MICROCHIP

Section 8. Interrupts

HIGHLIGHTS

This section of the manual contains the following topics:

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

INTFOAUCTION ... e e 8-2
NON-MaASKADIE TraPS...ciiiiiiiiiiiiii ittt e e e e eaaa e e e e e e e e s eaaaan 8-5
Interrupt Processing TiMING ..c.ooveeieeie e 8-9
Interrupt Control and Status REgISIErS........cooviiiiiiiiiiieee e 8-12
INterrupt SETUP ProCEAUIES.........oiitiiiieeiie ettt s 8-20
REGISIEI IMAPS ..ottt e e et e s e e e e e e e 8-21
D=t [o | o I I o T PP PP UPPRPPN 8-23
Related AppliCation NOTES.......coo it 8-24

Revision History

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-1

PIC24F Family Reference Manual

8.1

INTRODUCTION

The PIC24F interrupt controller module reduces the numerous peripheral interrupt request
signals to a single interrupt request signal to the PIC24F CPU and has the following features:

e Up to 8 processor exceptions and software traps

e 7 user-selectable priority levels

¢ Interrupt Vector Table (IVT) with up to 118 vectors

¢ A unique vector for each interrupt or exception source

* Fixed priority within a specified user priority level

¢ Alternate Interrupt Vector Table (AIVT) for debug support
* Fixed interrupt entry and return latencies

8.1.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) resides in program memory, starting at location 0x000004. The
IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of
interrupt. Trap vector details are summarized in Table 8-1. In general, each interrupt source has
its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into
each interrupt vector location is the starting address of the associated Interrupt Service Routine
(ISR).

8.1.2 Alternate Interrupt Vector Table

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1.
Access to the AIVT is provided by the ALTIVT control bit INTCON2<15>). If the ALTIVT bit is
set, all interrupt and exception processes will use the alternate vectors instead of the default
vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between
an application and a support environment without requiring the interrupt vectors to be
reprogrammed. Sometimes a system may have two applications — a bootloader application and
a main application. In this scenario, the bootloader can use one set of vectors and the main
application can use the other set.

This feature also enables switching between applications for evaluation of different software
algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same
addresses used in the IVT.

8.1.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset
process. The PIC24F device clears its registers in response to a Reset which forces the PC to
zero. The processor then begins program execution at location 0x000000. The user programs a
GOTO instruction at the Reset address, which redirects program execution to the appropriate
start-up routine. Refer to Section 7. “Reset” for more information on Resets.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be
programmed with the address of a default interrupt handler routine that contains a
RESET instruction.

DS39707A-page 8-2

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

Figure 8-1: Interrupt Vector Table
Reset — GOTO Instruction 0x000000
Reset — GOTO Address 0x000002
Reserved 0x000004
Oscillator Fail Trap Vector See Table 8-1
Address Error Trap Vector for Trap Vector
© Stack Error Trap Vector Details
2> Math Error Trap Vector
T =
Z o Reserved
o0 Reserved
'@ @ Reserved
°
g S Interrupt Vector 0 0x000014
8 Interrupt Vector 1

Interrupt Vector 52 0x00007C
Interrupt Vector 53 0x00007E
\J Interrupt Vector 54 0x000080
Interrupt Vector 116 0x0000FC
Interrupt Vector 117 0x0000FE
Reserved
Reserved
Reserved

Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
Reserved
Reserved
Reserved
Interrupt Vector 0 0x000114
Interrupt Vector 1

Interrupt Vector 52 0x00017C
Interrupt Vector 53 0x00017E
Interrupt Vector 54 0x000180

Interrupt Vector 116

Interrupt Vector 117 0x0001FE
Start of Code 0x000200
Table 8-1: Trap Vector Details
Vector IVT Address AIVT Address Trap Source
Number
0 0x000004 0x000104 Reserved
1 0x000006 0x000106 Oscillator Failure
2 0x000008 0x000108 Address Error
3 0x00000A 0x00010A Stack Error
4 0x00000C 0x00010C Math Error
5 0x00000E 0x00010E Reserved
6 0x000010 0x000110 Reserved
7 0x000012 0x000112 Reserved

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-3

PIC24F Family Reference Manual

8.14 CPU Priority Status

The CPU can operate at one of sixteen priority levels, 0-15. An interrupt or trap source must have
a priority level greater than the current CPU priority in order to initiate an exception process.
Peripheral and external interrupt sources can be programmed for levels 0-7, while CPU priority
levels 8-15 are reserved for trap sources. A trap is a non-maskable interrupt source intended to
detect hardware and software problems (see Section 8.2 “Non-Maskable Traps™). The priority
level for each trap source is fixed and only one trap is assigned to a priority level. Note that an
interrupt source programmed to priority level O is effectively disabled, since it can never be
greater than the CPU priority.

The current CPU priority level is indicated by the following four status bits:

¢ |PL<2:0> status bits located in SR<7:5>

* |PL3 status bit located in CORCON<3>

The IPL<2:0> status bits are readable and writable, so the user may modify these bits to disable

all sources of interrupts below a given priority level. If IPL<2:0> = 111, for example, the CPU
would not be interrupted by any source with a programmed priority level of 0, 1, 2 or 3.

Trap events have higher priority (8-15) than any user interrupt source. When the IPL3 bit is set,
a trap event is in progress. The IPL3 bit can be cleared, but not set by the user. In some
applications, it may be desirable to clear the IPL3 bit when a trap has occurred and branch to an
instruction other than the instruction after the one that originally caused the trap to occur.

All user interrupt sources can be disabled by setting IPL<2:0> =111.

Note: The IPL<2:0> bits become read-only bits when interrupt nesting is disabled. See
Section 8.2.4.2 “Interrupt Nesting” for more information.

8.1.5 Interrupt Priority

Each peripheral interrupt source can be assigned to one of seven priority levels. The
user-assignable interrupt priority control bits for each individual interrupt are located in the Least
Significant 3 bits of each nibble within the IPCn register(s). Bit 3 of each nibble is not used and
is read as ‘0’. These bits define the priority level assigned to a particular interrupt. The usable
priority levels start at level 1 as the lowest priority and level 7 as the highest priority. If the IPCn
bits associated with an interrupt source are all cleared, then the interrupt source is effectively
disabled.

Note: At a device Reset, the IPCn registers are initialized such that all user interrupt

sources are assigned to priority level 4.

Since more than one interrupt request source may be assigned to a specific priority level, a
means is provided to resolve priority conflicts within a given user-assigned level. Each source of
interrupt has a natural order priority based on its location in the IVT. The lower numbered interrupt
vectors have higher natural priority, while the higher numbered vectors have lower natural
priority. For example, Interrupt Vector 0 is of the highest natural priority and Interrupt Vector 117
is of the lowest natural priority. The overall priority level for any pending source of interrupt is
determined first by the user-assigned priority of that source in the IPCn register, then by the
natural order priority within the IVT.

Natural order priority is used only to resolve conflicts between simultaneous pending interrupts
with the same user-assigned priority level. Once the priority conflict is resolved and the exception
process begins, the CPU can only be interrupted by a source with higher user-assigned priority.
Interrupts with the same user-assigned priority, but a higher natural order priority, that become
pending after the exception process begins will remain pending until the current exception
process completes.

The ability for the user to assign each interrupt source to one of seven priority levels means that
the user can give an interrupt with a low natural order priority a very high overall priority level. For
example, the Interrupt Vector 0 may be assigned to priority level 1, thus giving it a very low
effective priority.

Note: This document explains the generic interrupt structure. Refer to the specific device

data sheet for the peripherals and sources of each interrupt.

DS39707A-page 8-4

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

8.2 NON-MASKABLE TRAPS

Traps can be considered as non-maskable, nestable interrupts which adhere to a fixed priority
structure. Traps are intended to provide the user a means to correct erroneous operation during
debug and when operating within the application. If the user does not intend to take corrective
action in the event of a trap error condition, these vectors must be loaded with the address of a
software routine that will reset the device. Otherwise, the trap vector is programmed with the
address of a service routine that will correct the trap condition.

The PIC24F has four implemented sources of non-maskable traps:

* Oscillator Failure Trap
» Stack Error Trap

e Address Error Trap

e Arithmetic Error Trap

The instruction that caused the trap is allowed to complete before exception processing begins.
Therefore, the user may have to correct the action of the instruction that caused the trap.

Each trap source has a fixed priority as defined by its position in the IVT. An oscillator failure trap
has the highest priority, while an arithmetic error trap has the lowest priority (see Figure 8-1). In
addition, trap sources are classified into two distinct categories: ‘Hard’ traps and ‘Soft’ traps.

8.2.1 Soft Traps

The arithmetic error trap (priority level 11) and stack error trap (priority level 12) are categorized
as ‘soft’ trap sources. Soft traps can be treated like non-maskable sources of interrupt that
adhere to the priority assigned by their position in the IVT. Soft traps are processed like interrupts
and require 2 cycles to be sampled and Acknowledged prior to exception processing. Therefore,
additional instructions may be executed before a soft trap is Acknowledged.

8.2.1.1 STACK ERROR TRAP (SOFT TRAP, LEVEL 12)

The stack is initialized to 0x0800 during Reset. A stack error trap will be generated should the
Stack Pointer address ever be less than 0x0800.

There is a Stack Limit register (SPLIM) associated with the Stack Pointer that is uninitialized at
Reset. The stack overflow check is not enabled until a word write to SPLIM occurs.

All Effective Addresses (EA) generated using W15 as a source or destination pointer are
compared against the value in SPLIM. Should the EA be greater than the contents of the SPLIM
register, then a stack error trap is generated. In addition, a stack error trap will be generated
should the EA calculation wrap over the end of data space (OxFFFF).

A stack error can be detected in software by polling the STKERR status bit INTCON1<2>). To
avoid re-entering the Trap Service Routine, the STKERR status flag must be cleared in software
prior to returning from the trap with a RETFIE instruction.

8.2.1.2 MATH ERROR TRAP (LEVEL 11)

The Math Error trap will execute should an attempt be made to divide by zero. The math error
trap can be detected in software by polling the MATHERR status bit (INTCON1<4>). To avoid
re-entering the Trap Service Routine, the MATHERR status flag must be cleared in software prior
to returning from the trap with a RETFIE instruction.

8.2.2 Hard Traps

Hard traps include exceptions of priority level 13 through level 15, inclusive. The address error
(level 13) and oscillator error (level 14) traps fall into this category.

Like soft traps, hard traps can also be viewed as non-maskable sources of interrupt. The
difference between hard traps and soft traps is that hard traps force the CPU to stop code
execution after the instruction causing the trap has completed. Normal program execution flow
will not resume until after the trap has been Acknowledged and processed.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-5

PIC24F Family Reference Manual

8.2.2.1 TRAP PRIORITY AND HARD TRAP CONFLICTS

If a higher priority trap occurs while any lower priority trap is in progress, processing of the lower
priority trap will be suspended and the higher priority trap will be Acknowledged and processed.
The lower priority trap will remain pending until processing of the higher priority trap completes.

Each hard trap that occurs must be Acknowledged before code execution of any type may
continue. If a lower priority hard trap occurs while a higher priority trap is pending, Acknowledged,
or is being processed, a hard trap conflict will occur. The conflict occurs because the lower
priority trap cannot be Acknowledged until processing for the higher priority trap completes.

The device is automatically reset in a hard trap conflict condition. The TRAPR status bit
(RCON<15>) is set when the Reset occurs, so that the condition may be detected in software.

8.2.2.2 OSCILLATOR FAILURE TRAP (HARD TRAP, LEVEL 14)

An oscillator failure trap event will be generated if the Fail-Safe Clock Monitor (FSCM) is enabled
and has detected a loss of the system clock source.

An oscillator failure trap event can be detected in software by polling the OSCFAIL status bit
(INTCON1<1>) or the CF status bit (OSCCON<3>). To avoid re-entering the Trap Service
Routine, the OSCFAIL status flag must be cleared in software prior to returning from the trap with
a RETFIE instruction.

Refer to Section 6. “Oscillator” and Section 32. “Device Configuration” for more information
about the FSCM.

8.2.2.3 ADDRESS ERROR TRAP (HARD TRAP, LEVEL 13)

The following paragraphs describe operating scenarios that would cause an address error trap
to be generated:

1. A misaligned data word fetch is attempted. This condition occurs when an instruction
performs a word access with the LSb of the effective address set to ‘1’. The PIC24F CPU
requires all word accesses to be aligned to an even address boundary.

2. A bit manipulation instruction using the Indirect Addressing mode with the LSb of the
effective address set to ‘1’.

3. A data fetch from unimplemented data address space is attempted.

4. Execution of a “BRA #literal” instruction or a “GOTO #literal” instruction, where
literal is an unimplemented program memory address.

5. Executing instructions after modifying the PC to point to unimplemented program memory
addresses. The PC may be modified by loading a value into the stack and executing a
RETURN instruction.

Data space writes will be inhibited whenever an address error trap occurs, so that data is not
destroyed.

An address error can be detected in software by polling the ADDRERR status bit INTCON1<3>).
To avoid re-entering the Trap Service Routine, the ADDRERR status flag must be cleared in
software prior to returning from the trap with a RETFIE instruction.

8.2.3 Disable Interrupts Instruction

The DIsSI (disable interrupts) instruction has the ability to disable interrupts for up to
16384 instruction cycles. This instruction is useful when time critical code segments must be
executed.

The DIST instruction only disables interrupts with priority levels 1-6. Priority level 7 interrupts and
all trap events still have the ability to interrupt the CPU when the DIST instruction is active.

The DIST instruction works in conjunction with the DISICNT register. When the DISICNT register
is non-zero, priority level 1-6 interrupts are disabled. The DISICNT register is decremented on
each subsequent instruction cycle. When the DISICNT register counts down to ‘0’, priority
level 1-6 interrupts will be re-enabled. The value specified in the DISI instruction includes all
cycles due to PSV accesses, instruction stalls, etc.

The DISICNT register is readable and writable. The user can terminate the effect of a previous
DISTI instruction early by clearing the DISICNT register. The amount of time that interrupts are
disabled can also be increased by writing to or adding to DISICNT.

DS39707A-page 8-6

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

Note that if the DISICNT register is zero, interrupts cannot be disabled by simply writing a
non-zero value to the register. Interrupts must first be disabled by using the DISI instruction.
Once the DISI instruction has executed and DISICNT holds a non-zero value, the interrupt
disable time can be extended by modifying the contents of DISICNT.

Note: Software modification of the DISICNT register is not recommended.

The DISI status bit INTCON2<14>) is set whenever interrupts are disabled as a result of the
DISI instruction.

Note: The DISI instruction can be used to quickly disable all user interrupt sources if no
source is assigned to CPU priority level 7.

8.2.4 Interrupt Operation

All interrupt event flags are sampled during each instruction cycle. A pending Interrupt Request
(IRQ) is indicated by the flag bit being equal to a ‘1’ in an IFSn register. The IRQ will cause an
interrupt to occur if the corresponding bit in the Interrupt Enable (IECn) registers is set. For the
rest of the instruction cycle in which the IRQ is sampled, the priorities of all pending interrupt
requests are evaluated.

No instruction will be aborted when the CPU responds to the IRQ. The instruction that was in
progress when the IRQ is sampled will be completed before the ISR is executed.

If there is a pending IRQ with a user-assigned priority level greater than the current processor
priority level, indicated by the IPL<2:0> status bits (SR<7:5>), an interrupt will be presented to
the processor. The processor then saves the following information on the software stack:

¢ the current PC value n

* the low byte of the processor STATUS register (SRL)
¢ the IPL3 status bit (CORCON<3>)

These three values that are saved on the stack allow the return PC address value, MCU status
bits and the current processor priority level to be automatically saved.

After the above information is saved on the stack, the CPU writes the priority level of the pending
interrupt into the IPL<2:0> bit locations. This action will disable all interrupts of less than, or equal
priority, until the Interrupt Service Routine (ISR) is terminated using the RETFIE instruction.

Figure 8-2: Stack Operation for Interrupt Event

15 0
This stack location used

to store the IPL3 status
/ bit (CORCON<3>).

PC<15:0> <& W15 (before IRQ)
SR<7:0> || | “PC<22:16>
<Free Word> <€« W15 (after IRQ)

Stack Grows Towards
Higher Address

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-7

PIC24F Family Reference Manual

8.2.41 RETURN FROM INTERRUPT

The RETFIE (Return from Interrupt) instruction will unstack the PC return address, IPL3 status
bit and SRL register, to return the processor to the state and priority level prior to the interrupt
sequence.

8.2.4.2 INTERRUPT NESTING

Interrupts, by default, are nestable. Any ISR that is in progress may be interrupted by another
source of interrupt with a higher user-assigned priority level. Interrupt nesting may be optionally
disabled by setting the NSTDIS control bit INTCON1<15>). When the NSTDIS control bit is set,
all interrupts in progress will force the CPU priority to level 7 by setting IPL<2:0> = 111. This
action will effectively mask all other sources of interrupt until a RETFIE instruction is executed.
When interrupt nesting is disabled, the user-assigned interrupt priority levels will have no effect,
except to resolve conflicts between simultaneous pending interrupts.

The IPL<2:0> bits become read-only when interrupt nesting is disabled. This prevents the user
software from setting IPL<2:0> to a lower value which would effectively re-enable interrupt
nesting.

8.2.5 Wake-up from Sleep and Idle

Any source of interrupt that is individually enabled, using its corresponding control bit in the IECn
registers, can wake-up the processor from Sleep or Idle mode. When the interrupt status flag for
a source is set and the interrupt source is enabled via the corresponding bit in the IECn Control
registers, a wake-up signal is sent to the PIC24F CPU. When the device wakes from Sleep or
Idle mode, one of two actions may occur:

1. Ifthe interrupt priority level for that source is greater than the current CPU priority level, then
the processor will process the interrupt and branch to the ISR for the interrupt source.

2. If the user-assigned interrupt priority level for the source is less than or equal to the current
CPU priority level, then the processor will simply continue execution, starting with the
instruction immediately following the PWRSAV instruction that previously put the CPU in
Sleep or Idle mode.

Note: User interrupt sources that are assigned to CPU priority level 0 cannot wake the
CPU from Sleep or Idle mode, because the interrupt source is effectively disabled.
To use an interrupt as a wake-up source, the CPU priority level for the interrupt must
be assigned to CPU priority level 1 or greater.

8.2.6 A/D Converter External Conversion Request

The external interrupt request pin is shared with the A/D converter as an external conversion request
signal. The Interrupt Vector 0 interrupt source has programmable edge polarity which is also avail-
able to the A/D converter external conversion request feature. Refer to Section 17. “10-Bit A/D
Converter” for more information on the A/D converter.

8.2.7 External Interrupt Support

The PIC24F supports up to 5 external interrupt pin sources (Interrupt Vector 0 to Interrupt
Vector 4). Each external interrupt pin has edge detection circuitry to detect the interrupt event.
The INTCONZ2 register has five control bits (INTOEP-INT4EP) that select the polarity of the edge
detection circuitry. Each external interrupt pin may be programmed to interrupt the CPU on a
rising edge or falling edge event. See Register 8-4 for further details.

DS39707A-page 8-8

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

8.3 INTERRUPT PROCESSING TIMING

8.3.1 Interrupt Latency for One-Cycle Instructions

Figure 8-3 shows the sequence of events when a peripheral interrupt is asserted during a
one-cycle instruction. The interrupt process takes four instruction cycles. Each cycle is numbered
in Figure 8-3 for reference.

The interrupt flag status bit is set during the instruction cycle after the peripheral interrupt occurs.
The current instruction completes during this instruction cycle. In the second instruction
cycle after the interrupt event, the contents of the PC and SRL registers are saved into a
temporary buffer register. The second cycle of the interrupt process is executed as a NOP to
maintain consistency with the sequence taken during a two-cycle instruction (see Section 8.3.2
“Interrupt Latency for Two-Cycle Instructions”). In the third cycle, the PC is loaded with the
vector table address for the interrupt source and the starting address of the ISR is fetched. In the
fourth cycle, the PC is loaded with the ISR address. The fourth cycle is executed as a NOP while
the first instruction in the ISR is fetched.

Figure 8-3: Interrupt Timing During a One-Cycle Instruction

<o, O ®, @

®

I | | I
| | | | I | |
PC PC X PC +2| X Vector# x 2000 (ISR) X 2002 X 2004 X 2006
I I I I I I I I
INST ! ! | | Fetch ! ! | !
Executed | INST(PC - 2) | INST(PC) | FNOP | Vector | FNOP | ISR | ISR +2 | ISR + 4
I I I I I I I I
Interrupt Flag l | l l l I | l
Status bit | 4I/ | | | | | |
| | | | | | | |
CPU Priority | 4 X 4 K 4 X 4 X 6 X 6 X 6 6
| | | | | | | |
Save PC in PUSH SRL and high 8 bits of PC
g?uf?fg?rary (from temporary buffer).

PUSH low 16 bits of PC

Peripheral interrupt event (from temporary buffer).

occurs at or before midpoint
of this cycle.

Note: Where FNOP is a forced NOP instruction automatically inserted by the CPU.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-9

PIC24F Family Reference Manual

8.3.2 Interrupt Latency for Two-Cycle Instructions

The interrupt latency during a two-cycle instruction is the same as during a one-cycle instruction.
The first and second cycle of the interrupt process allow the two-cycle instruction to complete
execution. The timing diagram in Figure 8-5 shows the case when the peripheral interrupt event
occurs in the instruction cycle prior to execution of the two-cycle instruction.

Figure 8-6 shows the timing when a peripheral interrupt is coincident with the first cycle of a
two-cycle instruction. In this case, the interrupt process completes as for a one-cycle instruction
(see Section 8.3.1 “Interrupt Latency for One-Cycle Instructions”).

Figure 8-4: Interrupt Timing During a Two-Cycle Instruction

<, O, 0, &, ®

| | | |
| | | | | | |
PC | PC| X| PC+2 X Vector# K 2000 (ISR) X 2002 X 2004 X 2006 x
| I I | I I | | I
ner | | | | | | | | |
_ INST(PC) INST(PC) Fetch
Executed | INST(PC -2) | 1st Cycle | 2nd cycle | Vector | FNOP | ISR | ISR+2 | ISR+4 |
| I I | I I | | I
| | | | | | | | |
Interrupt Flag
Status bit | | | | | | | |
| | | | | | | ! |
CPU Priority | 4 X 4 X 4 X 4 K 6 K 6 X 6 X 6 |
| | | | | | | | |
Save PC in PUSH SRL and high 8 bits of PC
Peripheral interrupt event temporary (from temporary buffer).
occurs at or before buffer.
midpoint of this cycle. PUSH low 16 bits of PC

(from temporary buffer).

Note: Where FNOP is a forced NOP instruction automatically inserted by the CPU.

Figure 8-5: Interrupt Timing, Interrupt Occurs During 1st Cycle of a 2-Cycle Instruction
~, O, @, 0, ®

> I [[I [I I

| | ! | ! ! | I

PC | PC |X PC + 2| X Vector# X 2000 (ISR) X 2002 X 2004 X 2006
I | I | | I | I I
INST | INST(PC) INST(PC) Fetch
Executed | 1st cycle | 2nd cycle l FNOP | Vector | FNOP | ISR | ISR +2 | ISR +4 |
| I | | I | I I
I | I | | I | I I
Interrupt Flag

Status bit | | / | | | | | | |
I | I | | | | I I
GPU Priority | 4 X 4 K 4 X 4 K 6 K 6 K 6 X 6 |
| I I | I | |

} f

Save PC in PUSH SRL and high 8 bits of PC
Peripheral interrupt event temporary (from temporary buffer).
occurs at or before buffer.
midpoint of this cycle. PUSH low 16 bits of PC

(from temporary buffer).

Note: Where FNOP is a forced NOP instruction automatically inserted by the CPU.

DS39707A-page 8-10 Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

8.3.3 Returning from Interrupt

The “Return from Interrupt” instruction, RETFIE, exits an interrupt or trap routine.

During the first cycle of a RETFIE instruction, the upper bits of the PC and the SRL register are
popped from the stack. The lower 16 bits of the stacked PC value are popped from the stack
during the second cycle. The third instruction cycle is used to fetch the instruction addressed by
the updated program counter. This cycle executes as a NOP.

Figure 8-6: Return from Interrupt Timing
TCY

| | | | |

I I I I I I I
insT | isRLast | RETFE ' retee | FnoP | PC I pcs2 | pcsa

Executed | Instruction | | 2nd cycle | | | |
PC]X X ISR+2: X PC x PC+2 PC +4 X PC+6

I I I I I I I

cPU |
Priority 6 X 6 X 6 X 4 X 4 X 4 X 4
| | 1 I 1 |
| | | |

* |
T POP SRL and high 8 bits of PC.

POP low 16 bits of PC to RAM Stack.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-11

PIC24F Family Reference Manual

8.4 INTERRUPT CONTROL AND STATUS REGISTERS

The following registers are associated with the interrupt controller:

* INTCON1, INTCON2 Registers
Global interrupt control functions are derived from these two registers. INTCON1 contains the
Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the
processor trap sources. The INTCONZ2 register controls the external interrupt request signal
behavior and the use of the alternate vector table.

* IFSn: Interrupt Flag Status Registers
All interrupt request flags are maintained in the IFSn registers, where ‘n’ denotes the register
number. Each source of interrupt has a status bit, which is set by the respective peripherals or
external signal, and is cleared via software.

¢ |[ECn: Interrupt Enable Control Registers
All interrupt enable control bits are maintained in the IECn registers, where ‘n’ denotes the
register number. These control bits are used to individually enable interrupts from the
peripherals or external signals.

¢ |PCn: Interrupt Priority Control Registers
Each user interrupt source can be assigned to one of eight priority levels. The IPCn registers
are used to set the interrupt priority level for each source of interrupt.

¢ SR: CPU STATUS Register
The SR is not specifically part of the interrupt controller hardware, but it contains the IPL<2:0>
status bits (SR<7:5>) that indicate the current CPU priority level. The user may change the
current CPU priority level by writing to the IPL bits.

e CORCON: Core Control Register
The CORCON is not specifically part of the interrupt controller hardware, but it contains the
IPL3 status bit which indicates the current CPU priority level. IPL3 is a read-only bit, so that
trap events cannot be masked by the user software.

SR, CORCON, INTCON1 and INTCON2 registers are described in details on the following
pages. The generic interrupt registers map is also given on the following pages. Each interrupt
is associated with an Interrupt Flag (IF), an Interrupt Enable bit (IE) and three Interrupt Priority
Bits (IP2:1P0). Actual number of IFSn, IECn and IPCn registers depends upon the number of
interrupts implemented on a particular device. Refer to the specific data sheet for further details.

8.4.1 Assignment of Interrupts to Control Registers

The interrupt sources are assigned to the IFSn, IECn and IPCn registers in a particular
sequence. For example, Interrupt Vector O has a natural order priority of 0. Thus, the Interrupt
Vector 0 status bit is found in IFS0<0>. Interrupt Vector 0 uses IEC0<0> as its enable bit and the
IPC0<2:0> bits assign the interrupt priority level for Interrupt Vector 0. Refer to Table 8-2 for a
generic summary of all the interrupt related registers.

DS39707A-page 8-12

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

Register 8-1: SR: CPU STATUS Register

U-0 U-0 u-0 u-0 u-0 u-0 u-0 R/W-0
— — — — — — — DC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IpL2(1:2) IPL1(1:2) IPLO(1:2) RA N ov z C
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 IPL2:IPLO: CPU Interrupt Priority Level Status bits(1:2)

111 = CPU interrupt priority level is 7 (15). User interrupts disabled.
110 = CPU interrupt priority level is 6 (14)
101 = CPU interrupt priority level is 5 (13)
100 = CPU interrupt priority level is 4 (12)
011 = CPU interrupt priority level is 3 (11)
010 = CPU interrupt priority level is 2 (10)

001 = CPU interrupt priority level is 1 (9) n
000 = CPU interrupt priority level is 0 (8)

Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority
level. The value in parentheses indicates the IPL if IPL<3> = 1.

2: The IPL<2:0> status bits are read-only when NSTDIS = 1 (INTCON1<15>).

Register 8-2: CORCON: Core Control Register

U-0 U-0 uU-0 uU-0 uU-0 uU-0 uU-0 U-0
bit 15 bit 8
uU-0 uU-0 uU-0 U-0 R/C-0 R/W-0 U-0 uU-0
— — — — IPL3(M PSV — —
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(")

1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-13

PIC24F Family Reference Manual

Register 8-3: INTCONT1: Interrupt Control Register 1
R/W-0 u-0 u-0 uU-0 uU-0 u-0 u-0 uU-0
NSTDIS — — — — — — —
bit 15 bit 8
U-0 uU-0 u-0 R/W-0 R/W-0 R/W-0 R/W-0 u-0
— — — MATHERR ADDRERR STKERR OSCFAIL —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 NSTDIS: Interrupt Nesting Disable bit

1 = Interrupt nesting is disabled

0 = Interrupt nesting is enabled
Unimplemented: Read as ‘0’

MATHERR: Arithmetic Error Trap Status bit
1 = Overflow trap has occurred

0 = Overflow trap has not occurred
ADDRERR: Address Error Trap Status bit
1 = Address error trap has occurred

0 = Address error trap has not occurred
STKERR: Stack Error Trap Status bit

1 = Stack error trap has occurred

0 = Stack error trap has not occurred
OSCFAIL: Oscillator Failure Trap Status bit

1 = Oscillator failure trap has occurred
0 = Oscillator failure trap has not occurred

bit 14-5
bit 4

bit 3

bit 2

bit 1

bit 0 Unimplemented: Read as ‘0’

DS39707A-page 8-14 Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

Register 8-4: INTCON2: Interrupt Control Register 2

R/W-0 R-0 uU-0 uU-0 uU-0 uU-0 uU-0 u-0
ALTIVT DISI — — — — — —
bit 15 bit 8
uU-0 uU-0 uU-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — INT4EP INT3EP INT2EP INT1EP INTOEP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit

bit 14

bit 13-5
bit 4

bit 3

bit 2

bit 1

bit 0

1 = Use alternate vector table
0 = Use standard (default) vector table

DISI: DIST Instruction Status bit

1 =DISTI instruction is active

0 =DISI is not active

Unimplemented: Read as ‘0’

INT4EP: External Interrupt #4 Edge Detect Polarity Select bit
1 = Interrupt on negative edge

0 = Interrupt on positive edge

INT3EP: External Interrupt #3 Edge Detect Polarity Select bit
1 = Interrupt on negative edge

0 = Interrupt on positive edge

INT2EP: External Interrupt #2 Edge Detect Polarity Select bit

1 = Interrupt on negative edge
0 = Interrupt on positive edge

INT1EP: External Interrupt #1 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
INTOEP: External Interrupt #0 Edge Detect Polarity Select bit

1 = Interrupt on negative edge
0 = Interrupt on positive edge

© 2006 Microchip Technology Inc.

Advance Information

DS39707A-page 8-15

PIC24F Family Reference Manual

Register 8-5: IFSn: Interrupt Flag Status Registers 0 Through 6 (Interrupt Vectors 0 Through 111)(1)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
V(16n + 15)IF | V(16n+14)IF | V(16n+13)IF | V(16n+12)IF | V(16n + 11)IF | V(16n +1 O)IF | V(16n + 9)IF | V(16n + 8)IF
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

V(ien+7)IF | V(16n+6)IF | V(16n+5)IF | V(ien+4)F | V(16n+3)IF | V(16n +2)IF | V(16n+1)IF | V(16n)IF
bit 7 bit 0
Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 V(16n + x)IF: Interrupt Status Flag bits for Interrupt Vector 16n + x (where x = bit position number)

1 = Interrupt request has occurred
0 = Interrupt request has not occurred

Note 1: Not all interrupt vectors are implemented on all devices. Refer to the Interrupt Vector Table for the specific
device or family data sheet to verify where interrupt vectors are implemented for a specific device.

Register 8-6: IFSn: Interrupt Flag Status Register 7 (Interrupt Vectors 112 Through 117)(1)

u-0 u-0 u-0 u-0 u-0 u-0 u-0 u-0
bit 15 bit 8
uU-0 uU-0 R/W-0 R/W-0 uU-0 uU-0 R/W-0 R/W-0
= = V117IF V116IF V115IF V114IF V113IF V112IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-6 Unimplemented: Read as ‘0’

bit 5-0 V117IF:V112IF Interrupt Status Flag bits for Interrupt Vectors 117 through 112

1 = Interrupt request has occurred
0 = Interrupt request has not occurred

Note 1: Not all interrupt vectors are implemented on all devices. Refer to the Interrupt Vector Table for the specific
device or family data sheet to verify where interrupt vectors are implemented for a specific device.

DS39707A-page 8-16 Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

Register 8-7: IECn: Interrupt Enable Registers 0 Through 6 (Interrupt Vectors 0 Through 111)(1)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

V(16n + 15)E | V(16n+14)IE | V(16n+13)IE | V(16n+12)IE | V(16n + 11)IE | V(16n + 10)IE | V(16n + 9)IE | V(16n + 8)IE

bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

V(ien+7)E | V(16n+6)IE | V(16n+5)IE | V(16n+4)E | V(16n+3)IE | V(16n +2)E | V(16n+1)IE | V(16n+0)IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 V(16n + x)IF: Interrupt Enable bits for Interrupt Vector 16n + x (where x = bit position number)

1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1: Not all interrupt vectors are implemented on all devices. Refer to the Interrupt Vector Table for the specific
device or family data sheet to verify where interrupt vectors are implemented for a specific device.

Register 8-8: IECn: Interrupt Enable Register 7 (Interrupt Vectors 112 Through 117)(1)

u-0 u-0 u-0 u-0 u-0 u-0 u-0 uU-0
bit 15 bit 8
uU-0 uU-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
= = V117IF V116IF V115IF V114IF V113IF V112IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-6 Unimplemented: Read as ‘0’

bit5-0 V117IE:V112IE Interrupt Enable bits for Interrupt Vectors 117 through 112
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1: Not all interrupt vectors are implemented on all devices. Refer to the Interrupt Vector Table for the specific
device or family data sheet to verify where interrupt vectors are implemented for a specific device.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-17

PIC24F Family Reference Manual

Register 8-9: IPCn: Interrupt Priority Registers 0 Through 28 (Interrupt Vectors 0 Through 115)(1)

u-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— | V(an+3)IP2 | V(@4n+3)IP1 | V(xn +3)IPO | — |V@n+2)IP2|V(4n +2)IP1]| V(4n + 2)IPO
bit 15 bit 8

u-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— | V@an+D)IP2 | Van+)IP1 | Vixn + 1)IPO | — | v@n)iP2 | v@n)P1 | V(4n)IPo
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 V(4n + 3)IP2:V(4n + 3)IPO: Interrupt Priority bits for Interrupt Vector 4n + 3
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’

bit 10-8 V(4n + 2)IP2:V(4n + 2)IPO: Interrupt Priority bits for Interrupt Vector 4n + 2
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 7 Unimplemented: Read as ‘0’

bit 6-4 V(4n + 1)IP2:V(4n + 1)IPO: Interrupt Priority bits for Interrupt Vector 4n + 1
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 3 Unimplemented: Read as ‘0’

bit2-0 V(4n)IP2:V(4n)IPO: Interrupt Priority bits for Interrupt Vector 4n
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

Note 1: Not all interrupt vectors are implemented on all devices. Refer to the Interrupt Vector Table for the specific
device or family data sheet to verify where interrupt vectors are implemented for a specific device.

DS39707A-page 8-18 Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

Register 8-10:

IPCn: Interrupt Priority Register 29 (Interrupt Vectors116 and 117)(1)

uU-0 uU-0 u-0 u-0 u-0 u-0 u-0 u-0
bit 15 bit 8
uU-0 R/W-1 R/W-0 R/W-0 u-0 R/W-1 R/W-0 R/W-0
— V1171P2 V1171P1 V1171PO — V116lP2 V1161P1 V1161PO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at any Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-7
bit 6-4

bit 3
bit 2-0

Note 1:

Unimplemented: Read as ‘0’

V117I1P2:V117IPO0: Interrupt Priority bits for Interrupt Vector 117
111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

Unimplemented: Read as ‘0’

V1161P2:V116IPO0: Interrupt Priority bits for Interrupt Vector 116
111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

Not all interrupt vectors are implemented on all devices. Refer to the Interrupt Vector Table for the specific
device or family data sheet to verify where interrupt vectors are implemented for a specific device.

© 2006 Microchip Technology Inc.

Advance Information DS39707A-page 8-19

PIC24F Family Reference Manual

8.5 INTERRUPT SETUP PROCEDURES

8.5.1 Initialization

The following steps describe how to configure a source of interrupt:

1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.

2. Select each user-assigned priority level for the interrupt source by writing the control bits in
the appropriate IPCn Control register. The priority level will depend on the specific
application and type of interrupt source. If multiple priority levels are not desired, the IPCn
register control bits for all enabled interrupt sources may be programmed to the same
non-zero value.

Note: At a device Reset, the IPCn registers are initialized, such that all user interrupt

sources are assigned to priority level 4.

3. Clearthe interrupt flag status bit associated with the peripheral in the associated IFSn Status
register.

4. Enable the interrupt source by setting the interrupt enable control bit associated with the
source in the appropriate IECn Control register.

8.5.2 Interrupt Service Routine

The method that is used to declare an ISR and initialize the IVT and AIVT with the correct vector
address will depend on the programming language (i.e., C or assembler) and the language
development toolsuite that is used to develop the application. In general, the user must clear the
interrupt flag in the appropriate IFSn register for the source of interrupt that the ISR handles.
Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in
assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC
value, SRL value and old CPU priority level.

8.5.3 Trap Service Routine

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag
in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.5.4 Interrupt Disable

All user interrupts can be disabled using the following procedure:

1. Push the current SR value onto the software stack using the PUSH instruction.
2. Force the CPU to priority level 7 by inclusive ORing the value 0XEO with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources
(level 8-level 15) cannot be disabled.

The DIST instruction provides a convenient way to disable interrupts of priority levels 1-6 for a
fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

DS39707A-page 8-20

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

‘s|Iejop 10} 198Ys Blep 80IA8p 8y} 0} Jojoy "8dIAep Jejnojed B Uo a|ge|ieA. 8q Jou ABW SHQ [04U0D PBJRIOOSSE Jloy) pue s8oinos idnusiul |y 910N

odivvA | LdIvvA | 2dIPbA = 0dISYA LdISYA 2dISPA = 0dI9vA LdIOYA | 2dI9vA = 0dIZYA LdIZVA | 2dIZvA = LLOdI
0dIOYA | LdIOYA | 2dIOvA = odILyA LdILPA 2dILpA = odIgrA LdigvA | edIgvA = 0dIEYA LdIEYA | 2dIEvA = 0L0dI
OdI9EA | LdI9EA | 2dI9EA = 0dIZEA LdIZEA 2dILEA = 0dI8EA LdIBEA | 2dISEA = 0dIBEA LdIBEA | 2dI6EA = 60dI
0dIZEA | LdIZEA | 2dIZEA = 0dIEEA LdIEEA zdIeen = 0dIvEA LdIVEA | edIPEA = 0dISEA LdISEA | 2dISEA = 80dl
0dI82A | LdI8ZA | 2dIszA = 0dI62A LdI6ZA 2dI62A = 0dI0EA LdIOEA | 2dIOEA = 0dILEA LAILEA | 2dIken = L0dI
odiveA | Ldiven | 2divgA = 0dISeA LdISZA 2dIgeA = 0dI92A LdI9ZA | 2dI9zA = odIZeA bdiZeA | edizen = 90dI
0dIOZA | LdIOZA | 2dI0ZA = oditen Ldik2A zditeA = 0dIgeA Ldizen | edigen = 0dI€2A LdiggA | 2dIgzn = godl
OdI9IA | LdI9IA | 2dI9LA = 0dIZLA LIZLA 2dIZIA = 0dI8IA LdIBLA | 2dISIA = 0dIBLA LdIBLA | 2dI6LA = yOdI
OdIiZIA | LdIZIA | 2dIZLA = odIELA LdIELA 2dIELA = odIvIA LdIVLA | edIPEA = 0dISIA LAISEA | 2dISEA = €0dl
0dIBOA | LdIBOA | 2dISOA = 0dI60A LdI6OA 2dI60A = 0dIOLA LdIOLA | 2dIOLA = OdILEA LAILEA | 2dIbEA = 2odl
0dI¥OA | LdIVOA | 2dI¥OA = 0dISOA LdISOA 2dIS0A = 0dI90A LdI9OA | 2dI90A = 0dIZOA LdIZOA | 2dIZOA = LOdl
0dIOOA | LdIOOA | 2dI00A = 0dILOA LdILOA 2dILoA = 0dI20A LdIZOA | 2dI2oA = 0dIEOA LdIEOA | 2dIE0A = 00dI
LA | FIELA | FIWLIA AISLA A19LLA AlLLA = = = = = = = = = = £03
3196/ 31L6A 3186/ 3166/ 3100LA AIL0LA 3120LA | JIE0LA | FIWOLA 3IS0LA | FI90LA | JILOLA | FSOLA | UG0LA | FUOLLA | FILLA 901
3108A 31L8A 3128A 31EBA Av8A 3158A 3198/ EIVAT 3188/ 3168A 3106A 31L6A 3126A 31E6A ET 31S6A goal
AN 3159 3199/ E[VE 31897 3169/ 310ZA AlLLA 312LA 3IELA LA 3ISLA 19N 31LLA AI8LA 316LA yO3
18TA 316¥A 310SA AILSA 312SA 3IESA 3IPSA 3ISSA 319GA E[VAT 3I8SA 3165A 3109A 31L9A 3129A 3IE9A €01l
E[47) 3IEEN 3IvEA 3ISEN 319N EIVET 318EA 3l6EA 310vA AlLvA AlLvA 3IEvA AlryA 3ISYA 3l9vA E[VA7 2oal
191 E[VAV 318LA 3161A 3102/ alkeA E[EA) el EIVEA 3152A 3192/ £V 3182A 3162/ 310eA 3lLEA [KoE]
3100A 3IL0A 3120 3IE0A 0N 3IS0A 3190A 31L0A 3I80A 3160A 310LA AlLLA AI2LA 3IELA AlPLA 3ISEA 001l
dIZLA | JIELA | dIVLIA dISLEA dI9LEA HILHA = = = = = = = = = = VISEll
4196/ HIL6A 4I186A 4166A 4100LA 4IL0LA dI20LA | HIEOLA | dHIFOLA 4IS0LA dI90LA | HIZOLA | HIBOLA H4I60LA | HIOKEA | HILLEA 9S4l
4108A 4118A dI28A JIE8A HI¥8A 4I1S8A 4198A d128A 4188A 4168A 4106/ 4IL6A d126A 4IE6A dIP6A dIS6A gs4l
HI¥9A HIS9A 4199A dIL9A HI189A H169A dI0ZA dILZA dI2ZA HIELA dIvZA 4ISZA 1927 HIZLA H18ZA dI6ZA #S4I
HI18vA HI6YA 410SA dILSA 128N HIESA dIPSA dISSA 4196A E[VI7Y dI8SA 41657 41097 41197 41297 dIE9A €s4l
dIZENA HIEEA dIvEA dISEA HI19€A E[V7\ dI8EA d16EA El7 JILPA dILpA JIEVA dIvyA HISPA HI9vA dILvA gs4l
HI9LA HILLA HI8LA dI6LA 4102/ dILeA dIgzA E[lr EllzA 4152A d192A d122A 4182/ 4162A 410eA dILen LS4l
4100A 4IL0A 4I20A 4IE0A 4I¥0A 4IS0A d190A EIVI 4180A 4160A dI0LA dILA dIZLA JIELA dIPEA dISEA 0S4l
d301INI | dILINI | d32INI d3ELNI d3vINI = = = = = = = = = Isia LAILTY | 2NOOLNI
= TV40SO | HYIANMLS | HHIHAQY | HHIHLVIN = = = = = = = = = = SIQLSN | ENOOLNI
= = ASd €1dI = = = = = = = = = = = = NOOHOD
2 z AO N vd 01dl 1dl 2dl oa = = = = = = = 4s

ong Lug zug eng v g sug CRIE| PRIL: | 8 ug 618 oLug LLug zLug €L ug vLug sLug oH_Mz
J9]j043u0) 1dniidlu] yum pajeloossy sialsibay uoloung jeroads 12-8 alqel

"2-8 9|gqeL ul papinod si J9|j0u0d 1dnuslul 8y Yum palerdosse siaisibay uonound [e1oads ayl jo Alewwns vy

SdVIN H31S1934 9’8

DS39707A-page 8-21

Advance Information

© 2006 Microchip Technology Inc.

PIC24F Family Reference Manual

‘s|iejop 10} 198YS Blep 80IA8p 8y} 0} J8joY "90IAap Jenoled B Uo a|ge|ieA. 84 Jou Aew S}ig |0JJU0D PBleIoSSe Jiey) pue seoinos jdnuejul |y 910N

0dIOLLA | LdIOLLA | 2dI9HLA — OdIZLLA | LdIZLA | 2dIZLIA — — — — — — — — — 620dl
0dIZHA | LdighA | 2diZHA — OdIEHA | LdIEHA | 2dIELIA — OdIvELA | LdIVLIA | 2dIvELA — OdISLIA | LdISHA | 2dISHA — 820dl
0dIBOLA | LdISOLA | 2dISOLA — 0dIBOLA | LdIBOLA | 2dIBOLA — 0dIOHA | LdIOLLA | ZdIOHLA — OdILLEA | LdILLLA | 2dILHLA — 120dl
0dI¥OLA | LdIVOLA | 2dIPOLA — 0dISOLA | LdISOLA | 2dISOLA — 0dI90LA | LdI9OLA | 2dI90iA — 0dIZOLA | LdIZOLA | 2dIZOLA — 920dI
0dI00LA | LdIOOLA | 2dI00LA — 0dILOLA | LdILOLA | 2dIlOLA — 0dIZ0LA | LdIZOLA | 2dIZotA — 0dISOLA | LdIEOLA | 2dIEOLA — §20dl
0dI96A | LdI9BA | 2dI9BA — 0dIZ6A LdIZ6A | 2dIZ6A — 0dI86A | LdISBA | 2dI8eA — 0dI66A | LdIBBA | 2dIBBA — ¥20dl
0dIgéA | LdigéA | 2digeA — 0dIE6A LdIEBA | 2dIg6A — 0dIvBA | LdIVBA | adIveA — 0dIS6A | LdIS6A | 2dISEA — £20dl
0dI88A | LdISBA | 2dISsA — 0d168A 1dIBBA | 2dIB8A — 0dI0BA | LdIOBA | 2dIoBA — 0dI6A | LdIL6A | 2dILBA — 2z0d|
0dIv8A | LdIV8A | 2dIv8A — 0dIS8A LdISBA | 2dIS8A — 0dI98A | LdI98A | 2dI9sA — 0dIZ8A | LdIZ8A | 2dIZ8A — 120dI
0dI08A | LdIOSA | 2dI0SA — 0dI18A LdItBA | 2dIl8A — 0dizg8A | LdIgsA | adigsA — 0dIEBA | LdISSA | 2dIEsA — 020dl
0dI9ZA | LdI9ZA | 2dI9ZA — 0dIZLA LdIZLN | 2dIzZn — 0dI8BZA | LdIBZA | adI8ZA — 0dI6ZA | LdIBZA | 2dIBLA — 610dl
odigZA | LdigZn | edigZn — 0dIELA LdIEZA | 2dIgZA — odivZA | LdivZA | edivZA — 0dISZA | LdISZA | 2dISZA — 810dl
0dI89A | LdISIA | 2dI8IA — 0dI69A LdIBOA | 2dIBIA — 0dIOZA | LdIOZA | 2dIoZA — OdILZA | LdILZA | 2dILZA — 210dl
0dIvYOA | LdIVOA | 2dIP9A — 0dIS9A LdISOA | 2dIS9A — 0dI99A | LdI99A | 2dIgoA — 0dIZOA | LdIZOA | 2dIZ9A — 910dl
0dI09A | LdIO9A | 2dIO9A — 0dIL9A LdILOA | 2dIloA — 0dIZOA | LdIZ9A | 2dIzan — 0dIEOA | LdISOA | 2dIS9A — §10dl
0dI9GA | LdI9SA | 2dI9SA — 0dIZSA LdIZSA | 2dIZSA — 0dI8SA | LdISA | 2dI8sA — 0dI6SA | LdIBSA | 2dIBSA — ¥10dl
0dIZSA | LdIgsA | 2digsA — 0dIESA LdIESA | 2dIgSA — 0dIvSA | LdIVSA | adIvSA — 0dISSA | LdISSA | 2dISSA — £10dl
0dI8VA | LdISVA | 2dISvA — 0dIBVA LdIBYA | 2dIBvA — 0dI0SA | LdIOSA | 2dIoSA — 0dISA | LdILGA | 2dILSA — z1odl
oug Lug zug gng v ug sug ong Lug gug 6ug oLug LLug zLug cLug viug | sLug oH_mmz
(panunuo2) JajjoJjuo) 1dnuiaiul Yyim pajerdoossy siaisibay uonound jeroads 1g-g a|qel

© 2006 Microchip Technology Inc.

DS39707A-page 8-22

Section 8. Interrupts

8.7 DESIGN TIPS

Question 1: What happens when two sources of interrupt become pending at the same
time and have the same user-assigned priority level?

Answer: The interrupt source with the highest natural order priority will take precedence. The
natural order priority is determined by the Interrupt Vector Table (IVT) address for that source.
Interrupt sources with a smaller IVT address have a higher natural order priority.

Question 2: Can the DISI instruction be used to disable all sources of interrupt and
traps?

Answer: The DISI instruction does not disable traps or priority level 7 interrupt sources.
However, the DIST instruction can be used as a convenient way to disable all interrupt sources
if no priority level 7 interrupt sources are enabled in the user’s application.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-23

PIC24F Family Reference Manual

8.8 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC24F device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the Interrupts are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC24F family of devices.

DS39707A-page 8-24

Advance Information © 2006 Microchip Technology Inc.

Section 8. Interrupts

8.9 REVISION HISTORY

Revision A (April 2006)
This is the initial released revision of this document.

© 2006 Microchip Technology Inc. Advance Information DS39707A-page 8-25

PIC24F Family Reference Manual

NOTES:

DS39707A-page 8-26 Advance Information © 2006 Microchip Technology Inc.

