MICROCHIP

16-bit MCU and DSC
Programmer’s Reference Manual

High-Performance Microcontrollers (MCU)
and Digital Signal Controllers (DSC)

© 2005-2011 Microchip Technology Inc. DS70157F

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= ISO/TS 16949:2009—

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KeEeLOQ, KEeLOQ logo, MPLAB, PIC, PICmicro, PICSTART,
pIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, Miwi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICKkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005-2011, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

6:2 Printed on recycled paper.

ISBN: 978-1-61341-357-9

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquatrters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70157F-page 2

© 2005-2011 Microchip Technology Inc.

MICROCHIP

Table of Contents

PAGE

SECTION 1. INTRODUCTION 5
a1 ge]o (8 ox 1T] o H O PSP UPTPPPPPPTOE 6
Y =T aTUE= U@ o] =T 1)Y= TSP PP OTPPTPR 6
D3V =] (o] o 0 1= a1 ST T o] o o] o (PRI 6
Style and SYMDOI CONVENTIONSoiiiiiiiiie ettt e e st e e e ettt e e e e ssate e e e e s staeeeeeannteeeeeateeeeeanstbeeaeeannneeeas 7
INSTIUCLION SEE SYMDOIS ..ttt et ettt e e e ettt e e e e sttt e e e e e nte e e e e e nneeeeeasbeeaeeannsbeeeeeanntenaeaannn 8
SECTION 2. PROGRAMMER’S MODEL 9
16-bit MCU and DSC Core ArChiteCture OVEIVIEWcoiuiiiiiiieiiiieiiiie ettt ettt sieee st see e s sreeesinee e 10
Programmer’'s MOOEIeiiiiiiiiie ettt e s a e e e bt nh e e bt e et et e s et b e e bn e e s ne e e et e e 14
WOTKING REGISIEN ATTAY ...eteitieeiitit ettt ettt ettt ekt e ke e e b et e ekt e et et e e b et e s ebe e e eab et e eab e e e es e e b e e e s neeesaneeeantreenan 18
Default Working RegISEr (WREG)oiiiiiiiiieei et e ettt ettt e ettt e e e s be et e e e atbe e e e e aaneeeeaaeaanbeeeansaeeeaesannneeaaaan 18
Software Stack Frame POINTEEeiiiiiiiiiiii et e e e e e e e bt et e e s e b br e e e e e nee e e e s sabreeeeeaannaneas 18
SOMWAIE STACK POINTET ...ttt et e e e e bttt e e e e hb et e e e e e bbbt e aae et e e e e anbbeeeeeannnneeeas 19
Stack Pointer Limit REGISIEN (SPLIMY)oiiiiiiiiiie ittt e e et e e e e s et e e e e s sate e e e e s s ate e e s sasbaaeaesansrees 19
Accumulator A and Accumulator B (dsPIC30F, dsPIC33F and dSPIC33E DEVICES)ccceevvveriiveeriiieenneennen 19
PrOGIam COUNTETooiiiiiiiie ettt et e e et e e e e st e e e e s n et e e s ek ne et e e e e ne et esssn et e e s asnnneeeeaasnnneeeennes 19
2] N L= 1] (= PR RT 19
PSVPAG Register (PIC24F, PIC24H, dSPIC30F and dSPIC33F)ccceiiiieiiiie ettt 19
010 10 | N I =T] (= SO P PO PPPRTPPPPRN 20
DCOUNT Register (dsPIC30F, dsPIC33F and dSPIC33E DEVICES)ccuuevieiiiuiiieeiiiiieeeeeiiieeeessireeeesssivaeea e 20
DOSTART Register (dsPIC30F, dsPIC33F and dSPIC33E DEVICES)cuieiiuiiieeiiiiiieeeeiiieeeesieeeeessnseeaeaeens 20
DOEND Register (dsPIC30F, dsPIC33F and dSPIC33E DEVICES)cciueeiriiiiiiiieiiiie et 21
SR N WU IS S (T o 1 (=] TSR 21
(070 (= Ofo] g1 (o] I L=] (= S PSSP PPPRPPPP 24
SNAAOW REGISIEIS ..ttt ettt oot e e e e a bttt e e e ottt et e e e ah b bt e e e e e b be e e e e e b eee e nbbe e e e e e annbeeeesannnneeeas 24
DO StACK (ASPIC33E DEBVICES) ...uvveeitieeiutiiaitieeeittee ettt sttt e s e e e sttt e st e e e shb e e shbe e e sab e e et beeabeeeabeeesbeeesnbeeeseeeebbeenans 25
SECTION 3. INSTRUCTION SET OVERVIEW 37
a0 (1 ox 1T] o PRSP 38
INSTFUCTION SEE OVEIVIEW ...ttt ettt ettt e e oottt e e e e bt e e e e e hbb e e e e e e mb b e e e e ebeeeeeeanbbbeeeeeannnneeeeaan 38
INStruction Set SUMMANY TADIESoiiiiiiiiii et et e e e e b e e e s e b e e e s anbb e e e e e snbaneee s 40
SECTION 4. INSTRUCTION SET DETAILS 51
Data ADAreSSING MOUESoiiiiiieiiii ettt r et e e et e e s be e e sh bt e e aane e e abe e e e bb e e s abeeeaneeeebreenane 52
Program AdAreSSING MOAESooi ittt e e ettt e e e e et te e e e e asaeeeae e e nsseeaeeannneeaeaansaneaeeaannnneaaean 61
INSTFUCTION STAIIS ...eeiiiieiiii ettt e e e ettt e e e s e a b et e e e e bbbt e e e e nbbe e e eanbb e e e e e nnbeeeeeaasnaneeeeanes 62
2V L @] o1=T =1 1 o] o OO PPPPRPPPPRPN 64
VAo] (o I\ o)V =l @] o =Y - o] 1= SO PRP PP 66
USING 10-Dit Literal OPEIANGScciiviiiiiiieiiiie ittt ettt et eb e s e aa b e e st et enan e e erbe e e snteeennneeensreeeane 69
Software Stack Pointer and Frame POINTETc.iiiiiioiiieiie ettt nnee e 70
Conditional BranCh INSIIUCHIONSuiiiii ittt e ettt e e e e et e e e e e ate e e e e ebeeeae s anaeeeaeeannnneas 76
pA] - UL LTl =T USSR 77
Assigned WOrking REGISIEN USAQEeuieiiiiiiieeiiiie ettt ettt ettt ettt e s et et e e e e aabb e e e e e s bbb e e aabbeeeaesanbneeeeean 78
DSP Data Formats (dsPIC30F, dsPIC33F and dSPIC33E DEVICES)cccviiuiiiieeiiiiiieeeisiiiee e esiriee e esiree e 81
Accumulator Usage (dsPIC30F, dsPIC33F and dSPIC33E DEVICES)c.cciiiviiieiiiiiiieeeaiiieeeeesireeaessnseeaessnsvenas 83
Accumulator Access (dsPIC30F, dSPIC33F and dSPIC33E DEVICES)ccoccviiiriieiiiieeiiieiiiee e siree e esieee e 84
DSP MAC Instructions (dsPIC30F, dsSPIC33F and dSPIC33E DEVICES)ccceiiuuieiieiiiiieaeaiiieeaeaaieeeaesaieeeaaa e 84
DSP Accumulator Instructions (dsPIC30F, dsPIC33F and dSPIC33E DEeVICES)ceeeiiiiieieeiiiiiiieeiiiieieee e 88
Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F and dsPIC33E DevVviCes)ccccccvveeeennunnenn. 88
Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F and dsPIC33E Devices) 90

© 2005-2011 Microchip Technology Inc. DS70157F-page 3

16-bit MCU and DSC Programmer’s Reference Manual

Extended-precison Arithmetic using MiXed-Signc.cceevieeeiieenniienneee e multiplications (dsPIC33E only) 91
SECTION 5. INSTRUCTION DESCRIPTIONS 93
INSTFUCTION SYMIOIS ...ttt e e ettt e e e ettt e e e e b b et e e e ebe e e e e e nabb e e e e e nnreeeeeennes 94
Instruction Encoding Field Descriptors INrOAUCTIONcuuiiiiiiiiiiie e e e 94
INStruction DESCIIPtION EXAMPIEcoioiiiiiiii ittt e e e e e e e e e s s tba e e e e e e bb e e e satsaeeessasbreaaeannnes 98
INSEIUCHION DESCIIPLIONS ...ttt ettt ettt e e ekt e ekt eean et e e be e et e s ne e e s abneesbneennneas 99
SECTION 6. BUILT-IN FUNCTIONS 445
1o To [0 Tox 1T o IR 446
BUIIE-IN FUNCHON LIST ..ttt e et e e s n et e e tn e snne e s neeesanneenans 447
SECTION 7. REFERENCE 483
INSEFUCHION Bt IMIBP ..ottt ettt a et e st e e e s e e e bt e e s bt e e be e e she e e e abb e e nnneesnneeeabneenae 484
INStrUCtion Set SUMMANY TADIE ... i ettt e e ettt e e e e et et e e e e esteeeeeasaeeeaeaanneeeaeanns 486
REVISION HISTOMY .. eeiie ettt ettt e e oottt e e e bttt e e s et beeee e e antae e e e e ssbeeeeeaeeeaeeasbeeeaesanneeaaeaannes 496
SECTION 8. INDEX 497
SECTION 9. WORLDWIDE SALES AND SERVICE 502

DS70157F-page 4

© 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 1. Introduction

S
=
=
o
Q.
<
(7]
=4
o
=]

HIGHLIGHTS

This section of the manual contains the following major topics:

1.1 INEOOUCHION ..ottt ettt sb et e bt sae e e e reenrenene e 6
1.2 MaANUAI ODBJECHIVEeeeiiiiiiiieie ettt e et e e e e e bbb e e e e ebae e e e e eannenea e 6
I B B oAV =Y (o] o 4o T=T o AT U1 o o [0] A U PEPR P 6
1.4 Style and Symbol CONVENLIONSooiiiiiiiiie et e e e e eeeeeas 7
1.5 INStruCtion SEt SYMDOIScooiiiiiiii et 8

© 2005-2011 Microchip Technology Inc. DS70157F-page 5

16-bit MCU and DSC Programmer’s Reference Manual

1.1 INTRODUCTION

Microchip Technology focuses on products for the embedded control market. Microchip is a
leading supplier of the following devices and products:

« 8-bit General Purpose Microcontrollers (PIC® MCUS)

+ 16-bit Digital Signal Controllers (dsPIC® DSCs)

« 16-bit and 32-bit Microcontrollers (MCUs)

« Speciality and Standard Nonvolatile Memory Devices

« Security Devices (KEELOQ® Security ICs)

« Application-specific Standard Products

Information about these devices and products, with corresponding technical documentation, is
available on the Microchip web site (www.microchip.com).

1.2 MANUAL OBJECTIVE

This manual is a software developer’s reference for the 16-bit MCU and DSC device families. It
describes the Instruction Set in detail and also provides general information to assist the
development of software for the 16-bit MCU and DSC device families.

This manual does not include detailed information about the core, peripherals, system integration
or device-specific information. The user should refer to the specific device family reference
manual for information about the core, peripherals and system integration. For device-specific
information, the user should refer to the specific device data sheets. The information that can be
found in the data sheets includes:

» Device memory map

» Device pinout and packaging details

» Device electrical specifications

« List of peripherals included on the device

Code examples are given throughout this manual. These examples are valid for any device in
the 16-bit MCU and DSC families.

1.3 DEVELOPMENT SUPPORT

Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:
« Code generation

« Hardware/Software debug

» Device programmer

* Product evaluation boards

Information about the latest tools, product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from your local Microchip Sales Office.

Microchip offers other reference tools to speed the development cycle. These include:
« Application Notes

» Reference Designs

* Microchip web site

» Local Sales Offices with Field Application Support

« Corporate Support Line

The Microchip web site also lists other sites that may be useful references.

DS70157F-page 6

© 2005-2011 Microchip Technology Inc.

Section 1. Introduction

1.4

STYLE AND SYMBOL CONVENTIONS

Throughout this document, certain style and font format conventions are used. Table 1-1
provides a description of the conventions used in this document.

Table 1-1:

Document Conventions

Symbol or Term

Description

set To force a bit/register to a value of logic ‘1'.
clear To force a bit/register to a value of logic ‘0’.
Reset 1. To force a register/bit to its default state.

2. A condition in which the device places itself after a device Reset
occurs. Some bits will be forced to ‘@’ (such as interrupt enable bits),
while others will be forced to ‘1’ (such as the I/O data direction bits).

Oxnnnn Designates the number ‘nnnn’ in the hexadecimal number system. These
conventions are used in the code examples. For example, 0x013F or
0xA800.

: (colon) Used to specify a range or the concatenation of registers/bits/pins.

One example is ACCAU:ACCAH:ACCAL, which is the concatenation of

three registers to form the 40-bit Accumulator.

Concatenation order (left-right) usually specifies a positional relationship

(MSb to LSb, higher to lower).

<> Specifies bit locations in a particular register.

One example is SR<7:5> (or IPL<2:0>), which specifies the register and

associated bits or bit locations.

LSb, MSb Indicates the Least Significant or Most Significant bit in a field.

LSB, MSB Indicates the Least/Most Significant Byte in a field of bits.

Isw, msw Indicates the least/most significant word in a field of bits

Courier New
Font

Used for code examples, binary numbers and for Instruction mnemonics
in the text.

Times New
Roman Font, Italic

Used for equations and variables.

Times New Used in explanatory text for items called out from a figure, equation, or
Roman Font, example.

Bold Italic

Note: A Note presents information that we want to re-emphasize, either to help

you avoid a common pitfall, or make you aware of operating differences
between some device family members. A Note can be in a box, or when
used in a table or figure, it is located at the bottom of the table or figure.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 7

S
=
=
o
Q.
<
(2]
=
o
=

16-bit MCU and DSC Programmer’s Reference Manual

1.5 INSTRUCTION SET SYMBOLS

The summary tables in Section 3.2 “Instruction Set Overview” and Section 7.2 “Instruction
Set Summary Table”, and the instruction descriptions in Section 5.4 “Instruction
Descriptions” utilize the symbols shown in Table 1-2.

Table 1-2: Symbols Used in Instruction Summary Tables and Descriptions
Symbol® Description

{13 Optional field or operation

[text] The location addressed by text

(text) The contents of text

#text The literal defined by text

a € [b, c, d] [“a”mustbeinthesetof [b, c, d]

<n:m> Register bit field

{label:} Optional label name

Acc Accumulator A or Accumulator B

AWB Accumulator Write Back

bit4 4-bit wide bit position (0:7 in Byte mode, 0:15 in Word mode)

Expr Absolute address, label or expression (resolved by the linker)

f File register address

lita 1-bit literal (0:1)

lit4 4-bit literal (0:15)

1its 5-bit literal (0:31)

1it8 8-bit literal (0:255)

litie 10-bit literal (0:255 in Byte mode, 0:1023 in Word mode)

lit14 14-bit literal (0:16383)

litie 16-bit literal (0:65535)

1it23 23-bit literal (0:8388607)

Slit4 Signed 4-bit literal (-8:7)

S1ité6 Signed 6-bit literal (-32:31) (range is limited to -16:16)

S1iti10e Signed 10-bit literal (-512:511)

S1iti16 Signed 16-bit literal (-32768:32767)

TOS Top-of-Stack

Wb Base working register

wd Destination working register (direct and indirect addressing)

wdo Destination working register (direct and indirect addressing, including indirect addressing with offset)

Wm, Wn Working register divide pair (dividend, divisor)

wWm * Wm Working register multiplier pair (same source register)

Wm * Wn Working register multiplier pair (different source registers)

wn Both source and destination working register (direct addressing)

wnd Destination working register (direct addressing)

wns Source working register (direct addressing)

WREG Default working register (assigned to WO0)

Ws Source working register (direct and indirect addressing)

Wso Source working register (direct and indirect addressing, including indirect addressing with offset)

Wx Source Addressing mode and working register for X data bus prefetch

wxd Destination working register for X data bus prefetch

Wy Source Addressing mode and working register for Y data bus prefetch

Wyd Destination working register for Y data bus prefetch

Note 1: The range of each symbol is instruction dependent. Refer to Section 5. “Instruction Descriptions” for
the specific instruction range.

DS70157F-page 8 © 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 2. Programmer’s Model

HIGHLIGHTS

This section of the manual contains the following major topics:

2.1 16-bit MCU and DSC Core Architecture OVEIVIEWccccverviirieniienie e 10 o
2.2 Programmer’s MOGEL.........c.ccoiiiuiiuiiiiieiete ettt ettt ettt ettt ee e teere e 14 o
2.3 WOTKING REGISIET ATAYeiiiiiiiiieeeiittee ettt e ettt e et e e e e bb et e e e s asbae e e e s abbeeeeesneee 18 g‘ﬁ
2.4 Default Working REGIStEr (WREG)ovveeueeeeeeeeeeeeeeeeeeeeeeeeeeee s ee e 18 8_ %
2.5 Software Stack Frame POINLETooiiiiiiiie it 18 ®3
(1)

th

(7))

© 2005-2011 Microchip Technology Inc. DS70157F-page 9

16-bit MCU and DSC Programmer’s Reference Manual

2.1 16-BIT MCU AND DSC CORE ARCHITECTURE OVERVIEW

This section provides an overview of the 16-bit architecture features and capabilities for the
following families of devices:
» 16-bit Microcontrollers (MCU):
- PIC24F
- PIC24H
- PIC24E
« 16-bit Digital Signal Controllers (DSC):
- dsPIC30F
- dsPIC33F
- dsPIC33E

211 Features Specific to 16-bit MCU and DSC Core

The core of the 16-bit MCU and DSC devices is a 16-bit (data) modified Harvard architecture with
an enhanced instruction set. The core has a 24-bit instruction word, with an 8-bit Op code field.
The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program
memory space. An instruction prefetch mechanism is used to help maintain throughput and
provides predictable execution. The majority of instructions execute in a single cycle.

2111 REGISTERS

The 16-bit MCU and DSC devices have sixteen 16-bit working registers. Each of the working
registers can act as a data, address or offset register. The 16th working register (W15) operates
as a software Stack Pointer for interrupts and calls.

2.1.1.2 INSTRUCTION SET

The instruction set is almost identical for the 16-bit MCU and DSC architectures. The instruction
set includes many Addressing modes and was designed for optimum C compiler efficiency.

2.1.13 DATA SPACE ADDRESSING

The data space can be addressed as 32K words or 64 Kbytes. The upper 32 Kbytes of the data
space memory map can optionally be mapped into program space at any 16K program word
boundary, which is a feature known as Program Space Visibility (PSV). The program to data
space mapping feature lets any instruction access program space as if it were the data space,
which is useful for storing data coefficients.

Note: Some devices families support Extended Data Space (EDS) addressing. See the
specific device data sheet and family reference manual for more details on this
feature.

2.1.14 ADDRESSING MODES

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct,
Register Indirect, and Register Offset Addressing modes. Each instruction is associated with a
predefined Addressing mode group, depending upon its functional requirements. As many as
seven Addressing modes are supported for each instruction.

For most instructions, the CPU is capable of executing a data (or program data) memory read, a
working register (data) read, a data memory write and a program (instruction) memory read per
instruction cycle. As a result, 3-operand instructions can be supported, allowing A + B = C
operations to be executed in a single cycle.

DS70157F-page 10

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

2.1.15 ARITHMETIC AND LOGIC UNIT

A high-speed, 17-bit by 17-bit multiplier is included to significantly enhance the core’s arithmetic
capability and throughput. The multiplier supports Signed, Unsigned, and Mixed modes, as well
as 16-bit by 16-bit, or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a
single cycle.

The 16-bit Arithmetic Logic Unit (ALU) is enhanced with integer divide assist hardware that
supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT
instruction looping mechanism, and a selection of iterative divide instructions, to support 32-bit
(or 16-bit) divided by 16-bit integer signed and unsigned division. All divide operations require 19
cycles to complete, but are interruptible at any cycle boundary.

2.1.1.6 EXCEPTION PROCESSING

The 16-bit MCU and DSC devices have a vectored exception scheme with support for up to 8
sources of non-maskable traps and up to 246 interrupt sources. In both families, each interrupt
source can be assigned to one of seven priority levels.

2.1.2 PIC24E and dsPIC33E Features

In addition to the information provided in Section 2.1.1 “Features Specific to 16-bit MCU and
DSC Core”, this section describes the enhancements that are available in the PIC24E and
dsPIC33E families of devices.

i)
-
Q
==
oo
o3
@3
@
th
(7]

2121 DATA SPACE ADDRESSING

The Base Data Space address is used in conjunction with a read or write page register (DSRPAG
or DSWPAG) to form an Extended Data Space (EDS) address, which can also be used for PSV
access. The EDS can be addressed as 8 M words or 16 Mbytes. Refer to Section 3. “Data
Memory” (DS70595) in the “dsPIC33E/PIC24E Family Reference Manual” for more details on
EDS, PSV, and table accesses.

Note: Some PIC24F devices also support Extended Data Space. Refer to Section 44.
“CPU with EDS” (DS39732) and Section 45. “Data Memory with EDS”
(DS39733) of the PIC24F Family Reference Manual for details.

2.1.2.2 AUTOMATIC MIXED-SIGN MULTIPLICATION MODE (dsPIC33E ONLY)

In addition to signed and unsigned DSP multiplications, dsPIC33E devices support mixed-sign
(unsigned-signed and signed-unsigned) multiplications without the need to dynamically
reconfigure the multiplication mode and shift data to account for the difference in operand
formats. This mode is particularly beneficial for executing extended-precision (32-bit and 64-bit)
algorithms. Besides DSP instructions, MCU multiplication (MUL) instructions can also utilize
either accumulator as a result destination, thereby enabling faster extended-precision arithmetic.
Refer to0 4.10.1 “Implied DSP Operands (dsPIC30F, dsPIC33F and dsPIC33E Devices)” and
4.18 “Extended-precison Arithmetic using mixed-sign multiplications (dsPIC33E only)”
for more details on mixed-sign DSP multiplications.

2.1.2.3 MCU MULTIPLICATIONS WITH 16-BIT RESULT

16x16-bit MUL instructions include an option to store the product in a single 16-bit working
register rather than a pair of registers. This feature helps free up a register for other purposes, in
cases where the numbers being multiplied are small in magnitude and therefore expected to
provide a 16-bit result. See the individual MUL instruction descriptions in 5.4 “Instruction
Descriptions” for more details.

2.1.2.4 HARDWARE STACK FOR DO LOOPS (dsPIC33E ONLY)

The single-level DO loop shadow register-set has been replaced by 4-level deep DO loop
hardware stack. This provides automatic DO loop register save/restore for up to 3 levels of DO
loop nesting, resulting in more efficient implementation of nested loops. Refer to 2.19 “DO Stack
(dsPIC33E Devices)” for more details on DO loop nesting in dsPIC33E devices.

© 2005-2011 Microchip Technology Inc. DS70157F-page 11

16-bit MCU and DSC Programmer’s Reference Manual

2.1.2.5 DSP CONTEXT SWITCH SUPPORT (dsPIC33E ONLY)

In dsPIC33E devices, the DSP overflow and saturation status bits are writable. This allows the
state of the DSP Engine to be efficiently saved and restored while switching between DSP tasks.
See 2.16.4 “DSP ALU Status Bits (dsPIC30F, dsPIC33F and dsPIC33E Devices)” for more
details on DSP status bits.

2.1.2.6 EXTENDED CALL AND GOTO INSTRUCTIONS

The new CALL.L Wn and GOTO.L Whn instructions extend the capabilities of the CALL Wn and
GOTO Wn by enabling 32-bit addresses for computed branch/call destinations. In these
enhanced instructions, the destination address is provided by a pair of working registers rather
than a single 16-bit register. See the CALL.L and GOTO.L instruction descriptions in
5.4 “Instruction Descriptions” for more details.

2.1.2.7 COMPARE-BRANCH INSTRUCTIONS

dsPIC33E/PIC24E devices feature conditional Compare-Branch (CPBxx) instructions. These
instructions extend the capabilities of the Compare-Skip (CPSxx) instructions by allowing
branches rather than only skipping over a single instruction. See the CPBEQ, CPBNE, CPBGT
and CPBLT instruction descriptions in 5.4 “Instruction Descriptions” for more details on
compare-branch instructions.

2.1.3 dsPIC30F, dsPIC33F, and dsPIC33E Features

In addition to the information provided in Section 2.1.1 “Features Specific to 16-bit MCU and
DSC Core”, this section describes the DSP enhancements that are available in the dsPIC30F,
dsPIC33F, and dsPIC33E families of devices.

2.1.3.1 PROGRAMMING LOOP CONSTRUCTS

Overhead free program loop constructs are supported using the DO instruction, which is
interruptible.

2.1.3.2 DSP INSTRUCTION CLASS

The DSP class of instructions.are seamlessly integrated into the architecture and execute from
a single execution unit.

2.1.33 DATA SPACE ADDRESSING

The data space is split into two blocks, referred to as X and Y data memory. Each memory block
has its own independent Address Generation Unit (AGU). The MCU class of instructions operate
solely through the X memory AGU, which accesses the entire memory map as one linear data
space. The DSP dual source class of instructions operates through the X and Y AGUs, which
splits the data address space into two parts. The X and Y data space boundary is arbitrary and
device-specific.

2.1.34 MODULO AND BIT-REVERSED ADDRESSING

Overhead-free circular buffers (modulo addressing) are supported in both X and Y address
spaces. The modulo addressing removes the software boundary checking overhead for DSP
algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class
of instructions. The X AGU also supports bit-reverse addressing, to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

2.1.35 DSP ENGINE

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit
saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of
shifting a 40-bit value, up to 16 bits right, or up to 16 bits left, in a single cycle. The DSP
instructions operate seamlessly with all other instructions and have been designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two working registers. This requires that

DS70157F-page 12

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

the data space be split for these instructions and linear for all others. This is achieved in a
transparent and flexible manner through dedicating certain working registers to each address
space.

2.1.3.6 EXCEPTION PROCESSING

The dsPIC30F devices have a vectored exception scheme with support for up to 8 sources of
non-maskable traps and up to 54 interrupt sources. The dsPIC33F and dsPIC33E have a similar
exception scheme, but support up to 118, and up to 246 interrupt sources, respectively. In all
three families, each interrupt source can be assigned to one of seven priority levels.

Refer to Section 6 and 28 “ Interrupts” of the dsPIC30F Family Reference Manual, Sections

6, 29,32, 41, 47 and 53 of the dsPIC33F/PIC24H Family Reference Manual and Section 6 of the “
dsPIC33E/PIC24E Family Reference Manual, for more details on Exception Processing.

=
o
<3
o

s.Jawwelbo.id

© 2005-2011 Microchip Technology Inc. DS70157F-page 13

16-bit MCU and DSC Programmer’s Reference Manual

2.2 PROGRAMMER’S MODEL

Figure 2-1 through Figure 2-4 show the programmer’s model diagrams for the 16-bit MCU and
DSC families of devices.

Figure 2-1: PIC24F and PIC24H Programmer’s Model Diagram

r— T 7
z o
WO/WREG Register
DIV and MUL w1 L — - — — — |
Result Registers w2 Legend
w3
w4
W5
W6
dl > Working Registers
w8
w9
w10
W11
W12
W13
W14/Frame Pointer
W15/Stack Pointer /
SPLIM | Stack Pointer Limit Register
22 0
” 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
13 0
| RCOUNT | REPEAT Loop Counter
15 0
| CORCON | CPU Core Control Register
|—|—|—|—|—|—|—E!IPL2|IPL1|IPLO|RA NJov]z]|c
Status Register
<€ SRH > <€ SRL !

DS70157F-page 14 © 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

Figure 2-2: PIC24E Programmer’s Model Diagram

r— — — — — l
- S - [
WO/WREG \ Registers
DIV and MUL W1 L_ - - — — —
Result Registers W2
w3
w4
W5
W6
w7
w8
W9
W10
W11
w12
W13
W14/Frame Pointer
W15/Stack Pointer /

> Working Registers

i)
=
Q
==
oo
o3
@3
@
th
(7]

SPLIM | Stack Pointer Limit Register

22 0
” 0 | Program Counter

| TBLPAG | Data Table Page Address

| DSRPAG | Data Space Read Page Address

| DSWPAG | Data Space Write Page Adcress

15 0
| RCOUNT |

REPEAT Loop Counter

15 0
| CORCON | CPU Core Control Register

|_|_|_|—|—|—|—ECX!IPL2|IPL1|IPLO|RA N|ov] z | c

- SRH > < SRL >

Status Register

© 2005-2011 Microchip Technology Inc. DS70157F-page 15

16-bit MCU and DSC Programmer’s Reference Manual

Figure 2-3: dsPIC30F and dsPIC33F Programmer’s Model Diagram

r— - - — — - T
15 0 PUSH. S
- L VEEERTS
WO/WREG | Register |
DIV and MUL W1
DO Shadow
H -
Result Registers W2 !_l:l Register |
= w3 Legend
w4
MAC Operand W5
Registers bt
w6
w7
. > Working Registers
w8
MAC Address J W9
Registers W10
W11
S~—
w12
W13
W14/Frame Pointer
W15/Stack Pointer /
SPLIM | Stack Pointer Limit Register
39 31 15 0
ACCA DSP
ACCB Accumulators
22 0
” 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
13 0
| RCOUNT | REPEAT Loop Counter
13 0
| DCOUNT ’-‘ DO Loop Counter
I
24 0
| 0 || DOSTART ” 0 H DO Loop Start Address
!
24 0
[o] DOEND [o “ DO Loop End Address
!
15 0
| CORCON | CPU Core Control Register

| 0A| OB | SA | SB |OAB|SAB| DA gmq IPL1|IPLO| ral NJov] z[c

Status Register

- SRH > < SRL >

DS70157F-page 16 © 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

Figure 2-4: dsPIC33E Programmer’s Model Diagram
rem— :USF S_ d_ !
15 0 .S an
~ N | I " hacow |
WO/WREG | Registers |
DIV and MUL W1
N D
Result Registers | ‘:’ sesfd Y |
W2 L tacl .
- w3 Legend
w4
MAC Operand W5
Registers it
W6
w7) .
— > Working Registers
w8
MAC Address J W9
Registers W10
W11
S~—
w12
w13
W14/Frame Pointer
W15/Stack Pointer /
SPLIM | Stack Pointer Limit Register
39 31 15 0
ACCA DSP
ACCB Accumulators
22 0
” 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
9 0
| DSRPAG | X Data Space Read Page Address
8 0
| DSWPAG | X Data Space Write Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
| DCOUNT ’—‘ DO Loop Counter
L
24 0
| 0 || DOSTART ” 0 ’_‘ DO Loop Start Address
[
24 0
| o] DOEND lo]—‘ DO Loop End Address
!
15 0
| CORCON | CPU Core Control Register

| OA| OB| SA | SB |OAB|SAB| DA g!IPL2|IPL1|IPLO| RA| N Jov] z]c

< SRH >

- SRL

-
ol

Status Register

© 2005-2011 Microchip Technology Inc.

DS70157F-page 17

i)
=
Q
==
oo
o3
@3
@
th
(7]

16-bit MCU and DSC Programmer’s Reference Manual

All registers in the programmer’s model are memory mapped and can be manipulated directly by
the instruction set. A description of each register is provided in Table 2-1.

Note: Unless otherwise specified, the Programmer’s Model Register Descriptions inI
Table 2-1 apply to all MCU and DSC device families.
Table 2-1: Programmer’s Model Register Descriptions
Register Description

CORCON CPU Core Configuration register

PC 23-bit Program Counter

PSvPAGH) Program Space Visibility Page Address register
DSRPAG(? Extended Data Space (EDS) Read Page register
DSWPAG® Extended Data Space (EDS) Write Page register
RCOUNT REPEAT Loop Count register

SPLIM Stack Pointer Limit Value register

SR ALU and DSP Engine STATUS register

TBLPAG Table Memory Page Address register

WO0-W15 Working register array

ACCA, ACCB®) 40-bit DSP Accumulators

DCOUNT®) DO Loop Count register

DOSTART(®) DO Loop Start Address register

DOEND®) DO Loop End Address register

Note 1: This register is only available on PIC24F, PIC24H, dsPIC30F, and dsPIC33F
devices.

2: This register is only available on PIC24E and dsPIC33E devices.
3: This register is only available on dsPIC30F, dsPIC33F, and dsPIC33E devices.

2.3 WORKING REGISTER ARRAY

The 16 working (W) registers can function as data, address or offset registers. The function of a
W register is determined by the instruction that accesses it.

Byte instructions, which target the working register array, only affect the Least Significant Byte
(LSB) of the target register. Since the working registers are memory mapped, the Least and Most
Significant Bytes can be manipulated through byte-wide data memory space accesses.

24 DEFAULT WORKING REGISTER (WREG)

The instruction set can be divided into two instruction types: working register instructions and file
register instructions. The working register instructions use the working register array as data
values or as addresses that point to a memory location. In contrast, file register instructions
operate on a specific memory address contained in the instruction opcode.

File register instructions that also utilize a working register do not specify the working register that
is to be used for the instruction. Instead, a default working register (WREG) is used for these file
register instructions. Working register, WO, is assigned to be the WREG. The WREG assignment
is not programmable.

2.5 SOFTWARE STACK FRAME POINTER

A frame is a user-defined section of memory in the stack, used by a function to allocate memory
for local variables. W14 has been assigned for use as a Stack Frame Pointer with the link (LNK)
and unlink (ULNK) instructions. However, if a Stack Frame Pointer and the LNK and ULNK
instructions are not used, W14 can be used by any instruction in the same manner as all other
W registers. On dsPIC33E and PIC24E devices, a Stack Frame Active (SFA) Status bit is used
to support nested stack frames. See Section 4.7.2 “Software Stack Frame Pointer” for
detailed information about the Frame Pointer.

DS70157F-page 18

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

2.6 SOFTWARE STACK POINTER

W15 serves as a dedicated Software Stack Pointer, and will be automatically modified by function
calls, exception processing and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
Stack Pointer. Refer to Section 4.7.1 “Software Stack Pointer” for detailed information about
the Stack Pointer.

2.7 STACK POINTER LIMIT REGISTER (SPLIM)

The SPLIM is a 16-bit register associated with the Stack Pointer. It is used to prevent the Stack
Pointer from overflowing and accessing memory beyond the user allocated region of stack
memory. Refer to Section 4.7.3 “Stack Pointer Overflow” for detailed information about the
SPLIM.

2.8 ACCUMULATOR A AND ACCUMULATOR B (dsPIC30F, dsPIC33F AND
dsPIC33E DEVICES)

Accumulator A (ACCA) and Accumulator B (ACCB) are 40-bit wide registers, utilized by DSP
instructions to perform mathematical and shifting operations. Each accumulator is composed of
3 memory mapped registers:

e AccxU (bits 39-32)

* AccxH (bits 31-16)

e AccxL (bits 15-0)

In dsPIC33E devices, Accumulator A and Accumulator B can also be used as destination

registers in MCU MUL.xx instructions. This helps reduce the execution time of
extended-precision arithmetic operations.

Refer to Section 4.12 “Accumulator Usage (dsPIC30F, dsPIC33F and dsPIC33E Devices)”
for details on using ACCA and ACCB.

i)
-
Q
==
oo
o3
@3
@
th
(7]

2.9 PROGRAM COUNTER

The Program Counter (PC) is 23 bits wide. Instructions are addressed in the 4M x 24-hit user
program memory space by PC<22:1>, where PC<0> is always set to ‘0’ to maintain instruction
word alignment and provide compatibility with data space addressing. This means that during
normal instruction execution, the PC increments by 2.

Program memory located at 0x800000 and above is utilized for device configuration data, Unit ID
and Device ID. This region is not available for user code execution and the PC can not access
this area. However, one may access this region of memory using table instructions. For details
on accessing the configuration data, Unit ID, and Device ID, refer to the specific device family
reference manual.

2.10 TBLPAG REGISTER

The TBLPAG register is used to hold the upper 8 bits of a program memory address during table
read and write operations. Table instructions are used to transfer data between program memory
space and data memory space. For details on accessing program memory with the table
instructions, refer to the family reference manual of the specific device.

211 PSVPAG REGISTER (PIC24F, PIC24H, dsPIC30F AND dsPIC33F)

Program space visibility allows the user to map a 32-Kbyte section of the program memory space
into the upper 32 Kbytes of data address space. This feature allows transparent access of
constant data through instructions that operate on data memory. The PSVPAG register selects
the 32-Kbyte region of program memory space that is mapped to the data address space. For
details on program space visibility, refer to the specific device family reference manual.

© 2005-2011 Microchip Technology Inc. DS70157F-page 19

16-bit MCU and DSC Programmer’s Reference Manual

2.12 RCOUNT REGISTER

The 14-bit RCOUNT register (16-bit for PIC24E and dsPIC33E devices) register contains the
loop counter for the REPEAT instruction. When a REPEAT instruction is executed, RCOUNT is
loaded with the repeat count of the instruction, either “lit14” for the “REPEAT #1it14” instruction
(“it15” for the “REPEAT #11it15” instruction for PIC24E and dsPIC33E devices), or the 14 LSb
of the Wn register for the “REPEAT Wn” instruction (entire Wn for PIC24E and dsPIC33E
devices). The REPEAT loop will be executed RCOUNT + 1 time.

Note 1: If a REPEAT loop is executing and gets interrupted, RCOUNT may be cleared by
the Interrupt Service Routine to break out of the REPEAT loop when the foreground
code is re-entered.

2: Refer to the specific device family reference manual for complete details about
REPEAT loops.

2.13 DCOUNT REGISTER (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

The 14-bit DCOUNT register (16-bit for dsPIC33E devices) contains the loop counter for
hardware DO loops. When a DO instruction is executed, DCOUNT is loaded with the loop count
of the instruction, either “1it14” for the “DO #1it14, Expr” instruction (“1it15” for the “DO
#1it15, Expr” instruction for dsPIC33E devices) or the 14 LSb of the Ws register for the “DO
Ws, Expr” instruction (entire Wn for dsPIC33E devices). The DO loop will be executed
DCOUNT + 1 times.

Note 1: In dsPIC30F and dsPIC33F devices, the DCOUNT register contains a shadow
register. See Section 2.18 “Shadow Registers” for information on shadow regis-
ters.

2: The dsPIC33E devices have a 4-level-deep, nested DO stack instead of a shadow
register.

3: Refer to the specific device family reference manual for complete details about DO

loops.

2.14 DOSTART REGISTER (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

The DOSTART register contains the starting address for a hardware DO loop. When a DO
instruction is executed, DOSTART is loaded with the address of the instruction that follows the
DO instruction. This location in memory is the start of the DO loop. When looping is activated,
program execution continues with the instruction stored at the DOSTART address after the last
instruction in the DO loop is executed. This mechanism allows for zero overhead looping.

Note 1: For dsPIC30F and dsPIC33F devices, DOSTART has a shadow register. See
Section 2.18 “Shadow Registers” for information on shadowing.

2: The dsPIC33E devices have a 4-level-deep, nested DO stack instead of a shadow
register. The DOSTART register is read-only in dsPIC33E devices.

3: Refer to the specific device family reference manual for complete details about DO

loops.

DS70157F-page 20

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

2.15 DOEND REGISTER (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

The DOEND register contains the ending address for a hardware DO loop. When a DO instruction
is executed, DOEND is loaded with the address specified by the expression in the DO instruction.
This location in memory specifies the last instruction in the DO loop. When looping is activated
and the instruction stored at the DOEND address is executed, program execution will continue
from the DO loop start address (stored in the DOSTART register).

Note 1: For dsPIC30F and dsPIC33F devices, DOEND has a shadow register. See
Section 2.18 “Shadow Registers” for information on shadow registers.

2: The dsPIC33E devices have a 4-level-deep, nested DO stack instead of a shadow
register.

3: Refer to the specific device family reference manual for complete details about DO
loops.

2.16 STATUS REGISTER

The 16-bit STATUS register maintains status information for the instructions which have been
executed most recently. Operation Status bits exist for MCU operations, loop operations and
DSP operations. Additionally, the STATUS register contains the CPU Interrupt Priority Level bits,
IPL<2:0>, which are used for interrupt processing.

i)
-
Q
==
oo
o3
@3
@
th
(7]

Depending on the MCU and DSC family, one of the following STATUS registers is used:

* Register 2-1 for PIC24F, PIC24H, and PIC24E devices
* Register 2-2 for dsPIC30F and dsPIC33F devices
¢ Register 2-3 for dsPIC33E devices

2.16.1 MCU ALU Status Bits

The MCU operation Status bits are either affected or used by the majority of instructions in the
instruction set. Most of the logic, math, rotate/shift and bit instructions modify the MCU Status bits
after execution, and the conditional Branch instructions use the state of individual Status bits to
determine the flow of program execution. All conditional branch instructions are listed in Section
4.8 “Conditional Branch Instructions”.

The Carry (C), Zero (Z), Overflow (OV), Negative (N), and Digit Carry (DC) bits show the
immediate status of the MCU ALU by indicating whether an operation has resulted in a Carry,
Zero, Overflow, Negative result, or Digit Carry. When a subtract operation is performed, the C
flag is used as a Borrow flag.

The Z Status bit is useful for extended precision arithmetic. The Z Status bit functions like a
normal Z flag for all instructions except those that use a carry or borrow input (ADDC, CPB,
SUBB and SUBBR). See Section 4.9 “Z Status Bit” for more detailed information.

Note 1: All MCU bits are shadowed during execution of the PUSH.. S instruction and they are
restored on execution of the POP . S instruction.

2: All MCU bits, except the DC flag (which is not in the SRL), are stacked during
exception processing (see Section 4.7.1 “Software Stack Pointer”).

2.16.2 REPEAT Loop Status Bit

The REPEAT Active bit (RA) is used to indicate when looping is active. The RA flag indicates that
a REPEAT instruction is being executed, and it is only affected by the REPEAT instructions. The
RA flag is set to ‘1’ when the instruction being repeated begins execution, and it is cleared when
the instruction being repeated completes execution for the last time.

Since the RA flag is also read-only, it may not be directly cleared. However, if a REPEAT or its
target instruction is interrupted, the Interrupt Service Routine may clear the RA flag of the SRL,
which resides on the stack. This action will disable looping once program execution returns from
the Interrupt Service Routine, because the restored RA will be ‘0.

© 2005-2011 Microchip Technology Inc. DS70157F-page 21

16-bit MCU and DSC Programmer’s Reference Manual

2.16.3 DO Active bit (DA) (dsPIC30F, dsPIC33F and dsPIC33E Devices)

The DO Active bit (DA) is used to indicate when looping is active. The DO instructions affect the
DA flag, which indicates that a DO loop is active. The DA flag is set to ‘1’ when the first instruction
of the DO loop is executed, and it is cleared when the last instruction of the loop completes final
execution.

The DA flag is read-only. This means that looping is not initiated by writing a ‘1’ to DA, nor is it
terminated by writing a ‘Q’ to DA. If a DO loop must be terminated prematurely, the EDT bit,
CORCON<11>, should be used.

DS70157F-page 22

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

2.16.4 DSP ALU Status Bits (dsPIC30F, dsPIC33F and dsPIC33E
Devices)

The high byte of the STATUS Register (SRH) is used by the DSP class of instructions, and it is
modified when data passes through one of the adders. The SRH provides status information
about overflow and saturation for both accumulators. The Saturate A, Saturate B, Overflow A and
Overflow B (SA, SB, OA, OB) bits provide individual accumulator status, while the Saturate AB
and Overflow AB (SAB, OAB) bits provide combined accumulator status. The SAB and OAB bits
provide an efficient method for the software developer to check the register for saturation or
overflow.

The OA and OB bits are used to indicate when an operation has generated an overflow into the
guard bits (bits 32 through 39) of the respective accumulator. This condition can only occur when
the processor is in Super Saturation mode, or if saturation is disabled. It indicates that the
operation has generated a number which cannot be represented with the lower 31 bits of the
accumulator. The OA and OB bits are writable in dsPIC33E devices.

The SA and SB bits are used to indicate when an operation has generated an overflow out of the
MSb of the respective accumulator. The SA and SB bits are active, regardless of the Saturation
mode (Disabled, Normal or Super) and may be considered “sticky”. Namely, once the SA or SB
bit is set to ‘1", it can only be cleared manually by software, regardless of subsequent DSP
operations. When it is required, the BCLR instruction can be used to clear the SA or SB bit.

i)
-
Q
==
oo
o3
@3
@
th
(7]

In addition, the SA and SB bits can be set by software in dsPIC33E devices, enabling efficient
context state switching.

For convenience, the OA and OB bits are logically ORed together to form the OAB flag, and the
SA and SB bits are logically ORed to form the SAB flag. These cumulative Status bits provide
efficient overflow and saturation checking when an algorithm is implemented. Instead of
interrogating the OA and the OB bits independently for arithmetic overflows, a single check of
OAB can be performed. Likewise, when checking for saturation, SAB may be examined instead
of checking both the SA and SB bits. Note that clearing the SAB flag will clear both the SA and
SB bits.

2.16.5 Interrupt Priority Level Status Bits

The three Interrupt Priority Level (IPL) bits of the SRL, SR<7:5>, and the IPL3 bit, CORCON<3>,
set the CPU’s IPL which is used for exception processing. Exceptions consist of interrupts and
hardware traps. Interrupts have a user-defined priority level between 0 and 7, while traps have a
fixed priority level between 8 and 15. The fourth Interrupt Priority Level bit, IPL3, is a special IPL
bit that may only be read or cleared by the user. This bit is only set when a hardware trap is
activated and it is cleared after the trap is serviced.

The CPU’s IPL identifies the lowest level exception which may interrupt the processor. The
interrupt level of a pending exception must always be greater than the CPU’s IPL for the CPU to
process the exception. This means that if the IPL is 0, all exceptions at priority Level 1 and above
may interrupt the processor. If the IPL is 7, only hardware traps may interrupt the processor.

When an exception is serviced, the IPL is automatically set to the priority level of the exception
being serviced, which will disable all exceptions of equal and lower priority. However, since the
IPL field is read/write, one may modify the lower three bits of the IPL in an Interrupt Service
Routine to control which exceptions may preempt the exception processing. Since the SRL is
stacked during exception processing, the original IPL is always restored after the exception is
serviced. If required, one may also prevent exceptions from nesting by setting the NSTDIS bit
(INTCON1<15>).

Note: For more detailed information on exception processing, refer to the family reference
manual of the specific device.

© 2005-2011 Microchip Technology Inc. DS70157F-page 23

16-bit MCU and DSC Programmer’s Reference Manual

2.17 CORE CONTROL REGISTER

For all MCU and DSC devices, the 16-bit CPU Core Control register (CORCON), is used to set
the configuration of the CPU. This register provides the ability to map program space into data
space.

In addition to setting CPU modes, the CORCON register contains status information about the
IPL<3> Status bit, which indicates if a trap exception is being processed.

Depending on the MCU and DSC family, one of the following CORCON registers is used:

« Register 2-4 for PIC24F and PIC24H devices

* Register 2-5 for PIC24E devices

* Register 2-6 for dsPIC30F and dsPIC33F devices

* Register 2-7 for dsPIC33E devices

2.17.1 dsPIC30F, dsPIC33F, and dsPIC33E Specific bits

In addition to setting CPU modes, the following features are available through the CORCON
register:

» Set the ACCA and ACCB saturation enable

» Set the Data Space Write Saturation mode

« Set the Accumulator Saturation and Rounding modes

« Set the Multiplier mode for DSP operations

« Terminate DO loops prematurely

» Provide status information about the DO loop nesting level (DL<2:0>)
» Select fixed or variable interrupt latency (dsPIC33E only)

2.17.1.1 PIC24E and dsPIC33E SPECIFIC BITS

A Status bit (SFA) is available that indicates whether the Stack Frame is active.

Note: PIC24E and dsPIC33E devices do not have a PSV control bit, it has been replaced
by the SFA bit.

2.18 SHADOW REGISTERS

A shadow register is used as a temporary holding register and can transfer its contents to or from
the associated host register when instructed. Some of the registers in the programmer’s model
have a shadow register, which is utilized during the execution of a DO, POP.S, or PUSH.S
instruction. Shadow register usage is shown in Table 2-2.

Note: The DO instruction is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.l

Table 2-2: Automatic Shadow Register Usage
Location po® POP.S/PUSH.S
DCOUNT® Yes —
DOSTARTW Yes —
DOEND® Yes —
STATUS Register — DC, N, OV, Z and C bits — Yes
WO0-W3 — Yes

Note 1: The DO shadow registers are only available in dsPIC30F and dsPIC33F devices.

For dsPIC30F and dsPIC33F devices, since the DCOUNT, DOSTART and DOEND registers are
shadowed, the ability to nest DO loops without additional overhead is provided. Since all shadow
registers are one register deep, up to one level of DO loop nesting is possible. Further nesting of
DO loops is possible in software, with support provided by the DO Loop Nesting Level Status bits
(DL<2:0>) in the CORCON register (CORCON<10:8>).

Note: All shadow registers are one register deep and not directly accessible. Additional
shadowing may be performed in software using the software stack.

DS70157F-page 24

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

2.19 DO STACK (dsPIC33E DEVICES)

The DO stack is used to preserve the following elements associated with a DO loop underway
when another DO loop is encountered (i.e., a nested DO loop).

* DOSTART register value

« DOEND register value

* DCOUNT register value

Note that the DO level status field (DL<2:0>) also acts as a pointer to address the DO stack. After
the DO instruction is executed, the DO level status field (DL<2:0>) points to the next free entry.

The DOSTART, DOEND, and DCOUNT registers each have an associated hardware stack that
allows the DO loop hardware to support up to three levels of nesting. A conceptual representation
of the DO stack is shown in Figure 2-5.

Figure 2-5: DO Stack Conceptual Diagram E
&
DL<2:0> DOSTART DOEND DCOUNT < 3
Fr—====-== - T - = = = T === == q (o]
000 | | Empty I I o 3
+ + @ =
001 Levlbl 1 Registers : @
010 Levlpl 2 Registers : o
[1
011 Level 3 Registers |
100

Note 1: For DO register entries, DL<2:0> represents the value before the DO stack is executed.
2: For DO instruction buffer entries, DL<2:0> represents the value after the DO stack is executed.
3: If DL<2:0> = 0, no DO loops are active (DA = 0).

© 2005-2011 Microchip Technology Inc. DS70157F-page 25

16-bit MCU and DSC Programmer’s Reference Manual

Register 2-1: SR: CPU STATUS Register (PIC24H, PIC24F and PIC24E Devices)

U-0 uU-0 U-0 U-0 U-0 U-0 uU-0 R/W-0
- - — [— = — | - oC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2(1:2) IpL1(1:2) IPLO(-2) RA N oV z C
bit 7 bit 0
Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit C = Clearable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared X = Bit is unknown
bit 15-9 Unimplemented: Read as ‘@’
bit 8 DC: MCU ALU Half Carry/Borrow bit

1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data

of the result occurred

0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data

of the result occurred

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1:2)
111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress
bit 3 N: MCU ALU Negative hit
1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2 OV: MCU ALU Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that

causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past

0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry-out from the MSb occurred
0 = No carry-out from the MSb occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority

Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when

IPL<3>=1.

2: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1. Refer to the family

reference manual of the specific device family to see the associated interrupt register.

DS70157F-page 26 © 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices)

R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R-0 R/W-0
OA OB salt2 | sl oAB | saB®23d | pa® DC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2() 1PL1G) IPLO®) RA N ov z C
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit C = Clearable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15 OA: Accumulator A Overflow bit

1 = Accumulator A overflowed
@ = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow bit
1 = Accumulator B overflowed
@ = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation bit(t: 2)
1 = Accumulator A is saturated or has been saturated since this bit was last cleared
@ = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation bit(t: 2)
1 = Accumulator B is saturated or has been saturated at since this bit was last cleared
@ = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow bit
1 = Accumulator A or B has overflowed
0 = Neither Accumulator A nor B has overflowed

bit 10 SAB: SA || SB Combined Accumulator bit(1: 2:3)
1 = Accumulator A or B is saturated or has been saturated since this bit was last cleared
0 = Neither Accumulator A nor B is saturated

bit 9 DA: DO Loop Active bit®
1 =DO loop in progress
0 = DO loop not in progress
bit 8 DC: MCU ALU Half Carry bit
1 = A carry-out from the MSb of the lower nibble occurred
0 = No carry-out from the MSb of the lower nibble occurred

bit 7-5 IPL<2:0>: Interrupt Priority Level bits(®)

111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

i)
-
Q
==
oo
o3
@3
@
th
(7]

Note 1: This bit may be read or cleared, but not set.

2: Once this bit is set, it must be cleared manually by software.
Clearing this bit will clear SA and SB.
This bit is read-only.

The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1.

a bk w

© 2005-2011 Microchip Technology Inc. DS70157F-page 27

16-bit MCU and DSC Programmer’s Reference Manual

Register 2-2:

bit 4

bit 3

bit 2

bit 1

bit 0

Note 1:

ahw

RA: REPEAT Loop Active bit

1 = REPEAT loop in progress

0 = REPEAT loop not in progress

N: MCU ALU Negative bit

1 = The result of the operation was negative
0 = The result of the operation was not negative
OV: MCU ALU Overflow bit

1 = Overflow occurred

0 = No overflow occurred

Z: MCU ALU Zero bit

1 = The result of the operation was zero

0 = The result of the operation was not zero

C: MCU ALU Carry/Borrow bit
1 = A carry-out from the MSb occurred
0 = No carry-out from the MSb occurred

This bit may be read or cleared, but not set.

Once this bit is set, it must be cleared manually by software.
Clearing this bit will clear SA and SB.

This bit is read-only.

SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices) (Continued)

The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority

Level. The value in parentheses indicates the IPL, if IPL3 = 1.

DS70157F-page 28

© 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-3: SR: CPU STATUS Register (dsPIC33E Devices)

R/W-0 R/W-0 R/W-0 R/W-0 R/C-0 R/C-0 R -0 R/W-0
OA OB sa® | s8® | oaB | saB DA DC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IpL2(1:2) IpL1(®:2) IPLO(-2) RA N oV z C
bit 7 bit 0
Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit C = Clearable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared X = Bit is unknown
bit 15 OA: Accumulator A Overflow Status bit

1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow Status bit
1 = Accumulator B has overflowed
0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation Status bit
1 = Accumulator A is saturated or has been saturated since this bit was last cleared
0 = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation Status bit
1 = Accumulator B is saturated or has been saturated since this bit was last cleared
0@ = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit
1 = Accumulator A or B has overflowed
0 = Neither Accumulator A nor B has overflowed

bit 10 SAB: SA || SB Combined Accumulator Status bit
1 = Accumulator A or B is saturated or has been saturated since this bit was last cleared
0 = Neither Accumulator A nor B is saturated

bit 9 DA: DO Loop Active bit
1 =DO loop in progress
0 = DO loop not in progress
bit 8 DC: MCU ALU Half Carry/Borrow bit
1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data
of the result occurred
0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data
of the result occurred

i)
-
Q
==
oo
o3
@3
@
th
(7]

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
2: The IPL<2:0> Status bits are read only when NSTDIS bit INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.
3: Adata write to SR can modify the SA or SB bits by either a data write to SA and SB or by clearing the SAB
bit. To avoid a possible SA/SB bit write race-condition, the SA and SB bits should not be modified using bit
operations.

© 2005-2011 Microchip Technology Inc. DS70157F-page 29

16-bit MCU and DSC Programmer’s Reference Manual

Register 2-3: SR: CPU STATUS Register (dsPIC33E Devices) (Continued)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1:2)
111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress
bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)
bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 1 Z: MCU ALU Zero bit
1 = The result of the operation was zero
0 = The result of the operation was not zero
bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry-out from the MSb of the result occurred
0 = No carry-out from the MSb of the result occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
2: The IPL<2:0> Status bits are read only when NSTDIS bit (INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.
3: Adata write to SR can modify the SA or SB bits by either a data write to SA and SB or by clearing the SAB
bit. To avoid a possible SA/SB bit write race-condition, the SA and SB bits should not be modified using bit
operations.

DS70157F-page 30 © 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-4: CORCON: Core Control Register (PIC24F and PIC24H Devices)

1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

bit 1-0 Unimplemented: Read as ‘0’

uU-0 uU-0 uU-0 uU-0 uU-0 uU-0 uU-0 uU-0
bit 15 ‘ | ‘ bit 8
uU-0 uU-0 uU-0 uU-0 R/C-0 R/W-0 uU-0 uU-0
— — — — 1PL3(1:2) PSV — —
bit 7 bit 0
Legend: C = Clearable bit R = Readable bit W = Writable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
U = Unimplemented bit, read as ‘0’ g
, : . . =<
bit 15-4 Unimplemented: Read as ‘0 oo
bit 3 IPL3: Interrupt Priority Level 3 Status bit(1:2) Y g
3
(7))

Note 1: This bit may be read or cleared, but not set.
2: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

© 2005-2011 Microchip Technology Inc. DS70157F-page 31

16-bit MCU and DSC Programmer’s Reference Manual

Register 2-5: CORCON: Core Control Register (PIC24E Devices)
R/W-0 uU-0 uU-0 U-0 uU-0 uU-0 uU-0 uU-0
- — | - | = | - = =
bit 15 bit 8
uU-0 uU-0 U-0 uU-0 R/C-0 R-0 uU-0 uU-0
— — — — IPL3(2) SFA — —
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bitis set ‘0’ = Bitis cleared X = Bit is unknown
bit 15 VAR: Variable Exception Processing Latency Control bit
1 = Variable (bounded deterministic) exception processing latency
0 = Fixed (fully deterministic) exception processing latency
bit 14-4 Unimplemented: Read as '0’
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3@
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less
bit 2 SFA: Stack Frame Active Status bit
1 = Stack frame is active. W14 and W15 address 0x0000 to OxFFFF, regardless of DSRPAG and
DSWPAG values.
0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space
bit 1-0 Unimplemented: Read as '0’

Note 1: This bit may be read or cleared, but not set.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

DS70157F-page 32 © 2005-2011 Microchip Technology Inc.

Section 2.

Programmer’s Model

Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices)
uU-0 uU-0 u-0 R/W-0 R(0)/W-0 R-0 R-0 R-0
— — — | us | Ept® | DL<2:0>(23)
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3(45) PSV RND IF
bit 7 bit 0
Legend: C = Clearable bit R = Readable bit W = Writable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
U = Unimplemented bit, read as ‘0’

bit 15-13
bit 12

bit 11

bit 10-8

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

Note 1:

a hw

Unimplemented: Read as ‘0’

US: Unsigned or Signed Multiplier Mode Select bit
1 = Unsigned mode enabled for DSP multiply operations
0 = Signed mode enabled for DSP multiply operations

EDT: Early DO Loop Termination Control bit(
1 = Terminate executing DO loop at end of current iteration
0 = No effect

DL<2:0>: DO Loop Nesting Level Status bits(? 3)

111 = DO looping is nested at 7 levels

110 = DO looping is nested at 6 levels

110 = DO looping is nested at 5 levels

110 = DO looping is nested at 4 levels

011 = DO looping is nested at 3 levels

010 = DO looping is nested at 2 levels

001 = DO looping is active, but not nested (just 1 level)
000 = DO looping is not active

SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled

SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled

SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled

ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (Super Saturation)
0 = 1.31 saturation (Normal Saturation)

IPL3: Interrupt Priority Level 3 Status bit(3)
1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

This bit will always read ‘0’

DL<2:1> are read-only.

The first two levels of DO loop nesting are handled by hardware.

This bit may be read or cleared, but not set.

This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 33

i)
-
Q
==
oo
o3
@3
@
th
(7]

16-bit MCU and DSC Programmer’s Reference Manual

Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices) (Continued)

bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit O IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply operations
0 = Fractional mode enabled for DSP multiply operations

Note 1: This bit will always read ‘0’.
2: DL<2:1> are read-only.
The first two levels of DO loop nesting are handled by hardware.
This bit may be read or cleared, but not set.
This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

a bk w

DS70157F-page 34 © 2005-2011 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-7: CORCON: Core Control Register (dsPIC33E Devices)

R/W-0 uU-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
VAR — US<1:0> | EpT® | DL<2:0>
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3(23) SFA RND IF
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bitis set ‘0’ = Bitis cleared X = Bit is unknown g
=9
bit 15 VAR: Variable Exception Processing Latency Control bit o9
1 = Variable (bounded deterministic) exception processing latency % g
0 = Fixed (fully deterministic) exception processing latency -)
bit 14 Unimplemented: Read as '0’ ;-
bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits

11 = Reserved

10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed

bit 11 EDT: Early DO Loop Termination Control bit(1)
1 = Terminate executing DO loop at end of current loop iteration
0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits

111 =7 DO loops active
001 =1 DO loop active
000 = 0 DO loops active
bit 7 SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled
bit 6 SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled
bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(2)
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less

Note 1: This bit always reads as ‘0.
2: This bit may be read or cleared, but not set.
3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

© 2005-2011 Microchip Technology Inc. DS70157F-page 35

16-bit MCU and DSC Programmer’s Reference Manual

Register 2-7: CORCON: Core Control Register (dsPIC33E Devices) (Continued)

bit 2 SFA: Stack Frame Active Status bit
1 = Stack frame is active. W14 and W15 address 0x0000 to OxFFFF, regardless of DSRPAG and
DSWPAG values.
0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space
bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply
0 = Fractional mode enabled for DSP multiply

Note 1: This bit always reads as ‘0.
2: This bit may be read or cleared, but not set.
3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

DS70157F-page 36 © 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 3. Instruction Set Overview

HIGHLIGHTS

This section of the manual contains the following major topics:

R 70 R 11 (o 18 od 1 (o] o ISR 38
3.2 INSITUCLION SEE OVEIVIEW ...uviiiiiiiiee et e e e e e e e e e e e e ee e s bbb e e eeeeeas 38
3.3 Instruction Set Summary Tables

2
oz
< c
D0
= —-
<—.
=- 0
@5
EU)
@
~

© 2005-2011 Microchip Technology Inc. DS70157F-page 37

16-bit MCU and DSC Programmer’s Reference Manual

3.1 INTRODUCTION

The 16-bit MCU and DSC instruction set provides a broad suite of instructions that support
traditional microcontroller applications, and a class of instructions that support math intensive
applications. Since almost all of the functionality of the 8-bit PIC MCU instruction set has been
maintained, this hybrid instruction set allows an easy 16-bit migration path for users already
familiar with the PIC microcontroller.

3.2 INSTRUCTION SET OVERVIEW

Depending on the device family, the 16-bit MCU and DSC instruction set contains up to 84
instructions, which can be grouped into the functional categories shown in Table 3-1. Table 1-2
defines the symbols used in the instruction summary tables, Table 3-2 through Table 3-11. These
tables define the syntax, description, storage and execution requirements for each instruction.
Storage requirements are represented in 24-bit instruction words and execution requirements
are represented in instruction cycles.

Table 3-1: Instruction Groups
Functional Group Summary Table Page Number
Move Instructions Table 3-2 40
Math Instructions Table 3-3 41
Logic Instructions Table 3-4 43
Rotate/Shift Instructions Table 3-5 44
Bit Instructions Table 3-6 45
Compare/Skip and Compare/Branch Instructions Table 3-7 46
Program Flow Instructions Table 3-8 a7
Shadow/Stack Instructions Table 3-9 49
Control Instructions Table 3-10 49
DSP Instructions® Table 3-11 50

Note 1: DSP instructions are only available in the dsPIC30F, dsPIC33F, and dsPIC33E
device families.

Most instructions have several different Addressing modes and execution flows, which require
different instruction variants. For instance, depending on the device family, there are up to six
unique ADD instructions and each instruction variant has its own instruction encoding. Instruction
format descriptions and specific instruction operation are provided in Section 5. “Instruction
Descriptions”. Additionally, a composite alphabetized instruction set table is provided in
Section 7. “Reference”.

DS70157F-page 38

© 2005-2011 Microchip Technology Inc.

Section 3. Instruction Set Overview

3.21 Multi-Cycle Instructions

As the instruction summary tables show, most instructions execute in a single cycle, with the
following exceptions:

Note: The DO and DIVF instructions are only available in the dsPIC30F, dsPIC33F, and
dsPIC33E device families.

« Instructions DO, MOV.D, POP.D, PUSH.D, TBLRDH, TBLRDL, TBLWTH and
TBLWTL require 2 cycles to execute

 Instructions DIV.S, DIV.U and DIVF are single-cycle instructions, which should be
executed 18 consecutive times as the target of a REPEAT instruction

« Instructions that change the program counter also require 2 cycles to execute, with the
extra cycle executed as a NOP. Compare-skip instructions, which skip over a 2-word
instruction, require 3 instruction cycles to execute, with 2 cycles executed as a NOP.
Compare-branch instructions (dsPIC33E/PIC24E devices only) require 5 instruction cycles
to execute when the branch is taken.

e The RETFIE, RETLW and RETURN are a special case of an instruction that changes the
program counter. These execute in 3 cycles, unless an exception is pending and then they
execute in 2 cycles.

Note 1: Instructions which access program memory as data, using Program Space Visibility
(PSV), will incur a one or two cycle delay for PIC24F, PIC24H, dsPIC30F, and
dsPIC33F devices, whereas using PSV in dsPIC33E and PIC24E devices incurs a
4-cycle delay based on Flash memory access time. However, regardless of which
device is being used, when the target instruction of a REPEAT loop accesses
program memory as data, only the first execution of the target instruction is subject
to the delay. See the specific device family reference manual for details.

2: Allinstructions may incur an additional delay on some device families, depending
on Flash memory access time. For example, PIC24E and dsPIC33E devices have
a 3-cycle Flash memory access time. However, instruction pipelining increases the
effective instruction execution throughput. Refer to Section 2. “CPU” of the
specific device family reference manual for details on instruction timing.

M3INIBAQ
189S uonoNASsu|

3: All read and read-modify-write operations (including bit operations) on non-CPU
Special Function Registers (e.g., /0O Port, peripheral control, or status registers;
interrupt flags, etc.) in PIC24E and dsPIC33E devices require 2 instruction cycles
to execute. However, all write operations on both CPU and non-CPU Special
Function Registers, and all read and read-modify-write operations on CPU Special
Function Registers require 1 instruction cycle.

3.2.2 Multi-Word Instructions

As defined by Table 3-2, almost all instructions consume one instruction word (24 bits), with the
exception of the CALL, DO and GOTO instructions, which are Program Flow Instructions, listed
in Table 3-8. These instructions require two words of memory because their opcodes embed
large literal operands.

© 2005-2011 Microchip Technology Inc. DS70157F-page 39

16-bit MCU and DSC Programmer’s Reference Manual

3.3 INSTRUCTION SET SUMMARY TABLES
Table 3-2: Move Instructions
Assembly Syntax Description Words | Cycles Page
Number

EXCH wns,wnd Swap Wns and Wnd 1 1 243
MOV f {,wrReEG}W Move f to destination 1 1 279
MOV WREG, Move WREG to f 1 1 280
MOV f, Wnd Move f to Wnd 1 14 281
MOV wns, Move Wns to f 1 1 282
MOV.B #1it8,Wnd Move 8-bit literal to Wnd 1 1 283
MOV #1it16,Wnd Move 16-bit literal to Wnd 1 1 284
MoV [Ws+S1it10],Wnd |Move [Ws + signed 10-bit offset] to Wnd 1 1@ 285
MoV Wns, [Wd+S1it10] Move Whns to [Wd + signed 10-bit offset] 1 1 286
MOV Wso, Wdo Move Wso to Wdo 1 14 287
MOV.D Ws, Wnd Move double Ws to Wnd:Wnd + 1 1 214 289
MOV.D wns, Wd Move double Wns:Wns + 1 to Wd 1 2 289
MOVPAG #1it10,DSRPAG(® | Move 10-hit literal to DSRPAG 1 1 291
MOVPAG #1it9, DSWPAG® Move 9-bit literal to DSWPAG 1 1 291
MOVPAG #1it8, TBLPAG@ Move 8-bit literal to TBLPAG 1 1 291
MOVPAG Wn, DSRPAG? Move Wn to DSRPAG 1 1 292
MOVPAG Wn, DSWPAG(?® Move Wn to DSWPAG 1 1 292
MOVPAG Wn, TBLPAG(® Move Wn to TBLPAG 1 1 292
SWAP Wn Whn = byte or nibble swap Wn 1 1 426
TBLRDH [Ws],wd Read high program word to Wd 1 2(3) 427
TBLRDL [Ws],Wwd Read low program word to Wd 1 2(3) 429
TBLWTH Ws, [Wd] Write Ws to high program word 1 214 431
TBLWTL Ws, [Wd] Write Ws to low program word 1 24 433

Note 1: When the optional {, WREG} operand is specified, the destination of the instruction is WREG. When

{, WREG} is not specified, the destination of the instruction is the file register f.

2: The MOVPAG instruction is only available in dsPIC33E and PIC24E devices.

3: IndsPIC33E and PIC24E devices, these instructions require 3 additional cycles — compared to dsPIC30F,
dsPIC33F, PIC24F and PIC24H devices.

4: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H
devices.

DS70157F-page 40 © 2005-2011 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-3: Math Instructions
Assembly Syntax Description Words | Cycles Page
Number

ADD £ {,WREG}® Destination = f + WREG 1 1) 99

ADD #1it10,Wn Wn = 1it10 + Wn 1 1 100

ADD Wb, #1it5, Wd wd = Wb + lit5 1 1 101

ADD Wb, Ws, wd Wd = Wb + Ws 1 10 102

ADDC f {,WReG}) Destination = f + WREG + (C) 1 16 106

ADDC #1it10,wn Wn = 1it10 + Wn + (C) 1 1 107

ADDC Wb, #1it5,wd | Wd= Wb +Iit5 + (C) 1 1 108

ADDC Wb, Ws, Wd Wd = Wb + Ws + (C) 1 16 110

DAW.B Wn Whn = decimal adjust Wn 1 1 216

DEC f {,WREG}) Destination = f— 1 1 16) 217

DEC Ws, Wd wd =Ws -1 1 10 218

DEC2 f {,wReG}W) Destination = f — 2 1 16) 220

DEC2 Ws,wd wd = Ws - 2 1 10 221

DIV.S Wm, Wn Signed 16/16-bit integer divide, Q »W0, R -W1 1 180 224

DIV.SD Wm, Wn Signed 32/16-bit integer divide, Q W0, R W1 1 180 224

DIV.U wm, Wn Unsigned 16/16-bit integer divide, Q - WO, R —W1 1 18 226

DIV.UD Wm, Wn Unsigned 32/16-bit integer divide, Q - WO, R W1 1 180 226

DIVF wm, Wn Signed 16/16-bit fractional divide, Q - WO, R -W1 1 18(@ 228

INC f {,wreG}® Destination = f + 1 1 16) 254 §
INC Ws, Wd Wd =Ws +1 1 10 255 9 =
INC2 f {,wREG}W) Destination = f + 2 1 16) 257 ® _a
INC2 ws, Wd wd = Ws + 2 1 16 258 g. o
MUL f W3:W2 = f * WREG 1 16) 303 s (:n
MUL.SS Wb, Ws,Wnd {wnd + 1,Wnd} = signed(Wb) * signed(Ws) 1 16) 305]
MUL.SS Wb,Ws,Acc® Accumulator = signed(Wb) * signed(Ws) 1 16) 307

MUL.SU Wb, #1it5, Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 308

MUL.SU Wb, Ws,Wnd {wnd + 1,Wnd} = signed(Wb) * unsigned(Ws) 1 16) 310

MUL.SU Wb,Ws,Acc® Accumulator = signed(Wb) * unsigned(Ws) 1 16) 312

MUL.SU wb, #1it5, Acc® | Accumulator = signed(Whb) * unsigned(lit5) 1 1 314

MUL.US Wb, Ws,Wnd {wnd + 1,Wnd} = unsigned(Wb) * signed(Ws) 1 16) 315

MUL.US Wb,Ws,Acc® Accumulator = unsigned(Whb) * signed(Ws) 1 16) 317

MUL.UU Wb, #1it5, Wnd {Wnd + 1, Wnd} = unsigned(Whb) * unsigned(lit5) 1 1 319

MUL.UU Wb, Ws,Wnd {wnd + 1,Wnd} = unsigned(Wb) * unsigned(Ws) 1 16) 320

MUL.UU Wb,Ws,Acc® Accumulator = unsigned(Wb) * unsigned(Ws) 1 16) 322

MUL.UU wb, #1it5, Acc® | Accumulator = unsigned(Whb) * unsigned(lit5) 1 1 323

MULW.SS Wb, Ws,wWnd® Wnd = signed(Whb) * signed(Ws) 1 16) 324

Note 1: When the optional {, WREG} operand is specified, the destination of the instruction is WREG. When
{, WREG} is not specified, the destination of the instruction is the file register f.

2: The divide instructions must be preceded with a “REPEAT #17” instruction, such that they are executed
18 consecutive times.

3: These instructions are only available in dsPIC33E and PIC24E devices.
These instructions are only available in dsPIC33E devices.

5: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H
devices.

s

© 2005-2011 Microchip Technology Inc. DS70157F-page 41

16-bit MCU and DSC Programmer’s Reference Manual

Table 3-3: Math Instructions (Continued)

Assembly Syntax Description Words | Cycles Page

Number

MULW.SU Wb, Ws, Wnd® wnd = signed(Wb) * unsigned(Ws) 1 1) 326
MULW.SU Wb, #1it5,Wnd® | wnd = signed(Wb) * unsigned(lit5) 1 1 328
MULW.US Wb, Ws,wWnd® wnd = unsigned(Whb) * signed(Ws) 1 16) 329
MULW.UU Wb, Ws,wnd® Wnd = unsigned(Wb) * unsigned(Ws) 1 16) 331
MULW.UU Wb, #1it5,wWnd® | wnd = unsigned(Wb) * unsigned(lit5) 1 1 332
SE Ws, Wnd Wnd = signed-extended Ws 1 16) 393
SUB f {,WReG}) Destination = f - WREG 1 16 405
suB #1it10,Wn Wn = Wn — [it10 1 1 406
suB Wb, #1it5, Wd wd = Wb — lit5 1 1 407
SuB Wb, Ws, Wd Wd = Wb — Ws 1 16 408
SUBB f {,wrREG}W Destination = f — WREG — (C) 1 16) 411
SUBB #1it10,Wn Wn = Wn - it10 — (C) 1 1 412
SUBB Wb, #1it5, Wd Wd = Wb - lit5 — (C) 1 1 413
SUBB Wb, Ws, Wd Wd = Wb — Ws — (C) 1 16) 415
SUBBR f {,wrREG}W Destination = WREG — f — (C) 1 16) 417
SUBBR Wb, #1it5, wd wd = lit5 — Wb — (C) 1 1 418
SUBBR Wb, Ws, Wd Wd = Ws — Wb — (C) 1 16) 420
SUBR f {,WREG} Destination = WREG — f 1 16) 422
SUBR Wb, #1it5, Wd wd = lits — Wb 1 1 423
SUBR Wb, Ws, Wd wd = Ws — Wb 1 16) 424
ZE Ws, Wnd Wnd = zero-extended Ws 1 1) 442

Note 1: When the optional {, WREG} operand is specified, the destination of the instruction is WREG. When
{, WREG} is not specified, the destination of the instruction is the file register f.

2: The divide instructions must be preceded with a “REPEAT #17” instruction, such that they are executed

18 consecutive times.

3: These instructions are only available in dsPIC33E and PIC24E devices.

s

These instructions are only available in dsPIC33E devices.

5: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H

devices.

DS70157F-page 42

© 2005-2011 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-4: Logic Instructions
Assembly Syntax Description Words | Cycles Page
Number
AND f {,wrReG}@® Destination = f .AND. WREG 1 12 112
AND #1it10,Wn Whn = [it10 .AND. Wn 1 1 113
AND wh, #1it5,wd Wd = Wb .AND. lit5 1 1 114
AND Wb, Ws, Wd Wd = Wb .AND. Ws 1 1@ 115
CLR f f = 0x0000 1 1 184
CLR WREG WREG = 0x0000 1 1 184
CLR wd Wd = 0x0000 1 1 185
COM f {,wWrReG}W) Destination = f 1 1 189
COM Ws,wd wd = Ws 1 1@ 190
IOR f {,WReG}W) Destination = f .IOR. WREG 1 10 260
IOR #1it10,Wn Whn =it10 .IOR. Wn 1 1 261
IOR Wb, #1it5, wd Wd = Wb .IOR. lit5 1 1 262
IOR Wb, Ws, Wd Wd = Wb .IOR. Ws 1 1@ 263
NEG f {,wWrReG}W) Destination = f + 1 1 1 333
NEG s, Wd Wd=Ws +1 1 1@ 333
SETM f f = OXFFFF 1 1 395
SETM WREG WREG = OxFFFF 1 1 395
SETM wd Wd = OxFFFF 1 1 396
XOR f {,WReG}W) Destination = f .XOR. WREG 1 10 437
XOR #1it10,Wn Whn = [it10 .XOR. Wn 1 1 438
XOR Wb, #1it5, wd Wwd = Wb .XOR. lit5 1 1 439
XOR Wb, Ws, Wd Wd = Wb .XOR. Ws 1 1@ 440
Note 1: When the optional {, WREG} operand is specified, the destination of the instruction is WREG. When
{, WREG} is not specified, the destination of the instruction is the file register f.
2: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function

Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H

devices.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 43

2
Oog
< c
D0
= -
<_.
=.0
]
EU)
@
4

16-bit MCU and DSC Programmer’s Reference Manual

Table 3-5: Rotate/Shift Instructions
Assembly Syntax Description Words | Cycles NE:?I:er
ASR f {,wrReG}@® Destination = arithmetic right shift f, LSb —C 1 1@ 117
ASR Ws, Wd Wd = arithmetic right shift Ws, LSb —C 1 1@ 119
ASR Wb, #1it4,wnd Whnd = arithmetic right shift Wb by lit4, LSb —C 1 1 121
ASR Wb, Wns, Wnd Wnd = arithmetic right shift Wb by Wns, 1 1 122
LSb —»C
LSR f {,wWrReG}) Destination = logical right shift f, LSb —C 1 1@ 269
LSR Ws, Wd wd = logical right shift Ws, LSb —>C 1 1@ 271
LSR Wb, #1it4,wnd Wnd = logical right shift Wb by lit4, LSb —C 1 1 273
LSR Wb, Wns, Wnd Wnd = logical right shift Wb by Wns, LSb —-C 1 1 274
RLC f {,wWrReG}) Destination = rotate left through Carry f 1 1@ 373
RLC Ws, Wd Wd = rotate left through Carry Ws 1 1@ 375
RLNC f {,wWrReG}) Destination = rotate left (no Carry) f 1 10 377
RLNC Ws, Wd Wd = rotate left (no Carry) Ws 1 1@ 379
RRC f {,WREG}) Destination = rotate right through Carry f 1 1@ 381
RRC Ws, wd Wd = rotate right through Carry Ws 1 10 383
RRNC f {,wrREG}W) Destination = rotate right (no Carry) f 1 1@ 385
RRNC Ws, Wd Wd = rotate right (no Carry) Ws 1 1@ 387
SL f {,wWrReG}) Destination = left shift f, MSb —C 1 10 399
SL Ws, wd Wd = left shift Ws, MSb —C 1 1@ 401
SL Wb, #1it4,wnd Wnd = left shift Wb by lit4, MSb —C 1 1 403
SL Wb, Wns, Wnd Wnd = left shift Wb by Wns, MSb —C 1 1 404

Note 1: When the optional {, WREG} operand is specified, the destination of the instruction is WREG. When
{, WREG} is not specified, the destination of the instruction is the file register f.
2: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H
devices.

DS70157F-page 44 © 2005-2011 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-6: Bit Instructions
Assembly Syntax Description Words | Cyclest!) Page
Number

BCLR f,#bit4 Bit clear f 1 1 123
BCLR Ws, #bit4 Bit clear Ws 1 1 124
BSET f,#bit4 Bit set f 1 1 152
BSET Ws, #bit4 Bit set Ws 1 1 153
BSW.C Ws, Wb Write C bit to Ws<Wb> 1 1 155
BSW.Z Ws, Wb Write Z bit to Ws<Whb> 1 1 155
BTG f,#bit4 Bit toggle f 1 1 157
BTG Ws, #bit4 Bit toggle Ws 1 1 158
BTST f,#bit4 Bittestfto Z 1 1 168
BTST.C Ws, #bit4 Bit test Ws to C 1 1 169
BTST.Z Ws, #bit4 Bit test Ws to Z 1 1 169
BTST.C Ws, Wb Bit test Ws<Wb>to C 1 1 171
BTST.Z Ws, Wb Bit test Ws<Wb>to Z 1 1 171
BTSTS f,#bit4 Bit test f to Z, then set f 1 1 173
BTSTS.C Ws, #bit4 Bit test Ws to C then set Ws 1 1 175
BTSTS.Z Ws, #bit4 Bit test Ws to Z then set Ws 1 1 175
FBCL Ws, Wnd Find bit change from left (MSb) side 1 1 244
FF1L Ws, Wnd Find first one from left (MSb) side 1 1 246
FF1R Ws,wnd Find first one from right (LSb) side 1 1 248

Note 1: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H
devices.

2
oz
< c
D0
= -
<_.
=:Q
]
EU)
@
4

© 2005-2011 Microchip Technology Inc. DS70157F-page 45

16-bit MCU and DSC Programmer’s Reference Manual

Table 3-7: Compare/Skip and Compare/Branch Instructions
Assembly Syntax Description Words | Cycles® Nz:lnglfer

BTSC f, #bit4 Bit test f, skip if clear 1 1(20or3)® 160
BTSC Ws, #bit4 Bit test Ws, skip if clear 1 1(or3)®| 162
BTSS f,#bit4 Bit test f, skip if set 1 1(2or3)®| 164
BTSS Ws, #bit4 Bit test Ws, skip if set 1 1(2or3)®| 166
cP f Compare (f - WREG) 1 10) 191
cP wb, #1it5(2) [Compare (Wb - lit5) 1 1 192
cP wb, #1it8(3) [Compare (Wb - lit8) 1 1 193
cP wb, Ws Compare (Wb — Ws) 1 10) 194
CPO f Compare (f — 0x0000) 1 10) 196
CPO Ws Compare (Ws — 0x0000) 1 10) 197
CPB f Compare with Borrow (f — WREG — C) 1 16) 198
CPB wb, #1it5(2) |Compare with Borrow (Wb — lit5 — C) 1 1 199
CPB wb, #1it8(3) |Compare with Borrow (Wb — Iit8 — C) 1 1 200
CPB Wb, Ws Compare with Borrow (Wb — Ws — 6) 1 10 201
CPBEQ Wb, Wn, Expr (3) |Compare Wb with Wn, branch if = 1 1 (5@ 203
CPBGT wh, wn, Expr (3) | Signed compare Wb with Wn, branch if > 1 1(5)® 204
CPBLT wb, wWn, Expr (3) [Signed compare Wb with Wn, branch if < 1 1(5)@ 205
CPBNE Wb, Wn, Expr (3) |Compare Wb with Wn, branch if = 1 1(5)@ 204
CPSEQ Wb, Wn Compare (Wb — Wn), skip if = 1 1(2o0r3) 207
CPSGT Wb, Wn Signed compare (Wb — Wn), skip if > 1 1(2o0r3) 211
CPSLT Wb, Wn Signed compare (Wb — Wn), skip if < 1 1(2o0r3) 212
CPSNE Wb, Wn Compare (Wb — Wn), skip if # 1 1(2o0r3) 214
Note 1: Conditional skip instructions execute in 1 cycle if the skip is not taken, 2 cycles if the skip is taken over a

one-word instruction and 3 cycles if the skip is taken over a two-word instruction.
2: This instruction is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

w

This instruction is only available in dsPIC33E and PIC24E devices.

4: Compare-branch instructions in dsPIC33E/PIC24E devices execute in 1 cycle if the branch is not taken
and 5 cycles if the branch is taken.

5: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H

devices.

DS70157F-page 46

© 2005-2011 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-8: Program Flow Instructions
Assembly Syntax Description Words Cycles NE:ngbeer

BRA EXpr Branch unconditionally 1 2@ 126

BRA wn Computed branch 1 2(8) 128

BRA C,Expr Branch if Carry (no Borrow) 1 1 (2)@8) 130

BRA GE, Expr Branch if greater than or equal 1 1(2)8) 132

BRA GEU, Expr Branch if unsigned greater than or equal 1 1 (2)(1’8) 134

BRA GT, Expr Branch if greater than 1 1(2)8) 135

BRA GTU, Expr Branch if unsigned greater than 1 1(2)8) 136

BRA LE, Expr Branch if less than or equal 1 1 (2)(1’8) 137

BRA LEU, Expr Branch if unsigned less than or equal 1 1(2)8) 138

BRA LT, Expr Branch if less than 1 1(2)8) 139

BRA LTU, Expr Branch if unsigned less than 1 1 (2)(1’8) 140

BRA N, Expr Branch if Negative 1 1(2)8) 141

BRA NC, Expr Branch if not Carry (Borrow) 1 1(2)8) 142

BRA NN, Expr Branch if not Negative 1 1 (2)(1’8) 143

BRA NOV, Expr Branch if not Overflow 1 1(2)8) 144

BRA NZ, Expr Branch if not Zero 1 1(2)8) 145

BRA OA, Expr Branch if Accumulator A Overflow 1 1 (2)(1’8) 146

BRA OB, Expr Branch if Accumulator B Overflow 1 1(2)8) 147

BRA oV, Expr Branch if Overflow 1 1(2)8) 148 5
BRA SA, Expr Branch if Accumulator A Saturate 1 1(2)18) 149 (@) g
BRA SB, Expr Branch if Accumulator B Saturate 1 1(2)8) 150 S S
BRA Z,Expr Branch if Zero 1 1(2)8) 151 < g
CALL Expr Call subroutine 2 2(8) 177 g S
CALL wn Call indirect subroutine 1 2(8) 180 %
CALL.L wn(4) Call indirect subroutine (long address) 1 4 183 -
DO #1iti4, Expr(ﬁ) Do code through PC + Expr, (lit14 + 1) times 2 2 230

DO #1it15, Expr(7) Do code through PC + Expr, (lit15 + 1) times 2 2 233

DO wn, Expr(3) Do code through PC + Expr, (Wn + 1) times 2 2 235

GOTO Expr Go to address 2 2(8) 250

GOTO wn Go to address indirectly 1 2(®) 251

GOTO.L wn(4) Go to indirect (long address) 1 4 253

RCALL Expr Relative call 1 2(8) 347

RCALL Wn Computed call 1 2(®) 351

REPEAT #1it14(5) Repeat next instruction (lit14 + 1) times 1 1 355

Note 1: Conditional branch instructions execute in 1 cycle if the branch is not taken, or 2 cycles if the branch is

taken.

RETURN instructions execute in 3 cycles, but if an exception is pending, they execute in 2 cycles.

This instruction is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

This instruction is only available in dsPIC33E and PIC24E devices.

This instruction is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.
This instruction is only available in dsPIC30F and dsPIC33F devices.

This instruction is only available in dsPIC33E devices.

In dsPIC33E and PIC24E devices, these instructions require 2 additional cycles (4 cycles overall) when
the branch is taken.

9: In dsPIC33E and PIC24E devices, these instructions require 3 additional cycles.

NGO R ®ODd

© 2005-2011 Microchip Technology Inc. DS70157F-page 47

16-bit MCU and DSC Programmer’s Reference Manual

Table 3-8: Program Flow Instructions (Continued)

Assembly Syntax Description Words Cycles Page
Number
REPEAT #1it15(4) Repeat next instruction (litl5 + 1) times 1 1 357
REPEAT Wn Repeat next instruction (Wn + 1) times 1 1 359
RETFIE Return from interrupt enable 1 3(2)9 365
RETLW #1it10,Wn Return with lit10 in Wn 1 3 (2)9) 367
RETURN Return from subroutine 1 3(2)@9) 371
Note 1: Conditional branch instructions execute in 1 cycle if the branch is not taken, or 2 cycles if the branch is
taken.

RETURN instructions execute in 3 cycles, but if an exception is pending, they execute in 2 cycles.
This instruction is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

This instruction is only available in dsPIC33E and PIC24E devices.

This instruction is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

This instruction is only available in dsPIC30F and dsPIC33F devices.

This instruction is only available in dsPIC33E devices.

In dsPIC33E and PIC24E devices, these instructions require 2 additional cycles (4 cycles overall) when
the branch is taken.

9: In dsPIC33E and PIC24E devices, these instructions require 3 additional cycles.

N ROD

DS70157F-page 48 © 2005-2011 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-9: Shadowi/Stack Instructions
Assembly Syntax Description Words | Cycles NE?nglfer

LNK #1it14 Link Frame Pointer 1 1 267
POP f POP TOS to f 1 1 337
POP wdo POP TOS to Wdo 1 1 338
POP.D wnd Double POP from TOS to Wnd:Wnd + 1 1 2 339
POP.S POP shadow registers 1 1 340
PUSH f PUSH f to TOS 1 10 341
PUSH Wso PUSH Wso to TOS 1 1@ 342
PUSH.D wns PUSH double Wns:Wns + 1 to TOS 1 2 343
PUSH.S PUSH shadow registers 1 1 345
ULNK Unlink Frame Pointer 1 1 435

Note 1: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function
Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H

devices.
Table 3-10: Control Instructions
Assembly Syntax Description Words | Cycles Page
Number

CLRWDT Clear Watchdog Timer 1 1 188

DISI #1lit14 Disable interrupts for (lit14 + 1) instruction cycles 1 1 223
NOP No operation 1 1 336 §
NOPR No operation 1 1 336 9 é"
PWRSAV #litl Enter Power-saving mode lit1 1 1 346 f_lz Q
RESET Software device Reset 1 1 363 g- g
2 n
e

© 2005-2011 Microchip Technology Inc. DS70157F-page 49

16-bit MCU and DSC Programmer’s Reference Manual

Table 3-11: DSP Instructions (dsPIC30F, dsPIC33F and dsPIC33E Devices)

Assembly Syntax Description Words | Cycles Page

Number
ADD Acc Add accumulators 1 1 103
ADD Wso, #S1it4, Acc 16-hit signed add to Acc 1 1@ 104
CLR Acc, [Wx],Wxd, [Wy],Wyd, AWB Clear Acc 1 1 186
ED Wm*Wm, Acc, [Wx], [Wy],Wxd Euclidean distance 1 1 239
(no accumulate)

EDAC Wm*Wm, Acc, [Wx], [Wy],Wxd Euclidean distance 1 1 241
LAC Wso, #S1it4, Acc Load Acc 1 1@ 265
MAC wWm*Wn, Acc, [Wx],Wwxd, [Wy], Wyd, AWB|Multiply and accumulate 1 1 275
MAC Wm*Wm, Acc, [Wx],wxd, [Wy], Wyd Square and accumulate 1 1 277
MOVSAC Acc, [Wx],Wxd, [Wy],Wyd, AWB Move Wx to Wxd and Wy to Wyd 1 1 293
MPY Wm*wn, Acc, [Wx],wxd, [Wy],Wyd Multiply Wn by Wm to Acc 1 1 295
MPY Wm*Wm, Acc, [Wx],wxd, [Wy], Wyd Square to Acc 1 1 297
MPY.N Wm*Wn,Acc, [Wx],Wxd, [Wy], Wyd -(Multiply Wn by Wm) to Acc 1 1 299
MSC wWm*Wn, Acc, [Wx],Wxd, [Wy],Wyd, AWB|Multiply and subtract from Acc 1 1 301
NEG Acc Negate Acc 1 1 335
SAC Acc, #S1it4,wdo Store Acc 1 1 389
SAC.R Acc,#S1it4,wdo Store rounded Acc 1 1 391
SFTAC Acc, #S1it6 Arithmetic shift Acc by Slit6 1 1 397
SFTAC Acc,Wn Arithmetic shift Acc by (Wn) 1 1 398
SuB Acc Subtract accumulators 1 1 410
Note 1: In dsPIC33E and PIC24E devices, read and read-modify-write operations on non-CPU Special Function

Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H

devices.

DS70157F-page 50

© 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 4. Instruction Set Details

HIGHLIGHTS

This section of the manual contains the following major topics:

4.1 Data AdAreSSING MOUES.c.uvviii ittt te e e e e e e e st e e e e st ae e e e s stbaeeesanees
4.2 Program AddreSSiNg MOUEScooiuuiiiiiiiiiiiie ettt e e e sbe e e
4.3 INSIIUCHON SEAIISeeiiiiiiiie ettt e et e e s bbeeeaee
N Y (- @] o 1T =1 (o] o U PRPT SRR
4.5 WOrd MOVE OPETALIONSc.evvieiiiieeiiie ettt st sin e e e e nneas
4.6 Using 10-bit Literal OPErandscoceeeiiiiiiiiieiiee et
4.7 Software Stack Pointer and Frame POINETccoiiiiiiiiiiiiei e
4.8 Conditional BranCh INSIIUCHIONSoiuuiiiiiiiiiie et
e A = LU 0 = | PP PPPPPPRUPRRN
4.10 Assigned Working RegIStEr USAQEuueiiaiiiiiiie e reie et e e e e e e e eeneeea e s
4.11 DSP Data Formats (dsPIC30F, dsPIC33F and dsPIC33E Devices).........

4.12 Accumulator Usage (dsPIC30F, dsPIC33F and dSPIC33E DeViCeS)........c.cccverveeenineenns
4.13 Accumulator Access (dsPIC30F, dsPIC33F and dsPIC33E DevViCes)cccuveeeevivinennn.
4.14 DSP MAC Instructions (dsPIC30F, dsPIC33F and dsPIC33E Devices) ...

4.15 DSP Accumulator Instructions (dsPIC30F, dsPIC33F and dsPIC33E Devices) 88

4.16 Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F and dsPIC33E Devices) 88

4.17 Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F and
OSPICS3E DBVICES) ...utteieeeaiteeeeeae ittt e e e e ettt e e e e ettt e e e e sttt ea e e e antbeeaeeaneeeeeeeastaeeaesanseeeaeeaannes 20

=)
n
o
Oc
® 0
8 =
=0
=]
wn
@
~—

© 2005-2011 Microchip Technology Inc. DS70157F-page 51

16-bit MCU and DSC Programmer’s Reference Manual

4.1 DATA ADDRESSING MODES

The 16-bit MCU and DSC devices support three native Addressing modes for accessing data
memory, along with several forms of immediate addressing. Data accesses may be performed
using file register addressing, register direct or indirect addressing, and immediate addressing,
allow a fixed value to be used by the instruction.

File register addressing provides the ability to operate on data stored in the lower 8K of data
memory (Near RAM), and also move data between the working registers and the entire 64K data
space. Register direct addressing is used to access the 16 memory mapped working registers,
WO0:W15. Register indirect addressing is used to efficiently operate on data stored in the entire
64K data space (and also Extended Data Space, in the case of dsPIC33E/PIC24E), using the
contents of the working registers as an effective address. Immediate addressing does not access
data memory, but provides the ability to use a constant value as an instruction operand. The
address range of each mode is summarized in Table 4-1.

Table 4-1: 16-bit MCU and DSC Addressing Modes

Addressing Mode Address Range
File Register 0x0000-0x1FFF (4
Register Direct 0x0000-0x001F (working register array W0:W15)
Register Indirect 0x0000 - OXFFFF
Immediate N/A (constant value)

Note 1: The address range for the File Register MOV is 0x0000 - OxFFFE.

41.1 File Register Addressing

File register addressing is used by instructions which use a predetermined data address as an
operand for the instruction. The majority of instructions that support file register addressing
provide access to the lower 8 Kbytes of data memory, which is called the Near RAM. However,
the MOV instruction provides access to all 64 Kbytes of memory using file register addressing.
This allows the loading of the data from any location in data memory to any working register, and
storing the contents of any working register to any location in data memory. It should be noted
that file register addressing supports both byte and word accesses of data memory, with the
exception of the MOV instruction, which accesses all 64K of memory as words. Examples of file
register addressing are shown in Example 4-1.

Most instructions, which support file register addressing, perform an operation on the specified
file register and the default working register WREG (see Section 2.4 “Default Working
Register (WREG)”). If only one operand is supplied in the instruction, WREG is an implied
operand and the operation results are stored back to the file register. In these cases, the
instruction is effectively a read-modify-write instruction. However, when both the file register and
the WREG register are specified in the instruction, the operation results are stored in the WREG
register and the contents of the file register are unchanged. Sample instructions that show the
interaction between the file register and the WREG register are shown in Example 4-2.

Note: Instructions which support file register addressing use ‘f" as an operand in the
instruction summary tables of Section 3. “Instruction Set Overview”.

DS70157F-page 52

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-1: File Register Addressing
DEC 0x1000 ; decrement data stored at 0x1000

Before Instruction:
Data Memory 0x1000 = 0x5555
After Instruction:

Data Memory 0x1000 = 0x5554

MOV OX27FE, WO ; move data stored at Ox27FE to WO
Before Instruction:

WO = 0x5555

Data Memory OX27FE = 0x1234
After Instruction:

WO = 0x1234

Data Memory Ox27FE = 0x1234

Example 4-2: File Register Addressing and WREG

AND 0x1000 ; AND 0x1000 with WREG, store to 0x1000
Before Instruction:

WO (WREG) = 0x332C
Data Memory 0x1000

0x5555
After Instruction:

WO (WREG) = 0x332C
Data Memory 0x1000 = 0x1104

AND 0x1000, WREG ; AND 0x1000 with WREG, store to WREG
Before Instruction:

WO (WREG) = 0x332C
Data Memory 0x1000 = 0x5555

After Instruction:

WO (WREG) = 0x1104
Data Memory 0x1000 = 0x5555

4.1.2 Register Direct Addressing

Register direct addressing is used to access the contents of the 16 working registers (WO0:W15).
The Register Direct Addressing mode is fully orthogonal, which allows any working register to be
specified for any instruction that uses register direct addressing, and it supports both byte and
word accesses. Instructions which employ register direct addressing use the contents of the
specified working register as data to execute the instruction, therefore this Addressing mode is
useful only when data already resides in the working register core. Sample instructions which
utilize register direct addressing are shown in Example 4-3.

S

n

o
Oc
0
8=
=0
=
wn
@
[

Another feature of register direct addressing is that it provides the ability for dynamic flow control.
Since variants of the DO and REPEAT instruction support register direct addressing, flexible
looping constructs may be generated using these instructions.

Note: Instructions which must use register direct addressing, use the symbols Wb, Whn,
Wns and Wnd in the summary tables of Section 3. “Instruction Set Overview”.
Commonly, register direct addressing may also be used when register indirect
addressing may be used. Instructions which use register indirect addressing, use
the symbols Wd and Ws in the summary tables of Section 3. “Instruction Set
Overview”.

© 2005-2011 Microchip Technology Inc. DS70157F-page 53

16-bit MCU and DSC Programmer’s Reference Manual

Example 4-3: Register Direct Addressing

EXCH w2, w3
Before Instruction:

; Exchange W2 and W3

W2 = 0x3499
W3 = 0x003D
After Instruction:
W2 = Ox003D
W3 = 0x3499
I0R #0x44, WO ; Inclusive-OR 0x44 and WO

Before Instruction:
WO = Ox9C2E
After Instruction:

WO = Ox9C6E

SL W6, W7, W8 ; Shift left w6 by W7, and store to W8
Before Instruction:

W6 = Ox000C

W7 = Ox0008

w8 = 0x1234

After Instruction:

W6 = ©x000C
W7 = ©x0008
W8 = ©x0C00

4.1.3 Register Indirect Addressing

Register indirect addressing is used to access any location in data memory by treating the
contents of a working register as an Effective Address (EA) to data memory. Essentially, the
contents of the working register become a pointer to the location in data memory which is to be
accessed by the instruction.

This Addressing mode is powerful, because it also allows one to modify the contents of the
working register, either before or after the data access is made, by incrementing or decrementing
the EA. By modifying the EA in the same cycle that an operation is being performed, register
indirect addressing allows for the efficient processing of data that is stored sequentially in
memory. The modes of indirect addressing supported by the 16-bit MCU and DSC devices are
shown in Table 4-2.

Table 4-2: Indirect Addressing Modes
. Function Function L
Indirect Mode | Syntax (Byte Instruction) | (Word Instruction) Description
No Modification | [Wn] EA = [Wn] EA = [Wn] The contents of Wn forms the EA.
Pre-Increment [++Wn] |EA = [Wn + = 1] [EA = [Wn + = 2] |Wn s pre-incremented to form the EA.
Pre-Decrement |[--Wn] |[EA = [Wn - = 1] |EA = [Wn - = 2] |Wnis pre-decremented to form the EA.
Post-Increment | [Wn++] |[EA = [Wn]+ = 1 |EA = [Wn]+ = 2 |The contents of Wn forms the EA, then
Whn is post-incremented.
Post-Decrement | [Wn--] |[EA = [Wn] - = 1 [EA = [Wn] - = 2 |The contents of Wn forms the EA, then
Whn is post-decremented.
Register Offset | [Wn+Wb] [EA = [Wn + Wb] EA = [Wn + Wb] |The sum of Wn and Wb forms the EA.
Wn and Wb are not modified.

DS70157F-page 54

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Table 4-2 shows that four Addressing modes modify the EA used in the instruction, and this
allows the following updates to be made to the working register: post-increment, post-decrement,
pre-increment and pre-decrement. Since all EAs must be given as byte addresses, support is
provided for Word mode instructions by scaling the EA update by 2. Namely, in Word mode,
pre/post-decrements subtract 2 from the EA stored in the working register, and
pre/post-increments add 2 to the EA. This feature ensures that after an EA modification is made,
the EA will point to the next adjacent word in memory. Example 4-4 shows how indirect
addressing may be used to update the EA.

Table 4-2 also shows that the Register Offset mode addresses data which is offset from a base
EA stored in a working register. This mode uses the contents of a second working register to form
the EA by adding the two specified working registers. This mode does not scale for Word mode
instructions, but offers the complete offset range of 64 Kbytes. Note that neither of the working
registers used to form the EA are modified. Example 4-5 shows how register offset indirect
addressing may be used to access data memory.

Note: The MOV with offset instructions (see pages 285 and 286) provides a literal
addressing offset ability to be used with indirect addressing. In these instructions,
the EA is formed by adding the contents of a working register to a signed 10-bit
literal. Example 4-6 shows how these instructions may be used to move data to and
from the working register array.

Example 4-4: Indirect Addressing with Effective Address Update

MOV.B [WO++], [W13--] ; byte move [WO] to [W13]
; post-inc WO, post-dec W13

Before Instruction:

WO = 0x2300
W13 = 0x2708

Data Memory 0x2300 = 0x7783
Data Memory 0x2708 = 0x904E
After Instruction:

Wo = 0x2301

W13 = 0x2707

Data Memory 0x2300 = 0x7783

Data Memory 0x2708 = 0x9083

ADD Wi, [--W5], [++W8] ; pre-dec W5, pre-inc w8

; add Wl to [W5], store in [W8]
Before Instruction:

Wl = 0x0800 a

W5 = 0x2200 -

W8 = 0x2400 O¢c

Data Memory Ox21FE = 0x7783 2 2

Data Memory 0x2402 = OXAACC 2.5
After Instruction: o (:;,

Wl = 0x0800 @

W5 = Ox21FE

W8 = 0x2402

Data Memory Ox21FE = 0x7783

Data Memory 0x2402 = Ox7F83

© 2005-2011 Microchip Technology Inc. DS70157F-page 55

16-bit MCU and DSC Programmer’s Reference Manual

Example 4-5: Indirect Addressing with Register Offset

MOV.B [WO+W1], [W7++] ; byte move [WO+W1l] to W7, post-inc W7
Before Instruction:

WO = 0x2300

Wl = OXO1FE

W7 = 0x1000

Data Memory Ox24FE = 0x7783

Data Memory 0x1000 = 0x11DC

After Instruction:

WO = 0x2300
W1l = OXO1FE
W7 = 0x1001
Data Memory Ox24FE = Ox7783
Data Memory 0x1000 = 0x1183

LAC [Wo+w8], A

Before Instruction:

WO = 0x2344

W8 = 0x0008

ACCA = 0x00 7877 9321

Data Memory 0x234C = OxE290

After Instruction:

WO = 0x2344

W8 = 0x0008

ACCA = OxFF E290 0000

Data Memory 0x234C = OxE290

; load ACCA with [WO+W8]
; (sign-extend and zero-backfill)

Example 4-6:

Move with Literal Offset Instructions

MoV [WO+0x20], Wi
Before Instruction:

WO = 0x1200

W1l = OXOQ1FE

Data Memory 0x1220 = OXFD27
After Instruction:

WO = 0x1200

W1l = OxFD27

Data Memory 0x1220 = OXFD27

MOV W4, [W8-0x300]
Before Instruction:

W4 = 0x3411

W8 = 0x2944

Data Memory 0x2644 = OxCB98
After Instruction:

W4 = 0x3411

W8 = 0x2944

Data Memory 0x2644 = 0x3411

; move [WO+0x20] to Wil

; move W4 to [W8-0x300]

DS70157F-page 56

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.1.3.1 REGISTER INDIRECT ADDRESSING AND THE INSTRUCTION SET

The Addressing modes presented in Table 4-2 demonstrate the Indirect Addressing mode
capability of the 16-bit MCU and DSC devices. Due to operation encoding and functional
considerations, not every instruction which supports indirect addressing supports all modes
shown in Table 4-2. The majority of instructions which use indirect addressing support the No
Modify, Pre-Increment, Pre-Decrement, Post-Increment and Post-Decrement Addressing
modes. The MOV instructions, and several accumulator-based DSP instructions (dsPIC30F,
dsPIC33F, and dsPIC33E devices only), are also capable of using the Register Offset
Addressing mode.

Note: Instructions which use register indirect addressing use the operand symbols Wd
and Ws in the summary tables of Section 3. “Instruction Set Overview”.

4.1.3.2 DSP MAC INDIRECT ADDRESSING MODES (dsPIC30F, dsPIC33F, AND
dsPIC33E DEVICES)

A special class of Indirect Addressing modes is utilized by the DSP MAC instructions. As is
described later in Section 4.14 “DSP MAC Instructions (dsPIC30F, dsPIC33F and dsPIC33E
Devices)”, the DSP MAC class of instructions are capable of performing two fetches from
memory using effective addressing. Since DSP algorithms frequently demand a broader range
of address updates, the Addressing modes offered by the DSP MAC instructions provide greater
range in the size of the effective address update which may be made. Table 4-3 shows that both
X and Y prefetches support Post-Increment and Post-Decrement Addressing modes, with
updates of 2, 4 and 6 bytes. Since DSP instructions only execute in Word mode, no provisions
are made for odd sized EA updates.

Table 4-3: DSP MAC Indirect Addressing Modes

Addressing Mode X Memory Y Memory
Indirect with no modification EA = [WX] EA = [Wy]
Indirect with Post-Increment by 2 EA=[Wx]+=2 EA=[Wy]+=2
Indirect with Post-Increment by 4 EA=[Wx]+=4 EA=[Wy]+=4
Indirect with Post-Increment by 6 EA=[Wx]+=6 EA=[Wy]+=6
Indirect with Post-Decrement by 2 EA = [Wx]-= EA = [Wy]—=
Indirect with Post-Decrement by 4 EA=[Wx]-=4 EA=[Wy]-=4
Indirect with Post-Decrement by 6 EA=[Wx]-=6 EA=[Wy]—-=6
Indirect with Register Offset EA = [W9 + W12] EA = [W11 + W12]

Note: As described in Section 4.14 “DSP MAC Instructions (dsPIC30F, dsPIC33F and
dsPIC33E Devices)”, only W8 and W9 may be used to access X Memory, and only
W10 and W11 may be used to access Y Memory.

4.1.3.3 MODULO AND BIT-REVERSED ADDRESSING MODES (dsPIC30F,
dsPIC33F, AND dsPIC33E DEVICES)

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

The 16-bit DSC architecture provides support for two special Register Indirect Addressing
modes, which are commonly used to implement DSP algorithms. Modulo (or circular) addressing
provides an automated means to support circular data buffers in X and/or Y memory. Modulo
buffers remove the need for software to perform address boundary checks, which can improve
the performance of certain algorithms. Similarly, bit-reversed addressing allows one to access
the elements of a buffer in a nonlinear fashion. This Addressing mode simplifies data re-ordering
for radix-2 FFT algorithms and provides a significant reduction in FFT processing time.

Both of these Addressing modes are powerful features of the dsPIC30F, dsPIC33F, and
dsPIC33E architectures, which can be exploited by any instruction that uses indirect addressing.
Refer to the specific device family reference manual for details on using modulo and bit-reversed
addressing.

© 2005-2011 Microchip Technology Inc. DS70157F-page 57

16-bit MCU and DSC Programmer’s Reference Manual

4.1.4 Immediate Addressing

In immediate addressing, the instruction encoding contains a predefined constant operand,
which is used by the instruction. This Addressing mode may be used independently, but it is more
frequently combined with the File Register, Direct and Indirect Addressing modes. The size of
the immediate operand which may be used varies with the instruction type. Constants of size
1-bit (#litl), 4-bit (#bit4, #lit4 and #Slit4), 5-bit (#lit5), 6-bit (#Slit6), 8-bit (#lit8), 10-bit (#lit10
and #Slit10), 14-bit (#lit14) and 16-bit (#lit16) may be used. Constants may be signed or
unsigned and the symbols #Slit4, #Slit6 and #Slit10 designate a signed constant. All other
immediate constants are unsigned. Table 4-4 shows the usage of each immediate operand in the
instruction set.

Note: The 6-bit (#Slit6) operand is only available in dsPIC30F, dsPIC33F, and dsPIC33EI

devices.

Table 4-4: Immediate Operands in the Instruction Set

Operand Instruction Usage

#1itl PWRSAV

#bit4 BCLR, BSET, BTG, BTSC, BTSS, BTST, BTST.C, BTST.Z, BTSTS,
BTSTS.C, BTSTS.Z

#1lit4 ASR, LSR, SL

#Slit4 |ADD, LAC, SAC, SAC.R

#1it5 ADD, ADDC, AND, cP(%), cpB(5), TOR, MUL.SU, MUL.UU, SUB,

SUBB, SUBBR, SUBR, XOR
#slited |SFTAC

#1it8 mov.B, cp(4), cpg(4)

#1it10 |ADD, ADDC, AND, CP, CPB, IOR, RETLW, SUB, SUBB, XOR
#S1it10 |MoV

#1it14 |DISI, D0®@, LNK, REPEAT(S)

#1it15 |po®, REPEAT(4)

#lit16 |MOV

Note 1: This operand or instruction is only available in dsPIC30F, dsPIC33F, and dsPIC33E
devices.

This operand or instruction is only available in dsPIC30F and dsPIC33F devices.
This operand or instruction is only available in dsPIC33E devices.

This operand or instruction is only available in dsPIC33E and PIC24E devices.

This operand or instruction is only available in dsPIC30F, dsPIC33F, PIC24F, and
PIC24H devices.

a bk wbd

The syntax for immediate addressing requires that the number sign (#) must immediately
precede the constant operand value. The “#” symbol indicates to the assembler that the quantity
is a constant. If an out-of-range constant is used with an instruction, the assembler will generate
an error. Several examples of immediate addressing are shown in Example 4-7.

DS70157F-page 58 © 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-7: Immediate Addressing
PWRSAV #1 ; Enter IDLE mode
ADD.B #0x10, WO ; Add 0x10 to WO (byte mode)

Before Instruction:
WO = 0x12A9
After Instruction:
WO = 0x12B9

XOR wo, #1, [Wi++] ; Exclusive-OR WO and 0x1
; Store the result to [W1]
; Post-increment wi

Before Instruction:

WO = OXFFFF
W1l = 0x0890
Data Memory 0x0890 = 0x0032

After Instruction:

WO = OXFFFF
Wl = 0x0892
Data Memory ©x0890 = OXFFFE

4.1.5 Data Addressing Mode Tree

The Data Addressing modes of the PIC24F, PIC24H, and PIC24E families are summarized in
Figure 4-1.

Figure 4-1: Data Addressing Mode Tree (PIC24F, PIC24H, and PIC24E)

Immediate
File Register No Modification
Data Addressing Modes Pre-Increment
Direct
Pre-Decrement
Indirect Post-Increment

Post-Decrement

Literal Offset

Register Offset

S

n

o
Oc
0
8=
=0
=]
wn
@
[

The Data Addressing modes of the dsPIC30F, dsPIC33F, and dsPIC33E are summarized in
Figure 4-2.

© 2005-2011 Microchip Technology Inc. DS70157F-page 59

16-bit MCU and DSC Programmer’s Reference Manual

Figure 4-2: Data Addressing Mode Tree (dsPIC30F, dsPIC33F, and dsPIC33E)

Data Addressing Modes

Immediate
File Register No Modification
Basic _ Pre-Increment
Direct
Pre-Decrement
Indirect Post-Increment
Post-Decrement
Literal Offset
Register Offset
Direct
DSP MAC No Modification
Post-Increment (2, 4 and 6)
Indirect

Post-Decrement (2, 4 and 6)

Register Offset

DS70157F-page 60

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.2 PROGRAM ADDRESSING MODES

The 16-bit MCU and DSC devices have a 24-bit Program Counter (PC). The PC addresses the
24-bit wide program memory to fetch instructions for execution, and it may be loaded in several
ways. For byte compatibility with the table read and table write instructions, each instruction word
consumes two locations in program memory. This means that during serial execution, the PC is
loaded with PC + 2.

Several methods may be used to modify the PC in a non-sequential manner, and both absolute
and relative changes may be made to the PC. The change to the PC may be from an immediate
value encoded in the instruction, or a dynamic value contained in a working register. In dsPIC30F,
dsPIC33F, and dsPIC33E devices, when DO looping is active, the PC is loaded with the address
stored in the DOSTART register, after the instruction at the DOEND address is executed. For
exception handling, the PC is loaded with the address of the exception handler, which is stored
in the interrupt vector table. When required, the software stack is used to return scope to the
foreground process from where the change in program flow occurred.

Table 4-5 summarizes the instructions which modify the PC. When performing function calls, it is
recommended that RCALL be used instead of CALL, since RCALL only consumes 1 word of
program memory.

Table 4-5: Methods of Modifying Program Flow

Condition/Instruction

PC Modification

Software Stack Usage

(Branch Conditionally)

PC = PC + 2 * Slit16 (condition true)

Sequential Execution PC=PC+2 None
BRA Expr® PC = PC + 2*Slit16 None
(Branch Unconditionally)

BRA Condition, Expr® PC = PC + 2 (condition false) None

CALL Expr@®
(Call Subroutine)

PC = lit23

PC + 4 is PUSHed on the stack®

CALL Wn
(Call Subroutine Indirect)

PC =Wn

PC + 2 is PUSHed on the stack®

(DO Looping)

CALL.L wn(®) PC = {Wn+1:Wn} None

(Call Indirect Subroutine Long)

GoTo Expr® PC = lit23 None

(Unconditional Jump)

GOTO Wn PC =Wn None

(Unconditional Indirect Jump)

GOTO.L Wn(®) PC = {Wn+1:Wn} None _

(Unconditional Indirect Long Jump) E

RCALL Expr(® PC = PC + 2 * Slit16 PC + 2 is PUSHed on the stack(® og

(Relative Call) o2a

RCALL Wn PC=PC+2*Wn PC + 2 is PUSHed on the stack(® &_’ <}

(Computed Relative Call) » (:;)

Exception Handling PC = address of the exception handler | PC + 2 is PUSHed on the stack(® 1)
(read from vector table) ~

PC = Target REPEAT instruction PC not modified (if REPEAT active) None

(REPEAT Looping)

PC = DOEND address(¥ PC = DOSTART (if DO active) None

Note 1: For BRA, CALL and GOTO, the Expr may be a label, absolute address, or expression, which is resolved by
the linker to a 16-bit or 23-bit value (SIit16 or lit23). See Section 5. “Instruction Descriptions” for details.

After CALL or RCALL is executed, RETURN or RETLW will POP the Top-of-Stack (TOS) back into the PC.
After an exception is processed, RETFIE will POP the Top-of-Stack (TOS) back into the PC.

This condition/instruction is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

This condition instruction is only available in dsPIC33E and PIC24E devices.

a bk

© 2005-2011 Microchip Technology Inc. DS70157F-page 61

16-bit MCU and DSC Programmer’s Reference Manual

4.3

INSTRUCTION STALLS

In order to maximize the data space EA calculation and operand fetch time, the X data space
read and write accesses are partially pipelined. A consequence of this pipelining is that address
register data dependencies may arise between successive read and write operations using
common registers.

‘Read After Write’ (RAW) dependencies occur across instruction boundaries and are detected by
the hardware. An example of a RAW dependency would be a write operation that modifies W5,
followed by a read operation that uses W5 as an Address Pointer. The contents of W5 will not be
valid for the read operation until the earlier write completes. This problem is resolved by stalling
the instruction execution for one instruction cycle, which allows the write to complete before the
next read is started.

43.1

During the instruction pre-decode, the core determines if any address register dependency is
imminent across an instruction boundary. The stall detection logic compares the W register
(if any) used for the destination EA of the instruction currently being executed with the W register
to be used by the source EA (if any) of the prefetched instruction. When a match between the
destination and source registers is identified, a set of rules are applied to decide whether or not
to stall the instruction by one cycle. Table 4-6 lists various RAW conditions which cause an
instruction execution stall.

RAW Dependency Detection

Table 4-6: Raw Dependency Rules (Detection By Hardware)
Destination Source Address stall les®
Address Mode Mode Required? Examla esz
Using Wn Using Wn q) (Wn =w2)
Direct Direct No Stall |ADD.W WO, W1, W2
MOV.W W2, W3
Indirect Direct No Stall |ADD.W WO, Wi, [wW2]
MOV.W W2, W3
Indirect Indirect No Stall |ADD.W WO, W1, [W2]
MOV.W [W2], W3
Indirect Indirect with No Stall |ADD.W WO, W1, [W2]
pre/post-modification MOV.W [W2++], W3
Indirect with Direct No Stall |ADD.W WO, W1, [W2++]
pre/post-modification MOV.W W2, W3
Direct Indirect stal® |ADD.W WO, W1, W2
MOV.W [W2], W3
Direct Indirect with Stalll [ADD.W WO, Wi, W2
pre/post-modification MOV.W [W2++], W3
Indirect Indirect stal® |[ADD.W WO, Wi, [W2](2)
MOV.W [W2], W3(2)
Indirect Indirect with stal® |ADD.W WO, Wi, [W2](2)
pre/post-modification MOV.W [W2++], W3(2)
Indirect with Indirect Stalll [ADD.W WO, W1, [W2++]
pre/post-modification MOV.W [W2], W3
Indirect with Indirect with Stalll [ADD.W WO, W1, [W2++]
pre/post-modification | pre/post-modification MOV.W [W2++], W3

Note 1:

When stalls are detected, one cycle is added to the instruction execution time.

2: For these examples, the contents of W2 = the mapped address of W2 (0x0004).

DS70157F-page 62

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.3.2 Instruction Stalls and Exceptions

In order to maintain deterministic operation, instruction stalls are allowed to happen, even if they
occur immediately prior to exception processing.

4.3.3 Instruction Stalls and Instructions that Change Program Flow

CALL and RCALL write to the stack using W15 and may, therefore, be subject to an instruction
stall if the source read of the subsequent instruction uses W15.

GOTO, RETFIE and RETURN instructions are never subject to an instruction stall because they
do not perform write operations to the working registers.

4.3.4 Instruction Stalls and DO/REPEAT Loops

Instructions operating in a DO or REPEAT loop are subject to instruction stalls, just like any other
instruction. Stalls may occur on loop entry, loop exit and also during loop processing.

| Note: DO loops are only available in dsPIC30F, dsPIC33F, and dsPIC33E devices. I

4.3.5 Instruction Stalls and PSV

Instructions operating in PSV address space are subject to instruction stalls, just like any other
instruction. Should a data dependency be detected in the instruction immediately following the
PSV data access, the second cycle of the instruction will initiate a stall. Should a data
dependency be detected in the instruction immediately before the PSV data access, the last
cycle of the previous instruction will initiate a stall.

Note: Refer to the specific device family reference manual for more detailed information
about RAW instruction stalls.

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

© 2005-2011 Microchip Technology Inc. DS70157F-page 63

16-bit MCU and DSC Programmer’s Reference Manual

4.4 BYTE OPERATIONS

Since the data memory is byte addressable, most of the base instructions may operate in either

Byte mode or Word mode. When these instructions operate in Byte mode, the following rules

apply:

« All direct working register references use the Least Significant Byte of the 16-bit working
register and leave the Most Significant Byte (MSB) unchanged

« All indirect working register references use the data byte specified by the 16-bit address
stored in the working register

« All file register references use the data byte specified by the byte address

» The STATUS Register is updated to reflect the result of the byte operation

It should be noted that data addresses are always represented as byte addresses. Additionally,
the native data format is little-endian, which means that words are stored with the Least
Significant Byte at the lower address, and the Most Significant Byte at the adjacent, higher
address (as shown in Figure 4-3). Example 4-8 shows sample byte move operations and
Example 4-9 shows sample byte math operations.

Note: Instructions that operate in Byte mode must use the “.b” or “.B” instruction
extension to specify a byte instruction. For example, the following two instructions
are valid forms of a byte clear operation:

e CLR.b w0
 CLR.B WO

Example 4-8: Sample Byte Move Operations

MOV.B #0x30, WO ; move the literal byte 0x30 to WO
Before Instruction:
WO = 0x5555

After Instruction:
WO = 0x5530

MOV.B 0x1000, WO ; move the byte at 0x1000 to W@
Before Instruction:

WO = 0x5555
Data Memory 0x1000 = 0x1234

After Instruction:

WO = 0x5534

Data Memory 0x1000 = 0x1234

MOV.B WO, 0x1001 ; byte move WO to address 0x1001
Before Instruction:

Wo = 0x1234
Data Memory 0x1000 = 0x5555

After Instruction:

WO = 0x1234
Data Memory 0x1000 = 0x3455

MOV.B WO, [Wil++] ; byte move WO to [W1l], then post-inc Wi
Before Instruction:

WO = 0x1234
Wil = 0x1001
Data Memory 0x1000 = 0x5555

After Instruction:

WO = 0x1234
Wl = 0x1002
Data Memory 0x1000 = 0x3455

DS70157F-page 64

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-9: Sample Byte Math Operations

CLR.B [W6--] ; byte clear [W6], then post-dec W6
Before Instruction:

w6 = 0x1001

Data Memory 0x1000
After Instruction:

W6 = 0x1000
Data Memory 0x1000

SUB.B

Before Instruction:

After Instruction:

WO = 0x1234
W1l = 0x5678
w2 = 0x1001

Data Memory 0x1000

WO, #0x10, Wi

WO = 0x1234

W1l = OXFFFF
After Instruction:

WO = 0x1234

Wl = OxFF24

ADD.B WO, W1, [W2++] ; byte add WO and W1, store to [W2]

; and post-inc W2

Before Instruction:

WO = 0x1234

Wl = Ox5678

W2 = 0x1000

Data Memory 0x1000 = 0x5555

0x5555

0Xx0055

; byte subtract literal 0x10 from WO
; and store to Wi

OX55AC

© 2005-2011 Microchip Technology Inc.

DS70157F-page 65

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

16-bit MCU and DSC Programmer’s Reference Manual

4.5 WORD MOVE OPERATIONS

Even though the data space is byte addressable, all move operations made in Word mode must
be word-aligned. This means that for all source and destination operands, the Least Significant
address bit must be ‘@’. If a word move is made to or from an odd address, an address error
exception is generated. Likewise, all double words must be word-aligned. Figure 4-3 shows how
bytes and words may be aligned in data memory. Example 4-10 contains several legal word
move operations.

When an exception is generated due to a misaligned access, the exception is taken after the
instruction executes. If the illegal access occurs from a data read, the operation will be allowed
to complete, but the Least Significant bit of the source address will be cleared to force word
alignment. If the illegal access occurs during a data write, the write will be inhibited. Example 4-11
contains several illegal word move operations.

Figure 4-3: Data Alignment in Memory

0x1001 b0 0x1000

0x1003 bl 0x1002

0x1007 b5 b4 0x1006

0x1009 b7 b6 0x1008

0x100B b8 0x100A
Legend:

b0 — byte stored at 0x1000

bl — byte stored at 0x1003

b3:b2 — word stored at 0x1005:1004 (b2 is LSB)

b7:b4 — double word stored at 0x1009:0x1006 (b4 is LSB)
b8 — byte stored at 0x100A

Note: Instructions that operate in Word mode are not required to use an instruction
extension. However, they may be specified with an optional “.w” or “.W” extension,
if desired. For example, the following instructions are valid forms of a word clear
operation:

e CLR WO
* CLR.w WO
e CLR.W WO

DS70157F-page 66

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-10:

Legal Word Move Operations

MOV
Before Instruction

WO = 0x5555
After Instruction:

WO = 0x0030

MOV
Before Instruction

WO = 0x5555
Data Memory

After Instruction:

WO = 0x1234
Data Memory

MoV

Before Instruction

WO = 0x1234
W1l = 0x1000
Data Memory
Data Memory

After Instruction:

WO = 0x1234
W1l = 0x1002
Data Memory
Data Memory

#0Xx30, WO

0x1000, WO ;

[we],

; move the literal word 0x30 to WO

move the word at 0x1000 to WO

0X1000 = 0x1234

0x1000 = 0x1234

[Wi++] ; word move [WO] to [wi],
; then post-inc w1

0Xx1000 =
0x1234 =

0Ox5555
OXAAAA

0x1000 =
0x1234 =

OXAAAA
OXAAAA

© 2005-2011 Microchip Technology Inc.

DS70157F-page 67

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

16-bit MCU and DSC Programmer’s Reference Manual

Example 4-11: lllegal Word Move Operations
MOV 0x1001, we ; move the word at 0x1001 to WO
Before Instruction:

WO = 0x5555
Data Memory 0x1000 0x1234
Data Memory 0x1002 = 0x5678

After Instruction:

Wo = 0x1234
Data Memory 0x1000 0x1234
Data Memory 0x1002 0x5678

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

MOV wo, 0x1001 ; move WO to the word at 0x1001
Before Instruction:

WO = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

After Instruction:

WO = 0x1234
Data Memory 0x1000 0x5555
Data Memory 0x1002 = 0x6666

ADDRESS ERROR TRAP GENERATED

(destination address is misaligned, so MOV is not performed)

MoV [WO], [Wi++] ; word move [WO] to [w1l],
; then post-inc w1

Before Instruction:

WO = 0x1235
W1l = 0x1000
Data Memory 0x1000 = 0x1234
Data Memory 0x1234 = OxAAAA
Data Memory 0x1236 = OxBBBB

After Instruction:

WO = 0x1235
W1l = 0x1002
Data Memory 0x1000 = OXAAAA
Data Memory 0x1234 = OxAAAA
Data Memory 0x1236 = OxBBBB

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

DS70157F-page 68 © 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.6 USING 10-BIT LITERAL OPERANDS

Several instructions that support Byte and Word mode have 10-bit operands. For byte
instructions, a 10-bit literal is too large to use. So when 10-bit literals are used in Byte mode, the
range of the operand must be reduced to 8 bits or the assembler will generate an error. Table 4-7
shows that the range of a 10-bit literal is 0:1023 in Word mode and 0:255 in Byte mode.

Instructions which employ 10-bit literals in Byte and Word mode are: ADD, ADDC, AND, IOR,
RETLW, SUB, SUBB, and XOR. Example 4-12 shows how positive and negative literals are used in
Byte mode for the ADD instruction.

Table 4-7: 10-bit Literal Coding

Literal Value Word Mode Byte Mode

kk kkkk kkkk kkkk kkkk

00 0000 0000 0000 0000

1 00 0000 0001 0000 0001

2 00 0000 0010 0000 0010

127 00 0111 1111 0111 1111

128 00 1000 0060 1000 0000

255 00 1111 1111 1111 1111
256 01 0000 0000 N/A
512 10 0000 00O N/A
1023 11 1111 1111 N/A

Example 4-12: Using 10-bit Literals for Byte Operands

ADD.B #0x80, WO ; add 128 (or -128) to WO

ADD.B #0x380, WO ; ERROR... Illegal syntax for byte mode
ADD.B #OXFF, WO ; add 255 (or -1) to W@

ADD.B #Ox3FF, WO ; ERROR... Illegal syntax for byte mode
ADD.B #OxF, WO ; add 15 to we

ADD.B #OX7F, WO ; add 127 to we

ADD.B #0x100, WO ; ERROR... Illegal syntax for byte mode

Note: Using a literal value greater than 127 in Byte mode is functionally identical to using
the equivalent negative two’'s complement value, since the Most Significant bit of the
byte is set. When operating in Byte mode, the Assembler will accept either a positive
or negative literal value (i.e., #-10).

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

© 2005-2011 Microchip Technology Inc. DS70157F-page 69

16-bit MCU and DSC Programmer’s Reference Manual

4.7 SOFTWARE STACK POINTER AND FRAME POINTER

4,.7.1 Software Stack Pointer

The 16-bit MCU and DSC devices feature a software stack which facilitates function calls and
exception handling. W15 is the default Stack Pointer (SP) and after any Reset, it is initialized to
0x0800 (0x1000 for PIC24E and dsPIC33E devices). This ensures that the SP will point to valid
RAM and permits stack availability for exceptions, which may occur before the SP is set by the
user software. The user may reprogram the SP during initialization to any location within data
space.

The SP always points to the first available free word (Top-of-Stack) and fills the software stack,
working from lower addresses towards higher addresses. It pre-decrements for a stack POP
(read) and post-increments for a stack PUSH (write).

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction, with W15 used as the destination pointer. For
example, the contents of WO can be PUSHed onto the Top-of-Stack (TOS) by:

PUSH WO
This syntax is equivalent to:
MOV WO, [W15++]
The contents of the TOS can be returned to WO by:
POP WO
This syntax is equivalent to:
MOV [--W15],W0

During any CALL instruction, the PC is PUSHed onto the stack, such that when the subroutine
completes execution, program flow may resume from the correct location. When the PC is
PUSHed onto the stack, PC<15:0> is PUSHed onto the first available stack word, then
PC<22:16> is PUSHed. When PC<22:16> is PUSHed, the Most Significant 7 bits of the PC are
zero-extended before the PUSH is made, as shown in Figure 4-4. During exception processing,
the Most Significant 7 bits of the PC are concatenated with the lower byte of the STATUS
register (SRL) and IPL<3>, CORCON<3>. This allows the primary STATUS register contents
and CPU Interrupt Priority Level to be automatically preserved during interrupts.

| Note: In order to protect against misaligned stack accesses, W15<0> is always clear. I

Figure 4-4: Stack Operation for CALL Instruction

0x0000
15 0
[%)]
B
3
3«
F oo
0@
E § PC<15:0> -«—— W15 (before CALL)
S 0x0 PC<22:16>
Q
g %’ Top-of-Stack -«—— W15 (after CALL)
Y
OXFFFE
Note: For exceptions, the upper nine bits of the second PUSHed word contains
the SRL and IPL<3>.

DS70157F-page 70

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.7.1.1 STACK POINTER EXAMPLE

Figure 4-5 through Figure 4-8 show how the software stack is modified for the code snippet
shown in Example 4-13. Figure 4-5 shows the software stack before the first PUSH has executed.
Note that the SP has the initialized value of 0x0800. Furthermore, the example loads 0x5A5A
and 0x3636 to W0 and W1, respectively. The stack is PUSHed for the first time in Figure 4-6 and
the value contained in WO is copied to TOS. W15 is automatically updated to point to the next
available stack location, and the new TOS is 0x0802. In Figure 4-7, the contents of W1 are
PUSHed onto the stack, and the new TOS becomes 0x0804. In Figure 4-8, the stack is POPped,
which copies the last PUSHed value (W1) to W3. The SP is decremented during the POP
operation, and at the end of the example, the final TOS is 0x0802.

Example 4-13: Stack Pointer Usage

MOV #OX5A5A, WO ; Load WO with Ox5A5A

MOV #0x3636, W1 ; Load W1 with 0x3636

PUSH woe ; Push WO to TOS (see Figure 4-5)
H
H

PUSH w1l Push W1 to TOS (see Figure 4-7)
POP w3 Pop TOS to W3 (see Figure 4-8)

Figure 4-5: Stack Pointer Before The First PUSH

0x0000

0x0800 <TOS> <«—— W15 (SP)

OXFFFE

WO = Ox5A5A
W1 = 0x3636
W15 = 0x0800

Figure 4-6: Stack Pointer After “PUSH WO” Instruction

0x0000
0x0800 5ABA
0x0802 <TOS> ~<—— W15 (SP)
>
7]
=
OxFFFE ,? <
=9
2.5
WO = OX5A5A oS
W1 = 0x3636 n
W15 = 0x0802 @
~—+

© 2005-2011 Microchip Technology Inc. DS70157F-page 71

16-bit MCU and DSC Programmer’s Reference Manual

Figure 4-7: Stack Pointer After “PUSH W1” Instruction

0x0000

0x0800 5ABA
0x0802 3636
0x0804 <TOS> <—— W15 (SP)

OxXFFFE

WO = Ox5A5A
W1 = 0x3636
W15 = 0x0804

Figure 4-8: Stack Pointer After “POP W3” Instruction

0x0000
0x0800 5A5A
0x0802 <TOS> ~<—— W15 (SP)
0x0804
OXFFFE

WO = OX5A5A

W1 =0x3636

W3 = 0x3636

W15 = 0x0802

Note: The contents of 0x802, the new TOS, remain unchanged (0x3636).

4.7.2 Software Stack Frame Pointer

A Stack Frame is a user-defined section of memory residing in the software stack. It is used to
allocate memory for temporary variables which a function uses, and one Stack Frame may be
created for each function. W14 is the default Stack Frame Pointer (FP) and it is initialized to
0x0000 on any Reset. If the Stack Frame Pointer is not used, W14 may be used like any other
working register.

The link (LNK) and unlink (ULNK) instructions provide Stack Frame functionality. The LNK
instruction is used to create a Stack Frame. It is used during a call sequence to adjust the SP,
such that the stack may be used to store temporary variables utilized by the called function. After
the function completes execution, the ULNK instruction is used to remove the Stack Frame
created by the LNK instruction. The LNK and ULNK instructions must always be used together to
avoid stack overflow.

DS70157F-page 72

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4721 STACK FRAME POINTER EXAMPLE

Figure 4-9 through Figure 4-11 show how a Stack Frame is created and removed for the code
snippet shown in Example 4-14. This example demonstrates how a Stack Frame operates and
is not indicative of the code generated by the compiler. Figure 4-9 shows the stack condition at
the beginning of the example, before any registers are pushed to the stack. Here, W15 points to
the first free stack location (TOS) and W14 points to a portion of stack memory allocated for the
routine that is currently executing.

Before calling the function “COMPUTE”, the parameters of the function (W0, W1 and W2) are
PUSHed on the stack. After the “CALL COMPUTE” instruction is executed, the PC changes to the
address of “COMPUTE” and the return address of the function “TASKA” is placed on the stack
(Figure 4-10). Function “COMPUTE” then uses the “LNK #4” instruction to PUSH the calling
routine’s Frame Pointer value onto the stack and the new Frame Pointer will be set to point to the
current Stack Pointer. Then, the literal 4 is added to the Stack Pointer address in W15, which
reserves memory for two words of temporary data (Figure 4-11).

Inside the function “COMPUTE”, the FP is used to access the function parameters and temporary
(local) variables. [W14 + n] will access the temporary variables used by the routine and [W14 — n]
is used to access the parameters. At the end of the function, the ULNK instruction is used to copy
the Frame Pointer address to the Stack Pointer and then POP the calling subroutine’s Frame
Pointer back to the W14 register. The ULNK instruction returns the stack back to the state shown
in Figure 4-10.

A RETURN instruction will return to the code that called the subroutine. The calling code is
responsible for removing the parameters from the stack. The RETURN and POP instructions
restore the stack to the state shown in Figure 4-9.

Example 4-14: Frame Pointer Usage

TASKA:
PUSH wo ; Push parameter 1
PUSH w1l ; Push parameter 2
PUSH w2 ; Push parameter 3
CALL COMPUTE ; Call COMPUTE function
POP w2 ; Pop parameter 3
POP wi ; Pop parameter 2
POP wo ; Pop parameter 1
COMPUTE:
LNK #4 ; Stack FP, allocate 4 bytes for local variables
ULNK ; Free allocated memory, restore original FP —
RETURN ; Return to TASKA a
~
Oc
Figure 4-9: Stack at the Beginning of Example 4-14 5; ,‘1
=0
0x0000 nw S
2]
0x0800 D
~
Fri?‘e < W14 (FP)
TASKA
<TOS> <—— W15 (SP)
OxXFFFE

© 2005-2011 Microchip Technology Inc. DS70157F-page 73

16-bit MCU and DSC Programmer’s Reference Manual

Figure 4-10: Stack After “CALL COMPUTE” Executes

0x0000

0x0800

Frame
of
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>W
0:PC<22:16>

<TOS> <«—— W15 (SP)

~<—— W14 (FP)

OXFFFE

Note 1: In dsPIC33E/PIC24E devices, the SFA bit is stacked instead of
PC<0>

Figure 4-11: Stack After “LNK #4" Executes

0x0000

0x0800

Frame
of
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>1)
0:PC<22:16>
FP of TASKA
Temp Word 1 | <«—— W14 (FP)
Temp Word 2

<TOS> <«—— W15 (SP)

OXFFFE

Note 1: In dsPIC33E/PIC24E devices, the SFA bit is stacked instead of
PC<0>

4.7.3 Stack Pointer Overflow

There is a Stack Limit register (SPLIM) associated with the Stack Pointer that is reset to 0x0000.
SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘@', because all stack operations must be
word-aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs, after which time
it can only be disabled by a device Reset. All effective addresses generated using W15 as a
source or destination are compared against the value in SPLIM. Should the effective address be
greater than the contents of SPLIM, then a stack error trap is generated.

If stack overflow checking has been enabled, a stack error trap will also occur if the W15 effective
address calculation wraps over the end of data space (OXFFFF).

Refer to the specific device family reference manual for more information on the stack error trap.

DS70157F-page 74

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.7.4 Stack Pointer Underflow

The stack is initialized to 0x0800 during Reset (0x1000 for PIC24E and dsPIC33E devices). A
stack error trap will be initiated should the Stack Pointer address ever be less than 0x0800
(0x1000 for PIC24E and dsPIC33E devices).

Note: Locations in data space between 0x0000 and 0x07FF (OxOFFF for PIC24E and
dsPIC33E devices) are, in general, reserved for core and peripheral Special
Function Registers (SFRs).

4.7.5 Stack Frame Active (SFA) Control (dsPIC33E and PIC24E
Devices)

W15 is never subject to paging and is therefore restricted to address range 0x000000 to
Ox00FFFF. However, the Stack Frame Pointer (W14) for any user software function is only
dedicated to that function when a stack frame addressed by W14 is active (i.e., after a LNK
instruction). Therefore, it is desirable to have the ability to dynamically switch W14 between use
as a general purpose W register, and use as a Stack Frame Pointer. The SFA Status bit
(CORCON<2>) achieves this function without additional software overhead.

When the SFA bit is clear, W14 may be used with any page register. When SFA is set, W14 is

not subject to paging and is locked into the same address range as W15 (0x000000 to

O0xO00FFFF). Operation of the SFA register lock is as follows:

* The LNK instruction sets SFA (and creates a stack frame)

« The ULNK instruction clears SFA (and deletes the stack frame)

e The CALL, CALL.L, and RCALL instructions also stack the SFA bit (placing it in the LSb of
the stacked PC), and clear the SFA bit after the stacking operation is complete. The called

procedure is now free to either use W14 as a general purpose register, or create another
stack frame using the LNK instruction.

e The RETURN, RETLW and RETFIE instructions all restore the SFA bit from its previously
stacked value

The SFA bit is a read-only bit. It can only be set by execution of the LNK instruction, and cleared
by the ULNK, CALL, CALL.L, and RCALL instructions.

Note: In dsPIC33E and PIC24E devices, the SFA bit is stacked instead of PC<0>. I

O
D
-+
2,
)

19S uonongsuj

© 2005-2011 Microchip Technology Inc. DS70157F-page 75

16-bit MCU and DSC Programmer’s Reference Manual

4.8 CONDITIONAL BRANCH INSTRUCTIONS

Conditional branch instructions are used to direct program flow, based on the contents of the
STATUS register. These instructions are generally used in conjunction with a Compare class
instruction, but they may be employed effectively after any operation that modifies the STATUS
register.

The compare instructions CP, CPO and CPB, perform a subtract operation
(minuend — subtrahend), but do not actually store the result of the subtraction. Instead, compare
instructions just update the flags in the STATUS register, such that an ensuing conditional branch
instruction may change program flow by testing the contents of the updated STATUS register. If
the result of the STATUS register test is true, the branch is taken. If the result of the STATUS
register test is false, the branch is not taken.

The conditional branch instructions supported by the dsPIC30F, dsPIC33F, and dsPIC33E
devices are shown in Table 4-8. This table identifies the condition in the STATUS register which
must be true for the branch to be taken. In some cases, just a single bit is tested (as in BRA C),
while in other cases, a complex logic operation is performed (as in BRA GT). For dsPIC30F,
dsPIC33F, and dsPIC33E devices, it is worth noting that both signed and unsigned conditional
tests are supported, and that support is provided for DSP algorithms with the OA, OB, SA and
SB condition mnemonics.

Table 4-8: Conditional Branch Instructions
Condition Lo
Mnemonic® Description Status Test

C Carry (not Borrow) C

GE Signed greater than or equal (ﬁ&&@) [| (N&&OV)
GEU® Unsigned greater than or equal C

GT Signed greater than (Z&&N&&OV) || (Z&&N&&OV)
GTU Unsigned greater than C&&Z

LE Signed less than or equal Z|| (N&&OV) Il (N&&W)
LEU Unsigned less than or equal C || Z

LT Signed less than (N&&OV) || (N&&OV)
LTU® Unsigned less than C

N Negative N

NC Not Carry (Borrow) C

NN Not Negative N

NOV Not Overflow ov

NZ Not Zero z

0A@ Accumulator A overflow OA

oB® Accumulator B overflow OB

ov Overflow ov

SA4 Accumulator A saturate SA

sB@ Accumulator B saturate SB

z Zero z

Note 1: Instructions are of the form: BRA mnemonic, Expr.

2: GEU is identical to C and will reverse assemble to BRA C, Expr.
3: LTUis identical to NC and will reverse assemble to BRA NC, Expr.
4: This condition is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

Note: The “Compare and Skip” instructions (CPBEQ, CPBGT, CPBLT, CPBNE, CPSEQ,
CPSGT, CPSLT, and CPSNE) do not modify the STATUS register.

DS70157F-page 76

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.9 Z STATUS BIT

The Z Status bit is a special zero Status bit that is useful for extended precision arithmetic. The
Z bit functions like a normal Z flag for all instructions, except those that use the Carry/Borrow
input (ADDC, CPB, SUBB and SUBBR). For the ADDC, CPB, SUBB and SUBBR instructions, the
Z bit can only be cleared and never set. If the result of one of these instructions is non-zero, the
Z bit will be cleared and will remain cleared, regardless of the result of subsequent ADDC, CPB,
SUBB or SUBBR operations. This allows the Z bit to be used for performing a simple zero check
on the result of a series of extended precision operations.

A sequence of instructions working on multi-precision data (starting with an instruction with no
Carry/Borrow input), will automatically logically AND the successive results of the zero test. All
results must be zero for the Z flag to remain set at the end of the sequence of operations. If the
result of the ADDC, CPB, SUBB or SUBBR instruction is non-zero, the Z bit will be cleared and
remain cleared for all subsequent ADDC, CPB, SUBB or SUBBR instructions. Example 4-15
shows how the Z bit operates for a 32-bit addition. It shows how the Z bit is affected for a 32-bit
addition implemented with an ADD/ADDC instruction sequence. The first example generates a
zero result for only the most significant word, and the second example generates a zero result
for both the least significant word and most significant word.

Example 4-15: ‘Z’ Status bit Operation for 32-bit Addition

; Add two doubles (WO:Wl and W2:W3)

; Store the result in W5:w4

ADD we, w2, w4 ; Add LSWord and store to w4
ADDC Wi, W3, W5 ; Add MSWord and store to W5

Before 32-bit Addition (zero result for the most significant word):

WO = 0x2342
Wl = OXFFFO
W2 = OX39AA
W3 = 0x0010
W4 = 0x0000
W5 = 0x0000
SR = 0x0000
After 32-bit Addition:
WO = 0x2342
Wl = OXFFFO
W2 = Ox39AA
W3 = 0x0010
W4 = OX5CEC
W5 = 0x0000 _
SR = 0x0201 (DC,C=1) a
Before 32-bit Addition (zero result for the least significant word and most significant word): o =g
WO = OxB76E @ %
Wl = OXFB7B) g
W2 = 0x4892 =]
W3 = 0x0484 "
W4 = 0x0000 @
W5 = 0Xx0000 -
SR = 0x0000
After 32-bit Addition:
WO = OXB76E
Wl = OxFB7B
W2 = 0x4892
W3 = 0x0485
W4 = 0x0000
W5 = 0x0000
SR = 0x0103 (DC,Z,C=1)

© 2005-2011 Microchip Technology Inc. DS70157F-page 77

16-bit MCU and DSC Programmer’s Reference Manual

4.10 ASSIGNED WORKING REGISTER USAGE

The 16 working registers of the 16-bit MCU and DSC devices provide a large register set for
efficient code generation and algorithm implementation. In an effort to maintain an instruction set
that provides advanced capability, a stable run-time environment and backwards compatibility
with earlier Microchip processor cores, some working registers have a preassigned usage.
Table 4-9 summarizes these working register assignments. For the dsPIC30F, dsPIC33F, and
dsPIC33E, additional details are provided in subsections Section 4.10.1 “Implied DSP
Operands (dsPIC30F, dsPIC33F and dsPIC33E Devices)” through Section 4.10.3 «p|c®
Microcontroller Compatibility”.

Table 4-9: Special Working Register Assignments
Register Special Assignment

Wwo Default WREG, Divide Quotient

w1 Divide Remainder

w2 “MUL f’ Product least significant word

W3 “MUL f” Product most significant word

w4 MAC Operand®

W5 MAC Operand®

w6 MAC Operand®

w7 MAC Operand®

w8 MAC Prefetch Address (X Memory)®)

W9 MAC Prefetch Address (X Memory)(l)

W10 MAC Prefetch Address (Y Memory)(l)

wil MAC Prefetch Address (Y Memory)™®

W12 MAC Prefetch Offset(%)

w13 MAC Write Back Destination(®

w14 Frame Pointer

W15 Stack Pointer

Note 1: This assignment is only applicable in dsPIC30F, dsPIC33F, and dsPIC33E devices.

4.10.1 Implied DSP Operands (dsPIC30F, dsPIC33F and dsPIC33E
Devices)

To assist instruction encoding and maintain uniformity among the DSP class of instructions,
some working registers have pre-assigned functionality. For all DSP instructions which have
prefetch ability, the following 10 register assignments must be adhered to:

* WA4-W?7 are used for arithmetic operands

* W8-W11 are used for prefetch addresses (pointers)

* W12 is used for the prefetch register offset index

* W13 is used for the accumulator Write Back destination

These restrictions only apply to the DSP MAC class of instructions, which utilize working
registers and have prefetch ability (described in Section 4.15 “DSP Accumulator Instructions
(dsPIC30F, dsPIC33F and dsPIC33E Devices)”). These instructions are CLR, ED, EDAC, MAC,
MOVSAC, MPY, MPY.N and MSC.

In dsPIC33E devices, mixed-sign DSP multiplication operations are supported without the need
to dynamically modify the US<1:0> bits. In this mode (US<1:0> = ‘10’), each input operand is
treated as unsigned or signed based on which register is being used for that operand. W4 and
W6 are always unsigned operand, whereas W5 and W7 are always signed operands. This
feature can be used to efficiently execute extended-precision DSP multiplications.

The DSP Accumulator class of instructions (described in Section 4.15 “DSP Accumulator
Instructions (dsPIC30F, dsPIC33F and dsPIC33E Devices)”) are not required to follow the
working register assignments in Table 4-9 and may freely use any working register when required.

DS70157F-page 78

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.10.2 Implied Frame and Stack Pointer

To accommodate software stack usage, W14 is the implied Frame Pointer (used by the LNK and
ULNK instructions) and W15 is the implied Stack Pointer (used by the CALL, LNK, POP, PUSH,
RCALL, RETFIE, RETLW, RETURN, TRAP and ULNK instructions). Even though W14 and
W15 have this implied usage, they may still be used as generic operands in any instruction, with
the exceptions outlined in Section 4.10.1 “Implied DSP Operands (dsPIC30F, dsPIC33F and
dsPIC33E Devices)”. If W14 and W15 must be used for other purposes (it is strongly advised
that they remain reserved for the Frame and Stack Pointer), extreme care must be taken such
that the run-time environment is not corrupted.

4.10.3 PIC® Microcontroller Compatibility

4.10.3.1 DEFAULT WORKING REGISTER WREG

To ease the migration path for users of the Microchip 8-bit PIC MCU families, the 16-bit MCU and
DSC devices have matched the functionality of the PIC MCU instruction sets as closely as
possible. One major difference between the 16-bit MCU and DSC and the 8-bit PIC MCU
processors is the number of working registers provided. The 8-bit PIC MCU families only provide
one 8-bit working register, while the 16-bit MCU and DSC families provide sixteen, 16-bit working
registers. To accommodate for the one working register of the 8-hit PIC MCU, the 16-bit MCU
and DSC device instruction set has designated one working register to be the default working
register for all legacy file register instructions. The default working register is set to WO, and it is
used by all instructions which use file register addressing.

Additionally, the syntax used by the 16-bit MCU and DSC device assembler to specify the default
working register is similar to that used by the 8-bit PIC MCU assembler. As shown in the detailed
instruction descriptions in Section 5. “Instruction Descriptions”, “WREG” must be used to
specify the default working register. Example 4-16 shows several instructions that use WREG.

Example 4-16: Using the Default Working Register WREG

ADD RAM100 ; add RAM100 and WREG, store in RAM100
ASR RAM100, WREG ; shift RAM100 right, store in WREG
CLR.B WREG ; clear the WREG LS Byte

DEC RAM100, WREG ; decrement RAM100, store in WREG

MOV WREG, RAM100 ; move WREG to RAM100

SETM WREG ; set all bits in the WREG

XOR RAM100 ; XOR RAM100 and WREG, store in RAM100

4.10.3.2 PRODH:PRODL REGISTER PAIR

Another significant difference between the Microchip 8-bit PIC MCU and 16-bit MCU and DSC
architectures is the multiplier. Some PIC MCU families support an 8-bit x 8-bit multiplier, which
places the multiply product in the PRODH:PRODL register pair. The 16-bit MCU and DSC
devices have a 17-bit x 17-bit multiplier, which may place the result into any two successive
working registers (starting with an even register), or an accumulator.

Despite this architectural difference, the 16-bit MCU and DSC devices still support the legacy file
register multiply instruction (MULWF) with the “MUL{.B} f” instruction (described on page 303).
Supporting the legacy MULWF instruction has been accomplished by mapping the
PRODH:PRODL registers to the working register pair W3:W2. This means that when “MUL{.B}
f” is executed in Word mode, the multiply generates a 32-bit product which is stored in W3:W2,
where W3 has the most significant word of the product and W2 has the least significant word of
the product. When “MUL{.B} f” is executed in Byte mode, the 16-bit product is stored in W2,
and W3 is unaffected. Examples of this instruction are shown in Example 4-17.

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

© 2005-2011 Microchip Technology Inc. DS70157F-page 79

16-bit MCU and DSC Programmer’s Reference Manual

Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

MUL.B 0x100 ; (Ox100)*WREG (byte mode), store to W2
Before Instruction:

WO (WREG) = 0x7705

W2 = 0x1235

W3 = 0x1000

Data Memory 0x0100 = 0x1255

After Instruction:

WO (WREG) = 0x7705

W2 = OX01A9

W3 = 0x1000

Data Memory 0x0100 = 0x1255

MUL 0x100 ; (Ox100)*WREG (word mode), store to W3:W2
Before Instruction:

WO (WREG) = 0x7705

W2 = 0x1235

W3 = 0x1000

Data Memory 0x0100 = 0x1255

After Instruction:

WO (WREG) = 0x7705

W2 = OXDEA9

W3 = 0x0885

Data Memory 0x0100 = 0x1255

4.10.3.3 MOVING DATA WITH WREG

The “MovV{.B} f {,WREG}” instruction (described on page 279) and “MOV{.B} WREG, f”
instruction (described on page 280) allow for byte or word data to be moved between file register
memory and the WREG (working register WO0). These instructions provide equivalent
functionality to the legacy Microchip PIC MCU MOVF and MOVWF instructions.

The “MOV{.B} f {,WREG}”and“MOV{.B} WREG, f”instructions are the only MOV instructions
which support moves of byte data to and from file register memory. Example 4-18 shows several
MOV instruction examples using the WREG.

Note: When moving word data between file register memory and the working register
array, the “MOV Wns, f”and“MOV f, Wnd”instructions allow any working register
(WO0:W15) to be used as the source or destination register, not just WREG.

Example 4-18: Moving Data with WREG

MOV.B 0x1001, WREG move the byte stored at location 0x1001 to WO

MOV.B WREG, TBLPAG move the byte stored at WO to the TBLPAG register

MoV 0x1000, WREG ; move the word stored at location 0x1000 to W@
’

MOV WREG, 0x804 ; move the word stored at WO to location 0x804

DS70157F-page 80

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.11 DSP DATA FORMATS (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

411.1

The dsPIC30F, dsPIC33F, and dsPIC33E devices support both integer and fractional data types.
Integer data is inherently represented as a signed two’s complement value, where the Most
Significant bit is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement
integer is -2N1 to 2N1— 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767
(OX7FFF), including ‘0’. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to
2,147,483,647 (OX7FFF FFFF).

Fractional data is represented as a two’s complement number, where the Most Significant bit is
defined as a sign bit, and the radix point is implied to lie just after the sign bit. This format is
commonly referred to as 1.15 (or Q15) format, where 1 is the number of bits used to represent
the integer portion of the number, and 15 is the number of bits used to represent the fractional
portion. The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to
(1 — 2Ny, For a 16-bit fraction, the 1.15 data range is -1.0 (0x8000) to 0.999969482 (Ox7FFF),
including 0.0 and it has a precision of 3.05176x10°°. In Normal Saturation mode, the 32-bit
accumulators use a 1.31 format, which enhances the precision to 4.6566x10710,

Integer and Fractional Data

The dynamic range of the accumulators can be expanded by using the 8 bits of the Upper
Accumulator register (ACCxU) as guard bits. Guard bits are used if the value stored in the
accumulator overflows beyond the 32" pit, and they are useful for implementing DSP
algorithms. This mode is enabled when the ACCSAT bit (CORCON<4>) is set to ‘1’ and it
expands the accumulators to 40 bits. The guard bits are also used when the accumulator
saturation is disabled. The accumulators then support an integer range of -5.498x101! (0x80
0000 0000) to 5.498x10! (0x7F FFFF FFFF). In Fractional mode, the guard bits of the
accumulator do not modify the location of the radix point and the 40-bit accumulators use a 9.31
fractional format. Note that all fractional operation results are stored in the 40-bit Accumulator,
justified with a 1.31 radix point. As in Integer mode, the guard bits merely increase the dynamic
range of the accumulator. 9.31 fractions have a range of -256.0 (0x80 0000 0000) to
(256.0 — 4.65661x10719) (0x7F FFFF FFFF). Table 4-10 identifies the range and precision of
integers and fractions on the dsPIC30F/33F/33E devices for 16-bit, 32-bit and 40-bit registers.

It should be noted that, with the exception of DSP multiplies, the ALU operates identically on
integer and fractional data. Namely, an addition of two integers will yield the same result (binary
number) as the addition of two fractional numbers. The only difference is how the result is
interpreted by the user. However, multiplies performed by DSP operations are different. In these
instructions, data format selection is made by the IF bit (CORCON<0>), and it must be set
accordingly (‘0’ for Fractional mode, ‘1’ for Integer mode). This is required because of the implied
radix point used by dsPIC30F/33F/33E fractional numbers. In Integer mode, multiplying two
16-bit integers produces a 32-bit integer result. However, multiplying two 1.15 values generates
a 2.30 result. Since the dsPIC30F, dsPIC33F, and dsPIC33E devices use a 1.31 format for the

accumulators, a DSP multiply in Fractional mode also includes a left shift of one bit to keep the a
radix point properly aligned. This feature reduces the resolution of the DSP multiplier to 2%, but [l g} '-é"
has no other effect on the computation (e.g., 0.5 x 0.5 = 0.25). ® o
Q =
Table 4-10: dsPIC30F/33F/33E Data Ranges n g
Register Size Integer Range Fraction Range Fraction Resolution g’
~—+
16-hit -32768 to 32767 -1.0to (1.0 - 2'19) 3.052 x 107°
32-bit -2,147,483,648 to -1.0to (1.0 — 2731) 4.657 x 10710
2,147,483,647
40-bit -549,755,813,888 to -256.0 to (256.0 — 231) |4.657 x 10710

549,755,813,887

© 2005-2011 Microchip Technology Inc.

DS70157F-page 81

16-bit MCU and DSC Programmer’s Reference Manual

4.11.2 Integer and Fractional Data Representation

Having a working knowledge of how integer and fractional data are represented on the
dsPIC30F, dsPIC33F, and dsPIC33E is fundamental to working with the device. Both integer and
fractional data treat the Most Significant bit as a sign bit, and the binary exponent decreases by
one as the bit position advances toward the Least Significant bit. The binary exponent for an N-bit
integer starts at (N-1) for the Most Significant bit, and ends at ‘0’ for the Least Significant bit. For
an N-bit fraction, the binary exponent starts at ‘0’ for the Most Significant bit, and ends at (1-N)
for the Least Significant bit (as shown in Figure 4-12 for a positive value and in Figure 4-13 for a
negative value).

Conversion between integer and fractional representations can be performed using simple
division and multiplication. To go from an N-bit integer to a fraction, divide the integer value by
2N Similarly, to convert an N-bit fraction to an integer, multiply the fractional value by 2N-1.

Figure 4-12: Different Representations of 0x4001

Integer:

215 5l4 913 512
0x4001 = 214 + 20 = 16384 + 1 = 16385

1.15 Fractional:

20 .21 22 3 . 215

Implied Radix Point

0x4001 = 2’1 + 215 = 0.5 + .000030518 = 0.500030518

Figure 4-13: Different Representations of 0xC002

Integer:

_215 214 213 212

0xC002 = -215 + 214 + 21= 32768 + 16384 + 2 = -16382

1.15 Fractional:

20 21 22 23 .. 15

Implied Radix Point

0xC002 = -20 + 2'1 + 214 = .1 0 + 0.5 + 0.000061035 = -0.499938965

DS70157F-page 82

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.12 ACCUMULATOR USAGE (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

Accumulators A and B are utilized by DSP instructions to perform mathematical and shifting
operations. Since the accumulators are 40 bits wide and the X and Y data paths are only 16 bits,
the method to load and store the accumulators must be understood.

Item A in Figure 4-14 shows that each 40-bit Accumulator (ACCA and ACCB) consists of an 8-bit
Upper register (ACCxU), a 16-bit High register (ACCxH) and a 16-bit Low register (ACCxL). To
address the bus alignment requirement and provide the ability for 1.31 math, ACCxH is used as
a destination register for loading the accumulator (with the LAC instruction), and also as a source
register for storing the accumulator (with the SAC. R instruction). This is represented by Item B,
Figure 4-14, where the upper and lower portions of the accumulator are shaded. In reality, during
accumulator loads, ACCxL is zero backfilled and ACCxU is sign-extended to represent the sign
of the value loaded in ACCxH.

When Normal (31-bit) Saturation is enabled, DSP operations (such as ADD, MAC, MSC, etc.)
utilize solely ACCxH:ACCxL (Item C in Figure 4-14) and ACCxU is only used to maintain the sign
of the value stored in ACCxH:ACCXL. For instance, when a MPY instruction is executed, the
result is stored in ACCxH:ACCxL, and the sign of the result is extended through ACCxU.

When Super Saturation is enabled, or when saturation is disabled, all registers of the
accumulator may be used (Iltem D in Figure 4-14) and the results of DSP operations are stored
in ACCxU:ACCxH:ACCxL. The benefit of ACCxU is that it increases the dynamic range of the
accumulator, as described in Section 4.11.1 “Integer and Fractional Data”. Refer to Table 4-10
to see the range of values which may be stored in the accumulator when in Normal and Super
Saturation modes.

Figure 4-14: Accumulator Alignhment and Usage

A) ACCxU ACCxH ACCxL
39 32]31.30 16| 15 0

U
d

D)

\ Implied Radix Point (between bits 31 and 30)

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

A) 40-bit Accumulator consists of ACCxU:ACCxH:ACCxL

B) Load and Store operations

C) Operations in Normal Saturation mode

D) Operations in Super Saturation mode or with saturation disabled

© 2005-2011 Microchip Technology Inc. DS70157F-page 83

16-bit MCU and DSC Programmer’s Reference Manual

4.13 ACCUMULATOR ACCESS (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

The six registers of Accumulator A and Accumulator B are memory mapped like any other
Special Function Register. This feature allows them to be accessed with file register or indirect
addressing, using any instruction which supports such addressing. However, it is recommended
that the DSP instructions LAC, SAC and SAC.R be used to load and store the accumulators,
since they provide sign-extension, shifting and rounding capabilities. LAC, SAC and SAC.R
instruction details are provided in Section 5. “Instruction Descriptions”.

Note 1: For convenience, ACCAU and ACCBU are sign-extended to 16 bits. This provides
the flexibility to access these registers using either Byte or Word mode (when file
register or indirect addressing is used).

2: The OA, OB, SA or SB bit cannot be set by writing overflowed values to the memory
mapped accumulators using MOV instructions, as these status bits are only affected
by DSP operations.

4.14 DSP MAC INSTRUCTIONS (dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

The DSP Multiply and Accumulate (MAC) operations are a special suite of instructions which
provide the most efficient use of the dsPIC30F, dsPIC33F, and dsPIC33E architectures. The DSP
MAC instructions, shown in Table 4-11, utilize both the X and Y data paths of the CPU core, which
enables these instructions to perform the following operations all in one cycle:

« two reads from data memory using prefetch working registers (MAC Prefetches)

» two updates to prefetch working registers (MAC Prefetch Register Updates)

« one mathematical operation with an accumulator (MAC Operations)

In addition, four of the ten DSP MAC instructions are also capable of performing an operation with
one accumulator, while storing out the rounded contents of the alternate accumulator. This
feature is called accumulator Write Back (WB) and it provides flexibility for the software

developer. For instance, the accumulator WB may be used to run two algorithms concurrently, or
efficiently process complex numbers, among other things.

Table 4-11: DSP MAC Instructions
Instruction Description Accumulator WB?
CLR Clear accumulator Yes
ED Euclidean distance (no accumulate) No
EDAC Euclidean distance No
MAC Multiply and accumulate Yes
MAC Square and accumulate No
MOVSAC Move from X and Y bus Yes
MPY Multiply to accumulator No
MPY Square to accumulator No
MPY.N Negative multiply to accumulator No
MSC Multiply and subtract Yes
4.14.1 MAC Prefetches

Prefetches (or data reads) are made using the effective address stored in the working register.
The two prefetches from data memory must be specified using the working register assignments
shown in Table 4-9. One read must occur from the X data bus using W8 or W9, and one read
must occur from the Y data bus using W10 or W11. The allowed destination registers for both
prefetches are W4-W?7.

As shown in Table 4-3, one special Addressing mode exists for the MAC class of instructions. This
mode is the Register Offset Addressing mode and utilizes W12. In this mode, the prefetch is
made using the effective address of the specified working register, plus the 16-bit signed value
stored in W12. Register Offset Addressing may only be used in the X space with W9, and in the
Y-space with W11.

DS70157F-page 84

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.14.2 MAC Prefetch Register Updates

After the MAC prefetches are made, the effective address stored in each prefetch working register
may be modified. This feature enables efficient single-cycle processing for data stored
sequentially in X and Y memory. Since all DSP instructions execute in Word mode, only even
numbered updates may be made to the effective address stored in the working register.
Allowable address modifications to each prefetch register are -6, -4, -2, 0 (no update), +2, +4 and
+6. This means that effective address updates may be made up to 3 words in either direction.

When the Register Offset Addressing mode is used, no update is made to the base prefetch
register (W9 or W11), or the offset register (W12).

4.14.3 MAC Operations

The mathematical operations performed by the MAC class of DSP instructions center around
multiplying the contents of two working registers and either adding or storing the result to either
Accumulator A or Accumulator B. This is the operation of the MAC, MPY, MPY.N and MSC
instructions. Table 4-9 shows that W4-W7 must be used for data source operands in the MAC
class of instructions. W4-W7 may be combined in any fashion, and when the same working
register is specified for both operands, a square or square and accumulate operation is
performed.

For the ED and EDAC instructions, the same multiplicand operand must be specified by the
instruction, because this is the definition of the Euclidean Distance operation. Another unique
feature about this instruction is that the values prefetched from X and Y memory are not actually
stored in W4-W?7. Instead, only the difference of the prefetched data words is stored in W4-W?7.

The two remaining MAC class instructions, CLR and MOVSAC, are useful for initiating or completing
a series of MAC or EDAC instructions and do not use the multiplier. CLR has the ability to clear
Accumulator A or B, prefetch two values from data memory and store the contents of the other
accumulator. Similarly, MOVSAC has the ability to prefetch two values from data memory and store
the contents of either accumulator.

4.14.4 MAC Write Back

The write back ability of the MAC class of DSP instructions facilitates efficient processing of
algorithms. This feature allows one mathematical operation to be performed with one
accumulator, and the rounded contents of the other accumulator to be stored in the same cycle.
As indicated in Table 4-9, register W13 is assigned for performing the write back, and two
Addressing modes are supported: Direct and Indirect with Post-Increment.

The CLR, MOVSAC and MSC instructions support accumulator Write Back, while the ED, EDAC,
MPY and MPY . N instructions do not support accumulator Write Back. The MAC instruction, which
multiplies two working registers which are not the same, also supports accumulator Write Back.
However, the square and accumulate MAC instruction does not support accumulator Write Back
(see Table 4-11).

4.14.5 MAC Syntax

The syntax of the MAC class of instructions can have several formats, which depend on the
instruction type and the operation it is performing, with respect to prefetches and accumulator
Write Back. With the exception of the CLR and MOVSAC instructions, all MAC class instructions
must specify a target accumulator along with two multiplicands, as shown in Example 4-19.

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

Example 4-19: Base MAC Syntax

; MAC with no prefetch
MAC W4*W5, A

; MAC with no prefetch
MAC W7*W7, B

» Multiply W7*W7, Accumulate to ACCB

© 2005-2011 Microchip Technology Inc. DS70157F-page 85

16-bit MCU and DSC Programmer’s Reference Manual

If a prefetch is used in the instruction, the assembler is capable of discriminating between the X
or Y data prefetch based on the register used for the effective address. [W8] or [W9] specifies
the X prefetch and [W10] or [W11] specifies the Y prefetch. Brackets around the working register
are required in the syntax, and they designate that indirect addressing is used to perform the
prefetch. When address modification is used, it must be specified using a minus-equals or
plus-equals “C"-like syntax (i.e., “[W8] — = 2" or “[W8] + = 6"). When Register Offset Addressing
is used for the prefetch, W12 is placed inside the brackets (W9 + W12] for X prefetches and [W11
+ W12] for Y prefetches). Each prefetch operation must also specify a prefetch destination
register (W4-W7). In the instruction syntax, the destination register appears before the prefetch
register. Legal forms of prefetch are shown in Example 4-20.

Example 4-20: MAC Prefetch Syntax

; MAC with X only prefetch
MAC W5*W6, A, [W8]+=2, W5

p» ACCA=ACCA+W5*W6

» X([W8]+=2)—W5

; MAC with Y only prefetch
MAC W5*W5, B, [W11l+W12], W5

» ACCB=ACCB+W5*W5

» Y([W11+W12])—W5

; MAC with X/Y prefetch
MAC W6*W7, B, [wW9], W6, [W10]+=4, W7

»» ACCB=ACCB+W6*W7

» X([W9])—W6

L e Y([W10]+=4)—W7

If an accumulator Write Back is used in the instruction, it is specified last. The Write Back must
use the W13 register, and allowable forms for the Write Back are “W13” for direct addressing and
“[W13] + = 2" for indirect addressing with post-increment. By definition, the accumulator not used
in the mathematical operation is stored, so the Write Back accumulator is not specified in the
instruction. Legal forms of accumulator Write Back (WB) are shown in Example 4-21.

DS70157F-page 86

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-21: MAC Accumulator WB Syntax

; CLR with direct WB of ACCB
CLR A W13

» 0 —ACCA

» ACCB —W13

; MAC with indirect WB of ACCB
MAC W4*W5, A [W13]+=2

yp» ACCA=ACCA+W4*W5

» ACCB —[W13]+=2

; MAC with Y prefetch, direct WB of ACCA
MAC W4*W5, B, [W10]+=2, W4, W13

= ACCB=ACCB+W4*W5

- Y([W10]+=2)—>W4

» ACCA —W13

Putting it all together, an MSC instruction which performs two prefetches and a write back is
shown in Example 4-22.

Example 4-22: MSC Instruction with Two Prefetches and Accumulator Write Back

; MSC with X/Y prefetch, indirect WB of ACCA

MSC W6*W7, B, [W8]+=2, W6, [W10]-=6, W7 [W13]+=2

| p ACCB=ACCB-W6*W7
B X ([W8]+=2)-W6
BV ([W10]-=6)-W7
| g ACCA—{W13]+=2

s|relaq
19S uonongsuj

© 2005-2011 Microchip Technology Inc. DS70157F-page 87

16-bit MCU and DSC Programmer’s Reference Manual

4.15 DSP ACCUMULATOR INSTRUCTIONS (dsPIC30F, dsPIC33F AND
dsPIC33E DEVICES)

The DSP Accumulator instructions do not have prefetch or accumulator WB ability, but they do
provide the ability to add, negate, shift, load and store the contents of either 40-bit Accumulator.
In addition, the ADD and SUB instructions allow the two accumulators to be added or subtracted
from each other. DSP Accumulator instructions are shown in Table 4-12 and instruction details
are provided in Section 5. “Instruction Descriptions”.

Table 4-12: DSP Accumulator Instructions
Instruction Description Accumulator WB?

ADD Add accumulators No
ADD 16-bit signed accumulator add No
LAC Load accumulator No
NEG Negate accumulator No
SAC Store accumulator No
SAC.R Store rounded accumulator No
SFTAC Arithmetic shift accumulator by Literal No
SFTAC Arithmetic shift accumulator by (Wn) No
SUB Subtract accumulators No

416 SCALING DATA WITH THE FBCL INSTRUCTION (dsPIC30F, dsPIC33F AND
dsPIC33E DEVICES)

To minimize quantization errors that are associated with data processing using DSP instructions,
it is important to utilize the complete numerical result of the operations. This may require scaling
data up to avoid underflow (i.e., when processing data from a 12-bit ADC), or scaling data down
to avoid overflow (i.e., when sending data to a 10-bit DAC). The scaling, which must be
performed to minimize quantization error, depends on the dynamic range of the input data which
is operated on, and the required dynamic range of the output data. At times, these conditions
may be known beforehand and fixed scaling may be employed. In other cases, scaling conditions
may not be fixed or known, and then dynamic scaling must be used to process data.

The FBCL instruction (Find First Bit Change Left) can efficiently be used to perform dynamic
scaling, because it determines the exponent of a value. A fixed point or integer value’s exponent
represents the amount which the value may be shifted before overflowing. This information is
valuable, because it may be used to bring the data value to “full scale”, meaning that its numeric
representation utilizes all the bits of the register it is stored in.

The FBCL instruction determines the exponent of a word by detecting the first bit change starting
from the value’s sign bit and working towards the LSB. Since the dsPIC DSC device’s barrel
shifter uses negative values to specify a left shift, the FBCL instruction returns the negated
exponent of a value. If the value is being scaled up, this allows the ensuing shift to be performed
immediately with the value returned by FBCL. Additionally, since the FBCL instruction only
operates on signed quantities, FBCL produces results in the range of -15:0. When the FBCL
instruction returns ‘0’, it indicates that the value is already at full scale. When the instruction
returns -15, it indicates that the value cannot be scaled (as is the case with 0x0 and OXFFFF).
Table 4-13 shows word data with various dynamic ranges, their exponents, and the value after
scaling each data to maximize the dynamic range. Example 4-23 shows how the FBCL
instruction may be used for block processing.

DS70157F-page 88

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

Table 4-13: Scaling Examples

Word Value Exponent ONor('i: I\J;::\Iizali \S(I:((;nent)
0x0001 14 0x4000
0x0002 13 0x4000
0x0004 12 0x4000
0x0100 6 0x4000
Ox01FF 6 Ox7FCO
0x0806 3 0x4030
0x2007 1 0x400E
0x4800 0 0x4800
0x7000 0 0x7000
0x8000 0 0x8000
0x900A 0 0x900A
O0xEO001 2 0x8004
OxFFO7 7 0x8380
Note: For the word values 0x0000 and OxFFFF, the FBCL instruction returns -15. I

As a practical example, assume that block processing is performed on a sequence of data with
very low dynamic range stored in 1.15 fractional format. To minimize quantization errors, the data
may be scaled up to prevent any quantization loss which may occur as it is processed. The FBCL
instruction can be executed on the sample with the largest magnitude to determine the optimal
scaling value for processing the data. Note that scaling the data up is performed by left shifting
the data. This is demonstrated with the code snippet below.

Example 4-23: Scaling with FBCL

; assume WO contains the largest absolute value of the data block
; assume W4 points to the beginning of the data block
; assume the block of data contains BLOCK_SIZE words

; determine the exponent to use for scaling
FBCL WO, w2 ; store exponent in W2

; scale the entire data block before processing

DO #(BLOCK_SIZE-1), SCALE
LAC [wa], A ; move the next data sample to ACCA
SFTAC A, W2 ; shift ACCA by W2 bits
SCALE:
SAC A, [Wa++] ; store scaled input (overwrite original)

; now process the data
; (processing block goes here)

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

© 2005-2011 Microchip Technology Inc. DS70157F-page 89

16-bit MCU and DSC Programmer’s Reference Manual

4.17 NORMALIZING THE ACCUMULATOR WITH THE FBCL INSTRUCTION
(dsPIC30F, dsPIC33F AND dsPIC33E DEVICES)

The process of scaling a quantized value for its maximum dynamic range is known as
normalization (the data in the third column in Table 4-13 contains normalized data). Accumulator
normalization is a technique used to ensure that the accumulator is properly aligned before
storing data from the accumulator, and the FBCL instruction facilitates this function.

The two 40-bit accumulators each have 8 guard bits from the ACCxU register, which expands the
dynamic range of the accumulators from 1.31 to 9.31, when operating in Super Saturation mode
(see Section 4.11.1 “Integer and Fractional Data”). However, even in Super Saturation mode,
the Store Rounded Accumulator (SAC. R) instruction only stores 16-bit data (in 1.15 format) from
ACCxH, as described in Section 4.12 “Accumulator Usage (dsPIC30F, dsPIC33F and
dsPIC33E Devices)”. Under certain conditions, this may pose a problem.

Proper data alignment for storing the contents of the accumulator may be achieved by scaling
the accumulator down if ACCxU is in use, or scaling the accumulator up if all of the ACCxH bits
are not being used. To perform such scaling, the FBCL instruction must operate on the ACCxU
byte and it must operate on the ACCxH word. If a shift is required, the ALU’s 40-bit shifter is
employed, using the SFTAC instruction to perform the scaling. Example 4-24 contains a code
snippet for accumulator normalization.

Example 4-24: Normalizing with FBCL

; assume an operation in ACCA has just completed (SR intact)
; assume the processor is in super saturation mode
; assume ACCAH is defined to be the address of ACCAH (0x24)

MOV #ACCAH, W5 ; W5 points to ACCAH

BRA 0A, FBCL_GUARD ; 1f overflow we right shift
FBCL_HI:

FBCL [W5], we ; extract exponent for left shift

BRA SHIFT_ACC ; branch to the shift
FBCL_GUARD:

FBCL [++W5], WO ; extract exponent for right shift

ADD.B WO, #15, WO ; adjust the sign for right shift
SHIFT_ACC:

SFTAC A, WO ; shift ACCA to normalize

DS70157F-page 90

© 2005-2011 Microchip Technology Inc.

Section 4. Instruction Set Details

4.18 EXTENDED-PRECISON ARITHMETIC USING MIXED-SIGN
MULTIPLICATIONS (dsPIC33E ONLY)

Many DSP algorithms utilize extended-precision arithmetic operations (operations with 32-bit or
64-bit operands and results) to enhance the resolution and accuracy of computations. These can
be implemented using 16-bit signed or unsigned multiplications; however, this would require
some additional processing and shifting of the data to obtain the correct results. To enable such
extended-precision algorithms to be computed faster, dsPIC33E devices support an optional
implicit mixed-sign multiplication mode, which is selected by setting US<1:0>
(CORCON<13:12>) ='10".

In this mode, mixed-sign (unsigned x signed and signed x unsigned) multiplications can be
performed without the need to dynamically reconfigure the US<1:0> bits and shift data to account
for the difference in operand formats. Moreover, signed x signed and unsigned x unsigned
multiplications can also be performed without changing the multiplication mode. Each input
operand is implicitly treated as an unsigned number if the working register being used to specify
the operand is either W4 or W6. Similarly, an operand is treated as a signed number if the register
used is either W5 or W7. The DSP Engine selects the type of multiplication to be performed
based on the operand registers used, thereby eliminating the need for the user software to
modify the US<1:0> bits.

The execution time reductions provided by the implicit mixed-sign multiplication feature is
illustrated in the following code example, where the instruction cycle count for performing a 32-bit
multiplication is reduced from 7 cycles to 4 cycles when the mixed-sign multiplication mode is
enabled.

Example 4-25: 32-bit Signed Multiplication using Implicit Mixed-Sigh Mode

Case A - Mixed-Sign Multiplication Mode Not Enabled

MUL.SU W5, W6, WO; Wordl (signed) x Word2 (unsigned)
MUL.US W4, W7, W2; Word® (unsigned) x Word3 (signed)

CLR B ; Clear Accumulator B

ADD wi, B

ADD w3, B

SFTAC B, #15 ; Shift right by 15 bits to align for Q31 format

MAC W5*W7, B; Wordl (signed) x Word 3 (signed)
Case B - Mixed-Sign Multiplication Mode Enabled

MPY W5*W6, B; Wordl (signed) x Word2 (unsigned)
MAC W4*W7, B; Word® (unsigned) x Word3 (signed)
SFTAC B, #15 ; Shift right by 15 bits to align for Q31 format

MAC W5*W7, B; Wordl (signed) x Word 3 (signed)

Besides DSP instructions, MCU multiplication (MUL) instructions can also utilize Accumulator A
or Accumulator B as a result destination, which enables faster extended-precision arithmetic
even when not using DSP multiplication instructions such as MPY or MAC.

S
n
o
Oc
® 0
8=
=0
=]
wn
@
[

© 2005-2011 Microchip Technology Inc. DS70157F-page 91

16-bit MCU and DSC Programmer’s Reference Manual

DS70157F-page 92 © 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 5. Instruction Descriptions

HIGHLIGHTS

This section of the manual contains the following major topics:

5.1 INStIUCHON SYMDOIS.iiiiiiiiiiiie et e e e e e et e e e e s e e e e s anrreeeeens 94
5.2 Instruction Encoding Field Descriptors INtrodUCtioN............coocuveeeiiiiieee e 94
5.3 Instruction Description EXamPIeccooiiiiiiiiiii e 98
5.4 INSIrUCHION DESCHPLIONS.eeiiee ettt e e et e e e e e e e bae e e e e eanneeeaeanes 99

O
D>
0w wn
Qg
_E'C
=9
0o
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 93

16-bit MCU and DSC Programmer’s Reference Manual

51 INSTRUCTION SYMBOLS

All the symbols used in Section 5.4 “Instruction Descriptions” are listed in Table 1-2.

5.2 INSTRUCTION ENCODING FIELD DESCRIPTORS INTRODUCTION

All instruction encoding field descriptors used in Section 5.4 “Instruction Descriptions” are
shown in Table 5-2 through Table 5-12.

Table 5-1: Instruction Encoding Field Descriptors

Field Description

A1) T Accumulator selection bit: @ = ACCA; 1 = CCB
aa(1) | Accumulator Write Back mode (see Table 5-12)

B |Byte mode selection bit: ® = word operation; 1 = byte operation
bbbb 4-bit bit position select: 0000 = LSB; 1111 = MSB

D Destination address bit: © = result stored in WREG;
1 = result stored in file register

dddd Wd destination register select: 0000 = W0; 1111 = W15
f ffff ffff ffff 13-bit register file address (0x0000 to Ox1FFF)

fff ffff ffff ffff 15-bit register file word address (implied @ LSB)
(0x0000 to OxFFFE)

ffff ffff ffff ffff 16-bit register file byte address (0x0000 to OXFFFF)
ggg Register Offset Addressing mode for Ws source register (see Table 5-4)
hhh Register Offset Addressing mode for Wd destination register (see Table 5-5)
iiii(1) Prefetch X Operation (see Table 5-6)

j3jj(®) |Prefetch Y Operation (see Table 5-8)

k 1-bit literal field, constant data or expression
kkkk 4-bit literal field, constant data or expression
kk kkkk 6-bit literal field, constant data or expression
kkkk kkkk 8-bit literal field, constant data or expression
kk kkkk kkkk 10-bit literal field, constant data or expression
kk kkkk kkkk kkkk 14-bit literal field, constant data or expression
kkkk kkkk kkkk kkkk 16-bit literal field, constant data or expression
mm Multiplier source select with same working registers (see Table 5-10)
mmm Multiplier source select with different working registers (see Table 5-11)

nnnn nnnn nnnn nnno 23-bit program address for CALL and GOTO instructions
nnn nnnn

nnnn nnnn nnnn nnnn 16-bit program offset field for relative branch/call instructions
ppp |Addressing mode for Ws source register (see Table 5-2)
gqgqgq | Addressing mode for Wd destination register (see Table 5-3)
rerr Barrel shift count
SSSS Ws source register select: 0000 = W0; 1111 = W15
tttt Dividend select, most significant word
VVVV Dividend select, least significant word

W Double Word mode selection bit: ® = word operation;
1 = double word operation

wwww | Wb base register select: 0000 = W0; 1111 = W15
xx(1) | Prefetch X Destination (see Table 5-7)
XXXX XXXX XXXX XXXX 16-bit unused field (don't care)
yy(1) | prefetch Y Destination (see Table 5-9)
z Bit test destination: @ = C flag bit; 1 = Z flag bit
Note 1: This field is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

DS70157F-page 94 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-2: Addressing Modes for Ws Source Register
ppp Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Unused
Table 5-3: Addressing Modes for Wd Destination Register
qqq Addressing Mode Destination Operand
000 Register Direct wd
o001 Indirect [wd]
010 Indirect with Post-Decrement [wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--wd]
101 Indirect with Pre-Increment [++Wd]
11x Unused (an attempt to use this Addressing mode will force a RESET instruction)
Table 5-4: Offset Addressing Modes for Ws Source Register (with Register Offset)
ggg Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Indirect with Register Offset [Ws+Whb]
Table 5-5: Offset Addressing Modes for Wd Destination Register
(with Register Offset)
hhh Addressing Mode Source Operand
000 Register Direct wd
001 Indirect [wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--wd]
101 Indirect with Pre-Increment [++wd]
11x Indirect with Register Offset [Wd+Whb]

© 2005-2011 Microchip Technology Inc.

DS70157F-page 95

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

Table 5-6: X Data Space Prefetch Operation (dsPIC30F, dsPIC33F and dsPIC33E)
iiii Operation
0000 Wxd = [W8]

0001 Wxd = [W8], W8 = W8 + 2
0010 Wxd = [W8], W8 = W8 + 4
0011 Wxd = [W8], W8 = W8 + 6
0100 No Prefetch for X Data Space
0101 Wxd = [W8], W8 = W8 — 6
0110 Wxd = [W8], W8 = W8 — 4
0111 Wxd = [W8], W8 = W8 — 2
1000 Wxd = [W9]

1001 Wxd = [W9], W9 = W9 + 2
1010 Wxd = [W9], W9 = W9 + 4
1011 Wxd =[W9], W9 =W9 + 6
1100 Wxd = [W9 + W12]

1101 Wxd = [W9], W9 = W9 - 6
1110 Wxd = [W9], W9 =W9 — 4
1111 Wxd = [W9], W9 = W9 — 2

Table 5-7: X Data Space Prefetch Destination (dsPIC30F, dsPIC33F and dsPIC33E)
XX Wxd
00 W4
01 W5
10 W6
11 W7

Table 5-8: Y Data Space Prefetch Operation (dsPIC30F, dsPIC33F and dsPIC33E)
jijj Operation
0000 Wyd = [W10]

0001 Wyd = [W10], W10 = W10 + 2
0010 Wyd = [W10], W10 = W10 + 4
0011 Wyd = [W10], W10 = W10 + 6
0100 No Prefetch for Y Data Space
0101 Wyd = [W10], W10 = W10 — 6
0110 Wyd = [W10], W10 = W10 — 4
0111 Wyd = [W10], W10 = W10 — 2
1000 Wyd = [W11]

1001 Wyd = [W11], Wil = W1l + 2
1010 Wyd = [W11], W1l = W1l + 4
1011 Wyd = [W11], W1l = W11 + 6
1100 Wyd = [W1l + W12]

1101 Wyd = [W11], W1l = W11 -6
1110 Wyd = [W11], W1l = W1l — 4
1111 Wyd = [W11], Wil = W1l — 2

DS70157F-page 96

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-9: Y Data Space Prefetch Destination (dsPIC30F, dsPIC33F and dsPIC33E)
yy Wyd
00 w4
01 W5
10 W6
11 w7
Table 5-10: MAC or MPY Source Operands (Same Working Register) (dsPIC30F,
dsPIC33F and dsPIC33E)
mm Multiplicands
00 W4 * W4
01 W5 * W5
10 W6 * W6
11 W7 * W7
Table 5-11: MAC or MPY Source Operands (Different Working Register) (dsPIC30F,
dsPIC33F and dsPIC33E)
mmm Multiplicands
000 W4 * W5
(oo W4 * W6
010 W4 * W7
011 Invalid
100 W5 * W6
101 W5 * W7
110 W6 * W7
111 Invalid
Table 5-12: MAC Accumulator Write Back Selection (dsPIC30F, dsPIC33F and
dsPIC33E)
aa Write Back Selection
00 W13 = Other Accumulator (Direct Addressing)
o1 [W13] + = 2 = Other Accumulator (Indirect Addressing with Post-Increment)
10 No Write Back
11 Invalid
Table 5-13: MOVPAG Destination Selection
PP Target Page Register
00 DSRPAG
01 DSWPAG
10 TBLPAG
11 Reserved — do not use
Table 5-14: Accumulator Selection
A Target Accumulator
0 Accumulator A
1 Accumulator B

© 2005-2011 Microchip Technology Inc. DS70157F-page 97

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

INSTRUCTION DESCRIPTION EXAMPLE

The example description below is for the fictitious instruction FOO. The following example
instruction was created to demonstrate how the table fields (syntax, operands, operation, etc.)
are used to describe the instructions presented in Section 5.4 “Instruction Descriptions”.

FOO

The Header field summarizes what the instruction does

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Examples:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X

Cells marked with an ‘X’ indicate the instruction is implemented for that
device family.

The Syntax field consists of an optional label, the instruction mnemonic, any
optional extensions which exist for the instruction and the operands for the
instruction. Most instructions support more than one operand variant to
support the various Addressing modes. In these circumstances, all possible
instruction operands are listed beneath each other and are enclosed in
braces.

The Operands field describes the set of values which each of the operands
may take. Operands may be accumulator registers, file registers, literal
constants (signed or unsigned), or working registers.

The Operation field summarizes the operation performed by the instruction.

The Status Affected field describes which bits of the STATUS Register are
affected by the instruction. Status bits are listed by bit position in
descending order.

The Encoding field shows how the instruction is bit encoded. Individual bit
fields are explained in the Description field, and complete encoding details
are provided in Table 5.2.

The Description field describes in detail the operation performed by the
instruction. A key for the encoding bits is also provided.

The Words field contains the number of program words that are used to
store the instruction in memory.

The Cycles field contains the number of instruction cycles that are required
to execute the instruction.

The Examples field contains examples that demonstrate how the instruction
operates. “Before” and “After” register snapshots are provided, which allow
the user to clearly understand what operation the instruction performs.

DS70157F-page 98

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

54 INSTRUCTION DESCRIPTIONS

ADD Add f to WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} ADD{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: () + (WREG) —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1011 | oe1e0 | oBDf FEFF FEFF FEFF

Description: Add the contents of the default working register WREG to the contents of

the file register, and place the result in the destination register. The
optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: ADD.B RAM100 ; Add WREG to RAM100 (Byte mode)
Before After
Instruction Instruction
WREG| CC80 WREG | CC80
RAM100| FFCO RAM100| FF40
SR| 0000 SR| 0005 |(OV,C=1)
Example 2: ADD RAM200, WREG ; Add RAM200 to WREG (Word mode)
Before After
Instruction Instruction “
WREG | CC80 WREG | CC40
RAM200| FFCO RAM200| FFCO
SR| 0000 SR| 0001 [(C=1)

uononasuj

O
o
n
2]
=
T
=
o
>
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 99

16-bit MCU and DSC Programmer’s Reference Manual

ADD

Add Literal to Wn

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} ADD{.B} #lit10, Wn
lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]
lit10 + (Wn) -Wn
DC,N, 0V, Z,C
| 1011 | oee0 | oeBkk | Kkkkk | kkkk | dddd |

Add the 10-bit unsigned literal operand to the contents of the working
register Wn, and place the result back into the working register Wn.

The ‘B’ bit selects byte or word operation (‘©’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1:

The extension . B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Operands”
for information on using 10-bit literal operands in Byte mode.

ADD.B

Before
Instruction

12CO0
0000

w7
SR

ADD

Before
Instruction

#HOXFF, W7

#OXFF, W1

w1
SR

12C0

0000

; Add -1 to W7 (Byte mode)

After
Instruction

W7 | 12BF
SR | 0009

; Add 255 to W1 (Word mode)

After
Instruction

(N, C =1)

w1
SR

13BF

0000

DS70157F-page 100

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD Add Wb to Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} ADD{.B} Wh, #it5, wd
[Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) + lit5 -wWd
Status Affected: DC,N,0V, Z,C
Encoding: ‘ 0100 ‘ Owww | wBqq gddd diik kkkk
Description: Add the contents of the base register Wb to the 5-bit unsigned short literal

operand, and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1: ADD.B WO, #Ox1F, W7 ; Add WO and 31 (Byte mode)
; Store the result in W7
Before After
Instruction Instruction

WO0| 2290 WO | 2290

W7| 12CO0 W7 | 12AF

SR| 0000 SR| 0008 |(N=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 101

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: ADD W3, #0x6, [--W4] ; Add W3 and 6 (Word mode)
; Store the result in [--W4]

Before After
Instruction Instruction
W3| 6006 W3| 6006
W4 | 1000 W4 | OFFE
Data OFFE | DDEE Data OFFE | 600C
Data 1000 | DDEE Data 1000 | DDEE
SR| 0000 SR| 0000
ADD Add Wb to Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} ADD{.B} Wh, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
wd e [WO ... W15]
Operation: (Wb) + (Ws) -»wWd
Status Affected: DC,N, 0V, Z,C
Encoding: ‘ 0100 ‘ Owww ‘ wBqq qddd dppp SSSS
Description: Add the contents of the source register Ws and the contents of the base

register Wh, and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rathjer than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 102 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: ADD.B W5, W6, W7 ; Add W5 to W6, store result in W7
; (Byte mode)

Before After
Instruction Instruction
W5| ABOO W5| ABO0O
W6 0030 W6 0030
W7| FFFF W7| FF30
SR 0000 SR 0000
Example 2: ADD W5, W6, W7 ; Add W5 to W6, store result in W7

; (Word mode)

Before After
Instruction Instruction
W5 | ABOO W5 | ABOO
W6| 0030 W6| 0030
W7 | FFFF W7| AB30
SR 0000 SR 0008 | (N =1)
ADD Add Accumulators
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label:} ADD Acc
Operands: Acc € [AB]
Operation: If (Acc = A):
(ACCA) + (ACCB) —ACCA
Else:
(ACCA) + (ACCB) -ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 | 1011 | A000 0000 0000 0000
Description: Add the contents of Accumulator A to the contents of Accumulator B and

place the result in the selected accumulator. This instruction performs a
40-bit addition.

The ‘A’ bit specifies the destination accumulator.

Words: 1
Cycles: 1
Example 1: ADD A ; Add ACCB to ACCA
Before After
Instruction Instruction
ACCA| 000022 3300 ACCA| 001855 7858
ACCB| 00 18334558 ACCB| 00 1833 4558
SR 0000 SR 0000

O
® S
0o
es
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 103

16-bit MCU and DSC Programmer’s Reference Manual

ADD B ; Add ACCA to ACCB
; Assume Super Saturation mode enabled
; (ACCSAT = 1, SATA = 1, SATB = 1)

Example 2:

Before After
Instruction Instruction
ACCA| 00 E111 2222 ACCA| 00E111 2222
ACCB| 00 7654 3210 ACCB| 0157655432
SR 0000 SR 4800 | (OB, OAB =1)
ADD 16-bit Signed Add to Accumulator
Implemented in: | PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X
Syntax: {label:} ADD Ws, {#Slit4,} Acc
[Ws],
[Ws++],
[Ws--],
[--Ws],
[++Ws],
[Ws+Whb],
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]
Acc € [A,B]
Operation: Shiftg)iis(Extend(Ws)) + (Acc) —Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 | 1001 ‘ Awww ‘ wrrr rggg SSSS
Description: Add a 16-bit value specified by the source working register to the most

significant word of the selected accumulator. The source operand may
specify the direct contents of a working register or an effective address. The
value specified is added to the most significant word of the accumulator by
sign-extending and zero backfilling the source operand prior to the operation.
The value added to the accumulator may also be shifted by a 4-bit signed
literal before the addition is made.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Whb.

The ‘r’ bits encode the optional shift.

The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: Positive values of operand Slit4 represent an arithmetic shift right
and negative values of operand Slit4 represent an arithmetic shift

left. The contents of the source register are not affected by Slit4.

DS70157F-page 104 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD

16-bit Signed Add to Accumulator

Words: 1
Cycles: 1()
Note 1:

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1:
WO
ACCA
SR
Example 2: ADD
W5
ACCA
Data 2000
SR

ADD WO, #2, A

Before
Instruction

8000

00 7000 0000

0000

[W5++], A

Before
Instruction

2000

00 0067 2345

5000

0000

’

’

wo
ACCA
SR

After
Instruction

8000

00 5000 0000

0000

; Post-increment W5

After
Instruction
w5 2002
ACCA| 005067 2345
Data 2000 5000
SR 0000

; Add WO right-shifted by 2 to ACCA

; Add the effective value of W5 to ACCA

© 2005-2011 Microchip Technology Inc.

DS70157F-page 105

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

ADDC

Add f to WREG with Carry
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X

Syntax: {label:} ADDC{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: () + (WREG) + (C) —destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | o100 | 1BDf FFFF FEFF FEFF

Description: Add the contents of the default working register WREG, the contents of

the file register and the Carry bit and place the result in the destination

register. The optional WREG operand determines the destination
register. If WREG is specified, the result is stored in WREG. If WREG is
not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1

Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: ADDC.B RAM100 ; Add WREG and C bit to RAM100

; (Byte mode)
Before After
Instruction Instruction
WREG | CC60 WREG | CC60
RAM100| 8006 RAM100| 8067
SR| 0001 |(C=1) SR| 0000
Example 2: ADDC RAM200, WREG ; Add RAM200 and C bit to the WREG
; (Word mode)
Before After
Instruction Instruction
WREG | 5600 WREG | 8A01
RAM200| 3400 RAM200 | 3400
SR| 0001 |(C=1) SR| 000C |(N,QV =1)

DS70157F-page 106

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADDC Add Literal to Wn with Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} ADDC{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: [it10 + (Wn) + (C) -Wn

Status Affected: DC,N,0V, Z, C

Encoding: | 1011 | eeee | 1Bkk | kkkk | kkkk | dddd |

Description: Add the 10-bit unsigned literal operand, the contents of the working
register Wn and the Carry bit, and place the result back into the working
register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in
Byte mode.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles:
Example 1: ADDC.B #OXFF, W7 ; Add -1 and C bit to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12CO0 W7 | 12BF

SR| 0000 | (C = 0) SR| 0009 |(N,C =1)

Example 2: ADDC #OXFF, w1l ; Add 255 and C bit to W1 (Word mode)
Before After

Instruction Instruction
W1| 12CO0 W1| 13CO0 “

SR| 0001 [(C=1) SR| 0000

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 107

16-bit MCU and DSC Programmer’s Reference Manual

ADDC

Add Wb to Short Literal with Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} ADDC{.B} Wb, #lit5, wd
[Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wwd e [WO ... W15]
Operation: (Wb) +lit5 + (C) —»wd
Status Affected: DC,N, 0V, Z,C
Encoding: ‘ 0100 ‘ Iwww ‘ wBqq qddd diik kkkk
Description: Add the contents of the base register Wb, the 5-bit unsigned short literal
operand and the Carry bit, and place the result in the destination register

Wd. Register direct addressing must be used for Wb. Register direct or

indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.
Words:
Cycles:
Example 1: ADDC.B WO, #Ox1F, [W7] ; Add WO, 31 and C bit (Byte mode)
; Store the result in [W7]
Before After
Instruction Instruction
W0| CC80 W0 | CC80
W7 | 12C0 W7 | 12C0
Data 12C0| BO0O Data 12C0| BO9F
SR| 0000|(C=0) SR| 0008 |(N=1)

DS70157F-page 108

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: ADDC W3, #0x6, [--W4] ; Add W3, 6 and C bit (Word mode)
; Store the result in [--W4]
Before After

Instruction Instruction

W3 | 6006 W3 6006

W4 | 1000 w4 OFFE

Data OFFE | DDEE Data OFFE 600D

Data 1000 | DDEE Data 1000| DDEE

SR| 0001 [(C=1) SR| 0000

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 109

16-bit MCU and DSC Programmer’s Reference Manual

ADDC

Add Wb to Ws with Carry

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Note 1:

PIC24F PIC24H PIC24E | dsPIC30F |dsPIC33F |dsPIC33E
X X X X X X
{label:} ADDC{.B} Wb, Ws, wd
[Ws], (W]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]
(Wb) + (Ws) + (C) -»Wd
DC,N,0V, Z,C
‘ 0100 ‘ Iwww ‘ wBaq gddd dppp SSSS

Add the contents of the source register Ws, the contents of the base
register Wb and the Carry bit, and place the result in the destination
register Wd. Register direct addressing must be used for Wb. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1:

The extension . B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

1
1(1)

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 110

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: ADDC.B WO, [Wi++], [W2++] ; Add WO, [wl] and C bit (Byte mode)
; Store the result in [W2]
; Post-increment Wi, W2

Before After
Instruction Instruction
WO | CC20 WO0| CC20
W1i| 0800 Ww1i| 0801
W2| 1000 W2 | 1001
Data 0800 | AB25 Data 0800 | AB25
Data 1000| FFFF Data 1000 | FF46
SR| 0001 [(C=1) SR| 0000
Example 2: ADDC W3, [W2++], [Wi++] ; Add W3, [W2] and C bit (Word mode)

; Store the result in [W1]
; Post-increment W1, w2

Before After
Instruction Instruction
W1i| 1000 W1i| 1002
W2| 2000 W2| 2002
W3| 0180 W3 | 0180
Data 1000| 8000 Data 1000 | 2681
Data 2000| 2500 Data 2000 | 2500
SR| 0001 |[(C=1) SR| 0000

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 111

16-bit MCU and DSC Programmer’s Reference Manual

AND AND f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} AND{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: (f).AND.(WREG) —destination designated by D

Status Affected: N, Z

Encoding: | 1011 | o110 | oBDf FEFF FEFF FEFF

Description: Compute the logical AND operation of the contents of the default working

register WREG and the contents of the file register, and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.

If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1

Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: AND.B RAM100 ; AND WREG to RAM100 (Byte mode)
Before After
Instruction Instruction
WREG| CC80 WREG | CC80
RAM100| FFCO RAM100| FF80
SR| 0000 SR| 0008 |(N=1)
Examgle 2: AND RAM200, WREG ; AND RAM200 to WREG (Word mode)
Before After
Instruction Instruction
WREG| CC80 WREG | 0080
RAM200| 12CO RAM200| 12CO
SR| 0000 SR| 0000

DS70157F-page 112 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

A N D AND Literal and Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} AND{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: [it10.AND.(Wn) —Wn

Status Affected: N, Z

Encoding: | 1011 | o010 | oeBkk | kkkk | kkkk | dddd |
Description: Compute the logical AND operation of the 10-bit literal operand and the

contents of the working register Wn and place the result back into the
working register Wn. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in

Byte mode.
Words: 1
Cycles:
Example 1: AND.B #0x83, W7 ; AND 0x83 to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12CO0 W7| 1280
SR| 0000 SR| 0008 [(N=1)
Example 2: AND #0x333, Wi ; AND 0x333 to W1 (Word mode)
Before After
Instruction Instruction
W1| 12DO0 wW1| 0210
SR| 0000 SR| 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 113

16-bit MCU and DSC Programmer’s Reference Manual

AND

AND Wb and Short Literal

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} AND{.B} Wb, #it5, wd
(W]
(Wd++]
(Wd-]
[++Wd]
[--wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
wd e [WO ... W15]
Operation: (Wb).AND.lit5 -wWd
Status Affected: N, Z
Encoding: ‘ 0110 ‘ Owww ‘ wBqq gddd diik kkkk
Description: Compute the logical AND operation of the contents of the base register
Wb and the 5-bit literal and place the result in the destination register Wd.
Register direct addressing must be used for Whb. Either register direct or
indirect addressing may be used for Wd.
The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles:
Example 1: AND.B WO, #0x3, [Wi++] ; AND WO and 0x3 (Byte mode)
; Store to [W1]
; Post-increment wi
Before After
Instruction Instruction
WO | 23A5 WO | 23A5
wi| 2211 W1| 2212
Data 2210| 9999 Data 2210 | 0199
SR| 0000 SR| 0000
Example 2: AND We, #0x1F, Wi ; AND WO and Ox1F (Word mode)
; Store to Wi
Before After
Instruction Instruction
WO | 6723 WO | 6723
Ww1l| 7878 W1| 0003
SR| 0000 SR| 0000

DS70157F-page 114

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

AN D And Wb and Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} AND{.B} Wh, Ws, wd

[Ws], [wd]

[Ws++], [Wd++]

[Ws--], (Wd-]

[++Ws], [++wd]

[--Ws], [--Wd]
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb).AND.(Ws) —-wd
Status Affected: N, Z

Encoding: ‘ 0110 ‘ Owww ‘ wBqq gddd dppp SSSS

Description: Compute the logical AND operation of the contents of the source register
Ws and the contents of the base register Wb, and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 115

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: AND.B
Before
Instruction
WO0| AA55
Wi| 2211
W2| 1001
Data 1000\ FFFF
SR| 0000
Example 2: AND wo,
Before
Instruction
WO0| AA55
w1 1000
W2| B55AA
Data 1000| 2634
SR| 0000

WO, Wl [W2++]

; AND WO and w1, and
; store to [W2] (Byte mode)
; Post-increment w2

After
Instruction
WO0| AA55
Wi| 2211
W2| 1002
Data 1000| 11FF
SR| 0000
[Wi++], W2 ; AND WO and [W1], and

; store to W2 (Word mode)
; Post-increment Wi

After
Instruction
WO0| AA55
W1 1002
W2 2214
Data 1000 2634
SR| 0000

DS70157F-page 116

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} ASR{.B} f {{WREG}

Operands: fe [0...8191]

Operation: For byte operation:

(f<7>) —Dest<7>
(f<7>) —Dest<6>
(f<6:1>) —Dest<5:0>
(f<0>) -C

For word operation:
(f<15>) —Dest<15>
(f<15>) —Dest<14>
(f<14:1>) —Dest<13:0>
(f<0>) =C

N ——-

Status Affected: N,z C
Encoding: | 1101 | e1e1 | 1BDf FEFF FFFF | FFFF

Description: Shift the contents of the file register one bit to the right and place the result
in the destination register. The Least Significant bit of the file register is
shifted into the Carry bit of the STATUS Register. After the shift is
performed, the result is sign-extended. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, '1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The 'f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 117

16-bit MCU and DSC Programmer’s Reference Manual

; ASR RAM400 and store to WREG
; (Byte mode)

After

Instruction

Example 1: ASR.B RAM400, WREG
Before
Instruction
WREG 0600 WREG
RAM400 0823 RAM400
SR 0000 SR
Example 2: ASR RAM200
Before
Instruction
RAM200| 8009 RAM200
SR| 0000 SR

0611

0823

0001] (C = 1)

; ASR RAM200 (Word mode)

After
Instruction

Ccoo4
0009

(N, C =1)

DS70157F-page 118

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} ASR{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (Wd-]
[++Ws], [++wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: For byte operation:

(Ws<7>) -Wd<7>
(Ws<7>) -Wd<6>
(Ws<6:1>) -Wd<5:0>
(Ws<0>) -C

For word operation:
(Ws<15>) -Wd<15>
(Ws<15>) -»Wd<14>
(Ws<14:1>) -Wd<13:0>
(Ws<0>) -C

N

Status Affected: N, Z, C
Encoding: | 1101 | 0001 | 1Bqq gddd dppp SSSS

Description: Shift the contents of the source register Ws one bit to the right and place the
result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the STATUS register. After the shift is performed,
the result is sign-extended. Either register direct or indirect addressing may
be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 119

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: ASR.B [WO++],
Before
Instruction
WO 0600
w1 0801
Data 600 2366
Data 800| FFCO
SR 0000
Example 2: ASR W12, wi3
Before
Instruction
W12| ABO1l
W13| 0322
SR| 0000

; ASR [WO] and store to [W1]

; Post-increment WO and Wi

; ASR W12 and store to wWi3

[Wi++]
(Byte mode)
After
Instruction
W0 | 0601
Ww1l| 0802
Data 600| 2366
Data 800| 33CO
SR| 0000
(Word mode)
After
Instruction
W12 | ABO1
W13| D580
SR| 0009

(N,C=1)

DS70157F-page 120

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right by Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} ASR Wh, #lit4, Wnd
Operands: Wb e [WO ... W15]
lit4 € [0...15]
Wnd e [WO ... W15]
Operation: lit4<3:0> —Shift_Val

Whb<15> -Wnd<15:15-Shift_Val + 1>
Whb<15:Shift_Val> -Wnd<15-Shift_Val:0>

Status Affected: N, Z
Encoding: 1101 1110 Iwww wddd d100 kkkk

Description: Arithmetic shift right the contents of the source register Wb by the 4-bit
unsigned literal, and store the result in the destination register Wnd. After
the shift is performed, the result is sign-extended. Direct addressing must
be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words:
Cycles: 1
Example 1: ASR WO, #0x4, Wi ; ASR WO by 4 and store to Wi
Before After
Instruction Instruction
WO | O060F WO | O060F
w1 1234 W1| 0060
SR 0000 SR| 0000
Example 2: ASR WO, #0x6, Wi ; ASR WO by 6 and store to Wi
Before After
Instruction Instruction
WO0| 80FF WO | 80FF
wi 0060 W1| FEO3
SR 0000 SR| 0008 (|(N=1)
Example 3: ASR WO, #OxF, Wi ; ASR WO by 15 and store to Wi “
Before After
Instruction Instruction o
WO0| 70FF WO0| 70FF 8 =
wi| ccee wi[0000 o 2
SR| 0000 SR| 0002|(z=1) S g
=)
o0
=
T |

© 2005-2011 Microchip Technology Inc. DS70157F-page 121

16-bit MCU and DSC Programmer’s Reference Manual

ASR

Arithmetic Shift Right by Wns
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} ASR Wh, Whns, Wnd
Operands: Wb e [WO ... W15]
Whns € [WO ...W15]
Wnd € [WO ... W15]
Operation: Wns<3:0> —Shift_Val
Whb<15> -»Wnd<15:15-Shift_Val + 1>
Whb<15:Shift_Val> -Wnd<15-Shift_Val:0>
Status Affected: N, Z
Encoding: 1101 1110 ‘ Iwww ‘ wddd ‘ dooeoe $SSs
Description: Arithmetic shift right the contents of the source register Wb by the 4 Least
Significant bits of Wns (up to 15 positions) and store the result in the
destination register Wnd. After the shift is performed, the result is
sign-extended. Direct addressing must be used for Wb, Wns and Wnd.
The ‘W’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd = 0x0 if Wb is positive, and
Wnd = OXFFFF if Wb is negative.
Words:
Cycles:
Example 1: ASR WO, W5, W6 ; ASR WO by W5 and store to W6
Before After
Instruction Instruction
WO0| 80FF WO0| 80FF
wW5| 0004 W5| 0004
W6 | 2633 W6 | F80F
SR| 0000 SR| 0000
Example 2: ASR WO, W5, W6 ; ASR WO by W5 and store to W6
Before After
Instruction Instruction
WO0| 6688 WO0| 6688
W5| 000A W5| O000A
W6| FFOO0 W6 | 0019
SR| 0000 SR| 0000
Example 3: ASR W11, w12, wi3 ; ASR Wil by W12 and store to Wi3
Before After
Instruction Instruction
W11l| 8765 W11| 8765
W12 | 88E4 W12 | 88E4
W13 | ABA5 W13| F876
SR| 0000 SR| 0008 |(N=1)

DS70157F-page 122

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BCLR Bit Clear f
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label’} BCLR{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation

bit4 € [0 ... 7] for byte operation

bit4 € [0 ... 15] for byte operation

Operation: 0 —f<bit4>

Status Affected: None

Encoding: \ 1010 \ 1001 \ bbbf \ FEff \ FEFf \ fffb

Description: Clear the bit in the file register f specified by ‘bit4’. Bit numbering begins

with the Least Significant bit (bit 0) and advances to the Most Significant

bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be cleared.

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: BCLR.B 0x800, #0x7 ; Clear bit 7 in 0x800

Before After
Instruction Instruction
Data 0800 | 66EF Data 0800 | 666F
SR| 0000 SR| 0000
Example 2: BCLR 0x400, #0x9 ; Clear bit 9 in 0x400
Before After
Instruction Instruction
Data 0400 | AA55 Data 0400 | A855
SR| 0000 SR| 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 123

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

BCLR

Bit Clear in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Note 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BCLR{.B} Ws, #bit4
[Ws],
[Ws++],
[V\/S"]!
[++Ws],
[--WS]Y
Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
0 -Ws<bit4>
None
| 1010 | o001 | bbbb | ©BOO | oeppp | ssss |

Clear the bit in register Ws specified by ‘bit4’. Bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit (bit
7 for byte operations, bit 15 for word operations). Register direct or
indirect addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1:

The extension . B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source

register address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

4: In dsPIC33E and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended

Data Space.

1
1)

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 124

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: BCLR.B W2, #0x2 ; Clear bit 3 in W2
Before After
Instruction Instruction
W2 F234 W2 F230
SR 0000 SR 0000
Example 2: BCLR [WO++], #0x0 ; Clear bit 0 in [wO]
; Post-increment WO
Before After
Instruction Instruction
WO 2300 WO 2302
Data 2300 5607 Data 2300 5606
SR 0000 SR 0000

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 125

16-bit MCU and DSC Programmer’s Reference Manual

BRA

Branch Unconditionally

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BRA Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

(PC +2) + 2 * Slitl6 »PC
NOP —lInstruction Register

None

\ 0011 \ 0111 nnnn nnnn nnnn nnnn

The program will branch unconditionally, relative to the next PC. The offset
of the branch is the two’s complement number ‘2 * Slit16’, which supports
branches up to 32K instructions forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or
expression. After the branch is taken, the new address will be (PC +2) + 2 *
Slit16, since the PC will have incremented to fetch the next instruction.

The ‘n’ bits are a signed literal that specifies the number of program words
offset from (PC + 2).

1
2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
4 (PIC24E, dsPIC33E)

002000 HERE:
002002
002004
002006
002008
00200A THERE:
00200C

BRA THERE ; Branch to THERE

After
Instruction

00 200A
0000

Before
Instruction

00 2000
0000

PC
SR

PC
SR

002000 HERE:
002002
002004
002006
002008
00200A THERE:
00200C

BRA THERE+0x2 ; Branch to THERE+0x2

After
Instruction

00 200C
0000

Before
Instruction

00 2000
0000

PC
SR

PC
SR

DS70157F-page 126

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 3:

002000 HERE: BRA 0x1366
002002
002004

Before
Instruction

PC 00 2000
SR 0000

; Branch to 0x1366

After
Instruction
PC 00 1366
SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 127

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

BRA

Computed Branch

Implemented in:

Syntax:

Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X X X
{label’} BRA Wn
Wn e [WO ... W15]
(PC+2) +(2*Wn) —PC
NOP —lInstruction Register
None
| oee0 | o001 | 0110 | 0000 | 0000 | ssss

The program branches unconditionally, relative to the next PC. The offset
of the branch is the sign-extended 17-bit value (2 * Wn), which supports
branches up to 32K instructions forward or backward. After this instruction
executes, the new PC will be (PC + 2) + 2 * Wn, since the PC will have
incremented to fetch the next instruction.

The ‘s’ bits select the source register.

1
2

002000 HERE:
002002

002108
00210A TABLE7:
00210C

BRA W7

Before
Instruction
PC 00 2000 PC
w7 0084 w7
SR 0000 SR

; Branch forward (2+2*W7)

After
Instruction

00 210A

0084

0000

DS70157F-page 128

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA Computed Branch

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label’} BRA Wn
Operands: Wn e [WO ... W15]
Operation: (PC+2)+(2*Wn) —PC
NOP —lInstruction Register
Status Affected: None
Encoding: | oee0 | o001 | oeee0 | 0110 | 0000 | ssss
Description: The program branches unconditionally, relative to the next PC. The offset

of the branch is the sign-extended 17-bit value (2 * Wn), which supports
branches up to 32K instructions forward or backward. After this instruction
executes, the new PC will be (PC + 2) + 2 * Wn, since the PC will have
incremented to fetch the next instruction.

The ‘s’ bits select the source register.

Words: 1

Cycles: 4

Example 1: 002000 HERE: BRA W7 ; Branch forward (2+2*W7)
002002 ..
002108
00210A TABLE7:
002106C

Before After
Instruction Instruction

PC 00 2000 PC 00 210A
W7 0084 W7 0084
SR 0000 SR 0000

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 129

16-bit MCU and DSC Programmer’s Reference Manual

BRA C

Branch if Carry

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BRA C, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Condition = C
If (Condition)
(PC + 2) + 2 * Slit16 -PC
NOP —lInstruction Register

None

0011 ‘ 0001 nnnn nnnn nnnn nnnn

If the Carry flag bit is ‘1", then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The 'n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in
instruction words.

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

002000 HERE: BRA C, CARRY ; If C is set, branch to CARRY
002002 NO_C: e ; Otherwise... continue
002004 o
002006 GOTO THERE
002008 CARRY:
00200A
00200C THERE:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 2008
SR 0001 ((C=1) SR 0001 |(C=1)

DS70157F-page 130

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 002000 HERE: BRA C, CARRY ; If C is set, branch to CARRY

002002 NO_C: - ; Otherwise... continue

002004 .

002006 GOTO THERE

002008 CARRY:

00200A

00200C THERE:

00200E

Before After
Instruction Instruction

PC 00 2000 PC 00 2002

SR 0000 SR 0000
Example 3: 006230 HERE: BRA C, CARRY ; If C is set, branch to CARRY

006232 NO_C: - ; Otherwise... continue

006234 C

006236 GOTO THERE

006238 CARRY:

00623A

00623C THERE:

00623E

Before After
Instruction Instruction

PC 00 6230 PC 00 6238

SR 0001 |(C=1) SR 0001 |(C=1)
Example 4: 006230 START:

006232
006234 CARRY:
006236
006238
00623A
00623C HERE:
00623E

Before
Instruction

00 623C
0001

PC
SR

(C=1)

BRA C, CARRY

; If C is set,

branch to CARRY

; Otherwise... continue
After
Instruction
PC 00 6234
SR 0001 |(C=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 131

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

BRA GE

Branch if Signed Greater Than or Equal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BRA GE, Expr
Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Condition = (N&&OV)||(IN&&!OV)
If (Condition)
(PC + 2) + 2 * Slit16 —PC
NOP —instruction Register
None
| @011 | 1102 | nnon | nnnn | nnnn nnnn

If the logical expression (N&&OV)||(IN&&!OV) is true, then the program
will branch relative to the next PC. The offset of the branch is the two’s
complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2)
in instruction words.

Note: The assembler will convert the specified label into the offset to

be used.
1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

007600 LOOP:

007602
007604
007606 .o
007608 HERE: BRA GE, LOOP ; If GE, branch to LOOP
Q0760A NO_GE: ; Otherwise... continue
Before After
Instruction Instruction
PC 00 7608 PC 00 7600
SR 0000 SR 0000

DS70157F-page 132

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 007600 LOOP:

007602
007604
007606 e
007608 HERE: BRA GE, LOOP ; If GE, branch to LOOP
00760A NO_GE: .o ; Otherwise... continue
Before After
Instruction Instruction
PC 00 7608 PC 00 760A
SR 0008 |(N=1) SR 0008 |(N=1)

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 133

16-bit MCU and DSC Programmer’s Reference Manual

BRA GEU

Branch if Unsigned Greater Than or Equal

Implemented in:

Syntax:

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E

X

X

X

X

X

X

{label:}

BRA

GEU,

Expr

Operands:

Operation:

Status Affected:
Encoding:
Description:

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16 offset that supports an offset
range of [-32768 ... +32767] program words.
Condition = C
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —lInstruction Register

None

| 0011 ‘ 0001 ‘ nnnn nnnn nnnn nnnn

If the Carry flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the two’s complement number ‘2 *
Slit16’, which supports branches up to 32K instructions forward or
backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16,
since the PC will have incremented to fetch the next instruction. The
instruction then becomes a two-cycle instruction, with a NOP executed

Words:
Cycles:

Example 1:

in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from

(PC + 2) in instruction words.

Note:

This instruction is identical to the BRA C, Expr (Branch if

Carry) instruction and has the same encoding. It will reverse
assemble as BRA C, Slit16.

1

1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

002000 HERE:
002002 NO_GEU:
002004

002006

002008

00200A

00200C BYPASS:
00200E

BRA GEU, BYPASS

GOTO THERE

Before
Instruction

00 2000
0001

PC
SR

PC
SR

(C=1)

; If C is set,
; to BYPASS
; Otherwise...

After
Instruction

00 200C

0001

(C=1)

branch

continue

DS70157F-page 134

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA GT Branch if Signed Greater Than

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BRA GT, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = (1Z&&N&&OV)||(!1Z&&!N&&!OV)
If (Condition)
(PC +2) + 2 * Slitl6 —-PC
NOP —lInstruction Register

Status Affected: None
Encoding: | 0011 ‘ 1100 | nnnn ‘ nnnn ‘ nnnn ‘ nnnn
Description: If the logical expression (IZ&&N&&OV)||(1Z&&!N&&!IOV) is true, then the

program will branch relative to the next PC. The offset of the branch is the
two’s complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2)
in instruction words.

Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA GT, BYPASS ; If GT, branch to BYPASS
002002 NO_GT: .. ; Otherwise... continue
002004
002006
002008 e
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0001 |{(C=1) SR 0001((C= 1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 135

16-bit MCU and DSC Programmer’s Reference Manual

BRA GTU

Branch if Unsigned Greater Than

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} BRA GTU, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Operation: Condition = (C&&!Z)
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —lInstruction Register
Status Affected: None
Encoding: ‘ 0011 ‘ 1110 | nnnn ‘ nnnn nnnn nnnn
Description: If the logical expression (C&&!Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slit16’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E
Example 1: 002000 HERE: BRA GTU, BYPASS ; If GTU, branch to BYPASS
002002 NO_GTU: e ; Otherwise... continue
002004
002006
002008 o
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0001 |(C=1) SR 0001 |(C=1)

DS70157F-page 136

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA LE Branch if Signed Less Than or Equal

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BRA LE, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = Z||(N&&!OV)||(IN&&OV)
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —instruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 0100 ‘ nnnn ‘ nnnn ‘ nnnn nnnn

Description: If the logical expression (Z||(N&&!OV)||(IN&&OV)) is true, then the
program will branch relative to the next PC. The offset of the branch is the
two’s complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA LE, BYPASS ; If LE, branch to BYPASS
002002 NO_LE: e ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0001 |{(C=1) SR 0001 |(C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 137

16-bit MCU and DSC Programmer’s Reference Manual

BRA LEU

Branch if Unsigned Less Than or Equal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

002000 HERE:
002002 NO_LEU: o H

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BRA LEU, Expr
Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Condition = ICJ|Z
If (Condition)
(PC +2) + 2 * Slitl6 —-PC
NOP —instruction Register
None
| 011 | 0116 | nnnn | nnnn nnnn nnnn

If the logical expression (IC||Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slit16’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * SIitl16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

BRA LEU, BYPASS ; If LEU, branch to BYPASS

Otherwise... continue

002004
002006
002008

00200A

GOTO THERE

00200C BYPASS:
00200E

PC
SR

After
Instruction

Before
Instruction

00 2000 PC 00 200C

0001 |(C = 1) SR 0001 (C = 1)

DS70157F-page 138

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA LT Branch if Signed Less Than

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BRA LT, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = (N&&!OV)||(IN&&OV)
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —lInstruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 0101 | nnnn ‘ nnnn ‘ nnnn nnnn
Description: If the logical expression ((N&&!OV)||(IN&&OV)) is true, then the program

will branch relative to the next PC. The offset of the branch is the two’s
complement number ‘2 * Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slitl6, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA LT, BYPASS ; If LT, branch to BYPASS
002002 NO_LT: e ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC 00 2000 PC 00 2002
SR 0001 ((C=1) SR 0001 [(C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 139

16-bit MCU and DSC Programmer’s Reference Manual

BRA LTU

Branch if Unsigned Less Than

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

002000 HERE:
002002 NO_LTU: PR ;

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BRA LTU, Expr
Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Condition =!C
If (Condition)
(PC +2) + 2 * Slit16 —PC
NOP —lInstruction Register
None
‘ 0011 ‘ 1001 nnnn nnnn nnnn nnnn

If the Carry flag is ‘@’, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Note : This instruction is identical to the BRA NC, Expr (Branch if Not
Carry) instruction and has the same encoding. It will reverse
assemble as BRA NC, Slit16.

1

1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

BRA LTU, BYPASS ; If LTU, branch to BYPASS

Otherwise... continue

002004
002006
002008

00200A

GOTO THERE

00200C BYPASS:
00200E

PC
SR

After
Instruction

Before
Instruction

00 2000 PC 00 2002

0001 |(C = 1) SR 0001 |(C = 1)

DS70157F-page 140

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA N Branch if Negative

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BRA N, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Operation: Condition =N
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —instruction Register.

Status Affected: None
Encoding: ‘ 0011 ‘ 0011 nnnn nnnn nnnn nnnn
Description: If the Negative flag is ‘1’, then the program will branch relative to the next

PC. The offset of the branch is the two’s complement number ‘2 * S|it16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA N, BYPASS ; If N, branch to BYPASS
002002 NO_N: P ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0008 |(N =1) SR 0008 |(N =1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 141

16-bit MCU and DSC Programmer’s Reference Manual

BRA NC

Branch if Not Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} BRA NC, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Operation: Condition = IC
If (Condition)
(PC +2) + 2 * Slit16 —PC
NOP —lInstruction Register
Status Affected: None
Encoding: ‘ 0011 ‘ 1001 nnnn nnnn nnnn nnnn
Description: If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E
Example 1: 002000 HERE: BRA NC, BYPASS ; If NC, branch to BYPASS
002002 NO_NC: ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0001 |(C=1) SR 0001 |(C=1)

DS70157F-page 142

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA N N Branch if Not Negative

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BRA NN, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Operation: Condition = IN
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —iInstruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 1011 nnnn nnnn nnnn nnnn
Description: If the Negative flag is ‘©’, then the program will branch relative to the next

PC. The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA NN, BYPASS ; If NN, branch to BYPASS
002002 NO_NN: .o ; Otherwise... continue
002004
002006
002008 e
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 143

16-bit MCU and DSC Programmer’s Reference Manual

BRA NOV

Branch if Not Overflow

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

002000 HERE:
002002 NO_NOV: o ;

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BRA NOV, Expr
Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Condition = IOV
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —lInstruction Register
None
‘ 0011 ‘ 1000 nnnn nnnn nnnn nnnn

If the Overflow flag is ‘@’, then the program will branch relative to the next
PC. The offset of the branch is the two’'s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

BRA NOV, BYPASS ; If NOV, branch to BYPASS

Otherwise... continue

002004
002006
002008

00200A

GOTO THERE

00200C BYPASS:
00200E

PC
SR

Before
Instruction

00 2000

0008

(N=1)

After

Instruction

PC

00 200C

SR

0008

(N=1)

DS70157F-page 144

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA NZ Branch if Not Zero

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BRA NZ, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Operation: Condition = 1Z
If (Condition)
(PC +2) + 2 * Slitl6 —-PC
NOP —lInstruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 1010 nnnn nnnn nnnn nnnn
Description: If the Z flag is ‘@’, then the program will branch relative to the next PC. The

offset of the branch is the two’s complement number ‘2 * Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA NZ, BYPASS ; If NZ, branch to BYPASS
002002 NO_NZ: .. ; Otherwise... continue
002004
002006
002008 e
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0002 |(z=1) SR 0002 |(z=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 145

16-bit MCU and DSC Programmer’s Reference Manual

B RA OA Branch if Overflow Accumulator A

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: {label:} BRA OA, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = OA
If (Condition)
(PC +2) + 2 * Slit16 —PC
NOP —iInstruction Register

Status Affected: None
Encoding: ‘ 0000 | 1100 nnnn nnnn nnnn nnnn
Description: If the Overflow Accumulator A flag is ‘1’, then the program will branch

relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slit16’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Note: The assembler will convert the specified label into the offset to
be used.

Words: 1
Cycles: 1 (2 if branch taken) — dsPIC30F, dsPIC33F
1 (4 if branch taken) — dsPIC33E

Example 1: 002000 HERE: BRA 0A, BYPASS ; If OA, branch to BYPASS
002002 NO_OA: R ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 8800 |(OA, OAB =1) SR 8800 |(OA, OAB = 1)

DS70157F-page 146 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA OB

Branch if Overflow Accumulator B

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label’} BRA OB, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Operation: Condition = OB
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —lInstruction Register
Status Affected: None
Encoding: ‘ 0000 ‘ 1101 nnnn nnnn nnnn nnnn
Description: If the Overflow Accumulator B flag is ‘1’, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slit16’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.
If the branch is taken, the new address will be (PC + 2) + 2 * SIit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — dsPIC30F, dsPIC33F
1 (4 if branch taken) — dsPIC33E
Example 1: ©02000 HERE: BRA OB, BYPASS ; If 0B, branch to BYPASS
002002 NO_OB: P ; Otherwise... continue
002004
002006
002008 o
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 8800 |(OA, OAB =1) SR 8800 |(OA, OAB = 1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 147

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

BRA OV

Branch if Overflow

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
Syntax: {label:} BRA oV, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].
Operation: Condition = OV
If (Condition)
(PC +2) + 2 *Slit16 —PC
NOP —instruction Register
Status Affected: None
Encoding: ‘ 0011 ‘ 0000 nnnn nnnn nnnn nnnn
Description: If the Overflow flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the two’s complement number ‘2 * Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E
Example 1: 002000 HERE: BRA OV, BYPASS ; If 0V, branch to BYPASS
002002 NO_OV P ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0002 |(Z=1) SR 0002 |((Z=1)

DS70157F-page 148

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA SA Branch if Saturation Accumulator A

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: {label:} BRA SA, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].

Operation: Condition = SA
If (Condition)
(PC +2) + 2 * Slitl6 —PC
NOP —instruction Register

Status Affected: None
Encoding: ‘ 0000 ‘ 1110 nnnn nnnn nnnn nnnn
Description: If the Saturation Accumulator A flag is ‘1’, then the program will branch

relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slitl6, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — dsPIC30F, dsPIC33F
1 (4 if branch taken) — dsPIC33E

Example 1: 002000 HERE: BRA SA, BYPASS ; If SA, branch to BYPASS
002002 NO_SA: .. ; Otherwise... continue
002004
002006
002008 e
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 2400 ((SA, SAB=1) SR 2400 |(SA, SAB =1)

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 149

16-bit MCU and DSC Programmer’s Reference Manual

BRA SB Branch if Saturation Accumulator B

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: {label:} BRA SB, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 e [-32768 ... +32767].

Operation: Condition = SB
if (Condition)
(PC +2) + 2 * Slitl6—PC
NOP —instruction Register

Status Affected: None
Encoding: ‘ 0000 ‘ 1111 nnnn nnnn nnnn nnnn
Description: If the Saturation Accumulator B flag is ‘1’, then the program will branch

relative to the next PC. The offset of the branch is the two’s complement
number ‘2 * Slitl6’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * SIit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1
Cycles: 1 (2 if branch taken) — dsPIC30F, dsPIC33F
1 (4 if branch taken) — dsPIC33E

Example 1: 002000 HERE: BRA SB, BYPASS ; If SB, branch to BYPASS
002002 NO_SB: P ; Otherwise... continue
002004
002006
002008 P
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0000 SR 0000

DS70157F-page 150 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA Z Branch if Zero

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
Syntax: {label’} BRA Z, Expr
Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slitl6 € [-32768 ... +32767].
Operation: Condition=Z
if (Condition)
(PC +2) + 2 * Slit16 —PC
NOP —instruction Register
Status Affected: None
Encoding: | 0011 | 0010 nnnn nnnn nnnn nnnn
Description: If the Zero flag is ‘1’, then the program will branch relative to the next PC.
The offset of the branch is the two’s complement number ‘2 * Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E

Example 1: 002000 HERE: BRA Z, BYPASS ; If Z, branch to BYPASS
002002 NO_Z: P ; Otherwise... continue
002004
002006
002008 .
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0002 ((z=1) SR 0002 |(z=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 151

16-bit MCU and DSC Programmer’s Reference Manual

BSET Bit Set f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BSET{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: 1 —f<bit4>

Status Affected: None

Encoding: \ 1010 \ 1000 \ bbbf | FEFf \ FEff \ fffb
Description: Set the bit in the file register ‘f’ specified by ‘bit4’. Bit numbering begins

with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be set.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Examgle 1: BSET.B 0x601, #0x3 ; Set bit 3 in 0x601
Before After
Instruction Instruction
Data 0600 F234 Data 0600| FA34
SR 0000 SR| 0000
Example 2: BSET 0x444, #OXF ; Set bit 15 in 0x444
Before After
Instruction Instruction
Data 0444 5604 Data 0444 | D604
SR 0000 SR| 0000

DS70157F-page 152 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BSET Bit Set in Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BSET{.B} Ws, #bitd

[Ws],

[Ws++],

[VVS“],

[++Ws],

[--WS]Y
Operands: Ws e [WO ... W15]

bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: 1 —»Ws<bhit4>

Status Affected: None

Encoding: ‘ 1010 ‘ 0000 ‘ bbbb ‘ 0B0OO ‘ Oppp ‘ SSSS ‘
Description: Set the bit in register Ws specified by ‘bit4’. Bit numbering begins with the

Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations). Register direct or indirect
addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source/destination register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4" must be
between 0 and 7.

4: In dsPIC33E and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended
Data Space.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 153

16-bit MCU and DSC Programmer’s Reference Manual

Instruction

W3
SR

Instruction

After

00AG6

0000

; Set bit 7 in W3

’

; Set bit 0 in [w4]

’

After

w4

6702

Data 6700

1735

Example 1: BSET.B W3, #O0x7
Before
Instruction
W3 0026
SR 0000
Example 2: BSET [W4++], #0x0
Before
Instruction
W4 6700
Data 6700 1734
SR 0000

SR

0000

; Post-increment w4

DS70157F-page 154

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BSW

Bit Write in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Note 1:

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E

X

X

X

X

X

X

{label:}

Ws e [WO ..
Wb e [WO ..

BSW.C
BSW.Z

. W15]
. W15]

For “.C” operation:

C —Ws<(Wh)>

For ".Z” operation (default):
Z -5Ws<(Whb)>

None

[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],

Wb

| 1010 |

1101

Zwww

| w000 \

Oppp

| SSSS

The (Wb) bit in register Ws is written with the value of the C or z flag from
the STATUS register. Bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the working
register. Only the four Least Significant bits of Wb are used to determine
the destination bit number. Register direct addressing must be used for
Wh, and either register direct, or indirect addressing may be used for Ws.

The ‘Z’ bit selects the C or Z flag as source.
The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note:

1
1)

This instruction only operates in Word mode. If no extension is
provided, the “.Z" operation is assumed.

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1:

BSW.C W2, W3

; Set bit W3 in W2 to the value

; of the C bit

After
Instruction

Before
Instruction

w2
W3
SR

F234

111F

0002

w2
W3

(Z=1,C=0) SR

7234

111F

0002

(Z=1,C=0)

uononasuj

O
o
n
2]
=
T
=
o
>
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 155

16-bit MCU and DSC Programmer’s Reference Manual

BSW.Z W2, W3

Before
Instruction

w2 | E235
W3 | 0550
SR| 0002

; Set bit W3 in W2 to the complement

; of the zZ bit

After

Instruction

w2

E234

w3

0550

(Z=1,C=0) SR

0002|(Z=1,C=0)

BSW.C [++WO], W6

; Set bit W6 in [WO++] to the value
; of the C bit

Data 1000 | C4DD

Before After
Instruction Instruction
WO 1000 WO0| 1002
W6 | 34A3 W6 | 34A3
Data 1002 2380 Data 1002 | 2388
SR 0001|{(Z=0,C=1) SR| 0001|(z=0,C=1)
BSW.Z [W1--], W5 ; Set bit W5 in [W1] to the
; complement of the Z bit
; Post-decrement wi
Before After
Instruction Instruction
w1l 1000 W1l| OFFE
W5| 888B W5| 888B

SR| 0001

Data 1000 | CCDD

(C=1) SR

0001] (C =1)

DS70157F-page 156

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTG Bit Toggle f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BTG{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: (H<bitd> —(f)<bit4>

Status Affected: None

Encoding: | 1010 \ 1010 \ bbbf | FEff \ FEFf \ fffb \
Description: Bit ‘bit4’ in file register ‘f’ is toggled (complemented). For the bit4

operand, bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 7 for byte operation, bit 15 for
word operation) of the byte.

The ‘b’ bits select value bit4, the bit position to toggle.
The '’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: BTG.B 0x1001, #0x4 ; Toggle bit 4 in 0x1001
Before After
Instruction Instruction
Data 1000 F234 Data 1000| E234
SR 0000 SR| 0000
Example 2: BTG 0x1660, #0x8 ; Toggle bit 8 in RAM660O
Before After
Instruction Instruction
Data 1660 5606 Data 1660| 5706
SR 0000 SR| 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 157

16-bit MCU and DSC Programmer’s Reference Manual

BTG

Bit Toggle in Ws

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BTG{.B} Ws, #bit4
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
W —Ws<bit4>
None
| 1010 | o010 | bbbb | eBe0 | oeppp | ssss

Bit ‘bit4’ in register Ws is toggled (complemented). For the bit4 operand,
bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operations, bit 15 for word
operations). Register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1:
2:
3:
4:

1

1@

The extension . B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

When this instruction operates in Word mode, the source

register address must be word-aligned.

When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
In dsPIC33E and PIC24E devices, this instruction uses the

DSRPAG register for indirect address generation in Extended
Data Space.

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: BTG

w2
SR

w2, #0x0

Before
Instruction

F234
0000

w2
SR

; Toggle bit © in w2

After
Instruction

F235
0000

DS70157F-page 158

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

; Toggle bit 0 in [WO]
; Post-increment w0

’

Example 2: BTG [WO++], #0x0

Before After
Instruction Instruction
WO 2300 WO| 2302
Data 2300 5606 Data 2300| 5607
SR 0000 SR| 0000

O
® S
0o
es
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 159

16-bit MCU and DSC Programmer’s Reference Manual

BTSC

Bit Test f, Skip if Clear

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BTSC{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation

bit4 € [0 ... 7] for byte operation

bit4 € [0 ... 15] for word operation

Operation: Test (f)<bitd>, skip if clear

Status Affected: None

Encoding: | 1010 | 1111 | bbbf fEFF | fFFF | fffb

Description: Bit ‘bit4’ in the file register is tested. If the tested bit is '0’, the next

instruction (fetched during the current instruction execution) is discarded

and on the next cycle, a NOP is executed instead. If the tested bit is ‘1’,

the next instruction is executed as normal. In either case, the contents of

the file register are not changed. For the bit4 operand, bit numbering
begins with the Least Significant bit (bit 0) and advances to the Most

Significant bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test.

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1

Cycles: 1(2or 3)(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Examgle 1: 002000 HERE: BTSC.B 0x1201, #2 ; If bit 2 of 0x1201 is 0O,

002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
Data 1200 264F Data 1200 264F
SR 0000 SR 0000

DS70157F-page 160

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 002000 HERE: BTSC 0x804, #14 ; If bit 14 of 0x804 is 0,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A

Before After
Instruction Instruction
PC 00 2000 PC 00 2006
Data 0804 2647 Data 0804 2647
SR 0000 SR 0000

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 161

16-bit MCU and DSC Programmer’s Reference Manual

BTSC

Bit Test Ws, Skip if Clear

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

{label:} BTSC Ws, #bit4
[WS],
[Ws++],
[WS“],
[++Ws],
[“WS],

Ws e [WO ... W15]

bitd e [0 ... 15]
Test (Ws)<bit4>, skip if clear

None

| 1010 | o111 | bbbb | 0000 | oppp | ssss |

Bit ‘bit4’ in Ws is tested. If the tested bit is ‘@', the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘1’, the next instruction
is executed as normal. In either case, the contents of Ws are not changed.
For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the word. Either
register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
1

1 (2 or 3 if the next instruction is skipped)(l)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1:

002000 HERE: BTSC Wo, #0x0 ; If bit @ of wWe is 0,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
WO 264F WO 264F
SR 0000 SR 0000

DS70157F-page 162

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2:

Example 3:

002000 HERE:
002002

002004

002006

002008 BYPASS:
00200A

Before
Instruction

00 2000
264F
0000

PC
W6
SR

003400 HERE:
003402

003404

003406

003408 BYPASS:
00340A

Before
Instruction

PC
W6
Data 1800
SR

00 3400

1800

1000

0000

BTSC
GOTO

BTSC
GOTO

W6, #OXF ; If bit 15 of w6 is 0,
BYPASS ; skip the GOTO
After
Instruction
PC 00 2006
W6 264F
SR 0000

[we++], #OxC
BYPASS

; If bit 12 of [w6] is O,
; skip the GOTO
; Post-increment W6

After
Instruction
PC 00 3402
W6 1802
Data 1800 1000
SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 163

O
® S
0o
es
is'c
=9
)
>

T =

16-bit MCU and DSC Programmer’s Reference Manual

BTSS Bit Test f, Skip if Set

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BTSS{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if set

Status Affected: None

Encoding: | 1010 | 1110 | bbbf FEFF | FFFF | fffb
Description: Bit ‘bit4’ in the file register ‘f’' is tested. If the tested bit is ‘1’, the next

instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. If the tested bit is ‘0’, the
next instruction is executed as normal. In either case, the contents of the
file register are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1
Cycles: 1 (2 or 3 if the next instruction is skipped)®
Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 164 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: 007100 HERE: BTSS.B 0x1401, #O0x1 ; If bit 1 of Ox1401 is 1,
007102 CLR WREG ; don’t clear WREG
007104 ..
Before After
Instruction Instruction
PC 00 7100 PC 00 7104
Data 1400 0280 Data 1400 0280
SR 0000 SR 0000
Example 2: 007100 HERE: BTSS 0x890, #Ox9 ; If bit 9 of 0x890 is 1,
007102 GOTO BYPASS ; skip the GOTO
007104
007106 BYPASS:
Before After
Instruction Instruction
PC 00 7100 PC 00 7102
Data 0890 O0OFE Data 0890 OOFE
SR 0000 SR 0000

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 165

16-bit MCU and DSC Programmer’s Reference Manual

BTSS

Bit Test Ws, Skip if Set

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

{label:} BTSS Ws, #bit4
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]

bitd € [0 ... 15]
Test (Ws)<bit4>, skip if set.

None

| 1010 | o110 | bbbb | 0000 | oppp | ssss |

Bit ‘bit4’ in Ws is tested. If the tested bit is ‘1’, the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘Q’, the next instruction
is executed as normal. In either case, the contents of Ws are not changed.
For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the word. Either
register direct or indirect addressing may be used for Ws.

The ‘b’ bits select the value bit4, the bit position to test.
The ‘s’ bits select the source register.
The ‘p’ bits select the source Address mode.

Note: This instruction operates in Word mode only.
1

1 (2 or 3 if the next instruction is skipped)(l)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1:

002000 HERE: BTSS Wo, #0x0 ; If bit @ of we is 1,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2006
WO 264F WO 264F
SR 0000 SR 0000

DS70157F-page 166

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2:

Example 3:

002000 HERE:
002002

002004

002006

002008 BYPASS:
00200A

Before
Instruction

PC 00 2000
W6 264F
SR 0000

003400 HERE:
003402

003404

003406

003408 BYPASS:
00340A

Before
Instruction

PC
W6
Data 1800

00 3400

1800

1000

SR 0000

BTSS
GOTO

BTSS
GOTO

If bit 15 of W6 is 1,

; skip the GOTO

; If bit 12 of [W6] is 1,

; skip the GOTO

W6, #OXF ;
BYPASS
After
Instruction
PC 00 2002
W6 264F
SR 0000
[we++], ©xC
BYPASS
After
Instruction
PC 00 3406
W6 1802
Data 1800 1000
SR 0000

; Post-increment W6

© 2005-2011 Microchip Technology Inc.

DS70157F-page 167

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

BTST Bit Test f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BTST{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: (f<bitd> >z

Status Affected: z

Encoding: | 1010 | 1011 | bbbf | FFFF FEFFf fffb
Description: Bit ‘bit4’ in file register ‘f’ is tested and the complement of the tested bit is

stored to the Z flag in the STATUS register. The contents of the file
register are not changed. For the bit4 operand, bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit
(bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to be tested.
The '’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words: 1

Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: BTST.B 0x1201, #0x3 ; Set Z = complement of
; bit 3 in 0x1201

Before After
Instruction Instruction
Data 1200 F7FF Data 1200| F7FF
SR 0000 SR| 0002|(z=1)
Exanuﬂe 2: BTST 0x1302, #OX7 ; Set Z = complement of

; bit 7 in 0x1302

Before After
Instruction Instruction
Data 1302| F7FF Data 1302 | F7FF
SR 0002 |(Zz=1) SR| 0000

DS70157F-page 168

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST Bit Test in Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} BTST.C Ws, #bit4
BTST.Z [ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 15]
Operation: For “.C” operation:

(Ws)<bitd> —C
For “.Z” operation (default):

(Ws)<bitd> —Z
Status Affected: ZorC
Encoding: ‘ 1010 ‘ 0011 bbbb Z000 Oppp SSSs

Description: Bit ‘bit4’ in register Ws is tested. If the “.Z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
STATUS register. If the “. C” option of the instruction is specified, the value
of the tested bit is stored to the Carry flag in the STATUS register. In either
case, the contents of Ws are not changed.

For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the word. Either
register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.

The ‘Z' bit selects the C or Z flag as destination.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. Z” operation is assumed.

Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 169

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: BTST.C [WO++], #0x3

Instruction

Before

Instruction
WO 1200 WO
Data 1200| FFF7 Data 1200
SR| 0001|(C=1) SR

Example 2: BTST.Z WO, #0OX7

Before

Instruction
WO | F234 WO
SR| 0000 SR

; Set C = bit 3 in [wO]

’

Instruction

After

1202

FFF7

0000

’

; Set Z

After

F234

0002

; Post-increment w0

= complement of bit 7 in W@

(=1

DS70157F-page 170

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST

Bit Test in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
{label:} BTST.C Ws, Wb
BTST.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wb e [WO ... W15]

For ".C” operation:

(Ws)<(Wb)> —C
For “.Z” operation (default):

(Ws)<(Wb)> —Z
ZorC
| 1010 | 0101 | zww | wooo oppp ssss
The (WD) bit in register Ws is tested. If the “. C” option of the instruction is
specified, the value of the tested bit is stored to the Carry flag in the
STATUS register. If the “. Z” option of the instruction is specified, the

complement of the tested bit is stored to the Zero flag in the STATUS
register. In either case, the contents of Ws are not changed.

Only the four Least Significant bits of Wb are used to determine the bit
number. Bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 15) of the working register.
Register direct or indirect addressing may be used for Ws.

The ‘Z’ bit selects the C or Z flag as destination.

The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. Z” operation is assumed.

1
1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 171

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: BTST.C W2, W3
Before
Instruction
w2 F234
W3 2368
SR 0001|(C=1)
Example 2: BTST.Z [WO++], Wi
Before
Instruction
WO 1200
W1| CCCO
Data 1200 6243
SR 0002|(z=1)

; Set C = bit W3 of w2
After
Instruction
W2| F234
W3 | 2368
SR| 0000
; Set Z = complement of
; bit w1 in [we],
; Post-increment WO
After
Instruction
WO | 1202
W1| CCCO
Data 1200 | 6243
SR| 0000

DS70157F-page 172

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSTS Bit Test/Set f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} BTSTS{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: (f<bitd> —>Z
1 —(f)<bit4>
Status Affected: z
Encoding: | 1010 | 1100 | bbbf | FFFf FEFF Fffb
Description: Bit ‘bit4’ in file register ‘f’ is tested and the complement of the tested bit is

stored to the Zero flag in the STATUS register. The tested bit is then set
to ‘1’ in the file register. For the bit4 operand, bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit

(bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test/set.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

4: The file register ‘f’ must not be the CPU Status register (SR).

Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 173

16-bit MCU and DSC Programmer’s Reference Manual

; Set Z = complement of bit 3 in 0x1201,

Example 1: BTSTS.B 0x1201, #0x3
; then set bit 3 of Ox1201 = 1
Before After
Instruction Instruction
Data 1200| F7FF Data 1200| FFFF
SR 0000 SR| 0002|(z=1)
Example 2: BTSTS 0x808, #15 ; Set Z = complement of bit 15 in 0x808,
; then set bit 15 of 0x808 = 1
Before After
Instruction Instruction
RAMS300 8050 RAM300| 8050
SR 0002|(Zz=1) SR| 0000

DS70157F-page 174

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSTS

Bit Test/Set in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} BTSTS.C Ws, #bit4
BTSTS.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]

bitd € [0 ..

. 15]

For “.C” operation:

(Ws)<bitd> -C
1 -Ws<bit4>

For “.Z” operation (default):
(Ws)<bitd> -2

1 —Ws<bit4>
ZorC
\ 1010 \ 0100 bbbb Z000 Oppp SsSS

Bit ‘bit4’ in register Ws is tested. If the “. Z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
STATUS register. If the “. C” option of the instruction is specified, the value
of the tested bit is stored to the Carry flag in the STATUS register. In both
cases, the tested bit in Ws is set to ‘1’

The ‘b’ bits select the value bit4, the bit position to test/set.
The ‘Z’ bit selects the C or Z flag as destination.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1:
2:
3:

1

1@

This instruction only operates in Word mode. If no extension is
provided, the “. Z" operation is assumed.

If Ws is used as a pointer, it must not contain the address of the
CPU Status register (SR).

In dsPIC33E and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended
Data Space.

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 175

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: BTSTS.C

Before

Instruction

WO

1200

Data 1200

FFF7

SR

0001

Example 2: BTSTS.Z WO, #0x7

WO
SR

Before

(C=1

Instruction

F234

0000

[Wo++], #0Ox3

WO
Data 1200
SR

; Set C

= bit 3 in [WO]

; Set bit 3 in [wO] = 1
; Post-increment w0

After

Instruction

1202

FFFF

0000

; Set Z
; in we,

After

Instruction

WO
SR

F2BC
0002

= complement of bit 7
and set bit 7 in W = 1

(Z=1)

DS70157F-page 176

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL

Call Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X
Syntax: {label:} CALL Expr
Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 € [0 ... 8388606].
Operation: (PC) + 4 —PC
(PC<15:0>) -(TOS)
(W15) + 2 —-W15
(PC<23:16>) —(TOS)
(W15) + 2 W15
lit23 -PC
NOP —lInstruction Register
Status Affected: None
Encoding:
1st word 0000 0010 nnnn nnnn nnnn nnno
2nd word 0000 0000 0000 0000 onnn nnnn
Description: Direct subroutine call over the entire 4-Mbyte instruction program
memory range. Before the CALL is made, the 24-hit return address
(PC + 4) is PUSHed onto the stack. After the return address is
stacked, the 23-bit value ‘lit23’ is loaded into the PC.
The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the lit23 to
be used.
Words: 2
Cycles: 2
Example 1: 026000 CALL _FIR ; Call _FIR subroutine
026004 MOV we, wi
026844 _FIR: MOV #0x400, W2 ; _FIR subroutine start
026846
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
w15 A268 w15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 177

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 072000 CALL _G66 ; call routine _G66
072004 MoV we, wi
Q77A28 _G66: INC W6, [W7++] ; routine start
077A2A
077A2C
Before After
Instruction Instruction
PC 07 2000 PC 07 7A28
W15 9004 W15 9008
Data 9004 FFFF Data 9004 2004
Data 9006 FFFF Data 9006 0007
SR 0000 SR 0000
CALL Call Subroutine
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X
Syntax: {label:} CALL Expr
Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where 1it23 € [0 ... 8388606].
Operation: (PC) + 4 —PC
(PC<15:1>) —»TOS<15:1>, SFA bit -5TOS<0>
(W15) + 2 W15
(PC<23:16>) —»TOS
(W15) + 2 W15
0 —SFA bit
lit23 —-PC
NOP —lInstruction Register
Status Affected: SFA
Encoding:
1st word 0000 0010 nnnn nnnn nnnn nnno
2nd word 0000 0000 0000 0000 onnn nnnn
Description: Direct subroutine call over the entire 4-Mbyte instruction program
memory range. Before the CALL is made, the 24-hit return address
(PC + 4) is PUSHed onto the stack. After the return address is
stacked, the 23-bit value ‘lit23’ is loaded into the PC.
The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the lit23 to
be used.
Words: 2
Cycles: 4

DS70157F-page 178

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: 026000 CALL _FIR ; Call _FIR subroutine
026004 MOV wo, wi
026844 _FIR: MOV #0Xx400, W2 ; _FIR subroutine start
026846 o
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
W15 A268 W15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000
Example 2: 072000 CALL _G66 ; call routine _G66
072004 MoV we, wi
077A28 _G66: INC W6, [W7++] ; routine start
077A2A
077A2C
Before After
Instruction Instruction
PC 07 2000 PC 07 7A28
W15 9004 W15 9008
Data 9004 FFFF Data 9004 2004
Data 9006 FFFF Data 9006 0007
SR 0000 SR 0000

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 179

16-bit MCU and DSC Programmer’s Reference Manual

CALL

Call Indirect Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} CALL Wn
Operands: Wn e [WO ... W15]
Operation: (PC) + 2 -PC
(PC<15:0>) —»TOS
(W15) + 2 W15
(PC<23:16>) »TOS
(W15) + 2 -W15
0 -PC<22:16>
(Wn<15:1>) -PC<15:1>
NOP —instruction Register
Status Affected: None
Encoding: | oooo | o001 0000 0000 | 0000 | ssss
Description: Indirect subroutine call over the first 32K instructions of program memory.
Before the CALL is made, the 24-bit return address (PC + 2) is PUSHed
onto the stack. After the return address is stacked, Wn<15:1> is loaded
into PC<15:1> and PC<22:16> is cleared. Since PC<0> is always ‘0’,
Wn<0> is ignored.
The ‘s’ bits select the source register.
Words: 1
Cycles: 2
Example 1: 001002 CALL Wwo ; Call BOOT subroutine indirectly
001004 ; using WO
001600 _BOOT: MOV #0x400, W2 ; _BOOT starts here
001602 MOV #0x300, W6
Before After
Instruction Instruction
PC 00 1002 PC 00 1600
W0 1600 wo 1600
w15 6F00 w15 6F04
Data 6F00 FFFF Data 6F00 1004
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

DS70157F-page 180

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 004200 CALL W7 ; Call TEST subroutine indirectly

004202 s ; using W7

005500 _TEST: INC Wi, w2 ; _TEST starts here

005502 DEC Wi, W3 ;
Before After

Instruction Instruction
PC 00 4200 PC 00 5500
W7 5500 W7 5500
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 4202
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

CALL

Call Indirect Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} CALL Wn
Operands: Wn e [WO ... W15]
Operation: (PC) +2 —PC
(PC<15:1>) ->TOS, SFA bit -5 TOS<0>
(W15) + 2 W15
(PC<23:16>) —»TOS
(W15) + 2 W15
0 —SFA bit
0 -PC<22:16>
(Wn<15:1>) -PC<15:1>
NOP —instruction Register
Status Affected: SFA
Encoding: | oooo | o001 0000 0000 | 0000 | ssss
Description: Indirect subroutine call over the first 32K instructions of program memory.
Before the CALL is made, the 24-bit return address (PC + 2) is PUSHed
onto the stack. After the return address is stacked, Wn<15:1> is loaded
into PC<15:1> and PC<22:16> is cleared. Since PC<0> is always ‘0’,
Wn<0> is ignored.
The ‘s’ bits select the source register.
Words: 1
Cycles: 4

© 2005-2011 Microchip Technology Inc.

DS70157F-page 181

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: 001002 CALL Wwo ; Call BOOT subroutine indirectly
001004 ; using We
001600 _BOOT: MOV #0x400, W2 ; _BOOT starts here
001602 MOV #0x300, W6
Before After
Instruction Instruction
PC 00 1002 PC 00 1600
WO 1600 WO 1600
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 1004
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000
Example 2. 004200 CALL W7 ; Call TEST subroutine indirectly
004202 ; using w7
005500 _TEST: INC Wi, w2 ; _TEST starts here
005502 DEC W1, w3 ;
Before After
Instruction Instruction
PC 00 4200 PC 00 5500
w7 5500 w7 5500
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 4202
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

DS70157F-page 182

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL.L

Call Indirect Subroutine Long

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X
Syntax: {label:} CALL.L Wn
Operands: Wn e [WO0, W2, W4, W6, W8, W10, W12]
Operation: (PC) +2 —PC,
(PC<15:1>) —»TOS<15:1>, SFA bit -5TOS<0>
(W15)+2 -W15
(PC<23:16>) —TOS,
(W15)+2 —W15
0 —SFA bit,
PC<23> —»PC<23> (see text); (Wn+1)<6:0> -PC<22:16>; (Wn) —
PC<15:0>
NOP —instruction Register
Status Affected: SFA
Encoding: 0000 | 0001 | dwww | w000 0000 | ssss |
Description: Indirect subroutine call to any User program memory address. First, return
address (PC+2) and the state of the Stack Frame Active bit (SFA) is
pushed onto the system stack, after which the SFA bit is cleared.
Then, the LS 7-bits of (Wn+1) are loaded in PC<22:16>, and the 16-bit
value (Wn) is loaded into PC<15:0>.
PC<23> is not modified by this instruction.
The contents of (Wn+1)<15:7> are ignored.
The value of Wn<0> is also ignored and PC<0> is always set to 0.
The ‘s’ bits specify the address of the Wn source register.
The ‘w’ bits specify the address of the Wn+1 source register.
Words: 1
Cycles: 4
Example 1: 026000 CALL.L W4 ; Call _FIR subroutine
026004 MOV we, wi
026844 _FIR: MOV #0x400, W2 ; _FIR subroutine start
026846
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
w4 6844 w4 6844
w5 0002 w5 0002
w15 A268 w15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 183

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

CLR

Clear f or WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} CLR{.B} f
WREG
Operands: fe [0...8191]
Operation: 0 —destination designated by D
Status Affected: None
Encoding: | 1110 | 1111 | eBDf | FFFf | FFFF | FFFF |
Description: Clear the contents of a file register or the default working register WREG.

If WREG is specified, the WREG is cleared. Otherwise, the specified file
register ‘' is cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The '’ bits select the address of the file register.

The extension . B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

The WREG is set to working register WO0.

After

Instruction

; Clear WREG (Word mode)

Note 1:
2:
Words:
Cycles: 1
Example 1: CLR.B RAM200
Before
Instruction
RAM200| 8009 RAM200
SR| 0000 SR
Example 2: CLR WREG
Before
Instruction
WREG| 0600 WREG
SR| 0000 SR

8000

0000

After
Instruction

0000
0000

; Clear RAM200 (Byte mode)

DS70157F-page 184

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

C L R Clear Wd

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} CLR{.B} wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--wd]
Operands: Wd e [WO ... W15]
Operation: 0 -»wd
Status Affected: None
Encoding: | 1110 | 1011 | oeBqq | qddd | dooo | 0000 |
Description: Clear the contents of register Wd. Either register direct or indirect

addressing may be used for Wd.

The ‘B’ bit select byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles: 1
Example 1: CLR.B W2 ; Clear W2 (Byte mode)
Before After
Instruction Instruction
W2| 3333 W2 | 3300
SR| 0000 SR| 0000
Example 2: CLR [Wo++] ; Clear [WO]
; Post-increment w0
Before After
Instruction Instruction
WO | 2300 WO | 2302
Data 2300| 5607 Data 2300 0000
SR| 0000 SR| 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 185

16-bit MCU and DSC Programmer’s Reference Manual

CLR Clear Accumulator, Prefetch Operands

Implemented in: PIC24F | PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: CLR Acc {,[Wx],Wxd} {,[Wy],Wyd} {,AWB}

{label:}

{,IWx] + = kx,Wxd} {,[Wy] + = ky,Wyd}
{.[Wx] — = kx,Wxd} {,[Wy] — = ky,Wyd}
{, W9 + W12],wxd} {[wW1l + W12],Wyd}

Operands: Acc e [AB]
Wx € [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13] + = 2]

Operation: 0 —Acc(A or B)
(IWx]) -Wxd; (Wx) +/— kx -Wx
(Wy]) -Wyd; (Wy) +/—ky —Wy
(Acc(B or A)) rounded -AWB

Status Affected: OA, OB, SA, SB
Encoding: | 1100 | eo11 | Aexx yyii iijj | jjaa |
Description: Clear all 40 bits of the specified accumulator, optionally prefetch

operands in preparation for a MAC type instruction and optionally store
the non-specified accumulator results. This instruction clears the
respective overflow and saturate flags (either OA, SA or OB, SB).

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”. Operand AWB specifies the optional
register direct or indirect store of the convergently rounded contents of
the “other” accumulator, as described in Section 4.14.4 “MAC Write
Back”.

The ‘A’ bit selects the other accumulator used for write back.
The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘i’ bits select the Wx prefetch operation.

The j' bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write Back destination.

Words: 1
Cycles: 1

DS70157F-page 186 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

A, [wW8]+=2, W4, W13 ;

Example 1: CLR
Before
Instruction
w4 F001
w8 2000
w13 C623
ACCA| 000067 2345
ACCB| 005420 3BDD
Data 2000 1221
SR 0000
Example 2. CLR B, [W8]+=2, W6,
Before
Instruction
W6 FO01
W7 C783
w8 2000
w10 3000
w13 4000
ACCA 00 0067 2345
ACCB| 005420 ABDD
Data 2000 1221
Data 3000 FF80
Data 4000 FFC3
SR 0000

Clear ACCA

; Load W4 with [W8], post-inc w8
; Store ACCB to W13

After
Instruction
w4 1221
w8 2002
W13 5420
ACCA| 00 0000 0000
ACCB| 005420 3BDD
Data 2000 1221
SR 0000
[Wi0]+=2, W7, [W13]+=2 ;
After
Instruction
W6 1221
w7 FF80
w8 2002
W10 3002
w13 4002
ACCA| 000067 2345
ACCB| 00 0000 0000
Data 2000 1221
Data 3000 FF80
Data 4000 0067
SR 0000

Clear ACCB

Load W6 with [W8]
Load W7 with [W10]
Save ACCA to [W13]
Post-inc W8,W10,W13

© 2005-2011 Microchip Technology Inc.

DS70157F-page 187

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

CLRWDT

Clear Watchdog Timer

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label’} CLRWDT
None
0 -WDT count register
© -WDT prescaler A count
© -WDT prescaler B count
None
1111 1110 0110 0000 0000 0000

Clear the contents of the Watchdog Timer count register and the
prescaler count registers. The Watchdog Prescaler A and Prescaler B
settings, set by configuration fuses in the FWDT, are not changed.

1
1

CLRWDT

Before
Instruction

s[_o00o]

; Clear Watchdog Timer

After
Instruction

sr[_o00o]

DS70157F-page 188

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

COM Complement f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} COM({.B} f {{WREG}

Operands: fe [0...8191]

Operation: 6 —destination designated by D

Status Affected: N, Z

Encoding: | 1110 | 1110 | 1BDf FEFF FEFF FFf

Description: Compute the 1's complement of the contents of the file register and place

the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘'f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: COM.b RAM200 ; COM RAM200 (Byte mode)
Before After
Instruction Instruction
RAM200| 80FF RAM200| 8000
SR| 0000 SR| 0002 ((2)
Examgle 2: COM RAM400, WREG ; COM RAM400 and store to WREG

; (Word mode)

Before After
Instruction Instruction
WREG| 1211 WREG| F7DC
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0008 |(N=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 189

16-bit MCU and DSC Programmer’s Reference Manual

COM Complement Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} COM{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [(Wd--]
[++Ws], [++Wd]
[-ws], [-Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: W —->Wd
Status Affected: N, Z
Encoding: ‘ 1110 ‘ 1010 ‘ 1Bqq | qddd ‘ dppp ‘ SSSs |
Description: Compute the 1's complement of the contents of the source register Ws

and place the result in the destination register Wd. Either register direct or
indirect addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: COM.B [Wo++], [Wl++] ; COM [W@] and store to [W1] (Byte mode)
; Post-increment WO, Wi

Before After
Instruction Instruction
WO 2301 WO 2302
w1 2400 w1 2401
Data 2300 5607 Data 2300 5607
Data 2400| ABCD Data 2400| ABA9
SR 0000 SR 0008 | (N=1)

DS70157F-page 190 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: COM WO, [Wi++] ; COM WO and store to [W1] (Word mode)
; Post-increment Wi
Before After
Instruction Instruction
W0| D004 Wwo| D004
w1 1000 w1 1002
Data 1000| ABA9 Data 1000| 2FFB
SR 0000 SR 0000
CP Compare f with WREG, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} CP{.B} f
Operands: fe [0...8191]
Operation: (H — (WREG)
Status Affected: DC,N, 0V, Z,C
Encoding: | 1110 | ee11 | oeBof | fFFf | FFFF | FFFF |
Description: Compute (f) — (WREG) and update the STATUS register. This instruction
is equivalent to the SUBWF instruction, but the result of the subtraction is
not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The '’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1(@)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: CP.B RAM400 ; Compare RAM400 with WREG (Byte mode)
Before After
Instruction Instruction
WREG| 8823 WREG| 8823
RAM400 0823 RAM400 0823 “
SR 0000 SR 0003 | (C=1)
Example 2: CcP 0x1200 ; Compare (0x1200) with WREG (Word mode)
| w -
Before After 8 a
Instruction Instruction 2 S
WREG|[2377 WREG|[2377 'g §
Data 1200 | 2277 Data 1200| 2277)
SR| 0000 SR| 0008 |(N=1) a =

© 2005-2011 Microchip Technology Inc. DS70157F-page 191

16-bit MCU and DSC Programmer’s Reference Manual

CP

Compare Wb with lit5, Set Status Flags

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

{label} CP{B} Wb, #lits

Wb € [WO ... W15]

litGe [0..31]

(Wb) — lit5

DC, N, OV, Z, C

\ 1110 \ 0001 \ Owww WBOO 011k kkkk

Compute (Wb) — lit5, and update the STATUS register. This instruction is
equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb.

The ‘W’ bits select the address of the Wb base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note:

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

CP.B W4, #0x12

|
w4
SR

CP

W4
SR

Before
nstruction

7711
0000

W4, #0x12

Before
Instruction

7713
0000

; Compare W4 with 0x12 (Byte mode)

After

Instruction

w4

7711

SR

0008

(N=1)

; Compare W4 with 0x12 (Word mode)

W4
SR

After

Instruction

7713

0001] (C =1)

DS70157F-page 192

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CP Compare Wb with lit8, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} CP{.B} Wh, #lit8
Operands: Wb e [WO ... W15]
it8e [O ...255]
Operation: (Wb) — lit8
Status Affected: DC,N,0QV, Z, C
Encoding: | 1110 | 0001 | Owww wBkk k11k kkkk
Description: Compute (Wb) — lit8, and update the STATUS register. This instruction is

equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb.

The ‘W’ bits select the address of the Wb base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles:
Example 1: CP.B W4, #0x12 ; Compare W4 with 0x12 (Byte mode)
Before After
Instruction Instruction
w4 7711 W4 7711
SR| 0000 SR| 0009|(N,C=1)
Examgle 2: CcP W4, #0x12 ; Compare W4 with 0x12 (Word mode)
Before After
Instruction Instruction
W4 7713 W4 7713
SR 0000 SR 0001 |(C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 193

16-bit MCU and DSC Programmer’s Reference Manual

CP

Compare Wb with Ws, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} CP{.B} Wh, Ws
[Ws]
[Ws++]
[Ws-]
[++Ws]
[--Ws]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]

Operation: (Wb) — (Ws)

Status Affected: DC,N,0V, Z,C

Encoding: ‘ 1110 ‘ 0001 | Owww wBOO Oppp SSSS

Description: Compute (Wb) — (Ws), and update the STATUS register. This instruction is

equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Ws.

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: CP.B WO, [Wil++] ; Compare [W1] with WO (Byte mode)

; Post-increment wi

Before After

Instruction Instruction
WO0| ABA9 WO0| ABA9
W1| 2000 w1l 2001
Data 2000 | D004 Data 2000| D004
SR| 0000 SR| 0009|(N,C=1)

DS70157F-page 194

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: cpP W5, W6 ; Compare W6 with W5 (Word mode)

Before After
Instruction Instruction
W5| 2334 W5 2334
W6| 8001 W6 | 8001
SR| 0000 SR| 000C|(N,OV=1)

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 195

16-bit MCU and DSC Programmer’s Reference Manual

CPO Compare f with 0x0, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} CPO{.B} f

Operands: fe [0...8191]

Operation: (f) — Ox0

Status Affected: DC,N, 0V, Z,C

Encoding: | 1110 | oee1e | esof | ffFf | fFFF | FFFF |

Description: Compute (f) — 0x0 and update the STATUS register. The result of the

subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The 'f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: CPO.B RAM100 ; Compare RAM100 with Ox0 (Byte mode)
Before After
Instruction Instruction
RAM100| 44C3 RAM100| 44C3
SR 0000 SR 0009 | (N,C=1)
Example 2: CPO® OX1FFE ; Compare (Ox1FFE) with 0x0 (Word mode)
Before After
Instruction Instruction
Data 1FFE 0001 Data 1FFE 0001
SR 0000 SR 0001|(C=1)

DS70157F-page 196 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPO Compare Ws with 0x0, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} CPO{.B} Ws
[Ws]
[Ws++]
[(Ws--]
[++Ws]
[--Ws]
Operands: Ws e [WO ... W15]
Operation: (Ws) — 0x0000
Status Affected: DC,N,QV, Z, C
Encoding: | 1110 | oeeee | o000 | 0800 | @ppp | ssss |
Description: Compute (Ws) — 0x0000 and update the STATUS register. The result of
the subtraction is not stored. Register direct or indirect addressing may be
used for Ws.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: CPO.B [W4--] ; Compare [W4] with 0 (Byte mode)
; Post-decrement w4
Before After
Instruction Instruction
w4 1001 w4 1000
Data 1000| 0034 Data 1000| 0034
SR 0000 SR 0001|(C=1)
Example 2: CPO [--w5] ; Compare [--W5] with © (Word mode) “
Before After
Instruction Instruction O
W5[2400 W5 [23FE 37
Data 23FE| 9000 Data 23FE| 9000 gg
SR| 0000 SR| 0009 |(N,C=1) 'g_ 2-
o0
>
T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 197

16-bit MCU and DSC Programmer’s Reference Manual

CPB

Compare f with WREG using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} CPB{.B} f

Operands: fe [0...8191]

Operation: (f) — (WREG) — (C)

Status Affected: DC,N, 0V, Z,C

Encoding: | 1110 | oee11 | 1Bef | fFff FFf Fff

Description: Compute (f) — (WREG) — (6), and update the STATUS register. This

instruction is equivalent to the SUBB instruction, but the result of the

subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The 'f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO0.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1

Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: CPB.B RAM400 ; Compare RAM400 with WREG using C (Byte mode)

Before After
Instruction Instruction
WREG| 8823 WREG| 8823
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0008|(N=1)

Example 2: CPB 0x1200 ; Compare (0x1200) with WREG using C (Word mode)

Before After

Instruction Instruction
WREG| 2377 WREG 2377
Data 1200| 2377 Data 1200| 2377
SR| 0001|(C=1) SR| 0001|(C=1)

DS70157F-page 198

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB

Compare Wb with lit5 using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: {label:} CPB{.B} Wh, #lit5

Operands: Wb e [WO ... W15]
lite [0...31]

Operation: (Wb) — lit5 — (C)

Status Affected: DC,N,0QV, Z, C

Encoding: | 1110 | 0001 | dwww wB0O 011k kkkk

Description: Compute (Wb) — lit5 — (E), and update the STATUS register. This
instruction is equivalent to the SUBB instruction, but the result of the
subtraction is not stored. Register direct addressing must be used for Wb.

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘K’ bits provide the literal operand, a five bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.
Words:
Cycles: 1
Example 1: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)
Before After
Instruction Instruction

w4 7711 w4 7711

SR| 0001 |(C=1) SR| 0008 |(N=1)
Example 2: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before After

Instruction Instruction
w4 7711 w4 7711
SR| 0000 SR| 0008|(N=1)
Example 3: CPB w12, #OX1F ; Compare W12 with 0x1F using C (Word mode)
Before After
Instruction Instruction
Ww12| 0020 Ww12| 0020
SR| 0002|(Zz=1) SR| 0003|(zZ,C=1)
Example 4: CPB W12, #0Ox1F ; Compare W12 with Ox1F using C (Word mode)
Before After
Instruction Instruction
Ww12| 0020 w12| 0020
SR| 0003|(Zz,C=1) SR| 0001 |(C=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 199

O
DS
0w wn
es
_E'C
=9
)
>

m:

16-bit MCU and DSC Programmer’s Reference Manual

CPB

Compare Wb with lit8 using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} CPB{.B} Wh, #lit8

Operands: Wb e [WO ... W15]
lit8e [0 ... 255]

Operation: (Wb) — Iit8 — (C)

Status Affected: DC,N,QV, Z,C

Encoding: | 1110 | 0001 | dwww wBkk k11k kkkk

Description: Compute (Wb) — Iit8 — (E), and update the STATUS register. This
instruction is equivalent to the SUBB instruction, but the result of the
subtraction is not stored. Register direct addressing must be used for Whb.

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘K’ bits provide the literal operand, a five bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.
Words:
Cycles: 1
Example 1: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)
Before After
Instruction Instruction

w4 7711 w4 7711

SR| 0001 |(C=1) SR| 0008 |(N=1)
Example 2: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before After

Instruction Instruction
w4 7711 w4 7711
SR| 0000 SR| 0008|(N=1)
Example 3: CPB W12, #Ox1F ; Compare W12 with ©x1F using C (Word mode)
Before After
Instruction Instruction
W12| 0020 Ww12| 0020
SR| 0002|(Zz=1) SR| 0003|(zZ,C=1)
Example 4: CPB W12, #OX1F ; Compare W12 with Ox1F using C (Word mode)
Before After
Instruction Instruction
Ww12| 0020 wW12| 0020
SR| 0003|(zZ,C=1) SR| 0001|(C=1)

DS70157F-page 200

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB Compare Ws with Wb using Borrow, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} CPB{.B} Wh, Ws
[Ws]
[Ws++]
[Ws--]
[++Ws]
[--Ws]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Operation: (Wb) — (Ws) — (E)
Status Affected: DC, N, OV, Z,C
Encoding: ‘ 1110 ‘ 0001 ‘ Twww ‘ wB0O Oppp Ssss
Description: Compute (Wb) — (Ws) — (E), and update the STATUS register. This

instruction is equivalent to the SUBB instruction, but the result of the
subtraction is not stored. Register direct addressing must be used for Wh.
Register direct or indirect addressing may be used for Ws.

The ‘W’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the Ws source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: CPB.B WO, [Wil++] ; Compare [W1] with WO using C (Byte mode)
; Post-increment wi

Before After
Instruction Instruction
WO | ABA9 W0 | ABA9
w1l 1000 w1l 1001
Data 1000| DOA9 Data 1000| DOA9
SR 0002 (z=1) SR 0008 | (N=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 201

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: CPB.

WO
w1
Data 1000
SR

Example 3: CPB

w4
W5
SR

B WO, [Wi++]

; Compare [W1] with WO using C (Byte mode)
; Post-increment Wi

Before After
Instruction Instruction
ABA9 WO | ABA9
1000 w1l 1001
DOA9 Data 1000| DOA9
0001 {(C=1) SR 0001((C=1)
W4, W5 ; Compare W5 with W4 using C (Word mode)
Before After
Instruction Instruction
4000 W4 | 4000
3000 W5| 3000
0001 |{(C=1) SR 0001((C=1)

DS70157F-page 202

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPBEQ

Compare Wb with Wn, Branch if Equal (Wb = Wn)

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E

X X

{label:} CPBEQ{.B} Wh, Whn, Expr

Wb e [WO ... W15]
Wn e [WO ... W15]

(Wb) — (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr] —PC and NOP —instruction Register

None
‘ 1110 ‘ 0111 ‘ Twww | wBnn ‘ nnnn ‘ ssss \

Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded, the PC is recalculated based on the 6-bit signed offset
specified by Expr, and on the next cycle, a NOP is executed instead. If
(Wb) # (Wn), the next instruction is executed as normal (branch is not
taken).

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

1
1 (5 if branch taken)

002000 HERE:CPBEQ.B WO, W1, BYPASS; If WO = Wl (Byte mode),
002002 ADD W2, W3, W4; Perform branch to BYPASS

002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2008
WO 1000 WO 1000
w1 1000 w1 1000
SR 0000 SR 0002|(z=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 203

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

CPBGT Signed Compare Wb with Wn, Branch if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} CPBGT{.B} Wh, Whn, Expr
Operands: Wb e [WO ... W15]

Wn e [WO ... W15]
Operation: (Wb) — (Wn)

If (Wb) = (Wn), [(PC+2) + 2 * Expr] -PC and NOP —instruction Register
Status Affected: None
Encoding: ‘ 1110 ‘ 0110 | Owww | wBnn ‘ nnnn ‘ SSSsS |
Description: Compare the contents of Wb with the contents of Wn by performing the

subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded, the PC is recalculated based on the 6-bit signed offset
specified by Expr, and on the next cycle, a NOP is executed instead. If
(Wb) # (Wn), the next instruction is executed as normal (branch is not
taken).

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (5 if branch taken)
Example 1: 002000 HERE: CPBGT.B WO, W1, BYPASS ; If WO > Wl (Byte mode),
002002 ADD w2, W3, w4 ; Perform branch to BYPASS
002004
002006
002008 BYPASS
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2008
WO 30FF WO OOFF
w1l 26FE w1l 26FE
SR 0000 SR 0000 (N, C=0)

DS70157F-page 204 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPBLT signed Compare Wb with Wn, Branch if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} CPBLT{.B} Wh, Whn, Expr
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)

If (Wb) = (Wn), [(PC+2) + 2 * Expr] —PC and NOP —instruction Register
Status Affected: None
Encoding: ‘ 1110 | 0110 ‘ Iwww | wBnn ‘ nnnn ‘ SSSS ‘

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded, the PC is recalculated based on the 6-bit signed offset specified
by Expr, and on the next cycle, a NOP is executed instead. If (Wb) = (Wn),
the next instruction is executed as normal (branch is not taken).

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (5 if branch taken)

Example 1: 002000 HERE: CPBLT.B W8, W9, BYPASS; If W8 < W9 (Byte mode),

002002 ADD W2, W3, W4; Perform branch to BYPASS
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2008
w8 OOFF w8 OOFF
W9 26FE W9 26FE
SR 0000 SR 0008 |(N =1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 205

16-bit MCU and DSC Programmer’s Reference Manual

CPBNE

Compare Wb with Wn, Branch if Not Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} CPBNE{.B} Wh, Whn, Expr
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr] -PC and NOP —instruction Register
Status Affected: None
Encoding: | 1110 ‘ 0111 ‘ Owww | wBnn | nnnn | SSSS |
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next
instruction (fetched during the current instruction execution) is discarded,
the PC is recalculated based on the 6-bit signed offset specified by Expr,
and on the next cycle, a NOP is executed instead. If (Wb) # (Wn), the next
instruction is executed as normal (branch is not taken).
The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (5 if branch taken)
Example 1: 002000 HERE: CPBNE.B W2, W3, BYPASS ; If w2 != w3 (Byte mode),
002002 ADD W2, W3, W4 ; Perform branch to BYPASS
002004 .
002006
002008 BYPASS:
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 200A
w2 O0OFF w2 O0OFF
W3 26FE W3 26FE
SR 0000 SR 0001 [(C=1)

DS70157F-page 206

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSEQ

Compare Wb with Wn, Skip if Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X
Syntax: {label:} CPSEQ{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1110 | 6111 | lwww wBe® | 0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. If
(Wb) # (Wn), the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE:CPSEQ.BWO, Wili; If wWo = Wl (Byte mode),
002002GOTOBYPASS; skip the GOTO
002004 L
002006
002008 BYPASS:
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
WO 1001 Wo 1001
w1l 1000 w1l 1000
SR 0000 SR 0000
Example 2: 018000 HERE: CPSEQ W4, W8; If W4 = W8 (Word mode),

018002 CALL _FIR; skip the subroutine call
018006
018008
Before After

Instruction Instruction | w -
PC 01 8000 PC 01 8006 § E
w4 3344 w4 3344 =2
w8 3344 w8 3344 =29
SR 0002](Z = 1) SR 0002](Z = 1) o g'

”n

© 2005-2011 Microchip Technology Inc.

DS70157F-page 207

16-bit MCU and DSC Programmer’s Reference Manual

CPSEQ Compare Wb with Wn, Skip if Equal (Wb = Wn)
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X
Syntax: {label:} CPSEQ{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)

Skip if (Wb) = (Wn)
Status Affected: None
Encoding: ‘ 1110 ‘ 0111 ‘ Iwww wB0OO ‘ 0001 ‘ SSSs ‘

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. If
(Wb) # (Wn), the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE:CPSEQ.BWO, W1l; If WO = W1 (Byte mode),
002002GOTOBYPASS; skip the GOTO

002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
WO 1001 WO 1001
w1 1000 w1 1000
SR 0000 SR 0000

DS70157F-page 208 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 018000 HERE: CPSEQ W4, W8; If W4 = W8 (Word mode),

018002 CALL _FIR; skip the subroutine call
018006
018008
Before After

Instruction Instruction
PC 01 8000 PC 01 8006
w4 3344 w4 3344
w8 3344 w8 3344
SR 0002|(z=1) SR 0002 |(Zz=1)

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 209

16-bit MCU and DSC Programmer’s Reference Manual

CPSGT signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} CPSGT{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) > (Wn)
Status Affected: None
Encoding: | 1110 | o110 | owww wBo0 | 0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the

subtraction (Wb) — (Wn), but do not store the result. If (Wb) > (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise,
the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSGT.B WO, Wi; If Wo > Wi (Byte mode),
002002 GOTO BYPASS; skip the GOTO
002006
002008 .
00200A BYPASS .
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 2006
WO OOFF WO OOFF
w1 26FE w1 26FE
SR 0009 |(N,C=1) SR 0009 |(N,C=1)
Example 2: 018000 HERE: CPSGT w4, W5; If w4 > w5 (Word mode),
018002 CALL _FIR; skip the subroutine call
018006
018008
Before After
Instruction Instruction
PC 01 8000 PC 01 8002
W4 2600 W4 2600
W5 2600 W5 2600
SR 0004 |(OV =1) SR 0004 |(OV =1)

DS70157F-page 210 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSGT

Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label’} CPSGT{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) > (Wn)
Status Affected: None
Encoding: | 1110 | o110 | owww wBo0 | 0001 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) > (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise,
the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.
Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSGT.B WO, Wi; If W > Wi (Byte mode),
002002 GOTO BYPASS; skip the GOTO
002006
002008 .
00200A BYPASS .
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 2006
WO OOFF WO OOFF
w1l 26FE w1l 26FE
SR 0009 |(N, C=1) SR 0009 (N, C=1)
Example 2: 018000 HERE: CPSGT w4, W5; If w4 > w5 (Word mode),
018002 CALL _FIR; skip the subroutine call
018006
Before After
Instruction Instruction c? —_
PC 01 8000 PC 01 8002 7] E
w4 2600 W4 2600 ‘-_3 c
w5 2600 w5 2600 =29
SR 0004 ((OV =1) SR 0004 ((OV =1) g g
(7))

© 2005-2011 Microchip Technology Inc. DS70157F-page 211

16-bit MCU and DSC Programmer’s Reference Manual

CPSLT

Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

{label:} CPSLT{.B} Wh, Wn

Wb e [WO ... W15]

Wn € [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) < (Wn)

None

\ 1110 | 0110 \ Lwww WBOO 0000 \ ssss \

Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) < (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise, the
next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note:

The extension .B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

1

1 (2 or 3 if skip taken)

002000 HERE: CPSLT.B W8, W9; If W8 < W9 (Byte mode),
002002 GOTO BYPASS; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After
Instruction Instruction

PC 00 2000 PC 00 2002
W8 OOFF w8 OOFF
W9 26FE W9 26FE

SR 0008 |(N=1) SR 0008 |(N =1)
018000 HERE: CPSLT W3, W6; If W3 < w6 (Word mode),
018002 CALL _FIR; skip the subroutine call
018006

018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8006

W3 2600 W3 2600

W6 3000 W6 3000

SR 0000 SR 0000

DS70157F-page 212

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSLT

Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} CPSLT{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) < (Wn)
Status Affected: None
Encoding: | 1110 | 0110 | lwww wB0O 0001 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) < (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise, the
next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSLT.B W8, W9; If W8 < W9 (Byte mode),
002002 GOTO BYPASS; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
W8 O0OFF w8 OOFF
W9 26FE w9 26FE
SR 0008 |(N =1) SR 0008 [(N=1)
Example 2: 018000 HERE: CPSLT w3, W6; If W3 < W6 (Word mode),
018002 CALL _FIR; skip the subroutine call
018006
018008
Before After
Instruction Instruction
PC 01 8000 PC 01 8006
W3 2600 W3 2600
W6 3000 W6 3000
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 213

uononasuj

O
o
n
2]
=
T
=
o
>
7]

16-bit MCU and DSC Programmer’s Reference Manual

CPSNE Signed Compare Wb with Wn, Skip if Not Equal (Wb = Wn)
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} CPSNE{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)

Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1110 | oe111 | oww wBo0 | 0000 | ssss |

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) # (Wn), the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. Otherwise, the next
instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSNE.B W2, W3 ; If W2 != W3 (Byte mode),

002002 GOTO BYPASS ; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After

Instruction Instruction
PC 00 2000 PC 00 2006
w2 00FF w2 O00OFF
W3 26FE W3 26FE
SR 0001|(C=1) SR 0001|(C=1)

Example 2: 018000 HERE: CPSNE W0, W8 ; If WO != W8 (Word mode),

018002 CALL _FIR ; skip the subroutine call
018006

018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8002

WO 3000 WO 3000

w8 3000 w8 3000

SR 0000 SR 0000

DS70157F-page 214 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSNE

Signed Compare Wb with Wn, Skip if Not Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} CPSNE{.B} Wh, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1110 | oe111 | oww wBo0 | 0001 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) # (Wn), the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. Otherwise, the next
instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSNE.B W2, W3 ; If W2 != W3 (Byte mode),

002002 GOTO BYPASS ; skip the GOTO

002006

002008

00200A BYPASS:

00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 2006

w2 O0OFF w2 OOFF

W3 26FE W3 26FE

SR 0001 |(C=1) SR 0001 [(C=1)
Example 2: 018000 HERE: CPSNE W@, W8 ; If WO != W8 (Word mode),

CALL _FIR

’

018002
018006
018008
Before
Instruction
PC 01 8000
WO 3000
w8 3000
SR 0000

PC
WO
w8
SR

After
Instruction

01 8002

3000

3000

0000

; skip the subroutine call

© 2005-2011 Microchip Technology Inc.

DS70157F-page 215

O
DS
0w wn
es
_E'C
=9
)
>

m:

16-bit MCU and DSC Programmer’s Reference Manual

DAW.B

Decimal Adjust Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} DAW.B Wn
Operands: Wn e [WO ... W15]
Operation: If (Wn<3:0>>9) or (DC =1)
(Wn<3:0>) + 6 -Wn<3:0>
Else
(Wn<3:0>) -Wn<3:0>
If (Wn<7:4>>09)or(C=1)
(Wn<7:4>) + 6 -5Wn<7:4>
Else
(Wn<7:4>) -Wn<7:4>
Status Affected: C
Encoding: | 1111 | 1101 0100 0000 0000 ssss
Description: Adjust the Least Significant Byte in Wn to produce a binary coded decimal

(BCD) result. The Most Significant Byte of Wn is not changed, and the
Carry flag is used to indicate any decimal rollover. Register direct
addressing must be used for Wn.

The ‘s’ bits select the source/destination register.

This instruction is used to correct the data format after two
packed BCD bytes have been added.
This instruction operates in Byte mode only and the .B
extension must be included with the opcode.

; Decimal adjust wO

WO
SR

After

Instruction

7720

0002|(DC = 1)

; Decimal adjust W3

Note 1:
2:
Words:
Cycles: 1
Example 1: DAW.B WO
Before
Instruction
WO | 771A
SR| 0002 ((DC=1)
Example 2: DAW.B W3
Before
Instruction
W3 | 77AA
SR| 0000

w3
SR

After

Instruction

7710

0001

(C=1)

DS70157F-page 216

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

D EC Decrement f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} DEC{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: (f) — 1 —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1110 | 1101 | oBDf FrFF FFf FEFF

Description: Subtract one from the contents of the file register and place the result in the

destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WRERG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: DEC.B 0x200 ; Decrement (0x200) (Byte mode)
Before After
Instruction Instruction
Data 200| 80FF Data 200| 8O0FE
SR| 0000 SR| 0009 |(N,C=1)
Example 2: DEC RAM400, WREG ; Decrement RAM400 and store to WREG

; (Word mode)

Before After
Instruction Instruction
WREG 1211 WREG 0822
RAMA400 0823 RAM400 0823
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 217

16-bit MCU and DSC Programmer’s Reference Manual

DEC

Decrement Ws

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
{label:} DEC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

(Ws) -1 -wd
DC,N,0V, Z,C
‘ 1110 ‘ 1001 ‘ 0Bqq | qddd ‘ dppp | SSsSS ‘

Subtract one from the contents of the source register Ws and place the
result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0" for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

1
1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: DEC.B [W7++], [W8++] ; DEC [W7] and store to [W8] (Byte mode)

w7
w8
Data 2300
Data 2400
SR

; Post-increment W7, W8

Before After
Instruction Instruction
2301 w7 2302
2400 w8 2401
5607 Data 2300 5607
ABCD Data 2400| AB55
0000 SR 0000

DS70157F-page 218

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: DEC W5, [W6++] ; Decrement W5 and store to [W6] (Word mode)
; Post-increment W6
Before After

Instruction Instruction
W5| D004 W5| D004
W6 2000 W6 2002
Data 2000 | ABA9 Data 2000 D003

SR 0000 SR 0009 | (N,C=1)

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 219

16-bit MCU and DSC Programmer’s Reference Manual

DECZ Decrement f by 2

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} DEC2{B} f {{\WREG}

Operands: fe [0...8191]

Operation: () — 2 —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1110 | 1101 | 1BDf FEFF FEFF FEFF

Description: Subtract two from the contents of the file register and place the result in the

destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WRERG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: DEC2.B 0x200 ; Decrement (0x200) by 2 (Byte mode)
Before After
Instruction Instruction
Data 200| 80FF Data 200| 80FD
SR| 0000 SR| 0009 [(N,C=1)
Example 2: DEC2 RAM400, WREG ; Decrement RAM400 by 2 and
; store to WREG (Word mode)
Before After
Instruction Instruction
WREG 1211 WREG 0821
RAM400 0823 RAM400 0823
SR 0000 SR 0000

DS70157F-page 220 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

DECZ Decrement Ws by 2

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} DEC2{.B} Ws, wd
[ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++wd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: (Ws) -2 -Wd
Status Affected: DC,N,0QV, Z, C
Encoding: ‘ 1110 ‘ 1001 ‘ 1Bqq gddd dppp SSSS
Description: Subtract two from the contents of the source register Ws and place the

result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: DEC2.B [W7--], [wW8--]; DEC [W7] by 2, store to [W8] (Byte mode)
; Post-decrement W7, W8

Before After
Instruction Instruction
w7 2301 w7 2300
w8 2400 W8 | 23FF
Data 2300 0107 Data 2300 0107
Data 2400| ABCD Data 2400| ABFF
SR 0000 SR 0008 |(N = 1)

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 221

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: DEC2 W5,

W5
W6
Data 1000
SR

Before
Instruction

[W6++]

D004

1000

ABA9

0000

; DEC W5 by 2, store to [W6] (Word mode)
; Post-increment W6

W5
W6
Data 1000
SR

After
Instruction

D004
1002
D002
0009

(N,C=1)

DS70157F-page 222

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

DISI

Disable Interrupts Temporarily

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} DislI #lit14
Operands: litl4 e [0...16383]
Operation: litl4 —>DISICNT
1 —DISI
Disable interrupts for (lit14 + 1) cycles
Status Affected: None
Encoding: 1111 | 1100 | 00kk | kkkk | kkkk | Kkkk |
Description: Disable interrupts of priority O through priority 6 for (lit14 + 1) instruction
cycles. Priority 0 through priority 6 interrupts are disabled starting in the
cycle that DISI executes, and remain disabled for the next (lit 14) cycles.

The lit14 value is written to the DISICNT register, and the DISI flag

(INTCON2<14>) is set to ‘1". This instruction can be used before

executing time critical code, to limit the effects of interrupts.

Note 1: This instruction does not prevent priority 7 interrupts and traps
from running. See the specific device family reference manual
for details.

2: This instruction does not prevent any interrupts when the
device is in Sleep mode.
Words:
Cycles: 1
Example 1: 002000 HERE: DISI #100 ; Disable interrupts for 101 cycles
002002 ; next 100 cycles protected by DISI
002004
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
DISICNT 0000 DISICNT 0100
INTCON2 0000 INTCON2 4000 | (DISI = 1)
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 223

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

DIV.S

Signed Integer Divide

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X

{label:} DIV.S{W} Wm, Wn
DIV.SD Wm, Wn

Wm e [WO ... W15] for word operation
Wm e [WO, W2, W4 ... W14] for double operation
Wne [W2 ... W15]

For word operation (default):
Wm —WO0
If (Wm<15>=1):
OxFFFF —-W1
Else:
0x0 —»W1
W1:W0 / Wn W0
Remainder -W1
For double operation (DIV.SD):
Wm + 1:.Wm —-W1:W0
W1:W0 / Wn W0
Remainder -W1

N, 0V, Z,C

1101 \ 1000 \ ottt \ tvvv Voo \ SSSs \

Iterative, signed integer divide, where the dividend is stored in Wm (for a
16-bit by 16-bit divide) or Wm + 1:Wm (for a 32-bit by 16-bit divide) and
the divisor is stored in Wn. In the default word operation, Wm is first
copied to WO and sign-extended through W1 to perform the operation. In
the double operation, Wm + 1:Wm is first copied to W1:WO0. The 16-bit
quotient of the divide operation is stored in WO, and the 16-bit remainder
is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The QV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is
‘0’ and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the most significant word of the dividend for the double
operation. These bits are clear for the word operation.

The ‘v’ bits select the least significant word of the dividend.

The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-bit).

The ‘s’ bits select the divisor register.

DS70157F-page 224

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Note 1: The extension .D in the instruction denotes a double word

(32-bit) dividend rather than a word dividend. You may use a
.W extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be
represented in 16 bits. When this occurs for the double
operation (DIV.SD), the OV Status bit will be set and the
quotient and remainder should not be used. For the word
operation (DIV.S), only one type of overflow may occur
(Ox8000/0xFFFF = + 32768 or 0x00008000), which allows the
OV Status bit to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle

boundary.
Words: 1
Cycles: 18 (plus 1 for REPEAT execution)
Example 1: REPEAT #17 ; Execute DIV.S 18 times

DIV.S W3, w4 ; Divide W3 by w4
; Store quotient to WO, remainder to Wil

Before After

Instruction Instruction
WO 5555 WO0| 013B
w1 1234 w1 0003
w3 3000 w3 3000
w4 | 0027 w4 | 0027
SR 0000 SR 0000

Example 2: REPEAT #17 ; Execute DIV.SD 18 times

DIV.SD WO, W12 ; Divide W1:WO by wi2
; Store quotient to WO, remainder to Wl

Before After
Instruction Instruction
WO 2500 WO0| FA6B
W1| FF42 W1| EFO00
w12 2200 w12 2200
SR 0000 SR 0008 | (N =1)

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 225

16-bit MCU and DSC Programmer’s Reference Manual

DIV.U

Unsigned Integer Divide

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} DIV.U{W} Wm, Wn

DIV.UD Wm, Wn

Wm e [WO ... W15] for word operation
Wm e [WO, W2, W4 ... W14] for double operation
Wne [W2...W15]

For word operation (default):
Wm —WO0

0x0 -»W1
W1:W0/Wn —-WO0
Remainder -W1

For double operation (DIV.UD):

Wm + 1:Wm —W1:W0
W1:W0/Wns —-WO0
Remainder -W1

N, OV, Z,C

1101

1000 \ 1ttt \ tvvv \ vWeO \ ssSS \

Iterative, unsigned integer divide, where the dividend is stored in Wm (for
a 16-bit by 16-bit divide), or Wm + 1:Wm (for a 32-bit by 16-bit divide) and
the divisor is stored in Wn. In the word operation, Wm is first copied to WO
and W1 is cleared to perform the divide. In the double operation,

Wm + 1:Wm is first copied to W1:WO0. The 16-bit quotient of the divide
operation is stored in WO, and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will always be cleared. The OV flag will be set if the
divide operation resulted in an overflow and cleared otherwise. The Z flag
will be set if the remainder is ‘Q’ and cleared otherwise. The C flag is used
to implement the divide algorithm and its final value should not be used.
The ‘t’ bits select the most significant word of the dividend for the double

operation.

These bits are clear for the word operation.

The ‘v’ bits select the least significant word of the dividend.
The ‘W’ bit selects the dividend size (‘0" for 16-bit, ‘1’ for 32-bit).
The ‘s’ bits select the divisor register.

Note 1:
2:
3:
4:
1

The extension . D in the instruction denotes a double word
(32-bit) dividend rather than a word dividend. You may use a
.W extension to denote a word operation, but it is not required.

Unexpected results will occur if the quotient can not be
represented in 16 bits. This may only occur for the double
operation (DIV.UD). When an overflow occurs, the OV Status
bit will be set and the quotient and remainder should not be
used.

Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

This instruction is interruptible on each instruction cycle
boundary.

18 (plus 1 for REPEAT execution)

DS70157F-page 226

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1:

Example 2:

REPEAT #17 ; Execute DIV.U 18 times
DIV.U W2, w4 ; Divide W2 by w4
; Store quotient to WO, remainder to Wil

Before After
Instruction Instruction

WO 5555 WO 0040

W1 1234 W1 0000

W2 8000 W2 8000

w4 | 0200 w4 | 0200

SR| 0000 SR| 0002(Z=1)
REPEAT #17 ; Execute DIV.UD 18 times

DIV.UD W10, W12 ; Divide W11:W10 by W12
; Store quotient to WO, remainder to Wl

Before After
Instruction Instruction
WO0| 5555 WO| O01F2
w1 1234 W1i| 0100
W10| 2500 W10| 2500
W1l | 0042 W11 | 0042
W12| 2200 W12| 2200
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 227

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

DIVF Fractional Divide

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label:} DIVF Wm, Wn
Operands: Wme [WO ... W15]
Wne [W2 ... W15]
Operation: 0x0 —»WO0
Wm —-W1

W1:W0/Wn —WO0
Remainder -W1

Status Affected: N, QV, Z,C

Encoding: 1101 1001 ottt tooeo 0000 SSSS

Description: Iterative, signed fractional 16-bit by 16-bit divide, where the dividend is
stored in Wm and the divisor is stored in Wn. To perform the operation,
WO is first cleared and Wm is copied to W1. The 16-bit quotient of the
divide operation is stored in WO, and the 16-bit remainder is stored in W1.
The sign of the remainder will be the same as the sign of the dividend.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is
‘0’ and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the dividend register.
The ‘s’ bits select the divisor register.

Note 1: For the fractional divide to be effective, Wm must be less than
Whn. If Wm is greater than or equal to Wn, unexpected results
will occur because the fractional result will be greater than or
equal to 1.0. When this occurs, the OV Status bit will be set and
the quotient and remainder should not be used.

2: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

3: This instruction is interruptible on each instruction cycle
boundary.

Words: 1
Cycles: 18 (plus 1 for REPEAT execution)

DS70157F-page 228 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: REPEAT #17 ; Execute DIVF 18 times
DIVF w8, w9 ; Divide W8 by W9
; Store quotient to WO, remainder to Wil

Before After
Instruction Instruction
WO0| 8000 WO0| 2000
wWi| 1234 w1| 0000
W8 1000 W8 1000
W9 4000 W9 4000
SR| 0000 SR| 0002|(z=1)
Example 2: REPEAT #17 ; Execute DIVF 18 times

DIVF w8, w9 ; Divide W8 by W9
; Store quotient to WO, remainder to Wil

Before After
Instruction Instruction
WO | 8000 WO | FO000
w1l 1234 W1i| 0000
w8 1000 w8 1000
W9 | 8000 W9 8000
SR| 0000 SR| 0002|z=1)
Example 3: REPEAT #17 ; Execute DIVF 18 times

DIVF wo, wi ; Divide WO by wi
; Store quotient to WO, remainder to Wil

Before After
Instruction Instruction
WO | 8002 WO | 7FFE
W1| 8001 w1 8002
SR| 0000 SR| 0008 |(N=1)

O
® S
0o
es
is'c
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 229

16-bit MCU and DSC Programmer’s Reference Manual

DO

Initialize Hardware Loop Literal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
{label:} DO #lit14, Expr
litl4 € [0 ... 16383]

Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

PUSH DO shadows (DCOUNT, DOEND, DOSTART)
(Iit14) >DCOUNT
(PC) + 4 —PC

(PC) >DOSTART
(PC) + (2 * Slit16) -DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 00kk kkkk kkkk kkkk
0000 0000 nnnn nnnn nnnn nnnn

DS70157F-page 230

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Initiate a no overhead hardware DO loop, which is executed (lit14 + 1)
times. The DO loop begins at the address following the DO instruction, and
ends at the address 2 * Slit16 instruction words away. The 14-bit count
value (lit14) supports a maximum loop count value of 16384, and the 16-bit
offset value (Slit16) supports offsets of 32K instruction words in both

When this instruction executes, DCOUNT, DOSTART and DOEND are first
PUSHed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the PUSHed DCOUNT, DOSTART and DOEND

registers are restored, and DL<2:0> is decremented.

The 'k’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that
are offset from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of ‘0’ will result in the loop being executed one

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may
occur if these offsets are used.

3. The very last two instructions of the DO loop cannot be:

¢ an instruction which changes program control flow

¢ a DO or REPEAT instruction

Unexpected results may occur if any of these instructions are used.

4. |If a hard trap occurs in the second to last instruction or third to last
instruction of a DO loop, the loop will not function properly. The hard
trap includes exceptions of priority level 13 through level 15,

The DO instruction is interruptible and supports 1 level of

hardware nesting. Nesting up to an additional 5 levels may be
provided in software by the user. See the specific device family
reference manual for details.

2: The linker will convert the specified expression into the offset to
be used.

DO #5, END6; Initiate DO loop (6 reps)

ADD W1, W2, W3;

SUB W2, W3, W4;

PC
DCOUNT
DOSTART
DOEND
CORCON

Description:
directions.
time.
inclusive.
Note 1:
Words:
Cycles:
Example 1: 002000 LOOP6:
002004
002006
002008
00200A END6:
00200C
Before
Instruction
PC 00 2000
DCOUNT 0000
DOSTART FF FFFF
DOEND FF FFFF
CORCON 0000
SR 0001

(C=1) SR

After
Instruction

00 2004

0005

00 2004

00 200A

0100

0201

First instruction in loop

Last instruction in loop

(DL =1)
(DA, C =1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 231

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 01C000 LOOP12: DO #0x160, END12; Init DO loop (353 reps)
01C004 DEC W1, W2; First instruction in loop
01C006
01C008
01CO0A
01C00C P
01COOE CALL _FIR88; Call the FIR88 subroutine
01C012 NOP
01C014 END12: NOP; Last instruction in loop

; (Required NOP filler)

Before After

Instruction Instruction

PC 01 C000 PC 01 C004

DCOUNT 0000 DCOUNT 0160

DOSTART FF FFFF DOSTART 01 C004

DOEND FF FFFF DOEND 01 C014

CORCON 0000 CORCON 0100|(DL =1)

SR 0008 |(N=1) SR 0208 |(DA,N = 1)

DS70157F-page 232

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO

Initialize Hardware Loop Literal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X

{label:} DO #lit15, Expr

it15 € [0 ... 32767]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

PUSH DO shadows (DCOUNT, DOEND, DOSTART)
(lit15) >DCOUNT

(PC) + 4 -PC

(PC) 5DOSTART

(PC) + (2 * Slit16) ->DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 Okkk kkkk kkkk kkkk
0000 0000 nnnn nnnn nnnn nnnn

Initiate a no overhead hardware DO loop, which is executed (lit15 + 1) times.
The DO loop begins at the address following the DO instruction, and ends at
the address 2 * Slit16 instruction words away. The 15-bit count value (lit15)
supports a maximum loop count value of 32768, and the 16-bit offset value
(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
PUSHed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> bits (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the PUSHed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘K’ bits specify the loop count.

The ‘n’ bits are a signed literal that specifies the number of instructions that
are offset from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.
1. Using a loop count of ‘@’ will result in the loop being executed one time.
2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may
occur if these offsets are used.
3. The very last two instructions of the DO loop cannot be:
 an instruction which changes program control flow
» a DO or REPEAT instruction

Unexpected results may occur if any of these instructions are used.

4. If a hard trap occurs in the second to last instruction or third to last
instruction of a DO loop, the loop will not function properly. The hard
trap includes exceptions of priority level 13 through level 15, inclusive.

5. Thefirstinstruction of the DO loop cannot be a PSV read or Table read.

Note 1: The DO instruction is interruptible and supports 1 level of
hardware nesting. Nesting up to an additional 5 levels may be
provided in software by the user. See the specific device family
reference manual for details.

2: The linker will convert the specified expression into the offset to

be used.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 233

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

16-bit MCU and DSC Programmer’s Reference Manual

Words:
Cycles:

Example 1:

002000 LOOPG6:

002004
002006
002008
00200A END6:
00200C

PC
DCOUNT
DOSTART
DOEND
CORCON
SR

Example 2:

Before
Instruction

00 2000

0000

FF FFFF

FF FFFF

0000

0001

01Co04
01C006
01C008
01CO0A
01Co0C
01CO0E
01C012
01C014 END12:

PC
DCOUNT
DOSTART
DOEND
CORCON
SR

Before
Instruction

DO
ADD

SUB

(C=1)

#5, END6; Initiate DO loop (6 reps)

W1, W2, W3; First instruction in loop

W2, W3, W4; Last instruction in loop

PC
DCOUNT
DOSTART
DOEND
CORCON
SR

After
Instruction

00 2004

0005

00 2004

00 200A

0100

0201

(DL =1)
(DA, C = 1)

01C000 LOOP12: DO #0x160, END12; Init DO loop (353 reps)

DEC W1, W2; First instruction in loop

CALL _FIR88; Call the FIR88 subroutine

NOP

NOP; Last instruction in loop

01 C000

0000

FF FFFF

FF FFFF

0000

0008

(N=1)

; (Required NOP filler)

PC
DCOUNT
DOSTART
DOEND
CORCON
SR

After
Instruction

01 C004

0160

01 C004

01 C014

0100

(DL = 1)

0208

(DA, N = 1)

DS70157F-page 234

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO Initialize Hardware Loop Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label’} DO Whn, Expr

Operands: Wn e [WO ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

Operation: PUSH Shadows (DCOUNT, DOEND, DOSTART)
(Wn<13:0>) -5DCOUNT
(PC) + 4 -PC
(PC) —»DOSTART
(PC) + (2 * Slit16) -»DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

0000 1000 1000 0000 0000 $SSS
Encoding: 0000 0000 nnnn nnnn nnnn nnnn
Description: Initiate a no overhead hardware DO loop, which is executed (Wn + 1) times.

The DO loop begins at the address following the DO instruction, and ends at
the address 2 * Slit16 instruction words away. The lower 14 bits of Wn
support a maximum count value of 16384, and the 16-bit offset value
(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
PUSHed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the PUSHed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that
are offset from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of ‘0’ will result in the loop being executed one
time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur
if these offsets are used.

3. The very last two instructions of the DO loop cannot be:
 an instruction which changes program control flow
» a DO or REPEAT instruction
Unexpected results may occur if these last instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of nesting. “
Nesting up to an additional 5 levels may be provided in software

by the user. See the specific device family reference manual for

details. (v
2: The linker will convert the specified expression into the offset to 8 a
be used. (=
23
. 5 S
Words: = Q
. [l=)
Cycles: S g
(7))

© 2005-2011 Microchip Technology Inc. DS70157F-page 235

16-bit MCU and DSC Programmer’s Reference Manual

Example 1:

002000 LOOP6:

002004
002006
002008
00200A
00200C
00200E
002010 ENDG6:

PC

WO
DCOUNT
DOSTART
DOEND
CORCON
SR

Example 2:

Before
Instruction

ADD

00 2000

0012

0000

FF FFFF

FF FFFF

0000

0000

002000 LOOPA:

002004
002006
002008
00200A
002010 ENDA:

PC

w7
DCOUNT
DOSTART
DOEND
CORCON
SR

Before
Instruction

00 2000

EOOF

0000

FF FFFF

FF FFFF

0000

0000

DO WO, END6
Wi, w2, w3

REPEAT #6
SUB W2, W3, w4
NOP

PC

WO
DCOUNT
DOSTART
DOEND
CORCON
SR

DO W7, ENDA
SWAP wo

MOV Wi, [W2++]

PC

w7
DCOUNT
DOSTART
DOEND
CORCON
SR

; Initiate

DO loop (WO reps)

; First instruction in loop

; Last instruction in loop
; (Required NOP filler)

After
Instruction

00 2004

0012

0012

00 2004

00 2010

0100

0080

; Initiate

(DL =1)
(DA = 1)

DO loop (W7 reps)

; First instruction in loop

; Last instruction in loop

After
Instruction

00 2004

EOOF

200F

00 2004

00 2010

0100

(DL = 1)

0080

(DA =1)

DS70157F-page 236

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO

Initialize Hardware Loop Wn

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X

{label’} DO Whn, Expr

Wn e [WO ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

PUSH Shadows (DCOUNT, DOEND, DOSTART)
(Wn) -DCOUNT

(PC) + 4 -PC

(PC) -DOSTART

(PC) + (2 * Slit16) —-DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 1000 0000 0000 $sss
0000 0000 nnnn nnnn nnnn nnnn

Initiate a no overhead hardware DO loop, which is executed (Wn + 1) times.
The DO loop begins at the address following the DO instruction, and ends at
the address 2 * Slit16 instruction words away. The 16 bits of Wn support a
maximum count value of 65536, and the 16-bit offset value (Slit16) supports
offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
PUSHed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the PUSHed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that
are offset from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of ‘0’ will result in the loop being executed one
time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur
if these offsets are used.

3. The very last two instructions of the DO loop cannot be:
 an instruction which changes program control flow
» a DO or REPEAT instruction
Unexpected results may occur if these last instructions are used.

4. Thefirstinstruction of the DO loop cannot be a PSV read or Table read.

Note 1: The DO instruction is interruptible and supports 1 level of nesting.
Nesting up to an additional 5 levels may be provided in software
by the user. See the specific device family reference manual for
details.

2: The linker will convert the specified expression into the offset to
be used.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 237

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

DO

Initialize Hardware Loop Wn

Cycles:

Example 1:

002000 LOOPG6:

002004
002006
002008
00200A
00200C
00200E
002010 END6:

PC

WO
DCOUNT
DOSTART
DOEND
CORCON
SR

Example 2:

Before
Instruction

ADD

00 2000

0012

0000

FF FFFF

FF FFFF

0000

0000

002000 LOOPA:

002004
002006
002008
00200A
002010 ENDA:

PC

w7
DCOUNT
DOSTART
DOEND
CORCON
SR

Before
Instruction

00 2000

EOOF

0000

FF FFFF

FF FFFF

0000

0000

DO WO, ENDG6

Wi, W2, w3

REPEAT #6
SuB W2, W3, w4
NOP

PC

WO
DCOUNT
DOSTART
DOEND
CORCON
SR

DO
SWAP

W7, ENDA
wo

MOV W1, [W2++]

PC

w7
DCOUNT
DOSTART
DOEND
CORCON
SR

; Initiate

DO loop (WO reps)

; First instruction in loop

; Last instruction in loop
; (Required NOP filler)

After
Instruction

00 2004

0012

0012

00 2004

00 2010

0100

0080

; Initiate

(DL =1)
(DA = 1)

DO loop (W7 reps)

; First instruction in loop

; Last instruction in loop

After
Instruction

00 2004

EOOF

200F

00 2004

00 2010

0100

(DL = 1)

0080

(DA =1)

DS70157F-page 238

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ED Euclidean Distance (No Accumulate)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: {label:} ED Wm * Wm, Acc, [Wx], [Wy], Wxd

[Wx] +=kx, [Wy] + =ky,
[Wx] - =kx, [Wy] - =ky,

WO + W11 +
w12], w12],

Operands: Acc € [A,B]
Wm *Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx e [W8, WI]; kx € [-6, -4, -2, 2, 4, 6]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]
Wxd € [W4 ... W7]

Operation: (Wm) * (Wm) —Acc(A or B)
(IWx] — [Wy]) -Wxd
(Wx) + kx ->Wx
(Wy) + ky -Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 00mm A1xX 00ii iijj | jjii ‘
Description: Compute the square of Wm, and compute the difference of the prefetch

values specified by [Wx] and [Wy]. The results of Wm * Wm are
sign-extended to 40 bits and stored in the specified accumulator. The
results of [Wx] — [WYy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the prefetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch difference Wxd destination.
The ‘i’ bits select the Wx prefetch operation.

The J’ bits select the WYy prefetch operation.

Words: 1
Cycles: 1

Example 1: ED Ww4*w4, A, [W8]+=2, [W10]-=2, w4 Square W4 to ACCA
[W8]-[W10] to W4
Post-increment W8

Post-decrement W10

N- N N- oS-

Before After
Instruction Instruction

W4 009A W4 0057

W8 1100 W8 1102

W10 2300 W10 22FE
ACCA | 00 3DO0OA 0000 ACCA | 0000005CA4 g =
Data 1100 007F Data 1100 007F g 'tﬁ
Data 2300 0028 Data 2300 0028 - E
SR 0000 SR 0000 =22
o0
a -]

© 2005-2011 Microchip Technology Inc. DS70157F-page 239

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: ED W5*W5, B, [W9]+=2, [W1l1l+Ww12], W5 ; Square W5 to ACCB
; [W9]-[wil+wi2] to W5
; Post-increment w9

Before After

Instruction Instruction
w5 43C2 W5 3F3F
w9 1200 W9 1202
wi1 2500 w11 2500
w12 0008 W12 0008
ACCB 00 28E3 F14C ACCB 00 11EF 1F04
Data 1200 6A7C Data 1200 6A7C
Data 2508 2B3D Data 2508 2B3D
SR 0000 SR 0000

DS70157F-page 240 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

EDAC Euclidean Distance

Implemented in: PIC24F PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label:} EDAC Wm * Wm, Acc, [wx], [Wyl, Wxd
(Wx]+= " [Wy] +=ky,
kx,
[Wx] - =kx, [Wy] - =ky,
W9 + [wil +
wW12], W12],
Operands: Acc € [A,B]

Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]
Wxd e [W4 ... W7]
Operation: (Acc(A or B)) + (Wm) * (Wm) —Acc(A or B)
(Wx] - [Wy]) -Wxd
(Wx) + kx ->Wx
(Wy) + ky -Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 oomm | Aixx | o0ii iijj | jjze |
Description: Compute the square of Wm, and also the difference of the prefetch

values specified by [Wx] and [Wy]. The results of Wm * Wm are
sign-extended to 40 bits and added to the specified accumulator. The
results of [Wx] — [WYy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the prefetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch difference Wxd destination.
The ‘i’ bits select the Wx prefetch operation.

The ‘J’ bits select the WYy prefetch operation.

Words: 1
Cycles: 1

Square W4 and

add to ACCA
[W8]-[W10] to W4
Post-increment W8
Post-decrement W10

Before After
Instruction Instruction “

Example 1: EDAC W4*W4, A, [w8]+=2, [w1l0]-=2, W4

Ne N- Ns Ns oS-

W4 009A W4 0057

w8 1100 w8 1102
W10 2300 W10 22FE S5
ACCA | 00 3D0A 3D0A ACCA | 00 3D0A 99AE 4 a
Data 1100 007F Data 1100 007F = s
Data 2300 0028 Data 2300 0028 =2 =
SR 0000 SR 0000 535

© 2005-2011 Microchip Technology Inc. DS70157F-page 241

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: EDAC W5*W5, B, [w9]+=2, [W11l+W12], W5 ; Square W5 and
; add to ACCB
; [W9]-[W1l+W12] to W5
; Post-increment W9
Before After
Instruction Instruction
W5 43C2 W5 3F3F
W9 1200 W9 1202
w11 2500 W11 2500
W12 0008 W12 0008
ACCB 00 28E3 F14C ACCB 00 3AD3 1050
Data 1200 6A7C Data 1200 6A7C
Data 2508 2B3D Data 2508 2B3D
SR 0000 SR 0000

DS70157F-page 242 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

EXCH

Exchange Wns and Wnd

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

{label:} EXCH Whns, Wnd

Wns € [WO ... W15]

Wnd e [WO ... W15]

(Wns) < (Wnd)

None

1111 1101 0000 oddd 4000 ‘ ssss ‘

Exchange the word contents of two working registers. Register direct
addressing must be used for Wns and Wnd.

The ‘d’ bits select the address of the first register.
The ‘s’ bits select the address of the second register.

Note:

EXCH W1, W9

Before
Instruction
w1 55FF
w9 A3A3
SR 0000

EXCH W4, W5

Before
Instruction
w4 ABCD
W5 4321
SR 0000

This instruction only executes in Word mode.

; Exchange the contents of W1 and W9

After
Instruction
w1 A3A3
w9 55FF
SR 0000

; Exchange the contents of W4 and W5

After
Instruction
w4 4321
W5 ABCD
SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 243

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

FBCL

Find First Bit Change from Left

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F |dsPIC33F | dsPIC33E

X X X X X X

{label:} FBCL Ws, Wnd
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wnd e [WO ... W15]

Max_Shift = 15

Sign = (Ws) & 0x8000

Temp = (Ws) << 1

Shift=0

While ((Shift < Max_Shift) && ((Temp & 0x8000) == Sign))
Temp =Temp << 1
Shift = Shift + 1

-Shift -(Wnd)

C

1101 1111 0000 oddd | dppp | ssss

Find the first occurrence of a one (for a positive value), or zero (for a
negative value), starting from the Most Significant bit after the sign bit of
Ws and working towards the Least Significant bit of the word operand. The
bit number result is sign-extended to 16 bits and placed in Wnd.

The next Most Significant bit after the sign bit is allocated bit number 0 and
the Least Significant bit is allocated bit number -14. This bit ordering
allows for the immediate use of Wd with the SFTAC instruction for scaling
values up. If a bit change is not found, a result of -15 is returned and the C
flag is set. When a bit change is found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
1
1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 244

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: FBCL W1, W9 ; Find 1st bit change from left in Wi
; and store result to W9
Before After
Instruction Instruction
W1 55FF W1 55FF
W9 FFFF W9 0000
SR 0000 SR 0000
Example 2: FBCL W1, w9 ; Find 1st bit change from left in W1
; and store result to W9
Before After
Instruction Instruction
W1| FFFF W1| FFFF
W9| BBBB W9| FFF1
SR 0000 SR| 0001 [(C=1)
Example 3: FBCL [W1++], W9 ; Find 1st bit change from left in [W1]

; and store result to W9
; Post-increment wi

Before After
Instruction Instruction
w1 2000 W1| 2002
W9| BBBB W9 | FFF9
Data 2000| FFOA Data 2000| FFOA
SR 0000 SR| 0000

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 245

16-bit MCU and DSC Programmer’s Reference Manual

FF].L Find First One from Left

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} FF1L Ws, Wnd
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wnd € [WO ... W15]
Operation: Max_Shift = 17
Temp = (Ws)
Shift=1

While ((Shift < Max_Shift) && !(Temp & 0x8000))
Temp =Temp << 1
Shift = Shift + 1
If (Shift == Max_Shift)
0 —>(Wnd)
Else
Shift —(Wnd)

Status Affected: C

Encoding: 1100 1111 1000 oddd dppp | ssss |

Description: Finds the first occurrence of a ‘1’ starting from the Most Significant bit of
Ws and working towards the Least Significant bit of the word operand.
The bit number result is zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Most Significant bit (allocated number 1)
and advances to the Least Significant bit (allocated number 16). A result
of zero indicates a ‘1’ was not found, and the C flag will be set. If a ‘1’ is
found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.
Note: This instruction operates in Word mode only.
Words: 1

Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 246 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Exanuﬂe 1: FF1L W2, W5 ; Find the 1st one from the left in w2
; and store result to W5
Before After
Instruction Instruction

W2 000A W2 000A

W5 | BBBB W5 000D

SR 0000 SR 0000
Example 2: FF1L [W2++], W5 ; Find the 1st one from the left in [W2]

; and store the result to W5

’

; Post-increment W2

’

Before After
Instruction Instruction
w2 2000 w2 2002
W5 | BBBB W5 0000
Data 2000 0000 Data 2000 0000
SR 0000 SR 0001 | (C=1)

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 247

16-bit MCU and DSC Programmer’s Reference Manual

FF1R

Find First One from Right

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X

{label:} FF1R Ws, Wnd
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wwnd e [WO ... W15]

Max_Shift = 17
Temp = (Ws)
Shift=1
While ((Shift < Max_Shift) && [(Temp & 0x1))
Temp =Temp >>1
Shift = Shift + 1
If (Shift == Max_Shift)
0 —(Wnd)
Else
Shift —(Wnd)

C

1100 1111 0000 oddd dppp | ssss |

Finds the first occurrence of a ‘1’ starting from the Least Significant bit of
Ws and working towards the Most Significant bit of the word operand. The
bit number result is zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Least Significant bit (allocated number 1)
and advances to the Most Significant bit (allocated number 16). A result of
zero indicates a ‘1’ was not found, and the C flag will be set. If a ‘1’ is
found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
1
1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 248

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: FF1IR W1, W9 ; Find the 1st one from the right in wi
; and store the result to W9
Before After
Instruction Instruction
W1 000A w1l 000A
W9 | BBBB W9 0002
SR 0000 SR 0000
Example 2: FF1R [Wl++], W9 ; Find the 1st one from the right in [W1]
; and store the result to W9
; Post-increment Wi
Before After
Instruction Instruction
W1 2000 W1 2002
W9 | BBBB W9 0010
Data 2000 8000 Data 2000 8000
SR 0000 SR 0000

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 249

16-bit MCU and DSC Programmer’s Reference Manual

GOTO

Unconditional Jump

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
1st word
2nd word

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} GOTO Expr

Expr may be label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 € [0 ... 8388606].

lit23 -PC
NOP —lInstruction Register

None
0000 0100 nnnn nnnn nnnn nnno
0000 0000 0000 0000 onnn nnnn

Unconditional jump to anywhere within the 4M instruction word program
memory range. The PC is loaded with the 23-bit literal specified in the
instruction. Since the PC must always reside on an even address boundary,
lit23<0> is ignored.

The ‘n’ bits form the target address.

The linker will resolve the specified expression into the lit23 to be
used.

Note:

2

2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
4 (PIC24E, dsPIC33E)

026000 GOTO _THERE ; Jump to _THERE
026004 MOV wo, wi
027844 _THERE: MOV #0x400, W2 ; Code execution
027846 ; resumes here
Before After
Instruction Instruction
PC 02 6000 PC 02 7844
SR 0000 SR 0000
000100 _code: ... ; start of code
026000 GOTO _code+2 ; Jump to _code+2
026004
Before After
Instruction Instruction
PC 02 6000 PC 00 0102
SR 0000 SR 0000

DS70157F-page 250

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

GOTO

Unconditional Indirect Jump

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

{label:} GOTO Wn

Wn e [WO ... W15]

0 PC<22:16>

(Wn<15:1>) -PC<15:1>

0 -PC<0>

NOP —lInstruction Register

None

0000 0001 0100 0000 0000 ‘ ssss |

Unconditional indirect jump within the first 32K words of program memory.
Zero is loaded into PC<22:16> and the value specified in (Wn) is loaded
into PC<15:1>. Since the PC must always reside on an even address

boundary, Wn<0> is ignored.

The ‘s’ bits select the source register.
1

2
006000 GOTO w4 ; Jump unconditionally
006002 MOV wo, wi ; to 16-bit value in w4
007844 _THERE: MOV #0x400, W2 ; Code execution
007846 ; resumes here

Before After

Instruction Instruction
W4 7844 W4 7844
PC 00 6000 PC 00 7844
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 251

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

GOTO

Unconditional Indirect Jump

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
{label:} GOTO Wn
Wn e [WO ... W15]
0 PC<22:16>
(Wn<15:1>) -PC<15:1>
0 -PC<0>
NOP —lInstruction Register
None
0000 0001 0000 0100 0000 ‘ ssss |

Unconditional indirect jump within the first 32K words of program memory.
Zero is loaded into PC<22:16> and the value specified in (Wn) is loaded
into PC<15:1>. Since the PC must always reside on an even address
boundary, Wn<0> is ignored.

The ‘s’ bits select the source register.

1
4

006000
006002

GOTO
MoV

007844 _THERE: MOV

007846
Before
Instruction
w4 7844
PC 00 6000
SR 0000

w4
wo, wi

#0x400, W2

w4
PC
SR

; Jump unconditionally
; to 16-bit value in w4

; Code execution
; resumes here

After
Instruction

7844

00 7844

0000

DS70157F-page 252

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

GOTO.L

Unconditional Indirect Jump Long

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} GOTO.L Wn
Operands: Wn e [WO0, W2, W4, W6, W8, W10, W12]
Operation: PC<23> —»PC<23> (see text); (Wn+1)<6:0> -PC<22:16>; (Wn) —
PC<15:0>r
Status Affected: None
Encoding: 0000 0001 L www w100 0000 ‘ ssss |
Description: Unconditional indirect jump to any user program memory address.
The LS 7-bits of (Wn+1) are loaded in PC<22:16>, and the 16-bit value
(Wn) is loaded into PC<15:0>.
PC<23> is not modified by this instruction.
The contents of (Wn+1)<15:7> are ignored.
The value of Wn<0> is also ignored and PC<0> is always set to 0.
GOTO is a two-cycle instruction.
The ‘s’ bits select the address of the Wn source register.
The ‘w’ bits specify the address of the Wn+1 source register.
Words: 1
Cycles: 4
Example 1: 026000 GOTO.L W4 ; Call _FIR subroutine
026004 MoV we, wi
026844 _FIR: MOV #0x400, W2 ; _FIR subroutine start
026846
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
W4 6844 w4 6844
W5 0002 W5 0002
W15 A268 W15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 253

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

16-bit MCU and DSC Programmer’s Reference Manual

I N C Increment f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} INC{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: (f) + 1 —destination designated by D

Status Affected: DC,N,0V, zZ,C

Encoding: | 1120 | 1100 0BDF FEFF FEEF | FFFF |

Description: Add one to the contents of the file register, and place the result in the

destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WRERG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1

Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: INC.B 0x1000 ; Increment 0x1000 (Byte mode)
Before After
Instruction Instruction
Data 1000 8FFF Data 1000 8F00
SR 0000 SR 0101 | (DC,C=1)
Example 2: INC 0x1000, WREG ; Increment 0x1000 and store to WREG

; (Word mode)

Before After
Instruction Instruction
WREG | ABCD WREG 9000
Data 1000 | 8FFF Data 1000 8FFF
SR | 0000 SR 0108 | (DC, N =1)

DS70157F-page 254 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

I N C Increment Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} INC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (Wd-]
[++Ws], [++Wd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) +1 -Wd
Status Affected: DC,N,0V,Z,C
Encoding: 1110 1000 0Bqq gddd dppp ‘ SSSS |
Description: Add 1 to the contents of the source register Ws and place the result in the

destination register Wd. Register direct or indirect addressing may be
used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: INC.B W1, [++W2] ; Pre-increment W2
; Increment W1 and store to W2
; (Byte mode)

Before After
Instruction Instruction
Wi FF7F w1 FF7F
w2 2000 W2 2001
Data 2000 | ABCD Data 2000 | 80CD
SR 0000 SR 010C | (DC, N, OV =1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 255

16-bit MCU and DSC Programmer’s Reference Manual

Example 2:

INC Wi, w2 ; Increment W1l and store to W2
(Word mode)

4

Before After
Instruction Instruction
W1| FF7F W1 | FF7F
w2 2000 w2 FF80
SR 0000 SR 0108 | (DC, N =1)

DS70157F-page 256

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

INCZ Increment f by 2

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} INC2{.B} f {{WREG}

Operands: fe [0...8191]

Operation: (f) + 2 —destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: 1110 1100 1BDf FEff fff \ FEff ‘

Description: Add 2 to the contents of the file register and place the result in the

destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: INC2.B 0x1000 ; Increment 0x1000 by 2
; (Byte mode)

Before After
Instruction Instruction
Data 1000 8FFF Data 1000 8F01
SR 0000 SR 0101 | (DC,C=1)

Example 2: INC2 0x1000, WREG ; Increment 0x1000 by 2 and store to WREG
; (Word mode)

Before After
Instruction Instruction
WREG | ABCD WREG 9001
Data 1000 | 8FFF Data 1000 | 8FFF
SR 0000 SR 0108 | (DC, N =1)

O
® S
(7,
Qg
_E'C
=9
<)
=

s >

© 2005-2011 Microchip Technology Inc. DS70157F-page 257

16-bit MCU and DSC Programmer’s Reference Manual

I NCZ Increment Ws by 2

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X

Syntax: {label:} INC2{.B} Ws, wd

[Ws], (W]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[-Ws], [-Wd]
Operands: Ws e [WO ... W15]

Wd e [WO ... W15]

Operation: (Ws) + 2 -Wd
Status Affected: DC, N, OV, Z,C
Encoding: 1110 1000 1Bqq gddd dppp | SSSS ‘
Description: Add 2 to the contents of the source register Ws and place the result in the

destination register Wd. Register direct or indirect addressing may be used
for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: INC2.B W1, [++W2] ; Pre-increment W2
; Increment by 2 and store to Wi
; (Byte mode)

Before After
Instruction Instruction
W1 FF7F Wi FF7F
w2 2000 W2 2001
Data 2000 | ABCD Data 2000 | 81CD
SR 0000 SR 010C | (DC, N, 0OV =1)

DS70157F-page 258 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2:

INC2 Wi, w2 ; Increment W1l by 2 and store to W2
; (word mode)

Before After
Instruction Instruction
W1| FF7F W1 | FF7F
w2 2000 w2 FF81
SR 0000 SR 0108 | (DC, N =1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 259

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

IOR

Inclusive OR f and WREG

Implemented in:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label} IOR{B} f { WREG}
fe[0..8191]
(f).IOR.(WREG) —destination designated by D
N, Z
| 1011 | oe1m OBDF FEFF FEEE | FRFE |

Compute the logical inclusive OR operation of the contents of the working
register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the

destination register. If WREG is specified, the result is stored in WREG. If
WRERG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

The extension . B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Note 1:
2:

1

1)

The WREG is set to working register WO.

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Syntax:
Operands:
Operation:
Status Affected:
Encoding:
Description:
Words:
Cycles:
Note 1:
Example 1:
WREG
Data 1000
SR
Example 2: IOR
WREG
Data 1000
SR

IOR.B 0x1000

Before
Instruction

1234
FFOO0
0000

0x1000, WREG

; IOR WREG to (0x1000) (Byte mode)

; (Byte mode)

After
Instruction
WREG 1234
Data 1000 FF34
SR 0000

; IOR (0x1000) to WREG

; (Word mode)

Before After
Instruction Instruction
1234 WREG | 1FBF
OFAB Data 1000 | OFAB
0008 | (N=1) SR 0000

DS70157F-page 260

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

IOR Inclusive OR Literal and Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} IOR{.B} #lit10, Wn

Operands: lit10 e [O ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: [it10.I0R.(Wn) —Wn

Status Affected: N, Z

Encoding: 1011 0011 0Bkk kkkk kkkk | dddd |
Description: Compute the logical inclusive OR operation of the 10-bit literal operand

and the contents of the working register Wn and place the result back into
the working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in

Byte mode.
Words:
Cycles: 1
Example 1: IOR.B #OXAA, W9 ; IOR OXAA to W9
; (Byte mode)
Before After
Instruction Instruction
W9 1234 W9 | 12BE
SR 0000 SR 0008 | (N=1)
Example 2: IOR #OX2AA, W4 ; IOR OXx2AA to W4

; (Word mode)

Before After
Instruction Instruction
W4 | A34D W4 | A3EF
SR 0000 SR 0008 | (N=1)

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 261

16-bit MCU and DSC Programmer’s Reference Manual

IO R Inclusive OR Wb and Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} IOR{.B} Wh, #it5, wd
(W]
(Wd++]
(Wd--]
[++Wd]
[--wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb).IOR.Iit5 —wd
Status Affected: N, Z
Encoding: 0111 Owww wBqq qddd d11k ‘ kkkk |
Description: Compute the logical inclusive OR operation of the contents of the base

register Wb and the 5-bit literal operand and place the result in the
destination register Wd. Register direct addressing must be used for Whb.
Either register direct or indirect addressing may be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0" for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1: IOR.B W1, #0O0x5, [W9++] ; IOR W1 and Ox5 (Byte mode)
; Store to [W9]
; Post-increment W9
Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
W9 2000 W9 2001
Data 2000 0000 Data 2000 00AF
SR 0000 SR 0008 | (N=1)
Example 2: IOR W1, #0x0, W9 ; IOR W1 with 0x0 (Word mode)
; Store to W9
Before After
Instruction Instruction
W1 0000 W1 0000
W9 | A34D W9 0000
SR 0000 SR 0002 | (Z2=1)

DS70157F-page 262 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

IOR Inclusive OR Wb and Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X
Syntax: {label:} IOR{.B} Wh, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
Ws--], (Wd-]
[++Ws], [++Wwd]
[--Ws], [--Wd]
Operands: Wb € [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb).IOR.(Ws) —Wd
Status Affected: N, z

Encoding: 0111 Owww wBqq qddd dppp $SSS

Description: Compute the logical inclusive OR operation of the contents of the source
register Ws and the contents of the base register Wb, and place the result in
the destination register Wd. Register direct addressing must be used for Wh.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: IOR.B W1, [W5++], [W9++] ; IOR W1 and [W5] (Byte mode)
; Store result to [W9]
; Post-increment W5 and W9

Before After
Instruction Instruction

Wi AAAA W1 | AAAA

w5 | 2000 w5 | 2001 g 5

W9 | 2400 w9 | 2401 @9
Data 2000 | 1155 Data 2000 | 1155 =.c
Data 2400 | 0000 Data 2400 | OOFF =22

SR| 0000 SR| 0008 |(N=1) % g

© 2005-2011 Microchip Technology Inc. DS70157F-page 263

16-bit MCU and DSC Programmer’s Reference Manual

Example 2:

IOR W1, W5, W9

Before
Instruction
W1 | AAAA
W5 5555
W9 | A34D
SR 0000

; IOR W1 and W5 (Word mode)

7

w1
W5
W9
SR

After
Instruction

AAAA

5555

FFFF

0008

; Store the result to W9

(N=1)

DS70157F-page 264

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

LAC Load Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E

X X X
Syntax: {label:} LAC Ws, {#Slit4,} Acc
[Ws],
[Ws++],
[Ws--],
[--Ws],
[++Ws],
[Ws+Wb],
Operands: Ws e [WO ... W15]
Wb € [WO ... W15]
Slit4 € [-8 ... +7]
Acc € [AB]
Operation: Shiftg)iis(Extend(Ws)) —Acc(A or B)
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 1010 Awww wrrr rggg | SSSS ‘
Description: Read the contents of the source register, optionally perform a signed 4-bit

shift and store the result in the specified accumulator. The shift range is -8:7,
where a negative operand indicates an arithmetic left shift and a positive
operand indicates an arithmetic right shift. The data stored in the source
register is assumed to be 1.15 fractional data and is automatically
sign-extended (through bit 39) and zero-backfilled (bits [15:0]), prior to
shifting.

The ‘A’ bit specifies the destination accumulator.
The ‘W’ bits specify the offset register Wb.

The ‘r’ bits encode the accumulator pre-shift.
The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: If the operation moves more than sign-extension data into the
upper Accumulator register (AccxU), or causes a saturation, the
appropriate overflow and saturation bits will be set.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 265

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: LAC

w4
ACCB
Data 2000
SR

Example 2: LAC

w2
ACCA
Data 4000
Data 4002
SR

[Wa++], #-3, B

Before
Instruction

2000

00 5125 ABCD

1221

0000

[--W2], #7, A

Before
Instruction

4002

00 5125 ABCD

9108

1221

0000

Ne Ns Ns Ns S

Ns N- N- N- oS-

Load ACCB with [W4] << 3
Contents of [W4] do not change
Post increment W4

Assume saturation disabled
(SATB = 0)

After
Instruction
w4 2002
ACCB FF 9108 0000
Data 2000 1221
SR 4800 | (OB, OAB = 1)

Pre-decrement W2

Load ACCA with [w2] >> 7
Contents of [W2] do not change
Assume saturation disabled
(SATA = 0)

After
Instruction
w2 4000
ACCA FF FF22 1000
Data 4000 9108
Data 4002 1221
SR 0000

DS70157F-page 266

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

LNK

Allocate Stack Frame

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X

{label:} LNK #lit14

lit14 [0 ... 16382]

(W14) —(TOS)
(W15) + 2 W15
(W15) W14
(W15) + lit14 —W15

None

1111 1010 00Kk kkkk kkkk \ kkko \

This instruction allocates a Stack Frame of size lit14 bytes for a
subroutine calling sequence. The Stack Frame is allocated by PUSHing
the contents of the Frame Pointer (W14) onto the stack, storing the
updated Stack Pointer (W15) to the Frame Pointer and then incrementing
the Stack Pointer by the unsigned 14-bit literal operand. This instruction
supports a maximum Stack Frame of 16382 bytes.

The ‘K’ bits specify the size of the Stack Frame.

Note: Since the Stack Pointer can only reside on a word boundary,
lit14 must be even.

LNK #0xAO ; Allocate a stack frame of 160 bytes

w14
W15

Data 2000

SR

Before After
Instruction Instruction
2000 w14 2002
2000 W15 20A2
0000 Data 2000 2000
0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 267

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

LNK

Allocate Stack Frame

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1: LNK #0xA0

w14

W15

Data 2000
SR
CORCON

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F [dsPIC33E

X

X

{label’}

lit14 e [0 ...

LNK

16382]

(W14) —(TOS)
(W15) + 2 W15
(W15) W14

1 —SFA bit

(W15) + lit14 W15

SFA

#lit14

‘ 1111 |

1010

00kk

kkkk

kkkk \ kkk@ \

This instruction allocates a Stack Frame of size lit14 bytes for a
subroutine calling sequence. The Stack Frame is allocated by PUSHing
the contents of the Frame Pointer (W14) onto the stack, storing the
updated Stack Pointer (W15) to the Frame Pointer and then incrementing
the Stack Pointer by the unsigned 14-bit literal operand. This instruction
supports a maximum Stack Frame of 16382 bytes.

The ‘K’ bits specify the size of the Stack Frame.

Note: Since the Stack Pointer can only reside on a word boundary,
litl4 must be even.

Before

Instruction

2000

2000

0000

0000

0000

W14

W15

Data 2000
SR
CORCON

After

; Allocate a stack frame of 160 bytes

Instruction

2002

20A2

2000

0000

0004

DS70157F-page 268

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

LSR Logical Shift Right f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |[dsPIC33E
X X X X X X

Syntax: {label:} LSR{.B} f {{\WREG}

Operands: fe [0..8191]

Operation: For byte operation:
0 —Dest<7>

(f<7:1>) —Dest<6:0>
(f<0>) —=C

For word operation:
0 —Dest<15>
(f<15:1>) —»Dest<14:0>
(f<0>) =C

o>___ [

Status Affected: N, Z,C
Encoding: | 1101 | e1e1 | oeBDf FEFF FEFF FEFF

Description: Shift the contents of the file register one bit to the right and place the result
in the destination register. The Least Significant bit of the file register is
shifted into the Carry bit of the STATUS register. Zero is shifted into the
Most Significant bit of the destination register.

The optional WREG operand determines the destination register. If WREG
is specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘'f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: LSR.B 0x600 ; Logically shift right (0x600) by one
; (Byte mode)

Before After
Instruction Instruction
Data 600 | 55FF Data 600 557F
SR 0000 SR 0001 | (C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 269

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: LSR 0x600, WREG

Data 600
WREG
SR

Before
Instruction

55FF
0000
0000

Data 600
WREG
SR

After
Instruction

55FF
2AFF
0001

; Logically shift right (0x600) by one
; Store to WREG

14

; (Word mode)

(C=1)

DS70157F-page 270

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

LSR Logical Shift Right Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} LSR{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], (Wd-]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
Wwd e [WO ... W15]
Operation: For byte operation:
0 -SWd<7>
(Ws<7:1>) -Wd<6:0>
(Ws<0>) -»C
For word operation:
0 -Wd<15>
(Ws<15:1>) -Wd<14:0>
(Ws<0>) =C

o> |

Status Affected: N, Z,C
Encoding: ‘ 1101 ‘ 0001 ‘ 0Bqq qddd dppp ‘ SSSs ‘
Description: Shift the contents of the source register Ws one bit to the right, and place

the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the STATUS register. Zero is shifted into the
Most Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and “
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 271

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: LSR.B WO, Wi ; LSR WO (Byte mode)
; Store result to wi
Before After
Instruction Instruction
WO FFO3 WO FFO3
w1l 2378 w1l 2301
SR 0000 SR 0001 | (C=1)

; LSR WO (wWord mode)

Example 2: LSR WO, Wi
Store the result to Wi

’

Before After
Instruction Instruction
WO 8000 WO 8000
w1 2378 w1 4000
SR 0000 SR 0000

DS70157F-page 272 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

LSR Logical Shift Right by Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label’} LSR Wh, #lit4, Wnd
Operands: Wb e [WO ... W15]
lit4 € [0 ... 15]
Wnd € [WO ... W15]
Operation: lit4<3:0> —Shift_Val

0 —-Wnd<15:15-Shift_Val + 1>
Whb<15:Shift_Val> -Wnd<15-Shift_Val:0>

Status Affected: N, Z
Encoding: ‘ 1101 ‘ 1110 Owww wddd d100 | kkkk ‘
Description: Logical shift right the contents of the source register Wb by the 4-bit

unsigned literal and store the result in the destination register Wnd. Direct
addressing must be used for Wb and Wnd.

The ‘W’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words:
Cycles:
Example 1: LSR W4, #14, W5 ; LSR W4 by 14
; Store result to W5
Before After
Instruction Instruction
W4 C800 w4 C800
W5 1200 W5 0003
SR 0000 SR 0000
Example 2: LSR w4, #1, W5 ; LSR W4 by 1
; Store result to W5
Before After
Instruction Instruction
W4 0505 w4 0505
W5 FO00 W5 0282
SR 0000 SR 0000

O
® S
0o
es
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 273

16-bit MCU and DSC Programmer’s Reference Manual

LSR

Logical Shift Right by Wns

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X

{label:} LSR Wb, Wns, Wnd

Wb e [WO ... W15]
Wns e [WO ...W15]
Wnd e [WO ... W15]

Wns<4:0> —Shift_Val
0 -Wnd<15:15-Shift_Val + 1>
Whb<15:Shift_Val> -Wnd<15 - Shift_Val:0>

N, Z
‘ 1101 ‘ 1110 Oww wddd d00e ‘ sssS |

Logical shift right the contents of the source register Wb by the 5 Least
Significant bits of Wns (only up to 15 positions) and store the result in the
destination register Wnd. Direct addressing must be used for Wb and
Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.

LSR we, wi, w2 ; LSR WO by Wi
; Store result to W2
Before After
Instruction Instruction
W0 | CooC W0 | Co00C
w1 0001 w1 0001
w2 2390 W2 6006
SR 0000 SR 0000
LSR W5, W4, W3 ; LSR W5 by W4
; Store result to W3
Before After
Instruction Instruction
W3 | DD43 W3 0000
W4 | 000C W4 | 000C
W5 0800 w5 0800
SR 0000 SR 0002 | (Z=1)

DS70157F-page 274

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAC

Multiply and Accumulate

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X
Syntax: {label:} MAC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}
{.IWx] + = kx, Wxd} {.[Wy] + = ky, Wyd}
0w — = kx, Wxd} {,[Wy] — = ky, Wyd}
{,]W9 + W12], Wxd} {,[w11 + wW12], Wyd}
Operands: Wm *Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc € [AB]
Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13] + =2]
Operation: (Acc(A or B)) +(Wm) * (Wn) —Acc(A or B)
(IWx]) -Wxd; (Wx) + kx -Wx
(Iwy]) —Wyd; (Wy) + ky -Wy
(Acc(B or A)) rounded -AWB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 Ommm AOXX yyii iijj jjaa
Description: Multiply the contents of two working registers, optionally prefetch operands
in preparation for another MAC type instruction and optionally store the
unspecified accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40 bits and added to the specified accumulator.
Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”. Operand AWB specifies the optional
store of the “other” accumulator, as described in
Section 4.14.4 “MAC Write Back”.
The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.
The 'X’ bits select the prefetch Wxd destination.
The 'y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ' bits select the Wy prefetch operation.
The ‘a’ bits select the accumulator Write Back destination.
Note 1: The IF bit (CORCON<0>), determines if the multiply is
fractional or an integer.
2: The US<1:0> bhits (CORCON<13:12> in dsPIC33E, COR-
CON<12> in dsPIC30F/dsPIC33F) determine if the multiply is
unsigned, signed, or mixed-sign. Only dsPIC33E devices support
mixed-sign multiplication.
Words:
Cycles: 1

© 2005-2011 Microchip Technology Inc.

DS70157F-page 275

uononasuj

O
o
n
2]
=
T
=
o
>
7]

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MAC W4*W5, A, [W8]+=6, W4, [W10]+=2, W5
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-increment W8 by 6
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = Ox00CO (fractional multiply, normal saturation)

Before After

Instruction Instruction
w4 A022 w4 2567
W5 B900 W5 909C
w8 0AO00 w8 0A06
W10 1800 w10 1802
ACCA 00 1200 0000 ACCA 00 472D 2400
Data 0A00 2567 Data 0AQ00 2567
Data 1800 909C Data 1800 909C
CORCON 00CO CORCON 00CO
SR 0000 SR 0000

Example 2: MAC W4*W5, A, [W8]-=2, W4, [W10]+=2, W5, W13
; Multiply w4*w5 and add to ACCA
; Fetch [W8] to W4, Post-decrement W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; Write Back ACCB to W13
; CORCON = 0x00D0 (fractional multiply, super saturation)

Before After
Instruction Instruction

W4 1000 W4 5BBE

W5 3000 W5 Co67

W8 0AO00 W8 09FE

W10 1800 W10 1802

w13 2000 w13 0001

ACCA 23 5000 2000 ACCA 23 5600 2000

ACCB 00 0000 8F4C ACCB 00 0000 1F4C

Data 0A00 5BBE Data 0A00 5BBE

Data 1800 Co67 Data 1800 Co67

CORCON 00DO0 CORCON 00DO0
SR 0000 SR 8800 |(OA, OAB = 1)

DS70157F-page 276 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAC Square and Accumulate

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X
Syntax: {label:} MAC ~ Wm*Wm, Acc {,[Wx], Wxd} {.[wy], Wyd}

{,]Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{.LWx] — = kx, Wxd} {.Iwy] — = ky, Wyd}
{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm *Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Acc € [AB]
Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: (Acc(A or B)) HWm) * (Wm) —Acc(A or B)
([Wx]) -Wxd; (Wx) + kx -Wx
(Iwy]) —Wyd; (Wy) + ky -Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 QOmm AOXX yyii iijj jjooe
Description: Square the contents of a working register, optionally prefetch operands in

preparation for another MAC type instruction. The 32-bit result of the
signed multiply is sign-extended to 40 bits and added to the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.

The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘I’ bits select the Wx prefetch operation.

The ' bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>), determines if the multiply is frac-
tional or an integer.

2: The US<1:0> bhits (CORCON<13:12> in dsPIC33E,
CORCON<12> in dsPIC30F/dsPIC33F) determine if the
multiply is unsigned, signed, or mixed-sign. Only dsPIC33E
devices support mixed-sign multiplication.

Words: 1
Cycles: 1

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 277

16-bit MCU and DSC Programmer’s Reference Manual

; Square W7 and add to ACCA
; Fetch [W11l] to W7, Post-decrement Wil by 2
; CORCON = 0x00D0 (fractional multiply, super saturation)

w7

wi1
ACCA
Data 2000
CORCON
SR

Before
Instruction

76AE

2000

FE 9834 4500

23FF

00DO

0000

saturation)

Example 1: MAC W4*W4, B, [W9+W12], W4, [W1@]-=2, W5
; Square W4 and add to ACCB
; Fetch [W9+W12] to W4
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = Ox00CO (fractional multiply, normal
Before After
Instruction Instruction
w4 A022 w4 A230
W5 B200 W5 650B
W9 0CO00 W9 0CO00
W10 1900 W10 18FE
W12 0020 W12 0020
ACCB 00 2000 0000 ACCB 00 67CD 0908
Data 0C20 A230 Data 0C20 A230
Data 1900 650B Data 1900 650B
CORCON 00CO CORCON 00CO
SR 0000 SR 0000
Example 2: MAC W7*W7, A, [wWll]-=2, W7

After

Instruction
w7 23FF
wi1 1FFE
ACCA FF 063E 0188
Data 2000 23FF
CORCON 00DO
SR 8800

(OA, OAB = 1)

DS70157F-page 278

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M OV Move f to Destination

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X

Syntax: {label’} MOV{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: () —destination designated by D

Status Affected: N, Z

Encoding: 1011 1111 1BDf ffff ffff ffff

Description: Move the contents of the specified file register to the destination register.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored back to the file register and the only effect is
to modify the STATUS register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

3: When moving word data from file register memory, the “MOV f
to Wnd” (page 281) instruction allows any working register
(WO0:W15) to be the destination register.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV.B TMRO®, WREG ; move (TMRO®) to WREG (Byte mode)
Before After
Instruction Instruction
WREG (WO0)| 9080 WREG (WO0)| 9055
TMRO| 2355 TMRO| 2355
SR| 0000 SR| 0000
Example 2: MOV 0x800 ; update SR based on (0x800) (Word mode)
Before After “
Instruction Instruction
Data 0800| B29F Data 0800 B29F
SR| 0000 SR| 0008 |(N=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 279

16-bit MCU and DSC Programmer’s Reference Manual

MOV Move WREG to f
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} MOV{.B} WREG, f
Operands: fe [0...8191]
Operation: (WREG) —f
Status Affected: None
Encoding: | 1011 | o111 | 1Bif | FFFF | FrFF | FFFF |
Description: Move the contents of the default working register WREG into the
specified file register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The 'f’ bits select the address of the file register.
Note 1: The extension .Bin the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: The WREG is set to working register WO0.

3: When moving word data from the working register array to file
register memory, the “MOV Wns to f” (page 282) instruction
allows any working register (W0:W15) to be the source regis-
ter.

Words: 1
Cycles:
Example 1: MOV.B WREG, 0x801 ; move WREG to 0x801 (Byte mode)
Before After
Instruction Instruction
WREG (WO0) 98F3 WREG (WO0) 98F3
Data 0800 4509 Data 0800 F309
SR 0000 SR 0008 | (N=1)
Example 2: MOV WREG, DISICNT ; move WREG to DISICNT
Before After
Instruction Instruction
WREG (WO0) | 00AO0 WREG (WO0) | 00AO0
DISICNT 0000 DISICNT | 00AO0
SR 0000 SR 0000

DS70157F-page 280

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move f to Wnd
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} MOV f, Wnd
Operands: fe [0... 65534]
Wnd € [WO ... W15]

Operation: (f) >Wnd

Status Affected: None

Encoding: 1000 Offf FEFF FEFF FFFF | dddd |

Description: Move the word contents of the specified file register to Wnd. The file

register may reside anywhere in the 32K words of data memory, but must
be word-aligned. Register direct addressing must be used for Wnd.

The '’ bits select the address of the file register.

The ‘d’ bits select the destination register.

Note 1: This instruction operates on word operands only.

2: Since the file register address must be word-aligned, only the
upper 15 bits of the file register address are encoded (bit O is
assumed to be ‘©").

3: To move a byte of data from file register memory, the “MOV f
to Destination”instruction (page 279) may be used.

Words: 1

Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Examgle 1: MOV CORCON, W12 ; move CORCON to WwWi2

Before After
Instruction Instruction
W12 | 78FA W12 | O0O0FO0
CORCON | 00FO0 CORCON 00FO0
SR 0000 SR 0000
Example 2: MOV OX27FE, W3 ; move (Ox27FE) to W3
Before After
Instruction Instruction
w3 0035 W3 | ABCD
Data 27FE | ABCD Data 27FE | ABCD
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 281

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

MOV

Move Wns to f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} MOV Whns, f
Operands: fe [0 ... 65534]
Wns € [WO ... W15]
Operation: (Wns) —f
Status Affected: None
Encoding: | 1000 | 1fff | Fffff FEFf FEff ssss
Description: Move the word contents of the working register Wns to the specified file
register. The file register may reside anywhere in the 32K words of data
memory, but must be word-aligned. Register direct addressing must be
used for Wn.
The ‘f’ bits select the address of the file register.
The ‘s’ bits select the source register.
Note 1: This instruction operates on word operands only.

2: Since the file register address must be word-aligned, only the
upper 15 bits of the file register address are encoded (bit O is
assumed to be ‘@’).

3: To move a byte of data to file register memory, the “MOV WREG
to f”instruction (page 280) may be used.

Words: 1
Cycles: 1
Example 1: MOV W4, XMDOSRT ; move W4 to XMODSRT
Before After
Instruction Instruction
w4 1200 w4 1200
XMODSRT 1340 XMODSRT 1200
SR 0000 SR 0000
Example 2: MOV w8, 0x1222 ; move W8 to data address 0x1222
Before After
Instruction Instruction
w8 F200 w8 F200
Data 1222 | FD88 Data 1222 F200
SR 0000 SR 0000

DS70157F-page 282

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV.B

Move 8-bit Literal to Wnd

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
{label:} MOV.B #it8, Wnd
lit8 € [0 ... 255]
Wnd € [WO ... W15]
lit8 -Wnd
None
1011 0011 1100 kkkk kkkk ‘ dddd ‘

The unsigned 8-bit literal 'k’ is loaded into the lower byte of Wnd. The
upper byte of Wnd is not changed. Register direct addressing must be
used for Wnd.

The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the working register.

Note: This instruction operates in Byte mode and the .B extension
must be provided.

1
MOV.B #0O0x17, W5 ; load W5 with #0x17 (Byte mode)
Before After
Instruction Instruction
W5 7899 W5 7817
SR 0000 SR 0000
MOV.B #OXFE, W9 ; load W9 with #OXFE (Byte mode)
Before After
Instruction Instruction
W9 | AB23 W9 | ABFE
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 283

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

MOV

Move 16-bit Literal to Wnd

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
Syntax: {label’} MOV #lit16, Wnd
Operands: litl6 € [-32768 ... 65535]
Wnd € [WO ... W15]
Operation: litl6 -»Wnd
Status Affected: None
Encoding: 0010 kkkk kkkk kkkk kkkk | dddd |
Description: The 16-bit literal 'k’ is loaded into Wnd. Register direct addressing must
be used for Wnd.
The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the working register.
Note 1: This instruction operates only in Word mode.
2: The literal may be specified as a signed value [-32768:32767],
or unsigned value [0:65535].
Words:
Cycles: 1
Example 1: MOV #0x4231, W13 ; load W13 with #0x4231
Before After
Instruction Instruction
W13 | 091B W13 4231
SR 0000 SR 0000
Example 2: MOV #0x4, W2 ; load W2 with #0x4
Before After
Instruction Instruction
w2 B004 W2 0004
SR 0000 SR 0000
Examgle 3: MoV #-1000, W8 ; load W8 with #-1000
Before After
Instruction Instruction
W8 | 23FF w8 | FC18
SR 0000 SR 0000

DS70157F-page 284

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move [Ws with offset] to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X

Syntax: {label:} MOV{.B} [Ws + SIit10], Wnd

Operands: Ws e [WO ... W15]

Slit10 € [-512 ... 511] for byte operation
Slit10 € [-1024 ... 1022] (even only) for word operation
Wnd e [WO ... W15]

Operation: [Ws + SIit10] -»Wnd

Status Affected: None

Encoding: 1001 okkk kBkk kddd | dkkk | ssss |
Description: The contents of [Ws + Slit10] are loaded into Wnd. In Word mode, the

range of Slitl0 is increased to [-1024 ... 1022] and Slit10 must be even to
maintain word address alignment. Register indirect addressing must be
used for the source, and direct addressing must be used for Wnd.

The ‘K’ bits specify the value of the literal.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘d’ bits select the destination register.

The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: In Byte mode, the range of Slit10 is not reduced as specified in
Section 4.6 “Using 10-bit Literal Operands”, since the literal
represents an address offset from Ws.

Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV.B [W8+0x13], W10 ; load W10 with [W8+0x13]
; (Byte mode)

Before After
Instruction Instruction
w8 1008 w8 1008
W10 4009 w10 4033
Data 101A 3312 Data 101A 3312
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 285

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: MOV [W4+0x3E8], W2 ; load W2 with [W4+OX3E8]
; (Word mode)
Before After
Instruction Instruction
w2 9088 W2 5634
w4 0800 w4 0800
Data OBE8 5634 Data OBES8 5634
SR 0000 SR 0000
MOV Move Wns to [Wd with offset]
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X
Syntax: {label:} MOV{.B} = Wns, [wd + Slit10]
Operands: Wns e [WO ... W15]
Slit10 € [-512 ... 511] in Byte mode
Slit10 € [-1024 ... 1022] (even only) in Word mode
Wwd e [WO ... W15]
Operation: (Wns) —[Wd + SIit10]
Status Affected: None
Encoding: 1001 1kkk kBkk kddd dkkk ssss
Description: The contents of Wns are stored to [Wd + Slit10]. In Word mode, the range
of Slit10 is increased to [-1024 ... 1022] and Slit10 must be even to
maintain word address alignment. Register direct addressing must be
used for Wns, and indirect addressing must be used for the destination.
The ‘K’ bits specify the value of the literal.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.
Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.
2: In Byte mode, the range of Slit10 is not reduced as specified in
Section 4.6 “Using 10-bit Literal Operands”, since the literal
represents an address offset from Wd.
Words: 1
Cycles:
Example 1: MOV.B WO, [W1+0x7] ; store WO to [W1+0x7]
; (Byte mode)
Before After
Instruction Instruction
W0 9015 wo 9015
w1 1800 w1 1800
Data 1806 2345 Data 1806 1545
SR 0000 SR 0000

DS70157F-page 286

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: MOV W11, [W1-0x400] ; store Wil to [W1-0x400]
; (Word mode)

Before After
Instruction Instruction
w1 1000 wi 1000
Wil 8813 w1l 8813
Data 0C00 | FFEA Data 0C00 8813
SR 0000 SR 0000
MOV Move Ws to Wd
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} MOV{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [wd-]
[--Ws], [--wd]
[++Ws], [++Wd]

[Ws + Wb], [wd + Wb]

Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Wd e [WO ... W15]

Operation: (Ws) -»wd

Status Affected: None

Encoding: 0111 Iwww wBhh hddd dggg | SSSS ‘
Description: Move the contents of the source register into the destination register.

Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits define the offset register Whb.

The ‘B’ bit selects byte or word operation (‘0" for word, ‘1’ for byte).
The ‘h’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘g’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: When Register Offset Addressing mode is used for both the
source and destination, the offset must be the same because “
the ‘w’ encoding bits are shared by Ws and Wd.

3: The instruction “PUSH Ws” translates to MOV Ws, [W15++].

4: The instruction “POP Wd” translates to MOV [--W15], Wd.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 287

16-bit MCU and DSC Programmer’s Reference Manual

MOV Move Ws to Wd

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV.B [WO--], W4 ; Move [WO] to W4 (Byte mode)
; Post-decrement w0

Before After
Instruction Instruction
W0 | O0AO01 W0 | O0AO00
W4 2976 W4 2989
Data 0A00 8988 Data 0A00 8988
SR 0000 SR 0000

Example 2: MOV [W6++], [W2+W3] ; Move [W6] to [W2+W3] (Word mode)
; Post-increment W6

Before After
Instruction Instruction
w2 0800 w2 0800
w3 0040 w3 0040
W6 1228 W6 122A
Data 0840 9870 Data 0840 0690
Data 1228 0690 Data 1228 0690
SR 0000 SR 0000

DS70157F-page 288 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV. D Double Word Move from Source to Wnd
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} MOV.D Whns, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--WS]V
Operands: Wns € [WO, W2, W4 ... W14]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W14]

Operation: For direct addressing of source:
Wns -Wnd
Wns +1 -Wnd + 1
For indirect addressing of source:
See Description

Status Affected: None
Encoding: 1011 1110 0000 0ddd Oppp ‘ SSSs ‘

Description: Move the double word specified by the source to a destination working
register pair (Wnd:Wnd + 1). If register direct addressing is used for the
source, the contents of two successive working registers (Wns:Wns + 1)
are moved to Wnd:Wnd + 1. If indirect addressing is used for the source,
Ws specifies the effective address for the least significant word of the
double word. Any pre/post-increment or pre/post-decrement will adjust Ws
by 4 bytes to accommodate for the double word.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the first source register.

Note 1: This instruction only operates on double words. See Figure 4-3
for information on how double words are aligned in memory.
2: Wnd must be an even working register.
3: The instruction “POP.D Wnd” translates to MOV.D [--W15],
wnd.
Words: 1
Cycles: 2(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 289

16-bit MCU and DSC Programmer’s Reference Manual

W2, We

W7--1, w4

Example 1: MOV.D
Before
Instruction
W2 | 12FB
W3 9877
W6 9833
W7 | FCC6
SR 0000
Example 2: MOV.D
Before
Instruction
w4 B012
W5 | FD89
w7 0900
Data 0900 | A319
Data 0902 9927
SR 0000

; Move W2 to W6 (Double mode)

W2
w3
W6
w7
SR

After
Instruction

12FB

9877

12FB

9877

0000

; Move [W7] to W4 (Double mode)
; Post-decrement W7

w4
W5
W7
Data 0900
Data 0902
SR

After
Instruction

A319

9927

08FC

A319

9927

0000

DS70157F-page 290

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOVPAG Move Literal to Page Register

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} MOVPAG #lit10, DSRPAG
#it9, DSWPAG
#it8, TBLPAG
Operands: litl0 e [0 ... 1023], lit9 € [0 ... 511], lit8 € [O ... 255]
Operation: litl0 ->DSRPAG or lit9 -DSWPAG or lit8 ->TBLPAG
Status Affected: None
Encoding: | 1111 | 1110 | 1100 | PPkk | Kkkk kkkk
Description: The appropriate number of bits from the unsigned literal ‘k’ are loaded

into the DSRPAG, DSWPAG, or TBLPAG register. The assembler
restricts the literal to a 9-bit unsigned value when the destination is
DSWPAG, and an 8-bit unsigned value when the destination is TBLPAG.

The ‘P’ bits select the destination register.
The 'k’ bits specify the value of the literal.

Note: This instruction operates in word mode only.

Words:
Cycles:
Example 1: MOVPAG #0x02, DSRPAG
Before After
Instruction Instruction

DSRPAG DSRPAG

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 291

16-bit MCU and DSC Programmer’s Reference Manual

MOVPAG Move Ws to Page Register

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} MOVPAG Wn, DSRPAG

DSWPAG

TBLPAG
Operands: Wn e [WO ... W15]
Operation: Wn<9:0> -DSRPAG or Wn<8:0> -DSWPAG or Wn<7:0> -TBLPAG
Status Affected: None
Encoding: | 1111 | 1110 | 1101 PPOO 0000 ssss
Description: The appropriate number of bits from the register Ws are loaded into the

DSRPAG, DSWPAG, or TBLPAG register. The assembler restricts the
literal to a 9-bit unsigned value when the destination is DSWPAG, and an
8-bit unsigned value when the destination is TBLPAG.

The ‘P’ bits select the destination register.
The ‘s’ bits specify the source register.

Note: This instruction operates in word mode only.

Words:
Cycles:
Example 1: MOVPAG W2, DSRPAG
Before After
Instruction Instruction
DSRPAG 0000 DSRPAG 0002
w2 0002 w2 0002

DS70157F-page 292 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOVSAC Prefetch Operands and Store Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X
Syntax: {label:} MOVSAC Acc {,[Wx], Wxd} {:[wy], Wyd} {,AWB}

{,[Wx] + = kx, Wxd} {,]wWy] + = ky, Wyd}
{.[Wx] — = kx, Wxd} {.[wy] — = ky, Wyd}
{,]W9 + W12], Wxd} {, w11 + W12], Wyd}

Operands: Acc € [AB]
Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB € [W13, [W13] + = 2]

Operation: ([Wx]) -Wxd; (Wx) + kx -Wx
([Wy]) -Wyd; (Wy) + ky -Wy
(Acc(B or A)) rounded —-AWB

Status Affected: None
Encoding: 1100 0111 AOXX yyii iijj jjaa
Description: Optionally prefetch operands in preparation for another MAC type

instruction and optionally store the unspecified accumulator results. Even
though an accumulator operation is not performed in this instruction, an
accumulator must be specified to designate which accumulator to write
back.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”. Operand AWB specifies the optional
store of the “other” accumulator, as described in

Section 4.14.4 “MAC Write Back”.

The ‘A’ bit selects the other accumulator used for write back.
The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘i’ bits select the Wx prefetch operation.

The J’ bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write Back destination.

Words: 1
Cycles: 1

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 293

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MOVSAC B, [W9], W6, [Wll]+=4, W7, W13
; Fetch [W9] to w6
; Fetch [W11l] to W7, Post-increment Wil by 4
; Store ACCA to W13
Before After
Instruction Instruction
W6 A022 W6 7811
W7 B200 W7 B2AF
W9 0800 W9 0800
W11 1900 W11 1904
W13 0020 W13 3290
ACCA 00 3290 5968 ACCA 00 3290 5968
Data 0800 7811 Data 0800 7811
Data 1900 B2AF Data 1900 B2AF
SR 0000 SR 0000
Example 2: MOVSAC A, [W9]-=2, W4, [Wil+w12], W6, [W13]+=2
; Fetch [W9] to W4, Post-decrement W9 by 2
; Fetch [W11+W12] to W6
; Store ACCB to [W13], Post-increment W13 by 2
Before After
Instruction Instruction
w4 76AE w4 BB0OO
W6 2000 W6 52CE
w9 1200 w9 11FE
will 2000 will 2000
w12 0024 w12 0024
W13 2300 W13 2302
ACCB 00 9834 4500 ACCB 00 9834 4500
Data 1200 BBOO Data 1200 BBOO
Data 2024 52CE Data 2024 52CE
Data 2300 23FF Data 2300 9834
SR 0000 SR 0000

DS70157F-page 294

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY Multiply Wm by Wn to Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X

Syntax: {label:’} MPY Wm *Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx] + = kx, Wxd} {.]wWy] + = ky, Wyd}
{.[Wx] — = kx, Wxd} {.[wy] — = ky, Wyd}
{,]W9 + W12], Wxd} {,[w11 + W12], Wyd}

Operands: Wm *Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc e [AB]
Wx e [W8, W9); kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13], [W13] +=2
Operation: (Wm) * (Wn) —Acc(A or B)
(IWx]) -Wxd; (Wx) + kx -Wx
(IWy]) -Wyd; (Wy) + ky —-Wy
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 ommm AOXX yyii iijj jji1

Description: Multiply the contents of two working registers, optionally prefetch
operands in preparation for another MAC type instruction. The 32-bit result
of the signed multiply is sign-extended to 40 bits and stored to the
specified accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply:

The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘I’ bits select the Wx prefetch operation.

The J’ bits select the Wy prefetch operation.

Note 1: The IF bit, CORCON<O0>, determines if the multiply is
fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E,
CORCON<12> in dsPIC30F/dsPIC33F) determine if the
multiply is unsigned, signed, or mixed-sign. Only dsPIC33E
devices support mixed-sign multiplication.

Words:
Cycles: 1

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 295

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MPY W4*W5, A, [W8]+=2, W6, [W10]-=2, W7

Multiply wW4*W5 and store to ACCA

Fetch [wW8] to W6, Post-increment W8 by 2

Fetch [W10] to W7, Post-decrement W10 by 2

CORCON = 0x0000 (fractional multiply, no saturation)

’
’
’
’

Before After

Instruction Instruction
w4 C000 w4 CO000
W5 9000 W5 9000
W6 0800 W6 671F
w7 B200 w7 E3DC
w8 1780 w8 1782
W10 2400 W10 23FE
ACCA FF F780 2087 ACCA 00 3800 0000
Data 1780 671F Data 1780 671F
Data 2400 E3DC Data 2400 E3DC
CORCON 0000 CORCON 0000
SR 0000 SR 0000

Example 2: MPY W6*W7, B, [W8]+=2, W4, [W10]-=2, W5
; Multiply W6*W7 and store to ACCB
; Fetch [wW8] to W4, Post-increment W8 by 2
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before After

Instruction Instruction
w4 C000 w4 8FDC
w5 9000 w5 0078
W6 671F W6 671F
w7 E3DC w7 E3DC
w8 1782 w8 1784
w10 23FE w10 23FC
ACCB 00 9834 4500 ACCB FF E954 3748
Data 1782 8FDC Data 1782 8FDC
Data 23FE 0078 Data 23FE 0078
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70157F-page 296 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY Square to Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X

Syntax: {label:} MPY Wm *Wm, Acc {,[Wx], Wxd} {:.[wy], Wyd}

{,]Wx] + = kx, Wxd} {.Iwy] + = ky, Wyd}
{.[Wx] — = kx, Wxd} {.[wy] — = ky, Wyd}
{,]W9 + W12], Wxd} {,lw11 + wW12], Wyd}

Operands: Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Acc e [AB]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: (Wm) * (Wm) —Acc(A or B)
([Wx]) -Wxd; (Wx) + kx -Wx
(Wy]) -Wyd; (Wy) + ky Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 OOmm AOXX yyii iijj jjo1
Description: Square the contents of a working register, optionally prefetch operands in

preparation for another MAC type instruction. The 32-bit result of the
signed multiply is sign-extended to 40 bits and stored in the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.

The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘I’ bits select the Wx prefetch operation.

The ' bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>), determines if the multiply is
fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E,
CORCON<12> in dsPIC30F/dsPIC33F) determine if the
multiply is unsigned, signed, or mixed-sign. Only dsPIC33E
devices support mixed-sign multiplication.

Words: 1
Cycles:

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 297

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MPY W6*W6, A, [W9]+=2, W6
; Square W6 and store to ACCA
; Fetch [W9] to W6, Post-increment W9 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before After
Instruction Instruction

W6 6500 W6 B865

W9 0900 W9 0902
ACCA 00 7C80 0908 ACCA 00 4FB2 0000
Data 0900 B865 Data 0900 B865
CORCON 0000 CORCON 0000
SR 0000 SR 0000

Exanuﬂe 2: MPY W4*W4, B, [W9+W12], W4, [W10]+=2, W5
; Square W4 and store to ACCB
; Fetch [W9+w12] to w4
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before After

Instruction Instruction
w4 E228 w4 8911
w5 9000 w5 F678
w9 1700 w9 1700
w10 1B00O w10 1B02
W12 FFOO0 W12 FFOO0
ACCB 00 9834 4500 ACCB 00 06F5 4C80
Data 1600 8911 Data 1600 8911
Data 1B00 F678 Data 1B00 F678
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70157F-page 298 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY. N Multiply -Wm by Wn to Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X

Syntax: {label:} MPY.N Wm * Wn, Acc {,[Wx], Wxd} {.[wyl, wyd}

{,]Wx] + = kx, Wxd} {.]wWy] + = ky, Wyd}
{.[Wx] — = kx, Wxd} {.[Wy] — = ky, Wyd}
{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm *Wn e [W4 * W5; W4 * W6; W4 * W7; W5 * W6; W5 * W7; W6 * W7]
Acc € [AB]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: -(Wm) * (Wn) —Acc(A or B)
([Wx]) -Wxd; (Wx) + kx -Wx
(IwWy]) —Wyd; (Wy) + ky Wy
Status Affected: OA, OB, OAB

Encoding: 1100 Ommm Alxx yyii iijj jji1

Description: Multiply the contents of a working register by the negative of the contents
of another working register, optionally prefetch operands in preparation for
another MAC type instruction and optionally store the unspecified
accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40 bits and stored to the specified accumulator.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.

The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘i’ bits select the Wx prefetch operation.

The ' bits select the WYy prefetch operation.

Note 1: The IF bit (CORCON<O0>), determines if the multiply is
fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E,
CORCON<12> in dsPIC30F/dsPIC33F) determine if the
multiply is unsigned, signed, or mixed-sign. Only dsPIC33E
devices support mixed-sign multiplication.

Words:
Cycles: 1

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 299

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MPY

’
’
’
’

w4

W5

W8

W10
ACCA
Data 0BOO
Data 2000
CORCON
SR

Example 2: MPY
Multiply W4*Wws,

N Wa*ws, A,
Multiply W4*Ws,

[W8]+=2, W4,

Before

Instruction
3023 w4
1290 W5
0B0O w8
2000 W10

00 0000 2387 ACCA
0054 Data 0B0OO
660A Data 2000
0001 CORCON
0000 SR

N WA*WS, A,

[W8]+=2, W4,

[Wie]+=2, W5
negate the result and store to ACCA
Fetch [W8] to W4, Post-increment W8 by 2

Fetch [W10] to W5, Post-increment W10 by 2
CORCON = 0x0001 (integer multiply,

no saturation)

After
Instruction

0054

660A

0B02

2002

FF FC82 7650

0054

660A

0001

0000

[Wi0]+=2, W5
negate the result and store to ACCA

Fetch [W10] to W5, Post-increment W10 by 2

’
; Fetch [W8] to W4, Post-increment W8 by 2
’

CORCON = 0x0000 (fractional multiply,

w4

W5

W8

W10
ACCA
Data 0BOO
Data 2000
CORCON
SR

Before

Instruction
3023 w4
1290 W5
0B0O w8
2000 W10

00 0000 2387 ACCA
0054 Data 0B0OO
660A Data 2000
0000 CORCON
0000 SR

After
Instruction

0054

660A

0B02

2002

FF F904 ECAO

0054

660A

0000

0000

DS70157F-page 300

© 2005-2011 Microchip Technology Inc.

no saturation)

Section 5. Instruction Descriptions

MSC Multiply and Subtract from Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X

Syntax: {label:’} MSC Wm *Wn, Acc {,[Wx], Wxd} {[wy], Wyd} {,AWB}

{,]Wx] + = kx, Wxd} {.Iwy] + = ky, Wyd}
{,[Wx] — = kx, Wxd} {.[wy] — = ky, Wyd}
{,]W9 + W12], Wxd} {,lw11 + wW12], Wyd}

Operands: Wm * Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc e [AB]
Wx € [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13] + = 2]

Operation: (Acc(A or B)) «(Wm) * (Wn) —Acc(A or B)
(TWx]) -Wxd; (Wx) + kx ->Wx
(Wy]) —-Wyd; (Wy) + ky -Wy
(Acc(B or A)) rounded -AWB

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 Ommm A1xx yyii iijj jjaa
Description: Multiply the contents of two working registers, optionally prefetch

operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40 bits and subtracted from the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional prefetch operations
which support indirect and register offset addressing as described in
Section 4.14.1 “MAC Prefetches”. Operand AWB specifies the optional
store of the “other” accumulator as described in

Section 4.14.4 “MAC Write Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The 'y’ bits select the prefetch Wyd destination.

The ‘I’ bits select the Wx prefetch operation.

The ' bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write Back destination.

Note: The IF bit (CORCON<0>), determines if the multiply is
fractional or an integer.

Words: 1
Cycles:

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 301

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MSC W6*W7, A, [W8]-=4, W6, [W10]-=4, W7
; Multiply W6*W7 and subtract the result from ACCA
; Fetch [W8] to W6, Post-decrement W8 by 4
; Fetch [W10] to W7, Post-decrement W10 by 4
; CORCON = 0x0001 (integer multiply, no saturation)
Before After
Instruction Instruction
W6 9051 W6 D309
W7 7230 W7 100B
w8 0CO00 w8 0OBFC
W10 1C00 W10 1BFC
ACCA 00 0567 8000 ACCA 00 3738 5EDO
Data 0C00 D309 Data 0C00 D309
Data 1C00 100B Data 1C00 100B
CORCON 0001 CORCON 0001
SR 0000 SR 0000

Example 2: MSC W4*w5, B, [W11+w1l2], W5, W13
; Multiply wW4*W5 and subtract the result from ACCB
Fetch [W11+W12] to W5

r

’

; Write Back ACCA to w13

; CORCON = 0x0000 (fractional multiply,

Before After

Instruction Instruction
W4 0500 w4 0500
W5 2000 W5 3579
w1l 1800 w1l 1800
W12 0800 W12 0800
w13 6233 W13 3738
ACCA 00 3738 5EDO ACCA 00 3738 5EDO
ACCB 00 1000 0000 ACCB 00 OECO 0000
Data 2000 3579 Data 2000 3579
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70157F-page 302

© 2005-2011 Microchip Technology Inc.

no saturation)

Section 5. Instruction Descriptions

M U L Integer Unsigned Multiply f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} MUL{.B} f

Operands: fe [0...8191]

Operation: For byte operation:

(WREG)<7:0> * (f)<7:0> -W2
For word operation:
(WREG) * (f) -W2:W3

Status Affected: None
Encoding: | 1011 | 1100 oBOf FEf FEEF | FFFF
Description: Multiply the default working register WREG with the specified file

register and place the result in the W2:W3 register pair. Both operands
and the result are interpreted as unsigned integers. If this instruction is
executed in Byte mode, the 16-bit result is stored in W2. In Word mode,
the most significant word of the 32-bit result is stored in W3, and the
least significant word of the 32-bit result is stored in W2.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

3: The IF bit (CORCON<0>), has no effect on this operation.
4: This is the only instruction, which provides for an 8-bit
multiply.
Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.B 0x800 ; Multiply (Ox800)*WREG (Byte mode)

Before After
Instruction Instruction
WREG (WO0) 9823 WREG (WO0) 9823
W2 | FFFF w2 13B0
W3 | FFFF W3 | FFFF
Data 0800 2690 Data 0800 2690
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=
m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 303

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: MUL

WREG (WO0)
W2
w3

TMR1
SR

TMR1

Before
Instruction

F001

0000

0000

3287

0000

WREG (WO0)
W2
w3

TMR1
SR

After
Instruction

; Multiply (TMR1)*WREG (Word mode)

FO01

C287

2F5E

3287

0000

DS70157F-page 304

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L.SS Integer 16x16-bit Signed Multiply

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} MUL.SS Wh, Ws, Wnd

[Ws],

[Ws++],

[Ws-],

[++Ws],

[“WS],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws) -Wnd:Wnd + 1

Status Affected: None

Encoding: ‘ 1011 ‘ 1001 Iwww wddd dppp ‘ SSSsS |
Description: Multiply the contents of Wb with the contents of Ws, and store the 32-hit

result in two successive working registers. The least significant word of
the result is stored in Wnd (which must be an even numbered working
register), and the most significant word of the result is stored in

Wnd + 1. Both source operands and the result Wnd are interpreted as
two’s complement signed integers. Register direct addressing must be
used for Wb and Wnd. Register direct or register indirect addressing
may be used for Ws.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The 's’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.

Words: 1

Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 305

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MUL.SS WO, Wi, W12 ; Multiply wWO*wi

WO
w1
w12
W13
SR

Example 2: MUL.SS W2,

WO
w1
w2
w4
Data 27FC
SR

Before
Instruction

9823

67DC

FFFF

FFFF

0000

Before
Instruction

FFFF

FFFF

0045

27FE

0098

0000

; Store the result to W12:wi3

After
Instruction
W0 9823
wW1l| 67DC
w12 D314
W13 | D5DC
SR 0000

[--w4], we ; Pre-decrement w4
; Multiply w2*[w4]
; Store the result to wWo:wi

After
Instruction
WO 28F8
w1 0000
w2 0045
w4 | 27FC
Data 27FC 0098
SR 0000

DS70157F-page 306

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L.SS Integ_er 1_6x16-bit Signed Multiply with Accumulator
Destination
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X
Syntax: {label:} MUL.SS Wh, Ws,
[Ws], A
[Ws++], B
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
ACC € [A, B]
Operation: signed (Whb) * signed (Ws) —-ACC(A or B)
Status Affected: None
Encoding: ‘ 1011 ‘ 1001 1www wlll Appp ‘ SSSsS |
Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is

stored in one of the DSP engine accumulators, ACCA or ACCB. The
32-bit result is sign extended to bit 39 prior to being loaded into the
target accumulator.

The source operands are treated as integer or fractional values
depending upon the operating mode of the DSP engine (as defined by
the IF bitin CORCON<0>). Both source operands are treated as signed
values.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the source register.

The ‘p’ bits select source Address mode 2.

The ‘A’ bit selects the destination accumulator for the product.
Note 1: This instruction operates in Word mode only.

2: The state of the multiplier mode bits (US<1:0> in CORCON)
have no effect upon the operation of this instruction.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.SS WO, Wi, A “

Before After O

Instruction Instruction 8 a

WO 9823 WO 9823 Q =g
w1 67DC Wl 67DC =1 §
Acc A 00 0000 0000 Acc A| FF D5DC D314 o o
SR 0000 SR 0000 75

© 2005-2011 Microchip Technology Inc. DS70157F-page 307

16-bit MCU and DSC Programmer’s Reference Manual

MUL.SU

Integer 16x16-bit Sighed-Unsigned Short Literal Multiply

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X

{label:} MUL.SU Wb, #lit5, Wnd

Wb e [WO ... W15]
lits € [0 ... 31]
Wnd e [WO, W2, W4 ... W12]

signed (Wb) * unsigned lit5 -Wnd:Wnd + 1
None
| 1011 | 1001 Owww wddd diik | kkkk |

Multiply the contents of Wb with the 5-bit literal, and store the 32-bit
result in two successive working registers. The least significant word of
the result is stored in Wnd (which must be an even numbered working
register), and the most significant word of the result is stored in Wnd + 1.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The literal is interpreted as an unsigned
integer. Register direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be
an even working register. See Figure 4-3 for information on
how double words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.

MUL.SU WO, #Ox1F, W2 ; Multiply WO by literal Ox1F

WO
w2
W3
SR

; Store the result to wW2:Ww3

Before After
Instruction Instruction
C000 W0 | CO000
1234 w2 4000
C9BA W3 | FFF8
0000 SR 0000

DS70157F-page 308

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: MUL.SU W2, #0x10, WO ; Multiply W2 by literal 0x10
; Store the result to WO:W1

7

Before After
Instruction Instruction
WO | ABCD WO 2400
w1 89B3 w1 000F
w2 F240 w2 F240
SR 0000 SR 0000

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 309

16-bit MCU and DSC Programmer’s Reference Manual

MUL.SU

Integer 16x16-bit Sighed-Unsigned Multiply

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

{label:} MUL.SU Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

signed (Whb) * unsigned (Ws) -Wnd:Wnd + 1
None
‘ 1011 ‘ 1001 Owww wddd dppp ‘ SSSs |

Multiply the contents of Wb with the contents of Ws, and store the 32-hit
result in two successive working registers. The least significant word of
the result is stored in Wnd (which must be an even numbered working
register), and the most significant word of the result is stored in Wnd + 1.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The Ws operand is interpreted as an
unsigned integer. Register direct addressing must be used for Wb and
Whnd. Register direct or register indirect addressing may be used for Ws.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be
an even working register. See Figure 4-3 for information on
how double words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.
1

1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 310

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1. MUL.SU W8, [W9], WO ; Multiply W8*[W9]
; Store the result to WO:wWl
Before After
Instruction Instruction
WO | 68DC WO 0000
W1 | AA40 w1l F100
w8 F000 w8 FO00
W9 178C w9 178C
Data 178C FO00 Data 178C FOO00
SR 0000 SR 0000
Example 2: MUL.SU W2, [++W3], W4 ; Pre-Increment W3
; Multiply w2*[W3]
; Store the result to W4:W5
Before After
Instruction Instruction
w2 0040 w2 0040
W3 0280 W3 0282
W4 1819 W4 1A00
W5 2021 W5 0000
Data 0282 0068 Data 0282 0068
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 311

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

M U L.SU Integer 16x16-bit S_,ign_ed-Unsigned Multiply with
Accumulator Destination
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X
Syntax: {label:} MUL.SU Wh, Ws,
[Ws],
[Ws++], B
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
ACC e [A, B]
Operation: signed (Wb) * unsigned (Ws) —-ACC(A or B)
Status Affected: None
Encoding: ‘ 1011 ‘ 1001 Owww willl Appp ‘ SSSsS |
Description: Performs a 16-bit x 16-hit signed multiply with a 32-bit result, which is

stored in one of the DSP engine accumulators, ACCA or ACCB. The
32-bit result is sign extended to bit 39 prior to being loaded into the target
accumulator.

The source operands are treated as integer or fractional values
depending upon the operating mode of the DSP engine (as defined by
the IF bit in CORCON<0>). The first source operand is interpreted as a
two's complement signed value and the second source operand is
interpreted as an unsigned value.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the source register.

The ‘p’ bits select source Address mode 2.

The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the multiplier mode bits (US<1:0> in CORCON)
have no effect upon the operation of this instruction.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 312 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1:

MUL.SU W8, W9, A

w8
W9

Acc A

SR

Before
Instruction

FO00

FO00

00 0000 0000

0000

W8
W9
Acc A
SR

After
Instruction

FO00

FO00

FF F100 0000

0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 313

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

MUL.SU

Integer 16x16-bit Sighed-Unsigned Short Literal Multiply
with Accumulator Destination

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X
{label} MULSU Wb, #iits, A
B

Wb e [WO ... W15]
lits € [0 ... 31]
ACC e [A, B]
signed (Wb) * unsigned (lit5) -ACC(A or B)
None
| 1011 | 1001 OwwwW will atik | kkkk |

Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is
stored in one of the DSP engine accumulators, ACCA or ACCB. The
32-bit result is sign extended to bit 39 prior to being loaded into the target
accumulator.

The source operands are treated as integer or fractional values
depending upon the operating mode of the DSP engine (as defined by
the IF bit in CORCON<0>). The first source operand is interpreted as a
two's complement signed value and the second source operand is
interpreted as an unsigned value.

The ‘w’ bits select the address of the base register.
The 'k’ bits select the 5-bit literal value.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the multiplier mode bits (US<1:0> in CORCON)
have no effect upon the operation of this instruction.

Words:
Cycles:

Example 1:

W8
Acc A
SR

MUL.SU W8, #0x02, A

Before After
Instruction Instruction
0042 w8 0042
00 0000 0000 Acc A 00 0000 0084
0000 SR 0000

DS70157F-page 314

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MUL.US Integer 16x16-bit Unsigned-Signed Multiply
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} MUL.US Wh, Ws, Wnd
[Ws],
[Ws++],
[VVS"]!
[++Ws],
[“WS],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws) -Wnd:Wnd + 1

Status Affected: None

Encoding: ‘ 1011 | 1000 Iwww wddd dppp ‘ SSSsS |
Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit

result in two successive working registers. The least significant word of
the result is stored in Wnd (which must be an even numbered working
register), and the most significant word of the result is stored in Wnd + 1.
The Wb operand is interpreted as an unsigned integer. The Ws operand
and the result Wnd are interpreted as a two’s complement signed
integer. Register direct addressing must be used for Wb and Wnd.
Register direct or register indirect addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be
an even working register. See Figure 4-3 for information on
how double words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.
Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more

details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”. “

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 315

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MUL.US Wwo,

WO
w1l
w2
W3
Data 2300
SR

Before
Instruction

C000
2300
OODA
CC25
FO00
0000

Example 2: MUL.US We,

W5

W6

W10

w11

Data 0C00
SR

Before
Instruction

0C00
FFFF
0908
6EEB
7FFF
0000

[wi], w2 ; Multiply wWO*[W1l] (unsigned-signed)
; Store the result to W2:W3

WO
wi
w2
w3
Data 2300
SR

After
Instruction

C000

2300

0000

F400

FO00

0000

[W5++], W10 ; Mult. wW6*[W5] (unsigned-signed)

’

14

W5

W6

w10

w11

Data 0C00
SR

After
Instruction

0C02

FFFF

8001

7FFE

7FFF

0000

Store the result to wi0:wil
; Post-Increment W5

DS70157F-page 316

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L. US Integer 16x16-bit L_lnsi_gned-Signed Multiply with
Accumulator Destination
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X
Syntax: {label:} MUL.US Wh, Ws,
[Ws], B
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
ACC e [A, B]
Operation: unsigned (Wb) * signed (Ws) —ACC(A or B)
Status Affected: None
Encoding: ‘ 1011 ‘ 1000 Owww wlll Appp ‘ SSSsS |
Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is

stored in one of the DSP engine accumulators, ACCA or ACCB. The
32-bit result is sign extended to bit 39 prior to being loaded into the target
accumulator.

The source operands are treated as integer or fractional values
depending upon the operating mode of the DSP engine (as defined by
the IF bit in CORCON<O0>). The first source operand is interpreted as a
unsigned value and the second source operand is interpreted as a two’s
complement signed value.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the source register.

The ‘p’ bits select source Address mode 2.

The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the multiplier mode bits (US<1:0> in CORCON)
have no effect upon the operation of this instruction.

Words: 1
Cycles: 1(@)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 317

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: MUL.US WO, Wi, B

WO
w1
Acc B
SR

Before
Instruction

C000

FO00

00 0000 0000

0000

WO
w1
Acc B
SR

After
Instruction

0000

FO00

FF F400 0000

0000

DS70157F-page 318

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

MUL.UU Integer 16x16-bit Unsigned Short Literal Multiply
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} MUL.UU Wh, #it5, Wnd
Operands: Wb e [WO ... W15]

it € [0 ... 31]

Wnd e [WO0, W2, W4 ... W12]
Operation: unsigned (Wb) * unsigned lit5 -Wnd:Wnd + 1
Status Affected: None
Encoding: | 1011 | 1000 Ovww wddd diik | kkkk |
Description: Multiply the contents of Wb with the 5-bit literal, and store the 32-bit

result in two successive working registers. The least significant word of
the result is stored in Wnd (which must be an even numbered working
register), and the most significant word of the result is stored in Wnd + 1.
Both operands and the result are interpreted as unsigned integers.
Register direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be
an even working register. See Figure 4-3 for information on
how double words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.

Words: 1

Cycles:

Examgle 1: MUL.UU WO, #OxF, W12 ; Multiply WO by literal OxF
; Store the result to W12:wi3

Before After
Instruction Instruction
WO 2323 WO 2323
W12 4512 W12 OFOD
W13 7821 W13 0002
SR 0000 SR 0000
Example 2: MUL.UU W7, #Ox1F, WO ; Multiply W7 by literal Ox1F “
; Store the result to wWo:wi
Before After
Instruction Instruction g 5
wo | 780B WO | 55C0 o0
W1 3805 W1 001D :.E
w7 [F240 w7 [F240 =22
SR| 0000 SR| 0000 % =

© 2005-2011 Microchip Technology Inc. DS70157F-page 319

16-bit MCU and DSC Programmer’s Reference Manual

MUL.UU Integer 16x16-bit Unsigned Multiply

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} MUL.UU Wh, Ws, Wnd

[Ws],

[Ws++],

[Ws-],

[++Ws],

[“WS],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned (Ws) -Wnd:Wnd + 1

Status Affected: None

Encoding: ‘ 1011 ‘ 1000 Owww wddd dppp ‘ SSSsS |
Description: Multiply the contents of Wb with the contents of Ws, and store the 32-hit

result in two successive working registers. The least significant word of
the result is stored in Wnd (which must be an even numbered working
register), and the most significant word of the result is stored in

Wnd + 1. Both source operands and the result are interpreted as
unsigned integers. Register direct addressing must be used for Wb and
Wnd. Register direct or indirect addressing may be used for Ws.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be
an even working register. See Figure 4-3 for information on
how double words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on nhon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 320 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: MUL.UU W4, WO, W2 ; Multiply W4*WO (unsigned-unsigned)
; Store the result to wW2:Ww3
Before After
Instruction Instruction
WO FFFF WO FFFF
W2 2300 W2 0001
W3 | OODA w3 FFFE
W4 FFFF W4 FFFF
SR 0000 SR 0000

Example 2: MUL.UU WO, [Wil++], W4 ; Mult. wWO*[W1l] (unsigned-unsigned)
; Store the result to W4:W5

r
; Post-Increment Wil

Before After
Instruction Instruction
WO 1024 WO 1024
w1l 2300 wi 2302
w4 9654 W4 | 6D34
W5 | BDBC W5 | 0D80
Data 2300 D625 Data 2300 | D625
SR 0000 SR 0000

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 321

16-bit MCU and DSC Programmer’s Reference Manual

M U L. U U Integ_er]:6x16-bit Unsigned Multiply with Accumulator
Destination
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X
Syntax: {label:} MUL.UU Wh, Ws,
[Ws], B
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
ACC e [A, B]
Operation: unsigned (Wb) * unsigned (Ws) —-ACC(A or B)
Status Affected: None
Encoding: ‘ 1011 ‘ 1000 Owww willl Appp ‘ SSSsS |
Description: Performs a 16-bit x 16-bit unsigned multiply with a 32-bit result, which is

stored in one of the DSP engine accumulators, ACCA or ACCB. The
32-bit result is zero extended to bit 39 prior to being loaded into the
target accumulator.

The source operands are treated as integer or fractional values
depending upon the operating mode of the DSP engine (as defined by
the IF bit in CORCON<0>). Both source operands are treated as
unsigned values.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the source register.

The ‘p’ bits select source Address mode 2.

The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the multiplier mode bits (US<1:0> in CORCON)
have no effect upon the operation of this instruction.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.UU W4, WO, B

Before After
Instruction Instruction
wo FFFFF Wo FFFFF
w4 FFFFF w4 FFFFF
Acc B 00 0000 0000 Acc B FF FFFE 0001
SR 0000 SR 0000

DS70157F-page 322 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L. U U Integer 16x16-bit L_Jnsi_gned Short Literal Multiply with
Accumulator Destination
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X
Syntax: {label:} MUL.UU Wh, #lit5, A
B

Operands: Wb e [WO ... W15]

lits € [0 ... 31]

ACC € [A, B]
Operation: unsigned (Wb) * unsigned (lit5) -ACC(A or B)
Status Affected: None
Encoding: | 1011 | 1000 Owww w11l a1tk | kkkk |
Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is

stored in one of the DSP engine accumulators, ACCA or ACCB. The
32-bit result is zero extended to bit 39 prior to being loaded into the
target accumulator.

The source operands are treated as integer or fractional values
depending upon the operating mode of the DSP engine (as defined by
the IF bit in CORCON<O0>). Both source operands are treated as
unsigned values.

The ‘W’ bits select the address of the base register.
The ‘K’ bits select the 5-bit literal.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the multiplier mode bits (US<1:0> in CORCON)
have no effect upon the operation of this instruction.

Words:
Cycles: 1

Example 1: MUL.UU W8, #0x02, A

Before After
Instruction Instruction
w8 0042 w8 0042
Acc A 00 0000 0000 Acc A 00 0000 0084
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 323

16-bit MCU and DSC Programmer’s Reference Manual

MULW.SS

Integer 16x16-bit Signed Multiply with 16-bit Result

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
{label:} MULW.SS Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO0, W2, W4 ... W12]
signed (Wb) * signed (Ws) -Wnd
None
‘ 1011 ‘ 1001 Iwww wddd dppp ‘ SSSS |

Multiply the contents of Wb with the contents of Ws, and store the result
in a working register, which must be an even numbered working register.
Both source operands and the result Wnd are interpreted as two’s
complement signed integers. Register direct addressing must be used
for Wb and Wnd. Register direct or register indirect addressing may be
used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1:
2:
3:
4:

1

1(1)

This instruction operates in Word mode only.
Wnd must be an even working register.
Wnd may not be W14, since W15<0> is fixed to zero.

The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MULW.SS WO, Wi, wi2

Before
Instruction

WO 9823

W1| 67DC

W12 | FFFF

SR 0000

; Multiply wo*wi

; Store the result to wi2

WO
w1
W12
SR

After

Instruction

9823

67DC

D314

0000

DS70157F-page 324

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: MULW.SS W2, [--W4], WO ; Pre-decrement W4
; Multiply w2*[w4]
; Store the result to wo

’

Before After
Instruction Instruction
WO | FFFF WO 28F8
w2 0045 w2 0045
W4 | 27FE w4 | 27FC
Data 27FC 0098 Data 27FC 0098
SR 0000 SR 0000

O
DS
0w wn
Q3
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 325

16-bit MCU and DSC Programmer’s Reference Manual

MULW.SU

Integer 16x16-bit Signed-Unsigned Multiply with 16-bit
Result

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

{label:} MUL.SU Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

signed (Wb) * unsigned (Ws) -Wnd
None
‘ 1011 ‘ 1001 Owww wddd dppp ‘ SSSs |

Multiply the contents of Wb with the contents of Ws, and store the result
in a working register, which must be an even numbered working register.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The Ws operand is interpreted as an
unsigned integer. Register direct addressing must be used for Wb and
Wnd. Register direct or register indirect addressing may be used for Ws.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.
2: Wnd must be an even working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.
1

1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

MULW.SU W8, [W9], WO ; Multiply W8*[W9]

Example 1:
WO
w8
W9
Data 178C
SR

; Store the result to Wo

Before After
Instruction Instruction
68DC W0 0000
F000 w8 F000
178C w9 178C
F000 Data 178C F000
0000 SR 0000

DS70157F-page 326

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: MULW.SU W2, [++W3], W4 ; Pre-Increment W3
; Multiply w2*[Ww3]
; Store the result to w4

14

Before After
Instruction Instruction
w2 0040 W2 0040
w3 0280 w3 0282
W4 1819 W4 1A00
Data 0282 0068 Data 0282 0068
SR 0000 SR 0000

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 327

16-bit MCU and DSC Programmer’s Reference Manual

MULW.SU

Integer 16x16-bit Signed-Unsigned Short Literal Multiply
with 16-bit Result

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

{label:} MULW.SU Wb, #lith, Wnd

Wb e [WO ... W15]
lits € [0 ... 31]
Wnd e [WO, W2, W4 ... W12]

signed (Wb) * unsigned (lit5) -Wnd
None
| 1011 | 1001 Owww wddd diik | kkkk |

Multiply the contents of Wb with a 5-bit literal value, and store the result
in a working register, which must be an even numbered working register.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. Register direct addressing must be used for
Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The 'k’ bits select the 5-bit literal value.

Note 1: This instruction operates in Word mode only.
2: Wnd must be an even working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.

1

MULW.SU W8, #0x04, WO ; Multiply W8 * #0x04
; Store the result to WO
Before After
Instruction Instruction

WO | 68DC WO 4000
w8 1000 w8 1000
SR 0000 SR 0000

DS70157F-page 328

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U LW_ US Integer 16x16-bit Unsigned-Signed Multiply with 16-bit Result
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} MULW.US Wb, Ws, Wnd

[Ws],

[Ws++],

[WS“],

[++Ws],

[--WS]Y
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws) —-Wnd

Status Affected: None

Encoding: ‘ 1011 | 1000 Iwww wddd dppp ‘ SSSsS |
Description: Multiply the contents of Wb with the contents of Ws, and store the result

in a working register, which must be an even numbered working register.
The Wb operand is interpreted as an unsigned integer. The Ws operand
and the result Wnd are interpreted as a two’s complement signed
integer. Register direct addressing must be used for Wb and Wnd.
Register direct or register indirect addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.
2: Wnd must be an even working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.
Words: 1
Cycles: 1(2)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MULW.US WO, [w1], W2 ; Multiply WO*[W1] (unsigned-signed)
; Store the result to w2

Before After “

Instruction Instruction
WO [€000 WO | C000 o_
w1 | 2300 Wi | 2300 T
W2 | O00DA W2 | 0000 <__2 g
Data 2300 | F000 Data 2300 | F000 'g. 7]
SR| 0000 SR| 0000 oo
a >

© 2005-2011 Microchip Technology Inc. DS70157F-page 329

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: MULW.US Ws,

W5

W6

W10

Data 0C00
SR

Before
Instruction

0CO00

FFFF

0908

7FFF

0000

[W5++], W10 ; Mult. W6*[W5] (unsigned-signed)

; Store the result to wie
; Post-Increment W5

After
Instruction
W5 | 0C02
W6 FFFF
W10 8001
Data 0C00 TFFF
SR 0000

DS70157F-page 330

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U LW_ U U Integer 16x16-bit Unsigned Multiply with 16-bit Result

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} MULW.UU Wb, Ws, Wnd

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned (Ws) -Wnd

Status Affected: None

Encoding: ‘ 1011 ‘ 1000 ‘ Owww | wddd dppp SSSsS
Description: Multiply the contents of Wb with the contents of Ws, and store the result

in a working registers, which must be an even numbered working
register). Both source operands and the result are interpreted as
unsigned integers. Register direct addressing must be used for Wb and
Whnd. Register direct or indirect addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.
2: Wnd must be an even working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.
Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MULW.UU W4, WO, W2 ; Multiply W4*WO (unsigned-unsigned)
; Store the result to w2

Before After
Instruction Instruction
WO | FFFF WO | FFFF
w2 2300 w2 0001
W4 | FFFF W4 | FFFF
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 331

16-bit MCU and DSC Programmer’s Reference Manual

MULW.UU

Integer 16x16-bit Unsigned Short Literal Multiply with

16-bit Result
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} MULW.UU Wb, #it5, Wnd
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wnd e [WO0, W2, W4 ... W12]
Operation: unsigned (Wb) * unsigned —-Wnd
Status Affected: None
Encoding: | 1011 | 1000 | oww | wddd d11k kkkk
Description: Multiply the contents of Wb with a 5-bit literal value, and store the result
in a working registers, which must be an even numbered working
register). Both source operands and the result are interpreted as
unsigned integers. Register direct addressing must be used for Wb and
Whnd.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits select the 5-bit literal value.
Note 1: This instruction operates in Word mode only.
2: Wnd must be an even working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have
no effect on this operation.
Words:
Cycles:
Example 1: MULW.UU W4, #0x04, W2 ; Multiply W4*WO (unsigned-unsigned)
; Store the result to w2
Before After
Instruction Instruction
w2 2300 w2 4000
w4 1000 w4 1000
SR 0000 SR 0000

DS70157F-page 332

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

N EG Negate f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} NEG{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: @ + 1 —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1110 | 1110 | oBDf FEFF FrFF FrFF

Description: Compute the two’s complement of the contents of the file register and

place the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: NEG.B 0x880, WREG ; Negate (0x880) (Byte mode)
; Store result to WREG
Before After
Instruction Instruction
WREG (WO0)| 9080 WREG (WO0)| 90AB
Data 0880| 2355 Data 0880| 2355
SR| 0000 SR| 0008 |(N=1)
Example 2: NEG 0x1200 ; Negate (0x1200) (Word mode)
Before After
Instruction Instruction
Data 1200| 8923 Data 1200 76DD
SR| 0000 SR| 0000
NEG Negate Ws o
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E 8 §
X X X X X X eg
_a' <
=9
Syntax: {label:} NEG{B} Ws, Wd g o
[Ws], [W] i

© 2005-2011 Microchip Technology Inc. DS70157F-page 333

16-bit MCU and DSC Programmer’s Reference Manual

NEG

Negate Ws

[Ws++],
[Ws--],
[++Ws],
[--Ws],

[Wd++]
[Wd--]
[++Wd]
[--wd]

Operands: Ws e [WO ... W15]

Wd e [WO ... W15]
(Ws) + 1 -»Wd
DC,N, OV, Z, C

Operation:
Status Affected:

‘ 1110 ‘ 1010 ‘ 0Bqq gddd dppp SSSs

Encoding:

Compute the two’s complement of the contents of the source register Ws
and place the result in the destination register Wd. Either register direct
or indirect addressing may be used for both Ws and Wd.

Description:

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: NEG.B W3, [W4++] ; Negate W3 and store to [wW4] (Byte mode)
; Post-increment w4

After
Instruction

w3[7839
1006
C755
0008 |(N = 1)

Before
Instruction

W3| 7839
W4 | 1005 w4
Data 1004| 2355 Data 1004
SR| 0000 SR

Example 2: NEG

[W2++], [--W4] ; Pre-decrement W4 (Word mode)

; Negate [W2] and store to [W4]
; Post-increment w2

After
Instruction

0902
1000
870F
78F1
0000

Before
Instruction

W2| 0900 w2
W4| 1002 w4
Data 0900| 870F Data 0900
Data 1000| 5105 Data 1000
SR| 0000 SR

DS70157F-page 334

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

NEG

Negate Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label:} NEG Acc
Operands: Acc € [AB]
Operation: If (Acc = A):
-ACCA —ACCA
Else:
-ACCB —ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 1011 A001 0000 0000 0000
Description: Compute the two’s complement of the contents of the specified
accumulator. Regardless of the Saturation mode, this instruction
operates on all 40 bits of the accumulator.
The ‘A’ bit specifies the selected accumulator.
Words: 1
Cycles: 1
Example 1: NEG A ; Negate ACCA
; Store result to ACCA
; CORCON = 0x0000 (no saturation)
Before After
Instruction Instruction
ACCA 00 3290 59C8 ACCA | FF CD6F A638
CORCON 0000 CORCON 0000
SR 0000 SR 0000
Example 2: NEG B ; Negate ACCB
; Store result to ACCB
; CORCON = Ox00CO (normal saturation)
Before After
Instruction Instruction
ACCB | FFF23010DC ACCB | 00O0DCF EF24
CORCON 00CO CORCON 00Co
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 335

O
o

n

2]

=
T

=
o

>

7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

NOP

No Operation

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} NOP
Operands: None
Operation: No Operation
Status Affected: None
Encoding: 0000 0000 XXXX XXXX XXXX XXXX
Description: No Operation is performed.
The ‘X’ bits can take any value.
Words: 1
Cycles: 1
Example 1: NOP ; execute no operation
Before After
Instruction Instruction
PC 00 1092 PC 00 1094
SR 0000 SR 0000
Example 2: NOP ; execute no operation
Before After
Instruction Instruction
PC 00 08AE PC 00 08B0
SR 0000 SR 0000
NOPR No Operation
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} NOPR
Operands: None
Operation: No Operation
Status Affected: None
Encoding: 1111 1111 XXXX XXXX XXXX XXXX
Description: No Operation is performed.
The ‘X’ bits can take any value.
Words: 1
Cycles: 1

DS70157F-page 336

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: NOPR ; execute no operation
Before After
Instruction Instruction
PC 00 2430 PC 00 2432
SR 0000 SR 0000
Example 2: NOPR ; execute no operation
Before After
Instruction Instruction
PC 00 1466 PC 00 1468
SR 0000 SR 0000
POP Pop TOS to f
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} POP f
Operands: fe [0...65534]
Operation: (W15) - 2 -wW15
(TOS) —f
Status Affected: None
Encoding: | 1111 | 1001 | FFFF FEff FEff fffo
Description: The Stack Pointer (W15) is pre-decremented by 2 and the Top-of-Stack
(TOS) word is written to the specified file register, which may reside
anywhere in the lower 32K words of data memory.
The ‘f’ bits select the address of the file register.
Note 1: This instruction operates in Word mode only.
2: The file register address must be word-aligned.
Words:
Cycles:
Example 1: POP 0x1230 ; Pop TOS to 0x1230
Before After
Instruction Instruction
W15 1006 W15 1004
Data 1004| A401 Data 1004| A401
Data 1230 2355 Data 1230 A401
SR| 0000 SR| 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 337

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: POP 0x880 ; Pop TOS to 0x880
Before After
Instruction Instruction
W15 2000 W15| 1FFE
Data 0880 E3E1 Data 0880 A090
Data 1FFE| A090 Data 1FFE| A090
SR| 0000 SR| 0000
POP Pop TOS to Wd
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} POP wd
[wd]
[Wd++]
(wd--]
[--Wd]
[++Wd]
[Wd+Wb]
Operands: Wd e [WO ... W15]
Wb e [WO ... W15]
Operation: (W15) — 2 -W15
(TOS) —»wWd
Status Affected: None
Encoding: | 0111 | 1www | wehh hddd d100 1111
Description: The Stack Pointer (W15) is pre-decremented by 2 and the Top-of-Stack
(TOS) word is written to Wd. Either register direct or indirect addressing
may be used for Wd.
The ‘w’ bits define the offset register Wb.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits select the destination register.
Note 1: This instruction operates in Word mode only.
2: This instruction is a specific version of the “MOV Ws, wd”
instruction (MOV [--W15], Wd). It reverse assembles as
MOV.
Words:
Cycles:
Example 1: POP W4 ; Pop TOS to w4
Before After
Instruction Instruction
W4| EDAS8 W4| C45A
w15 1008 W15| 1006
Data 1006| C45A Data 1006| CA45A
SR| 0000 SR| 0000

DS70157F-page 338

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: POP [++W10] ; Pre-increment W10
; Pop TOS to [W10]

Before After
Instruction Instruction
W10| OEO02 W10 OE04
W15| 1766 W15 1764
Data OEO4| E3E1 Data OEO4| C7B5
Data 1764| C7B5 Data 1764| C7B5
SR| 0000 SR| 0000
POP.D Double Pop TOS to Wnd:Wnd+1
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} POP.D Wnd
Operands: Wnd e [WO0, W2, W4, ... W14]
Operation: (W15) — 2 -wW15

(TOS) »Wnd + 1
(W15) — 2 5W15

(TOS) -Wnd
Status Affected: None
Encoding: | 1011 | 1110 0000 oddd 0100 | 1111 |
Description: A double word is POPped from the Top-of-Stack (TOS) and stored to

Wnd:Wnd + 1. The most significant word is stored to Wnd + 1, and the
least significant word is stored to Wnd. Since a double word is POPped,
the Stack Pointer (W15) gets decremented by 4.

The ‘d’ bits select the address of the destination register pair.

Note 1: This instruction operates on double words. See Figure 4-3 for
information on how double words are aligned in memory.

2: Wnd must be an even working register.

3: This instruction is a specific version of the “MOV.D Ws, Wnd”
instruction (MOV.D [--W15], Wnd). It reverse assembles as

MOV.D.
Words:
Cycles:
Example 1: POP.D W6 ; Double pop TOS to W6
Before After
Instruction Instruction
W6| 07BB W6| 3210
W7| 89AE W7| 7654 o
W15| 0850 W15| 084C 8 =
Data 084C| 3210 Data 084C| 3210 o ._-“}
Data 084E| 7654 Data 084E| 7654 -E'%
SR| 0000 SR| 0000 g- g.
S
23

© 2005-2011 Microchip Technology Inc. DS70157F-page 339

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: POP.D WO ; Double pop TOS to WO
Before After
Instruction Instruction
WO0| 673E wo| 791C
W1l| DD23 W1| D400
W15| 0BBC W15| 0BB8
Data 0BB8| 791C Data 0BB8| 791C
Data 0BBA| D400 Data OBBA| D400
SR| 0000 SR| 0000

POP.S

Pop Shadow Registers

Implemented in:

Syntax:

Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

POP

WO
w1
w2
w3
SR

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

{label:} POP.S

None

POP shadow registers

DC, N, OV, Z, C

| 1111 | 1130 1000 0000 0000 | 0000 |

The values in the shadow registers are copied into their respective
primary registers. The following registers are affected: W0-W3, and the
C, Z, 0V, N and DC STATUS register flags.

Note 1: The shadow registers are not directly accessible. They may
only be accessed with PUSH. S and POP. S.

2: The shadow registers are only one-level deep.

1
.S ; Pop the shadow registers
; (See PUSH.S Example 1 for contents of shadows)
Before After
Instruction Instruction
07BB WO0| 0000
03FD W1 1000
9610 W2 2000
7249 W3| 3000
00EOQ |(IPL=7) SR| OOEl |(IPL=7,C=1)

Note: After instruction execution, contents of shadow registers are NOT modified.

DS70157F-page 340

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

PUSH Push f to TOS

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} PUSH f
Operands: fe [0... 65534]
Operation: (f) —(TOS)
(W15) + 2 W15
Status Affected: None
Encoding: | 1111 | 1000 FEFF | FFFF | FFFF fffo
Description: The contents of the specified file register are written to the Top-of-Stack

(TOS) location and then the Stack Pointer (W15) is incremented by 2.
The file register may reside anywhere in the lower 32K words of data
memory.

The ‘f’ bits select the address of the file register.

Note 1: This instruction operates in Word mode only.
2: The file register address must be word-aligned.
Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: PUSH 0x2004 ; Push (0x2004) to TOS
Before After
Instruction Instruction
W15| 0BOO W15| 0B02
Data OBOO| 791C Data OBOO| D400
Data 2004| D400 Data 2004| D400
SR| 0000 SR| 0000
Example 2: PUSH OxCOE ; Push (OXCOE) to TOS
Before After
Instruction Instruction
W15 0920 W15 0922
Data 0920| 0000 Data 0920| 67AA
Data OCOE| 67AA Data 2004| 67AA
SR| 0000 SR| 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 341

16-bit MCU and DSC Programmer’s Reference Manual

PUSH

Push Ws to TOS

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X
Syntax: {label:} PUSH Ws
[Ws]
[Ws++]
[Ws-]
[--Ws]
[++Ws]
[Ws+Wb]
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Operation: (Ws) —(TOS)
(W15) + 2 -W15

Status Affected: None

Encoding: ‘ 0111 ‘ Iwww ‘ wo0o1 ‘ 1111 ‘ 1999 | SSSs

Description: The contents of Ws are written to the Top-of-Stack (TOS) location and

then the Stack Pointer (W15) is incremented by 2.

The ‘W’ bits define the offset register Wh.

The ‘g’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: This instruction is a specific version of the “MOV Ws, wd”

instruction (MOV Ws, [W15++]). It reverse assembles as
MOV.

Words: 1

Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: PUSH W2 ; Push W2 to TOS

Before After
Instruction Instruction
W2| 6889 W2| 6889
W15 1566 W15 1568
Data 1566 0000 Data 1566| 6889
SR| 0000 SR| 0000

DS70157F-page 342

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: PUSH [W5+W10] ; Push [W5+W10] to TOS

Before After
Instruction Instruction
W5| 1200 W5| 1200
W10| 0044 W10| 0044
W15| 0806 W15| 0808
Data 0806| 216F Data 0806| B20A
Data 1244| B20A Data 1244| B20A
SR| 0000 SR| 0000
PUSH . D Double Push Wns:Wns+1 to TOS
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} PUSH.D Wns
Operands: Whns e [WO, W2, W4 ... W14]
Operation: (Wns) —(TOS)

(W15) + 2 W15
(Wns + 1) -(TOS)
(W15) + 2 -W15

Status Affected: None
Encoding: ‘ 1011 ‘ 1110 1001 1111 1000 ‘ 5550 |
Description: A double word (Wns:Wns + 1) is PUSHed to the Top-of-Stack (TOS).

The least significant word (Wns) is PUSHed to the TOS first, and the
most significant word (Wns + 1) is PUSHed to the TOS last. Since a
double word is PUSHed, the Stack Pointer (W15) gets incremented by 4.

The ‘s’ bits select the address of the source register pair.

Note 1: This instruction operates on double words. See Figure 4-3 for
information on how double words are aligned in memory.

2: Wns must be an even working register.

3: Thisinstruction is a specific version of the “MOV.D Wns, Wwd”
instruction (MOV.D Wns, [W15++]). It reverse assembles

as MOV.D.
Words:
Cycles:
Example 1: PUSH.D W6 ; Push W6:W7 to TOS
Before After
Instruction Instruction
W6| C451 W6| C451
W7| 3380 W7| 3380 O
W15 1240 W15 1244 T
Data 1240| B004 Data 1240| C451 eg
Data 1242| 0891 Data 1242| 3380 'g §
SR| 0000 SR| 0000 <)
a -]

© 2005-2011 Microchip Technology Inc. DS70157F-page 343

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: PUSH.D W10

w10

wii

W15

Data 0C08
Data 0COA
SR

Before
Instruction

80D3

4550

0C08

79B5

008E

0000

; Push W10:wi11l to TOS

w10

w11

w15

Data 0C08
Data 0COA
SR

After
Instruction

80D3

4550

ococC

80D3

4550

0000

DS70157F-page 344

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

PUSH .S Push Shadow Registers

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} PUSH.S

Operands: None

Operation: PUSH shadow registers

Status Affected: None

Encoding: | 1111 | 1110 1010 0000 0000 | 0000 |

Description: The contents of the primary registers are copied into their respective

shadow registers. The following registers are shadowed: W0-W3, and
the C, Z, OV, N and DC STATUS register flags.

Note 1: The shadow registers are not directly accessible. They may
only be accessed with PUSH. S and POP . S.

2: The shadow registers are only one-level deep.

Words: 1
Cycles:
Example 1: PUSH.S ; Push primary registers into shadow registers
Before After
Instruction Instruction
WO0| 0000 WO0| 0000
W1| 1000 W1| 1000
w2 2000 W2 2000
W3| 3000 W3| 3000
SR| 0001 |(C=1) SR 0001 |[(C=1)

Note: After an instruction execution, contents of the shadow registers are updated.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 345

16-bit MCU and DSC Programmer’s Reference Manual

PWRSAV Enter Power Saving Mode

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} PWRSAV #litl

Operands: litl € [0,1]

Operation: 0 -WDT count register

0 -WDT prescaler A count
0 -WDT prescaler B count
0 -WDTO (RCON<4>)

®@ -SLEEP (RCON<3>)

0 —IDLE (RCON<2>)

If (litl = 0):
Enter Sleep mode
Else:
Enter Idle mode
Status Affected: None
Encoding: 1111 1110 0100 0000 0000 000k
Description: Place the processor into the specified Power Saving mode. If litl = ‘0’,

Sleep mode is entered. In Sleep mode, the clock to the CPU and
peripherals are shutdown. If an on-chip oscillator is being used, it is also
shutdown. If lit1 = *1’, Idle mode is entered. In Idle mode, the clock to the
CPU shuts down, but the clock source remains active and the
peripherals continue to operate.

This instruction resets the Watchdog Timer Count register and the
Prescaler Count registers. In addition, the WDTO, Sleep and Idle flags of
the Reset System and Control register (RCON) are reset.

Note 1: The processor will exit from Idle or Sleep through an interrupt,
processor Reset or Watchdog Time-out. See the specific
device data sheet for details.

2: |If awakened from Idle mode, Idle bit (RCON<2>) is set to ‘1’
and the clock source is applied to the CPU.

3: If awakened from Sleep mode, Sleep bit (RCON<3>) is set to
‘1’ and the clock source is started.

4: If awakened from a Watchdog Time-out, WDTO bit
(RCON<4>)is setto ‘1.

Words: 1
Cycles:
Example 1: PWRSAV #0 ; Enter SLEEP mode
Before After
Instruction Instruction
SR| 0040 |(IPL =2) SR 0040 |(IPL=2)
Example 2: PWRSAV #1 ; Enter IDLE mode
Before After
Instruction Instruction

SR[0020 |(IPL=1) SR 0020 |(IPL = 1)

DS70157F-page 346 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCALL Relative Call
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} RCALL Expr
Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... 32767].
Operation: (PC) +2 —PC
(PC<15:0>) —(TOS)
(W15) + 2 -W15
(PC<22:16>) —(TOS)
(W15) + 2 -W15
(PC) + (2 * Slit16) —»PC
NOP —lInstruction Register
Status Affected: None
Encoding: ‘ 0000 ‘ 0111 ‘ nnnn | nnnn nnnn ‘ nnnn ‘
Description: Relative subroutine call with a range of 32K program words forward or back
from the current PC. Before the call is made, the return address (PC + 2) is
PUSHed onto the stack. After the return address is stacked, the
sign-extended 17-bit value (2 * Slit16) is added to the contents of the PC
and the result is stored in the PC.
The ‘n’ bits are a signed literal that specifies the size of the relative call (in
program words) from (PC + 2).
Note: When possible, this instruction should be used instead of CALL,
since it only consumes one word of program memory.
Words:
Cycles:
Example 1: 012004 RCALL _Task1 ; Call _Taskil
012006 ADD we, wi, w2
012458 _Taskl: SUB wo, W2, W3 ; _Taskl subroutine
01245A
Before After
Instruction Instruction
PC 01 2004 PC 01 2458
W15 0810 w15 0814
Data 0810 FFFF Data 0810 2006
Data 0812 FFFF Data 0812 0001
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 347

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 00620E RCALL _Init ; Call _Init
006210 MoV WO, [W4++]
007000 _Init: CLR W2 ; _Init subroutine
007002
Before After
Instruction Instruction
PC 00 620E PC 00 7000
W15 0C50 w15 0C54
Data 0C50 FFFF Data 0C50 6210
Data 0C52 FFFF Data 0C52 0000
SR 0000 SR 0000

DS70157F-page 348 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCALL Relative Call
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} RCALL Expr
Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... 32767].
Operation: (PC) +2 —PC
(PC<15:1>) »TOS<15:1>, SFA bit 5 TOS<0>
(W15) + 2 -W15
(PC<22:16>) —(TOS)
(W15) + 2 -W15
0 —SFA bit
(PC) + (2 * Slit16) —»PC
NOP —lInstruction Register
Status Affected: SFA
Encoding: ‘ 0000 ‘ 0111 ‘ nnnn | nnnn nnnn ‘ nnnn ‘
Description: Relative subroutine call with a range of 32K program words forward or back
from the current PC. Before the call is made, the return address (PC + 2) is
PUSHed onto the stack. After the return address is stacked, the
sign-extended 17-bit value (2 * Slit16) is added to the contents of the PC
and the result is stored in the PC.
The ‘n’ bits are a signed literal that specifies the size of the relative call (in
program words) from (PC + 2).
Note: When possible, this instruction should be used instead of CALL,
since it only consumes one word of program memory.
Words:
Cycles:
Example 1: 012004 RCALL _Task1 ; Call _Taskil
012006 ADD we, wi, w2
012458 _Taskl: SUB wo, w2, w3 ; _Taskl subroutine
01245A .
Before After
Instruction Instruction
PC 01 2004 PC 01 2458
W15 0810 w15 0814
Data 0810 FFFF Data 0810 2006
Data 0812 FFFF Data 0812 0001
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 349

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 00620E RCALL _Init ; Call _Init
006210 MoV WO, [W4++]
007000 _Init: CLR W2 ; _Init subroutine
007002
Before After
Instruction Instruction
PC 00 620E PC 00 7000
W15 0C50 w15 0C54
Data 0C50 FFFF Data 0C50 6210
Data 0C52 FFFF Data 0C52 0000
SR 0000 SR 0000

DS70157F-page 350 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCAL L Computed Relative Call

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

Syntax: {label:} RCALL Wn

Operands: Wn e [WO ... W15]

Operation: (PC) + 2 -PC

(PC<15:0>) —-(TOS)
(W15) + 2 -W15
(PC<22:16>) —(TOS)
(W15) + 2 -W15

(PC) + (2 * (Wn)) —-PC
NOP —instruction Register

Status Affected: None
Encoding: | o000 | o001 | oee10 | oeeee | o000 | ssss |
Description: Computed, relative subroutine call specified by the working register Wn. The

range of the call is 32K program words forward or back from the current PC.
Before the call is made, the return address (PC + 2) is PUSHed onto the
stack. After the return address is stacked, the sign-extended 17-bit value (2 *
(Wn)) is added to the contents of the PC and the result is stored in the PC.
Register direct addressing must be used for Wn.

The ‘s’ bits select the source register.

Words: 1
Cycles: 2
Example 1: OOFF8C EX1: INC w2, w3 ; Destination of RCALL
OOFF8E
010008
01000A RCALL W6 ; RCALL with w6
01000C MOVE W4, [W10]
Before After
Instruction Instruction
PC 01 000A PC 00 FF8C
W6 FFCO W6 FFCO
W15 1004 W15 1008
Data 1004 98FF Data 1004 0ooC
Data 1006 2310 Data 1006 0001
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 351

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 000302 RCALL
000304 FF1L
000450 EX2: CLR
000452

Before
Instruction

PC 00 0302

W2 00A6

W15 1004

Data 1004 32BB
Data 1006 901A
SR 0000

W2
wo, Wi

w2

PC

w2

W15

Data 1004
Data 1006
SR

; RCALL with w2

; Destination of RCALL

After
Instruction

00 0450

00A6

1008

0304

0000

0000

DS70157F-page 352

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCAL L Computed Relative Call

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} RCALL Wn

Operands: Wn e [WO ... W15]

Operation: (PC) +2 -PC

(PC<15:1>) —»TOS<15:1>, SFA bhit -5 TOS<0>
(W15) + 2 W15

(PC<22:16>) —(TOS)

(W15) + 2 W15

0 —SFA bit

(PC) + (2 * (Wn)) —PC

NOP —instruction Register

Status Affected: SFA
Encoding: | o000 | o001 | o000 | o010 | 0000 | ssss |
Description: Computed, relative subroutine call specified by the working register Wn. The

range of the call is 32K program words forward or back from the current PC.
Before the call is made, the return address (PC + 2) is PUSHed onto the
stack. After the return address is stacked, the sign-extended 17-bit value (2 *
(Wn)) is added to the contents of the PC and the result is stored in the PC.
Register direct addressing must be used for Wn.

The ‘s’ bits select the source register.

Words: 1
Cycles: 4
Example 1: OOFF8C EX1: INC w2, W3 ; Destination of RCALL
OOFF8E
010008
01000A RCALL W6 ; RCALL with w6
01000C MOVE W4, [W10]
Before After
Instruction Instruction
PC 01 000A PC 00 FF8C
W6 FFCO W6 FFCO
W15 1004 W15 1008
Data 1004 98FF Data 1004 000C
Data 1006 2310 Data 1006 0001
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 353

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 000302 RCALL
000304 FF1L
000450 EX2: CLR
000452

Before
Instruction

PC 00 0302

W2 00A6

W15 1004

Data 1004 32BB
Data 1006 901A
SR 0000

W2
wo, Wi

w2

PC

w2

W15

Data 1004
Data 1006
SR

; RCALL with w2

; Destination of RCALL

After
Instruction

00 0450

00A6

1008

0304

0000

0000

DS70157F-page 354

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

REPEAT

Repeat Next Instruction ‘litl4 + 1’ Times

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} REPEAT #lit14
Operands: litl4 € [0 ... 16383]
Operation: (lit14) >RCOUNT
(PC) +2 —-PC
Enable Code Looping
Status Affected: RA
Encoding: | oe00 | 1001 00kk | kkkk [kkkk | kkkk |
Description: Repeat the instruction immediately following the REPEAT instruction
(lit14 + 1) times. The repeated instruction (or target instruction) is held in
the instruction register for all iterations and is only fetched once.
When this instruction executes, the RCOUNT register is loaded with the
repeat count value specified in the instruction. RCOUNT is decremented
with each execution of the target instruction. When RCOUNT equals
zero, the target instruction is executed one more time, and then normal
instruction execution continues with the instruction following the target
instruction.
The ‘K’ bits are an unsigned literal that specifies the loop count.
Special Features, Restrictions:
1. When the repeat literal is ‘0’, REPEAT has the effect of a NOP and
the RA bit is not set.
2. The target REPEAT instruction cannot be:
« an instruction that changes program flow
« aDO, DISI, LNK, MOV.D, PWRSAV, REPEAT or UNLK
instruction
¢ a2-word instruction
Unexpected results may occur if these target instructions are used.
Note: The REPEAT and target instruction are interruptible.
Words: 1
Cycles:
Example 1: 000452 REPEAT #9 ; Execute ADD 10 times
000454 ADD [WO++], W1, [W2++] ; Vector update
Before After
Instruction Instruction
PC 00 0452 PC 00 0454
RCOUNT 0000 RCOUNT 0009
SR 0000 SR 0010 |(RA=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 355

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 00O89E REPEAT #Ox3FF ; Execute CLR 1024 times

0008A0 CLR [We++] ; Clear the scratch space
Before After
Instruction Instruction
PC 00 089E PC 00 08A0
RCOUNT 0000 RCOUNT 03FF
SR 0000 SR 0010 |(RA=1)

DS70157F-page 356 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

REPEAT

Repeat Next Instruction ‘litl15 + 1’ Times

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} REPEAT #lit15
Operands: litl5 € [0 ... 32767]
Operation: (lit15) >RCOUNT
(PC) +2 —»PC
Enable Code Looping
Status Affected: RA
Encoding: | oe00 | 1001 Okkk | kkkk [kkkk | kkkk |
Description: Repeat the instruction immediately following the REPEAT instruction
(lit15 + 1) times. The repeated instruction (or target instruction) is held in
the instruction register for all iterations and is only fetched once.
When this instruction executes, the RCOUNT register is loaded with the
repeat count value specified in the instruction. RCOUNT is decremented
with each execution of the target instruction. When RCOUNT equals
zero, the target instruction is executed one more time, and then normal
instruction execution continues with the instruction following the target
instruction.
The ‘K’ bits are an unsigned literal that specifies the loop count.
Special Features, Restrictions:
1. When the repeat literal is ‘©’, REPEAT has the effect of a NOP and
the RA bit is not set.
2. The target REPEAT instruction cannot be:
¢ an instruction that changes program flow
* aDISI, LNK, MOV.D, PWRSAV, REPEAT or UNLK
instruction
¢ a 2-word instruction
Unexpected results may occur if these target instructions are used.
Note: The REPEAT and target instruction are interruptible.
Words: 1
Cycles:
Example 1: 000452 REPEAT #9 ; Execute ADD 10 times
000454 ADD [WO++], W1, [W2++] ; Vector update
Before After
Instruction Instruction
PC 00 0452 PC 00 0454
RCOUNT 0000 RCOUNT 0009
SR 0000 SR 0010 |(RA=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 357

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 00O89E REPEAT #Ox3FF ; Execute CLR 1024 times

0008A0 CLR [We++] ; Clear the scratch space
Before After
Instruction Instruction
PC 00 089E PC 00 08A0
RCOUNT 0000 RCOUNT 03FF
SR 0000 SR 0010 |(RA=1)

DS70157F-page 358 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

REPEAT

Repeat Next Instruction Wn+1 Times

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} REPEAT Wn
Operands: Wn e [WO ... W15]
Operation: (Wn<13:0>) ->RCOUNT
(PC) +2 -PC
Enable Code Looping
Status Affected: RA
Encoding: | oe00 | 1001 1000 0000 | 0000 | ssss |
Description: Repeat the instruction immediately following the REPEAT instruction
(Wn<13:0>) times. The instruction to be repeated (or target instruction)
is held in the instruction register for all iterations and is only fetched
once.
When this instruction executes, the RCOUNT register is loaded with the
lower 14 bits of Wn. RCOUNT is decremented with each execution of
the target instruction. When RCOUNT equals zero, the target instruction
is executed one more time, and then normal instruction execution
continues with the instruction following the target instruction.
The ‘s’ bits specify the Wn register that contains the repeat count.
Special Features, Restrictions:
1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is
not set.
2. The target REPEAT instruction cannot be:
« an instruction that changes program flow
e aDO, DISI, LNK, MOV.D, PWRSAV, REPEAT or ULNK
instruction
e a2-word instruction
Unexpected results may occur if these target instructions are used.
Note: The REPEAT and target instruction are interruptible.
Words: 1
Cycles:
Example 1: 000A26 REPEAT W4 ; Execute COM (W4+1) times
000A28 COM [Wo++], [W2++] ; Vector complement
Before After
Instruction Instruction
PC 00 0A26 PC 00 0A28
w4 0023 w4 0023
RCOUNT 0000 RCOUNT 0023
SR 0000 SR 0010 |(RA=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 359

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: O0O89E REPEAT W10 ; Execute TBLRD (W10+1) times
0008A0 TBLRDL [W2++], [W3++] ; Decrement (0x840)
Before After

Instruction Instruction
PC 00 089E PC 00 08A0
W10 OOFF W10 OOFF
RCOUNT 0000 RCOUNT OOFF

SR 0000 SR 0010 |(RA=1)

DS70157F-page 360 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

REPEAT

Repeat Next Instruction Wn+1 Times

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} REPEAT Wn
Operands: Wn e [WO ... W15]
Operation: (Wn) -RCOUNT
(PC) + 2 -PC
Enable Code Looping
Status Affected: RA
Encoding: | ee00 | 1001 1000 | 0000 | 0000 | ssss |
Description: Repeat the instruction immediately following the REPEAT instruction
(Wn) times. The instruction to be repeated (or target instruction) is held
in the instruction register for all iterations and is only fetched once.
When this instruction executes, the RCOUNT register is loaded with Wn.
RCOUNT is decremented with each execution of the target instruction.
When RCOUNT equals zero, the target instruction is executed one more
time, and then normal instruction execution continues with the
instruction following the target instruction.
The ‘s’ bits specify the Wn register that contains the repeat count.
Special Features, Restrictions:
1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is
not set.
2. The target REPEAT instruction cannot be:
* an instruction that changes program flow
e aDO, DISI, LNK, MOV.D, PWRSAV, REPEAT or ULNK
instruction
* a2-word instruction
Unexpected results may occur if these target instructions are used.
Note: The REPEAT and target instruction are interruptible.
Words: 1
Cycles:
Example 1: 000A26 REPEAT W4 ; Execute COM (W4+1) times
000A28 COM [Wo++], [W2++] ; Vector complement
Before After
Instruction Instruction
PC 00 0A26 PC 00 0A28
w4 0023 w4 0023
RCOUNT 0000 RCOUNT 0023
SR 0000 SR 0010 (RA=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 361

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: O0O89E REPEAT W10 ; Execute TBLRD (W10+1) times
0008A0 TBLRDL [W2++], [W3++] ; Decrement (0x840)
Before After

Instruction Instruction
PC 00 089E PC 00 08A0
W10 OOFF W10 OOFF
RCOUNT 0000 RCOUNT OOFF

SR 0000 SR 0010 |(RA=1)

DS70157F-page 362 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

R ES ET Reset

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label’} RESET
Operands: None
Operation: Force all registers that are affected by a MCLR Reset to their Reset
condition.
1 -SWR (RCON<6>)
0 -PC
Status Affected: OA, OB, OAB, SA, SB, SAB, DA, DC, IPL<2:0>, RA, N, OV, Z, C, SFA
Encoding: | 1111 | 1110 | 0000 0000 0000 0000
Description: This instruction provides a way to execute a software Reset. All core and

peripheral registers will take their power-on value. The PC will be set to
‘0", the location of the RESET GOTO instruction. The SWR bit
(RCON<6>), will be set to ‘1’ to indicate that the RESET instruction was
executed.

Note: Refer to the specific device family reference manual for the
power-on value of all registers.

Words:
Cycles:

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 363

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: 00202A RESET

PC

WO

w1

w2

W3

W4

W5

W6

W7

w8

W9
w10
w11
w12
W13
w14
W15
SPLIM
TBLPAG
PSVPAG
CORCON
RCON
SR

Before
Instruction

00 202A

8901

08BB

B87A

872F

C98A

AAD4

981E

1809

C341

90F4

F409

1700

1008

6556

231D

1704

1800

007F

0001

00FO0

0000

0021

; Execute software RESET on dsPIC33F

PC

wo

wi

w2

W3

W4

w5

W6

w7

w8

W9
w10
w11
w12
w13
w14
w15
SPLIM
TBLPAG
PSVPAG

CORCON

(IPL,C=1)

RCON
SR

After
Instruction

00 0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0800

0000

0000

0000

0020 |(SATDW = 1)

0040 |(SWR = 1)

0000

DS70157F-page 364

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETFIE

Return from Interrupt

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

Syntax: {label:} RETFIE

Operands: None

Operation: (W15) - 2 W15

(TOS<15:8>) —»(SR<7:0>)

(TOS<7>) —(IPL3, CORCON<3>)

(TOS<6:0>) —(PC<22:16>)

(W15) - 2 W15

(TOS<15:0>) —(PC<15:0>)

NOP —lInstruction Register

Status Affected: IPL<3:0>, RA,N, 0V, Z,C

Encoding: | o000 | o110 | o100 | o000 | eeee | oeco |

Description: Return from Interrupt Service Routine. The stack is POPped, which
loads the low byte of the STATUS register, IPL<3> (CORCON<3>) and
the Most Significant Byte of the PC. The stack is POPped again, which
loads the lower 16 bits of the PC.

Note 1: Restoring IPL<3> and the low byte of the STATUS register
restores the Interrupt Priority Level to the level before the
execution was processed.

2: Before RETFIE is executed, the appropriate interrupt flag
must be cleared in software to avoid recursive interrupts.
Words: 1
Cycles: 3 (2 if exception pending)
Example 1: @OOA26 RETFIE ; Return from ISR
Before After
Instruction Instruction
PC 00 0A26 PC 01 0230
W15 0834 w15 0830
Data 0830 0230 Data 0830 0230
Data 0832 8101 Data 0832 8101
CORCON 0001 CORCON 0001
SR 0000 SR 0081 |(IPL=4,C=1)
Example 2: 008050 RETFIE ; Return from ISR
Before After
Instruction Instruction
PC 00 8050 PC 00 7008
W15 0926 w15 0922
Data 0922 7008 Data 0922 7008
Data 0924 0300 Data 0924 0300
CORCON 0000 CORCON 0000
SR 0000 SR 0003|(Z,C=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 365

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

RETFIE

Return from Interrupt

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} RETFIE

Operands: None

Operation: (W15) - 2 W15

(TOS<15:8>) —»(SR<7:0>)

(TOS<7>) —(IPL3, CORCON<3>)

(TOS<6:0>) —(PC<22:16>)

(W15) - 2 W15

(TOS<15:1>) —(PC<15:1>)

TOS<0> —SFA bit

NOP —lInstruction Register

Status Affected: IPL<3:0>, RA, N, QV, Z, C, SFA

Encoding: | ooe0 | o110 | o100 | o000 | eeee | eeco |

Description: Return from Interrupt Service Routine. The stack is POPped, which
loads the low byte of the STATUS register, IPL<3> (CORCON<3>) and
the Most Significant Byte of the PC. The stack is POPped again, which
loads the lower 16 bits of the PC.

Note 1: Restoring IPL<3> and the low byte of the STATUS register
restores the Interrupt Priority Level to the level before the
execution was processed.

2: Before RETFIE is executed, the appropriate interrupt flag
must be cleared in software to avoid recursive interrupts.
Words: 1
Cycles: 6 (5 if exception pending)
Example 1: 000A26 RETFIE ; Return from ISR
Before After
Instruction Instruction
PC 00 0A26 PC 01 0230
W15 0834 W15 0830
Data 0830 0230 Data 0830 0230
Data 0832 8101 Data 0832 8101
CORCON 0001 CORCON 0001
SR 0000 SR 0081 |(IPL=4,C=1)
Example 2: 008050 RETFIE ; Return from ISR
Before After
Instruction Instruction
PC 00 8050 PC 00 7008
W15 0926 W15 0922
Data 0922 7008 Data 0922 7008
Data 0924 0300 Data 0924 0300
CORCON 0000 CORCON 0000
SR 0000 SR 0003|(Z,C=1)

DS70157F-page 366

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETLW Return with Literal in Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

Syntax: {label:} RETLW{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (W15) — 2 -W15
TOS<15:8> ->SR<7:0>
TOS<7:0> —IPL<3>: PC<22:16>
(W15) - 2 -wW15
(TOS) —(PC<15:0>)

[itl0 —Wn

NOP —lnstruction register
Status Affected: None
Encoding: | eee0 | 0101 | OBKK kkkk kkkk dddd
Description: Return from subroutine with the specified, unsigned 10-bit literal stored

in Wn. The software stack is POPped twice to restore the PC and the
signed literal is stored in Wn. Since two POPs are made, the Stack
Pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the destination register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

Words: 1
Cycles: 3 (2 if exception pending)

Example 1: 000440 RETLW.B #0xA, WO ; Return with OxA in we

Before After
Instruction Instruction

PC 00 0440 PC 00 7006

WO0 9846 WO 980A

W15 1988 W15 1984

Data 1984 7006 Data 1984 7006
Data 1986 0000 Data 1986 0000
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 367

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 00050A

PC

w2

W15

Data 11FC
Data 11FE
SR

Before
Instruction

00 050A

0993

1200

7008

0001

0000

PC

w2

w15

Data 11FC
Data 11FE
SR

RETLW #0x230, W2 ; Return with 0x230 in W2

After
Instruction

01 7008

0230

11FC

7008

0001

0000

DS70157F-page 368

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETLW Return with Literal in Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X

Syntax: {label:} RETLW{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation

litl0 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (W15) — 2 -W15
TOS<15:8> —-SR<7:0>
TOS<7:0> —IPL<3>: PC<22:16>
(W15) - 2 W15
(TOS<15:1>) —(PC<15:1>)
TOS<0> —SFA bit

lit10 —Wn
NOP —lInstruction register
Status Affected: SFA
Encoding: | eoe0 | o101 ©Bkk kkkk kkkk dddd
Description: Return from subroutine with the specified, unsigned 10-bit literal stored

in Wn. The software stack is POPped twice to restore the PC and the
signed literal is stored in Wn. Since two POPs are made, the Stack
Pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the destination register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

Words: 1

Cycles: 6 (5 if exception pending)

Examgle 1: 000440 RETLW.B #O0xA, WO ; Return with OxA in we

Before After
Instruction Instruction

PC 00 0440 PC 00 7006

WO 9846 W0 980A

W15 1988 w15 1984

Data 1984 7006 Data 1984 7006
Data 1986 0000 Data 1986 0000
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 369

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: 00050A

PC

w2

W15

Data 11FC
Data 11FE
SR

Before
Instruction

00 050A

0993

1200

7008

0001

0000

PC

w2

w15

Data 11FC
Data 11FE
SR

RETLW #0x230, W2 ; Return with 0x230 in W2

After
Instruction

01 7008

0230

11FC

7008

0001

0000

DS70157F-page 370

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

R ETU R N Return

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X

Syntax: {label:} RETURN

Operands: None

Operation: (W15) - 2 W15

(TOS) —(PC<22:16>)
(W15) - 2 -wW15

(TOS) —(PC<15:0>)

NOP —lInstruction Register

Status Affected: None
Encoding: | o000 | o110 | 0000 0000 | 0000 | 0000
Description: Return from subroutine. The software stack is POPped twice to restore

the PC. Since two POPs are made, the Stack Pointer (W15) is
decremented by 4.

Words: 1
Cycles: 3 (2 if exception pending)
Example 1: 001A06 RETURN ; Return from subroutine
Before After
Instruction Instruction
PC 00 1A06 PC 01 0004
W15 1248 w15 1244
Data 1244 0004 Data 1244 0004
Data 1246 0001 Data 1246 0001
SR 0000 SR 0000
Example 2: 005404 RETURN ; Return from subroutine
Before After
Instruction Instruction
PC 00 5404 PC 00 0966
W15 090A w15 0906
Data 0906 0966 Data 0906 0966
Data 0908 0000 Data 0908 0000
SR 0000 SR 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 371

16-bit MCU and DSC Programmer’s Reference Manual

RETURN Return
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} RETURN
Operands: None
Operation: (W15) - 2 W15
(TOS) —(PC<22:16>)
(W15) — 2 W15
(TOS<15:1) »(PC<15:1>)
TOS<0> —SFA bit
NOP —lInstruction Register
Status Affected: SFA
Encoding: | o000 | o110 | oeee0 | oeeee | eeee | ee00
Description: Return from subroutine. The software stack is POPped twice to restore
the PC. Since two POPs are made, the Stack Pointer (W15) is
decremented by 4.
Words: 1
Cycles: 6 (5 if exception pending)
Examgle 1: 001A06 RETURN ; Return from subroutine
Before After
Instruction Instruction
PC 00 1A06 PC 01 0004
W15 1248 W15 1244
Data 1244 0004 Data 1244 0004
Data 1246 0001 Data 1246 0001
SR 0000 SR 0000
Example 2: 005404 RETURN ; Return from subroutine
Before After
Instruction Instruction
PC 00 5404 PC 00 0966
W15 090A w15 0906
Data 0906 0966 Data 0906 0966
Data 0908 0000 Data 0908 0000
SR 0000 SR 0000

DS70157F-page 372

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RLC

Rotate Left f through Carry

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F [dsPIC33E

X X X X X X
Syntax: {label:} RLC{.B} f {WREG}
Operands: fe [0...8191]
Operation: For byte operation:
(C) —Dest<0>
(f<6:0>) —Dest<7:1>
(f<7>) =C
For word operation:
(C) —Dest<0>
(f<14:0>) —»Dest<15:1>
(f<15>) -C
]
Status Affected: N, Z, C
Encoding: | 1101 | o110 | 1BDf FEff FEff FEff
Description: Rotate the contents of the file register f one bit to the left through the

Carry flag and place the result in the destination register. The Carry flag

of the STATUS Register is shifted into the Least Significant bit of the

destination, and it is then overwritten with the Most Significant bit of Ws.

The optional WREG operand determines the destination register. If

WREG is specified, the result is stored in WREG. If WREG is not

specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0" for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0" for f, ‘1’ for WREG).

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words:

Cycles: 1

Example 1: RLC.B 0x1233 ; Rotate Left w/ C (0x1233) (Byte mode)

Before After
Instruction Instruction
Data 1232 E807 Data 1232| D007
SR| 0000 SR| 0009 |(N,C=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 373

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: RLC 0x820, WREG

WREG (WO0)
Data 0820
SR

Before
Instruction

5601
216E
0001

; Rotate Left w/ C (0x820) (Word mode)

; Store result in WREG

WREG (WO0)
Data 0820
(C=1) SR

After
Instruction

42DD
216E
0000

(C=0)

DS70157F-page 374

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RLC Rotate Left Ws through Carry
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} RLC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (wd--]
[++Ws], [++wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: For byte operation:
(C) -»Wd<0>
(Ws<6:0>) -Wd<7:1>
(Ws<7>) =C
For word operation:
(C) -Wd<0>
(Ws<14:0>) -Wd<15:1>
(Ws<15>) —=C
]
Status Affected: N, Z C
Encoding: ‘ 1101 | 0010 ‘ 1Bqq qddd dppp SSSsS
Description: Rotate the contents of the source register Ws one bit to the left through

the Carry flag and place the result in the destination register Wd. The
Carry flag of the STATUS register is shifted into the Least Significant bit
of Wd, and it is then overwritten with the Most Significant bit of Ws.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:
Example 1: RLC.B WO, W3 ; Rotate Left w/ C (WO) (Byte mode) “
; Store the result in W3
Before After O
Instruction Instruction 8 a
wo[9976 wo[9976 gg
W3| 5879 W3| 58ED '9,_ Q
SR| 0001 |(C=1) SR 0009 |(N=1) g o
>
(2]

© 2005-2011 Microchip Technology Inc. DS70157F-page 375

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: RLC [W2++], [W8] ; Rotate Left w/ C [W2] (Word mode)
; Post-increment w2
; Store result in [W8]

Before After
Instruction Instruction
w2| 2008 W2| 200A
w8| 094E w8| 094E
Data 094E| 3689 Data 094E| 8082
Data 2008 C041 Data 2008| C041
SR| 0001 [(C=1) SR | 0009 |(N,C=1)

DS70157F-page 376 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RLNC Rotate Left f without Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} RLNC{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: For byte operation:

(f<6:0>) —Dest<7:1>
(f<7>) —Dest<0>

For word operation:
(f<14:0>) —Dest<15:1>
(f<15>) —Dest<0>

I

Status Affected: N, Z
Encoding: | 1101 | o110 | oBDf FEFf FEFf FEFf
Description: Rotate the contents of the file register f one bit to the left and place the

result in the destination register. The Most Significant bit of f is stored in
the Least Significant bit of the destination, and the Carry flag is not
affected.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 377

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: RLNC.B 0x1233
Before
Instruction
Data 1232| E807
SR| 0000
Example 2: RLNC 0x820, WREG
Before
Instruction
WREG (W0)| 5601
Data 0820| 216E
SR| 0001

Data 1233
SR

’

WREG (WO0)
Data 0820
(C=1 SR

After
Instruction

D107
0008

After
Instruction

42DC
216E
0000

; Rotate Left (O0x1233) (Byte mode)

(N=1)

; Rotate Left (0x820) (Word mode)
; Store result in WREG

(C=0)

DS70157F-page 378

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RLNC Rotate Left Ws without Carry
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} RLNC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (wd--]
[++Ws], [++wWd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: For byte operation:

(Ws<6:0>) -Wd<7:1>
(Ws<7>) -Wd<0>

For word operation:
(Ws<14:0>) -Wd<15:1>
(Ws<15>) -Wd<0>

S —

Status Affected: N, Z
Encoding: ‘ 1101 ‘ 0010 ‘ 0Bqq gddd dppp SSSs
Description: Rotate the contents of the source register Ws one bit to the left and place

the result in the destination register Wd. The Most Significant bit of Ws is
stored in the Least Significant bit of Wd, and the Carry flag is not
affected. Either register direct or indirect addressing may be used for Ws
and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for byte, ‘1’ for word).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

uononasuj

O
o
n
2]
=
T
=
o
>
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 379

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: RLNC.B WO, W3 ; Rotate Left (WO) (Byte mode)
; Store the result in W3

Before After
Instruction Instruction
WO0| 9976 WO| 9976
W3| 5879 W3| 58EC

SR| 0001 |(C=1) SR| 0009 [(N,C=1)

Example 2: RLNC [w2++], [W8] ; Rotate Left [W2] (Word mode)
; Post-increment w2
; Store result in [W8]

Before After
Instruction Instruction
W2| 2008 W2| 200A
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| 8083
Data 2008| CO041 Data 2008| C041
SR| 0001 |(C=1) SR 0009 |(N, C=1)

DS70157F-page 380 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RRC Rotate Right f through Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} RRC{.B} f {{WREG}

Operands: fe [0...8191]

Operation: For byte operation:

(C) —Dest<7>
(f<7:1>) —Dest<6:0>
(f<0>) =C

For word operation:
(C) —Dest<15>
(f<15:1>) —»Dest<14:0>

(f<0>) =C
o
Status Affected: N, Z, C
Encoding: \ 1101 | 0111 \ 1BDf FEFf FEFF FEFF
Description: Rotate the contents of the file register f one bit to the right through the

Carry flag and place the result in the destination register. The Carry flag
of the STATUS Register is shifted into the Most Significant bit of the
destination, and it is then overwritten with the Least Significant bit of Ws.

The optional WREG operand determines the destination register. If
WRERG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for byte, ‘1’ for word).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: RRC.B 0x1233 ; Rotate Right w/ C (0x1233) (Byte mode)
Before After “
Instruction Instruction
Data 1232| EB807 Data 1232| 7407
SR| 0000 SR| 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 381

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: RRC 0x820, WREG

WREG (WO0)
Data 0820
SR

Before
Instruction

5601
216E
0001

; Rotate Right w/ C (0x820) (Word mode)

; Store result in WREG

WREG (WO0)
Data 0820
(C=1) SR

After
Instruction

90B7
216E
0008

(N=1)

DS70157F-page 382

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RRC Rotate Right Ws through Carry
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} RRC{.B} Ws, Wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [wd--]
[++Ws], [++Wd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: For byte operation:
(C) -»Wd<7>
(Ws<7:1>) -Wd<6:0>
(Ws<0>) -»C

For word operation:
(C) -Wd<15>
(Ws<15:1>) -Wd<14:0>

(Ws<0>) =C
.
Status Affected: N, Z C
Encoding: ‘ 1101 | 0011 ‘ 1Bqq qddd dppp SSSsS
Description: Rotate the contents of the source register Ws one bit to the right through

the Carry flag and place the result in the destination register Wd. The
Carry flag of the STATUS Register is shifted into the Most Significant bit
of Wd, and it is then overwritten with the Least Significant bit of Ws.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and “
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

uononasuj

O
o
n
2]
=
T
=
o
>
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 383

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: RRC.B WO, W3 ; Rotate Right w/ C (W) (Byte mode)
; Store the result in W3

Before After
Instruction Instruction
WO0| 9976 WO0| 9976
W3| 5879 W3| 58BB

SR| 0001 |(C =1) SR| 0008 |(N=1)

Example 2: RRC [W2++], [W8] ; Rotate Right w/ C [W2] (Word mode)
; Post-increment w2
; Store result in [W8]

Before After
Instruction Instruction
W2| 2008 W2| 200A
ws8| 094E W8| 094E
Data 094E| 3689 Data 094E| EO020
Data 2008| CO041 Data 2008| C041
SR| 0001 [(C=1) SR 0009 |(N,C=1)

DS70157F-page 384 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RRN C Rotate Right f without Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} RRNC{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: For byte operation:

(f<7:1>) —Dest<6:0>
(f<0>) —Dest<7>

For word operation:
(f<15:1>) —Dest<14:0>
(f<0>) —Dest<15>

S —

Status Affected: N, Z
Encoding: | 1101 | e111 | oBDf FrFf FrFf FEFf
Description: Rotate the contents of the file register f one bit to the right and place the

result in the destination register. The Least Significant bit of f is stored in
the Most Significant bit of the destination, and the Carry flag is not
affected.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1@

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 385

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: RRNC.B 0x1233
Before
Instruction
Data 1232| E807
SR| 0000
Example 2: RRNC 0x820, WREG
Before
Instruction
WREG (W0)| 5601
Data 0820| 216E
SR| 0001

After

Instruction

Data 1232

7407

SR

0000

; Rotate Right (0x1233) (Byte mode)

; Rotate Right (0x820) (Word mode)

; Store result in WREG

WREG (WO0)
Data 0820

(C=1) SR

After
Instruction

10B7
216E
0001

(C=1)

DS70157F-page 386

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

RRNC Rotate Right Ws without Carry
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} RRNC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], (wd--]
[++Ws], [++wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: For byte operation:

(Ws<7:1>) -Wd<6:0>
(Ws<0>) -Wd<7>

For word operation:
(Ws<15:1>) -Wd<14:0>
(Ws<0>) -Wd<15>

S

Status Affected: N, Z
Encoding: ‘ 1101 | 0011 ‘ 0Bqq gddd dppp SSSS
Description: Rotate the contents of the source register Ws one bit to the right and

place the result in the destination register Wd. The Least Significant bit
of Ws is stored in the Most Significant bit of Wd, and the Carry flag is not
affected. Either register direct or indirect addressing may be used for Ws
and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1@

read-modify-write operations on non-CPU Special Function Registers. For more

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and “
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 387

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: RRNC.B WO, W3 ; Rotate Right (W@) (Byte mode)
; Store the result in W3

Before After
Instruction Instruction
WO0| 9976 WO| 9976
W3| 5879 W3| 583B

SR| 0001 |(C=1) SR| 0001 |(C=1)

Example 2: RRNC [W2++], [W8] ; Rotate Right [W2] (Word mode)
; Post-increment w2
; Store result in [W8]

Before After
Instruction Instruction
W2| 2008 W2| 200A
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| EO020
Data 2008| CO041 Data 2008| C041
SR| 0000 SR 0008 |(N=1)

DS70157F-page 388 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SAC

Store Accumulator

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
{label:} SAC Acc, {#Slit4,} wd
[wd]
[Wd++]
(Wd--]
[--Wd]
[++Wd]
[wd + Wh]
Acc e [AB]
Slitd e [-8 ... +7]
Wb, Wd e [WO ... W15]
Shiftg)is(Acc) (optional)
(Acc[31:16]) -»wd
None
| 1100 | 1100 | Aww | wrrr | rhhh dddd

Perform an optional, signed 4-bit shift of the specified accumulator, then
store the shifted contents of ACCxH (Acc[31:16]) to Wd. The shift range
is -8:7, where a negative operand indicates an arithmetic left shift and a
positive operand indicates an arithmetic right shift. Either register direct
or indirect addressing may be used for Wd.

The ‘A’ bit specifies the source accumulator.

The ‘w’ bits specify the offset register Wh.

The ‘r’ bits encode the optional accumulator pre-shift.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits specify the destination register Wd.

Note 1:

This instruction does not modify the contents of Acc.

2: This instruction stores the truncated contents of Acc. The
instruction SAC. R may be used to store the rounded
accumulator contents.

3: If Data Write saturation is enabled (SATDW, CORCON<5>,
= 1), the value stored to Wd is subject to saturation after the
optional shift is performed.

SAC A, #4, W5

; Right shift ACCA by 4
; Store result to W5
; CORCON = 0x0010 (SATDW = 1)

W5
ACCA
CORCON
SR

Before
Instruction

B900

00 120F FFOO

0010

0000

W5
ACCA
CORCON
SR

After
Instruction

0120

00 120F FFOO

0010

0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 389

O
o
n
2]
=
T
=
o
>
7]

S
7]
[
=
c
o
=
o
S

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: SAC B, #-4, [W5++]
; Left shift ACCB by 4
; Store result to [W5], Post-increment W5
; CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
w5 2000 w5 2002
ACCB FF C891 8F4C ACCB FF C891 1F4C
Data 2000 5BBE Data 2000 8000
CORCON 0010 CORCON 0010
SR 0000 SR 0000

DS70157F-page 390 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SAC. R Store Rounded Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

Syntax: {label:} SAC.R Acc, {#Slit4,} wd
W]
[Wd++]
[Wd--]
[--wd]
[++wWd]
[wd + Wb]

Operands: Acc € [AB]
Slit4 e [-8 ... +7]
Wb e [WO ... W15]
Wd e [WO ... W15]

Operation: Shiftg)is(Acc) (optional)
Round(Acc)
(Acc[31:16]) -»wd
Status Affected: None
Encoding: ‘ 1100 | 1101 ‘ Awww ‘ wrrr | rhhh dddd
Description: Perform an optional, signed 4-bit shift of the specified accumulator, then

store the rounded contents of ACCxH (Acc[31:16]) to Wd. The shift
range is -8:7, where a negative operand indicates an arithmetic left shift
and a positive operand indicates an arithmetic right shift. The Rounding
mode (Conventional or Convergent) is set by the RND bit,
CORCONK<1>. Either register direct or indirect addressing may be used
for Wd.

The ‘A’ bit specifies the source accumulator.

The ‘w’ bits specify the offset register Wb.

The ‘r’ bits encode the optional accumulator pre-shift.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of the Acc.

2: This instruction stores the rounded contents of Acc. The
instruction SAC may be used to store the truncated
accumulator contents.

3: If Data Write saturation is enabled (SATDW, CORCON<5>,
= 1), the value stored to Wd is subject to saturation after the
optional shift is performed.

Words:

1

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 391

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: SAC.R A, #4, W5

; Right shift ACCA by 4

; Store rounded result to W5

; CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
W5 B900 W5 0121
ACCA 00 120F FFOO ACCA 00 120F FFOO

CORCON 0010 CORCON 0010

SR 0000 SR 0000

Example 2: SAC.R B, #-4, [W5++]

; Left shift ACCB by 4

; Store rounded result to [W5], Post-increment W5

; CORCON = Ox0010 (SATDW = 1)

Before After
Instruction Instruction
W5 2000 W5 2002
ACCB FF F891 8F4C ACCB FF F891 8F4C

Data 2000 5BBE Data 2000 8919
CORCON 0010 CORCON 0010

SR 0000 SR 0000

DS70157F-page 392

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SE Sign-Extend Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SE Ws, Wnd
[Ws],
[Ws++],
[VVS"]v
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wnd € [WO ... W15]
Operation: Ws<7:0> -Wnd<7:0>
If (Ws<7>=1):
OxFF —-Wnd<15:8>
Else:
0 -Wnd<15:8>
Status Affected: N, Z, C
Encoding: 1111 1011 0000 0ddd dppp SSSS
Description: Sign-extend the byte in Ws and store the 16-bit result in Wnd. Either

register direct or indirect addressing may be used for Ws, and register
direct addressing must be used for Wnd. The C flag is set to the
complement of the N flag.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.
Note 1: This operation converts a byte to a word, and it uses no .B or
.W extension.
2: The source Ws is addressed as a byte operand, so any
address modification is by ‘1’.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SE w3, w4 ; Sign-extend W3 and store to W4
Before After
Instruction Instruction
W3| 7839 W3| 7839
W4| 1005 W4| 0039
SR| 0000 SR| 0001 |(C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 393

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: SE [wW2++], W12 ; Sign-extend [W2] and store to Wi2
; Post-increment w2

Before After
Instruction Instruction
W2| 0900 W2| 0901
W12| 1002 W12| FF8F
Data 0900| 008F Data 0900 O008F
SR| 0000 SR| 0008 [(N=1)

DS70157F-page 394 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SETM Set f or WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SETM{.B} f
WREG
Operands: fe [0...8191]
Operation: For byte operation:

OxFF —destination designated by D

For word operation:
OxFFFF —destination designated by D

Status Affected: None

Encoding: 1110 1111 1BDf | FFFF | FFFF | FFFF |

Description: All the bits of the specified register are set to ‘1. If WREG is specified,
the bits of WREG are set. Otherwise, the bits of the specified file register
are set.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words:
Cycles:
Example 1: SETM.B 0x891 ; Set 0x891 (Byte mode)
Before After
Instruction Instruction
Data 0890| 2739 Data 0890 FF39
SR| 0000 SR| 0000
Example 2: SETM WREG ; Set WREG (Word mode)
Before After
Instruction Instruction
WREG (WO0)| 0900 WREG (WO0)| FFFF
SR| 0000 SR| 0000

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 395

16-bit MCU and DSC Programmer’s Reference Manual

SETM Set Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SETM{.B} Wd
[wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
Operation: For byte operation:

OxFF —»Wd for byte operation

For word operation:
OxFFFF —Wd for word operation

Status Affected: None
Encoding: 1110 1011 1Bqqg | qddd | deee | oeeo |
Description: All the bits of the specified register are set to ‘1’. Either register direct or

indirect addressing may be used for Wd.

The ‘B’ bits selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles: 1
Example 1: SETM.B W13 ; Set W13 (Byte mode)
Before After
Instruction Instruction
W13| 2739 W13| 27FF
SR| 0000 SR| 0000
Example 2. SETM [--w6] ; Pre-decrement W6 (Word mode)
; Set [w6]
Before After
Instruction Instruction
W6| 1250 W6| 124E
Data 124E| 3CD9 Data 124E| FFFF
SR| 0000 SR| 0000

DS70157F-page 396 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SFTAC Arithmetic Shift Accumulator by Slit6

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label’} SFTAC Acc, #Slit6
Operands: Acc € [AB]
Slité € [-16 ... 16]
Operation: Shift, (Acc) —Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 | 1000 | Aeee 0000 01kk kkkk
Description: Arithmetic shift the 40-bit contents of the specified accumulator by the

signed, 6-bit literal and store the result back into the accumulator. The
shift range is -16:16, where a negative operand indicates a left shift and a
positive operand indicates a right shift. Any bits which are shifted out of
the accumulator are lost.

The ‘A’ bit selects the accumulator for the result.

The ‘k’ bits determine the number of bits to be shifted.

Note 1: If saturation is enabled for the target accumulator (SATA,
CORCON<7> or SATB, CORCON<6>), the value stored to
the accumulator is subject to saturation.

2: If the shift amount is greater than 16 or less than -16, no
modification will be made to the accumulator, and an
arithmetic trap will occur.

Words:
Cycles: 1

Example 1: SFTAC A, #12
; Arithmetic right shift ACCA by 12
; Store result to ACCA
; CORCON = 0x0080 (SATA = 1)

Before After
Instruction Instruction
ACCA 00 120F FF00 ACCA 00 0001 20FF
CORCON 0080 CORCON 0080
SR 0000 SR 0000

Example 2: SFTAC B, #-10
; Arithmetic left shift ACCB by 10
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)

Before After
Instruction Instruction
ACCB | FF FFF18F4C ACCB | FF C63D 3000
CORCON 0040 CORCON 0040
SR 0000 SR 0000

O
® S
(7,
Qg
_E'C
=9
<)
=

s >

© 2005-2011 Microchip Technology Inc. DS70157F-page 397

16-bit MCU and DSC Programmer’s Reference Manual

SFTAC

Arithmetic Shift Accumulator by Wb

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X
Syntax: {label:} SFTAC Acc, Wb
Operands: Acc € [AB]
Wb e [WO ... W15]
Operation: Shiftwpy(Acc) —Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 | 1000 | A000 0000 0000 ssss
Description: Arithmetic shift the 40-bit contents of the specified accumulator and store
the result back into the accumulator. The Least Significant 6 bits of Wb
are used to specify the shift amount. The shift range is -16:16, where a
negative value indicates a left shift and a positive value indicates a right
shift. Any bits which are shifted out of the accumulator are lost.
The ‘A’ bit selects the accumulator for the source/destination.
The ‘s’ bits select the address of the shift count register.
Note 1: If saturation is enabled for the target accumulator (SATA,
CORCON<7> or SATB, CORCON<6>), the value stored to
the accumulator is subject to saturation.

2: |If the shift amount is greater than 16 or less than -16, no
modification will be made to the accumulator, and an
arithmetic trap will occur.

Words:
Cycles: 1
Example 1: SFTAC A, WO
; Arithmetic shift ACCA by (W0)
; Store result to ACCA
; CORCON = 0x0000 (saturation disabled)
Before After
Instruction Instruction
w0 FFFC w0 FFFC
ACCA | 00 320F AB09 ACCA 03 20FA B090
CORCON 0000 CORCON 0000
SR 0000 SR 8800 |(OA, OAB = 1)
Example 2: SFTAC B, Wi2

; Arithmetic shift ACCB by (W12)
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)

Before After
Instruction Instruction
w12 000F w12 000F
ACCB | FFFFF18F4C ACCB | FFFFFF FFE3
CORCON 0040 CORCON 0040
SR 0000 SR 0000

DS70157F-page 398

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SL Shift Left f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} SL{.B} f {{\WREG}

Operands: fe [0... 8191]

Operation: For byte operation:
(f<7>) =(C)
(f<6:0>) —Dest<7:1>
0 —Dest<0>
For word operation:
(f<15>) —(C)
(f<14:0>) —»Dest<15:1>

0 —Dest<0>
o <o
Status Affected: N, Z, C
Encoding: | 1101 | o100 | oBDf FEff FEff FEff
Description: Shift the contents of the file register one bit to the left and place the result

in the destination register. The Most Significant bit of the file register is
shifted into the Carry bit of the STATUS register, and zero is shifted into
the Least Significant bit of the destination register.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The '’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SL.B 0x909 ; Shift left (0x909) (Byte mode)
Before After
Instruction Instruction
Data 0908| 9439 Data 0908 0839
SR| 0000 SR| 0001 |(C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 399

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: SL 0x1650, WREG ; Shift left (0x1650) (Word mode)
; Store result in WREG

Before After
Instruction Instruction
WREG (W0)| 0900 WREG (W0)| 80CA
Data 1650 4065 Data 1650 4065
SR| 0000 SR| 0008 [(N=1)

DS70157F-page 400 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SL Shift Left Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SL{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws-], (wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
wd e [WO ... W15]
Operation: For byte operation:
(Ws<7>) =C
(Ws<6:0>) -Wd<7:1>
0 -Wd<0>
For word operation:
(Ws<15>) —C
(Ws<14:0>) -Wd<15:1>
0 -Wd<0>
o =
Status Affected: N, Z,C
Encoding: ‘ 1101 | 0000 ‘ 0Bqq gddd dppp SSSsS
Description: Shift the contents of the source register Ws one bit to the left and place

the result in the destination register Wd. The Most Significant bit of Ws is
shifted into the Carry bit of the STATUS register, and ‘0’ is shifted into the
Least Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and “
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 401

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: SL.B W3, W4 ; shift left w3 (Byte mode)
; Store result to w4
Before After
Instruction Instruction
W3| 78A9 W3| 78A9
W4| 1005 W4| 1052
SR| 0000 SR| 0001 |(C=1)

Example 2: SL [w2++], [W12]

Before
Instruction

W2| 0900

W12| 1002

Data 0900| 800F
Data 1002| 6722
SR| 0000

; Shift left [W2] (Word mode)
; Store result to [W12]
; Post-increment w2

w2

w12

Data 0900
Data 1002
SR

After
Instruction

0902
1002
800F
001E
0001

(C=1)

DS70157F-page 402

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SL Shift Left by Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SL Wh, #lit4, Wnd
Operands: Wb e [WO ... W15]
lit4 € [0...15]
Wnd e [WO ... W15]
Operation: lit4<3:0> —>Shift_Val

Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val — 1:0>=0

Status Affected: N, Z
Encoding: 1101 1101 Owww wddd d100 kkkk
Description: Shift left the contents of the source register Wb by the 4-bit unsigned

literal and store the result in the destination register Wnd. Any bits
shifted out of the source register are lost. Direct addressing must be
used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: This instruction operates in Word mode only.

Words: 1
Cycles:
Example 1: SL W2, #4, W2 ; Shift left w2 by 4
; Store result to w2
Before After
Instruction Instruction
W2| 78A9 W2| 8A90
SR| 0000 SR| 0008 |(N=1)

Example 2: SL w3, #12, w8 ; shift left W3 by 12
; Store result to w8

Before After
Instruction Instruction
W3| 0912 W3| 0912
W8| 1002 ws8| 2000
SR| 0000 SR| 0000

O
® S
(7,
Qg
_E'C
=9
<)
=

s >

© 2005-2011 Microchip Technology Inc. DS70157F-page 403

16-bit MCU and DSC Programmer’s Reference Manual

SL Shift Left by Wns
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SL Wh, Whns, Wnd
Operands: Wb e [WO ... W15]
Whns e [WO ...W15]
Wnd € [WO ... W15]
Operation: Wns<4:0> —Shift_Val
Wnd<15:Shift_Val> = Wb<15 — Shift_Val:0>
Wd<Shift_Val —1:0>=0
Status Affected: N, Z
Encoding: 1101 ‘ 1101 ‘ Owww | wddd doeoeo SSSsS
Description: Shift left the contents of the source register Wb by the 5 Least Significant
bits of Wns (only up to 15 positions) and store the result in the
destination register Wnd. Any bits shifted out of the source register are
lost. Register direct addressing must be used for Wb, Wns and Wnd.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.
Words: 1
Cycles:
Example 1: SL WO, Wi, w2 ; Shift left WO by Wi<0:4>
; Store result to w2
Before After
Instruction Instruction
WO0| 09A4 WO0| 09A4
Ww1| 8903 w1| 8903
wW2| 78A9 wW2| 4D20
SR| 0000 SR| 0000
Example 2: SL w4, W5, W6 ; shift left W4 by W5<0:4>
; Store result to W6
Before After
Instruction Instruction
w4| A409 Ww4| A409
W5| FFO1 W5| FFO1
W6| 0883 W6| 4812
SR| 0000 SR| 0000

DS70157F-page 404

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B Subtract WREG from f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X

Syntax: {label:} SuUB{B} f {{WREG}

Operands: fe [0...8191]

Operation: () — (WREG) —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1011 | e1e1 | oBDf FEff FEff FEff

Description: Subtract the contents of the default working register WREG from the

contents of the specified file register, and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1(0)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUB.B Ox1FFF ; Sub. WREG from (Ox1FFF) (Byte mode)
; Store result to Ox1FFF

Before After
Instruction Instruction
WREG (WO0)| 7804 WREG (WO0)| 7804
Data 1FFE| 9439 Data 1FFE| 9039
SR| 0000 SR| 0001 |(C=1)

Example 2: SUB 0xA04, WREG ; Sub. WREG from (0xA04) (Word mode)
; Store result to WREG

Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| E2EF
Data 0OA04| 4523 Data 0A04| 4523
SR| 0000 SR| 0008 [(N=1)

O
® S
(7,
Qg
_E'C
=9
<)
=

s >

© 2005-2011 Microchip Technology Inc. DS70157F-page 405

16-bit MCU and DSC Programmer’s Reference Manual

SUB

Subtract Literal from Wn

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1: SUB.B #0x23, WO

WO
SR

Example 2: SUB

w4
SR

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} SUB{.B} #lit10, Wn
litl0 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation

Wn e [WO ... W15]
(Wn) —1it10 -Wn
DC,N, 0V, Z,C

‘ 1011

\ 0001 \ OBkk kkkk kkkk dddd

Subtract the 10-bit unsigned literal operand from the contents of the
working register Wn, and store the result back in the working register
Whn. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation.
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1:

Before
Instruction

7804
0000

The extension . B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

; Sub. 0x23 from WO (Byte mode)
; Store result to we

After
Instruction
WO0| 78E1
SR| 0008 |(N=1)

#0x108, W4 ; Sub. 0x108 from w4 (Word mode)

Before
Instruction

6234
0000

; Store result to w4

After
Instruction

w4[612C
SR| 0001 |(C=1)

DS70157F-page 406

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B Subtract Short Literal from Wb
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SUB{.B} Wh, #it5, wd
[Wd]
[Wd++]
(Wd-]
[++wWd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) — lit5 -»wWd
Status Affected: DC,N,0V, Z,C
Encoding: ‘ 0101 | Owww ‘ wBaq qddd di1k kkkk
Description: Subtract the 5-bit unsigned literal operand from the contents of the base

register Wb, and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Register direct or indirect
addressing must be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:

Example 1: SUB.B W4, #0x10, W5 ; Sub. 0x10 from W4 (Byte mode)
; Store result to W5

Before After
Instruction Instruction
w4| 1782 W4| 1782
W5| 7804 W5| 7872
SR| 0000 SR| 0005 |(0OV,C=1)

Example 2: SUB WO, #0x8, [W2++] ; Sub. 0x8 from WO (Word mode)
; Store result to [W2]
; Post-increment w2

Before After
Instruction Instruction o_
wWo0| F230 wWO0| F230 8 a
w2| 2004 Ww2| 2006 2=
Data 2004 AbL57 Data 2004| F228 -§_ g
SR 0000 SR| 0009 |(N,C=1) o g
a -]

© 2005-2011 Microchip Technology Inc. DS70157F-page 407

16-bit MCU and DSC Programmer’s Reference Manual

SUB

Subtract Ws from Wb

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} SUB{.B} Wb, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]
(Wb) — (Ws) -wd
DC,N,0V, Z,C
‘ 0101 | Owww ‘ wBqq gddd dppp SSSS

Subtract the contents of the source register Ws from the contents of the
base register Wb and place the result in the destination register Wd.

Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note:

1
1(®)

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUB.B W0, Wi, WO

WO
wi
SR

Before
Instruction

1732
7844
0000

; Sub. W1 from we (Byte mode)

; Store result to we

WO
wi
SR

After

Instruction

17EE
7844
0108

(DC, N = 1)

DS70157F-page 408

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2. SUB W7, [W8++], [W9++] ; Sub. [wW8] from W7 (Word mode)
Store result to [W9]

Post-increment W8
Post-increment W9

Ne N- ~- S

Before After
Instruction Instruction

W7| 2450 W7| 2450

ws8g| 1808 Wws8| 180A

W9| 2020 W9| 2022
Data 1808| 92E4 Data 1808| 92E4
Data 2020| A557 Data 2020| 916C

SR| 0000 SR| 010C [(DC, N, OV =1)

O
® S
(7,
Qg
_E'C
=9
<)
=

s >

© 2005-2011 Microchip Technology Inc. DS70157F-page 409

16-bit MCU and DSC Programmer’s Reference Manual

SUB

Subtract Accumulators

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1: SUB

ACCA
ACCB
CORCON
SR

Example 2: SUB

ACCA
ACCB
CORCON
SR

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X

{label:} SUB Acc
Acc e [AB]
If (Acc = A):

ACCA - ACCB —-ACCA
Else:

ACCB - ACCA -ACCB
OA, OB, OAB, SA, SB, SAB

1100 1011 AO11 0000 0000 0000

Subtract the contents of the unspecified accumulator from the contents
of Acc, and store the result back into Acc. This instruction performs a

40-bit subtraction.

The ‘A’ bit specifies the destination accumulator.

1
1

A ’

Subtract ACCB from ACCA

; Store the result to ACCA
; CORCON = 0x0000 (no saturation)

Before
Instruction

76 120F 098A

23 F312 BC17

0000

0000

B H

ACCA
ACCB
CORCON
SR

After
Instruction

52 1EFC 4D73

23 F312 BC17

0000

1100

Subtract ACCA from ACCB

; Store the result to ACCB

; CORCON = 0Ox0040 (SATB

Before
Instruction

FF 9022 2EE1

00 2456 8F4C

0040

0000

:1)

After
Instruction

ACCA

FF 9022 2EE1

ACCB
CORCON
SR

00 7FFF FFFF

0040

1400

(OA, OB = 1)

(SB, SAB = 1)

DS70157F-page 410

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SUBB

Subtract WREG and Carry bit from f

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X
{label} SUBB{.B} f { WREG}
fe [0..8191]
(f) — (WREG) — (E) —destination designated by D
DC,N,0V, Z,C
| 1011 | eie1 | 1BDf | FFFF FEFF FFf

Subtract the contents of the default working register WREG and the
Borrow flag (Carry flag inverse, C) from the contents of the specified file
register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The 'f’ bits select the address of the file register.
The extension . B in the instruction denotes a byte operation

Note 1:

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.
2: The WREG is set to working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

1
1(®)

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

SUBB.B OX1FFF

; Store result to Ox1FFF

Syntax:
Operands:
Operation:
Status Affected:
Encoding:
Description:
Words:
Cycles:
Note 1:
Example 1:
WREG (WO0)
Data 1FFE
SR
Example 2:
WREG (WO0)
Data 0A04
SR

Before After
Instruction Instruction
7804 WREG (WO0)| 7804
9439 Data 1FFE| 8F39
0000 SR| 0011

SUBB 0xA04, WREG

Before
Instruction

6234
6235
0000

(DC, C = 1)

; Sub. WREG and C from (Ox1FFF) (Byte mode)

; Sub. WREG and C from (0xA04) (Word mode)
; Store result to WREG

After

Instruction

WREG (WO0)
Data 0A04
SR

0000

6235

0001

(C=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 411

O
® S
(7,
Qg
is'c
=9
<)
=

s >

16-bit MCU and DSC Programmer’s Reference Manual

SU B B Subtract Wn from Literal with Borrow

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} SUBB{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (Wn) — lit10 — (C) -Wn

Status Affected: DC,N,0V,Z,C

Encoding: | 1011 | 0001 | 1Bkk kkkk kkkk | dddd |
Description: Subtract the unsigned 10-bit literal operand and the Borrow flag (Carry

flag inverse, E) from the contents of the working register Wn, and store
the result back in the working register Wn. Register direct addressing
must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘K’ bits specify the literal operand.

The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles:

Example 1: SUBB.B #0x23, WO ; Sub. 0x23 and C from WO (Byte mode)
; Store result to we

Before After
Instruction Instruction
WO0| 7804 WO0| 78EO
SR| 0000 SR| 0108 |(DC, N =1)

Example 2: SUBB #0x108, W4 ; Sub. 0x108 and C from W4 (Word mode)
; Store result to w4

Before After
Instruction Instruction
W4| 6234 Ww4| 612C
SR| 0001 [(C=1) SR| 0001 [(C=1)

DS70157F-page 412 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B B Subtract Short Literal from Wb with Borrow
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SUBB{.B} Wb, #it5, wd
[Wd]
[Wd++]
(Wd-]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) — Iit5 — (C) »Wd
Status Affected: DC,N,0QV, Z, C
Encoding: | 0101 | 1www | wBqq qddd di1k | kkkk |
Description: Subtract the 5-bit unsigned literal operand and the Borrow flag (Carry

flag inverse, E) from the contents of the base register Wb and place the
result in the destination register Wd. Register direct addressing must be
used for Wh. Either register direct or indirect addressing may be used for
wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words:
Cycles: 1

Example 1: SUBB.B W4, #0x10, W5 ; Sub. 0x10 and T from W4 (Byte mode)
; Store result to W5

Before After
Instruction Instruction
w4| 1782 W4| 1782
W5| 7804 W5| 7871
SR| 0000 SR| 0005 |(0OV,C=1)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 413

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: SUBB W0, #0x8, [W2++] ; Sub. 0x8 and C from We (Word mode)
; Store result to [W2]
; Post-increment w2

Before After
Instruction Instruction
wO0| 0009 wO0| 0009
w2| 2004 W2| 2006
Data 2004 AbL57 Data 2004| 0000
SR| 0002 |(Z=1) SR| 0103 |(DC,Z,C=1)

DS70157F-page 414 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B B Subtract Ws from Wb with Borrow
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SUBB{.B} Wb, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws-], (wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) — (Ws) — (C) »Wd

Status Affected: DC,N,0V, Z,C

Encoding: ‘ 0101 ‘ Iwww ‘ wBqq qddd dppp SSSS
Description: Subtract the contents of the source register Ws and the Borrow flag

(Carry flag inverse, C) from the contents of the base register Wb, and
place the result in the destination register Wd. Register direct addressing
must be used for Wb. Register direct or indirect addressing may be used
for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.
Words: 1

Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUBB.B WO, Wi, We ; Sub. Wl and C from WO (Byte mode)
; Store result to we “
Before After

Instruction Instruction U
wo| 1732 Wo| 17ED T
W1| 7844 W1| 7844 e g
SR 0000 SR 0108 |(DC, N =1) T 0O
=)
o0

>
T >

© 2005-2011 Microchip Technology Inc. DS70157F-page 415

16-bit MCU and DSC Programmer’s Reference Manual

Example 2: SUBB W7, [W8++], [W9++]

w7
W8
W9
Data 1808
Data 2022
SR

Before
Instruction

2450

1808

2022

92E4

AS557

0000

; Sub.

[w8] and C from W7 (Word mode)

; Store result to [W9]

; Post-increment W9

Instruction

w7
W8
W9
Data 1808
Data 2022
SR

After

2450

180A

2024

92E4

916B

010C

4

14

; Post-increment W8
4

(DC, N, OV = 1)

DS70157F-page 416

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B B R Subtract f from WREG with Borrow

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X

Syntax: {label:} SUBBR{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: (WREG) — (f) — (E) —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1011 | 1101 | 1BDF FEFF FEFF FEFF

Description: Subtract the contents of the specified file register f and the Borrow flag

(Carry flag inverse, 6) from the contents of WREG, and place the result
in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘'f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUBBR.B 0x803 ; Sub. (6x803) and C from WREG (Byte mode)
; Store result to 0x803

Before After
Instruction Instruction
WREG (WO0)| 7804 WREG (W0)| 7804
Data 0802| 9439 Data 0802| 6F39
SR| 0002 |(z=1) SR| 0000

Example 2: SUBBR 0xA04, WREG ; Sub. (0xA04) and C from WREG (Word mode)
; Store result to WREG

Before After “

Instruction Instruction
WREG (W0)| 6234 WREG (WO0)| FFFE
Data 0OA04| 6235 Data 0A04| 6235
SR| 0000 SR 0008 |(N =1)

uononasuj

O
o
n
2]
=
T
=
o
>
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 417

16-bit MCU and DSC Programmer’s Reference Manual

SU B B R Subtract Wb from Short Literal with Borrow
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SUBBR{.B} Wb, #it5, wd
(W]
(Wd++]
[Wd--]
[++Wd]
[--wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wwd e [WO ... W15]
Operation: lit5 — (Wb) — (C) »Wd
Status Affected: DC,N,0V, Z,C
Encoding: ‘ 0001 ‘ Iwww ‘ wBqq qddd diik ‘ kkkk |
Description: Subtract the contents of the base register Wb and the Borrow flag (Carry

flag inverse, C) from the 5-bit unsigned literal and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Register direct or indirect addressing must be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles:

Example 1: SUBBR.B W0, #0x10, Wl ; Sub. WO and T from 0x10 (Byte mode)
; Store result to Wi

Before After
Instruction Instruction
W0| F310 WO0| F310
W1| 786A W1| 7800

SR| 0003|(z,c=1) SR| o0103|(bC,Z,C=1)

DS70157F-page 418 © 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2. SUBBR WO, #0x8, [W2++] ; Sub. We and C from 0x8 (Word mode)
; Store result to [W2]
; Post-increment w2

7

Before After
Instruction Instruction
wO0| 0009 wO0| 0009
w2| 2004 Ww2| 2006
Data 2004 AbL57 Data 2004| FFFE
SR| 0020 |(Z=1) SR| 0108 |(DC, N =1)

O
DS
0w wn
es
_E'C
=9
)
>

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 419

16-bit MCU and DSC Programmer’s Reference Manual

SU B B R Subtract Wb from Ws with Borrow

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} SUBBR{.B} Wh, Ws, wd

[Ws], [wd]

[Ws++], [Wd++]

[Ws-], (wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Ws) — (Wb) — (C) »Wd

Status Affected: DC,N,0V, Z,C

Encoding: ‘ 0001 ‘ Iwww ‘ wBqq qddd dppp ‘ SSSsS |
Description: Subtract the contents of the base register Wb and the Borrow flag (Carry

flag inverse, C) from the contents of the source register Ws and place
the result in the destination register Wd. Register direct addressing must
be used for Wb. Register direct or indirect addressing may be used for
Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.
Words: 1

Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUBBR.B WO, Wi, Wo ; Sub. we and C from Wi (Byte mode)
; Store result to we

Before After
Instruction Instruction
WO 1732 WO 1711
W1| 7844 W1 7844
SR 0000 SR| 0001 |(C=1)

DS70157F-page 420

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2. SUBBR W7, [W8++], [W9++] ; Sub. W7 and C from [w8] (Word mode)
Store result to [W9]

Post-increment W8

Post-increment W9

Before After
Instruction Instruction

W7| 2450 W7| 2450

ws8g| 1808 Wws8| 180A

W9| 2022 W9| 2024
Data 1808| 92E4 Data 1808| 92E4
Data 2022| A557 Data 2022| 6E93

SR| 0000 SR| 0005 [(QV,C=1)

O
® S
0o
es
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 421

16-bit MCU and DSC Programmer’s Reference Manual

SU B R Subtract f from WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E
X X X X X X

Syntax: {label:} SUBR{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: (WREG) — (f) —destination designated by D

Status Affected: DC,N,0V, Z,C

Encoding: | 1011 | 1101 | oBDf FEFf FEFF FFF

Description: Subtract the contents of the specified file register from the contents of

the default working register WREG, and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUBR.B Ox1FFF ; Sub. (Ox1FFF) from WREG (Byte mode)
; Store result to Ox1FFF

Before After
Instruction Instruction
WREG (W0)| 7804 WREG (WO0)| 7804
Data 1FFE| 9439 Data 1FFE| 7039
SR| 0000 SR| 0000

Example 2: SUBR 0xA04, WREG ; Sub. (0xA04) from WREG (Word mode)
; Store result to WREG

Before After
Instruction Instruction
WREG (W0)| 6234 WREG (WO0)| FFFF
Data 0OA04| 6235 Data 0A04| 6235
SR| 0000 SR| 0008 [(N=1)

DS70157F-page 422

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B R Subtract Wb from Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} SUBR{.B} Whb, #litS wd
(W]
[(Wd++]
(Wd-]
[++Wd]
[--wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wwd e [WO ... W15]
Operation: lit5 — (Wb) -»Wd
Status Affected: DC,N, 0V, Z,C
Encoding: \ 0001 \ Owww \ wBqq qddd d11k kkkk
Description: Subtract the contents of the base register Wb from the unsigned 5-bit

literal operand, and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles:

Example 1: SUBR.B W@, #0x10, W1 ; Sub. We from ©x16 (Byte mode)
; Store result to Wi

Before After
Instruction Instruction
wWO0| F310 WO0| F310
W1| 786A W1| 7800
SR 0000 SR| 0103 |(DC,z,C=1)

Example 2: SUBR WO, #0O0x8, [W2++] ; Sub. WO from 0x8 (Word mode)

; Store result to [W2]
; Post-increment w2

Before After
Instruction Instruction c‘? =3
WO0| 0009 WO0| 0009 g 24
W2| 2004 W2| 2006 =.c
Data 2004| A557 Data 2004| FFFF -g- 2-
SR| 0000 SR| 0108 [(DC, N=1) g g
(2]

© 2005-2011 Microchip Technology Inc. DS70157F-page 423

16-bit MCU and DSC Programmer’s Reference Manual

SUBR

Subtract Wb from Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} SUBR{.B} Wb, Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]
(Ws) — (Wb) -»Wd
DC,N,0V, Z,C
‘ 0001 | Owww ‘ wBaq gddd dppp SSSS

Subtract the contents of the base register Wb from the contents of the
source register Ws and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note:

1
1(®)

The extension . B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: SUBR.B W0, Wi, W@

WO
wi
SR

Before
Instruction

1732
7844
0000

; Sub. WO from wl (Byte mode)

; Store result to we

WO
wi
SR

After

Instruction

1712
7844
0001

(C=1)

DS70157F-page 424

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

; Sub. W7 from [wW8] (Word mode)
; Store result to [W9]

; Post-increment w8

; Post-increment w9

Example 2: SUBR W7, [W8++], [W9++]

Before After
Instruction Instruction

W7| 2450 W7| 2450

ws8g| 1808 Wws8| 180A

W9| 2022 W9| 2024
Data 1808| 92E4 Data 1808| 92E4
Data 2022| A557 Data 2022| 6E94

SR| 0000 SR| 0005 [(QV,C=1)

O
® S
0o
Q3
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 425

16-bit MCU and DSC Programmer’s Reference Manual

SWAP

Byte or Nibble Swap Wn

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E

X X X X X X

{label:} SWAP{.B} Wn

Wn e [WO ... W15]

For byte operation:
(Wn)<7:4> < (Wn)<3:0>

For word operation:
(Wn)<15:8> <> (Wn)<7:0>

None

| 1111 \ 1101 \ 1800 0000 0000 ssss

Swap the contents of the working register Wn. In Word mode, the two
bytes of Wn are swapped. In Byte mode, the two nibbles of the Least
Significant Byte of Wn are swapped, and the Most Significant Byte of
Whn is unchanged. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the working register.

Syntax:
Operands:
Operation:
Status Affected:
Encoding:
Description:
Words:
Cycles:
Example 1: SWAP.
WO
SR
Example 2: SWAP
WO
SR

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

B WO ; Nibble swap (W0)
Before After
Instruction Instruction

AB87 WO0| AB78
0000 SR| 0000
wo ; Byte swap (W0)
Before After
Instruction Instruction
8095 WO0| 9580
0000 SR | 0000

DS70157F-page 426

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

TBLRDH Table Read High

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label’} TBLRDH{.B} [Ws], wd
Ws++], [Wd]
[Ws--], [Wd++]
[++Ws], [wd--]
[--Ws], [++Wd]
[--Wd]
Operands: Ws e [WO ... W15]
Wwd e [WO ... W15]
Operation: For byte operation:
If (LSB(Ws) =1)
0 -wWd
Else

Program Mem [(TBLPAG),(Ws)] <23:16> —»Wd
For word operation:
Program Mem [(TBLPAG),(Ws)] <23:16> —»Wd <7:0>

0 -Wd <15:8>
Status Affected: None
Encoding: 1011 ‘ 1010 ‘ 1Bqq ‘ gddd dppp SSSS
Description: Read the contents of the most significant word of program memory and

store it to the destination register Wd. The target word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<T7:0>, with the effective address specified by Ws. Indirect
addressing must be used for Ws, and either register direct or indirect
addressing may be used for Wd.

In Word mode, zero is stored to the Most Significant Byte of the destination
register (due to non-existent program memory) and the third program
memory byte (PM<23:16>) at the specified program memory address is
stored to the Least Significant Byte of the destination register.

In Byte mode, the source address depends on the contents of Ws. If Ws is
not word-aligned, zero is stored to the destination register (due to
non-existent program memory). If Ws is word-aligned, the third program
memory byte (PM<23:16>) at the specified program memory address is
stored to the destination register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register. “
Note: The extension .B in the instruction denotes a byte move rather

than a word move. You may use a .W extension to denote a
word move, but it is not required.

Words: 1
Cycles: 2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
5 (PIC24E, dsPIC33E)

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

© 2005-2011 Microchip Technology Inc. DS70157F-page 427

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: TBLRDH.B [W@], [Wl++] ; Read PM (TBLPAG:[W0]) (Byte mode)
; Store to [W1]
; Post-increment Wi
Before After
Instruction Instruction
WO 0812 WO 0812
w1 OF71 w1 0F72
Data OF70 0944 Data OF70 EF44
Program 01 0812 EF 2042 Program 01 0812 EF 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Example 2: TBLRDH [we++], w8 ; Read PM (TBLPAG:[W6]) (Word mode)
; Store to W8
; Post-increment W6
Before After
Instruction Instruction
W6 3406 W6 3408
w8 65B1 w8 0029
Program 00 3406 29 2E40 Program 00 3406 29 2E40
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000

DS70157F-page 428

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

TBLRDL

Table Read Low

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} TBLRDL{.B} [Ws], wd
Ws++], [wd]
[Ws--], [Wd++]
[++Ws], [Wd-]
[--Ws], [++Wd]
[--Wd]
Ws e [WO ... W15]
Wd e [WO ... W15]
For byte operation:
If (LSB(Ws) =1
Program Mem [(TBLPAG),(Ws)] <15:8> —-Wd
Else
Program Mem [(TBLPAG),(Ws)] <7:0> —Wd
For word operation:
Program Mem [(TBLPAG),(Ws)] <15:0> —wWd
None
1011 ‘ 1010 ‘ 0Bqq | gddd dppp SSsSs

Read the contents of the least significant word of program memory and
store it to the destination register Wd. The target word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Ws. Indirect
addressing must be used for Ws, and either register direct or indirect
addressing may be used for Wd.

In Word mode, the lower 2 bytes of program memory are stored to the
destination register. In Byte mode, the source address depends on the
contents of Ws. If Ws is not word-aligned, the second byte of the program
memory word (PM<15:7>) is stored to the destination register. If Ws is
word-aligned, the first byte of the program memory word (PM<7:0>) is
stored to the destination register.

The ‘B’ bit selects byte or word operation (‘0’ for word mode, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note:

1

The extension . B in the instruction denotes a byte move rather

than a word move. You may use a .W extension to denote a

word move, but it is not required.

2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)

5 (PIC24E, dsPIC33E)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 429

uononasuj

O
o
n
2]
=
T
=
o
>
7]

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: TBLRDL.B [WO++], W1 ; Read PM (TBLPAG:[W0O]) (Byte mode)
; Store to wi
; Post-increment w0
Before After
Instruction Instruction
WO 0813 WO 0814
w1 OF71 w1l 0F20
Data OF70 0944 Data OF70 EF44
Program 01 0812 EF 2042 Program 01 0812 EF 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Example 2: TBLRDL [W6], [W8++] ; Read PM (TBLPAG:[W6]) (Word mode)
; Store to W8
; Post-increment W8
Before After
Instruction Instruction
W6 3406 W6 3406
W8 1202 w8 1204
Data 1202 658B Data 1202 2E40
Program 00 3406 29 2E40 Program 00 3406 29 2E40
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000

DS70157F-page 430

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

TBLWTH

Table Write High

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} TBLWTH{.B} Ws, [wd]
[Ws], [Wd++]
[Ws++], [Wd--]
[Ws--], [++Wd]
[++Ws], [-Wd]
[“WS],
Ws e [WO ... W15]
Wd e [WO ... W15]
For byte operation:
If (LSB(Wd) = 1)
NOP
Else
(Ws) —Program Mem [(TBLPAG),(Wd)]<23:16>
For word operation:
(Ws)<7:0> —Program Mem [(TBLPAG),(Wd)] <23:16>
None
| 1011 ‘ 1011 ‘ 1Bqq ‘ qddd ‘ dppp SSSs

Store the contents of the working source register Ws to the most significant
word of program memory. The destination word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Wd. Either direct or
indirect addressing may be used for Ws, and indirect addressing must be

used for Wd.

Since program memory is 24 bits wide, this instruction can only write to the
upper byte of program memory (PM<23:16>). This may be performed using
a Wd that is word-aligned in Byte mode or Word mode. If Byte mode is
used with a Wd that is not word-aligned, no operation is performed.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Words:
Cycles:

Note 1:

Note:

The extension . B in the instruction denotes a byte move rather

than a word move. You may use a . W extension to denote a word
move, but it is not required.

1
o(1)

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 431

O
DS
0" wn
Qg
_E'C
=9
<)
=

m:

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: TBLWTH.B [WO++], [W1] ; Write [wWO]... (Byte mode)
; to PM Latch High (TBLPAG:[W1])
; Post-increment w0
Before After
Instruction Instruction
W0 0812 wo 0814
w1 0F70 w1 OF70
Data 0812 0944 Data 0812 EF44
Program 01 OF70 EF 2042 Program 01 OF70 44 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.
Example 2: TBLWTH W6, [W8++] ; Write W6... (Word mode)
; to PM Latch High (TBLPAG:[W8])
; Post-increment w8
Before After
Instruction Instruction
W6 0026 w6 0026
w8 0870 w8 0872
Program 00 0870 22 3551 Program 00 0870 26 3551
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory

are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.

DS70157F-page 432

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

TBLWTL

Table Write Low

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Note 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} TBLWTL{.B} Ws, [wd]
[Ws], (Wd++]
[Ws++], [Wd--]
[Ws--], [++Wd]
[++Ws], [--wd]
[“WS],
Ws e [WO ... W15]
Wd e [WO ... W15]
For byte operation:
If (LSB(Wd)=1)
(Ws) —»Program Mem [(TBLPAG),(Wd)] <15:8>
Else
(Ws) —Program Mem [(TBLPAG),(Wd)] <7:0>
For word operation:
(Ws) —»Program Mem [(TBLPAG),(Wd)] <15:0>
None
‘ 1011 ‘ 1011 ‘ 0Bqq | gddd ‘ dppp ‘ SSSS |

Store the contents of the working source register Ws to the least significant
word of program memory. The destination word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Wd. Either direct or
indirect addressing may be used for Ws, and indirect addressing must be

used for Wd.

In Word mode, Ws is stored to the lower 2 bytes of program memory. In
Byte mode, the Least Significant bit of Wd determines the destination byte.
If Wd is not word-aligned, Ws is stored to the second byte of program
memory (PM<15:8>). If Wd is word-aligned, Ws is stored to the first byte of
program memory (PM<7:0>).

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note:

The extension .B in the instruction denotes a byte move rather

than a word move. You may use a .W extension to denote a word
move, but it is not required.

1
o(1)

In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and

read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

© 2005-2011 Microchip Technology Inc.

DS70157F-page 433

uononasuj

O
o
n
2]
=
T
=
o
>
7]

16-bit MCU and DSC Programmer’s Reference Manual

Example 1: TBLWTL.B WO, [Wl++] ; Write WO... (Byte mode)
; to PM Latch Low (TBLPAG:[W1])
; Post-increment Wi
Before After
Instruction Instruction
W0 6628 wo 6628
w1 1225 w1 1226
Program 00 1224 78 0080 Program 01 1224 78 2880
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.
Example 2: TBLWTL [w6], [w8] ; Write [W6]... (Word mode)
; to PM Latch Low (TBLPAG:[W8])
; Post-increment w8
Before After
Instruction Instruction
W6 1600 w6 1600
w8 7208 w8 7208
Data 1600 0130 Data 1600 0130
Program 01 7208 09 0002 Program 01 7208 09 0130
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory

are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.

DS70157F-page 434

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

ULNK

De-allocate Stack Frame

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X
Syntax: {label:} ULNK
Operands: None
Operation: W14 —-W15
(W15) - 2 W15
(TOS) -wW14
Status Affected: None
Encoding: | 1111 | 1010 1000 0000 0000 | 0000 |
Description: This instruction de-allocates a Stack Frame for a subroutine calling
sequence. The Stack Frame is de-allocated by setting the Stack Pointer
(W15) equal to the Frame Pointer (W14), and then POPping the stack
to reset the Frame Pointer (W14).
Words: 1
Cycles: 1
Example 1: ULNK ; Unlink the stack frame
Before After
Instruction Instruction
w14 2002 w14 2000
W15 | 20A2 w15 2000
Data 2000 2000 Data 2000 2000
SR 0000 SR 0000
Example 2: ULNK ; Unlink the stack frame
Before After
Instruction Instruction
w14 0802 w14 0800
W15 0812 w15 0800
Data 0800 0800 Data 0800 0800
SR 0000 SR 0000

© 2005-2011 Microchip Technology Inc.

DS70157F-page 435

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

U LN K De-allocate Stack Frame
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X
Syntax: {label:} ULNK
Operands: None
Operation: W14 —-W15
(W15) - 2 W15
(TOS) -wW14
0 —SFA bit
Status Affected: SFA
Encoding: | 1111 | 1010 1000 0000 0000 | 000 |
Description: This instruction de-allocates a Stack Frame for a subroutine calling
sequence. The Stack Frame is de-allocated by setting the Stack Pointer
(W15) equal to the Frame Pointer (W14), and then POPping the stack
to reset the Frame Pointer (W14).
Words: 1
Cycles: 1
Example 1: ULNK ; Unlink the stack frame
Before After
Instruction Instruction
W14 2002 w14 2000
W15 20A2 W15 2000
Data 2000 2000 Data 2000 2000
SR 0000 SR 0000
Example 2: ULNK ; Unlink the stack frame
Before After
Instruction Instruction
W14 0802 W14 0800
W15 0812 W15 0800
Data 0800 0800 Data 0800 0800
SR 0000 SR 0000

DS70157F-page 436

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

XOR Exclusive OR f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X

Syntax: {label:} XOR{.B} f {{\WREG}

Operands: fe [0...8191]

Operation: ().XOR.(WREG) —destination designated by D

Status Affected: N, Z

Encoding: | 1011 | o110 | 1BDf FEFf FEff FEff

Description: Compute the logical exclusive OR operation of the contents of the

default working register WREG and the contents of the specified file
register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The '’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on hon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: XOR.B 0Ox1FFF ; XOR (Ox1FFF) and WREG (Byte mode)
; Store result to Ox1FFF

Before After
Instruction Instruction
WREG (WO0)| 7804 WREG (WO0)| 7804
Data 1IFFE| 9439 Data 1FFE| 9039
SR| 0000 SR| 0008 [(N=1)

Example 2: XOR OxAB4, WREG ; XOR (0xA04) and WREG (Word mode)
; Store result to WREG

Before After
Instruction Instruction
WREG (W0)| 6234 WREG (WO0)| C267
Data 0A04| AO053 Data 0A04| AO053
SR| 0000 SR| 0008 [(N=1)

O
® S
(7,
Qg
_E'C
=9
<)
=

s >

© 2005-2011 Microchip Technology Inc. DS70157F-page 437

16-bit MCU and DSC Programmer’s Reference Manual

XOR

Exclusive OR Literal and Wn

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
{label:} XOR{.B} #lit10, Wn
lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation

Wn e [WO ... W15]
lit10.XOR.(Wn) —Wn

N, Z

‘ 1011

\ 0010 \ 1Bkk kkkk kkkk dddd

Compute the logical exclusive OR operation of the unsigned 10-bit literal
operand and the contents of the working register Wn and store the result
back in the working register Wn. Register direct addressing must be
used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1:

Example 1: XOR.B #0x23, WO

WO
SR

Example 2: XOR

w4
SR

Before
Instruction

7804
0000

#0x108, W4

Before
Instruction

6134
0000

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

; XOR 0x23 and WO (Byte mode)
; Store result to we

After
Instruction
WO0| 7827
SR| 0000

; XOR 0x108 and W4 (Word mode)
; Store result to w4

After
Instruction
W4| 603C
SR| 0000

DS70157F-page 438

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

XOR Exclusive OR Wb and Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E
X X X X X X
Syntax: {label:} XOR{.B} Wh, #lit5, wd
(W]
(Wd++]
(Wd-]
[++Wd]
[--wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
wd e [WO ... W15]
Operation: (Wb).XOR.lit5 -»Wd
Status Affected: N, Z
Encoding: ‘ 0110 ‘ Iwww ‘ wBqq qddd diik kkkk
Description: Compute the logical exclusive OR operation of the contents of the base

register Wb and the unsigned 5-bit literal operand and place the result in
the destination register Wd. Register direct addressing must be used for
Wh. Either register direct or indirect addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a 5-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words:
Cycles: 1
Example 1: XOR.B W4, #0x14, W5 ; XOR W4 and 0x14 (Byte mode)
; Store result to W5
Before After
Instruction Instruction
W4 C822 w4 C822
W5 1200 W5 1234
SR 0000 SR 0000
Example 2: XOR W2, #0x1F, [W8++] ; XOR W2 by 0x1F (Word mode)
; Store result to [W8] “
; Post-increment W8

Before After o_

Instruction Instruction ® >

w2 [8505 w2 [8505 o &

w8 | 1004 w8 | 1006 35

Data 1004 | 6628 Data 1004 | 851A g- g-
SR | 0000 SR| 0008 |(N=1) a =]

© 2005-2011 Microchip Technology Inc. DS70157F-page 439

16-bit MCU and DSC Programmer’s Reference Manual

XOR

Exclusive OR Wb and Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X
{label:} XOR{.B} Wb, Ws, Wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

(Wb).XOR.(Ws) —Wd
N, Z

‘ 0110 ‘ Iwww ‘ wBqq qddd dppp SSSS

Compute the logical exclusive OR operation of the contents of the source
register Ws and the contents of the base register Wb, and place the
result in the destination register Wd. Register direct addressing must be
used for Wh. Either register direct or indirect addressing may be used for
Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

1
1(®)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on nhon-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

DS70157F-page 440

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: XOR

w1l
W5
W9
Data 2000
Data 2600
SR

.B W1, [W5++], [W9++] ; XOR W1l and [W5] (Byte mode)

Before
Instruction

AAAA
2000
2600
115A
0000
0000

Example 2: XOR W1, W5, W9
Before
Instruction
W1 | FEDC
W5 1234
W9 | A34D
SR 0000

; Store result to [W9]

; Post-increment W5 and W9

After
Instruction
W1 | AAAA
w5 2001
W9 2601

Data 2000 | 115A
Data 2600 | 0OFO
SR| 0008 | (N=1)

; XOR W1 and W5 (Word mode)
; Store the result to W9

After
Instruction
W1 | FEDC
W5 1234
W9 | ECES8
SR 0008 | (N=1)

© 2005-2011 Microchip Technology Inc.

DS70157F-page 441

O
o
n
2]
=
T
=
o
>
7]

S
(72}
(=g
=
c
(2}
=
o
>

16-bit MCU and DSC Programmer’s Reference Manual

ZE

Zero-Extend Ws

Implemented in:

Syntax:

Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E

X X X X X X

{label’} ZE Ws, Wnd

Ws e [WO ... W15]
Wnd e [WO ... W15]

Ws<7:0> -Wnd<7:0>
0 —Wnd<15:8>

N, Z C

1111 1011 1000 oddd dppp ssss

Zero-extend the Least Significant Byte in source working register Ws to
a 16-bit value and store the result in the destination working register
Wnd. Either register direct or indirect addressing may be used for Ws,
and register direct addressing must be used for Wnd. The N flag is
cleared and the C flag is set, because the zero-extended word is always
positive.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the source register.

Note 1: This operation converts a byte to a word, and it uses no . B or
.W extension.

2: The source Ws is addressed as a byte operand, so any
address modification is by ‘1".

1
1)

Note 1: In dsPIC33E and PIC24E devices, the listed cycle count does not apply to read and
read-modify-write operations on non-CPU Special Function Registers. For more
details, see Note 3 in Section 3.2.1 “Multi-Cycle Instructions”.

Example 1. ZE

w3, w4 ; zero-extend W3

w3
W4
SR

; Store result to w4

Before After
Instruction Instruction
7839 W3| 7839
1005 W4| 0039
0000 SR| 0001 |(C=1)

DS70157F-page 442

© 2005-2011 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: ZE [w2++], W12 ; Zero-extend [W2]
; Store to wi2

; Post-increment w2

7

Before After
Instruction Instruction
W2| 0900 W2| 0901
W12| 1002 W12| O008F
Data 0900| 268F Data 0900| 268F
SR| 0000 SR| 0001 ((C=1)

O
® S
0o
es
_E'C
=9
)
>

T =

© 2005-2011 Microchip Technology Inc. DS70157F-page 443

16-bit MCU and DSC Programmer’s Reference Manual

NOTES:

DS70157F-page 444 © 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 6. Built-in Functions

HIGHLIGHTS

This section of the manual contains the following major topics:

[70 R [1 {0 Yo [0 Tt 1o] IR EPRT RPN 446
6.2 BUIlt-IN FUNCHON LiST......iviiiiiiiiiiiie e e e e e e e e e e e e e e rr e es 447

© 2005-2011 Microchip Technology Inc. DS70157F-page 445

w
=
=
L.
=
T
c
S
o
=3
o
=
(7]

16-bit MCU and DSC Programmer’s Reference Manual

6.1 INTRODUCTION

This section describes the built-in functions that are specific to the MPLAB C Compiler for PIC24
MCUs and dsPIC DSCs (formerly MPLAB C30).

Built-in functions give the C programmer access to assembler operators or machine instructions
that are currently only accessible using in-line assembly, but are sufficiently useful that they are
applicable to a broad range of applications. Built-in functions are coded in C source files
syntactically like function calls, but they are compiled to assembly code that directly implements
the function, and do not involve function calls or library routines.

There are a number of reasons why providing built-in functions is preferable to requiring
programmers to use in-line assembly. They include the following:

1. Providing built-in functions for specific purposes simplifies coding.

2. Certain optimizations are disabled when in-line assembly is used. This is not the case for
built-in functions.

3. For machine instructions that use dedicated registers, coding in-line assembly while
avoiding register allocation errors can require considerable care. The built-in functions
make this process simpler as you do not need to be concerned with the particular register
requirements for each individual machine instruction.

The built-in functions are listed below followed by their individual detailed descriptions.

e _ builtin_addab e _ builtin_mpyn

e _ builtin_add e _ builtin_msc

e _ builtin_btg e _ builtin_mulss

e _ builtin_clr e _ builtin_mulsu

e builtin_clr_prefetch e builtin_mulus

e _ builtin_divf e _ builtin_muluu

e _ builtin_divmodsd e _ builtin_nop

e _ builtin_divmodud e __ builtin_psvpage
e _ builtin_divsd e _ builtin_psvoffset
e _ builtin_divud e _ builtin_readsfr
¢ builtin_dmaoffset e builtin_return_address
e _ builtin_ed e _ builtin_sac

e _ builtin_edac e _ builtin_sacr

e _ builtin_edsoffset e _ builtin_sftac

e _ builtin_edspage e _ builtin_subab

e _ builtin_fbcl e _ builtin_tbladdress
e builtin_lac e _ builtin_tblpage
e _ builtin_mac e _ builtin_tbloffset
e _ builtin_modsd e _ builtin_tbirdh

e _ builtin_modud e _ builtin_tblrdl

e _ builtin_movsac e _ builtin_tblwth

e _ builtin_mpy e _ builtin_tblwtl

This section describes only the built-in functions related to the CPU operations. The compiler
provides additional built-in functions for operations such as writing to Flash program memory and
changing the oscillator settings. Refer to the “MPLAB® C Compiler for PIC24 MCUs and dsPIC®
DSCs User’s Guide” (DS51284) for a complete list of compiler built-in functions.

DS70157F-page 446 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

6.2 BUILT-IN FUNCTION LIST

This section describes the programmer interface to the compiler built-in functions. Since the
functions are “built-in”, there are no header files associated with them. Similarly, there are no
command-line switches associated with the built-in functions — they are always available. The
built-in function names are chosen such that they belong to the compiler’'s namespace (they all
have the prefix _ _builtin_), so they will not conflict with function or variable names in the
programmer’s namespace.

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

__builtin_addab

Description:

Add accumulators A and B with the result written back to the specified accumulator. For
example:

register int result asm("A");
register int B asm("A");

result = _ builtin_addab(result,B);

will generate:

add A

Prototype:

int _ builtin_addab(int Accum_a, int Accum_b);
Argument:

Accum_a First accumulator to add.
Accum_b Second accumulator to add.

Return Value:

Returns the addition result to an accumulator.

Assembler Operator /| Machine Instruction:

add

Error Messages:

An error message appears if the result is not an accumulator register.

© 2005-2011 Microchip Technology Inc. DS70157F-page 447

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_add

Description:

Add value to the accumulator specified by result with a shift specified by literal shift. For
example:

register int result asm("A");
int value;
result = _ builtin_add(result,value,Q);

If value is held in w0, the following will be generated:
add wo, #0, A
Prototype:

int _ builtin_add(int Accum,int value,
const int shift);

Argument:

Accum Accumulator to add.
value Integer number to add to accumulator value.
shift Amount to shift resultant accumulator value.

Return Value:

Returns the shifted addition result to an accumulator.
Assembler Operator /| Machine Instruction:

add

Error Messages:

An error message appears if:

« the result is not an accumulator register

e argument 0 is not an accumulator
« the shift value is not a literal within range

DS70157F-page 448 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_btg

Description:

This function will generate a btg machine instruction. Some examples include:
int 1i; /* near by default */

int 1 __attribute__((far));

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

struct foo {
int bit1:1;
} barbits;

int bar;

void some_bittoggles() {
register int j asm("w9");
int k;

k =1;

__builtin_btg(&i,1);
__builtin_btg(&j,3);
__builtin_btg(&k, 4);
__builtin_btg(&l,11);

return j+k;
}

Note that taking the address of a variable in a register will produce warning by the compiler and
cause the register to be saved onto the stack (so that its address may be taken); this form is
not recommended. This caution only applies to variables explicitly placed in registers by the
programmer.

Prototype:
void __builtin_btg(unsigned int *, unsigned int 0Oxn);
Argument:

* A pointer to the data item for which a bit should be toggled.
0xn A literal value in the range of 0 to 15.

Return Value:

Returns a btg machine instruction.

Assembler Operator /| Machine Instruction:

btg

Error Messages:

An error message appears if the parameter values are not within range.

© 2005-2011 Microchip Technology Inc. DS70157F-page 449

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_clr

Description:
Clear the specified accumulator. For example:

register int result asm("A");
result = __builtin_clr();

will generate:

clr A

Prototype:

int __builtin_clr(void);
Argument:

None

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator /| Machine Instruction:
clr
Error Messages:

An error message appears if the result is not an accumulator register.

DS70157F-page 450

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_clr_prefetch

Description:
Clear an accumulator and prefetch data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr
and xval are ignored, but required.

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
register int B asm("B");

int x_memory_buffer[256]
__attribute__((space(xmemory)));
int y_memory_buffer[256]
__attribute__((space(ymemory)));
int *xmemory;

int *ymemory;

int awb;

int xval, yval;

xmemory = x_memory_buffer;

ymemory = y_memory_buffer;

result = __builtin_clr(&xmemory, &xVal, 2,
&ymemory, &yval, 2, &awb, B);

May generate:

clr A, [w8]+=2, w4, [wl0O]+=2, w5, w13

The compiler may need to spill wl3 to ensure that it is available for the write-back. It may be
recommended to users that the register be claimed for this purpose.

After this instruction:

« result will be cleared

¢ xVal will contain x_memory_buffer[0]

« yVal will contain y_memory_buffer[0]

« xmemory and ymemory will be incremented by 2, ready for the next mac operation

Prototype:
int builtin_clr_prefetch(

int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWwB,

int AwWB_accum);

© 2005-2011 Microchip Technology Inc. DS70157F-page 451

16-bit MCU and DSC Programmer’s Reference Manual

__builtin_clr_prefetch (Continued)

Argument:

Xptr Integer pointer to x prefetch.

xval Integer value of x prefetch.

xincr Integer increment value of x prefetch.
yptr Integer pointer to y prefetch.

yval Integer value of y prefetch.

yincr Integer increment value of y prefetch.
AWB Accumulator write back location.

AWB_accum Accumulator to write back.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator /| Machine Instruction:

clr

Error Messages:

An error message appears if:

« the result is not an accumulator register
e xval is a null value but xptr is not null
e yval is a null value but yptr is not null
* AWB_accum is not an accumulator and AWB is not null

DS70157F-page 452 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_divf

Description:

Computes the quotient num / den. A math error exception occurs if den is zero. Function
arguments are unsigned, as is the function result.

Prototype:

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

unsigned int __builtin_divf(unsigned int num,
unsigned int den);

Argument:

num numerator
den denominator

Return Value:

Returns the unsigned integer value of the quotient num / den.
Assembler Operator /| Machine Instruction:

div.f

_builtin_divmodsd

Description:

Issues the 16-bit architecture’s native signed divide support. Notably, if the quotient does not fit
into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture both the quotient and remainder.

Prototype:

signed int __builtin_divmodsd(
signed long dividend, signed int divisor,
signed int *remainder);

Argument:

dividend number to be divided
divisor number to divide by
remainder pointer to remainder

Return Value:

Quotient and remainder.

Assembler Operator /| Machine Instruction:
divmodsd

Error Messages:

None.

© 2005-2011 Microchip Technology Inc. DS70157F-page 453

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_divmodud

Description:

Issues the 16-bit architecture’s native unsigned divide support. Notably, if the quotient does not
fit into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture both the quotient and remainder.

Prototype:

unsigned int __builtin_divmodud(

unsigned long dividend, unsigned int divisor,
unsigned int *remainder);

Argument:

dividend number to be divided
divisor number to divide by
remainder pointer to remainder

Return Value:

Quotient and remainder.

Assembler Operator /| Machine Instruction:
divmodud

Error Messages:

None.

__builtin divsd

Description:

Computes the quotient num / den. A math error exception occurs if den is zero. Function
arguments are signed, as is the function result. The command-line option -Wconversions
can be used to detect unexpected sign conversions.

Prototype:

int __builtin_divsd(const long num, const int den);

Argument:

num numerator
den denominator

Return Value:

Returns the signed integer value of the quotient num / den.
Assembler Operator /| Machine Instruction:

div.sd

DS70157F-page 454 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_divud

Description:

Computes the quotient num / den. A math error exception occurs if den is zero. Function
arguments are unsigned, as is the function result. The command-line option -Wconversions
can be used to detect unexpected sign conversions.

Prototype:

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

unsigned int __builtin_divud(const unsigned
long num, const unsigned int den);

Argument:

num numerator
den denominator

Return Value:
Returns the unsigned integer value of the quotient num / den.
Assembler Operator /| Machine Instruction:

div.ud

_builtin_dmaoffset

Description:
Obtains the offset of a symbol within DMA memory.
For example:

unsigned int result;
char buffer[256] __attribute__((space(dma)));

result = __builtin_dmaoffset(&buffer);

May generate:

mov #dmaoffset(buffer), wo

Prototype:

unsigned int __builtin_dmaoffset(const void *p);
Argument:

*p pointer to DMA address value

Return Value:

Returns the offset to a variable located in DMA memory.
Assembler Operator /| Machine Instruction:

dmaoffset

Error Messages:

An error message appears if the parameter is not the address of a global symbol.

© 2005-2011 Microchip Technology Inc. DS70157F-page 455

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_ed

Description:

Squares sqr, returning it as the result. Also prefetches data for future square operation by
computing **xptr - **yptr and storing the result in *distance.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:

register int result asm("A");
int *xmemory, *ymemory;
int distance;

result = __builtin_ed(distance,
&xmemory, 2,
&ymemory, 2,
&distance);

May generate:
ed wa*w4, A, [w8]+=2, [W10]+=2, w4
Prototype:

int __builtin_ed(int sqr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

Argument:

sqr Integer squared value.

xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.

distance Integer pointer to distance.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the squared result to an accumulator.
Assembler Operator /| Machine Instruction:
ed

Error Messages:

An error message appears if:

« the result is not an accumulator register
e xptrisnull

e yptrisnull

e distance is null

DS70157F-page 456 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_edac

Description:

Squares sqr and sums with the nominated accumulator register, returning it as the result. Also
prefetches data for future square operation by computing **xptr - **yptr and storing the
resultin *distance.

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:

register int result asm("A");
int *xmemory, *ymemory;
int distance;

result = __builtin_ed(result, distance,
&xmemory, 2,
&ymemory, 2,
&distance);

May generate:

edac w4*w4, A, [w8]+=2, [W10]+=2, w4
Prototype:

int builtin_edac(int Accum, int sqr,

int **xptr, int xincr, int **yptr, int yincr,
int *distance);

Argument:

Accum Accumulator to sum.

sqr Integer squared value.

xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.

distance Integer pointer to distance.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the squared result to specified accumulator.
Assembler Operator /| Machine Instruction:

edac

Error Messages:

An error message appears if:

« the result is not an accumulator register
e Accum is not an accumulator register

e xptrisnull

e yptrisnull

» distance is null

© 2005-2011 Microchip Technology Inc. DS70157F-page 457

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_edsoffset

Description:

Returns the eds page offset of the object whose address is given as a parameter. The argument
p must be the address of an object in extended data space; otherwise an error message is
produced and the compilation fails. See the space attribute in Section 2.3.1 “Specifying
Attributes of Variables” of the “MPLAB® C Compiler for PIC24 MCUs and dsPIC® DSCs
User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_edsoffset(int *p);

Argument:

p object address

Return Value:

Returns the eds page number of the object whose address is given as a parameter
Assembler Operator /| Machine Instruction:

edsoffset

__builtin_edspage

Description:

Returns the eds page number of the object whose address is given as a parameter. The
argument p must be the address of an object in extended data space; otherwise an error
message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int _ builtin_edspage(int *p);

Argument:

p object address

Return Value:

Returns the eds page number of the object whose address is given as a parameter.
Assembler Operator /| Machine Instruction:

edspage

DS70157F-page 458

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_fbcl

Description:

Finds the first bit change from left in value. This is useful for dynamic scaling of fixed-point data.
For example:

int result, value;
result = __builtin_fbcl(value);

May generate:

fbcl w4, wb

Prototype:

int __builtin_fbcl(int value);
Argument:

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

value Integer number of first bit change.

Return Value:

Returns the shifted addition result to an accumulator.

Assembler Operator /| Machine Instruction:

fbcl

Error Messages:

An error message appears if the result is not an accumulator register.

_builtin_lac

Description:

Shifts value by shift (a literal between -8 and 7) and returns the value to be stored into the
accumulator register. For example:

register int result asm("A");

int value;

result = __builtin_lac(value, 3);

May generate:

lac w4, #3, A

Prototype:

int __builtin_lac(int value, int shift);
Argument:

value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted addition result to an accumulator.
Assembler Operator /| Machine Instruction:

lac

Error Messages:

An error message appears if:

« the result is not an accumulator register
« the shift value is not a literal within range

© 2005-2011 Microchip Technology Inc. DS70157F-page 459

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_mac

Description:

Computes a x b and sums with accumulator; also prefetches data ready for a future MAC
operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
register int B asm("B");

int *xmemory;

int *ymemory;

int xval, yval;

result = __builtin_mac(result, xval, yval,
&xmemory, é&xval, 2,
&ymemory, &yval, 2, 0, B);

May generate:
mac wa*ws5, A, [w8]+=2, w4, [wl0]+=2, w5
Prototype:

int __builtin_mac(int Accum, int a, int b,
int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AWB,
int AWB_accum);

Argument:

Accum Accumulator to sum.

a Integer multiplicand.

b Integer multiplier.

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator write-back location.

AWB_accum Accumulator to write-back.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator /| Machine Instruction:

mac

DS70157F-page 460 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_mac (Continued)

Error Messages:

An error message appears if:

« the result is not an accumulator register

» Accum is not an accumulator register

» xvalis anull value but xptr is not null

» yvalis anull value but yptr is not null

* AWB_accum is not an accumulator register and AWB is not null

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 461

16-bit MCU and DSC Programmer’s Reference Manual

__builtin_modsd

Description:

Issues the 16-bit architecture’s native signed divide support. Notably, if the quotient does not fit
into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in

function will capture only the remainder.
Prototype:

signed int __builtin_modsd(signed long dividend,

signed int divisor);
Argument:

dividend number to be divided
divisor number to divide by

Return Value:
Remainder.

Assembler Operator /| Machine Instruction:

modsd
Error Messages:
None.

__builtin_modud

Description:

Issues the 16-bit architecture’s native unsigned divide support. Notably, if the quotient does not
fit into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in

function will capture only the remainder.
Prototype:

unsigned int __builtin_modud(unsigned long dividend,

unsigned int divisor);
Argument:

dividend number to be divided
divisor number to divide by

Return Value:

Remainder.

Assembler Operator /| Machine Instruction:
modud

Error Messages:

None.

DS70157F-page 462

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_movsac

Description:
Computes nothing, but prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr
and xval are ignored, but required.

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is not null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
int *xmemory;

int *ymemory;

int xval, yval;

result = __builtin_movsac(&xmemory, &xVal, 2,
&ymemory, &yval, 2, 0, 0);

May generate:
movsac A, [w8]+=2, w4, [wl@]+=2, w5
Prototype:

int __builtin_movsac(

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AwB
int AwB_accum);

Argument:

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator write back location.

AWB_accum Accumulator to write back.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns prefetch data.

Assembler Operator /| Machine Instruction:
movsac

Error Messages:

An error message appeatrs if:

« the result is not an accumulator register
e xval is a null value but xptr is not null
e yval is a null value but yptr is not null
* AWB_accum is not an accumulator register and AWB is not null

© 2005-2011 Microchip Technology Inc. DS70157F-page 463

16-bit MCU and DSC Programmer’s Reference Manual

__builtin_mpy

Description:
Computes a x b ; also prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:

register int result asm("A");
int *xmemory;

int *ymemory;

int xval, yval;

result = __builtin_mpy(xVal, yval,
&xmemory, é&xval, 2,
&ymemory, &yval, 2);

May generate:
mac wa*ws5, A, [w8]+=2, w4, [wl0]+=2, w5
Prototype:

int __builtin_mpy(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

Argument:

a Integer multiplicand.

b Integer multiplier.

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.

xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.

yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator /| Machine Instruction:

mpy

Error Messages:

An error message appears if:

« the result is not an accumulator register
e xval is a null value but xptr is not null
e yval is a null value but yptr is not null

DS70157F-page 464

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_mpyn

Description:
Computes -a x b ; also prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr
and xval are ignored, but required.

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:

register int result asm("A");
int *xmemory;

int *ymemory;

int xval, yval;

result = __builtin_mpy(xVal, yval,
&xmemory, é&xval, 2,
&ymemory, &yval, 2);

May generate:
mac wa*ws5, A, [w8]+=2, w4, [wlO]+=2, w5
Prototype:

int __builtin_mpyn(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

Argument:

a Integer multiplicand.

b Integer multiplier.

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator /| Machine Instruction:
mpyn

Error Messages:

An error message appears if:

« the result is not an accumulator register
e xval is a null value but xptr is not null
e yvalis a null value but yptr is not null

© 2005-2011 Microchip Technology Inc. DS70157F-page 465

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_msc

Description:

Computes a x b and subtracts from accumulator; also prefetches data ready for a future MAC
operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
int *xmemory;

int *ymemory;

int xval, yval;

result = __builtin_msc(result, xval, yval,
&xmemory, &xval, 2,
&ymemory, &yval, 2, 0, 0);

May generate:

msc wa*ws5, A, [w8]+=2, w4, [wle]+=2, w5

Prototype:

int __builtin_msc(int Accum, int a, int b,

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AWB,

int AWB_accum);

Argument:

Accum IAccumulator to sum.

a Integer multiplicand.

b Integer multiplier.

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator write back location.

AWB_accum Accumulator to write back.

Note: The arguments xptr and yptr must point to the arrays located in the x data
memory and y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator /| Machine Instruction:

msc

DS70157F-page 466 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_msc (Continued)

Error Messages:

An error message appears if:

« the result is not an accumulator register

» Accum is not an accumulator register

» xvalis anull value but xptr is not null
e yvalis anull value but yptr is not null
* AWB_accum is not an accumulator register and AWB is not null

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

© 2005-2011 Microchip Technology Inc. DS70157F-page 467

16-bit MCU and DSC Programmer’s Reference Manual

__builtin_mulss

Description:

Computes the product p@ x p1. Function arguments are signed integers, and the function result
is a signed long integer. The command-line option -Wconversions can be used to detect
unexpected sign conversions.

Prototype:
signed long __builtin_mulss(const signed int p®, const signed int p1);
Argument:

pO multiplicand
p1 multiplier

Return Value:

Returns the signed long integer value of the product p@ x p1.
Assembler Operator /| Machine Instruction:

mul.ss

__builtin_mulsu

Description:

Computes the product p@ x p1. Function arguments are integers with mixed signs, and the
function result is a signed long integer. The command-line option -Wconversions can be
used to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction, including immediate mode for operand p1.

Prototype:
signed long __builtin_mulsu(const signed int p®, const unsigned int p1);
Argument:

pO multiplicand
p1 multiplier

Return Value:
Returns the signed long integer value of the product p@ x p1.
Assembler Operator /| Machine Instruction:

mul.su

DS70157F-page 468

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_mulus

Description:

Computes the product p@ x p1. Function arguments are integers with mixed signs, and the
function result is a signed long integer. The command-line option -Wconversions can be
used to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction.

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

Prototype:
signed long __builtin_mulus(const unsigned int p®, const signed int p1);
Argument:

pO multiplicand
p1 multiplier

Return Value:
Returns the signed long integer value of the product p@ x p1.
Assembler Operator /| Machine Instruction:

mul.us

_builtin_muluu

Description:

Computes the product p@ x p1. Function arguments are unsigned integers, and the function
result is an unsigned long integer. The command-line option -Wconversions can be used to
detect unexpected sign conversions. This function supports the full range of addressing modes
of the instruction, including immediate mode for operand p1.

Prototype:
unsigned long __builtin_muluu(const unsigned int p®, const unsigned int p1l);
Argument:

pO multiplicand
p1 multiplier

Return Value:
Returns the signed long integer value of the product p@ x p1.
Assembler Operator /| Machine Instruction:

mul.uu

© 2005-2011 Microchip Technology Inc. DS70157F-page 469

16-bit MCU and DSC Programmer’s Reference Manual

__builtin_nop

Description:

Generates a nop instruction.

Prototype:

void __builtin_nop(void);
Argument:

None.

Return Value:

Returns a no operation (nop).

Assembler Operator /| Machine Instruction:

nop

__builtin_psvoffset

Description:

Returns the psv page offset of the object whose address is given as a parameter. The argument
p must be the address of an object in an EE data, PSV or executable memory space; otherwise
an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_psvoffset(const void *p);

Argument:

p object address

Return Value:

Returns the psv page number offset of the object whose address is given as a parameter.
Assembler Operator /| Machine Instruction:

psvoffset

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_psvoffset() is not the address of an object in code, psv, or
eedata section”.

The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is valid:
unsigned page = __builtin_psvoffset(&obj);

DS70157F-page 470 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_psvpage

Description:

Returns the psv page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

unsigned int __builtin_psvpage(const void *p);

Argument:

p object address

Return Value:

Returns the psv page number of the object whose address is given as a parameter.
Assembler Operator /| Machine Instruction:

psvpage

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argumentto __builtin_psvpage() is not the address of an object in code, psv, or eedata
section”.

The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_psvpage(&obj);

__builtin readsfr

Description:

Reads the SFR.

Prototype:

unsigned int __builtin_readsfr(const void *p);
Argument:

p object address

Return Value:

Returns the SFR.

Assembler Operator /| Machine Instruction:

readsfr

Error Messages:

The following error message is produced when this function is used incorrectly:

© 2005-2011 Microchip Technology Inc. DS70157F-page 471

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_return_address

Description:

Returns the return address of the current function, or of one of its callers. For the level
argument, a value of 0 yields the return address of the current function, a value of 1 yields the
return address of the caller of the current function, and so forth. When level exceeds the current
stack depth, O will be returned. This function should only be used with a non-zero argument for
debugging purposes.

Prototype:

int __builtin_return_address (const int level);
Argument:

level Number of frames to scan up the call stack.

Return Value:

Returns the return address of the current function, or of one of its callers.
Assembler Operator /| Machine Instruction:

return_address

_builtin_sac

Description:
Shifts value by shift (a literal between -8 and 7) and returns the value.
For example:

register int value asm("A");
int result;

result = __builtin_sac(value, 3);

May generate:

sac A, #3, w0

Prototype:

int __builtin_sac(int value, int shift);
Argument:

value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted result to an accumulator.
Assembler Operator /| Machine Instruction:
sac

Error Messages:

An error message appears if:

« the result is not an accumulator register
« the shift value is not a literal within range

DS70157F-page 472

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_sacr

Description:

Shifts value by shift (aliteral between -8 and 7) and returns the value which is rounded using

the rounding mode determined by the CORCONbits.RND control bit.

For example:

register int value asm("A");
int result;

result = __builtin_sac(value, 3);

May generate:

sac.r A, #3, wo

Prototype:

int __builtin_sacr(int value, int shift);
Argument:

value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted result to the CORCON register.
Assembler Operator /| Machine Instruction:
sacr

Error Messages:

An error message appears if:

« the result is not an accumulator register
« the shift value is not a literal within range

© 2005-2011 Microchip Technology Inc.

DS70157F-page 473

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_sftac

Description:
Shifts accumulator by shift. The valid shift range is -16 to 16.

For example:

register int result asm("A");

int 1i;

result = __builtin_sftac(result,i);

May generate:

sftac A, w0

Prototype:

int __builtin_sftac(int Accum, int shift);
Argument:

Accum Accumulator to shift.
shift Amount to shift.

Return Value:

Returns the shifted result to an accumulator.
Assembler Operator /| Machine Instruction:
sftac

Error Messages:

An error message appears if:

« the result is not an accumulator register
e Accum is not an accumulator register
« the shift value is not a literal within range

DS70157F-page 474 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

w
=3
__builtin_subab -
=
Description: g
Subtracts accumulators A and B with the result written back to the specified accumulator. For g
example: g
register int result asm("A"); >
register int B asm("B"); o
result = __builtin_subab(result,B);
will generate:
sub A
Prototype:
int ___ builtin_subab(int Accum_a, int Accum_b);
Argument:

Accum_a Accumulator from which to subtract.
Accum_b Accumulator to subtract.

Return Value:

Returns the subtraction result to an accumulator.

Assembler Operator / Machine Instruction:

sub

Error Messages:

An error message appears if the result is not an accumulator register.

_builtin_tbladdress

Description:

Returns a value that represents the address of an object in program memory. The argument p
must be the address of an object in an EE data, PSV or executable memory space; otherwise
an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned long __builtin_tblpage(const void *p);
Argument:

p object address

Return Value:

Returns an unsigned 1long value that represents the address of an object in program
memory.

Assembler Operator /| Machine Instruction:
tbladdress

© 2005-2011 Microchip Technology Inc. DS70157F-page 475

16-bit MCU and DSC Programmer’s Reference Manual

_builtin_tbladdress

Error Messages:
The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tbladdress() is not the address of an object in code, psv, or
eedata section”.

The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is valid:
unsigned long page = __builtin_tbladdress(&obj);

_builtin_tbloffset

Description:

Returns the table page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_tbloffset(const void *p);

Argument:

p object address

Return Value:

Returns the table page number offset of the object whose address is given as a parameter.
Assembler Operator /| Machine Instruction:

tbloffset

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tbloffset() is not the address of an object in code, psv, or
eedata section”.

The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is valid:
unsigned page = __builtin_tbloffset(&obj);

DS70157F-page 476 © 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_tblpage

Description:

Returns the table page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

unsigned int __builtin_tblpage(const void *p);

Argument:

p object address

Return Value:

Returns the table page number of the object whose address is given as a parameter.
Assembler Operator /| Machine Instruction:

tblpage

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argumentto __builtin_tblpage() is not the address of an object in code, psv, or eedata
section”.

The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is valid:
unsigned page = __builtin_tblpage(&obj);

builtin tblrdh

Description:

Issues the tblrdh.w instruction to read a word from Flash or EEDATA memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and __builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

unsigned int __builtin_tblrdh(unsigned int offset);
Argument:

offset desired memory offset

Return Value:

None.

Assembler Operator /| Machine Instruction:

tblrdh

Error Messages:

None.

© 2005-2011 Microchip Technology Inc. DS70157F-page 477

16-bit MCU and DSC Programmer’s Reference Manual

__builtin_tblrdl

Description:

Issues the tb1lrdl.w instruction to read a word from Flash or EEDATA memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and__builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

unsigned int __builtin_tblrdl(unsigned int offset);

Argument:
offset desired memory offset

Return Value:

None.

Assembler Operator /| Machine Instruction:
tblrdl

Error Messages:

None.

_builtin_tblwth

Description:

Issues the tblwth.w instruction to write a word to Flash or EEDATA memory. You must set up
the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and __builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

void __builtin_tblwth(unsigned int offset
unsigned int data);

Argument:

offset desired memory offset
data data to be written

Return Value:

None.

Assembler Operator /| Machine Instruction:
tblwth

Error Messages:

None.

DS70157F-page 478

© 2005-2011 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_tblwtl

Description:

Issues the tbhlrdl.w instruction to write a word to Flash or EEDATA memory. You must set up
the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and __builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

void __builtin_tblwtl(unsigned int offset
unsigned int data);

Argument:

offset desired memory offset
data data to be written

Return Value:

None.

Assembler Operator /| Machine Instruction:
tblwtl

Error Messages:

None.

© 2005-2011 Microchip Technology Inc. DS70157F-page 479

16-bit MCU and DSC Programmer’s Reference Manual

Example 6-1: Additional Inline Functions
#include "p33fxxxx.h"

volatile long Result_mpy1616;
volatile long Result_addab;
volatile long Result_subab;
volatile long Result_mpy3216;
volatile long Result_div3216;

register int Accu_A asm("A");
register int Accu_B asm("B");

inline static long mpy_32_16 (long, int);
inline static long mpy_32_16 (long x, int vy)
{

long result;
int templ, temp2;
templ = (x>>1)&0OX7FFF;
temp2 = x>>16;
Accu_A = __builtin_mpy (templ, y, 0,0,0,0,0,0);
Accu_A = __builtin_sftac (15);
Accu_A = _ _builtin_mac (temp2, y, 0,0,0,0,0,0,0);
asm('"mov _ACCAL,%0\n\t"

"mov _ACCAH,%d0@" : "=r"(result) : "w"(Accu_A));
return result;

int main (void)

// Variable declarations
int Input1;

int Input2;

int Input3;

int Input4;

long Inputs;

int Inputé;

long Input7;

int Inputs;

// Enable 32-bit saturation, signed and fractional modes for both ACCA
and ACCB
CORCON = 0x00CO;

// Example of 16*16-bit fractional multiplication using ACCA
Inputl = 32767;

Input2 = 32767,

Accu_A = _ _builtin_mpy (Inputl, Input2, 0,0,0,0,0,0);
asm("mov _ACCAL,%0\n\t"

"mov _ACCAH,%d0" : "=r"(Result_mpy1616) : "w"(Accu_A));

// Example of 16*16-bit fractional multiplication using ACCB
Input3 = 16384,

Input4 = 16384,

Accu_B = __builtin_mpy (Input3, Input4, 0,0,0,0,0,0);
asm('"mov _ACCBL,%0\n\t"

"mov _ACCBH,%d0" : "=r"(Result_mpy1616) : "w"(Accu_B));

// Example of 32-bit addition using ACCA (ACCA = ACCA + ACCB)
Accu_A = _ builtin_addab();

asm("mov _ACCAL,%0\n\t"

"mov _ACCAH,%d0" : "=r"(Result_addab) : "w"(Accu_A));

// Example of 32-bit subtraction using ACCB (ACCB = ACCB - ACCA)
Accu_B = __builtin_subab();

asm('"mov _ACCBL,%0\n\t"

"mov _ACCBH,%d0" : "=r"(Result_subab) : "w"(Accu_B));

// Example of 32*16-bit fractional multiplication using ACCA
Input5 = OX7FFFFFFF;

Input6 = 32767,

Result_mpy3216 = mpy_32_16 (Input5, Input6);

while(1);

DS70157F-page 480 © 2005-2011 Microchip Technology Inc.

Section 6.

Built-in Functions

Example 6-2: Divide_32_by_16

#include <p33Fxxxx.h>
#include "divide.h"

_FOSCSEL (FNOSC_FRC) ;
_FWDT(FWDTEN_OFF);

unsigned int divide_(long a, int
union convert {
unsigned long 1;
unsigned int i[2];

e

int sign;
unsigned int result;

c.l = a;
sigh = c.i[1] A b;

if (a<0) a=(-a);

if (b < 0) b = -b;

result = _ builtin_divud(a,b);
result >>= 1;

if (sign < 0) result =
return result;

-result;

}

int main(void)

{
unsigned long dividend;
unsigned int divisor;
unsigned int quotient;
dividend = Ox3FFFFFFF;
divisor = OX7FFF;
quotient = divide_((long)dividend,
while(1);

}

_FOSC(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMD_NONE);

b) {

(int)divisor);

© 2005-2011 Microchip Technology Inc.

DS70157F-page 481

w
=3
=
L.
S
T
c
S
3]
=
o
S
7]

16-bit MCU and DSC Programmer’s Reference Manual

NOTES:

DS70157F-page 482 © 2005-2011 Microchip Technology Inc.

MICROCHIP

Section 7. Reference

HIGHLIGHTS

This section of the manual contains the following major topics:

7.1 INSTIUCHON Bit IMAP 1ttt e e et e e e st e e e e s st e e e e s staaeaeeaas 484
7.2 Instruction Set SuMmary Tablecoooiiii e 486
7.3 REVISION HISTOYeiiiiiiiiii ettt e e etbae e e e 496

pY
D
—y
D
-
(1]
=
(2}
(1)

© 2005-2011 Microchip Technology Inc. DS70157F-page 483

16-bit MCU and DSC Programmer’s Reference Manual

7.1 INSTRUCTION BIT MAP

Instruction encoding for the 16-bit MCU and DSC family devices is summarized in Table 7-1. This
table contains the encoding for the MSB of each instruction. The first column in the table
represents bits 23:20 of the opcode, and the first row of the table represents bits 19:16 of the
opcode. The first byte of the opcode is formed by taking the first column bit value and appending
the first row bit value. For instance, the MSB of the PUSH instruction (last row, ninth column) is
encoded with 11111000b (OxF8).

Note: The complete opcode for each instruction may be determined by the instruction
descriptions in Section 5. “Instruction Descriptions”, using Table 5-1 through

Table 5-12.

DS70157F-page 484 © 2005-2011 Microchip Technology Inc.

"oul ABojouyoa] diyoosIN TT0Z-G002 ©

g8 abed-4,5702.S0

Table 7-1:

Instruction Encoding

Opcode<19:16>

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100
0000 | NOP BRA CALL — GOTO | RETLW RETFIE RCALL po@ REPEAT — — BRAWX
CALL RETURN (0A)
GOTO
RCALL
0001 SUBR SUBBR
0010 MOV
0011 BRA BRA BRA BRA BRA BRA BRA BRA BRA (NOV) BRA BRA BRA BRA
ov) © @ (N) (LE) (LT) (LEV) (NC) (NZ) (NN) (GM
0100 ADD ADDC
o101 SUB SUBB
0110 AND XOR
0111 IOR MOV
1000 MOV
a 1001 MOV
S 1016 | BSET | BCLR BTG BTST BTSTS BTST BTSS BTSC BSET BCLR BTG BTST BTSTS
N
4 1e11 | ADD SuUB AND IOR ADD SuB AND IOR MUL.US MUL.SS | TBLRDH | TBLWTH MUL
'§ ADDC | SUBB XOR MOV ADDC SUBB XOR MOV MUL.UU MUL.SU | TBLRDL | TBLWTL
=3 ,
o | 1100 mac@® CLRAC® mMAc® MOVSAC® | SFTAC®) ADD®) LAC®@ ADD®@ sac
MPY(®) MpPY® NEG(
MPY.N@ MPY.N®) sup@
msc® msc@
1101 SL ASR RLC RRC SL ASR RLC RRC DIV.S DIVE@ — — —
LSR RLNC | RRNC LSR RLNC RRNC DIV.U
1110 | cpo cP CPO cP — — cPBGT@ | cPBEQ®@ INC DEC COM CLR INC
CPB CPB cPBLT® | cPeNE®@ INC2 DEC2 NEG SETM INC2
CPSGT CPSEQ
CPSLT CPSNE
1111 D@ — — — — PUSH POP LNK SE DISI
EDAC®) ULNK ZE
MAC®
MPY(®
Note 1:

2: This instruction is only available in PIC24E and dsPIC33E family devices.

This instruction is only available in dsPIC30F, dsPIC33F, and dsPIC33E family devices.

9J3U3.19}9Y

98y abed-4,510.Sd

"ou| ABojouyoa] diydoIoIN TT0Z-S00Z ©

7.2 INSTRUCTION SET SUMMARY TABLE
The complete 16-bit MCU and DSC device instruction set is summarized in Table 7-2. This table contains
instruction set. It includes instruction assembly syntax, description, size (in 24-bit words), execution time (
Status bits, and the page number in which the detailed description can be found. Table 1-2 identifies the
Instruction Set Summary Table.
Note: The instruction cycle counts listed here are for PIC24F, PIC24H, dsPIC30F and dsPIC33F devic
additional cycles in PIC24E and dsPIC33E devices. Refer to Section 3.3 “Instruction Set Su
5.4 “Instruction Descriptions” for details. |
Table 7-2: Instruction Set Summary Table
M ::;i':iz"yospye"r;a: s Description Words | Cycles | 0A@ | 0B@ |sa1:2|sB(2)|0aAB®@ |saB®2) | DC
ADD f {,WREG} Destination = f + WREG 1 1 — — — — — — &}
ADD #1it10,Wn Wn = it10 + Wn 1 1 — | = — — — — {3
ADD Wb, #1it5, wd Wd = Wb + lit5 1 1 — — — — — — &]3
ADD Wb, Ws, wd Wd = Wb + Ws 1 1 — — — — — — &]3
ADD Acc®@ Add accumulators 1 1 &3 {3 i iy ¢ i) —
ADD Wso, #S1it4, Acc 16-bit signed add to accumulator 1 1 ¢ ¢ i) i) ¢ i —
ADDC f {,WREG} Destination = f + WREG + (C) 1 1 — — — — — — ¢
ADDC #11it10,Wn Wn = 1it10 + Wn + (C) 1 1 — — — — — — &
ADDC Wb, #1it5,wd wd = Wb + Iit5 + (C) 1 1 — | = — — — — ¢
ADDC Wb, Ws,Wwd wd = Wb + Ws + (C) 1 1 — | = — — — — ¢
AND f {,WREG} Destination = f . AND. WREG 1 1 — — — — — — —
AND #1it10,Wn Whn = [it10 .AND. Wn 1 1 — | = — — — — —
AND Wb, #1it5,wd Wd = Wb .AND. lit5 1 1 — | = — — — — —
AND Wb, Ws, wd Wd = Wb .AND. Ws 1 1 — | = — — — — —
ASR f {,WREG} Destination = arithmetic right shift f, LSb —C 1 1 — — — — — — —
ASR Ws, Wd Wd = arithmetic right shift Ws, LSb —C 1 1 — — — — — — —
ASR Wb, #1it4,wnd Wnd = arithmetic right shift Wb by lit4, LSb —C 1 1 — — — — — — —
Legend: { setor cleared; ¥ may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘O’ always cleared; — unchanged
Note SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

1
2
3:
4:
5.
6

This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

This instruction/operand is only available in PIC24E and dsPIC33E devices.

This instruction/operand is only available in dsPIC33E devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.
This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

"oul ABojouyoa] diyoosIN TT0Z-G002 ©

/8% 8bed-4,510.Sa

Table 7-2:

Instruction Set Summary Table (Continued)

Mﬁfiiﬂté',yo?ﬁl?ﬁds Description Words | Cycles | 0A@ | 0B® |sA(t2)|sB1:2) | 0AB®?) |sAB*?) | DC
ASR Wb, Wns, Wnd Wnd = arithmetic right shift Wb by Wns, LSb —C 1 1 — — — — — — —
BCLR f,#bit4 Bit clear f 1 1 — — — — _ _ _
BCLR Ws, #bit4 Bit clear Ws 1 1 — — — — _ _ _
BRA Expr Branch unconditionally 1 2 — — _ _ _ _ _
BRA Wn Computed branch 1 2 — — — — — — _
BRA C,Expr Branch if Carry 1 1(2) — _ _ _ _ _ _
BRA GE, Expr Branch if greater than or equal 1 1(2) — — _ _ _ _ _
BRA GEU, Expr Branch if Carry 1 1(2) - - — — — — —
BRA GT, Expr Branch if greater than 1 12 — — — — — _ _
BRA GTU, Expr Branch if unsigned greater than 1 12 — — — — — _ _
BRA LE, Expr Branch if less than or equal 1 1(2) — — — — — — —
BRA LEU, Expr Branch if unsigned less than or equal 1 1(2) — — — — — — —
BRA LT, Expr Branch if less than 1 1(2) — — — — — — —
BRA LTU, Expr Branch if not Carry 1 1(2) — — — — — — —
BRA N, Expr Branch if Negative 1 1(2) — — — — — — —
BRA NC, Expr Branch if not Carry 1 1(2) — — — — — — _
BRA NN, Expr Branch if not Negative 1 1(2) — _ _ _ _ _ _
BRA NOV, Expr Branch if not Overflow 1 1(2) — — — — — _ _
BRA NZ, Expr Branch if not Zero 1 1(2) _ _ _ _ _ _ _
BRA OA, Expr@ Branch if Accumulator A overflow 1 1(2) — — — — — — —
BRA 0B, Expr@ Branch if Accumulator B overflow 1 1(2) — — — — — — —
BRA 0V, Expr Branch if Overflow 1 12 — — — — — _ _
BRA SA, Expr® Branch if Accumulator A saturated 1 1(2) — — — — — — —
BRA SB, Expr® Branch if Accumulator B saturated 1 1(2) — — — — — — —
BRA Z,Expr Branch if Zero 1 1(2) — — — — — — _
BSET f,#bit4 Bit set f 1 1 — — — — — — _
BSET Ws, #bit4 Bit set Ws 1 1 — — — — _ _ _
BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 — — — — — — —
Legend: { setor cleared; { may be cleared, but never set; 1 may be set, but never cleared; ‘1’ always set; ‘@’ always cleared; — unchanged
Note SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

1
2
3:
4:
5:
6

This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.
This instruction/operand is only available in PIC24E and dsPIC33E devices.
This instruction/operand is only available in dsPIC33E devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.
This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

9J3U3.19}9Y

~

88y abed-4,510.S4

"ou| ABojouyoa] diydoIoIN TT0Z-S00Z ©

Table 7-2: Instruction Set Summary Table (Continued)
Mrl;\ :niir:i?:l'yosp)g:;a:d s Description Words | Cycles | 0A® | 0B@ |sa(:2) |sB(12) | 0AB@ [sAB(12)| DC

BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 — — — — — — —
BTG f,#bit4 Bit toggle f 1 1 — — — — _ _ _
BTG Ws, #bit4 Bit toggle Ws 1 1 — — — — _ _ _
BTSC f,#bit4 Bit test f, skip if clear 1 @ olr 3| — — — — _ _ _
BTSC Ws, #bit4 Bit test Ws, skip if clear 1 @ (;Lr 3| — — — — _ _ _
BTSS f,#bit4 Bit test f, skip if set 1 @ (;Lr 3| — — _ _ _ _ _
BTSS Ws, #bit4 Bit test Ws, skip if set 1 @ (:)Lr 3| — — _ _ _ _ _
BTST f,#bit4 Bittestfto Z 1 1 — — — — — — —
BTST.C Ws,#bit4 Bit test Ws to C 1 1 — — — — — — —
BTST.Z Ws,#bit4 Bit test Ws to Z 1 1 — — — — — — —
BTST.C Ws,Wb Bit test Ws<Wb> to C 1 1 - — — — — _ _
BTST.Z Ws,Wb Bit test Ws<Wb> to Z 1 1 - — — — — _ _
BTSTS f,#bit4 Bit test f to Z, then set f 1 1 — — — _ _ _ _
BTSTS.C Ws, #bit4 Bit test Ws to C then set 1 1 — — — — — — —
BTSTS.Z Ws, #bit4 Bit test Ws to Z then set 1 1 — — — — _ _ _
CALL Expr Call subroutine 2 2 — — — — _ — —
CALL Wn Call indirect subroutine 1 2 — — — — — — —
CALL.L wn® Call indirect subroutine (long address) 1 4 — — — — — — —
CLR f f = 0x0000 1 1 — — — — — — —
CLR WREG WREG = 0x0000 1 1 — — — — — — —
CLR wd Wd =0 1 1 — — — — — — —
CLR Acc, [wWx],wxd, [wy],Wyd, AwB@|Clear accumulator 1 1 0 0 0 0 0 0 —
CLRWDT Clear Watchdog Timer 1 1 — — — — — — —
CoM f {,WREG} Destination = f 1 1 — — — — — _ _
CcoM Ws, Wd wd = Ws 1 1 — — — — — _ _
Legend: { setor cleared; ¥ may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1 SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2 This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

3: This instruction/operand is only available in PIC24E and dsPIC33E devices.

4: This instruction/operand is only available in dsPIC33E devices.

5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

6 This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

"oul ABojouyoa] diyoosIN TT0Z-G002 ©

687 abed-4,570.50

Table 7-2:

Instruction Set Summary Table (Continued)

Assembly Syntax Description Words | Cycles | 0A@ | 0B® |sA12)|sB12) |0AB®@ |sABL2) | DC
Mnemonic, Operands

cP f Compare (f - WREG) 1 1 — — — — — _ ¢
cP Wb, #1it5 Compare (Wb — lit5) 1 1 — — — — — — ¢
cP Wb, #1it8 Compare (Wb - [it8) 1 1 — — — — — — ¢
cP Wb, Ws Compare (Wb — Ws) 1 1 — — — - — — (>
CPO f Compare (f — 0x0000) 1 1 — — — — — — 1
CPO Ws Compare (Ws — 0x0000) 1 1 — — — — — — 1
CPB f Compare with borrow (f - WREG — C) 1 1 — | = — — — — ¢
CPB Wb, #1it5 Compare with borrow (Wb — Iit5 — C) 1 1 — — — — _ _ ¢
CPB Wb, #1it8 Compare with borrow (Wb — Iit8 — C) 1 1 — — — _ _ _ ¢
CPB Wb, Ws Compare with borrow (Wb — Ws — 6) 1 1 — — _ _ _ _ $
CPBEQ Wb, Wn, Expr® Compare Wb with Wn, branch if = R e e e B B
CPBGT Wb, Wn, Expr® Signed Compare Wb with Wn, branch if > 1 (é) — — — _ _ _ _
CPBLT Wb, Wn,Expr® Signed Compare Wb with Wn, branch if < 1 (é) — — — _ _ _ _
CPBNE Wb, Wn, Expr® Compare Wb with Wn, branch if = 1 (é) — — — — — — —
CPSEQ Wb, Wn Compare (Wb with Wn), skip if = 1 Olr ol = | = - - |- _ _
CPSGT Wb, Wn Signed Compare (Wb with Wn), skip if > 1 @ olr 3| — — — — — — —
CPSLT Wb, Wn Signed Compare (Wb with Wn), skip if < 1 @ olr 3| — — — — — — —
CPSNE Wb, Wn Compare (Wb with Wn), skip if # 1 @ olr 3| — — — — — — _
DAW.B Wn Wn = decimal adjust Wn 1 1 — — — — — — _
DEC f {,WREG} Destination = f— 1 1 1 _ | = _ _ — — 8
DEC Ws, wd Wd=Ws-1 1 1 — — — — — —_ ¢
DEC2 f {,WREG} Destination = f - 2 1 1 — — — — — — ¢
DEC2 Ws, wd Wd=Ws -2 1 1 — — — — _ — $
Legend: § set or cleared; & may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

1
2:
3:
4
5
6

This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.
This instruction/operand is only available in PIC24E and dsPIC33E devices.
This instruction/operand is only available in dsPIC33E devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

9J3U3.19}9Y

~

06¥ abed-4,510.S4

"ou| ABojouyoa] diydoIoIN TT0Z-S00Z ©

Table 7-2: Instruction Set Summary Table (Continued)
Mrl;\ ;niir:i?:l'yosp)g:;a:d s Description Words | Cycles | 0A® | 0B@ |sa(:2) |sB(12) | 0AB@ [sAB(12)| DC

DISI #lit14 Disable interrupts for lit14 instruction cycles 1 1 — — — — — — —
DIV.S Wm,Wn Signed 16/16-bit integer divide, Q —Wo, R W1 1 18 — — — — — — —
DIV.SD Wm,Wn Signed 32/16-bit integer divide, Q —Wo, R W1 1 18 — — — — — — —
DIV.U Wm,Wn Unsigned 16/16-bit integer divide, Q —Wo, R —»W1 1 18 — — — — — — —
DIV.UD Wm,Wn Unsigned 32/16-bit integer divide, Q —Wo, R W1 1 18 — —_ —_ —_ — — —
DIVF Wm,Wn® Signed 16/16-bit fractional divide, @ —Wo, R -W1| 1 18 — | = | = — — — —
DO #1it14,Expr® Do code to PC + Expr, (lit14 + 1) times 2 2 — | = — — — — —
DO #1it15, Expr® Do code to PC + Expr, (lit15 + 1) times 2 2 — | = — — — — —
DO wn, Expr® Do code to PC + Expr, (Wn + 1) times 2 2 N — — — — —
ED wWm*Wm, Acc, [Wx], [Wy], wxd® |Euclidean distance (no accumulate) 1 1 &3 {3 2y 2y ¢ i) —
EDAC wm*Wm, Acc, [wx], [Wy],wxd® |Euclidean distance 1 1 &3 (3 i o ¢ ¢ _
EXCH wns, wWnd Swap Wns and Wnd 1 1 — — — — — — —
FBCL Ws, Wnd Find bit change from left (MSb) side 1 1 — — — — — — —
FF1L Ws, Wnd Find first one from left (MSb) side 1 1 — — — — — — —
FF1R Ws, Wnd Find first one from right (LSb) side 1 1 — — — — — — —
GOTO Expr Go to address 2 2 — — — — — — —
GOTO Wn Go to address indirectly 1 2 — — — — — — —
GOTO.L Wwn® Go to address indirectly (long address) 1 4 — — — — — — —
INC f {,WREG} Destination = f + 1 1 1 — — — — — — k13
INC Ws, Wd Wd=Ws +1 1 1 — — — — — — &
INC2 f {,WREG} Destination = f + 2 1 1 — — — — — — &
INC2 Ws, Wd Wd =Ws + 2 1 1 — — — — — — &
IOR f {,WREG} Destination = f .IOR. WREG 1 1 — — — — — _ —
IOR #1it10,Wn Whn =it10 .IOR. Wn 1 1 — — — — _ _ _
IOR Wh, #11t5, wd Wd = Wb .IOR. lit5 1 1 — — — — _ _ _
IOR Wb, Ws, Wd Wd = Wb .IOR. Ws 1 1 — — — — _ _ _
LAC Wso, #S1it4, Acc® Load accumulator 1 1 ¢ ¢ i) i) ¢ i) —
Legend: { setor cleared; ¥ may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1 SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2 This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

3: This instruction/operand is only available in PIC24E and dsPIC33E devices.

4: This instruction/operand is only available in dsPIC33E devices.

5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

6 This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

"oul ABojouyoa] diyoosIN TT0Z-G002 ©

T6¥ abed-4,5702.50

Table 7-2:

Instruction Set Summary Table (Continued)

M::;%Titc):l,yos;oﬂ?:d . Description Words | Cycles | 0A® | 0B®@ |sa(12)|sB(2) |0AB@ |sAB2)| DC
LNK #liti4 Link Frame Pointer 1 1 — — — — — — —
LSR f {,WREG} Destination = logical right shift f, MSb —C 1 1 — — — — — — —
LSR Ws, Wd Wd = logical right shift Ws, MSbh —C 1 1 — — — — — — —
LSR Wb, #1it4,wnd Wnd = logical right shift Wb by lit4, MSb —C 1 1 — — — - — — _
LSR Wb, Wns, wnd Wnd = logical right shift Wb by Wns, MSh —C 1 1 — — — — — — —
MAC a;n/;‘:\lz\:dgg)c’ [wx], wxd, [Wy], Multiply and accumulate 1 1 ¢ ¢ iy i k13 ity —
MAC x;n/;(wz;'n,Acc, [wx], wxd, [Wy], Square and accumulate 1 1 ¢ ¢ i i £(3 1 —
MOV f {,WREG} Move f to destination 1 1 _ _ _ _ _ _ _
MOV WREG, T Move WREG to f 1 1 — — — — — _ —
MoV f,Wnd Move f to Wnd 1 1 — — — — — _ —
MoV Wns, f Move Whns to f 1 1 — — — — — — _
MOV.B #1it8,wnd Move 8-bit unsigned literal to Wnd 1 1 — — — — — — —
MOV #11t16, Wnd Move 16-bit literal to Wnd 1 1 — — — — — — _
MoV [Ws+S1it10],Wnd Move [Ws + Slit10] to Wnd 1 1 — — — — — — _
MoV wns, [Wd+S1it10] Move Wns to [Wd + Slit10] 1 1 — — — — — — _
MoV Wso, Wdo Move Wso to Wdo 1 1 — — — — _ _ _
MOV.D Wns,Wnd Move double Wns to Wnd:Wnd + 1 1 2 — — — — — — —
MOV.D wns, Wnd Move double Wns:Wns + 1 to Wnd 1 2 — — — — — — —
MOVPAG #1it10, DSRPAG® Move 10-bit literal to DSRPAG 1 1 — | = | = — — — _
MOVPAG #1it9, DSWPAG® Move 9-bit literal to DSWPAG 1 1 — | = = — — _ _
MOVPAG #1it8, TBLPAG® Move 8-bit literal to TBLPAG 1 1 — | = = | = — _ _
MOVPAG Wn, DSRPAGR) Move Wn to DSRPAG 1 1 — | = = | = — _ _
MOVPAG Wn, DSWPAGR) Move Wn to DSWPAG 1 1 — | = = | = — _ _
MOVPAG Wn, TBLPAG®) Move Wn to TBLPAG 1 1 — | = = | = — — _
MOVSAC Acc, [Wx],Wxd, [Wy],Wyd, AWB® |Move [Wx] to Wxd, and [Wy] to Wyd 1 1 — | = — — — _ _
MPY a;n/;(wz)n,Acc, [wx], vixd, TWy], Multiply Wn by Wm to accumulator 1 1 ¢ ¢ i) i) ¢ i) —
Legend: { setor cleared; { may be cleared, but never set; 1 may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

1
2
3:
4:
5:
6

This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.
This instruction/operand is only available in PIC24E and dsPIC33E devices.
This instruction/operand is only available in dsPIC33E devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.
This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

9J3U3.19}9Y

~

Z6v abed-4,510/S0

"ou| ABojouyoa] diydoIoIN TT0Z-S00Z ©

Table 7-2: Instruction Set Summary Table (Continued)

M: :niir:i?:l'yosp)g:;a:d s Description Words | Cycles | 0A® | 0B@ |sa(:2) |sB(12) | 0AB@ [sAB(12)| DC
MPY wy;\(/gn,Acc, (W], wxd, [wy], Square to accumulator 1 1 ¢ ¢ i i ¢ i —
MPY.N w$;‘g)n’ Acc, [Wx], wxd, [Wy], -(Multiply Wn by Wm) to accumulator 1 1 0 0 — — 0 — —
MSC wy;‘flz\:\,gg:’ [wx], wxd, [Wy], Multiply and subtract from accumulator 1 1 ¢ ¢ i i ¢ i —
MUL f W3:W2 = f* WREG 1 1 — — — — — — —
MUL.SS Wb, Ws,Wnd {Wnd + 1,Wnd} = signed(Wb) * signed(Ws) 1 1 — - — — — _ _
MUL.SS Wb,Ws,Acc® Accumulator = signed(Whb) * signed(Ws) 1 1 — | = | = — — — —
MUL.SU Wb, #1it5,wnd {Wnd + 1,Wnd} = signed(Wb) * unsigned(lit5) 1 1 — - — — — — _
MUL.SU Wb, Ws,Wnd {Wnd + 1,Wnd} = signed(Wb) * unsigned(Ws) 1 1 — — — — — — —
MUL.SU Wb,Ws,Acc® Accumulator = signed(Wb) * unsigned(Ws) 1 1 — — — — — — —
MUL.SU Wb, #1it5, Acc® Accumulator = signed(Whb) * unsigned(lit5) 1 1 — — — — — — —
MUL.US Wb, Ws,Wnd {Wnd + 1,Wnd} = unsigned(Whb) * signed(Ws) 1 1 — — — — — — —
MUL.US Wb,Ws, Acc® Accumulator = unsigned(Wb) * signed(Ws) 1 1 — — — — — — —
MUL.UU Wb,#1it5,Wnd {Wnd + 1,Wnd} = unsigned(Whb) * unsigned(lit5) 1 1 — — — — — — —
MUL.UU Wb,Ws,Wnd {Wnd + 1,Wnd} = unsigned(Whb) * unsigned(Ws) 1 1 — — — — — — —
MUL.UU Wb, Ws,Acct® Accumulator = unsigned(Whb) * unsigned(Ws) 1 1 — | = | = — — — —
MUL.UU Wb, #1it5,Acc® Accumulator = unsigned(Wb) * unsigned(lit5) 1 1 — | = — — — — —
MULW. SS Wb, Ws, Wnd® Whnd = signed(Whb) * signed(Ws) 1 1 — | = | = — — — —
MULW. SU Wb, Ws, Wnd® wnd = signed(Whb) * unsigned(Ws) 1 1 — | = = — _ _ _
MULW.SU Wb, #1it5, Wnd® wnd = signed(Wb) * unsigned(lit5) 1 1 — | = = — _ _ _
MULW.US Wb, Ws, Wnd® wnd = unsigned(Wb) * signed(Ws) 1 1 — | = = — _ _ _
MULW.UU Wb, Ws, Wnd® Wnd = unsigned(Wb) * unsigned(Ws) 1 1 — | = — — _ _ _
MULW.UU Wb, #1it5, Wnd® wnd = unsigned(Whb) * unsigned(lit5) 1 1 — | = | = — _ _ _
NEG f {,WREG} Destination = f + 1 1 1 — — — — — — ¢
NEG Ws, wd Wd=Ws+1 1 1 — — — — — — 3
NEG Acc® Negate accumulator 1 1 ¢ ¢ i) i) ¢ il —
NOP No operation 1 1 - — — — — — —
Legend: { setor cleared; ¥ may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.
This instruction/operand is only available in PIC24E and dsPIC33E devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.
This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

1
2
3:
4: This instruction/operand is only available in dsPIC33E devices.
5.
6

"oul ABojouyoa] diyoosIN TT0Z-G002 ©

€6 abed-4,5702.50

Table 7-2:

Instruction Set Summary Table (Continued)

M::;?)Titél,yos;oﬂt::ds Description Words | Cycles | 0A@ | 0B® |sA(t2)|sB1:2) | 0AB®?) |sAB*?) | DC

NOPR No operation 1 1 — — — — — — —
PoP f POP TOS to f 1 1 — — — — — — —
POP wWdo POP TOS to Wdo 1 1 — — — — —_ —_ _
POP.D Wnd POP double from TOS to Wnd:Wnd + 1 1 2 — — — — — — —
POP.S POP shadow registers 1 1 — — — — — — ¢
PUSH f PUSH fto TOS 1 1 — — — — —_ —_ _
PUSH wso PUSH Wso to TOS 1 1 — — — — —_ —_ _
PUSH.D Wns PUSH double Wns:Wns + 1 to TOS 1 2 — — — — — — —
PUSH.S PUSH shadow registers 1 1 — — — — — _ _
PWRSAV #1it1 Enter Power-saving mode 1 1 — — — — — — _
RCALL Expr Relative call 1 2 — — — — — — —
RCALL Wn Computed call 1 2 — — — — — — —
REPEAT #1it14®) Repeat next instruction (lit14 + 1) times 1 1 — — — — — — —
REPEAT #1it15®) Repeat next instruction (lit15 + 1) times 1 1 — — — — — — —
REPEAT Wn Repeat next instruction (Wn + 1) times 1 1 — — — — — — —
RESET Software device Reset 1 1 — — — — — — —
RETFIE Return from interrupt enable 1 3(2) — — — — — — —
RETLW #1it10,Wn Return with 1it10 in Wn 1 3(2) — — — — — _ _
RETURN Return from subroutine 1 3(2) — — — — — — _
RLC f {, WREG} Destination = rotate left through Carry f 1 1 — — — — — _ _
RLC Ws, wd Wd = rotate left through Carry Ws 1 1 — — — _ _ _ _
RLNC f {,WREG} Destination = rotate left (no Carry) f 1 1 — — — — _ _ _
RLNC Ws, wd Wd = rotate left (no Carry) Ws 1 1 — — — — — — _
RRC f {,WREG} Destination = rotate right through Carry f 1 1 — — — — — — —
RRC Ws, wWd Wd = rotate right through Carry Ws 1 1 — — — — — — —
RRNC f {,WREG} Destination = rotate right (no Carry) f 1 1 — — — — — — _
RRNC Ws, wd Wd = rotate right (no Carry) Ws 1 1 — — - — — — —
SAC Acc, #S1it4, Wdo®@ Store accumulator 1 1 — — — — _ _ _
Legend: { set or cleared; & may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1 SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

3: This instruction/operand is only available in PIC24E and dsPIC33E devices.

4: This instruction/operand is only available in dsPIC33E devices.

5 This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

6 This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

9J3U3.19}9Y

~

y6t abed-4/5T70.S0

"ou| ABojouyoa] diydoIoIN TT0Z-S00Z ©

Table 7-2: Instruction Set Summary Table (Continued)
M: :niir:i?:l'yosp)g:;a:d s Description Words | Cycles | 0A® | 0B@ |sa(:2) |sB(12) | 0AB@ [sAB(12)| DC

SAC.R Acc,#Slit4,wdo®@ Store rounded Accumulator 1 1 — — — — — — —
SE Ws, wd Wd = sign-extended Ws 1 1 — — — — — — —
SETM f f = OXFFFF 1 1 — — — — — — —
SETM WREG WREG = OXFFFF 1 1 — — — — _ _ _
SETM wd Wd = OXFFFF 1 1 — — — — _ _ _
SFTAC Acc, #S1it6@ Arithmetic shift accumulator by Slit6 1 1 &3 &3 @ @ ¢ @ —
SFTAC Acc,Wbh® Arithmetic shift accumulator by (Wb) 1 1 ¢ ¢ i) i) ¢ i) —
SL f {,WREG} Destination = arithmetic left shift 1 1 — _ _ _ _ _ _
SL Ws, wWd Wd = arithmetic left shift Ws 1 1 — — — — — — —
SL Wb, #1it4,wWnd Wnd = left shift Wb by lit4 1 1 — — — _ _ _ _
SL Wb, Wns, wnd Wnd = left shift Wb by Wns 1 1 — — — — — _ —
SUB f {,WREG} Destination = f - WREG 1 1 — — — — — — ¢
SUB #1it10,Wn Wn = Wn - it10 1 1 — — — — — — &
SUB Wb, #1it5, wd Wd = Wb - lit5 1 1 — — — — — — &
SUB Wb, Ws, wd Wd = Wb - Ws 1 1 — — — — — — ¢
SuB Acc® Subtract accumulators 1 1 &3 &3 @ @ ¢ @ —
SUBB f {,WREG} destination = f - WREG — (C) 1 1 — — _ _ _ _ 8
SUBB #1it1@,Wn Wn = Wn - [it10 - (C) 1 1 - - =1 =1 = — (>
SUBB Wb, #1it5,wd wd = Wb —it5 - (C) 1 1 — | = | = — — — {8
SUBB Wb,Ws,wd wd = Wb - Ws — (C) 1 1 — | = | = — — — {8
SUBBR f {,WREG} Destination = WREG — f — (C) 1 1 — | = — — — — 8
SUBBR Wb, #1it5,wd wd = [its — Wb — (C) 1 1 — — — — — — &
SUBBR Wb, Ws,wd Wd = Ws - Wb — (C) 1 1 S [— — — — 3
SUBR f {,WREG} Destination = WREG — f 1 1 — — — — — — ¢
SUBR Wb, #1it5, wd wd = lit5 - Wb 1 1 — — — — — — &}
SUBR Wb, Ws, Wd Wd = Ws — Wb 1 1 — — — — — — &
SWAP Wn Wn = byte or nibble swap Wn 1 1 — — — — — — —
Legend: { setor cleared; ¥ may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

3: This instruction/operand is only available in PIC24E and dsPIC33E devices.

4: This instruction/operand is only available in dsPIC33E devices.

5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

"oul ABojouyoa] diyoosIN TT0Z-G002 ©

g6 abed-4,5702.S0

Table 7-2: Instruction Set Summary Table (Continued)
Assembly Syntax Description Words | Cycles | 0A@ | 0B® |sA(2)|sp:2) | oaB®? |saB@2| DC
Mnemonic, Operands

TBLRDH [Ws],wd Read high program word to Wd 1 2 — — — — — — —
TBLRDL [Ws],wd Read low program word to Wd 1 2 — — — — — — —
TBLWTH Ws, [Wd] Write Ws to high program word 1 2 — — — — — — —
TBLWTL Ws, [Wd] Write Ws to low program word 1 2 — — — — — — —
ULNK Unlink Frame Pointer 1 1 — — — — — — —
XOR f {,WREG} Destination = f . XOR. WREG 1 1 — — — — — — —
XOR #1it10,Wn Whn = 1it10 .XOR. Wn 1 1 — — — — — — —
XOR Wb, #1it5, wd Wd = Wb .XOR. lit5 1 1 — — — — — — —
XOR Wh, Ws, wd Wd = Wb .XOR. Ws 1 1 — — — — — — —
ZE Ws, Wnd Wnd = zero-extended Ws 1 1 — — — — — — —
Legend: § set or cleared; & may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, and dsPIC33E devices.

3: This instruction/operand is only available in PIC24E and dsPIC33E devices.

4: This instruction/operand is only available in dsPIC33E devices.

5 This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F, and dsPIC33F devices.

6 This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

9J3U3.19}9Y

~

16-bit MCU and DSC Programmer’s Reference Manual

7.3 REVISION HISTORY
Revision A (May 2005)

This is the initial release of this document.

Revision B (September 2005)

This revision incorporates all known errata at the time of this document update.

Revision C (February 2008)

This revision includes the following corrections and updates:

« Instruction Updates:
- Updated BRA Instruction (see “BRA?”)
- Updated DIVF Instruction (see “DIVF”)
- Updated DO Instruction (see “DO”)
- Updated SUB instruction (see “SUB")

Revision D (November 2009)

This revision includes the following corrections and updates:
« Document renamed from dsPIC30F/33F Programmer’s Reference Manual to 16-bit MCU
and DSC Programmer’s Reference Manual

* Document has been completely redesigned to accommodate all current 16-bit families:
dsPIC30F, dsPIC33F, PIC24F and PIC24H

Revision E (June 2010)

This revision includes the following corrections and updates:

 Information specific to dsPIC33E and PIC24E devices has been added throughout the
document

Revision F (July 2011)

This revision includes the following corrections and updates:

« Added a new section “Built-in Functions”
« Added and updated the cross-references throughout the document
« Updated the bit characteristics from U to U-0 in Register 2-4 and Register 2-6

« Added a note throughout the document specifying the requirement of an additional cycle for
read and read-modify-write operations on non-CPU special function registers in dsPIC33E
and PIC24E devices

« Updates to formatting and minor text changes were incorporated throughout the document

DS70157F-page 496 © 2005-2011 Microchip Technology Inc.

Index

INDEX

Symbols

__builtin_addab..........coceiiiii e 447

__builtin_btg.............. ..447, 448

__builtin_divmodudccccooiiiiiiii e 454

_ BUIIN_AIVSA ..o 454

__builtin_edsoffSet.......cceeiiiii e 458

__builtin_edspage

_ BUIIIN_MAC ...

__bUiltin_modsd........cocoieiiie e

_ builtin_modud..........cooiiiiiii e

DU _MPY e

__builtin_mpyn.... .

_ BUIIN_MUISS ..o

_ BUItIN_MUIUU .

__builtin_nop.............

__builtin_psvoffset

__builtin_sac.............

__builtin_subab ...

__ builtin_tbladdresscooviiriiiiiiiee 475

__builtin_tblwth

__builtin_tblwztl

A

Accumulator A, Accumulator Bcoooeeiiiiiiiiiiiiie, 19

Accumulator ACCeSScec..... ...84

Accumulator Selection .. .97

AccUmMUIALOr USAQE.......ceiiiiieiiiieeiiie et 83

Addressing Modes for Wd Destination Register 95

Addressing Modes for Ws Source Register

Assigned Working Register USageccocveeveeeenveeennnnn.

B

Built-In Functions
__builtin_addab...........ccccooiiiiii 447
__bUiltin_btg...coeeee 448
__builtin_divmodud..... 454
__builtin_divsd............. ...454
__builtin_edsoffset...458
__builtin_edspage.......ccccvciveiiiie e 458
_ BUIIIN_MAC ... 460
__builtin_modsd.... ... 462
__builtin_modud...........ccccoviiiiiie 462
DU MPY e 464
__builtin_mpyn.. ... 465
__builtin_mulss......468
__builtin_muluu.469
— BUIIN_NOP. e 470
__builtin_pSVOffSetccoviiiiiiieeeee e 470
__builtin_sac . AT2
__builtin_subab..........ccccoiiiiii 475
__builtin_tbladdress.........cccceeviie e 475
__builtin_tblwth478
__builtin_tblwtl479

Byte OPErationscccocverieiiiiiieiiesiec e 64

C

Code Examples
'Z’ Status bit Operation for 32-bit Addition 77
Base MAC SYNEAX........cuureriireeiiiieeiiiee e
File Register ADdressing..........ccoeeiieeeinieeenieee e
File Register Addressing and WREG. .
Frame Pointer USage.........cccevvuveeeiveeesiiieenieeesiieeenns
lllegal Word Move Operations.............cceeeeveeeniieeeennes

Immediate ADAresSSingcocveevveeiiieneeieeeiee e 59
Indirect Addressing with Effective Address Update.... 55
Indirect Addressing with Register Offset 56
Legal Word Move Operations...................
MAC Accumulator WB Syntax
MAC Prefetch Syntaxccccccvveennnen.
Move with Literal Offset Instructions..............cccoceeenee 56
MSC Instruction with Two Prefetches and Accumulator
WIit€ BACKeeeiieiiiiiiie e 87
Normalizing With FBCLccevivieeiiire e sieeeeiee e 90
Register Direct ADdressing.........coccvveviveeinieeennieeenns 54
Sample Byte Math Operations............cccoceeeiiieeinneenne 65
Sample Byte Move Operations...........ccoceveeiveeeiieeenns 64
Scaling With FBCLcccveeiiiieeciie e 89
Stack Pointer USage.........cocoveiiireeniiieniiee e 71
Unsigned f and WREG Multiply (Legacy MULWF
INSEIUCHION) ..o 80
Using 10-bit Literals for Byte Operands.............cc....... 69
Using the Default Working Register WREG 79
Conditional Branch INStructions............cccocveeiieeeiiieeenieeene 76

Core Control REQISLENccoiuveeiiiieiiiiee e 24

D

Data Addressing Mode Tree.........ccocvveiieniieneenieniee e 59

Data Addressing Modes

DCOUNT RegiSter......ccceeviueeeriineennns

Default Working Register (WREG)cccceevvieiienneens 18, 79

Development SUPPOIT........cueieiiiieiiie e 6

DOEND Register .

DOSTART REQISIEN ..ottt 20

DSP Accumulator INStructionscccevcieiienieniie s, 88

DSP Data FOrmats............coccevveiiiiiiiiiiiccen e 81

DSP MAC Indirect Addressing Modes...........ccccceenvinnenne. 57

DSP MAC INStrUCHIONSccviiiiiiiiiisiiecee e 84

F

File Register ADAreSSing.........cccvveeiiveeerieeesiireesneeesneeennnns 52

|

Immediate AdAreSSINGccueviiiieeriiiieerie et
Operands in the Instruction Set...

Implied DSP Operands...........c.ccceeuee.

Implied Frame and Stack POINErcccevevveevieresiieeenns

Instruction Bit Mapcccoovveviiiiieiiceeecec e

Instruction Description Example .

Instruction Descriptionscccccveevvvveesieeennnne.

ADD (16-bit Signed Add to Accumulator)..................
ADD (Add Accumulators)cc.eeevveeereeeeniiereenieeens 103
ADD (Add fto WREG)cceeiviiiiiiiiiecsceeec e
ADD (Add Literal to Wn)

ADD (Add Wb to Short Literal)c.cceecveerirncneennnn. 101
ADD (Add Wb t0 WS) ..o 102
ADDC (Add fto WREG with Carry)ccceeeevueeenne 106
ADDC (Add Literal to Wn with Carry)ccccceeueeene 107
ADDC (Add Wb to Short Literal with Carry).............. 108
ADDC (Add Wb to Ws with Carry)cccceeeeveerineens 110
AND (AND fand WREG).........ccocvreeveninieeenieeeenns
AND (AND Literal and Wn)

AND (AND Wb and Short Literal)cccccecvrreennnee. 114
AND (AND Wb and WS)cccccveverineeninieeeneeeens 115
ASR (Arithmetic Shift Right by Short Literal) 121
ASR (Arithmetic Shift Right by WNs)cccccooieene 122
ASR (Arithmetic Shift Right f) ..o, 117
ASR (Arithmetic Shift Right WS)cccccevvviveeiiinne 119

© 2005-2011 Microchip Technology Inc.

DS70157F-page 497

16-bit MCU and DSC Programmer’s Reference Manual

BCLR (Bit Clear in WS)ccceeviieeiiiieeiiie e 124
BCLR.B (Bit Clear f)......ccceviieiriinineieceee e 123
BRA (Branch Unconditionally)cccccceeviriernennne. 126

BRA (Computed Branch)
BRA C (Branch if Carry)......
BRA GE (Branch if Signed Greater Than or Equal).. 132
BRA GEU (Branch if Unsigned Greater Than

[ol 8 =0 U= 1) S
BRA GT (Branch if Signed Greater Than) .
BRA GTU (Branch if Unsigned Greater Than).......... 136
BRA LE (Branch if Signed Less Than or Equal) 137
BRA LEU (Branch if Unsigned Less Than or Equal). 138
BRA LT (Branch if Signed Less Than)...................... 139
BRA LTU (Branch if Not Carry).........ccceeuuee. ..142
BRA LTU (Branch if Unsigned Less Than) 140
BRA N (Branch if Negative)ccccccceeviiveesvenesnnnn.
BRA NN (Branch if Not Negative) .
BRA NOV (Branch if Not Overflow)cccccceeennen.
BRA NZ (Branch if Not Zero)cccccceeveeiicieenncnnnn.
BRA OA (Branch if Overflow Accumulator A) ..
BRA OB (Branch if Overflow Accumulator B) ..
BRA OV (Branch if Overflow)..........cccccoeceeennnes
BRA SA (Branch if Saturation Accumulator A)
BRA SB (Branch if Saturation Accumulator B)
BRA Z (Branch if Zero) .
BSET (Bit St f)...cciriieirieeieieeee e
BSET (Bit Setin WS).....cocvoiiiiieniiniceeenie e
BSW (Bit Write in Ws)...
BTG (Bit Toggle f).....
BTG (Bit Toggle in Ws)
BTSC (Bit Test f, Skip if Clear)ccccceeveereerncnnne.
BTSC (Bit Test Ws, Skip if Clear)ccoeevvvrennnen.
BTSS (Bit Test f, Skip if Set) .
BTSS (Bit Test Ws, SKip if Set).......cccccoviieiiiinennnen.
BTST (Bit TESET) ovveeiiieiiierieiieeseee e
BTST (Bit Test in Ws) ...
BTSTS (Bit TeSt/Set)cooveeiiiiiiiieeieeeiee e
BTSTS (Bit Test/Set in WS)cccoecieriiiieniieeeiennn
CALL (Call Indirect Subrouting)ccoceueenne
CALL (Call Subrouting)ccceevvveesicvreeiinnens
CALL.L (Call Indirect Subroutine Long)c.c......
CBSLT (Signed Compare Wb with Wn, Branch if

Less Than)cccevveeiiiiiiiiicc e 205
CLR (Clear Accumulator, Prefetch Operands). .
CLR (Clear f of WREG)ccccuvveiiieeniieeeiieeene ..184
CLR (Clear Wd)ccoevevveninreens ..185
CLRWDT (Clear Watchdog Timer)cccoccevvvveeunene 188
COM (Complement f).....ccueeicie e vee e
COM (Complement Ws) .
CP (Compare f with WREG, Set Status Flags)......... 191
CP (Compare Wb with lit5, Set Status Flags) 192
CP (Compare Wb with lit8, Set Status Flags) ..
CP (Compare Wb with Ws, Set Status Flags)
CPO (Compare f with 0x0, Set Status Flags)
CPO (Compare Ws with 0x0, Set Status Flags) 197
CPB (Compare f with WREG using Borrow,

Set Status Flags)ooovvveeriiieiiiieeeiee e 198
CPB (Compare Wb with lit5 using Borrow,

Set Status Flags)ccccovvvveveevieniieneennne 199, 200
CPB (Compare Ws with Wb using Borrow,

Set Status Flags)ooovvveeriiieiiiieeeee e 201

CPBEQ (Compare Wb with Wn, Branch if Equal)..... 203
CPBGT (Signed Compare Wb with Wn, Branch if

Greater Than)coccveeeiiiee e see e 204
CPBNE (Signed Compare Wb with Wn, Branch if Not
EQUAID. ..o 206

CPSEQ (Compare Wb with Wn, Skip if Equal) . 207, 208

CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than)cccceeiviieiiiieenieeeees 210
CPSGT (Signed Compare Wb with Wn, Skip if Greater

THAN) o 211
CPSLT (Signed Compare Wb with Wn,

Skip if Less Than)......ccoccceeiieriiiiiiiieeee 212,213

CPSNE (Signed Compare Wb with Wn,

Skip if Not Equal)......ccoeeveeiiieeiiiieeciieens
DAW.B (Decimal Adjust Wn)
DEC (Decrement f)c.eeeeieiiiiieeiniiie e
DEC (Decrement WS)ccoevveiieeniiiiieneenreesieenns
DEC2 (Decrement f by 2) ...
DEC2 (Decrement Ws by 2)

DISI (Disable Interrupts Temporarily) 223
DIV.S (Signed Integer Divide)..........cccovverviniiennennns 224
DIV.U (Unsigned Integer Divide)cccccvvevevveenrnnnnn. 226
DIVF (Fractional Divide)

DO (Initialize Hardware Loop Literal)................ 230, 233
DO (Initialize Hardware Loop Wn)..........cc.c..... 235, 237
ED (Euclidean Distance, No Accumulate) 239

EDAC (Euclidean Distance)............cccceee... ... 241
EXCH (Exchange Wns and Wnd)........ ... 243
FBCL (Find First Bit Change from Left) 244
FF1L (Find First One from Left)ccocvevivveviieeneenn.

FF1R (Find First One from Right)

GOTO (Unconditional Indirect Jump) 251, 252
GOTO (Unconditional Jump)ccoveevveeneereenneene 250
GOTO.L (Unconditional Indirect Jump Long) 253

INC (Increment f)cooveeiiiieeeee e
INC (Increment Ws)...
INC2 (Increment f By 2)cccvveieiiiniieiieeeeees
INC2 (Increment WS by 2)ccccvveiiieeeiiieeiiie e
IOR (Inclusive OR f and WREG)
IOR (Inclusive OR Literal and Wn)cccccovveernineen. 261

IOR (Inclusive OR Wb and Short Literal).................. 262
IOR (Inclusive OR Wb and Ws)............ ... 263

LAC (Load Accumulator) 265
LNK (Allocate Stack Frame)cccceeeee. ... 267, 268

LSR (Logical Shift Right by Short Literal) 273
LSR (Logical Shift Right by WnSs)ccccveevveeennneen. 274
LSR (Logical Shift Right f)

LSR (Logical Shift Right WS)coccveiiiiiiiieeeee. 271
MAC (Multiply and Accumulate)cccceeverrincneennn 275
MAC (Square and Accumulate)..... 277
MOV (Move 16-bit Literal to Wn) ... 284
MOV (Move f to Destination) 279
MOV (Move fto WNd)coceenieiiiiiiiiieie e 281
MOV (Move Wns to [Wd with offset])..........cccceeenee.. 286
MOV (Move Wns to f)

MOV (Move WREG tO f) ...coeveriiiiiiiicieccsieeeee 280
MOV (Move WS t0 WA).....cccvriieniiiiieiiecieeiee e 287
MOV (Move Ws with offset to Wnd).. ... 285
MOV.B (Move 8-bit Literal to Wnd)... ... 283
MOV.D (Double-Word Move from Source to Wnd)... 289
MOVPAG (Move Literal to Page Register) 291
MOVPAG (Move Ws to Page Register)........c.c......... 292

MOVSAC (Prefetch Operands and

Store ACCUMUIALON)ouveeeiiiieeiiie e
MPY (Multiply Wm by Wn to Accumulator)...............
MPY (Square to Accumulator)cccceeveuveennns
MPY.N (Multiply -Wm by Wn to Accumulator)..
MSC (Multiply and Subtract from Accumulator)
MUL (Integer Unsigned Multiply f and WREG).........
MUL.SS (Integer 16x16-bit Signed Multiply with

Accumulator Destination)cccoceeeriveeeninnen. 307
MUL.SS (Integer 16x16-bit Signed Multiply)............. 305

DS70157F-page 498

© 2005-2011 Microchip Technology Inc.

MUL.SU (Integer 16x16-bit Signed-Unsigned
Multiply with Accumulator Destination)............. 312
MUL.SU (Integer 16x16-bit Signed-Unsigned Multiply)310
MUL.SU (Integer 16x16-bit Signed-Unsigned Short
Literal Multiply with Accumulator Destination) .. 314
MUL.SU (Integer 16x16-bit Signed-Unsigned

Short Literal MUItiply)ccoooviriiiiiiniiniceene 308
MUL.US (Integer 16x16-bit Signed-Unsigned

Multiply with Accumulator Destination)............. 317
MUL.US (Integer 16x16-bit Unsigned-Signed

MUIIPIY) oo 315

MUL.UU (Integer 16x16-bit Unsigned Multiply /rwith Accu-
mulator Destination)...........ccoocveeeiieieiieesineene
MUL.UU (Integer 16x16-bit Unsigned Multiply)
MUL.UU (Integer 16x16-bit Unsigned Short Literal

Multiply with Accumulator Destination).............. 323
MUL.UU (Integer 16x16-bit Unsigned

Short Literal MUltiply)ccoeeiiiiiiiiieiieeeee. 319
MULW.SS (Integer 16x16-bit Signed Multiply

with 16-bit ReSUIL)ccvvvveiiiieciee e 324
MULW.SU (Integer 16x16-bit Signed-Unsigned

Multiply with 16-bit Result)............cccceieeiiineenn. 326
MULW.SU (Integer 16x16-bit Signed-Unsigned

Short Literal Multiply with 16-bit Result) 328
MULW.US (Integer 16x16-bit Unsigned-Signed

Multiply with 16-bit Result)............ccccoeveiiineenn. 329
MULW.UU (Integer 16x16-bit Unsigned Multiply

with 16-bit ReSUIL)ccoovvveiiieieee e 331

MULW.UU (Integer 16x16-bit Unsigned Short
Literal Multiply

With 16-bit RESUIL) ...c..oiveeiiiiiicecece 332
NEG (Negate AcCumulator)ccccccvveevveeenveeesineneens 335
NEG (Negate f)
NEG (Negate WS)cooueiiiiieiiee e 333
NOP (NO Operation)ccceerveereeenieeneeireeneenneeens 336
NOPR (No Operation).... ..336
POP (Pop TOS to f) 337
POP (POP TOS tO W)oovvieieeeeeeeeeseee s 338
POP.D (Double Pop TOS to Wnd/

WNAFL) i 339

POP.S (Pop Shadow Registers).
PUSH (Push ft0 TOS)cccoioeeiinienieiiiienec e
PUSH (Push WS t0 TOS).....cooviiiiiiiiiiieic e
PUSH.D (Double Push Wns/

WNS+1 10 TOS) ..viiiiiiiiiiee e 343
PUSH.S (Push Shadow Registers)....... ... 345
PWRSAYV (Enter Power Saving Mode) 346
RCALL (Computed Relative Call) 351, 353
RCALL (Relative Call)........cccceviveeiniieeiiiienee. 347, 349

REPEAT (Repeat Next Instruction 'lit14 + 1’ Times). 355
REPEAT (Repeat Next Instruction 'lit15 + 1’ Times). 357
REPEAT (Repeat Next Instruction Wn + 1 Times)359, 361
RESET (RESEL) ..c.vvovviiieiieiiesieeiesieere e 363
RETFIE (Return from Interrupt) 365, 366
RETLW (Return with Literal in Wn)................... 367, 369
RETURN (REtUM)cccvviveeiieeciiee e

RLC (Rotate Left f through Carry)

RLC (Rotate Left Ws through Carry)........ccccceeeeuvenn. 375
RLNC (Rotate Left f without Carry)..........ccccecuvrneenne 377
RLNC (Rotate Left Ws without Carry)... ..379
RRC (Rotate Right f through Carry)...... ..381
RRC (Rotate Right Ws through Carry).. ... 383
RRNC (Rotate Right f without Carry)..........c.ccceceeenee. 385
RRNC (Rotate Right Ws without Carry).................... 387
SAC (Store Accumulator)

SAC.R (Store Rounded Accumulator)ccceeeeee. 391
SE (SigN-EXtend WS)coooiiiiiiiiinienieniceeeeee 393

SETM (Set f of WREG) w...covvveeereeeeeseeeeseees e, 395
SETM (SEEWS) ..o 396
SFTAC (Arithmetic Shift Accumulator by SIit5) 397
SFTAC (Arithmetic Shift Accumulator by Wb) 398

SL (Shift Left by Short Literal)
SL (Shift Left by Wns)...............
SL (Shift Left f)...eeeriiieiiiieiccec
SL (Shift LEft WS) ..o
SUB (Subtract Accumulators)
SUB (Subtract Literal from Wn)cccoociieiiienennnnn. 406
SUB (Subtract Short Literal from Wb)cccceeeeee 407
SUB (Subtract WREG from f)
SUB (Subtract Ws from Wb).....
SUBB (Subtract Short Literal from Wb with Borrow) 413

SUBB (Subtract Wn from Literal with Borrow)........... 412
SUBB (Subtract WREG and Carry bit from f) 411
SUBB (Subtract Ws from Wb with Borrow) 415
SUBBR (Subtract f from WREG with Borrow) 417
SUBBR (Subtract Wb from Short Literal

With BOITOW)...eeoievieeciiieeiie e 418
SUBBR (Subtract Wb from Ws with Borrow)............ 420

SUBR (Subtract f from WREG)cccccueenee
SUBR (Subtract Wb from Short Literal)
SUBR (Subtract Wb from WS)cccceevveevcieeeinnen.
SWAP (Byte or Nibble Swap Wn)
TBLRDH (Table Read High)ccccooiiiiiiieniiiies
TBLRDL (Table Read LOW)c.ccceeieeiiciiicnicnnene
TBLWTH (Table Write High).....
TBLWTL (Table Write Low)......
ULNK (De-allocate Stack Frame)....
XOR (Exclusive OR fand WREG).........c.cccceervvrneene
XOR (Exclusive OR Literal and Wn)........ccccceeevveennnes
XOR (Exclusive OR Wb and Short Literal)
XOR (Exclusive OR Wb and WS)ccoocvveiiiinennns
ZE (Zero-Extend WN)ccocveiieniienieniciiee e

Instruction Encoding Field Descriptors Introduction 94

INStruction Set OVEIVIEW.......c.cccoviiiiiiiieiiiniceeeee e 38
Bit INStrUCLIONS ... 45
Compare/SKip INStructionsccoceeiiiieiniiee e 46
Control INSrUCHIONS.........ceeiiiiiieiiee e 49
DSP Instructions
dsPIC30F/33F Instruction Groupsccccveeeniveeenunne. 38
LOQIC INSIIUCHIONSeeiiiieiiiie ettt 43
Math INSLIUCHIONScveeiiiiiiiiec e 41

MOVE INSLIUCLIONSeecivieeeiiieecieee e seee e 40
Program FIOwW INStrUCtioNScccceveriiienniiieniieeees 47
Rotate/Shift INStructionsccccccoecvvieeeeeiiiiiieeeees 44

© 2005-2011 Microchip Technology Inc.

DS70157F-page 499

16-bit MCU and DSC Programmer’s Reference Manual

SIELO oo 8
SIELE oo 8

[DIO7] 2= =] =N B o To] o 1T 63
EXCEPLIONS ..o 63
Instructions that Change Program Flow...................... 63
PSSV s 63
RAW Dependency Detectionccccuveevvveeeiiveeeiennnnn 62
INSEruction SYMDBOIS........eeiiiiiieiiiieecece e 94

Integer 16x16-bit Signed-Unsigned Short Literal Multiply . 328
Integer 16x16-bit Unsigned Short Literal Multiply

With 16-bit RESUILoooiiiiiiie e 332
Integer and Fractional Data...........cccceeeievveeiiieeeiieeesieeens 81
Representation..............

Interrupt Priority Level

M

MAC
OPEIALIONSeeieiiieeeiiee ettt 85
Prefetch Register Updates.........cccooveeeiiiieeiiieeiiieene 85
PrefetChes ... 84
153 11 €= PSR 85
WIHEE BACK.....uuviieeiiiiiiiee et 85

MAC Accumulator Write Back Selection...............cccvveeenen. 97

MAC or MPY Source Operands (Different Working Register)97
MAC or MPY Source Operands (Same Working Register). 97

Manual ODJECHIVEcoeiiiiiiiiieeiiee e
Modulo and Bit-Reversed Addressing Modes
MOPAG Destination Selection.......................
Multi-Cycle INStrUCIONScocviiiiiie e
Multi-Word INStrUCHIONScccvviiiieiierieereeeee e
N
Normalizing the Accumulator with the FBCL Instruction..... 90
(o)
Offset Addressing Modes for Wd Destination Register
(with Register OffSet)ccociviieniieniiiiieieccec e 95
Offset Addressing Modes for Ws Source Register
(with Register OffSet)cuvvvviieeriiie e 95
P
PIC® Microcontroller Compatibilityccccoovoeiiiiieeninenn. 79
PRODH
PRODL RegiSter Pair.........ccccceeviviveeiiieesiiee e 79
Program Addressing MOdEes...........covvvieiniieeniiee e 61
Methods of Modifying FIOWccccceeniiiiiinicnicee. 61

Program COUNLETcccuveiiiiieeiiee ettt
Programmer’s Model
Register Descriptions..........ccccoeiveeiiiieen e 18
PSVPAG RegiSter.......c.coiveiiiiiciieccce 19
R
RCOUNT Register20
Register Direct Addressing.... .53
Register Indirect ADdreSsSsing........c.coovveeeriieriiieeesiiee e 54
MOES ... 54
Register Indirect Addressing and the Instruction Set.......... 57
Registers
CORCON (Core Control)c.cccecvvecivenreeirieninenen 32,35
CORCON (Core Control) Register 31,33
SR (CPU Status).......cccoecvveerunnen. .. 26, 29
SR (Status) RegiSter.........cieiiiieiiiieeieee e 27
S
Scaling Data with the FBCL InStructioncccccveveeeennnen. 88
Scaling Examples
Shadow Registers........
Automatic Usage
Software Stack Frame Pointer..........cccccovvieeiiiieiniieene 18, 72
EXAMPI ...
OVEITIOW. ..o
Underflow.............
Software Stack Pointer
Example.......cccoooeviiiiiinicnc. .
Stack Pointer Limit Register (SPLIM)cccceevivveviieeeieenn. 19
StatuS REQISLENeiiiiiie it
DSP ALU Status BitScccceeiiiiieniiiieiiee e
LOOP Status BitS.......ccoiuiieiriiieiiieeeiiie e
MCU ALU Status Bits
Style and Symbol Conventions.... .
Document CONVENLIONScocuieiuieririeirieniienreere e
T
TBLPAG REQISIET ...ttt 19
U
Using 10-bit Literal Operands
10-bit Literal Coding........cccveevveriiireeiiiee e see e
w
Word Move OperationsS........cccueevuveeriveessieeesiieeesnenessieeenns
Data Alignment in Memory .
WOrking RegISter AITAYcuveeiueeeriireesiieeesieeesnieaesnneeaenns
X
X Data Space Prefetch Destinationccccoevveeeiiieenns 96
X Data Space Prefetch Operationcccccocccvevvveeiiieeenns 96
Y
Y Data Space Prefetch Destinationccccoevveeiiiieenns 97
Y Data Space Prefetch Operationcccoccveevieeiiineenns 96
Z
Z SEAtUS Bt ...coeviiiieiiciccc e 77

DS70157F-page 500

© 2005-2011 Microchip Technology Inc.

NOTES:

© 2005-2011 Microchip Technology Inc. DS70157F-page 501

MICROCHIP

Worldwide Sales and Service

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIAIPACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

05/02/11

© 2005-2011 Microchip Technology Inc.

DS70157F-page 502

