List of Illustrations

Figure 1-1	Pile foundation for structure support	1-2
1-2	Sheet pile protecting a bridge pier	1-2
1-3	Piles in a waterfront structure	1-3
1-4	Friction piles	1-3
1-5	End-bearing piles	1-4
1-6	Batter piles	1-4
1-7	Compaction piles	1-5
2-1	Typical timber bearing pile	2-3
2-2	Steel rails welded to form piles	2-6
2-3	Designs of precast concrete piles	2-8
2-4	Layout of small casting yard	2- 9
2-5	Wooden forms for casting concrete piles	2-9
2-6	Handling precast concrete piles	2-10
2-7	Precast concrete pile design charts	2-11
2-8	Blocking of stacked concrete piles	2-12
2- 9	Cross-sectional views of steel sheet piling	2-15
2-10	Types of timber sheet piles	2-16
2-11	Rail and plank sheet piling	2-17
2-12	Designs of concrete sheet piles	2-18/1
3-1	Crane with standard pile-driving attachments	3-2
3-2	Pile driver lead adapter	3-3
3-3	Steel-frame, skid-mounted pile driver	3-4
3-4	Aligning leads of the skid-mounted pile driver	3-5
3-5	Drop hammer and pile cap placed in leads	3-7
3-6	Details of expedient log hammer	3-8
3-7	Pneumatic or steam pile-driving hammers	3-9
3-8	Types of pile hammers	3-11
3-9	Special cap (helmet) for steel pile	3-12
3-10	Pile-driving leads with bottom brace	3-13
3-11	Bottom braces for adjusting batter	3-14
3-12	Expedient wood-frame, skid-mounted pile driver	3-15
3-13	Expedient wood-frame, skid-mounted pile driver	0.10
	using standard leads	3-10
3-14	Expedient timber pile-driving rig using	0 17
	dimensioned lumber	3-17
3-15	Expedient tripod pile driver	3-10 2.10
3-16	Design features of the tripod pile driver	9.19
3-17	Expedient pile driver made of constructed	2 20
	weided steel angles	•3•2∪ ງດາ
3-18	Crane-shovel with pile-driving attachment	3-21

Figure 3-19	Skid-mounted pile driver on a 5-foot $ imes$ 12-foot	
	barge assembly	3-22
3-20	Jet pipe assembly	3-23
3-21	Improvised devices for aligning hammers	
	without leads	3-25
4-1	Steel shoes for timber piles	4-9
4-2	Methods of splicing timber piles	4.3
4-3	Driving points for H-piles	4-4
4-4	Driving points for pipe piles	4-5
4-5	Butt-welded splice, welding clamps, and	
	guide for scarfing	4-6
4-6	Splices of H-piles and pipe piles	4-7
4-7	Basic steps in setting and driving piles	4-9
4-8	Types of damage to timber piles from overdriving	4-11
4-9	Method of guying steel piles	4-12
4-10	Batter of a pile	4-14
4-11	Use of block and tackle to realign pile	4-15
4-12	Breaching obstructions	4-17
4-13	Jetting pile by pipes and hoses	4-18
4-14	Use of jet pipes near pile tip	4-19
4-15	Precast concrete piles with internal jetting pipes	4-20
4-16	Realigning piles by jetting	4-21
4-17	Wire rope guideline to position piles	4-23
4-18	Floating template for positioning piles	4-24
4-19	Aligning frame for pile bent	4-26
4-20	Aligning and capping steel pile bents	4-27
4-21	Approximate shape of thawed hole in sand-silt	
	soil after 1½ hours of steam jetting	4-28
4-22	Piles driven through 3 feet of active zone to	
	a depth of 13 feet after thawing	4-29
4-23	Cutting timber pile bent to final height	4-31
4-24	Procedure for placing cast-in-ground	
4.05	Concrete piles	4-33
4-25	Procedure for placing snell-type, cast-in-place	4.95
4.96	Land signals for pile driving operations	4-30
4-20	Lingupported length	4-07
0-1 5-2	Management of pile act in field	0-0 5 5
5.3	Static analysis of piles in cohesive soils	5-7
5.4	Static analysis of piles in cohencionless soils	5.8
5.5	Typical nile load test setup	5.9
5-6	Typical load-deflection curve	5-10
5.7	Interpretation of CRP test results	5-11
5-8	Effects of group action on size of stressed zone	5-12
5.9	Distinction between rigid and flexible nile or nier	5-13
5-10	Ultimate lateral resistance of rigid piles in clay	5.14
5-11	Ultimate lateral resistance of rigid piles in sand	5-15

6-1	Estimated settlement of pile groups in sand	6-4
6-2	Uplift capacity of pile group	6-4
6-3	Block failure of piles in clay	6-5
6-4	Approximate distribution of stress beneath pile	
	foundations	6-6
6-5	Pile action on the soil	6-7
6-6	Analysis of drag on piles in clay	6-9
6-7	Forces acting on and supporting capacity of	
	piling in permafrost	6-10
6-8	Design of pile foundation in dense sand underlain	
	by clay	6-13
6-9	Design of friction pile foundation in a deep	
	deposit of clay	6-16
7-1	Pile group with resultant passing through center	
	of gravity	7-2
7-2	Pile group with resultant not at center of gravity	7-3
7-3	Pile bent	7-5
7-4	Pile reaction in a pile group composed of batter	
	and vertical piles	7-8
7-5	Relationship of pile load components	7-9
7-6	Force polygon	7-10
8-1 [.]	Decay of untreated timber pile	8-2
8-2	Marine borer damage to timber pile	8-3
8-3	Brush application of preservative to cutoff ends	8-4
8-4	Typical concrete encasements of steel piles	8-7
8-5	Timber splicing using reinforced concrete	8-10

List of Tables

1-1	Types of bearing piles	1-6
2-1	Classification of timber piles	2-2
2-2	Working stresses for timber	2-4
2-3	Properties of steel sheet piling	2-14
3-1	Selection of diesel hammers for various sizes	
• -	of piling	3-6
3-2	Properties of selected impact pile hammers	3-10
4-1	Treatment of field problems encountered during	
	pile driving	4-13
5-1	Strength or consistency of undisturbed clays	5-16
7-1	Tabular form for determining load acting on	
• •	each pile	7-6