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Abstract. The  Goldstone theorem requires that a many-body system with broken 
symmetry has an excitation branch, whose frequency tends to zero in the limit 
of infinite wavelength. We treat a system where the broken symmetry comes from 
the terms which give rise to the Jahn-Teller effect. Both the excitation branches we 
discuss in detail have finite frequencies at infinite wavelength when there is no 
Jahn-Teller term; the introduction of this term forces one branch to have zere 
frequency at infinite wavelength, in agreement with the Goldstone theorem The 
main point of this paper is this strikmg illustration of Goldstone’s conjecture. Some 
of the simpler features of the excitation branches are discussed, they do not appear to 
have been treated in detail in the literature. Systems of ions in twofold degenerate 
E ground states may exhibit such excitations, which will have a characteristic velocity 
considerably less than that of sound. 

1. Introduction 
The non-relativistic form of the Goldstone theorem (Lange 1966) asserts that for a 

many-body system with ‘broken symmetry’ and with unscreened interactions of finite 
range there will be an excitation branch, whose frequency tends to zero in the limit 
of infinite wavelength. The term ‘broken symmetry’ means that the ground state is of 
infinite degeneracy, having lower symmetry than the Lagrangian, and that there is a 
continuous group of transformations which leaves the Lagrangian invariant but not the 
ground state. One of the better known examples of broken symmetry is given by the 
Heisenberg ferromagnet (Lange 1966). The ground state has infinite degeneracy, cor- 
responding to the possible directions of magnetization, and has lower symmetry than the 
Lagrangian. The continuous symmetry group which changes the ground state and leaves 
the Lagrangian invariant is the rotation group generated by the components of the total 
spin, summed over all sites; the zero-frequency excitations are spin waves. 

One general proof of this invokes Noether’s theorem (Goldstone et al. 1962). The 
infinitesimal transformations of the continuous symmetry group are generated by the 
operator T :  

where are the field variables describing the state of the system. The Lagrangian is 
invariant under p. The condition of broken symmetry may be expressed by the expectation 
value of the field variables in the exact ground state 10) being altered by the transformation 
which leaves the Lagrangian 9 invariant: 

84, = 8(Tt?$?) = h’-A (1.1) 

~ t s ~ l ~ m  f 0. (1 4 
X’oether’s theorem states that, given (1 ,l), there will exist a set of conserved currents: 

conserved in the sense that 
a,J’ = 0 

There will also be a conserved ‘total charge operator’ 

(1.4) 

Q = j d3x J‘(x)  (1.5) 
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which generates the continuous group of transformations 

IQ, AI = %CY (1 4 
In 4 3 we will show directly that Noether's theorem applies to the specific system dis- 
cussed. 

The Jahn-Teller theorem (Jahn and Telrer 1937) states that a system, such as a complex 
in a solid or a molecule, which has a ground state possessing any degeneracy other than the 
Kramers degeneracy, can achieve a lower energy by a distortion which removes the 
degeneracy. The ground state then has lower symmetry than the Lagrangian. In  some 
cases there are an infinite number of possible distortions which lower the energy equally. 
The continuous group of transformations transforms the ground state obtained by one 
such distortion into that from a slightly different distortion. For example we shall discuss 
the tetragonal distortions of octahedral complexes. The continuous group changes a 
tetragonal distortion along one cubic axis of the complex into one with small additional 
distortions along the other axes. This would alter the ground state without changing the 
Lagrangian. 

In  4 2 we discuss an array of Cu2' ions specifically and calculate the Lagrange density 
in a continuum approximation. The Cu2+ complex has been discussed many times before 
(for general reference we cite Stoneham 1965 and Goodenough 1963, p. 202 et seq.). The 
Lagrange density is used to obtain the classical ground state and equations of motion in 5 3. 
In this section we will also verify Noether's theorem explicitly for this system. In the 
ground state all the complexes in the array have the same distortion configuration. The 
equations of motion are greatly affected by the presence of the terms which give rise to the 
Jahn-Teller effect. When these terms are absent the excitations have finite frequency at 
infinite wavelength. If the Jahn-Teller terms are present, one excitation branch has zero 
frequency at infinite wavelength. This change on the introduction of the symmetry break- 
ing terms is in exact agreement with the predictions of the Goldstone theorem, and the 
striking illustration of the theorem is the main point of this paper. 'We discuss the excita- 
tions themselves in 4 4. Here we also consider briefly the effect of additional terms in the 
Lagrangian which give a physically more realistic model. These terms destroy the broken 
symmetry, but do not necessarily remove the zero frequency at infinite wavelength; we 
are thus able to demonstrate that the Goldstone theorem is suflcient but not necessary for 
such a branch. 

2. The Lagrangian density for an array of Jahn-Teller ions 
As an explicit example we consider Cu2' ions in an otherwise non-magnetic host 

lattice. We further assume that the magnetic ions have six nearest neighbours which 
would be arranged octahedrally in the absence of a Jahn-Teller effect. 

In  the undistorted cubic environment the ground state of the Cu2+ ion is orbitally 
degenerate. The two degenerate states, I C )  and le), transform as x2-y2 and 2z2-x2-y2 
respectively under the octahedral group Oh and they form a basis for an E-type representa- 
tion of the group. We suppress the spin variables in our notation as the spin-orbit coupling 
has no elements among I C )  and IO) and because the Kramers degeneracy is not important 
in the present context. 

A ground state with lower energy may be achieved by a tetragonal distortion of the 
complex of the Cu2+ ion and its nearest neighbours. Of the three possible tetragonal 
distortions (the distortions along the three distinct cubic axes) only two are independent- 
We make the standard choice (Van Vleck 1939) of E, 0, where 

€ e  x - -& = +- -- 
2 2 d 3  1 -  

E O  

2 2 d 3  
y - - y  - 

2 -  5 -  

2, = -2, = +- 
d 3  
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in which X ,  is the x displacement of neighbour 1 in the complex, and so on. The labelling 
of the atoms and E and 0 are illustrated in figure 1. The normal coordinates of the complex, 
E and 8, which are distortions, should not be confused with the electronic wave functions 
/ E )  and 18). The similarity of notation is standard and occurs because, for example, 
E and / E )  transform in the same way under the octahedral group. In addition to E and 8 
there are, of course, other possible distortions of the complex. We shall ignore these as 
they introduce no essential changes. We also ignore all effects of surfaces. 

Figure 1. (a) The labelling of the nearest neighbours to a Cu2 + ion, (b )  the E distor- 
tion, (c)  the 6 distortion. 

In general E and B will be different for the different complexes in the array. We shall 
use a continuum approximation and write E(X) and e(%), where x is the coordinate of the 
complex. E and B will be treated as continuous functions of x, and our discussion will be 
in terms of energy densities rather than energies. The continuum approximation allows 
us to simplify the notation and to introduce phenomenological coefficients without having 
to make sophisticated assumptions about the microscopic features of the system. Strictly 
speaking E(%) and B(x) are averages over a region large enough to contain many complexes, 
but sufficiently small for E and 0 to be essentially constant in the region. Clearly such a 
picture is only useful when E and 8 vary slowly in space, that is for long wavelength excita- 
tions. 

I n  our simple model there are three contributions to the potential energy density. 
First, a contribution quadratic in the distortions comes from the usual forces which 
maintain the crystal equilibrium: 

V ,  = A ( E ~ + P ) .  (2.2) 
Secondly, when E and B vary in space there will be a term 

in which B is an effective tension representing the interaction between the complexes. 
Both V,  and V,, have the same expectation value for ] E >  as they do for 16'). Our particular 
choice of E and B ensures that, from symmetry arguments alone, we know that E and 0 enter 
symmetrically in V ,  and Vb and that there are no cross terms involving& or (2e/aX)( 20/aX). 
The final contribution is the one which is responsible for the Jahn-Teller distortion. The 
matrix elements among I C ) ,  /e> which correspond to distortions E and B are 

(2.4) 

These matrix elements are the only contributions to the matrix of the Hamiltonian, H,,, 
which are not proportional to the unit matrix. All the other terms (Va, V,, the electronic 
energy for zero distortion and the kinetic energy) have the same expectation value for 

I C )  and 10). The  solution of the secular equation det lH,,-ES,,l = 0 to find the energy 
for given E and 8 is therefore trivial. It is readily shown that the effect of the terms (2.4) 
is to lower one eigenvalue by C(E2+82)1'2 and to raise the other by the same amount. For 
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the ground state we write accordingly 

v, = - ~ ( € 2  + e y 2 .  

In addition to the potential energy terms there is a kinetic energy density 

where p is the effective density of the complexes. The Lagrangian density is thus 

2’ = T - ( V , +  Vb+ V,) 

This may be written more elegantly by introducing a field variable $(x) = E(x)+iO(x) 
such that #*# = e2 + 02. The  Lagrange density becomes 

The important features to note are first that the Lagrangian density 8 still has full cubic 
symmetry, whereas the ground state has lower (tetragonal) symmetry. Secondly, 9 is 
invariant under the continuous internal symmetry transformation 

O(x) --f 6”’ (x) = O(x) cos E +c(x) sin GI 

E(.) + E”(X) = -O(x) sin cr+e(x) cos x (2.9) 

where sin2 51 + cos2 a = 1. This transformation does not, however, leave the Jahn-Teller 
ground state invariant; it changes a tetragonal distortion entirely along one of the cubic 
axes into a distortion with admixtures of tetragonal distortions along the other axes. The 
Jahn-Teller ground state has an infinite degeneracy corresponding to the choice of the 
phase E. This symmetry, described by (2.9), is the ‘broken symmetry’ of the Goldstone 
theorem; it is an internal symmetry as these transformations leave the Lagrangian invariant, 
but is broken in the sense that the ground state is not invariant. The reduction of cubic 
symmetry to tetragonal symmetry by the Jahn-Teller effect is not the broken symmetry 
of the Goldstone theorem. 

3. The classical ground state and the Lagrangian equations of motion 
In  this section we find the ground state of the system and, from the equations of motion, 

the low-lying excitations of the system. The classical approach we adopt has several 
features which are simpler than in a quantum-theoretic approach. The ground state is 
almost obvious intuitively and there are no complications of zero point motion. Further, 
one may consider oscillations about equilibrium of indefinitely small amplitude and one 
may ignore all questions of the limitations of possible experiments by the uncertainty 
principle. The Goldstone conjecture appears to be equally valid in the classical and 
quantal cases. 

The classical ground state will be a static state with no kinetic energy. The only term 
in the potential energy which depends on the spatial varlatlon of and 0 is 

BB( q*/ax)( a+/ax> 

where B is positive, Clearly E and O are constants in space in the classical ground state, 
thereby minimizing this term. Consequently the ratio E ( x ) / ~ ( x )  = tan{#(x)} and the 
magnitude of ~*(x)$(x) = e2(x) + 02(x) are independent of x. The phase #(x) does not 
enter into the other terms in the potentla1 energy, so, without loss of generality, we may 
take #(x) = 0 in the ground state. With this phase convention the ground-state distortion 
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By straightforward minimization of the terms in the energy which depend on 80 we find 
the magnitude of 8, to be 

C 
- 2A (3 4 8, = { ( ~ ~ + 6 ’ ~ ) ’ ’ ~ )  - -. 

The Lagrangian equations of motion are given by 
a 2  a a 2  a a 2  
a+ at a(a4jat) ax a(a$/ax)‘ 

+------ _ -  

Explicit evaluation of these gives 
a Z E  E 8% 

p - =  c - ~ A E + B -  
at2 (e2 + 82)1‘2 ax2 

a2e 8 a28 

at2 (e2 + 19~)’:~ 8x2 
p - =  c - 2A8 + B -. 

(3.3) 

(3.5) 

For future reference we observe that C/( ,~+P)~’~  and 8 / ( ~ ~ + P ) l ’ ~  are finite for all finite 
values of E and 8 including E = 8 = 0. Thus in cases where C is zero (no Jahn-Teller 
effect) the terms in C simply vanish. 

We now consider small oscillations about the ground-state configuration ( E  = 0, 
8 = 8J. The  equations of motion are more transparent after the transformation: 

8 + 8 ’ = 8 - 8 0 ,  E + E  (3 4 
where E and 8’ are small for small oscillation amplitudes. We also linearize the equations, 
assuming 80 $ E, 8‘; the terms omitted are anharmonic terms of the order of e2, €8’. 
Finally, we find for 8’ 

a28’ a28’ 
p - = B - - 2AO’ + 0(8’~, e l 2 )  (3 *7)  

a t 2  ax2 

which should be compared with the original equation of motion in the absence of the 
Jahn-Teller term, i.e. 

a28 a28 
p- = B- -2A8: (3 -8) 

a t 2  ax2 

These two equations of motion are identical, apart from the anharmonic corrections- 
the 8’ oscillations are not affected by the Jahn-Teller term. On the other hand, for E 

a Z E  a Z E  

at2  8x2 
p - = B - + O ( E ~ , ~ ’ E )  

including the Jahn-Teller term. Here the oscillations in E are now acoustic in nature, having 
a frequency which tends to zero as the wavelength becomes infinite. This is in complete 
contrast with the corresponding equation of motion with no Jahn-Teller term, when the 
excitations have a finite frequency even at infinite wavelength : 

asE 
p -  = B- -2Ac. 

a t 2  2x2 
(3.10) 

The  acoustic-like excitation described by (3.9) is quite distinct from the usual acoustic 
phonon branch. The  broken symmetry due to the Jahn-Teller effect forces a zero fre- 
quency excitation of infinite wavelength to come into existence in conformity with Gold- 
stone’s theorem. 

We may also verify that Noether’s theorem applies to our system. From (2.9) we 
see that for an infinitesimal rotation ( x  small) 

e + 8 1 1  = 

E - + E t ’  = €-U0 
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i.e. 
66 = 6 " - 6  = 

= E n - E  = -ae. 
'The matrix T,, is, writing 6 = 4, and E = 42, 
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(3.11) 

(3.12) 

Equation (1.3), which defines the currents, and (2.8), which gives the Lagrangian, lead to 
current components 

(3.13) 

I t  is then easy to verify the current conservation condition of Noether's theorem: 

where the equations of motion (3.4) and (3.5) have been used in the final step. The con- 
served charge Q, defined by (lS), is 

Q = d J x J ' ( x ) = p j d 3 x ( ~ ~ - 6 ~ )  = -pjd3x(c2+62)- a* s at 

where # = tan-'(E/O). In  principle this constant of the motion could be obtained by 
direct integration of (3.8) and (3.10). 9 is essentially the total angular momentum associated 
with rotations in the (E, 6 )  space, 

4. Discussion of the excitations in E and 0' 
Here we attempt to clarify the nature of the E and 8' waves further. As mentioned 

in $2 ,  E and 8' are independent types of distortion which are orthogonal in the sense that 
they provide different components of a basis for an irreducible representation of the 
octahedral group. We can consider the excitations as oscillations in the configurations of 
the complexes in a configuration space with coordinates E and 6. This configuration space 
is illustrated in figure 2 which also shows the potential energy as a function of E and 8. 
In the ground state all the complexes have the same configuration (0, O0). This is, of course, 
analogous to the ferromagnetic ground state where the spins on each site are in the same 
state. 

The continuous group of transformations which change the ground state but not the 
Lagrangian are given in (2.9) : these transformations are simply rotations in (E ,  6) space. 
The 6' excitations are oscillations in the magnitude of 6, the symmetry breaking coordinate. 
Their finite frequency at infinite wavelength occurs because motion in 8' takes each 
complex up the sides of the potential trough shown in figure 2. On the other hand, the 
motion in E ,  which is orthogonal to e', simply moves the complex along the minimum of the 
trough; in the limit of infinite wavelength these excitations have zero frequency. The 
velocity of propagation of these excitations IS determined by the coefficient B of (2.3) which 
1s a measure of the interaction between complexes tending to give them the same (E, e). 
Clearly this may be very small in dilute systems. In other systems the interaction may be 
appreciable, as in the spinel M r ~ ~ + ( M n ~ + ) ~ o ~ ,  which is magnetically dense and which 
exhibits a cooperative Jahn-Teller distortion below 1443 OK where it exhibits a diffusionless 



220 J .  Sarjatt and A. Ab. Stoneham 

phase transition (Goodenough 1963, p. 226). A very crude estimate of the propagation 
velocity, ( B / P ) ~ ' ~ ,  can be made as follows. If there are N complexes per u'nit volume, each 
of effective mass m, the density p is N m  The critical temperature of 1443 OK suggests an 
interaction between neighbouring complexes of the order of 0.1 ev. The energy density B, 

V ( E . 0 )  

-+-y- - - - - 
/ 

(01 (6) 

Figure 2. (a) The  potential energy as a function of E and 6; (b)  the oscillations in 
E and 8'. 

may then be of order $ZA70.1 ev, where 2 is the number of complexes which are nearest 
neighbours to a given complex, and the 4 ensures that the pairwise interactions are only 
counted once. Using 2 = 12 and the atomic weight of oxygen for m we find a propagation 
velocity of 2 x lo3 cm sec-l, appreciably less than the velocity of sound. 

The configuration of our system may change without a change in energy by altering 
# = tan-l(e/B) with e2+B2 = Bo2. This means that for our system the Jahn-Teller effect 
would be dynamic even at the lowest temperatures. In general the potential energymay 
depend on # through a term Vd(#); for a static Jahn-Teller effect Vd leads to discrete 
minima in V(B,e) separated by potential barriers high enough to make tunnelling im- 
probable. The broken symmetry necessary for the Goldstone theorem is destroyed by 
V,($)-the Lagrangian is no longer invariant under (2,9)-although the excitation branch 
at infinite wavelength is not necessarily affected. The Goldstone theorem is suficient but 
not necessary for the existence of such a branch. This can be seen for our system as follows. 
Let us suppose the new anisotropic terms Vd(#) lead to the lowest energy at # = #o. 
Near # = # o  the potential energy along 0 2 + e 2  = Bo2 will have the form 

Vd(#) = D(# -I/~)' + higher-order terms. 

D and the higher-order terms depend on the specific model considered. If D is zero, the 
higher terms alone simply give anharmonic corrections to (3.9); these terms destroy the 
broken symmetry on which Goldstone's theorem depends, but leave the excitation spectrum 
unaltered. In  general D is finite for real systems, although it may be very small-for 
MgO : Cu2+ the Jahn-Teller effect remains dynamic down to liquid helium temperatures 
(Orton et al. 1961), so the discrete minima in V are separated by barriers of order 0.0005 ev. 
For finite D the dispersion relation regains an energy gap. 

5. Conclusion 
The Jahn-Teller terms in the Lagrangian of the system we have treated produce a 

system with broken symmetry. We have examined the excitations of this system and find 
that the inclusion of these terms forces one excitation branch to have zero frequency a t  
infinite wavelength, giving a very clear illustration of Goldstone's conjecture. The resulting 
excitations have been discussed briefly; in real systems they will usually have a propagation 
velocity less than that of sound, and may have an energy gap, which will be small in some 
cases. There appears to be no detailed discussion of these excitations in the literature. 
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