
 2007-2014 Microchip Technology Inc. DS70000195F-page 1

HIGHLIGHTS

This section of the manual contains the following major topics:

1.0 Introduction ... 2

2.0 I2C Bus Characteristics... 4

3.0 Control and Status Registers .. 8

4.0 Enabling I2C Operation ... 18

5.0 Communicating as a Master in a Single Master Environment .. 20

6.0 Communicating as a Master in a Multi-Master Environment .. 34

7.0 Communicating as a Slave ... 37

8.0 Connection Considerations for I2C Bus .. 61

9.0 Operation in Power-Saving Modes ... 63

10.0 Peripheral Module Disable (PMDx) Registers .. 63

11.0 Effects of a Reset.. 63

12.0 Constant-Current Source .. 64

13.0 Register Maps... 66

14.0 Design Tips ... 67

15.0 Related Application Notes... 68

16.0 Revision History .. 69

Inter-Integrated Circuit™ (I2C™)

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 2  2007-2014 Microchip Technology Inc.

This document supersedes the following PIC24 and dsPIC® DSC Family Reference Manual sections:

1.0 INTRODUCTION

The Inter-Integrated Circuit™ (I2C™) module is a serial interface useful for communicating with
other peripheral or microcontroller (MCU) devices. The external peripheral devices may be serial
EEPROMs, display drivers, Analog-to-Digital Converters (ADC) and so on.

The I2C module can operate as any one of the following in the I2C system:

• Slave device

• Master device in a single master system (slave may be active)

• Master or slave device in a multi-master system (bus collision detection and arbitration are
available)

The I2C module contains an independent I2C master logic and a I2C slave logic, which generates
interrupts based on their events. In the multi-master systems, the user software is simply
partitioned into the master controller and the slave controller.

When the I2C master logic is active, the slave logic also remains active, detecting the state of the
bus and potentially receiving messages from itself in a single master system or from the other
masters in a multi-master system. No messages are lost during the multi-master bus arbitration.

In a multi-master system, the bus collision conflicts with the other masters in the system when
detected and the module provides a method to terminate and then restart the message.

The I2C module contains a Baud Rate Generator (BRG). The I2C BRG does not consume other
timer resources in the device. Figure 1-1 illustrates the I2C module block diagram.

Key features of the I2C module include the following:

• Independent master and slave logic

• Multi-master support which prevents message losses in arbitration

• Detects 7-bit and 10-bit device addresses with configurable address masking in Slave mode

• Detects general call addresses as defined in the I2C protocol

• Bus Repeater mode allowing the module to accept all messages as a slave, irrespective of
the address

• Automatic SCLx clock stretching provides delays for the processor to respond to a slave
data request

• Supports 100 kHz and 400 kHz bus specifications

• Supports the Intelligent Platform Management Interface (IPMI) standard

• Supports SDAx hold time for SMBus (300 nS or 150 nS) in Slave mode

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all PIC24 and dsPIC33 devices.

Please consult the note at the beginning of the “Inter-Integrated Circuit™ (I2C™)”
chapter in the current device data sheet to check whether this document supports
the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com.

DS Number Section Number Title

DS70195 19 dsPIC33F/PIC24H Family Reference Manual

DS70330 19 dsPIC33E/PIC24E Family Reference Manual

DS39702 24 PIC24F Family Reference Manual

 DS70235 19 PIC24H Family Reference Manual

DS70068 21 dsPIC30F Family Reference Manual

Note: For more information, refer to the SDAHT bit description in the specific device data sheet.

 2007-2014 Microchip Technology Inc. DS70000195F-page 3

Inter-Integrated Circuit™ (I2C™)

Figure 1-1: I2C™ Block Diagram

I2CxRCV

Internal
Data Bus

SCLx

SDAx

Shift

Match Detect

Clock

Address Match

Clock
Stretching

I2CxTRN

LSB

Shift Clock

BRG

Reload
Control

TCY or TCY/2(1)

Acknowledge
Generation

I2CxCONH

I2CxSTAT
C

o
n

tr
o

l L
o

g
ic

Read

LSB

Write

Read

I2CxBRG

I2CxRSR

Write

Read

Write

Read

Write

Read

Write

Read

Write

Read

Down Counter

I2CxCONL

Write

Read

Note 1: Refer to specific device data sheet for the clock rate.

I2CxADD

Start and Stop
Bit Detect

Start and Stop
Bit Generation

Collision
Detect

I2CxMSK

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 4  2007-2014 Microchip Technology Inc.

2.0 I2C BUS CHARACTERISTICS

The I2C bus is a 2-wire serial interface. Figure 2-1 illustrates the schematic of an I2C connection
between a dsPIC33/PIC24 device and a 24LC256 I2C serial EEPROM, which is a typical
example for any I2C interface.

The I2C interface uses a comprehensive protocol to ensure reliable transmission and reception
of the data. When communicating, one device acts as the “master” and it initiates transfer on the
bus, and generates the clock signals to permit that transfer, while the other devices act as the
“slave” responding to the transfer. The clock line, SCLx, is output from the master and input to
the slave, although occasionally the slave drives the SCLx line. The data line, SDAx, may be
output and input from both the master and slave.

Because the SDAx and SCLx lines are bidirectional, the output stages of the devices driving the
SDAx and SCLx lines must have an open-drain in order to perform the wired-AND function of the bus.
External pull-up resistors are used to ensure a high level when no device is pulling the line down.

In the I2C interface protocol, each device has an address. When a master needs to initiate a data
transfer, it first transmits the address of the device that it wants to “communicate”. All of the
devices “listen” to see if this is their address. Within this address, bit 0 specifies whether the
master wants to read from or write to the slave device. The master and slave are always in
opposite modes (Transmitter or Receiver) of operation during a data transfer. That is, they
operate in either of the following two relations:

• Master-Transmitter and Slave-Receiver
• Slave-Transmitter and Master-Receiver

In both cases, the master originates the SCLx clock signal.

Figure 2-1: Typical I2C™ Interconnection Block Diagram

SCLx

SDAx

dsPIC33/PIC24

SDA

SCL

VDD VDD

2.2 k
24LC256

(typical)

 2007-2014 Microchip Technology Inc. DS70000195F-page 5

Inter-Integrated Circuit™ (I2C™)

2.1 Bus Protocol

The following I2C bus protocol has been defined:

• The data transfer may be initiated only when the bus is not busy.

• During the data transfer, the data line must remain stable whenever the SCLx clock line is
high. Any changes in the data line, while the SCLx clock line is high, will be interpreted as a
Start or Stop condition.

Accordingly, the bus conditions are defined as illustrated in Figure 2-2.

Figure 2-2: I2C™ Bus Protocol States

2.1.1 START DATA TRANSFER (S)

After a bus Idle state, a high-to-low transition of the SDAx line while the clock (SCLx) is high
determines a Start condition. All data transfers must be preceded by a Start condition.

2.1.2 STOP DATA TRANSFER (P)

A low-to-high transition of the SDAx line while the clock (SCLx) is high determines a Stop
condition. All data transfers must end with a Stop condition.

2.1.3 REPEATED START (R)

After a Wait state, a high-to-low transition of the SDAx line while the clock (SCLx) is high
determines a Repeated Start condition. Repeated Starts allow a master to change bus direction
or address a slave device without relinquishing control of the bus.

2.1.4 DATA VALID (D)

After a Start condition, the state of the SDAx line represents valid data when the SDAx line is
stable for the duration of the high period of the clock signal. There is one bit of data per SCLx
clock.

2.1.5 ACKNOWLEDGE (A) OR NOT ACKNOWLEDGE (N)

All data byte transmissions must be Acknowledged (ACK) or Not Acknowledged (NACK) by the
receiver. The receiver will pull the SDAx line low for an ACK or release the SDAx line for a NACK.
The Acknowledge is a 1-bit period using one SCLx clock.

2.1.6 WAIT/DATA INVALID (Q)

The data on the line must be changed during the low period of the clock signal. The devices may
also stretch the clock low time by asserting a low on the SCLx line, causing a Wait on the bus.

2.1.7 BUS IDLE (I)

Both data and clock lines remain high after a Stop condition and before a Start condition.

Address
Valid

Data
Allowed

to Change

Stop
Condition

Start
Condition

SCLx

SDAx

(I) (S) (D) (A) or (N) (P) (I)

Data or

(Q)

ACK/NACK
Valid

NACK

ACK

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 6  2007-2014 Microchip Technology Inc.

2.2 Message Protocol

A typical I2C message is illustrated in Figure 2-3. In this example, the message will read a
specified byte from a 24LC256 I2C serial EEPROM. The dsPIC33/PIC24 device will act as the
master and the 24LC256 device will act as the slave.

Figure 2-3 illustrates the data as driven by the master device and the slave device, taking into
account that the combined SDAx line is a wired-AND of the master and slave data. The master
device controls and sequences the protocol. The slave device will only drive the bus at
specifically determined times.

Figure 2-3: A Typical I2C™ Message: Read of Serial EEPROM (Random Address Mode)

2.2.1 START MESSAGE

Each message is initiated with a Start condition and terminated with a Stop condition. The
number of data bytes transferred between the Start and Stop conditions is determined by the
master device. As defined by the system protocol, the bytes of the message may have special
meaning, such as the device address byte or the data byte.

2.2.2 ADDRESS SLAVE

In Figure 2-3, the first byte is the device address byte, which must be the first part of any I2C
message. It contains a device address and a R/W status bit. Note that the R/W = 0 for this first
address byte, indicating that the master will be a transmitter and the slave will be a receiver.

2.2.3 SLAVE ACKNOWLEDGE

The receiving device is obliged to generate an Acknowledge signal, ACK, after the reception of
each byte. The master device must generate an extra SCLx clock, which is associated with this
Acknowledge bit.

2.2.4 MASTER TRANSMIT

The next two bytes, sent by the master to the slave, are data bytes that contain the location of
the requested EEPROM data byte. The slave must Acknowledge each of the data bytes.

2.2.5 REPEATED START

The slave EEPROM has the required address information that is required to return the requested
data byte to the master. However, the R/W status bit from the first device address byte specifies
the master transmission and the slave reception. The direction of the bus must be reversed for
the slave to send data to the master.

To perform this function without ending the message, the master sends a Repeated Start. The
Repeated Start is followed with a device address byte containing the same device address as
before and with the R/W = 1 to indicate the slave transmission and the master reception.

X

Bus

Master
SDAx

S
ta

rt Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S 1 0 1 0 A A A 02 1 0 R 1 0 1 0 A A A 12 1 0 P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

A
C

K

A
C

K

A
C

K
R

e
st

ar
t

A
C

K

N
A

C
K

S
to

p
Id

le

R
/W

 2007-2014 Microchip Technology Inc. DS70000195F-page 7

Inter-Integrated Circuit™ (I2C™)

2.2.6 SLAVE REPLY

The slave transmits the data byte by driving the SDAx line, while the master continues to
originate clocks but releases its SDAx drive.

2.2.7 MASTER ACKNOWLEDGE

During reads, a master must terminate data requests to the slave by generating a NACK on the
last byte of the message.

2.2.8 STOP MESSAGE

The master sends a Stop signal to terminate the message and returns the bus to an Idle state.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 8  2007-2014 Microchip Technology Inc.

3.0 CONTROL AND STATUS REGISTERS

The I2C module has registers for operation that are accessible by the user application. All
registers are accessible in either Byte or Word mode. The registers are as follows:

• I2CxCON: I2Cx Control Register or I2CxCONL: I2Cx Control Register Low and
I2CxCONH: I2Cx Control Register High

These registers allow control of the module’s operation.

• I2CxSTAT: I2Cx Status Register

This register contains status flags indicating the module’s state during operation.

• I2CxMSK: I2Cx Slave Mode Address Mask Register

This register designates which bit positions in the I2CxADD register can be ignored, which
allows for multiple address support.

• ISRCCON: I2Cx Current Source Control Register(1)

This register allows control of the current source module.

• I2CxRCV: I2Cx Receive Buffer Register

This is the buffer register from which data bytes can be read. The I2CxRCV register is a
read-only register.

• I2CxTRN: I2CxTransmit Register

This is the Transmit register. The bytes are written to this register during a transmit
operation. The I2CxTRN register is a read/write register.

• I2CxADD:I2Cx Address Register

This register holds the slave device address.

• I2CxBRG: I2Cx Baud Rate Generator Reload Register

This register holds the BRG reload value for the I2C module BRG.

The transmit data is written to the I2CxTRN register. This register is used when the module
operates as a master transmitting data to the slave or when it operates as a slave sending reply
data to the master. As the message progresses, the I2CxTRN register shifts out the individual
bits. Therefore, the I2CxTRN register cannot be written to unless the bus is Idle.

The data being received by either the master or the slave is shifted into a non-accessible shift
register, I2CxRSR. When a complete byte is received, the byte transfers to the I2CxRCV register.
In receive operations, the I2CxRSR and I2CxRCV registers create a double-buffered receiver.
This allows reception of the next byte to begin before reading the current byte of the received
data.

If the module receives another complete byte before the user software reads the previous byte
from the I2CxRCV register, a receiver overflow occurs and sets the I2COV bit (I2CxSTAT<6>).
The byte in the I2CxRSR register is lost if (BOEN = 0). Further reception and clock stretching
are disabled until the I2C module sees a Start/Repeated, Start/Stop condition on the bus. If the
I2COV flag has been cleared, the reception can proceed normally. If the I2COV flag is not
cleared, the module will receive the next byte correctly, but will send a NACK. It will then be
unable to receive further bytes or stretch the clock until it detects a Start/Repeated and Start/Stop
condition.

The I2CxADD register holds the slave device address. In 10-Bit Addressing mode, all bits are
relevant. In 7-Bit Addressing mode, only the I2CxADD<6:0> bits are relevant. The
I2CxADD<6:0> bits correspond to the upper 7 bits in the address byte. The read/write bit is not
included in the value in this register. The A10M bit (I2CxCON<10> or I2CxCONL<10>) specifies
the expected mode of the slave address. By using the I2CxMSK register with the I2CxADD reg-
ister in Slave Addressing mode, one or more bit positions can be removed from the exact
address matching, allowing the module, in Slave mode, to respond to multiple addresses.

Note 1: The I2CxCONL, I2CxCONH and ISRCCON registers are not available on all
devices. Refer to the specific device data sheet for availability.

 2007-2014 Microchip Technology Inc. DS70000195F-page 9

Inter-Integrated Circuit™ (I2C™)

Register 3-1: I2CxCON: I2Cx Control Register

R/W-0 U-0 R/W-0 R/W-1, HC R/W-0 R/W-0 R/W-0 R/W-0

I2CEN — I2CSIDL SCLREL IPMIEN(1) A10M DISSLW SMEN

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC

GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN

bit 7 bit 0

Legend: HC = Hardware Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 I2CEN: I2Cx Enable bit

1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
0 = Disables the I2Cx module; all the I2C™ pins are controlled by port functions

bit 14 Unimplemented: Read as ‘0’

bit 13 I2CSIDL: I2Cx Stop in Idle Mode bit

1 = Discontinues the module operation when a device enters the Idle mode
0 = Continues the module operation in the Idle mode

bit 12 SCLREL: SCLx Release Control bit (when operating as I2C slave)

1 = Releases the SCLx clock
0 = Holds SCLx clock low (clock stretch)

If STREN = 1:
User software may write ‘0’ to initiate a clock stretch and write ‘1’ to release the clock. Hardware clears
at the beginning of every slave data byte transmission. Hardware clears at the end of every slave
address byte reception. Hardware clears at the end of every slave data byte reception.

If STREN = 0:
User software may only write ‘1’ to release the clock. Hardware clears at the beginning of every slave
data byte transmission. Hardware clears at the end of every slave address byte reception.

bit 11 IPMIEN: IPMI Enable bit(1)

1 = IPMI Support mode is enabled, all addresses are Acknowledged
0 = IPMI Support mode is disabled

bit 10 A10M: 10-Bit Slave Address bit

1 = I2CxADD register is a 10-bit slave address
0 = I2CxADD register is a 7-bit slave address

bit 9 DISSLW: Disable Slew Rate Control bit

1 = Slew rate control is disabled
0 = Slew rate control is enabled

bit 8 SMEN: SMBus Input Levels bit

1 = Enables the I/O pin thresholds compliant with the SMBus specification
0 = Disables the SMBus input thresholds

bit 7 GCEN: General Call Enable bit (when operating as I2C slave)

1 = Enables the interrupt when a general call address is received in the I2CxRSR register (module is
enabled for reception)

0 = Disables the general call address

bit 6 STREN: SCLx Clock Stretch Enable bit (I2C Slave mode only; used in conjunction with the SCLREL bit)

1 = Enables the user software or the receive clock stretching
0 = Disables the user software or the receive clock stretching

Note 1: The IPMIEN bit should not be set when the I2C module is operating as a master.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 10  2007-2014 Microchip Technology Inc.

bit 5 ACKDT: Acknowledge Data bit (I2C Master mode; receive operation only)
Value that will be transmitted when the user software initiates an Acknowledge sequence.

1 = Sends a NACK during an Acknowledge
0 = Sends an ACK during an Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit (I2C Master mode receive operation)

1 = Initiates the Acknowledge sequence on the SDAx and SCLx pins and transmits the ACKDT data bit
(hardware clears at the end of the master Acknowledge sequence)

0 = Acknowledge sequence is not in progress

bit 3 RCEN: Receive Enable bit (I2C Master mode)

1 = Enables Receive mode for I2C (hardware clears at the end of eighth bit of master receive data byte)
0 = Receive sequence is not in progress

bit 2 PEN: Stop Condition Enable bit (I2C Master mode)

1 = Initiates the Stop condition on the SDAx and SCLx pins (hardware clears at the end of master Stop
sequence)

0 = Stop condition is not in progress

bit 1 RSEN: Repeated Start Condition Enable bit (I2C Master mode)

1 = Initiates the Repeated Start condition on the SDAx and SCLx pins (hardware clears at the end of
master Repeated Start sequence)

0 = Repeated Start condition is not in progress

bit 0 SEN: Start Condition Enable bit (I2C Master mode)

1 = Initiates the Start condition on the SDAx and SCLx pins (hardware clears at the end of master Start
sequence)

0 = Start condition is not in progress

Register 3-1: I2CxCON: I2Cx Control Register (Continued)

Note 1: The IPMIEN bit should not be set when the I2C module is operating as a master.

 2007-2014 Microchip Technology Inc. DS70000195F-page 11

Inter-Integrated Circuit™ (I2C™)

Register 3-2: I2CxCONL: I2Cx Control Register Low

R/W-0 U-0 R/W-0, HC R/W-1 R/W-0 R/W-0 R/W-0 R/W-0

I2CEN — I2CSIDL SCLREL(1) STRICT A10M DISSLW SMEN

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC

GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN

bit 7 bit 0

Legend: HC = Hardware Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 I2CEN: I2Cx Enable bit

1 = Enables the I2C™ module and configures the SDAx and SCLx pins as serial port pins
0 = Disables the I2C module; all the I2C pins are controlled by port functions

bit 14 Unimplemented: Read as ‘0’

bit 13 I2CSIDL: I2Cx Stop in Idle Mode bit

1 = Discontinues the module operation when a device enters Idle mode
0 = Continues the module operation in the Idle mode

bit 12 SCLREL: SCLx Release Control bit (I2C Slave mode only)(1)

Module resets and (I2CEN = 0) sets SCLREL = 1.

If STREN = 0:(2)

1 = Releases the clock
0 = Forces clock low (clock stretch)

If STREN = 1:
1 = Releases the clock
0 = Holds clock low (clock stretch); the user may program this bit to ‘0’, clock stretch at next SCLx low

bit 11 STRICT: Strict I2C Reserved Address Rule Enable bit

1 = Strict reserved addressing is enforced; for reserved addresses
In a Slave mode, the device does not respond to reserved address space and the addresses falling
in that category are NACKed.
In a Master mode, the device is allowed to generate addresses with the reserved address space.

0 = Reserved addressing would be Acknowledged
In a Slave mode, the device will respond to an address falling in the reserved address space. When
there is a match with any of the reserved addresses, the device will generate an ACK.
In a Master mode, it is reserved.

bit 10 A10M: 10-Bit Slave Address Flag bit

1 = I2CxADD is a 10-bit slave address
0 = I2CxADD is a 7-bit slave address

bit 9 DISSLW: Slew Rate Control Disable bit

1 = Slew rate control is disabled for Standard Speed mode (100 kHz, disabled for 1 MHz mode)
0 = Slew rate control is enabled for High-Speed mode (400 kHz)

bit 8 SMEN: SMBus Input Levels Enable bit

1 = Enables the input logic; therefore, thresholds are compliant with the SMBus specification
0 = Disables the SMBus-specific inputs

Note 1: Automatically cleared to ‘0’ at the beginning of the slave transmission; automatically cleared to ‘0’ at the
end of the slave reception.

2: Automatically cleared to ‘0’ at the beginning of the slave transmission.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 12  2007-2014 Microchip Technology Inc.

bit 7 GCEN: General Call Enable bit (I2C Slave mode only)

1 = Enables the interrupt when a general call address is received in I2CxRSR; the module is enabled for
reception

0 = General call address is disabled

bit 6 STREN: SCLx Clock Stretch Enable bit
In I2C Slave mode only; used in conjunction with the SCLREL bit.

1 = Enables clock stretching
0 = Disables clock stretching

bit 5 ACKDT: Acknowledge Data bit

In I2C Master mode during Master Receive mode. The value that will be transmitted when the user
initiates an Acknowledge sequence at the end of a receive.

In I2C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates
an Acknowledge sequence at the end of an address or data reception.

1 = NACK is sent
0 = ACK is sent

bit 4 ACKEN: Acknowledge Sequence Enable bit
In I2C Master mode only; applicable during Master Receive mode.

1 = Initiates the Acknowledge sequence on the SDAx and SCLx pins, and transmits the ACKDT data bit
0 = Acknowledge sequence is in Idle mode

bit 3 RCEN: Receive Enable bit (I2C Master mode only)

1 = Enables Receive mode for I2C; automatically cleared by hardware at the end of an 8-bit receive
data byte

0 = Receive sequence is not in progress

bit 2 PEN: Stop Condition Enable bit (I2C Master mode only)

1 = Initiates the Stop condition on the SDAx and SCLx pins
0 = Stop condition is in Idle mode

bit 1 RSEN: Restart Condition Enable bit (I2C Master mode only)

1 = Initiates the Restart condition on the SDAx and SCLx pins
0 = Restart condition is in Idle mode

bit 0 SEN: Start Condition Enable bit (I2C Master mode only)

1 = Initiates the Start condition on the SDAx and SCLx pins
0 = Start condition is in Idle mode

Register 3-2: I2CxCONL: I2Cx Control Register Low (Continued)

Note 1: Automatically cleared to ‘0’ at the beginning of the slave transmission; automatically cleared to ‘0’ at the
end of the slave reception.

2: Automatically cleared to ‘0’ at the beginning of the slave transmission.

 2007-2014 Microchip Technology Inc. DS70000195F-page 13

Inter-Integrated Circuit™ (I2C™)

Register 3-3: I2CxCONH: I2Cx Control Register High

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 15 bit 8

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as ‘0’

bit 6 PCIE: Stop Condition Interrupt Enable bit (I2C™ Slave mode only)

1 = Enables the interrupt on detection of a Stop condition
0 = Stop detection interrupts are disabled

bit 5 SCIE: Start Condition Interrupt Enable bit (I2C Slave mode only)

1 = Enables the interrupt on detection of a Start or Restart condition
0 = Start detection interrupts are disabled

bit 4 BOEN: Buffer Overwrite Enable bit (I2C Slave mode only)

1 = The I2CxRCV register is updated and an ACK is generated for a received address or data byte,
ignoring the state of the I2COV bit only if the RBF bit = 0

0 = The I2CxRCV register is only updated when the I2COV bit is clear

bit 3 SDAHT: SDAx Hold Time Selection bit

1 = Minimum of 300 ns hold time on SDAx after the falling edge of the SCLx clock
0 = Minimum of 100 ns hold time on SDAx after the falling edge the of SCLx clock

bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)
If, on the rising edge of the SCLx, SDAx is sampled low when the module is outputting a high state, the
BCL bit is set and the bus goes into Idle mode. This Detection mode is valid only during the data and
ACK transmit sequences.

1 = Enables the slave bus collision interrupts
0 = Disables the slave bus collision interrupts

bit 1 AHEN: Address Hold Enable bit (I2C Slave mode only)

1 = Following the falling edge of the eighth SCLx clock for a matching received address byte; the
SCLREL bit (I2CxCONL<12>) will be cleared and the SCLx will be held low

0 = Address holding is disabled

bit 0 DHEN: Data Hold Enable bit (I2C Slave mode only)

1 = Following the eighth falling edge of the SCLx clock for a received data byte; slave hardware clears
the SCLREL bit (I2CxCONL<12>) and SCLx is held low

0 = Data holding is disabled

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 14  2007-2014 Microchip Technology Inc.

Register 3-4: I2CxSTAT: I2Cx Status Register

R-0, HSC R-0, HSC R-0, HSC U-0 U-0 R/C-0, HS R-0, HSC R-0, HSC

ACKSTAT TRSTAT ACKTIM(1) — — BCL GCSTAT ADD10

bit 15 bit 8

R/C-0, HS R/C-0, HS R-0, HSC R-0, HSC R-0, HSC R-0, HSC R-0, HSC R-0, HSC

IWCOL I2COV D/A P S R/W RBF TBF

bit 7 bit 0

Legend: C = Clearable bit HSC = Hardware Settable/Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

HS = Hardware Settable bit

bit 15 ACKSTAT: Acknowledge Status bit

1 = NACK received from slave
0 = ACK received from slave
Hardware sets or clears at the end of slave or master Acknowledge.

bit 14 TRSTAT: Transmit Status bit (I2C™ Master mode transmit operation)

1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress
Hardware sets at the beginning of master transmission; hardware clears at the end of slave Acknowledge.

bit 13 ACKTIM: Acknowledge Time Status bit (valid in I2C Slave mode only)(1)

1 = Indicates that the I2C bus is in an Acknowledge sequence; set on the falling edge of eighth SCLx clock
0 = Not an Acknowledge sequence, cleared on ninth rising edge of the SCLx clock
Hardware sets at the beginning of master transmission; hardware clears at the end of slave Acknowledge.

bit 12-11 Unimplemented: Read as ‘0’

bit 10 BCL: Bus Collision Detect bit (Master and Slave modes)

1 = A bus collision has been detected during a master or slave operation
0 = No collision
Hardware sets at detection of a bus collision; clears when I2C module is disabled, I2CEN = 0.

bit 9 GCSTAT: General Call Status bit

1 = General call address was received
0 = General call address was not received
Hardware sets when address matches general call address; hardware clears at Stop detection.

bit 8 ADD10: 10-Bit Address Status bit

1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware sets at match of second byte of matched 10-bit address; hardware clears at Stop detection.

bit 7 IWCOL: I2Cx Write Collision Detect bit

1 = An attempt to write to the I2CxTRN register failed because the I2C module is busy
0 = No collision
Hardware sets at occurrence of a write to the I2CxTRN register while busy (cleared by software).

bit 6 I2COV: I2Cx Receive Overflow Flag bit

1 = A byte is received while the I2CxRCV register is still holding the previous byte
0 = No overflow
Hardware sets at attempt to transfer the I2CxRSR register to the I2CxRCV register (cleared by software).

Note 1: Refer to the specific device data sheet for availability of the ACKTIM bit.

 2007-2014 Microchip Technology Inc. DS70000195F-page 15

Inter-Integrated Circuit™ (I2C™)

bit 5 D/A: Data/Address bit (I2C Slave mode)

1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was a device address
Hardware clears at device address match; hardware sets by reception of a slave byte or sets after the
transmission is complete and the TBF flag is cleared.

bit 4 P: Stop bit

1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware sets or clears when Start, Repeated Start or Stop is detected.

bit 3 S: Start bit

1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware sets or clears when Start, Repeated Start or Stop is detected.

bit 2 R/W: Read/Write Information bit (when operating as I2C slave)

1 = Read, data transfer is an output from the slave
0 = Write, data transfer is an input to the slave
Hardware sets or clears after reception of an I2C device address byte.

bit 1 RBF: Receive Buffer Full Status bit

1 = Receive completes; the I2CxRCV register is full
0 = Receive is not complete; the I2CxRCV register is empty
Hardware sets when the I2CxRCV register is written with a received byte; hardware clears when user
software reads the I2CxRCV register.

bit 0 TBF: Transmit Buffer Full Status bit

1 = Transmit is in progress; the I2CxTRN register is full
0 = Transmit completes; the I2CxTRN register is empty
Hardware sets when user software writes to the I2CxTRN register; hardware clears at completion of the
data transmission.

Register 3-4: I2CxSTAT: I2Cx Status Register (Continued)

Note 1: Refer to the specific device data sheet for availability of the ACKTIM bit.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 16  2007-2014 Microchip Technology Inc.

Register 3-5: I2CxMSK: I2Cx Slave Mode Address Mask Register

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — AMSK<9:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

AMSK<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 Unimplemented: Read as ‘0’

bit 9-0 AMSK<9:0>: Mask for Address Bit x Select bits

For 10-Bit Address:
1 = Enables masking for bit Ax of the incoming message address; bit match is not required in this position
0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):
1 = Enables masking for bit Ax + 1 of the incoming message address; bit match is not required in this position
0 = Disables masking for bit Ax + 1; bit match is required in this position

 2007-2014 Microchip Technology Inc. DS70000195F-page 17

Inter-Integrated Circuit™ (I2C™)

Register 3-6: ISRCCON: I2Cx Current Source Control Register(1)

R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0

ISRCEN — — — — OUTSEL2 OUTSEL1 OUTSEL0

bit 15 bit 8

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — ISRCCAL5(2) ISRCCAL4(2) ISRCCAL3(2) ISRCCAL2(2) ISRCCAL1(2) ISRCCAL0(2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 ISRCEN: I2Cx Current Source Enable bit

1 = Current source is enabled
0 = Current source is disabled

bit 14-11 Unimplemented: Read as ‘0’

bit 10-8 OUTSEL<2:0>: Output Select for Current bits

111 = Reserved
110 = Reserved
101 = Reserved
100 = Selected input pin is ISRC4 (AN4)
011 = Selected input pin is ISRC3 (AN5)
010 = Selected input pin is ISRC2 (AN6)
001 = Selected input pin is ISRC1 (AN7)
000 = No output is selected

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 ISRCCAL<5:0>: I2Cx Current Source Calibration bits(2)

Note 1: This register is not available on all devices. Refer to the specific device data sheet for availability.

2: The calibration value must be retrieved from the Flash memory and stored in this location at start-up time.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 18  2007-2014 Microchip Technology Inc.

4.0 ENABLING I2C OPERATION

The I2C module is enabled by setting the I2CEN bit (I2CxCON<15> or I2CxCONL<15>). The I2C
module fully implements all master and slave functions. When the module is enabled, the master
and slave functions are active simultaneously and will respond according to the user software or
bus events.

When initially enabled, the module will release the SDAx and SCLx pins, putting the bus into an
Idle state. The master functions will remain in an Idle state unless the user software sets the SEN
control bit and the data is loaded into the I2CxTRN register. These two actions initiate a master
event.

When the master logic is active, the slave logic also remains active. Therefore, the slave
functions will begin to monitor the bus. If the slave logic detects a Start event and a valid address
on the bus, the slave logic will begin a slave transaction.

4.1 I2C I/O Pins

Two pins are used for the bus operation. These are the SCLx pin, which is the clock, and the
SDAx pin, which is the data. When the module is enabled, assuming no other module with higher
priority has control, the module will assume control of the SDAx and SCLx pins. The user
software need not be concerned with the state of the port I/O of the pins, as the module overrides
the port state and direction. At initialization, the pins are tri-stated (released).

4.2 I2C Interrupts

The I2C module generates three interrupts: MI2CxIF, SI2CxIF and I2CxBCIF. The MI2CxIF
interrupt is assigned to the master events, the SI2CxIF interrupt is assigned to the slave events
and the I2CxBCIF is assigned for the bus collision interrupt. These interrupts set a corresponding
interrupt flag bit and interrupt the user software process if the corresponding interrupt enable bit
is set, and the corresponding interrupt priority is higher than the CPU interrupt priority.

The MI2CxIF interrupt is generated on completion of the following master message events:

• Start condition

• Stop condition

• Data transfer byte transmitted or received

• Acknowledge transmit

• Repeated Start

• Detection of a bus collision event.

The SI2CxIF interrupt is generated on detection of a message directed to the slave, including the
following events:

• Detection of a Start condition (see Note 1)

• Detection of a Stop condition (see Note 1)

• Detection of a Repeated Start condition (see Note 1)

• Detection of a valid device address (including general call) during receiving data

• Request to transmit the data (ACK) or to stop the data transmission (NACK)

• Reception of data

The I2CxBCIF interrupt is generated on a bus collision event in master/slave transmit operation:

• Start condition (master)

• Stop condition (master)

• Repeated Start (master)

• Data (master and slave)

• Acknowledge transmit (master and slave)

Note: In some devices, the bus collision interrupt is not tied with the MI2CxIF interrupt.

Note 1: These interrupts may not be present on all devices. Refer to the specific device
data sheet for availability.

 2007-2014 Microchip Technology Inc. DS70000195F-page 19

Inter-Integrated Circuit™ (I2C™)

4.3 Setting Baud Rate When Operating as a Bus Master

When operating as an I2C master, the module must generate the system SCLx clock. Generally,
the I2C system clocks are specified to be either 100 kHz, 400 kHz or 1 MHz. The system clock
rate is specified as the minimum SCLx low time, plus the minimum SCLx high time. In most
cases, that is defined by two BRG periods (TBRG).

The reload value for the BRG is the I2CxBRG register, as illustrated in Figure 4-1. When the BRG
is loaded with this value, the generator counts down to zero and stops until another reload has
taken place. The BRG is reloaded automatically on baud rate restart. For example, if clock
synchronization is taking place, the BRG will be reloaded when the SCLx pin is sampled high.

Equation 4-1 shows the formula for computing the BRG reload value.

Equation 4-1: BRG Reload Value Calculation

Figure 4-1: Baud Rate Generator Block Diagram

Note: The I2CxBRG register values that are less than two are not supported.

Note: Equation 4-1 is only for a design guideline. Due to system-dependent parameters,
the actual baud rate may differ slightly. Testing is required to confirm that the actual
baud rate meets the system requirements. Otherwise, the value of the I2CxBRG
register has to be adjusted.

I2CxBRG 1
FSCL
--------------- Delay– 
  FCY

2
----------- 

  2–=

I2CxBRG 1
FSCL
--------------- Delay– 
  Fcy 
  2. Default –=

See Note 1

See Note 1 and Note 2

Where:

Typical value of delay varies from 110 ns to 130 ns.

Note 1: Refer to the specific device data sheet for BRG reload value calculation.

2: If there is no calculation mentioned in the data sheet, then the default BRG
reload value calculation should be considered.

or

Down Counter TBRG = TCY or TCY/2(1)

I2CxBRG<8:0>

SCLx Reload
Control

Reload

Note 1: Refer to specific device data sheet for the clock rate.

2
TSCL

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 20  2007-2014 Microchip Technology Inc.

5.0 COMMUNICATING AS A MASTER IN A SINGLE MASTER ENVIRONMENT

The I2C module’s typical operation in a system is using the I2C to communicate with an I2C
peripheral, such as an I2C serial memory. In an I2C system, the master controls the sequence of
all data communication on the bus. In this example, the dsPIC33/PIC24 device and its I2C
module have the role of the single master in the system. As the single master, it is responsible
for generating the SCLx clock and controlling the message protocol.

The I2C module controls individual portions of the I2C message protocol; however, sequencing
of the components of the protocol to construct a complete message is performed by the user
software.

For example, a typical operation in a single master environment is to read a byte from an I2C
serial EEPROM. Figure 5-1 illustrates the example message.

To accomplish this message, the user software will sequence through the following steps:

1. Assert a Start condition on SDAx and SCLx.

2. Send the I2C device address byte to the slave with a write indication.

3. Wait for and verify an Acknowledge from the slave.

4. Send the serial memory address high byte to the slave.

5. Wait for and verify an Acknowledge from the slave.

6. Send the serial memory address low byte to the slave.

7. Wait for and verify an Acknowledge from the slave.

8. Assert a Repeated Start condition on SDAx and SCLx.

9. Send the device address byte to the slave with a read indication.

10. Wait for and verify an Acknowledge from the slave.

11. Enable the master reception to receive serial memory data.

12. Generate an ACK or NACK condition at the end of a received byte of data.

13. Generate a Stop condition on SDAx and SCLx.

Figure 5-1: A Typical I2C™ Message: Read of Serial EEPROM (Random Address Mode)

The I2C module supports Master mode communication with the inclusion of the Start and Stop
generators, data byte transmission, data byte reception, Acknowledge generator and a BRG.
Generally, the user software will write to a control register to start a particular step, then wait for
an interrupt or poll status to wait for completion. These operations are discussed in the
subsequent sections.

Note: The IPMIEN bit (I2CxCON<11>) should not be set when operating as a master.

Bus

Master
SDAx

S
ta

rt Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S 1 0 1 0 A A A 0
2 1 0

R 1 0 1 0 A A A 1
2 1 0

P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

A
C

K

A
C

K

A
C

K
R

es
ta

rt

R
/W

A
C

K

N
A

C
K

S
to

p
Id

le

Note: The I2C module does not allow queuing of events. For example, the user software
is not allowed to initiate a Start condition, and immediately write the I2CxTRN
register to initiate transmission, before the Start condition is complete. In this case,
the I2CxTRN register will not be written to and the IWCOL status bit (I2CxSTAT<7>)
will be set, indicating that this write to the I2CxTRN register did not occur.

 2007-2014 Microchip Technology Inc. DS70000195F-page 21

Inter-Integrated Circuit™ (I2C™)

5.1 Generating Start Bus Event

To initiate a Start event, the user software sets the SEN bit (I2CxCON<0> or I2CxCONL<0>).
Prior to setting the Start bit, the user software can check the P status bit (I2CxSTAT<4>) to ensure
that the bus is in an Idle state.

Figure 5-2 illustrates the timing of the Start condition.

• Slave logic detects the Start condition, sets the S status bit (I2CxSTAT<3>) and clears the
P status bit (I2CxSTAT<4>)

• The SEN bit is automatically cleared at completion of the Start condition

• The MI2CxIF interrupt is generated at completion of the Start condition

• After the Start condition, the SDAx line and SCLx lines are left low (Q state)

5.1.1 IWCOL STATUS FLAG

If the user software writes to the I2CxTRN register when a Start sequence is in progress, the
IWCOL status bit (I2CxSTAT<7>) is set and the contents of the transmit buffer are unchanged
(the write does not occur).

Figure 5-2: Master Start Timing Diagram

Note: As the queuing of events is not allowed, writing to the lower 5 bits of the I2CxCON
or I2CxCONL register is disabled until the Start condition is complete.

SCLx (Master)

SDAx (Master)

S

SEN

MI2CxIF Interrupt

TBRG

1 2 3 4

1
TBRG

2

3

4

I2C™ Bus State (I) (Q)

P

(S)
Writing SEN = 1 initiates a master Start
event. BRG starts.

The BRG times out. Master module
drives SDAx low. The BRG restarts.

The slave detects the Start and sets
S = 1 and P = 0.

The BRG times out. The master
module drives SCLx low, generates an
interrupt and clears the SEN bit.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 22  2007-2014 Microchip Technology Inc.

5.2 Sending Data to a Slave Device

The transmission of a data byte, a 7-bit device address byte or the second byte of a 10-bit
address, is accomplished by writing the appropriate value to the I2CxTRN register. Loading this
register will start the following process:

1. The user software loads the I2CxTRN register with the data byte to transmit.

2. Writing to the I2CxTRN register sets the TBF bit (I2CxSTAT<0>).

3. The data byte is shifted out through the SDAx pin until all 8 bits are transmitted. Each bit
of address or data will be shifted out onto the SDAx pin after the falling edge of SCLx.

4. On the ninth SCLx clock, the module shifts in the ACK bit from the slave device and writes
its value into the ACKSTAT status bit (I2CxSTAT<15>).

5. The module generates the MI2CxIF interrupt at the end of the ninth SCLx clock cycle.

The module does not generate or validate the data bytes. The contents and usage of the bytes
are dependent on the state of the message protocol maintained by the user software.

The sequence of events that occur during master transmission and master reception are
provided in Figure 5-3.

Figure 5-3: Master Transmission Timing Diagram

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Master)

SDAx (Slave)

TBF

I2CxTRN

MI2CxIF Interrupt

TBRG TBRG

5 6 7 81 2 3 4

Writing the I2CxTRN register will start a master transmission event. The TBF status bit is set.1

The BRG starts. The Most Significant Byte (MSB) of the I2CxTRN register drives SDAx. The SCLx remains low. 2

The BRG times out. The SCLx is released and the BRG restarts.3

The BRG times out. The SCLx is driven low. After SCLx is detected low, the next bit of the I2CxTRN register drives SDAx.4

While the SCLx is low, the slave can also pull the SCLx low to initiate a Wait (clock stretch).5

Master has already released SCLx and slave can release to end Wait. The BRG restarts.6

At the falling edge of the eighth SCLx clock, the master releases SDAx. The TBF status bit is cleared. 7

At the falling edge of the ninth SCLx clock, the master generates the interrupt. The SCLx remains low until the next event. 8
The slave releases SDAx and the TRSTAT status bit is clear.

I2C™ Bus State (Q) (D) (Q) (A) (Q)(D) (Q)

TRSTAT

ACKSTAT

The TRSTAT status bit is set.

The slave drives an ACK/NACK.

 2007-2014 Microchip Technology Inc. DS70000195F-page 23

Inter-Integrated Circuit™ (I2C™)

5.2.1 SENDING A 7-BIT ADDRESS TO THE SLAVE

Sending a 7-bit device address involves sending one byte to the slave. A 7-bit address byte must
contain the 7 bits of the I2C device address and a R/W status bit that defines whether the
message will be a write to the slave (master transmission and slave reception) or a read from the
slave (slave transmission and master reception).

5.2.2 STRICT SUPPORT IN MASTER MODE

The master device is allowed to generate an address that falls in the reserved address space if
the STRICT (I2CxCONL<11>) bit is set. For more information on the reserved address, refer to
Table 7-2.

5.2.3 SENDING A 10-BIT ADDRESS TO THE SLAVE

Sending a 10-bit device address involves sending two bytes to the slave. The first byte contains 5 bits
of the I2C device address reserved for 10-Bit Addressing modes and 2 bits of the 10-bit address. As
the next byte, which contains the remaining 8 bits of the 10-bit address, must be received by the slave,
the R/W status bit in the first byte must be ‘0’, indicating master transmission and slave reception. If
the message data is also directed toward the slave, the master can continue sending data. However,
if the master expects a reply from the slave, a Repeated Start sequence with the R/W status bit at ‘1’
will change the R/W state of the message to a read of the slave.

5.2.4 RECEIVING ACKNOWLEDGE FROM THE SLAVE

On the falling edge of the eighth SCLx clock, the TBF status bit is cleared and the master will
deassert the SDAx pin, allowing the slave to respond with an Acknowledge. The master will then
generate a ninth SCLx clock.

This allows the slave device being addressed to respond with an ACK bit during the ninth bit time
if an address match occurs or data was received properly. A slave sends an Acknowledge when
it has recognized its device address (including a general call) or when the slave has properly
received its data.

The status of ACK is written into the ACKSTAT bit (I2CxSTAT<15>) on the falling edge of the
ninth SCLx clock. After the ninth SCLx clock, the module generates the MI2CxIF interrupt and
enters into the Idle state until the next data byte is loaded into the I2CxTRN register.

5.2.5 ACKSTAT STATUS FLAG

The ACKSTAT bit (I2CxSTAT<15>) is cleared when the slave has sent an Acknowledge
(ACK = 0) and is set when the slave does not Acknowledge (ACK = 1).

5.2.6 TBF STATUS FLAG

When transmitting, the TBF status bit (I2CxSTAT<0>) is set when the CPU writes to the I2CxTRN
register and is cleared when all 8 bits are shifted out.

5.2.7 IWCOL STATUS FLAG

If the user software attempts to write to the I2CxTRN register when a transmit is already in
progress (that is, the module is still shifting a data byte), the IWCOL status bit (I2CxSTAT<7>) is
set and the contents of the buffer are unchanged (the write does not occur). The IWCOL status
bit must be cleared in the user software.

Note: In a 7-Bit Addressing mode, each node using the I2C protocol should be configured
with a unique address that is stored in the I2CxADD register.

While transmitting the address byte, the master must shift the address bits<7:0>,
left by 1 bit, and configure bit 0 as the R/W bit.

Note: In a 10-Bit Addressing mode, each node using the I2C protocol should be configured
with a unique address that is stored in the I2CxADD register.

While transmitting the first address byte, the master must shift the bits<9:8>, left
by one bit, and configure bit 0 as the R/W bit.

Note: Because queuing of events is not allowed, writing to the lower 5 bits of the I2CxCON
or I2CxCONL register is disabled until the transmit condition is complete.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 24  2007-2014 Microchip Technology Inc.

5.3 Receiving Data from a Slave Device

The master can receive data from the slave device after the master has transmitted the slave
address with an R/W status bit value of ‘1’. This is enabled by setting the RCEN bit (I2CxCON<3>
or I2CxCONL<3>). The master logic begins to generate clocks, and before each falling edge of
the SCLx, the SDAx line is sampled and data is shifted into the I2CxRSR register.

After the falling edge of the eighth SCLx clock, the following events occur:

• The RCEN bit is automatically cleared

• The contents of the I2CxRSR register transfer into the I2CxRCV register

• The RBF status bit (I2CxSTAT<1>) is set

• The I2C module generates the MI2CxIF interrupt

When the CPU reads the receive buffer (I2CxRCV), the RBF status bit is automatically cleared.
The user software can process the data and then execute an Acknowledge sequence.

The sequence of events that occurs during master transmission and master reception is
illustrated in Figure 5-4.

Figure 5-4: Master Reception Timing Diagram

Note: The lower 5 bits of the I2CxCON or I2CxCONL register must be ‘0’ before
attempting to set the RCEN bit. This ensures that the master logic is inactive.

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Slave)

SDAx (Master)

RBF

I2C™ Bus State

MI2CxIF Interrupt

5 62 3 4

Writing the RCEN bit will start a master reception event. The BRG starts. SCLx remains low.2

The BRG times out. The master attempts to release SCLx. 3

When the slave releases SCLx, the BRG restarts.4

The BRG times out. The MSB of the response is shifted to the I2CxRSR register. SCLx is driven low for the next baud 5

At the falling edge of the eighth SCLx clock, the I2CxRSR register is transferred to the I2CxRCV register. 6

RCEN

(D) (Q) (Q)(D)(Q)

I2CxRCV

(Q)

1

Typically, the slave can pull SCLx low (clock stretch) to request a Wait to prepare the data response. 1
The slave will drive the MSB of the data response on SDAx when ready.

(Q)

interval.

The module clears the RCEN bit. The RBF status bit is set. Master generates the interrupt.

TBRG TBRG

 2007-2014 Microchip Technology Inc. DS70000195F-page 25

Inter-Integrated Circuit™ (I2C™)

5.3.1 RBF STATUS FLAG

When receiving a data, the RBF status bit (I2CxSTAT<1>) is set when a device address or data
byte is loaded into the I2CxRCV register from the I2CxRSR register. It is cleared when the user
software reads the I2CxRCV register.

5.3.2 I2COV STATUS FLAG

If another byte is received in the I2CxRSR register while the RBF status bit remains set, and the
previous byte remains in the I2CxRCV register, the I2COV status bit (I2CxSTAT<6>) is set and
the data in the I2CxRSR register is lost.

Leaving the I2COV status bit set does not inhibit further reception. If the RBF status bit is cleared
by reading the I2CxRCV register, and the I2CxRSR register receives another byte, that byte will
be transferred to the I2CxRCV register.

5.3.3 IWCOL STATUS FLAG

If the user software writes the I2CxTRN register when a receive is already in progress (that is,
the I2CxRSR register is still shifting in a data byte), the IWCOL status bit (I2CxSTAT<7>) is set
and the contents of the buffer are unchanged (the write does not occur).

Note: Because queuing of events is not allowed, writing to the lower 5 bits of the I2CxCON
register is disabled until the data reception condition is complete.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 26  2007-2014 Microchip Technology Inc.

5.4 Acknowledge Generation

Setting the ACKEN bit (I2CxCON<4> or I2CxCONL<4>) enables the generation of a master
Acknowledge sequence.

Figure 5-5 illustrates an ACK sequence and Figure 5-6 illustrates a NACK sequence. The ACKDT
bit (I2CxCON<5> or I2CxCONL<5>) specifies an ACK or NACK sequence.

After two baud periods, the ACKEN bit is automatically cleared and the module generates the
MI2CxIF interrupt.

5.4.1 IWCOL STATUS FLAG

If the user software writes the I2CxTRN register when an Acknowledge sequence is in progress,
the IWCOL status bit (I2CxSTAT<7>) is set and the contents of the buffer are unchanged (the
write does not occur).

Figure 5-5: Master Acknowledge (ACK) Timing Diagram

Figure 5-6: Master Not Acknowledge (NACK) Timing Diagram

Note: The lower 5 bits of the I2CxCON or I2CxCONL register must be ‘0’ (master logic
inactive) before attempting to set the ACKEN bit.

Note: Because queuing of events is not allowed, writing to the lower 5 bits of the I2CxCON
or I2CxCONL register is disabled until the Acknowledge condition is complete.

SCLx (Master)

SDAx (Master)

ACKEN

MI2CxIF Interrupt

TBRG

1 2 3

 Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 0 specifies sending an ACK.

When SCLx is detected low, the module drives SDAx low. 2

The BRG times out. Module releases SCLx. BRG restarts.3

BRG times out. 4

I2C™ Bus State (A) (Q)(Q)

4

BRG starts. SCLx remains low.

Module drives SCLx low, then releases SDAx.
Module clears ACKEN. Master generates the interrupt.

(Q)

ACKDT = 0

SCLx (Master)

SDAx (Master)

ACKEN

MI2CxIF Interrupt

TBRG

1 2 3

Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 1 specifies sending a NACK.

When SCLx is detected low, the module releases SDAx.2

The BRG times out. Module releases SCLx. BRG restarts.3

The BRG times out. 4

I2C™ Bus State (A) (I)(Q)

4

BRG starts.

Module drives SCLx low, then releases SDAx.
Module clears ACKEN. Master generates the interrupt.

ACKDT = 1

(Q)

 2007-2014 Microchip Technology Inc. DS70000195F-page 27

Inter-Integrated Circuit™ (I2C™)

5.5 Generating a Stop Bus Event

Setting the PEN bit (I2CxCON<2> or I2CxCONL<2>), enables the generation of a master Stop
sequence.

When the PEN bit is set, the master generates the Stop sequence, as illustrated in Figure 5-7.

• The slave detects the Stop condition, sets the P status bit (I2CxSTAT<4>) and clears the
S status bit (I2CxSTAT<3>)

• The PEN bit is automatically cleared

• The module generates the MI2CxIF interrupt

5.5.1 IWCOL STATUS FLAG

If the user software writes the I2CxTRN register when a Stop sequence is in progress, the
IWCOL status bit (I2CxSTAT<7>) is set and the contents of the buffer are unchanged (the write
does not occur).

Figure 5-7: Master Stop Timing Diagram

Note: The lower 5 bits of the I2CxCON or I2CxCONL register must be ‘0’ (master logic
inactive) before attempting to set the PEN bit.

Note: Because queuing of events is not allowed, writing to the lower 5 bits of the I2CxCON
or I2CxCONL register is disabled until the Stop condition is complete.

SCLx (Master)

SDAx (Master)

S

PEN

MI2CxIF Interrupt

TBRG

1 2 3 5

Writing PEN = 1 initiates a master Stop event. 1

TBRG

BRG starts. Module drives SDAx low.

The BRG times out. Module releases SCLx. 2
BRG restarts.

The BRG times out. Module releases SDAx.3

Slave logic detects a Stop. Module sets P = 1 and S = 0.4

I2C™ Bus State (I)

P

TBRG

(Q)

4

BRG restarts.

The BRG times out. Module clears PEN. 5
Master generates the interrupt.

(Q) (P)

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 28  2007-2014 Microchip Technology Inc.

5.6 Generating a Repeated Start Bus Event

Setting the RSEN bit (I2CxCON<1> or I2CxCONL<1>) enables the generation of a master
Repeated Start sequence, as illustrated in Figure 5-8.

To generate a Repeated Start condition, the user software sets the RSEN bit (I2CxCON<1> or
I2CxCONL<1>). The master module asserts the SCLx pin low. When the module samples the
SCLx pin low, the module releases the SDAx pin for 1 TBRG. When the BRG times out and the
module samples SDAx high, the module deasserts the SCLx pin. When the module samples the
SCLx pin high, the BRG reloads and begins counting. SDAx and SCLx must be sampled high for
1 TBRG. This action is then followed by assertion of the SDAx pin low for 1 TBRG while SCLx is
high.

The following is the Repeated Start sequence:

1. The slave detects the Start condition, sets the S status bit (I2CxSTAT<3>) and clears the
P status bit (I2CxSTAT<4>).

2. The RSEN bit is automatically cleared.

3. The I2C module generates the MI2CxIF interrupt.

5.6.1 IWCOL STATUS FLAG

If the user software writes the I2CxTRN register when a Repeated Start sequence is in progress,
the IWCOL status bit (I2CxSTAT<7>) is set and the contents of the buffer are not changed (the
write does not occur).

Figure 5-8: Master Repeated Start Timing Diagram

Note: The lower 5 bits of the I2CxCON or I2CxCONL register must be ‘0’ (master logic
inactive) before attempting to set the RSEN bit.

Note: Because queuing of events is not allowed, writing of the lower 5 bits of the I2CxCON
or I2CxCONL register is disabled until the Repeated Start condition is complete.

SCLx (Master)

SDAx (Master)

S

RSEN

MI2CxIF Interrupt

TBRG

1 2 3 5

Writing RSEN = 1 initiates a master Repeated Start event. 1

TBRG

BRG starts. Module drives SCLx low and

The BRG times out. Module releases SCLx. 2
BRG restarts.

The BRG times out. Module drives SDAx low.3

Slave logic detects Start. Module sets S = 1 and P = 0.4

I2C™ Bus State (Q)

P

TBRG

(Q)

4

BRG restarts.

The BRG times out. Module drives SCLx low.5
Module clears RSEN. Master generates the interrupt.

(Q)
releases SDAx.

(S)

 2007-2014 Microchip Technology Inc. DS70000195F-page 29

Inter-Integrated Circuit™ (I2C™)

5.7 Building Complete Master Messages

As described in Section 5.0 “Communicating as a Master in a Single Master Environment”,
the user software is responsible for constructing messages with the correct message protocol.
The module controls individual portions of the I2C message protocol; however, sequencing of the
components of the protocol to construct a complete message is performed by the user software.

The user software can use polling or interrupt methods while using the module. The timing
diagrams shown in this document use interrupts for detecting various events.

The user software can use the SEN, RSEN, PEN, RCEN and ACKEN bits (Least Significant 5 bits
of the I2CxCON or I2CxCONL register) and the TRSTAT status bit as a ‘state’ flag when progressing
through a message. For example, Table 5-1 shows some example state numbers associated with
bus states.

Table 5-1: Master Message Protocol States

The user software will begin a message by issuing a Start condition. The user software will record
the state number corresponding to the Start.

As each event completes and generates an interrupt, the interrupt handler may check the state
number. Therefore, for a Start state, the interrupt handler will confirm execution of the Start
sequence and then start a master transmission event to send the I2C device address, changing
the state number to correspond to the master transmission.

On the next interrupt, the interrupt handler will again check the state, determining that a master
transmission just completed. The interrupt handler will confirm successful transmission of the
data, then move on to the next event, depending on the contents of the message. In this manner,
on each interrupt, the interrupt handler will progress through the message protocol until the
complete message is sent.

Figure 5-9 provides a detailed examination of the same message sequence as shown in
Figure 5-1. Figure 5-10 provides a few simple examples of the messages using a 7-bit address-
ing format. Figure 5-11 provides an example of a 10-bit addressing format message sending data
to a slave. Figure 5-12 provides an example of a 10-bit addressing format message receiving
data from a slave.

Example
State Number(1)

I2CxCON<4:0> or
I2CxCONL<4:0>

TRSTAT
(I2CxSTAT<14>)

State

0 00000 0 Bus Idle or Wait

1 00001 N/A Sending Start Event

2 00000 1 Master Transmitting

3 00010 N/A Sending Repeated Start Event

4 00100 N/A Sending Stop Event

5 01000 N/A Master Reception

6 10000 N/A Master Acknowledgment

Note 1: The example state numbers are for reference only. The user software can assign
the state numbers as desired.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 3

0


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 5-9: Master Message (Typical I2C™ Message: Read of Serial EEPROM)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A1 A0

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

A
11

A
10 A
9

A
8

1 2 3 4 5 6 7 8 9

W1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

A

1 2 3 4 5 6 7

D3 D2 D1D7 D6 D5 D4AA

4 5 7

2 Writing the I2CxTRN register starts a master transmission. The data is the serial

3 Writing the I2CxTRN register starts a master transmission. The data is the first

4

5

Writing the I2CxTRN register starts a master transmission.6

Setting the RCEN bit starts a master reception. On interrupt7

9

Setting the ACKEN bit starts an Acknowledge event. ACKDT

Setting the PEN bit starts a master Stop event.

EEPROM device address byte, with the R/W status bit clear, indicating a write.

byte of the EEPROM data address.

the serial EEPROM device address byte, but with R/W status bi

the I2CxRCV register, which clears the RBF status bit.

0 0 A2 A7 A6 A5 A4 A2 A1 A0 A1 A0 R1 10 0 A20 0 0 0

6

Writing the I2CxTRN register starts a master transmission. The data is the second
byte of the EEPROM data address.

8

Setting the RSEN bit starts a Repeated Start event.

(Master)

(Master)

(Slave)

(Slave)

A3

MI2CxIF Interrupt Flag Cleared by User Software


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 3

1

Figure 5-10: Master Message (7-Bit Address: Transmission and Reception)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A2 A1

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D7 D6 D5 D4 D3 D2 D1 D0

1 2 3 4 5 6 7 8 9

W

RSEN

1 32

9 1 2 3 4 5 6 7

D3 D2 D1D7 D6 D5 D4A

4 5 6 7

2 Writing the I2CxTRN register starts a master transmission. The data is the

3 Writing the I2CxTRN register starts a master transmission. The data is the

4 Setting the PEN bit starts a master Stop event.

5 Setting the SEN bit starts a Start event. An interrupt is generated on completion

6 Writing the I2CxTRN register starts a master transmission.

7 Setting the RCEN bit starts a master reception.

8 Setting the ACKEN bit starts an Acknowledge event. AC

Setting the PEN bit starts a master Stop event.

address byte with the R/W status bit clear.

message byte.

A7 A6 A5 A4 A3

A

A2 A1 RA7 A6 A5 A4 A3

address byte with the R/W status bit set.

9

(Master)

(Master)

(Slave)

(Slave)

MI2CxIF Interrupt Flag Cleared by User Software

of the Start event.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 3

2


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 5-11: Master Message (10-Bit Transmission)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

A

1 2 3 4 5 6 7

AA

4 5 6

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Writing the I2CxTRN register starts a master transmission. The data is the first

Setting the PEN bit starts a master Stop event.

byte of the address.

byte of the message data.

D3 D2 D1D7 D6 D5 D4D3 D2 D1 D0D7 D6 D5 D4

5 Writing the I2CxTRN register starts a master transmiss
byte of the message data.

6 Writing the I2CxTRN register starts a master transmission.
byte of the message data.

7

(Master)

(Master)

(Slave)

(Slave)

MI2CxIF Interrupt Flag Cleared by User Software

byte of the address.


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 3

3

Figure 5-12: Master Message (10-Bit Reception)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

A9 A801 1 1 1 R

1 2 3 4 5 6 7 8 9

1 32

9

A

1 2 3 4 5 6 7

D3 D2 D1D7 D6 D5 D4AA

4 5 6 7 8

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Setting the RSEN bit starts a master Restart event.

5 Writing the I2CxTRN register starts a master transmission. The data is a re-send

6 Setting the RCEN bit starts a master reception. On interrupt

7 Setting the ACKEN bit starts an Acknowledge event. ACK

8 Setting the RCEN bit starts a master reception.

9 Setting the ACKEN bit starts an Acknowledge event. ACK

Setting the PEN bit starts a master Stop event.

byte of the address with the R/W status bit cleared.

byte of the address.

of the first byte with the R/W status bit set.

the I2CxRCV register, which clears the RBF status bit.

(Slave)

(Slave)

(Master)

(Master)

MI2CxIF Interrupt Flag Cleared in User Software

10

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 34  2007-2014 Microchip Technology Inc.

6.0 COMMUNICATING AS A MASTER IN A MULTI-MASTER ENVIRONMENT

The I2C protocol allows more than one master to be attached to a system bus. Taking into
account that a master can initiate message transactions and generate clocks for the bus, the
protocol has methods to account for situations where more than one master is attempting to
control the bus. The clock synchronization ensures that multiple nodes can synchronize their
SCLx clocks to result in one common clock on the SCLx line. The bus arbitration ensures that if
more than one node attempts a message transaction, only one node will be successful in
completing the message. The other nodes lose bus arbitration and are left with a bus collision.

6.1 Multi-Master Operation

The master module has no special settings to enable the multi-master operation. The module
performs the clock synchronization and bus arbitration at all times. If the module is used in a
single master environment, clock synchronization only occurs between the master and slaves,
and bus arbitration does not occur.

6.2 Master Clock Synchronization

In a multi-master system, different masters can have different baud rates. The clock
synchronization ensures that when these masters are attempting to arbitrate the bus, their clocks
will be coordinated.

The clock synchronization occurs when the master deasserts the SCLx pin (SCLx intended to
float high). When the SCLx pin is released, the BRG is suspended from counting until the SCLx
pin is actually sampled high. When the SCLx pin is sampled high, the BRG is reloaded with the
contents of I2CxBRG<8:0> and begins counting. This ensures that the SCLx high time will
always be at least one BRG rollover count in the event that the clock is held low by an external
device, as illustrated in Figure 6-1.

Figure 6-1: Baud Rate Generator Timing with Clock Synchronization

Note: The IPMIEN bit (I2CxCON<11>) should not be set when operating as a master.

SCLx (Slave)

The baud counter decrements twice per TCY. On rollover, the master SCLx will transition.1

1

000 003001002003

SCLx (Master)

001002003000Baud Counter

SDAx (Master)

3 4 6

The slave has pulled SCLx low to initiate a Wait.2

At what would be the master baud counter rollover, detecting SCLx low holds counter.3

Logic samples SCLx once per TCY. Logic detects SCLx high.4

2

The baud counter rollover occurs on next cycle.5

5

On next rollover, the master SCLx will transition.6

TBRG TBRG

TCY

000

 2007-2014 Microchip Technology Inc. DS70000195F-page 35

Inter-Integrated Circuit™ (I2C™)

6.3 Bus Arbitration and Bus Collision

The bus arbitration supports the multi-master system operation. The wired-AND nature of the
SDAx line permits arbitration. Arbitration takes place when the first master outputs ‘1’ on SDAx
by letting the SDAx float high, and simultaneously, the second master outputs ‘0’ on SDAx by
pulling SDAx low. The SDAx signal will go low. In this case, the second master has won bus
arbitration. The first master has lost bus arbitration, and thus, has a bus collision.

For the first master, the expected data on SDAx is ‘1’, still the data sampled on SDAx is ‘0’. This
is the definition of a bus collision.

The first master will set the BCL bit (I2CxSTAT<10>) and generates a master (MI2CxIF) or a bus
collision (I2CxBCIF) interrupt. The Master module will reset the I2C port to its Idle state.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level
is the expected output level. This check is performed by the master logic, with the result placed
in the BCL status bit.

The states where arbitration can be lost are:

• Start condition

• Repeated Start condition

• Address, Data or Acknowledge bit

• Stop condition

6.4 Detecting Bus Collisions and Re-Sending Messages

When a bus collision occurs, the master module sets the BCL status bit and generates a master
(MI2CxIF) or a bus collision (I2CxBCIF) interrupt. If a bus collision occurs during a byte
transmission, the transmission is stopped, the TBF status bit is cleared, and the SDAx and SCLx
pins are deasserted. If a bus collision occurs during a Start, Repeated Start, Stop or Acknowledge
condition, the condition is aborted, the respective control bits in the I2CxCON register are
cleared, and the SDAx and SCLx lines are deasserted.

The user software is expecting an interrupt at the completion of the master event. The user
software can check the BCL status bit to determine if the master event completed successfully
or a bus collision occurred (or it may branch to a bus collision interrupt on bus collision), or a
master interrupt occurred in case of a successful master event. If a bus collision occurs, the user
software must abort sending the rest of the pending message and prepare to re-send the entire
message sequence, beginning with the Start condition, after the bus returns to the Idle state. The
user software can monitor the S and P status bits to wait for an Idle bus. When the user software
executes the master Interrupt Service Routine (ISR) and the I2C bus is free, the user software
can resume communication by asserting a Start condition.

6.5 Bus Collision During a Start Condition

Before issuing a Start condition, the user software should verify an Idle state of the bus using the
S and P status bits. Two masters may attempt to initiate a message at a similar point in time.
Typically, the masters will synchronize clocks and continue arbitration into the message until one
loses arbitration. Any of the following conditions can cause a bus collision to occur during a Start:

• If the SDAx and SCLx pins are at a low logic state at the beginning of the Start condition

• If the SCLx line is at a low logic state before the SDAx line is driven low

In either case, the master that loses arbitration during the Start condition generates a bus
collision interrupt.

Note: The bus collision interrupt is not available on all devices. Refer to the specific device
data sheet for availability.

Note: The bus collision interrupt is not available on all devices. Refer to the specific device
data sheet for availability.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 36  2007-2014 Microchip Technology Inc.

6.6 Bus Collision During a Repeated Start Condition

When the two masters do not collide throughout an address byte, a bus collision can occur when
one master attempts to assert a Repeated Start while another transmits data. In this case, the
master generating the Repeated Start loses arbitration and generates a bus collision interrupt.

6.7 Bus Collision During Message Bit Transmission

The most typical case of data collision occurs while the master is attempting to transmit the
device address byte, a data byte or an Acknowledge bit.

If the user software is properly checking the bus state, it is unlikely that a bus collision will occur
on a Start condition. However, because another master can, at the same time, check the bus and
initiate its own Start condition, it is likely that SDAx arbitration will occur and synchronize the Start
of two masters. In this condition, both masters begin and continue to transmit their messages
until one master loses arbitration on a message bit. The SCLx clock synchronization keeps the
two masters synchronized until one loses arbitration. Figure 6-2 illustrates an example of the
message bit arbitration.

Figure 6-2: Bus Collision During Message Bit Transmission

6.8 Bus Collision During a Stop Condition

If the master software loses track of the state of the I2C bus, many existing conditions can
cause a bus collision during a Stop condition. In this case, the master generating the Stop
condition will lose arbitration and generate a bus collision interrupt.

Note: The bus collision interrupt is not available on all devices. Refer to the specific device
data sheet for availability.

SCLx (Master)

SDAx (Master)

TBF

TBRG

1 2 3

Master transmits bit value of ‘1’ in next SCLx clock.1

TBRG

Module releases SDAx.

Another master on bus transmits bit value of ‘0’ 2
in next SCLx clock. Another master pulls SDAx low.

BRG times out. Module attempts to verify SDAx high.3

I2C™ Bus State

BCL

(D)

SCLx (Bus)

SDAx (Bus)

Bus collision detected.
Module releases SDAx and SCLx. Module sets BCL status bit
and clears the TBF status bit. Master generates the interrupt.

(D)(Q)(Q) (Q)

MI2CxIF Interrupt

 2007-2014 Microchip Technology Inc. DS70000195F-page 37

Inter-Integrated Circuit™ (I2C™)

7.0 COMMUNICATING AS A SLAVE

In some systems, particularly where multiple processors communicate with each other, the
dsPIC33/PIC24 device can communicate as a slave, as illustrated in Figure 7-1. When the I2C
module is enabled, the slave is active. The slave cannot initiate a message; it can only respond
to a message sequence initiated by a master. The master requests a response from a particular
slave as defined by the device address byte in the I2C protocol. The slave replies to the master
at the appropriate times as defined by the protocol.

As with the master module, sequencing the components of the protocol for the reply is a user
software task. However, the slave detects when the device address matches the address
specified by the user software for that slave.

Figure 7-1: A Typical Slave I2C™ Message: Multiprocessor Command/Status

After a Start condition, the slave receives and checks the device address. The slave can specify
either a 7-bit address or a 10-bit address. When a device address is matched, the module will
generate an interrupt to notify the user software that its device is selected. Based on the R/W
status bit sent by the master, the slave either receives or transmits data. If the slave is to receive
data, the slave automatically generates the Acknowledge (ACK), loads the I2CxRCV register
with the received value currently in the I2CxRSR register and notifies the user software through
an interrupt. If the slave is to transmit data, the user software must load the I2CxTRN register.

7.1 Sampling Receive Data

All the incoming bits are sampled with the rising edge of the clock (SCLx) line.

7.2 Detecting Start and Stop Conditions

The slave detects the Start and the Stop conditions on the bus and indicates that status on the S
status bit (I2CxSTAT<3>) and P status bit (I2CxSTAT<4>). The Start (S) and Stop (P) status bits
are cleared when a Reset occurs or when the module is disabled. After detection of a Start or
Repeated Start event, the S status bit is set and the P status bit is cleared. After detection of a
Stop event, the P status bit is set and the S status bit is cleared.

7.2.1 INTERRUPT ON START/REPEATED START AND STOP CONDITIONS
(SLAVE MODE)

The user software is notified through a slave interrupt if the SCIE bit (I2CxCONH<5>) is set for
a Start/Repeated Start condition or if the PCIE bit (I2CxCONH<6>) is set for a Stop condition.

Bus

Master
SDAx

S
ta

rt

First
Address Address

Byte

S 111 0 A A 09 8 R P

Slave
SDAx

Activity

N

AAAA

Output

Output

R
/W

A
C

K

A
C

K

A
C

K
R

e
st

ar
t

R
/W

A
C

K

N
A

C
K

S
to

p

1

Byte

Second
Address

Byte

A A
7 6

A A
5 4

A A
3 2

A A
1 0

Command
Data
Byte

111 0 A A 19 81

Status
Data
Byte

10-Bit
Address

R

Note: The PCIE and the SCIE bits are not available on all devices. Refer to the specific
device data sheet for availability.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 38  2007-2014 Microchip Technology Inc.

7.3 Detecting the Address

Once the module has been enabled, the slave waits for a Start condition to occur. After a Start,
depending on the A10M bit (I2CxCON<10> or I2CxCONL<10>), the slave attempts to detect a
7-bit or 10-bit address. The slave compares one received byte for a 7-bit address or two received
bytes for a 10-bit address. A 7-bit address also contains an R/W status bit that specifies the direc-
tion of the data transfer after the address. If R/W = 0, a write is specified and the slave receives
data from the master. If R/W = 1, a read is specified and the slave sends data to the master. The
10-bit address contains an R/W status bit; however, by definition, it is always R/W = 0 because
the slave must receive the second byte of the 10-bit address.

7.3.1 SLAVE ADDRESS MASKING

The I2CxMSK register masks the address bit positions, designating them as “don’t care” bits for
both 10-Bit and 7-Bit Addressing modes. When a bit in the I2CxMSK register is set (= 1), the
slave responds when the bit in the corresponding location of the address is a ‘0’ or ‘1’. For
example, in 7-Bit Slave mode with I2CxMSK = 0100000, the slave module Acknowledges
addresses, ‘0000000’ and ’0100000’, as valid.

To enable address masking, the IPMI must be disabled by clearing the IPMIEN bit
(I2CxCON<11>).

7.3.2 7-BIT ADDRESS AND SLAVE WRITE

After the Start condition, the module shifts 8 bits into the I2CxRSR register, as illustrated in
Figure 7-2. The value of the I2CxRSR register is evaluated against that of the I2CxADD and
I2CxMSK registers on the falling edge of the eighth clock (SCLx). If the address is valid (that is,
an exact match between unmasked bit positions), the following events occur:

• An ACK is generated if the AHEN bit is clear

• The D/A and R/W status bits are cleared

• The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock

• The module waits for the master to send data

Figure 7-2: Slave Write 7-Bit Address Detection Timing Diagram

Note: The AHEN bit may not be available on all devices. Refer to the specific device data
sheet for availability. If this bit is not present, then the device will generate an (ACK)
on an address match.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

4 51 3

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection. If SCIE is set, then

R/W = 0 indicates that slave 3
receives data bytes.

Valid address of first byte clears 4
D/A status bit. Slave generates an

R/W status bit cleared. Slave5
generates interrupt.

6

Bus waiting. Slave ready to 6
receive data.

R/W = 0

(S) (Q)

2

2 User software clears the interrupt
flag.(1)

Note 1: The SCIE bit may not be available on all devices. Refer to the specific device data sheet for availability.

the slave interrupt is asserted.(1)

ACK.

 2007-2014 Microchip Technology Inc. DS70000195F-page 39

Inter-Integrated Circuit™ (I2C™)

7.3.3 7-BIT ADDRESS AND SLAVE WRITE WITH THE AHEN AND DHEN BITS

The slave device reception, with the AHEN and DHEN bits set, operates with extra interrupts and
clock stretching added after the eighth falling edge of SCLx. These additional interrupts allow the
slave software to decide whether it wants to ACK the receive address or data byte, rather than
the hardware. This functionality adds support for the PMBus™ that was not present on previous
versions of this module.

Note: The SI2CxIF interrupt is still set after the ninth falling edge of the SCLx clock, even
if there is no clock stretching and the RBF bit has been cleared. The SI2CxIF
interrupt is not asserted if a NACK is sent to the master.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 4

0


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 7-3: I2C™ Slave, 7-Bit Address, Reception (STREN = 0, AHEN = 1, DHEN = 1)

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0SDAx

SCLx

RBF

SCLREL

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

ACKDT

ACKTIM

SI2CxIF

1 2 3 4 5 6 7 8 9 1413121110

1 Detecting Start bit enable address detection, interrupt flag is set if SCEN is set.

2

3

4

5

9

11

12

13

6

7

User software clears the interrupt flag.

Slave receives the address byte with R/W = 0. Hardware clears the SCLREL.
Interrupt flag is asserted. ACKTIM is asserted. I2CxRCV is loaded with

User software clears the interrupt flag.

User software reads I2CxRCV, that clears the RBF flag.

ACKDT is written with ACK by user software.

User software sets SCLREL bit to release clock, ACKTIM is cleared by hardware.

8 Interrupt flag is set (not set if NACK is received).

User software clears the interrupt flag.

If DHEN = 1, hardware clears SCLREL bit. I2CxRCV is
ACKTIM is asserted at the end of 8th falling edge of SCLx

User software reads I2CxRCV; clears the RBF flag.

 User software releases the SCLREL, ACKTIM is cleared by hardware.

Interrupt flag is set.

14 User software clears the interrupt flag.

15 NACK.

I2CxRSR and RBF is asserted.

16 Slave recognizes the Stop event.

ACK

10


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 4

1

Figure 7-4: I2C™ Slave, 7-Bit Address, Reception (STREN = 1, AHEN = 0, DHEN = 0)

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2SDAx

SCLx 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

SCLREL

I2COV

RBF

ACK

SI2CxIF

1 3 4 5 6 7 8 11109

1 Detecting Start bit, enables address detection, interrupt is set if SCEN is set.

3

4

5

9

11

12

RBF is set on the 8th falling clock, address is loaded to I2CxRCV. RBF is asserted.

Interrupt is asserted.

SCLx is stretched low until SCLREL is set.

User software reads the I2CxRCV buffer that clears the RBF flag.

User software releases the SCLx line by writing SCLREL to ‘1’.

Data is loaded into I2CxRCV. RBR flag is asserted.

On the 9th falling clock edge, interrupt is asserted.

SCLx is stretched and held at low until SCLREL is set

User software releases SCLx line by writing SCLREL t

NACK is received (SCLx is not stretched to low).

2

2 User software clears the interrupt flag.

13 Slave recognizes the Stop event.

7

6

8

10

R/W = 0
ACK

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 42  2007-2014 Microchip Technology Inc.

7.3.4 7-BIT ADDRESS AND SLAVE READ

When a slave read is specified by having R/W = 1 in a 7-bit address byte, the process of
detecting the device address is similar to that of a slave write, as illustrated in Figure 7-5. If the
addresses match, the following events occur:

• An ACK is generated if the AHEN bit is clear

• The D/A status bit is cleared and the R/W status bit is set

• The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock

Because the slave is expected to reply with data at this point, it is necessary to suspend the
operation of the I2C bus to allow the user software to prepare a response. This is done automatically
when the module clears the SCLREL bit. With SCLREL low, the slave will pull down the SCLx clock
line, causing a Wait on the I2C bus. The slave and the I2C bus remain in this state until the user
software writes the I2CxTRN register with the response data and sets the SCLREL bit.

Figure 7-5: Slave Read 7-Bit Address Detection Timing Diagram (AHEN = 0)

Note: For more information on the AHEN and DHEN bits, refer to section Section 7.3.3
“7-Bit Address and Slave Write with the AHEN and DHEN Bits”.

The SCLREL bit will automatically clear after detecting the slave read address,
irrespective of the state of the STREN bit.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

4 51 3

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection. If SCIE is set,

R/W = 1 indicates that the slave3
sends data bytes.

Valid address of first byte clears4
D/A status bit. Slave generates ACK.

R/W status bit is set. Slave generates 5
interrupt. SCLREL is cleared.

6

Bus waiting. Slave prepares to 6
send data.

SCLx (Slave)

Slave pulls SCLx low while
SCLREL = 0.

(S) (Q)

R/W = 1

2

2 User software clears the interrupt
flag.

Note 1: The SCIE bit may not be available in all the devices. Refer to the specific device data sheet for availability.

then interrupt will be asserted.(1)


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 4

3

Figure 7-6: I2C™ Slave, 7-Bit Address, Transmission (AHEN = 1)

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

SDAx

SCLx

SI2CxIF

RBF

ACKDT

SCLREL

ACK
R/W = 1

ACK

ACKTIM

TBF

1 2 3 4 5 6 7 8 9 1110

1 Detecting Start bit, enables address detection, interrupt is set if the SCEN bit is set.

2 User software clears the interrupt flag.

3 Slave receives the address byte with R/W = 1. Hardware clears the SCLREL to
suspend master clock. ACKTIM and interrupt flag are asserted.

4 User software clears the interrupt flag.

5 Software reads the I2CxRV register, that clears the RBF flag.

6 ACKDT is written with ACK.

7 User software sets SCLREL to release clock hold. Master clocks in the
Acknowledgment sequence. ACKTIM is cleared by hardware.

9 User software clears the interrupt flag.

10 User software loads the I2CxTRN register with response dat
indicates that the buffer is full.

11 After last bit, module clears TBF bit, indicating buffer is ava

12 At the end of ninth clock, if master sent NACK, no mo
Module does not suspend the clock.

13 Module recognizes Stop event.

8 Hardware clears SCLREL to suspend master clock if R/

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 44  2007-2014 Microchip Technology Inc.

7.3.5 10-BIT ADDRESSING MODE

In 10-Bit Addressing mode, the slave must receive two device address bytes, as illustrated in
Figure 7-7. The 5 Most Significant bits (MSbs) of the first address byte specify a 10-bit address.
The R/W status bit of the address must specify a write, causing the slave device to receive the
second address byte. For a 10-bit address, the first byte would equal, ‘11110 A9 A8 0’, where
A9 and A8 are the 2 MSbs of the address.

The I2CxMSK register can mask any bit position in a 10-bit address. The 2 MSbs of the I2CxMSK
register are used to mask the MSbs of the incoming address received in the first byte. The remaining
byte of the register is then used to mask the lower byte of the address received in the second byte.

Following the Start condition, the module shifts eight bits into the I2CxRSR register. The value of
the I2CxRSR<2:1> bits is evaluated against the value of the I2CxADD<9:8> and I2CxMSK<9:8>
bits, while the value of the I2CxRSR<7:3> bits is compared to ‘11110’. Address evaluation
occurs on the falling edge of the eighth SCLx clock. For the address to be valid, the
I2CxRSR<7:3> bits must be equal to ‘11110’, while the I2CxRSR<2:1> bits must exactly match
any unmasked bits in the I2CxADD<9:8> bits (if both bits are masked, a match is not needed). If
the address is valid, the following events occur:

• An ACK is generated
• The D/A and R/W status bits are cleared
• The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock

The module does generate an interrupt after the reception of the first byte of a 10-bit address;
however, this interrupt is of little use.

The module will continue to receive the second byte into the I2CxRSR register. This time, the
I2CxRSR<7:0> bits are evaluated against the I2CxADD<7:0> and I2CxMSK<7:0> bits. If the
lower byte of the address is valid, as previously described, the following events occur:

• An ACK is generated
• The ADD10 status bit is set
• The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock
• The module will wait for the master to send data or initiate a Repeated Start condition

Figure 7-7: 10-Bit Address Detection Timing Diagram (AHEN = 0)

Note: Following a Repeated Start condition in 10-Bit Addressing mode, the slave only
matches the first 7-bit address, ‘11110 A9 A8 0’.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

2 4 51 3

Detecting the Start bit enables address detection.1

Address match of first byte clears the D/A status bit and causes slave logic to generate an ACK.2

Reception of first byte clears the R/W status bit. Slave logic generates an interrupt.3

Address match of first and second byte sets the ADD10 status bit and causes slave logic to generate an ACK.4

Reception of second byte completes the 10-bit address. Slave logic generates an interrupt.5

I2C™ Bus State (D) (D) (A)(D)

111 1 0 A9 A8
R/W = 0

D/A

ADD10

SCLREL

A5A6A7 A4 A3 A2 A1 A0

R/W

(D) (D) (A)(D)

6

(S) (Q)


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 4

5

Figure 7-8: I2C™ Slave, 10-Bit Address, Reception (STREN = 0, AHEN = 1, DHEN = 0)

1 1 1 1 0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1SDAx

SCLx

SI2CxIF

RBF

ACKDT

ADD10

SCLREL

ACKTIM

1 2 3 4 5 6 7 8 9

ACKACK

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7

1 Detecting the Start bit enables address detection; interrupt is set if the SCEN bit is set.

2 User software clears the interrupt flag.

3 Slave receives first address byte. Write indicated. Interrupt flag is asserted. ACKTIM

4 User software clears the interrupt flag.

5 ACKDT is written with ACK by user software.

6 User software sets SCLREL to release clock hol

7 Slave interrupt is asserted.

8 User software reads I2CxRCV buffer, that clears RBF

9 Slave Acknowledges the second address byt

10 User software reads data from the I2CxRCV

is asserted. If AHEN = 1, slave suspends clock. SCLREL is cleared by hardware.

1 3

4

5

6

7 8 92

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 46  2007-2014 Microchip Technology Inc.

7.3.6 SLAVE MODE BUS COLLISION

On a read request from the master, the slave begins shifting data out on the SDAx line. If a bus
collision is detected and the SBCDE bit (I2CxCONH<2> register) is set, then the I2CxBCIF bit
will be set. After detecting the bus collision, the slave goes into Idle mode and waits to be
addressed again. User software can use the I2CxBCIF bit or vectors to the bus collision interrupt
to handle a slave bus collision.

7.3.7 GENERAL CALL OPERATION

The addressing procedure for the I2C bus is such that the first byte after a Start condition usually deter-
mines which slave device the master is addressing. The exception is the general call address, which
can address all devices. When this address is used, all the enabled devices respond with an Acknowl-
edge. The general call address is one of the eight addresses reserved for specific purposes by the
I2C protocol. It consists of all ‘0’s with R/W = 0. The general call is always a slave write operation.

The general call address is recognized when the General Call Enable bit, GCEN (I2CxCON<7>
or I2CxCONL<7>), is set, as illustrated in Figure 7-9. Following a Start bit detect, 8 bits are shifted
into the I2CxRSR register, and the address is compared against the I2CxADD register and the
general call address.

If the general call address matches, the following events occur:

• An ACK is generated
• The slave will set the GCSTAT status bit (I2CxSTAT<9>)
• The D/A and R/W status bits are cleared
• The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock
• The I2CxRSR register is transferred to the I2CxRCV register and the RBF status bit

(I2CxSTAT<1>) is set (during the eighth bit)
• The module waits for the master to send data

When the interrupt is serviced, the cause for the interrupt can be checked by reading the contents of
the GCSTAT status bit to determine if the device address was device-specific or a general call address.

Figure 7-9: General Call Address Detection Timing Diagram (GCEN = 1; AHEN = 0)

Note: The SBCDE and I2CxBCIF bits may not be available on all the devices. Refer to the
specific device data sheet for availability.

Note 1: General call addresses are 7-bit addresses. If configuring the slave for 10-bit
addresses and the A10M and GCEN bits are set, the slave will continue to detect
the 7-bit general call address.

2: The slave will Acknowledge the general call address (7-bit address, 0x00) only if
GCEN is set, and independent of the STRICT and A10M bits.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

4 51 3

Detecting Start bit enables1
I2C™ Bus State (D) (D) (A)(D)

000 0 0 0 0

D/A

I2CxRCV

RBF

R/W

address detection. If SCIE is set,

All ‘0’s and R/W = 0 indicates3
a general call.

Valid address clears D/A status bit4
and sets GCSTAT status bit.

R/W status bit cleared. Slave 5
generates an interrupt.

6

Bus waiting. Slave ready to6
receive data.

GCSTAT

Slave generates ACK. Address
loaded into I2CxRCV register.

R/W = 0

(Q)

2

then interrupt will be asserted.(1)

Note 1: The SCIE bit may not be available in all the devices. Refer to the specific device data sheet for availability.

2 User software clears the interrupt
flag.(1)

(S)

 2007-2014 Microchip Technology Inc. DS70000195F-page 47

Inter-Integrated Circuit™ (I2C™)

7.3.8 RECEIVING ALL ADDRESSES (IPMI OPERATION)

Some I2C system protocols require a slave to act upon all messages on the bus. For example,
the IPMI bus uses the I2C nodes as message repeaters in a distributed network. To allow a node
to repeat all messages, the slave must accept all messages, regardless of the device address.

To enable the IPMI mode, set the IPMIEN bit (I2CxCON<11>) as illustrated in Figure 7-10.
Regardless of the state of the A10M and GCEN bits or the value loaded in the I2CxADD register,
all addresses are accepted. This includes all valid 7-bit addresses, general call, Start byte, Cbus,
reserved and HS modes, and 10-bit address preambles.

Figure 7-10: IPMI Address Detection Timing Diagram (IPMIEN = 1)

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

2 31

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

D/A

I2CxRCV

RBF

R/W

address detection.

Regardless of contents, byte2
address is matched.
Address match clears D/A status bit.

R/W status bit is set/clear. Slave3
generates interrupt.

4

Bus is waiting. 4

Slave generates an ACK. Address
is loaded into I2CxRCV register.

(S) (Q)

R/W

Note: The user application must clear the IPMIEN bit (I2CxCON<11>) during an I2C
master operation and set this bit while acting as an IPMI slave.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 48  2007-2014 Microchip Technology Inc.

7.3.9 STRICT SUPPORT

The slave module Acknowledges all the addresses, including the reserved addresses, when
STRICT reserved addressing is not enforced (STRICT = 0). The slave device does not
Acknowledge the reserved address space if the STRICT bit (I2CxCONL<11>) is set.

Table 7-1: Slave Response to Reserved Addresses

7.3.10 WHEN AN ADDRESS IS INVALID

If a 7-bit address does not match the contents of the I2CxADD<6:0> bits, the slave will return to
an Idle state and ignore any activity on the I2C bus until after the Stop condition.

If the first byte of a 10-bit address does not match the contents of the I2CxADD<9:8> bits, the
slave will return to an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address matches the contents of the I2CxADD<9:8> bits, but the
second byte of the 10-bit address does not match the I2CxADD<7:0> bits, the slave will return
to an Idle state and ignore all bus activity until after the Stop condition.

STRICT Bit
I2CxADD

Slave Address
Received Address

into I2CxRSR
Slave Acknowledge

x 0x1F 0x1F ACK

1 0x1F Cbus Address NACK

1 Cbus Address Cbus Address NACK

0 Cbus Address Cbus Address ACK

0 Cbus Address 0x1F NACK

0 0x1F Cbus Address NACK

Note: When the STRICT bit is cleared, the ACK signal is generated, only if the address is
matched, even for reserved addresses. The slave device does not generate an ACK
if there is an address mismatch, even if the address is a reserved address. Irrespec-
tive of the STRICT bit setting, and the address is reserved or not, an ACK signal is
generated for a proper address match.

 2007-2014 Microchip Technology Inc. DS70000195F-page 49

Inter-Integrated Circuit™ (I2C™)

7.3.11 ADDRESSES RESERVED FROM MASKING

Even when enabled, there are several addresses that are ignored by the I2C module. For these
addresses, an Acknowledge will not be issued independent of the mask setting. These
addresses are listed in Table 7-2.

Table 7-2: Reserved I2C™ Bus Addresses(3)

7.4 Receiving Data from a Master Device

When the R/W status bit of the device address byte is ‘0’ and an address match occurs, the R/W
status bit (I2CxSTAT<2>) is cleared. The slave enters a state waiting for data to be sent by the
master. After the device address byte, the contents of the data byte are defined by the system
protocol and are only received by the slave.

The slave shifts 8 bits into the I2CxRSR register. On the falling edge of the eighth clock (SCLx),
the following events occur:

• The module begins to generate an ACK or NACK.

• The RBF status bit (I2CxSTAT<1>) is set to indicate received data.

• The I2CxRSR register byte is transferred to the I2CxRCV register for access by the user
software.

• The D/A status bit is set.

• A slave interrupt is generated. User software can check the status of the I2CxSTAT register
to determine the cause of the event and then clear the SI2CxIF interrupt flag.

• The module waits for the next data byte.

7-Bit Address Mode

Slave Address R/W Bit Description

0000 000 0 General Call Address(1)

0000 000 1 Start Byte

0000 001 x Cbus Address

0000 010 x Reserved

0000 011 x Reserved

0000 1xx x HS Mode Master Code

1111 1xx x Reserved

1111 0xx x 10-Bit Slave Upper Byte(2)

Note 1: Address will be Acknowledged only if GCEN = 1.

2: A match on this address can only occur as the upper byte in 10-Bit Addressing mode.

3: These addresses will not be Acknowledged, independent of mask settings and
STRICT = 1.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 50  2007-2014 Microchip Technology Inc.

7.4.1 ACKNOWLEDGE GENERATION

Normally, the slave Acknowledges all the received bytes by sending an ACK on the ninth SCLx
clock. If the receive buffer is overrun, the slave does not generate this ACK. The overrun is
indicated if either (or both) of the following occur:

• The Receive Buffer Full bit, RBF (I2CxSTAT<1>), was set before the transfer was received

• The Receive Overflow bit, I2COV (I2CxSTAT<6>), was set before the transfer was received

Table 7-3 shows what happens when a data transfer byte is received, given the status of the RBF
and I2COV status bits. If the RBF status bit is already set when the slave attempts to transfer to
the I2CxRCV register, the transfer does not occur, but the interrupt is generated and the I2COV
status bit is set. If both the RBF and I2COV status bits are set, the slave acts similarly. The
shaded cells show the condition where user software did not properly clear the overflow
condition.

Reading the I2CxRCV register clears the RBF status bit. The I2COV status bit is cleared by
writing to a ‘0’ through user software.

7.4.2 RECEIVE BUFFER OVERWRITE (I2C SLAVE MODE ONLY)

If the BOEN bit (I2CxCONH<4>) is set, then the I2COV bit (I2CxSTAT<6>) is ignored. If the RBF
bit (I2CxSTAT<1>) is not set, then the ACK is generated for the receive address or data; the
I2CxRCV buffer is updated with I2CxRSR.

Table 7-3: Data Transfer Received Byte Actions

7.4.3 WAIT STATES DURING SLAVE RECEPTIONS

When the slave receives a data byte, the master can potentially begin sending the next byte
immediately. This allows the user software controlling the nine slave SCLx clock periods to
process the previously received byte. If this is not enough time, the slave software may want to
generate a bus Wait period.

The STREN bit (I2CxCON<6> or I2CxCONL<6>) enables a bus Wait to occur on slave
receptions. When STREN = 1 at the falling edge of the ninth SCLx clock of a received byte, the
slave clears the SCLREL bit. Clearing the SCLREL bit causes the slave to pull the SCLx line low,
initiating a Wait. The SCLx clock of the master and slave will synchronize, as provided in
Section 6.2 “Master Clock Synchronization”.

When the user software is ready to resume reception, the user software sets the SCLREL bit.
This causes the slave to release the SCLx line and the master resumes clocking.

Note: If the BOEN bit (I2CxCONH<4>) is set, then the I2COV bit (I2CxSTAT<6>) is
ignored and only the RBF bit (I2CxSTAT<1>) determines whether the module will
Acknowledge the message or not.

Status Bits as Data Byte
Received

Transfer
I2CxRSR to

I2CxRCV

Generate
ACK

Generate SI2CxIF
Interrupt

(interrupt occurs
if enabled)

Set
RBF

Set
I2COV

BOEN(1) RBF I2COV

x 0 0 Yes Yes Yes Yes No change

x 1 0 No No Yes No change Yes

x 1 1 No No Yes No change Yes

0 0 1 Yes No Yes Yes No change

1 0 1 Yes Yes Yes Yes No change

Legend: Shaded cells show states where the user software did not properly clear the
overflow condition.

Note 1: BOEN is not available on all the devices. Refer to the specific device data sheet for
availability.

 2007-2014 Microchip Technology Inc. DS70000195F-page 51

Inter-Integrated Circuit™ (I2C™)

7.4.4 EXAMPLE MESSAGES OF SLAVE RECEPTION

Receiving a slave message is an automatic process. The user software handling the slave
protocol uses the slave interrupt to synchronize to the events.

When the slave detects the valid address, the associated interrupt will notify the user software to
expect a message. On receive data, as each data byte transfers to the I2CxRCV register, an
interrupt notifies the user software to unload the buffer.

Figure 7-11 illustrates a simple receive message. Because it is a 7-bit address message, only
one interrupt occurs for the address bytes. Then, interrupts occur for each of four data bytes. At
an interrupt, the user software may monitor the status bits, RBF (I2CxSTAT<1>), D/A
(I2CxSTAT<5>) and R/W (IC2xSTAT<2>), to determine the condition of the byte received.

Figure 7-12 illustrates a similar message using a 10-bit address. In this case, two bytes are
required for the address.

Figure 7-13 illustrates a case where the user software does not respond to the received byte
and the buffer overruns. On reception of the second byte, the module will automatically NACK
the master transmission. Generally, this causes the master to re-send the previous byte. The
I2COV status bit (I2CxSTAT<6>) indicates that the buffer has overrun. The I2CxRCV register
buffer retains the contents of the first byte. On reception of the third byte, the buffer is still full,
and again, the module will NACK the master. After this, the user software finally reads the
buffer. Reading the buffer will clear the RBF status bit; however, the I2COV status bit remains
set. The user software must clear the I2COV status bit (I2CxSTAT<6>). The next received byte
is moved to the I2CxRCV register buffer and the module responds with an ACK.

Figure 7-14 highlights clock stretching while receiving data. In the previous examples, the
STREN bit (I2CxCON<6> or I2CxCONL<6>) is equal to ‘0’, which disables clock stretching on
receive messages. In this example, the user software sets STREN to enable clock stretching.
When STREN = 1, the module will automatically clock stretch after each received data byte,
allowing the user software more time to move the data from the buffer. If RBF = 1 at the falling
edge of the ninth clock, the module automatically clears the SCLREL bit (I2CxCON<12> or
I2CxCONL<12>) and pulls the SCLx bus line low. As shown with the second received data
byte, if the user software can read the buffer and clear the RBF status bit before the falling
edge of the ninth clock, the clock stretching will not occur. The user software can also suspend
the bus at any time. By clearing the SCLREL bit, the module pulls the SCLx line low after it
detects the bus SCLx low. The SCLx line remains low, suspending transactions on the bus until
the SCLREL bit is set.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 5

2


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 7-11: Slave Message (Write Data to Slave: 7-Bit Address; Address Matches; A10M = 0; GCEN = 0; IPMIEN = 0; AHEN =
STRICT = 0 and BOEN = 0)

1 Slave recognizes Start event; S and P status bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

1 32

A

4 3 3

2 Slave receives address byte. Address matches. Slave Acknowledges

3 Next received byte is message data. The byte moved to the I2CxRCV register sets the RBF status bit.

4 User software reads the I2CxRCV register. RBF status bit clears.

5 Slave recognizes Stop event; S and P status bits set/clear accordingly.

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3

1 2 3 4 5

SCLREL

4 4

 and generates interrupt. Address byte is moved to I2CxRCV register and must be read by user software to prevent buffer overflow.

D0D0D0W

SI2CxIF Interrupt Flag Cleared by User Software


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 5

3

Figure 7-12: Slave Message (Write Data to Slave: 10-Bit Address; Address Matches; A10M = 1; GCEN = 0; IPMIEN = 0; AHEN =
STRICT = 0 and BOEN = 0)

1 Slave recognizes Start event, S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A9A8

9

A

A7A6A5A4A3A2 A1

1 2 3 4 5 6 7 8 9

1 32

A

4 4

2 Slave receives address byte. High-order address matches.

3 Slave receives address byte. Low-order address matches.

4 Next received byte is message data. Byte moved to the I2CxRCV

5 User software reads I2CxRCV register. RBF bit clears.

6 Slave recognizes Stop event, S and P bits set/clear accordingly

Slave Acknowledges and generates interrupt. Address byte is

Slave Acknowledges and generates interrupt.

S

P

I2COV

R/W

D/A

D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

A

D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

A

D7D6D5D4D3

1 2 3 4 5

SCLREL

5 5

1 1 1 1 0

Slave Acknowledges and generates interrupt. Address byte is

moved to the I2CxRCV register and is read by user software to prevent

moved to the I2CxRCV register and is read by user software to prevent

buffer overflow.

buffer overflow.

W A0 D0 D0

SI2CxIF Cleared by User Software

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 5

4


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 7-13: Slave Message (Write Data to Slave: 7-Bit Address; Buffer Overrun; A10M = 0; GCEN = 0; IPMIEN = 0; AHEN = 0;
STRICT = 0 and BOEN = 0)

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

21

A

3 4

1 Slave receives address byte. Address matches. Slave generates interrupt. Address byte

2 Next received byte is message data. The byte moved to I2CxRCV register, sets RBF.

5 User software reads I2CxRCV register. RBF bit

6 User software clears I2COV bit. Reception will sti

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3

1 2 3 4 5

SCLREL

5

3 Next byte received before I2CxRCV read by software. I2CxRCV register unchanged.
I2COV overflow bit set. Slave generates interrupt. Slave sends NACK for reception.

N

6

4 Next byte also received before I2CxRCV read by

reception. The master state machine should not be pro
register unchanged. Slave generates interrupt.

D0 D0W D0

5

normally until the module sees a stop/repeated st
conditions is met, an additional transmission will be
send a NACK and set the I2COV bit again.

another byte after receiving a NACK in this manner
the transmission with a stop condition or send a re
and attempt to retransmit the data.

is moved to I2CxRCV register and must be read by user software to prevent buffer overflow.

SI2CxIF Cleared by User Software


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 5

5

Figure 7-14: Slave Message (Write Data to Slave: 7-Bit Address; Clock Stretching Enabled; A10M = 0; GCEN = 0; IPMIEN = 0;
STRICT = 0 and BOEN = 0)

1 User software sets the STREN bit to enable clock stretching.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A1A0

9

A

D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

32

A

5 3 8

2 Slave receives address byte. I2CxRCV register is read by user software to

Next received byte is message data. The byte moved to I2CxRCV register, sets RBF.

6 User software sets SCLREL bit to release clock.

7 Slave does not clear SCLREL because RBF = 0 at this

A6A5A4A3A2

S

P

I2COV

R/W

D/A

D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

A

D7D6D5 D3

1 2 3 4 5

SCLREL

5 9

D4

4 6 71

4 Because RBF = 1 at ninth clock, automatic clock stretch begins.
Slave clears SCLREL bit. Slave pulls SCLx line low to stretch clock.

5 User software reads I2CxRCV register. RBF bit clears.

8 User software may clear SCLREL to cause a clock hold. Mod

9 User software may set SCLREL to release a clock hold

low before asserting SCLx low.

prevent buffer overflow.

W D0 D0

3

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 56  2007-2014 Microchip Technology Inc.

7.5 Sending Data to a Master Device

When the R/W status bit of the incoming device address byte is ‘1’ and an address match occurs,
the R/W status bit (I2CxSTAT<2>) is set. At this point, the master device is expecting the slave
to respond by sending a byte of data. The contents of the byte are defined by the system protocol
and are only transmitted by the slave.

When the interrupt from the address detection occurs, the user software can write a byte to the
I2CxTRN register to start the data transmission.

The slave sets the TBF status bit (I2CxSTAT<0>). The eight data bits are shifted out on the falling
edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.
When all 8 bits have been shifted out, the TBF status bit is cleared.

The slave detects the Acknowledge from the master-receiver on the rising edge of the ninth SCLx
clock.

If the SDAx line is low, indicating an ACK, the master is expecting more data and the message
is not complete. The module generates a slave interrupt and the ACKSTAT status bit
(I2CxSTAT<15>) can be inspected to determine whether more data is being requested.

A slave interrupt is generated on the falling edge of the ninth SCLx clock. User software must
check the status of the I2CxSTAT register and clear the SI2CxIF interrupt flag.

If the SDAx line is high, indicating a NACK, the data transfer is complete. The slave resets and
generates an interrupt and it waits for detection of the next Start bit.

7.5.1 WAIT STATES DURING SLAVE TRANSMISSIONS
During a slave transmission message, the master expects return data immediately after
detection of the valid address with R/W = 1. Because of this, the slave automatically generates
a bus Wait whenever the slave returns data.

The automatic Wait occurs at the falling edge of the ninth SCLx clock of a valid device address byte,
or transmitted byte, Acknowledged by the master, indicating expectation of more transmit data.

The slave clears the SCLREL bit (I2CxCON<12> or I2CxCONL<12>). Clearing the SCLREL bit
causes the slave to pull the SCLx line low, initiating a Wait. The SCLx clock of the master and
slave will synchronize, as shown in Section 6.2 “Master Clock Synchronization”.

When the user software loads the I2CxTRN register and is ready to resume transmission, the
user software sets the SCLREL bit. This causes the slave to release the SCLx line and the
master resumes clocking.

Note: When the IPMIEN bit (I2CxCON<11>) is equal to ‘1’ (IPMI mode), the I2C module
assumes that the R/W bit is ‘0’. Therefore, the slave transmission function is
disabled. If the R/W bit is ‘1’, the I2C module will trigger an interrupt. This interrupt
should be ignored (that is, the I2C interrupt flags should be cleared) and the I2C
slave transmission event should be aborted.

Note: The user software must provide a delay between writing to the transmit buffer and
setting the SCLREL bit. This delay must be greater than the minimum set up time
for slave transmissions, as specified in the “Electrical Characteristics” chapter of
the specific device data sheet.

 2007-2014 Microchip Technology Inc. DS70000195F-page 57

Inter-Integrated Circuit™ (I2C™)

7.5.2 EXAMPLE MESSAGES OF SLAVE TRANSMISSION

The slave transmissions for 7-bit address messages are illustrated in Figure 7-15. When the
address matches and the R/W status bit of the address indicates a slave transmission, the
module automatically initiates clock stretching by clearing the SCLREL bit and generates an
interrupt to indicate a response byte is required. The user software writes the response byte into
the I2CxTRN register. As the transmission completes, the master responds with an ACK. If the
master replies with an ACK, the master expects more data, and the module again clears the
SCLREL bit and generates another interrupt. If the master responds with a NACK, no more data
is required and the module will not stretch the clock, but will generate an interrupt.

The slave transmissions for 10-bit address messages require the slave to first recognize a 10-bit
address. Because the master must send two bytes for the address, the R/W status bit in the first
byte of the address specifies a write. To change the message to a read, the master sends a
Repeated Start and repeats the first byte of the address with the R/W status bit specifying a read.
At this point, the slave transmission begins as illustrated in Figure 7-16.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 5

8


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 7-15: Slave Message (Read Data from Slave: 7-Bit Address)

1 Slave recognizes Start event, S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A1A0

9

A D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

1 42

A

5 3 5 3

2 Slave receives address byte. Address matches. Slave generates interrupt.

3 User software writes I2CxTRN with response data. TBF = 1 indicates that buffer is full.

6 At the end of ninth clock, if the master has sent an ACK

8 Slave recognizes Stop event, S and P bits set/clear acc

Address byte is moved to I2CxRCV register and is read by user software to prevent

Writing I2CxTRN sets D/A, indicating a data byte.

A6A5A4A3A2

S

P

I2COV

R/W

D/A

SCLREL

4 4

D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

A

D7D6D5D4D3

1 2 3 4 5

3 6 6

master clock.

4 User software sets SCLREL to release clock hold. Master resumes clocking and
slave transmits data byte.

5 After last bit, module clears TBF bit, indicating buffer is

to suspend clock. Slave generates interrupt.

7 At the end of ninth clock, if master sent a NACK, no more
Module does not suspend clock and will generate an int

buffer overflow. R/W = 1 to indicate read from slave. SCLREL = 0 to suspend

D0D0

R


 2

0
0

7
-2

0
1

4
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 5

9

Figure 7-16: Slave Message (Read Data from Slave: 10-Bit Address)

1 Slave recognizes Start event, S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCxL (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8 9

A

1 42 7 8

2 Slave receives first address byte. Write indicated. Slave Acknowledges and

6 User software writes I2CxTRN with response data.

8 At the end of ninth clock, if master sent ACK, module clear

Slave recognizes Stop event, S and P bits set/clear accor

S

P

ADD10

R/W

D/A

SCLREL

5 6

D7D6D5

1 2 3

3 6 7

7 User software sets SCLREL to release clock hold. Master
slave transmits data byte.

clock. Slave generates interrupt.

9 At the end of ninth clock, if master sent NACK, no mor
does not suspend clock or generate interrupt.

A7A6A5A4A3A2A1

1 2 3 4 5 6 7 8 9

A

A9A81 1 1 1 0

1 2 3 4 5 6 7 8 9

A

A9A81 1 1 1 0

D7D6D5D4D3D2D1

1 2 3 4 5 6 7 8 9

A

3 Slave receives address byte. Address matches. Slave Acknowledges and

10

4 Master sends a Repeated Start to redirect the message.

5 Slave receives re-send of first address byte. User software reads I2CxRCV register.

R

 generates interrupt. User software reads I2CxRCV register.

 generates interrupt. User software reads I2CxRCV register.

Read indicated. Slave suspends clock.

D0

A0W

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 6

0


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

Figure 7-17: I2C™ Slave, 7-Bit Address, Reception (STREN = 1, AHEN = 1, DHEN = 1)

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0SDAx

SCLx

SI2CxIF

RBF

ACKDT

SCLREL

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

ACKTIM

1 Detecting Start bit, enables address detection, interrupt is set if SCEN is set.

2 User software clears the interrupt flag.

3 Slave receives first address byte. Write Indicated. If AHEN = 1, SCLREL is cleared

4 User software clears the interrupt flag.

5 ACKDT is written with ACK by user software.

7 Hardware stretches the clock after ACK (if STREN =

8 User software sets SCLREL to release clock hold.

9 I2CxRCV is loaded with I2CxRSR. RBF is set. If DHE

User software sets SCLREL to release the clock hold.

User software reads I2CxRCV, that clears the RB

1 3 4 5 6
7

2 98

6 User software sets SCLREL to release the clock hold; ACKTIM is cleared by hardware.

by hardware. ACKTIM and interrupt are asserted.
cleared by hardware and ACKTIM is asserted.

by hardware. After Acknowledgment, hardware st

NACK sent by master.

Module recognizes the Stop event.

ACK ACK

10 11

10

11

12

13

 2007-2014 Microchip Technology Inc. DS70000195F-page 61

Inter-Integrated Circuit™ (I2C™)

8.0 CONNECTION CONSIDERATIONS FOR I2C BUS

Because the I2C bus is a wired-AND bus connection, pull-up resistors (RP) on the bus are
required, as illustrated in Figure 8-1. The series resistors (RS) are optional and are used to
improve the Electrostatic Discharge (ESD) susceptibility.

The values of the resistors, RP and RS, depend on the following parameters:

• Supply voltage

• Bus capacitance

• Number of connected devices (input current + leakage current)

• Input level selection (I2C or System Management Bus (SMBus))

Because the device must be able to pull the bus low against RP, current drawn by RP must be
greater than the I/O pin minimum sink current, IOL at VOLMAX, for the device output stage.
Equation 8-1 shows the formula for computing the minimum pull-up resistance.

Equation 8-1: Minimum Pull-up Resistance

In a 400 kHz system, a minimum rise time specification of 300 ns exists; in a 100 kHz system,
the specification is 1000 ns. Because RP must pull the bus up against the total capacitance, CB,
with a maximum rise time of 300 ns to (VDD – 0.7V), the maximum resistance for the pull-up
(RPMAX) is computed using the formula as shown in Equation 8-2.

Equation 8-2: Maximum Pull-up Resistance

The maximum value for RS is determined by the desired noise margin for the low level. RS cannot
drop enough voltage to make the device VOL and the voltage across RS more than the maximum
VIL. Equation 8-3 shows the formula for computing the maximum value for RS.

Equation 8-3: Maximum Series Resistance

Note: The SCLx clock input must have a minimum high and low time for proper operation.
Refer to the “Electrical Characteristics” chapter in the specific device data sheet
for more information on the high and low times of the I2C bus specification, and
requirements of the I2C module and I/O pins.

RPMIN =
(VDDMAX – VOLMAX)

IOL

– tR
CB * [ln(1 – (VDDMAX – VILMAX))]

RSMAX =
(VILMAX – VOLMAX)

IOLMAX

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 62  2007-2014 Microchip Technology Inc.

Figure 8-1: Sample Device Configuration for I2C™ Bus

8.1 Integrated Signal Conditioning

The SCLx and SDAx pins have an input glitch filter. The I2C bus requires this filter in both the
100 kHz and 400 kHz systems.

When operating on a 400 kHz bus, the I2C bus specification requires a slew rate control of the
device pin output. This slew rate control is integrated into the device. If the DISSLW bit
(I2CxCON<9> or I2CxCONL<9>) is cleared, the slew rate control is active. For other bus speeds,
the I2C bus specification does not require slew rate control and the DISSLW bit should be set.

Some system implementations of I2C buses require different input levels for VILMAX and VIHMIN.
In a normal I2C system, VILMAX is 0.3 VDD; VIHMIN is 0.7 VDD. By contrast, in a SMBus system,
VILMAX is set at 0.8V, while VIHMIN is set at 2.1V.

The SMEN bit (I2CxCON<8> or I2CxCONL<8>) controls the input levels. Setting SMEN (= 1)
changes the input levels to SMBus specifications.

RPRP

VDD + 10%

SDAx

SCLx

CB = 10-400 pF

RSRS

Note: I2C™ devices with input levels related to VDD must have one common supply
line to which the pull-up resistor is also connected.

Device

 2007-2014 Microchip Technology Inc. DS70000195F-page 63

Inter-Integrated Circuit™ (I2C™)

9.0 OPERATION IN POWER-SAVING MODES

9.1 Sleep Mode in Slave Mode

The I2C module can wake-up from Sleep mode on detecting a valid slave address match.
Because all bit shifting is done with reference to the external SCLx signal, generated by an I2C
master, transmissions and receptions can continue even while in Sleep mode.

9.2 Sleep Mode in Master Mode

If Sleep occurs in the middle of a master transmission, and the state machine is partially into a
transmission as the clocks stop, the behavior of the module will be undefined. Similarly, if Sleep
occurs in the middle of a master reception, the module behavior will also be undefined. The
transmitter and receiver will stop at Sleep when in Master mode. Register contents are not
affected by going into Sleep mode or coming out of Sleep mode; there is no automatic way to
prevent Sleep entry if a transmission or reception is pending. The user software must
synchronize Sleep entry with I2C operation to avoid undefined module behavior.

9.3 When the Device Enters Idle Mode

When the device executes a PWRSAV 1 instruction, the device enters Idle mode. The module
enters a power-saving state in Idle mode, depending on the I2CSIDL bit (I2CxCON<13> or
I2CxCONL<13>). If I2CSIDL = 1, the module enters the Power-Saving mode, similar to actions
while entering Sleep mode. If I2CSIDL = 0, the module does not enter a Power-Saving mode and
continues to operate normally.

10.0 PERIPHERAL MODULE DISABLE (PMDX) REGISTERS

The Peripheral Module Disable (PMDx) registers provide a method to disable the I2C modules
by stopping all clock sources supplied to that module. When a peripheral is disabled through the
appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The
control and status registers associated with the peripheral are also disabled, so writes to those
registers will have no effect and read values will be invalid. A peripheral module is only enabled
if the I2CxMD bit in the PMDx register is cleared.

11.0 EFFECTS OF A RESET

A Reset disables the I2C module and terminates any active or pending message activity. Refer
to the I2Cx Control (I2CxCON or I2CxCONH and I2CxCONL) and I2Cx Status (I2CxSTAT)
register definitions (Register 3-1, Register 3-2, Register 3-3 and Register 3-4) for the Reset
conditions of those registers.

Note: As per the slave I2C behavior, a slave interrupt is generated only on an address
match. Therefore, when an I2C slave is in Sleep mode and it receives a message
from the master, the clock required to match the received address is derived from
the master. Only on an address match, will the interrupt be generated and the
device can wake-up from Sleep, provided the interrupt has been enabled and an
ISR has been defined.

Note 1: The I2CxCON or I2CxCONL and I2CxCONH are not available on all devices. Refer
to the specific device data sheet for availability.

2: In this discussion, ‘Idle’ refers to the CPU power-saving state. The lower case ‘idle’
refers to the time when the I2C module is not transferring data on the bus.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 64  2007-2014 Microchip Technology Inc.

12.0 CONSTANT-CURRENT SOURCE

The constant-current source module is a precision current generator and is used in conjunction
with an Analog-to-Digital Converter (ADC) to measure the resistance of external resistors
connected to device pins. A typical use of this peripheral is to set the I2C board address using
resistors, as explained in the following sections.

12.1 Features Overview

The constant-current source module offers the following major features:

• Constant-current generator (10 µA nominal)

• Internal selectable connection to one out of four pins

• Enable/Disable bit

12.2 Module Description

Figure 12-1 shows a functional block diagram of the constant-current source module. It consists
of a precision current generator, with a nominal value of 10 µA. The module can be enabled and
disabled using the ISRCEN bit (ISRCCON<15>). The output of the current generator is
internally connected to one out of four pins. The OUTSEL<2:0> bits (ISRCCON<10:8>) allow
selection of the target pin. The current source is calibrated during testing. The calibration value
is stored into the Flash die serialization area, and should be read and transferred to the
ISRCCON register by the application firmware, before using the peripheral.

Figure 12-1: Constant-Current Source Module Block Diagram

Note: The constant-current source module is not available on all devices. Refer to the
specific device data sheet for availability.

ISRC1

ISRC3

M
U
X

OUTSEL<2:0>

ISRC2

ISRC4

ISRCEN

Constant-Current Source

 2007-2014 Microchip Technology Inc. DS70000195F-page 65

Inter-Integrated Circuit™ (I2C™)

12.3 Module Applications

An end application would enable the user to determine the resistance of a couple of external
resistors that encode in their resistance an address value that the application can use when
communicating over a communications network. A typical application example is PMBus™.

The user application enables the current source and selects a pin where the current is to be
directed. A resistor is externally connected from this pin to ground. The current flow through the
external resistor generates a voltage. ADC channels, AN4 through AN7, can be used to read the
generated voltage. The calculated resistance value of the external resistor can be translated into
a number of bits. Allowing for the current source accuracy, the accuracy of the external resistors,
and the accuracy of the ADC, 10 to 12 unique resistance values can be read for each resistor.
Therefore, two external resistors in the user’s application circuit can encode 100 to 144 unique
values for use as module identification addresses, which allows two device pins to replace device
pins that are binary encoded. This results in a large pin count savings, especially in a low pin
count package.

The current source output is nominally 10 µA, and the maximum output voltage that can be
reached while still maintaining current regulation is AVDD – 0.5V. Table 12-1 shows some
example resistor values that can be used to encode an address into a resistor. The table uses
common 5% tolerance resistor values, and the chosen values are separated by two standard
resistor values, which is approximately a 30% value separation.

Table 12-1: Example PMBus™ Address Encoding

Resistor Voltage Address

13k 130 mV 1

18k 180 mV 2

24k 240 mV 3

33k 330 mV 4

43k 430 mV 5

56k 560 mV 6

75k 750 mV 7

100k 1V 8

130k 1.3V 9

180k 1.8V 10

240k 2.4V 11

Note: Other external resistor values may be used as required by the application. Using
tighter tolerance resistors and reducing the spacing between the values of the
resistors will allow more addresses to be encoded into each resistor in the
application circuit.

D
S

7
0

0
0

0
1

9
5

F
-p

a
g

e
 6

6


 2
0

0
7

-2
0

1
4

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

13.0 REGISTER MAPS

A summary of the registers associated with the I2C module is provided in Table 13-1 and Table 13-2.

Table 13-1: I2Cx Register Map

File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

I2CxRCV — — — — — — — — I2Cx Receive Register

I2CxTRN — — — — — — — — I2CxTransmit Register

I2CxBRG — — — — — — — I2Cx Baud Rate Generator Register

I2CxCON(1) I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN

I2CxSTAT ACKSTAT TRSTAT ACKTIM(1) — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W

I2CxADD — — — — — — I2Cx Address Register

I2CxMSK — — — — — — I2Cx Address Mask

ISRCCON ISRCEN — — — — OUTSEL2 OUTSEL1 OUTSEL0 — — ISRCCAL5 ISRCCAL4 ISRCCAL3 ISRCCAL2

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Note 1: These registers and/or bits are not available on all devices. Refer to the specific device data sheet for availability.

Table 13-2: I2Cx Register Map

File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

I2CxRCV — — — — — — — — I2Cx Receive Register

I2CxTRN — — — — — — — — I2Cx Transmit Register

I2CxBRG — — — — — — — I2Cx Baud Rate Generator Register

I2CxCONL(1) I2CEN I2CSIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN

I2CxCONH(1) — — — — — — — — — PCIE SCIE BOEN SDAHT SBCDE

I2CxSTAT ACKSTAT TRSTAT ACKTIM(1) — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W

I2CxADD — — — — — — I2Cx Address Register

I2CxMSK — — — — — — I2Cx Address Mask

ISRCCON ISRCEN — — — — OUTSEL2 OUTSEL1 OUTSEL0 — — ISRCCAL5 ISRCCAL4 ISRCCAL3 ISRCCAL2

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Note 1: These registers and/or bits are not available on all devices. Refer to the specific device data sheet for availability.

 2007-2014 Microchip Technology Inc. DS70000195F-page 67

Inter-Integrated Circuit™ (I2C™)

14.0 DESIGN TIPS

Question 1: I am operating as a bus master and transmitting data. Why do slave and
receive interrupts keep occurring at the same time?

Answer: The master and slave circuits are independent. The slave will receive events from
the bus sent by the master.

Question 2: I am operating as a slave and I write data to the I2CxTRN register. Why is
the data not being transmitted?

Answer: The slave enters an automatic Wait when preparing to transmit. Ensure that you
set the SCLREL bit to release the I2C clock.

Question 3: How do I tell what state the master module is in?

Answer: Looking at the condition of the SEN, RSEN, PEN, RCEN, ACKEN and TRSTAT
bits will indicate the state of the master module. If all bits are ‘0’, the module is
Idle.

Question 4: Operating as a slave, I receive a byte while STREN = 0. What should the
user software do if it cannot process the byte before the next one is
received?

Answer: Because STREN was ‘0’, the module did not generate an automatic Wait on the
received byte. However, the user software may, at any time during the message,
set STREN and then clear SCLREL. This will cause a Wait on the next
opportunity to synchronize the SCLx clock.

Question 5: My I2C system is a multi-master system. Why are my messages being
corrupted when I attempt to send them?

Answer: In a multi-master system, other masters may cause bus collisions. In the ISR for
the master, check the BCL status bit to ensure that the operation completed
without a collision. If a collision is detected, the message must be re-sent from
the beginning.

Question 6: My I2C system is a multi-master system. How can I tell when it is okay to
begin a message?

Answer: Check the S status bit. If S = 0, the bus is Idle.

Question 7: I tried to send a Start condition on the bus, then transmit a byte by writing
to the I2CxTRN register. The byte did not get transmitted. Why?

Answer: You must wait for each event on the I2C bus to complete before starting the next
one. In this case, you should poll the SEN bit to determine when the Start event
completed or wait for the master I2C interrupt before data is written to the
I2CxTRN register.

Note: In some devices, a separate bus collision interrupt (I2CxBCIF) is generated instead
of a master event interrupt (MI2CxIF).

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 68  2007-2014 Microchip Technology Inc.

15.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33/PIC24 device family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Inter-Integrated Circuit™ (I2C™) module include the following:

Title Application Note #

Use of the SSP Module in the I 2C™ Multi-Master Environment AN578

Using the Mid-Range Enhanced Core PIC16 Devices’ MSSP Module for AN734
Slave I2C™ Communication

Using the PICmicro® MSSP Module for Master I2C™ Communications AN735

An I2C™ Network Protocol for Environmental Monitoring AN736

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the dsPIC33/PIC24 family of devices.

 2007-2014 Microchip Technology Inc. DS70000195F-page 69

Inter-Integrated Circuit™ (I2C™)

16.0 REVISION HISTORY

Revision A (February 2007)

This is the initial released version of this document.

Revision B (August 2008)

This revision includes the following corrections and updates:

• Updated bit definitions for the ACKSTAT bit (I2CxSTAT<15>) and the D/A bit
(I2CxSTAT<5>) in Register 3-4.

• Updated the I2CBRG denominator from 1,111,111 to 10,000,000 in Equation 4-1.

• Updated the I2C clock rate values in Table , removed the table notes and added a general
note just after the table.

• Updated the last two paragraphs in Section 3.0 “Control and Status Registers” to clarify
the shift of matching address bytes in the I2CxRSR register to the I2CxRCV register.

• Updated Section “” to clarify that the master function is enabled when the SEN bit is set,
and when data is loaded into the I2CxTRN register.

• Several sections were updated to clarify NACK status in Slave mode. The affected sections
are:

- Section 4.2 “I2C Interrupts”

- Section 7.5 “Sending Data to a Master Device”

- Figure 7-13 through Figure 7-16

• The IPMIEN bit was incorrectly described as the Intelligent Peripheral Management
Interface Enable bit. All occurrences have been updated to Intelligent Platform
Management Interface bit.

• Updated Section 9.2 “Sleep Mode in Master Mode” to clarify what occurs when entering
Sleep mode while transmitting.

• Updated the slave message RBF status bit information in Figure 7-11 through Figure 7-16.

• Additional minor corrections such as language and formatting updates are incorporated
throughout the document.

Revision C (November 2009)

This revision includes the following corrections and updates:

• The document was updated to include the PIC24H families of devices

• Added Note 1 to the IPMIEN bit in the I2CxCON register (Register 3-1)

• Updated the bit status to HSC (Hardware Set/Cleared) for the P and S bits in the I2CxSTAT
register (Register 3-4)

• Updated the BRG Reload Value Calculation (Equation 4-1)

• Added a shaded note on the SDAx and SCLx pins to Section 2.0 “I2C Bus
Characteristics” and Section 8.0 “Connection Considerations for I2C Bus”

• Added a shaded note after the first paragraph in Section 5.0 “Communicating as a
Master in a Single Master Environment” and Section 6.0 “Communicating as a
Master in a Multi-Master Environment”

• Removed the Actual FSCL column, added the PGD column, and updated the Decimal and
Hexadecimal values in the I2C Clock Rates table (Table)

• Added a sentence to the end of the second paragraph and added a shaded note in
Section 7.3.8 “Receiving All Addresses (IPMI Operation)”

• Added a shaded note to the first paragraph of Section 7.5 “Sending Data to a Master
Device”

• Updated the last sentence of the first paragraph in Section 7.5.2 “Example Messages of
Slave Transmission” to clarify that an interrupt will be generated.

• Added a shaded note to Section 9.1 “Sleep Mode in Slave Mode”

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 70  2007-2014 Microchip Technology Inc.

Revision D (April 2011)

This revision includes the following updates:

• Equations:

- Updated Equation 8-1, Equation 8-2 and Equation 8-3

• Figures:

- Updated Figure 5-10

• Notes:

- Removed the note in Section 2.0 “I2C Bus Characteristics”

- Added Note 2 in Section 5.2.1 “Sending a 7-bit Address to the Slave”

- Added Note 2 in Section 5.2.3 “Sending a 10-bit Address to the Slave”

- Added a note in Section 7.5.1 “Wait States During Slave Transmissions”

- Replaced the existing note in Section 8.0 “Connection Considerations for I2C Bus”

- Added Note 1 in Table 13-1

• Registers:

- Updated the bit 12 description in Register 3-1

• Sections:

- Updated Section 8.0 “Connection Considerations for I2C Bus”

• Updated the Family Reference Manual name to dsPIC33F/PIC24H Family Reference
Manual

• Additional minor corrections such as language and formatting updates were incorporated
throughout the document

Revision E (September 2011)

This revision includes the following updates:

• Figures:

- Added Figure 12-1

• Sections:

- Removed reference to dsPIC30F documentation in Section 2.2.2 “Address Slave”

- Added Section 12.0 “Constant-Current Source”

• Additional minor corrections such as language and formatting updates were incorporated
throughout the document

 2007-2014 Microchip Technology Inc. DS70000195F-page 71

Inter-Integrated Circuit™ (I2C™)

Revision F (February 2014)

This revision includes the following updates:

• Sections:

- Updated Section 1.0 “Introduction”

- Updated Section 3.0 “Control and Status Registers”

- Updated Section 4.0 “Enabling I2C Operation”, Section 5.0 “Communicating as a
Master in a Single Master Environment”

- Included Section 5.2.2 “STRICT Support in Master Mode”

- Updated Section 6.3 “Bus Arbitration and Bus Collision”, Section 6.4 “Detecting
Bus Collisions and Re-Sending Messages”

- Included Section 7.2.1 “Interrupt on Start/Repeated Start and Stop Conditions
(Slave Mode)”

- Updated Section 7.3.2 “7-Bit Address and Slave Write”

- Included Section 7.3.3 “7-Bit Address and Slave Write with the AHEN and DHEN
Bits”

- Updated Section 7.3.4 “7-Bit Address and Slave Read”

- Included Section 7.3.6 “Slave Mode Bus Collision”

- Updated note in Section 7.3.7 “General Call Operation”

- Included Section 7.3.9 “STRICT Support”

- Note included in Section 5.4 “Acknowledge Generation”

- Included Section 7.4.2 “Receive Buffer Overwrite (I2C Slave Mode Only)”

- Updated Section 14.0 “Design Tips”

• Figures

- Updated Figure 1-1, Figure 2-1, Figure 7-2, Figure 7-5, Figure 7-7, Figure 7-9,
Figure 7-11, Figure 7-12, Figure 7-13 and Figure 7-14

- Included new Figure 7-17

• Tables

- Update Table 5-1

- Updated note in Table 7-2

- Updated Table 7-3

• Registers

- Added Register 3-2 and Register 3-3

- Updated Register 3-4

- Updated register map Table 13-1

• Equation

- Updated Equation 4-1

• Additional minor corrections, such as language and formatting updates, were incorporated
throughout the document.

dsPIC33/PIC24 Family Reference Manual

DS70000195F-page 72  2007-2014 Microchip Technology Inc.

NOTES:

 2007-2014 Microchip Technology Inc. DS70000195F-page 73

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2014, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62077-906-4

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==

DS70000195F-page 74  2007-2014 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/28/13

