

Mathematical Techniques

PART FOUR

Chapter 10

GEOMETRIC FUNCTIONS

The result of any operation performed by terrain analysts will only be as accurate as the measurements used. An interpretation and detailed analysis often requires terrain analysts to use basic geometric functions. In addition, approximation of volume, extent of stock piles, and capacity of floor space require geometric formulas. Therefore, analysts must have a sound background in the fundamentals of basic imagery math. This section serves as a guide to a unique and comprehensive collection of current geometric formulas that are basic to all types of imagery interpretation.

Determination of Area

1. Rectangles Where	A = Area 1 = Length W = Width	FORMULA:	A = l x W
2. Circles Where	A = Area d = Diameter r = Radius $\pi = 3.142$	FORMULA:	$A = 2\pi x r \ or \ \pi x d$
3. Triangles		FORMULA:	$A=\frac{bxh}{2}$
Where	A = Area b = Base of the tria h = Height of the t	angle riangle	-
4. General qu	adrilaterals	FORMULA:	$A = \frac{1}{2}b(h_1 + h_2)$ or
			$A = \frac{b(h_1+h_2)}{2}$
Where	A = Area $h_1 = \text{Height no. 1}$ $h_2 = \text{Height no. 2}$ b = Base common	to two triangle	s formed by the diagonal

Table 10-1 Area Formulas

FM 5-33	Formulas	PART FOUR
5. Ellipses	FORMULA	A: $A = \pi x a x b$
Where	A = Area $\pi = 3.142$ a = Semi-axis b = Semi-axis	

Table 10-1 Area Formulas - continued

Determination of Volume

1. Rectangular	solids	FORMULA:	V = l x w x h
Where	V = Volume 1 = Length w = Width h = Height		
2. Cylinders		FORMULA:	$V = \pi x r^2 x h$
Where	V = Volume $\pi = 3.142$ r = Radius h = Height		
3. Spheres		FORMULA:	$V=\frac{4}{3}\pi r^3$
Where	V = Volume $\pi = 3.142$ r = Radius 3 = Constant		
4. Cones		FORMULA:	$V = \frac{\pi x r^2 x h}{3}$
Where	V = Volume $\pi = 3.142$ r = Radius h = Height of constant 3 = Constant	e	
5. Triangular	solids	FORMULA:	$V = \frac{l x w x h}{2}$
Where	V = Volume l = Length w = Width h = Height 2 = Constant		

Table 10-2 Volume Formulas

6. Trapezoidal s	solids	FORMULA:	$V = \frac{(l+l')h(w+w')}{2}$
Where	V = Volume $l = Length of$ $l' = Length of$ $w = Width of$ $w' = Width of$ $h = Height$ $2 = Constant$	f base f top base top	
7. Irregular tri	angular solids	FORMULA:	$V = \frac{w x h x (2a+c)}{6}$
Where	V = Volume w = Width h = Height a = Length of c = Length of 6 = Constant	f base f peak	

Table 10-2 Volume Formulas - continued

Angle of Repose

The angle of repose of any material is the angle at which material will stand when piled. Moisture content is often the controlling factor. The percent of fine material in the mass has a decided influence on the angle, as the fine carries the bulk of the moisture. Screened material has an angle of repose of 35 to 40 degrees.

Table 10-1 gives the average angle of repose and the average weight per cubic foot of various materials of interest to the terrain analyst.

MATERIAL	ANGLE OF REPOSE (Degrees)	TAN	WEIGHT PER CUBIC FT.			
sand, dry	27	0.50952	100 lbs			
nd, wet	30	0.57735	115 lbs			
avel	39	0.80978	117 lbs			
earth, dry	35	0.70021	90 lbs			
coal, anthracite	27	0.50952	52 lbs			
coal, bituminous	32	0.62487	47 lbs			
coke, industrial	40	0.83910	28 lbs			
iron ore, crushed	37	0.75355	145 lbs			
copper ore, crushed	37	0.75355	262 lbs			
limestone, crushed	37	0.75355	165 lbs			

Table 10-3. Angle of Repose

Thus, knowing the angle of repose of a specific material, we can solve for height, using the horizontal dimensions.

FM 5-33

Example: Find the height (h) of a pile of limestone.

Formula:

Where--

 $\begin{array}{l} h = 0.75355 \ x \ 20 \ ft. \\ h = 15.071 \ ft. \\ b = 40 \ feet \\ Angle \ A = \ 37 \ degrees \\ Tan \ 37^\circ = \ 0.75355 \ (from \ Table \ 10-1) \end{array}$

 $h = Tan A \left(\frac{1}{2}b\right)$

TRIGONOMETRIC FUNCTIONS

Oblique photos and thermal and SLAR imagery are often used to supplement or take the place of vertical photographs. In order to ensure maximum use of this imagery, the interpreter must be familiar with certain concepts, formulas, and principles concerning their accurate interpretation. This section gives the terrain analyst a basic understanding of trigonometric functions necessary for solving problems dealing with these special types of imagery, as well as a table of trigonometric conversions. trigonometric conversions.

Six Functions

To define the six trigonometric functions upon which trigonometry is based, consider the angle, initial side AQ, and terminal side AS.

Choose any point B, different from A on the terminal side AS, and drop a perpendicular BC to the initial side AQ. From the three sides (BC, AC, and AB) ted with point B, six ratios are formed which are called the six trigonometric functions of Q.

 $\frac{CB}{AB}, \frac{AC}{AB}, \frac{CB}{AC}, \frac{AB}{CB}, \frac{AB}{AC}, \text{and } \frac{AC}{CB}$ These ratios are independent of the position of the point B on the freed terminal side AS, for if we choose any other point B1 on AS and drop the perpendicular BlC1 to the initial side AQ, the two right triangles ABC and AB1C1 are similar. Therefore, their corresponding sides have the same ratios.

If the angle is placed in standard position on a coordinate system, and the distance AB is designated by c, the six trigonometric functions may be defined as follows:

Sin angle -	<u>CB</u>	Opp Side	<u>Side a</u>
Sin angie –	AB ¯	Нур -	Side b
Cos angle -	<u>AC</u>	Adj Side	<u>Side b</u>
Cos angie -	AB ¯	Нур –	Side c
Ton ongle -	<u>CB</u> _	Opp Side	<u>Side a</u>
	AC ⁻	Adj Side	Side b
Cot angle -	<u>AC</u> _	Adj Side	<u>Side b</u>
Cot angle -	CB	Opp Side	Side a
Seconde -	<u>AB</u> _	Нур	<u>Side c</u>
Sec angle =	AC	Adj Side	Side b
Cec angle -	<u>AB</u>	Нур	<u>Side c</u>
Use alight =	\overline{CB}	Adi Side	Side a

10-4

To define trigonometric functions of the sides of right triangles, one will often find it convenient to use the functions of an acute angle. Thus, functions of the acute angle B may be written as follows:

Sin angle B	=	$\frac{AC}{AB} =$	Opp Side Hyp	<u>Side b</u>
Cos angle B	=	$\frac{BC}{AB} =$	<u>Adj Side</u>	Side a
Tan angle B	=	<u>AD</u>	Opp Side	Side c Side b
Cot onglo D		BC BC	Adj Side Adj Side	Side a Side a
Cot aligie B	-	\overrightarrow{AC}	Opp Side Hyp	Side b
Sec angle B	=	BC	Adj Side	Side a
Csc angle B	=	$\frac{AB}{AC}$	= <u>Hyp</u> Adj Side =	$=\frac{Side c}{Side b}$

By comparing the values of the functions of angle A and angle B, we find the following equations:

Sin A = Cos B	Tan A = Cot B	Sec A = Csc B
Cos A = Sin B	Cot A = Tan B	Csc A = Sec B

Since angles A and B are complementary, the cosine, cotangent, and cosecant are called cofunctions of the sine, tangent and secant respectively. Conversely, we may state the following theorem: Any trigonometric function of an acute angle is equal to the corresponding cofunction of its complementary angle.

We can use this theorem to express any function of an angle greater than 45 degrees in terms of a function of an angle less than 45 degrees. For this reason, tables of values of the trigonometric functions need be computed only for angles from 0 to 45 degrees instead of from 0 to 90 degrees.

Illustrations: (a) Sin 76°43' = Cos 90° -76° 43' = Cos 13°17' (b) Cot 51° 28'9" = Tan 90° - 51°28' 9" = Tan 38°31'51"

Right Triangles

Terrain analysts will use the functions of the right triangle most often for interpretation purposes. In any triangle, the sum of the interior angles is 180 degrees. If the triangle to be solved is a right triangle, one of the known parts in any case is the angle C; that is, C = 90 degrees, and A + B = 90 degrees. To solve a right triangle, therefore, we must find two sides or one side and an acute angle, using the formulas-

A + B = 90 degrees

Sin angle
$$A = \frac{Opp Side}{Hyp} = \frac{a}{c}$$

Cos angle $A = \frac{Adj Side}{Hyp} = \frac{b}{c}$
Tan angle $A = \frac{Opp Side}{Adj Side} = \frac{a}{b}$

FM 5-33

If two sides are given, we can find the sin of angle A from the above formulas involving the two given sides. We may then use another formula to find the remaining side, and then find angle B by subtracting angle A from 90 degrees.

If one side of an acute angle is given, we begin by finding the other acute angle. Then we select one of the trigonometric formulas containing an unknown side and solve for it.

Pythagorean Theorem

The Pythagorean theorem provides a method for finding the lengths of the sides of a right triangle and checking the trigonometric method, with the statement: The square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides. Related to a right triangle labeled A, B, and C, as shown previously and reproduced here for convenience, the theorem may be stated as the formula

Note: In order to solve the formula, we must understand the solution to the square root function. The square root of a number is the result of a number multiplied by itself. For example, $2 \times 2 = 4$, so the square root of 4 is 2.

ees	Sines							
Deg	01	101	201	30 ^r	401	501	60 <i>1</i>	Cosi
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	89
1	0.01745	0.02036	0.02327	0.02618	0.02908	0.03299	0.03490	88
2	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	87
3	0.05234	0.05524	0.05814	0.06105	0.06395	0.06685	0.06976	86
4	0.06976	0.07266	0.07556	0.07846	0.08136	0.08426	0.08716	85
5	0.08716	0.09005	0.09295	0.09585	0.09874	0.10164	0.10453	84
6	0.10453	0.10742	0.11031	0.11320	0.11609	0.11898	0.12187	83
7	0.12187	0.12476	0.12764	0.13053	0.13341	0.13629	0.13917	82
8	0.13917	0.14205	0.14493	0.14781	0.15069	0.15356	0.15643	81
9	0.15643	0.15931	0.16218	0.16505	0.16792	0.17078	0.17365	80
110	0.17365	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	79
11	0.19081	0.19366	0.19652	0.19937	0.20222	0.20507	0.20791	78
12	0.20791	0.21076	0.21360	0.21644	0.21928	0.22212	0.22495	77
13	0.22495	0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	76
14	0.24192	0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	75
15	0 25882	0.26163	0.26443	0.26724	0.27004	0.27284	0 27564	74
16	0 27564	0 27843	0 28123	0 28402	0 28680	0 28959	0 29237	73
17	0.27004	0 29515	0 29793	0.30071	0 30348	0.30625	0 30902	72
18	0.20207	0.23313	0 31454	0.30071	0.00040	0.00020	0.30502	71
10	0.30502	0.31170	0.31434	0.33381	0.32000	0.32202	0.32337	70
20-	0.32337	0.32032	0.33100	0.35001	0.35033	0.35565	0.35837	69
20	0.34202	0.34473	0.34740	0.33021	0.33233	0.33303	0.33037	69
22	0.33037	0.30100	0.30373	0.30050	0.30321	0.37151	0.37401	67
22	0.37401	0.37730	0.37555	0.30200	0.30337	0.30003	0.03073	207
23	0.33073	0.33341	0.33000	0.33073	0.40142	0.40400	0 42262	65
24	0.40074	0.40333	0.41204	0.41403	0.41734	0.41550	0.42202	64
25	0.42202	0.42525	0.42700	0.43031	0.43313	0.45375	0.45007	63
20	0.43037	0.44030	0,44333	0.44020	0.44000	0.45140	0.45555	62
20	0.43355	0.43030	0.43517	0.40175	0.40433	0.40030	0.40347	61
20	0.4034/	0.4/204	0.47400	0.4//10	0.4/5/1	0.40220	0.40401	60
23	0.40401	0.40733	0.40303	0.45242	0.43433	0.43740	0.50000	50
21	0.00000	0.00202	0.00000	0.30734	0.51004	0.512.54	0.51504	50
22	0.51504	0.01/00	0.52002	0.52250	0.32430	0.52/45	0.52552	57
32	0.52992	0.53230	0.00404	0.55750	0.55375	0.54220	0.55010	56
33	0.04404	0.54/06	0.54951	0.33194	0.00400	0.55110	0.53515	55
34	0.00019	0.30100	0.00401	0.00041	0.00000	0.57115	0.57330	54
30	0.5/300	0.57596	0.57655	0.50070	0.30307	0.30343	0.30773	52
30	0.08//9	0.59014	0.09248	0.09462	0.03710	0.03343	0.00102	53
3/	0.00182	0.00414	0.00045	0.000/0	0.0110/	0.0133/	0.01000	51
30	0.01000	0.01/95	0.02024	0.02201	0.024/9	0.02700	0.02332	50
39	0.02932	0.03138	0.03303	0.03008	0.03032	0.04030	0.042/9	10
40	0.042/9	0.04301	0.04/23	0.04945	0.00100	0.00000	0.00000	43
41	0.00000	0.03023	0.00044	0.00202	0.00400	0.00037	0.00313	17
42	0.00313	0.0/129	0.0/344	0.07009	0.07770	0.0750	0,00200	16
43	0.00200	0.00412	0.00024	0.00033	0.03040	0.03230	0.03400	40
44	0.03400	0.030/5	0.03003	0.70091	0.70230	0.70303	0.70711	73
S	601	501	401	301	201	101	01	S
Sint		L		·		L		egre
				Cosines				ŏ
_								

ees	Cosines								
Degr	01	101	20 1	30 ′	401	50´	601	Sine	
0	1.00000	1.00000	0.99998	0.99996	0.99993	0.99989	0.99985	89	
1	0.99985	0.99979	0.99973	0.99966	0.99958	0.99949	0.99939	88	
2	0.99939	0.99929	0.99917	0.99905	0.99892	0.99878	0.99863	87	
3	0.99863	0.99847	0.99831	0.99813	0.99795	0.99776	0.99756	86	
4	0.99756	0.99736	0.99714	0.99692	0.99668	0.99644	0.99619	85	
5	0.99619	0.99594	0.99567	0.99540	0.99511	0.99482	0.99452	84	
6	0.99452	0.99421	0.99390	0.99357	0.99324	0.99290	0.99255	83	
7	0.99255	0.99219	0.99182	0.99144	0.99106	0.99067	0.99027	82	
8	0.99027	0.98986	0.98944	0.98902	0.98858	0.98814	0.98769	81	
9	0.98769	0.98723	0.98676	0.98629	0.98580	0.98531	0.98481	80	
10	0.98481	0.98430	0.98378	0.98325	0.98272	0.98218	0.98163	79	
11	0.98163	0.98107	0.98050	0.97992	0.97934	0.97875	0.97815	78	
12	0.97815	0.97754	0.97692	0.97630	0.97566	0.97502	0.97437	77	
13	0.97437	0.97371	0.97304	0.97237	0.97169	0.97100	0.97030	76	
14	0.97030	0.96959	0.96887	0.96815	0.96742	0.96667	0.96593	75	
15	0.96593	0.96517	0.96440	0.96363	0.96285	0.96206	0.96126	74	
16	0.96126	0.96046	0.95964	0.95882	0.95799	0.95715	0.95630	73	
17	0.95630	0.95545	0.95459	0.95372	0.95284	0.95195	0.95106	72	
18	0.95106	0.95015	0.94924	0.94832	0.94740	0.94646	0.94552	71	
19	0.94552	0.94457	0.94361	0.94264	0.94167	0.94068	0.93969	70	
20	0.93969	0.93869	0.93769	0.93667	0.93565	0.93462	0.93358	69	
21	0.93358	0.93253	0.93148	0.93042	0.92935	0.92827	0.92718	68	
22	0.92718	0.92609	0.92499	0.92388	0.92276	0.92164	0.92050	67	
23	0.92050	0.91936	0.91822	0.91706	0.91590	0.91472	0.91355	66	
24	0.91355	0.91236	0.91116	0.90996	0.90875	0.90753	0.90631	65	
25	0.90631	0.90507	0.90383	0.90259	0.90133	0.90007	0.89879	64	
26	0.89879	0.89752	0.89623	0.89493	0.89363	0.89232	0.89101	63	
27	0.89101	0.88968	0.88835	0.88701	0.88566	0.88431	0.88295	62	
28	0.88295	0.88158	0.88020	0.87882	0.87743	0.87603	0.87462	61	
29	0.87462	0.87321	0.87178	0.87036	0.86892	0.86748	0.86603	60	
30	0.86603	0.86457	0.86310	0.86163	0.86015	0.85866	0.85717	59	
31	0.85717	0:85567	0.85416	0.85264	0.85112	0.84959	0.84805	58	
32	0.84805	0.84650	0.84495	0.84339	0.84182	0.84025	0.83867	57	
33	0.83867	0.83708	0.83549	0.83389	0.83228	0.83066	0.82904	56	
34	0.82904	0.82741	0.82577	0.82413	0.82248	0.82082	0.81915	55	
35	0.81915	0.81748	0.81580	0.81412	0.81242	0.81072	0.80902	54	
36	0.80902	0.80730	0.80558	0.80386	0.80212	0.80038	0.79864	53	
37	0.79864	0.79688	0.79512	0.79335	0.79158	0.78980	0.78801	52	
38	0.78801	0.78622	0.78442	0.78261	0.78079	0.77897	0.77715	51	
39	0.77715	0.77531	0.77347	0.77162	0.76977	0.76791	0.76604	50	
40	0.76604	0.76417	0.76229	0.76041	0.75851	0.75661	0.75471	49	
41	0.75471	0.75280	0.75088	0.74896	0.74703	0.74509	0.74314	48	
42	0.74314	0.74120	0.73924	0.73728	0.73531	0.73333	0.73135	47	
43	0.73135	0.72937	0.72737	0.72537	0.72337	0.72136	0.71934	46	
44	0.71934	0.71732	0.71529	0.71325	0.71121	0.70916	0.70711	45	
res	601	50 <i>1</i>	401	301	20 <i>1</i>	101	01	see	
Cosir				Sines	_			Degr	

 Table 10-4
 Natural Trigonometric Functions

FM 5-33

See.	Tangents				gent	ees		Cotangents				ents							
Deg.)'	10	201	30 1	40 ´	50 <i>1</i>	60 ⁻	Cotan	Degr	0.		101	201	30 1	40 <i>1</i>	501	60′	Tang
	0 0.00	0000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89		~~~~		343.77371	171.88540	114.58865	85.93979	68.75009	57.28996	89
	1 0.0	1746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88	1	57.289	96	49.10388	42.96408	38.18846	34.36777	31.24158	28.63625	88
	2 0.03	3492	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87	2	28.636	25	26.43160	24.54176	22.90377	21.47040	20.20555	19.08114	87
	3 0.0	5241	0.05533	0.05824	0.06116	0.06408	0.06700	0.06993	86	3	19.081	14	18.07498	17.16934	16.34986	15.60479	14.92442	14.30067	86
	4 0.06	6993	0.07285	0.07578	0.07870	0.08163	0.08456	0.08749	85	4	14,300	57	13.72674	13.1968	12.70621	12.25051	11.82617	11.43005	85
	5 0.08	8749	0.09042	0.09335	0.09629	0.09923	0.10216	0.10510	84	5	11.430	05	11.05943	10.71!91	10.38540	10.07803	9.78817	9.51436	84
	6 0.1	0510	0.10805	0.11099	0.11394	0.11688	0.11983	0.12278	83	6	9.514	36	9.25530	9.00983	8.77689	8.55555	8.34496	8.14435	83
	7 0.12	2278	0.12574	0.12869	0.13165	0.13461	0.13758	0.14054	82	7	8.144	35	7.95302	7.77035	7.59575	7.42871	7.26873	7.11537	82
	8 0.14	4054	0.14351	0.14648	0.14945	0.15243	0.15540	0.15838	81	8	7.115	37	6.96823	6.82694	6.69116	6.56055	6.43484	6.31375	81
.	9 0.1	5838	0.16137	0.16435	0.16734	0.17033	0.17333	0.17633	80	S S	6.313	75	6.19703	6.08444	5.97576	5.87080	5.76937	5.67128	80
1	0 0.12	7633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79	10	5.671	28	5.57638	5.48451	5.39552	5.30928	5.22566	5.14455	79
1	1 0.19	9438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78	11	5.144	55	5.06584	4.98940	4.91516	4.84300	4.77286	4.70463	78
1	2 0.2	1256	0.21560	0.21864	0.22169	0.22475	0.22781	0.23087	77	12	4.704	63	4.63825	4.57363	4.51071	4.44942	4.38969	4.33148	77
1	3 0.23	3087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76	13	4.331	48	4.27471	4.21933	4.16530	4.11256	4.06107	4.01078	76
	4 0.2	4933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75	14	4.010	78	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75
	5 0.20	6795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74	15	3.732	05	3.68909	3.64705	3.60588	3.56557	3.52609	3.48741	74
	6 0.2	8675	0.28990	0.29305	0.29621	0.29938	0.30255	0.30573	73	16	3.487	41	3.44951	3.41236	3.37594	3.34023	3.30521	3.27085	73
1	7 0.30	0573	0.30891	0.31210	0.31530	0.31850	0.32171	0.32492	72	17	3.270	85	3.23714	3.20406	3.17159	3.13972	3.10842	3.07768	72
1	8 0.3	2492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71	18	3.077	68	3.04749	3.01783	2.98869	2.96004	2.93189	2.90421	71
1	9 0.3	4433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70	19	2.904	21	2.87700	2.85023	2.82391	2.79802	2.77254	2.74748	70
2	0 0.3	6397	0.36727	0.37057	0.37388	0.37720	0.38053	0.38386	69	20	2.747	48	2.72281	2.69853	2.67462	2.65109	2.62791	2.60509	69
2	1 0.3	8386	0.38721	0.39055	0.39391	0.39727	0.40065	0.40403	68	21	2.605	09	2.58261	2.56046	2.53865	2.51715	2.49597	2.47509	68
2	2 0.4	0403	0.40741	0.41081	0.41421	0.41763	0.42105	0.42447	67	22	2.475	09	2.45451	2.43422	2.41421	2.39449	2.37504	2.35585	67
2	3 0.4	2447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	66	23	2.355	85	2.33696	2.31826	2.29984	2.28167	2.26374	2.24604	66
2	4 0.4	4523	0.44372	0.45222	0.45573	0.45924	0.46277	0.46631	65	24	2.246	04	2.22857	2.21132	2.19430	2.17749	2.16090	2.14451	65
2	5 0.4	6631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64	25	2.144	51	2.12832	2.11233	2.09654	2.08094	2.06553	2.05030	64
2	6 0.4	8773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	63	26	2.050	30	2.03526	2.02039	2.00569	1.99116	1.97680	1.96261	63
2	7 0.5	0953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	62	27	1.962	61	1.94858	1.93470	1.92089	1.90741	1.89400	1.88073	62
2	8 0.5	3171	0.53545	0.53920	0.54296	0.54674	0.55051	0.55431	61	28	1.880	73	1.86760	1.85462	1.84177	1.82907	1.81649	1.80405	61
2	9 0.5	5431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	60	29	1.804	05	1.79174	1.77955	1.76749	1.75556	1.74375	1.73205	60
3	0 0.5	7735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59	30	1.732	05	1.72047	1.70901	1.69766	1.68643	1.67530	1.66428	59
3	1 0.6	0086	0.60483	0.60881	0.61280	0.61681	0.62083	0.62487	58	31	1.664	28	1,65337	1.64256	1.63185	1.62125	1.61074	1.60033	58
3	2 0.6	2487	0.62892	0.63299	0.63707	0.64117	0.64528	0.64941	57	32	1.600	33	1.59002	1.57981	1.56969	1.55966	1.54972	1.53987	57
3	3 0.6	4941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56	33	1.539	87	1.53010	1.52043	1.51084	1.50133	1.49190	1.48256	56
3	4 0.6	7451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55	34	1.482	56	1.47330	1.46411	1.45501	1.44598	1.43703	1.42815	55
3	5 0.7	0021	0.70455	0.70891	0.71329	0.71769	0.72211	0./2654	54	35	1.428	15	1.41934	1.41061	1.40195	1.39336	1.38484	1.37638	54
3	6 0.7	2654	0.73100	0.73547	0.73996	0.74447	0.74900	0.75355	53	36	1.376	38	1.36800	1.35968	1.35142	1.34323	1.33511	1.32704	53
3	7 0.7	5355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78129	52	37	1.327	04	1.31904	1.31110	1.30323	1.29541	1.28764	1.27994	52
3	8 0.7	8129	0.78598	0.79070	0.79544	0.80020	0.80498	0.80978	51	38	1.279	94	1.27230	1.26471	1.25717	1.24969	1.24227	1.23490	51
3	9 0.8	0978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50	39	1.234	90	1.22758	1.22031	1.21310	1.20593	1.19882	1.19175	50
4	0 0.8	3910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929	49	40	1.191	75	1.18474	1.17777	1.17085	1.16398	1.15715	1.15037	49
4	1 0.8	6929	0.87441	0.87955	0.88473	0.88992	0.89515	0.90040	48	41	1.150	37	1.14363	1.13694	1.13029	1.12369	1.11713	1.11061	48
4	2 0.9	0040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47	42	1.110	61	1.10414	1.09770	1.09131	1.08496	1.07864	1.07237	47
4	3 0.9	3252	0.93797	0.94345	0.94896	0.95451	0.96008	0.96569	46	43	1.072	37	1.06613	1.05994	1.05378	1.04766	1.04158	1.03553	46
4	4 0.9	6569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	45	44	1.035	53	1.02952	1.02355	1.01761	1.01170	1.00583	1.00000	45
÷	≅ 6	50′	50´	401	30′	201	101	01	S	ints	60´		50´	401	30 -	201	101	01	es
1000				i	1	L	I	L	Bre	adut	°		L	1	I	1	1	_	- Sie
F	-			C	Cotangent	S			ð	Dot 1					Tangents				മ്
-	-								-		- k								

Table 10-4 Natural Trigonometric Functions