5}$ η μων την τι μι ω τε ραν των χε ニッドでらいとの、一点一くが一次一 γον τε κου Ον τως θε ο το κο ον 6ε με γα ον τως θε ο το (Γ) (M) (Π) (Ξ) (Δ) (Δ)

"Ετερα.

Εἰς ἦχον Β΄, μέ διατονιχάς χαταλήξεις εἰς τόν βου. \triangle Α γα πη εω εε Κυ ρι ε η Ι εχυ υς

μου Κυ ριος ετε ρε ω μα μου και κα τα φυ

E λε ον ει ρη νης θυ ει 20 0 (A) 2 0 1 0 2 00 $K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke ta tou pieu } \mu\alpha \text{ to og 60u}}} K_{\alpha i} \xrightarrow{\text{ke$ $E \xrightarrow{(\Delta)} \sum_{\lambda \in \mathcal{A}} \sum_{\lambda \in$ ری میں میں Α γιος Αγιος Κυ ριος Σαβ βα ωθ πληρης ο ου ρα νος και η γη της

シャンノスターノーアンターーーニグシになった δο ξης 600 ω 6αν να εν τοις υ ψι 6τοις ευ λο γη με νος ο ερ χο με νος εν ο νο ματι Κυ ρι $\frac{(M)}{\omega} = \frac{(A)}{\omega} = \frac{4\pi}{\omega} = \frac{2}{\omega} =$ 105 m (3 5 (5 5 5 5) L ε υ μνου μεν δε ευλο γου (M) (A) (M) (M) (A) (M) C_{00} C_{00} C

"Αξιόν ἐστιν.

«Τοῦ Πρωτάτου», Άγ. "Ορους. Τ΄ Δ΄

(Μ)

ξιον ε στινως α λη θω

ως μα κα ρι ζειν Σε την <math>θε ο το κον (β) (βτην α ει μα κα ρι 6το ον και πα να μω 30, 52, 52, 52, 69, (9) μη το ο ον και μη τε ρα του
... ε... > 5... (β)
... ε... > 5... (β) ραν των Χε ρου βι ιμκαι シラン・マンシニランマーランシャートーーニ εν δο ξο τε ρα αν α συγ κρι
(Δ)
(Δ)
(Δ)
(Δ)
(Δ)
(Δ) τως των Σε ρα φι ιμ την α δι 22022-32512522 φθο ρως θε ον Λογο ον τε κου (a) (b) (c) (c) (d) (d) (d) 6αν την ον τως θε ο το κον Σεμε γα رن و

Έτερα. Θρ. Στανίτσα. Πανηγυρικά. Ήχος 📆 Το Μικτός Δευτερόπρωτος U ρ_{1} ϵ ϵ $\lambda \epsilon$ η ϵ ϵ ϵ $2.K_{\nu}^{(\Delta)}$ $\rho_{1} \epsilon \epsilon \lambda \epsilon \eta 60v$ 3. $K = \frac{(N)}{\nu} = \frac{(\Delta)}{\nu} = \frac{(\Delta)}{\nu}$ 4. K υριε ε λεη 60ν $5.K^{\frac{1}{2}}$ φ ρα εχου Κυρι ε 4. Π α ρα 6χου Κυρι ε

5. Π (Δ) ρα 6χου Κυ ρι ε (Λ) (Λ) Y (M) (Δ) α θε ο το κε εω εον η μας $\sum_{(\alpha)} \frac{(\alpha)}{(\alpha)} \frac{(\alpha)}{(\alpha)} = \sum_{(\alpha)} \frac{(\alpha)}{(\alpha)} = \sum_{(\alpha)}$ $K \xrightarrow{\alpha_i} - = > 0 \xrightarrow{\beta_i} > 5 = 0$ (M) (A) (A) (A) (M) (Δ) (Μ) γα πη 6ω 6ε Κυ ρι ε ος 6Τε ρε ω μα μου και κα τα φυ γη μου και ρυ ρυ 9 $\bigcap_{\alpha \text{ TE}} \rho_{\alpha} Y_{i} \text{ ov } \kappa_{\alpha i} A \quad \gamma_{i} \text{ ov } \Pi_{v} \varepsilon_{u}$

 $\frac{4}{3}$ $\frac{\pi}{2}$ $\frac{9}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{3}{2}$ $\frac{\pi}{2}$ $\frac{\pi$ 1. 2 13 6 3 6 c 2 = 2 2 c c 6 $E \xrightarrow{\alpha^{\prime} J(\Delta)} \frac{1}{\lambda \epsilon} \text{ on } \epsilon i \text{ ph} \text{ on } \epsilon i \text{ an}$ シボーシニューシャーシャー αι νε $E^{(\Delta)}$ >>> $\frac{1}{\sqrt{2}}$ $\frac{$ $A \stackrel{(\Delta)}{=} \sum_{\xi_{i}} \sum_{\sigma} \sum_{\sigma} \frac{\mathcal{F}_{i,\sigma}}{\sigma} \sum_{\sigma} \sum$ イマシニョシ ごら 9 A γ_i os A γ_i os A γ_i os Ku ρι οος Σαβ βα ωθ πλη ρης ο ου ρα νο τ + και η γη της δο ξης 600 ω 6αν να εν τοις υ

ψι 6τοις ευ λο γη με νος ο ερ χο με νος たっーニョンコイニューダマーーは一下で εν ο νο ματι Κυ ρι $A^{\frac{3}{3}} = \frac{(\pi)}{2} = \frac{\pi}{2} = \frac{\pi}{2}$ $\sum_{\lambda} \frac{1}{\frac{\theta}{\theta}} \frac{1}{\frac{1}{\theta}} \frac{1}{\lambda} \frac{$ - c2 (- 15-10) -+ (-5"-3) = 4 -1 χα ρι ετου με εν Κυ ρι πα pr σου ο θε Απ σου ο θε $A = \begin{cases} \frac{3}{2} & \frac{\pi}{2} \\ \frac{3}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \end{cases} = \begin{cases} \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2}$

「「一」ことにこうにいった。 ως μακαρι ζειν 6ε κον την α ει μα πα να μω του θε ου 1 2 () 2 4 1 2 6 4 1 2 - C (C 2) - " - 2 2 2 2 τη ην τι μι ω η μω ων ρα αν των Χε ρου βι ιμ και εν δο ξο ων Σε τω Σε τως τω την αδι α φθο $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$ ον τως θε ο

Έτερα. Χ. Ταλιαδώρου.

こ 元(n) か(n) か(n) (m) た α αχω ριι $E_{(\nabla)}^{(\nabla)} = \sum_{j=0}^{N_{\text{E}}} \sum_{j=0}^{N_{\text{$ αι νε δε ως αν $K_{\alpha_1 \mu_{\epsilon}} = \frac{(A)}{L} =$ Ε χο μεν προς τον Κυ ρι ον A ξι ο ον και δι και (M) (= = > c = Α γιος Α γιος Α γιος κυ ρι こ…一年に今二六十一 こうしょうい ο ος Σαββα ωθ πλη ρης ο ου ρα νο ος και = 302 = 200 = - (μ) + (Δ) (Δ) η γη τη ης δο ξης 600 ω 6α αν να εν τοις υ. Ψι 6τοις ευ λο γη με νος ο ερ χο

«Σέ ὑμνοῦμεν» (Μονωδία). 🦼 💆

 $\sum_{\kappa} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha$

- > ci

 $A^{\frac{1}{2}} \stackrel{(\Delta)}{=} \stackrel{(B)}{=} \stackrel{(B)}{=} \stackrel{(C)}{=} \stackrel{(C)}{=} \stackrel{(\Delta)}{=} \stackrel{(A)}{=} \stackrel{$ $\frac{1}{2}$ $\frac{1$ του θε ου η η μων ραν των Χε ρου βι τω τωων Σε ρα φιιμί α δi α $\phi \theta o$ $\rho \omega c$ $\theta \varepsilon$ ov Λo τως θε ο το

"Ετερον «"Αξιόν ἐστιν».

Π. Φιλανθίδου. Ήχος το Δευτερόπρωτος
$$\Delta$$

Α ξι ον ε στιν ως α λη

θω ως μα κα ρι ξει ειν σε την

α ει μα κα ρι στο κον την

α ει μα κα ρι στο σν και μη τε

μω μη το ον και μη τε

ρα (Δ)

το συ συ η

μων την τι μι ω τε ραν

των Χε ρου G ιμ και εν δο ξο τε

うってにないすってそうにでしてらい το ον και μη τε ου μι ω τε ραν τω ων Χε ρου βι ιμ και εν δο ξο τε ρα αν α τω ων Σε ρα (6) $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$ την ον τως θε ο το Σε με γα λυ \dot{x} Έτέρα κατάληξις: Δ \dot{z} \dot{z}

HXOΣ Γ' .

υριε ελε η 60ν 22 3. $K = \frac{(z)}{\omega} = \frac{(r)(z)}{\varepsilon} = \frac{(z)}{\omega} = \frac{(z)}$ 2' 22 α ρα εχου Κυ ρι ε 77 α ρα εχου Κυ ρι ε Z'α ρα 6χου Κυ ρι ε

$$\begin{array}{c} (r) \\ (r) \\$$

΄ την οι ει μα κοι $\frac{1}{100} = \frac{1}{100} = \frac{1}$ $= \sum_{k} \sum_{j \in \mathcal{A}} \sum_{k} \sum_{k} \sum_{k} \sum_{k} \sum_{j \in \mathcal{A}} \sum_{k} \sum_$ μω μη τον και μη τε ρα του θε ου (κ) (π) (π) (κ) (π) (π)ρα αν των Χε ρου βι ιμ και εν δο ξο τε ραν α ευ υγ κρι τως τω ων Σε (κ) (π) (κ) (κ)- 5 . κ - 1 - κου γον τε κου (π) τε κου $\frac{\Gamma}{\kappa} = \frac{4\Gamma}{6\alpha} \frac{4\Gamma}{6\alpha} \frac{6}{\alpha} \frac{1}{\gamma} \frac{1}{\gamma$ ニュー(し)くとうのなっつのニュニニュ ον Σε με γα λυ νο με ニュニュニュー こっここ

77

Έτερα. Άπλᾶ. ٢ Ήχος Γ΄ Επ Γα $v \rho i \epsilon \epsilon \lambda \epsilon \eta 600 K$ ε + ε $\lambda \varepsilon$ η 600 η K U $\rho \iota$ ε α ρα εχου Κυρι ε τη Π' α ρα εχου α ρα εχου $\frac{3}{\text{Ku pi }} = \frac{\kappa}{q} \prod_{\alpha} \frac{3}{\text{pa exou Ku pi }} \frac{3}{\epsilon}$ Υ περαγια θε ο το κε εω εον η μας Σ οι Κυρι ε

 $K = \frac{(\pi)}{\alpha_1} = \frac{1}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{$

Λειτουργικά π. Κων/νου Παπαγιάννη α τε ρα Υι ον και α γι ον Πνευ μα Τρι ハンーーニョンニューニョンシュ ゼ α δα ο μο ου ει ον και α χω ρι ετον Ε χο μεν προς τον Κυ ρι ον ξι ον καιδι και ον A γιος Α γιος Α γιος Κυ ριος Σαβ βα ωθ πλη ρης ο ου ρα νος και η γη τη ης δο ξης 60υ ω 6αν να εν τοις υ ψι 6τοις ευ

λο
$$γη$$
 με $νος$ ο ερ $χο$ με $νος$ εν ο $νο$ μα τι $κυ$ ρι ο $κ$ ο $κ$ ο $κ$ ο $κ$ τοις $κ$ ην $κ$ εν $κ$

«Ἄξιόν ἐστιν». Π. Βυζαντίου, σελ. 389 'Α. Καραμάνη, σελ. 394

Έτερα. Β. Κ. Νικολαΐδου.	
(Ν) ΤΗχος Γ΄ Ε Γα	<i>ጎባ</i> ሆ
υ ριε ε λε η 60ν	17
$2.K \stackrel{(\Delta)}{=} {}^{(N)} + \frac{(\Gamma)}{\epsilon} \stackrel{=}{\sim} 5 \stackrel{=}{\sim} 60V$	ĸ
3. $K_{(\pi)}^{(r)}$ $\rightarrow 5 + 5 \rightarrow \frac{\pi}{2}$ $\rightarrow \frac{\pi}{2}$ \rightarrow	Δ. ,,
12 9 22 + 2" 0 2301.	π 9
4. \mathbf{K} \mathbf{U} \mathbf{p} \mathbf{E} \mathbf{E} $\mathbf{\lambda}$ \mathbf{E} $\mathbf{\eta}$ 60 \mathbf{V} 5. \mathbf{K} \mathbf{U} \mathbf{p} \mathbf{E} \mathbf{E} $\mathbf{\lambda}$ \mathbf{E} $\mathbf{\eta}$ 60 \mathbf{V} (r) \mathbf{V} (r) (r) \mathbf{V} (r)	า่า
a sa (xo) Ku oi s	าา
2. Π α ρα εχου Κυ ρι ε	K 9
3. Π α ρα 6χου Κυ ρι ε	Ķ
4. $\prod_{\alpha} (\Delta)(\pi)$ $\alpha \rho \alpha \delta \lambda \lambda \lambda \lambda \lambda \lambda \lambda \lambda \lambda$	n 9
4. Π α ρα 6χου Κυ ρι ε (κ) (λ) (Γ) (Γ) α ρα 6χου Κυ ρι ε	า์ๆ

 $\sum_{X} \sum_{X} \sum_{X} \sum_{Y} \sum_{Y$

"Αξιόν ἐστιν.

Πέτρου Βυζαντίου († 1808).

Α ξι ο ον ε ετι ιν ω

ως α λη θω ως μα κα ρι ζειειν εε

τη ην θε ο το κο

ον την α ει μα κα ρι ετον και
δ — (r) (r)

το ον

πα να μω

τηντι μι ω τε ρ αν τ ω ων χ ε ρ ου θ ιμ και εν δ ο ξ ο τ (-3- 3 35 c + c c 2 - 2 2 2 2 + 2 ραν α ευγ κρι τως τω τε $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$ γα λυ

"Ετερα.

Ήχος Γ΄ Ξ. Γα	ر ر
ν pr ϵ ϵ $\lambda \epsilon$ η 60 ν	77
$2.K \begin{array}{c} (r) \\ \nu \\ \rho \\ \epsilon \\ (z) \end{array} \begin{array}{c} 3 \\ \lambda \\ \epsilon \\ \eta \\ (r) \end{array} \begin{array}{c} 600 \\ (r) \end{array}$	K:9
3. K ν $\rho_{\rm I}$ ϵ ϵ $\lambda \epsilon$ η $\epsilon \sigma \nu$	า่า า่า
$4. \mathbf{K} \underbrace{\begin{array}{c} (\mathbf{r}) \\ \mathbf{v} \end{array}}_{\mathbf{p} \in \mathcal{E}} \underbrace{\begin{array}{c} 3 \\ \mathbf{e} \end{array}}_{\mathbf{\lambda} \in \mathcal{H}} \underbrace{\begin{array}{c} 3 \\ \mathbf{r} \end{array}}_{\mathbf{60V}}$	۲. ۹
5. K $\frac{3}{\nu}$ $\frac{3}{\nu}$ $\frac{\pi}{2}$	าำ
α ρα εχου Κυ ρι ε	17
2. Π α ρα εχου Κυ ρι ε	K: 9
3. $\frac{(r)}{\alpha}$ pa exou Ku pi ϵ	77 77
4. $\prod_{\alpha} (r) = 3 \times 3$	9
5. Π (r) 3 3 3 3 3 3 5 5 5 5 5 5 5 6 5 0 Ku ρι ε	า์า

6.
$$\prod_{\alpha} (r) (π) = \frac{3π}{3π}$$
 α ρα εχου Κυ ρι ε

 $\prod_{(M)} (π) = \frac{3π}{3π}$
 $\prod_{(M)} (α) = \frac{3π}{3π}$
 $\prod_{(M)} (α) = \frac{3π}{3π}$
 $\prod_{(M)} (π) = \frac{3π}$

«'Αγαπήσω σε Κύριε». Σύντομον, σελ. 387 'Αργοσύντομον, σελ. 573

 $K^{(r)}_{\alpha i}$ $\mu \epsilon$ $\tau \alpha$ $\tau o \nu \pi \nu \epsilon \nu$ $\mu \alpha$ $\tau o \sigma \sigma$ 600 9 χο μεν προς τον Κυ ρι ον Α (M) ξι ο ον και δι και ον $A = \begin{cases} \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{1}{5} & \frac{1}{5}$ ος Σαβ βα $\omega \theta$ πλη ρης ο ου ρα νος $\kappa \alpha i$ η γη της δο ξης εου ω εαν να εν τοις υ ψι ετοις ευ 22=36 6TOIG $A = \frac{1}{2} \sum_{\kappa} \frac{1}{2} \sum_{\kappa} \frac{\pi}{2} A = \frac{1}{2} \sum_{\kappa} \frac{\pi}{2} \sum_{\kappa$

中にびばいってこり30年日につい γου μεν Σοι ευ χα ρι ετου μεν Κυ ρι και δε ο μεθα 60υ ο θε ο ος η رسيتيء چه د 27 $A = \sum_{\xi_{i} \text{ ov } \epsilon}^{(\pi)} \sum_{\xi_{i} \text{$ μα κα ρι ζει ειν εε την θε ο το κον την α ει μα κα ρι 6τον και πα να μω μη τον θε ου $\frac{1}{\eta} = \frac{1}{\eta} = \frac{1}$ м) (г) των χε ρου βιμ και εν δο ξο τε ραν α ευγ $\frac{1}{\kappa\rho_{\rm L}} \sum_{\tau\omega\varsigma} \frac{\dot{\zeta}}{\dot{\zeta}} = \frac{1}{\kappa\rho_{\rm L}} \sum_{\tau\omega\varsigma} \frac{\dot{\zeta}}{\dot{\zeta}} = \frac{\dot{\zeta}}{\dot{\zeta}}$ α δι α φθο ρως θε ον Λο

1 Ήχος Γ΄ = Γα 22 3. K υ ρι ε ε λε η 60ν K 4. Κ υριε ε λε η 60ν 5. K $\frac{5}{5}$ $\frac{5}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{5}{1}$ $\frac{3}{5}$ $\frac{5}{1}$ $\frac{5}{1}$ $6.K \stackrel{\text{(M)}}{\underset{\text{(M)}}{\smile}} 5 - + \frac{1}{-} \frac{1}{3} = \frac{$ 77 Π = 5 5 2 5 5 = ε

$$και ρυ ετη ης μου$$
 $Π α τε ρα Υι ον και Α γι ον παι α$
 $ευ μα και βι ευ μα το ος εευ μα το ος εευ μα και βι ευ μα το ος εευ και βι ευ μα το ος εευ μα το ος εευ και βι ευ μα το ος εευ μα το ος εευ και βι ευ μα το ος εευ μα το ος εευ και βι ευ μα το ος εευ μα$

 $\frac{1}{2}$ ρα νος $\frac{(\pi)}{(\pi)}$ και η γη της δο ξης εου ω εαν να εν τοις υ ψι ετοις ευ λο γη με νος ο ερ χο με νος (r) ης ξο νο ματι Κυ ρι ου ω εαν να ο 2 (N) (L) 3 # 77 εγ τοις υ ψι ετοις (r) $\sum_{\varepsilon} \frac{3}{\upsilon} \frac{1}{\mu v \sigma v} \frac{1}{\mu \varepsilon v} \frac{1}{\nu} \frac{1}$ γου μεν Σοι ευ χα ρι 6του $\frac{1}{2} = \frac{1}{2} \frac{$ 1-2-10-6-6 77

 $A = \frac{(r)}{\xi_i \text{ on } \epsilon \text{ stin } \omega_s} \frac{(m)}{\alpha} \frac{(m)}{\lambda_1} \frac{(m)}{\theta_i \omega_s} \frac{(m)}{\eta_1} \frac{(m)}{\mu_1 \omega_2} \frac{(m)}{\mu_2 \omega_3} \frac{(m)}{\mu_1 \omega_3} \frac{(m)}{\mu_2 \omega_3} \frac{(m)}{\mu_1 \omega_3} \frac{(m)}{\mu_2 \omega_3} \frac{$ $\zeta_{\text{EI}} = \zeta_{\text{EIV}} = \zeta_{\text$ α ει μα κα ρι ετον και πα να μω $\frac{1}{\mu\eta} \frac{1}{\tau o v} \frac{1}{\eta} \frac{1}{\kappa \alpha \iota} \frac{1}{\mu \eta} \frac{1}{\tau \epsilon} \frac{1}{\tau o v} \frac{1}{\theta \epsilon} \frac{1}{\tau o v} \frac{1}{\theta \epsilon}$ ου η μω ων τη Την ΤΙ βιμ 77 και εν δο ξο τε ραν α συγ κρι $\frac{\Gamma}{\pi} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_$ 11 = 2 3 17 = 3 2 - 3 - 3 = 5 ξ ξ ξ δ ε ο το κον 32 με γα λυ

Έτερα. Πάνου Λινάρδου. Ήχος Γ΄ 🚃 Γα 3 (M) (r) γα εχου Κυ ρι ε Λ Π α ρα εχου Κυ ρι ε χ Π α ρα εχου Κυ ρι ε $\frac{4}{5}$ $\frac{(\pi)}{4}$ $\frac{(\pi)}{5}$ $\frac{2}{5}$ $\frac{(\pi)}{5}$ $\frac{(\pi)}{5$ C C (A) μου και κα τα φυ γη ニッシャンニッションでごう。 (W)

(M) ος και η γη τη ης δο ξης Σου ω εαν να (M) $= \frac{4}{5} = \frac{4}{5} = \frac{4}{5} = \frac{1}{5} = \frac{1}{5}$ $\frac{1}{2} \sum_{i=1}^{n} \frac{(\Delta)}{(\Delta)} = \frac{(\Delta)}{$ ου ω 6α αν να Рι かいっこここう $\sum_{\epsilon} \frac{\alpha}{(\Gamma)(\Delta)} \frac{\mu\eta\nu}{(\pi)} \frac{(\pi)}{(\pi)} \frac{(M)(\Gamma)}{(M)(\Gamma)}$ δ και δε ο με θα 60υ ο θε ο ος η μων

HXO Σ Δ' .

6 Bου.	$^6_{\lambda}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	હ ૠ
2.Κυριε ελε η 60ν	Š
$3. K = \frac{1}{2} \frac{1}{$	к 9
4. K (Γ) (Δ)	, Å
5. K_{ν} pr ϵ ϵ $\lambda \epsilon$ η 60 ν	\ \chi
$\prod_{\alpha \ \rho\alpha \ 6\chi 0 \nu \ K \nu} (6) \begin{cases} \frac{3}{3} \cdot \frac{7}{5} \cdot \frac{3}{5} \cdot \frac{7}{5} = \frac{5}{5} \cdot \frac{5}{5} \end{cases}$	હ સ્
2. II (a or 6x0) Ku ol 6	Å,
3. $\prod_{\alpha} (\Delta) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N$	ว้า
4. Π (A) (K) 3 · μ γ γ ε γ ο γ ο γ ο γ ο γ ο γ ο γ ο γ ο γ	Ř Ÿ

 $\frac{1}{2}$ γη με νος ο ερ χο με νος $\frac{1}{2}$ ε εν ο νο μα τι Σ ε υ μνου μεν Σε ευλο γου (B) 220 g(2 2 (a) - 222 - 2022 2 2 52020 2 μεν Σοι ευ χα ρι 6του $\varepsilon \qquad \kappa \alpha i \quad \delta \varepsilon \quad 0 \quad \mu \varepsilon \qquad \theta \alpha \qquad 600 \quad 0 \quad \theta \varepsilon$ Α ξιον ε στιν ω ως α λη θω 1,200 C = 25 22 C+ C O = 250 "ως μα κα ρι ζει ειν δε την θε

 $\frac{1}{2}$ $\frac{1}$ και πα να μω μη το ον και μη τε ρα 230" - " (- 2" 230 3" (2) 8 1 5 c c μωων την τι μι عرب الله الله على ρα αν, τω ων Χε ρου βι ιμ και εν δο ξο τε ραν α ευγ κρι
(π)(β)
(Δ) τω ως τω ων Σε ρα φι ιμ την α ρως θε ον Λο δι α φθο (m) (b) (d) (d) (d) εα αν την ον τως θε ο το KOU ~ - - 6 (0 2" 2 50" 200 " - " - 20 " Σε με γα λυ 5000000

"Ετερα.

$^{\circ}$ Ηχος Δ' 6 Βου.	6 %
υριε ε λε η 60ν	G X
$2.K \xrightarrow{(6)} (1) \xrightarrow{(\Delta)} (2) \xrightarrow{3} (3) \xrightarrow{5} (3) \xrightarrow{5} (3)$	<u>A</u> K
$3.K \frac{\lambda}{\nu} = \frac{\lambda}{\nu} + \frac{\lambda}{\nu} = $	v' 11
$(A) \qquad (k) \qquad 3 \qquad (2) \qquad (3) \qquad (4) \qquad (5) \qquad (6) \qquad (7) \qquad $	K q
4. \mathbf{K} \mathbf{U} \mathbf{p}_{1} $\mathbf{\epsilon}$ $\mathbf{\epsilon}$ $\mathbf{\lambda}$ $\mathbf{\epsilon}$ \mathbf{n}	e Z
α ρα εχου Κυ ρι ε	& X
2. Π α ρα εχου Κυ ρι ε	Ä
3. Π α ρα 6χου Κυ ρι ε	77 77
4. Π $\alpha \rho \alpha \epsilon \chi o \nu K \nu \rho \epsilon$ (Δ)	K
5.Π α ρα 6χου Κυ ρι ε	η

Y περα γι α θεο το κε ω σον η μας Σοι Κυρι ε ΛΑ " μην $K^{\frac{1}{\alpha_l}} = \frac{1}{\tau \omega} = \frac{1}{\pi v \epsilon \nu} \frac{1}{\mu \alpha \tau_l} = \frac{1}{\epsilon \sigma \nu}$ B Α γα πη εω εε Κυριε η ι εχυ υς μου Κυριος ετε ρε ω μα μου και κα τα φυ = >>0+ - (>>(>> /c) γη μου και ρυ 6τη ης μου

Χαρ. Παπανικολάου

Τ (β)

α τε ρα Υι ο ον και Α γι ον Πνε

ευ μα Τρι α δα ο μο ου ει ον και α

χω ρι ετο ον

$$E = \frac{1}{\lambda \epsilon} \text{ ov } \epsilon \text{ i } \rho \eta \qquad \text{vης} \quad \theta \text{ u } \epsilon \text{ i}$$

$$\frac{1}{\lambda \epsilon} \text{ ov } \epsilon \text{ i } \rho \eta \qquad \text{vης} \quad \theta \text{ u } \epsilon \text{ i}$$

$$\frac{1}{\lambda \epsilon} \text{ ov } \epsilon \text{ i } \rho \eta \qquad \text{vης} \quad \theta \text{ u } \epsilon \text{ i}$$

$$\frac{1}{\lambda \epsilon} \text{ ov } \epsilon \text{ i } \rho \eta \qquad \text{vης} \quad \theta \text{ u } \epsilon \text{ i}$$

$$\frac{1}{\lambda \epsilon} \text{ ov } \epsilon \text{ i } \rho \eta \qquad \text{oc } \epsilon \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ ii} \quad \frac{1}{\lambda \epsilon} \text{ ii} \qquad \text{oc } \epsilon \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ iii} \quad \frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ ov} \text{ ov} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov} \text{ ov} \text{ ov}$$

$$\frac{1}{\lambda \epsilon} \text{ ov}$$

$$\frac{1$$

«"Αξιόν ἐστιν» 'Ανδρέου μον.

Α ξιον ε ετιν ω ως α λη θως μα κα ρι ετο

κο ον την α ει μα κα ρι ετο

μη τε ρα του θε ου η μω ων Tην ΤΙ ΙΙΙ ω ΤΕ ΡΑΥΤων ΧΕ ΡΟυ βιμ και την τι μι ω τε ραντων Χε ρου εν δο ξο τε ρα αν α ευγ κρι αν α ευγ κρι (M) την α δι α τω ως τω ων Σε ρα φιμ $\frac{\pi}{60} \rightarrow 5 - \frac{\pi}{60} \rightarrow \frac{3}{5} \stackrel{\wedge}{\sim} \frac{1}{60} \rightarrow \frac{1}{50} \rightarrow$ γα λυ テジェス b ኊ

ૺૡૼ૱ૡૺ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ ૺૡ૱ૡૺ૱૽ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡ૱ૡૺ૱ૡ૱

$\begin{array}{cccc} HXO\Sigma & \Pi\Lambda. \ A'. \\ & \stackrel{\lambda}{\pi} & \stackrel{.}{q} & \Pi\alpha \end{array}$

'Απλᾶ	π 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n
$2.K$ ν ρ_1 ϵ ϵ $\lambda\epsilon$ η ϵ ρ_0	33 L
3. K (π) (κ) (κ) (π) (κ) (π)	K:0
$4. \mathbf{K} = \begin{pmatrix} \kappa \\ \nu \\ \rho_{1} & \epsilon \\ \epsilon \\ \lambda \epsilon \end{pmatrix} = \begin{pmatrix} \kappa \\ \gamma \\ \kappa \\ \gamma \\ \epsilon \\ \lambda \epsilon \end{pmatrix} = \begin{pmatrix} \kappa \\ \gamma \\ \kappa \\ \gamma \\ \epsilon \\ \kappa \\ \gamma \\ \kappa \\ \kappa \\ \gamma \\ \kappa \\ \kappa \\ \gamma \\ \kappa \\ \kappa$	K: 9
$5.K$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	79
$\prod_{\alpha \text{ pa } \in \chi \text{ov } \text{Ku } \text{pi } \epsilon} \frac{3}{5}$	71
2. Π α ρα εχου Κυ ρι ε	าำ
3. Π (π) (κ)	к 9
4. Π (κ) (π) (π) (π) (π) (π) (π) (π) (π) (π) (π	K

 $E \xrightarrow{\int_{\lambda \epsilon}^{(\pi)} ov \ \epsilon \iota} \rho \eta \xrightarrow{\tau} 55 \xrightarrow{3} \frac{\kappa}{4} C_{1} = \frac{1}{6}$ 79 3-23030 αν αι νε 6ε ως 6. Kαι με τα του πνευμα το ος 60υ

(κ) (Δ) (Γ) (κ) (π)

(π) (π) χο μεν προς τον Κυ ρι ον (m)9 ρι υς 2 αυ ωα ωυ πλη ρης ο ου ρα νο ος και η (M) (π) A (π) $(\pi$

A $ξ_{ι}$ ον ε ετι ιν ω ως α λη θω ως μα κα ρι ζει ειν εε την θε ο το κον την α ει μα κα ρι ετον και πα να μω μη τον και μη τε ρα

του θε ου η μων την τι μι ω τε 22020" " 2 " 2 " 3 " L K (Y) - - - 5 ραν τωων χε ρου δι ιμ και εν δο ξο τε 上での は、 む て テンラニッと で ひー こ。 ン α συγ κρι $\rho \alpha$ $\varphi_{1}\mu$ $\tau_{1}\gamma \alpha$ δ_{1} α φ_{0} ρ_{0} φ_{0} (κ) (κ) (δ) (κ) (κ) (δ) (κ) (κ) VO

Έτερον. Μ. Ά. Χατζηαθανασίου.

ΤΗχος $\hat{\pi}$ \ddot{q} $\Pi \alpha$ $\hat{\pi}$ $\hat{\pi}$

一次(一之一人)に至ってのは一一の(の)(3 τον και μη τε ρα του ξο ξο τε ραν α συγ κρι τω $\sum_{\omega \in \text{Tw}} \sum_{\varepsilon} \frac{\pi}{2} \sum_{\varepsilon} \frac{\pi}{2}$ α φθο ρ ως θ ε ον Λ ο (Δ) γ ο ον τ ε κου σαν την ον τωως θε ο το - γ Γ (κ) κο ον Σε με Σε με λυ VO (m) 9

Έτερα. 'Απλᾶ.	
$^{\tau}$ H χ o $_{\varsigma}$ $\overset{\lambda}{\pi}$ $\overset{\circ}{q}$ $\Pi\alpha$	$\overset{\pi}{q}$
1 1 2 0 二十一分212	π
$2. K = \frac{(\pi) (N) (\pi)}{5} + \frac{3}{\epsilon \lambda \epsilon \eta} = \frac{3}{60V}$	ว์า
$TZ \xrightarrow{(\pi)} \hookrightarrow \rightarrow + \xrightarrow{(\kappa)} \xrightarrow{3} \xrightarrow{(\pi)}$	K:0
3. ν pi ε ε $\lambda \varepsilon$ η 60 ν κ	
$4. \mathbf{K} = \begin{bmatrix} (\kappa) & (\Delta) & (\Delta) & (\kappa) $	K:9
$5.\mathbf{K} = \frac{(\pi)}{\nu} + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + $	# 9
$(M)_3$ $(\pi)_3$ $(\pi)_3$	
$\prod_{\alpha} \frac{(M)}{2} \frac{3}{5} \frac{(\pi)}{6} \frac{3}{5} \frac{3}{5} \frac{3}{5} \frac{3}{5}$	9
2. $\prod_{\nu \in \mathcal{D}} \frac{\partial^{\nu} (M)}{\partial x^{\nu}} \frac{\partial^{\nu} (\pi)}{\partial x^{\nu}} \partial^$	٢
2.11 ρα εχου Κυ ρι ε	17
$\prod_{k} \frac{1}{(\pi)} \frac{3^{(k)}}{3^{(k)}} = \frac{3}{(\pi)} \frac{3^{(k)}}{3^{(k)}}$	4
3. Δ α ρα 6χου Κυ ρι ε (π)	
4. $\prod_{\alpha} (\kappa) (\kappa) (\kappa) (\kappa) (\kappa) (\kappa) (\kappa) (\kappa) (\kappa) (\kappa)$	K. 9
(π) (π) (π) (π) (π)	
5. Π α ρα εχου Κυ ρι ε	η΄

$$E \xrightarrow{(\kappa)} (\Delta)_{\rho} (\Delta)_{\rho} (\kappa)_{\rho} (\kappa$$

« Άξιόν ἐστιν», σελ. 416

Έτερα Λειτουργικά ὑπό τοῦ Ἐκδότου.

ΤΗχος
$$\frac{1}{\pi}$$
 $\frac{1}{\pi}$ \frac

$$\frac{3}{9}$$
 (N) (π) $\frac{3}{9}$ $\frac{4}{9}$ $\frac{4}{$

και δε ο με θα σου ο θε ο ο ο Α ξι ον ε ετι ιν ω ως α λη θω 35 2 35 - κα ρι ζει ειν 6ε ως μα κα ρι ζει ειν 6ε ς την α ει μα κα ρι 6τον και $\frac{1}{\theta \epsilon} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$ ラグランのでは一一でつからっちでは ραν τω ων Χε ρου βι μ (κ) (Γ) (π) (π) (π) και εν δο ξο τε ραν α δυγ κρι

Έτερα.

THXOS
$$\pi\lambda$$
. α' $\pi\alpha$ $\frac{9}{2}$
 ν $\rho_1 \in \mathcal{E}$ $\lambda \in$

5.
$$K$$
 U
 ρ_{1}
 ϵ
 ϵ
 λ_{2}
 ρ_{1}
 ϵ
 ϵ
 λ_{3}
 ρ_{1}
 ϵ
 ρ_{1}
 ρ_{1}
 ρ_{2}
 ρ_{3}
 ρ_{4}
 ρ_{1}
 ρ_{1}
 ρ_{2}
 ρ_{3}
 ρ_{4}
 ρ_{5}
 ρ_{1}
 ρ_{5}
 ρ_{5}
 ρ_{7}
 ρ_{7}

 C_{11} C_{12} C_{13} C_{14} C_{15} C_{15} ~ 5 2 C ρι 670ν $E \xrightarrow{(M)} (K) = C \xrightarrow{(K)} C \xrightarrow{(M)} (K) = C \xrightarrow{(M)} ($ 246222 αι νε 6ε ως γιος A γιος Κυριος δο ξηης 60υ ω 6αν να εν τοις υ ψι 6τοις ευ λο γη με νος ο ερ χο με νος εν ο

3. (M) 3 3 κ 1 3 - " (κ) 5 ξ ξ γ 1 S νο ματι Κυ ρι ου ω εα αν να C(K) - 0 > 2 - " # 1 35 6 εν τοις υ ψι (π) (Δ) (K) (M) (M) Kig Σ ε υ μνου με εν Σε ευ με εγ ΄ Σε ευ λο γου μεν Σοι ευ χα ρι 6ΤΟυ $\frac{1}{2}$ $\frac{1$ με θα $A = \begin{cases} (A) & (K) \\ (A) & (K) \\ (A) & (K) \\ (A) & (K) \end{cases}$ $A = \begin{cases} (A) & (K) \\ (A) & (K) \\ (A) & (K) \end{cases}$ $A = \begin{cases} (A) & (K) \\ (A) &$ ως μα κα ρι . ζει ειν Σε τη ην θε ο

5-(21-22-4-2)-(-2-3-3 την α ει μα κα 22 cm - c 20 m 2 m 2 m 2 20 m - (3 m ον και πα να μω μη $\frac{1}{2} \int_{\gamma \gamma}^{\gamma \gamma} \int_{\gamma \gamma}^{\gamma} \int_{\gamma}^{\gamma} \int_{\gamma$ (δ)(κ)

η

μων την τι μι ω τε ραν ραν των Χε ρου ωι ιμ και εν δο ξο τε ρα ニュー(一字) 2 元 2 元 3 20 三 2 c k αν α ευγ κρι τως τω ων Σε ρα (κ) (Δ) (Δ) 2 = 10 1 - (-3 = 3 > 5 = = 5 > 50 > = = 5 > 51 = 1. Kq

Έτερα. Β.Κ. Νικολαΐδου $^{\tau}$ H χ o ς $\stackrel{\lambda}{\pi}$ $\ddot{\mathsf{q}}$ Π α $\mathring{\mathsf{e}}$ v α p μ $\acute{\mathsf{o}}$ v ι o ς υ ρι ε ε λε η 60V $2. K \frac{(\Delta)}{\nu} \rho_{1} \epsilon \epsilon \lambda \epsilon \eta 60 V$ 3. $K = \frac{(z)}{v} = \frac{3\sqrt{v}}{\rho_1 \varepsilon} = \frac{3\sqrt{v}}{\varepsilon} = \frac{1}{\lambda \varepsilon} = \frac{1}{60v}$ 4. $K = \frac{(z)}{v} \sum_{\rho \in \mathcal{E}} \frac{(\Delta)}{\varepsilon} \frac{z^3}{\lambda \varepsilon} = \frac{1}{2} \sum_{\rho \in \mathcal{E}} \frac{1}{2} \frac{z^2}{\lambda \varepsilon}$ 5. K $v \rho i \epsilon$ ϵ $\lambda \epsilon \eta$ $\epsilon o v$ $\prod_{\alpha} \frac{\alpha}{\alpha} \frac{\beta}{\beta} \frac{2}{\beta} \frac{2}{\beta$ $2. \prod \frac{1}{\alpha} \frac{1}{\rho \alpha} \frac$ 3. $\prod_{\alpha} (z) = (x - 1)^{-1} = (x -$ 5. Π α ρα 6χου Κυ ρι ε 77

6. Π
$$\frac{\pi}{\alpha}$$
 $\frac{\pi}{\alpha}$ $\frac{\pi}{\alpha}$

«Άγαπήσω σε Κύριε». Άργοσύντομον, σελ. 575 Άργόν, σελ. 585

Τ ((τ) α τε ρα γι ον και Α γι ον Πνε (π) ευ μα Τρι α δα ο μο ου ει ον

こうこう ション ニッ ニー 79 χω ρι $E \xrightarrow{\int_{0}^{(\Delta)} \int_{0}^{(\Delta)} \int_{0}^{(\Delta)}$ $K = \begin{bmatrix} (\pi) \\ (\pi) \\ (\pi) \\ (\pi) \\ (\pi) \end{bmatrix}$ $K = \begin{bmatrix} (\pi) \\ (\pi) \\ (\pi) \\ (\pi) \end{bmatrix}$ $K = \begin{bmatrix} (\pi) \\ (\pi) \\ (\pi) \\ (\pi) \end{bmatrix}$ $K = \begin{bmatrix} (\pi) \\ (\pi) \\$ π 27 $E = \frac{3}{\chi_0} \frac{3}{\chi_0} \frac{3}{\chi_0} \frac{3}{\chi_0} \frac{1}{\chi_0} \frac{1}{\chi_0}$ $A = \begin{cases} \begin{pmatrix} \Delta \\ \lambda \end{pmatrix} & \begin{pmatrix} K \\ \lambda \end{pmatrix}$ $\sum_{\alpha} \frac{1}{2} \sum_{\alpha} \frac{1}{2}$ 2年 ニュンシャでではずでーニッ εν ο νο ματι Κυρι ου W 60CV YOU

(シニュッシーニッシンニニッの)でには ρι 6τον και πα να μω 2 - (a) 2 3 5 5 6 2 5 6 5 - 3 50 ρα του $\frac{1}{2} = \frac{4}{2} \cdot \frac{\pi}{4} \cdot \frac{\pi}$ $\frac{4}{5}$, $\frac{7}{17}$, $\frac{7}$ $\frac{\pi'}{q} = \frac{(\Delta)}{\alpha} = \frac{(\Delta)}{2} = \frac{(\Delta)$ θε ov Λο γο ον τε $\frac{1}{2} \sum_{i=1}^{4} \frac{1}{2} \sum_{i=1}^{4} \frac{1}$ الشائد والمحادث و المراحدة و المر Έτερα. Κ. Ψάχου.

 $^{\tau}$ Ηχος $\overset{\lambda}{\pi}$ $\ddot{\mathsf{q}}$ Π α ἐναρμόνιος α $\tau \epsilon$ $\rho \alpha$ γ_1 $\sigma \gamma$ γ_2 γ_3 γ_4 γ_5 $\sigma \gamma$ γ_5 γ_7 γ_8 γ_8 πνε ευ μα Τρι α δα ο μο ου ει ον και α χω $E_{(\pi)}^{\underbrace{J^{(z)}}_{\lambda\epsilon \text{ ov } \epsilon\iota}} \underbrace{- \underbrace{-5}_{\rho\eta}^{5}}_{\nu\eta\varsigma} \underbrace{-5}_{\nu\eta\varsigma}^{2\prime} \underbrace{-5}_{\theta\upsilon}^{(\Delta)}_{6\iota}$ 22/32/0-10 αν αι νε နေ ယ၄ $K^{(\Delta)} = \frac{(M)(\Delta)}{(M)(\Delta)} = \frac{(M)(\Delta)}{(M)($ χο μεν προς τον Κυ ρι ον $A \stackrel{(\Delta)}{\leq} 3 \stackrel{>}{>} 5 \stackrel{(\pi)}{<} 5 \stackrel{4 \cdot \pi}{\stackrel{\sim}{\sim}} 1 \stackrel{>}{>} \stackrel{\pi}{\stackrel{\sim}{\sim}} 1 \stackrel{>}{\sim} 5$ και ο ον ον (π) $A \xrightarrow{3} C C + \frac{3}{3}, C C + \frac{3}{3}, C C + \frac{5}{3}$ $A \xrightarrow{\gamma_1 \circ \varsigma} A \xrightarrow{\gamma_1 \circ \varsigma} A \xrightarrow{\gamma_1 \circ \varsigma} K U$

ρι oς Σαβ βα ωθ πλη ρης o oυ ρα νο(M) (Δ) (Z) (Z) (M) (A) (A)ο ερ χο με νος εν ο νο μα τι Κυ ρι 3 4 22 = 102 = 1023 $A \stackrel{(\pi)}{=} \frac{\Gamma}{\pi} \stackrel{\Gamma}{=} \frac{\Gamma}{\pi} \stackrel{(\Gamma)}{=} \frac{\pi}{\pi}$ $A \stackrel{(z)}{=} \frac{\Gamma}{\pi} \stackrel{\Gamma}{=} \frac{\Gamma}{\pi} \stackrel{(\Gamma)}{=} \frac{\pi}{\pi}$ Z' 77 9 $\sum_{\varepsilon} \sum_{\nu} \sum_{\mu \nu \sigma \nu} \sum_{\nu} \sum_{\nu} \sum_{\varepsilon} \sum_{\varepsilon} \sum_{\nu} \sum_{\nu} \sum_{\nu} \sum_{\sigma} \sum_{\nu} \sum_{\sigma} \sum_{\nu} \sum_{\sigma} \sum_{\nu} \sum_{\sigma} \sum_{\nu} \sum_{\sigma} \sum_{\sigma} \sum_{\nu} \sum_{\sigma} \sum_{\sigma} \sum_{\nu} \sum_{\sigma} \sum_{\sigma$ οι ε και δε ο δε ο με θα 60υ

ラーではいいらいからからにはいいい $A = \begin{cases} \frac{1}{2} & \frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}$ ον την α ει μα κα ρι 6το ον και ブロラーニックラー (カブラ で カロ)(Z) ω τε ρα αν των χε ρου βι ιμ και ε εν δο ξο τε (π) ρα αν α 6υγ κρι τω ως
Τω ως

Έτερα. Μ. Ά. Χατζηαθανασίου.

36 - 36 79 ως $K = \frac{\alpha_1}{\lambda(\mu)} = \frac{\alpha_2}{2} = \frac{\alpha_3}{2} = \frac{\alpha_4}{2} = \frac{\alpha_5}{2} = \frac{\alpha_5}{2}$ $E \xrightarrow{(\chi)} \sum_{\chi_0} \sum_{\mu \in V} \sum_{\pi \neq 0} \sum_{\tau \neq 0} \sum_{\kappa \neq 1} \sum_{\tau \neq 0} \sum_{\kappa \neq 1} \sum_{\tau \neq 0} \sum_{\tau \neq 0} \sum_{\kappa \neq 1} \sum_{\tau \neq 0} \sum_{\kappa \neq 0} \sum_{\tau \neq 0} \sum_{\kappa \neq$ 2/500 π (π) Α γιος Α γιος Κυ ρι ος Σαββα ωθ πλη ρης ο ου ρα γο ος $\frac{(\pi)}{\cos^2 2} \frac{3 \cdot \pi}{\sin^2 2} \frac{(z)}{\sin^2 2$ ετοις ευ λο γη με νος ο ερ χο (z) (z)

 $A = \frac{\alpha}{2} > 0 = 0$ μεν 6οι ευ χα ρι 6του μεν Κυ ε $\frac{\pi}{2}$ $A^{\frac{1}{\chi} \frac{1}{(\pi)}} = \sum_{i \in \mathcal{I}} \sum_{i$ - 4 (Δ) - 7 (πα να μω μη

こかがいっつがっついできらかっついにはった ρα του Θε ου 6ι ιμ και εν δο ξο τε ραν α συγ ショニコラニコラグイショングによっぱい τω ως των Σε την α δι α σθο ρα φιμ (Δ) $\frac{1}{\text{ov}} \int_{0}^{\infty} \int_$ ον τως θε ο το (Δ) $(z) = \frac{1}{2} \cdot \frac{1}{2}$ حيرا عرد حرد در

'Ιαχώβου Ναυπλιώτου. Τά «Πατριαρχικά». * Ηχος $^{\lambda}_{\pi}$ $\ddot{\mathsf{q}}$ Πα (χατά Α. Καραμάνη) (22"01/3" 2"0)12 $E \xrightarrow{3(M)} \Sigma \xrightarrow{F} \frac{3}{3} \xrightarrow{(\pi)} \frac{$ Kai 3 Γρ >C / 1 ως νε 6ε ως 77 $K_{\substack{\alpha_{1}\\ (\Delta)\\ (\Delta)}}^{(\pi)} \xrightarrow{3} \xrightarrow{3} \xrightarrow{(\Delta)} \xrightarrow{(K)} \xrightarrow{(K)} \xrightarrow{\pi} \stackrel{(\Delta)}{\stackrel{(K)}}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}}{\stackrel{(K)}}}{\stackrel{(K)}}{\stackrel{(K)}}}{\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}{\stackrel{(K)}}{\stackrel{(K)}}}{\stackrel{(K)}}}}\stackrel{(K)}}{\stackrel{(K)}}{\stackrel{(K)}}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{(K)}}}\stackrel{(K)}}{\stackrel{(K)}}}\stackrel{($ $E_{(π)}^{(Δ)}$ χο μενπρος το ον Κυ ρι ον (π) (π)A $\frac{37}{\gamma_1}$ os A γ_1 os A γ_1 os Ku pi $\frac{\kappa}{0} = \frac{\kappa}{2} = \frac{$

THE SO ξ HE GOV ω GOV α EV TOLE 6 τοις ευ λο γη με voς o $\frac{(\Delta)}{(\Delta)} = \frac{4}{5} > \frac{5}{5} > \frac{(\pi)}{15} = \frac{3}{5} > \frac{3}{5} = \frac{\pi}{15} > \frac{3}{5} > \frac{\pi}{15} > \frac{3}{5} = \frac{\pi}{15} > \frac{3}{5} > \frac{\pi}{15} > \frac{3}{5} = \frac{\pi}{15} > \frac{3}{5} > \frac{\pi}{15} > \frac{\pi}{1$ (κ) (κ) (κ) (κ) (κ) (α) (α)έν τοις υ ψι ω εα να Σ ε υ μνου πεν ης γη 二元+ロー(ラシ(ーシーグ10---(α) (α) (α)και δε ο με θα 6 του με εν Κυ pi 3 5-4 8--- - 5 - + 5 2 - 5 4 6ου ο θε ο Έτερον «Σέ ύμνοῦμεν».

 $\sum_{i=1}^{\infty} \frac{K. \, \Pi \, \rho \, (\gamma \gamma \, o \, v)}{\epsilon}$ $\sum_{i=1}^{\infty} \frac{(\pi)}{\epsilon} \frac{1}{\epsilon} \frac{1}{\epsilon$

«Ἄξιόν ἐστιν» Ἰαχώβου Ναυπλιώτου.

>(4) = (K) = (N) = (N) = (N) = (N) = (M) (A) ρου βιμ και εν δο ξο τε (a) :- ニーボの ニュ (n) (n) (カ) ニュラングラングラングラングラング κρι τω ως των Σε ρα (π) , (Δ) (Δ) (π) (Δ) (Δ) =(0) (2) -(5) 2= 15 (4) 2= 4 -11 (7) (π) τωως θε ο το κον ΄ (ω) (ω) (ω) (ω) (π) (π) (π) (π) λυ +00+00 x (m) 5 - = 35 = = 3 $S_{2} = \sum_{(\mu)} \frac{1}{(\nu)} \sum_{(\lambda)} \sum_{(\lambda)} \frac{1}{(\nu)} \sum_{(\lambda)} \frac{1}$ (N) (π) (π) 3 3

"Ετερα. $^{\tau}$ H χ o ς $\stackrel{\lambda}{\pi}$ \ddot{q} $\stackrel{q}{q}$ χ υριε ελε η 60ν $2. K_{0}^{(\pi)} = \frac{3}{\epsilon} \sum_{\kappa} \sum_{$ 3. $K_{(\kappa)}^{(\kappa)}$ ρ_{1} ϵ ϵ $\lambda\epsilon$ η ϵ ρ_{2} 77 α ρα εχου Κυ ρι ε $2. \prod_{\alpha} \frac{(\pi)}{\alpha} \frac{3}{\rho \alpha} \frac{3}{\epsilon \chi \sigma \upsilon} \frac{3}{\kappa \upsilon} \frac{5}{\rho \iota} \frac{5}{\epsilon}$ α $\rho\alpha$ $\epsilon \times 00$ κv ρi ϵ

77 6. $\prod_{\alpha} \frac{(\pi)}{\alpha} = \frac{\pi}{\kappa} \frac{(\pi)}{\kappa} \frac{(\kappa)}{\kappa} \frac{(\kappa)$ Υ περαγιαθεο το κε εω εον η μας (m) $\sum_{0}^{(\pi)} \frac{3.5}{55.5} = \frac{3.5}{5} = \frac{1.5}{5} = \frac$ $K^{(\pi)}$ $\chi_{(\kappa)}$ $\chi_{($ A γα πη εω εε Κυ ρι ε η ι εχυ (π) ο υς μου Κυ ρι ος ετε ρε ω μα μου κα κα τα φυ γη μου και ρυ ετη ης μου κ

Λειτουργικά. Κ. Πρίγγου

 $E = \sum_{j(\pi)}^{j(\pi)} \sum_{i=1}^{j(\pi)} \sum_{j=1}^{j(\pi)} \sum_{i=1}^{j(\pi)} \sum_{i=1}^{j(\pi)} \sum_{i=1}^{j(\pi)} \sum_{j=1}^{j(\pi)} \sum_{i=1}^{j(\pi)} \sum_{i=1}^{j(\pi)}$ (K) (A) (K) Ε χο μεν προς τον Κυ ρι ον 3 2 6 - 2 6 - 1 = 6 9 $A \xrightarrow{3} C C + \frac{3^{(\pi)}}{2} C C + \frac{3^{(\pi)}}{$ ος Σαβ βα ωθ πλη ρης ο ου ρα νος και η γη ετοις ευ λο γη με νος ο ερ χο

201000 ニューシュィーシィーショ εν τοις υ ψι $A^{\frac{7}{x} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} A^{\frac{3}{1000} \frac{3}{1000} \frac{3}{1$ 3 2013 = 13 5 50 50 6- 12 50 $\sum_{(\pi)} \frac{\alpha}{2} = \frac{\alpha}{2}, 23 = \frac{\alpha}{2} = \frac{\alpha}{2} = 23 = 24 + 24 = \frac{\alpha}{2}$ (κ) (π) (π) (κ) (π) (π)σου ο Θε ο Α ξι ον ε ετι ιν ω ως α λη θω ως μα κα ρι ζει ειν 6ε την 2 = 200 = = = 2 (c2 (± 1, c d , c) = (μ)

μα κα ρι 6το ον και πα να μω μη TOV KAI HU TE $\rho\alpha$ TON $\theta\epsilon$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1$ τω ων Χε ρου βι ιμ και εν δο ξο τε ことうでにつるではサットロー ρα φιιμ ニッシューロット - ニッシューナー ニッシューナン (K) ρω ως θε ον Λο (-2) $= \frac{1}{2}$ (-2) (-2) $= \frac{1}{2}$ $= \frac{1}{2}$ $\mu \varepsilon \qquad \lambda \alpha \qquad \lambda 0 \qquad \lambda 0 \qquad \mu \varepsilon \qquad \varepsilon \lambda$ $\frac{1}{2} \sum_{\alpha} \frac{1}{2} \sum_{\alpha} \frac{1}{$ γα λυ 9 K

Έτερα. 'Αθ. Βουρλῆ, Καθηγητοῦ Παν/μίου 'Αθηνῶν	
$^{ au}$ Ηχος $\overset{\lambda}{\pi}$ \ddot{q} Π α, ἀργοσύντομος.	π
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	π 9
$2. K_{0} p_{1} \varepsilon \varepsilon \lambda \varepsilon \eta = \frac{\pi}{60} ov$	ว่า
3. K ν ρ_{L} ϵ ϵ λ ϵ η ϵ ϵ δ ϵ δ ϵ	<i>K</i> : 9
4. $K_{0}^{(\Delta)}$ ϵ	K: 0
5.K 0 0 0 0 0 0 0 0 0 0	À
$6.K_{0}^{(n)} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} $	71 9
ρα εχου Κυ ρι ε	π 9
$2. \prod_{\alpha} (\pi) = \frac{\pi}{2} \sum_{\alpha} (\pi) = \frac{\pi}{2} \sum$	27
3. Π α ρα εχου Κυ ρι ε	9
3. Π α ρα 6χου Κυ ρι ε 4. Π α ρα 6χου Κυ ρι ε	K : 9

$$E$$
 $(κ)$
 $($

$$A = \begin{pmatrix} (A) & (A)$$

ως α λη θω ως μα κα ρι ζει いうニニンシのでっていまった」 την θε ο (κ) (κ) $\frac{\lambda}{\lambda} = \frac{\lambda}{\lambda} = \frac{\lambda$ ー介、モン2(C2+2 (ω) (κ) μη τε ρα ζ(π-Δ) ζ(πμων την τι μι ω τε (π-Δ)ων Χε pou βιμ και εν δο ξο τε $= \frac{1}{2} \frac{\pi}{3} \frac{$ シンのこうとのいう一人ではではっし ιμ την α δι pa * Καί ἄλλως: $\frac{\pi}{6}$ $\frac{\pi}{6}$

Έτερα. «"Aξιόν ἐστιν». Εἰς ἦχον $\overset{\lambda}{\pi}$ $\ddot{\mathsf{q}}$ $\Pi \alpha$

τε ρα του θε ου η μων την τι μι 30 = 50 + C " = 50 3 C C C K ραν τω ων Χε ρου βι (K) και εν δο ξο τε ραν α ευγ κρι τως των Σε ρα φιμ την α δι α φθο $\frac{3}{6\alpha V} \frac{\pi}{7} \frac{1}{7} \frac{1}{6} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac$ με γα λυ νο

Έτερον. Ἐπί τῆ βάσει Γ. Σαρανταεκκλησιώτου.

 π

 $A \xrightarrow{\xi_1} {\overset{\alpha}{\circ}} {\overset{\beta}{\circ}} {\overset{\beta}{\circ}} {\overset{\alpha}{\circ}} {\overset{\beta}{\circ}} {\overset{\beta}{\circ}} {\overset{\gamma}{\circ}} {\overset{\gamma}$ ニュラ: q' c c テンシンニュラ c c c μα κα ρι ζει ειν εε την θε $\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$ TO ει μα κα $\frac{1}{100} \sum_{k=1}^{100} \sum_{k$ του θε ου η μω ων την $(N)(\pi)$ ρα αν τω ων Χε ρου μι ω τε $\frac{3}{6} : \frac{\kappa(M)}{9} : \frac{(\Delta)}{9} = \frac{\pi}{12} : \frac{\pi}{12} : \frac{3}{12} : \frac{\pi}{12} : \frac{\pi}{12} : \frac{3}{12} : \frac{\pi}{12} : \frac{\pi}{12$ $(25 \frac{3}{4}) \frac{1}{10} \frac{\pi}{10} \frac{3}{10} \frac{5}{10} \frac{\pi}{10} \frac{1}{10} \frac{\pi}{10} \frac{3}{10} \frac{\pi}{10} \frac{1}{10} \frac{\pi}{10} \frac{3}{10} \frac{\pi}{10} \frac{1}{10} \frac{\pi}{10} \frac{3}{10} \frac{\pi}{10} \frac{1}{10} \frac{\pi}{10} \frac{3}{10} \frac{\pi}{10} \frac{\pi}{10} \frac{3}{10} \frac{\pi}{10} \frac{\pi}{1$ Έτερον. Δ. Άλ Μούρ, Πρωτοφ. Άντιοχείας (1880-1969).

ων (κ) (κ) (κ) (κ) (χς τς τς και εν δο ξο τε ευγ κρι τως (κ) των Σε ρα σας (κ) των Σε (3503、15 円 一かくこの5ールニョラーラー την α δι α φθο 2-" + = = = > 2 (=) = = > 2

HXOΣ ΠΛ. Β'. $\stackrel{\lambda}{\pi}$ $\stackrel{\sim}{\smile}$ $\stackrel{\sim}{\Pi\alpha}$

	т
$A \pi \lambda \tilde{\alpha}$	π
$\frac{1}{\nu} \frac{1}{\rho_{1}} \frac{1}{\epsilon} \frac{3}{5\pi} \frac{1}{5\pi} $	π
$2.K \frac{1}{\nu} = \frac{1}{\varepsilon} + \frac{1}{\varepsilon} = \frac{1}{\lambda \varepsilon} = \frac{1}{\eta} = \frac{1}{60\nu}$	5
3. $K = \frac{3}{\nu} = \frac{3}{\epsilon} = \frac{3}{\epsilon}$	Ç
4. $K = \frac{3}{\nu} + \frac{3}{\epsilon} = \frac{3}{\lambda \epsilon} = \frac{3}{\eta} = \frac{3}{60\nu}$	کی ۔
5. $K = \frac{(\pi)}{\nu} = \frac{3}{\nu} + \frac{3}{\nu} = \frac{3}{$	π
α ρα εχου Κυ ρι ε	ξ
2. Π $\alpha \rho \alpha \epsilon \chi \sigma \delta \delta \sigma \delta \delta \delta \delta \delta \delta$	5
3. $\prod_{\alpha} \frac{(\pi)}{\alpha} = \sum_{\alpha} \frac{3}{\kappa} = \sum_{\alpha} \frac{3}{\kappa}$	K
4. Π (κ) 3 3 3 7 5 7 5 6χου Κυ ρι ε	K

5. $\prod_{\alpha} \frac{(\pi)}{\alpha} = \sum_{\alpha} \frac{3}{2} \frac{\pi}{\alpha} > 1 \stackrel{3}{\sim}$ $Y = \frac{3}{\pi \epsilon} \frac{3}{\rho \alpha} \gamma i \alpha \theta \epsilon 0 \tau 0 \kappa \epsilon \epsilon \omega \epsilon 0 \nu \eta \mu \alpha \varsigma$ $\sum_{i=1}^{(\Delta)} \frac{\pi}{\beta} \frac{\pi}{$ (π) K^{α_1} τ_{ω} $\tau_{\nu \epsilon \nu}$ μ_{α} τ_{ι} 600 $A^{\frac{(\pi)}{\gamma\alpha}} \frac{\tilde{\pi}}{\eta} = \frac{\tilde{\pi}}{\kappa} = \frac$ εχυ υς μου Κυ ρι ος ετε ρε ω μα (π) κ σου του του και ρυ μου και κα τα φυ γη μου και ρυ 2002603 στη ης μου $\prod_{\alpha} (\pi) \sum_{\alpha} (\pi) \sum_{$ = 22025 CC3 χω ρι ετο ον $E^{\frac{(\pi)}{2}} \xrightarrow{\text{$>$ > $}} -\frac{\pi}{2} \xrightarrow{\text{$>$ > $}} \xrightarrow{\text{$\sim$ $}} \xrightarrow$ +20250 αι νε 6ε ως $K_{\alpha_{i} \mu\epsilon \tau\alpha \tau \sigma \tau \sigma \nu \mu\alpha \tau \sigma \sigma \sigma \epsilon \sigma \sigma}^{(\pi)}$ $E_{(\pi)}^{(\kappa)} \chi_{0} \mu\epsilon_{\nu} \pi\rho_{0} \zeta \tau \sigma \nu \kappa_{\nu} \rho_{i} \sigma \nu$ $A = \begin{cases} \frac{3}{\xi_{1}} & 0 \text{ on } \kappa\alpha_{1} & \delta_{1} & \kappa\alpha_{1} & 0 \text{ on } \\ \frac{3}{\xi_{1}} & 0 & \zeta_{2} & \zeta_{3} & \zeta_{4} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{4} & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 & \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \frac{3}{\xi_{1}} & 0 &$ ος Σαββα ωθ πλη ρης ο ου ρα νο ος και $\frac{\pi}{3} + \frac{3}{50} + \frac{3}{50} = \frac{3}{50}$ τοις υ ψι 6τοις ευ λο γη με νος ο ερ χο με νος εν ο νο μα τι Κυ ρι ου

ω σαν γα εν τοις υ ψι $A \stackrel{(\pi)}{\underset{(\pi)}{\stackrel{(\pi)}{\sim}}} \stackrel{(\pi)}{\underset{(\pi)}{\stackrel{(\pi)}{\sim}}} \stackrel{(\pi)}{\underset{(\pi)}{\stackrel{(\pi)}{\sim}}} \stackrel{(\pi)}{\underset{(\pi)}{\sim}} \stackrel{$ $\sum_{\varepsilon} \frac{1}{\varepsilon} \frac{1}{\varepsilon$ γου μεν Σοι ευ χα ρι στου μεν Κυ $\frac{1}{5}\left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{1}{5}\left(\frac{1}{600}\right)^{\frac{1}{2}} = \frac{1}{5}\left(\frac{1}{100}\right)^{\frac{1}{2}} =$ ο ος η μω ων $A = \begin{cases} \xi(\kappa) & \xi$ $\frac{\delta}{S} = \frac{(\Delta)}{S} = \frac{S}{S} = \frac{(\pi)}{S} = \frac{S}{S} = \frac{S}{S} = \frac{(\pi)}{S} = \frac{S}{S} = \frac{(\pi)}{S} = \frac{S}{S} = \frac{S}{S} = \frac{(\pi)}{S} = \frac{S}{S} = \frac{S}{S} = \frac{(\pi)}{S} = \frac{S}{S} = \frac{S}{S$ κον την α ει μα κα ρι 6τον και - (-5 - 5 - 5 - 5 - - + 3 πα να μω μη τον

 $\rho \alpha$ του $\theta \varepsilon$ ου η $\mu \omega \nu$ την τι μ ι ω τε ραν των χε ρου βιμ καιEV 80 FO ραν α ευγ κρι $\frac{\zeta}{\delta_{1}} \propto \frac{\zeta}{\phi \theta_{0}} = \frac{\zeta^{4}}{\delta_{1}} = \frac{\zeta^{4}}{\delta_{1}}$ δι α φθο (π) γον τε κου ov $\tau \omega \varsigma \theta \varepsilon$ o τo $\kappa o v$ $\Sigma \varepsilon$ $\mu \varepsilon$ $\gamma \alpha$ λυ 7-4 4 4 1-1-55 F-1-1-55

Έτερα Ήχος π Πα.	
Μέ διατονιχάς χαταλήξεις εἰς τόν κε	π
$\frac{(M)}{\nu} = \frac{3\pi}{\epsilon} = \frac{3\pi}{\lambda} = \frac{3\pi}{\epsilon} = \frac{3\pi}{\epsilon}$	\leq^{π}
$2.K \frac{(\pi)}{\nu} c \sum_{\rho_{1}} \frac{3!}{\epsilon} \sum_{\lambda \epsilon} \frac{3!}{\eta} cov$	٦
3. $K = \frac{\pi}{\nu} = \frac{\pi}{\nu}$	K
$TZ = \frac{\pi}{2} = \frac{\pi}{2} + \frac{\pi}{2} = \frac{3}{2} = \frac{\pi}{2} =$	$\stackrel{\pi}{\hookrightarrow}$
4. K U ρ E E A	q K
$\pi \prod_{\alpha} \frac{(N)(\pi)}{\alpha \rho \alpha \epsilon \chi o \nu} \frac{3\pi}{\kappa \nu} \sum_{\alpha} \frac{3\pi}$	π
$2. \prod_{\alpha} \frac{3}{\alpha} \frac{3}{\rho \alpha} \frac{3}{6 \chi_0 \nu} \frac{3}{\kappa \nu} \frac{3}{\rho \nu} \frac{3}{\epsilon}$	ک
3. $\prod_{\alpha} (\pi) (\kappa) (\kappa) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi) (\pi$	ĸ
4. $\prod_{\alpha} (\kappa) = \frac{3(\pi)}{5(\pi)} = \frac{3(\pi)}{5(\pi)}$	کے
5. Π (π) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	π

 $= E_{\text{vas on ei bu}} + E_{\text{vas on ei bu}$ $3307 \stackrel{(M)}{=} 3$ $3507 \stackrel{(M)}{=} 3$ $3507 \stackrel{(M)}{=} 3$ K αi $\mu \epsilon$ $\tau \alpha$ $\tau o \nu$ $\pi v \epsilon \nu$ $\mu \alpha$ τo σc $\epsilon o \nu$ Ε χο με εν προς τον Κυ ρι ον και δι ξι ο και δι [4+ 3π 10 5 5 0 5 0 0 V A 71 05 A 71 05 A 71 05 Κυ ρι ο ος Σαβ βα ω ωθ πλη ω εαν να εν τοις υ ψι ετοις ευ λο γη με νος ο εερχο με νος εν ο νο ματι Κυρι

(M) (K)3 (K)3 (M) (Mκα ρι 6τον και πα να μω μη τον $\frac{2}{\beta} \subset \frac{2}{4\pi} - \frac{2}{3\pi} \cdot 30 \cdot 20 \cdot \frac{2}{3\pi} + \frac{2}{3} \cdot 20 \cdot 30 \cdot \frac{2}{3\pi} \cdot \frac{$ ρα μη τε ρα του θε ου $\frac{(\kappa)^3}{\eta}$ $\frac{5}{\kappa}$ $\frac{5}{\kappa}$ $\frac{5}{\kappa}$ $\frac{5}{\kappa}$ $\frac{6}{\kappa}$ $\chi_{ε}$ bon gih και ελ go $\xi_{ο}$ τε bαλ α επλ κοι $\chi_{ε}$ $\chi_{ε}$ τως των Σε π ξθο την α δι α φθο ρως θε ον Λο νο $(3, \frac{1}{2}, \frac{1}{$ من عالم عدد الله عدد الله

Έτερα. Χαρ. Παπανικολαόυ.

Hχος $\overset{\lambda}{\pi}$ $\overset{\sim}{}$ $\overset{\sim}{\Pi}$ $\overset{\sim}{\alpha}$. π α τε ρα Ιι ο ον και Α γι ον $\frac{\pi}{\pi}$ $\frac{4}{8}$ $\frac{4}$ 3" = 3200 0 = (23 (2) (c) μο ου ει ον και α χω ρι ετο ον (π). E De on El bu nue go er αν αι νε εε ως Kαι με τα του πνευ μα το ος σου E (κ) (λ) (κ) A χ ος Α γιος Κυ ρι oς Σαβ βα ωθ πλη ρης ο ου <math>ρα νος

και η γη της δο ξηης 600 ου ω 6αν να εν υ ψι ετοις ευλο γη με νοςο ερ χο τοις υ ψι με νος εν ο νο ματι Κυρι ο εν τοις υ ψι TI' X A たーでデッドデッドラッデッ $\sum_{\varepsilon} \sum_{\nu} \frac{(\kappa)}{\mu \nu \sigma \nu} \sum_{\nu} \frac{\kappa}{\kappa} \sum_{\varepsilon} \sum_{\varepsilon} \frac{\kappa}{\kappa} \sum_{\varepsilon} \frac{$ ンンになる「ドラウー」の m ζ = ζο ε σο «Ἄξιόν ἐστιν», σελ.468 "Ετερα. Ήχος π - Πα.

«Κύριε ἐλέησον»-«'Αγαπήσω Σε» Θρ. Στανίτσα. $2.\mathbf{K}_{0} = \sum_{\substack{\beta \in \mathcal{S} \\ (\kappa) \\ \beta \in \mathcal{S}}} \sum_{\substack{\beta \in \mathcal{S} \\ (\kappa) \\ \beta \in \mathcal{S}}} \sum_{\substack{\beta \in \mathcal{S} \\ (\kappa) \\ \beta \in \mathcal{S}}} \sum_{\substack{\beta \in \mathcal{S} \\ (\kappa) \\ \beta \in \mathcal{S}}} \sum_{\substack{\beta \in \mathcal{S} \\ (\kappa) \\$ س احتی اور می اور می اور اور این از این ا α ρα εχου Κυ ρι جاری عادی + رمی نیر سیره عیری ا خار کیر سازی از بیری بیری بیری کیری ا خار کیری ا Ι α ρα εχου Κυ (π) (Δ) (π) (π) α ρα 6χου Κυ ρι ε

α ρα 6χου Κυ ρι ε

Λειτουργικά. Κ. Πρίγγου.

Hyos $\overset{\lambda}{\pi}$... $\overset{\sim}{\Pi\alpha}$. α $\tau \epsilon$ $\rho \alpha$ γ_1 $\sigma \gamma$ $\kappa \alpha_1$ Λ γ_1 ον Πνε ευ μα Τρι α δα ο μο ου ته ات دخی ت دونه او پر شرد صور ت در تا در این تا در ت ο ον και α χω ρι νε εε ω ως ως ···· $E \xrightarrow{\chi_0} \mu_{\text{EV}} \pi_{\text{POC}} \xrightarrow{\tau_0} \sigma_{\text{V}} \times \kappa_{\text{U}} \qquad \rho_{\text{I}} \qquad \sigma_{\text{V}} \times \kappa_{\text{U}} \times \kappa_{\text{$ και (π) ο ον ... A $\gamma_i \circ \varsigma$ A $\gamma_i \circ \varsigma$ A $\gamma_i \circ \varsigma$ (κ) Κυ ρι ος Σαβ βα ωθ πλη ρης ο ου ρα νος και η γη της δο ξη ης 600 ω εαν να εν τοις υ ψι 6τοις ευ λο γη με νος ο ε ερ χο με $\mu\alpha$ TI Ku pi ou ω 6 α V $\nu\alpha$ o ϵ V TOIS U WI 6TOI OIS $A = \sum_{\mu\eta \eta\nu} A = \sum_{\mu\eta \eta\nu} A = \sum_{\mu\eta \eta\nu} A = \sum_{\mu\eta \eta\nu} A = \sum_{\nu} A = \sum_{\nu$ $\frac{3}{2}$, 1 > $\frac{7}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 224 (- 25 - 30 = 6 $\frac{\pi}{2}$

«"Αξιόν ἐστιν», Θρ. Στανίτσα.

 $A = \frac{1}{\xi_{l}} \sum_{0} \frac{1}{\xi$ ω ωc α Δn $\Delta \omega$ ωc Δc Δ - $\frac{1}{2}$ $\frac{1}{2}$ ο το κον την α κι μα κα 「つった、ブラットーニっちんできまったしい πα να μω (π) ρα μη τε ρα του θε τον και μη τε ου ου η μω (Δων こころーのいにもこっちゃらんと την τι μι ω τε (z) (π) (π) (π) (π) (π) (π)

ρου

και εν δο ξο τε

Έτερα. Τά «Παλατινά». H χ o ς $\overset{\lambda}{\pi}$ $\overset{\dots}{\dots}$ $\overset{\infty}{\Pi}$ $\overset{\dots}{\alpha}$. 「(m) コナンラニュ π υριε ελε η σον ${}_{2.}K\overset{(\pi)}{\underbrace{\smile}}_{0} \underset{\rho \in \mathcal{E}}{\underbrace{\smile}} + \frac{3}{\epsilon} \overset{r}{\underbrace{\sim}}_{\lambda \epsilon} \overset{3}{\underbrace{\sim}}_{\eta} \overset{r}{\underbrace{\sim}}_{60v}$ 3. $K = \frac{(\Delta)}{\nu} \rho \epsilon + \frac{\lambda}{2} \frac{3}{5} + \frac{\lambda}{5} \frac{5}{5} = \frac{5}{7} = \frac{5}{60} = \frac{5}{7} = \frac{5}{60} = \frac{5}{7} = \frac{5}{10} = \frac{5}{10}$ λ γ γ γ 4. K $\frac{(\pi)}{\upsilon}$ ρ_1 ε ε $\lambda \varepsilon$ η $\epsilon_0 \nu$ π 5. $K = \frac{(\pi)}{\nu} = \frac{1}{\epsilon} + \frac{1}{\epsilon} = \frac{1}{$ $\prod_{\alpha} (3) \frac{73}{23} > 2 \frac{3\pi}{22} > 2 \frac{3\pi}{2}$ $\alpha \quad 600 \quad K0 \quad 61 \quad \epsilon$ π $2. \prod_{\alpha \rho \alpha} \frac{(\pi)^{\frac{3}{3}}}{6\chi_{00}} \frac{1}{\kappa_{0}} = \frac{3}{2} \frac{3}{\epsilon}$ π' Y. V 5. $\prod_{\alpha} \frac{(\pi)}{\alpha} \frac{3}{\rho \alpha} \frac{3}{6 \chi 0 \nu} \frac{3}{K \nu} \frac{3}{\rho \nu} \frac{3}{\epsilon}$

Λειτουργικά Μ. Χατζηαθανασίου.

 $E \xrightarrow{\chi(\pi)} \sum_{\lambda \in \text{ ov } \epsilon i \text{ ph}} \sum_{\nu \eta c} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ov } \alpha i \text{ ov } \alpha i \text{ ve}} \frac{\pi}{\sigma_{\nu}} = \sum_{\delta i \text{ ov } \alpha i \text{ ov } \alpha$ 3/ 35 ÷ 6 33 ως \mathcal{I} $E \xrightarrow{3 \times 10^{-1}} \sum_{\kappa} \sum_{\kappa}$ A γιος Α γιος Κυ 5 5 $\frac{4}{2}$ $\frac{4}{$ $\kappa \alpha i \eta \gamma \eta \tau \eta \varsigma \delta 0$ $\xi \eta \varsigma 6 0 0 0 \omega 6 \alpha v v \alpha \varepsilon v$ $\frac{(\pi)}{5}$ τοις $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{(\pi)}{5}$ $\frac{\pi}{5}$ $\frac{\pi}$ = > 515 c = = 5 - (K) = >5 c 5 με νος εν ο νο μα τι Κυ ρι
(π) 6αν να εν τοις υ ψι 6τοις

 $A = \begin{bmatrix} 3^{(\alpha)} & 3^{(\alpha)}$

«Ἄξιόν ἐστιν» ὑπό τοῦ Ἐκδότου.

ΤΗχος ὁ αὐτός.

π

Α

ξι ον ε ετι ιν ω ως α λη

θως μα κα ρι ζει ειν εε την θε ο

κον την α ει μα κα

(Δ)

ρι ετον και πα να μω μη

και μη τε $\int_{-\frac{\pi}{2}}^{\pi} \int_{0}^{\pi} \int_{0}^$ (A) μων την τι μι ω τε ραν των Χε $\frac{\pi}{\rho o v} = \frac{\pi}{6i\mu} \cdot \frac{\pi}{\kappa} = \frac{\pi}{6i\nu} \cdot \frac{\pi}{\kappa}$ $\frac{\pi}{6i\nu} = \frac{\pi}{6i\nu} \cdot \frac{\pi}{6i\nu} = \frac{\pi}{6i\nu} \cdot \frac{\pi}{6i\nu} = \frac{\pi}{6i\nu} \cdot \frac{\pi}{6i\nu} = \frac{\pi$ - 5 41 ca - 1 c c c c c την α δι α φθο φιμ $(N) (\pi) \qquad (K) \qquad$ κου την ον τως θε ο το $\frac{\pi}{\kappa} = \frac{(4)}{2} \frac{2}{\lambda} \frac{2}{100} \frac{\pi}{200} \frac{\pi}{2$ ر کے دیں ج

Έτερα Ε. Τιμωνίδη καί Δ. Βασιάδη. Κατά διασκευήν Α. Καραμάνη. ΤΗχος $\ddot{\mathcal{L}}$ $\Delta_{i}^{\mathcal{O}}$ $\ddot{\chi}$ $\Delta_{i}^{\mathcal{O}}$ α TE $\rho\alpha$ YI ρ α YI ρ YI ρ α YI πνε ευ μα Τρι α δα ο μο ου ει ον $\kappa \alpha i \qquad \alpha \chi \omega$ $E_{(\Delta)}^{(\Delta)} = \frac{3}{\lambda \epsilon} =$ ₹K - - = > 2, 2, 2, ... 5 $E_{(Δ)}^{(Δ)}$ χο μενπρος τον Κυ ρι ον $A \xrightarrow{(\Delta)} (\pi) \xrightarrow{(\pi)} (\Delta) (\Delta)$ $A \xrightarrow{(M)} (\pi) \xrightarrow{(\Delta)} (\Delta) (\Delta)$ $A \xrightarrow{(M)} (\pi) (\Delta) (\Delta)$ $A \xrightarrow{(M)} (\pi) (\Delta) (\Delta)$ $A \xrightarrow{(A)} (\pi) (\pi)$ $A \xrightarrow{(A)} (\pi)$ $A \xrightarrow{(A)} (\pi) (\pi)$ $A \xrightarrow{(A)} (\pi) (\pi)$ $A \xrightarrow{(A)} (\pi) (\pi)$ $A \xrightarrow{(A)} (\pi)} (\pi)$ $A \xrightarrow{(A)} (\pi)$ $A \xrightarrow$ $\frac{3}{6\alpha}$ $\frac{\pi}{9}$ $\frac{\pi}{10}$ $\frac{3}{10}$ $\frac{\pi}{10}$ $\frac{\pi}{10}$ $\frac{3}{10}$ $\frac{\pi}{10}$ $\frac{\pi}{10}$ ラ· になって・シー :: ラ :: で # ロ c c ω εαν να εν τοις υ ψι ετοις ευ λο γη ξης 600

$$\frac{2}{2}$$
 $\frac{2}{2}$ $\frac{2$

κον την α ει μα κα ρι έτον και την α ει μα κα -- 30" = " 0 = = = 5 11 = 50 21 πα να μω μη τον και μη τε ρα α (π) α α (λ) α λ του θε ου η μων την τι μιω τεραν τω ων χε ρου βιμ και εν δο ξο τε ραν α ευγ κρι (Δ) την α δι α φθο ρως θε ο ον Λο $\frac{1}{2} \sum_{\alpha} \frac{\pi}{\alpha} \sum_{\alpha} \sum_{\alpha} \frac{\pi}{\alpha} \sum_{\alpha} \frac{\pi}{\alpha}$ " × 6 . " ~ 0000 ~ 0 × 3" 0 " 6 με \dot{x} Έτέρα κατάληξις: $\ddot{x} = \frac{(\pi)}{2}$

Έτερα Δ. Κατζιγκᾶ ίεροδιακόνου (1997). Ήχος $\mathring{\pi}$ $\underline{\ }$ $\mathring{\Pi}$ α. χπ υ ριε ε λε η 60ν 2. $K = \frac{1}{\nu} = \frac{1}{\nu}$ ر <u>د ځ ..</u> ۶۶ ت α ρα εχου Κυ ρι ε α ρα εχου Κυ ρι ε α ρα 6χου Κυ ρι ε α ρα εχου Κυ ρι

5.Π ο ρα εχου Κυ ρι ε $6. \prod_{\alpha} \frac{(\pi)}{\alpha} \frac{(\Delta)_{\alpha}}{p_{\alpha}} > \frac{1}{2\pi} \frac{2\pi}{\alpha} \sum_{\alpha} \frac{(\pi)}{\alpha} \sum_{\beta} \frac{(\pi)}{\beta} \sum_{\alpha} \frac{(\pi)}{\beta} \sum_{$ 2560 5 cm 22 cm Y recense περα γι α θε ο το κε εω εον η μας $\sum \frac{\int_{0}^{(\pi)} (\pi)}{\int_{0}^{\pi} (\pi)} \int_{0}^{\pi} (\pi) \int_{0}^$ $K = \sum_{\alpha_1}^{(\pi)} \sum_{\alpha_2} \sum_{\alpha_3} \sum_{\alpha_4} \sum_{\alpha_5} \sum_$ $A = \frac{\pi}{\gamma \alpha \pi \eta} = \frac{\pi}{\omega} \sum_{\epsilon} \sum_{\epsilon}$ υς μου Κυρι ος ετε ρε ω μα μου και ر (m) عرد <u>ت</u> عاد د روس عاد الم κα τα φυ γη μου και ρυ ετη <u>ح</u> کی خ ης μου (K) 1 0 5 - - 3 m' C 1 5 5 5 7 5 α τε ρα Υι ον και Α

Tive ευ μα Τρι α δα ο μο ου ει ον $E^{\frac{J(\kappa)}{\lambda\epsilon \text{ on } \epsilon l} \rho\eta \text{ on } \frac{3}{\nu\eta\varsigma} \frac{\pi}{\theta\upsilon} \frac{\Delta}{\delta l}}$ α ω" —" ¬ » 2 (ς <u>ς</u> » » 2 ς ς « 3 V αγ αι με τα του πγευ μα το ος 60υ (K) 5000 0 - - 1 = 10 C 5 C χο μεν προς τον Κυ ρι ον χ = ον και δι και ον και ον $A \xrightarrow{\chi} A \xrightarrow{(\pi)} 350 + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{$ ος Σαβ βα ωθ πλη ρης ο ου ρα νος και γη τη ης δο $\frac{1}{2}$ $\frac{1}$

ε ερχο με νος εν ο νο μα τι Κυ ρι 2 35 10 5 55 0 $A^{\frac{1}{\chi} \int_{(\alpha)}^{(\kappa)} \frac{1}{2\pi} \int_{\alpha}^{(\kappa)} \frac{1$ π΄ & ر ح<u>ي.</u> ۶۶ ت π $\sum_{\kappa} \frac{\chi_{\kappa}(\pi)}{\kappa} = \frac{1}{2} + 2\pi \frac{\kappa}{\kappa} = \frac{1}{2} + 2\pi \frac{\kappa}{\kappa}$ δε ο με θα ر ح<u>ي...</u> 22 خ

Α ξιο ε ετιινω ώς α λη π' μα κα ρι ζει ειν εε σ τη ην θε οτο κον την α ει μα κα $\frac{1}{2} \frac{1}{2} \frac{1}$ - 323030" - "0" - ", C+C ω τε (Δ) ραν τω ων χε ρου βιμ και εν (π) τω ως τω $\frac{\pi}{\mu}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ ور ارخ را - شاع بال ي شاري شاع مي التي ي ο ον Λο γον τε

Έτερα «Ἄξιόν ἐστιν». Εἰς ἦχον πλ. Β΄.

π. Γεωργίου Σχουρτανιώτου. $\frac{1}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2$

η μων την τι μι ω τε ραν τω ων Χε βι ιμ και εν δο ξο τε ων Σε ρα φιμ την α δι α φθο ρως $\frac{\pi}{\theta \epsilon} \stackrel{\lambda}{\circ} 0 = \frac{\pi}{6} \stackrel{\lambda}{\circ} \stackrel{\lambda}{\circ} \frac{\pi}{6} \stackrel{\lambda}{\circ$ τως θε ο το 2/20 (M) 22 (π) (π) (M) (M) (M) (M) (M) (M) με γα λυ νο με

"Ετερον Δ. Μανούση (2001).

Ήχος $\frac{\lambda}{\pi}$ $\frac{\pi}{\pi}$ $\frac{\pi}{\pi}$. $A = \frac{\delta}{\xi_1} \text{ or } \varepsilon \text{ ftl iv} \quad \omega \quad \omega_{\zeta} \quad \alpha \quad \lambda_{\eta} \quad \theta_{\omega} \quad \omega_{\zeta}$ $\frac{(\Delta)}{\xi_1} \quad \frac{\delta}{\pi} \quad \frac{1}{\xi_1} \quad \frac{\delta}{\pi} \quad \frac{\delta$

το κον την α ει μα κα ρι 6το ον και πα να μω μη τον και μη τε 一つとうこ・3 で3 03 - 10 35 (で 1 ρα μητερατου θε ου = 5 = π (κ) (A) (K) $\mu\omega\nu$ $\tau\eta\nu$ $\tau\iota$ $\mu\iota$ ω $\tau\varepsilon$ ρα των χε $\frac{\pi}{5}$ $\frac{\pi$ ρου βιμ και εν (π).

τως των Σε ρα φι
(Ζ) την α δι α φθο $" \rightarrow + = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty}$ ov No γον τε κου ع ا مر د خ رح ی عیر ع – شری ی پر ع شر حیر (۵) την ον τωως θε ο το シャラシャランの こっしょ シーニック γα λυ VO 5+(Ω) = (π) ÷

"Ετερον Ά. Καραμάνη. $^{\gamma}$ H χ o ς $\overset{\lambda}{\pi}$ $\overset{\sim}{\ldots}$ $\overset{\sim}{\Pi}\alpha$. $A = \sum_{\xi \in \text{OV}} \sum_{\xi \in \text{GTL}} \sum_{i,j} \sum_{\zeta \in \text{GTL}} \sum_{\zeta$ $\frac{1}{\theta \omega c} \frac{\pi'}{\mu \alpha} \frac{(\Delta)}{\kappa \alpha} \frac{\rho}{\rho} \frac{1}{\rho} \frac{(\Delta)}{\rho} \frac{($ $\frac{(M)}{U}$ $\frac{(\pi)}{V}$ $\frac{(\pi$ $\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \sum_{j=1}^{N}$ 一点 ニングラッグ ローバル、ーナーンシー ραν των Χε ρου βιμ και εν δοξο τε $\frac{\Gamma}{\Gamma} \sim \frac{\rho}{\pi} \sim \frac{\rho}$ $(-2)^{(M)}^{(M)}^{(M)}^{(M)}$ $\omega_V \Sigma_{\varepsilon} \rho_{\alpha} \qquad \varphi_{\varepsilon} \qquad (\pi)^{(\pi)}^{(\pi)}$ $(\pi)^{(\pi)}^{(\pi)}$ $(\pi)^{(\pi)}^{(\pi)}$ δι α φθο

 $\frac{1}{\sqrt{2}}$ $\frac{$

Έτερον Άνωνύμου.

Hχος $\frac{\lambda}{\pi}$ $\frac{\pi}{\sin}$.

A $\frac{\pi}{\xi_{1}}$ $\frac{3}{\xi_{1}}$ $\frac{3}{\xi_{1}}$

 ω $\tau \varepsilon$ $\tau \omega v \times \varepsilon$ $\tau \omega v \times \varepsilon$ $\tau \omega v \times \varepsilon$ 5 (-5 π (-5 π (-7 π) - 7 π) σ (-7 $(\pi)^{6\alpha} \quad \alpha\gamma \quad \tau\eta\gamma \quad 0$ $(\pi)^{6\alpha} \quad \alpha\gamma \quad \tau\eta\gamma \quad 0$ $(\pi)^{3} \quad (\Delta)^{3} \quad (\Delta$ με .

Έτερον Άνωνύμου Σιμωνοπετρίτου (1716). Ήχος π ... Πα. $A = \frac{\pi}{\xi_{\text{I oV}}} + \frac{\pi}{\xi_{\text{I oV}}} +$ πως μα κα ρι ζει 6ε $\frac{Z'}{\lambda} \frac{5}{5} = \frac{6}{5} \frac{5}{5} \frac{5}{5} \frac{8}{5} \frac{5}{5} \frac{8}{5} \frac{5}{5} \frac{1}{5} \frac{1}{5} \frac{5}{5} \frac{1}{5} \frac{\pi}{5}$ 362 12 -1 - 2300 (2, 2, 2, 2, 2 την α ει μα κα ρι (a) 6 = 200 (1, 5, 6) 1, - 6 $\frac{3\pi}{5} = \frac{3\pi}{6} = \frac{3\pi}{6}$ > 1505 = 2 (015 - - 505 μων την τι μιω τε ραν των Χε ρου βιμ και $\frac{1}{\xi_0}$ $\frac{1$ 11, (-2 & 2" = (-2) = " = 2 ? 3 3 " 1 τω ων Σε ρα

HYOF BARYS

HXO Σ BAPY Σ .

'Απλᾶ.	
Ήχος Βαρύς 😇 Ζω	% ≈
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z T q
3. $K_{\nu}^{(\pi)} = + \frac{3}{\epsilon} \frac{3}{\lambda \epsilon} \frac{3}{\eta} \frac{3}{600}$	Å
$4. K \frac{1}{\nu} \rho_{1} \epsilon \epsilon \epsilon_{(z)} \lambda \epsilon \eta 60\nu$	Z' %
$5.K \circ \beta + 3 \frac{3\pi}{5} > 3 \frac{5}{5}$	Z
α ρα εχου Κυ ρι ε	2~
$2. \prod_{\alpha} \frac{(\alpha)}{\alpha} = \frac{3}{6 \times 6 \times 6} = \frac{3}{6 \times 6} = 3$	η
3. $\prod_{\alpha} (\frac{\pi}{\alpha})$ $\alpha = \alpha \in \chi_{00} \times \chi_{0} = \chi_{00} \times \chi_{00} = $	Å.
4. $\prod_{\alpha} (\Delta) = ($	ス' ネ

$$E \xrightarrow{\int_{\lambda \epsilon}^{(2)} \int_{\lambda \epsilon}^{$$

και πα να μω μη τον και μη τε $3 \sim \frac{3}{3} \sim \frac{4}{3} \sim \frac{\pi}{3} \sim$ την τι μι ω τε ραν των Χε ρου βι γ την α δι α φθο ρω ον Λο γο ον τε κου $\frac{\Gamma}{6\alpha} = \frac{\Gamma}{\alpha} = \frac{\Gamma$ ov $\Sigma \varepsilon$ $\mu \varepsilon$ $\gamma \alpha$ λu γc γ س م رحد د

Έτερα πεντάφωνα.	
τηχος Βαρύς 😴 Ζω	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	z ~
$2.K \frac{2}{\upsilon} = \frac{(\pi)}{\varepsilon} = \frac{\pi}{\varepsilon} = \frac{\pi}{\varepsilon}$	η 9
3. $K = \frac{\lambda}{\nu} = \frac{\lambda}{\nu}$	Ζ' λ
$4. K \stackrel{(\Delta)}{\underset{(Z)}{\smile}} - \frac{1}{\varepsilon} + \frac{1}{\varepsilon} - \frac{1}{\varepsilon} \stackrel{(\Delta)}{\longrightarrow} \frac{1}{\gamma} \stackrel{(\Delta)}{\longrightarrow} \frac$	Š,
$5.\mathbf{K} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ $	₹ ~
α ρα εχου Κυ ρι ε	~~ ~~
2. Π ο ρα εχου Κυ ρι ε	η
3. $\prod_{\alpha} (\pi) = (\pi) = (\pi)$	Ä
4. Π (Δ) α ρα εχου Κυ ρι ε	Z' >>
5. Π (Δ) =	À

$$E = \begin{cases} \frac{1}{\lambda_{0}} & \frac{1}{\lambda_$$

A 25/2-23 22 $A = \frac{1}{\alpha} =$ $\sum_{\varepsilon} \frac{(z)}{\nu} + \frac{(\pi)}{\nu} = \frac{\pi}{\nu} = \frac{\pi}$ μεν Σοι ευ χα ρι ευ λο γου (A) 6του και δε ο βε ο με θα (M), (M) ο θε ο ος η っちょうううっちょう 2 Α ξι ον ε ετιν ω ως α λη θω ως μα κα ρι ζει ειν Σε τη ην θε ο το (4) 31 - 1 - 0 - (-5- 3) 5 - 5 κο ον την α ει μα κα

πα να μω μη το ον και μη τε μων την τι μι ω τε $\frac{1}{2}$ $\frac{1$ Σε ρα φιιμ την α δι α φθο ρως θε ο ον Λο γο ον Τε " $\frac{4}{60}$ $\frac{2}{2}$ $\frac{2}{1}$ $\frac{2$ 22(5)2- 50 (W) 2- 50 (X)

Έτερα. Ἡχος Βαρύς ἐκ τοῦ ἄνω Ζω.,	Z
"Όταν ό Ζω εΐναι χαμηλώτερος τοῦ χανονιχοῦ. 🗢 Ζω 🔨	્રે
	Δ
	Š
3 5	Z
2.Κυριε ελε η 60ν	×
2.11 0 pt c 0 Mc 1 000	
\mathbf{K} $\frac{(z)}{z}$ \mathbf{C} \mathbf{C} $+ \Omega \frac{3}{z} \frac{r}{z} \Omega = 0$	π'
3. K U ρ_{1} ϵ ϵ $\lambda \epsilon$ η ρ_{1} ϵ ϵ $\lambda \epsilon$ η ρ_{2} η ρ_{3} η ρ_{4} ρ_{5} ρ_{1} ϵ ρ_{5} ρ	
(A) (M)	941
N = 250	7 2
4. Δυριε ελε η 60ν	
	2
5.Κυριε ε λε η 60ν	X
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
11,0000000	Å
α ρα σχου πο	ا ل
$\prod_{i} (\Delta_{i}) = C_{i} = C_{i} = C_{i} = C_{i}$	~/
116-100-101-	Z'
2. Ι α ρα εχου Κυ ρι ε	
$\frac{(2)}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac$	π'
3. Π α ρα εχου Κυ ρι ε	9
(Z) 3.4 3.4	ス' え
4. Ι α ρα εχου Κυ ρι ε	1/2
$(z) \qquad {}^{3(\Delta)}$	Λ
116000000	A K
4. Π α ρα εχου Κυ ρι ε 5. Π α ρα εχου Κυ ρι ε	

6. Π (z) α ρα εχου Κυ ρι ε Z' 7. Y (Δ) (z) (Σ οι Κυριε Α μην (A) Κ οι τω πνευ μα τι 600 $\frac{1}{6}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{4}$ μου και κα τα φυ γη μου και ρυ =2000 Cc 3 6της μου $\alpha \chi \omega \rho i \qquad 6 \tau o v$

 $E \xrightarrow[\lambda \epsilon \text{ ov } \epsilon \iota \text{ ph}]{} \text{vhs} \xrightarrow{\pi'} \text{of } \frac{3\pi}{4} \text{ov}$ Z, -23026 S X αι νε ေ ယ ယဌ ξι ον και δι και ο ον A 2000 A 100 A 100 KU $\frac{\pi}{2}$ $\frac{\pi$ こてでいる。 こうじょうんようならして ω σαν να εν τοις υ ψι στοις ευ λο - == (Z) ηη με νος ο ε ερ <math>χο με νο ος εν ο0 > = = > = > > > (4 > \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} νο μα τι Κυ ρι

$$\frac{\pi}{q}$$
 ο εν τοι οις υ ψι ετοις

 $\frac{\pi}{q}$ ο εν τοι οις υ ετοις

 $\frac{\pi}{q}$ ο εν τοι οις υ ετοις

 $\frac{\pi}{q}$ ο εν τοι ετοις υ ετοις

 $\frac{\pi}{q}$ ο εν τοι ετοις ετοις

 $\frac{\pi}{q}$ ο εν τοι ετοις ετοις ετοις

 $\frac{\pi}{q}$ ο εν τοι ετοις ετοις

(--- 0" = 0 = 5 = 2 = 0 = 0 = 2 = 0 μω μη τον και μη τε ρα του θε ου η 2(4) (5) (5) (M) την τι μι ω τε ραν τωων χε ρου βι ιμ_(Κ') και εν δο ξο_(Δ) τε α ευγ κρι τως τω ων Σε イマンス こしの このいのかになる ニンコ εα αν την ον τως θε ο $\frac{(M)}{\epsilon} \frac{(Z)}{2} \frac{\xi}{4} = \frac{1}{2} \frac{1}{2$

"Ετερα	
Ήχος βαρύς ἐναρμόνιος $Z \overset{\circ}{\omega}$	25 77
$\frac{1}{2}(z) \qquad (M) \qquad \frac{3}{3}(z)$ $0 p_1 \epsilon \epsilon \lambda \epsilon \eta \qquad 60V$	Z' 11
$2.K^{(z)} \sim + \frac{3}{3} = \frac{7}{3} = $	π' 9
3. $K_{\nu}^{(z)}$ ρ_{i} ϵ ϵ $\lambda \epsilon$ η ϵ_{0}	ă Ķ
$4. \mathbf{K} = \begin{pmatrix} (\Delta) & (P) & 3 & 5 \\ 0 & \rho_1 & \epsilon & \epsilon & \lambda \epsilon \end{pmatrix} \qquad \begin{pmatrix} (\Delta) & (P) & 3 & 5 \\ 0 & \rho_1 & \epsilon & \epsilon & \lambda \epsilon \end{pmatrix} \qquad \begin{pmatrix} (\Delta) & (P) & \delta & \delta \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon & \delta \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta & \epsilon \end{pmatrix} \qquad \begin{pmatrix} (A) & (A) & (A) & (A) \\ 0 & \rho_1 & \delta $	77
$5. \mathbf{K} = \frac{1}{2} + \frac{1}{2} = \frac{1}$	Z 77
$\prod_{\alpha} \frac{(r)_{j}(z)}{\alpha} = \frac{3}{4} + \frac{3}{4} + \frac{3}{4} = \frac{3}{4}$ $\alpha = \frac{3}{4} + \frac{3}{4} + \frac{3}{4} = \frac{3}{4} + \frac{3}{4} = \frac{3}{4} + \frac{3}{4} = \frac{3}{$	Z' 77
2. Π κ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	π' 9
3. Π α	∆
4. Π α $\rho\alpha$ $\epsilon\chi$ 0 χ 0 0 0 0 0 0 0 0 0 0	77
5.Π α ρα εχου Κυ ρι ε	η 9

6. Π · σ ρα 6χου Κυ ρι ε Y περαγια θεο το κε 6ω 60 ον η 5 τη π Σ τοι Κυριε 17 Α μην. Kαι τω πνευ μα τι 6ου (r) (r) (α) ($\frac{1}{2}$ $\frac{1$ εν μα Τρι α δα ο μο ον ει ο ον και α

(κ)

(κ)

εν μα (κ)

(χ)

(χ) ر ری ترد ت دی Z 77 χω $\lambda \epsilon$ ov ϵi $\rho \eta$ $\nu \eta \varsigma$ $\theta \upsilon$ ϵi $\alpha \nu$ αi

A
$$\frac{(z)}{(z)}$$
 $\frac{(z)}{(z)}$ $\frac{(z)}{(z)}$

- らっつ"ニュージュラ 6το ον και πα να μω μη TOV KAI $\mu\eta$ TE $\rho\alpha$ TOV θ E OU $\dot{\eta}$ $\frac{4\pi}{\mu\omega}$ $\stackrel{\sim}{\sim}$ $\stackrel{$ $\frac{\pi}{2}$ $\frac{\pi}$ $\frac{1}{32} \times \frac{1}{32} \times \frac{1}{32}$ " " + - " - (); - c 2(; c 2 z

7
)
)
1
ì
11
1
<.7
-

(M) α ρα εχου Κυ ρι ε 77 Y (M) (Δ) (Γ) $\pi \epsilon \rho \alpha \gamma \iota \alpha \theta \epsilon 0$ το $\kappa \epsilon \epsilon \omega \epsilon \omega \gamma \mu \alpha \varsigma$ 17 $K^{(\pi)}$ (N) (M) 77 $\frac{\mathsf{M}}{\mathsf{M}} = \frac{\mathsf{M}}{\mathsf{M}} = \frac{\mathsf{M}}{\mathsf{M}}$ A γα πη 6ω 6ε Kυ ρι ε η ι <math>6χυ υς μου Κυ ρι ος 6τε ρε ω μα μου (Γ) (Γ)ευ μα Τρι α δα ο μο ου ει ο ον και <u>− =</u> 2 2 2 77 α χω ρι ετον $E \xrightarrow{(\Delta)_{\mathcal{S}}} \lambda \in \text{ov} \text{ el } \text{ph} \text{ vhs} \xrightarrow{\Delta} \theta \text{ el } \alpha \text{ av} \text{ al}$

2 5 6 G 77 ως 36 3V K $\alpha i \mu \epsilon \tau \alpha$ (n) (n) (n) (m) (m)77 <u>δι</u> και ον 71 A yi og A yi og Ku (M) (F) (A) $\kappa \alpha i \eta \gamma \eta \tau \eta \eta \varsigma \delta 0 \xi \eta \eta \varsigma 60 0 \omega 6 \alpha v v \alpha \epsilon v$ τοις υ ψι 6τοις ευ λο γη με νος ο ερ χο με νος ονο νο μα τι Κυ ρι ου ο ω εα αν να 27

ω τε ραν των χε ρου ω ιμ και εν δο ξο τε ρα αν α ευγ κρι
(r)
(π)
ων Σε ρα φι ιμ την α δι α φθο ρως θε ον Λο $\frac{C_{+}^{4}}{V'} = \frac{S}{V'} = \frac$ με γα λυ νο με

"Ετερα Κ. Πρίγγου.

Κύριε ἐλέησον, παράσχου Κύριε, κλπ., ὑπό τοῦ ἐκδότου.

τηχος βαρύς 😎 Ζω	2
$\frac{1}{2} \frac{(z)}{c} + 3 \frac{3\pi}{5} $ $\frac{3\pi}{5} = 3 \frac{3\pi}{5} $ $\frac{3\pi}{5} = 3 \frac{3\pi}{5} $	Z
$\frac{2.K^{\frac{(z)}{\nu}} + 5 \frac{3 \cdot r}{5} = 5 \cdot 5}{\nu \rho_{1} \epsilon \epsilon \lambda \epsilon \eta 60V}$	π 9
3. $K = \frac{1}{\nu} = \frac{1}{\varepsilon} = \frac{1}{\varepsilon}$	Ä
$4. \mathbf{K} \xrightarrow{(\mathbf{A})} \begin{array}{c} \mathbf{C} \\ \mathbf{V} \\ \mathbf{p} \\ \mathbf{i} \end{array} \begin{array}{c} \mathbf{E} \\ \mathbf{E} \\ \mathbf{\lambda} \\ \mathbf{E} \end{array} \begin{array}{c} 3 \\ \mathbf{\pi} \\ \mathbf{\eta} \end{array} \begin{array}{c} \mathbf{G} \\ 0 \\ 0 \\ \mathbf{V} \end{array}$	2' 2
$5.K = \frac{1}{5} $	$\stackrel{\mathcal{Z}}{\sim}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~~
2. Π (M) 3 (π) α ρα 6χου Κυ ρι ε	π
3. Π $\alpha \rho \alpha \epsilon \chi \sigma \nu \kappa \nu \rho \iota \epsilon$	Ä
4. $\prod_{\alpha} \frac{(M)}{\sigma} \frac{3(Z)}{\rho \alpha} = \frac{3}{\kappa \nu} \frac{3}{\rho \alpha} = \frac{3}{\kappa \nu} \frac{3}{\rho \alpha} = \frac{3}{\kappa \nu} \frac{3}{\rho \alpha} = \frac{3}{\kappa \nu} = $	ヹ ゚゚

5. Π
$$\alpha$$
 ρα 6 χου K υ ρι $ε$
 $(π)$ 3 $(π)$ 3 $(π)$ $(π)$

Λειτουργικά Κ. Πρίγγου.

Z ~

$$E = \frac{z}{\sqrt{\lambda}} =$$

 (Δ) $V\alpha$ EV TOIC U ΨI GTOIC EU AO $Y\eta$ μE VOC O $\frac{1}{12} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}$ ンマムによっなード $A \stackrel{(z)}{=} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} - \stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$ 11 $\sum_{\varepsilon} \sum_{\nu} \sum_{\nu$ $\frac{\mathcal{Z}}{\Sigma \varepsilon} + \frac{\mathcal{Z}}{\varepsilon} = \frac$ σ. 6του με εν Κυ ρι ε και δε ο με θα

 $A = \frac{\chi^{(z)}}{\xi_i} + \sum_{\alpha \in \text{etiv}} \frac{1}{\omega} = \sum_{\alpha \in \text{etiv}} \frac{1}$ $\frac{4}{2} \cdot \frac{2}{2} \cdot \frac{\pi}{2} \cdot \frac{\pi}$ μα κα ρι ζει ειν Σε την θε 3'(2)5(-5- α Z Z Z + Ω - (Δ) ο το κον την α ει μα κ α ρι ϵ τον κ αι πα να μ ω μ η 9ε ου η = 3 = 2 | (M)
η την $G = \frac{\pi}{2} \frac{(\Delta)}{\mu_1}$ $G = \frac{\pi}{2} \frac{3}{2} \frac{3}{$ $\frac{2'}{2} = \frac{1}{2} = \frac{1$ εν δο ξο τε C 2 1 = 3 3 = + 3 (3) = 4 (, 2) 6υγ κρι τως τω ων Σε ρα φιμ $\frac{Z(M)}{S}$ $\frac{Z}{M}$ \frac γον τε κου

$$(M) \stackrel{\Gamma}{\leftarrow} (X) \stackrel{\Gamma}{\rightarrow} (X)$$

Έτερα «Ἄξιόν ἐστιν». Εἰς ἦχον Βαρύν.

Θ. Φωκαέως 😅 🕉

 $(2)^{4}$ $(2)^{5}$ $(2)^{5}$ $(3)^{5}$ $(4)^{5}$ $(4)^{5}$ $(5)^{5}$ $(5)^{5}$ $(6)^{5}$ $(7)^{5}$ $(7)^{5}$ $(8)^{5}$ $(9)^{5}$ $(10)^{5}$ Χε poυ βι ιμ και εν δο ξο τε $\frac{1}{\sqrt{2}} \sum_{\rho \alpha} \frac{Z'}{\alpha} \sum_{\sigma} \frac{(\Delta)}{\sigma} = \sum_{\sigma} \sum_{\sigma} \frac{(\Delta)}{\sigma} \sum_{\sigma} \sum_$ Σε ρα φιιμ ع ع ع ع الله ع الله ع الله ع ا κο ον Σε με γα λυ - 1x(3cc13c13c, x(c5" " z

ΥΕτερον. Δ. 'Αλ Μούρ, πρωτοφ. 'Αντιοχείας.

Ήχος βαρύς \overline{Z} \overline{Z}

κο ον τη ην α ει μα κα $\frac{\pi}{2} = 330\frac{3\pi}{3} + \frac{\pi}{3} +$ " " (c ' 2 - + 2) - - " O ' 5 (K) " ον και μη τε τη ην τι μι ω τε Xε ρου βι ιμ και ε εν δο ξο τε 一= つごいご+らってつごーに τως των Σε ρα $\frac{2}{\mu} = \frac{2}{\tau_{\eta}} \frac{1}{\eta_{V}} \frac{1}{\alpha} \frac{1}{\delta_{1}} \frac{1}{\alpha} \frac{1}{\delta_{2}} \frac{1}{\delta_{3}} \frac{$ 30 2'10 - == 30 > 5 (-5 = (2)) ως θε ον Λο γο ον τε κου

- = 2 (2) = (k) .4 = 2 = (Z) . (X) = (Z) . るいてボボートトーちゃっていって Ετερον. Μισαήλ Μισαηλίδου. $^{ au}$ Ηχος μιχτός Z_{ω}° (E) (2,5, (-5, (-5, 5) co co. ξι ο ον ε 6τι 5 8' - 5"5 L - 35" 220 2 λη (7.) θω ως μα κα ρι ζει ειν Σε "(-, 12" >5(c) - 10 2" > 55 > 5 $\frac{\pi}{1}$ $\frac{\pi}$ ον και πα να μω μη (-2" (-1,2 = 2) 22 (-2, - 1, 31, 2) 33) του θε ου 5 2 5 - 2 (M) (r) , β - 3 5 5 5 5 5 6 5 ...
μω ων την τι μι ω τε ρα

αν των Χε ρου βιιμκαι εν δο ξο $\sum_{\Sigma} \sum_{\rho} \sum_{\alpha} \sum_{\beta} \sum_{i,j} \sum_{\nu} \sum_{i,j} \sum_{\gamma} \sum_{\alpha} \sum_{i,j} \sum_{\alpha} \sum_{\alpha} \sum_{i,j} \sum_{\alpha} \sum_{i,j} \sum_{\alpha} \sum_{\alpha} \sum_{i,j} \sum_{\alpha} \sum_{\alpha}$ $\sum_{r} \frac{1}{r} \sum_{r} \sum_$ $(-, \frac{1}{5} \frac{1}{5}$ 3" 0" 300 5 - " 3" 220 21 (- 1 5 C) (- 1 5 γα (z) νο

HXOΣ ΠΛ. Δ'. $\frac{\lambda}{\pi}$ $\ddot{\eta}$ Nη

$^{\backprime}A\pi\lambda ilde{lpha}$	v N
1 (N) (C) + 2 (2) 2 = 2 2	
υ ρι ε ε λε η 60ν	š
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} = 3$	6 λ
2.1 υριε ε λεη δυν	, , , ,
$\frac{(N)}{2} = \frac{(r)}{2} = \frac{3}{2} = \frac{(N)}{2}$	Å
0 0 0 0 0 0 0 0 0 0	0 1
K 2+2" 3 212	77
4. Δυριε ε λεη 60ν	
K	ر ۱۷
5. Δυριε ε λε η 60V	
1 1 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	Ķ
α ρα εχου Κυ ρι ε	
116 c = 1 c - 2 1 2 2 1 2	& ≻
2. Δ α ρα 6χου Κυ ρι ε (M) (Δ) 3	
$\frac{1}{1} \left(\frac{1}{1} \right)^{\frac{1}{2}} \left(\frac{1}{1} \right)^{\frac{1}{2}} \left(\frac{3}{1} \right)^{\frac{1}{$	ي ۵
3. Δ ρα 6χου Κυ ρι ε (Ν)	
11 6 5 6 3 5 5 1 3 5 5 5 1 3	77
4. 1 α ρα εχου Κυ ρι ε	

$$E \xrightarrow{(M)} (N) = \frac{1}{N} (N)$$

 $A^{\stackrel{(\Delta)}{\widetilde{\wp}}} = \frac{\tilde{\wp}}{\tilde{\wp}} \stackrel{(N)}{\widetilde{\wp}} \stackrel{\nu'}{\gamma \gamma} A^{\stackrel{(N)}{\widetilde{\wp}}} \stackrel{>>>>+> \frac{\tilde{\wp}}{\tilde{\wp}}}{\tilde{\wp}} \stackrel{>}{\widetilde{\wp}} \stackrel{\vee}{\widetilde{\wp}} \stackrel{}{\widetilde{\wp}} \stackrel{\vee}{\widetilde{\wp}} \stackrel{\vee}{\widetilde{\wp} \stackrel{\vee}{\widetilde{\wp}} \stackrel{\wp}{\widetilde$ $\sum_{(\Delta)} \varepsilon \quad \nu \quad \mu vov \quad \mu \varepsilon v \quad \Sigma \varepsilon \quad \varepsilon v \quad \lambda o \quad \gamma ov \quad \mu \varepsilon v$ $\frac{\Delta}{\Lambda} \frac{\frac{(\Delta)}{1+}}{\sum_{i}} + \frac{(\Delta)}{\sum_{i}} = \frac{(\Delta)}{1+} = \frac{(\Delta)}{1$ $\frac{1}{1} \frac{1}{1} \frac{1}$ (Δ) (Δ) V' S_{+} C C S_{0} S_{0}

"Ετερα. Σύντομα 'Αθ. Βουρλῆ.

$4. K \underbrace{\overset{(\pi)}{\smile}}_{\text{pi } \epsilon} \xrightarrow{\varepsilon} \lambda \varepsilon \eta \overset{4}{\circ} 0 v$	π 9
$5.K \frac{N}{\nu} \rho_{L} \epsilon \epsilon \lambda \epsilon \eta 60\nu$, X
$\prod_{\alpha} \frac{(\pi)}{\rho \alpha} = \sum_{\alpha} \frac{(\pi)}{\rho \alpha} = \sum_{\alpha$	Ň
2. Π α ρα 6χου Κυ ρι ε	β
3. Π α ρα εχου Κυ ρι ε	∆ ∴
4. Π α $\rho \alpha$ $\epsilon \chi \rho \nu$ ϵ ϵ	Ř
5. $\prod_{\alpha}^{(\pi)} = \sum_{\rho \alpha} \sum_{\epsilon \chi \circ \nu} \sum_{\kappa \iota} \sum_{\epsilon}^{4} \frac{1}{\epsilon}$	η
6. Π α $\rho \alpha$ $\epsilon \chi \sigma \nu$ $\epsilon \nu$ ϵ	×,
$\sum \stackrel{\text{(N)}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}{\stackrel{\text{(N)}}}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}}{\stackrel{\text{(N)}}}{\stackrel{N}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	Ň
Κ αι τω πνευ μα τι 60υ	, ,
Α γα πη εω εε Κυ ριε η ι εχυο	Z Hon

 $\frac{(\Delta) \rho}{\sum_{\alpha} \delta_{\alpha} \omega \theta} = \frac{(\Delta) \rho}{\tilde{\Lambda}} = \frac{(\Delta) \rho}{\tilde$ $\frac{2}{50} > \frac{(\Delta)}{5} \frac{(K)}{\omega} = \frac{(K)}{2} \frac{(K)}{\omega} = \frac{(\Delta)}{2} \frac{(\Delta)}{\omega} = \frac{4}{5} \frac{V}{77} \frac{G}{600} = \frac{1}{50} \frac{1}{50} \frac{V}{50} = \frac{1}{50} \frac{V}$ γη με νος ο ε ερ χο με νος εν ο νο μα τι Κυ ρι A 5 μην Λ Α μη ην χ Σ ε υ μνου μεν Σε ευ λο γου $\frac{4}{100}$ $\frac{6}{2}$ $\frac{1}{2}$ $\frac{$ δε ο με θα σου ο θε ο ος η μων το κον την α ει μα κα ρι 6τον

Α (r) (Δ)
και πα να μω
τον
πον $\frac{(π)}{c}$ $\frac{(π)}{c}$ ρα φιμ την α δι α φθο ρως θε ο ον Λο γο ον τε κου σαν Λο (>5 (-5 = " (N) = 5 = "

Έτερα ύπό τοῦ Ἐκδότου. $^{\lambda}$ Ηχος $^{\lambda}$ $^{\lambda}$ $^{\lambda}$ $^{\lambda}$ $^{\lambda}$ $^{\lambda}$ $^{\lambda}$ $^{\lambda}$ χ ð υ ρι ε ε λε η 60V $2.K\frac{n}{n} \sum_{\rho \in \mathcal{E}} \frac{1}{\varepsilon} \frac{1}{\lambda \varepsilon} \frac{1}{\eta} \frac{1}{\varepsilon \circ \rho}$ 3. $K = \frac{1}{\nu} = \frac{1}{\nu} = \frac{1}{\nu} = \frac{1}{\nu} = \frac{1}{\nu}$ 4. K υ = 3 = 3 = - = = 7 = 1. $5.\mathbf{K} \stackrel{(\pi)}{=} \stackrel{(\pi)}{$ α ρα εχου Κυ ρι ε 8 αρα εχου Κυ ριε 3. Π α ρα 6χου Κυ ρι ε ì 4. Π · α ρα οχου Κυ ρι ε 5.Π (Δ) (Γ) = " > " + " ? " ? " ... (Δ) (Γ) ε ... (Δ) (Γ) (Γ) ε ... (Δ) (Γ) (Γ) (Γ) (

$$(M)$$
 (M) (M)

Έτερα. Έπτάφωνα. $^{\sim}$ Ηχος $^{\lambda}_{\pi}$ $\ddot{\pi}$ $\ddot{\eta}$ $N\eta$ Κυριε ε λε η 60ν 3. Κ υριε ε λε η 60ν 4. K υριε ελε η 60ν $5.K \underbrace{(\pi)}_{\nu} = \frac{(\pi)}{\rho_{1}} + \frac{(\pi)}{\epsilon} + \frac{(\pi)}{\lambda \epsilon} = \frac{\pi}{\lambda \epsilon} + \frac{\pi}{\lambda \epsilon} = \frac{\pi}{\lambda \epsilon} + \frac{\pi}{\lambda \epsilon} = \frac{\pi}{$ 2. Π α ρα 6χου Κυ ρι ε 3. Π α ρα σχου Κυ ρι ε α ρα εχου Κυ ρι ε ε α ρα εχου Κυ ρι ε

$$(N)$$
 (N) (N)

«Ἄξιόν ἐστιν». Χαρ. Παπανικολάου. Ἡχος πὰ κι Νη 🚣

ν γγ

 $A = \begin{cases} \frac{\lambda}{2} & \frac{\lambda}{2}$ ως γη μα κα ρι ζει ειν Σε $= \frac{(\kappa)}{\tau_{\eta}} \frac{(\kappa)}{\eta_{V}} \frac{(\lambda)}{\theta \epsilon} \frac{(\lambda)}{\theta \epsilon} \frac{(\lambda)}{\eta_{V}} \frac{(\lambda)}{\theta \epsilon} \frac{(\lambda)}{\theta$ 「「三」のころうは一つつーーラングできる κον την α ει μα κα ρι 6το ον και πα να μω μη τον γι (κ) (κ) ρων την τι μι ω τε ρα αν η τω μων την τι μι ω τε ω Χε ρου βι ιμ και εν δο ξο τε $\frac{1}{2} \sum_{k=1}^{\infty} \sum_{k=1}^$

Έτερα Λειτουργικά Κ. Πρίγγου.

ΤΗχος π ζ Νη χ γη γη γα πη εω εε Κυ ρι ε η ι εχυ υς μου και μου και μου και μου και ρυ ετης μου και ον γη μου και ρυ ετης μου και ον γη μου και ον και Α γιον Πνε ευ μα Τρι α δα ο μο ου ει ον και ευ μα και

(A) (N) 0=001 3 α χω ρι 6 τον $E = \frac{1}{\lambda \epsilon} \sum_{\lambda \epsilon} \sum_{\nu i \nu} \sum_$ ود مود کی شرک ا میر G N (N) $E \xrightarrow{\text{(a)}} \sum_{\text{XO } \mu \text{ eV } \pi \text{ pog } \text{ TOV } \text{ KU }} \sum_{\text{pi } \text{ oV }} \sum_{\text{(a)}(\text{N})}$ A ξι ον και δι και ον Α γιος Α γιος Κυ ριος Σαβ βα ωθ πληρης ο ου ρα νος (6) (7) (6) (7) (7) (7) (8) (8) (8) (8) (9) (10με νος εν ο νο ματι Κυρι OU

 $\frac{562}{100}$ $\frac{1}{100}$ $\frac{$ $\frac{\pi}{\rho o v} \sim \frac{(n)}{6 \mu} \sim \frac{\pi}{\kappa \alpha i} + \frac{\pi}{\epsilon v} \sim \frac{(\Delta)}{\delta o} \sim \gamma \rightarrow + \frac{\pi}{\epsilon v} \sim \frac{(\Delta)}{\delta o} \sim \gamma \rightarrow \gamma \rightarrow \gamma$ $\frac{1}{\lambda} = \frac{1}{\zeta_{1}} = \frac{1}$ TE KOU $6\alpha \alpha V$ THY OV TW WG $\theta \epsilon$ O TO $\Sigma_{\text{KOV}} = \sum_{k \in \mathbb{N}} \sum_{$ $\frac{1}{2} \sum_{k=1}^{\infty} \frac{\epsilon}{2} \sum_{k=1}^{\infty} \frac{\epsilon}$ 33 A,

Έτερα «"Αξιόν ἐστιν». Εἰς ἦχον πα κα Νη

Νεχτ. Θάνου Λαμπαδαρίου. ξι ον ε ετι ιν ωως α λη θως μ α κα ρι ζει ειν δε την θ ε ο το κο ον την α ει μα κα ρι 6τον $\frac{-}{\pi\alpha}$ $\frac{}{}$ $\frac{3}{100} \frac{(N)}{\theta \epsilon} \frac{3}{100} \frac{\pi}{\eta} \frac{\pi}{\eta} \frac{\pi}{\eta} \frac{\pi}{\eta} \frac{(\Delta)}{\eta} \frac{(\Delta)}{\eta}$ ραν των χε ρου βι ιμ και εν Έτερον.

Δοσιθέου μον. Κατουνακιώτου. 201-ニュンンシーディアングラーデー ボーボーー ババスラージーC ραν των Χε ην τι μιω τε

(ー5...の、ナー・のボー・シンボラロカ ρου βιιμκαι ε εν δο ξο τε α 60 υγ κρι τω ως τωων το φ_{i} $\varphi_{$ (M) (N) (N)

> Έτερον. Θ. Γεωργιάδου. Ἡχος π ϊ Νη (Χιτζιατσκάρ) υ

シーニョショョン ニー ニュニュンジ デ ει μα κα ρι ετον και πα να μω TOV KAI HUY TE HUY TE PA TOU $\theta \epsilon$ OU η την τι μι ω τε (Δ) των Χε ρου βι ιμ και εν δο ξο $-\frac{2}{(L)}\frac{2}{2}\frac{2}{2}\frac{2}{2}$ ραν α ευγ κρι Σε ρα φι ιμ την αδι αφθο 220200 会世のうらにできてについこう ρως θε ο ον Λο γο ον τε εαν την ο ον τως θε ο το κον Σε με γα Σε με $\Sigma \varepsilon$ $\mu \varepsilon$ $(N) 4 \frac{1}{2} \sigma^{-1} \Gamma^{-1} \Gamma^$ Έτερον. Κ. Μαυροπούλου.

Ήχος π ι Νη $A = \frac{1}{\xi_{\text{I}}} = \frac{1}{\text{OV}} = \frac{1}{\text{ETI}} = \frac{1}{\text{IV}} = \frac{1}{\text{OV}} = \frac{1}{\text{ETI}} = \frac{1}{\text{OV}} = \frac{1}{\text{ETI}} = \frac{$ ην α ει μα κα ρι 6το ον και πα 3; η (c,), η (ν), η ($\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$

και ε εν δο ξο τε ρα ω β΄ (ς 5") (κ) - 5 , 5" (κ) γα (κ συγ κρι ρω ως ^{γγ} Θι ον Λο μ(Δ) μ(N) ς ς ς

Έτερον. Γεωργ. Βόλτου.

Ήχος π κ Νη $A = \frac{\chi(N)}{\xi_1} = \frac{\pi}{2} = \frac{\pi}{$ $3\frac{3}{4\omega}$, $\frac{1}{\omega}$ 22/5 من من الماري ال (N) 3" = 1 3 3 = 0 το το κο ον λ 1 την α ει μα κα ρι 6το ον και πα να μω μη Το ον γ' ι ς ς (κ) να μω μη το μωων δι την τι μι ω τε ρα αν των Χε ρου βι ιμ και εν δο ξο

دے روے ر ریائی کے دے ۔ فرادی الحال کے ا ραν α ευγκρι 1,2 2 (α) " " <u>"</u> " 2 (α) <u>"</u> " " 2 (α) <u>"</u> " " 2 (<u>α</u>) <u>"</u> " 2 (<u>α</u>) " 2 (<u>α</u>) <u>"</u> " 2 (<u>α</u>) <u>"</u> " 2 (<u>α</u>) " 2 (<u>α</u>) <u>"</u> " 2 (<u>α</u>) <u>"</u> " 2 (<u>α</u> $5 = \frac{1}{2} \left(\frac{N}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) =$ α φθο ρω ως η Θε ον Λο $(\overset{\leftarrow}{\sim},\overset{\leftarrow}{\sim},\overset{\sim$ γα λυ νο

« ΑΓΑΠΗΣΩ ΣΕ ΚΥΡΙΕ »

Άργοσύντομα Εἰς ὅλους τούς ἤχους

 $HXO\Sigma A'$. $(2\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac$ $5 = \frac{1}{6} \times \frac{1}{6} \times$ - 37 και κα τα φυ γη μου και (N)

"Ετερον "Α. Κυριαζίδου Ήχος ὁ αὐτός π " ως μου 17 χω (ς 5 ξω (ς 5 ξω) οι ος φυ γη μου και ρυ 6της μου (π) (Μ) I q 700

η ι εχυ ως μου και κα τα μου και κα τα φυ γη μου και ρυ και ρυ ετης μου

HXOΣ Γ'. (N) (Γ) (N) (N) (Γ) (N) (N) (Γ) (N) (N)

HXO Σ Δ' . A γ_{α} π_{η} κ_{ω} $\kappa_$ 55 C + 5 = (r) (Δ) (r) (Δ) 4 3 = (C 5 ος ετε ρε - = 5 5 5 5 c γς μου ης μου

HXO Σ $\Pi\Lambda$. A'.

 χq

"Ετερον

 $\frac{4}{4}$ $\frac{4}{7}$ $\frac{4$

ΗΧΟΣ ΠΛ. Β'.

A (π) A (π) (κ) (κ)

ΗΧΟΣ ΒΑΡΥΣ. $A = \frac{(z)}{\gamma \alpha} = \frac{(\pi)}{\theta} = \frac{(\pi)}{\pi} = \frac{\pi}{6\omega} = \frac{\pi}{6\omega}$ $\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{(\Delta)}{4n} \sum_{i=1}^{n} \frac{1}{2n} \sum_{i=1$ ρε ω μα μου και κα τα - - :: (Z) :: 2: 2: 0 + - : 5: 5: 5: φυ γη (M) (Z) عت عرصدات

ετερα « ΑΓΑΠΗΣΩ ΣΕ ΚΥΡΙΕ » 'Αργά

ΗΧΟΣ Β΄. ' Ιακώβου πρωτοψάλτου

"(-5= 225 3" == 25(c20 2 2 2 2 2 2 2 6 (2) 5 - -

ΗΧΟΣ ΠΛΒ'.

Τό αὐτό

Προσηρμοσμένον εἰς τάς βάσεις τοῦ πλ. β' π

(κ) (Δ)(κ) (π) και κα τα φυγη $= \sum_{(\nabla)} 22(\nabla) = \sum_{(\pi)} 22 = 2 = 2(\nabla)$ (N) (π) (π) και ρυ 6της μου (N) ... = 3.. (π) (π)

ΗΧΟΣ ΒΑΡΥΣ

Τό αὐτό

Προσηρμοσμένον εἰς τάς βάσεις τοῦ Βαρέος 🧏 🏖

A
$$\gamma \alpha \pi \eta$$
 $\gamma \alpha \pi \eta$
 $\gamma \alpha \pi \eta$

"Ετερον

HXOΣ $\Pi \Lambda$. A'.

χπq

$$A = \frac{4}{\gamma \alpha} = \frac{4}{\pi \gamma} =$$

+> = 05 = 05 = 7 = 0. デッビニンション (K) (35 0 # 0 + - " \$\frac{1}{2} \frac{1}{2} \ ンシラングラングラーンランデッジ 生きのラー+ーとっちったもうだ ετε ρε ω μα (r) (M) (π) (π) (π) γη (και κα τα φυ γη $\frac{(\Delta)}{-(\frac{4}{2})} = \frac{(\pi)}{4} \times \frac{(\pi)}{2} > > > = \frac{\pi}{2} > = \frac{\pi}{2} \times \frac{\pi}{2}$ Kal

TUS HOD TOD TO KU ρι ος 67ε ρε ω μα (r) (A) KOLL KOL TOC (ガ) ニララニュュー τα φυ γη (A) - (4 5 (N)) - 3 3 4 (Y') (5 C シャーニュンタニュンタニョンス (N) - C > 2 % - - 2 = 2 = 2 = 2 = 2 5 - - 5 > 5 - 4 > 5 | (N)
6τη ης μου ηου 3 - = 2 = - c c = = B

CONTRACTOR OF THE PROPERTY OF

ΘΕΙΑ ΛΕΙΤΟΥΡΓΙΑ Μ. ΒΑΣΙΛΕΙΟΥ

 7 Ηχος $^{\lambda}$ \ddot{q} Π α γι ος A γι ο ος A γι γι ος Α γι ο ος Α γι 550-000 # 41 41 4 5 5 7 (κ) ος Σαββα ω
(κ) $\frac{\pi}{2} > 2 = \frac{\pi}{2} =$ pη πλη pη ης ο ου こっとっこここここここ サート、+ (κ) (Δ) (π) (Γ) (π) (Γ) (π) (π) (Γ) τη ης δο η γη της δο ξη

$$(K) \qquad (A) \qquad (K) \qquad (M) \qquad (F) \qquad + \qquad (F) \qquad (F) \qquad + \qquad (F) \qquad (F$$

$$A = \begin{bmatrix} \begin{pmatrix} \pi \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\$$

Τά αὐτά συντετμημένα.

Ήχος π \ddot{q} Πα $\ddot{\chi}$ $\ddot{\eta}$ $\ddot{\chi}$ $\ddot{$

 $\frac{\zeta}{\zeta} = \frac{\zeta}{\zeta} = \frac{\zeta$ υο μα τι Κυ ρι Κυ ρι ου $\stackrel{\kappa}{q} \stackrel{(\pi)}{\omega} = \stackrel{\pi}{\omega} \stackrel{\psi}{\sim} \stackrel{\pi}{\sim} \stackrel{\pi}{\sim}$ コーニュニュラシュニ Α μη ην 22 — (π) (π) (ν) (π) Δ υ μνου μεν Σε ευλογου μεν

Έτερα. Ήχος Β΄ $\overline{\underline{\hspace{1cm}}}$ $\Delta \overline{\iota}$ ' I ω άννου Π ρωτοψ. $\underline{\underline{\hspace{1cm}}}$ Σύντμησις ἐχ τοῦ ἀρχαίου.

γιος A γιοος A γιο حري در مر الشري المراج مي المراج المرا ηι ο ος Σαββα ω (2) -- (4) 5 1 - 2 + - " (4) 2 - 4 + (5) 5 0 > 5 cm + c d m c > = 3 / 4 > = 1 2 2 + 2 2 = 2 2 + 2 2 = 2 2 + 2 ...π(c-bα on bα Λο えんらいこう・ニージーニーニーニュニッショ

ξη ης 60υ ω 6α αν να (CC 3622 - CC 251 = 25 43 43 51 CC 201 γοι οις υ εν τοι οις υ ψι ευ λο γη με ع حر حري ع ع ع جر جر ع ع المري με νο ος ε ος ο ε ερ χο (ξ) εν ο εν ο νο μα (r) (r) ρα τι Κυρι ニンンジャーラルニュニュニュニュニュニュニュー οις υ εν τοις υ ψι (N) 14 0 510 101 A3 ラーニー (こうでき) ニョマス 4. 「ラーララ

χα ρι ευ χα ρι ετου και ραι δε και δε ο ηε δε ο με θα (r) με δε ο με θα η μω

ε χε υ μνου μεν Σε ευλογου μεν Σοι

«ΕΠΙ ΣΟΙ ΧΑΙΡΕΙ»

ΤΗχος Β'
$$\frac{\Delta}{2}$$
 $\frac{\Delta}{2}$ $\frac{\Delta}$

χω ων θε ο ος η $T \xrightarrow{(M)} (\frac{\Delta}{4\theta}) \xrightarrow{(\Delta)} \frac{1}{4\theta} \xrightarrow{(\Delta)} \frac$ Tρα αν θρο (r) (6) θρο vo ov ε ποι γοι η 6ε και την εη ην γα ετε (Δ) אל רו איני לי בי $\frac{4}{\sqrt{\omega}}$ $\frac{5}{\sqrt{\omega}}$ $\frac{4}{\sqrt{\omega}}$ $\frac{4$ ειρ γα 105 == 5: == == 0 4 (2) 5(-5= 6; $\frac{1}{1}$ $\frac{1$

"Ετερον

Ήχος $\hat{\pi}$ \hat{q} $\Pi\alpha$ (π) (κ) (π) (κ) (κ) (π) (κ) (κ)

ε και πα ρα δει εε λο γι κε ω νων υ πα αρχω ων θε ο ごんないこっちかい $T = \begin{pmatrix} (\pi) & (\kappa) & (\kappa)$ 33 ρα πλα τυ τε
(Δ) - Δ (π)

- (κ) (π) (π)

TH χος $\hat{\pi}$ $\hat{\kappa}$ $\hat{\kappa}$

μα γα και αν θρω πω (Ν) και αν θρω πω ων το γε νο ος η για εμε $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{$ κο ον καυ χη μα εξ ης θε ο 3 ... σο κω τω τω θη και ος ε εα αρκω παι δι ο ον γε γο νε ο προ $\frac{1}{\alpha_1 \omega} = \frac{1}{\omega} =$ ο ος η μων (N) Ľ Τ η ην γα αρ 6η ην μη τρα η τρα αν τρα αν σο θρο γα 6τε $\frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}$ -= 12 = 200 (π) = 200 = ρα νω ων α πειρ γα (3) #1. X1 C C (4) (7) C (7) (4) Κε χα ρι τω με 5(-5(5) = \$ (a) (A) & (c) (T) (D) = 5 50 ξα Σοι ξα Σοι ξα

Έτερον. Σύντομον.

Ήχος $\hat{\pi}$ $\hat{\pi}$ Νη $\hat{\pi}$ Σοι χαι ρει Κε χα ρι τω με νη

πα σα η κτι σις $\hat{\pi}$ αγ γε λων το συ στη μα και

αν θρω πων το γε νος η γι α εμε νε να ε $\chi\eta$ $\mu\alpha$ $\epsilon\xi$ $\eta\varsigma$ $\theta\epsilon$ $o\varsigma$ ϵ $\epsilon\alpha\rho$ $\kappa\omega$ $\theta\eta$ $\kappa\alpha\iota$ $\pi\alpha\iota$ $\frac{1}{\delta_{\rm I}} = \frac{1}{\delta_{\rm I}$ αρχωωνθεο σος η μωň $T_{\eta \eta \nu \gamma \alpha \rho \epsilon \eta \eta \nu \mu \eta}^{(N)} = \frac{\pi}{\tau \rho \alpha \alpha \nu} \int_{\theta \rho 0}^{(N)} \frac{\pi}{\pi}$ $\gamma \alpha \epsilon \tau \epsilon$ $\rho \alpha$ $\gamma \alpha \epsilon \tau \nu$ $\gamma \alpha \epsilon \tau$ $\gamma \alpha \epsilon$ ε πι Σοι χαι ρει Κε χα ρι τω με (π) (

Έτερον.⁴Ηχος πὰ κζ Νη

Å

Έπί Σοί χαίρει Κεχαριτωμένη... ὁ πρό αἰώνων ὑπάρχων Θεός ἡμῶν. ("Όρα σελ.606).

ΚΑΤΑΒΑΣΙΑΙ ΑΝΤΙ ΤΟΥ «ΑΞΙΟΝ ΕΣΤΙΝ» Εἰς τάς Δεσποτικάς καί Θεομητορικάς ἑορτάς.

Α΄. 'Αχινήτων ξορτῶν.

Εἰς τό Γενέσιον τῆς Θεοτόχου καί εἰς τήν ἑορτήν τῆς Μεσοπεντηχοστῆς.

Ήχος π ζι Νη (Δ) (Δ) α και ξε νουν των παρ θε νωων η παιδο ποι θη δίο Σε πα 6αι αι

Είς τήν ἑορτήν τοῦ Τιμίου Σταυροῦ.

Ήχος π ζι Νη ሲ ρα δει εος α γε ωρ γη τωως βλα ετη (α) $\frac{5}{2} \frac{1}{2} \frac{1}$ δε εν δρο ον δί ου νυ υν υ ψου προ εκυ νου ουν τες voบ

 $\frac{\pi}{\alpha} \xrightarrow{4} \frac{\alpha}{\lambda} \frac{\alpha}{\lambda}$

Έτέρα. Ήχος π ζ Νη Ο ξι α βρω εε ω ως του ξυ (中) c 1 元 c 2 c 2 2 - ... c 2 c 2 2 - ... λου τω γε νει προεγε νο με νο ος θα $\frac{\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{L}}{\mathcal{L} = \frac{\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{L}}{\mathcal{L}}$ (π) ζως ラックラング(ω) ζως ζως χωι – κ ηρ γη ται εη με προ μη το ρος η παγ γε νη ης κα τα $\frac{(r)(\Delta)}{\pi}$ $\frac{(\alpha)}{\pi}$ $\frac{(\alpha)}{\pi}$ (N) 5 (ω) το ρος ην πα σαι αι δυ

 $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}$

Είς τά Εἰσόδια τῆς Θεοτόχου.

Ήχος Δ΄ Λέγετος 🕉 βου $A = \frac{(6)}{\gamma} = \frac{5\pi}{300} = \frac{5\pi}{100} =$ πλη ητ το ον το πως η παρθε $(c, \frac{3}{5}, \frac{3}{$ Α γι α τω ων Α γι ω ων Ω ς εμ ψυ χω θε ου Κι $\frac{1}{2} \frac{1}{2} \frac{1}$ (g) = 20 2 2 = = 20 2 = = 20 2 6 1 μω ως χει ειρα μυ

Είς τήν ἑορτήν τῶν Χριστουγέννων.

M ε γα $\lambda \nu$ νο $\lambda \nu$ ον $\lambda \nu$ $\lambda \nu$

 $(N)(\pi)$ α νω ετρα τε ευ μα ブニッグ 二 9 (π) M U GTη ρι O OV ξε (N)(π) (Z) (Z) (X) $\frac{1}{2}$ $\frac{\pi}{2}$ $\frac{\pi$ عاسي ودوي عور الحاص و المعالم νο ον την φα ατ νη ην χω ρι χω ρη το ος ο χρι ετο ος ο θε ラニ+= 22 デュー(22 ロボッシロ··ー

Έτέρα. Ἰαμβική (τῆ 26η Δεκεμβρίου). Ήχος Α΄ ἃ Πα Μ α γοι και ποι με νε $\frac{1}{2} = \frac{1}{2} = \frac{1}$ (Δ) (Δ)ンシャ(ボ) こっっち ニッシャランドニッシャ εν Βη θλε ε εμ τη πο \sum $\frac{1}{16}$ $\frac{1}{$ ود) المرابع المروية على المروية و و و د ح νως τε θει ειγ με $\stackrel{\wedge}{\mathcal{K}} \stackrel{(\Delta)}{\leftarrow} \stackrel{\vee}{\smile} \stackrel{\smile}{\smile} \stackrel{\smile}{\smile$

Είς τήν ἑορτήν τῶν Θεοφανείων.

Ήχος 🚎 Πα M ε γα λυ νονψυ χη (A) νω ετρα τευ μα (一一一二 ニッションのこっち πο ρει πα εα γλω (κ) (a) (a) (b) (a) (a)υ πε ερ κο εμι ο ος υ μνει ει Σε

Έτέρα. Ἰαμβική (τῆ 7η Ἰανουαρίου).
Χουρμουζίου Χαρτοφύλακος. Ἡχος Το Βου Ε Ε γα λυ νο ον ψυ χη μου

τηνλυ τρω 6α με νην η μα ας ε εκ τη ης κα

τα ρας

 $\Omega = \sum_{\tau \omega} \sum_{\omega v} \sum_{\sigma} \sum_{\tau \omega} \sum_{\sigma} \sum_{\tau \omega} \sum_{\sigma} \sum_{\sigma$ 5 ~ (-5 - 0 > 5 ~ = 5 ~ ~ (M) ~ (C 5 & ~ ~ ~ κου 6ου θα αυμα νη δι ης
νη δι ης ερ ευ λο γη με τυ χο ον τε ες παν τε λους εω τυ χο ον τε $\xi_{i} \quad \text{on kpo tou} \qquad \text{pe ev } \omega \quad \text{os } \varepsilon$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{pe ev } \omega \quad \text{os } \varepsilon$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{po} \quad \text{on } \omega$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{po} \quad \text{on } \omega$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{po} \quad \text{on } \omega$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{po} \quad \text{on } \omega$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{po} \quad \text{on } \omega$ $\xi_{i} \quad \text{on kpo tou} \qquad \text{po} \quad \text{on } \omega$ φε ρο ον τε εν γα ρι ετι ας

Είς τήν Υπαπαντήν.

Ήχος Γ΄ ή Γα $\Theta = \frac{(r)}{r} = \frac{r}{r} > 2 = \frac{r}{r} > 2 = \frac{r}{r}$ $\frac{\sim}{\pi\alpha V} \frac{\sim}{\tau\omega V} \frac{\sim}{\tau\omega} \frac{\sim}{\omega} \frac{\sim}{\tau\omega} \frac{\sim}{\tau\omega$ ρει φυ λα αττε (M) 2 (2) (M) (L) " + 1. 27 ζο ον τα ας ει εις Σε $E^{\frac{(r)}{\nu}} = \frac{1}{\nu} = \frac{1}{\nu}$ με εν οι πι 6τοι ης πα αν α αρ εεν το την μη τρα αν δι α $\frac{1}{2}$ $\frac{1$

Είς τόν Εὐαγγελισμόν τῆς Θεοτόχου.

ΤΗχος Δ΄ Λέγετος $\frac{1}{2}$ βου $\frac{1}{2}$ $\frac{1}{2}$

 $\mu\omega$ C $\chi\epsilon$ I ϵ IP α $\mu\nu$ η $\tau\omega$ $\frac{1}{2}$ $\frac{1}$ φω νην του Α αγγε $-\frac{\pi}{2} > > > > \frac{2\pi}{2} (\frac{4}{2}) = \frac{6}{2} (\frac{\Delta}{2}) = \frac{\pi}{2} = \frac{\pi}{2} > > \frac{\pi}{2} = \frac{\pi}$ いただろってつったってってん Κε χα ρι τω με (8) (8) (8) (8) (9) (9) (9) (9) (10) (ο Κυ ριος με τα Σου

Είς τήν Μεταμόρφωσιν τοῦ Σωτῆρος.

 $\frac{4}{11}$ $\frac{4}{11}$ $\frac{7}{11}$ $\frac{7}{11}$

Είς τήν Κοίμησιν τῆς Θεοτόχου.

$$A = \frac{\pi}{q}$$

εε ως οι ο ροι εν Σοι παρ ροι εν Σοι παρ $\frac{3\pi}{\theta\epsilon} > 0 = \frac{\pi}{\alpha} > \frac{3\pi}{\alpha} > \frac{\pi}{\alpha} = \frac{\pi}{\alpha}$ **θ**ε νε α (π) ει γα αρ το κο ος και ζω η (6) $(π)_{2}$ προ μνη ετε ευ ε ται θαει γα αρ το προ μνη ετε να τος η με τα το κον πα αρ θε νο ος και με τα θα (できョルーニンディタンは1デニョニーに να το ον ζω 6α $\frac{5}{5} \frac{\pi}{6} > \frac{5}{6} \frac{\pi}{6} = \frac{\pi}{6}$ την κλη ρο νο (π)

Έτέρα . Ήχος Δ΄ Λέγετος & βου πα να γνου ο ρω ων τες ε ξε ης πα να πλη ητ το ον το πως παρα δο ξωως α παι τα α νω Χουρμουζίου Χαρτοφύλαχος A πα ας γη γε νη ης εκιρ τα τω τω πνευ μα τι λα αμπα δου χου με νο ος υ λω ων Νο ων φυ ειις γε ραι 202675 601 - (9) 220 - 2 την ι ε ρα ανμε τα ετα ρου 6α

Β'. Κινητῶν ἐορτῶν.

Τῷ Σαββάτω τοῦ Λαζάρου.

THXOS $\hat{\pi}$ $\hat{\kappa}$ $\hat{N}\eta$ THXOS $\hat{\pi}$ $\hat{\kappa}$ $\hat{N}\eta$ THXOS $\hat{\pi}$ $\hat{\kappa}$ $\hat{N}\eta$ THXOS $\hat{\pi}$ $\hat{\kappa}$ $\hat{\kappa}$

υρ ε εν γα ετρι α φλε κτω ως ευ υλ $\frac{\pi}{\lambda \alpha} \frac{\pi}{\delta \omega} \frac{\pi}{\delta \omega$

Είς τήν Κυριαχήν τῶν Βαΐων.

Ήχος Δ΄ Λέγετος $\frac{1}{6}$ βου $\frac{1}{6}$ $\frac{1}{6}$

τα βα ι ω ων και κλα δω

ω ων και κλα δω

ων υ μνοι οις κρα αυ γα ζο ον

(Μ) κε ες ευ λο γη με νοος ο ε ερ χο

(Μ) με ο ερ χο με νος εν ο

(Μ) με ο ερ χο με νος εν ο

(Μ) με ο ερ χο με νος εν ο

(Μ) με ο ερ χο με νος εν ο

(Μ) με ο ερ χο με νος εν ο

(Μ) με ο ερ χο με νος εν ο

(Μ) ων

ΕΙΣ ΤΗΝ ΛΑΜΠΡΟΦΟΡΟΝ ΑΝΑΣΤΑΣΙΝ

Πέτρου Έφεσίου. Ήχος Α΄ ξ Πα π (π)A αγ γε λο ος ε δο (π)α τη Κε χα ρι (α) $\frac{\pi}{2}$ $\frac{\pi}$ 9 φου $\Phi_{\omega \tau_{l}}^{(\pi)} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$ $\frac{\pi}{\eta} \stackrel{6}{\smile} \frac{1}{\circ} \frac{1}$

λημ η γαρ δο ξα Κυ ρι でって シュランシロー コロボー・ー ου ε πι εε α νε τει λε χο $\frac{2\pi}{300} \sum_{i} \frac{\pi}{3} \frac{3!}{60} = \frac{3!}{60} \frac{\pi}{60} \frac{3!}{60} = \frac{5}{60} \frac{\pi}{60}$ ο ο θε ο γγη τε ερ που θε ο (5) 2(-2 = (3) 2; & c = - - 0 = 2; = (3) εν τη ε γε 一元にぬこうショニーによっかっこの一

> Έτέρα Δ. Κυφιώτου. Ἡχος Α΄ ἢ Πα

Ο Α αγγε λο ος ε βο α

κε χα ρι τω με νη

رى ، ب م کے بر+ ت جوز رى کے جوز رى کے چو یا د ا και πα λιν ε ρω χαι ならった(一元シラー)2.12、ここの $\Phi = \sum_{(u)} \frac{1}{\sqrt{2}} \sum_{z \in (u)} \frac{1}{\sqrt{2$ $(\frac{4}{3})$ $\frac{2}{3}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{$ λη ημ η ναο δο ξη κ... (Δ) η γαρ δο ξα Κυ $(C) \stackrel{(\kappa)}{\sim} \stackrel{(\kappa)}{\sim}$ αλ λου Σι ω ων ευ δε α

 π

9

Έτέρα 'Αλ Μούρ.
Ήχος Α' Θ΄ Πα

 $\frac{1}{2} \frac{1}{2} \frac{$

με ρο ος εκ τα φου

 $\Phi \stackrel{(\pi)}{\smile} \stackrel{(\pi)}{\smile} \stackrel{(N)(\pi)}{\smile} \stackrel{(\pi)}{\smile} \stackrel{(\pi)}{\smile}$

 $\frac{1}{\alpha} \sum_{\alpha} \frac{1}{\alpha} \sum_{\alpha}$ $3\sqrt{\frac{4}{3}}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{$ $\lim_{\kappa \to \infty} \frac{\chi_0}{(\kappa)^{1/2}} = \lim_{\kappa \to \infty} \frac{\chi_0}{2\kappa} = \lim_{\kappa \to \infty} \frac{\chi$ $(\kappa) \qquad (\lambda) \qquad \rho \varepsilon \quad \varepsilon \quad \varepsilon \qquad \gamma \upsilon$ $(\kappa) \qquad (\lambda) \qquad (\lambda$ υν και α γα αλλου Σι ω ων $\frac{(z)}{6\nu} = \frac{1}{8\varepsilon} = \frac{1}{8\varepsilon$ $\stackrel{\mathsf{K}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}{\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}\stackrel{\mathsf{C}}}\stackrel{\mathsf{C}}\stackrel{\mathsf{C$

Έτέρα ὑπό τοῦ Ἐκδότου. Ήχος Α΄ ἢ Πα $O \stackrel{(\pi)}{\sim} \stackrel{\cdot}{\sim} \stackrel{(\pi)}{\sim} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim$ $\frac{\pi}{\kappa}$ $\frac{\pi}$ $\frac{\Gamma}{N} \stackrel{(A)}{\longrightarrow} \stackrel{(A)}$ $\frac{1}{100} \sum_{k=1}^{100} \sum_{$ 「二点のこうろろうにはったがって τρι η με ρος ε εκ τα $\Phi = \frac{\alpha}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j$ η γαρ δο ξα Κυρι ου επι

 $T\tilde{\eta} \text{ Kupiax} \tilde{\eta} \text{ to} \tilde{\theta} \omega \mu \tilde{\alpha}.$ $TH \chi o_{\zeta} \text{ A'} \ddot{q} \Pi \alpha$ $T\eta \eta \gamma \varphi \alpha \qquad \epsilon_{I}$ $T\eta \eta \gamma \varphi \alpha \qquad \epsilon_{I}$

Σημείωσις.

Κατά τό Τυπικόν, εἰς τάς Κυριακάς τῶν Μυροφόρων, τοῦ Παραλύτου καί τῆς Σαμαρειτίδος, εἰς τό «Ἐξαιρέτως» λέγομεν «Ὁ Ἄγγελος ἐβόα ... Φωτίζου, φωτίζου». Εἰ δέ βούλει, εἰπέ τά κατωτέρω ὡς εἴθισται.

 $\frac{\pi}{\sqrt{\alpha_1}}$ $\frac{\pi}{\sqrt{\alpha_2}}$ $\frac{\pi}$ ος γαρ Υι ος α νε ετη τρι η με ροος ε εκ τα φου $\sum_{\nu} \frac{(n) (\pi)}{\nu} \sum_{\nu} \frac{(n) (\pi)}{\nu} \sum_{\nu$ $\frac{3}{2}$ Σε μα κα ρι ζο με εν πι 6τοι $\frac{(κ)}{x}$ $\frac{(κ)}{x}$ ラニッニックでは、 サージャー πο λις ε εμ ψυ -62625; 42 c - 22220 - 2 με ρο ον φωως του εκ Σου τε χθε (2) \$ c100 20 0000 -- "" το ος της εκ νε κρω ων α να ετα ٥٥٥ ١٥٥ عير (N) لي عير ١٥٥ عير (٦٥ عير ١٥٥ عير ١٥٥ عير ١٥٥ عير ١٥٥ عير ١٥٥ عير ١٥٥ عير عير الله على المال الم ws 33

Τῆ Κυριακῆ τοῦ Παραλύτου καί τῆς Σαμαρειτίδος. Ήχος Α΄ Θ΄ Πα q Σ η με ρον πα σα κτι σιις α γα αλ λε ται και χαι ρει $\frac{\pi}{q} \xrightarrow{(\kappa)} C C \xrightarrow{(\Delta)} \sum_{n=1}^{\infty} \sum$ $\frac{2}{\delta\eta\varsigma} = \frac{\pi}{\delta\eta\varsigma} = \frac{\pi}{\epsilon\kappa \nu} = \frac{\pi}{\lambda\epsilon} = \frac{4}{\epsilon\nu} \cdot \frac{4}{\delta\eta} = \frac{4}{\epsilon\nu} \cdot \frac{4}{\delta\eta} = \frac{4}{$ $E_{\nu \varphi \alpha \iota \nu \nu \nu} = \sum_{\alpha \gamma \alpha} \sum_{\alpha \gamma \alpha} \sum_{\alpha \lambda \nu} \sum_{\alpha \gamma \alpha} \sum_{\alpha \lambda \nu} \sum_{\alpha \gamma \nu} \sum_{\alpha \lambda \nu} \sum_{\alpha$ いっつかーでいっつによったったったったっ ους α λε 34 TEL λα αμψας $(\Delta)(K)$ η λι ου φαι δρο τε ρο ον και τ ニーシーニンジとに こっこうり ニ τους πι ετους πα αν τας κα τα αυ γα

Τῆ Κυριαχῆ τῆς Μεσοπεντηχοστῆς, ὅρα τό εἰς τό Γενέσιον τῆς Θεοτόχου «ἀλλότριον...» σελ. 611

Τῆ Κυριαχῆ τῆς Σαμαρειτίδος, ὅρα τό εἰς τήν Κυριαχήν τοῦ Παραλύτου «Ἐφραίνου ἀγάλλου» σελ. 639

Είς τήν ἑορτήν τῆς ἀναλήψεως. ἀνδρέου μον.

Εἰς τήν ἑορτήν τῆς Πεντηχοστῆς.
Ήχος Βαρύς 🌣 Ζω

 $M = \frac{\sqrt[3]{(z)}}{\eta} = \frac{5\pi}{\eta} = \frac{\pi}{\eta} = \frac$ δι α πει ρα και κυ ο φο ρη 6α 6αα και παν TE XVN $\mu o \nu I$ $\Lambda o \gamma \omega$ $\epsilon \alpha$ ₹ = 230 = 230 " - - (- 3 = 200 = 2 \) εα αρκα δα νει $\frac{1}{160} \frac{4}{100} \frac{2}{100} \frac{1}{100} \frac{1}$ ン(ンンボーン x, ローーン、ン(つう)(つう) (A) ρα αν δρε Πα αρθε

(π) (π)

Είς τήν Δευτέραν τοῦ ἀγίου Πνεύματος.

 $\frac{4}{5}$ $\frac{6}{5}$ $\frac{4}{5}$ $\frac{1}{5}$ $\frac{4}{5}$ $\frac{1}{5}$ $\frac{1$

ΕΙΣ ΤΑ ΔΙΠΤΥΧΑ.

Τῆ Α΄. Ἰανουαρίου. Ἡχος Β΄ 🚎 🐧 Τον ου ρα νο φα αν το ρα του Χρι ετου 22 - + 3/1/c2 = 2/c2 - - 4 = 3/1/2 3 μυ στη ην του Δε σπο 22+CCC=2, 2, 5, 5, 6, 5, 5, 7, 5, 1, τον φω 6τη ρα τον φα ει (でとったー ニッニュッションラーニッ ον εκ Και 6α ρει α ας και Κα απ - (25 5 10 (6) 11 (65 00 6 (M)) (-1-1πα δο κω ων χω ον τον με γαν παντες τι 4 6ω μη

Σελιδοποίησις: Ἱερὰ Μονὴ Σίμωνος Πέτρας. Φίλμς - μοντάζ - ἐκτύπωσις - διδλιοδεσία: Γραφικαὶ τέχναι «ΜΕΛΙΣΣΑ», Ἀσπροδάλτα Θεσ/νίκης.

Σχέδια καὶ ἐπίτιτλα ἐκ τοῦ ἀρχείου τῆς Ἱερᾶς Μονῆς. Φωτογραφία κ. Douglas Lyttle, φωτογράφου, Pittsford - Η.Π.Α.

Α΄ "Εκδοσις: Δεκέμβριος 2003 SET 960-8474-08-6 ISBN 960-8474-13-4