MICROCHIP

Section 2. CPU

HIGHLIGHTS

This section of the manual contains the following topics:

2.1 INEOTUCTION ... 2-2
2.2 Programmer’s MOGEL...........uuiiiiiiiiiiiee et 2-4
2.3 Software Stack POINEr.......cciiiiiiie e 2-7
2.4 CPU Register DESCIPLONSeiiieeiiiiiie ettt sttt sttt s see e e e 2-10
2.5 Arithmetic LOGiC UNit (ALU).....c.eiiiiiiiiiiie ettt 2-13
2.6 Multiplication and Divide SUPPOI......ccciiiiuiiiiie e ee e eans 2-14
2.7 Compiler Friendly ArchiteCtUre..........cueiiiiiiiiiec e s 2-17
2.8 Multi-Bit Shift SUPPOITcoiiiiiiiee e e s 2-17
2.9 INSIrUCHON FIOW TYPES ...t 2-18
2.10 Program FIOW LOOP CONTIOL.......coiuiiiiiiiiiienie ittt s 2-20
2.11 Address Register DEpendenCiescccooiiiieiicieiiieee e 2-22
212 REQISIEI IMAPS ..ottt e e e e e e e e e e e anee 2-25
2.13 Related Application NOLES........uuiiiiiiiiiiiii e 2-26
214 ReVISION HISTOMY ... 2-27

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-1

PIC24F Family Reference Manual

2.1 INTRODUCTION

The PIC24F CPU module has a 16-bit (data) modified Harvard architecture with an enhanced
instruction set. The CPU has a 24-bit instruction word with a variable length opcode field. The
Program Counter (PC) is 24 bits wide and addresses up to 4M x 24 bits of user program memory
space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and
provides predictable execution. All instructions execute in a single cycle, with the exception of
instructions that change the program flow, the double-word move (MOV.D) instruction and the
table instructions. Overhead-free program loop constructs are supported using the REPEAT
instructions, which are interruptible at any point.

The PIC24F devices have sixteen, 16-bit working registers in the programmer’s model. Each of
the working registers can act as a data, address or address offset register. The 16th working
register (W15) operates as a Software Stack Pointer for interrupts and calls. The 15th working
register (W14) can be used as a Stack Frame Pointer when used with LNK and UNLX instructions.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program
space at any 16K word program boundary defined by the 8-bit Program Space Visibility Page
(PSVPAQG) register. The data to program space mapping feature lets any instruction access pro-
gram space as if it were data space. Refer to Section 4.4 “Program Space Visibility from Data
Space” for more information on Program Space Visibility.

The Instruction Set Architecture (ISA) is significantly enhanced beyond that of the PIC18F but
maintains an acceptable level of backward compatibility. All PIC18F instructions and addressing
modes are supported either directly or through simple macros. Many of the ISA enhancements
are driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing
modes, and 3 groups of addressing modes (MODE1, MODE2 and MODES). All modes support
Register Direct and various Register Indirect Addressing modes. Each group offers up to seven
addressing modes. Instructions are associated with predefined addressing modes depending
upon their functional requirements.

There is also a ‘Register Indirect with Signed 10-Bit Offset’ Addressing mode dedicated to two
special move instructions, LDWLO and STWLO. Refer to Section 32. “Instruction Set” for more
details.

For most instructions, the core is capable of executing a data (or program data) memory read, a
working register (data) read, a data memory write and a program (instruction) memory read per
instruction cycle. As a result, three parameter instructions can be supported, allowing A+ B =C
operations to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier is included to significantly enhance the core arithmetic
capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by
16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU is enhanced with integer divide assist hardware that supports an iterative
non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping
mechanism, and a selection of iterative divide instructions, to support 32-bit (or 16-bit) divided by
16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete,
but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and
interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 2-1.

DS39703A-page 2-2

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

Figure 2-1: PIC24F CPU Core Block Diagram

Address Bus
Data Bus
I N~ | Tre
\/ 6
Data Latch
Interrupt PSV & Table
Controller K574 Data Access A 16 Data
23| Control Block RAM
Address 16 16
23 Latch
ﬁm
<:¢:
23 RAGU
Program Counter WAGU
Stack Loop
Address Latch C&n&;’g I CLoong}ir gl
Program Memory
Data Latch
EA MUX
16
<
L 16 16
e
24 Z - B
LS ©
_]
[
2
3
AN
16 x 16
W Reg Array 16
A
Instruction
Decode &
Control Y
Multiplier
Control Signals ‘ ‘ ¢ ‘ ¢ and Divide
to Various Blocks _ Power-up Support
o Timer
OSC1/CLKI Timing Oscillator F
< Generation [Start-up Timer V
POR/BOR \ 16-Bit ALU
Izl Reset
MCLR Wat_chdog 16
Timer L
Peripherals Kl——— ——> I/O Ports

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-3

PIC24F Family Reference Manual

2.2 PROGRAMMER’S MODEL

The programmer’s model for the PIC24F is shown in Figure 2-2. All registers in the programmer’s
model are memory mapped and can be manipulated directly by instructions. A description of
each register is provided in Table 2-1.

Table 2-1: Programmer’s Model Register Descriptions
Register(s) Name Description

WO through W15 Working register array

PC 23-bit Program Counter

SR ALU STATUS register

SPLIM Stack Pointer Limit Value register

TBLPAG Table Memory Page Address register

PSVPAG Program Space Visibility Page Address register
RCOUNT Repeat Loop Counter register

CORCON CPU Control register

All registers associated with the programmer’s model are memory mapped, as shown in Table 2-5.

Figure 2-2: Programmer’s Model

WO (WREG)

Wi1

W2

W3

w4

W5

Wé

w7 \. Working/Address
W8 Registers

W9

W10

W11

W12

PUSH. S and POP. S Shadows W13

Frame Pointer/W14

Stack Pointer/W15 | 0 j

SPLIM | 0 | Stack Pointer Limit

22

| 0 | Program Counter

7 0
| TBLPAG | Data Table Page Address

Program Space Visibility
| PSVPAG | Page Address
15 0

| RCOUNT | Repeat Loop Counter

- SRH » < SRL >
| — | =] —=]—=]|—=]—=]—|pc] 20> |Ra
15
| CORCON | Core Control Register

STATUS Register

DS39703A-page 2-4 Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

2.2.1 Working Register Array

The 16 working (W) registers can function as data, address or address offset registers. The
function of a W register is determined by the addressing mode of the instruction that accesses it.

The PIC24F instruction set can be divided into two instruction types: register and file register
instructions. Register instructions can use each W register as a data value or an address offset
value. For example:

Example 2-1: Register Instructions
MOV WO, W1 ; move contents of WO to W1
MOV Wo, [W1] ; move WO to address contained in W1
ADD WO, [W4], W5 ; add contents of WO to contents pointed
; to by W4. Place result in W5.

2.2.1.1 WO AND FILE REGISTER INSTRUCTIONS

WO is a special working register because it is the only working register that can be used in file
register instructions. File register instructions operate on a specific memory address contained
in the instruction opcode and W0. W1-W15 cannot be specified as a target register in file register
instructions.

The file register instructions provide backward compatibility with existing PICmicro® devices
which have only one W register. The label ‘WREG'’ is used in the assembler syntax to denote WO
in a file register instruction. For example:

Example 2-2: File Register Instructions

MOV WREG, 0x0100 ; move contents of WO to address 0x0100
ADD 0x0100, WREG ; add WO to address 0x0100, store in WO

Note: For a complete description of addressing modes and instruction syntax, please refer
to the “dsPIC30F Programmer’s Reference Manual” (DS70030).

2212 W REGISTER MEMORY MAPPING

Since the W registers are memory mapped, it is possible to access a W register in a file register
instruction, as shown below:

Example 2-3: Access W Register in File Register Instruction

MOV 0x0004, W10 ; equivalent to MOV W2, W10

where:

0x0004 is the address in memory of W2

Further, it is also possible to execute an instruction that will attempt to use a W register as both
an Address Pointer and operand destination. For example:

Example 2-4: W Register Used as Address Pointer and Operand Destination

MOV W1, [W2++]
where:

Wl = 0x1234
W2 0x0004 ; [W2] addresses W2

In Example 2-4, the contents of W2 are 0x0004. Since W2 is used as an Address Pointer, it points
to location 0x0004 in memory. W2 is also mapped to this address in memory. Even though this
is an unlikely event, it is impossible to detect until run time. The PIC24F ensures that the data
write will dominate, resulting in W2 = 0x1234 in the example above.

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-5

PIC24F Family Reference Manual

2.2.1.3 W REGISTERS AND BYTE MODE INSTRUCTIONS

Byte instructions which target the W register array only affect the Least Significant Byte of the
target register. Since the working registers are memory mapped, the Least and Most Significant
Bytes can be manipulated through byte wide data memory space accesses.

222 Shadow Registers

Some of the registers have a shadow register associated with them as shown in Table 2-5. The
shadow register is used as a temporary holding register and can transfer its contents to or from
its host register upon some occurring event. None of the shadow registers are accessible directly.
The PUSH. s and POP. S shadow rule is applied to register transfer into and out of shadows.

2.2.2.1 PUSH. S AND popr.s SHADOW REGISTERS

The PUSH. S and POP. S instructions are useful for fast context save/restore during a function call
or Interrupt Service Routine (ISR). The PUSH. s instruction will transfer the following register
values into their respective shadow registers:

e WO0..W3

* SR(N,0V, Z, C, DC bits only)

The poP.s instruction will restore the values from the shadow registers into these register
locations. A code example using the PUSH.S and POP. S instructions is shown in Example 2-5.

Example 2-5: PUSH. S and POP. S Instructions

MyFunction:
PUSH.S ; Save W registers, MCU status
MOV #0x03, WO ; load a literal value into WO
ADD RAM100 add WO to contents of RAM100

is the result 072
Yes, set a flag
Restore W regs, MCU status

BTSC SR, #Z

BSET Flags, #IsZero
POP.S

RETURN

The PUSH. s instruction will overwrite the contents previously saved in the shadow registers. The
shadow registers are only one level in depth, so care must be taken if the shadow registers are
to be used for multiple software tasks.

The user must ensure that any task using the shadow registers will not be interrupted by a higher
priority task that also uses the shadow registers. If the higher priority task is allowed to interrupt
the lower priority task, the contents of the shadow registers saved in the lower priority task will
be overwritten by the higher priority task.

223 Uninitialized W Register Reset

The W register array (with the exception of W15) is cleared during all Resets and is considered
uninitialized until written to. An attempt to use an uninitialized register as an Address Pointer will
reset the device. Refer to Section 7. “Reset” for more details (check Microchip web site for
availability: www.microchip.com).

A word write must be performed to initialize a W register. A byte write will not affect the initialization
detection logic.

DS39703A-page 2-6

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

2.3 SOFTWARE STACK POINTER

W15 serves as a dedicated Software Stack Pointer and is automatically modified by exception
processing, subroutine calls and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
Stack Pointer (e.g., creating stack frames).

Note: In order to protect against misaligned stack accesses, W15<0> is fixed to ‘0’ by the
hardware.

W15 is initialized to 0x0800 during all Resets. This address ensures that the Stack Pointer (SP)
will point to valid RAM in all PIC24F devices and permits stack availability for non-maskable trap
exceptions, which may occur before the SP is initialized by the user software. The user may
reprogram the SP during initialization to any location within data space.

The Stack Pointer always points to the first available free word and fills the software stack,
working from lower towards higher addresses. It pre-decrements for a stack pop (read) and
post-increments for a stack push (writes), as shown in Figure 2-3.

When the PC is pushed onto the stack, the PC<15:0> bits are pushed onto the first available
stack word; then, the PC<22:16> bits are pushed onto the second available stack location. For
a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as
shown in Figure 2-3. During exception processing, the MSB of the PC is concatenated with the
lower 8 bits of the CPU STATUS register, SR. This allows the contents of SRL to be preserved
automatically during interrupt processing.

Figure 2-3: Stack Operation for a CALL Instruction

15 0
CALL SUBR

PC<15:0> -« W15 (before CALL)
B'000000000'| PC<22:16>
<Free Word> -« W15 (after caLL)

Stack Grows Towards
Higher Address

-
)

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-7

PIC24F Family Reference Manual

2.31 Software Stack Examples

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 used as the destination pointer. For
example, the contents of WO can be pushed onto the stack by:

PUSH WO

This syntax is equivalent to:

MOV WO, [W15++]
The contents of the Top-of-Stack (TOS) can be returned to WO by:
POP WO

This syntax is equivalent to:
MOV [--W15], WO

Figure 2-4 through Figure 2-7 show examples of how the software stack is used. Figure 2-4
shows the software stack at device initialization. W15 is initialized to 0x0800. Furthermore, this
example assumes that the values Ox5A5A and 0x3636 are written to WO and W1, respectively.
The stack is pushed for the first time in Figure 2-5 and the value contained in WO is copied to the
stack. W15 is automatically updated to point to the next available stack location (0x0802). In
Figure 2-6, the contents of W1 are pushed onto the stack. In Figure 2-7, the stack is popped and
the Top-of-Stack value (previously pushed from W1) is written to W3.

Figure 2-4: Stack Pointer at Device Reset

0x0000
W15 ——» 0x0800

OXFFFE

W15 = 0x0800
WO = 0x5A5A
W1 =0x3636

Figure 2-5: Stack Pointer After the First PUSH Instruction

0x0000

O0x5A5A 0x0800 PUSH WO
W15 ——» 0x0802

OxFFFE

W15 = 0x0802
WO = O0x5A5A
W1 =0x3636

Figure 2-6: Stack Pointer After the Second PUSH Instruction

0x0000

Ox5A5A 0x0800
0x3636 0x0802
W15 ——» 0x0804

PUSH W1

OxFFFE

W15 = 0x0804
WO = 0x5A5A
W1 =0x3636

DS39703A-page 2-8

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

Figure 2-7: Stack Pointer After a POP Instruction

0x0000

POP W3

0x05A5A | 0x0800
W15 ——» 0x03636 0x0802

OxFFFE

W15 = 0x0802
0x3636 — W3

2.3.2 W14 Software Stack Frame Pointer

A frame is a user-defined section of memory in the stack that is used by a single subroutine. W14
is a special working register because it can be used as a Stack Frame Pointer with the LNK (link)
and ULNK (unlink) instructions. W14 can be used in a normal working register by instructions
when it is not used as a Stack Frame Pointer.

Refer to the “dsPIC30F Programmer’s Reference Manual” (DS70030) for software examples that
use W14 as a Stack Frame Pointer.

2.3.3 Stack Pointer Overflow

There is a Stack Pointer Limit register (SPLIM) associated with the Stack Pointer that is reset to
0x0000. SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘0’ because all stack operations must
be word-aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs, after which time
it can only be disabled by a device Reset. All effective addresses generated using W15 as a
source or destination are compared against the value in SPLIM. If the contents of the Stack
Pointer (W15) are greater than the contents of the SPLIM register by 2, and a push operation is
performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push
operation. Thus, for example, if it is desirable to cause a Stack Error Trap when the stack grows
beyond address 0x2000 in RAM, initialize the SPLIM with the value, Ox1FFE.

Note: A stack error trap may be caused by any instruction that uses the contents of the
W15 register to generate an Effective Address (EA). Thus, if the contents of W15
are greater than the contents of the SPLIM register by 2, and a CALL instruction is
executed or an interrupt occurs, a stack error trap will be generated.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 effective address
calculation wraps over the end of data space (OxFFFF).

Note: A write to the Stack Pointer Limit register, SPLIM, should not be followed by an
indirect read operation using W15.

Refer to Section 8. “Interrupts” for more information on the stack error trap.

2.3.4 Stack Pointer Underflow

The stack is initialized to 0x0800 during Reset. A stack error trap will be initiated should the Stack
Pointer address ever be less than 0x0800.

Note: Locations in data space between 0x0000 and Ox07FF are, in general, reserved for
core and peripheral Special Function Registers.

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-9

PIC24F Family Reference Manual

2.4 CPU REGISTER DESCRIPTIONS

241 SR: CPU STATUS Register

The PIC24F CPU has a 16-bit STATUS register (SR), the LSB of which is referred to as the lower
STATUS register (SRL). The upper byte of SR is referred to as SRH. A detailed description of SR
is shown in Register 2-1.

SRL contains all the MCU ALU operation Status flags, plus the CPU Interrupt Priority Level
Status bits, IPL<2:0>, and the REPEAT Loop Active Status bit, RA (SR<4>). During exception
processing, SRL is concatenated with the MSB of the PC to form a complete word value which
is then stacked.

SRH contains only the Digit Carry bit, DC (SR<8>).
The SR bits are readable/writable with the following exceptions:

1. The RA bit (SR<4>): RA is a read-only bit.
2. IPL<2:0>: When register is disabled (NSTDIS = 1), IPL<2:0> bits become read-only.

Note: A description of the SR bits affected by each instruction is provided in the “dsPIC30F
Programmer’s Reference Manual” (DS70030).

DS39703A-page 2-10

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

Register 2-1: SR: CPU STATUS Register
u-0 uU-0 u-0 uU-0 u-0 u-0 u-0 R/W-0
— — — — — — — DC
bit 15 bit 8
R/W-0®® R/W-0() R/W-0® R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL<2:0> RA N ov 4 C
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-9 Unimplemented: Read as ‘0’
bit 8 DC: MCU ALU Half Carry/Borrow bit
1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred
0 = No carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(!)
111 = CPU interrupt priority level is 7 (15), user interrupts disabled
110 = CPU interrupt priority level is 6 (14)
101 = CPU interrupt priority level is 5 (13)
100 = CPU interrupt priority level is 4 (12)
011 = CPU interrupt priority level is 3 (11)
010 = CPU interrupt priority level is 2 (10)
001 = CPU interrupt priority level is 1 (9)
000 = CPU interrupt priority level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress
bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)
bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2’'s complement). It indicates an overflow of the magnitude which
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 1 Z: MCU ALU Zero bit
1 = Last operation resulted in zero
0 = Last operation did not result in zero
bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry out from the Most Significant bit of the result occurred
0 = No carry out from the Most Significant bit of the result occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority
level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

2: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-11

PIC24F Family Reference Manual

Register 2-2: CORCON: Core Control Register
u-0 uU-0 u-0 uU-0 u-0 u-0 u-0 u-0
bit 15 bit 8
uU-0 uU-0 uU-0 u-0 R/C-0 R/W-0 U-0 u-0
— — — — IPL3(M PSV — —
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-4 Unimplemented: Read as ‘0’
bit 3 IPL3: CPU Interrupt Priority Level Status bit(")

1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less
bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

bit 1-0 Unimplemented: Read as ‘0’

Note 1: User interrupts are disabled when IPL3 = 1.

DS39703A-page 2-12

Advance Information

© 2006 Microchip Technology Inc.

Section 2. CPU

24.2 Other PIC24F CPU Control Registers

The registers listed below are associated with the PIC24F CPU core, but are described in further
detail in other sections of this manual.

2421 TBLPAG: TABLE PAGE ADDRESS POINTER

The TBLPAG register is used to hold the upper 8 bits of a program memory address during table
read and write operations. Table instructions are used to transfer data between program memory
space and data memory space. Refer to Section 4. “Program Memory” for further details
(check Microchip web site for availability: www.microchip.com).

2422 PSVPAG: PROGRAM MEMORY VISIBILITY PAGE ADDRESS POINTER n

Program Space Visibility allows the user to map a 32-Kbyte section of the program memory
space into the upper 32 Kbytes of data address space. This feature allows transparent access of
constant data through PIC24F instructions that operate on data memory. The PSVPAG register
selects the 32-Kbyte region of program memory space that is mapped to the data address space.
Refer to Section 4. “Program Memory” for more information on the PSVPAG register (check
Microchip web site for availability: www.microchip.com).

2.42.3 DISICNT: DISABLE INTERRUPTS COUNTER REGISTER

The DISICNT register is used by the DISI instruction to disable interrupts of priority 1-6 for a
specified number of cycles. See Section 8. “Interrupts” for further information.

2.5 ARITHMETIC LOGIC UNIT (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, single bit shifts and logic
operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature.
Depending on the operation, the ALU may affect the values of the Carry/Borrow (C), Zero (2),
Negative (N), Overflow (OV) and Half Carry/Borrow (DC) Status bits in the SR register. The C
and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction
operations.

The ALU can perform 8-bit or 16-bit operations depending on the mode of the instruction that is
used. Data for the ALU operation can come from the W register array, or data memory, depend-
ing on the addressing mode of the instruction. Likewise, output data from the ALU can be written
to the W register array or a data memory location.

Refer to the “dsPIC30F Programmer’s Reference Manual” (DS70030) for information on the SR
bits affected by each instruction, addressing modes and 8-Bit/16-Bit Instruction modes.

Note 1: Byte operations use the 16-bit ALU and can produce results in excess of 8 bits.
However, to maintain backward compatibility with PICmicro devices, the ALU result
from all byte operations is written back as a byte (i.e., MSB not modified) and the
CPU STATUS register, SR, is updated based only upon the state of the LSB of the
result.

2: Allregister instructions performed in Byte mode only affect the LSB of the W registers.
The MSB of any W register can be modified by using file register instructions that
access the memory mapped contents of the W registers.

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-13

PIC24F Family Reference Manual

2.6 MULTIPLICATION AND DIVIDE SUPPORT

2.6.1 Overview

The PIC24F core contains a 17-bit x 17-bit multiplier and is capable of unsigned, signed or mixed
sign operation with the following multiplication modes:

16-Bit x 16-Bit Signed

16-Bit x 16-Bit Unsigned

16-Bit Signed x 5-Bit (literal) Unsigned

16-Bit Unsigned x 16-Bit Unsigned

16-Bit Unsigned x 5-Bit (literal) Unsigned

16-Bit Unsigned x 16-Bit Signed

. 8-Bit Unsigned x 8-Bit Unsigned

The divide block is capable of supporting 32-bit/16-bit and 16-bit/16-bit signed and unsigned
integer divide operation with the following data sizes:

1. 32-bit signed/16-bit signed divide

2. 32-bit unsigned/16-bit unsigned divide

3. 16-bit signed/16-bit signed divide

4. 16-bit unsigned/16-bit unsigned divide

2.6.2 Multiplier

A block diagram of the multiplier is shown in Figure 2-8. It is used to support the multiply instructions
which include integer 16-bit signed, unsigned and mixed sign multiplies, including the PIC18F
unsigned multiply, MULWF (MUL . w and MUL . b). All multiply instructions only support Register Direct
Addressing mode for the result. A 32-bit result (from all multiplies other than MULWF) is written to
any two aligned consecutive W register pairs, except W15:W14, which are not allowed.

No ook owdhd -~

The MULWF instruction may be directed to use byte or word sized operands. The destination is
always the W3:W2 register pair in the W array. Byte multiplicands will direct a 16-bit result to W2
(W83 is not changed), and word multiplicands will direct a 32-bit result to W3:W2.

Note: The destination register pair for multiply instructions must be ‘aligned’ (i.e.,
odd:even), where ‘odd’ contains the most significant result word and ‘even’ contains
the least significant result word. For example, W3:W2 is acceptable, whereas
W4:W3 is not.

The multiplicands for all multiply instructions (other than MULWF which is a special case) are
derived from the W array (1st word) and data space (2nd word). MULWF derives its multiplicands
from W2 (1st word or byte) and data space (2nd word or byte) using a zero-extended, 13-bit
absolute address.

Additional data paths are provided to allow these instructions to write the result back into the W
array and data bus (via the W array) as shown in Figure 2-8.

DS39703A-page 2-14

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

2.6.2.1 SINGLE AND MIXED MODE INTEGERS

Simple data preprocessing logic either zero or sign-extends all operands to 17 bits, such that
unsigned, signed or mixed sign multiplications can be executed as signed values. All unsigned
operands are always zero-extended into the 17th bit of the multiplier input value. All signed
operands are always sign-extended into the 17th bit of the multiplier input value.

For unsigned 16-bit multiplies, the multiplier produces a 32-bit, unsigned result.
For signed 16-bit multiplies, the multiplier produces 30 bits of data and 2 bits of sign.
For 16-Bit Mixed mode (signed/unsigned) multiplies, the multiplier produces 31 bits of data and

1 bit of sign.
Figure 2-8: Multiplier Block Diagram
Result
16:31
0:15
17 x 17-Bit
Multiplier
17 17 16 16
2 .
Mixed Mode
IR) Selection
16 16
——
16 x 16
W Array

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-15

PIC24F Family Reference Manual

2.6.3 Divider

The PIC24F features both 32-bit/16-bit and 16-bit/16-bit signed and unsigned, integer divide
operations which are implemented as single instruction iterative divides.

The quotient for all divide instructions ends up in WO and the remainder in W1. 16-bit signed and
unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W
register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one
cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number
of cycles to execute.

The divide instructions must be executed within a REPEAT loop. Any other form of execution
(e.g., a series of discrete divide instructions) will not function correctly because the instruction
flow function is conditional on RCOUNT. The divide flow does not automatically set up the
REPEAT, which must therefore, be explicitly executed with the correct operand value as shown
in Table 2-2 (REPEAT will execute the target instruction {operand value + 1} time).

Table 2-2: Divide Execution Time

REPEAT Total Execution
Instruction Description Iterations | Operand Time
Value | (including REPEAT)

DIV.SD Signed divide: 18 17 19
W(m + 1):Wm/Wn — W0; Rem — W1

DIV.SW Signed divide: 18 17 19
Wm/Wn — WO0; Rem — W1

DIV.UD Unsigned divide: 18 17 19
W(m + 1):Wm/Wn — WO0; Rem — W1

DIV.UW Unsigned divide: 18 17 19

Wm/Wn — WO0; Rem — W1

All intermediate data is saved in W1:WO after each iteration. The N, C and Z Status flags are used
to convey control information between iterations. Consequently, although the divide instructions
are listed as 19 cycle operations, the divide iterative sequence is interruptible, just like any other
REPEAT loop.

Dividing by zero will initiate an arithmetic error trap. The divisor is evaluated during the first cycle
of the divide instruction, so the first cycle will be executed prior to the start of exception processing
for the trap. Refer to Section 8. “Interrupts” for more details.

DS39703A-page 2-16

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

2.7 COMPILER FRIENDLY ARCHITECTURE

The core architecture is designed to produce an efficient (code size and speed) C compiler.

* For most instructions, the core is capable of executing a data (or program data) memory
read, a working register (data) read, a data memory write and a program (instruction)
memory read per instruction cycle. As a result, 3 parameter instructions are supported,
allowing A + B = C operations to be executed in a single cycle.

¢ Instruction addressing modes are very flexible and are matched closely to compiler needs.

e There are sixteen, 16 x 16-bit working register arrays, each of which can act as data,
address or offset registers. One working register (W15) operates as a software stack for

interrupts and calls.

* Linear indirect access of all data space is supported, plus the memory direct address range n
is extended to 8 Kbytes, with the addition of 16-bit direct address load and store
instructions.

¢ Linear indirect access of 32K word (64 Kbyte) pages within program space (user and test
space) is supported using any working register via new table read and write instructions.

¢ Part of the data space can be mapped into program space, allowing constant data to be
accessed as if it were in data space using PSV mode.

2.8 MULTI-BIT SHIFT SUPPORT

The PIC24F core supports single-cycle, multi-bit arithmetic and logic shifts using a shifter block.
It also supports single bit shifts through the ALU. The multi-bit shifter is capable of performing up
to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle.

A full summary of instructions that use the shift operation is provided below in Table 2-3.

Table 2-3: Instructions Using Single and Multi-Bit Shift Operations
Instruction Description
ASR Arithmetic shift right source register by one or more bits.
SL Shift left source register by one or more bits.
LSR Logical shift right source register by one or more bits.

All multi-bit shift instructions only support Register Direct Addressing mode for both the operand
source and result destination.

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-17

PIC24F Family Reference Manual

29 INSTRUCTION FLOW TYPES
Most instructions in the PIC24F architecture occupy a single word of program memory and
execute in a single cycle. An instruction prefetch mechanism facilitates single-cycle (1 Tcy)
execution. However, some instructions take 2 or 3 instruction cycles to execute. Consequently,
there are six different types of instruction flow in the PIC24F architecture. These are described
below:
1. 1 Instruction Word, 1 Instruction Cycle:
These instructions will take one instruction cycle to execute as shown in Example 2-6.
Example 2-6: Instruction Flow — 1-Word, 1-Cycle
TcyO Teyl Tcy2 Tcy3 Tcy4 Tcys
1. MOV #350, WO Fetch 1 Execute 1
2. INC WO, W2 Fetch 2 Execute 2
3. INC [WO++], W2 Fetch 3 Execute 3
2. 1 Instruction Word, 2 Instruction Cycles:
These instructions include the relative branches, relative call, skips and returns. When an
instruction changes the PC (other than to increment it), the pipelined fetch is discarded. This
makes the instruction take two effective cycles to execute as shown in Example 2-7.
Example 2-7: Instruction Flow — 1-Word, 2-Cycle
TcyO Teyl Tcy2 Tcy3 Tcy4 Tcys Tcyé
1. MOV #55, WO Fetch 1 |Execute 1
2. BTSC.b PORTA, #3 Fetch 2 | Execute 2
Skip Taken
3. ADD.b, PORTB Fetch 3 |Forced NOP
4. BRA SUB_1 Fetch 4 |Execute 4
5. ADD.b W0, [Wl], [wW2] Fetch 5 | Forced NOP
L
6. Instruction @ address SUB 1 Fetch Execute
SUB_1 SUB_1

3. 1 Instruction Word, 2 Instruction Cycles (Double Operation):

The only instructions of this type are the LDDW and STDW (load and store double word). As
the data access has to be sequential, two cycles are required to complete these instructions
as shown in Example 2-8.

Example 2-8: Instruction Flow — 1-Word, 2-Cycle
Tcyo Tcyl Tcy2 Tcy3 Tcy4 Tcys
1. MOV.w #1234, W2 Fetch 1 Execute 1
2. MOV.D [W2++], W4 Fetch 2 Execute 2 | Execute 2
R/W Cycle 1|R/W Cycle 2
3. MOV.w O0xO0AA, WO Fetch 3 No Fetch Execute 3
4. MOV.b, PORTA Fetch 4 Execute 4

DS39703A-page 2-18

Advance Information

© 2006 Microchip Technology Inc.

Section 2. CPU

4.

1 Instruction Word, 2 Instruction Cycles Table Operations:

These instructions will suspend fetching to insert a read or write cycle into the program
memory. The instruction fetched while executing the table operation is saved for one cycle
and executed in the cycle immediately after the table operation as shown in Example 2-9.

Example 2-9: Instruction Flow — Table Operations
Tcy0 Tevi Tcy2 Tcy3 Tcy4 Tcys
1. MOV #0x1234, WO Fetch 1 Execute 1
2. TBLRDL.w [WO++], W1 Fetch 2 Execute 2
3. MOV #0x00AA, W1 Fetch 3 PM Data
Read Cycle
Bus Read | Execute 3
4. MOV #0x00CC, WO Fetch 4 Execute 4 |
5. 2 Instruction Words, 2 Instruction Cycles (GoTO, CALL):
In these instructions, the fetch after the instruction contains data. This results in a 2-cycle
instruction as shown in Example 2-10. The second word of a 2-word instruction is encoded,
so that it will be executed as a NOP, should it be fetched by the CPU without first fetching the
first word of the instruction. This is important when a 2-word instruction is skipped by a skip
instruction (see Example 2-13).
Example 2-10: Instruction Flow — 2-Word, 2-Cycle
Tcyo Tevi Tev2 Tcy3 Tcy4 Tcy5
1. MOV #0xAA55, WO Fetch 1 Execute 1
2. GOTO LABEL Fetch 2L | Update PC
Fetch 2H | Forced NOP
3. LABEL: MOV WO, W2 Fetch 3 Execute 3
4. BSET PORTA, #3 Fetch 4 Execute 4
6. Address Register Dependencies:
These are instructions that are subjected to a stall due to a data address dependency
between the data space read and write operations. An additional cycle is inserted to resolve
the resource conflict as discussed in Section 2.11 “Address Register Dependencies”.
Example 2-11: Instruction Flow — 1-Word, 1-Cycle (With Instruction Stall)
Tcyo Tev1 Tcv2 Tcy3 Tcy4 Tcys
1. MOV WO, Wl Fetch 1 Execute 1
2. MOV [W1], [w4] Fetch 2 Execute 1
Stall Execute 2
3. MOV W2, Wl Fetch 3 Execute 3

© 2006 Microchip Technology Inc.

Advance Information DS39703A-page 2-19

PIC24F Family Reference Manual

2.10 PROGRAM FLOW LOOP CONTROL

The PIC24F supports REPEAT instruction construct to provide unconditional automatic program
loop control. The REPEAT instruction is used to implement a single instruction program loop. The
instruction uses control bits within the CPU STATUS register, SR, to temporarily modify CPU
operation.

2.10.1

The REPEAT instruction causes the instruction that follows it to be repeated a number of times.
A literal value contained in the instruction, or a value in one of the W registers, can be used to
specify the REPEAT count value. The W register option enables the loop count to be a software
variable.

REPEAT Loop

An instruction in a REPEAT loop will be executed at least once. The number of iterations for a
REPEAT loop will be the 14-bit literal value + 1, or Wn + 1.

The syntax for the two forms of the REPEAT instruction is given below:

Example 2-12: REPEAT Instruction Syntax

REPEAT #1it14 ; RCOUNT <-- 1it14
(Valid target Instruction)

or

REPEAT Wn ; RCOUNT <-- Wn
(Valid target Instruction)

2.10.1.1 REPEAT OPERATION

The loop count for REPEAT operations is held in the 14-bit RCOUNT register which is memory
mapped. RCOUNT is initialized by the REPEAT instruction. The REPEAT instruction sets the
Repeat Active Status bit, RA (SR<4>), to ‘1’ if the RCOUNT is a non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the PC is not incremented. Further PC increments are inhibited until
RCOUNT = 0. See Example 2-13 for an instruction flow example of a REPEAT loop.

For a loop count value equal to ‘0’, REPEAT has the effect of a NOP and the RA (SR<4>) bit is not
set. The REPEAT loop is essentially disabled before it begins, allowing the target instruction to
execute only once while prefetching the subsequent instruction (i.e., normal execution flow).

Note: The instruction immediately following the REPEAT instruction (i.e., the target
instruction) is always executed at least one time. It is always executed one time

more than the value specified in the 14-bit literal or the W register operand.

Example 2-13: REPEAT Instruction Pipeline Flow

Tcyo
Fetch 1

Teyl
Execute 1

Tey2 Tcy3 Tcy4 Tcys

1.REPEAT #0x2

2.MOV [WO++], [Wl++]

3.BSET PORTA, #3

Fetch 2

Execute 2

No Fetch

Execute 2

No Fetch

Execute 2

Fetch 3

Execute 3

PC (at end of instruction)

PC

PC +2

PC +2

PC +2

PC +4

PC +6

RCOUNT (at end of instruction)

0

0

RA (at end of instruction)

0

0

DS39703A-page 2-20

Advance Information

© 2006 Microchip Technology Inc.

Section 2. CPU

2.10.1.2 INTERRUPTING A REPEAT LOOP

A REPEAT instruction loop may be interrupted at any time.

The RA state is preserved on the stack during exception processing to allow the user to execute
further REPEAT loops from within any number of nested interrupts. After SRL is stacked, the RA
Status bit is cleared to restore normal execution flow within the ISR.

Note: If a REPEAT loop has been interrupted and an ISR is being processed, the user must
stack the RCOUNT (Repeat Loop Counter) register prior to executing another
REPEAT instruction within an ISR.

Note: If REPEAT was used within an ISR, the user must unstack RCOUNT prior to executing
RETFIE.

Returning into a REPEAT loop from an ISR using RETFIE requires no special handling.
Interrupts will prefetch the repeated instruction during the third cycle of the RETFIE. The
stacked RA bit will be restored when the SRL register is popped, and if set, the interrupted
REPEAT loop will be resumed.

Note: Should the repeated instruction (target instruction in the REPEAT loop) be accessing
data from Program Space (PS) using Program Space Visibility (PSV), the first time
it is executed after a return from an exception will require 2 instruction cycles. Similar
to the first iteration of a loop, timing limitations will not allow the first instruction to
access data residing in PS in a single instruction cycle.

2.10.1.2.1 Early Termination of a REPEAT Loop

An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in software.

2.10.1.3 RESTRICTIONS ON THE REPEAT INSTRUCTION

Any instruction can immediately follow a REPEAT except for the following:

1. Program flow control instructions (any branch, compare and skip, subroutine calls,
returns, etc.).

2. Another REPEAT instruction.

DISI, ULNK, LNK, PWRSAV, RESET instructions.

4. MOV.D instruction.

w

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-21

PIC24F Family Reference Manual

2.1 ADDRESS REGISTER DEPENDENCIES

The PIC24F architecture supports a data space read (source) and a data space write
(destination) for most instructions. The Effective Address (EA) calculation by the Address Gener-
ator Unit (AGU), and subsequent data space read or write, each take a period of one instruction
cycle to complete. This timing causes the data space read and write operations for each instruc-
tion to partially overlap, as shown in Figure 2-9. Because of this overlap, a ‘Read-After-Write’
(RAW) data dependency can occur across instruction boundaries. RAW data dependencies are
detected and handled at run time by the PIC24F CPU.

Figure 2-9: Data Space Access Timing

ADD WO, [W7], [wW10]
MOV [W8], [W9]++
1 Instruction Cycle (Tcy)
P
: Teyo : Tev1 I Tev2 I
Instruction Register ; \ ‘ I
Contents >< >< ADD >< MoV >
Read AGU ' \ W7] . [wsj . I
Write AGU ! [W10] [WOl++
Address | X wz X wio X ws X we)

2.11.1 Read-After-Write Dependency Rules

If a working register, Wn, is used as a write operation destination in the current instruction, and the
same working register, Wn, being read in the prefetched instruction are the same, the following
rules will apply:

1. If the destination write (current instruction) does not modify the contents of Wn, no stalls
will occur;

or

2. If the source read (prefetched instruction) does not calculate an EA using Wn, no stalls
will occur.

During each instruction cycle, the PIC24F hardware automatically checks to see if a RAW data
dependency is about to occur. If the conditions specified above are not satisfied, the CPU will
automatically add a one instruction cycle delay before executing the prefetched instruction. The
instruction stall provides enough time for the destination W register write to take place before the
next (prefetched) instruction has to use the written data.

DS39703A-page 2-22

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

Table 2-4: Read-After-Write Dependency Summary
Destination Addressing | Source Addressing Status Examples
Mode Using Wn Mode Using Wn (Wn =W2)
Direct Direct Allowed ADD.w WO, W1, W2
MOV.w W2, W3
Direct Indirect Stall ADD.w WO, W1, W2
MOV.w [W2], W3
Direct Indirect with Stall ADD.w WO, W1, W2
modification MOV.w [W2++], W3
Indirect Direct Allowed ADD.w WO, W1, [W2]
MOV.w W2, W3
Indirect Indirect Allowed ADD.w WO, W1, [W2]
MOV.w [W2], W3
Indirect Indirect with Allowed ADD.w WO, W1, [W2]
modification MOV.w [W2++], W3
Indirect with Direct Allowed ADD.w WO, W1, [W2++]
modification MOV.w W2, W3
Indirect Indirect Stall ADD.w WO, W1, [W2]
MOV.w [W2], W3
; W2=0x0004 (mapped W2)
Indirect Indirect with Stall ADD.w WO, W1, [W2]
modification MOV.w [W2++], W3
; W2=0x0004 (mapped W2)
Indirect with Indirect Stall ADD.w WO, W1, [W2++]
modification MOV.w [W2], W3
Indirect with Indirect with Stall ADD.w WO, W1, [W2++]
modification modification MOV.w [W2++], W3
2.11.2 Instruction Stall Cycles

An instruction stall is essentially a one instruction cycle wait period appended in front of the read
phase of an instruction in order to allow the prior write to complete before the next read operation.
For the purposes of interrupt latency, it should be noted that the stall cycle is associated with the
instruction following the instruction where it was detected (i.e., stall cycles always precede
instruction execution cycles).

If a RAW data dependency is detected, the PIC24F will begin an instruction stall. During an
instruction stall, the following events occur:

1. The write operation underway (for the previous instruction) is allowed to complete as normal.

2. Data space is not addressed until after the instruction stall.

3. PCincrement is inhibited until after the instruction stall.
4. Further instruction fetches are inhibited until after the instruction stall.

2.11.2.1

INSTRUCTION STALL CYCLES AND INTERRUPTS

When an interrupt event coincides with two adjacent instructions that will cause an instruction
stall, one of two possible outcomes could occur:

1. The interrupt could be coincident with the first instruction. In this situation, the first instruction
will be allowed to complete and the second instruction will be executed after the ISR
completes. In this case, the stall cycle is eliminated from the second instruction because the
exception process provides time for the first instruction to complete the write phase.

2. The interrupt could be coincident with the second instruction. In this situation, the second
instruction and the appended stall cycle will be allowed to execute prior to the ISR. In this
case, the stall cycle associated with the second instruction executes normally. However, the
stall cycle will be effectively absorbed into the exception process timing. The exception
process proceeds as if an ordinary 2-cycle instruction was interrupted.

© 2006 Microchip Technology Inc.

Advance Information

DS39703A-page 2-23

PIC24F Family Reference Manual

2.11.2.2 INSTRUCTION STALL CYCLES AND FLOW CHANGE INSTRUCTIONS

The cALL and RCALL instructions write to the stack using W15 and may, therefore, force an
instruction stall prior to the next instruction if the source read of the next instruction uses W15.

The RETFIE and RETURN instructions can never force an instruction stall prior to the next
instruction because they only perform read operations. However, the user should note that the
RETLW instruction could force a stall because it writes to a W register during the last cycle.

The coTO and branch instructions can never force an instruction stall because they do not
perform write operations.

2.11.2.3 INSTRUCTION STALLS AND REPEAT LOOPS

Other than the addition of instruction stall cycles, RAW data dependencies will not affect the
operation of REPEAT loops.

The prefetched instruction within a REPEAT loop does not change until the loop is complete or
an exception occurs. Although register dependency checks occur across instruction boundaries,
the PIC24F effectively compares the source and destination of the same instruction during a
REPEAT loop.

2.11.2.4 INSTRUCTION STALLS AND PROGRAM SPACE VISIBILITY (PSV)

When Program Space Visibility (PSV) is enabled and the Effective Address (EA) falls within the
visible PSV window, the read or write cycle is redirected to the address in program space.
Accessing data from program space takes up to 3 instruction cycles.

Instructions operating in PSV address space are subject to instruction stalls, just like any other
instruction. Although the instruction stall and PSV cycles both occur at the beginning of an
instruction, it is not possible to combine them. If a stall occurs coincidentally with a PSV cycle,
the stall cycle will be forced first, then the PSV cycle and finally, the instruction cycle.

Consider the following code segment:

ADD WO, [W1], [W2++] ; PSV = 1, W1=0x8000, PSVPAG=0xAA
MOV [w2], [w3]

This sequence of instructions would take five instruction cycles to execute. Two instruction cycles
are added to perform the PSV access via W1. Furthermore, an instruction stall cycle is inserted
to resolve the RAW data dependency caused by W2.

During a stalled instruction, the ROM Latch is transferred to the IR on the rising Q1 of the first
cycle, and the Flash data read is transferred to the ROM Latch on the rising Q3 of the 2nd cycle
of the instruction, as shown in Figure 2-9.

DS39703A-page 2-24

Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

‘s|iejop dew Ja)siBal 8100 o1y109ds 10} 198YS BIEP 9DIASP 8U} 0} J9)o :| 90N
‘lewioapixay Ul UMOYS 8Je SenjeA 1osay °,0, Se peal ‘pajuswe|dwiun = — 18Say U0 8njeA umouyun = X :puaber]

XXXX Jsjunog sidnusul egesia — — 1NOISIa
0000 — — ASd €1dl — — — — — — — — = = = = NOJHOOD
0000 o] z AO N vd 01dl 1di Zdl oa — — — — — — — Hs
XXKK Ja1uno) doo jeaday 1NNODOH
0000 J9jul0d ssalppy abed ANjiqisin Alows|y weiboid — — — — — — — — OVdASd
0000 Jsjulod sseppy abed o|qeL — — — — — — — — ovdigl
0000 a1Ag ybiH “ejuno) weiboid — — — — — — — — HOd
0000 plopn Mo “epuno) weiboid 10d
XXXX i Jsjuiod xoeis WINdS
0080 G| Jo1s160y Bunjiopy SIM
0000 1 4918169y Buop PIM
0000 g1 Jois16ay Bupjiop SIM
0000 21 Je1s16ay Bupjiop Z2IM
0000 L1 4918160y Bunjiopy LM
0000 01 Je1s160Yy Bunjiop 0OLM
0000 6 JoisiBay Bupiop 6M
0000 g Joisibay Buiiop 8M
0000 / Je1s1Bay Buijiop /M
0000 9 Josibay Bujiop 9IM
0000 G Ja1s1bay Bupiop SM
0000 ¢ 4918168y BuIop M
0000 ¢ Ja1s1bay Bupiop M
0000 2 Joisibay Bujiop ZM
0000 | Jeysibay Bujiop LM
0000 0 Jeisibay Bujiop oM
sjesay
. oxg Lug cug €ug vug sug 9ug Lng s g 61g oL ug LLug cLug el ug viug SLug swenN
(sapopy 19sn) depy Atowspy H4S 810D 1G-gZ 9|geL
"G-g 9|geL ul papiaoid s1 8109 NdD 412DId dUl YIm paleloosse sia1sibal ay) JO Aewwns y
SdVIN H31SI1934 444

DS39703A-page 2-25

Advance Information

© 2006 Microchip Technology Inc.

PIC24F Family Reference Manual

2.13 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC24F device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the CPU are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC24F family of devices.

DS39703A-page 2-26 Advance Information © 2006 Microchip Technology Inc.

Section 2. CPU

2.14 REVISION HISTORY

Revision A (April 2006)
This is the initial released revision of this document.

© 2006 Microchip Technology Inc. Advance Information DS39703A-page 2-27

PIC24F Family Reference Manual

NOTES:

DS39703A-page 2-28 Advance Information © 2006 Microchip Technology Inc.

