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ABSTRACT

This repont summarizes the results of an evaluation of a variety of advanced
low-thrust propulsion ogﬂons for the cargo-delivery portion of a split-mission piloted Mars
exploration scenario. The propuision options considered were solar sails, 100-MWg class
nuclear electric propulsion (NEP), 100-MWg class solar electric propulsion (SEP),
magnetic sails (magsails), mass drivers, rail guns, solar thermal! rockets, beamed-energy
(laser and microwave) propulsion systems, and tethers. The requirement was to transport
400 metric tons (MT) of cargo from a 500-km altitude low Earth crbit (LEO) to a 6000-km
cltitude Mars orbit (e.g., Phobos' orbit) for the 2014 anorlunilz. The primary figures of
merit used in this study were total initial mass in low Earth orbit (FI.MLE ) and the
Earth-to-Mars trip time.

The baseline propulsion system, against which the advanced propulsion concepts
were compared, was an aerobraked chemical (O2/H2) propulsion system with a specific
impulse (lgp) of 470 lbf-s/lbm. This system had an initial total mass in LEQ of 1645 MT
(including pgytaad) and had an Earth-to-Mars trip time of 294 days. It was found that solar
sails can provide the greatest mass savings over the baseline chemical system.
However, solar sails suffer from having very long trip times. A good performance
compromisa between a low IMLEO and a short lril? time can be obtained by using
100-MWg class NEP systems; they can even be lighter and faster overall than the
baseline chemical system. Such systems may be particularly suited to the 'gﬂloted portion
of the mission, where a premium is placed on trip time. A 100-MWg SEP system is a
close competitor to the NEP system, providing almost as good a performance, but without
the technological, operational, or "political™ constraints of space nuclear power.

Magsail, mass driver, beamed-energy, and tether concepts were fourid to have
moderate benefits in mass or trip time, but their performance is contingent on several
factors which could reduce their effectiveness. For example, the magsail concept, like the
solar sail, has infinite specific impulse. However, magsails can only operate far from a
planet; this imposes a large infrastruciure overhead since a flest of orbit transfer vehicles
(OTV) are required to transport the magsails and their payloads from LEO to the magsail
operational orbit. Mass drivers have a low lgp for the Mars cargo mission but they do
have a high efficiency (electric-to-jet power). ﬁay also can make use of any material as
propellant. Thus, if copious amounts of "free" lunar O2 propellant were available, a mass
driver operating at modest power levels (10 MWy or lessE could show a mass savings
over the baseline system, arnd do so for trip times on the r of 500 days. However, this
is contingent on the availabili'y of "free” lunar propellant; without this "free" propellant, the
mass driver is not competitive, Beamed-energy concepts were found to provide some
benefits in mass when used as OTVs to deploy the gaylogd with a chemical Oa/H2 stage
for Earth escape and aerocapture and Mars) at GEO altitudes. A laser-augmented SEP
vehicle used for the round trip to Mars also provides significant trip time savings over an
un-augmented SEP system, since the laser provides a rapid Earth escape/capture.
However, all the beamad-energy concepts suffer from the limited range over which power
can be beamed (e.g., microwaves to GEO or near-visible light to the Moon). Even the
laser-augmented SEP system, which revents to a normal solar powered SEP far from the
Earth, requires very high-powered lasers (10-MW beam cor more) to provide any
significant trip time savings. Also, the space-based infrastructure (laser/microwave power
stations, orhital relay mirrors) required to support beamed-energy transmission would
need to be "amortized” over many users. Lastly, tether systers show only a small
advantage in IMLEO over the baseline system. This is due primarily to the need to break
up the 400 MT payload into twenty 20-MT segments, each with its own chemical OE'Eng
stage for tether-assisted Earth escape and Mars capture. Also, there is a significant :
Deimos, and Phobos tether station set-up mass investment which must be "amortized”
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over many missions. Howevaer, tethers may have 3reatar benefits for the piloted portion of
the mission. For example, tethers can be used to lower {de-orbit) landers and raise
ascent vehicles. Also, a tether station on Deimos can provide a vehicle returning to Earth
with Mars' ?scape velocity, thereby greatly reducing the trans-Earth injection propulsion
requirements,

Two concepts were found to have very poor performance for the Mars cargo
mission scenario assumed in this study. These were solar thermal propuision and rail
guns. Solar thermal propulsion suffers from having too low an lgn (12 s/ibm) for this
mission. Rail guns suffer from both a low lgp, and a low efficlericy (efectric-tc-jet power);
they require high powers (50 MWp) for opllnﬁ:m performance and can only show a mass
savings over the baseline chemical system if copious amounts of "free” lunar oxygen are
available as propeliant in LEQ.

Based on the results of this study, solar sails, 100-MWg class NEP systems, and
100-MWg class SEP systems should be considered in detail for aﬁpllcation to the Mars
cargo mission. Further, 100-MWg class NEP and SEP systems should be evaiuated in
detail for the piloted portion of future Mars missions since they have the potential for
significant savings in both IMLEO and trip time as compared 10 the baseline chemical
systems. Similarly, tethers should be svaluated for the piloted portion of the Mars mission
since they may provide major savings in mass for the Mars-to-Earth portion of the trip.
Magsails, mass drivers, and beamed-energy concepts should also be considered for the
Mars cargo mission, aithough their performance will depend an a number of factors {e.g.,
"amortization” of a space-based laser for laser propuision vehicles).

Finally, it should be noted that the conclusions reached in this study are highly
mission-scenario dependent. Thus, a concept that has no benefit for the Mars cargo
mission scenario assumed in this study may show significant benefits for the piloted
mission, Similarly, concepts that are not attractive for Mars missions may provide major
benefits when used for cis-lunar missions (e.g., LEO-to-GED OTVs or lunar base
missions). Also, different thrusting or trajectory strategies (e.F.. low-thrust spiral planetary
escape or capture, as used in this study, versus multiple-impulse medium-thrust
trajectories) may have a significant impact on performance. Furthermore, in this study, the
concepts were used in a “pure” Mars cargo mission mode with a minimum of mixing of
modes. For example, only the beamed-energy concepts were used in a LEO-to-GEO OTV
mode due to the limitations in transmission distances. Future studies should consider the
option of "mixed” mission modes of og\elration; such as, for example, the use of an
advanced concept for a LEQ-to-GEO OTV-type transfer followed by irans-Mars injection
by a second system. This may be a particularly attractive approach, since a number of
previous studies have shown that systems with Igns of 1000 to 1500 Ibg-5/lby, (e.g., mass
drivers, rail guns, solar thermal propulsion, laser/microwave thermal propulsion) can
provide major savings in IMLEO as compared to chemical systems, and savings in trip
time as compared to high-| p electric propulsion systems at comparable power levels.
Finally, the same advanceé' propulsion concepts considered in this study for the Mars
cargo mission should aiso be evaluated for the lunar base cargo mission, again with
lMLgEO and trip time as the primary figures of merit.

i
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SECTION 1
INTRODUCTION

There are a wide variety ¢f advanced propulsion conce&ts which hold the potential
for significantly reducing the initial mass in Earth orbit (IMLEQ) or reducing the trip
time required for missions to support future NASA piloted missions to Mars, The overall
objective of this study was to evaluate the benefits (in terms of reduced IMLEO and trip
time) of the use of several advanced low-thrust propulsion concepts for the cargo mission
portion of a split piloted Mars mission in the year 2014. The concepts evaluated in this
study include those that derive their power from sunliqg or laser light, as well as thase
that use electric power from a nuclear reactor or solar photovoltaic cells.

1.1 CONCEPTS EVALUATED

Concepts and mission scenarios evaluated in this study are summarized in Figures
1-1 and 1-2. Those concepts which use sunlight directly include the solar sail, which uses
momentum exchange from solar photons to "push”™ & gossamer sail, and the solar thermal
rocket, which focuses sunlight into a thrust chamber to heat a propellant working fluid like
hydrogen, which Is then expelled through a convantional nozzle. A concept related to the
solar sail is the magnetic sail (mag sail), which uses a magnetic interaction with the
charged particles in the solar wind to “"push" the "sail® {actually a superconducting
solenoid magnet ring).

Two concepts which directly use beamed energy (e.g., laser light) from a remote
beam source are the laser thermal rocket and the microwave thermal rocket. The laser
thermal rocket is simitar to the solar thermal rocket except that near-visible laser light from
a remote laser transmitter (ground or space-based) is used instead of sunfight. Two types
of microwave thermal rocket concepts are possible. The first is the analog of the laser
thermai rocket in that microwave radiation is absorbed by the propellant and used to heat
the propellant. By contrast, the electron-cyclotron resonance (ECR) microwave thruster
concept uses a microwave beam 1o directly excite a propellant and expel it; the propeliam
is in fact not just heated thermally but rather is excited electromagnstically by coupling to
the energy in the microwave beam. The ECR thruster concept is the one selected in this
study for use with the microwave ‘thermai” propulsion system

The laser or microwave radiation can also be used indirectly to er an electric
thruster (e.g., ion thruster ) by first converting the incoming photons to electricity by either
"solar" photovoltaic cells (near-visible wavelength) or by a rectenna (microwave
wavelength); these concepts represent electric propulsion vehicles with a potentially
light-weight Power supply (receiver) on the vehicle because the actual power supply
{transmitter) is remotely located on the ground or in low Earth orbit (LEO).

A second general category of concepts are those which use a nuclear or solar
electric power supply to operate electric propulsion thrusters. These include 100-MW
class Nuclear Eleciric Propulsion {NEP) and Solar Electric Propulsion (SEP), as well as
megawatt-class rail guns and mass drivers. In the rail gun and mass driver, the propellant
is in the form of "pellets” which are accelerated electromagnetically in a "bucket” and shot
out from the vehicle to provide thrust. Rail guns and mass drivers can use any material as
the "pellet” mass and thus could use extraterrestrial materials as a proceilant source, thus
reducing the reguired IMLEO.

1-1
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Figure 1-1. Advanced Propulsicn Concepts Evaluated in This Study
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EARTH ESCAPE CAPTURE,
(LEP USED THEN LEP

AS SEP) TO LEO
Figure 1-2. Mission Scenarios
A final, non-propuisive concept is the use of tethers for orbit raising and lowering in

Earth and Mars orbit, respectively. The use of tethers can significantly reduce the
requirement of the using long cables to reel the spacecraft in or out of the
deep gravity well of a planet ana thus raise ar lower orbits.

1.2 TRADE STUDIES

As mentioned above, the primary figures-of-merit used in evaluating concepts for
this study were the initial mass in LEO and trip time required for the Mars cargo mission.
The primary focus is on total system mass, including the smpty or "dry" vehicle weights,
propeliant, and pa¥load (400 MT total to Mars/Phobos orbit). Also included in the total
mass is the weight of any supporting infrastructure. This infrastructure can take many
forms, depending on the concept and mission scenario. For example, several of the
concepts cannot operate directly from LEO, but instead have some minimum altitude at
which they must operate. Thus, an added fleet of orbit transfer vehicles (OTVs) is required
to boost the system from LEO to the minimum operating altitude; the dry welghi and
propeliant required for the OTV fleet is included in the infrastructure mass requirement.

For trip times, the primary figure-of-merit is the Earth-to-Mars trip time, since the
cargo mission is a one-way delivery. In most cases, however, the vehicles are ie-usable,
so @ Mars-to-Earth trip time is also found. The round-trip time is important it the vehicles
are to be phased properly with subsequent launch opportunities, For example, a system
with a round-trip time of less than the Earth-Mars synodic period (2.2 years) could be used
for the next launch opportunity; longer round-trip times would require skipping one or

1-3
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more opportunities, thus requiring a larger overall cargo venicle fleet for continuous
operations.

. Hmver.intlﬁssludy.itisassmnsdihatmelulls'mtemmustbadep the "first”
time, so all cssociated masses are included and only the Eanh-to-Mars delivery time is

considered in detail. Re-use and "amortization” of vehicles for multiple cargo delivary
cycles should be considered in detail in future studies to identify benefits and penaities
associated with re-use of vehicles for a continuous Mars base operation and growth.
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1.4 ASSUMPTIONS COMMON TO ALL CONGEPTS

Sevaral ground ules and assumptions were established which wers common for
all of the concepts. The first was that the time frame of the mission be the year 2014. The
primary requirement is to transport 400 metric tons (MT) of cargo from a 500-km, 28.5° low
Earth orbit (LEO). This initial starting node was chosen as typical of & space station orbit.
All calculations of IMLEO use this LEO node as a referance poinl. The payload is
delivered via a slow minimum-energy conjunction-class trajectory t0 a 6000-km Mars
orbit. This orbit is taken as the delivery node; it is at the same altitude as Phobos,
glt:m:;gh the need to actually rendezvous and land on Phobos was not considered in

etail.

Several of the concepts described below are large in size; it was assumed that it
would be neither practical nor desirable to have these vehicles dock directly with a space
station or base in LEO or Mars orbil. Instead, a separate chemical stage was added to the
payload to provide a small Delta-V capability lLB(J m/s) for any required rendezvous and
docking of payloads in Earth or Mars orbit. For this purpose, the Orbital Maneuvering
Vehicle (OMV) was used. This vehicle has a "dry” weight ( Mpry ) o{ 4035 kg and a
useable propellant (My) capacity of 4286 kg with an Igp 0f 300 | bm.! The OMV can
provide a 50-m/s Delta-V for paylpads weighing up to 100 MT; for payloads in excess of
100 MT, a "stretched™ OMV was used with the following scaling equation:

Mpry OMV = 3136.1 +0.20972 + M [all masses in kg]

Also, the OMV has a 463 W electric power system composed of solar cells and
batteries (for shadow periods). Even though sunlight intensity at Mars is less than half
that at Earth, the amount of time spent in sunlight and shadow in a 6000-km altitude Mars
&rbil is such that the OMV power system can provide aboutl 66 % of its rated power at

ars.

In addition, structural or docking adapters were added to the payloads, thus
increasing the "effective” payload weight. This is illustrated in Fig. 1-3 for the case of the
OMV. Note that some of the concepts and mission scenarios require aerobraking of the
payload into Mars orbit; this is performed by an O2/Hg stage with an lgy of 470 ib-s/lbm
and an aerobrake mass corrasponding to 15 % of the vehicle (stagg. propellant, and
payload) mass at the start of the asromansuver,

Another study ground-rule was that the total 400 MT gayinad could be split into
smaller units, such the smailest unit was 20 MT, Thus, it is possible to see the effect
on IMLEO and irip time by incret sing the number of vehicles, but decreasing the payload
per vehicle (and thus mass per vehicle), e.g. one vehicle {with a 400 MT Faylo:ng; two
vga?écnlﬁ' flyin ;télparallel (each with 200 MT payload), and so on to 20 vehicles (each with
a pay ;

A final study assumption was that only one "new" or advanced concept be used at
a time, For example, an aerobraked Oz/H2 vehicle was used with the tether concept; a
100-kW class solar slectric proEulsion vehicle was used as the OTV for those concepts
that cannot leave directly from LEO (e.g., solar sails). In the context assumed in this study,
aerobraked chemicai or 100-kW s SEP vehicles are considered to represent the
baseline (non-advanced) gropulsion technology available in the year 2014 time frame
assumed for this study. Similarly, in the laser propulsion concepts, the beam pawer is
limited to ranges of 1 to 10 MW since this would require electric power supplies for the
lagers of 10 to 100 MW (electric) assuming a 10% electric-to-laser sfficiency; in this case,
beam powers in excess of 10 MW would require 100-MW class electric power supplies
which would be considered a second "new” technology in addition 10 the laser. One area
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that should be considered in future studies are synergistic combinations of advanced
propulsion concepts {e.g.. tethers and high po SEP vehicles).
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SECTION 2
SOLAR SAILS

2.1 INTRODUCTION

Solar sails operate by using momentum exchange with solar photons; this amounts
to a force of 3 Newtons/km< at 1 AU. As such, a soiar sail has "infinite” spacific impulss,
because it requires no pcr:rellant. but it has a low acceleration resulting in long trip times.
Also, solar sails are typically large. gossamer s:ré:ctures with dimensions of kilometers; for
example, a typical solar sail has an area of 4 km<.

Soiar sails were first extensively studied in the late 1970's for the Halley Comet
rendezvous mission.! At that time, there was an extensive analyses made of solar sail
fabrication techniques (thin silvered sheets and light-weight booms), control and
dynamics, and trajectory analysis. The study found that solar sails were eminently
feasible from a technology and mission performance point of view, but the development
risk was considered too high for the short time available before launch. Instead, Solar
Electﬁqntl:ropuisian (SEP) was considered less risky ‘given the mission's schedule
consfraints.

Although the Halley Comet mission was not pursued by the United States, interest
in solar sails for a variety of lunar and Mars cargo missions, as well as planetary mission,
has continued because solar sails represent the most fuel efficient possible inter-orbital
"superianker” in space. Solar sails have been extensively studied in the past_for Mars
cargo missions; much of the discussions below are derived from these studies.2,3

Figure 2-1 illustrates two solar sail concepts. The first is the classi¢ square sail
consisting of a thin (few mills) sheet of silvered or aluminized plastic stretched over a
supporting light-weight boom, Small “fly swatter" vanes are located at the comers of the
sail; they have a ccmbined area of 0.5% of the total sail area agd are rotated to produce
differential light pressure for use in maneuvering the sail.~® The sail can also be
maneuvered by shifting the payload so that the center of mass is offset from the center of
(light) pressure. The second type of sail illustrated in Fig, 2-1 is the heliogyro solar sail. In
this concept, the sail is spun like a helicopter blade; the sail matarial is unrolled and
stabilized by centrifugal force. Maneuvering is accomplished by changing the “pitch” of
the blades. The heliogyro sail is easier to deploy than the square sail; has a greater
stability from random disturbances (due tq its rotational inertia), but has a slower
maneuvering rate due to the rotational inertia.1 Thus, the two types of sails have different
strengths and weaknesses, although the square sail, with its faster maneuvering (turning)
response, might be favored for missions involving extensive planetary escape and
c?gt;xra spiral orbits (because the sail has to re-orient itself ralative to the sun on each
orbit).

Currently, there is no NASA-funded work on solar sails, anhougg a private
organization, the World Space Foundation, has built a prototype sail (880 m< area) as a
demonstration of the required on-orbit deployment and maneuvering capability. The
group is awaiting a launch vehicle to place the sail in a high-altitude orbit, because a sail
cannot operate below an altitude 21 about 2000 km due to air drag would exceeding
photon pressure at a lower aititude.
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acceleration). Areal density, in turn, is determined by uoth the thickness of the sail
sheeting and the sugortlng structure. For example, in the Halley CQmet mission and
more recently in studies hy Staehlo on sails for Mars cargo missions, daplgyable 2sails
were assumed with a fotal areal density (sail sheet plus structure) of 5 g/ms. A
deployaule sail requires relatively thick sail sheet (e.g., 2.5-micron thick on) to survive
folding (on the ground) and packing intg a launch yehicle, followed by unfolding
(deployment) on orbit. By contrast, Garve% and Drexier® have considered sails erected
or constructed (fabricated) on orbit; hecause these sails do not need to be
folded/unfolded, the sheet can be much thinner (e.g., 0.015 to 0.2-microns thick). This
results ip sails which are erected or ial%ficated on-orbit with areal densities ranging from
1.0 g/ (Garveg) to less than 0.3 g/m (Drexlerk Thus, a Garvey- or Drexler-type sail
could have significantly higher acceleration, and thus shorter trip time, than a deployable
Staehie-type sail. For a given area, the Staehle sail would also be significantly heavier
(?raater LEO). However, this must be balanced against the infrastructure requirement
of a sail erecti:?nifabrication facility in orbit. This facility would basically be a separate
spal,ce station,” whose mass would have to be included in the IMLEO for the advanced
sails.
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SECTION 3
100-MW CLASS SOLAR ELECTRIC PROPULSION

3.1 iNTRODUCTION

A Solar Electric Propulsion (SEP) system, as shown in Fig. 3-1, consists of a solar
photovoltaic power supply, a power precessor unit (PPU) which converts the solar array
power output to the form required by the thrusiers, and the electric thrusters. In this study,
a 100-MW class SEP system was analyzed. A similar-sized Nuclear Electric Propulsion
(NEP) system is described in the next Section.

Previous studiss! have shown significant benefits for the Mars cargo mission
utilizing NEP systems with a total (power and propulsion} specific mass of 10 W, an
lgp of 5000 lby-s/lbm, and a power level of 1 to 10 MW elactric (4 MW typical). This SEP
sslﬂdy (and the NEP study described in the next Section) was aimed at investigating
ultra-high power SEP (and NEP).

PAYLOAD s
# jhess ! iR :::é
£ =
ok :ﬂ:rE "
|  PROPULSION i e
MODULE i e EE:
SOLAR ARRAYS SOLAR ARRAYS
“BUS" POWER
POWER —> ELECTRIC PROCESSING
SYSTEM POWER UNIT
(P ) ( PPU )
JET Nrvruster MNeey
POWER K THRUSTER
(Pyer)

Figure 3-1. Solar Electric Propulsion (SEP) Concept
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Note that in discussing SEP (and NEP) concepts, it is the "bus" efectric power (Pg)
that is quoted; this is the (average) pewer autput from the solar armays (or nuclear rlaac:toﬂ‘i
As shown in Fig. 3-1, the "bus® electric powaer is then fed to the power processor un
(PPU) and from there to the thruster. There are losses and inetficiencies in the PPU and
thrusters, such that the propulsion or et powaer (P jg¢) is typically 50 to 80 % of the input
*bus” elactric pawer.

From an operaticnal point of view, a SEP vehicle has an advantage over a NEP
vehicle in that the SEP vehicle can opsrate from LEQ; by contrast, a NEP has a minimum
operational altitude of about 1000 km to ensure that no radioactive components entar the

arth’s biosphere in case of catastrophic fallure of the NEP vehicle. However, the SEP
vehicle suffers from shadowing in Earth or Mars orbit, resulting in a longer trip time than a
NEP vehicle which has a continuous power source. éimilaﬂy. power output the solar
arra§ drops off as the vehicla moves away from the sun. However, the efficiency
(sunlight-to-electricity) of the solar array increases with dacroasin9 tgr?eratum. Thus,
the power output from a solar array drops off mora siowly than a 1/R< distance from the
sun, as shown in Fig. 3-2.
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Figure 3-2. Solar Photovoltaic Array Power Qutput vs, Distanca from the Sun
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SECTION 4
100-MW CLASS NUCLEAR ELECTRIC PROPULSION

4.1 INTRODUCTION

A Nuclear Electric Propulsion (NEP) system consists of a nuclear reactor and a
thermal-to-electric conversion system, as well as a power processor unit (PPU) and
electric thrusters. Unlike solar photovoltaic arrays, which scale approximately linearly
with power level (i.e., a roughly constant specific rnasgls), a nuclear powsr supply has the
ability to make use of significant economies of scale. Thus, whereas a solar photovoltaic
array in a 100-MWg class Solar Electric Propulsion (SEP) vehicle has a specific mass of
3.6 kg/kWg, a simﬂar—puwar nuclear reactor with a high-temperature, Rankine dynamic
power conversion system has a specific mass of on DNSEWQ. Therefore, there is the
potential for significant mass and trip time savings over SEP.

This potential benefit, however, 1s offset by the infrastructure required to base the
NEP at a Nuclear Safe Orbit (NSO) of, typically, 700 to 1000 km altitude. This high
attitude is required to ensure that, in the event of a catastrophic failure, there will be
sufficient on-orbit stay time for any radioactive components to y to safe levels before
re-entering Earth’s biosphere. The actual altitude depends on the ballistic coefficient of
the vehicle (i.e., mass versus drag) and the levels of harmful nuclear isotopes that must
decay to safe levels before air drag causes the vehicle's orbit to decay and re-enter. In
this study, a 1000-km NSO is assumed. Also, it was assumed that a combination of
stand-off distance and (limited) 4-pi steradian shielding would prevent damage to other
vehicles or interference with science experiments (e.g., gamma-ray astronomy) in nearby
orbits. However, these issues need to be addressed in detail in future studies of
100-MWjg, class space nuclear power systems.

One interesting aspect of NEP operation that has been identified in previous
studies is that an NEP vehicle can safely travel once, initially, from low Earth orbit (LEO) to
NSO, because the reactor starts out “cold" (little or no harmtul nuclear isotope invem7}.
As the reactor is operated and the vehicle begins to spiral out to NSO, the rate at which
harmful nuclear isotopes build up is such that, were the system to fail at that point, the
orbital lifetime achieved at that point would exceed the time required for safe of the
harmful isotope inventory that has been produced to that point. Thus, a NEP vehicle can
boost itself the first time to NSO. However, after prolonged operation it cannot return to
LEO for pericds typically given as several hundred years.

A schematic of a 100-MWg class NEP vehicle is shown in Fig. 4-1. The vehicle
configuration is dominated by the radiators required to radiate waste heat from the
thermal-to-electric power conversion system. As will be shown below, the radiators also
raprasent a significant fraction of the vehicle mass. Finally, an Orbit Transfer Vehicle
L TV) infrastructure will be required to transfer payloads and prapeliants to the 1000-km

SO assumed in this study; however, as seen below, this infrastructure represents a
small fraction of the total initial mass in low Earth orbit (IMLEO).
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SECTION 5§
MAGNETIC SAILS (MAGSAILS)

5.1 INTRODUCTION

5.1.1 Background

The magnelic sail, of glagsail. is a novel concept recently introduced by Robart
Zubrin and Dana Andrews.'" literature survey uncovered no pravious description of
such a device. Figure 5-1 shows a conceptual diagram of the | cencept. it consists
of a cable of sugemnduc:ing material, millimeters in diameter, which forms a hoop that is
tens to hu of kilometers in diameter. The current loop craates a magnetic dipole
which diverts the background flow of solar wind. This deflection produces aa&%m on
the magsall radially outward from the sun. In addition, proper orientation of the dipole

produce a lift- which could provide thrust perpendicular to the radial drag-force.
The combination of these forces can be used to transport the magsail and cargo on
interplanetary or interstellar missions.

CURRENT LOOP

ey

\'é'} PAYLOAD

107
A%

)

EACING VIEW SIDE VIEW

SHROUD LINES
(24)

Figure §-1. sail Deployed With Payload, Normal Configuration
- Iuﬁ’t’i:ha;‘steﬂ from ReieroncaeyS) o

5.1.2 Operational and Technical Feasibility Issues

As a relatively new concept, the sail possesses a number of unresolved
operational and technical feasibility issues. Dr. John L. Callas of JPL assisted in the
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definition and evaluation of these feasibility issues,4 which include thermal control,
structures, radiation, superconductor technology, attitude control, deployment,
planetocentric operation, and interaction with the solar wind. Each of these issues is
cescribed in detall below. Sclutions to some of these Iissues may require the application
of advanced technology (e.g., superconductors), others may only require innovative
engineering (e.g., thermal controt).

5.1.2.1 Thermal Control. For the current-carrying cable to remain superconducting, its
temperature must be maintained below the critical temperature of the embedded
superconductor. Preliminary thermal modeling indicates that in addition to passive
reflective coatings, some form of active cooling system will be required to maintain the
magsail cable below 100 K in Earth-Mars space.

if the thermal control scheme is based upon a continuous capability to orient the
sail (i.e., to maintain a "hot side” and a "cold side” with different absorptivity and
emissivi 2 temparature control during deployment and inflation may be difficuit. For
example, it the superconductor is inadvertently or intentionally quenched, attitude control
is lost and the cable may drift from proper orientation, warming it above the
superconductor critical temperature cSTc:). This event could pose a catastrophic failure
moda because attitude control could not be regained until the cable could again be
cooled and powered-up.

5.1.2.2 slmmmgr An initial baseline design discussed by Zubrin and Andrews2
describes a magsail 64 km in diameter, with a cable diameter of approximately 5 mm.
These dimensions suggests that the structure will be susceptible to vibrational motion;
the cable material must be very malleable to surviva this motion without fracture. Current
high-temperature superconductors are like brittle ceramics in terms of their matarial
properties. Whether or not a superconductor material can be manufactured possessing
the prorer resiliency and malleability is an important feasihilnn issue. It may be necessary
to enclose the superconducting cable in a flexible sheath of Keviar {or some other
material like Kevlar which is effactive for tather alearmaﬁons, but is more appropriate for a
low-temperature application than Keviar), io provide flexible tensile support.

5.1.2.3 Radiation, The magnetic field of the magsail may generate local Van Allen-type
radiation belts. These belts may ﬁose asi nlﬂwn% radiatinnghazarcl for payload or crew in
the vicinity of the magsail, though not at the %aomatdc center of the magsail hoop. The
background solar wind and cosmic-ray radiation may also induce long-term cumulative
radiation damage in the superconducting hoop, degrading the superconducting
properties of the material.

5.1.2.4 Superconduyctor Technology, The baseline magsail designs of Zubrin and
Andrews rely upon significant advancements 51 superconductor technology such that the
assumed critical current density of 1 to 2 x1010 Amps/m? must be achieved in bulk form in
high-temperature superconductors. Recent findings® suggest that Tnpa Il
superconductors designed for high-critical-temperature operation (Tg > 77 K) are
susceptible 1o "giant flux creer" (which creates resistance in tha superconductor) in the
presence of a magnetic field. The superconductor characteristics and operatin

environment assumed for current magsail designs describe a demanding combination o
conduction current density, critical temperature, and magnetic flux density. If no solution
is found to the problem of giant flux creep, subsequent reduced superconductor
conduction current density and critical temperature will significartly reduce magsail
periormance.

it is also necessary to design the magsail system to survive a "quench”, in which
the superconducting material loses its ability to conduct current without resistance, A
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quench may be caused by a fise in temperature above the superconductor critical
temperature, or a rise in the magnetic flux density above the critical field of the
superconductor. In addition, there may be situations in which it will be desirable to
significantly reduce or eliminate the current in the superconducting cable (e.g., for
navigation, or to release charged particles trapped in induced radiation belts). Quench
capability could be provided by an extemnal resistor bank.

5.1.2.5 Aftitude Control, One potential attitude control scheme is similar to that proposed
for use on solar sails in which articulated control vanes (separate small superconductor
loops for the magsail) are used to modulate the center of pressure of the sail while the
center of mass remains fixed. A second approach, again proposed for solar sails, would
be to shift the center of mass of the magsail could by mnvi:g part of the payload out along
a shroud line while the center of pressure remains fixed. The diffarence in location
between the center of pressure of the magsail and the center of mass would induce a
torque and small angular acceleration. For example, assuming that 50 MT of payload
could be offset 10 % of the hoop radius, the rasulting torgue could ch the ofientation
of the baseline magsail by 90° in 10 to 12 hours. Several issues arising from this scheme
remain unresolved. Local vafiations in the solar wind density may cause a random
perturbation of the center of pressure which complicates the application of this attitude
control scheme. In addition, the siow response time e.g., 10 fo 12 hours to rotate 90°)
may make it difficult to execute a planetocentric "pumping” orbit-raising maneuver if thrust
vactoring is required.

5.1.2.6 Deployment, The size and electrical current in the superconducting magsail
cable imply signiﬁcarg energy storage. For example, the ene{gy stored in the cable of a
64-km diameter, 10°9 Tesla magsail is approximately 8 x 107V Joules. A continuously
operating 10-kW solar array would require approximately 93 days to energize the cable to
full power. This large energy storage suggaests two potential problems. First, if magsail
deployment and “inflation” require a large amount of time, the magsail may lack attitude
control during this period, which could lead to a subsequent loss of thermal control, as
well as unusual mechanical stresses. Second, it may be difficult to modulate the current
in the magsail cable in the manner required for a "solar-pumping™ maneuver described
below. One possible method for rapid sail deflation would be to redirect part of the cable
electric current to a radiative resistor bank, aithough this may aggravate the difficult
magsail thermal control problem.

5.1.2.7 Planetocentric Operation. Thus far, it is not known if the magsail can be operated
near a planet's magnetosphere. In their analyses, Zubrin and Andrews have constrained
magsail operation to heliocentric space: "For our reference spacecraft, starting in very
high Earth orbit and about to orbit the sun at Earth radius...".2 Clearly, a magsail cannot
be used within a planet's magnetosphera (between the magnetopause and the planet's
surface) because there is no solar wind there. The minimum distance frgm the center of
the Earth to the Earth's magnetosphere is 10 Earth radii, or 64,000 km.? Other planets
have g%i‘gniﬁcamiy varying magnetosphere sizes based on the planet's magnetic field
strength.

it will be difficult for the magsail to operate in J:lanetocentﬁc orbits of even higher
altitude (above the magnetopause), because in order to gain altitude in the orbit the
magsail must executs a "solar-pumping™ maneuver analogous to that originally conceived
for solar sail orbit raising and escape. In a planetocentric solar-pumping maneuver, the
solar sail is feathered such that solar photon pressure is minimized when the sail is
heading sunward. The sail is then re-orienied to maximize solar photon pressurs when it
is flying away from the sun. In this way, the apogee of the sall orbit is incrementa

boosted ta achieve higher-energy orbits or escape. However, unlike a solar sail,
re-orienting the magsail hoop does not significantly modulate the radial solar wind
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drag-force. In order for the magsail to execute a solar-pumping maneuver, the

“thrust” (and possibly "ift") would be modulated during each orbit. In order to or
eliminate the radial drag force on the u?m'nd leg, the electric current in the | cable
could be reduced or eliminated. This current-modulation scheme sugg several

operatioiial issues. The maqsail may lose attitude control, as described above. In
addition, the circular shape of the superconducting cable is a result of the solenoidal
hoop-stress imparted to a current-carrying cable in an ambient magnetic fleld; if the
magsail were ed, the hoop may lose its shape as a result of gravity gradient or
other perturbation forces. The magsail would be recharged before thrust could be
generated on the downwind side. As suggesied above, if the cable recharge is
constrained by the onboard magsail power supply, then recharging the cable to full

may be time consuming (perhaps beamed powsr could be utiized). A potential solution

to this problem is to execute the solar-pum maneuver at a magsail en
level topallow quicker magsail inflation and gf?aglhn. i
5.1.2.8 Modeling of araction, Both a particle model and a fluid

=Tl s MATr Wi nsail In

model have been ed for caiculation of the magsail drag-force radial thrust and
ift-induced tange lﬂor:sl. A particle-based model of the solar wind- il interaction
was devgloped by Calias4 which roughly confirmed the results of Zubrin's particle

el !+ las' model predicts a thrust of approximately 200 N for the 64-km diameter,
10" Tesla magsail, Both Callas and Zubrin have conciuded that a plasma fiuid model is
probably most appropriate for modeling the radial and possible tangential thrust of the
magsail. Zubrin's plasma fluid model predicts a minimum (quiet solar wind) thrust of 538
N and an average #ft-lo-drag ratio of 0.28. In the Mars mission , it Is shown
that the initial mass in LEO is sensitive o the astimate mamrad | thrust, so this
parameter is allowed to vary from 200 to 500 N. Perpendicular {positive lift-to-d

was not considered in the orbital analysis and mission performance. Further work g
needed to fuily understand the radial and tangential thrust characteristics of the magsail.
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SECTION 6
MASS DRIVERS AND RAIL GUNS

6.1 INTRODUCTION

Masis drivers (MD) and rail guns (RG) can be used as electric ulsion
thrusters.1,2 In both concepts, a propellant “pellet” is accelerated in a "bucket” or
“container” that couples to an externally applied electromagnetic field. The propellant
"pellets” are accelerated to high velocities (e.9., 12 knm/s corresponding to an Isp of 1200
lb-s/lbyy) and fired from the vehicle to produce thrust.

As shown in Fig. 6-1, the twa concepts take different approaches to mlera!zig
the propeitant. The mass driver consists of many solenoid magnets which are energi

in series to pull a payload bucket which contains its own rn?not to couple to the
externally applied fi Very large mass drivers can be used to dir vehicles
from bodies such as the Moon which lack an atmosphere. Because any material can be
placed in the payload bucket, a mass driver, when used as a reaction engine, can use
any material as propellant. In this study, the option of using lunar-produced materials
fq.g.. lunar solil, oxygen, eic.) for propellant was considered as a means of reducing the
nitial mass in LEQ. In general, mass drivers are large and complex, but have a high
electric-to-jet power efficiency (70 to 90 % overall).

The rail gun is currently under consideration for use as a kinetic-energy weapon by
the Stratagic Defense Initiative Office. Althouglh smaller and simpler than a mass driver,
rail guns have a lower efficiency (45 % for the vehicle considered here) than a mass
driver. conceptuallm ravivlﬂgun consists only of 8 power supply and two electrically
energized rails. A" . a conductive armature is placed on (between) the ralls;

current flow through the armature produces a Lorentz force which causes the bucket to

accelerate down the rails. Erosion of the rails by the bucket armature is a serious problem

that currently limits rail guns to a small number of firings; major improvements in fifetime

ge requimnﬂgﬁse use as a reaction engine might require on the order of 108 firings
r a Mars ;
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SECTION 8

SOLAR THERMAL PROPULSION

8.1 INTRODUCTION

In the Solar Thermal Propulsion (STP) concept, shown in Fig. 8-1, sunlight is
m :y;ﬂa Iar%a inﬂ:t:tble "rnirrlt;r" ta(nd focused intt): :Jgr#s't‘ar where the oﬁ‘a’?a',"‘“’ ig
a used to a propellant {e.g., hydrogen ich then expands
a conventional nozzle. Thera are several similarities between solar thermatl andr?:a%r
tharmal propulsion, as will be described below. The Air Force Astronautics Laboratory is
currently tunding STP thruster development. A prototype engine, using a rhenium-tube
heat exchanger, has achieved spacific impulses (lgp) in the 800 lbj-s/iby; rangs.
Advanced STP thruster concepts, using particle-bed heat exchangers or pariiculate
absorptio? directly in the propellant, are projected 1o achieva lgps on the order of 1200

104-8/10m.

¢

PAYLOAD

Figure 8-1  Solar Thermal Propulsion Concept
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SECTION 9
TETHERS

91 INTRODUCTION

Tether concepts for propulsion and power have been investigated within the last
decade for a variety of space missions. Two classes of tether systems are electrodynamic
tethers, which interact with a pianetary magnetic field, and non-conducting tethers which
interact with the gravitational field. The present study investigates the benefits of the latter
class for propulsive assist in an unmanned, Earth to Phobos cargo mission.

An object placed in orbit about a planetary body remains in orbit because the
nward-directed gravitational force is balanced by the inertial ar centrifugal force, in
response to which the body moves cutwards. The tether systems considered here begin
operation with the entire sysiem (which includes the payload, propuisive stages, tethers,
and tether station) in a circular orbit. The tether is then deployed with the payload and
transfer vehicle at one end of the tether and the station at the ather. If the payload orbi: s
to be raised. the tether is deployed "up” or radially outward. Conversely, if the payload
orbit is to be lowered, then the tether is deployed "down" or radially inward, After a period
of time the tether reaches mechanical equilibrium in a vertical orientation. In addition, the
center of mass is located at an altitude slightly lower than the original altitude because of
a net tidal force which has done work on the entire system. Once any transient motions
have been damped out, the entire system orbits the planet in a circular orbit with uniform
angular velecity. For an outbound mission, the payload and transfer vehicle will be
above the center of mass and have a velocity which is super-circular, i.8. , faster than the
circular orbital velocity at the payload's altitude. The station, on the other hand, will be
located below the center of mass and have a velocilr which is sub-circular. The payload
is then disengaged from the tether and enters a larger elliptical orbit with its perigee
located at the release point. The station enters a lower-energy elliptical orbit with its
apogee located at the release point. These orbits are depicted in Fig. 9-1. The tether is
then reeled back into the station, after which a pair of ?hropulsive burns are required to
bring the station back up to its original circular orbit. e payload and transfer vehicle
then perform f Eropulsiue burn to reach the required velocity for injection to Mars
(C3=9.541 kmé&/se).

In this study , the scenario described above corresponds 1o operations in low Earth
orbit (LEQ) whera a large (500 MT) station is used to assist a payload and transfer vehicle
(64.3 MT) to achieve the required earth escape velocity. At Mars, the procedure is
reversed with the payload and transfer vehicle being captured by the Deimos tether
station and transferred to the Pi,obos station. An important operationat difference is that
Deimos and Phobos are used as tether "stations”; the fact that these moons are orders of
magnitude more massive than the payload eliminates the necessity to reboost the
"station” back to its original orbit.

A two-stage aerobraked chemical (Oa/Hz) vehicle, similar ic the baseline cliamical
vehicie described in Section 1, was used {0 inject the payload towards Mars af‘er release
from the Earth-orbit tether. The second stage continues to Mars where it aerobrakes into
an elliptical orbit which aliows it to rendezvous with the Deimos tether. This mission
scenario is illustrated in Fig. 9-2.

Various facets of the tether system and Mars mission have bar.: investigated in

some detail in the gast. Paul Penzo of JPL has ?uﬂined design requirements as well as
operation for a LEO tether transportation system.! In addition, he hes considered issues
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related to operation of a Mars tether transportation sys.em. 2 The ch in center of mass
due to the net tidal force has been pro?osad as a means of satellite relocation by Geoffrey
Landis of the Lewis Research Center.
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SE”TION 10
CONCLUSIONS
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APP=NDIX B
ULTRA-HIGH POWER NUCLEAR ELECTRIC PROPULSION

B.1 INTRODUCTION

The following section describes the first order design of a Nuclear Electric
Propulsion kg'll'«l’llil-") concept which can be scaled over a range of elactric power levels from
20 to 500 MWg. The concept is based on a lithium-cooled pellet reactor driving a Rankine
cycle dynamic conversion system. The thermodynamic cycle is used to turn a turbine
which actuates an alternator producing three-phase electric power at high voltage. The
three-phase power is rectified and utilized by a mercury ion propuision system. A
spacecraft mass scaling model is presented which gives propulsion system mass as a
function of electric power level, payload, propellant mass, thrust time, and specific
impulse. A performance model for the propulsion system s also presented which allows
calculation of thruster efficiency as a function of specific impulse. The work described in
this report was conducted in ﬁupporl of an Inertial Confinement Fusion (ICF) spacecraft

propulsion system study team
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