
USB Library

Microchip Libraries for Applications (MLA)

Copyright (c) 2013-2014 Microchip Technology Inc. All rights reserved.

Table of Contents

1 USB Library 15
1.1 Introduction 16

1.2 Legal Information 17

1.3 Release Notes 18

1.3.1 Revision History 18

1.3.1.1 v2.10 18

1.3.1.2 v2.9j 18

1.3.1.3 v2.9i 19

1.3.1.4 v2.9h 19

1.3.1.5 v2.9g 19

1.3.1.6 v2.9f 20

1.3.1.7 v2.9e 20

1.3.1.8 v2.9d 21

1.3.1.9 v2.9c 21

1.3.1.10 v2.9b 22

1.3.1.11 v2.9a 23

1.3.1.12 v2.9 23

1.3.1.13 v2.8 24

1.3.1.14 v2.7a 25

1.3.1.15 v2.7 25

1.3.2 What's Next 26

1.3.3 Support 27

1.3.4 Online Reference and Resources 28

1.3.5 Device (Slave) Demo Board Support and Limitations 28

1.3.6 Host Demo Board Support and Limitations 29

1.3.7 Operating System Support and Limitations 29

1.3.8 Tool Information 31

1.3.9 Library Migration 31

1.3.9.1 From v2.9j to v2.10 31

1.3.9.2 From v2.9i to v2.9j 32

1.3.9.3 From v2.9h to v2.9i 32

1.3.9.4 From v2.9g to v2.9h 32

1.3.9.5 From v2.9f to v2.9g 32

1.3.9.6 From v2.9e to v2.9f 33

1.3.9.7 From v2.9d to v2.9e 33

1.3.9.8 From v2.9c to v2.9d 33

1.3.9.9 From v2.9b to v2.9c 33

MLA - USB Library Help

2

1.3.9.10 From v2.9a to v2.9b 33

1.3.9.11 From v2.9 to v2.9a 33

1.3.9.12 From v2.8 to v2.9 33

1.3.9.13 From v2.7a to v2.8 33

1.3.9.14 From v2.7 to v2.7a 33

1.3.9.15 From v2.6a to v2.7 34

1.3.9.16 From v2.6 to v2.6a 34

1.3.9.17 From v2.5 to v2.6 34

1.4 Library Interface 36

1.4.1 Device/Peripheral 36

1.4.1.1 Device Stack 36

1.4.1.1.1 Functions 36

1.4.1.1.1.1 USB_APPLICATION_EVENT_HANDLER Function 39

1.4.1.1.1.2 USBCancelIO Function 39

1.4.1.1.1.3 USBCtrlEPAllowDataStage Function 40

1.4.1.1.1.4 USBCtrlEPAllowStatusStage Function 40

1.4.1.1.1.5 USBDeferINDataStage Function 41

1.4.1.1.1.6 USBDeferOUTDataStage Function 42

1.4.1.1.1.7 USBDeferStatusStage Function 43

1.4.1.1.1.8 USBDeviceAttach Function 44

1.4.1.1.1.9 USBDeviceDetach Function 44

1.4.1.1.1.10 USBDeviceInit Function 45

1.4.1.1.1.11 USBDeviceTasks Function 46

1.4.1.1.1.12 USBEnableEndpoint Function 47

1.4.1.1.1.13 USBEP0Receive Function 48

1.4.1.1.1.14 USBEP0SendRAMPtr Function 49

1.4.1.1.1.15 USBEP0SendROMPtr Function 49

1.4.1.1.1.16 USBEP0Transmit Function 50

1.4.1.1.1.17 USBGetDeviceState Function 50

1.4.1.1.1.18 USBGetNextHandle Function 51

1.4.1.1.1.19 USBGetRemoteWakeupStatus Function 53

1.4.1.1.1.20 USBGetSuspendState Function 54

1.4.1.1.1.21 USBHandleBusy Function 55

1.4.1.1.1.22 USBHandleGetAddr Function 56

1.4.1.1.1.23 USBHandleGetLength Function 56

1.4.1.1.1.24 USBINDataStageDeferred Function 57

1.4.1.1.1.25 USBIsBusSuspended Function 57

1.4.1.1.1.26 USBIsDeviceSuspended Function 58

1.4.1.1.1.27 USBOUTDataStageDeferred Function 59

1.4.1.1.1.28 USBRxOnePacket Function 59

1.4.1.1.1.29 USBSoftDetach Function 60

1.4.1.1.1.30 USBStallEndpoint Function 60

MLA - USB Library Help

3

1.4.1.1.1.31 USBTransferOnePacket Function 61

1.4.1.1.1.32 USBTxOnePacket Function 62

1.4.1.1.2 Data Types and Constants 63

1.4.1.1.2.1 USB_DEVICE_STACK_EVENTS Type 64

1.4.1.1.2.2 USB_DEVICE_STATE Type 64

1.4.1.1.2.3 DESC_CONFIG_uint32_t Macro 64

1.4.1.1.2.4 DESC_CONFIG_uint8_t Macro 64

1.4.1.1.2.5 DESC_CONFIG_WORD Macro 65

1.4.1.1.2.6 USB_EP0_BUSY Macro 65

1.4.1.1.2.7 USB_EP0_INCLUDE_ZERO Macro 65

1.4.1.1.2.8 USB_EP0_NO_DATA Macro 65

1.4.1.1.2.9 USB_EP0_NO_OPTIONS Macro 66

1.4.1.1.2.10 USB_EP0_RAM Macro 66

1.4.1.1.2.11 USB_EP0_ROM Macro 66

1.4.1.1.2.12 USB_HANDLE Macro 66

1.4.1.1.3 usb_device.h 66

1.4.1.2 Audio Function Driver 70

1.4.1.2.1 Functions 70

1.4.1.2.1.1 USBCheckAudioRequest Function 70

1.4.1.2.2 usb_device_audio.h 70

1.4.1.3 CDC Function Driver 71

1.4.1.3.1 usb_device_cdc.h 71

1.4.1.3.2 Functions 72

1.4.1.3.2.1 CDCInitEP Function 74

1.4.1.3.2.2 CDCNotificationHandler Function 74

1.4.1.3.2.3 CDCTxService Function 75

1.4.1.3.2.4 getsUSBUSART Function 76

1.4.1.3.2.5 putrsUSBUSART Function 77

1.4.1.3.2.6 putsUSBUSART Function 77

1.4.1.3.2.7 putUSBUSART Function 78

1.4.1.3.2.8 USBCDCEventHandler Function 79

1.4.1.3.2.9 USBCheckCDCRequest Function 79

1.4.1.3.2.10 CDCSetBaudRate Macro 79

1.4.1.3.2.11 CDCSetCharacterFormat Macro 80

1.4.1.3.2.12 CDCSetDataSize Macro 81

1.4.1.3.2.13 CDCSetLineCoding Macro 81

1.4.1.3.2.14 CDCSetParity Macro 82

1.4.1.3.2.15 mUSBUSARTIsTxTrfReady Macro 83

1.4.1.3.2.16 mUSBUSARTTxRam Macro 83

1.4.1.3.2.17 mUSBUSARTTxRom Macro 84

1.4.1.3.2.18 USBUSARTIsTxTrfReady Macro 85

1.4.1.3.3 Data Types and Constants 85

MLA - USB Library Help

4

1.4.1.3.3.1 NUM_STOP_BITS_1 Macro 86

1.4.1.3.3.2 NUM_STOP_BITS_1_5 Macro 86

1.4.1.3.3.3 NUM_STOP_BITS_2 Macro 86

1.4.1.3.3.4 PARITY_EVEN Macro 86

1.4.1.3.3.5 PARITY_MARK Macro 87

1.4.1.3.3.6 PARITY_NONE Macro 87

1.4.1.3.3.7 PARITY_ODD Macro 87

1.4.1.3.3.8 PARITY_SPACE Macro 87

1.4.1.4 HID Function Driver 87

1.4.1.4.1 Functions 88

1.4.1.4.1.1 HIDRxHandleBusy Macro 88

1.4.1.4.1.2 HIDRxPacket Macro 89

1.4.1.4.1.3 HIDTxHandleBusy Macro 89

1.4.1.4.1.4 HIDTxPacket Macro 90

1.4.1.4.2 Data Types and Constants 91

1.4.1.4.2.1 BOOT_INTF_SUBCLASS Macro 91

1.4.1.4.2.2 BOOT_PROTOCOL Macro 92

1.4.1.4.2.3 HID_PROTOCOL_KEYBOARD Macro 92

1.4.1.4.2.4 HID_PROTOCOL_MOUSE Macro 92

1.4.1.4.2.5 HID_PROTOCOL_NONE Macro 92

1.4.1.4.3 usb_device_hid.h 92

1.4.1.5 MSD Function Driver 93

1.4.1.5.1 Functions 93

1.4.1.5.1.1 MSDTasks Function 93

1.4.1.5.1.2 USBCheckMSDRequest Function 93

1.4.1.5.1.3 USBMSDInit Function 94

1.4.1.5.2 Data Types and Constants 94

1.4.1.5.2.1 LUN_FUNCTIONS Structure 94

1.4.1.5.3 usb_device_msd.h 95

1.4.1.6 Vendor Class (Generic) Function Driver 96

1.4.1.6.1 Functions 96

1.4.1.6.1.1 USBCheckVendorRequest Function 96

1.4.1.6.1.2 USBGEN_H Macro 97

1.4.1.6.1.3 USBGenRead Macro 97

1.4.1.6.1.4 USBGenWrite Macro 98

1.4.1.6.2 usb_device_generic.h 99

1.4.2 Embedded Host API 99

1.4.2.1 Embedded Host Stack 99

1.4.2.1.1 Functions 100

1.4.2.1.1.1 USB_HOST_APP_DATA_EVENT_HANDLER Function 101

1.4.2.1.1.2 USB_HOST_APP_EVENT_HANDLER Function 102

1.4.2.1.1.3 USB_HostInterruptHandler Function 102

MLA - USB Library Help

5

1.4.2.1.1.4 USBHostClearEndpointErrors Function 103

1.4.2.1.1.5 USBHostDeviceSpecificClientDriver Function 103

1.4.2.1.1.6 USBHostDeviceStatus Function 104

1.4.2.1.1.7 USBHostInit Function 105

1.4.2.1.1.8 USBHostIsochronousBuffersCreate Function 106

1.4.2.1.1.9 USBHostIsochronousBuffersDestroy Function 106

1.4.2.1.1.10 USBHostIsochronousBuffersReset Function 107

1.4.2.1.1.11 USBHostIssueDeviceRequest Function 107

1.4.2.1.1.12 USBHostRead Function 108

1.4.2.1.1.13 USBHostResetDevice Function 109

1.4.2.1.1.14 USBHostResumeDevice Function 110

1.4.2.1.1.15 USBHostSetDeviceConfiguration Function 110

1.4.2.1.1.16 USBHostSetNAKTimeout Function 111

1.4.2.1.1.17 USBHostShutdown Function 112

1.4.2.1.1.18 USBHostSuspendDevice Function 112

1.4.2.1.1.19 USBHostTasks Function 113

1.4.2.1.1.20 USBHostTerminateTransfer Function 114

1.4.2.1.1.21 USBHostTransferIsComplete Function 114

1.4.2.1.1.22 USBHostVbusEvent Function 115

1.4.2.1.1.23 USBHostWrite Function 116

1.4.2.1.1.24 USBHostGetCurrentConfigurationDescriptor Macro 117

1.4.2.1.1.25 USBHostGetDeviceDescriptor Macro 117

1.4.2.1.1.26 USBHostGetStringDescriptor Macro 118

1.4.2.1.1.27 USBHostReadIsochronous Macro 119

1.4.2.1.1.28 USBHostWriteIsochronous Macro 120

1.4.2.1.2 Data Types and Constants 121

1.4.2.1.2.1 CLIENT_DRIVER_TABLE Structure 122

1.4.2.1.2.2 HOST_TRANSFER_DATA Structure 123

1.4.2.1.2.3 TRANSFER_ATTRIBUTES Type 123

1.4.2.1.2.4 USB_CLIENT_EVENT_HANDLER Type 123

1.4.2.1.2.5 USB_CLIENT_INIT Type 124

1.4.2.1.2.6 USB_TPL Type 125

1.4.2.1.2.7 INIT_CL_SC_P Macro 125

1.4.2.1.2.8 INIT_VID_PID Macro 125

1.4.2.1.2.9 TPL_ALLOW_HNP Macro 126

1.4.2.1.2.10 TPL_CLASS_DRV Macro 126

1.4.2.1.2.11 TPL_EP0_ONLY_CUSTOM_DRIVER Macro 126

1.4.2.1.2.12 TPL_IGNORE_CLASS Macro 126

1.4.2.1.2.13 TPL_IGNORE_PID Macro 126

1.4.2.1.2.14 TPL_IGNORE_PROTOCOL Macro 127

1.4.2.1.2.15 TPL_IGNORE_SUBCLASS Macro 127

1.4.2.1.2.16 TPL_SET_CONFIG Macro 127

MLA - USB Library Help

6

1.4.2.1.2.17 USB_HOST_APP_DATA_EVENT_HANDLER Macro 127

1.4.2.1.2.18 USB_HOST_APP_EVENT_HANDLER Macro 127

1.4.2.1.2.19 USB_NUM_BULK_NAKS Macro 128

1.4.2.1.2.20 USB_NUM_COMMAND_TRIES Macro 128

1.4.2.1.2.21 USB_NUM_CONTROL_NAKS Macro 128

1.4.2.1.2.22 USB_NUM_ENUMERATION_TRIES Macro 128

1.4.2.1.2.23 USB_NUM_INTERRUPT_NAKS Macro 128

1.4.2.1.3 usb_host.h 129

1.4.2.1.4 __USBHOST_H__ Macro 131

1.4.2.2 CDC Client Driver 131

1.4.2.2.1 Functions 133

1.4.2.2.1.1 USBHostCDC_Api_ACM_Request Function 134

1.4.2.2.1.2 USBHostCDC_Api_Get_IN_Data Function 134

1.4.2.2.1.3 USBHostCDC_Api_Send_OUT_Data Function 135

1.4.2.2.1.4 USBHostCDC_ApiDeviceDetect Function 135

1.4.2.2.1.5 USBHostCDC_ApiTransferIsComplete Function 136

1.4.2.2.1.6 USBHostCDCDeviceStatus Function 136

1.4.2.2.1.7 USBHostCDCEventHandler Function 137

1.4.2.2.1.8 USBHostCDCInitAddress Function 138

1.4.2.2.1.9 USBHostCDCInitialize Function 138

1.4.2.2.1.10 USBHostCDCResetDevice Function 139

1.4.2.2.1.11 USBHostCDCTasks Function 139

1.4.2.2.1.12 USBHostCDCTransfer Function 140

1.4.2.2.1.13 USBHostCDCTransferIsComplete Function 141

1.4.2.2.2 Data Types and Constants 141

1.4.2.2.2.1 COMM_INTERFACE_DETAILS Structure 144

1.4.2.2.2.2 DATA_INTERFACE_DETAILS Structure 144

1.4.2.2.2.3 USB_CDC_ACM_FN_DSC Structure 145

1.4.2.2.2.4 USB_CDC_CALL_MGT_FN_DSC Structure 145

1.4.2.2.2.5 USB_CDC_CONTROL_SIGNAL_BITMAP Union 146

1.4.2.2.2.6 USB_CDC_DEVICE_INFO Structure 146

1.4.2.2.2.7 USB_CDC_HEADER_FN_DSC Structure 147

1.4.2.2.2.8 USB_CDC_LINE_CODING Union 148

1.4.2.2.2.9 USB_CDC_UNION_FN_DSC Structure 148

1.4.2.2.2.10 DEVICE_CLASS_CDC Macro 149

1.4.2.2.2.11 EVENT_CDC_ATTACH Macro 149

1.4.2.2.2.12 EVENT_CDC_COMM_READ_DONE Macro 149

1.4.2.2.2.13 EVENT_CDC_COMM_WRITE_DONE Macro 149

1.4.2.2.2.14 EVENT_CDC_DATA_READ_DONE Macro 149

1.4.2.2.2.15 EVENT_CDC_DATA_WRITE_DONE Macro 150

1.4.2.2.2.16 EVENT_CDC_NAK_TIMEOUT Macro 150

1.4.2.2.2.17 EVENT_CDC_NONE Macro 150

MLA - USB Library Help

7

1.4.2.2.2.18 EVENT_CDC_OFFSET Macro 150

1.4.2.2.2.19 EVENT_CDC_RESET Macro 150

1.4.2.2.2.20 USB_CDC_ABSTRACT_CONTROL_MODEL Macro 151

1.4.2.2.2.21 USB_CDC_ATM_NETWORKING_CONTROL_MODEL Macro 151

1.4.2.2.2.22 USB_CDC_CAPI_CONTROL_MODEL Macro 151

1.4.2.2.2.23 USB_CDC_CLASS_ERROR Macro 151

1.4.2.2.2.24 USB_CDC_COMM_INTF Macro 151

1.4.2.2.2.25 USB_CDC_COMMAND_FAILED Macro 152

1.4.2.2.2.26 USB_CDC_COMMAND_PASSED Macro 152

1.4.2.2.2.27 USB_CDC_CONTROL_LINE_LENGTH Macro 152

1.4.2.2.2.28 USB_CDC_CS_ENDPOINT Macro 152

1.4.2.2.2.29 USB_CDC_CS_INTERFACE Macro 152

1.4.2.2.2.30 USB_CDC_DATA_INTF Macro 153

1.4.2.2.2.31 USB_CDC_DEVICE_BUSY Macro 153

1.4.2.2.2.32 USB_CDC_DEVICE_DETACHED Macro 153

1.4.2.2.2.33 USB_CDC_DEVICE_HOLDING Macro 153

1.4.2.2.2.34 USB_CDC_DEVICE_MANAGEMENT Macro 153

1.4.2.2.2.35 USB_CDC_DEVICE_NOT_FOUND Macro 154

1.4.2.2.2.36 USB_CDC_DIRECT_LINE_CONTROL_MODEL Macro 154

1.4.2.2.2.37 USB_CDC_DSC_FN_ACM Macro 154

1.4.2.2.2.38 USB_CDC_DSC_FN_CALL_MGT Macro 154

1.4.2.2.2.39 USB_CDC_DSC_FN_COUNTRY_SELECTION Macro 154

1.4.2.2.2.40 USB_CDC_DSC_FN_DLM Macro 155

1.4.2.2.2.41 USB_CDC_DSC_FN_HEADER Macro 155

1.4.2.2.2.42 USB_CDC_DSC_FN_RPT_CAPABILITIES Macro 155

1.4.2.2.2.43 USB_CDC_DSC_FN_TEL_OP_MODES Macro 155

1.4.2.2.2.44 USB_CDC_DSC_FN_TELEPHONE_RINGER Macro 155

1.4.2.2.2.45 USB_CDC_DSC_FN_UNION Macro 156

1.4.2.2.2.46 USB_CDC_DSC_FN_USB_TERMINAL Macro 156

1.4.2.2.2.47 USB_CDC_ETHERNET_EMULATION_MODEL Macro 156

1.4.2.2.2.48 USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Macro 156

1.4.2.2.2.49 USB_CDC_GET_COMM_FEATURE Macro 156

1.4.2.2.2.50 USB_CDC_GET_ENCAPSULATED_REQUEST Macro 157

1.4.2.2.2.51 USB_CDC_GET_LINE_CODING Macro 157

1.4.2.2.2.52 USB_CDC_ILLEGAL_REQUEST Macro 157

1.4.2.2.2.53 USB_CDC_INITIALIZING Macro 157

1.4.2.2.2.54 USB_CDC_INTERFACE_ERROR Macro 157

1.4.2.2.2.55 USB_CDC_LINE_CODING_LENGTH Macro 158

1.4.2.2.2.56 USB_CDC_MAX_PACKET_SIZE Macro 158

1.4.2.2.2.57 USB_CDC_MOBILE_DIRECT_LINE_MODEL Macro 158

1.4.2.2.2.58 USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Macro 158

1.4.2.2.2.59 USB_CDC_NO_PROTOCOL Macro 158

MLA - USB Library Help

8

1.4.2.2.2.60 USB_CDC_NO_REPORT_DESCRIPTOR Macro 159

1.4.2.2.2.61 USB_CDC_NORMAL_RUNNING Macro 159

1.4.2.2.2.62 USB_CDC_OBEX Macro 159

1.4.2.2.2.63 USB_CDC_PHASE_ERROR Macro 159

1.4.2.2.2.64 USB_CDC_REPORT_DESCRIPTOR_BAD Macro 159

1.4.2.2.2.65 USB_CDC_RESET_ERROR Macro 160

1.4.2.2.2.66 USB_CDC_RESETTING_DEVICE Macro 160

1.4.2.2.2.67 USB_CDC_SEND_BREAK Macro 160

1.4.2.2.2.68 USB_CDC_SEND_ENCAPSULATED_COMMAND Macro 160

1.4.2.2.2.69 USB_CDC_SET_COMM_FEATURE Macro 161

1.4.2.2.2.70 USB_CDC_SET_CONTROL_LINE_STATE Macro 161

1.4.2.2.2.71 USB_CDC_SET_LINE_CODING Macro 161

1.4.2.2.2.72 USB_CDC_TELEPHONE_CONTROL_MODEL Macro 161

1.4.2.2.2.73 USB_CDC_V25TER Macro 161

1.4.2.2.2.74 USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Macro 162

1.4.2.2.3 usb_host_cdc.h 162

1.4.2.2.4 usb_host_cdc_interface.h 164

1.4.2.3 HID Client Driver 165

1.4.2.3.1 Functions 165

1.4.2.3.1.1 USBHostHID_ApiFindBit Function 166

1.4.2.3.1.2 USBHostHID_ApiFindValue Function 167

1.4.2.3.1.3 USBHostHID_ApiGetCurrentInterfaceNum Function 168

1.4.2.3.1.4 USBHostHID_ApiImportData Function 168

1.4.2.3.1.5 USBHostHID_HasUsage Function 169

1.4.2.3.1.6 USBHostHIDDeviceDetect Function 169

1.4.2.3.1.7 USBHostHIDDeviceStatus Function 170

1.4.2.3.1.8 USBHostHIDEventHandler Function 170

1.4.2.3.1.9 USBHostHIDInitialize Function 171

1.4.2.3.1.10 USBHostHIDResetDevice Function 172

1.4.2.3.1.11 USBHostHIDResetDeviceWithWait Function 172

1.4.2.3.1.12 USBHostHIDTasks Function 173

1.4.2.3.1.13 USBHostHIDTerminateTransfer Function 173

1.4.2.3.1.14 USBHostHIDTransfer Function 174

1.4.2.3.1.15 USBHostHIDTransferIsComplete Function 175

1.4.2.3.1.16 USBHostHID_ApiDeviceDetect Macro 175

1.4.2.3.1.17 USBHostHID_ApiGetReport Macro 176

1.4.2.3.1.18 USBHostHID_ApiResetDevice Macro 176

1.4.2.3.1.19 USBHostHID_ApiSendReport Macro 176

1.4.2.3.1.20 USBHostHID_ApiTransferIsComplete Macro 176

1.4.2.3.1.21 USBHostHID_GetCurrentReportInfo Macro 176

1.4.2.3.1.22 USBHostHID_GetItemListPointers Macro 177

1.4.2.3.1.23 USBHostHIDRead Macro 177

MLA - USB Library Help

9

1.4.2.3.1.24 USBHostHIDWrite Macro 178

1.4.2.3.2 Data Types and Constants 178

1.4.2.3.2.1 HID_COLLECTION Structure 182

1.4.2.3.2.2 HID_DATA_DETAILS Structure 182

1.4.2.3.2.3 HID_DESIGITEM Structure 183

1.4.2.3.2.4 HID_GLOBALS Structure 183

1.4.2.3.2.5 HID_ITEM_INFO Structure 184

1.4.2.3.2.6 HID_REPORT Structure 185

1.4.2.3.2.7 HID_REPORTITEM Structure 185

1.4.2.3.2.8 HID_STRINGITEM Structure 186

1.4.2.3.2.9 HID_TRANSFER_DATA Structure 186

1.4.2.3.2.10 HID_USAGEITEM Structure 187

1.4.2.3.2.11 HID_USER_DATA_SIZE Type 187

1.4.2.3.2.12 HIDReportTypeEnum Enumeration 187

1.4.2.3.2.13 USB_HID_DEVICE_ID Structure 188

1.4.2.3.2.14 USB_HID_DEVICE_RPT_INFO Structure 188

1.4.2.3.2.15 USB_HID_ITEM_LIST Structure 190

1.4.2.3.2.16 USB_HID_RPT_DESC_ERROR Enumeration 190

1.4.2.3.2.17 deviceRptInfo Variable 191

1.4.2.3.2.18 itemListPtrs Variable 192

1.4.2.3.2.19 DEVICE_CLASS_HID Macro 192

1.4.2.3.2.20 DSC_HID Macro 192

1.4.2.3.2.21 DSC_PHY Macro 192

1.4.2.3.2.22 EVENT_HID_ATTACH Macro 192

1.4.2.3.2.23 EVENT_HID_BAD_REPORT_DESCRIPTOR Macro 193

1.4.2.3.2.24 EVENT_HID_DETACH Macro 193

1.4.2.3.2.25 EVENT_HID_NONE Macro 193

1.4.2.3.2.26 EVENT_HID_OFFSET Macro 193

1.4.2.3.2.27 EVENT_HID_READ_DONE Macro 193

1.4.2.3.2.28 EVENT_HID_RESET Macro 194

1.4.2.3.2.29 EVENT_HID_RESET_ERROR Macro 194

1.4.2.3.2.30 EVENT_HID_RPT_DESC_PARSED Macro 194

1.4.2.3.2.31 EVENT_HID_WRITE_DONE Macro 194

1.4.2.3.2.32 HOST_DSC_RPT Macro 194

1.4.2.3.2.33 USB_HID_CLASS_ERROR Macro 195

1.4.2.3.2.34 USB_HID_COMMAND_FAILED Macro 195

1.4.2.3.2.35 USB_HID_COMMAND_PASSED Macro 195

1.4.2.3.2.36 USB_HID_DEVICE_BUSY Macro 195

1.4.2.3.2.37 USB_HID_DEVICE_DETACHED Macro 195

1.4.2.3.2.38 USB_HID_DEVICE_HOLDING Macro 196

1.4.2.3.2.39 USB_HID_DEVICE_NOT_FOUND Macro 196

1.4.2.3.2.40 USB_HID_ILLEGAL_REQUEST Macro 196

MLA - USB Library Help

10

1.4.2.3.2.41 USB_HID_INITIALIZING Macro 196

1.4.2.3.2.42 USB_HID_INTERFACE_ERROR Macro 196

1.4.2.3.2.43 USB_HID_NO_REPORT_DESCRIPTOR Macro 197

1.4.2.3.2.44 USB_HID_NORMAL_RUNNING Macro 197

1.4.2.3.2.45 USB_HID_PHASE_ERROR Macro 197

1.4.2.3.2.46 USB_HID_REPORT_DESCRIPTOR_BAD Macro 197

1.4.2.3.2.47 USB_HID_RESET_ERROR Macro 198

1.4.2.3.2.48 USB_HID_RESETTING_DEVICE Macro 198

1.4.2.3.2.49 USB_PROCESSING_REPORT_DESCRIPTOR Macro 198

1.4.2.3.3 usb_host_hid.h 198

1.4.2.3.4 usb_host_hid_parser.h 201

1.4.2.4 Mass Storage Client Driver 202

1.4.2.4.1 Functions 203

1.4.2.4.1.1 USBHostMSDDeviceStatus Function 203

1.4.2.4.1.2 USBHostMSDEventHandler Function 204

1.4.2.4.1.3 USBHostMSDInitialize Function 205

1.4.2.4.1.4 USBHostMSDResetDevice Function 205

1.4.2.4.1.5 USBHostMSDTasks Function 206

1.4.2.4.1.6 USBHostMSDTerminateTransfer Function 206

1.4.2.4.1.7 USBHostMSDTransfer Function 207

1.4.2.4.1.8 USBHostMSDTransferIsComplete Function 208

1.4.2.4.1.9 USBHostMSDRead Macro 208

1.4.2.4.1.10 USBHostMSDWrite Macro 209

1.4.2.4.2 Data Types and Constants 210

1.4.2.4.2.1 DEVICE_CLASS_MASS_STORAGE Macro 211

1.4.2.4.2.2 DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Macro 211

1.4.2.4.2.3 DEVICE_SUBCLASS_CD_DVD Macro 211

1.4.2.4.2.4 DEVICE_SUBCLASS_FLOPPY_INTERFACE Macro 211

1.4.2.4.2.5 DEVICE_SUBCLASS_RBC Macro 212

1.4.2.4.2.6 DEVICE_SUBCLASS_REMOVABLE Macro 212

1.4.2.4.2.7 DEVICE_SUBCLASS_SCSI Macro 212

1.4.2.4.2.8 DEVICE_SUBCLASS_TAPE_DRIVE Macro 212

1.4.2.4.2.9 EVENT_MSD_ATTACH Macro 212

1.4.2.4.2.10 EVENT_MSD_MAX_LUN Macro 213

1.4.2.4.2.11 EVENT_MSD_NONE Macro 213

1.4.2.4.2.12 EVENT_MSD_OFFSET Macro 213

1.4.2.4.2.13 EVENT_MSD_RESET Macro 213

1.4.2.4.2.14 EVENT_MSD_TRANSFER Macro 213

1.4.2.4.2.15 MSD_COMMAND_FAILED Macro 214

1.4.2.4.2.16 MSD_COMMAND_PASSED Macro 214

1.4.2.4.2.17 MSD_PHASE_ERROR Macro 214

1.4.2.4.2.18 USB_MSD_CBW_ERROR Macro 214

MLA - USB Library Help

11

1.4.2.4.2.19 USB_MSD_COMMAND_FAILED Macro 214

1.4.2.4.2.20 USB_MSD_COMMAND_PASSED Macro 215

1.4.2.4.2.21 USB_MSD_CSW_ERROR Macro 215

1.4.2.4.2.22 USB_MSD_DEVICE_BUSY Macro 215

1.4.2.4.2.23 USB_MSD_DEVICE_DETACHED Macro 215

1.4.2.4.2.24 USB_MSD_DEVICE_NOT_FOUND Macro 215

1.4.2.4.2.25 USB_MSD_ERROR Macro 216

1.4.2.4.2.26 USB_MSD_ERROR_STATE Macro 216

1.4.2.4.2.27 USB_MSD_ILLEGAL_REQUEST Macro 216

1.4.2.4.2.28 USB_MSD_INITIALIZING Macro 216

1.4.2.4.2.29 USB_MSD_INVALID_LUN Macro 216

1.4.2.4.2.30 USB_MSD_MEDIA_INTERFACE_ERROR Macro 217

1.4.2.4.2.31 USB_MSD_NORMAL_RUNNING Macro 217

1.4.2.4.2.32 USB_MSD_OUT_OF_MEMORY Macro 217

1.4.2.4.2.33 USB_MSD_PHASE_ERROR Macro 217

1.4.2.4.2.34 USB_MSD_RESET_ERROR Macro 217

1.4.2.4.2.35 USB_MSD_RESETTING_DEVICE Macro 218

1.4.2.4.3 usb_host_msd.h 218

1.5 Demo Board Information 220

1.5.1 Low Pin Count USB Development Board 220

1.5.2 PICDEM FS USB Board 222

1.5.3 PIC18 Starter Kit 223

1.5.4 PIC18F46J50 Plug-In-Module (PIM) 224

1.5.5 PIC18F47J53 Plug-In-Module (PIM) 225

1.5.6 PIC18F87J50 Plug-In-Module (PIM) Demo Board 226

1.5.7 PIC24F Starter Kit 227

1.5.8 PIC24FJ256DA210 Development Board 227

1.5.9 Explorer 16 229

1.5.9.1 PIC24FJ256GB110 Plug-In-Module (PIM) 230

1.5.9.2 PIC24FJ256GB210 Plug-In-Module (PIM) 230

1.5.9.3 PIC24FJ64GB004 Plug-In-Module (PIM) 230

1.5.9.4 PIC24EP512GU810 Plug-In-Module (PIM) 231

1.5.9.5 dsPIC33EP512MU810 Plug-In-Module (PIM) 231

1.5.9.6 USB PICTail Plus Daughter Board 231

1.6 Demos 233

1.6.1 Device - Audio Microphone Basic Demo 233

1.6.2 Device - Audio MIDI Demo 235

1.6.2.1 Garage Band '08 [Macintosh Computers] 235

1.6.2.2 Using Linux MultiMedia Studio (LMMS) [Linux and Windows Computers] 237

1.6.3 Device - Boot Loader - HID 239

1.6.3.1 Customizing for an Application 240

MLA - USB Library Help

12

1.6.3.1.1 Importance of Change the VID/PID 240

1.6.3.1.2 Safe Boot Loading Considerations 241

1.6.3.1.3 Configuration Bits 241

1.6.3.1.4 Application Version Information 242

1.6.3.1.5 Host Application Responsibilities 242

1.6.3.2 Implementation Details 243

1.6.3.2.1 Command Set 243

1.6.3.2.1.1 QUERY_DEVICE 243

1.6.3.2.1.2 UNLOCK_CONFIG 245

1.6.3.2.1.3 ERASE_DEVICE 245

1.6.3.2.1.4 PROGRAM_DEVICE 246

1.6.3.2.1.5 PROGRAM_COMPLETE 246

1.6.3.2.1.6 GET_DATA 246

1.6.3.2.1.7 RESET_DEVICE 247

1.6.3.2.1.8 SIGN_FLASH 247

1.6.3.2.1.9 QUERY_EXTENDED_INFO 248

1.6.3.2.2 Boot Loader Entry 248

1.6.3.2.2.1 Input Button/Hardware Entry 248

1.6.3.2.2.2 Software/Application Entry 249

1.6.3.2.3 Processor Specific Implementation Details 250

1.6.3.2.3.1 PIC16 and PIC18 250

1.6.3.2.3.2 PIC24F 257

1.6.3.2.4 Flash Signature 267

1.6.4 Device - CDC Basic Demo 268

1.6.4.1 Windows 269

1.6.4.2 Linux 270

1.6.4.3 Macintosh 270

1.6.5 Device - HID - Custom Demo 271

1.6.6 Device - HID - Digitizer Demos 274

1.6.7 Device - HID - Joystick Demo 275

1.6.8 Device - HID - Keyboard Demo 276

1.6.9 Device - HID - Mouse Demo 277

1.6.10 Device - HID - Uninterruptible Power Supply 278

1.6.11 Device - Mass Storage - Internal Flash Demo 278

1.6.11.1 Troubleshooting 279

1.6.12 Device - Mass Storage - SD Card Reader 279

1.6.13 Device - Vendor Driver Basic Demo 280

1.6.13.1 Windows 281

1.6.13.2 Linux 282

1.6.13.3 Android 3.1+ 283

1.6.14 Device - Vendor High Bandwidth Demo 285

1.6.15 Host - CDC Serial Demo 286

MLA - USB Library Help

13

1.6.16 Host - HID - Keyboard Demo 287

1.6.17 Host - HID - Mouse Demo 287

1.6.18 Host - Mass Storage - Thumb Drive Data Logger 288

1.6.19 Host - Mass Storage (MSD) - Simple Demo 289

1.7 Appendix (FAQs, Important Information, Reference Material, etc.) 290

1.7.1 Using breakpoints in USB host applications 290

1.7.2 Notes on .inf Files 293

1.7.3 Vendor IDs (VID) and Product IDs (PID) 293

1.7.4 Using a Diff Tool 293

1.7.5 Driver Signing and Windows 8 294

1.7.5.1 What are "Signed" Drivers? 294

1.7.5.2 Minimum Driver Signature Requirements 295

1.7.5.3 Using Older Drivers with Windows 8 295

1.7.5.4 Driver Signatures in the Microchip Libraries for Applications (MLA) Projects 297

1.7.5.5 Obtaining a Microsoft Authenticode Code Signing Certificate 298

1.7.5.6 Code Signing Certificates (Other Uses) 298

1.7.5.7 Using a Code Signing Certificate to Sign Driver Packages 298

Index 301

MLA - USB Library Help

14

USB Library

1 USB Library

1 MLA - USB Library Help

15

1.1 Introduction
A brief summary of what this library is and what it contains.

Description

The USB specification was developed to replace many other non-standard buses and communication ports that used to be
found on personal computers. Since its release USB has become standard on nearly all PCs and on many phones, tablets,
TVs and various other hardware as a means for standardized communication.

The USB specification is available from the USB Implementer's Forum (USBIF) website, www.usb.org. The USB Library
provided by Microchip interfaces to the USB modules on many Microchip microcontroller products providing a basic interface
for developers to use to enable USB in their products. Beyond the physical layer interface, the USB Library also implements
many of the protocol layers defined in the USB specification assisting designers to create products faster.

The examples include applications for both USB peripherals as well as embedded host examples. For USB peripheral
demos, example .inf files and PC code are also provided where applicable.

1.1 Introduction MLA - USB Library Help

16

1.2 Legal Information
Legal information pertinent to this project. Including the software license agreement and trademark information.

Description

Software License Agreement

(c) 2004 - 2014 Microchip Technology Inc.

Microchip licenses this software to you solely for use with Microchip products. The software is owned by Microchip and its
licensors, and is protected under applicable copyright laws. All rights reserved.

SOFTWARE IS PROVIDED "AS IS" MICROCHIP EXPRESSLY DISCLAIMS ANY WARRANTY OF ANY KIND, WHETHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL MICROCHIP BE LIABLE
FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA,
HARM TO YOUR EQUIPMENT, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES,
ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), ANY CLAIMS FOR
INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.

To the fullest extent allowed by law, Microchip and its licensors liability shall not exceed the amount of fees, if any, that you
have paid directly to Microchip to use this software.

MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE TERMS.

Trademark Information

The Microchip name and logo, the Microchip logo, MPLAB, and PIC are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

PICDEM and PICtail are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Microsoft, Windows, Windows Vista, and Authenticode are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

SD is a trademark of the SD Association in the U.S.A and other countries

1.2 Legal Information MLA - USB Library Help

17

1.3 Release Notes
Useful information about this release including revision history, what's next, library migration, demo board support
information, operating system support information ,links to tools, support, and other online references.

Description

1.3.1 Revision History

This section describes in more detail the changes made between versions of the MCHPFSUSB stack.

Description

This section describes in more detail the changes made between versions of the MCHPFSUSB stack. This section generally
discusses only changes made to the core files (those found in the <install directory>\Microchip folder). This section generally
doesn't include changes to the demo projects unless those changes are important to know about. This section also doesn't
encompass minor changes to the stack files such as arrangement or locations of definitions or any other organizational
changes.

For more information about how to compare the actual source of two different revisions, please see the Appendix - Using a
diff tool section of this document.

1.3.1.1 v2.10
• Major changes to folder structure

• Changed all type definitions and API used by the stack from GenericTypeDefs.h to standard C99 types.

• Better hardware abstraction of the demo board specific features from the example application code.

• Addition of new demo board platforms.

• Expanded demo support for some existing platforms

• PIC32 product support removed. PIC32 products are supported by the MPLAB(R)Harmony Framework
(www.microchip.com/Harmony).

1.3.1.2 v2.9j
Updated HID bootloader for PIC18 devices. Added software entry point at 0x001C and robustness features to allow re-entry
into bootloader in the event of interrupted erase/program/verify sequence.

• Core USB stack files affected: None

• Individual project files: All PIC18 HID bootloader projects were updated. Additionally, all main.c (or equivalent) USB
device project demo files were updated, to reserve the 0x1006 and 0x1016 flash words for storing the "flash signature"
and application firmware version values. For usage details, see the inline comments at the top of the main.c file in the HID
bootloader firmware project.

1.3 Release Notes MLA - USB Library Help Revision History

18

• Updated the cross platform PC application software intended to be used with the bootloader firmware. The updated
version should be built with Qt 5.0.2 using MinGW 32-bit.

Added "Obtaining a WHQL Certified USB Driver Package" document to the \Microchip\Help folder, along with a reseller
rights request form necessary for doing Microsoft Driver Update Acceptable (DUA) submissions to allow re-certification of
drivers.

• stack files affected: none, documentation only

1.3.1.3 v2.9i

Android files changed to request for protocol version and to wait for a user configurable startup delay.

• stack files affected: usb_host_android.c

In the WinUSB based device projects, changed Microsoft specific OS descriptors to reside in ROM

• stack files affected: none (only demo specific usb_config.h and usb_descriptors.c files affected)

Added conditional compilation definitions to support PIC16F1454, PIC16F1455, and 'LF' flavored PIC16F145x family devices

• stack files affected: usb_function_cdc.c

1.3.1.4 v2.9h

Android driver condensed to remove protocol specific drivers.

• stack files affected: usb_host_android.c, usb_host_android_protocol_v1.c (removed),
usb_host_android_protocol_v1_local.h (removed)

Support added for registering Android HID reports.

• stack files affected: usb_host_android.c, usb_host_android.h

Added support to ignore protocol, subclass, and/or class in the TPL for a USB host

• stack files affected: usb_host.c, usb_host.h

Added support for a client driver to register for EP0 traffic only

• stack files affected: usb_host.c, usb_host.h

Removed unused variables

• stack files affected: usb_function_audio.c, usb_function_cdc.c

Added support for vendor class specific requests for MS descriptors

• stack files affected: usb_function_generic.c, usb_function_generic.h, usb_device.c

Fixed folder capitalization issue:

• stack files affected: usb_host_printer_primitives.c

Fixed an issue where if a USB host received a report of 0 configurations available on a device, it would cause system issues.

• stack files affected: usb_host.c

1.3.1.5 v2.9g
Android audio and HID support added to accessory driver

• stack files affected: usb_host_android.c, usb_host_android_protocol_v1.c, usb_host_android.h,
usb_host_android_protocol_v1.h, usb_host_android_local.h, usb_host_android_protocol_v1_local.h

1.3 Release Notes MLA - USB Library Help Revision History

19

Cleaning up unused variables in the stack

• stack files affected: usb_device_cdc.c, usb_device_audio.c

Fixed build issue on Mac/Linux systems for printer host demo

• stack files affected: usb_host_printer_primitives.c

Modifications to enable EP0 only driver

• stack files affected: usb_host.h, usb_host.c, usb_host_local.h

Modifications to allow wildcards on TPL table entries

• stack files affected: usb_host.h, usb_host.c

Fixed issue where a device reporting 0 configurations available would cause the host stack to crash.

• stack files affected: usb_host.c

Added support for Microsoft OS Descriptors

• stack files affected: usb_device.c, usb_generic.c, usb_generic.h

Fixed issue with interrupt enable for PIC32MX2 family devices

• stack files affected: usb_hal_pic32.h

Write attempts to a drive that is write protected does not report the status correct.

• Stack files affected: usb_function_msd_multi_sector.c

1.3.1.6 v2.9f
XC16 and XC32 support added.

• stack files affected: usb_hal.h, usb_ch9.h, usb_hal_*.h, usb_host_printer.h, usb_host_printer_esc_pos.h,
usb_function_msd.c, usb_function_msd_multi_sector.c, usb_function_phdc_com_model.c, usb_host_printer_esc_pos.c,
usb_host_printer_pcl_5.c, usb_host_printer_postscript.c, usb_device.c, usb_device_local.h, usb_hal_local.h,
usb_hal_pic24.c, usb_hal_pic24f.c, usb_host_local.h, usb_otg.c

Fixed issue with PIC32 access to USB registers not being atomic.

• stack files affected: usb_hal_pic32.h

Support for PIC16F1459 family devices.

• stack files affected: usb_hal.h, usb_device.c, usb_hal_pic16f1.h, usb_device_local.h

Removed hid_report_in[] and hid_report_out[] buffers from stack files. All HID demos responsible for allocating their own
data buffers.

• stack files affected: usb_function_hid.h, usb_device.c

Moved part specific mapping of BDT to HAL files.

• stack files affected: usb_hal_dspic33e.h, usb_hal_pic16f1.h, usb_hal_pic18.h, usb_hal_pic24.h, usb_hal_pic24e.h,
usb_hal_pic24f.h, usb_hal_pic32.h

1.3.1.7 v2.9e
1. Read-modify-write race condition in the way the USB interrupt flag was getting cleared on the PIC32 devices.

• Stack files affected: usb_hal_pic32.h

2. Added option to disable NAK timeouts for CDC host transfers (USB_HOST_CDC_NAK_TIMEOUT)

• Stack files affected: usb_host_cdc.c

3. The ALLOW_GLOBAL_VID_AND_PID option does not issue the EVENT_OVERRIDE_CLIENT_DRIVER_SELECTION
event.

1.3 Release Notes MLA - USB Library Help Revision History

20

• Stack files affected: usb_host.c

4. USB host isochronous writes did not function correctly

• Stack files affected: usb_host.c

5. USB host isochronous writes and reads could not occur during the same frame

• Stack files affected: usb_host.c

6. NULL pointer dereference could occur if a malloc() call failed during device enumeration in USB host stack while creating
the endpoint data structure.

• Stack files affected: usb_host.c

7. Optimazation settings other than -O0 for C30 could cause MSD internal flash demos not to work.

• Stack files affected: None (Files.c in user folder updated)

1.3.1.8 v2.9d
1. Data event handler of Android driver not passing events to protocol handler resulting in possible memory leak.

• Stack files affected: usb_host_android.c

2. Issues with mass storage demos on OS X 10.7 when SD-card is read-only.

• Stack files affected: usb_function_msd.c

3. Fixed compile warnings when -Wall option selected on C32

• Stack files affected: usb_host_msd.c

4. Fixed issue with call back redirection macro for EP0 request handler.

• Stack files affected: usb_device_local.h

5. Added configuration option to disable DTS checking in hardware

• Stack files affected: usb_device.c

6. Fixed a race condition between the 1msec interrupt and the detach interrupt. If the detach interrupt occurs just before the
1msec interrupt, the interrupt handler could cause the host stack state machine to go into an unknown state requiring a
reset of the system to recover. Typically only seen when rapidly attaching/detaching a device repeatedly.

• Stack files affected: usb_host.c

7. Added an error handing case to check for a size larger than 256.

• Stack files affected: usb_function_phdc.c

8. Write attempts to a drive that is write protected does not report the status correct.

• Stack files affected: usb_function_msd.c

9. Updated PHDC code to pass Continua testing

• Stack files affected: usb_function_phdc.c, usb_function_phdc.h, usb_function_phdc_com_model.c/.h added

1.3.1.9 v2.9c
1. Added example showing how to connect to custom HID, LibUSB, WinUSB, and MCHPUSB demos from an Android v3.1+

host.

• Stack files affected: none

2. Updated libusb driver INF to be signed, so now it can be installed with Windows 7

• Stack files affected: none

3. Some dsPIC projects not building correctly

1.3 Release Notes MLA - USB Library Help Revision History

21

• Stack files affected: usb_hal_dspic33e.h, usb_hal_pic24e.h

1.3.1.10 v2.9b
1. UART RX functionality fixed on several demos using the PIC24FJ256DA210 development board.

• Stack files affected: none

2. Race condition fixed in Android OpenAccessory framework that could lead to the accessory not attaching periodically.

• Stack files affected: usb_host_android_protocol_v1.c

3. Added Android Accessory workaround for when Android device attaches in accessory mode without first attaching as the
manufacturer's mode (happens when accessory is reset but not detached from bus).

• Stack files affected: usb_host_android_protocol_v1.c, usb_host_android.c, usb_host_android.h

4. Fixed issue where non-supported Android protocol versions would try to enumerate.

• Stack files affected: usb_host_android.c

5. PIC18F Starter Kit MSD SD card reader demo not working correctly.

• Stack files affected: none

6. Null pointer dereference on Android OpenAccessory detach event.

• Stack files affected: usb_host_android_protocol_v1.c

7. Removed the restriction of MSD drives with the VID = 0x0930 and PID = 0x6545 for the USB MSD host data logging
demo. These drives now show no issues with recent robustness enhancements in the past several releases.

• Stack files affected: none

8. Link issues on Linux and Macintosh machines for PIC18 demos. The latest versions of the C18 compiler for Linux and
Macintosh change the linker and library file capitalization scheme resulting in link errors when using older linker files.
Linker files updated to use latest capitalization scheme.

• Stack files affected: none

9. Cleaned up the configuration bits sections for several processors in several demos.

• Stack files affected: none

10. CCID demo descriptors updated to enable operation on Macintosh machines.

• Stack files affected: none

11. Update the precompiled MSD library to support .elf files.

• Stack files affected: none

12. PCL5 printer host would send out a 0-length packet if an empty string was passed to it. This results in some PCL5
printers to lock up. The updated driver will not send out a text string to a printer if it is empty.

• Stack files affected: none

13. USB_HID_FEATURE_REPORT was assigned the incorrect value.

• Stack files affected: usb_host_hid.c

14. Some CDC device demos had incorrect USB_MAX_NUM_INT definition.

• Stack files affected: none

15. Added examples showing how to connect to various USB demos with the Android USB host API.

• Stack files affected: none

16. Optional support for DTS signalling added

• Stack files affected: usb_function_cdc.c, usb_function_cdc.h

17. Added MIDI host support

• Stack files affected: usb_host_midi.c, usb_host_midi.h

1.3 Release Notes MLA - USB Library Help Revision History

22

18. Added Android OpenAccessory boot loader example

• Stack files affected: none

19. Fixed issues with PIC32 support with the MSD host boot loader. Now supports C32 versions 2.x and later.

• Stack files affected: none

1.3.1.11 v2.9a
1. Fixes issues in the cross-platform HID boot loader that caused certain hex files not to work if the various sections in the

hex file were not order in increasing address in the .hex file.

• Stack files affected: none

2. Added UART output support for PIC24FJ256DA210 Development Board in Host – Printer Full sheet demo.

• Stack files affected: none

1.3.1.12 v2.9
1. Adds PHDC peripheral support.

2. Adds Android accessory support for host mode accessories.

3. Added MPLAB X project files for most demo projects.

4. Added code to allow subclass 0x05 (SFF-8070i devices) to enumerate to the MSD host. Support limited to devices that
use SCSI command set only.

• Stack files affected: usb_host_msd.c

5. Added additional logic to MSD SCSI host code to improve support for various MSD devices by trying to reset various error
conditions that may occur.

• Stack files affected: usb_host_msd_scsi.c

6. Fixed issue with CDC host where SET_CONTROL_LINE_STATE command response was formatted incorrectly.

• Stack files affected: usb_host_cdc.c

7. Added support for both input and output functionality in the Audio host driver.

• Stack files affected: usb_host_audio.c

8. Added support for SOF, 1 millisecond timer, and data transfer event notifications to USB host drivers.

• Stack files affected: usb_host.c

9. Added mechanism for a host client driver to override or reject the stacks selection for the class driver associated with an
attached device.

• Stack files affected: usb_host.c, usb_common.h

10. Fixed an issue with STALL handling behavior on non-EP0 endpoints for PIC24 and PIC32 devices.

• Stack files affected: usb_device.c

11. Fixed an issue where some variables/flags were not getting re-initialized correctly after a set configuration event leading
to communication issues when ping-pong is enabled and multiple set configuration commands are received.

• Stack files affected: usb_device.c

12. Added mechanism to get the handle for the next available ping-pong transfer.

• Stack files affected: usb_device.h

13. Fixed incorrect value for USB_CDC_CONTROL_LINE_LENGTH Stack files affected: usb_host_cdc.h

14. Updated MSD device driver to pass command verifier tests.

1.3 Release Notes MLA - USB Library Help Revision History

23

• Stack files affected: usb_device_msd.c, usb_device_msd.h

15. Change to CDC device driver to allow handling of terminated transfers.

• Stack files affected: usb_device_cdc.c

1.3.1.13 v2.8
1. Fixed issue with SetFeature(ENDPOINT_HALT) handling in the device stack. Error could cause one packet of data to get

lost per endpoint after clearing a ENDPOINT_HALT event on an endpoint. Issue could also cause the user to lose control
of endpoints that may not have been enabled before the SetFeature(ENDPOINT_HALT) was received. Parts of the issue
described in the following forum thread: http://www.microchip.com/forums/tm.aspx?m=503200.

• Stack files affected: usb_device.c

2. Fixed stability issue in device stack when interrupts enabled related to the improper enabling of the interrupt control bits in
an interrupt context.

• Stack files affected: usb_device.c

3. Fixed issue STALLs were not handled correctly when event transfers are enabled. This could result in the attached device
remaining in a non-responsive state where their endpoints are STALLed.

• Stack files affected: usb_host_msd.c

4. Fixed issue where MSD function driver could not always reinitialize itself to a known state.

• Stack files affected: usb_function_msd.c

5. Added USBCtrlEPAllowStatusStage(), USBDeferStatusStage(), USBCtrlEPAllowDataStage(),
USBDeferOUTDataStage(), USBOUTDataStageDeffered(), USBDeferInDataStage(), and USBINDataStageDeferred()
functions. These functions allow users to defer the handling of control transfers received in interrupt context until a later
point of time.

• Stack files affected: usb_device.c, usb_device.h

6. Fixed issue in PIC18F starter kit SD-card bootloader issue. Bootloader could have errors loading hex files if there was an
hex entry starting at an odd address with an even number of bytes in the payload.

• Stack files affected: none

7. Reorganization of many of the definitions and data types.

• Stack files affected: usb_hal_pic18.h, usb_hal_pic24.h, usb_hal_pic32.h, usb_device_local.h, usb_device.c,
usb_device.h

8. Changed the behavior of the PIC24F HID bootloader linker scripts. The remapping.s file is no longer required. Interrupt
vector remapping is now handled by the provided linker scripts (no customization required). Applications should be able to
run with the bootloader linker script when either programmed or loaded through the bootloader allowing for more easy
development and debugging. Interrupt latency should also be the same when using the bootloader or the debugger. For
more information about usage, please refer to the HID bootloader documentation.

9. Changed the behavior of the PIC32 HID bootloader linker scripts. The dual-linker script requirement has been replaced by
a single required linker script that should be attached to the application project. Applications should be able to run with the
bootloader linker script when either programmed or loaded through the bootloader allowing for more easy development
and debugging. Interrupt latency should also be the same when using the bootloader or the debugger. For more
information about usage, please refer to the HID bootloader documentation.

10. Added files for the PIC18F starter kit contest winners. Located in “<INSTALL_DIRECTORY>/PIC18F Starter Kit
1/Demos/Customer Submissions/Contest 1”

11. Added initial support for the PIC24FJ256DA210 development board.

12. Added initial support for the PIC24FJ256GB210 Plug-in module.

1.3 Release Notes MLA - USB Library Help Revision History

24

1.3.1.14 v2.7a
1. Fixed USBSetBDTAddress() macro, so that it correctly loads the entire U1BDTPx register set, enabling the BDT to be

anywhere in RAM. Previous implementation wouldn't work on a large RAM device if the linker decided to place the BDT[]
array at an address > 64kB.

• Stack files affected: usb_hal_pic32.h

2. Fixed initialization issue where HID parse result information wasn't cleared before loading with new parse result data.

• Stack files affected: usb_host_hid_parser.c

3. Update to support the PIC18F47J53 A1 and later revision devices.

• Stack files affected: usb_device.c

4. Fixed an error on 16-bit and 32-bit processors where a word access could be performed on a byte pointer resulting in
possible address errors with odd aligned pointers.

• Stack files affected: usb_device.c

5. Fixed issue where the USBSleepOnSuspend() function would cause the USB communication to fail after being called
when _IPL is equal to 0.

• Stack files affected: usb_hal_pic24.c

6. Fixed issue where placing the micro in idle mode would cause the host stack to stop sending out SOF packets.

• Stack files affected: usb_host.c

7. Fixed several issues in the USBConfig.exe

8. Made changes to the starting address of the HID bootloader for PIC32. Reduced the size used by the bootloader. Also
added application linker scripts for each processor.

9. Added a three point touch digitizer example

10. Updated some of the PC examples to build and run properly in the 2010 .net Express versions.

11. Added information and batch file showing how to enter a special mode of device manager that allows
removal/uninstallation of devices that are not currently attached to the system.

1.3.1.15 v2.7
1. Fixed error where USBHandleGetAddr() didn't convert the return address from a physical address to a virtual address for

PIC32.

• Stack files affected: usb_device.h

2. Added macro versions of USBDeviceAttach() and USBDeviceDetach() so they will compile without error when using
polling mode.

• Stack files affected: usb_device.h

3. Fixes issue in dual role example where a device in polling mode can still have interrupts enabled from the host mode
causing an incorrect vectoring to the host interrupt controller while in device mode.

• Stack files affected: usb_hal_pic18.h, usb_hal_pic24.h, usb_hal-pic32.h, usb_device.c

4. Modified the SetConfigurationOptions() function for PIC32 to explicitly reconfigure the pull-up/pull-down settings for the
D+/D- pins in case the host code leaves the pull-downs enabled when running in a dual role configuration.

• Stack files affected: usb_hal_pic32.h

5. Fixed error where the USB error interrupt flag was not getting cleared properly for PIC32 resulting in extra error interrupts
(http://www.microchip.com/forums/tm.aspx?m=479085).

• Stack files affected: usb_device.c

6. Updated the device stack to move to the configuration state only after the user event completes.

• Stack files affected: usb_device.c

1.3 Release Notes MLA - USB Library Help Revision History

25

7. Fixed error in the part support list of the variables section where the address of the CDC variables are defined. The
PIC18F2553 was incorrectly named PIC18F2453 and the PIC18F4558 was incorrectly named PIC18F4458
(http://www.microchip.com/forums/fb.aspx?m=487397).

• Stack files affected: usb_function_cdc.c

8. Fixed an error where the USBHostClearEndpointErrors() function didn't properly return USB_SUCCESS if the errors were
successfully cleared (http://www.microchip.com/forums/fb.aspx?m=490651).

• Stack files affected: usb_host.c

9. Fixed issue where deviceInfoHID[i].rptDescriptor was incorrectly freed twice. The second free results in possible issues in
future malloc() calls in the C32 compiler.

• Stack files affected: usb_host_hid.c

10. Fixed an issue where the MSD client driver would issue a transfer events to an incorrect/invalid client driver number
when transfer events are enabled.

• Stack files affected: usb_host_msd.c

11. Fixed issue where a device that is already connected to the embedded host when the system is initialized may not
enumerate.

• Stack files affected: usb_host.c

12. Fixed issue where the embedded host or OTG device did not properly check bmRequestType when it thinks that a
HALT_ENDPOINT request was sent to the device. This resulted in the DTS bits for the attached device getting reset
causing possible communication issues.

• Stack files affected: usb_host.c

13. Changed how the bus sensing works. In previous revisions it was impossible to use the USBDeviceDetach to detach
from the bus if the bus voltage was still present. This is now possible. It was also possible to move the device to the
ATTACHED state in interrupt mode even if the bus voltage wasn't available. This is now prohibited unless VBUS is
present.

• Stack files affected: usb_device.c

14. Added USBSleepOnSuspend() function. This function shows how to put the PIC24F to sleep while the USB module is in
suspend and have the USB module wake up the device on activity on the bus.

• Stack files affected: usb_hal_pic24.h, usb_hal_pic24.c

15. Modified the code to allow connection of USB-RS232 dongles that do not fully comply with CDC specifications.

• Stack files affected: usb_host_cdc.h, usb_host_cdc.c, usb_host_cdc_interface.c, usb_host_interface.h

16. Modified API USBHostCDC_Api_Send_OUT_Data to allow data transfers more than 256 bytes.

• Stack files affected: usb_host_cdc.h, usb_host_cdc.c, usb_host_cdc_interface.c, usb_host_interface.h

17. Improved error case handling when the host sends more OUT bytes in a control transfer than the firmware was
expecting to receive (based on the size parameter when calling USBEP0Receive()).

• Stack files affected: usb_device.c

18. Added CCID (Circuit Cards Interface Device) class device/function support.

• Stack Files affected: usb_function_ccid.h, usb_function_ccid.c

19. Added Audio v1 class embedded host support.

• Stack files affected: usb_host_audio_v1.h, usb_host_audio_v1.c

1.3.2 What's Next

Find out what the USB development team is working on and what will be out in the near future.

Description

The following are the projects that are being worked on. These may not be released in the next release but are in

1.3 Release Notes MLA - USB Library Help What's Next

26

development

• Working with Harmony team to define an API set that will meet their goals but still product size appropriate solutions for
smaller micro-controllers and will easily migrate between the solutions. Migrating towards the new API as they are defined.

1.3.3 Support

Find out how to get help with your USB design, support questions, or USB training.

Description

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com. This web site is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains
the following information:

• Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and
hardware support documents, latest software releases and archived software

• General Technical Support - Frequently Asked Questions (FAQs), technical support requests
(http://support.microchip.com), online discussion groups/forums (http://forum.microchip.com, or more specifically the USB
forum topic), Microchip consultant program member listing

• Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and
events, listings of Microchip sales offices, distributors and factory representatives

Development Systems Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or
development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the
registration instructions.

Additional Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices
are also available to help customers. A listing of sales offices and locations is available on our website.

Technical support is available through the web site at: http://support.microchip.com

Training

• Regional Training Centers: http://www.microchip.com/rtc

• MASTERs Conference: http://www.microchip.com/masters

• Webseminars: http://techtrain.microchip.com/webseminars/QuickList.aspx

1.3 Release Notes MLA - USB Library Help Online Reference and Resources

27

1.3.4 Online Reference and Resources

This section includes useful links to online USB development resources.

Description

Note: Newer versions of the documents below may be available. Please check www.microchip.com for the latest version.

USB Design Center

http://www.microchip.com/usb

Application Notes

Microchip USB Device Firmware Framework User’s Guide

AN950 – Power Management for PIC18 USB Microcontrollers with nanoWatt Technology

AN956 – Migrating Applications to USB from RS-232 UART with Minimal Impact on PC Software

AN1140 – USB Embedded Host Stack

AN1141 – USB Embedded Host Stack Programmer’s Guide

AN1142 – USB Mass Storage Class on an Embedded Host

AN1143 – Generic Client Driver for a USB Embedded Host

AN1144 - USB Human Interface Device Class on an Embedded Host

AN1145 – Using a USB Flash Drive on an Embedded Host

AN1189 – Implementing a Mass Storage Device Using the Microchip

AN1212 – Using USB Keyboard with an Embedded Host

AN1233 – USB Printer Class on an Embedded Host

USB Demonstration Videos

http://www.youtube.com/watch?v=ljF4KQ2mfD0

http://www.youtube.com/watch?v=cmtjKUv_yPs&feature=related

http://www.youtube.com/watch?v=BOosLeO7D58&feature=related

1.3.5 Device (Slave) Demo Board Support and Limitations

This section shows which USB device demos are supported on each of the USB demo boards.

Description

This section shows which USB device demos are supported on each of the USB demo boards.

Limitations

1) The PIC24F starter kit does not have a physical push button. The board uses capacitive touch buttons instead. The cap
touch functionality has not been added to the demos yet so the functionality required by the demos so some or all of the
features of this demo are limited.

2) Bootloader operation with this device family requires the use of revision A5 or later silicon

1.3 Release Notes MLA - USB Library Help Host Demo Board Support and Limitations

28

1.3.6 Host Demo Board Support and Limitations

This section shows which USB host demos are supported on each of the USB demo boards.

Description

This section shows which USB host demos are supported on each of the USB demo boards.

Limitations

1) Neither compound nor composite devices are supported. Some keyboards are either compound or composite.

The “~” prints as an arrow character instead (“->”). This is an effect of the LCD screen on the Explorer 16. The ascii
character for “~” is remapped in the LCD controller.

The “\” prints as a “¥” character instead. This is an effect of the LCD screen on the Explorer 16. The ascii character for “\” is
remapped in the LCD controller.

Backspace and arrow keys may have issues on Explorer 16 boards with certain LCD modules

2) The display features of this demo have not been ported to this board yet.

3) This board does not have a push button and the code required to implement the capacitive touch buttons has not been
implemented yet.

4) There is no potentiometer available on this board. A fixed value of 512 is reported in place of the potentiometer data.

1.3.7 Operating System Support and Limitations

This section describes which operating systems support each of the provided demos.

Description

This section describes which operating systems support each of the provided demos.

1.3 Release Notes MLA - USB Library Help Operating System Support and Limitations

29

Limitations

1) These devices enumerate successfully by the OS but currently there is not an example program to interface these devices.

2) Devices that implement the LibUSB demo will enumerate successfully on Macintosh based operating systems (provided
the correct drivers are installed). Currently there is not an example program to communicate to these devices on these
operating systems in this installation.

3) Only single touch gestures are supported in Windows Vista. For the multi touch demo only the single touch gestures will
work as a gesture. The multi touch gestures in Vista will appears as two separate touch events that do not produce a usable
pattern.

4) When used with Windows XP SP2 or earlier, this demo requires a Microsoft hotfix in order to run properly. This hotfix is
linked from the demo folder. Windows XP SP3 works properly without needing any hotfix.

5) When adding a VID/PID string to the “%DESCRIPTION%=DriverInstall” and “%DESCRIPTION%=DriverInstall64” sections
in the mchpusb.inf file, remove one or more of the pre-existing VID/PID strings from the list. There is a limit to the maximum
number of VID/PID strings that can be supported simultaneously. If the list contains too many entries, the following error
message will occur when installing the driver under Vista: "The Data Area Passed to a System Call Is Too Small"

6) The CDC PC example code does not run as implemented on the 64-bit version of the Windows Vista operating system
with some versions of the .net framework. The .NET SerialPort object does not appear to receive data as implemented in
these examples in the early versions of the .net framework for Vista.

7) The HID keyboard example does not work as implemented on the Windows 2000 operating system or any earlier
revisions of the Windows operating systems.

1.3 Release Notes MLA - USB Library Help Operating System Support and Limitations

30

8) Firmware successfully enumerates but test machine was unable to verify functionality. This is either due to lack of support
in the OS for these types of devices or lack of an Application that uses these devices.

9) This demo uses the USB IAD specification. Some versions of Macintosh OSX do not support IAD.

1.3.8 Tool Information

Specifies the versions of the tools used to test this release.

Description

This release was tested with the following tools:

Compiler Version

MPLAB XC8 1.21

MPLAB XC16 1.21

IDE Version

MPLAB X 1.95

Some demos in this release require the full versions of the above compilers (the boot loaders and a few of the demo
applications). For most demos, either the commercial version, or the evaluation version can be used to build the example
projects. Some The compilers may be obtained from http://www.microchip.com/xc8 and http://www.microchip.com/xc16.

1.3.9 Library Migration

1.3.9.1 From v2.9j to v2.10
• Type definition changes

In this release all type definitions were changed from GenericTypeDefs.h to the standard C99 types. The size and
signedness of the variables remained the same. Applications that used the GenericTypeDefs.h file may need to port their
types as well but it should not affect behavior at all. Below is a list of some of the most common usages and their transitions:

GenericTypeDefs.h (old) C99 (new) New Header Required

DWORD, UINT32 uint32_t stdint.h

WORD, UINT16 uint16_t stdint.h

BYTE, UINT8 uint8_t stdint.h

BOOL bool stdbool.h

TRUE true stdbool.h

FALSE false stdbool.h

• All 16-bit peripheral/device applications:

Previous versions of the stack redefined the USBDeviceTasks() function to the interrupt vector function, _USB1Interrupt(),
when the stack was run in interrupt mode. This meant that users didn't have to call the USBDeviceTasks() function for 16-bit
products in interrupt mode. The side effect, however, is that since the host stack took the same approach, dual role or OTG
solutions could not use interrupt mode for their peripheral/device operation. In this release of the stack this redefinition has

1.3 Release Notes MLA - USB Library Help Library Migration

31

been removed. As such, 16-bit applications using interrupt mode must now define the USB interrupt handler function in the
application space and call the USBDeviceTasks() function:

#if defined(USB_INTERRUPT)
void __attribute__((interrupt,auto_psv)) _USB1Interrupt()
{
 USBDeviceTasks();
}
#endif

• All 16-bit host applications:

Previous versions of the stack redefined the USB interrupt vector function, _USB1Interrupt(), in the host stack in order to
handle USB interrupts. The side effect, however, is that since the host stack took control over the USB interrupt vector, dual
role or OTG solutions could not use interrupt mode for their peripheral/device operation. In this release of the stack this
behavior has been changed so that the host stack doesn't take control over the USB interrupt vector. As such, 16-bit
applications must now define the USB interrupt handler function in the application space and call the
USB_HostInterruptHandler() function:

void __attribute__((interrupt,auto_psv)) _USB1Interrupt()
{
 USB_HostInterruptHandler();
}

• Include paths

Since the overall folder structure of the MLA has changed, if porting between two versions of the USB Library, a user will
need to modify the include paths so that the application points to the new library folder and to the application space. To point
to the library, the include path should have a link to the "<MLA install directory>\framework" folder. To include a USB header
file you would designate the "usb\" folder before specifying the header file required.

Example - #include "usb\usb.h"

1.3.9.2 From v2.9i to v2.9j
No changes required.

However, if using the new HID bootloader features for PIC18 devices, you must rebuild both the bootloader firmware, and
the application firmware project (using the updated vector remapping section from the main.c file of the application project).
You must also use the updated HID bootloader firmware + application firmware with the updated HID bootloader cross
platform software.

1.3.9.3 From v2.9h to v2.9i
No changes required.

1.3.9.4 From v2.9g to v2.9h
No changes required.

1.3.9.5 From v2.9f to v2.9g
No changes required.

1.3 Release Notes MLA - USB Library Help Library Migration

32

1.3.9.6 From v2.9e to v2.9f
1. hid_report_in and hid_report_out were removed from the stack. For HID based demos, the user buffers must be defined

in user space. For certain product families that have specific USB RAM limitations, make sure that these buffers get
located in that USB RAM space. Please refer to the existing HID demos to see how the hid_report_in and hid_report_out
were moved to user space for those demos.

1.3.9.7 From v2.9d to v2.9e
No changes required

1.3.9.8 From v2.9c to v2.9d
No changes required.

1.3.9.9 From v2.9b to v2.9c
No changes required.

1.3.9.10 From v2.9a to v2.9b
No changes required.

1.3.9.11 From v2.9 to v2.9a
No changes required.

1.3.9.12 From v2.8 to v2.9
No changes required.

1.3.9.13 From v2.7a to v2.8
1. HID Bootloader for PIC32 devices

• An error was fixed in PIC32 bootloader. The previous implementations placed the interrupt vector table on a 1K-page
aligned boundary. This table should be on a such a boundary. The user reset vector and the interrupt vector section
addresses were switched to meet this requirement. Applications/bootloaders using the old reset vector will not work
with applications/bootloaders using the new bootloader linker files.

1.3.9.14 From v2.7 to v2.7a
1. HID Bootloader for PIC32 devices

• The PIC32 bootloader was changed in this revision. The memory region used by the HID bootloader was reduced. This
could result in issues loading application projects built with the new linker scripts on a system with the old bootloader. It

1.3 Release Notes MLA - USB Library Help Library Migration

33

could also result in issues loading an old application with the new bootloader.

1.3.9.15 From v2.6a to v2.7
No changes required.

1.3.9.16 From v2.6 to v2.6a
1. HID Bootloader for PIC24F devices

• The HID Bootloader for PIC24F has been reworked for the v2.6a release. The change involve how interrupt remapping
is handled and how applications relocate their code to make room for the bootloader. Applications built with the v2.6 or
earlier PIC24F compiler should continue using the v2.6 bootloader and support files. It is recommended for new
projects that new bootloader and support files should be used.

• In previous revisions of the stack there was a “PIC24F HID Bootloader Remapping.s” file that was added to any
PIC24F project to relocate the application code out of the bootloader space. These files have been deprecated and
should not be used with the new revision of the bootloader. Instead there is a custom linker script
(boot_hid_p24fjxxxGBxxx.gld) file in the HID bootloader folder specifically designed for the application. These are
located in the “Application Files” folder in each of the respective bootloader folders. Copy this file from this folder into
the application folder and add it to the target project. All of the possible interrupts should already be remapped. To use
an interrupt, merely define the interrupt handler as you normally would if you weren’t using a bootloader.

• The bootloader for PIC18 and PIC32 devices were not modified.

1.3.9.17 From v2.5 to v2.6
1. Include Files

• The files that must be included into a project has changed from v2.5 to v2.6.

• Version v2.5 of the MCHPFSUSB stack required multiple include files in order to work properly in device mode. The
usb_device.h, usb.h, usb_config.h, and class specific files (i.e. - “./usb/usb_function_msd.h”) had to be included in all
of the application files that accessed the USB stack as well as other common include files like the GenericTypeDefs.h
and Compiler.h files.

• In MHCPFSUSB v2.6, only the usb.h file and the class specific files (i.e. - “./usb/usb_function_msd.h”) must be
included in the project. The usb_device.h and usb_config.h files should no longer be included in the application specific
files.

2. Include Search Paths and Build Directory Policy

• The preferred include path list has changed since the initial v2.x release. MPLAB now support compiling projects with
respect to the project file instead of the source file. This is now the preferred method. With this modification the
required include paths are the following:

• .

• ../Microchip/Include

• If your project file located in a different format than the example projects, please add or remove the appropriate path
modifiers such that the include path indirectly points to the /Microchip/Include folder.

• To change the build directory policy and set the include paths, go to the “Project->Build Options->Project” menu. On
the directories tab, select the include directories from the show directories drop down box.

3. Disabling Interrupt Handlers

• In MCHPFSUSB v2.6, the interrupt handler routines are disabled through the usb_config.h file using the following

1.3 Release Notes MLA - USB Library Help Library Migration

34

definitions:

• USB_DISABLE_SET_CONFIGURATION_HANDLER

• USB_DISABLE_SUSPEND_HANDLER

• USB_DISABLE_WAKEUP_FROM_SUSPEND_HANDLER

• USB_DISABLE_SOF_HANDLER

• USB_DISABLE_ERROR_HANDLER

• USB_DISABLE_NONSTANDARD_EP0_REQUEST_HANDLER

• USB_DISABLE_SET_DESCRIPTOR_HANDLER

• USB_DISABLE_TRANSFER_COMPLETE_HANDLER

• Defining any of these definitions in the usb_config.h file will disable the callback from the stack during these events.
Please note that some of these events are required to be USB compliant. For example all USB devices must go into
suspend mode when requested. The suspend handler is how the stack notifies the user that the bus has requested the
device to go into suspend mode.

• Also note that some device classes or demos may require certain handlers to be available in order to operate properly.
For example, the audio class demo uses the start of frames provided by the SOF handler to properly synchronize the
audio data playback.

1.3 Release Notes MLA - USB Library Help Library Migration

35

1.4 Library Interface
This section describes the Application Programming Interface (API) functions of the USB Library.

Refer to each section for a detailed description.

1.4.1 Device/Peripheral

Modules

Name Description
Device Stack
Audio Function Driver
CDC Function Driver
HID Function Driver
MSD Function Driver
Vendor Class (Generic) Function Driver

Description

1.4.1.1 Device Stack
Files

Name Description
usb_device.h This is file usb_device.h.

Description

1.4.1.1.1 Functions
Functions

Name Description
USB_APPLICATION_EVENT_HANDLER This function is called whenever the USB stack wants to notify the

user of an event.
USBCancelIO This function cancels the transfers pending on the specified

endpoint. This function can only be used after a SETUP packet is
received and before that setup packet is handled. This is the time
period in which the EVENT_EP0_REQUEST is thrown, before the
event handler function returns to the stack.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

36

USBCtrlEPAllowDataStage This function allows the data stage of either a host-to-device or
device-to-host control transfer (with data stage) to complete. This
function is meant to be used in conjunction with either the
USBDeferOUTDataStage() or USBDeferINDataStage(). If the
firmware does not call either USBDeferOUTDataStage() or
USBDeferINDataStage(), then the firmware does not need to
manually call USBCtrlEPAllowDataStage(), as the USB stack will
call this function instead.

USBCtrlEPAllowStatusStage This function prepares the proper endpoint 0 IN or endpoint 0 OUT
(based on the controlTransferState) to allow the status stage packet
of a control transfer to complete. This function gets used internally
by the USB stack itself, but it may also be called from the application
firmware, IF the application firmware called the
USBDeferStatusStage() function during the initial processing of the
control transfer request. In this case, the application must call the
USBCtrlEPAllowStatusStage() once, after it has fully completed
processing and handling the data stage portion of the request.
If the application firmware has no need for delaying... more

USBDeferINDataStage This function will cause the USB hardware to continuously NAK the
IN token packets sent from the host, during the data stage of a
device to host control transfer. This allows the firmware more time to
process and prepare the IN data packets that will eventually be sent
to the host. This is also useful, if the firmware needs to
process/prepare the IN data in a different context than what the
USBDeviceTasks() function executes at.
Calling this function (macro) will assert ownership of the currently
pending control transfer. Therefore, the USB stack will not STALL
when it reaches the... more

USBDeferOUTDataStage This function will cause the USB hardware to continuously NAK the
OUT data packets sent from the host, during the data stage of a
device to host control transfer. This allows the firmware more time to
prepare the RAM buffer that will eventually be used to receive the
data from the host. This is also useful, if the firmware wishes to
receive the OUT data in a different context than what the
USBDeviceTasks() function executes at.
Calling this function (macro) will assert ownership of the currently
pending control transfer. Therefore, the USB stack will not STALL
when it reaches... more

USBDeferStatusStage Calling this function will prevent the USB stack from automatically
enabling the status stage for the currently pending control transfer
from completing immediately after all data bytes have been sent or
received. This is useful if a class handler or USB application
firmware project uses control transfers for sending/receiving data
over EP0, but requires time in order to finish processing and/or to
consume the data.
For example: Consider an application which receives OUT data from
the USB host, through EP0 using control transfers. Now assume
that this application wishes to do something time consuming with
this data (ex: transmit it... more

USBDeviceAttach Checks if VBUS is present, and that the USB module is not already
initalized, and if so, enables the USB module so as to signal device
attachment to the USB host.

USBDeviceDetach This function configures the USB module to "soft detach" itself from
the USB host.

USBDeviceInit This function initializes the device stack it in the default state. The
USB module will be completely reset including all of the internal
variables, registers, and interrupt flags.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

37

USBDeviceTasks This function is the main state machine/transaction handler of the
USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the
USBDeviceTasks() function should be called periodically to receive
and transmit packets through the stack. This function also takes
care of control transfers associated with the USB enumeration
process, and detecting various USB events (such as suspend). This
function should be called at least once every 1.8ms during the USB
enumeration process. After the enumeration process is complete
(which can be determined when USBGetDeviceState() returns
CONFIGURED_STATE), the USBDeviceTasks() handler may be
called the... more

USBEnableEndpoint This function will enable the specified endpoint with the specified
options

USBEP0Receive Sets the destination, size, and a function to call on the completion of
the next control write.

USBEP0SendRAMPtr Sets the source, size, and options of the data you wish to send from
a RAM source

USBEP0SendROMPtr Sets the source, size, and options of the data you wish to send from
a const source

USBEP0Transmit Sets the address of the data to send over the control endpoint
USBGetDeviceState This function will return the current state of the device on the USB.

This function should return CONFIGURED_STATE before an
application tries to send information on the bus.

USBGetNextHandle Retrieves the handle to the next endpoint BDT entry that the
USBTransferOnePacket() will use.

USBGetRemoteWakeupStatus This function indicates if remote wakeup has been enabled by the
host. Devices that support remote wakeup should use this function
to determine if it should send a remote wakeup.

USBGetSuspendState This function indicates if the USB port that this device is attached to
is currently suspended. When suspended, it will not be able to
transfer data over the bus.

USBHandleBusy Checks to see if the input handle is busy
USBHandleGetAddr Retrieves the address of the destination buffer of the input handle
USBHandleGetLength Retrieves the length of the destination buffer of the input handle
USBINDataStageDeferred Returns true if a control transfer with IN data stage is pending, and

the firmware has called USBDeferINDataStage(), but has not yet
called USBCtrlEPAllowDataStage(). Returns false if a control
transfer with IN data stage is either not pending, or the firmware did
not call USBDeferINDataStage() at the start of the control transfer.
This function (macro) would typically be used in the case where the
USBDeviceTasks() function executes in the interrupt context (ex:
USB_INTERRUPT option selected in usb_config.h), but the
firmware wishes to take care of handling the data stage of the
control transfer in the main... more

USBIsBusSuspended This function indicates if the USB bus is in suspend mode.
USBIsDeviceSuspended This function indicates if the USB module is in suspend mode.
USBOUTDataStageDeferred Returns true if a control transfer with OUT data stage is pending,

and the firmware has called USBDeferOUTDataStage(), but has not
yet called USBCtrlEPAllowDataStage(). Returns false if a control
transfer with OUT data stage is either not pending, or the firmware
did not call USBDeferOUTDataStage() at the start of the control
transfer.
This function (macro) would typically be used in the case where the
USBDeviceTasks() function executes in the interrupt context (ex:
USB_INTERRUPT option selected in usb_config.h), but the
firmware wishes to take care of handling the data stage of the
control transfer in the main... more

USBRxOnePacket Receives the specified data out the specified endpoint

1.4 Library Interface MLA - USB Library Help Device/Peripheral

38

USBSoftDetach This function performs a detach from the USB bus via software.
USBStallEndpoint Configures the specified endpoint to send STALL to the host, the

next time the host tries to access the endpoint.
USBTransferOnePacket Transfers a single packet (one transaction) of data on the USB bus.
USBTxOnePacket Sends the specified data out the specified endpoint

Module

Device Stack

Description

1.4.1.1.1.1 USB_APPLICATION_EVENT_HANDLER Function
This function is called whenever the USB stack wants to notify the user of an event.

File

usb_device.h

Syntax

bool USB_APPLICATION_EVENT_HANDLER(uint8_t address, USB_EVENT event, void * pdata, uint16_t
size);

Returns

None

Description

This function is called whenever the USB stack wants to notify the user of an event. This function should be implemented by
the user.

Example Usage:

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t address the address of the device when the event happened
uint8_t event The event input specifies which event happened. The

possible options are listed in the
USB_DEVICE_STACK_EVENTS enumeration.

Function

bool USB_APPLICATION_EVENT_HANDLER(uint8_t address, USB_EVENT event, void *pdata, uint16_t size);

1.4.1.1.1.2 USBCancelIO Function
File

usb_device.h

Syntax

void USBCancelIO(uint8_t endpoint);

1.4 Library Interface MLA - USB Library Help Device/Peripheral

39

Description

This function cancels the transfers pending on the specified endpoint. This function can only be used after a SETUP packet
is received and before that setup packet is handled. This is the time period in which the EVENT_EP0_REQUEST is thrown,
before the event handler function returns to the stack.

Remarks

None

Parameters

Parameters Description
uint8_t endpoint the endpoint number you wish to cancel the transfers for

Function

void USBCancelIO(uint8_t endpoint)

1.4.1.1.1.3 USBCtrlEPAllowDataStage Function
This function allows the data stage of either a host-to-device or device-to-host control transfer (with data stage) to complete.
This function is meant to be used in conjunction with either the USBDeferOUTDataStage() or USBDeferINDataStage(). If the
firmware does not call either USBDeferOUTDataStage() or USBDeferINDataStage(), then the firmware does not need to
manually call USBCtrlEPAllowDataStage(), as the USB stack will call this function instead.

File

usb_device.h

Syntax

void USBCtrlEPAllowDataStage();

Preconditions

A control transfer (with data stage) should already be pending, if the firmware calls this function. Additionally, the firmware
should have called either USBDeferOUTDataStage() or USBDeferINDataStage() at the start of the control transfer, if the
firmware will be calling this function manually.

Function

void USBCtrlEPAllowDataStage(void);

1.4.1.1.1.4 USBCtrlEPAllowStatusStage Function
This function prepares the proper endpoint 0 IN or endpoint 0 OUT (based on the controlTransferState) to allow the status
stage packet of a control transfer to complete. This function gets used internally by the USB stack itself, but it may also be
called from the application firmware, IF the application firmware called the USBDeferStatusStage() function during the initial
processing of the control transfer request. In this case, the application must call the USBCtrlEPAllowStatusStage() once,
after it has fully completed processing and handling the data stage portion of the request.

If the application firmware has no need for delaying control transfers, and therefore never calls USBDeferStatusStage(), then
the application firmware should not call USBCtrlEPAllowStatusStage().

File

usb_device.h

Syntax

void USBCtrlEPAllowStatusStage();

1.4 Library Interface MLA - USB Library Help Device/Peripheral

40

Remarks

None

Preconditions

None

Function

void USBCtrlEPAllowStatusStage(void);

1.4.1.1.1.5 USBDeferINDataStage Function
This function will cause the USB hardware to continuously NAK the IN token packets sent from the host, during the data
stage of a device to host control transfer. This allows the firmware more time to process and prepare the IN data packets
that will eventually be sent to the host. This is also useful, if the firmware needs to process/prepare the IN data in a different
context than what the USBDeviceTasks() function executes at.

Calling this function (macro) will assert ownership of the currently pending control transfer. Therefore, the USB stack will not
STALL when it reaches the data stage of the control transfer, even if the firmware has not (yet) called the
USBEP0SendRAMPtr() or USBEP0SendROMPtr() API function. However, the application firware must still (eventually, once
it is ready) call one of the aforementioned API functions.

Example Usage:

1. Host sends a SETUP packet to the device, requesting a device to host control transfer, with data stage.

2. USBDeviceTasks() executes, and then calls the USBCBCheckOtherReq() callback event handler. The
USBCBCheckOtherReq() calls the application specific/device class specific handler that detects the type of control
transfer.

3. If the firmware needs more time to prepare the first IN data packet, or, if the firmware wishes to process the command in
a different context (ex: if USBDeviceTasks() executes as an interrupt handler, but the IN data stage data needs to be
prepared in the main loop context), then it may call USBDeferINDataStage(), in the context of the
USBCBCheckOtherReq() handler function.

4. If the firmware called USBDeferINDataStage() in step #3 above, then the hardware will NAK the IN token packets sent by
the host, for the IN data stage.

5. Once the firmware is ready, and has successfully prepared the data to be sent to the host in fulfillment of the control
transfer, it should then call USBEP0SendRAMPtr() or USBEP0SendROMPtr(), to prepare the USB stack to know how
many bytes to send to the host, and from what source location.

6. The firmware should now call USBCtrlEPAllowDataStage(). This will allow the data stage to complete. The USB stack will
send the data buffer specified by the USBEP0SendRAMPtr() or USBEP0SendROMPtr() function, when it was called.

7. Once all data has been sent to the host, or if the host performs early termination, the status stage (a 0-byte OUT packet)
will complete automatically (assuming the firmware did not call USBDeferStatusStage() during step #3).

File

usb_device.h

Syntax

void USBDeferINDataStage();

Remarks

Section 9.2.6 of the official USB 2.0 specifications indicates that the USB device must return the first IN data packet within
500ms of the start of the control transfer. In order to meet this specification, the firmware must call USBEP0SendRAMPtr() or
USBEP0SendROMPtr(), and then call USBCtrlEPAllowDataStage(), in less than 500ms from the start of the control transfer.

If the firmware calls USBDeferINDataStage(), it must eventually call USBEP0SendRAMPtr() or USBEP0SendROMPtr(), and
then call USBCtrlEPAllowDataStage(). If it does not do this, the control transfer will never be able to complete.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

41

The firmware should never call both USBDeferINDataStage() and USBDeferOUTDataStage() during the same control
transfer. These functions are mutually exclusive (a control transfer with data stage can never contain both IN and OUT data
packets during the data stage).

Preconditions

Before calling USBDeferINDataStage(), the firmware should first verify that the control transfer has a data stage, and that it
is of type device-to-host (IN).

Function

void USBDeferINDataStage(void);

1.4.1.1.1.6 USBDeferOUTDataStage Function
This function will cause the USB hardware to continuously NAK the OUT data packets sent from the host, during the data
stage of a device to host control transfer. This allows the firmware more time to prepare the RAM buffer that will eventually
be used to receive the data from the host. This is also useful, if the firmware wishes to receive the OUT data in a different
context than what the USBDeviceTasks() function executes at.

Calling this function (macro) will assert ownership of the currently pending control transfer. Therefore, the USB stack will not
STALL when it reaches the data stage of the control transfer, even if the firmware has not (yet) called the USBEP0Receive()
API function. However, the application firware must still (eventually, once it is ready) call one of the aforementioned API
function.

Example Usage:

1. Host sends a SETUP packet to the device, requesting a host to device control transfer, with data stage (OUT data
packets).

2. USBDeviceTasks() executes, and then calls the USBCBCheckOtherReq() callback event handler. The
USBCBCheckOtherReq() calls the application specific/device class specific handler that detects the type of control
transfer.

3. If the firmware needs more time before it wishes to receive the first OUT data packet, or, if the firmware wishes to process
the command in a different context, then it may call USBDeferOUTDataStage(), in the context of the
USBCBCheckOtherReq() handler function.

4. If the firmware called USBDeferOUTDataStage() in step #3 above, then the hardware will NAK the OUT data packets
sent by the host, for the OUT data stage.

5. Once the firmware is ready, it should then call USBEP0Receive(), to prepare the USB stack to receive the OUT data from
the host, and to write it to the user specified buffer.

6. The firmware should now call USBCtrlEPAllowDataStage(). This will allow the data stage to complete. Once all OUT data
has been received, the user callback function (provided by the function pointer provided when calling USBEP0Receive())
will get called.

7. Once all data has been received from the host, the status stage (a 0-byte IN packet) will complete automatically
(assuming the firmware did not call USBDeferStatusStage() during step #3).

File

usb_device.h

Syntax

void USBDeferOUTDataStage();

Remarks

Section 9.2.6 of the official USB 2.0 specifications indicates that the USB device must be able to receive all bytes and
complete the control transfer within a maximum of 5 seconds.

If the firmware calls USBDeferOUTDataStage(), it must eventually call USBEP0Receive(), and then call
USBCtrlEPAllowDataStage(). If it does not do this, the control transfer will never be able to complete. This will break the

1.4 Library Interface MLA - USB Library Help Device/Peripheral

42

USB connection, as the host needs to be able to communicate over EP0, in order to perform basic tasks including
enumeration.

The firmware should never call both USBDeferINDataStage() and USBDeferOUTDataStage() during the same control
transfer. These functions are mutually exclusive (a control transfer with data stage can never contain both IN and OUT data
packets during the data stage).

Preconditions

Before calling USBDeferOUTDataStage(), the firmware should first verify that the control transfer has a data stage, and that
it is of type host-to-device (OUT).

Function

void USBDeferOUTDataStage(void);

1.4.1.1.1.7 USBDeferStatusStage Function
Calling this function will prevent the USB stack from automatically enabling the status stage for the currently pending control
transfer from completing immediately after all data bytes have been sent or received. This is useful if a class handler or USB
application firmware project uses control transfers for sending/receiving data over EP0, but requires time in order to finish
processing and/or to consume the data.

For example: Consider an application which receives OUT data from the USB host, through EP0 using control transfers.
Now assume that this application wishes to do something time consuming with this data (ex: transmit it to and save it to an
external EEPconst device, connected via SPI/I2C/etc.). In this case, it would typically be desireable to defer allowing the
USB status stage of the control transfer to complete, until after the data has been fully sent to the EEPconst device and
saved.

If the USB class handler firmware that processes the control transfer SETUP packet determines that it will need extra time to
complete the control transfer, it may optionally call USBDeferStatusStage(). If it does so, it is then the responsibility of the
application firmware to eventually call USBCtrlEPAllowStatusStage(), once the firmware has finished processing the data
associated with the control transfer.

If the firmware call USBDeferStatusStage(), but never calls USBCtrlEPAllowStatusStage(), then one of two possibilities will
occur.

1. If the "USB_ENABLE_STATUS_STAGE_TIMEOUTS" option is commented in usb_config.h, then the status stage of the
control transfer will never be able to complete. This is an error case and should be avoided.

2. If the "USB_ENABLE_STATUS_STAGE_TIMEOUTS" option is enabled in usb_config.h, then the USBDeviceTasks()
function will automatically call USBCtrlEPAllowStatusStage(), after the "USB_STATUS_STAGE_TIMEOUT" has elapsed,
since the last quanta of "progress" has occurred in the control transfer. Progress is defined as the last successful
transaction completing on EP0 IN or EP0 OUT. Although the timeouts feature allows the status stage to [eventually]
complete, it is still preferable to manually call USBCtrlEPAllowStatusStage() after the application firmware has finished
processing/consuming the control transfer data, as this will allow for much faster processing of control transfers, and
therefore much higher data rates and better user responsiveness.

File

usb_device.h

Syntax

void USBDeferStatusStage();

Remarks

If this function is called, is should get called after the SETUP packet has arrived (the control transfer has started), but before
the USBCtrlEPServiceComplete() function has been called by the USB stack. Therefore, the normal place to call
USBDeferStatusStage() would be from within the USBCBCheckOtherReq() handler context. For example, in a HID
application using control transfers, the USBDeferStatusStage() function would be called from within the
USER_GET_REPORT_HANDLER or USER_SET_REPORT_HANDLER functions.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

43

Preconditions

None

Function

void USBDeferStatusStage(void);

1.4.1.1.1.8 USBDeviceAttach Function
Checks if VBUS is present, and that the USB module is not already initalized, and if so, enables the USB module so as to
signal device attachment to the USB host.

File

usb_device.h

Syntax

void USBDeviceAttach();

Description

This function indicates to the USB host that the USB device has been attached to the bus. This function needs to be called in
order for the device to start to enumerate on the bus.

Remarks

See also the USBDeviceDetach() API function documentation.

Preconditions

Should only be called when USB_INTERRUPT is defined. Also, should only be called from the main() loop context. Do not
call USBDeviceAttach() from within an interrupt handler, as the USBDeviceAttach() function may modify global interrupt
enable bits and settings.

For normal USB devices: Make sure that if the module was previously on, that it has been turned off for a long time (ex:
100ms+) before calling this function to re-enable the module. If the device turns off the D+ (for full speed) or D- (for low
speed) ~1.5k ohm pull up resistor, and then turns it back on very quickly, common hosts will sometimes reject this event,
since no human could ever unplug and reattach a USB device in a microseconds (or nanoseconds) timescale. The host
could simply treat this as some kind of glitch and ignore the event altogether.

Function

void USBDeviceAttach(void)

1.4.1.1.1.9 USBDeviceDetach Function
This function configures the USB module to "soft detach" itself from the USB host.

File

usb_device.h

Syntax

void USBDeviceDetach();

Description

This function configures the USB module to perform a "soft detach" operation, by disabling the D+ (or D-) ~1.5k pull up
resistor, which lets the host know the device is present and attached. This will make the host think that the device has been
unplugged. This is potentially useful, as it allows the USB device to force the host to re-enumerate the device (on the
firmware has re-enabled the USB module/pull up, by calling USBDeviceAttach(), to "soft re-attach" to the host).

1.4 Library Interface MLA - USB Library Help Device/Peripheral

44

Remarks

If the application firmware calls USBDeviceDetach(), it is strongly recommended that the firmware wait at least >= 80ms
before calling USBDeviceAttach(). If the firmeware performs a soft detach, and then re-attaches too soon (ex: after a few
micro seconds for instance), some hosts may interpret this as an unexpected "glitch" rather than as a physical
removal/re-attachment of the USB device. In this case the host may simply ignore the event without re-enumerating the
device. To ensure that the host properly detects and processes the device soft detach/re-attach, it is recommended to make
sure the device remains detached long enough to mimic a real human controlled USB unplug/re-attach event (ex: after
calling USBDeviceDetach(), do not call USBDeviceAttach() for at least 80+ms, preferrably longer.

Neither the USBDeviceDetach() or USBDeviceAttach() functions are blocking or take long to execute. It is the application
firmware's responsibility for adding the 80+ms delay, when using these API functions.

The Windows plug and play event handler processing is fairly slow, especially in certain versions of Windows, and for certain
USB device classes. It has been observed that some device classes need to provide even more USB detach dwell interval
(before calling USBDeviceAttach()), in order to work correctly after re-enumeration. If the USB device is a CDC class device,
it is recommended to wait at least 1.5 seconds or longer, before soft re-attaching to the host, to provide the plug and play
event handler enough time to finish processing the removal event, before the re-attach occurs.

If the application is using the USB_POLLING mode option, then the USBDeviceDetach() and USBDeviceAttach() functions
are not available. In this mode, the USB stack relies on the "#define USE_USB_BUS_SENSE_IO" and "#define
USB_BUS_SENSE" options in the HardwareProfile ï¿½ [platform name].h file.

When using the USB_POLLING mode option, and the "#define USE_USB_BUS_SENSE_IO" definition has been
commented out, then the USB stack assumes that it should always enable the USB module at pretty much all times.
Basically, anytime the application firmware calls USBDeviceTasks(), the firmware will automatically enable the USB module.
This mode would typically be selected if the application was designed to be a purely bus powered device. In this case, the
application is powered from the +5V VBUS supply from the USB port, so it is correct and sensible in this type of application
to power up and turn on the USB module, at anytime that the microcontroller is powered (which implies the USB cable is
attached and the host is also powered).

In a self powered application, the USB stack is designed with the intention that the user will enable the "#define
USE_USB_BUS_SENSE_IO" option in the HardwareProfile ï¿½ [platform name].h file. When this option is defined, then the
USBDeviceTasks() function will automatically check the I/O pin port value of the designated pin (based on the #define
USB_BUS_SENSE option in the HardwareProfile ï¿½ [platform name].h file), every time the application calls
USBDeviceTasks(). If the USBDeviceTasks() function is executed and finds that the pin defined by the #define
USB_BUS_SENSE is in a logic low state, then it will automatically disable the USB module and tri-state the D+ and D- pins.
If however the USBDeviceTasks() function is executed and finds the pin defined by the #define USB_BUS_SENSE is in a
logic high state, then it will automatically enable the USB module, if it has not already been enabled.

Preconditions

Should only be called when USB_INTERRUPT is defined. See remarks section if USB_POLLING mode option is being used
(usb_config.h option).

Additionally, this function should only be called from the main() loop context. Do not call this function from within an interrupt
handler, as this function may modify global interrupt enable bits and settings.

Function

void USBDeviceDetach(void)

1.4.1.1.1.10 USBDeviceInit Function
File

usb_device.h

Syntax

void USBDeviceInit();

1.4 Library Interface MLA - USB Library Help Device/Peripheral

45

Description

This function initializes the device stack it in the default state. The USB module will be completely reset including all of the
internal variables, registers, and interrupt flags.

Remarks

None

Preconditions

This function must be called before any of the other USB Device functions can be called, including USBDeviceTasks().

Function

void USBDeviceInit(void)

1.4.1.1.1.11 USBDeviceTasks Function
This function is the main state machine/transaction handler of the USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the USBDeviceTasks() function should be called periodically to receive
and transmit packets through the stack. This function also takes care of control transfers associated with the USB
enumeration process, and detecting various USB events (such as suspend). This function should be called at least once
every 1.8ms during the USB enumeration process. After the enumeration process is complete (which can be determined
when USBGetDeviceState() returns CONFIGURED_STATE), the USBDeviceTasks() handler may be called the faster of:
either once every 9.8ms, or as often as needed to make sure that the hardware USTAT FIFO never gets full. A good rule of
thumb is to call USBDeviceTasks() at a minimum rate of either the frequency that USBTransferOnePacket() gets called, or,
once/1.8ms, whichever is faster. See the inline code comments near the top of usb_device.c for more details about minimum
timing requirements when calling USBDeviceTasks().

When the USB stack is operated in "USB_INTERRUPT" mode, it is not necessary to call USBDeviceTasks() from the main
loop context. In the USB_INTERRUPT mode, the USBDeviceTasks() handler only needs to execute when a USB interrupt
occurs, and therefore only needs to be called from the interrupt context.

File

usb_device.h

Syntax

void USBDeviceTasks();

Description

This function is the main state machine/transaction handler of the USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the USBDeviceTasks() function should be called periodically to receive
and transmit packets through the stack. This function also takes care of control transfers associated with the USB
enumeration process, and detecting various USB events (such as suspend). This function should be called at least once
every 1.8ms during the USB enumeration process. After the enumeration process is complete (which can be determined
when USBGetDeviceState() returns CONFIGURED_STATE), the USBDeviceTasks() handler may be called the faster of:
either once every 9.8ms, or as often as needed to make sure that the hardware USTAT FIFO never gets full. A good rule of
thumb is to call USBDeviceTasks() at a minimum rate of either the frequency that USBTransferOnePacket() gets called, or,
once/1.8ms, whichever is faster. See the inline code comments near the top of usb_device.c for more details about minimum
timing requirements when calling USBDeviceTasks().

When the USB stack is operated in "USB_INTERRUPT" mode, it is not necessary to call USBDeviceTasks() from the main
loop context. In the USB_INTERRUPT mode, the USBDeviceTasks() handler only needs to execute when a USB interrupt
occurs, and therefore only needs to be called from the interrupt context.

Typical usage:

void main(void)
{
 USBDeviceInit();

1.4 Library Interface MLA - USB Library Help Device/Peripheral

46

 while(1)
 {
 USBDeviceTasks(); //Takes care of enumeration and other USB events
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == true))
 {
 //Either the device is not configured or we are suspended,
 // so we don't want to execute any USB related application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Otherwise we are free to run USB and non-USB related user
 //application code.
 UserApplication();
 }
 }
}

Remarks

USBDeviceTasks() does not need to be called while in the USB suspend mode, if the user application firmware in the
USBCBSuspend() callback function enables the ACTVIF USB interrupt source and put the microcontroller into sleep mode. If
the application firmware decides not to sleep the microcontroller core during USB suspend (ex: continues running at full
frequency, or clock switches to a lower frequency), then the USBDeviceTasks() function must still be called periodically, at a
rate frequent enough to ensure the 10ms resume recovery interval USB specification is met. Assuming a worst case primary
oscillator and PLL start up time of <5ms, then USBDeviceTasks() should be called once every 5ms in this scenario.

When the USB cable is detached, or the USB host is not actively powering the VBUS line to +5V nominal, the application
firmware does not always have to call USBDeviceTasks() frequently, as no USB activity will be taking place. However, if
USBDeviceTasks() is not called regularly, some alternative means of promptly detecting when VBUS is powered (indicating
host attachment), or not powered (host powered down or USB cable unplugged) is still needed. For self or dual self/bus
powered USB applications, see the USBDeviceAttach() and USBDeviceDetach() API documentation for additional
considerations.

Preconditions

Make sure the USBDeviceInit() function has been called prior to calling USBDeviceTasks() for the first time.

Function

void USBDeviceTasks(void)

1.4.1.1.1.12 USBEnableEndpoint Function
This function will enable the specified endpoint with the specified options

File

usb_device.h

Syntax

void USBEnableEndpoint(uint8_t ep, uint8_t options);

Returns

None

Description

This function will enable the specified endpoint with the specified options.

Typical Usage:

void USBCBInitEP(void)
{
 USBEnableEndpoint(MSD_DATA_IN_EP,USB_IN_ENABLED|USB_OUT_ENABLED|USB_HANDSHAKE_ENABLED|US
B_DISALLOW_SETUP);

1.4 Library Interface MLA - USB Library Help Device/Peripheral

47

 USBMSDInit();
}

In the above example endpoint number MSD_DATA_IN_EP is being configured for both IN and OUT traffic with
handshaking enabled. Also since MSD_DATA_IN_EP is not endpoint 0 (MSD does not allow this), then we can explicitly
disable SETUP packets on this endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t ep the endpoint to be configured
uint8_t options optional settings for the endpoint. The options should be

ORed together to form a single options string. The available
optional settings for the endpoint. The options should be
ORed together to form a single options string. The available
options are the following:

• USB_HANDSHAKE_ENABLED enables USB
handshaking (ACK, NAK)

• USB_HANDSHAKE_DISABLED disables USB
handshaking (ACK, NAK)

• USB_OUT_ENABLED enables the out direction

• USB_OUT_DISABLED disables the out direction

• USB_IN_ENABLED enables the in direction

• USB_IN_DISABLED disables the in direction

• USB_ALLOW_SETUP enables control transfers

• USB_DISALLOW_SETUP disables control transfers

• USB_STALL_ENDPOINT STALLs this endpoint

Function

void USBEnableEndpoint(uint8_t ep, uint8_t options)

1.4.1.1.1.13 USBEP0Receive Function
Sets the destination, size, and a function to call on the completion of the next control write.

File

usb_device.h

Syntax

void USBEP0Receive(uint8_t* dest, uint16_t size, void (*function));

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Device/Peripheral

48

Parameters

Parameters Description
dest address of where the incoming data will go (make sure that

this address is directly accessable by the USB module for
parts with dedicated USB RAM this address must be in that
space)

size the size of the data being received (is almost always going
tobe presented by the preceeding setup packet
SetupPkt.wLength)

(*function) a function that you want called once the data is received. If
this is specificed as NULL then no function is called.

Function

void USBEP0Receive(uint8_t* dest, uint16_t size, void (*function))

1.4.1.1.1.14 USBEP0SendRAMPtr Function
Sets the source, size, and options of the data you wish to send from a RAM source

File

usb_device.h

Syntax

void USBEP0SendRAMPtr(uint8_t* src, uint16_t size, uint8_t Options);

Remarks

None

Preconditions

None

Parameters

Parameters Description
src address of the data to send
size the size of the data needing to be transmitted
options the various options that you want when sending the control

data. Options are:

• USB_EP0_ROM

• USB_EP0_RAM

• USB_EP0_BUSY

• USB_EP0_INCLUDE_ZERO

• USB_EP0_NO_DATA

• USB_EP0_NO_OPTIONS

Function

void USBEP0SendRAMPtr(uint8_t* src, uint16_t size, uint8_t Options)

1.4.1.1.1.15 USBEP0SendROMPtr Function
Sets the source, size, and options of the data you wish to send from a const source

File

usb_device.h

1.4 Library Interface MLA - USB Library Help Device/Peripheral

49

Syntax

void USBEP0SendROMPtr(uint8_t* src, uint16_t size, uint8_t Options);

Remarks

None

Preconditions

None

Parameters

Parameters Description
src address of the data to send
size the size of the data needing to be transmitted
options the various options that you want when sending the control

data. Options are:

• USB_EP0_ROM

• USB_EP0_RAM

• USB_EP0_BUSY

• USB_EP0_INCLUDE_ZERO

• USB_EP0_NO_DATA

• USB_EP0_NO_OPTIONS

Function

void USBEP0SendROMPtr(uint8_t* src, uint16_t size, uint8_t Options)

1.4.1.1.1.16 USBEP0Transmit Function
Sets the address of the data to send over the control endpoint

File

usb_device.h

Syntax

void USBEP0Transmit(uint8_t options);

Remarks

None

Preconditions

None

Paramters: options - the various options that you want when sending the control data. Options are: USB_EP0_ROM
USB_EP0_RAM USB_EP0_BUSY USB_EP0_INCLUDE_ZERO USB_EP0_NO_DATA USB_EP0_NO_OPTIONS

Function

void USBEP0Transmit(uint8_t options)

1.4.1.1.1.17 USBGetDeviceState Function
This function will return the current state of the device on the USB. This function should return CONFIGURED_STATE
before an application tries to send information on the bus.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

50

File

usb_device.h

Syntax

USB_DEVICE_STATE USBGetDeviceState();

Description

This function returns the current state of the device on the USB. This function is used to determine when the device is ready
to communicate on the bus. Applications should not try to send or receive data until this function returns
CONFIGURED_STATE.

It is also important that applications yield as much time as possible to the USBDeviceTasks() function as possible while the
this function returns any value between ATTACHED_STATE through CONFIGURED_STATE.

For more information about the various device states, please refer to the USB specification section 9.1 available from
www.usb.org.

Typical usage:

void main(void)
{
 USBDeviceInit()
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == true))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Otherwise we are free to run user application code.
 UserApplication();
 }
 }
}

Remarks

None

Preconditions

None

Return Values

Return Values Description
USB_DEVICE_STATE the current state of the device on the bus

Function

USB_DEVICE_STATE USBGetDeviceState(void)

1.4.1.1.1.18 USBGetNextHandle Function
Retrieves the handle to the next endpoint BDT entry that the USBTransferOnePacket() will use.

File

usb_device.h

1.4 Library Interface MLA - USB Library Help Device/Peripheral

51

Syntax

USB_HANDLE USBGetNextHandle(uint8_t ep_num, uint8_t ep_dir);

Description

Retrieves the handle to the next endpoint BDT that the USBTransferOnePacket() will use. Useful for initialization and when
ping pong buffering will be used on application endpoints.

Remarks

This API is useful for initializing USB_HANDLEs during initialization of the application firmware. It is also useful when
ping-pong bufferring is enabled, and the application firmware wishes to arm both the even and odd BDTs for an endpoint
simultaneously. In this case, the application firmware for sending data to the host would typically be something like follows:

 USB_HANDLE Handle1;
USB_HANDLE Handle2;
USB_HANDLE* pHandle = &Handle1;
uint8_t UserDataBuffer1[64];
uint8_t UserDataBuffer2[64];
uint8_t* pDataBuffer = &UserDataBuffer1[0];

//Add some code that loads UserDataBuffer1[] with useful data to send,
//using the pDataBuffer pointer, for example:
//for(i = 0; i < 64; i++)
//{
// *pDataBuffer++ = [useful data value];
//}

//Check if the next USB endpoint BDT is available
if(!USBHandleBusy(USBGetNextHandle(ep_num, IN_TO_HOST))
{
 //The endpoint is available. Send the data.
 *pHandle = USBTransferOnePacket(ep_num, ep_dir, pDataBuffer, bytecount);
 //Toggle the handle and buffer pointer for the next transaction
 if(pHandle == &Handle1)
 {
 pHandle = &Handle2;
 pDataBuffer = &UserDataBuffer2[0];
 }
 else
 {
 pHandle = &Handle1;
 pDataBuffer = &UserDataBuffer1[0];
 }
}

//The firmware can then load the next data buffer (in this case
//UserDataBuffer2)with useful data, and send it using the same
//process. For example:

//Add some code that loads UserDataBuffer2[] with useful data to send,
//using the pDataBuffer pointer, for example:
//for(i = 0; i < 64; i++)
//{
// *pDataBuffer++ = [useful data value];
//}

//Check if the next USB endpoint BDT is available
if(!USBHandleBusy(USBGetNextHandle(ep_num, IN_TO_HOST))
{
 //The endpoint is available. Send the data.
 *pHandle = USBTransferOnePacket(ep_num, ep_dir, pDataBuffer, bytecount);
 //Toggle the handle and buffer pointer for the next transaction
 if(pHandle == &Handle1)
 {
 pHandle = &Handle2;
 pDataBuffer = &UserDataBuffer2[0];
 }
 else
 {

1.4 Library Interface MLA - USB Library Help Device/Peripheral

52

 pHandle = &Handle1;
 pDataBuffer = &UserDataBuffer1[0];
 }
}

Preconditions

Will return NULL if the USB device has not yet been configured/the endpoint specified has not yet been initalized by
USBEnableEndpoint().

Parameters

Parameters Description
uint8_t ep_num The endpoint number to get the handle for (valid values are

1-15, 0 is not a valid input value for this API)
uint8_t ep_dir The endpoint direction associated with the endpoint number

to get the handle for (valid values are OUT_FROM_HOST
and IN_TO_HOST).

Return Values

Return Values Description
USB_HANDLE Returns the USB_HANDLE (a pointer) to the BDT that will be

used next time the USBTransferOnePacket() function is
called, for the given ep_num and ep_dir

Function

USB_HANDLE USBGetNextHandle(uint8_t ep_num, uint8_t ep_dir)

1.4.1.1.1.19 USBGetRemoteWakeupStatus Function
This function indicates if remote wakeup has been enabled by the host. Devices that support remote wakeup should use this
function to determine if it should send a remote wakeup.

File

usb_device.h

Syntax

bool USBGetRemoteWakeupStatus();

Description

This function indicates if remote wakeup has been enabled by the host. Devices that support remote wakeup should use this
function to determine if it should send a remote wakeup.

If a device does not support remote wakeup (the Remote wakeup bit, bit 5, of the bmAttributes field of the Configuration
descriptor is set to 1), then it should not send a remote wakeup command to the PC and this function is not of any use to the
device. If a device does support remote wakeup then it should use this function as described below.

If this function returns false and the device is suspended, it should not issue a remote wakeup (resume).

If this function returns true and the device is suspended, it should issue a remote wakeup (resume).

A device can add remote wakeup support by having the _RWU symbol added in the configuration descriptor (located in the
usb_descriptors.c file in the project). This done in the 8th byte of the configuration descriptor. For example:

 const uint8_t configDescriptor1[]={
 0x09, // Size
 USB_DESCRIPTOR_CONFIGURATION, // descriptor type
 DESC_CONFIG_WORD(0x0022), // Total length
 1, // Number of interfaces
 1, // Index value of this cfg
 0, // Configuration string index
 _DEFAULT | _SELF | _RWU, // Attributes, see usb_device.h
 50, // Max power consumption in 2X mA(100mA)

 //The rest of the configuration descriptor should follow

1.4 Library Interface MLA - USB Library Help Device/Peripheral

53

For more information about remote wakeup, see the following section of the USB v2.0 specification available at www.usb.org:

• Section 9.2.5.2

• Table 9-10

• Section 7.1.7.7

• Section 9.4.5

Remarks

None

Preconditions

None

Return Values

Return Values Description
true Remote Wakeup has been enabled by the host
false Remote Wakeup is not currently enabled

Function

bool USBGetRemoteWakeupStatus(void)

1.4.1.1.1.20 USBGetSuspendState Function
This function indicates if the USB port that this device is attached to is currently suspended. When suspended, it will not be
able to transfer data over the bus.

File

usb_device.h

Syntax

bool USBGetSuspendState();

Description

This function indicates if the USB port that this device is attached to is currently suspended. When suspended, it will not be
able to transfer data over the bus. This function can be used by the application to skip over section of code that do not need
to exectute if the device is unable to send data over the bus. This function can also be used to help determine when it is
legal to perform USB remote wakeup signalling, for devices supporting this feature.

Typical usage:

 void main(void)
 {
 USBDeviceInit()
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBGetSuspendState() == true))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Otherwise we are free to run user application code.
 UserApplication();
 }
 }
 }

1.4 Library Interface MLA - USB Library Help Device/Peripheral

54

Remarks

This function is the same as USBIsBusSuspended().

Preconditions

None

Return Values

Return Values Description
true the USB port this device is attached to is suspended.
false the USB port this device is attached to is not suspended.

Function

bool USBGetSuspendState(void)

1.4.1.1.1.21 USBHandleBusy Function
Checks to see if the input handle is busy

File

usb_device.h

Syntax

bool USBHandleBusy(USB_HANDLE handle);

Description

Checks to see if the input handle is busy

Typical Usage

//make sure that the last transfer isn't busy by checking the handle
if(!USBHandleBusy(USBGenericInHandle))
{
 //Send the data contained in the INPacket[] array out on
 // endpoint USBGEN_EP_NUM
 USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,(uint8_t*)&INPacket[0],sizeof(INPacket));
}

Remarks

None

Preconditions

None

Parameters

Parameters Description
USB_HANDLE handle handle of the transfer that you want to check the status of

Return Values

Return Values Description
true The specified handle is busy
false The specified handle is free and available for a transfer

Function

bool USBHandleBusy(USB_HANDLE handle)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

55

1.4.1.1.1.22 USBHandleGetAddr Function
Retrieves the address of the destination buffer of the input handle

File

usb_device.h

Syntax

uint16_t USBHandleGetAddr(USB_HANDLE);

Description

Retrieves the address of the destination buffer of the input handle

Remarks

None

Preconditions

None

Parameters

Parameters Description
USB_HANDLE handle the handle to the transfer you want the address for.

Return Values

Return Values Description
uint16_t address of the current buffer that the input handle points to.

Function

uint16_t USBHandleGetAddr(USB_HANDLE)

1.4.1.1.1.23 USBHandleGetLength Function
Retrieves the length of the destination buffer of the input handle

File

usb_device.h

Syntax

uint16_t USBHandleGetLength(USB_HANDLE handle);

Description

Retrieves the length of the destination buffer of the input handle

Remarks

None

Preconditions

None

Parameters

Parameters Description
USB_HANDLE handle the handle to the transfer you want the address for.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

56

Return Values

Return Values Description
uint16_t length of the current buffer that the input handle points to. If

the transfer is complete then this is the length of the data
transmitted or the length of data actually received.

Function

uint16_t USBHandleGetLength(USB_HANDLE handle)

1.4.1.1.1.24 USBINDataStageDeferred Function
Returns true if a control transfer with IN data stage is pending, and the firmware has called USBDeferINDataStage(), but has
not yet called USBCtrlEPAllowDataStage(). Returns false if a control transfer with IN data stage is either not pending, or the
firmware did not call USBDeferINDataStage() at the start of the control transfer.

This function (macro) would typically be used in the case where the USBDeviceTasks() function executes in the interrupt
context (ex: USB_INTERRUPT option selected in usb_config.h), but the firmware wishes to take care of handling the data
stage of the control transfer in the main loop context.

In this scenario, typical usage would be:

1. Host starts a control transfer with IN data stage.

2. USBDeviceTasks() (in this scenario, interrupt context) executes.

3. USBDeviceTasks() calls USBCBCheckOtherReq(), which in turn determines that the control transfer is class specific, with
IN data stage.

4. The user code in USBCBCheckOtherReq() (also in interrupt context, since it is called from USBDeviceTasks(), and
therefore executes at the same priority/context) calls USBDeferINDataStage().

5. Meanwhile, in the main loop context, a polling handler may be periodically checking if(USBINDataStageDeferred() ==
true). Ordinarily, it would evaluate false, but when a control transfer becomes pending, and after the
USBDeferINDataStage() macro has been called (ex: in the interrupt context), the if() statement will evaluate true. In this
case, the main loop context can then take care of sending the data (when ready), by calling USBEP0SendRAMPtr() or
USBEP0SendROMPtr() and USBCtrlEPAllowDataStage().

File

usb_device.h

Syntax

bool USBINDataStageDeferred();

Function

bool USBINDataStageDeferred(void);

1.4.1.1.1.25 USBIsBusSuspended Function
This function indicates if the USB bus is in suspend mode.

File

usb_device.h

Syntax

bool USBIsBusSuspended();

1.4 Library Interface MLA - USB Library Help Device/Peripheral

57

Returns

None

Description

This function indicates if the USB bus is in suspend mode. This function is typically used for checking if the conditions are
consistent with performing a USB remote wakeup sequence.

Typical Usage:

if((USBIsBusSuspended() == true) && (USBGetRemoteWakeupStatus() == true))
{
 //Check if some stimulus occured, which will be used as the wakeup source
 if(sw3 == 0)
 {
 USBCBSendResume(); //Send the remote wakeup signalling to the host
 }
}
// otherwise do some other application specific tasks

Remarks

The USBIsBusSuspended() function relies on the USBBusIsSuspended boolean variable, which gets updated by the
USBDeviceTasks() function. Therefore, in order to be sure the return value is not "stale", it is suggested to make sure
USBDeviceTasks() has executed recently (if using USB polling mode).

Preconditions

None

Function

bool USBIsBusSuspended(void);

1.4.1.1.1.26 USBIsDeviceSuspended Function
This function indicates if the USB module is in suspend mode.

File

usb_device.h

Syntax

bool USBIsDeviceSuspended();

Returns

None

Description

This function indicates if the USB module is in suspend mode. This function does NOT indicate that a suspend request has
been received. It only reflects the state of the USB module.

Typical Usage:

if(USBIsDeviceSuspended() == true)
{
 return;
}
// otherwise do some application specific tasks

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Device/Peripheral

58

Function

bool USBIsDeviceSuspended(void)

1.4.1.1.1.27 USBOUTDataStageDeferred Function
Returns true if a control transfer with OUT data stage is pending, and the firmware has called USBDeferOUTDataStage(),
but has not yet called USBCtrlEPAllowDataStage(). Returns false if a control transfer with OUT data stage is either not
pending, or the firmware did not call USBDeferOUTDataStage() at the start of the control transfer.

This function (macro) would typically be used in the case where the USBDeviceTasks() function executes in the interrupt
context (ex: USB_INTERRUPT option selected in usb_config.h), but the firmware wishes to take care of handling the data
stage of the control transfer in the main loop context.

In this scenario, typical usage would be:

1. Host starts a control transfer with OUT data stage.

2. USBDeviceTasks() (in this scenario, interrupt context) executes.

3. USBDeviceTasks() calls USBCBCheckOtherReq(), which in turn determines that the control transfer is class specific, with
OUT data stage.

4. The user code in USBCBCheckOtherReq() (also in interrupt context, since it is called from USBDeviceTasks(), and
therefore executes at the same priority/context) calls USBDeferOUTDataStage().

5. Meanwhile, in the main loop context, a polling handler may be periodically checking if(USBOUTDataStageDeferred() ==
true). Ordinarily, it would evaluate false, but when a control transfer becomes pending, and after the
USBDeferOUTDataStage() macro has been called (ex: in the interrupt context), the if() statement will evaluate true. In this
case, the main loop context can then take care of receiving the data, by calling USBEP0Receive() and
USBCtrlEPAllowDataStage().

File

usb_device.h

Syntax

bool USBOUTDataStageDeferred();

Function

bool USBOUTDataStageDeferred(void);

1.4.1.1.1.28 USBRxOnePacket Function
Receives the specified data out the specified endpoint

File

usb_device.h

Syntax

USB_HANDLE USBRxOnePacket(uint8_t ep, uint8_t* data, uint16_t len);

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Device/Peripheral

59

Parameters

Parameters Description
ep The endpoint number you want to receive the data on.
data Pointer to a user buffer where the data will go when
it arrives from the host. Note This RAM must be USB module accessible.
len The len parameter should always be set to the maximum

endpoint packet size, specified in the USB descriptor for this
endpoint. The host may send <= the number of bytes as the
endpoint size in the endpoint descriptor. After the transaction
is complete, the application firmware can call
USBHandleGetLength() to determine how many bytes the
host actually sent in the last transaction on this endpoint.

Return Values

Return Values Description
USB_HANDLE Returns a pointer to the BDT entry associated with the

transaction. The firmware can check for completion of the
transaction by using the USBHandleBusy() function, using
the returned USB_HANDLE value.

Function

USB_HANDLE USBRxOnePacket(uint8_t ep, uint8_t* data, uint16_t len)

1.4.1.1.1.29 USBSoftDetach Function
This function performs a detach from the USB bus via software.

File

usb_device.h

Syntax

void USBSoftDetach();

Returns

None

Description

This function performs a detach from the USB bus via software.

Remarks

Caution should be used when detaching from the bus. Some PC drivers and programs may require additional time after a
detach before a device can be reattached to the bus.

Preconditions

None

Function

void USBSoftDetach(void);

1.4.1.1.1.30 USBStallEndpoint Function
Configures the specified endpoint to send STALL to the host, the next time the host tries to access the endpoint.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

60

File

usb_device.h

Syntax

void USBStallEndpoint(uint8_t ep, uint8_t dir);

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t ep The endpoint number that should be configured to send

STALL.
uint8_t dir The direction of the endpoint to STALL, either IN_TO_HOST

or OUT_FROM_HOST.

Function

void USBStallEndpoint(uint8_t ep, uint8_t dir)

1.4.1.1.1.31 USBTransferOnePacket Function
Transfers a single packet (one transaction) of data on the USB bus.

File

usb_device.h

Syntax

USB_HANDLE USBTransferOnePacket(uint8_t ep, uint8_t dir, uint8_t* data, uint8_t len);

Description

The USBTransferOnePacket() function prepares a USB endpoint so that it may send data to the host (an IN transaction), or
receive data from the host (an OUT transaction). The USBTransferOnePacket() function can be used both to receive and
send data to the host. This function is the primary API function provided by the USB stack firmware for sending or receiving
application data over the USB port.

The USBTransferOnePacket() is intended for use with all application endpoints. It is not used for sending or receiving
applicaiton data through endpoint 0 by using control transfers. Separate API functions, such as USBEP0Receive(),
USBEP0SendRAMPtr(), and USBEP0SendROMPtr() are provided for this purpose.

The USBTransferOnePacket() writes to the Buffer Descriptor Table (BDT) entry associated with an endpoint buffer, and sets
the UOWN bit, which prepares the USB hardware to allow the transaction to complete. The application firmware can use the
USBHandleBusy() macro to check the status of the transaction, to see if the data has been successfully transmitted yet.

Typical Usage

//make sure that the we are in the configured state
if(USBGetDeviceState() == CONFIGURED_STATE)
{
 //make sure that the last transaction isn't busy by checking the handle
 if(!USBHandleBusy(USBInHandle))
 {
 //Write the new data that we wish to send to the host to the INPacket[] array
 INPacket[0] = USEFUL_APPLICATION_VALUE1;
 INPacket[1] = USEFUL_APPLICATION_VALUE2;
 //INPacket[2] = ... (fill in the rest of the packet data)

 //Send the data contained in the INPacket[] array through endpoint "EP_NUM"

1.4 Library Interface MLA - USB Library Help Device/Peripheral

61

 USBInHandle =
USBTransferOnePacket(EP_NUM,IN_TO_HOST,(uint8_t*)&INPacket[0],sizeof(INPacket));
 }
}

Remarks

If calling the USBTransferOnePacket() function from within the USBCBInitEP() callback function, the set configuration is still
being processed and the USBDeviceState may not be == CONFIGURED_STATE yet. In this special case, the
USBTransferOnePacket() may still be called, but make sure that the endpoint has been enabled and initialized by the
USBEnableEndpoint() function first.

Preconditions

Before calling USBTransferOnePacket(), the following should be true.

1. The USB stack has already been initialized (USBDeviceInit() was called).

2. A transaction is not already pending on the specified endpoint. This is done by checking the previous request using the
USBHandleBusy() macro (see the typical usage example).

3. The host has already sent a set configuration request and the enumeration process is complete. This can be checked by
verifying that the USBGetDeviceState() macro returns "CONFIGURED_STATE", prior to calling USBTransferOnePacket().

Parameters

Parameters Description
uint8_t ep The endpoint number that the data will be transmitted or

received on
uint8_t dir The direction of the transfer This value is either

OUT_FROM_HOST or IN_TO_HOST
uint8_t* data For IN transactions: pointer to the RAM buffer containing
the data to be sent to the host. For OUT transactions pointer to the RAM buffer that the received data should get

written to.
uint8_t len Length of the data needing to be sent (for IN transactions).

For OUT transactions, the len parameter should normally be
set to the endpoint size specified in the endpoint descriptor.

Return Values

Return Values Description
USB_HANDLE handle to the transfer. The handle is a pointer to the BDT

entry associated with this transaction. The
status of the transaction (ex if it is complete or still pending) can be checked using the

USBHandleBusy() macro and supplying the USB_HANDLE
provided by USBTransferOnePacket().

Function

USB_HANDLE USBTransferOnePacket(uint8_t ep, uint8_t dir, uint8_t* data, uint8_t len)

1.4.1.1.1.32 USBTxOnePacket Function
Sends the specified data out the specified endpoint

File

usb_device.h

Syntax

USB_HANDLE USBTxOnePacket(uint8_t ep, uint8_t* data, uint16_t len);

Remarks

None

1.4 Library Interface MLA - USB Library Help Device/Peripheral

62

Preconditions

None

Parameters

Parameters Description
ep the endpoint number you want to send the data out of
data pointer to a user buffer that contains the data that you wish to
send to the host. Note This RAM buffer must be accessible by the USB module.
len the number of bytes of data that you wish to send to the host,
in the next transaction on this endpoint. Note this value should always be less than or equal to the

endpoint size, as specified in the USB endpoint descriptor.

Return Values

Return Values Description
USB_HANDLE Returns a pointer to the BDT entry associated with the

transaction. The firmware can check for completion of the
transaction by using the USBHandleBusy() function, using
the returned USB_HANDLE value.

Function

USB_HANDLE USBTxOnePacket(uint8_t ep, uint8_t* data, uint16_t len)

1.4.1.1.2 Data Types and Constants
Macros

Name Description
DESC_CONFIG_uint32_t The DESC_CONFIG_uint32_t() macro is implemented for convinence.

Since the configuration descriptor array is a uint8_t array, each entry
needs to be a uint8_t in LSB format. The DESC_CONFIG_uint32_t()
macro breaks up a uint32_t into the appropriate uint8_t entries in LSB.

DESC_CONFIG_uint8_t The DESC_CONFIG_uint8_t() macro is implemented for convinence. The
DESC_CONFIG_uint8_t() macro provides a consistant macro for use
with a byte when generating a configuratin descriptor when using either
the DESC_CONFIG_WORD() or DESC_CONFIG_uint32_t() macros.

DESC_CONFIG_WORD The DESC_CONFIG_WORD() macro is implemented for convinence.
Since the configuration descriptor array is a uint8_t array, each entry
needs to be a uint8_t in LSB format. The DESC_CONFIG_WORD()
macro breaks up a uint16_t into the appropriate uint8_t entries in LSB.
Typical Usage:

USB_EP0_BUSY The PIPE is busy
USB_EP0_INCLUDE_ZERO include a trailing zero packet
USB_EP0_NO_DATA no data to send
USB_EP0_NO_OPTIONS no options set
USB_EP0_RAM Data comes from const
USB_EP0_ROM Data comes from RAM
USB_HANDLE USB_HANDLE is a pointer to an entry in the BDT. This pointer can be

used to read the length of the last transfer, the status of the last transfer,
and various other information. Insure to initialize USB_HANDLE objects
to NULL so that they are in a known state during their first usage.

Module

Device Stack

1.4 Library Interface MLA - USB Library Help Device/Peripheral

63

Types

Name Description
USB_DEVICE_STACK_EVENTS USB device stack events description here - DWF
USB_DEVICE_STATE USB Device States as returned by USBGetDeviceState(). Only the

defintions for these states should be used. The actual value for each
state should not be relied upon as constant and may change based on
the implementation.

Description

1.4.1.1.2.1 USB_DEVICE_STACK_EVENTS Type
File

usb_device.h

Syntax

typedef enum USB_DEVICE_STACK_EVENTS@1 USB_DEVICE_STACK_EVENTS;

Description

USB device stack events description here - DWF

1.4.1.1.2.2 USB_DEVICE_STATE Type
File

usb_device.h

Syntax

typedef enum USB_DEVICE_STATE@1 USB_DEVICE_STATE;

Description

USB Device States as returned by USBGetDeviceState(). Only the defintions for these states should be used. The actual
value for each state should not be relied upon as constant and may change based on the implementation.

1.4.1.1.2.3 DESC_CONFIG_uint32_t Macro
File

usb_device.h

Syntax

#define DESC_CONFIG_uint32_t(a) (a&0xFF),((a>>8)&0xFF),((a>>16)&0xFF),((a>>24)&0xFF)

Description

The DESC_CONFIG_uint32_t() macro is implemented for convinence. Since the configuration descriptor array is a uint8_t
array, each entry needs to be a uint8_t in LSB format. The DESC_CONFIG_uint32_t() macro breaks up a uint32_t into the
appropriate uint8_t entries in LSB.

1.4.1.1.2.4 DESC_CONFIG_uint8_t Macro
File

usb_device.h

Syntax

#define DESC_CONFIG_uint8_t(a) (a)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

64

Description

The DESC_CONFIG_uint8_t() macro is implemented for convinence. The DESC_CONFIG_uint8_t() macro provides a
consistant macro for use with a byte when generating a configuratin descriptor when using either the
DESC_CONFIG_WORD() or DESC_CONFIG_uint32_t() macros.

1.4.1.1.2.5 DESC_CONFIG_WORD Macro
File

usb_device.h

Syntax

#define DESC_CONFIG_WORD(a) (a&0xFF),((a>>8)&0xFF)

Description

The DESC_CONFIG_WORD() macro is implemented for convinence. Since the configuration descriptor array is a uint8_t
array, each entry needs to be a uint8_t in LSB format. The DESC_CONFIG_WORD() macro breaks up a uint16_t into the
appropriate uint8_t entries in LSB. Typical Usage:

 const uint8_t configDescriptor1[]={
 0x09, // Size of this descriptor in bytes
 USB_DESCRIPTOR_CONFIGURATION, // CONFIGURATION descriptor type
 DESC_CONFIG_WORD(0x0022), // Total length of data for this cfg

1.4.1.1.2.6 USB_EP0_BUSY Macro
File

usb_device.h

Syntax

#define USB_EP0_BUSY 0x80 //The PIPE is busy

Description

The PIPE is busy

1.4.1.1.2.7 USB_EP0_INCLUDE_ZERO Macro
File

usb_device.h

Syntax

#define USB_EP0_INCLUDE_ZERO 0x40 //include a trailing zero packet

Description

include a trailing zero packet

1.4.1.1.2.8 USB_EP0_NO_DATA Macro
File

usb_device.h

Syntax

#define USB_EP0_NO_DATA 0x00 //no data to send

Description

no data to send

1.4 Library Interface MLA - USB Library Help Device/Peripheral

65

1.4.1.1.2.9 USB_EP0_NO_OPTIONS Macro
File

usb_device.h

Syntax

#define USB_EP0_NO_OPTIONS 0x00 //no options set

Description

no options set

1.4.1.1.2.10 USB_EP0_RAM Macro
File

usb_device.h

Syntax

#define USB_EP0_RAM 0x01 //Data comes from const

Description

Data comes from const

1.4.1.1.2.11 USB_EP0_ROM Macro
File

usb_device.h

Syntax

#define USB_EP0_ROM 0x00 //Data comes from RAM

Description

Data comes from RAM

1.4.1.1.2.12 USB_HANDLE Macro
File

usb_device.h

Syntax

#define USB_HANDLE void*

Description

USB_HANDLE is a pointer to an entry in the BDT. This pointer can be used to read the length of the last transfer, the status
of the last transfer, and various other information. Insure to initialize USB_HANDLE objects to NULL so that they are in a
known state during their first usage.

1.4.1.1.3 usb_device.h
Functions

Name Description
USB_APPLICATION_EVENT_HANDLER This function is called whenever the USB stack wants to notify the

user of an event.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

66

USBCancelIO This function cancels the transfers pending on the specified
endpoint. This function can only be used after a SETUP packet is
received and before that setup packet is handled. This is the time
period in which the EVENT_EP0_REQUEST is thrown, before the
event handler function returns to the stack.

USBCtrlEPAllowDataStage This function allows the data stage of either a host-to-device or
device-to-host control transfer (with data stage) to complete. This
function is meant to be used in conjunction with either the
USBDeferOUTDataStage() or USBDeferINDataStage(). If the
firmware does not call either USBDeferOUTDataStage() or
USBDeferINDataStage(), then the firmware does not need to
manually call USBCtrlEPAllowDataStage(), as the USB stack will
call this function instead.

USBCtrlEPAllowStatusStage This function prepares the proper endpoint 0 IN or endpoint 0 OUT
(based on the controlTransferState) to allow the status stage packet
of a control transfer to complete. This function gets used internally
by the USB stack itself, but it may also be called from the application
firmware, IF the application firmware called the
USBDeferStatusStage() function during the initial processing of the
control transfer request. In this case, the application must call the
USBCtrlEPAllowStatusStage() once, after it has fully completed
processing and handling the data stage portion of the request.
If the application firmware has no need for delaying... more

USBDeferINDataStage This function will cause the USB hardware to continuously NAK the
IN token packets sent from the host, during the data stage of a
device to host control transfer. This allows the firmware more time to
process and prepare the IN data packets that will eventually be sent
to the host. This is also useful, if the firmware needs to
process/prepare the IN data in a different context than what the
USBDeviceTasks() function executes at.
Calling this function (macro) will assert ownership of the currently
pending control transfer. Therefore, the USB stack will not STALL
when it reaches the... more

USBDeferOUTDataStage This function will cause the USB hardware to continuously NAK the
OUT data packets sent from the host, during the data stage of a
device to host control transfer. This allows the firmware more time to
prepare the RAM buffer that will eventually be used to receive the
data from the host. This is also useful, if the firmware wishes to
receive the OUT data in a different context than what the
USBDeviceTasks() function executes at.
Calling this function (macro) will assert ownership of the currently
pending control transfer. Therefore, the USB stack will not STALL
when it reaches... more

USBDeferStatusStage Calling this function will prevent the USB stack from automatically
enabling the status stage for the currently pending control transfer
from completing immediately after all data bytes have been sent or
received. This is useful if a class handler or USB application
firmware project uses control transfers for sending/receiving data
over EP0, but requires time in order to finish processing and/or to
consume the data.
For example: Consider an application which receives OUT data from
the USB host, through EP0 using control transfers. Now assume
that this application wishes to do something time consuming with
this data (ex: transmit it... more

USBDeviceAttach Checks if VBUS is present, and that the USB module is not already
initalized, and if so, enables the USB module so as to signal device
attachment to the USB host.

USBDeviceDetach This function configures the USB module to "soft detach" itself from
the USB host.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

67

USBDeviceInit This function initializes the device stack it in the default state. The
USB module will be completely reset including all of the internal
variables, registers, and interrupt flags.

USBDeviceTasks This function is the main state machine/transaction handler of the
USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the
USBDeviceTasks() function should be called periodically to receive
and transmit packets through the stack. This function also takes
care of control transfers associated with the USB enumeration
process, and detecting various USB events (such as suspend). This
function should be called at least once every 1.8ms during the USB
enumeration process. After the enumeration process is complete
(which can be determined when USBGetDeviceState() returns
CONFIGURED_STATE), the USBDeviceTasks() handler may be
called the... more

USBEnableEndpoint This function will enable the specified endpoint with the specified
options

USBEP0Receive Sets the destination, size, and a function to call on the completion of
the next control write.

USBEP0SendRAMPtr Sets the source, size, and options of the data you wish to send from
a RAM source

USBEP0SendROMPtr Sets the source, size, and options of the data you wish to send from
a const source

USBEP0Transmit Sets the address of the data to send over the control endpoint
USBGetDeviceState This function will return the current state of the device on the USB.

This function should return CONFIGURED_STATE before an
application tries to send information on the bus.

USBGetNextHandle Retrieves the handle to the next endpoint BDT entry that the
USBTransferOnePacket() will use.

USBGetRemoteWakeupStatus This function indicates if remote wakeup has been enabled by the
host. Devices that support remote wakeup should use this function
to determine if it should send a remote wakeup.

USBGetSuspendState This function indicates if the USB port that this device is attached to
is currently suspended. When suspended, it will not be able to
transfer data over the bus.

USBHandleBusy Checks to see if the input handle is busy
USBHandleGetAddr Retrieves the address of the destination buffer of the input handle
USBHandleGetLength Retrieves the length of the destination buffer of the input handle
USBINDataStageDeferred Returns true if a control transfer with IN data stage is pending, and

the firmware has called USBDeferINDataStage(), but has not yet
called USBCtrlEPAllowDataStage(). Returns false if a control
transfer with IN data stage is either not pending, or the firmware did
not call USBDeferINDataStage() at the start of the control transfer.
This function (macro) would typically be used in the case where the
USBDeviceTasks() function executes in the interrupt context (ex:
USB_INTERRUPT option selected in usb_config.h), but the
firmware wishes to take care of handling the data stage of the
control transfer in the main... more

USBIsBusSuspended This function indicates if the USB bus is in suspend mode.
USBIsDeviceSuspended This function indicates if the USB module is in suspend mode.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

68

USBOUTDataStageDeferred Returns true if a control transfer with OUT data stage is pending,
and the firmware has called USBDeferOUTDataStage(), but has not
yet called USBCtrlEPAllowDataStage(). Returns false if a control
transfer with OUT data stage is either not pending, or the firmware
did not call USBDeferOUTDataStage() at the start of the control
transfer.
This function (macro) would typically be used in the case where the
USBDeviceTasks() function executes in the interrupt context (ex:
USB_INTERRUPT option selected in usb_config.h), but the
firmware wishes to take care of handling the data stage of the
control transfer in the main... more

USBRxOnePacket Receives the specified data out the specified endpoint
USBSoftDetach This function performs a detach from the USB bus via software.
USBStallEndpoint Configures the specified endpoint to send STALL to the host, the

next time the host tries to access the endpoint.
USBTransferOnePacket Transfers a single packet (one transaction) of data on the USB bus.
USBTxOnePacket Sends the specified data out the specified endpoint

Macros

Name Description
DESC_CONFIG_uint32_t The DESC_CONFIG_uint32_t() macro is implemented for convinence.

Since the configuration descriptor array is a uint8_t array, each entry
needs to be a uint8_t in LSB format. The DESC_CONFIG_uint32_t()
macro breaks up a uint32_t into the appropriate uint8_t entries in LSB.

DESC_CONFIG_uint8_t The DESC_CONFIG_uint8_t() macro is implemented for convinence. The
DESC_CONFIG_uint8_t() macro provides a consistant macro for use
with a byte when generating a configuratin descriptor when using either
the DESC_CONFIG_WORD() or DESC_CONFIG_uint32_t() macros.

DESC_CONFIG_WORD The DESC_CONFIG_WORD() macro is implemented for convinence.
Since the configuration descriptor array is a uint8_t array, each entry
needs to be a uint8_t in LSB format. The DESC_CONFIG_WORD()
macro breaks up a uint16_t into the appropriate uint8_t entries in LSB.
Typical Usage:

USB_EP0_BUSY The PIPE is busy
USB_EP0_INCLUDE_ZERO include a trailing zero packet
USB_EP0_NO_DATA no data to send
USB_EP0_NO_OPTIONS no options set
USB_EP0_RAM Data comes from const
USB_EP0_ROM Data comes from RAM
USB_HANDLE USB_HANDLE is a pointer to an entry in the BDT. This pointer can be

used to read the length of the last transfer, the status of the last transfer,
and various other information. Insure to initialize USB_HANDLE objects
to NULL so that they are in a known state during their first usage.

Module

Device Stack

Types

Name Description
USB_DEVICE_STACK_EVENTS USB device stack events description here - DWF
USB_DEVICE_STATE USB Device States as returned by USBGetDeviceState(). Only the

defintions for these states should be used. The actual value for each
state should not be relied upon as constant and may change based on
the implementation.

Description

This is file usb_device.h.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

69

1.4.1.2 Audio Function Driver
Files

Name Description
usb_device_audio.h This is file usb_device_audio.h.

Description

1.4.1.2.1 Functions
Functions

Name Description
USBCheckAudioRequest This routine checks the setup data packet to see if it knows how to

handle it

Module

Audio Function Driver

Description

1.4.1.2.1.1 USBCheckAudioRequest Function
This routine checks the setup data packet to see if it knows how to handle it

File

usb_device_audio.h

Syntax

void USBCheckAudioRequest();

Description

This routine checks the setup data packet to see if it knows how to handle it

Remarks

None

Preconditions

None

Function

void USBCheckAudioRequest(void)

1.4.1.2.2 usb_device_audio.h
Functions

Name Description
USBCheckAudioRequest This routine checks the setup data packet to see if it knows how to

handle it

1.4 Library Interface MLA - USB Library Help Device/Peripheral

70

Module

Audio Function Driver

Description

This is file usb_device_audio.h.

1.4.1.3 CDC Function Driver
Files

Name Description
usb_device_cdc.h This is file usb_device_cdc.h.

Description

1.4.1.3.1 usb_device_cdc.h
Functions

Name Description
CDCInitEP This function initializes the CDC function driver. This function should be

called after the SET_CONFIGURATION command (ex: within the context
of the USBCBInitEP() function).

CDCNotificationHandler Checks for changes in DSR status and reports them to the USB host.
CDCTxService CDCTxService handles device-to-host transaction(s). This function

should be called once per Main Program loop after the device reaches
the configured state.

getsUSBUSART getsUSBUSART copies a string of BYTEs received through USB CDC
Bulk OUT endpoint to a user's specified location. It is a non-blocking
function. It does not wait for data if there is no data available. Instead it
returns '0' to notify the caller that there is no data available.

putrsUSBUSART putrsUSBUSART writes a string of data to the USB including the null
character. Use this version, 'putrs', to transfer data literals and data
located in program memory.

putsUSBUSART putsUSBUSART writes a string of data to the USB including the null
character. Use this version, 'puts', to transfer data from a RAM buffer.

putUSBUSART putUSBUSART writes an array of data to the USB. Use this version, is
capable of transfering 0x00 (what is typically a NULL character in any of
the string transfer functions).

USBCDCEventHandler Handles events from the USB stack, which may have an effect on the
CDC endpoint(s).

USBCheckCDCRequest This routine checks the most recently received SETUP data packet to
see if the request is specific to the CDC class. If the request was a CDC
specific request, this function will take care of handling the request and
responding appropriately.

Macros

Name Description
CDCSetBaudRate This macro is used set the baud rate reported back to the host during a

get line coding request. (optional)
CDCSetCharacterFormat This macro is used manually set the character format reported back to

the host during a get line coding request. (optional)
CDCSetDataSize This function is used manually set the number of data bits reported back

to the host during a get line coding request. (optional)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

71

CDCSetLineCoding This function is used to manually set the data reported back to the host
during a get line coding request. (optional)

CDCSetParity This function is used manually set the parity format reported back to the
host during a get line coding request. (optional)

mUSBUSARTIsTxTrfReady Depricated in MCHPFSUSB v2.3. This macro has been replaced by
USBUSARTIsTxTrfReady().

mUSBUSARTTxRam Use this macro to transfer data located in data memory. Use this macro
when:

1. Data stream is not null-terminated

2. Transfer length is known

Remember: cdc_trf_state must == CDC_TX_READY Unlike
putsUSBUSART, there is not code double checking the transfer state.
Unexpected behavior will occur if this function is called when
cdc_trf_state != CDC_TX_READY

Typical Usage:

mUSBUSARTTxRom Use this macro to transfer data located in program memory. Use this
macro when:

1. Data stream is not null-terminated

2. Transfer length is known

Remember: cdc_trf_state must == CDC_TX_READY Unlike
putrsUSBUSART, there is not code double checking the transfer state.
Unexpected behavior will occur if this function is called when
cdc_trf_state != CDC_TX_READY

Typical Usage:

NUM_STOP_BITS_1 1 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()
NUM_STOP_BITS_1_5 1.5 stop bit - used by CDCSetLineCoding() and

CDCSetCharacterFormat()
NUM_STOP_BITS_2 2 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()
PARITY_EVEN even parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_MARK mark parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_NONE no parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_ODD odd parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_SPACE space parity - used by CDCSetLineCoding() and CDCSetParity()
USBUSARTIsTxTrfReady This macro is used to check if the CDC class is ready to send more data.

Module

CDC Function Driver

Description

This is file usb_device_cdc.h.

1.4.1.3.2 Functions
Functions and macro functions used to interface with the CDC module.

Functions

Name Description
CDCInitEP This function initializes the CDC function driver. This function should be

called after the SET_CONFIGURATION command (ex: within the context
of the USBCBInitEP() function).

CDCNotificationHandler Checks for changes in DSR status and reports them to the USB host.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

72

CDCTxService CDCTxService handles device-to-host transaction(s). This function
should be called once per Main Program loop after the device reaches
the configured state.

getsUSBUSART getsUSBUSART copies a string of BYTEs received through USB CDC
Bulk OUT endpoint to a user's specified location. It is a non-blocking
function. It does not wait for data if there is no data available. Instead it
returns '0' to notify the caller that there is no data available.

putrsUSBUSART putrsUSBUSART writes a string of data to the USB including the null
character. Use this version, 'putrs', to transfer data literals and data
located in program memory.

putsUSBUSART putsUSBUSART writes a string of data to the USB including the null
character. Use this version, 'puts', to transfer data from a RAM buffer.

putUSBUSART putUSBUSART writes an array of data to the USB. Use this version, is
capable of transfering 0x00 (what is typically a NULL character in any of
the string transfer functions).

USBCDCEventHandler Handles events from the USB stack, which may have an effect on the
CDC endpoint(s).

USBCheckCDCRequest This routine checks the most recently received SETUP data packet to
see if the request is specific to the CDC class. If the request was a CDC
specific request, this function will take care of handling the request and
responding appropriately.

Macros

Name Description
CDCSetBaudRate This macro is used set the baud rate reported back to the host during a

get line coding request. (optional)
CDCSetCharacterFormat This macro is used manually set the character format reported back to

the host during a get line coding request. (optional)
CDCSetDataSize This function is used manually set the number of data bits reported back

to the host during a get line coding request. (optional)
CDCSetLineCoding This function is used to manually set the data reported back to the host

during a get line coding request. (optional)
CDCSetParity This function is used manually set the parity format reported back to the

host during a get line coding request. (optional)
mUSBUSARTIsTxTrfReady Depricated in MCHPFSUSB v2.3. This macro has been replaced by

USBUSARTIsTxTrfReady().
mUSBUSARTTxRam Use this macro to transfer data located in data memory. Use this macro

when:

1. Data stream is not null-terminated

2. Transfer length is known

Remember: cdc_trf_state must == CDC_TX_READY Unlike
putsUSBUSART, there is not code double checking the transfer state.
Unexpected behavior will occur if this function is called when
cdc_trf_state != CDC_TX_READY

Typical Usage:

1.4 Library Interface MLA - USB Library Help Device/Peripheral

73

mUSBUSARTTxRom Use this macro to transfer data located in program memory. Use this
macro when:

1. Data stream is not null-terminated

2. Transfer length is known

Remember: cdc_trf_state must == CDC_TX_READY Unlike
putrsUSBUSART, there is not code double checking the transfer state.
Unexpected behavior will occur if this function is called when
cdc_trf_state != CDC_TX_READY

Typical Usage:

USBUSARTIsTxTrfReady This macro is used to check if the CDC class is ready to send more data.

Module

CDC Function Driver

Description

Functions and macro functions used to interface with the CDC module.

1.4.1.3.2.1 CDCInitEP Function
This function initializes the CDC function driver. This function should be called after the SET_CONFIGURATION command
(ex: within the context of the USBCBInitEP() function).

File

usb_device_cdc.h

Syntax

void CDCInitEP();

Description

This function initializes the CDC function driver. This function sets the default line coding (baud rate, bit parity, number of
data bits, and format). This function also enables the endpoints and prepares for the first transfer from the host.

This function should be called after the SET_CONFIGURATION command. This is most simply done by calling this function
from the USBCBInitEP() function.

Typical Usage:

 void USBCBInitEP(void)
 {
 CDCInitEP();
 }

Remarks

None

Preconditions

None

Function

void CDCInitEP(void)

1.4.1.3.2.2 CDCNotificationHandler Function
Checks for changes in DSR status and reports them to the USB host.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

74

File

usb_device_cdc.h

Syntax

void CDCNotificationHandler();

Description

Checks for changes in DSR pin state and reports any changes to the USB host.

Remarks

This function is only implemented and needed when the USB_CDC_SUPPORT_DSR_REPORTING option has been
enabled. If the function is enabled, it should be called periodically to sample the DSR pin and feed the information to the
USB host. This can be done by calling CDCNotificationHandler() by itself, or, by calling CDCTxService() which also calls
CDCNotificationHandler() internally, when appropriate.

Preconditions

CDCInitEP() must have been called previously, prior to calling CDCNotificationHandler() for the first time.

Function

void CDCNotificationHandler(void)

1.4.1.3.2.3 CDCTxService Function
CDCTxService handles device-to-host transaction(s). This function should be called once per Main Program loop after the
device reaches the configured state.

File

usb_device_cdc.h

Syntax

void CDCTxService();

Description

CDCTxService handles device-to-host transaction(s). This function should be called once per Main Program loop after the
device reaches the configured state (after the CDCIniEP() function has already executed). This function is needed, in order
to advance the internal software state machine that takes care of sending multiple transactions worth of IN USB data to the
host, associated with CDC serial data. Failure to call CDCTxService() perioidcally will prevent data from being sent to the
USB host, over the CDC serial data interface.

Typical Usage:

void main(void)
{
 USBDeviceInit();
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == true))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Keep trying to send data to the PC as required
 CDCTxService();

 //Run application code.
 UserApplication();
 }

1.4 Library Interface MLA - USB Library Help Device/Peripheral

75

 }
}

Remarks

None

Preconditions

CDCIniEP() function should have already exectuted/the device should be in the CONFIGURED_STATE.

Function

void CDCTxService(void)

1.4.1.3.2.4 getsUSBUSART Function
getsUSBUSART copies a string of BYTEs received through USB CDC Bulk OUT endpoint to a user's specified location. It is
a non-blocking function. It does not wait for data if there is no data available. Instead it returns '0' to notify the caller that
there is no data available.

File

usb_device_cdc.h

Syntax

uint8_t getsUSBUSART(uint8_t * buffer, uint8_t len);

Returns

uint8_t - Returns a byte indicating the total number of bytes that were actually received and copied into the specified buffer.
The returned value can be anything from 0 up to the len input value. A return value of 0 indicates that no new CDC bulk OUT
endpoint data was available.

Description

getsUSBUSART copies a string of BYTEs received through USB CDC Bulk OUT endpoint to a user's specified location. It is
a non-blocking function. It does not wait for data if there is no data available. Instead it returns '0' to notify the caller that
there is no data available.

Typical Usage:

 uint8_t numBytes;
 uint8_t buffer[64]

 numBytes = getsUSBUSART(buffer,sizeof(buffer)); //until the buffer is free.
 if(numBytes > 0)
 {
 //we received numBytes bytes of data and they are copied into
 // the "buffer" variable. We can do something with the data
 // here.
 }

Preconditions

Value of input argument 'len' should be smaller than the maximum endpoint size responsible for receiving bulk data from
USB host for CDC class. Input argument 'buffer' should point to a buffer area that is bigger or equal to the size specified by
'len'.

Parameters

Parameters Description
buffer Pointer to where received BYTEs are to be stored
len The number of BYTEs expected.

Function

uint8_t getsUSBUSART(char *buffer, uint8_t len)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

76

1.4.1.3.2.5 putrsUSBUSART Function
putrsUSBUSART writes a string of data to the USB including the null character. Use this version, 'putrs', to transfer data
literals and data located in program memory.

File

usb_device_cdc.h

Syntax

void putrsUSBUSART(const char * data);

Description

putrsUSBUSART writes a string of data to the USB including the null character. Use this version, 'putrs', to transfer data
literals and data located in program memory.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 putrsUSBUSART("Hello World");
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. CDCTxService() must be called periodically to keep sending blocks of data to the host.

Preconditions

USBUSARTIsTxTrfReady() must return true. This indicates that the last transfer is complete and is ready to receive a new
block of data. The string of characters pointed to by 'data' must equal to or smaller than 255 BYTEs.

Parameters

Parameters Description
const const char *data null-terminated string of constant data. If a null character is

not found, 255 BYTEs of data will be transferred to the host.

Function

void putrsUSBUSART(const const char *data)

1.4.1.3.2.6 putsUSBUSART Function
putsUSBUSART writes a string of data to the USB including the null character. Use this version, 'puts', to transfer data from
a RAM buffer.

File

usb_device_cdc.h

Syntax

void putsUSBUSART(char * data);

Description

putsUSBUSART writes a string of data to the USB including the null character. Use this version, 'puts', to transfer data from
a RAM buffer.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 char data[] = "Hello World";

1.4 Library Interface MLA - USB Library Help Device/Peripheral

77

 putsUSBUSART(data);
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. CDCTxService() must be called periodically to keep sending blocks of data to the host.

Preconditions

USBUSARTIsTxTrfReady() must return true. This indicates that the last transfer is complete and is ready to receive a new
block of data. The string of characters pointed to by 'data' must equal to or smaller than 255 BYTEs.

Parameters

Parameters Description
char *data null-terminated string of constant data. If a null character is

not found, 255 BYTEs of data will be transferred to the host.

Function

void putsUSBUSART(char *data)

1.4.1.3.2.7 putUSBUSART Function
putUSBUSART writes an array of data to the USB. Use this version, is capable of transfering 0x00 (what is typically a NULL
character in any of the string transfer functions).

File

usb_device_cdc.h

Syntax

void putUSBUSART(uint8_t * data, uint8_t Length);

Description

putUSBUSART writes an array of data to the USB. Use this version, is capable of transfering 0x00 (what is typically a NULL
character in any of the string transfer functions).

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 char data[] = {0x00, 0x01, 0x02, 0x03, 0x04};
 putUSBUSART(data,5);
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. CDCTxService() must be called periodically to keep sending blocks of data to the host.

Preconditions

USBUSARTIsTxTrfReady() must return true. This indicates that the last transfer is complete and is ready to receive a new
block of data. The string of characters pointed to by 'data' must equal to or smaller than 255 BYTEs.

Parameters

Parameters Description
char *data pointer to a RAM array of data to be transfered to the host
uint8_t length the number of bytes to be transfered (must be less than 255).

Function

void putUSBUSART(char *data, uint8_t length)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

78

1.4.1.3.2.8 USBCDCEventHandler Function
Handles events from the USB stack, which may have an effect on the CDC endpoint(s).

File

usb_device_cdc.h

Syntax

bool USBCDCEventHandler(USB_EVENT event, void * pdata, uint16_t size);

Description

Handles events from the USB stack. This function should be called when there is a USB event that needs to be processed
by the CDC driver.

Preconditions

Value of input argument 'len' should be smaller than the maximum endpoint size responsible for receiving bulk data from
USB host for CDC class. Input argument 'buffer' should point to a buffer area that is bigger or equal to the size specified by
'len'.

Parameters

Parameters Description
event the type of event that occured
pdata pointer to the data that caused the event
size the size of the data that is pointed to by pdata

Function

bool USBCDCEventHandler(USB_EVENT event, void *pdata, uint16_t size)

1.4.1.3.2.9 USBCheckCDCRequest Function
File

usb_device_cdc.h

Syntax

void USBCheckCDCRequest();

Description

This routine checks the most recently received SETUP data packet to see if the request is specific to the CDC class. If the
request was a CDC specific request, this function will take care of handling the request and responding appropriately.

Remarks

This function does not change status or do anything if the SETUP packet did not contain a CDC class specific request.

Preconditions

This function should only be called after a control transfer SETUP packet has arrived from the host.

Function

void USBCheckCDCRequest(void)

1.4.1.3.2.10 CDCSetBaudRate Macro
This macro is used set the baud rate reported back to the host during a get line coding request. (optional)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

79

File

usb_device_cdc.h

Syntax

#define CDCSetBaudRate(baudRate) {line_coding.dwDTERate.Val=baudRate;}

Description

This macro is used set the baud rate reported back to the host during a get line coding request.

Typical Usage:

 CDCSetBaudRate(19200);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint32_t baudRate The desired baudrate

Function

void CDCSetBaudRate(uint32_t baudRate)

1.4.1.3.2.11 CDCSetCharacterFormat Macro
This macro is used manually set the character format reported back to the host during a get line coding request. (optional)

File

usb_device_cdc.h

Syntax

#define CDCSetCharacterFormat(charFormat) {line_coding.bCharFormat=charFormat;}

Description

This macro is used manually set the character format reported back to the host during a get line coding request.

Typical Usage:

 CDCSetCharacterFormat(NUM_STOP_BITS_1);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Device/Peripheral

80

Parameters

Parameters Description
uint8_t charFormat number of stop bits. Available options are:

• NUM_STOP_BITS_1 - 1 Stop bit

• NUM_STOP_BITS_1_5 - 1.5 Stop bits

• NUM_STOP_BITS_2 - 2 Stop bits

Function

void CDCSetCharacterFormat(uint8_t charFormat)

1.4.1.3.2.12 CDCSetDataSize Macro
This function is used manually set the number of data bits reported back to the host during a get line coding request.
(optional)

File

usb_device_cdc.h

Syntax

#define CDCSetDataSize(dataBits) {line_coding.bDataBits=dataBits;}

Description

This function is used manually set the number of data bits reported back to the host during a get line coding request.

Typical Usage:

 CDCSetDataSize(8);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t dataBits number of data bits. The options are 5, 6, 7, 8, or 16.

Function

void CDCSetDataSize(uint8_t dataBits)

1.4.1.3.2.13 CDCSetLineCoding Macro
This function is used to manually set the data reported back to the host during a get line coding request. (optional)

File

usb_device_cdc.h

Syntax

#define CDCSetLineCoding(baud,format,parity,dataSize) {\
 CDCSetBaudRate(baud);\
 CDCSetCharacterFormat(format);\
 CDCSetParity(parity);\

1.4 Library Interface MLA - USB Library Help Device/Peripheral

81

 CDCSetDataSize(dataSize);\
 }

Description

This function is used to manually set the data reported back to the host during a get line coding request.

Typical Usage:

 CDCSetLineCoding(19200, NUM_STOP_BITS_1, PARITY_NONE, 8);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint32_t baud The desired baudrate
uint8_t format number of stop bits. Available options are:

• NUM_STOP_BITS_1 - 1 Stop bit

• NUM_STOP_BITS_1_5 - 1.5 Stop bits

• NUM_STOP_BITS_2 - 2 Stop bits

uint8_t parity Type of parity. The options are the following:

• PARITY_NONE

• PARITY_ODD

• PARITY_EVEN

• PARITY_MARK

• PARITY_SPACE

uint8_t dataSize number of data bits. The options are 5, 6, 7, 8, or 16.

Function

void CDCSetLineCoding(uint32_t baud, uint8_t format, uint8_t parity, uint8_t dataSize)

1.4.1.3.2.14 CDCSetParity Macro
This function is used manually set the parity format reported back to the host during a get line coding request. (optional)

File

usb_device_cdc.h

Syntax

#define CDCSetParity(parityType) {line_coding.bParityType=parityType;}

Description

This macro is used manually set the parity format reported back to the host during a get line coding request.

Typical Usage:

 CDCSetParity(PARITY_NONE);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

82

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t parityType Type of parity. The options are the following:

• PARITY_NONE

• PARITY_ODD

• PARITY_EVEN

• PARITY_MARK

• PARITY_SPACE

Function

void CDCSetParity(uint8_t parityType)

1.4.1.3.2.15 mUSBUSARTIsTxTrfReady Macro
File

usb_device_cdc.h

Syntax

#define mUSBUSARTIsTxTrfReady USBUSARTIsTxTrfReady()

Description

Depricated in MCHPFSUSB v2.3. This macro has been replaced by USBUSARTIsTxTrfReady().

Function

void mUSBUSARTTxRam(uint8_t *pData, uint8_t len)

1.4.1.3.2.16 mUSBUSARTTxRam Macro
File

usb_device_cdc.h

Syntax

#define mUSBUSARTTxRam(pData,len) \
{ \
 pCDCSrc.bRam = pData; \
 cdc_tx_len = len; \
 cdc_mem_type = USB_EP0_RAM; \
 cdc_trf_state = CDC_TX_BUSY; \
}

Description

Use this macro to transfer data located in data memory. Use this macro when:

1. Data stream is not null-terminated

2. Transfer length is known

Remember: cdc_trf_state must == CDC_TX_READY Unlike putsUSBUSART, there is not code double checking the transfer

1.4 Library Interface MLA - USB Library Help Device/Peripheral

83

state. Unexpected behavior will occur if this function is called when cdc_trf_state != CDC_TX_READY

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 mUSBUSARTTxRam(&UserDataBuffer[0], 200);
 }

Remarks

This macro only handles the setup of the transfer. The actual transfer is handled by CDCTxService(). This macro does not
"double buffer" the data. The application firmware should not modify the contents of the pData buffer until all of the data has
been sent, as indicated by the USBUSARTIsTxTrfReady() function returning true, subsequent to calling
mUSBUSARTTxRam().

Preconditions

cdc_trf_state must be in the CDC_TX_READY state. Value of 'len' must be equal to or smaller than 255 bytes. The USB
stack should have reached the CONFIGURED_STATE prior to calling this API function for the first time.

Paramters: pDdata : Pointer to the starting location of data bytes len : Number of bytes to be transferred

Function

void mUSBUSARTTxRam(uint8_t *pData, uint8_t len)

1.4.1.3.2.17 mUSBUSARTTxRom Macro
File

usb_device_cdc.h

Syntax

#define mUSBUSARTTxRom(pData,len) \
{ \
 pCDCSrc.bRom = pData; \
 cdc_tx_len = len; \
 cdc_mem_type = USB_EP0_ROM; \
 cdc_trf_state = CDC_TX_BUSY; \
}

Description

Use this macro to transfer data located in program memory. Use this macro when:

1. Data stream is not null-terminated

2. Transfer length is known

Remember: cdc_trf_state must == CDC_TX_READY Unlike putrsUSBUSART, there is not code double checking the
transfer state. Unexpected behavior will occur if this function is called when cdc_trf_state != CDC_TX_READY

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 mUSBUSARTTxRom(&SomeRomString[0], 200);
 }

Remarks

This macro only handles the setup of the transfer. The actual transfer is handled by CDCTxService().

Preconditions

cdc_trf_state must be in the CDC_TX_READY state. Value of 'len' must be equal to or smaller than 255 bytes.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

84

Parameters

Parameters Description
pDdata Pointer to the starting location of data bytes
len Number of bytes to be transferred

Function

void mUSBUSARTTxRom(rom uint8_t *pData, uint8_t len)

1.4.1.3.2.18 USBUSARTIsTxTrfReady Macro
This macro is used to check if the CDC class is ready to send more data.

File

usb_device_cdc.h

Syntax

#define USBUSARTIsTxTrfReady (cdc_trf_state == CDC_TX_READY)

Description

This macro is used to check if the CDC class handler firmware is ready to send more data to the host over the CDC bulk IN
endpoint.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 putrsUSBUSART("Hello World");
 }

Remarks

Make sure the application periodically calls the CDCTxService() handler, or pending USB IN transfers will not be able to
advance and complete.

Preconditions

The return value of this function is only valid if the device is in a configured state (i.e. - USBDeviceGetState() returns
CONFIGURED_STATE)

Function

bool USBUSARTIsTxTrfReady(void)

1.4.1.3.3 Data Types and Constants
Data types and constants used to interface with the CDC module.

Macros

Name Description
NUM_STOP_BITS_1 1 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()
NUM_STOP_BITS_1_5 1.5 stop bit - used by CDCSetLineCoding() and

CDCSetCharacterFormat()
NUM_STOP_BITS_2 2 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()
PARITY_EVEN even parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_MARK mark parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_NONE no parity - used by CDCSetLineCoding() and CDCSetParity()

1.4 Library Interface MLA - USB Library Help Device/Peripheral

85

PARITY_ODD odd parity - used by CDCSetLineCoding() and CDCSetParity()
PARITY_SPACE space parity - used by CDCSetLineCoding() and CDCSetParity()

Module

CDC Function Driver

Description

Data types and constants used to interface with the CDC module.

1.4.1.3.3.1 NUM_STOP_BITS_1 Macro
File

usb_device_cdc.h

Syntax

#define NUM_STOP_BITS_1 0 //1 stop bit - used by CDCSetLineCoding() and
CDCSetCharacterFormat()

Description

1 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()

1.4.1.3.3.2 NUM_STOP_BITS_1_5 Macro
File

usb_device_cdc.h

Syntax

#define NUM_STOP_BITS_1_5 1 //1.5 stop bit - used by CDCSetLineCoding() and
CDCSetCharacterFormat()

Description

1.5 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()

1.4.1.3.3.3 NUM_STOP_BITS_2 Macro
File

usb_device_cdc.h

Syntax

#define NUM_STOP_BITS_2 2 //2 stop bit - used by CDCSetLineCoding() and
CDCSetCharacterFormat()

Description

2 stop bit - used by CDCSetLineCoding() and CDCSetCharacterFormat()

1.4.1.3.3.4 PARITY_EVEN Macro
File

usb_device_cdc.h

Syntax

#define PARITY_EVEN 2 //even parity - used by CDCSetLineCoding() and CDCSetParity()

Description

even parity - used by CDCSetLineCoding() and CDCSetParity()

1.4 Library Interface MLA - USB Library Help Device/Peripheral

86

1.4.1.3.3.5 PARITY_MARK Macro
File

usb_device_cdc.h

Syntax

#define PARITY_MARK 3 //mark parity - used by CDCSetLineCoding() and CDCSetParity()

Description

mark parity - used by CDCSetLineCoding() and CDCSetParity()

1.4.1.3.3.6 PARITY_NONE Macro
File

usb_device_cdc.h

Syntax

#define PARITY_NONE 0 //no parity - used by CDCSetLineCoding() and CDCSetParity()

Description

no parity - used by CDCSetLineCoding() and CDCSetParity()

1.4.1.3.3.7 PARITY_ODD Macro
File

usb_device_cdc.h

Syntax

#define PARITY_ODD 1 //odd parity - used by CDCSetLineCoding() and CDCSetParity()

Description

odd parity - used by CDCSetLineCoding() and CDCSetParity()

1.4.1.3.3.8 PARITY_SPACE Macro
File

usb_device_cdc.h

Syntax

#define PARITY_SPACE 4 //space parity - used by CDCSetLineCoding() and CDCSetParity()

Description

space parity - used by CDCSetLineCoding() and CDCSetParity()

1.4.1.4 HID Function Driver
Files

Name Description
usb_device_hid.h This is file usb_device_hid.h.

Description

1.4 Library Interface MLA - USB Library Help Device/Peripheral

87

1.4.1.4.1 Functions
Macros

Name Description
HIDRxHandleBusy Retreives the status of the buffer ownership
HIDRxPacket Receives the specified data out the specified endpoint
HIDTxHandleBusy Retreives the status of the buffer ownership
HIDTxPacket Sends the specified data out the specified endpoint

Module

HID Function Driver

Description

1.4.1.4.1.1 HIDRxHandleBusy Macro
Retreives the status of the buffer ownership

File

usb_device_hid.h

Syntax

#define HIDRxHandleBusy(handle) USBHandleBusy(handle)

Description

Retreives the status of the buffer ownership. This function will indicate if the previous transfer is complete or not.

This function will take the input handle (pointer to a BDT entry) and will check the UOWN bit. If the UOWN bit is set then that
indicates that the transfer is not complete and the USB module still owns the data memory. If the UOWN bit is clear that
means that the transfer is complete and that the CPU now owns the data memory.

For more information about the BDT, please refer to the appropriate datasheet for the device in use.

Typical Usage:

if(!HIDRxHandleBusy(USBOutHandle))
{
 //The data is available in the buffer that was specified when the
 // HIDRxPacket() was called.
}

Remarks

None

Preconditions

None

Parameters

Parameters Description
USB_HANDLE handle the handle for the transfer in question. The handle is

returned by the HIDTxPacket() and HIDRxPacket() functions.
Please insure that USB_HANDLE objects are initialized to
NULL.

Return Values

Return Values Description
TRUE the HID handle is still busy

1.4 Library Interface MLA - USB Library Help Device/Peripheral

88

FALSE the HID handle is not busy and is ready to receive additional
data.

Function

bool HIDRxHandleBusy(USB_HANDLE handle)

1.4.1.4.1.2 HIDRxPacket Macro
Receives the specified data out the specified endpoint

File

usb_device_hid.h

Syntax

#define HIDRxPacket USBRxOnePacket

Description

Receives the specified data out the specified endpoint.

Typical Usage:

//Read 64-uint8_ts from endpoint HID_EP, into the ReceivedDataBuffer array.
// Make sure to save the return handle so that we can check it later
// to determine when the transfer is complete.
USBOutHandle = HIDRxPacket(HID_EP,(uint8_t*)&ReceivedDataBuffer,64);

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t ep the endpoint you want to receive the data into
uint8_t* data pointer to where the data will go when it arrives
uint16_t len the length of the data that you wish to receive

Return Values

Return Values Description
USB_HANDLE a handle for the transfer. This information should be kept to

track the status of the transfer

Function

USB_HANDLE HIDRxPacket(uint8_t ep, uint8_t* data, uint16_t len)

1.4.1.4.1.3 HIDTxHandleBusy Macro
Retreives the status of the buffer ownership

File

usb_device_hid.h

Syntax

#define HIDTxHandleBusy(handle) USBHandleBusy(handle)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

89

Description

Retreives the status of the buffer ownership. This function will indicate if the previous transfer is complete or not.

This function will take the input handle (pointer to a BDT entry) and will check the UOWN bit. If the UOWN bit is set then that
indicates that the transfer is not complete and the USB module still owns the data memory. If the UOWN bit is clear that
means that the transfer is complete and that the CPU now owns the data memory.

For more information about the BDT, please refer to the appropriate datasheet for the device in use.

Typical Usage:

//make sure that the last transfer isn't busy by checking the handle
if(!HIDTxHandleBusy(USBInHandle))
{
 //Send the data contained in the ToSendDataBuffer[] array out on
 // endpoint HID_EP
 USBInHandle =
HIDTxPacket(HID_EP,(uint8_t*)&ToSendDataBuffer[0],sizeof(ToSendDataBuffer));
}

Remarks

None

Preconditions

None.

Parameters

Parameters Description
USB_HANDLE handle the handle for the transfer in question. The handle is

returned by the HIDTxPacket() and HIDRxPacket() functions.
Please insure that USB_HANDLE objects are initialized to
NULL.

Return Values

Return Values Description
TRUE the HID handle is still busy
FALSE the HID handle is not busy and is ready to send additional

data.

Function

bool HIDTxHandleBusy(USB_HANDLE handle)

1.4.1.4.1.4 HIDTxPacket Macro
Sends the specified data out the specified endpoint

File

usb_device_hid.h

Syntax

#define HIDTxPacket USBTxOnePacket

Description

This function sends the specified data out the specified endpoint and returns a handle to the transfer information.

Typical Usage:

//make sure that the last transfer isn't busy by checking the handle
if(!HIDTxHandleBusy(USBInHandle))
{
 //Send the data contained in the ToSendDataBuffer[] array out on

1.4 Library Interface MLA - USB Library Help Device/Peripheral

90

 // endpoint HID_EP
 USBInHandle =
HIDTxPacket(HID_EP,(uint8_t*)&ToSendDataBuffer[0],sizeof(ToSendDataBuffer));
}

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t ep the endpoint you want to send the data out of
uint8_t* data pointer to the data that you wish to send
uint16_t len the length of the data that you wish to send

Return Values

Return Values Description
USB_HANDLE a handle for the transfer. This information should be kept to

track the status of the transfer

Function

USB_HANDLE HIDTxPacket(uint8_t ep, uint8_t* data, uint16_t len)

1.4.1.4.2 Data Types and Constants
Macros

Name Description
BOOT_INTF_SUBCLASS HID Interface Class SubClass Codes
BOOT_PROTOCOL Protocol Selection
HID_PROTOCOL_KEYBOARD This is macro HID_PROTOCOL_KEYBOARD.
HID_PROTOCOL_MOUSE This is macro HID_PROTOCOL_MOUSE.
HID_PROTOCOL_NONE HID Interface Class Protocol Codes

Module

HID Function Driver

Description

1.4.1.4.2.1 BOOT_INTF_SUBCLASS Macro
File

usb_device_hid.h

Syntax

#define BOOT_INTF_SUBCLASS 0x01

Description

HID Interface Class SubClass Codes

1.4 Library Interface MLA - USB Library Help Device/Peripheral

91

1.4.1.4.2.2 BOOT_PROTOCOL Macro
File

usb_device_hid.h

Syntax

#define BOOT_PROTOCOL 0x00

Description

Protocol Selection

1.4.1.4.2.3 HID_PROTOCOL_KEYBOARD Macro
File

usb_device_hid.h

Syntax

#define HID_PROTOCOL_KEYBOARD 0x01

Description

This is macro HID_PROTOCOL_KEYBOARD.

1.4.1.4.2.4 HID_PROTOCOL_MOUSE Macro
File

usb_device_hid.h

Syntax

#define HID_PROTOCOL_MOUSE 0x02

Description

This is macro HID_PROTOCOL_MOUSE.

1.4.1.4.2.5 HID_PROTOCOL_NONE Macro
File

usb_device_hid.h

Syntax

#define HID_PROTOCOL_NONE 0x00

Description

HID Interface Class Protocol Codes

1.4.1.4.3 usb_device_hid.h
Macros

Name Description
BOOT_INTF_SUBCLASS HID Interface Class SubClass Codes
BOOT_PROTOCOL Protocol Selection
HID_PROTOCOL_KEYBOARD This is macro HID_PROTOCOL_KEYBOARD.
HID_PROTOCOL_MOUSE This is macro HID_PROTOCOL_MOUSE.
HID_PROTOCOL_NONE HID Interface Class Protocol Codes
HIDRxHandleBusy Retreives the status of the buffer ownership

1.4 Library Interface MLA - USB Library Help Device/Peripheral

92

HIDRxPacket Receives the specified data out the specified endpoint
HIDTxHandleBusy Retreives the status of the buffer ownership
HIDTxPacket Sends the specified data out the specified endpoint

Module

HID Function Driver

Description

This is file usb_device_hid.h.

1.4.1.5 MSD Function Driver
Files

Name Description
usb_device_msd.h This is file usb_device_msd.h.

Description

1.4.1.5.1 Functions
Functions

Name Description
MSDTasks This is function MSDTasks.
USBCheckMSDRequest
USBMSDInit This is function USBMSDInit.

Module

MSD Function Driver

Description

1.4.1.5.1.1 MSDTasks Function
File

usb_device_msd.h

Syntax

uint8_t MSDTasks();

Description

This is function MSDTasks.

1.4.1.5.1.2 USBCheckMSDRequest Function
File

usb_device_msd.h

Syntax

void USBCheckMSDRequest();

1.4 Library Interface MLA - USB Library Help Device/Peripheral

93

Section

Public Prototypes

1.4.1.5.1.3 USBMSDInit Function
File

usb_device_msd.h

Syntax

void USBMSDInit();

Description

This is function USBMSDInit.

1.4.1.5.2 Data Types and Constants
Module

MSD Function Driver

Structures

Name Description
LUN_FUNCTIONS LUN_FUNCTIONS is a structure of function pointers that tells the stack

where to find each of the physical layer functions it is looking for. This
structure needs to be defined for any project for PIC24F or PIC32.

Description

1.4.1.5.2.1 LUN_FUNCTIONS Structure
LUN_FUNCTIONS is a structure of function pointers that tells the stack where to find each of the physical layer functions it is
looking for. This structure needs to be defined for any project for PIC24F or PIC32.

File

usb_device_msd.h

Syntax

typedef struct {
 FILEIO_MEDIA_INFORMATION* (* MediaInitialize)(void * config);
 uint32_t (* ReadCapacity)(void * config);
 uint16_t (* ReadSectorSize)(void * config);
 bool (* MediaDetect)(void * config);
 uint8_t (* SectorRead)(void * config, uint32_t sector_addr, uint8_t* buffer);
 uint8_t (* WriteProtectState)(void * config);
 uint8_t (* SectorWrite)(void * config, uint32_t sector_addr, uint8_t* buffer, uint8_t
allowWriteToZero);
 void * mediaParameters;
} LUN_FUNCTIONS;

Members

Members Description
FILEIO_MEDIA_INFORMATION* (* MediaInitialize)(void *
config);

Function pointer to the MediaInitialize() function of the
physical media being used.

uint32_t (* ReadCapacity)(void * config); Function pointer to the ReadCapacity() function of the
physical media being used.

uint16_t (* ReadSectorSize)(void * config); Function pointer to the ReadSectorSize() function of the
physical media being used.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

94

bool (* MediaDetect)(void * config); Function pointer to the MediaDetect() function of the physical
media being used.

uint8_t (* SectorRead)(void * config, uint32_t sector_addr,
uint8_t* buffer);

Function pointer to the SectorRead() function of the physical
media being used.

uint8_t (* WriteProtectState)(void * config); Function pointer to the WriteProtectState() function of the
physical media being used.

uint8_t (* SectorWrite)(void * config, uint32_t sector_addr,
uint8_t* buffer, uint8_t allowWriteToZero);

Function pointer to the SectorWrite() function of the physical
media being used.

void * mediaParameters; Pointer to a media-specific parameter structure

Description

LUN_FUNCTIONS is a structure of function pointers that tells the stack where to find each of the physical layer functions it is
looking for. This structure needs to be defined for any project for PIC24F or PIC32.

Typical Usage:

 LUN_FUNCTIONS LUN[MAX_LUN + 1] =
 {
 {
 &MDD_SDSPI_MediaInitialize,
 &MDD_SDSPI_ReadCapacity,
 &MDD_SDSPI_ReadSectorSize,
 &MDD_SDSPI_MediaDetect,
 &MDD_SDSPI_SectorRead,
 &MDD_SDSPI_WriteProtectState,
 &MDD_SDSPI_SectorWrite
 }
 };

In the above code we are passing the address of the SDSPI functions to the corresponding member of the
LUN_FUNCTIONS structure. In the above case we have created an array of LUN_FUNCTIONS structures so that it is
possible to have multiple physical layers by merely increasing the MAX_LUN variable and by adding one more set of entries
in the array. Please take caution to insure that each function is in the the correct location in the structure. Incorrect alignment
will cause the USB stack to call the incorrect function for a given command.

See the MDD File System Library for additional information about the available physical media, their requirements, and how
to use their associated functions.

1.4.1.5.3 usb_device_msd.h
Functions

Name Description
MSDTasks This is function MSDTasks.
USBCheckMSDRequest
USBMSDInit This is function USBMSDInit.

Module

MSD Function Driver

Structures

Name Description
LUN_FUNCTIONS LUN_FUNCTIONS is a structure of function pointers that tells the stack

where to find each of the physical layer functions it is looking for. This
structure needs to be defined for any project for PIC24F or PIC32.

Description

This is file usb_device_msd.h.

1.4 Library Interface MLA - USB Library Help Device/Peripheral

95

1.4.1.6 Vendor Class (Generic) Function Driver
Files

Name Description
usb_device_generic.h This is file usb_device_generic.h.

Description

1.4.1.6.1 Functions
Functions

Name Description
USBCheckVendorRequest This routine handles vendor class specific requests that happen on EP0.

This function should be called from the USBCBCheckOtherReq() call
back function whenever implementing a custom/vendor class device.

Macros

Name Description
USBGEN_H This is macro USBGEN_H.
USBGenRead Receives the specified data out the specified endpoint
USBGenWrite Sends the specified data out the specified endpoint

Module

Vendor Class (Generic) Function Driver

Description

1.4.1.6.1.1 USBCheckVendorRequest Function
This routine handles vendor class specific requests that happen on EP0. This function should be called from the
USBCBCheckOtherReq() call back function whenever implementing a custom/vendor class device.

File

usb_device_generic.h

Syntax

void USBCheckVendorRequest();

Description

This routine handles vendor specific requests that may arrive on EP0 as a control transfer. These can include, but are not
necessarily limited to, requests for Microsft specific OS feature descriptor(s). This function should be called from the
USBCBCheckOtherReq() call back function whenever using a vendor class device.

Typical Usage:

void USBCBCheckOtherReq(void)
{
 //Since the stack didn't handle the request I need to check
 // my class drivers to see if it is for them
 USBCheckVendorRequest();
}

Remarks

This function normally gets called within the same context as the USBDeviceTasks() function, just after a new control

1.4 Library Interface MLA - USB Library Help Device/Peripheral

96

transfer request from the host has arrived. If the USB stack is operated in USB_INTERRUPT mode (a usb_config.h option),
then this function will be executed in the interrupt context. If however the USB stack is operated in the USB_POLLING mode,
then this function executes in the main loop context.

In order to respond to class specific control transfer request(s) in this handler function, it is suggested to use one or more of
the USBEP0SendRAMPtr(), USBEP0SendROMPtr(), or USBEP0Receive() API functions.

Preconditions

None

Function

void USBCheckVendorRequest(void)

1.4.1.6.1.2 USBGEN_H Macro
File

usb_device_generic.h

Syntax

#define USBGEN_H

Description

This is macro USBGEN_H.

1.4.1.6.1.3 USBGenRead Macro
Receives the specified data out the specified endpoint

File

usb_device_generic.h

Syntax

#define USBGenRead(ep,data,len) USBRxOnePacket(ep,data,len)

Description

Receives the specified data out the specified endpoint.

Typical Usage:

//Read 64-bytes from endpoint USBGEN_EP_NUM, into the OUTPacket array.
// Make sure to save the return handle so that we can check it later
// to determine when the transfer is complete.
if(!USBHandleBusy(USBOutHandle))
{
 USBOutHandle = USBGenRead(USBGEN_EP_NUM,(BYTE*)&OUTPacket,64);
}

Remarks

None

Preconditions

None

Parameters

Parameters Description
BYTE ep the endpoint you want to receive the data into
BYTE* data pointer to where the data will go when it arrives
WORD len the length of the data that you wish to receive

1.4 Library Interface MLA - USB Library Help Device/Peripheral

97

Return Values

Return Values Description
USB_HANDLE a handle for the transfer. This information should be kept to

track the status of the transfer

Function

USB_HANDLE USBGenRead(BYTE ep, BYTE* data, WORD len)

1.4.1.6.1.4 USBGenWrite Macro
Sends the specified data out the specified endpoint

File

usb_device_generic.h

Syntax

#define USBGenWrite(ep,data,len) USBTxOnePacket(ep,data,len)

Description

This function sends the specified data out the specified endpoint and returns a handle to the transfer information.

Typical Usage:

//make sure that the last transfer isn't busy by checking the handle
if(!USBHandleBusy(USBGenericInHandle))
{
 //Send the data contained in the INPacket[] array out on
 // endpoint USBGEN_EP_NUM
 USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket[0],sizeof(INPacket));
}

Remarks

None

Preconditions

None

Parameters

Parameters Description
BYTE ep the endpoint you want to send the data out of
BYTE* data pointer to the data that you wish to send
WORD len the length of the data that you wish to send

Return Values

Return Values Description
USB_HANDLE a handle for the transfer. This information should be kept to

track the status of the transfer

Function

USB_HANDLE USBGenWrite(BYTE ep, BYTE* data, WORD len)

1.4 Library Interface MLA - USB Library Help Device/Peripheral

98

1.4.1.6.2 usb_device_generic.h
Functions

Name Description
USBCheckVendorRequest This routine handles vendor class specific requests that happen on EP0.

This function should be called from the USBCBCheckOtherReq() call
back function whenever implementing a custom/vendor class device.

Macros

Name Description
USBGEN_H This is macro USBGEN_H.
USBGenRead Receives the specified data out the specified endpoint
USBGenWrite Sends the specified data out the specified endpoint

Module

Vendor Class (Generic) Function Driver

Description

This is file usb_device_generic.h.

1.4.2 Embedded Host API

These are the various client drivers that are available for use with the USB Embedded Host driver.

Modules

Name Description
Embedded Host Stack The USB Embedded Host driver provides low-level USB functionality for

all host client drivers.
CDC Client Driver This is a CDC client driver for use with the USB Embedded Host driver.
HID Client Driver This client driver provides USB Embedded Host support for HID devices.
Mass Storage Client Driver This client driver provides USB Embedded Host support for mass storage

devices.

Description

1.4.2.1 Embedded Host Stack
The USB Embedded Host driver provides low-level USB functionality for all host client drivers.

Files

Name Description
usb_host.h This is file usb_host.h.

Macros

Name Description
__USBHOST_H__ DOM-IGNORE-END

Description

The USB Embedded Host driver provides low-level USB functionality for all host client drivers. This layer is responsible for
enumerating devices, managing data transfers, and detecting device detach.

1.4 Library Interface MLA - USB Library Help Embedded Host API

99

Typically, only host client drivers will interact with this layer. Applications can be configured to receive some events from this
layer, such as EVENT_REQUEST_POWER and EVENT_RELEASE_POWER.

See AN1140 USB Embedded Host Stack for more information about this layer. See AN1141 USB Embedded Host Stack
Programmer's Guide for more information about creating a client driver that uses this layer.

1.4.2.1.1 Functions
Functions

Name Description
USB_HOST_APP_DATA_EVENT_HANDLER This is a typedef to use when defining the application level data

events handler.
USB_HOST_APP_EVENT_HANDLER This is a typedef to use when defining the application level

events handler.
USB_HostInterruptHandler This function handles the interrupts when the USB module is

running in host mode.
USBHostClearEndpointErrors This function clears an endpoint's internal error condition.
USBHostDeviceSpecificClientDriver This function indicates if the specified device has explicit client

driver support specified in the TPL.
USBHostDeviceStatus This function returns the current status of a device.
USBHostInit This function initializes the variables of the USB host stack.
USBHostIsochronousBuffersCreate This function initializes the isochronous data buffer information

and allocates memory for each buffer. This function will not
allocate memory if the buffer pointer is not NULL.

USBHostIsochronousBuffersDestroy This function releases all of the memory allocated for the
isochronous data buffers. It also resets all other information
about the buffers.

USBHostIsochronousBuffersReset This function resets all the isochronous data buffers. It does not
do anything with the space allocated for the buffers.

USBHostIssueDeviceRequest This function sends a standard device request to the attached
device.

USBHostRead This function initiates a read from the attached device.
USBHostResetDevice This function resets an attached device.
USBHostResumeDevice This function issues a RESUME to the attached device.
USBHostSetDeviceConfiguration This function changes the device's configuration.
USBHostSetNAKTimeout This function specifies NAK timeout capability.
USBHostShutdown This function turns off the USB module and frees all

unnecessary memory. This routine can be called by the
application layer to shut down all USB activity, which effectively
detaches all devices. The event EVENT_DETACH will be sent
to the client drivers for the attached device, and the event
EVENT_VBUS_RELEASE_POWER will be sent to the
application layer.

USBHostSuspendDevice This function suspends a device.
USBHostTasks This function executes the host tasks for USB host operation.
USBHostTerminateTransfer This function terminates the current transfer for the given

endpoint.
USBHostTransferIsComplete This function initiates whether or not the last endpoint

transaction is complete.
USBHostVbusEvent This function handles Vbus events that are detected by the

application.
USBHostWrite This function initiates a write to the attached device.

1.4 Library Interface MLA - USB Library Help Embedded Host API

100

Macros

Name Description
USBHostGetCurrentConfigurationDescriptor This function returns a pointer to the current configuration descriptor of

the requested device.
USBHostGetDeviceDescriptor This function returns a pointer to the device descriptor of the requested

device.
USBHostGetStringDescriptor This routine initiates a request to obtains the requested string descriptor.
USBHostReadIsochronous This function initiates a read from an isochronous endpoint on the

attached device.
USBHostWriteIsochronous This function initiates a write to an isochronous endpoint on the attached

device.

Module

Embedded Host Stack

Description

1.4.2.1.1.1 USB_HOST_APP_DATA_EVENT_HANDLER Function
This is a typedef to use when defining the application level data events handler.

File

usb_host.h

Syntax

bool USB_HOST_APP_DATA_EVENT_HANDLER(uint8_t address, USB_EVENT event, void * data,
uint32_t size);

Description

This function is implemented by the application. The function name can be anything - the macro
USB_HOST_APP_EVENT_HANDLER must be set in usb_config.h to the name of the application function.

In the application layer, this function is responsible for handling all application-level data events that are generated by the
stack. See the enumeration USB_EVENT for a complete list of all events that can occur. Note that only data events, such as
EVENT_DATA_ISOC_READ, will be passed to this event handler.

If the application can handle the event successfully, the function should return true.

Remarks

If this function is not provided by the application, then all application events are assumed to function without error.

Preconditions

None

Parameters

Parameters Description
uint8_t address Address of the USB device generating the event
USB_EVENT event Event that occurred
void *data Optional pointer to data for the event
uint32_t size Size of the data pointed to by *data

Return Values

Return Values Description
true Event was processed successfully
false Event was not processed successfully

1.4 Library Interface MLA - USB Library Help Embedded Host API

101

Function

bool USB_HOST_APP_DATA_EVENT_HANDLER (uint8_t address, USB_EVENT event,

void *data, uint32_t size)

1.4.2.1.1.2 USB_HOST_APP_EVENT_HANDLER Function
This is a typedef to use when defining the application level events handler.

File

usb_host.h

Syntax

bool USB_HOST_APP_EVENT_HANDLER(uint8_t address, USB_EVENT event, void * data, uint32_t
size);

Description

This function is implemented by the application. The function name can be anything - the macro
USB_HOST_APP_EVENT_HANDLER must be set in usb_config.h to the name of the application function.

In the application layer, this function is responsible for handling all application-level events that are generated by the stack.
See the enumeration USB_EVENT for a complete list of all events that can occur. Note that some of these events are
intended for client drivers (e.g. EVENT_TRANSFER), while some are intended for for the application layer (e.g.
EVENT_UNSUPPORTED_DEVICE).

If the application can handle the event successfully, the function should return true. For example, if the function receives the
event EVENT_VBUS_REQUEST_POWER and the system can allocate that much power to an attached device, the function
should return true. If, however, the system cannot allocate that much power to an attached device, the function should return
false.

Remarks

If this function is not provided by the application, then all application events are assumed to function without error.

Preconditions

None

Parameters

Parameters Description
uint8_t address Address of the USB device generating the event
USB_EVENT event Event that occurred
void *data Optional pointer to data for the event
uint32_t size Size of the data pointed to by *data

Return Values

Return Values Description
true Event was processed successfully
false Event was not processed successfully

Function

bool USB_HOST_APP_EVENT_HANDLER (uint8_t address, USB_EVENT event,

void *data, uint32_t size)

1.4.2.1.1.3 USB_HostInterruptHandler Function
This function handles the interrupts when the USB module is running in host mode.

1.4 Library Interface MLA - USB Library Help Embedded Host API

102

File

usb_host.h

Syntax

void USB_HostInterruptHandler();

Description

This function handles the interrupts when the USB module is running in host mode. It will clear all USB based interrupts as
applicable. It should only be called when the module is in host mode.

Preconditions

Should only be called when in host mode.

Function

void USB_HostInterruptHandler(void);

1.4.2.1.1.4 USBHostClearEndpointErrors Function
This function clears an endpoint's internal error condition.

File

usb_host.h

Syntax

uint8_t USBHostClearEndpointErrors(uint8_t deviceAddress, uint8_t endpoint);

Description

This function is called to clear the internal error condition of a device's endpoint. It should be called after the application has
dealt with the error condition on the device. This routine clears internal status only; it does not interact with the device.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Address of device
uint8_t endpoint Endpoint to clear error condition

Return Values

Return Values Description
USB_SUCCESS Errors cleared
USB_UNKNOWN_DEVICE Device not found
USB_ENDPOINT_NOT_FOUND Specified endpoint not found

Function

uint8_t USBHostClearEndpointErrors(uint8_t deviceAddress, uint8_t endpoint)

1.4.2.1.1.5 USBHostDeviceSpecificClientDriver Function
This function indicates if the specified device has explicit client driver support specified in the TPL.

File

usb_host.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

103

Syntax

bool USBHostDeviceSpecificClientDriver(uint8_t deviceAddress);

Description

This function indicates if the specified device has explicit client driver support specified in the TPL. It is used in client drivers'
USB_CLIENT_INIT routines to indicate that the client driver should be used even though the class, subclass, and protocol
values may not match those normally required by the class. For example, some printing devices do not fulfill all of the
requirements of the printer class, so their class, subclass, and protocol fields indicate a custom driver rather than the printer
class. But the printer class driver can still be used, with minor limitations.

Remarks

This function is used so client drivers can allow certain devices to enumerate. For example, some printer devices indicate a
custom class rather than the printer class, even though the device has only minor limitations from the full printer class. The
printer client driver will fail to initialize the device if it does not indicate printer class support in its interface descriptor. The
printer client driver could allow any device with an interface that matches the printer class endpoint configuration, but both
printer and mass storage devices utilize one bulk IN and one bulk OUT endpoint. So a mass storage device would be
erroneously initialized as a printer device. This function allows a client driver to know that the client driver support was
specified explicitly in the TPL, so for this particular device only, the class, subclass, and protocol fields can be safely ignored.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Address of device

Return Values

Return Values Description
true This device is listed in the TPL by VID andPID, and has

explicit client driver support.
false This device is not listed in the TPL by VID and PID.

Function

bool USBHostDeviceSpecificClientDriver(uint8_t deviceAddress)

1.4.2.1.1.6 USBHostDeviceStatus Function
This function returns the current status of a device.

File

usb_host.h

Syntax

uint8_t USBHostDeviceStatus(uint8_t deviceAddress);

Description

This function returns the current status of a device. If the device is in a holding state due to an error, the error is returned.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

104

Parameters

Parameters Description
uint8_t deviceAddress Device address

Return Values

Return Values Description
USB_DEVICE_ATTACHED Device is attached and running
USB_DEVICE_DETACHED No device is attached
USB_DEVICE_ENUMERATING Device is enumerating
USB_HOLDING_OUT_OF_MEMORY Not enough heap space available
USB_HOLDING_UNSUPPORTED_DEVICE Invalid configuration or unsupported class
USB_HOLDING_UNSUPPORTED_HUB Hubs are not supported
USB_HOLDING_INVALID_CONFIGURATION Invalid configuration requested
USB_HOLDING_PROCESSING_CAPACITY Processing requirement excessive
USB_HOLDING_POWER_REQUIREMENT Power requirement excessive
USB_HOLDING_CLIENT_INIT_ERROR Client driver failed to initialize
USB_DEVICE_SUSPENDED Device is suspended
Other Device is holding in an error state. The return value indicates

the error.

Function

uint8_t USBHostDeviceStatus(uint8_t deviceAddress)

1.4.2.1.1.7 USBHostInit Function
This function initializes the variables of the USB host stack.

File

usb_host.h

Syntax

bool USBHostInit(unsigned long flags);

Description

This function initializes the variables of the USB host stack. It does not initialize the hardware. The peripheral itself is
initialized in one of the state machine states. Therefore, USBHostTasks() should be called soon after this function.

Remarks

If the endpoint list is empty, an entry is created in the endpoint list for EP0. If the list is not empty, free all allocated memory
other than the EP0 node. This allows the routine to be called multiple times by the application.

Preconditions

None

Parameters

Parameters Description
flags reserved

Return Values

Return Values Description
true Initialization successful
false Could not allocate memory.

1.4 Library Interface MLA - USB Library Help Embedded Host API

105

Function

bool USBHostInit(unsigned long flags)

1.4.2.1.1.8 USBHostIsochronousBuffersCreate Function
File

usb_host.h

Syntax

bool USBHostIsochronousBuffersCreate(ISOCHRONOUS_DATA * isocData, uint8_t numberOfBuffers,
uint16_t bufferSize);

Description

This function initializes the isochronous data buffer information and allocates memory for each buffer. This function will not
allocate memory if the buffer pointer is not NULL.

Remarks

This function is available only if USB_SUPPORT_ISOCHRONOUS_TRANSFERS is defined in usb_config.h.

Preconditions

None

Return Values

Return Values Description
true All buffers are allocated successfully.
false Not enough heap space to allocate all buffers - adjust the

project to provide more heap space.

Function

bool USBHostIsochronousBuffersCreate(ISOCHRONOUS_DATA * isocData,

uint8_t numberOfBuffers, uint16_t bufferSize)

1.4.2.1.1.9 USBHostIsochronousBuffersDestroy Function
File

usb_host.h

Syntax

void USBHostIsochronousBuffersDestroy(ISOCHRONOUS_DATA * isocData, uint8_t numberOfBuffers);

Returns

None

Description

This function releases all of the memory allocated for the isochronous data buffers. It also resets all other information about
the buffers.

Remarks

This function is available only if USB_SUPPORT_ISOCHRONOUS_TRANSFERS is defined in usb_config.h.

Preconditions

None

Function

void USBHostIsochronousBuffersDestroy(ISOCHRONOUS_DATA * isocData, uint8_t numberOfBuffers)

1.4 Library Interface MLA - USB Library Help Embedded Host API

106

1.4.2.1.1.10 USBHostIsochronousBuffersReset Function
File

usb_host.h

Syntax

void USBHostIsochronousBuffersReset(ISOCHRONOUS_DATA * isocData, uint8_t numberOfBuffers);

Returns

None

Description

This function resets all the isochronous data buffers. It does not do anything with the space allocated for the buffers.

Remarks

This function is available only if USB_SUPPORT_ISOCHRONOUS_TRANSFERS is defined in usb_config.h.

Preconditions

None

Function

void USBHostIsochronousBuffersReset(ISOCHRONOUS_DATA * isocData, uint8_t numberOfBuffers)

1.4.2.1.1.11 USBHostIssueDeviceRequest Function
This function sends a standard device request to the attached device.

File

usb_host.h

Syntax

uint8_t USBHostIssueDeviceRequest(uint8_t deviceAddress, uint8_t bmRequestType, uint8_t
bRequest, uint16_t wValue, uint16_t wIndex, uint16_t wLength, uint8_t * data, uint8_t
dataDirection, uint8_t clientDriverID);

Description

This function sends a standard device request to the attached device. The user must pass in the parameters of the device
request. If there is input or output data associated with the request, a pointer to the data must be provided. The direction of
the associated data (input or output) must also be indicated.

This function does no special processing in regards to the request except for three requests. If SET INTERFACE is sent,
then DTS is reset for all endpoints. If CLEAR FEATURE (ENDPOINT HALT) is sent, then DTS is reset for that endpoint. If
SET CONFIGURATION is sent, the request is aborted with a failure. The function USBHostSetDeviceConfiguration() must
be called to change the device configuration, since endpoint definitions may change.

Remarks

DTS reset is done before the command is issued.

Preconditions

The host state machine should be in the running state, and no reads or writes to EP0 should be in progress.

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t bmRequestType The request type as defined by the USB specification.

1.4 Library Interface MLA - USB Library Help Embedded Host API

107

uint8_t bRequest The request as defined by the USB specification.
uint16_t wValue The value for the request as defined by the USB

specification.
uint16_t wIndex The index for the request as defined by the USB

specification.
uint16_t wLength The data length for the request as defined by the USB

specification.
uint8_t *data Pointer to the data for the request.
uint8_t dataDirection USB_DEVICE_REQUEST_SET or

USB_DEVICE_REQUEST_GET
uint8_t clientDriverID Client driver to send the event to.

Return Values

Return Values Description
USB_SUCCESS Request processing started
USB_UNKNOWN_DEVICE Device not found
USB_INVALID_STATE The host must be in a normal running state to do this request
USB_ENDPOINT_BUSY A read or write is already in progress
USB_ILLEGAL_REQUEST SET CONFIGURATION cannot be performed with this

function.

Function

uint8_t USBHostIssueDeviceRequest(uint8_t deviceAddress, uint8_t bmRequestType,

uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint16_t wLength,

uint8_t *data, uint8_t dataDirection, uint8_t clientDriverID)

1.4.2.1.1.12 USBHostRead Function
This function initiates a read from the attached device.

File

usb_host.h

Syntax

uint8_t USBHostRead(uint8_t deviceAddress, uint8_t endpoint, uint8_t * data, uint32_t size);

Description

This function initiates a read from the attached device.

If the endpoint is isochronous, special conditions apply. The pData and size parameters have slightly different meanings,
since multiple buffers are required. Once started, an isochronous transfer will continue with no upper layer intervention until
USBHostTerminateTransfer() is called. The ISOCHRONOUS_DATA_BUFFERS structure should not be manipulated until
the transfer is terminated.

To clarify parameter usage and to simplify casting, use the macro USBHostReadIsochronous() when reading from an
isochronous endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

1.4 Library Interface MLA - USB Library Help Embedded Host API

108

uint8_t endpoint Endpoint number
uint8_t *pData Pointer to where to store the data. If the endpoint is

isochronous, this points to an
ISOCHRONOUS_DATA_BUFFERS structure, with multiple
data buffer pointers.

uint32_t size Number of data bytes to read. If the endpoint is isochronous,
this is the number of data buffer pointers pointed to by pData.

Return Values

Return Values Description
USB_SUCCESS Read started successfully.
USB_UNKNOWN_DEVICE Device with the specified address not found.
USB_INVALID_STATE We are not in a normal running state.
USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlRead to read from a control

endpoint.
USB_ENDPOINT_ILLEGAL_DIRECTION Must read from an IN endpoint.
USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.
USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the

application.
USB_ENDPOINT_BUSY A Read is already in progress.
USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

uint8_t USBHostRead(uint8_t deviceAddress, uint8_t endpoint, uint8_t *pData,

uint32_t size)

1.4.2.1.1.13 USBHostResetDevice Function
This function resets an attached device.

File

usb_host.h

Syntax

uint8_t USBHostResetDevice(uint8_t deviceAddress);

Description

This function places the device back in the RESET state, to issue RESET signaling. It can be called only if the state machine
is not in the DETACHED state.

Remarks

In order to do a full clean-up, the state is set back to STATE_DETACHED rather than a reset state. The ATTACH interrupt
will automatically be triggered when the module is re-enabled, and the proper reset will be performed.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

Return Values

Return Values Description
USB_SUCCESS Success
USB_UNKNOWN_DEVICE Device not found

1.4 Library Interface MLA - USB Library Help Embedded Host API

109

USB_ILLEGAL_REQUEST Device cannot RESUME unless it is suspended

Function

uint8_t USBHostResetDevice(uint8_t deviceAddress)

1.4.2.1.1.14 USBHostResumeDevice Function
This function issues a RESUME to the attached device.

File

usb_host.h

Syntax

uint8_t USBHostResumeDevice(uint8_t deviceAddress);

Description

This function issues a RESUME to the attached device. It can called only if the state machine is in the suspend state.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

Return Values

Return Values Description
USB_SUCCESS Success
USB_UNKNOWN_DEVICE Device not found
USB_ILLEGAL_REQUEST Device cannot RESUME unless it is suspended

Function

uint8_t USBHostResumeDevice(uint8_t deviceAddress)

1.4.2.1.1.15 USBHostSetDeviceConfiguration Function
This function changes the device's configuration.

File

usb_host.h

Syntax

uint8_t USBHostSetDeviceConfiguration(uint8_t deviceAddress, uint8_t configuration);

Description

This function is used by the application to change the device's Configuration. This function must be used instead of
USBHostIssueDeviceRequest(), because the endpoint definitions may change.

To see when the reconfiguration is complete, use the USBHostDeviceStatus() function. If configuration is still in progress,
this function will return USB_DEVICE_ENUMERATING.

Remarks

If an invalid configuration is specified, this function cannot return an error. Instead, the event
USB_UNSUPPORTED_DEVICE will the sent to the application layer and the device will be placed in a holding state with a
USB_HOLDING_UNSUPPORTED_DEVICE error returned by USBHostDeviceStatus().

1.4 Library Interface MLA - USB Library Help Embedded Host API

110

Preconditions

The host state machine should be in the running state, and no reads or writes should be in progress.

Example

rc = USBHostSetDeviceConfiguration(attachedDevice, configuration);
if (rc)
{
 // Error - cannot set configuration.
}
else
{
 while (USBHostDeviceStatus(attachedDevice) == USB_DEVICE_ENUMERATING)
 {
 USBHostTasks();
 }
}
if (USBHostDeviceStatus(attachedDevice) != USB_DEVICE_ATTACHED)
{
 // Error - cannot set configuration.
}

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t configuration Index of the new configuration

Return Values

Return Values Description
USB_SUCCESS Process of changing the configuration was started

successfully.
USB_UNKNOWN_DEVICE Device not found
USB_INVALID_STATE This function cannot be called during enumeration or while

performing a device request.
USB_BUSY No IN or OUT transfers may be in progress.

Function

uint8_t USBHostSetDeviceConfiguration(uint8_t deviceAddress, uint8_t configuration)

1.4.2.1.1.16 USBHostSetNAKTimeout Function
This function specifies NAK timeout capability.

File

usb_host.h

Syntax

uint8_t USBHostSetNAKTimeout(uint8_t deviceAddress, uint8_t endpoint, uint16_t flags,
uint16_t timeoutCount);

Description

This function is used to set whether or not an endpoint on a device should time out a transaction based on the number of
NAKs received, and if so, how many NAKs are allowed before the timeout.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

111

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t endpoint Endpoint number to configure
uint16_t flags Bit 0:

• 0 = disable NAK timeout

• 1 = enable NAK timeout

uint16_t timeoutCount Number of NAKs allowed before a timeout

Return Values

Return Values Description
USB_SUCCESS NAK timeout was configured successfully.
USB_UNKNOWN_DEVICE Device not found.
USB_ENDPOINT_NOT_FOUND The specified endpoint was not found.

Function

uint8_t USBHostSetNAKTimeout(uint8_t deviceAddress, uint8_t endpoint, uint16_t flags,

uint16_t timeoutCount)

1.4.2.1.1.17 USBHostShutdown Function
File

usb_host.h

Syntax

void USBHostShutdown();

Returns

None

Description

This function turns off the USB module and frees all unnecessary memory. This routine can be called by the application layer
to shut down all USB activity, which effectively detaches all devices. The event EVENT_DETACH will be sent to the client
drivers for the attached device, and the event EVENT_VBUS_RELEASE_POWER will be sent to the application layer.

Remarks

None

Preconditions

None

Parameters

Parameters Description
None None

Function

void USBHostShutdown(void)

1.4.2.1.1.18 USBHostSuspendDevice Function
This function suspends a device.

File

usb_host.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

112

Syntax

uint8_t USBHostSuspendDevice(uint8_t deviceAddress);

Description

This function put a device into an IDLE state. It can only be called while the state machine is in normal running mode. After
3ms, the attached device should go into SUSPEND mode.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device to suspend

Return Values

Return Values Description
USB_SUCCESS Success
USB_UNKNOWN_DEVICE Device not found
USB_ILLEGAL_REQUEST Cannot suspend unless device is in normal run mode

Function

uint8_t USBHostSuspendDevice(uint8_t deviceAddress)

1.4.2.1.1.19 USBHostTasks Function
This function executes the host tasks for USB host operation.

File

usb_host.h

Syntax

void USBHostTasks();

Returns

None

Description

This function executes the host tasks for USB host operation. It must be executed on a regular basis to keep everything
functioning.

The primary purpose of this function is to handle device attach/detach and enumeration. It does not handle USB packet
transmission or reception; that must be done in the USB interrupt handler to ensure timely operation.

This routine should be called on a regular basis, but there is no specific time requirement. Devices will still be able to attach,
enumerate, and detach, but the operations will occur more slowly as the calling interval increases.

Remarks

None

Preconditions

USBHostInit() has been called.

Function

void USBHostTasks(void)

1.4 Library Interface MLA - USB Library Help Embedded Host API

113

1.4.2.1.1.20 USBHostTerminateTransfer Function
This function terminates the current transfer for the given endpoint.

File

usb_host.h

Syntax

void USBHostTerminateTransfer(uint8_t deviceAddress, uint8_t endpoint);

Returns

None

Description

This function terminates the current transfer for the given endpoint. It can be used to terminate reads or writes that the
device is not responding to. It is also the only way to terminate an isochronous transfer.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t endpoint Endpoint number

Function

void USBHostTerminateTransfer(uint8_t deviceAddress, uint8_t endpoint)

1.4.2.1.1.21 USBHostTransferIsComplete Function
This function initiates whether or not the last endpoint transaction is complete.

File

usb_host.h

Syntax

bool USBHostTransferIsComplete(uint8_t deviceAddress, uint8_t endpoint, uint8_t *
errorCode, uint32_t * byteCount);

Description

This function initiates whether or not the last endpoint transaction is complete. If it is complete, an error code and the number
of bytes transferred are returned.

For isochronous transfers, byteCount is not valid. Instead, use the returned byte counts for each EVENT_TRANSFER event
that was generated during the transfer.

Remarks

Possible values for errorCode are:

• USB_SUCCESS - Transfer successful

• USB_UNKNOWN_DEVICE - Device not attached

• USB_ENDPOINT_STALLED - Endpoint STALL'd

• USB_ENDPOINT_ERROR_ILLEGAL_PID - Illegal PID returned

1.4 Library Interface MLA - USB Library Help Embedded Host API

114

• USB_ENDPOINT_ERROR_BIT_STUFF

• USB_ENDPOINT_ERROR_DMA

• USB_ENDPOINT_ERROR_TIMEOUT

• USB_ENDPOINT_ERROR_DATA_FIELD

• USB_ENDPOINT_ERROR_CRC16

• USB_ENDPOINT_ERROR_END_OF_FRAME

• USB_ENDPOINT_ERROR_PID_CHECK

• USB_ENDPOINT_ERROR - Other error

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t endpoint Endpoint number
uint8_t *errorCode Error code indicating the status of the transfer. Only valid if

the transfer is complete.
uint32_t *byteCount The number of bytes sent or received. Invalid for

isochronous transfers.

Return Values

Return Values Description
true Transfer is complete.
false Transfer is not complete.

Function

bool USBHostTransferIsComplete(uint8_t deviceAddress, uint8_t endpoint,

uint8_t *errorCode, uint32_t *byteCount)

1.4.2.1.1.22 USBHostVbusEvent Function
This function handles Vbus events that are detected by the application.

File

usb_host.h

Syntax

uint8_t USBHostVbusEvent(USB_EVENT vbusEvent, uint8_t hubAddress, uint8_t portNumber);

Description

This function handles Vbus events that are detected by the application. Since Vbus management is application dependent,
the application is responsible for monitoring Vbus and detecting overcurrent conditions and removal of the overcurrent
condition. If the application detects an overcurrent condition, it should call this function with the event
EVENT_VBUS_OVERCURRENT with the address of the hub and port number that has the condition. When a port returns to
normal operation, the application should call this function with the event EVENT_VBUS_POWER_AVAILABLE so the stack
knows that it can allow devices to attach to that port.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

115

Parameters

Parameters Description
USB_EVENT vbusEvent Vbus event that occured. Valid events:

• EVENT_VBUS_OVERCURRENT

• EVENT_VBUS_POWER_AVAILABLE

uint8_t hubAddress Address of the hub device (USB_ROOT_HUB for the root
hub)

uint8_t portNumber Number of the physical port on the hub (0 - based)

Return Values

Return Values Description
USB_SUCCESS Event handled
USB_ILLEGAL_REQUEST Invalid event, hub, or port

Function

uint8_t USBHostVbusEvent(USB_EVENT vbusEvent, uint8_t hubAddress,

uint8_t portNumber)

1.4.2.1.1.23 USBHostWrite Function
This function initiates a write to the attached device.

File

usb_host.h

Syntax

uint8_t USBHostWrite(uint8_t deviceAddress, uint8_t endpoint, uint8_t * data, uint32_t
size);

Description

This function initiates a write to the attached device. The data buffer pointed to by *data must remain valid during the entire
time that the write is taking place; the data is not buffered by the stack.

If the endpoint is isochronous, special conditions apply. The pData and size parameters have slightly different meanings,
since multiple buffers are required. Once started, an isochronous transfer will continue with no upper layer intervention until
USBHostTerminateTransfer() is called. The ISOCHRONOUS_DATA_BUFFERS structure should not be manipulated until
the transfer is terminated.

To clarify parameter usage and to simplify casting, use the macro USBHostWriteIsochronous() when writing to an
isochronous endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t endpoint Endpoint number
uint8_t *data Pointer to where the data is stored. If the endpoint is

isochronous, this points to an
ISOCHRONOUS_DATA_BUFFERS structure, with multiple
data buffer pointers.

1.4 Library Interface MLA - USB Library Help Embedded Host API

116

uint32_t size Number of data bytes to send. If the endpoint is isochronous,
this is the number of data buffer pointers pointed to by pData.

Return Values

Return Values Description
USB_SUCCESS Write started successfully.
USB_UNKNOWN_DEVICE Device with the specified address not found.
USB_INVALID_STATE We are not in a normal running state.
USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlWrite to write to a control endpoint.
USB_ENDPOINT_ILLEGAL_DIRECTION Must write to an OUT endpoint.
USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.
USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the

application.
USB_ENDPOINT_BUSY A Write is already in progress.
USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

uint8_t USBHostWrite(uint8_t deviceAddress, uint8_t endpoint, uint8_t *data,

uint32_t size)

1.4.2.1.1.24 USBHostGetCurrentConfigurationDescriptor Macro
File

usb_host.h

Syntax

#define USBHostGetCurrentConfigurationDescriptor(deviceAddress) (
pCurrentConfigurationDescriptor)

Returns

uint8_t * - Pointer to the Configuration Descriptor.

Description

This function returns a pointer to the current configuration descriptor of the requested device.

Remarks

This will need to be expanded to a full function when multiple device support is added.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Address of device

Function

uint8_t * USBHostGetCurrentConfigurationDescriptor(uint8_t deviceAddress)

1.4.2.1.1.25 USBHostGetDeviceDescriptor Macro
File

usb_host.h

Syntax

#define USBHostGetDeviceDescriptor(deviceAddress) (pDeviceDescriptor)

1.4 Library Interface MLA - USB Library Help Embedded Host API

117

Returns

uint8_t * - Pointer to the Device Descriptor.

Description

This function returns a pointer to the device descriptor of the requested device.

Remarks

This will need to be expanded to a full function when multiple device support is added.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Address of device

Function

uint8_t * USBHostGetDeviceDescriptor(uint8_t deviceAddress)

1.4.2.1.1.26 USBHostGetStringDescriptor Macro
This routine initiates a request to obtains the requested string descriptor.

File

usb_host.h

Syntax

#define USBHostGetStringDescriptor(deviceAddress, stringNumber, LangID, stringDescriptor,
stringLength, clientDriverID) \
 USBHostIssueDeviceRequest(deviceAddress, USB_SETUP_DEVICE_TO_HOST |
USB_SETUP_TYPE_STANDARD | USB_SETUP_RECIPIENT_DEVICE, \
 USB_REQUEST_GET_DESCRIPTOR, (USB_DESCRIPTOR_STRING << 8) |
stringNumber, \
 LangID, stringLength, stringDescriptor, USB_DEVICE_REQUEST_GET,
clientDriverID)

Description

This routine initiates a request to obtains the requested string descriptor. If the request cannot be started, the routine returns
an error. Otherwise, the request is started, and the requested string descriptor is stored in the designated location.

Example Usage:

USBHostGetStringDescriptor(
 deviceAddress,
 stringDescriptorNum,
 LangID,
 stringDescriptorBuffer,
 sizeof(stringDescriptorBuffer),
 0xFF
);

while(1)
{
 if(USBHostTransferIsComplete(deviceAddress , 0, &errorCode, &byteCount))
 {
 if(errorCode)
 {
 //There was an error reading the string, bail out of loop
 }
 else
 {
 //String is located in specified buffer, do something with it.

 //The length of the string is both in the byteCount variable

1.4 Library Interface MLA - USB Library Help Embedded Host API

118

 // as well as the first byte of the string itself
 }
 break;
 }
 USBTasks();
}

Remarks

The returned string descriptor will be in the exact format as obtained from the device. The length of the entire descriptor will
be in the first byte, and the descriptor type will be in the second. The string itself is represented in UNICODE. Refer to the
USB 2.0 Specification for more information about the format of string descriptors.

Preconditions

None

Parameters

Parameters Description
deviceAddress Address of the device
stringNumber Index of the desired string descriptor
LangID The Language ID of the string to read (should be 0 if trying to

read the language ID list
*stringDescriptor Pointer to where to store the string.
stringLength Maximum length of the returned string.
clientDriverID Client driver to return the completion event to.

Return Values

Return Values Description
USB_SUCCESS The request was started successfully.
USB_UNKNOWN_DEVICE Device not found
USB_INVALID_STATE We must be in a normal running state.
USB_ENDPOINT_BUSY The endpoint is currently processing a request.

Function

uint8_t USBHostGetStringDescriptor (uint8_t deviceAddress, uint8_t stringNumber,

uint8_t LangID, uint8_t *stringDescriptor, uint8_t stringLength,

uint8_t clientDriverID)

1.4.2.1.1.27 USBHostReadIsochronous Macro
This function initiates a read from an isochronous endpoint on the attached device.

File

usb_host.h

Syntax

#define USBHostReadIsochronous(a, e, p) USBHostRead(a, e, (uint8_t *)p, (uint32_t)0);

Description

This function initiates a read from an isochronous endpoint on the attached device. If the endpoint is not isochronous, use
USBHostRead().

Once started, an isochronous transfer will continue with no upper layer intervention until USBHostTerminateTransfer() is
called.

Remarks

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

119

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t endpoint Endpoint number
ISOCHRONOUS_DATA *pIsochronousData Pointer to an ISOCHRONOUS_DATA structure, containing

information for the application and the host driver for the
isochronous transfer.

Return Values

Return Values Description
USB_SUCCESS Read started successfully.
USB_UNKNOWN_DEVICE Device with the specified address not found.
USB_INVALID_STATE We are not in a normal running state.
USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlRead to read from a control

endpoint.
USB_ENDPOINT_ILLEGAL_DIRECTION Must read from an IN endpoint.
USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.
USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the

application.
USB_ENDPOINT_BUSY A Read is already in progress.
USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

uint8_t USBHostReadIsochronous(uint8_t deviceAddress, uint8_t endpoint,

ISOCHRONOUS_DATA *pIsochronousData)

1.4.2.1.1.28 USBHostWriteIsochronous Macro
This function initiates a write to an isochronous endpoint on the attached device.

File

usb_host.h

Syntax

#define USBHostWriteIsochronous(a, e, p) USBHostWrite(a, e, (uint8_t *)p, (uint32_t)0);

Description

This function initiates a write to an isochronous endpoint on the attached device. If the endpoint is not isochronous, use
USBHostWrite().

Once started, an isochronous transfer will continue with no upper layer intervention until USBHostTerminateTransfer() is
called.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

1.4 Library Interface MLA - USB Library Help Embedded Host API

120

uint8_t endpoint Endpoint number
ISOCHRONOUS_DATA *pIsochronousData Pointer to an ISOCHRONOUS_DATA structure, containing

information for the application and the host driver for the
isochronous transfer.

Return Values

Return Values Description
USB_SUCCESS Write started successfully.
USB_UNKNOWN_DEVICE Device with the specified address not found.
USB_INVALID_STATE We are not in a normal running state.
USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlWrite to write to a control endpoint.
USB_ENDPOINT_ILLEGAL_DIRECTION Must write to an OUT endpoint.
USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.
USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the

application.
USB_ENDPOINT_BUSY A Write is already in progress.
USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

uint8_t USBHostWriteIsochronous(uint8_t deviceAddress, uint8_t endpoint,

ISOCHRONOUS_DATA *pIsochronousData)

1.4.2.1.2 Data Types and Constants
Macros

Name Description
INIT_CL_SC_P Set class support in the TPL (non-OTG only).
INIT_VID_PID Set VID/PID support in the TPL.
TPL_ALLOW_HNP Bitmask for Host Negotiation Protocol.
TPL_CLASS_DRV Bitmask for class driver support.
TPL_EP0_ONLY_CUSTOM_DRIVER Bitmask to let a custom driver gain EP0 only and allow other interfaces to

use standard drivers
TPL_IGNORE_CLASS Bitmask for ignoring the class of a CL/SC/P driver
TPL_IGNORE_PID Bitmask for ignoring the PID of a VID/PID driver
TPL_IGNORE_PROTOCOL Bitmask for ignoring the protocol of a CL/SC/P driver
TPL_IGNORE_SUBCLASS Bitmask for ignoring the subclass of a CL/SC/P driver
TPL_SET_CONFIG Bitmask for setting the configuration.
USB_HOST_APP_DATA_EVENT_HANDLER If the application does not provide an event handler, then we will assume

that all events function without error.
USB_HOST_APP_EVENT_HANDLER If the application does not provide an event handler, then we will assume

that all events function without error.
USB_NUM_BULK_NAKS Define how many NAK's are allowed during a bulk transfer before

erroring.
USB_NUM_COMMAND_TRIES During enumeration, define how many times each command will be tried

before giving up and resetting the device.
USB_NUM_CONTROL_NAKS Define how many NAK's are allowed during a control transfer before

erroring.
USB_NUM_ENUMERATION_TRIES Define how many times the host will try to enumerate the device before

giving up and setting the state to DETACHED.
USB_NUM_INTERRUPT_NAKS Define how many NAK's are allowed during an interrupt OUT transfer

before erroring. Interrupt IN transfers that are NAK'd are terminated
without error.

1.4 Library Interface MLA - USB Library Help Embedded Host API

121

Module

Embedded Host Stack

Structures

Name Description
_CLIENT_DRIVER_TABLE Client Driver Table Structure

This structure is used to define an entry in the client-driver table. Each
entry provides the information that the Host layer needs to manage a
particular USB client driver, including pointers to the interface routines
that the Client Driver must implement.

_HOST_TRANSFER_DATA Host Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion.

CLIENT_DRIVER_TABLE Client Driver Table Structure
This structure is used to define an entry in the client-driver table. Each
entry provides the information that the Host layer needs to manage a
particular USB client driver, including pointers to the interface routines
that the Client Driver must implement.

HOST_TRANSFER_DATA Host Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion.

Types

Name Description
TRANSFER_ATTRIBUTES This is type TRANSFER_ATTRIBUTES.
USB_CLIENT_EVENT_HANDLER This is a typedef to use when defining a client driver event handler.
USB_CLIENT_INIT This is a typedef to use when defining a client driver initialization handler.
USB_TPL Targeted Peripheral List

This structure is used to define the devices that this host can support. If
the host is a USB Embedded Host or Dual Role Device that does not
support OTG, the TPL may contain both specific devices and generic
classes. If the host supports OTG, then the TPL may contain ONLY
specific devices.

Description

1.4.2.1.2.1 CLIENT_DRIVER_TABLE Structure
File

usb_host.h

Syntax

typedef struct _CLIENT_DRIVER_TABLE {
 USB_CLIENT_INIT Initialize;
 USB_CLIENT_EVENT_HANDLER EventHandler;
 USB_CLIENT_EVENT_HANDLER DataEventHandler;
 uint32_t flags;
} CLIENT_DRIVER_TABLE;

Members

Members Description
USB_CLIENT_INIT Initialize; Initialization routine
USB_CLIENT_EVENT_HANDLER EventHandler; Event routine
USB_CLIENT_EVENT_HANDLER DataEventHandler; Data Event routine
uint32_t flags; Initialization flags

1.4 Library Interface MLA - USB Library Help Embedded Host API

122

Description

Client Driver Table Structure

This structure is used to define an entry in the client-driver table. Each entry provides the information that the Host layer
needs to manage a particular USB client driver, including pointers to the interface routines that the Client Driver must
implement.

1.4.2.1.2.2 HOST_TRANSFER_DATA Structure
File

usb_host.h

Syntax

typedef struct _HOST_TRANSFER_DATA {
 uint32_t dataCount;
 uint8_t * pUserData;
 uint8_t bEndpointAddress;
 uint8_t bErrorCode;
 TRANSFER_ATTRIBUTES bmAttributes;
 uint8_t clientDriver;
} HOST_TRANSFER_DATA;

Members

Members Description
uint32_t dataCount; Count of bytes transferred.
uint8_t * pUserData; Pointer to transfer data.
uint8_t bEndpointAddress; Transfer endpoint.
uint8_t bErrorCode; Transfer error code.
TRANSFER_ATTRIBUTES bmAttributes; INTERNAL USE ONLY - Endpoint transfer attributes.
uint8_t clientDriver; INTERNAL USE ONLY - Client driver index for sending the

event.

Description

Host Transfer Information

This structure is used when the event handler is used to notify the upper layer of transfer completion.

1.4.2.1.2.3 TRANSFER_ATTRIBUTES Type
File

usb_host.h

Syntax

typedef #warning USB_INITIAL_VBUS_CURRENT is in violation of the USB specification.
#warning USB_INITIAL_VBUS_CURRENT is in violation of the USB specification. union
TRANSFER_ATTRIBUTES@1 TRANSFER_ATTRIBUTES;

Description

This is type TRANSFER_ATTRIBUTES.

1.4.2.1.2.4 USB_CLIENT_EVENT_HANDLER Type
This is a typedef to use when defining a client driver event handler.

File

usb_host.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

123

Syntax

typedef bool (* USB_CLIENT_EVENT_HANDLER)(uint8_t address, USB_EVENT event, void *data,
uint32_t size);

Description

This data type defines a pointer to a call-back function that must be implemented by a client driver if it needs to be aware of
events on the USB. When an event occurs, the Host layer will call the client driver via this pointer to handle the event.
Events are identified by the "event" parameter and may have associated data. If the client driver was able to handle the
event, it should return true. If not (or if additional processing is required), it should return false.

Remarks

The application may also implement an event handling routine if it requires knowledge of events. To do so, it must implement
a routine that matches this function signature and define the USB_HOST_APP_EVENT_HANDLER macro as the name of
that function.

Preconditions

The client must have been initialized.

Parameters

Parameters Description
uint8_t address Address of device where event occurred
USB_EVENT event Identifies the event that occured
void *data Pointer to event-specific data
uint32_t size Size of the event-specific data

Return Values

Return Values Description
true The event was handled
false The event was not handled

Function

bool (*USB_CLIENT_EVENT_HANDLER) (uint8_t address, USB_EVENT event,

void *data, uint32_t size)

1.4.2.1.2.5 USB_CLIENT_INIT Type
This is a typedef to use when defining a client driver initialization handler.

File

usb_host.h

Syntax

typedef bool (* USB_CLIENT_INIT)(uint8_t address, uint32_t flags, uint8_t clientDriverID);

Description

This routine is a call out from the host layer to a USB client driver. It is called when the system has been configured as a
USB host and a new device has been attached to the bus. Its purpose is to initialize and activate the client driver.

Remarks

There may be multiple client drivers. If so, the USB host layer will call the initialize routine for each of the clients that are in
the selected configuration.

Preconditions

The device has been configured.

1.4 Library Interface MLA - USB Library Help Embedded Host API

124

Parameters

Parameters Description
uint8_t address Device's address on the bus
uint32_t flags Initialization flags
uint8_t clientDriverID ID to send when issuing a Device Request via

USBHostIssueDeviceRequest() or
USBHostSetDeviceConfiguration().

Return Values

Return Values Description
true Successful
false Not successful

Function

bool (*USB_CLIENT_INIT) (uint8_t address, uint32_t flags, uint8_t clientDriverID)

1.4.2.1.2.6 USB_TPL Type
File

usb_host.h

Syntax

typedef struct _USB_TPL USB_TPL;

Description

Targeted Peripheral List

This structure is used to define the devices that this host can support. If the host is a USB Embedded Host or Dual Role
Device that does not support OTG, the TPL may contain both specific devices and generic classes. If the host supports
OTG, then the TPL may contain ONLY specific devices.

1.4.2.1.2.7 INIT_CL_SC_P Macro
File

usb_host.h

Syntax

#define INIT_CL_SC_P(c,s,p) {((c)|((s)<<8)|((p)<<16))} // Set class support in the TPL
(non-OTG only).

Description

Set class support in the TPL (non-OTG only).

1.4.2.1.2.8 INIT_VID_PID Macro
File

usb_host.h

Syntax

#define INIT_VID_PID(v,p) {((v)|((p)<<16))} // Set VID/PID support in the TPL.

Description

Set VID/PID support in the TPL.

1.4 Library Interface MLA - USB Library Help Embedded Host API

125

1.4.2.1.2.9 TPL_ALLOW_HNP Macro
File

usb_host.h

Syntax

#define TPL_ALLOW_HNP 0x01 // Bitmask for Host Negotiation Protocol.

Description

Bitmask for Host Negotiation Protocol.

1.4.2.1.2.10 TPL_CLASS_DRV Macro
File

usb_host.h

Syntax

#define TPL_CLASS_DRV 0x02 // Bitmask for class driver support.

Description

Bitmask for class driver support.

1.4.2.1.2.11 TPL_EP0_ONLY_CUSTOM_DRIVER Macro
File

usb_host.h

Syntax

#define TPL_EP0_ONLY_CUSTOM_DRIVER 0x80 // Bitmask to let a custom
driver gain EP0 only and allow other interfaces to use standard drivers

Description

Bitmask to let a custom driver gain EP0 only and allow other interfaces to use standard drivers

1.4.2.1.2.12 TPL_IGNORE_CLASS Macro
File

usb_host.h

Syntax

#define TPL_IGNORE_CLASS 0x20 // Bitmask for ignoring the class of a
CL/SC/P driver

Description

Bitmask for ignoring the class of a CL/SC/P driver

1.4.2.1.2.13 TPL_IGNORE_PID Macro
File

usb_host.h

Syntax

#define TPL_IGNORE_PID 0x40 // Bitmask for ignoring the PID of a VID/PID
driver

Description

Bitmask for ignoring the PID of a VID/PID driver

1.4 Library Interface MLA - USB Library Help Embedded Host API

126

1.4.2.1.2.14 TPL_IGNORE_PROTOCOL Macro
File

usb_host.h

Syntax

#define TPL_IGNORE_PROTOCOL 0x08 // Bitmask for ignoring the protocol of
a CL/SC/P driver

Description

Bitmask for ignoring the protocol of a CL/SC/P driver

1.4.2.1.2.15 TPL_IGNORE_SUBCLASS Macro
File

usb_host.h

Syntax

#define TPL_IGNORE_SUBCLASS 0x10 // Bitmask for ignoring the subclass of
a CL/SC/P driver

Description

Bitmask for ignoring the subclass of a CL/SC/P driver

1.4.2.1.2.16 TPL_SET_CONFIG Macro
File

usb_host.h

Syntax

#define TPL_SET_CONFIG 0x04 // Bitmask for setting the configuration.

Description

Bitmask for setting the configuration.

1.4.2.1.2.17 USB_HOST_APP_DATA_EVENT_HANDLER Macro
File

usb_host.h

Syntax

#define USB_HOST_APP_DATA_EVENT_HANDLER(a,e,d,s) true

Description

If the application does not provide an event handler, then we will assume that all events function without error.

1.4.2.1.2.18 USB_HOST_APP_EVENT_HANDLER Macro
File

usb_host.h

Syntax

#define USB_HOST_APP_EVENT_HANDLER(a,e,d,s)
((e==EVENT_OVERRIDE_CLIENT_DRIVER_SELECTION)?false:true)

Description

If the application does not provide an event handler, then we will assume that all events function without error.

1.4 Library Interface MLA - USB Library Help Embedded Host API

127

1.4.2.1.2.19 USB_NUM_BULK_NAKS Macro
File

usb_host.h

Syntax

#define USB_NUM_BULK_NAKS 10000 // Define how many NAK's are allowed

Description

Define how many NAK's are allowed during a bulk transfer before erroring.

1.4.2.1.2.20 USB_NUM_COMMAND_TRIES Macro
File

usb_host.h

Syntax

#define USB_NUM_COMMAND_TRIES 3 // During enumeration, define how many

Description

During enumeration, define how many times each command will be tried before giving up and resetting the device.

1.4.2.1.2.21 USB_NUM_CONTROL_NAKS Macro
File

usb_host.h

Syntax

#define USB_NUM_CONTROL_NAKS 20 // Define how many NAK's are allowed

Description

Define how many NAK's are allowed during a control transfer before erroring.

1.4.2.1.2.22 USB_NUM_ENUMERATION_TRIES Macro
File

usb_host.h

Syntax

#define USB_NUM_ENUMERATION_TRIES 3 // Define how many times the host will try

Description

Define how many times the host will try to enumerate the device before giving up and setting the state to DETACHED.

1.4.2.1.2.23 USB_NUM_INTERRUPT_NAKS Macro
File

usb_host.h

Syntax

#define USB_NUM_INTERRUPT_NAKS 3 // Define how many NAK's are allowed

Description

Define how many NAK's are allowed during an interrupt OUT transfer before erroring. Interrupt IN transfers that are NAK'd
are terminated without error.

1.4 Library Interface MLA - USB Library Help Embedded Host API

128

1.4.2.1.3 usb_host.h
Functions

Name Description
USB_HOST_APP_DATA_EVENT_HANDLER This is a typedef to use when defining the application level data

events handler.
USB_HOST_APP_EVENT_HANDLER This is a typedef to use when defining the application level

events handler.
USB_HostInterruptHandler This function handles the interrupts when the USB module is

running in host mode.
USBHostClearEndpointErrors This function clears an endpoint's internal error condition.
USBHostDeviceSpecificClientDriver This function indicates if the specified device has explicit client

driver support specified in the TPL.
USBHostDeviceStatus This function returns the current status of a device.
USBHostInit This function initializes the variables of the USB host stack.
USBHostIsochronousBuffersCreate This function initializes the isochronous data buffer information

and allocates memory for each buffer. This function will not
allocate memory if the buffer pointer is not NULL.

USBHostIsochronousBuffersDestroy This function releases all of the memory allocated for the
isochronous data buffers. It also resets all other information
about the buffers.

USBHostIsochronousBuffersReset This function resets all the isochronous data buffers. It does not
do anything with the space allocated for the buffers.

USBHostIssueDeviceRequest This function sends a standard device request to the attached
device.

USBHostRead This function initiates a read from the attached device.
USBHostResetDevice This function resets an attached device.
USBHostResumeDevice This function issues a RESUME to the attached device.
USBHostSetDeviceConfiguration This function changes the device's configuration.
USBHostSetNAKTimeout This function specifies NAK timeout capability.
USBHostShutdown This function turns off the USB module and frees all

unnecessary memory. This routine can be called by the
application layer to shut down all USB activity, which effectively
detaches all devices. The event EVENT_DETACH will be sent
to the client drivers for the attached device, and the event
EVENT_VBUS_RELEASE_POWER will be sent to the
application layer.

USBHostSuspendDevice This function suspends a device.
USBHostTasks This function executes the host tasks for USB host operation.
USBHostTerminateTransfer This function terminates the current transfer for the given

endpoint.
USBHostTransferIsComplete This function initiates whether or not the last endpoint

transaction is complete.
USBHostVbusEvent This function handles Vbus events that are detected by the

application.
USBHostWrite This function initiates a write to the attached device.

Macros

Name Description
__USBHOST_H__ DOM-IGNORE-END
INIT_CL_SC_P Set class support in the TPL (non-OTG only).
INIT_VID_PID Set VID/PID support in the TPL.
TPL_ALLOW_HNP Bitmask for Host Negotiation Protocol.

1.4 Library Interface MLA - USB Library Help Embedded Host API

129

TPL_CLASS_DRV Bitmask for class driver support.
TPL_EP0_ONLY_CUSTOM_DRIVER Bitmask to let a custom driver gain EP0 only and allow other interfaces to

use standard drivers
TPL_IGNORE_CLASS Bitmask for ignoring the class of a CL/SC/P driver
TPL_IGNORE_PID Bitmask for ignoring the PID of a VID/PID driver
TPL_IGNORE_PROTOCOL Bitmask for ignoring the protocol of a CL/SC/P driver
TPL_IGNORE_SUBCLASS Bitmask for ignoring the subclass of a CL/SC/P driver
TPL_SET_CONFIG Bitmask for setting the configuration.
USB_HOST_APP_DATA_EVENT_HANDLER If the application does not provide an event handler, then we will assume

that all events function without error.
USB_HOST_APP_EVENT_HANDLER If the application does not provide an event handler, then we will assume

that all events function without error.
USB_NUM_BULK_NAKS Define how many NAK's are allowed during a bulk transfer before

erroring.
USB_NUM_COMMAND_TRIES During enumeration, define how many times each command will be tried

before giving up and resetting the device.
USB_NUM_CONTROL_NAKS Define how many NAK's are allowed during a control transfer before

erroring.
USB_NUM_ENUMERATION_TRIES Define how many times the host will try to enumerate the device before

giving up and setting the state to DETACHED.
USB_NUM_INTERRUPT_NAKS Define how many NAK's are allowed during an interrupt OUT transfer

before erroring. Interrupt IN transfers that are NAK'd are terminated
without error.

USBHostGetCurrentConfigurationDescriptor This function returns a pointer to the current configuration descriptor of
the requested device.

USBHostGetDeviceDescriptor This function returns a pointer to the device descriptor of the requested
device.

USBHostGetStringDescriptor This routine initiates a request to obtains the requested string descriptor.
USBHostReadIsochronous This function initiates a read from an isochronous endpoint on the

attached device.
USBHostWriteIsochronous This function initiates a write to an isochronous endpoint on the attached

device.

Module

Embedded Host Stack

Structures

Name Description
_CLIENT_DRIVER_TABLE Client Driver Table Structure

This structure is used to define an entry in the client-driver table. Each
entry provides the information that the Host layer needs to manage a
particular USB client driver, including pointers to the interface routines
that the Client Driver must implement.

_HOST_TRANSFER_DATA Host Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion.

CLIENT_DRIVER_TABLE Client Driver Table Structure
This structure is used to define an entry in the client-driver table. Each
entry provides the information that the Host layer needs to manage a
particular USB client driver, including pointers to the interface routines
that the Client Driver must implement.

HOST_TRANSFER_DATA Host Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion.

1.4 Library Interface MLA - USB Library Help Embedded Host API

130

Types

Name Description
TRANSFER_ATTRIBUTES This is type TRANSFER_ATTRIBUTES.
USB_CLIENT_EVENT_HANDLER This is a typedef to use when defining a client driver event handler.
USB_CLIENT_INIT This is a typedef to use when defining a client driver initialization handler.
USB_TPL Targeted Peripheral List

This structure is used to define the devices that this host can support. If
the host is a USB Embedded Host or Dual Role Device that does not
support OTG, the TPL may contain both specific devices and generic
classes. If the host supports OTG, then the TPL may contain ONLY
specific devices.

Description

This is file usb_host.h.

1.4.2.1.4 __USBHOST_H__ Macro
File

usb_host.h

Syntax

#define __USBHOST_H__

Module

Embedded Host Stack

Description

DOM-IGNORE-END

1.4.2.2 CDC Client Driver
This is a CDC client driver for use with the USB Embedded Host driver.

Files

Name Description
usb_host_cdc.h This is file usb_host_cdc.h.
usb_host_cdc_interface.h This is file usb_host_cdc_interface.h.

Description

Communication Device Class (CDC) Host

CDC - Overview

Several type of communication can benefit from USB. Communication Device Class specification provides common
specification for communication devices. There are three classes that make up the definition for communications devices:

* Communications Device Class

* Communications Interface Class

* Data Interface Class.

The Communications Device Class is a device-level definition and is used by the host to properly identify a communications
device that may present several different types of interfaces.

1.4 Library Interface MLA - USB Library Help Embedded Host API

131

The Communications Interface Class defines a general-purpose mechanism that can be used to enable all types of
communications services on the Universal Serial Bus (USB). This interface consist of two elements, a management element
and a notification element. The management element configures and controls the device, it consist of endpoint 0. Notification
element is optional and is used to handle transport events. In the current stack notification element is not implemented.

The Data Interface Class defines a general-purpose mechanism to enable bulk or isochronous transfer on the USB when the
data does not meet the requirements for any other class. This interface is used to transmit/receive data to/from the device.
The type of endpoints belonging to a Data Class interface are restricted to being either isochronous or bulk, and are
expected to exist in pairs of the same type (one In and one Out). Current version of the stack is tested for Bulk transfers.

Class-Specific Codes

This section lists the codes for the Communications Device Class, Communications Interface Class and Data Interface
Class, including subclasses and protocols supported in the current version of the stack. The current version of the stack
supports RS232 emulation over USB. Below is the list of codes to support this functionality.

The following table defines the Communications Device Class code:

Code Class

0x02 Communications Device Class

Communication Interface Codes

The following table defines the Communications Class code:

Code Class

0x02 Communications Interface Class

CDC specification mentions various subclass , current version of the Microchip CDC host stack supports below mentioned
subclasses. The following table defines the currently supported Subclass codes for the Communications Interface Class:

Code SubClass

0x02 Abstract Control Model

The following table defines supported Communications Class Protocol Codes:

Code Protocol

0x01 AT Commands: V.250 etc.

Data Interface Code

The following table defines the Data Interface Class code:

Code Class

0x0A Data Interface Class

No specific Subclass and Protocol codes are required to achieve RS232 functionality over USB.

Communication and Data Transfer Handling

Communication Management : The CDC client deriver takes care of enumerating the device connected on the bus. The
application must define Line Coding parameters in file usb_config.h . USBConfig utility can be used to set these parameters.
If the connected device complies with the setting then the device is successfully attached else the device is not attached
onto the bus. If the application needs to change the setting dynamically after the device has been successfully enumerated ,
interface function USBHostCDC_Api_ACM_Request()can be used to do so. Following standard requests are currently
implemented:

1.4 Library Interface MLA - USB Library Help Embedded Host API

132

Request Summary

SendEncapsulatedCommand Issues a command in the format of the supported control protocol.

GetEncapsulatedResponse Requests a response in the format of the supported control protocol.

SetLineCoding Configures DTE rate, stop-bits, parity, and number-of-character bits.

GetLineCoding Requests current DTE rate, stop-bits, parity, and number-of-character bits.

SetControlLineState [V24] signal used to tell the DCE device the DTE device is now present.

Data transfers : Once the device is attached the application is ready to start data transfers. Usually two endpoints one in
each direction are supported by the device.

* To receive data from the device the application must set up a IN request at the rate depending on the baudrate settings.
Application can use a timer interrupt to precisely set up the request. Function USBHostCDC_Api_Get_IN_Data()is used to
setup the request. Maximum of 64 bytes can be received in single transfer.

* To transmit data to the device application must set up a OUT request. Function USBHostCDC_Api_Send_OUT_Data()is
used to setup out request. Any amount of data can be transferred to the device. The Client driver takes care of sending the
data in 64 bytes packet.

* USBHostCDC_ApiTransferIsComplete() is used to poll for the status of previous transfer.

* USBHostCDC_ApiDeviceDetect() is used to get the status of the device. If the device is ready for new transfer then the
function returns TRUE.

1.4.2.2.1 Functions
Functions

Name Description
USBHostCDC_Api_ACM_Request This function can be used by application code to dynamically access

ACM specific requests. This function should be used only if apllication
intends to modify for example the Baudrate from previouly configured
rate. Data transmitted/received to/from device is a array of bytes.
Application must take extra care of understanding the data format
before using this function.

USBHostCDC_Api_Get_IN_Data This function is called by application to receive Input data over DATA
interface. This function setsup the request to receive data from the
device.

USBHostCDC_Api_Send_OUT_Data This function is called by application to transmit out data over DATA
interface. This function setsup the request to transmit data to the device.

USBHostCDC_ApiDeviceDetect This function determines if a CDC device is attached and ready to use.
USBHostCDC_ApiTransferIsComplete This function is called by application to poll for transfer status. This

function returns true in the transfer is over. To check whether the
transfer was successfull or not , application must check the error code
returned by reference.

USBHostCDCDeviceStatus This function determines the status of a CDC device.
USBHostCDCEventHandler This function is the event handler for this client driver.
USBHostCDCInitAddress This function intializes the address of the attached CDC device.
USBHostCDCInitialize This function is the initialization routine for this client driver.
USBHostCDCResetDevice This function starts a CDC reset.
USBHostCDCTasks This function performs the maintenance tasks required by CDC class
USBHostCDCTransfer This function starts a CDC transfer.
USBHostCDCTransferIsComplete This function indicates whether or not the last transfer is complete.

Module

CDC Client Driver

1.4 Library Interface MLA - USB Library Help Embedded Host API

133

Description

1.4.2.2.1.1 USBHostCDC_Api_ACM_Request Function
File

usb_host_cdc_interface.h

Syntax

uint8_t USBHostCDC_Api_ACM_Request(uint8_t requestType, uint8_t size, uint8_t* data);

Description

This function can be used by application code to dynamically access ACM specific requests. This function should be used
only if apllication intends to modify for example the Baudrate from previouly configured rate. Data transmitted/received
to/from device is a array of bytes. Application must take extra care of understanding the data format before using this
function.

Remarks

None

Preconditions

Device must be enumerated and attached successfully.

Parameters

Parameters Description
uint8_t size Number bytes to be transferred.
uint8_t *data Pointer to data being transferred.

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_CDC_DEVICE_NOT_FOUND No device with specified address
USB_CDC_DEVICE_BUSY Device not in proper state for performing a transfer
USB_CDC_COMMAND_FAILED Request is not supported.
USB_CDC_ILLEGAL_REQUEST Requested ID is invalid.

Function

uint8_t USBHostCDC_Api_ACM_Request(uint8_t requestType, uint8_t size, uint8_t* data)

1.4.2.2.1.2 USBHostCDC_Api_Get_IN_Data Function
File

usb_host_cdc_interface.h

Syntax

bool USBHostCDC_Api_Get_IN_Data(uint8_t no_of_bytes, uint8_t* data);

Description

This function is called by application to receive Input data over DATA interface. This function setsup the request to receive
data from the device.

Remarks

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

134

Preconditions

None

Parameters

Parameters Description
uint8_t no_of_bytes Number of Bytes expected from the device.
uint8_t* data Pointer to application receive data buffer.

Return Values

Return Values Description
TRUE Transfer request is placed successfully.
FALSE Transfer request failed.

Function

bool USBHostCDC_Api_Get_IN_Data(uint8_t no_of_bytes, uint8_t* data)

1.4.2.2.1.3 USBHostCDC_Api_Send_OUT_Data Function
File

usb_host_cdc_interface.h

Syntax

bool USBHostCDC_Api_Send_OUT_Data(uint16_t no_of_bytes, uint8_t* data);

Description

This function is called by application to transmit out data over DATA interface. This function setsup the request to transmit
data to the device.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t no_of_bytes Number of Bytes expected from the device.
uint8_t* data Pointer to application transmit data buffer.

Return Values

Return Values Description
TRUE Transfer request is placed successfully.
FALSE Transfer request failed.

Function

bool USBHostCDC_Api_Send_OUT_Data(uint16_t no_of_bytes, uint8_t* data)

1.4.2.2.1.4 USBHostCDC_ApiDeviceDetect Function
File

usb_host_cdc_interface.h

Syntax

bool USBHostCDC_ApiDeviceDetect();

1.4 Library Interface MLA - USB Library Help Embedded Host API

135

Description

This function determines if a CDC device is attached and ready to use.

Remarks

Since this will often be called in a loop while waiting for a device, we'll make sure the tasks are executed.

Preconditions

None

Return Values

Return Values Description
TRUE CDC present and ready
FALSE CDC not present or not ready

Function

bool USBHostCDC_ApiDeviceDetect(void)

1.4.2.2.1.5 USBHostCDC_ApiTransferIsComplete Function
File

usb_host_cdc_interface.h

Syntax

bool USBHostCDC_ApiTransferIsComplete(uint8_t* errorCodeDriver, uint8_t* byteCount);

Description

This function is called by application to poll for transfer status. This function returns true in the transfer is over. To check
whether the transfer was successfull or not , application must check the error code returned by reference.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t *errorCodeDriver returns.
uint8_t *byteCount Number of bytes transferred.

Return Values

Return Values Description
TRUE Transfer is has completed.
FALSE Transfer is pending.

Function

bool USBHostCDC_ApiTransferIsComplete(uint8_t* errorCodeDriver,uint8_t* byteCount)

1.4.2.2.1.6 USBHostCDCDeviceStatus Function
This function determines the status of a CDC device.

File

usb_host_cdc.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

136

Syntax

uint8_t USBHostCDCDeviceStatus(uint8_t deviceAddress);

Description

This function determines the status of a CDC device.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress address of device to query

Return Values

Return Values Description
USB_CDC_DEVICE_NOT_FOUND Illegal device address, or the device is not an CDC
USB_CDC_INITIALIZING CDC is attached and in the process of initializing
USB_PROCESSING_REPORT_DESCRIPTOR CDC device is detected and report descriptor is being parsed
USB_CDC_NORMAL_RUNNING CDC Device is running normal, ready to send and receive

reports
USB_CDC_DEVICE_HOLDING Device is holding due to error
USB_CDC_DEVICE_DETACHED CDC detached.

Function

uint8_t USBHostCDCDeviceStatus(uint8_t deviceAddress)

1.4.2.2.1.7 USBHostCDCEventHandler Function
This function is the event handler for this client driver.

File

usb_host_cdc.h

Syntax

bool USBHostCDCEventHandler(uint8_t address, USB_EVENT event, void * data, uint32_t size);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description
uint8_t address Address of the device
USB_EVENT event Event that has occurred
void *data Pointer to data pertinent to the event
uint32_t size Size of the data

1.4 Library Interface MLA - USB Library Help Embedded Host API

137

Return Values

Return Values Description
TRUE Event was handled
FALSE Event was not handled

Function

bool USBHostCDCEventHandler(uint8_t address, USB_EVENT event,

void *data, uint32_t size)

1.4.2.2.1.8 USBHostCDCInitAddress Function
This function intializes the address of the attached CDC device.

File

usb_host_cdc.h

Syntax

bool USBHostCDCInitAddress(uint8_t address, uint32_t flags, uint8_t clientDriverID);

Description

This function intializes the address of the attached CDC device. Once the device is enumerated without any errors, the CDC
client call this function. For all the transfer requesets this address is used to indentify the CDC device.

Remarks

None

Preconditions

The device has been enumerated without any errors.

Parameters

Parameters Description
uint8_t address Address of the new device
uint32_t flags Initialization flags
uint8_t clientDriverID Client driver identification for device requests

Return Values

Return Values Description
TRUE We can support the device.
FALSE We cannot support the device.

Function

bool USBHostCDCInitAddress(uint8_t address, uint32_t flags, uint8_t clientDriverID)

1.4.2.2.1.9 USBHostCDCInitialize Function
This function is the initialization routine for this client driver.

File

usb_host_cdc.h

Syntax

bool USBHostCDCInitialize(uint8_t address, uint32_t flags, uint8_t clientDriverID);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated.For a CDC device we need to look into CDC descriptor, interface descriptor and endpoint descriptor.

1.4 Library Interface MLA - USB Library Help Embedded Host API

138

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t address Address of the new device
uint32_t flags Initialization flags
uint8_t clientDriverID Client driver identification for device requests

Return Values

Return Values Description
TRUE We can support the device.
FALSE We cannot support the device.

Function

bool USBHostCDCInitialize(uint8_t address, uint32_t flags, uint8_t clientDriverID)

1.4.2.2.1.10 USBHostCDCResetDevice Function
This function starts a CDC reset.

File

usb_host_cdc.h

Syntax

uint8_t USBHostCDCResetDevice(uint8_t deviceAddress);

Description

This function starts a CDC reset. A reset can be issued only if the device is attached and not being initialized.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

Return Values

Return Values Description
USB_SUCCESS Reset started
USB_MSD_DEVICE_NOT_FOUND No device with specified address
USB_MSD_ILLEGAL_REQUEST Device is in an illegal state for reset

Function

uint8_t USBHostCDCResetDevice(uint8_t deviceAddress)

1.4.2.2.1.11 USBHostCDCTasks Function
This function performs the maintenance tasks required by CDC class

1.4 Library Interface MLA - USB Library Help Embedded Host API

139

File

usb_host_cdc.h

Syntax

void USBHostCDCTasks();

Returns

None

Description

This function performs the maintenance tasks required by the CDC class. If transfer events from the host layer are not being
used, then it should be called on a regular basis by the application. If transfer events from the host layer are being used, this
function is compiled out, and does not need to be called.

Remarks

None

Preconditions

USBHostCDCInitialize() has been called.

Parameters

Parameters Description
None None

Function

void USBHostCDCTasks(void)

1.4.2.2.1.12 USBHostCDCTransfer Function
This function starts a CDC transfer.

File

usb_host_cdc.h

Syntax

uint8_t USBHostCDCTransfer(uint8_t deviceAddress, uint8_t request, uint8_t direction,
uint8_t interfaceNum, uint16_t size, uint8_t * data, uint8_t endpointDATA);

Description

This function starts a CDC transfer. A read/write wrapper is provided in application interface file to access this function.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t request Request type for Communication Interface
uint8_t direction 1=read, 0=write
uint8_t interfaceNum interface number of the requested transfer
uint8_t size uint8_t size of the data buffer
uint8_t *data Pointer to the data buffer
uint8_t endpointDATA endpoint details on which the transfer is requested

1.4 Library Interface MLA - USB Library Help Embedded Host API

140

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_CDC_DEVICE_NOT_FOUND No device with specified address
USB_CDC_DEVICE_BUSY Device not in proper state for performing a transfer

Function

USBHostCDCTransfer(uint8_t deviceAddress, uint8_t direction, uint8_t reportid, uint8_t size, uint8_t *data)

1.4.2.2.1.13 USBHostCDCTransferIsComplete Function
This function indicates whether or not the last transfer is complete.

File

usb_host_cdc.h

Syntax

bool USBHostCDCTransferIsComplete(uint8_t deviceAddress, uint8_t * errorCode, uint8_t *
uint8_tCount);

Description

This function indicates whether or not the last transfer is complete. If the functions returns TRUE, the returned uint8_t count
and error code are valid. Since only one transfer can be performed at once and only one endpoint can be used, we only
need to know the device address.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t *errorCode Error code from last transfer
uint32_t *uint8_tCount Number of uint8_ts transferred

Return Values

Return Values Description
TRUE Transfer is complete, errorCode is valid
FALSE Transfer is not complete, errorCode is not valid

Function

bool USBHostCDCTransferIsComplete(uint8_t deviceAddress,

uint8_t *errorCode, uint32_t *uint8_tCount)

1.4.2.2.2 Data Types and Constants
Macros

Name Description
DEVICE_CLASS_CDC CDC Interface Class Code
EVENT_CDC_ATTACH No event occured (NULL event)
EVENT_CDC_COMM_READ_DONE A CDC Communication Read transfer has completed
EVENT_CDC_COMM_WRITE_DONE A CDC Communication Write transfer has completed
EVENT_CDC_DATA_READ_DONE A CDC Data Read transfer has completed
EVENT_CDC_DATA_WRITE_DONE A CDC Data Write transfer has completed

1.4 Library Interface MLA - USB Library Help Embedded Host API

141

EVENT_CDC_NAK_TIMEOUT CDC device NAK timeout has occurred
EVENT_CDC_NONE No event occured (NULL event)
EVENT_CDC_OFFSET If the application has not defined an offset for CDC events,

set it to 0.
EVENT_CDC_RESET CDC reset complete
USB_CDC_ABSTRACT_CONTROL_MODEL Abstract Control Model
USB_CDC_ATM_NETWORKING_CONTROL_MODEL ATM Networking Control Model
USB_CDC_CAPI_CONTROL_MODEL CAPI Control Model
USB_CDC_CLASS_ERROR CDC Class Error Codes
USB_CDC_COMM_INTF Communication Interface Class Code
USB_CDC_COMMAND_FAILED Command failed at the device.
USB_CDC_COMMAND_PASSED Command was successful.
USB_CDC_CONTROL_LINE_LENGTH Number of uint8_ts Control line transfer
USB_CDC_CS_ENDPOINT This is macro USB_CDC_CS_ENDPOINT.
USB_CDC_CS_INTERFACE Functional Descriptor Details Type Values for the bDscType

Field
USB_CDC_DATA_INTF Data Interface Class Codes
USB_CDC_DEVICE_BUSY A transfer is currently in progress.
USB_CDC_DEVICE_DETACHED Device is detached.
USB_CDC_DEVICE_HOLDING Device is holding due to error
USB_CDC_DEVICE_MANAGEMENT Device Management
USB_CDC_DEVICE_NOT_FOUND Device with the specified address is not available.
USB_CDC_DIRECT_LINE_CONTROL_MODEL Direct Line Control Model
USB_CDC_DSC_FN_ACM ACM - Abstract Control Management
USB_CDC_DSC_FN_CALL_MGT This is macro USB_CDC_DSC_FN_CALL_MGT.
USB_CDC_DSC_FN_COUNTRY_SELECTION This is macro

USB_CDC_DSC_FN_COUNTRY_SELECTION.
USB_CDC_DSC_FN_DLM DLM - Direct Line Managment
USB_CDC_DSC_FN_HEADER bDscSubType in Functional Descriptors
USB_CDC_DSC_FN_RPT_CAPABILITIES This is macro USB_CDC_DSC_FN_RPT_CAPABILITIES.
USB_CDC_DSC_FN_TEL_OP_MODES This is macro USB_CDC_DSC_FN_TEL_OP_MODES.
USB_CDC_DSC_FN_TELEPHONE_RINGER This is macro

USB_CDC_DSC_FN_TELEPHONE_RINGER.
USB_CDC_DSC_FN_UNION This is macro USB_CDC_DSC_FN_UNION.
USB_CDC_DSC_FN_USB_TERMINAL This is macro USB_CDC_DSC_FN_USB_TERMINAL.
USB_CDC_ETHERNET_EMULATION_MODEL Ethernet Emulation Model
USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Ethernet Networking Control Model
USB_CDC_GET_COMM_FEATURE Returns the current settings for the communications feature.
USB_CDC_GET_ENCAPSULATED_REQUEST Requests a response in the format of the supported control

protocol.
USB_CDC_GET_LINE_CODING Requests current DTE rate, stop-bits, parity, and

number-of-character bits.
USB_CDC_ILLEGAL_REQUEST Cannot perform requested operation.
USB_CDC_INITIALIZING Device is initializing.
USB_CDC_INTERFACE_ERROR The interface layer cannot support the device.
USB_CDC_LINE_CODING_LENGTH Number of uint8_ts Line Coding transfer
USB_CDC_MAX_PACKET_SIZE Max transfer size is 64 uint8_ts for Full Speed USB
USB_CDC_MOBILE_DIRECT_LINE_MODEL Mobile Direct Line Model
USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Multi-Channel Control Model
USB_CDC_NO_PROTOCOL No class specific protocol required For more.... see Table 7

in USB CDC Specification 1.2

1.4 Library Interface MLA - USB Library Help Embedded Host API

142

USB_CDC_NO_REPORT_DESCRIPTOR No report descriptor found
USB_CDC_NORMAL_RUNNING Device is running and available for data transfers.
USB_CDC_OBEX OBEX
USB_CDC_PHASE_ERROR Command had a phase error at the device.
USB_CDC_REPORT_DESCRIPTOR_BAD Report Descriptor for not proper
USB_CDC_RESET_ERROR An error occurred while resetting the device.
USB_CDC_RESETTING_DEVICE Device is being reset.
USB_CDC_SEND_BREAK Sends special carrier modulation used to specify [V24] style

break.
USB_CDC_SEND_ENCAPSULATED_COMMAND Issues a command in the format of the supported control

protocol.
USB_CDC_SET_COMM_FEATURE Controls the settings for a particular communications

feature.
USB_CDC_SET_CONTROL_LINE_STATE V24] signal used to tell the DCE device the DTE device is

now present.
USB_CDC_SET_LINE_CODING Configures DTE rate, stop-bits, parity, and

number-of-character bits.
USB_CDC_TELEPHONE_CONTROL_MODEL Telephone Control Model
USB_CDC_V25TER Common AT commands ("Hayes(TM)")
USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Wireless Handset Control Model

Module

CDC Client Driver

Structures

Name Description
_COMM_INTERFACE_DETAILS This structure stores communication interface details of the attached

CDC device
_DATA_INTERFACE_DETAILS This structure stores data interface details of the attached CDC device
COMM_INTERFACE_DETAILS This structure stores communication interface details of the attached

CDC device
DATA_INTERFACE_DETAILS This structure stores data interface details of the attached CDC device
USB_CDC_ACM_FN_DSC Abstract Control Management Functional Descriptor
USB_CDC_CALL_MGT_FN_DSC Call Management Functional Descriptor
USB_CDC_DEVICE_INFO This structure is used to hold information about an attached CDC device
_USB_CDC_ACM_FN_DSC Abstract Control Management Functional Descriptor
USB_CDC_HEADER_FN_DSC Header Functional Descriptor
_USB_CDC_CALL_MGT_FN_DSC Call Management Functional Descriptor
USB_CDC_UNION_FN_DSC Union Functional Descriptor
_USB_CDC_DEVICE_INFO This structure is used to hold information about an attached CDC device
_USB_CDC_HEADER_FN_DSC Header Functional Descriptor
_USB_CDC_UNION_FN_DSC Union Functional Descriptor

Unions

Name Description
USB_CDC_CONTROL_SIGNAL_BITMAP This is type USB_CDC_CONTROL_SIGNAL_BITMAP.
USB_CDC_LINE_CODING This is type USB_CDC_LINE_CODING.
_USB_CDC_CONTROL_SIGNAL_BITMAP This is type USB_CDC_CONTROL_SIGNAL_BITMAP.
_USB_CDC_LINE_CODING This is type USB_CDC_LINE_CODING.

Description

1.4 Library Interface MLA - USB Library Help Embedded Host API

143

1.4.2.2.2.1 COMM_INTERFACE_DETAILS Structure
File

usb_host_cdc.h

Syntax

typedef struct _COMM_INTERFACE_DETAILS {
 uint8_t interfaceNum;
 uint8_t noOfEndpoints;
 USB_CDC_HEADER_FN_DSC Header_Fn_Dsc;
 USB_CDC_ACM_FN_DSC ACM_Fn_Desc;
 USB_CDC_UNION_FN_DSC Union_Fn_Desc;
 USB_CDC_CALL_MGT_FN_DSC Call_Mgt_Fn_Desc;
 uint16_t endpointMaxDataSize;
 uint16_t endpointInDataSize;
 uint16_t endpointOutDataSize;
 uint8_t endpointPollInterval;
 uint8_t endpointType;
 uint8_t endpointIN;
 uint8_t endpointOUT;
} COMM_INTERFACE_DETAILS;

Members

Members Description
uint8_t interfaceNum; communication interface number
uint8_t noOfEndpoints; Number endpoints for communication interface Functional

Descriptor Details
USB_CDC_HEADER_FN_DSC Header_Fn_Dsc; Header Function Descriptor
USB_CDC_ACM_FN_DSC ACM_Fn_Desc; Abstract Control Model Function Descriptor
USB_CDC_UNION_FN_DSC Union_Fn_Desc; Union Function Descriptor
USB_CDC_CALL_MGT_FN_DSC Call_Mgt_Fn_Desc; Call Management Function Descriptor Endpoint Descriptor

Details
uint16_t endpointMaxDataSize; Max data size for a interface.
uint16_t endpointInDataSize; Max data size for a interface.
uint16_t endpointOutDataSize; Max data size for a interface.
uint8_t endpointPollInterval; Polling rate of corresponding interface.
uint8_t endpointType; Endpoint type - either Isochronous or Bulk
uint8_t endpointIN; IN endpoint for comm interface.
uint8_t endpointOUT; IN endpoint for comm interface.

Description

This structure stores communication interface details of the attached CDC device

1.4.2.2.2.2 DATA_INTERFACE_DETAILS Structure
File

usb_host_cdc.h

Syntax

typedef struct _DATA_INTERFACE_DETAILS {
 uint8_t interfaceNum;
 uint8_t noOfEndpoints;
 uint16_t endpointInDataSize;
 uint16_t endpointOutDataSize;
 uint8_t endpointType;
 uint8_t endpointIN;
 uint8_t endpointOUT;
} DATA_INTERFACE_DETAILS;

1.4 Library Interface MLA - USB Library Help Embedded Host API

144

Members

Members Description
uint8_t interfaceNum; Data interface number
uint8_t noOfEndpoints; number of endpoints associated with data interface
uint16_t endpointInDataSize; Max data size for a interface.
uint16_t endpointOutDataSize; Max data size for a interface.
uint8_t endpointType; Endpoint type - either Isochronous or Bulk
uint8_t endpointIN; IN endpoint for comm interface.
uint8_t endpointOUT; IN endpoint for comm interface.

Description

This structure stores data interface details of the attached CDC device

1.4.2.2.2.3 USB_CDC_ACM_FN_DSC Structure
File

usb_host_cdc.h

Syntax

typedef struct _USB_CDC_ACM_FN_DSC {
 uint8_t bFNLength;
 uint8_t bDscType;
 uint8_t bDscSubType;
 uint8_t bmCapabilities;
} USB_CDC_ACM_FN_DSC;

Members

Members Description
uint8_t bFNLength; Size of this functional descriptor, in uint8_ts.
uint8_t bDscType; CS_INTERFACE
uint8_t bDscSubType; Abstract Control Management functional descriptor subtype

as defined in [USBCDC1.2].
uint8_t bmCapabilities; The capabilities that this configuration supports. (A bit value

of zero means that the request is not supported.)

Description

Abstract Control Management Functional Descriptor

1.4.2.2.2.4 USB_CDC_CALL_MGT_FN_DSC Structure
File

usb_host_cdc.h

Syntax

typedef struct _USB_CDC_CALL_MGT_FN_DSC {
 uint8_t bFNLength;
 uint8_t bDscType;
 uint8_t bDscSubType;
 uint8_t bmCapabilities;
 uint8_t bDataInterface;
} USB_CDC_CALL_MGT_FN_DSC;

Members

Members Description
uint8_t bFNLength; Size of this functional descriptor, in uint8_ts.
uint8_t bDscType; CS_INTERFACE

1.4 Library Interface MLA - USB Library Help Embedded Host API

145

uint8_t bDscSubType; Call Management functional descriptor subtype, as defined
in [USBCDC1.2].

uint8_t bmCapabilities; The capabilities that this configuration supports:
uint8_t bDataInterface; Interface number of Data Class interface optionally used for

call management.

Description

Call Management Functional Descriptor

1.4.2.2.2.5 USB_CDC_CONTROL_SIGNAL_BITMAP Union
File

usb_host_cdc.h

Syntax

typedef union _USB_CDC_CONTROL_SIGNAL_BITMAP {
 uint8_t _uint8_t;
 struct {
 unsigned DTE_PRESENT : 1;
 unsigned CARRIER_CONTROL : 1;
 }
} USB_CDC_CONTROL_SIGNAL_BITMAP;

Members

Members Description
unsigned DTE_PRESENT : 1; 0] Not Present [1] Present
unsigned CARRIER_CONTROL : 1; 0] Deactivate [1] Activate

Description

This is type USB_CDC_CONTROL_SIGNAL_BITMAP.

1.4.2.2.2.6 USB_CDC_DEVICE_INFO Structure
File

usb_host_cdc.h

Syntax

typedef struct _USB_CDC_DEVICE_INFO {
 uint8_t* userData;
 uint16_t reportSize;
 uint16_t remainingBytes;
 uint16_t bytesTransferred;
 union {
 struct {
 uint8_t bfDirection : 1;
 uint8_t bfReset : 1;
 uint8_t bfClearDataIN : 1;
 uint8_t bfClearDataOUT : 1;
 }
 uint8_t val;
 } flags;
 uint8_t driverSupported;
 uint8_t deviceAddress;
 uint8_t errorCode;
 uint8_t state;
 uint8_t returnState;
 uint8_t noOfInterfaces;
 uint8_t interface;
 uint8_t endpointDATA;
 uint8_t commRequest;
 uint8_t clientDriverID;
 COMM_INTERFACE_DETAILS commInterface;

1.4 Library Interface MLA - USB Library Help Embedded Host API

146

 DATA_INTERFACE_DETAILS dataInterface;
} USB_CDC_DEVICE_INFO;

Members

Members Description
uint8_t* userData; Data pointer to application buffer.
uint16_t reportSize; Total length of user data
uint16_t remainingBytes; Number uint8_ts remaining to be transferrerd in case user

data length is more than 64 uint8_ts
uint16_t bytesTransferred; Number of uint8_ts transferred to/from the user's data buffer.
uint8_t bfDirection : 1; Direction of current transfer (0=OUT, 1=IN).
uint8_t bfReset : 1; Flag indicating to perform CDC Reset.
uint8_t bfClearDataIN : 1; Flag indicating to clear the IN endpoint.
uint8_t bfClearDataOUT : 1; Flag indicating to clear the OUT endpoint.
uint8_t driverSupported; If CDC driver supports requested Class,Subclass & Protocol.
uint8_t deviceAddress; Address of the device on the bus.
uint8_t errorCode; Error code of last error.
uint8_t state; State machine state of the device.
uint8_t returnState; State to return to after performing error handling.
uint8_t noOfInterfaces; Total number of interfaces in the device.
uint8_t interface; Interface number of current transfer.
uint8_t endpointDATA; Endpoint to use for the current transfer.
uint8_t commRequest; Current Communication code
uint8_t clientDriverID; Client driver ID for device requests.
COMM_INTERFACE_DETAILS commInterface; This structure stores communication interface details.
DATA_INTERFACE_DETAILS dataInterface; This structure stores data interface details.

Description

This structure is used to hold information about an attached CDC device

1.4.2.2.2.7 USB_CDC_HEADER_FN_DSC Structure
File

usb_host_cdc.h

Syntax

typedef struct _USB_CDC_HEADER_FN_DSC {
 uint8_t bFNLength;
 uint8_t bDscType;
 uint8_t bDscSubType;
 uint8_t bcdCDC[2];
} USB_CDC_HEADER_FN_DSC;

Members

Members Description
uint8_t bFNLength; Size of this functional descriptor, in uint8_ts.
uint8_t bDscType; CS_INTERFACE
uint8_t bDscSubType; Header. This is defined in [USBCDC1.2], which defines this

as a header.
uint8_t bcdCDC[2]; USB Class Definitions for Communications Devices

Specification release number in binary-coded decimal.

Description

Header Functional Descriptor

1.4 Library Interface MLA - USB Library Help Embedded Host API

147

1.4.2.2.2.8 USB_CDC_LINE_CODING Union
File

usb_host_cdc.h

Syntax

typedef union _USB_CDC_LINE_CODING {
 struct {
 uint8_t _uint8_t[USB_CDC_LINE_CODING_LENGTH];
 }
 struct {
 uint32_t dwDTERate;
 uint8_t bCharFormat;
 uint8_t bParityType;
 uint8_t bDataBits;
 }
} USB_CDC_LINE_CODING;

Members

Members Description
uint32_t dwDTERate; Data terminal rate, in bits per second.
uint8_t bCharFormat; Stop bits 0:1 Stop bit, 1:1.5 Stop bits, 2:2 Stop bits
uint8_t bParityType; Parity 0:None, 1:Odd, 2:Even, 3:Mark, 4:Space
uint8_t bDataBits; Data bits (5, 6, 7, 8 or 16)

Description

This is type USB_CDC_LINE_CODING.

1.4.2.2.2.9 USB_CDC_UNION_FN_DSC Structure
File

usb_host_cdc.h

Syntax

typedef struct _USB_CDC_UNION_FN_DSC {
 uint8_t bFNLength;
 uint8_t bDscType;
 uint8_t bDscSubType;
 uint8_t bMasterIntf;
 uint8_t bSaveIntf0;
} USB_CDC_UNION_FN_DSC;

Members

Members Description
uint8_t bFNLength; Size of this functional descriptor, in uint8_ts.
uint8_t bDscType; CS_INTERFACE
uint8_t bDscSubType; Union Descriptor Functional Descriptor subtype as defined in

[USBCDC1.2].
uint8_t bMasterIntf; Interface number of the control (Communications Class)

interface
uint8_t bSaveIntf0; Interface number of the subordinate (Data Class) interface

Description

Union Functional Descriptor

1.4 Library Interface MLA - USB Library Help Embedded Host API

148

1.4.2.2.2.10 DEVICE_CLASS_CDC Macro
File

usb_host_cdc.h

Syntax

#define DEVICE_CLASS_CDC 0x02 // CDC Interface Class Code

Description

CDC Interface Class Code

1.4.2.2.2.11 EVENT_CDC_ATTACH Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_ATTACH EVENT_CDC_BASE + EVENT_CDC_OFFSET + 1 // No event occured (NULL
event)

Description

No event occured (NULL event)

1.4.2.2.2.12 EVENT_CDC_COMM_READ_DONE Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_COMM_READ_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 2 // A CDC
Communication Read transfer has completed

Description

A CDC Communication Read transfer has completed

1.4.2.2.2.13 EVENT_CDC_COMM_WRITE_DONE Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_COMM_WRITE_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 3 // A CDC
Communication Write transfer has completed

Description

A CDC Communication Write transfer has completed

1.4.2.2.2.14 EVENT_CDC_DATA_READ_DONE Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_DATA_READ_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 4 // A CDC Data Read
transfer has completed

Description

A CDC Data Read transfer has completed

1.4 Library Interface MLA - USB Library Help Embedded Host API

149

1.4.2.2.2.15 EVENT_CDC_DATA_WRITE_DONE Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_DATA_WRITE_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 5 // A CDC Data
Write transfer has completed

Description

A CDC Data Write transfer has completed

1.4.2.2.2.16 EVENT_CDC_NAK_TIMEOUT Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_NAK_TIMEOUT EVENT_CDC_BASE + EVENT_CDC_OFFSET + 7 // CDC device NAK
timeout has occurred

Description

CDC device NAK timeout has occurred

1.4.2.2.2.17 EVENT_CDC_NONE Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_NONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 0 // No event occured (NULL
event)

Description

No event occured (NULL event)

1.4.2.2.2.18 EVENT_CDC_OFFSET Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_OFFSET 0

Description

If the application has not defined an offset for CDC events, set it to 0.

1.4.2.2.2.19 EVENT_CDC_RESET Macro
File

usb_host_cdc.h

Syntax

#define EVENT_CDC_RESET EVENT_CDC_BASE + EVENT_CDC_OFFSET + 6 // CDC reset complete

Description

CDC reset complete

1.4 Library Interface MLA - USB Library Help Embedded Host API

150

1.4.2.2.2.20 USB_CDC_ABSTRACT_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_ABSTRACT_CONTROL_MODEL 0x02 // Abstract Control Model

Description

Abstract Control Model

1.4.2.2.2.21 USB_CDC_ATM_NETWORKING_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_ATM_NETWORKING_CONTROL_MODEL 0x07 // ATM Networking Control Model

Description

ATM Networking Control Model

1.4.2.2.2.22 USB_CDC_CAPI_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_CAPI_CONTROL_MODEL 0x05 // CAPI Control Model

Description

CAPI Control Model

1.4.2.2.2.23 USB_CDC_CLASS_ERROR Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_CLASS_ERROR USB_ERROR_CLASS_DEFINED

Description

CDC Class Error Codes

1.4.2.2.2.24 USB_CDC_COMM_INTF Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_COMM_INTF 0x02 // Communication Interface Class Code

Description

Communication Interface Class Code

1.4 Library Interface MLA - USB Library Help Embedded Host API

151

1.4.2.2.2.25 USB_CDC_COMMAND_FAILED Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_COMMAND_FAILED (USB_CDC_CLASS_ERROR | 0x01) // Command failed at the device.

Description

Command failed at the device.

1.4.2.2.2.26 USB_CDC_COMMAND_PASSED Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_COMMAND_PASSED USB_SUCCESS // Command was successful.

Description

Command was successful.

1.4.2.2.2.27 USB_CDC_CONTROL_LINE_LENGTH Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_CONTROL_LINE_LENGTH 0x00 // Number of uint8_ts Control line transfer

Description

Number of uint8_ts Control line transfer

1.4.2.2.2.28 USB_CDC_CS_ENDPOINT Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_CS_ENDPOINT 0x25

Description

This is macro USB_CDC_CS_ENDPOINT.

1.4.2.2.2.29 USB_CDC_CS_INTERFACE Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_CS_INTERFACE 0x24

Description

Functional Descriptor Details Type Values for the bDscType Field

1.4 Library Interface MLA - USB Library Help Embedded Host API

152

1.4.2.2.2.30 USB_CDC_DATA_INTF Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DATA_INTF 0x0A

Description

Data Interface Class Codes

1.4.2.2.2.31 USB_CDC_DEVICE_BUSY Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DEVICE_BUSY (USB_CDC_CLASS_ERROR | 0x04) // A transfer is currently in
progress.

Description

A transfer is currently in progress.

1.4.2.2.2.32 USB_CDC_DEVICE_DETACHED Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DEVICE_DETACHED 0x50 // Device is detached.

Description

Device is detached.

1.4.2.2.2.33 USB_CDC_DEVICE_HOLDING Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DEVICE_HOLDING 0x54 // Device is holding due to error

Description

Device is holding due to error

1.4.2.2.2.34 USB_CDC_DEVICE_MANAGEMENT Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DEVICE_MANAGEMENT 0x09 // Device Management

Description

Device Management

1.4 Library Interface MLA - USB Library Help Embedded Host API

153

1.4.2.2.2.35 USB_CDC_DEVICE_NOT_FOUND Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DEVICE_NOT_FOUND (USB_CDC_CLASS_ERROR | 0x03) // Device with the specified
address is not available.

Description

Device with the specified address is not available.

1.4.2.2.2.36 USB_CDC_DIRECT_LINE_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DIRECT_LINE_CONTROL_MODEL 0x01 // Direct Line Control Model

Description

Direct Line Control Model

1.4.2.2.2.37 USB_CDC_DSC_FN_ACM Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_ACM 0x02 // ACM - Abstract Control Management

Description

ACM - Abstract Control Management

1.4.2.2.2.38 USB_CDC_DSC_FN_CALL_MGT Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_CALL_MGT 0x01

Description

This is macro USB_CDC_DSC_FN_CALL_MGT.

1.4.2.2.2.39 USB_CDC_DSC_FN_COUNTRY_SELECTION Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_COUNTRY_SELECTION 0x07

Description

This is macro USB_CDC_DSC_FN_COUNTRY_SELECTION.

1.4 Library Interface MLA - USB Library Help Embedded Host API

154

1.4.2.2.2.40 USB_CDC_DSC_FN_DLM Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_DLM 0x03 // DLM - Direct Line Managment

Description

DLM - Direct Line Managment

1.4.2.2.2.41 USB_CDC_DSC_FN_HEADER Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_HEADER 0x00

Description

bDscSubType in Functional Descriptors

1.4.2.2.2.42 USB_CDC_DSC_FN_RPT_CAPABILITIES Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_RPT_CAPABILITIES 0x05

Description

This is macro USB_CDC_DSC_FN_RPT_CAPABILITIES.

1.4.2.2.2.43 USB_CDC_DSC_FN_TEL_OP_MODES Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_TEL_OP_MODES 0x08

Description

This is macro USB_CDC_DSC_FN_TEL_OP_MODES.

1.4.2.2.2.44 USB_CDC_DSC_FN_TELEPHONE_RINGER Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_TELEPHONE_RINGER 0x04

Description

This is macro USB_CDC_DSC_FN_TELEPHONE_RINGER.

1.4 Library Interface MLA - USB Library Help Embedded Host API

155

1.4.2.2.2.45 USB_CDC_DSC_FN_UNION Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_UNION 0x06

Description

This is macro USB_CDC_DSC_FN_UNION.

1.4.2.2.2.46 USB_CDC_DSC_FN_USB_TERMINAL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_DSC_FN_USB_TERMINAL 0x09

Description

This is macro USB_CDC_DSC_FN_USB_TERMINAL.

1.4.2.2.2.47 USB_CDC_ETHERNET_EMULATION_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_ETHERNET_EMULATION_MODEL 0x0C // Ethernet Emulation Model

Description

Ethernet Emulation Model

1.4.2.2.2.48 USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL 0x06 // Ethernet Networking Control Model

Description

Ethernet Networking Control Model

1.4.2.2.2.49 USB_CDC_GET_COMM_FEATURE Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_GET_COMM_FEATURE 0x03 // Returns the current settings for the
communications feature.

Description

Returns the current settings for the communications feature.

1.4 Library Interface MLA - USB Library Help Embedded Host API

156

1.4.2.2.2.50 USB_CDC_GET_ENCAPSULATED_REQUEST Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_GET_ENCAPSULATED_REQUEST 0x01 // Requests a response in the format of
the supported control protocol.

Description

Requests a response in the format of the supported control protocol.

1.4.2.2.2.51 USB_CDC_GET_LINE_CODING Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_GET_LINE_CODING 0x21 // Requests current DTE rate, stop-bits, parity,
and number-of-character bits.

Description

Requests current DTE rate, stop-bits, parity, and number-of-character bits.

1.4.2.2.2.52 USB_CDC_ILLEGAL_REQUEST Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_ILLEGAL_REQUEST (USB_CDC_CLASS_ERROR | 0x0B) // Cannot perform requested
operation.

Description

Cannot perform requested operation.

1.4.2.2.2.53 USB_CDC_INITIALIZING Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_INITIALIZING 0x51 // Device is initializing.

Description

Device is initializing.

1.4.2.2.2.54 USB_CDC_INTERFACE_ERROR Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_INTERFACE_ERROR (USB_CDC_CLASS_ERROR | 0x06) // The interface layer cannot
support the device.

Description

The interface layer cannot support the device.

1.4 Library Interface MLA - USB Library Help Embedded Host API

157

1.4.2.2.2.55 USB_CDC_LINE_CODING_LENGTH Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_LINE_CODING_LENGTH 0x07 // Number of uint8_ts Line Coding transfer

Description

Number of uint8_ts Line Coding transfer

1.4.2.2.2.56 USB_CDC_MAX_PACKET_SIZE Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_MAX_PACKET_SIZE 0x200 // Max transfer size is 64 uint8_ts for Full Speed
USB

Description

Max transfer size is 64 uint8_ts for Full Speed USB

**

**

Data Structures

1.4.2.2.2.57 USB_CDC_MOBILE_DIRECT_LINE_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_MOBILE_DIRECT_LINE_MODEL 0x0A // Mobile Direct Line Model

Description

Mobile Direct Line Model

1.4.2.2.2.58 USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_MULTI_CHANNEL_CONTROL_MODEL 0x04 // Multi-Channel Control Model

Description

Multi-Channel Control Model

1.4.2.2.2.59 USB_CDC_NO_PROTOCOL Macro
File

usb_host_cdc.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

158

Syntax

#define USB_CDC_NO_PROTOCOL 0x00 // No class specific protocol required

Description

No class specific protocol required For more.... see Table 7 in USB CDC Specification 1.2

1.4.2.2.2.60 USB_CDC_NO_REPORT_DESCRIPTOR Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_NO_REPORT_DESCRIPTOR (USB_CDC_CLASS_ERROR | 0x05) // No report descriptor
found

Description

No report descriptor found

1.4.2.2.2.61 USB_CDC_NORMAL_RUNNING Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_NORMAL_RUNNING 0x53 // Device is running and available for data
transfers.

Description

Device is running and available for data transfers.

1.4.2.2.2.62 USB_CDC_OBEX Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_OBEX 0x0B // OBEX

Description

OBEX

1.4.2.2.2.63 USB_CDC_PHASE_ERROR Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_PHASE_ERROR (USB_CDC_CLASS_ERROR | 0x02) // Command had a phase error at
the device.

Description

Command had a phase error at the device.

1.4.2.2.2.64 USB_CDC_REPORT_DESCRIPTOR_BAD Macro
File

usb_host_cdc.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

159

Syntax

#define USB_CDC_REPORT_DESCRIPTOR_BAD (USB_CDC_CLASS_ERROR | 0x05) // Report Descriptor for
not proper

Description

Report Descriptor for not proper

1.4.2.2.2.65 USB_CDC_RESET_ERROR Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_RESET_ERROR (USB_CDC_CLASS_ERROR | 0x0A) // An error occurred while
resetting the device.

Description

An error occurred while resetting the device.

1.4.2.2.2.66 USB_CDC_RESETTING_DEVICE Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_RESETTING_DEVICE 0x55 // Device is being reset.

Description

Device is being reset.

1.4.2.2.2.67 USB_CDC_SEND_BREAK Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_SEND_BREAK 0x23 // Sends special carrier modulation used to specify
[V24] style break.

Description

Sends special carrier modulation used to specify [V24] style break.

1.4.2.2.2.68 USB_CDC_SEND_ENCAPSULATED_COMMAND Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_SEND_ENCAPSULATED_COMMAND 0x00 // Issues a command in the format of the
supported control protocol.

Description

Issues a command in the format of the supported control protocol.

1.4 Library Interface MLA - USB Library Help Embedded Host API

160

1.4.2.2.2.69 USB_CDC_SET_COMM_FEATURE Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_SET_COMM_FEATURE 0x02 // Controls the settings for a particular
communications feature.

Description

Controls the settings for a particular communications feature.

1.4.2.2.2.70 USB_CDC_SET_CONTROL_LINE_STATE Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_SET_CONTROL_LINE_STATE 0x22 // [V24] signal used to tell the DCE device
the DTE device is now present.

Description

V24] signal used to tell the DCE device the DTE device is now present.

1.4.2.2.2.71 USB_CDC_SET_LINE_CODING Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_SET_LINE_CODING 0x20 // Configures DTE rate, stop-bits, parity, and
number-of-character bits.

Description

Configures DTE rate, stop-bits, parity, and number-of-character bits.

1.4.2.2.2.72 USB_CDC_TELEPHONE_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_TELEPHONE_CONTROL_MODEL 0x03 // Telephone Control Model

Description

Telephone Control Model

1.4.2.2.2.73 USB_CDC_V25TER Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_V25TER 0x01 // Common AT commands ("Hayes(TM)")

Description

Common AT commands ("Hayes(TM)")

1.4 Library Interface MLA - USB Library Help Embedded Host API

161

1.4.2.2.2.74 USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Macro
File

usb_host_cdc.h

Syntax

#define USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL 0x08 // Wireless Handset Control Model

Description

Wireless Handset Control Model

1.4.2.2.3 usb_host_cdc.h
Functions

Name Description
USBHostCDCDeviceStatus This function determines the status of a CDC device.
USBHostCDCEventHandler This function is the event handler for this client driver.
USBHostCDCInitAddress This function intializes the address of the attached CDC device.
USBHostCDCInitialize This function is the initialization routine for this client driver.
USBHostCDCResetDevice This function starts a CDC reset.
USBHostCDCTasks This function performs the maintenance tasks required by CDC class
USBHostCDCTransfer This function starts a CDC transfer.
USBHostCDCTransferIsComplete This function indicates whether or not the last transfer is complete.

Macros

Name Description
DEVICE_CLASS_CDC CDC Interface Class Code
EVENT_CDC_ATTACH No event occured (NULL event)
EVENT_CDC_COMM_READ_DONE A CDC Communication Read transfer has completed
EVENT_CDC_COMM_WRITE_DONE A CDC Communication Write transfer has completed
EVENT_CDC_DATA_READ_DONE A CDC Data Read transfer has completed
EVENT_CDC_DATA_WRITE_DONE A CDC Data Write transfer has completed
EVENT_CDC_NAK_TIMEOUT CDC device NAK timeout has occurred
EVENT_CDC_NONE No event occured (NULL event)
EVENT_CDC_OFFSET If the application has not defined an offset for CDC events,

set it to 0.
EVENT_CDC_RESET CDC reset complete
USB_CDC_ABSTRACT_CONTROL_MODEL Abstract Control Model
USB_CDC_ATM_NETWORKING_CONTROL_MODEL ATM Networking Control Model
USB_CDC_CAPI_CONTROL_MODEL CAPI Control Model
USB_CDC_CLASS_ERROR CDC Class Error Codes
USB_CDC_COMM_INTF Communication Interface Class Code
USB_CDC_COMMAND_FAILED Command failed at the device.
USB_CDC_COMMAND_PASSED Command was successful.
USB_CDC_CONTROL_LINE_LENGTH Number of uint8_ts Control line transfer
USB_CDC_CS_ENDPOINT This is macro USB_CDC_CS_ENDPOINT.
USB_CDC_CS_INTERFACE Functional Descriptor Details Type Values for the bDscType

Field
USB_CDC_DATA_INTF Data Interface Class Codes
USB_CDC_DEVICE_BUSY A transfer is currently in progress.
USB_CDC_DEVICE_DETACHED Device is detached.

1.4 Library Interface MLA - USB Library Help Embedded Host API

162

USB_CDC_DEVICE_HOLDING Device is holding due to error
USB_CDC_DEVICE_MANAGEMENT Device Management
USB_CDC_DEVICE_NOT_FOUND Device with the specified address is not available.
USB_CDC_DIRECT_LINE_CONTROL_MODEL Direct Line Control Model
USB_CDC_DSC_FN_ACM ACM - Abstract Control Management
USB_CDC_DSC_FN_CALL_MGT This is macro USB_CDC_DSC_FN_CALL_MGT.
USB_CDC_DSC_FN_COUNTRY_SELECTION This is macro

USB_CDC_DSC_FN_COUNTRY_SELECTION.
USB_CDC_DSC_FN_DLM DLM - Direct Line Managment
USB_CDC_DSC_FN_HEADER bDscSubType in Functional Descriptors
USB_CDC_DSC_FN_RPT_CAPABILITIES This is macro USB_CDC_DSC_FN_RPT_CAPABILITIES.
USB_CDC_DSC_FN_TEL_OP_MODES This is macro USB_CDC_DSC_FN_TEL_OP_MODES.
USB_CDC_DSC_FN_TELEPHONE_RINGER This is macro

USB_CDC_DSC_FN_TELEPHONE_RINGER.
USB_CDC_DSC_FN_UNION This is macro USB_CDC_DSC_FN_UNION.
USB_CDC_DSC_FN_USB_TERMINAL This is macro USB_CDC_DSC_FN_USB_TERMINAL.
USB_CDC_ETHERNET_EMULATION_MODEL Ethernet Emulation Model
USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Ethernet Networking Control Model
USB_CDC_GET_COMM_FEATURE Returns the current settings for the communications feature.
USB_CDC_GET_ENCAPSULATED_REQUEST Requests a response in the format of the supported control

protocol.
USB_CDC_GET_LINE_CODING Requests current DTE rate, stop-bits, parity, and

number-of-character bits.
USB_CDC_ILLEGAL_REQUEST Cannot perform requested operation.
USB_CDC_INITIALIZING Device is initializing.
USB_CDC_INTERFACE_ERROR The interface layer cannot support the device.
USB_CDC_LINE_CODING_LENGTH Number of uint8_ts Line Coding transfer
USB_CDC_MAX_PACKET_SIZE Max transfer size is 64 uint8_ts for Full Speed USB
USB_CDC_MOBILE_DIRECT_LINE_MODEL Mobile Direct Line Model
USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Multi-Channel Control Model
USB_CDC_NO_PROTOCOL No class specific protocol required For more.... see Table 7

in USB CDC Specification 1.2
USB_CDC_NO_REPORT_DESCRIPTOR No report descriptor found
USB_CDC_NORMAL_RUNNING Device is running and available for data transfers.
USB_CDC_OBEX OBEX
USB_CDC_PHASE_ERROR Command had a phase error at the device.
USB_CDC_REPORT_DESCRIPTOR_BAD Report Descriptor for not proper
USB_CDC_RESET_ERROR An error occurred while resetting the device.
USB_CDC_RESETTING_DEVICE Device is being reset.
USB_CDC_SEND_BREAK Sends special carrier modulation used to specify [V24] style

break.
USB_CDC_SEND_ENCAPSULATED_COMMAND Issues a command in the format of the supported control

protocol.
USB_CDC_SET_COMM_FEATURE Controls the settings for a particular communications

feature.
USB_CDC_SET_CONTROL_LINE_STATE V24] signal used to tell the DCE device the DTE device is

now present.
USB_CDC_SET_LINE_CODING Configures DTE rate, stop-bits, parity, and

number-of-character bits.
USB_CDC_TELEPHONE_CONTROL_MODEL Telephone Control Model
USB_CDC_V25TER Common AT commands ("Hayes(TM)")

1.4 Library Interface MLA - USB Library Help Embedded Host API

163

USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Wireless Handset Control Model

Module

CDC Client Driver

Structures

Name Description
_COMM_INTERFACE_DETAILS This structure stores communication interface details of the attached

CDC device
_DATA_INTERFACE_DETAILS This structure stores data interface details of the attached CDC device
_USB_CDC_ACM_FN_DSC Abstract Control Management Functional Descriptor
_USB_CDC_CALL_MGT_FN_DSC Call Management Functional Descriptor
_USB_CDC_DEVICE_INFO This structure is used to hold information about an attached CDC device
_USB_CDC_HEADER_FN_DSC Header Functional Descriptor
_USB_CDC_UNION_FN_DSC Union Functional Descriptor
COMM_INTERFACE_DETAILS This structure stores communication interface details of the attached

CDC device
DATA_INTERFACE_DETAILS This structure stores data interface details of the attached CDC device
USB_CDC_ACM_FN_DSC Abstract Control Management Functional Descriptor
USB_CDC_CALL_MGT_FN_DSC Call Management Functional Descriptor
USB_CDC_DEVICE_INFO This structure is used to hold information about an attached CDC device
USB_CDC_HEADER_FN_DSC Header Functional Descriptor
USB_CDC_UNION_FN_DSC Union Functional Descriptor

Unions

Name Description
_USB_CDC_CONTROL_SIGNAL_BITMAP This is type USB_CDC_CONTROL_SIGNAL_BITMAP.
_USB_CDC_LINE_CODING This is type USB_CDC_LINE_CODING.
USB_CDC_CONTROL_SIGNAL_BITMAP This is type USB_CDC_CONTROL_SIGNAL_BITMAP.
USB_CDC_LINE_CODING This is type USB_CDC_LINE_CODING.

Description

This is file usb_host_cdc.h.

1.4.2.2.4 usb_host_cdc_interface.h
Functions

Name Description
USBHostCDC_Api_ACM_Request This function can be used by application code to dynamically access

ACM specific requests. This function should be used only if apllication
intends to modify for example the Baudrate from previouly configured
rate. Data transmitted/received to/from device is a array of bytes.
Application must take extra care of understanding the data format
before using this function.

USBHostCDC_Api_Get_IN_Data This function is called by application to receive Input data over DATA
interface. This function setsup the request to receive data from the
device.

USBHostCDC_Api_Send_OUT_Data This function is called by application to transmit out data over DATA
interface. This function setsup the request to transmit data to the device.

USBHostCDC_ApiDeviceDetect This function determines if a CDC device is attached and ready to use.
USBHostCDC_ApiTransferIsComplete This function is called by application to poll for transfer status. This

function returns true in the transfer is over. To check whether the
transfer was successfull or not , application must check the error code
returned by reference.

1.4 Library Interface MLA - USB Library Help Embedded Host API

164

Module

CDC Client Driver

Description

This is file usb_host_cdc_interface.h.

1.4.2.3 HID Client Driver
This client driver provides USB Embedded Host support for HID devices.

Files

Name Description
usb_host_hid.h This is file usb_host_hid.h.
usb_host_hid_parser.h This is file usb_host_hid_parser.h.

Description

This client driver provides USB Embedded Host support for HID devices. Common HID devices include mice, keyboards,
and bar code scanners. Many other USB peripherals also use the HID class to transfer data, since it provides a simple,
flexible interface and does not require a custom Windows driver when used with a PC.

See AN1144 - USB HID Class on an Embedded Host and AN1212 - Using USB Keyboard with an Embedded Host for more
information.

1.4.2.3.1 Functions
Functions

Name Description
USBHostHID_ApiFindBit This function is used to locate a specific button or indicator. Once

the report descriptor is parsed by the HID layer without any error,
data from the report descriptor is stored in pre defined dat
structures. This function traverses these data structure and exract
data required by application

USBHostHID_ApiFindValue Find a specific Usage Value. Once the report descriptor is parsed
by the HID layer without any error, data from the report descriptor is
stored in pre defined dat structures. This function traverses these
data structure and exract data required by application.

USBHostHID_ApiGetCurrentInterfaceNum This function reurns the interface number of the cuurent report
descriptor parsed. This function must be called to fill data interface
detail data structure and passed as parameter when requesinf for
report transfers.

USBHostHID_ApiImportData This function can be used by application to extract data from the
input reports. On receiving the input report from the device
application can call the function with required inputs
'HID_DATA_DETAILS'.

USBHostHID_HasUsage This function is used to locate the usage in a report descriptor.
Function will look into the data structures created by the HID parser
and return the appropriate location.

USBHostHIDDeviceDetect This function determines if a HID device is attached and ready to
use.

USBHostHIDDeviceStatus
USBHostHIDEventHandler This function is the event handler for this client driver.
USBHostHIDInitialize This function is the initialization routine for this client driver.
USBHostHIDResetDevice This function starts a HID reset.

1.4 Library Interface MLA - USB Library Help Embedded Host API

165

USBHostHIDResetDeviceWithWait This function resets a HID device, and waits until the reset is
complete.

USBHostHIDTasks This function performs the maintenance tasks required by HID class
USBHostHIDTerminateTransfer This function terminates a transfer that is in progress.
USBHostHIDTransfer This function starts a HID transfer.
USBHostHIDTransferIsComplete This function indicates whether or not the last transfer is complete.

Macros

Name Description
USBHostHID_ApiDeviceDetect This macro provides legacy support for an older API function.
USBHostHID_ApiGetReport This macro provides legacy support for an older API function.
USBHostHID_ApiResetDevice This macro provides legacy support for an older API function.
USBHostHID_ApiSendReport This macro provides legacy support for an older API function.
USBHostHID_ApiTransferIsComplete This macro provides legacy support for an older API function.
USBHostHID_GetCurrentReportInfo This function returns a pointer to the current report info structure.
USBHostHID_GetItemListPointers This function returns a pointer to list of item pointers stored in a structure.
USBHostHIDRead This function starts a Get report transfer reuest from the device, utilizing

the function USBHostHIDTransfer();
USBHostHIDWrite This function starts a Set report transfer request to the device, utilizing

the function USBHostHIDTransfer();

Module

HID Client Driver

Description

1.4.2.3.1.1 USBHostHID_ApiFindBit Function
File

usb_host_hid.h

Syntax

bool USBHostHID_ApiFindBit(uint16_t usagePage, uint16_t usage, HIDReportTypeEnum type,
uint8_t* Report_ID, uint8_t* Report_Length, uint8_t* Start_Bit);

Description

This function is used to locate a specific button or indicator. Once the report descriptor is parsed by the HID layer without
any error, data from the report descriptor is stored in pre defined dat structures. This function traverses these data structure
and exract data required by application

Remarks

Application event handler with event 'EVENT_HID_RPT_DESC_PARSED' is called. Application is suppose to fill in data
details in structure 'HID_DATA_DETAILS'. This function can be used to the get the details of the required usages.

Preconditions

None

Parameters

Parameters Description
uint16_t usagePage usage page supported by application
uint16_t usage usage supported by application
HIDReportTypeEnum type report type Input/Output for the particular usage
uint8_t* Report_ID returns the report ID of the required usage

1.4 Library Interface MLA - USB Library Help Embedded Host API

166

uint8_t* Report_Length returns the report length of the required usage
uint8_t* Start_Bit returns the start bit of the usage in a particular report

Return Values

Return Values Description
TRUE If the required usage is located in the report descriptor
FALSE If the application required usage is not supported by the

device(i.e report descriptor).

Function

bool USBHostHID_ApiFindBit(uint16_t usagePage,uint16_t usage, HIDReportTypeEnum type,

uint8_t* Report_ID, uint8_t* Report_Length, uint8_t* Start_Bit)

1.4.2.3.1.2 USBHostHID_ApiFindValue Function
File

usb_host_hid.h

Syntax

bool USBHostHID_ApiFindValue(uint16_t usagePage, uint16_t usage, HIDReportTypeEnum type,
uint8_t* Report_ID, uint8_t* Report_Length, uint8_t* Start_Bit, uint8_t* Bit_Length);

Description

Find a specific Usage Value. Once the report descriptor is parsed by the HID layer without any error, data from the report
descriptor is stored in pre defined dat structures. This function traverses these data structure and exract data required by
application.

Remarks

Application event handler with event 'EVENT_HID_RPT_DESC_PARSED' is called. Application is suppose to fill in data
details structure 'HID_DATA_DETAILS' This function can be used to the get the details of the required usages.

Preconditions

None

Parameters

Parameters Description
uint16_t usagePage usage page supported by application
uint16_t usage usage supported by application
HIDReportTypeEnum type report type Input/Output for the particular usage
uint8_t* Report_ID returns the report ID of the required usage
uint8_t* Report_Length returns the report length of the required usage
uint8_t* Start_Bit returns the start bit of the usage in a particular report
uint8_t* Bit_Length returns size of requested usage type data in bits

Return Values

Return Values Description
TRUE If the required usage is located in the report descriptor
FALSE If the application required usage is not supported by the

device(i.e report descriptor).

Function

bool USBHostHID_ApiFindValue(uint16_t usagePage,uint16_t usage,

HIDReportTypeEnum type,uint8_t* Report_ID,uint8_t* Report_Length,uint8_t*

Start_Bit, uint8_t* Bit_Length)

1.4 Library Interface MLA - USB Library Help Embedded Host API

167

1.4.2.3.1.3 USBHostHID_ApiGetCurrentInterfaceNum Function
File

usb_host_hid.h

Syntax

uint8_t USBHostHID_ApiGetCurrentInterfaceNum();

Description

This function reurns the interface number of the cuurent report descriptor parsed. This function must be called to fill data
interface detail data structure and passed as parameter when requesinf for report transfers.

Remarks

None

Preconditions

None

Return Values

Return Values Description
TRUE Transfer is complete, errorCode is valid
FALSE Transfer is not complete, errorCode is not valid

Function

uint8_t USBHostHID_ApiGetCurrentInterfaceNum(void)

1.4.2.3.1.4 USBHostHID_ApiImportData Function
File

usb_host_hid.h

Syntax

bool USBHostHID_ApiImportData(uint8_t * report, uint16_t reportLength, HID_USER_DATA_SIZE *
buffer, HID_DATA_DETAILS * pDataDetails);

Description

This function can be used by application to extract data from the input reports. On receiving the input report from the device
application can call the function with required inputs 'HID_DATA_DETAILS'.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t *report Input report received from device
uint16_t reportLength Length of input report report
HID_USER_DATA_SIZE *buffer Buffer into which data needs to be populated
HID_DATA_DETAILS *pDataDetails data details extracted from report descriptor

Return Values

Return Values Description
TRUE If the required data is retrieved from the report
FALSE If required data is not found.

1.4 Library Interface MLA - USB Library Help Embedded Host API

168

Function

bool USBHostHID_ApiImportData(uint8_t *report, uint16_t reportLength,

HID_USER_DATA_SIZE *buffer,HID_DATA_DETAILS *pDataDetails)

1.4.2.3.1.5 USBHostHID_HasUsage Function
File

usb_host_hid_parser.h

Syntax

bool USBHostHID_HasUsage(HID_REPORTITEM * reportItem, uint16_t usagePage, uint16_t usage,
uint16_t * pindex, uint8_t* count);

Description

This function is used to locate the usage in a report descriptor. Function will look into the data structures created by the HID
parser and return the appropriate location.

Remarks

None

Preconditions

None

Parameters

Parameters Description
HID_REPORTITEM *reportItem Report item index to be searched
uint16_t usagePage Application needs to pass the usagePage as the search

criteria for the usage
uint16_t usage Application needs to pass the usageto be searched
uint16_t *pindex returns index to the usage item requested.
uint8_t* count returns the remaining number of reports

Return Values

Return Values Description
bool FALSE - If requested usage is not found
TRUE if requested usage is found

Function

bool USBHostHID_HasUsage(HID_REPORTITEM *reportItem, uint16_t usagePage,

uint16_t usage, uint16_t *pindex, uint8_t* count)

1.4.2.3.1.6 USBHostHIDDeviceDetect Function
File

usb_host_hid.h

Syntax

bool USBHostHIDDeviceDetect(uint8_t deviceAddress);

Description

This function determines if a HID device is attached and ready to use.

Remarks

This function replaces the USBHostHID_ApiDeviceDetect() function.

1.4 Library Interface MLA - USB Library Help Embedded Host API

169

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Address of the attached device.

Return Values

Return Values Description
TRUE HID present and ready
FALSE HID not present or not ready

Function

bool USBHostHIDDeviceDetect(uint8_t deviceAddress)

1.4.2.3.1.7 USBHostHIDDeviceStatus Function
File

usb_host_hid.h

Syntax

uint8_t USBHostHIDDeviceStatus(uint8_t deviceAddress);

Description

This function determines the status of a HID device.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress address of device to query

Return Values

Return Values Description
USB_HID_DEVICE_NOT_FOUND Illegal device address, or the device is not an HID
USB_HID_INITIALIZING HID is attached and in the process of initializing
USB_PROCESSING_REPORT_DESCRIPTOR HID device is detected and report descriptor is being parsed
USB_HID_NORMAL_RUNNING HID Device is running normal, ready to send and receive

reports
USB_HID_DEVICE_HOLDING Driver has encountered error and could not recover
USB_HID_DEVICE_DETACHED HID detached.

Function

uint8_t USBHostHIDDeviceStatus(uint8_t deviceAddress)

1.4.2.3.1.8 USBHostHIDEventHandler Function
This function is the event handler for this client driver.

File

usb_host_hid.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

170

Syntax

bool USBHostHIDEventHandler(uint8_t address, USB_EVENT event, void * data, uint32_t size);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description
uint8_t address Address of the device
USB_EVENT event Event that has occurred
void *data Pointer to data pertinent to the event
uint32_t size Size of the data

Return Values

Return Values Description
TRUE Event was handled
FALSE Event was not handled

Function

bool USBHostHIDEventHandler(uint8_t address, USB_EVENT event,

void *data, uint32_t size)

1.4.2.3.1.9 USBHostHIDInitialize Function
This function is the initialization routine for this client driver.

File

usb_host_hid.h

Syntax

bool USBHostHIDInitialize(uint8_t address, uint32_t flags, uint8_t clientDriverID);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated.For a HID device we need to look into HID descriptor, interface descriptor and endpoint descriptor.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t address Address of the new device
uint32_t flags Initialization flags
uint8_t clientDriverID Client driver identification for device requests

1.4 Library Interface MLA - USB Library Help Embedded Host API

171

Return Values

Return Values Description
TRUE We can support the device.
FALSE We cannot support the device.

Function

bool USBHostHIDInitialize(uint8_t address, uint32_t flags, uint8_t clientDriverID)

1.4.2.3.1.10 USBHostHIDResetDevice Function
This function starts a HID reset.

File

usb_host_hid.h

Syntax

uint8_t USBHostHIDResetDevice(uint8_t deviceAddress);

Description

This function starts a HID reset. A reset can be issued only if the device is attached and not being initialized.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

Return Values

Return Values Description
USB_SUCCESS Reset started
USB_MSD_DEVICE_NOT_FOUND No device with specified address
USB_MSD_ILLEGAL_REQUEST Device is in an illegal state for reset

Function

uint8_t USBHostHIDResetDevice(uint8_t deviceAddress)

1.4.2.3.1.11 USBHostHIDResetDeviceWithWait Function
File

usb_host_hid.h

Syntax

uint8_t USBHostHIDResetDeviceWithWait(uint8_t deviceAddress);

Description

This function resets a HID device, and waits until the reset is complete.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

172

Parameters

Parameters Description
uint8_t deviceAddress Address of the device to reset.

Return Values

Return Values Description
USB_SUCCESS Reset successful
USB_HID_RESET_ERROR Error while resetting device
Others See return values for USBHostHIDResetDevice() and error

codes that can be returned in the errorCode parameter of
USBHostHIDTransferIsComplete();

Function

bool USBHostHIDResetDeviceWithWait(uint8_t deviceAddress)

1.4.2.3.1.12 USBHostHIDTasks Function
This function performs the maintenance tasks required by HID class

File

usb_host_hid.h

Syntax

void USBHostHIDTasks();

Returns

None

Description

This function performs the maintenance tasks required by the HID class. If transfer events from the host layer are not being
used, then it should be called on a regular basis by the application. If transfer events from the host layer are being used, this
function is compiled out, and does not need to be called.

Remarks

None

Preconditions

USBHostHIDInitialize() has been called.

Function

void USBHostHIDTasks(void)

1.4.2.3.1.13 USBHostHIDTerminateTransfer Function
This function terminates a transfer that is in progress.

File

usb_host_hid.h

Syntax

uint8_t USBHostHIDTerminateTransfer(uint8_t deviceAddress, uint8_t direction, uint8_t
interfaceNum);

Description

This function terminates a transfer that is in progress.

1.4 Library Interface MLA - USB Library Help Embedded Host API

173

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t direction Transfer direction. Valid values are:

• 1 = In (Read)

• 0 = Out (Write)

uint8_t interfaceNum Interface number

Return Values

Return Values Description
USB_SUCCESS Transfer terminated
USB_HID_DEVICE_NOT_FOUND No device with specified address

Function

uint8_t USBHostHIDTerminateTransfer(uint8_t deviceAddress, uint8_t direction, uint8_t interfaceNum)

1.4.2.3.1.14 USBHostHIDTransfer Function
This function starts a HID transfer.

File

usb_host_hid.h

Syntax

uint8_t USBHostHIDTransfer(uint8_t deviceAddress, uint8_t direction, uint8_t interfaceNum,
uint16_t reportid, uint16_t size, uint8_t * data);

Description

This function starts a HID transfer. A read/write wrapper is provided in application interface file to access this function.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t direction 1=read, 0=write
uint8_t interfaceNum Interface number
uint8_t reportid Report ID of the requested report
uint8_t size Byte size of the data buffer
uint8_t *data Pointer to the data buffer

Return Values

Return Values Description
USB_SUCCESS Request started successfully

1.4 Library Interface MLA - USB Library Help Embedded Host API

174

USB_HID_DEVICE_NOT_FOUND No device with specified address
USB_HID_DEVICE_BUSY Device not in proper state for performing a transfer
Others Return values from USBHostIssueDeviceRequest(),

USBHostRead(), and USBHostWrite()

Function

USBHostHIDTransfer(uint8_t deviceAddress, uint8_t direction, uint8_t interfaceNum,

uint8_t reportid, uint8_t size, uint8_t *data)

1.4.2.3.1.15 USBHostHIDTransferIsComplete Function
This function indicates whether or not the last transfer is complete.

File

usb_host_hid.h

Syntax

bool USBHostHIDTransferIsComplete(uint8_t deviceAddress, uint8_t * errorCode, uint8_t *
byteCount);

Description

This function indicates whether or not the last transfer is complete. If the functions returns TRUE, the returned byte count
and error code are valid. Since only one transfer can be performed at once and only one endpoint can be used, we only
need to know the device address.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t *errorCode Error code from last transfer
uint32_t *byteCount Number of bytes transferred

Return Values

Return Values Description
TRUE Transfer is complete, errorCode is valid
FALSE Transfer is not complete, errorCode is not valid

Function

bool USBHostHIDTransferIsComplete(uint8_t deviceAddress,

uint8_t *errorCode, uint32_t *byteCount)

1.4.2.3.1.16 USBHostHID_ApiDeviceDetect Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_ApiDeviceDetect USBHostHIDDeviceDetect(1)

Description

This macro provides legacy support for an older API function.

1.4 Library Interface MLA - USB Library Help Embedded Host API

175

1.4.2.3.1.17 USBHostHID_ApiGetReport Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_ApiGetReport(r, i, s, d) USBHostHIDRead(1, r, i, s, d)

Description

This macro provides legacy support for an older API function.

1.4.2.3.1.18 USBHostHID_ApiResetDevice Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_ApiResetDevice USBHostHIDResetDeviceWithWait(1)

Description

This macro provides legacy support for an older API function.

1.4.2.3.1.19 USBHostHID_ApiSendReport Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_ApiSendReport(r, i, s, d) USBHostHIDWrite(1, r, i, s, d)

Description

This macro provides legacy support for an older API function.

1.4.2.3.1.20 USBHostHID_ApiTransferIsComplete Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_ApiTransferIsComplete(e, c) USBHostHIDTransferIsComplete(1, e, c)

Description

This macro provides legacy support for an older API function.

1.4.2.3.1.21 USBHostHID_GetCurrentReportInfo Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_GetCurrentReportInfo (&deviceRptInfo)

Returns

uint8_t * - Pointer to the report Info structure.

Description

This function returns a pointer to the current report info structure.

1.4 Library Interface MLA - USB Library Help Embedded Host API

176

Remarks

None

Preconditions

None

Function

uint8_t* USBHostHID_GetCurrentReportInfo(void)

1.4.2.3.1.22 USBHostHID_GetItemListPointers Macro
File

usb_host_hid.h

Syntax

#define USBHostHID_GetItemListPointers (&itemListPtrs)

Returns

uint8_t * - Pointer to list of item pointers structure.

Description

This function returns a pointer to list of item pointers stored in a structure.

Remarks

None

Preconditions

None

Function

uint8_t* USBHostHID_GetItemListPointers()

1.4.2.3.1.23 USBHostHIDRead Macro
This function starts a Get report transfer reuest from the device, utilizing the function USBHostHIDTransfer();

File

usb_host_hid.h

Syntax

#define USBHostHIDRead(deviceAddress,reportid,interface,size,data) \
 USBHostHIDTransfer(deviceAddress,1,interface,reportid,size,data)

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t reportid Report ID of the requested report
uint8_t interface Interface number
uint8_t size Byte size of the data buffer
uint8_t *data Pointer to the data buffer

1.4 Library Interface MLA - USB Library Help Embedded Host API

177

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_HID_DEVICE_NOT_FOUND No device with specified address
USB_HID_DEVICE_BUSY Device not in proper state for performing a transfer
Others Return values from USBHostRead()

Function

uint8_t USBHostHIDRead(uint8_t deviceAddress,uint8_t reportid, uint8_t interface,

uint8_t size, uint8_t *data)

1.4.2.3.1.24 USBHostHIDWrite Macro
This function starts a Set report transfer request to the device, utilizing the function USBHostHIDTransfer();

File

usb_host_hid.h

Syntax

#define USBHostHIDWrite(address,reportid,interface,size,data) \
 USBHostHIDTransfer(address,0,interface,reportid,size,data)

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t reportid Report ID of the requested report
uint8_t interface Interface number
uint8_t size Byte size of the data buffer
uint8_t *data Pointer to the data buffer

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_HID_DEVICE_NOT_FOUND No device with specified address
USB_HID_DEVICE_BUSY Device not in proper state for performing a transfer
Others Return values from USBHostIssueDeviceRequest(), and

USBHostWrite()

Function

uint8_t USBHostHIDWrite(uint8_t deviceAddress,uint8_t reportid, uint8_t interface,

uint8_t size, uint8_t *data)

1.4.2.3.2 Data Types and Constants
Enumerations

Name Description
HIDReportTypeEnum This is type HIDReportTypeEnum.

1.4 Library Interface MLA - USB Library Help Embedded Host API

178

USB_HID_RPT_DESC_ERROR HID parser error codes
This enumerates the error encountered during the parsing of report
descriptor. In case of any error parsing is sttopped and the error is
flagged. Device is not attched successfully.

Macros

Name Description
DEVICE_CLASS_HID HID Interface Class Code
DSC_HID HID Descriptor Code
DSC_PHY Pysical Descriptor Code
EVENT_HID_ATTACH A HID device has attached. The returned data pointer points to a

USB_HID_DEVICE_ID structure.
EVENT_HID_BAD_REPORT_DESCRIPTOR There was a problem parsing the report descriptor of the attached device.

Communication with the device is not allowed, and the device should be
detached.

EVENT_HID_DETACH A HID device has detached. The returned data pointer points to a byte
with the previous address of the detached device.

EVENT_HID_NONE No event occured (NULL event)
EVENT_HID_OFFSET If the application has not defined an offset for HID events, set it to 0.
EVENT_HID_READ_DONE define EVENT_HID_TRANSFER EVENT_HID_BASE +

EVENT_HID_OFFSET + 3 // Unused - value retained for legacy. A HID
Read transfer has completed. The returned data pointer points to a
HID_TRANSFER_DATA structure, with information about the transfer.

EVENT_HID_RESET HID reset complete. The returned data pointer is NULL.
EVENT_HID_RESET_ERROR An error occurred while trying to do a HID reset. The returned data

pointer is NULL.
EVENT_HID_RPT_DESC_PARSED A Report Descriptor has been parsed. The returned data pointer is NULL.

The application must collect details, or simply return TRUE if the
application is already aware of the data format.

EVENT_HID_WRITE_DONE A HID Write transfer has completed. The returned data pointer points to a
HID_TRANSFER_DATA structure, with information about the transfer.

HOST_DSC_RPT Report Descriptor Code
USB_HID_CLASS_ERROR
USB_HID_COMMAND_FAILED Command failed at the device.
USB_HID_COMMAND_PASSED Command was successful.
USB_HID_DEVICE_BUSY A transfer is currently in progress.
USB_HID_DEVICE_DETACHED Device is detached.
USB_HID_DEVICE_HOLDING Device is holding due to error
USB_HID_DEVICE_NOT_FOUND Device with the specified address is not available.
USB_HID_ILLEGAL_REQUEST Cannot perform requested operation.
USB_HID_INITIALIZING Device is initializing.
USB_HID_INTERFACE_ERROR The interface layer cannot support the device.
USB_HID_NO_REPORT_DESCRIPTOR No report descriptor found
USB_HID_NORMAL_RUNNING Device is running and available for data transfers.
USB_HID_PHASE_ERROR Command had a phase error at the device.
USB_HID_REPORT_DESCRIPTOR_BAD Report Descriptor for not proper
USB_HID_RESET_ERROR An error occurred while resetting the device.
USB_HID_RESETTING_DEVICE Device is being reset.
USB_PROCESSING_REPORT_DESCRIPTOR Parser is processing report descriptor.

Module

HID Client Driver

1.4 Library Interface MLA - USB Library Help Embedded Host API

179

Structures

Name Description
_HID_COLLECTION HID Collection Details

This structure contains information about each collection encountered in
the report descriptor.

_HID_DATA_DETAILS HID Data Details
This structure defines the objects used by the application to access
required report. Application must use parser interface functions to fill
these details. e.g. USBHostHID_ApiFindValue

_HID_GLOBALS HID Global Item Information
This structure contains information about each Global Item of the report
descriptor.

_HID_ITEM_INFO HID Item Information
This structure contains information about each Item of the report
descriptor.

_HID_REPORT HID Report details
This structure contains information about each report exchanged with the
device.

_HID_REPORTITEM HID Report Details
This structure contains information about each Report encountered in the
report descriptor.

_HID_STRINGITEM HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

_HID_TRANSFER_DATA HID Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion (EVENT_HID_READ_DONE or
EVENT_HID_WRITE_DONE).

_HID_USAGEITEM HID Report Details
This structure contains information about each Usage Item encountered
in the report descriptor.

HID_COLLECTION HID Collection Details
This structure contains information about each collection encountered in
the report descriptor.

HID_DATA_DETAILS HID Data Details
This structure defines the objects used by the application to access
required report. Application must use parser interface functions to fill
these details. e.g. USBHostHID_ApiFindValue

HID_DESIGITEM HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

HID_GLOBALS HID Global Item Information
This structure contains information about each Global Item of the report
descriptor.

HID_ITEM_INFO HID Item Information
This structure contains information about each Item of the report
descriptor.

HID_REPORT HID Report details
This structure contains information about each report exchanged with the
device.

HID_REPORTITEM HID Report Details
This structure contains information about each Report encountered in the
report descriptor.

1.4 Library Interface MLA - USB Library Help Embedded Host API

180

HID_STRINGITEM HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

HID_TRANSFER_DATA HID Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion (EVENT_HID_READ_DONE or
EVENT_HID_WRITE_DONE).

HID_USAGEITEM HID Report Details
This structure contains information about each Usage Item encountered
in the report descriptor.

_USB_HID_DEVICE_ID HID Device ID Information
This structure contains identification information about an attached
device.

_USB_HID_DEVICE_RPT_INFO Report Descriptor Information
This structure contains top level information of the report descriptor. This
information is important and is used to understand the information during
th ecourse of parsing. This structure also stores temporary data needed
during parsing the report descriptor. All of this information may not be of
much inportance to the application.

USB_HID_DEVICE_ID HID Device ID Information
This structure contains identification information about an attached
device.

_USB_HID_ITEM_LIST List of Items
This structure contains array of pointers to all the Items in the report
descriptor. HID parser will populate the lists while parsing the report
descriptor. This data is used by interface functions provided in file
usb_host_hid_interface.c to retrive data from the report received from the
device. Application can also access these details to retreive the intended
information incase provided interface function fail to do so.

USB_HID_DEVICE_RPT_INFO Report Descriptor Information
This structure contains top level information of the report descriptor. This
information is important and is used to understand the information during
th ecourse of parsing. This structure also stores temporary data needed
during parsing the report descriptor. All of this information may not be of
much inportance to the application.

USB_HID_ITEM_LIST List of Items
This structure contains array of pointers to all the Items in the report
descriptor. HID parser will populate the lists while parsing the report
descriptor. This data is used by interface functions provided in file
usb_host_hid_interface.c to retrive data from the report received from the
device. Application can also access these details to retreive the intended
information incase provided interface function fail to do so.

Types

Name Description
HID_USER_DATA_SIZE HID User Data Size

This defines the data type required to hold the maximum field size data.
Maximum size of data field within a report

Variables

Name Description
deviceRptInfo
itemListPtrs This is variable itemListPtrs.

Description

1.4 Library Interface MLA - USB Library Help Embedded Host API

181

1.4.2.3.2.1 HID_COLLECTION Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_COLLECTION {
 uint32_t data;
 uint16_t usagePage;
 uint8_t firstUsageItem;
 uint8_t usageItems;
 uint8_t firstReportItem;
 uint8_t reportItems;
 uint8_t parent;
 uint8_t firstChild;
 uint8_t nextSibling;
} HID_COLLECTION;

Members

Members Description
uint32_t data; Collection raw data
uint16_t usagePage; Usage page associated with current level of collection
uint8_t firstUsageItem; Index of First Usage Item in the current collection
uint8_t usageItems; Number of Usage Items in the current collection
uint8_t firstReportItem; Index of First report Item in the current collection
uint8_t reportItems; Number of report Items in the current collection
uint8_t parent; Index to Parent collection
uint8_t firstChild; Index to next child collection in the report descriptor
uint8_t nextSibling; Index to next child collection in the report descriptor

Description

HID Collection Details

This structure contains information about each collection encountered in the report descriptor.

1.4.2.3.2.2 HID_DATA_DETAILS Structure
File

usb_host_hid.h

Syntax

typedef struct _HID_DATA_DETAILS {
 uint16_t reportLength;
 uint16_t reportID;
 uint8_t bitOffset;
 uint8_t bitLength;
 uint8_t count;
 uint8_t signExtend;
 uint8_t interfaceNum;
} HID_DATA_DETAILS;

Members

Members Description
uint16_t reportLength; reportLength - the expected length of the parent report.
uint16_t reportID; reportID - report ID - the first byte of the parent report.
uint8_t bitOffset; BitOffset - bit offset within the report.
uint8_t bitLength; bitlength - length of the data in bits.
uint8_t count; count - what's left of the message after this data.

1.4 Library Interface MLA - USB Library Help Embedded Host API

182

uint8_t signExtend; extend - sign extend the data.
uint8_t interfaceNum; interfaceNum - informs HID layer about interface number.

Description

HID Data Details

This structure defines the objects used by the application to access required report. Application must use parser interface
functions to fill these details. e.g. USBHostHID_ApiFindValue

1.4.2.3.2.3 HID_DESIGITEM Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_STRINGITEM {
 bool isRange;
 uint16_t index;
 uint16_t minimum;
 uint16_t maximum;
} HID_STRINGITEM, HID_DESIGITEM;

Members

Members Description
bool isRange; If range of String Item is valid
uint16_t index; String index for a String descriptor; allows a string to be

associated with a particular item or control
uint16_t minimum; Specifies the first string index when assigning a group of

sequential strings to controls in an array or bitmap
uint16_t maximum; Specifies the last string index when assigning a group of

sequential strings to controls in an array or bitmap

Description

HID String Item Details

This structure contains information about each Report encountered in the report descriptor.

1.4.2.3.2.4 HID_GLOBALS Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_GLOBALS {
 uint16_t usagePage;
 int32_t logicalMinimum;
 int32_t logicalMaximum;
 int32_t physicalMinimum;
 int32_t physicalMaximum;
 int32_t unitExponent;
 int32_t unit;
 uint16_t reportIndex;
 uint8_t reportID;
 uint8_t reportsize;
 uint8_t reportCount;
} HID_GLOBALS;

Members

Members Description
uint16_t usagePage; Specifies current Usage Page

1.4 Library Interface MLA - USB Library Help Embedded Host API

183

int32_t logicalMinimum; This is the minimum value that a variable or array item will
report

int32_t logicalMaximum; This is the maximum value that a variable or array item will
report

int32_t physicalMinimum; Minimum value for the physical extent of a variable item
int32_t physicalMaximum; Maximum value for the physical extent of a variable item
int32_t unitExponent; Value of the unit exponent in base 10
int32_t unit; Unit values
uint16_t reportIndex; Conter to keep track of report being processed in the parser
uint8_t reportID; Report ID. All the reports are preceded by a single byte

report ID
uint8_t reportsize; Size of current report in bytes
uint8_t reportCount; This field determines number of fields in the report

Description

HID Global Item Information

This structure contains information about each Global Item of the report descriptor.

1.4.2.3.2.5 HID_ITEM_INFO Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_ITEM_INFO {
 union {
 struct {
 uint8_t ItemSize : 2;
 uint8_t ItemType : 2;
 uint8_t ItemTag : 4;
 }
 uint8_t val;
 } ItemDetails;
 union {
 int32_t sItemData;
 uint32_t uItemData;
 uint8_t bItemData[4];
 } Data;
} HID_ITEM_INFO;

Members

Members Description
uint8_t ItemSize : 2; Numeric expression specifying size of data
uint8_t ItemType : 2; This field identifies type of item(Main, Global or Local)
uint8_t ItemTag : 4; This field specifies the function of the item
uint8_t val; to access the data in byte format
int32_t sItemData; Item Data is stored in signed format
uint32_t uItemData; Item Data is stored in unsigned format

Description

HID Item Information

This structure contains information about each Item of the report descriptor.

1.4 Library Interface MLA - USB Library Help Embedded Host API

184

1.4.2.3.2.6 HID_REPORT Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_REPORT {
 uint16_t reportID;
 uint16_t inputBits;
 uint16_t outputBits;
 uint16_t featureBits;
} HID_REPORT;

Members

Members Description
uint16_t reportID; Report ID of the associated report
uint16_t inputBits; If input report then length of report in bits
uint16_t outputBits; If output report then length of report in bits
uint16_t featureBits; If feature report then length of report in bits

Description

HID Report details

This structure contains information about each report exchanged with the device.

1.4.2.3.2.7 HID_REPORTITEM Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_REPORTITEM {
 HIDReportTypeEnum reportType;
 HID_GLOBALS globals;
 uint8_t startBit;
 uint8_t parent;
 uint32_t dataModes;
 uint8_t firstUsageItem;
 uint8_t usageItems;
 uint8_t firstStringItem;
 uint8_t stringItems;
 uint8_t firstDesignatorItem;
 uint8_t designatorItems;
} HID_REPORTITEM;

Members

Members Description
HIDReportTypeEnum reportType; Type of Report Input/Output/Feature
HID_GLOBALS globals; Stores all the global items associated with the current report
uint8_t startBit; Starting Bit Position of the report
uint8_t parent; Index of parent collection
uint32_t dataModes; this tells the data mode is array or not
uint8_t firstUsageItem; Index to first usage item related to the report
uint8_t usageItems; Number of usage items in the current report
uint8_t firstStringItem; Index to first srting item in the list
uint8_t stringItems; Number of string items in the current report
uint8_t firstDesignatorItem; Index to first designator item
uint8_t designatorItems; Number of designator items in the current report

1.4 Library Interface MLA - USB Library Help Embedded Host API

185

Description

HID Report Details

This structure contains information about each Report encountered in the report descriptor.

1.4.2.3.2.8 HID_STRINGITEM Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_STRINGITEM {
 bool isRange;
 uint16_t index;
 uint16_t minimum;
 uint16_t maximum;
} HID_STRINGITEM, HID_DESIGITEM;

Members

Members Description
bool isRange; If range of String Item is valid
uint16_t index; String index for a String descriptor; allows a string to be

associated with a particular item or control
uint16_t minimum; Specifies the first string index when assigning a group of

sequential strings to controls in an array or bitmap
uint16_t maximum; Specifies the last string index when assigning a group of

sequential strings to controls in an array or bitmap

Description

HID String Item Details

This structure contains information about each Report encountered in the report descriptor.

1.4.2.3.2.9 HID_TRANSFER_DATA Structure
File

usb_host_hid.h

Syntax

typedef struct _HID_TRANSFER_DATA {
 uint32_t dataCount;
 uint8_t bErrorCode;
} HID_TRANSFER_DATA;

Members

Members Description
uint32_t dataCount; Count of bytes transferred.
uint8_t bErrorCode; Transfer error code.

Description

HID Transfer Information

This structure is used when the event handler is used to notify the upper layer of transfer completion
(EVENT_HID_READ_DONE or EVENT_HID_WRITE_DONE).

1.4 Library Interface MLA - USB Library Help Embedded Host API

186

1.4.2.3.2.10 HID_USAGEITEM Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _HID_USAGEITEM {
 bool isRange;
 uint16_t usagePage;
 uint16_t usage;
 uint16_t usageMinimum;
 uint16_t usageMaximum;
} HID_USAGEITEM;

Members

Members Description
bool isRange; True if Usage item has a valid MAX and MIN range
uint16_t usagePage; Usage page ID asscociated with the Item
uint16_t usage; Usage ID asscociated with the Item
uint16_t usageMinimum; Defines the starting usage associated with an array or bitmap
uint16_t usageMaximum; Defines the ending usage associated with an array or bitmap

Description

HID Report Details

This structure contains information about each Usage Item encountered in the report descriptor.

1.4.2.3.2.11 HID_USER_DATA_SIZE Type
File

usb_host_hid.h

Syntax

typedef unsigned char HID_USER_DATA_SIZE;

Description

HID User Data Size

This defines the data type required to hold the maximum field size data.

Maximum size of data field within a report

1.4.2.3.2.12 HIDReportTypeEnum Enumeration
File

usb_host_hid_parser.h

Syntax

typedef enum {
 hidReportInput,
 hidReportOutput,
 hidReportFeature,
 hidReportUnknown
} HIDReportTypeEnum;

Description

This is type HIDReportTypeEnum.

1.4 Library Interface MLA - USB Library Help Embedded Host API

187

1.4.2.3.2.13 USB_HID_DEVICE_ID Structure
File

usb_host_hid.h

Syntax

typedef struct _USB_HID_DEVICE_ID {
 uint16_t vid;
 uint16_t pid;
 uint8_t deviceAddress;
 uint8_t clientDriverID;
} USB_HID_DEVICE_ID;

Members

Members Description
uint16_t vid; Vendor ID of the device
uint16_t pid; Product ID of the device
uint8_t deviceAddress; Address of the device on the USB
uint8_t clientDriverID; Client driver ID for device requests

Description

HID Device ID Information

This structure contains identification information about an attached device.

1.4.2.3.2.14 USB_HID_DEVICE_RPT_INFO Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _USB_HID_DEVICE_RPT_INFO {
 uint16_t reportPollingRate;
 uint8_t interfaceNumber;
 bool haveDesignatorMax;
 bool haveDesignatorMin;
 bool haveStringMax;
 bool haveStringMin;
 bool haveUsageMax;
 bool haveUsageMin;
 uint16_t designatorMaximum;
 uint16_t designatorMinimum;
 uint16_t designatorRanges;
 uint16_t designators;
 uint16_t rangeUsagePage;
 uint16_t stringMaximum;
 uint16_t stringMinimum;
 uint16_t stringRanges;
 uint16_t usageMaximum;
 uint16_t usageMinimum;
 uint16_t usageRanges;
 uint8_t collectionNesting;
 uint8_t collections;
 uint8_t designatorItems;
 uint8_t firstUsageItem;
 uint8_t firstDesignatorItem;
 uint8_t firstStringItem;
 uint8_t globalsNesting;
 uint8_t maxCollectionNesting;
 uint8_t maxGlobalsNesting;
 uint8_t parent;
 uint8_t reportItems;
 uint8_t reports;
 uint8_t sibling;

1.4 Library Interface MLA - USB Library Help Embedded Host API

188

 uint8_t stringItems;
 uint8_t strings;
 uint8_t usageItems;
 uint8_t usages;
 HID_GLOBALS globals;
} USB_HID_DEVICE_RPT_INFO;

Members

Members Description
uint16_t reportPollingRate; This stores the pollrate for the input report. Application can

use this to decide the rate of transfer
uint8_t interfaceNumber; This stores the interface number for the current report

descriptor
bool haveDesignatorMax; True if report descriptor has a valid Designator Max
bool haveDesignatorMin; True if report descriptor has a valid Designator Min
bool haveStringMax; True if report descriptor has a valid String Max
bool haveStringMin; True if report descriptor has a valid String Min
bool haveUsageMax; True if report descriptor has a valid Usage Max
bool haveUsageMin; True if report descriptor has a valid Usage Min
uint16_t designatorMaximum; Last designator max value
uint16_t designatorMinimum; Last designator min value
uint16_t designatorRanges; Last designator range
uint16_t designators; This tells toatal number of designator items
uint16_t rangeUsagePage; current usage page during parsing
uint16_t stringMaximum; current string maximum
uint16_t stringMinimum; current string minimum
uint16_t stringRanges; current string ranges
uint16_t usageMaximum; current usage maximum
uint16_t usageMinimum; current usage minimum
uint16_t usageRanges; current usage ranges
uint8_t collectionNesting; this number tells depth of collection nesting
uint8_t collections; total number of collections
uint8_t designatorItems; total number of designator items
uint8_t firstUsageItem; index of first usage item for the current collection
uint8_t firstDesignatorItem; index of first designator item for the current collection
uint8_t firstStringItem; index of first string item for the current collection
uint8_t globalsNesting; On encountering every PUSH item , this is incremented ,

keep track of current depth of Globals
uint8_t maxCollectionNesting; Maximum depth of collections
uint8_t maxGlobalsNesting; Maximum depth of Globals
uint8_t parent; Parent collection
uint8_t reportItems; total number of report items
uint8_t reports; total number of reports
uint8_t sibling; current sibling collection
uint8_t stringItems; total number of string items , used to index the array of

strings
uint8_t strings; total sumber of strings
uint8_t usageItems; total number of usage items , used to index the array of

usage
uint8_t usages; total sumber of usages
HID_GLOBALS globals; holds cuurent globals items

1.4 Library Interface MLA - USB Library Help Embedded Host API

189

Description

Report Descriptor Information

This structure contains top level information of the report descriptor. This information is important and is used to understand
the information during th ecourse of parsing. This structure also stores temporary data needed during parsing the report
descriptor. All of this information may not be of much inportance to the application.

1.4.2.3.2.15 USB_HID_ITEM_LIST Structure
File

usb_host_hid_parser.h

Syntax

typedef struct _USB_HID_ITEM_LIST {
 HID_COLLECTION * collectionList;
 HID_DESIGITEM * designatorItemList;
 HID_GLOBALS * globalsStack;
 HID_REPORTITEM * reportItemList;
 HID_REPORT * reportList;
 HID_STRINGITEM * stringItemList;
 HID_USAGEITEM * usageItemList;
 uint8_t * collectionStack;
} USB_HID_ITEM_LIST;

Members

Members Description
HID_COLLECTION * collectionList; List of collections, see HID_COLLECTION for details in the

structure
HID_DESIGITEM * designatorItemList; List of designator Items, see HID_DESIGITEM for details in

the structure
HID_GLOBALS * globalsStack; List of global Items, see HID_GLOBALS for details in the

structure
HID_REPORTITEM * reportItemList; List of report Items, see HID_REPORTITEM for details in the

structure
HID_REPORT * reportList; List of reports , see HID_REPORT for details in the structure
HID_STRINGITEM * stringItemList; List of string item , see HID_STRINGITEM for details in the

structure
HID_USAGEITEM * usageItemList; List of Usage item , see HID_USAGEITEM for details in the

structure
uint8_t * collectionStack; stores the array of parents ids for the collection

Description

List of Items

This structure contains array of pointers to all the Items in the report descriptor. HID parser will populate the lists while
parsing the report descriptor. This data is used by interface functions provided in file usb_host_hid_interface.c to retrive data
from the report received from the device. Application can also access these details to retreive the intended information
incase provided interface function fail to do so.

1.4.2.3.2.16 USB_HID_RPT_DESC_ERROR Enumeration
File

usb_host_hid_parser.h

Syntax

typedef enum {
 HID_ERR = 0,
 HID_ERR_NotEnoughMemory,
 HID_ERR_NullPointer,

1.4 Library Interface MLA - USB Library Help Embedded Host API

190

 HID_ERR_UnexpectedEndCollection,
 HID_ERR_UnexpectedPop,
 HID_ERR_MissingEndCollection,
 HID_ERR_MissingTopLevelCollection,
 HID_ERR_NoReports,
 HID_ERR_UnmatchedUsageRange,
 HID_ERR_UnmatchedStringRange,
 HID_ERR_UnmatchedDesignatorRange,
 HID_ERR_UnexpectedEndOfDescriptor,
 HID_ERR_BadLogicalMin,
 HID_ERR_BadLogicalMax,
 HID_ERR_BadLogical,
 HID_ERR_ZeroReportSize,
 HID_ERR_ZeroReportID,
 HID_ERR_ZeroReportCount,
 HID_ERR_BadUsageRangePage,
 HID_ERR_BadUsageRange
} USB_HID_RPT_DESC_ERROR;

Members

Members Description
HID_ERR = 0 No error
HID_ERR_NotEnoughMemory If not enough Heap can be allocated, make sure sufficient

dynamic memory is aloocated for the parser
HID_ERR_NullPointer Pointer to report descriptor is NULL
HID_ERR_UnexpectedEndCollection End of collection not expected
HID_ERR_UnexpectedPop POP not expected
HID_ERR_MissingEndCollection No end of collection found
HID_ERR_MissingTopLevelCollection Atleast one collection must be present
HID_ERR_NoReports atlest one report must be present
HID_ERR_UnmatchedUsageRange Either Minimum or Maximum for usage range missing
HID_ERR_UnmatchedStringRange Either Minimum or Maximum for string range missing
HID_ERR_UnmatchedDesignatorRange Either Minimum or Maximum for designator range missing
HID_ERR_UnexpectedEndOfDescriptor Report descriptor not formatted properly
HID_ERR_BadLogicalMin Logical Min greater than report size
HID_ERR_BadLogicalMax Logical Max greater than report size
HID_ERR_BadLogical If logical Min is greater than Max
HID_ERR_ZeroReportSize Report size is zero
HID_ERR_ZeroReportID report ID is zero
HID_ERR_ZeroReportCount Number of reports is zero
HID_ERR_BadUsageRangePage Bad Usage page range
HID_ERR_BadUsageRange Bad Usage range

Description

HID parser error codes

This enumerates the error encountered during the parsing of report descriptor. In case of any error parsing is sttopped and
the error is flagged. Device is not attched successfully.

1.4.2.3.2.17 deviceRptInfo Variable
File

usb_host_hid_parser.h

Syntax

USB_HID_DEVICE_RPT_INFO deviceRptInfo;

1.4 Library Interface MLA - USB Library Help Embedded Host API

191

Section

External Variables

1.4.2.3.2.18 itemListPtrs Variable
File

usb_host_hid_parser.h

Syntax

USB_HID_ITEM_LIST itemListPtrs;

Description

This is variable itemListPtrs.

1.4.2.3.2.19 DEVICE_CLASS_HID Macro
File

usb_host_hid.h

Syntax

#define DEVICE_CLASS_HID 0x03 /* HID Interface Class Code */

Description

HID Interface Class Code

1.4.2.3.2.20 DSC_HID Macro
File

usb_host_hid.h

Syntax

#define DSC_HID 0x21 /* HID Descriptor Code */

Description

HID Descriptor Code

1.4.2.3.2.21 DSC_PHY Macro
File

usb_host_hid.h

Syntax

#define DSC_PHY 0x23 /* Pysical Descriptor Code */

Description

Pysical Descriptor Code

1.4.2.3.2.22 EVENT_HID_ATTACH Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_ATTACH EVENT_HID_BASE + EVENT_HID_OFFSET + 7

1.4 Library Interface MLA - USB Library Help Embedded Host API

192

Description

A HID device has attached. The returned data pointer points to a USB_HID_DEVICE_ID structure.

1.4.2.3.2.23 EVENT_HID_BAD_REPORT_DESCRIPTOR Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_BAD_REPORT_DESCRIPTOR EVENT_HID_BASE + EVENT_HID_OFFSET + 9

Description

There was a problem parsing the report descriptor of the attached device. Communication with the device is not allowed,
and the device should be detached.

1.4.2.3.2.24 EVENT_HID_DETACH Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_DETACH EVENT_HID_BASE + EVENT_HID_OFFSET + 8

Description

A HID device has detached. The returned data pointer points to a byte with the previous address of the detached device.

1.4.2.3.2.25 EVENT_HID_NONE Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_NONE EVENT_HID_BASE + EVENT_HID_OFFSET + 0

Description

No event occured (NULL event)

1.4.2.3.2.26 EVENT_HID_OFFSET Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_OFFSET 0

Description

If the application has not defined an offset for HID events, set it to 0.

1.4.2.3.2.27 EVENT_HID_READ_DONE Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_READ_DONE EVENT_HID_BASE + EVENT_HID_OFFSET + 4

1.4 Library Interface MLA - USB Library Help Embedded Host API

193

Description

define EVENT_HID_TRANSFER EVENT_HID_BASE + EVENT_HID_OFFSET + 3 // Unused - value retained for legacy. A
HID Read transfer has completed. The returned data pointer points to a HID_TRANSFER_DATA structure, with information
about the transfer.

1.4.2.3.2.28 EVENT_HID_RESET Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_RESET EVENT_HID_BASE + EVENT_HID_OFFSET + 6

Description

HID reset complete. The returned data pointer is NULL.

1.4.2.3.2.29 EVENT_HID_RESET_ERROR Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_RESET_ERROR EVENT_HID_BASE + EVENT_HID_OFFSET + 10

Description

An error occurred while trying to do a HID reset. The returned data pointer is NULL.

1.4.2.3.2.30 EVENT_HID_RPT_DESC_PARSED Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_RPT_DESC_PARSED EVENT_HID_BASE + EVENT_HID_OFFSET + 1

Description

A Report Descriptor has been parsed. The returned data pointer is NULL. The application must collect details, or simply
return TRUE if the application is already aware of the data format.

1.4.2.3.2.31 EVENT_HID_WRITE_DONE Macro
File

usb_host_hid.h

Syntax

#define EVENT_HID_WRITE_DONE EVENT_HID_BASE + EVENT_HID_OFFSET + 5

Description

A HID Write transfer has completed. The returned data pointer points to a HID_TRANSFER_DATA structure, with
information about the transfer.

1.4.2.3.2.32 HOST_DSC_RPT Macro
File

usb_host_hid.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

194

Syntax

#define HOST_DSC_RPT 0x2200 /* Report Descriptor Code */

Description

Report Descriptor Code

1.4.2.3.2.33 USB_HID_CLASS_ERROR Macro
File

usb_host_hid.h

Syntax

#define USB_HID_CLASS_ERROR USB_ERROR_CLASS_DEFINED

Section

HID Class Error Codes

1.4.2.3.2.34 USB_HID_COMMAND_FAILED Macro
File

usb_host_hid.h

Syntax

#define USB_HID_COMMAND_FAILED (USB_HID_CLASS_ERROR | HID_COMMAND_FAILED) // Command failed
at the device.

Description

Command failed at the device.

1.4.2.3.2.35 USB_HID_COMMAND_PASSED Macro
File

usb_host_hid.h

Syntax

#define USB_HID_COMMAND_PASSED USB_SUCCESS // Command was
successful.

Description

Command was successful.

1.4.2.3.2.36 USB_HID_DEVICE_BUSY Macro
File

usb_host_hid.h

Syntax

#define USB_HID_DEVICE_BUSY (USB_HID_CLASS_ERROR | 0x04) // A transfer is
currently in progress.

Description

A transfer is currently in progress.

1.4.2.3.2.37 USB_HID_DEVICE_DETACHED Macro
File

usb_host_hid.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

195

Syntax

#define USB_HID_DEVICE_DETACHED 0x50 // Device is detached.

Description

Device is detached.

1.4.2.3.2.38 USB_HID_DEVICE_HOLDING Macro
File

usb_host_hid.h

Syntax

#define USB_HID_DEVICE_HOLDING 0x54 // Device is holding due to error

Description

Device is holding due to error

1.4.2.3.2.39 USB_HID_DEVICE_NOT_FOUND Macro
File

usb_host_hid.h

Syntax

#define USB_HID_DEVICE_NOT_FOUND (USB_HID_CLASS_ERROR | 0x03) // Device with
the specified address is not available.

Description

Device with the specified address is not available.

1.4.2.3.2.40 USB_HID_ILLEGAL_REQUEST Macro
File

usb_host_hid.h

Syntax

#define USB_HID_ILLEGAL_REQUEST (USB_HID_CLASS_ERROR | 0x0B) // Cannot perform requested
operation.

Description

Cannot perform requested operation.

1.4.2.3.2.41 USB_HID_INITIALIZING Macro
File

usb_host_hid.h

Syntax

#define USB_HID_INITIALIZING 0x51 // Device is initializing.

Description

Device is initializing.

1.4.2.3.2.42 USB_HID_INTERFACE_ERROR Macro
File

usb_host_hid.h

1.4 Library Interface MLA - USB Library Help Embedded Host API

196

Syntax

#define USB_HID_INTERFACE_ERROR (USB_HID_CLASS_ERROR | 0x06) // The interface
layer cannot support the device.

Description

The interface layer cannot support the device.

1.4.2.3.2.43 USB_HID_NO_REPORT_DESCRIPTOR Macro
File

usb_host_hid.h

Syntax

#define USB_HID_NO_REPORT_DESCRIPTOR (USB_HID_CLASS_ERROR | 0x05) // No
report descriptor found

Description

No report descriptor found

1.4.2.3.2.44 USB_HID_NORMAL_RUNNING Macro
File

usb_host_hid.h

Syntax

#define USB_HID_NORMAL_RUNNING 0x53 // Device is running and available for data
transfers.

Description

Device is running and available for data transfers.

1.4.2.3.2.45 USB_HID_PHASE_ERROR Macro
File

usb_host_hid.h

Syntax

#define USB_HID_PHASE_ERROR (USB_HID_CLASS_ERROR | HID_PHASE_ERROR) // Command had a
phase error at the device.

Description

Command had a phase error at the device.

1.4.2.3.2.46 USB_HID_REPORT_DESCRIPTOR_BAD Macro
File

usb_host_hid.h

Syntax

#define USB_HID_REPORT_DESCRIPTOR_BAD (USB_HID_CLASS_ERROR | 0x07) // Report
Descriptor for not proper

Description

Report Descriptor for not proper

1.4 Library Interface MLA - USB Library Help Embedded Host API

197

1.4.2.3.2.47 USB_HID_RESET_ERROR Macro
File

usb_host_hid.h

Syntax

#define USB_HID_RESET_ERROR (USB_HID_CLASS_ERROR | 0x0A) // An error occurred while
resetting the device.

Description

An error occurred while resetting the device.

1.4.2.3.2.48 USB_HID_RESETTING_DEVICE Macro
File

usb_host_hid.h

Syntax

#define USB_HID_RESETTING_DEVICE 0x55 // Device is being reset.

Description

Device is being reset.

1.4.2.3.2.49 USB_PROCESSING_REPORT_DESCRIPTOR Macro
File

usb_host_hid.h

Syntax

#define USB_PROCESSING_REPORT_DESCRIPTOR 0x52 // Parser is processing report descriptor.

Description

Parser is processing report descriptor.

1.4.2.3.3 usb_host_hid.h
Functions

Name Description
USBHostHID_ApiFindBit This function is used to locate a specific button or indicator. Once

the report descriptor is parsed by the HID layer without any error,
data from the report descriptor is stored in pre defined dat
structures. This function traverses these data structure and exract
data required by application

USBHostHID_ApiFindValue Find a specific Usage Value. Once the report descriptor is parsed
by the HID layer without any error, data from the report descriptor is
stored in pre defined dat structures. This function traverses these
data structure and exract data required by application.

USBHostHID_ApiGetCurrentInterfaceNum This function reurns the interface number of the cuurent report
descriptor parsed. This function must be called to fill data interface
detail data structure and passed as parameter when requesinf for
report transfers.

USBHostHID_ApiImportData This function can be used by application to extract data from the
input reports. On receiving the input report from the device
application can call the function with required inputs
'HID_DATA_DETAILS'.

USBHostHIDDeviceDetect This function determines if a HID device is attached and ready to
use.

1.4 Library Interface MLA - USB Library Help Embedded Host API

198

USBHostHIDDeviceStatus
USBHostHIDEventHandler This function is the event handler for this client driver.
USBHostHIDInitialize This function is the initialization routine for this client driver.
USBHostHIDResetDevice This function starts a HID reset.
USBHostHIDResetDeviceWithWait This function resets a HID device, and waits until the reset is

complete.
USBHostHIDTasks This function performs the maintenance tasks required by HID class
USBHostHIDTerminateTransfer This function terminates a transfer that is in progress.
USBHostHIDTransfer This function starts a HID transfer.
USBHostHIDTransferIsComplete This function indicates whether or not the last transfer is complete.

Macros

Name Description
DEVICE_CLASS_HID HID Interface Class Code
DSC_HID HID Descriptor Code
DSC_PHY Pysical Descriptor Code
EVENT_HID_ATTACH A HID device has attached. The returned data pointer points to a

USB_HID_DEVICE_ID structure.
EVENT_HID_BAD_REPORT_DESCRIPTOR There was a problem parsing the report descriptor of the attached device.

Communication with the device is not allowed, and the device should be
detached.

EVENT_HID_DETACH A HID device has detached. The returned data pointer points to a byte
with the previous address of the detached device.

EVENT_HID_NONE No event occured (NULL event)
EVENT_HID_OFFSET If the application has not defined an offset for HID events, set it to 0.
EVENT_HID_READ_DONE define EVENT_HID_TRANSFER EVENT_HID_BASE +

EVENT_HID_OFFSET + 3 // Unused - value retained for legacy. A HID
Read transfer has completed. The returned data pointer points to a
HID_TRANSFER_DATA structure, with information about the transfer.

EVENT_HID_RESET HID reset complete. The returned data pointer is NULL.
EVENT_HID_RESET_ERROR An error occurred while trying to do a HID reset. The returned data

pointer is NULL.
EVENT_HID_RPT_DESC_PARSED A Report Descriptor has been parsed. The returned data pointer is NULL.

The application must collect details, or simply return TRUE if the
application is already aware of the data format.

EVENT_HID_WRITE_DONE A HID Write transfer has completed. The returned data pointer points to a
HID_TRANSFER_DATA structure, with information about the transfer.

HOST_DSC_RPT Report Descriptor Code
USB_HID_CLASS_ERROR
USB_HID_COMMAND_FAILED Command failed at the device.
USB_HID_COMMAND_PASSED Command was successful.
USB_HID_DEVICE_BUSY A transfer is currently in progress.
USB_HID_DEVICE_DETACHED Device is detached.
USB_HID_DEVICE_HOLDING Device is holding due to error
USB_HID_DEVICE_NOT_FOUND Device with the specified address is not available.
USB_HID_ILLEGAL_REQUEST Cannot perform requested operation.
USB_HID_INITIALIZING Device is initializing.
USB_HID_INTERFACE_ERROR The interface layer cannot support the device.
USB_HID_NO_REPORT_DESCRIPTOR No report descriptor found
USB_HID_NORMAL_RUNNING Device is running and available for data transfers.
USB_HID_PHASE_ERROR Command had a phase error at the device.
USB_HID_REPORT_DESCRIPTOR_BAD Report Descriptor for not proper

1.4 Library Interface MLA - USB Library Help Embedded Host API

199

USB_HID_RESET_ERROR An error occurred while resetting the device.
USB_HID_RESETTING_DEVICE Device is being reset.
USB_PROCESSING_REPORT_DESCRIPTOR Parser is processing report descriptor.
USBHostHID_ApiDeviceDetect This macro provides legacy support for an older API function.
USBHostHID_ApiGetReport This macro provides legacy support for an older API function.
USBHostHID_ApiResetDevice This macro provides legacy support for an older API function.
USBHostHID_ApiSendReport This macro provides legacy support for an older API function.
USBHostHID_ApiTransferIsComplete This macro provides legacy support for an older API function.
USBHostHID_GetCurrentReportInfo This function returns a pointer to the current report info structure.
USBHostHID_GetItemListPointers This function returns a pointer to list of item pointers stored in a structure.
USBHostHIDRead This function starts a Get report transfer reuest from the device, utilizing

the function USBHostHIDTransfer();
USBHostHIDWrite This function starts a Set report transfer request to the device, utilizing

the function USBHostHIDTransfer();

Module

HID Client Driver

Structures

Name Description
_HID_DATA_DETAILS HID Data Details

This structure defines the objects used by the application to access
required report. Application must use parser interface functions to fill
these details. e.g. USBHostHID_ApiFindValue

_HID_TRANSFER_DATA HID Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion (EVENT_HID_READ_DONE or
EVENT_HID_WRITE_DONE).

_USB_HID_DEVICE_ID HID Device ID Information
This structure contains identification information about an attached
device.

HID_DATA_DETAILS HID Data Details
This structure defines the objects used by the application to access
required report. Application must use parser interface functions to fill
these details. e.g. USBHostHID_ApiFindValue

HID_TRANSFER_DATA HID Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion (EVENT_HID_READ_DONE or
EVENT_HID_WRITE_DONE).

USB_HID_DEVICE_ID HID Device ID Information
This structure contains identification information about an attached
device.

Types

Name Description
HID_USER_DATA_SIZE HID User Data Size

This defines the data type required to hold the maximum field size data.
Maximum size of data field within a report

Description

This is file usb_host_hid.h.

1.4 Library Interface MLA - USB Library Help Embedded Host API

200

1.4.2.3.4 usb_host_hid_parser.h
Enumerations

Name Description
HIDReportTypeEnum This is type HIDReportTypeEnum.
USB_HID_RPT_DESC_ERROR HID parser error codes

This enumerates the error encountered during the parsing of report
descriptor. In case of any error parsing is sttopped and the error is
flagged. Device is not attched successfully.

Functions

Name Description
USBHostHID_HasUsage This function is used to locate the usage in a report descriptor. Function

will look into the data structures created by the HID parser and return the
appropriate location.

Module

HID Client Driver

Structures

Name Description
_HID_COLLECTION HID Collection Details

This structure contains information about each collection encountered in
the report descriptor.

_HID_GLOBALS HID Global Item Information
This structure contains information about each Global Item of the report
descriptor.

_HID_ITEM_INFO HID Item Information
This structure contains information about each Item of the report
descriptor.

_HID_REPORT HID Report details
This structure contains information about each report exchanged with the
device.

_HID_REPORTITEM HID Report Details
This structure contains information about each Report encountered in the
report descriptor.

_HID_STRINGITEM HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

_HID_USAGEITEM HID Report Details
This structure contains information about each Usage Item encountered
in the report descriptor.

_USB_HID_DEVICE_RPT_INFO Report Descriptor Information
This structure contains top level information of the report descriptor. This
information is important and is used to understand the information during
th ecourse of parsing. This structure also stores temporary data needed
during parsing the report descriptor. All of this information may not be of
much inportance to the application.

_USB_HID_ITEM_LIST List of Items
This structure contains array of pointers to all the Items in the report
descriptor. HID parser will populate the lists while parsing the report
descriptor. This data is used by interface functions provided in file
usb_host_hid_interface.c to retrive data from the report received from the
device. Application can also access these details to retreive the intended
information incase provided interface function fail to do so.

1.4 Library Interface MLA - USB Library Help Embedded Host API

201

HID_COLLECTION HID Collection Details
This structure contains information about each collection encountered in
the report descriptor.

HID_DESIGITEM HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

HID_GLOBALS HID Global Item Information
This structure contains information about each Global Item of the report
descriptor.

HID_ITEM_INFO HID Item Information
This structure contains information about each Item of the report
descriptor.

HID_REPORT HID Report details
This structure contains information about each report exchanged with the
device.

HID_REPORTITEM HID Report Details
This structure contains information about each Report encountered in the
report descriptor.

HID_STRINGITEM HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

HID_USAGEITEM HID Report Details
This structure contains information about each Usage Item encountered
in the report descriptor.

USB_HID_DEVICE_RPT_INFO Report Descriptor Information
This structure contains top level information of the report descriptor. This
information is important and is used to understand the information during
th ecourse of parsing. This structure also stores temporary data needed
during parsing the report descriptor. All of this information may not be of
much inportance to the application.

USB_HID_ITEM_LIST List of Items
This structure contains array of pointers to all the Items in the report
descriptor. HID parser will populate the lists while parsing the report
descriptor. This data is used by interface functions provided in file
usb_host_hid_interface.c to retrive data from the report received from the
device. Application can also access these details to retreive the intended
information incase provided interface function fail to do so.

Variables

Name Description
deviceRptInfo
itemListPtrs This is variable itemListPtrs.

Description

This is file usb_host_hid_parser.h.

1.4.2.4 Mass Storage Client Driver
This client driver provides USB Embedded Host support for mass storage devices.

Files

Name Description
usb_host_msd.h This is file usb_host_msd.h.

Description

This client driver provides USB Embedded Host support for mass storage devices. Mass storage devices use USB Bulk

1.4 Library Interface MLA - USB Library Help Embedded Host API

202

transfers to efficiently transfer large amounts of data. Bulk transfers may utilize all remaining bandwidth on the bus after all of
the Control, Interrupt, and Isochronous transfers for the frame have completed. The exact amount of time required for a bulk
transfer will depend on the amount of other traffic that is on the bus. Therefore, Bulk transfers should be used only for
non-time critical operations.

This implementation of the Mass Storage Class provides support for the Bulk Only Transport.

See AN1142 - USB Mass Storage Class on an Embedded Host for more information about the Mass Storage Class and this
client driver.

1.4.2.4.1 Functions
Functions

Name Description
USBHostMSDDeviceStatus This function determines the status of a mass storage device.
USBHostMSDEventHandler This function is the event handler for this client driver.
USBHostMSDInitialize This function is the initialization routine for this client driver.
USBHostMSDResetDevice This function starts a bulk-only mass storage reset.
USBHostMSDTasks This function performs the maintenance tasks required by the mass

storage class.
USBHostMSDTerminateTransfer This function terminates a mass storage transfer.
USBHostMSDTransfer This function starts a mass storage transfer.
USBHostMSDTransferIsComplete This function indicates whether or not the last transfer is complete.

Macros

Name Description
USBHostMSDRead This function starts a mass storage read, utilizing the function

USBHostMSDTransfer();
USBHostMSDWrite This function starts a mass storage write, utilizing the function

USBHostMSDTransfer();

Module

Mass Storage Client Driver

Description

1.4.2.4.1.1 USBHostMSDDeviceStatus Function
File

usb_host_msd.h

Syntax

uint8_t USBHostMSDDeviceStatus(uint8_t deviceAddress);

Description

This function determines the status of a mass storage device.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

203

Parameters

Parameters Description
uint8_t deviceAddress address of device to query

Return Values

Return Values Description
USB_MSD_DEVICE_NOT_FOUND Illegal device address, or the device is not an MSD
USB_MSD_INITIALIZING MSD is attached and in the process of initializing
USB_MSD_NORMAL_RUNNING MSD is in normal running mode
USB_MSD_RESETTING_DEVICE MSD is resetting
USB_MSD_DEVICE_DETACHED MSD detached. Should not occur
USB_MSD_ERROR_STATE MSD is holding due to an error. No communication is

allowed.
Other Return codes from USBHostDeviceStatus() will also be

returned if the device is in the process of enumerating.

Function

uint8_t USBHostMSDDeviceStatus(uint8_t deviceAddress)

1.4.2.4.1.2 USBHostMSDEventHandler Function
This function is the event handler for this client driver.

File

usb_host_msd.h

Syntax

bool USBHostMSDEventHandler(uint8_t address, USB_EVENT event, void * data, uint32_t size);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description
uint8_t address Address of the device
USB_EVENT event Event that has occurred
void *data Pointer to data pertinent to the event
uint16_t size Size of the data

Return Values

Return Values Description
true Event was handled
false Event was not handled

Function

bool USBHostMSDEventHandler(uint8_t address, USB_EVENT event,

void *data, uint32_t size)

1.4 Library Interface MLA - USB Library Help Embedded Host API

204

1.4.2.4.1.3 USBHostMSDInitialize Function
This function is the initialization routine for this client driver.

File

usb_host_msd.h

Syntax

bool USBHostMSDInitialize(uint8_t address, uint32_t flags, uint8_t clientDriverID);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated. For a mass storage device, we need to make sure that we have room for a new device, and that the device has
at least one bulk IN and one bulk OUT endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t address Address of the new device
uint32_t flags Initialization flags
uint8_t clientDriverID ID to send when issuing a Device Request via

USBHostSendDeviceRequest(),
USBHostSetDeviceConfiguration(), or
USBHostSetDeviceInterface().

Return Values

Return Values Description
true We can support the device.
false We cannot support the device.

Function

bool USBHostMSDInitialize(uint8_t address, uint32_t flags, uint8_t clientDriverID)

1.4.2.4.1.4 USBHostMSDResetDevice Function
This function starts a bulk-only mass storage reset.

File

usb_host_msd.h

Syntax

uint8_t USBHostMSDResetDevice(uint8_t deviceAddress);

Description

This function starts a bulk-only mass storage reset. A reset can be issued only if the device is attached and not being
initialized.

Remarks

None

Preconditions

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

205

Parameters

Parameters Description
uint8_t deviceAddress Device address

Return Values

Return Values Description
USB_SUCCESS Reset started
USB_MSD_DEVICE_NOT_FOUND No device with specified address
USB_MSD_ILLEGAL_REQUEST Device is in an illegal state for reset

Function

uint8_t USBHostMSDResetDevice(uint8_t deviceAddress)

1.4.2.4.1.5 USBHostMSDTasks Function
This function performs the maintenance tasks required by the mass storage class.

File

usb_host_msd.h

Syntax

void USBHostMSDTasks();

Returns

None

Description

This function performs the maintenance tasks required by the mass storage class. If transfer events from the host layer are
not being used, then it should be called on a regular basis by the application. If transfer events from the host layer are being
used, this function is compiled out, and does not need to be called.

Remarks

None

Preconditions

USBHostMSDInitialize() has been called.

Parameters

Parameters Description
None None

Function

void USBHostMSDTasks(void)

1.4.2.4.1.6 USBHostMSDTerminateTransfer Function
File

usb_host_msd.h

Syntax

void USBHostMSDTerminateTransfer(uint8_t deviceAddress);

Returns

None

1.4 Library Interface MLA - USB Library Help Embedded Host API

206

Description

This function terminates a mass storage transfer.

Remarks

After executing this function, the application may have to reset the device in order for the device to continue working properly.

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address

Function

void USBHostMSDTerminateTransfer(uint8_t deviceAddress)

1.4.2.4.1.7 USBHostMSDTransfer Function
This function starts a mass storage transfer.

File

usb_host_msd.h

Syntax

uint8_t USBHostMSDTransfer(uint8_t deviceAddress, uint8_t deviceLUN, uint8_t direction,
uint8_t * commandBlock, uint8_t commandBlockLength, uint8_t * data, uint32_t dataLength);

Description

This function starts a mass storage transfer. Usually, applications will probably utilize a read/write wrapper to access this
function.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t deviceLUN Device LUN to access
uint8_t direction 1=read, 0=write
uint8_t *commandBlock Pointer to the command block for the CBW
uint8_t commandBlockLength Length of the command block
uint8_t *data Pointer to the data buffer
uint32_t dataLength Byte size of the data buffer

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_MSD_DEVICE_NOT_FOUND No device with specified address
USB_MSD_DEVICE_BUSY Device not in proper state for performing a transfer
USB_MSD_INVALID_LUN Specified LUN does not exist

1.4 Library Interface MLA - USB Library Help Embedded Host API

207

Function

uint8_t USBHostMSDTransfer(uint8_t deviceAddress, uint8_t deviceLUN,

uint8_t direction, uint8_t *commandBlock, uint8_t commandBlockLength,

uint8_t *data, uint32_t dataLength)

1.4.2.4.1.8 USBHostMSDTransferIsComplete Function
This function indicates whether or not the last transfer is complete.

File

usb_host_msd.h

Syntax

bool USBHostMSDTransferIsComplete(uint8_t deviceAddress, uint8_t * errorCode, uint32_t *
byteCount);

Description

This function indicates whether or not the last transfer is complete. If the functions returns true, the returned byte count and
error code are valid. Since only one transfer can be performed at once and only one endpoint can be used, we only need to
know the device address.

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t *errorCode Error code from last transfer
uint32_t *byteCount Number of bytes transferred

Return Values

Return Values Description
true Transfer is complete, errorCode is valid
false Transfer is not complete, errorCode is not valid

Function

bool USBHostMSDTransferIsComplete(uint8_t deviceAddress,

uint8_t *errorCode, uint32_t *byteCount)

1.4.2.4.1.9 USBHostMSDRead Macro
File

usb_host_msd.h

Syntax

#define USBHostMSDRead(
deviceAddress,deviceLUN,commandBlock,commandBlockLength,data,dataLength) \
 USBHostMSDTransfer(deviceAddress, deviceLUN, 1, commandBlock, commandBlockLength,
data, dataLength)

Description

This function starts a mass storage read, utilizing the function USBHostMSDTransfer();

1.4 Library Interface MLA - USB Library Help Embedded Host API

208

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t deviceLUN Device LUN to access
uint8_t *commandBlock Pointer to the command block for the CBW
uint8_t commandBlockLength Length of the command block
uint8_t *data Pointer to the data buffer
uint32_t dataLength Byte size of the data buffer

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_MSD_DEVICE_NOT_FOUND No device with specified address
USB_MSD_DEVICE_BUSY Device not in proper state for performing a transfer
USB_MSD_INVALID_LUN Specified LUN does not exist

Function

uint8_t USBHostMSDRead(uint8_t deviceAddress, uint8_t deviceLUN, uint8_t *commandBlock,

uint8_t commandBlockLength, uint8_t *data, uint32_t dataLength);

1.4.2.4.1.10 USBHostMSDWrite Macro
File

usb_host_msd.h

Syntax

#define USBHostMSDWrite(
deviceAddress,deviceLUN,commandBlock,commandBlockLength,data,dataLength) \
 USBHostMSDTransfer(deviceAddress, deviceLUN, 0, commandBlock, commandBlockLength,
data, dataLength)

Description

This function starts a mass storage write, utilizing the function USBHostMSDTransfer();

Remarks

None

Preconditions

None

Parameters

Parameters Description
uint8_t deviceAddress Device address
uint8_t deviceLUN Device LUN to access
uint8_t *commandBlock Pointer to the command block for the CBW
uint8_t commandBlockLength Length of the command block
uint8_t *data Pointer to the data buffer
uint32_t dataLength Byte size of the data buffer

1.4 Library Interface MLA - USB Library Help Embedded Host API

209

Return Values

Return Values Description
USB_SUCCESS Request started successfully
USB_MSD_DEVICE_NOT_FOUND No device with specified address
USB_MSD_DEVICE_BUSY Device not in proper state for performing a transfer
USB_MSD_INVALID_LUN Specified LUN does not exist

Function

uint8_t USBHostMSDWrite(uint8_t deviceAddress, uint8_t deviceLUN, uint8_t *commandBlock,

uint8_t commandBlockLength, uint8_t *data, uint32_t dataLength);

1.4.2.4.2 Data Types and Constants
Macros

Name Description
DEVICE_CLASS_MASS_STORAGE Class code for Mass Storage.
DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Protocol code for Bulk-only mass storage.
DEVICE_SUBCLASS_CD_DVD SubClass code for a CD/DVD drive (not supported).
DEVICE_SUBCLASS_FLOPPY_INTERFACE SubClass code for a floppy disk interface (not supported).
DEVICE_SUBCLASS_RBC SubClass code for Reduced Block Commands (not supported).
DEVICE_SUBCLASS_REMOVABLE SubClass code for removable media (not supported).
DEVICE_SUBCLASS_SCSI SubClass code for a SCSI interface device (supported).
DEVICE_SUBCLASS_TAPE_DRIVE SubClass code for a tape drive (not supported).
EVENT_MSD_ATTACH MSD device has attached
EVENT_MSD_MAX_LUN Set maximum LUN for the device
EVENT_MSD_NONE No event occured (NULL event)
EVENT_MSD_OFFSET If the application has not defined an offset for MSD events, set it to 0.
EVENT_MSD_RESET MSD reset complete
EVENT_MSD_TRANSFER A MSD transfer has completed
MSD_COMMAND_FAILED Transfer failed. Returned in dCSWStatus.
MSD_COMMAND_PASSED Transfer was successful. Returned in dCSWStatus.
MSD_PHASE_ERROR Transfer phase error. Returned in dCSWStatus.
USB_MSD_CBW_ERROR The CBW was not transferred successfully.
USB_MSD_COMMAND_FAILED Command failed at the device.
USB_MSD_COMMAND_PASSED Command was successful.
USB_MSD_CSW_ERROR The CSW was not transferred successfully.
USB_MSD_DEVICE_BUSY A transfer is currently in progress.
USB_MSD_DEVICE_DETACHED Device is detached.
USB_MSD_DEVICE_NOT_FOUND Device with the specified address is not available.
USB_MSD_ERROR Error code offset.
USB_MSD_ERROR_STATE Device is holding due to a MSD error.
USB_MSD_ILLEGAL_REQUEST Cannot perform requested operation.
USB_MSD_INITIALIZING Device is initializing.
USB_MSD_INVALID_LUN Invalid LUN specified.
USB_MSD_MEDIA_INTERFACE_ERROR The media interface layer cannot support the device.
USB_MSD_NORMAL_RUNNING Device is running and available for data transfers.
USB_MSD_OUT_OF_MEMORY No dynamic memory is available.
USB_MSD_PHASE_ERROR Command had a phase error at the device.

1.4 Library Interface MLA - USB Library Help Embedded Host API

210

USB_MSD_RESET_ERROR An error occurred while resetting the device.
USB_MSD_RESETTING_DEVICE Device is being reset.

Module

Mass Storage Client Driver

Description

1.4.2.4.2.1 DEVICE_CLASS_MASS_STORAGE Macro
File

usb_host_msd.h

Syntax

#define DEVICE_CLASS_MASS_STORAGE 0x08 // Class code for Mass Storage.

Description

Class code for Mass Storage.

1.4.2.4.2.2 DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Macro
File

usb_host_msd.h

Syntax

#define DEVICE_INTERFACE_PROTOCOL_BULK_ONLY 0x50 // Protocol code for Bulk-only mass
storage.

Description

Protocol code for Bulk-only mass storage.

1.4.2.4.2.3 DEVICE_SUBCLASS_CD_DVD Macro
File

usb_host_msd.h

Syntax

#define DEVICE_SUBCLASS_CD_DVD 0x02 // SubClass code for a CD/DVD drive (not supported).

Description

SubClass code for a CD/DVD drive (not supported).

1.4.2.4.2.4 DEVICE_SUBCLASS_FLOPPY_INTERFACE Macro
File

usb_host_msd.h

Syntax

#define DEVICE_SUBCLASS_FLOPPY_INTERFACE 0x04 // SubClass code for a floppy disk
interface (not supported).

Description

SubClass code for a floppy disk interface (not supported).

1.4 Library Interface MLA - USB Library Help Embedded Host API

211

1.4.2.4.2.5 DEVICE_SUBCLASS_RBC Macro
File

usb_host_msd.h

Syntax

#define DEVICE_SUBCLASS_RBC 0x01 // SubClass code for Reduced Block Commands (not
supported).

Description

SubClass code for Reduced Block Commands (not supported).

1.4.2.4.2.6 DEVICE_SUBCLASS_REMOVABLE Macro
File

usb_host_msd.h

Syntax

#define DEVICE_SUBCLASS_REMOVABLE 0x05 // SubClass code for removable media (not
supported).

Description

SubClass code for removable media (not supported).

1.4.2.4.2.7 DEVICE_SUBCLASS_SCSI Macro
File

usb_host_msd.h

Syntax

#define DEVICE_SUBCLASS_SCSI 0x06 // SubClass code for a SCSI interface device
(supported).

Description

SubClass code for a SCSI interface device (supported).

1.4.2.4.2.8 DEVICE_SUBCLASS_TAPE_DRIVE Macro
File

usb_host_msd.h

Syntax

#define DEVICE_SUBCLASS_TAPE_DRIVE 0x03 // SubClass code for a tape drive (not
supported).

Description

SubClass code for a tape drive (not supported).

1.4.2.4.2.9 EVENT_MSD_ATTACH Macro
File

usb_host_msd.h

Syntax

#define EVENT_MSD_ATTACH EVENT_MSD_BASE + EVENT_MSD_OFFSET + 4 // MSD device has attached

Description

MSD device has attached

1.4 Library Interface MLA - USB Library Help Embedded Host API

212

1.4.2.4.2.10 EVENT_MSD_MAX_LUN Macro
File

usb_host_msd.h

Syntax

#define EVENT_MSD_MAX_LUN EVENT_MSD_BASE + EVENT_MSD_OFFSET + 3 // Set maximum LUN for
the device

Description

Set maximum LUN for the device

1.4.2.4.2.11 EVENT_MSD_NONE Macro
File

usb_host_msd.h

Syntax

#define EVENT_MSD_NONE EVENT_MSD_BASE + EVENT_MSD_OFFSET + 0 // No event occured (NULL
event)

Description

No event occured (NULL event)

1.4.2.4.2.12 EVENT_MSD_OFFSET Macro
File

usb_host_msd.h

Syntax

#define EVENT_MSD_OFFSET 0

Description

If the application has not defined an offset for MSD events, set it to 0.

1.4.2.4.2.13 EVENT_MSD_RESET Macro
File

usb_host_msd.h

Syntax

#define EVENT_MSD_RESET EVENT_MSD_BASE + EVENT_MSD_OFFSET + 2 // MSD reset complete

Description

MSD reset complete

1.4.2.4.2.14 EVENT_MSD_TRANSFER Macro
File

usb_host_msd.h

Syntax

#define EVENT_MSD_TRANSFER EVENT_MSD_BASE + EVENT_MSD_OFFSET + 1 // A MSD transfer has
completed

Description

A MSD transfer has completed

1.4 Library Interface MLA - USB Library Help Embedded Host API

213

1.4.2.4.2.15 MSD_COMMAND_FAILED Macro
File

usb_host_msd.h

Syntax

#define MSD_COMMAND_FAILED 0x01 // Transfer failed. Returned in dCSWStatus.

Description

Transfer failed. Returned in dCSWStatus.

1.4.2.4.2.16 MSD_COMMAND_PASSED Macro
File

usb_host_msd.h

Syntax

#define MSD_COMMAND_PASSED 0x00 // Transfer was successful. Returned in dCSWStatus.

Description

Transfer was successful. Returned in dCSWStatus.

1.4.2.4.2.17 MSD_PHASE_ERROR Macro
File

usb_host_msd.h

Syntax

#define MSD_PHASE_ERROR 0x02 // Transfer phase error. Returned in dCSWStatus.

Description

Transfer phase error. Returned in dCSWStatus.

1.4.2.4.2.18 USB_MSD_CBW_ERROR Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_CBW_ERROR (USB_MSD_ERROR | 0x04) // The CBW was not
transferred successfully.

Description

The CBW was not transferred successfully.

1.4.2.4.2.19 USB_MSD_COMMAND_FAILED Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_COMMAND_FAILED (USB_MSD_ERROR | MSD_COMMAND_FAILED)// Command failed at the
device.

Description

Command failed at the device.

1.4 Library Interface MLA - USB Library Help Embedded Host API

214

1.4.2.4.2.20 USB_MSD_COMMAND_PASSED Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_COMMAND_PASSED USB_SUCCESS // Command was
successful.

Description

Command was successful.

1.4.2.4.2.21 USB_MSD_CSW_ERROR Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_CSW_ERROR (USB_MSD_ERROR | 0x05) // The CSW was not
transferred successfully.

Description

The CSW was not transferred successfully.

1.4.2.4.2.22 USB_MSD_DEVICE_BUSY Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_DEVICE_BUSY (USB_MSD_ERROR | 0x07) // A transfer is currently
in progress.

Description

A transfer is currently in progress.

1.4.2.4.2.23 USB_MSD_DEVICE_DETACHED Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_DEVICE_DETACHED 0x50 // Device is detached.

Description

Device is detached.

1.4.2.4.2.24 USB_MSD_DEVICE_NOT_FOUND Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_DEVICE_NOT_FOUND (USB_MSD_ERROR | 0x06) // Device with the
specified address is not available.

Description

Device with the specified address is not available.

1.4 Library Interface MLA - USB Library Help Embedded Host API

215

1.4.2.4.2.25 USB_MSD_ERROR Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_ERROR USB_ERROR_CLASS_DEFINED // Error code offset.

Description

Error code offset.

1.4.2.4.2.26 USB_MSD_ERROR_STATE Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_ERROR_STATE 0x55 // Device is holding due to a MSD error.

Description

Device is holding due to a MSD error.

1.4.2.4.2.27 USB_MSD_ILLEGAL_REQUEST Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_ILLEGAL_REQUEST (USB_MSD_ERROR | 0x0B) // Cannot perform
requested operation.

Description

Cannot perform requested operation.

1.4.2.4.2.28 USB_MSD_INITIALIZING Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_INITIALIZING 0x51 // Device is initializing.

Description

Device is initializing.

1.4.2.4.2.29 USB_MSD_INVALID_LUN Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_INVALID_LUN (USB_MSD_ERROR | 0x08) // Invalid LUN specified.

Description

Invalid LUN specified.

1.4 Library Interface MLA - USB Library Help Embedded Host API

216

1.4.2.4.2.30 USB_MSD_MEDIA_INTERFACE_ERROR Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_MEDIA_INTERFACE_ERROR (USB_MSD_ERROR | 0x09) // The media
interface layer cannot support the device.

Description

The media interface layer cannot support the device.

1.4.2.4.2.31 USB_MSD_NORMAL_RUNNING Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_NORMAL_RUNNING 0x52 // Device is running and available for data
transfers.

Description

Device is running and available for data transfers.

1.4.2.4.2.32 USB_MSD_OUT_OF_MEMORY Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_OUT_OF_MEMORY (USB_MSD_ERROR | 0x03) // No dynamic memory is
available.

Description

No dynamic memory is available.

1.4.2.4.2.33 USB_MSD_PHASE_ERROR Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_PHASE_ERROR (USB_MSD_ERROR | MSD_PHASE_ERROR) // Command had a phase
error at the device.

Description

Command had a phase error at the device.

1.4.2.4.2.34 USB_MSD_RESET_ERROR Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_RESET_ERROR (USB_MSD_ERROR | 0x0A) // An error occurred while
resetting the device.

1.4 Library Interface MLA - USB Library Help Embedded Host API

217

Description

An error occurred while resetting the device.

1.4.2.4.2.35 USB_MSD_RESETTING_DEVICE Macro
File

usb_host_msd.h

Syntax

#define USB_MSD_RESETTING_DEVICE 0x53 // Device is being reset.

Description

Device is being reset.

1.4.2.4.3 usb_host_msd.h
Functions

Name Description
USBHostMSDDeviceStatus This function determines the status of a mass storage device.
USBHostMSDEventHandler This function is the event handler for this client driver.
USBHostMSDInitialize This function is the initialization routine for this client driver.
USBHostMSDResetDevice This function starts a bulk-only mass storage reset.
USBHostMSDTasks This function performs the maintenance tasks required by the mass

storage class.
USBHostMSDTerminateTransfer This function terminates a mass storage transfer.
USBHostMSDTransfer This function starts a mass storage transfer.
USBHostMSDTransferIsComplete This function indicates whether or not the last transfer is complete.

Macros

Name Description
DEVICE_CLASS_MASS_STORAGE Class code for Mass Storage.
DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Protocol code for Bulk-only mass storage.
DEVICE_SUBCLASS_CD_DVD SubClass code for a CD/DVD drive (not supported).
DEVICE_SUBCLASS_FLOPPY_INTERFACE SubClass code for a floppy disk interface (not supported).
DEVICE_SUBCLASS_RBC SubClass code for Reduced Block Commands (not supported).
DEVICE_SUBCLASS_REMOVABLE SubClass code for removable media (not supported).
DEVICE_SUBCLASS_SCSI SubClass code for a SCSI interface device (supported).
DEVICE_SUBCLASS_TAPE_DRIVE SubClass code for a tape drive (not supported).
EVENT_MSD_ATTACH MSD device has attached
EVENT_MSD_MAX_LUN Set maximum LUN for the device
EVENT_MSD_NONE No event occured (NULL event)
EVENT_MSD_OFFSET If the application has not defined an offset for MSD events, set it to 0.
EVENT_MSD_RESET MSD reset complete
EVENT_MSD_TRANSFER A MSD transfer has completed
MSD_COMMAND_FAILED Transfer failed. Returned in dCSWStatus.
MSD_COMMAND_PASSED Transfer was successful. Returned in dCSWStatus.
MSD_PHASE_ERROR Transfer phase error. Returned in dCSWStatus.
USB_MSD_CBW_ERROR The CBW was not transferred successfully.
USB_MSD_COMMAND_FAILED Command failed at the device.
USB_MSD_COMMAND_PASSED Command was successful.

1.4 Library Interface MLA - USB Library Help Embedded Host API

218

USB_MSD_CSW_ERROR The CSW was not transferred successfully.
USB_MSD_DEVICE_BUSY A transfer is currently in progress.
USB_MSD_DEVICE_DETACHED Device is detached.
USB_MSD_DEVICE_NOT_FOUND Device with the specified address is not available.
USB_MSD_ERROR Error code offset.
USB_MSD_ERROR_STATE Device is holding due to a MSD error.
USB_MSD_ILLEGAL_REQUEST Cannot perform requested operation.
USB_MSD_INITIALIZING Device is initializing.
USB_MSD_INVALID_LUN Invalid LUN specified.
USB_MSD_MEDIA_INTERFACE_ERROR The media interface layer cannot support the device.
USB_MSD_NORMAL_RUNNING Device is running and available for data transfers.
USB_MSD_OUT_OF_MEMORY No dynamic memory is available.
USB_MSD_PHASE_ERROR Command had a phase error at the device.
USB_MSD_RESET_ERROR An error occurred while resetting the device.
USB_MSD_RESETTING_DEVICE Device is being reset.
USBHostMSDRead This function starts a mass storage read, utilizing the function

USBHostMSDTransfer();
USBHostMSDWrite This function starts a mass storage write, utilizing the function

USBHostMSDTransfer();

Module

Mass Storage Client Driver

Description

This is file usb_host_msd.h.

1.4 Library Interface MLA - USB Library Help Embedded Host API

219

1.5 Demo Board Information
This section gives a brief introduction and links to more information for the USB demo boards.

Description

1.5.1 Low Pin Count USB Development Board

The low pin count USB development board serves as a base platform for the 20-pin USB products. This currently is the
PIC18F14K50 family devices and the PIC16F145x family devices.

Description

Overview

This board features the PIC18F14K50 microcontroller, but can also be used (preferably with minor modifications) with the
PIC16F145x devices. The PIC18F14K50 controller has 20 pins, 16KB of flash, 768 bytes of RAM and an 8-bit core running
up to 12MIPS.

J12 - Shorts the VUSB pin to Vdd rail. This jumper should always be left open, unless an 'LF' device is used, and the board
VDD is externally supplied with a nominal 3.3V supply (ex: external power provided on J9, with the J14 jumperd in the
leftmost position).

J14 - Selects the power source for the board. Short pins 1 and 2 to power from J9. Short pins 2 and 3 to power from the USB
VBUS line.

S1 - Application button. Connected to RA3

D1 - Application LED. Connected to RC0

D2 - Application LED. Connected to RC1

D3 - Application LED. Connected to RC2

D4 - Application LED. Connected to RC3

1.5 Demo Board Information MLA - USB Library Help Low Pin Count USB Development Board

220

Using the Low Pin Count (LPC) USB Development Board with the PIC16F145x Devices

The original LPC USB Development board was designed for the PIC18F14K50, but the subsequent PIC16F145x USB
microcontrollers have pinout backwards compatibility with the PIC18F14K50. Therefore, it is possible to use these PIC16F
devices with the LPC USB Dev board. However, the board was not optimized for this newer device, and therefore there are
several things that are useful to know when trying to use a PIC16F USB device with this board.

Programming the PIC16F145x Device on the LPC USB Dev Kit Board: The PIC16F145x microcontrollers feature two
ICSP programming ports. One port (full programming and debug supported) is multiplexed with the MCLR/RC0/RC1 I/O
pins. The other ICSP programming only port (no debug) is multiplexed with the MCLR/D+/D- I/O pins, so as to provide pinout
backwards compatibility with the PIC18F14K50. By default, on the original version of the LPC Dev Kit board, only the
MCLR/D+/D- programming interface is made available on the ICSP1 PICkit 3 style programming header. In order to program
a PIC16F145x device using the ICSP1 header, it is required that the "Enable Low Voltage Programming" checkbox for the
programmer device be selected in the MPLAB IDE build configuration settings. This is NOT the default setting (by default,
high voltage programming is used instead, which the PIC16F145x silicon does not support through the MCLR/D+/D- ICSP
port). This programmer option is under the "Program Options" option categories:

In addition to checking the low voltage programming check box, it is normally necessary to unplug the USB cable from the
demo board (and USB host) during the programming operation, to minimize the capacitance and potential for I/O contention
on the D+/D- pins, during the programming operation. Therefore, it is often convenient to program the microcontroller while
the LPC Dev Kit board is being powered from the ICSP programmer (such as the PICkit 3):

Alternatively, if full program and debug operations are desired (using standard high voltage programming mode), it is
recommended to connect the ICSP programmer to the MCLR/RC0/RC1 programming/debug port. This is the preferred ICSP
port on the PIC16F145x devices, but they are not routed to a ICSP header on the original LPC Dev Kit Board (they are
routed to header ICSP2 on the updated revision of the board). Therefore, if you have the original board, it is suggested to
solder a new 6-pin standard male header (standard 100 mil pin spacing) to the prototyping area of the PCB, and then
connect air wires to connect up to the MCLR, VDD, VSS, RC0, and RC1 pins. When using the MCLR/RC0/RC1
programming/debug port, it is not necessary to unplug the USB cable from the host during program/debug operations, and it
is not necessary to power the board from the programmer or to use the low voltage programming mode.

Using a PIC16F145x Device on the LPC USB Dev Kit Board with the HFINTOSC+PLL+Active Clock Tuning: In order to
use the HFINTOSC + PLL + Active Clock Tuning to operate in full speed USB mode, it is necessary for the VDD
microcontroller supply rail to be stable and free of noise. However, the original LPC USB Dev Kit board does not have much
VDD rail capacitance (0.2uF total), but it has a substantial noise genering source (the MAX3232 level translator chip, which
uses build in capacitive charge pumps to generate positive voltages above VDD and negative voltages below VSS for
RS232 level communication). The charge pumping action generates a substantial ripple/noise on the VDD rail, which can
disrupt the HFINTOSC stability enough to cause USB communication issues (even though HSPLL mode is unaffected, as

1.5 Demo Board Information MLA - USB Library Help Low Pin Count USB Development Board

221

the crystal is a resonant device that is harder to disrupt by noise). To fix this, it is necessary to add additional capacitance
accross the VDD/VSS nets on the LPC USB Development kit board. A value of 1uF to 8uF, preferrably cermaic, is ideal, and
provides good smoothing of the VDD rail noise. It is therefore recommended to solder a new 1-8uF ceramic capacitor (ex:
0603 or 0805) on top of the existing capacitor C1 on the demo board, to provide the VDD noise smoothing effect. Once this
change has been made, the HFINTOSC + PLL + Active Clock Tuning may be used to successfully/reliably operate the
microcontroller in USB full speed mode. If you have a newer revision PCB, this extra capacitance will already be populated
on the PCB, and therefore, no soldering or other changes are required.

More Information

Product webpage

PIC18F14K50 webpage

PIC16F1459 webpage

1.5.2 PICDEM FS USB Board

The PICDEM FS USB Board is the development platform for the PIC18F4550 family. It includes a temperature sensor,
potentiometer, 2 buttons, 4 LEDs, and a PICtail connector.

Description

Overview

S1 - MCLR reset button

S2 - Application button

S3 - Application button

D1 - Application LED

D2 - Application LED

D3 - Application LED

D4 - Application LED

1.5 Demo Board Information MLA - USB Library Help PICDEM FS USB Board

222

D7 - Bus powered indicator - When this LED is illuminated, the board is being powered by the USB bus.

D8 - Self powered indicator - When this LED is illuminated, the board is being powered by an external power supply.

JP11 - connects RB2 of the microcontroller to the temperature sensor on the board (U4). On some revisions of the board
there is a trace shorting this jumper that needs to be cut in order to open this jumper.

More Information

Product website

1.5.3 PIC18 Starter Kit

The PIC18F Starter Kit is a feature rich board with lots of on board features for customers to work with. The board includes
an accelerometer, 2 capacitive touch buttons, 1 capacitive touch slider, 1 switch, an OLED, potentiometer, SD-card slot, and
an on board debugger.

Description

Overview

S1 - Application switch. Connected to RB0.

More Information

Product Website

Introduction Video

1.5 Demo Board Information MLA - USB Library Help PIC18F46J50 Plug-In-Module (PIM)

223

1.5.4 PIC18F46J50 Plug-In-Module (PIM)

The PIC18F46J50 PIM services as a development platform for the PIC18F46J50 family. It includes 2 LEDs and a push
button. It can also optionally be connected to the PIC18 Explorer board for access to additional features, such as
potentiometer, PICtail, temperature sensor, etc.

Description

Overview

• JP2 - This is a three-pin header with the labels, "I", "R" and "U". The "R" is an abbreviation referring to microcontroller pin,
RC2. "I" is an abbreviation referring to the "ICE" female header pin for the RC2 signal. "U" is an abbreviation for the USB
VBUS line. When the jumper is in the "R" to "I" position, the RC2 pin connects only to the ICE female header pin, just like
most of the other general purpose I/O pins. When the jumper is in the "R" to "U" position, RC2 (which is 5.5V tolerant) can
be used to sense when the USB cable has been attached to the host, and when the host is actively providing power to the
+5V VBUS line. According to the USB 2.0 specifications, no device should ever pull the D+ or D- lines high (such as with
the D+ or D- pull-up resistor) until the host actively powers the +5V VBUS line. This is intended to prevent self-powered
peripherals from ever sourcing even small amounts of power to the host when the host is not powered. Small amounts of
current could potentially prevent the host (and possibly other USB peripherals connected to that host) from fully becoming
depowered, which may cause problems during power-up and initialization. Self-powered peripherals should periodically
monitor the +5V VBUS line and detect when it is driven high. Only when it is powered should user firmware enable the
USB module and turn on the D+ (for full speed) or D- (for low speed) pull-up resistor, signaling device attach to the host.
The recommended method of monitoring the +5V VBUS line is to connect it to one of the microcontroller.s 5.5V tolerant
I/O pins through a large value resistor (such as 100 kOhms). The resistor serves to improve the ESD ruggedness of the
circuit as well as to prevent microcontroller damage if user firmware should ever unintentionally configure the I/O pin as
an output. Peripherals which are purely bus powered obtain all of their power directly from the +5V VBUS line itself. For
these types of devices, it is unnecessary to monitor when the VBUS is powered, as the peripheral will not be able to
source current on the D+, D- or VBUS lines when the host is not powered.

• JP3 - This jumper is located in series with the +5V VBUS power supply line from the USB connector. When the jumper is
removed, a current meter may be placed between the header pins to measure the board current which is being drawn
from the USB port. Additionally, by removing the jumper cap altogether, JP3 provides a means of preventing the board
from consuming USB power.

• S2 - Switch for application use. Tied to RB2.

• S4 - MCLR reset switch

• D1 - LED for application use. Tied to RE0.

• D2 - LED for application use. Tied to RE1.

More Information

Product webpage

1.5 Demo Board Information MLA - USB Library Help PIC18F47J53 Plug-In-Module (PIM)

224

1.5.5 PIC18F47J53 Plug-In-Module (PIM)

The PIC18F47J50 PIM services as a development platform for the PIC18F47J50 family. It includes 2 LEDs and a push
button. It can also optionally be connected to the PIC18 Explorer board for access to additional features, such as
potentiometer, PICtail, temperature sensor, etc.

Description

Overview

• JP2 - This is a three-pin header with the labels, "I", "R" and "U". The "R" is an abbreviation referring to microcontroller pin,
RC2. "I" is an abbreviation referring to the "ICE" female header pin for the RC2 signal. "U" is an abbreviation for the USB
VBUS line. When the jumper is in the "R" to "I" position, the RC2 pin connects only to the ICE female header pin, just like
most of the other general purpose I/O pins. When the jumper is in the "R" to "U" position, RC2 (which is 5.5V tolerant) can
be used to sense when the USB cable has been attached to the host, and when the host is actively providing power to the
+5V VBUS line. According to the USB 2.0 specifications, no device should ever pull the D+ or D- lines high (such as with
the D+ or D- pull-up resistor) until the host actively powers the +5V VBUS line. This is intended to prevent self-powered
peripherals from ever sourcing even small amounts of power to the host when the host is not powered. Small amounts of
current could potentially prevent the host (and possibly other USB peripherals connected to that host) from fully becoming
depowered, which may cause problems during power-up and initialization. Self-powered peripherals should periodically
monitor the +5V VBUS line and detect when it is driven high. Only when it is powered should user firmware enable the
USB module and turn on the D+ (for full speed) or D- (for low speed) pull-up resistor, signaling device attach to the host.
The recommended method of monitoring the +5V VBUS line is to connect it to one of the microcontroller.s 5.5V tolerant
I/O pins through a large value resistor (such as 100 kOhms). The resistor serves to improve the ESD ruggedness of the
circuit as well as to prevent microcontroller damage if user firmware should ever unintentionally configure the I/O pin as
an output. Peripherals which are purely bus powered obtain all of their power directly from the +5V VBUS line itself. For
these types of devices, it is unnecessary to monitor when the VBUS is powered, as the peripheral will not be able to
source current on the D+, D- or VBUS lines when the host is not powered.

• JP3 - This jumper is located in series with the +5V VBUS power supply line from the USB connector. When the jumper is
removed, a current meter may be placed between the header pins to measure the board current which is being drawn
from the USB port. Additionally, by removing the jumper cap altogether, JP3 provides a means of preventing the board
from consuming USB power.

• S2 - Switch for application use. Tied to RB2.

• S4 - MCLR reset switch

• D1 - LED for application use. Tied to RE0.

• D2 - LED for application use. Tied to RE1.

More Information

Product website

1.5 Demo Board Information MLA - USB Library Help PIC18F87J50 Plug-In-Module (PIM)

225

1.5.6 PIC18F87J50 Plug-In-Module (PIM) Demo Board

The PIC18F87J50 PIM services as a development platform for the PIC18F87J50 family. It includes 2 LEDs and a push
button. It can also optionally be connected to the PIC18 Explorer board for access to additional features, such as
potentiometer, PICtail, temperature sensor, etc.

Description

Overview

• JP1 - This is a three-pin header with the labels, "I", "R" and "U". The "R" is an abbreviation referring to microcontroller pin,
RB5. "I" is an abbreviation referring to the "ICE" female header pin for the RB5 signal. "U" is an abbreviation for the USB
VBUS line. When the jumper is in the "R" to "I" position, the RB5 pin connects only to the ICE female header pin, just like
most of the other general purpose I/O pins. When the jumper is in the "R" to "U" position, RB5 (which is 5.5V tolerant) can
be used to sense when the USB cable has been attached to the host, and when the host is actively providing power to the
+5V VBUS line. According to the USB 2.0 specifications, no device should ever pull the D+ or D- lines high (such as with
the D+ or D- pull-up resistor) until the host actively powers the +5V VBUS line. This is intended to prevent self-powered
peripherals from ever sourcing even small amounts of power to the host when the host is not powered. Small amounts of
current could potentially prevent the host (and possibly other USB peripherals connected to that host) from fully becoming
depowered, which may cause problems during power-up and initialization. Self-powered peripherals should periodically
monitor the +5V VBUS line and detect when it is driven high. Only when it is powered should user firmware enable the
USB module and turn on the D+ (for full speed) or D- (for low speed) pull-up resistor, signaling device attach to the host.
The recommended method of monitoring the +5V VBUS line is to connect it to one of the microcontroller.s 5.5V tolerant
I/O pins through a large value resistor (such as 100 kOhms). The resistor serves to improve the ESD ruggedness of the
circuit as well as to prevent microcontroller damage if user firmware should ever unintentionally configure the I/O pin as
an output. Peripherals which are purely bus powered obtain all of their power directly from the +5V VBUS line itself. For
these types of devices, it is unnecessary to monitor when the VBUS is powered, as the peripheral will not be able to
source current on the D+, D- or VBUS lines when the host is not powered.

• JP4 - This jumper is located in series with the +5V VBUS power supply line from the USB connector. When the jumper is
removed, a current meter may be placed between the header pins to measure the board current which is being drawn
from the USB port. Additionally, by removing the jumper cap altogether, JP4 provides a means of preventing the board
from consuming USB power.

• JP5 - This jumper provides a means of removing the LED pin loading on the RE0 and RE1 pins.

• S4 - Switch for application use. Tied to RB4.

• D3 - LED for application use. Tied to RE0.

• D4 - LED for application use. Tied to RE1.

More Information

• Product webpage

1.5 Demo Board Information MLA - USB Library Help PIC24F Starter Kit

226

1.5.7 PIC24F Starter Kit

The PIC24F Starter Kit is a feature rich board with lots of on board features for customers to work with. The board includes a
RGB LED, a USB host port, a USB device port, an OLED, 5 capacitive touch buttons, a potentiometer, and an on board
debugger.

Description

Overview

D8 - For dual role examples on the PIC24F starter kit, D8 needs to be removed. D8 allows the firmware to verify that the 5v
has been delivered to the application USB host port. This, however, is also tied to the application USB device port. With the
diode in place the controller can not determine if the 5v it sees is from the USB host port being powered or from the USB
device port on an attachment to a USB host.

More Information

Product Website

Introduction Video

1.5.8 PIC24FJ256DA210 Development Board

The PIC24FJ256DA210 development board services the PIC24FJ256DA210 family devices. It has 4 LEDs, 3 push buttons,
5 capacitive touch buttons, a USB host port, a USB device port, an USB OTG port, an RS232 port, an the ability to drive an
graphics display.

1.5 Demo Board Information MLA - USB Library Help PIC24FJ256DA210 Development Board

227

Description

Overview

S1 - Application switch. Tied to RG8 when JP13 is shorted from S1 to RG8 settings.

S2 - Application switch. Tied to RE9 when JP14 is shorted from S1 to RE9 settings.

S3 - Application switch. Tied to RB5 when JP15 is shorted from S1 to RB5 settings.

S4 - MCLR reset button. Resets the microcontroller on the board.

D1 - Application LED. Connected to RG8 when JP13 is shorted from PAD1 to RG8.

D2 - Application LED. Connected to RE9 when JP14 is shorted from PAD2 to RE9.

D3 - Application LED. Connected to RB5 when JP15 is shorted from PAD3 to RB5.

D4 - Application LED. Connected to RA7 when JP11 is shorted from 1 to 2.

JP5 - Connect USB OTG port to VBUS.

JP6 - Connect USB Host port to VBUS.

JP7 - Connect USB Device port to VBUS.

JP11 - Functionality selection for RA7.

JP13 - Functionality selection for RG8.

JP14 - Functionality selection for RE9.

JP15 - Functionality selection for RB5.

More Information

Product Webpage

1.5 Demo Board Information MLA - USB Library Help Explorer 16

228

1.5.9 Explorer 16

The Explorer 16 is the base development platform for the 16-bit processors. It has a processor header that allows various
Processor Interface Modules (PIMs) to be attached allowing the user to utilize various processors on the board. The Explorer
16 includes an LCD screen, potentiometer, EEPROM, temperature sensor, 8 LEDs, 4 push buttons, RS232 port, and the
PICtail+ expansion connectors/card-edge that allows for various add-on boards to be connected.

Description

Overview:

S1 - Reset button (MCLR)

S2 - Processor switch. This switch determines which processor is running, the processor on the board or the processor on
the Plug-In-Module (PIM).

S3, S4, S5, S6 - Application switches. For information about what pin is connected to this switch, please refer to the
information for the PIM in use.

D3 through D10 - Application LEDs. For information about what pin is connected to this LED, please refer to the information
for the PIM in use.

More Information:

1.5 Demo Board Information MLA - USB Library Help Explorer 16

229

Product webpage

1.5.9.1 PIC24FJ256GB110 Plug-In-Module (PIM)
Processor module for the PIC24FJ256GB110 family for the Explorer 16.

Description

Overview

The PIC24FJ256GB110 Plug-In-Module (PIM) is not a standalone board. It requires the use of the Explorer 16 (DM240001).
For USB applications the USB PICTail plus daughter board (AC164131) is also required.

More Information

Information sheet

1.5.9.2 PIC24FJ256GB210 Plug-In-Module (PIM)
Processor module for the PIC24FJ256GB210 family for the Explorer 16.

Description

Overview

The PIC24FJ256GB210 Plug-In-Module (PIM) is not a standalone board. It requires the use of the Explorer 16 (DM240001).
For USB applications the USB PICTail plus daughter board (AC164131) is also required.

For USB operation, jumpers JP1, JP2, and JP3 should be shorted from pins 1 to 2.

More Information

Information sheet

1.5.9.3 PIC24FJ64GB004 Plug-In-Module (PIM)
Processor module for the PIC24FJ64GB004 family for the Explorer 16.

Description

Overview

S1 - Select which programming pins are going to be used on the microcontroller. The "PGX1" setting must be used for USB
operation.

J1 - A/D setting for RC1 (center tap). Setting the jumper to "POT" connects the pin to the potentiometer on the Explorer 16.
Setting the jumper to "PT+" connects the pin to the PICTail+ connector on the Explorer 16.

1.5 Demo Board Information MLA - USB Library Help Explorer 16

230

J2 - A/D setting for RC0 (center tap). Setting the jumper to "Temp" connects the pin to the temperature sensor on the
Explorer 16. Setting the jumper to "PT+" connects the pin to the PICTail+ connector on the Explorer 16.

J3 - I/O selection for RA8 (center tap). Setting the jumper to "EEPROM CS" connects the pin to the chip select line of the
EEPROM on the Explorer 16. Setting the jumper to "PT+" connects the pin to the PICTail+ connector on the Explorer 16.

More Information

Plug-In-Module (PIM) Information Sheet

1.5.9.4 PIC24EP512GU810 Plug-In-Module (PIM)
Processor module for the PIC24EP512GU810 family for the Explorer 16.

Description

More Information

Information Sheet

1.5.9.5 dsPIC33EP512MU810 Plug-In-Module (PIM)
Processor module for the dsPIC33EP512MU810 family for the Explorer 16.

Description

More Information

Information Sheet

1.5.9.6 USB PICTail Plus Daughter Board
The USB PICtail+ board is a add-on side card for the Explorer 16 that adds a USB device, USB host, and USB OTG port to
the Explorer 16 capability.

Description

Overview

1.5 Demo Board Information MLA - USB Library Help Explorer 16

231

JP1 - Connects the VBUS pin of the mini-B connector to the VBUS pin of the microcontroller.

JP2 - Connects the VBUS pin of the A connector (and associated circuitry) to the VBUS pin of the microcontroller.

JP3 - Connects the VBUS voltage detection resistor divider circuit to the microcontroller (pin varies depending on the
processor module).

JP4 - Connects the VBUS pin of the micro-A/B connector (and associated circuitry) to the VBUS pin of the microcontroller.

This board has 3 USB connectors on it.

• The mini-B connector is for USB device operation. For use in this mode JP1 should be shorted and JP2, JP3, and JP4
should be open.

• The A connector is for USB host support. JP2 should be short for this mode. JP3 can be shorted to enable VBUS voltage
sensing. Some demos may require this feature. JP1 and JP4 should be open.

• The micro-A/B connector is for USB OTG operation. JP4 should be short and JP1, JP2, and JP3 should be open.

More Information

Product website

Ordering information

1.5 Demo Board Information MLA - USB Library Help Explorer 16

232

1.6 Demos
A description of how to what each demo is and how to run it.

Description

1.6.1 Device - Audio Microphone Basic Demo

This demo shows how to implement a simple USB microphone.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/audio_microphone/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a USB Microphone Device. The demo emulates a PCM, 16 bits/Sample,
8000 Samples/ second, mono Microphone. Connect the device to the computer. Open a sound recording software package.
Each sound recording software interface is different so the following instructions may not apply the to software package you
are using. Please refer to the user’s manual for the software package you are using for more details of how to configure that
tool for Sound recording.

Using Sound Recorder [Windows Computers]

Open Sound Recorder from Start->Programs->Accessories->Entertainement->Sound Recorder. Click on File-> Properties.

Now the ‘Properties for Sound’ Window gets opened as shown below. Click on ‘Convert Now’ button.

1.6 Demos MLA - USB Library Help Device - Audio Microphone Basic Demo

233

This opens up the ‘Sound Selection’ window as shown below.

Change the ‘Attributes’ to “8.00kHz, 16 Bit, Mono 15kb/sec” in the ‘Sound Selection’ Window.

Click on OK button on the ‘Sound Selection’ Window. Click OK button on the ‘Properties for Sound’ Window.

Click on the Record Button on the Sound Recorder.

At this point you can press the pushbutton on the demo board and it will record a voice that is stored in the USB device.
Once you finish with the recording click on the ‘Play’ button to play the recorded voice which can be heard through your
computer Speaker.

1.6 Demos MLA - USB Library Help Device - Audio MIDI Demo

234

1.6.2 Device - Audio MIDI Demo

This demo shows how to implement a simple bi-directional USB MIDI device.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/audio_midi/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a USB MIDI device. Connect the device to the computer. Open a MIDI
recording software package. Each MIDI recording software interface is different so the following instructions may not apply
the to software package you are using. Please refer to the user’s manual for the software package you are using for more
details of how to configure that tool for a USB MIDI input.

In this demo each time you press the button on the board, it will cycle through a series of notes.

1.6.2.1 Garage Band '08 [Macintosh Computers]
This section shows how to run the MIDI demo using GarageBand '08.

Description

Open Garage Band. If you haven’t opened Garage Band before you will see an opening window. Select “Create New Music
Project”

1.6 Demos MLA - USB Library Help Device - Audio MIDI Demo

235

The next window will prompt you for information about the song. Change any of the information is desired. Click “Create”
when done.

The Garage Band main window will open. In this window there should be a single default track if the USB device is already
attached. At this point you can press the pushbutton on the demo board and it will cycle through a series of notes and play
these notes through the computer speakers.

1.6 Demos MLA - USB Library Help Device - Audio MIDI Demo

236

1.6.2.2 Using Linux MultiMedia Studio (LMMS) [Linux and
Windows Computers]

This section shows how to run the MIDI demo using Linux MultiMedia Studio (LMMS).

Description

In this example we will be using Linux MultiMedia Studio (LMMS) available at http://sourceforge.net/projects/lmms/. Install
LMMS. Attach the demo board to the computer. Make sure to attach the USB Audio MIDI example board to the computer
before opening LMMS as LMMS polls for USB MIDI devices upon opening but may not find the devices attached after the
program is opened.

Click on the instrument plug-in button and click and drag the desired instrument plug in to the song editor window.

1.6 Demos MLA - USB Library Help Device - Audio MIDI Demo

237

Once the new instrument is available in the song editor window, “click on the actions” for this track button. Select the “MIDI >
Input > USB Audio Device” option.

If you open this option again you should see a green check mark indicating that the device is selected as the input.

At this point you can press the pushbutton on the demo board and it will cycle through a series of notes and play these notes
through the computer speakers.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

238

1.6.3 Device - Boot Loader - HID

An example boot loader using the HID device class.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Operation

Included with the MCHPFSUSB HID Bootloader firmware is a simple PC-side host application. This application implements a
basic set of commands, allowing a user to invoke the bootloader on an appropriately-programmed PIC microcontroller and
program new application code. The bootloader host application interface looks as shown in figure below:

Using the application is straightforward. After launching the host application, connect the hardware containing a PIC
microcontroller with the bootloader already programmed to the host PC with a USB cable. The host responds by
enumerating the hardware as a HID class device; the host application responds with the message ‘Device Attached’ and
enabling several options.

NOTE: The host application, like the rest of the HID bootloader, is an example application; it should be thought of as a
framework for development. Users may want to consider modifying the interface or its functions to suit their own purpose.

The host application supports the following functions:

• Import Firmware Image: selects a HEX image file on the PC to be loaded onto the microcontroller, using the standard
Windows File Open dialog. The file is stored in the host’s internal buffer.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

239

• Erase/Program/Verify Device: This is a 3-step operation.

1) It first erases the Flash program memory on the target microcontroller. If “Allow Configuration Word Programming” is
selected, the configuration bits or flash configuration words (depending on the device) will also be erased.

2) It then programs the target microcontroller with the recently selected HEX file.

3) Finally it compares the program image on the target to a HEX file image stored in the host’s buffer to complete verify
operation.

• Reset Device: issues a RESET instruction to the target microcontroller. This is typically done following successful
erase/program/verify operation, so that the application can begin executing the newly reprogrammed firmware image.

The “Program” file menu option has a “Settings…” which contains checkboxes allowing the user to select what type of
program memory regions should be programmed on the erase/program/verify operation. This allows for deselecting
EEPROM from being programmed for example. This also allows for enabling/disabling reprogramming of the configuration
bits (and therefore last page of flash memory on PIC18FxxJxx devices).

NOTE: The SD Card PICtail™ Daughter Board (Microchip Direct: AC164122) uses the RB4 I/O pin for the card detect (CD)
signal when used with the PIC18F87J50 FS USB Demo Board (PIM), and is actively driven by the PICtail. The active drive
overpowers the pull up resistor on the RB4 pushbutton (on the PIC18F87J50 FS USB Demo Board). As a result, if the
PIC18F87J50 is programmed with the HID bootloader, and an SD Card is installed in the socket when the microcontroller
comes out of reset, the firmware will immediately enter the bootloader (irrespective of the RB4 pushbutton state). To exit
the bootloader firmware, remove the SD Card from the SD Card socket, and tap the MCLR button. When the SD Card is
not plugged in, the PICtail will drive the card detect signal (which is connected to RB4) logic high, which will enable the
bootloader to exit to the main application after coming out of reset. Once the main application firmware is operating, the SD
Card can be plugged in. The SD Card is “hot-swappable” and should be recognized by the host upon insertion. To avoid
this inconvenience when using the bootloader with the PICtail, it is suggested to modify the bootloader firmware to use
some other I/O pin for bootloader entry, such as RB0 (which has a pushbutton on it on the HPC Explorer board).

1.6.3.1 Customizing for an Application
This section covers various topics that should be considered when implementing a boot loader. It also discusses possible
changes in behavior from the default behavior that a user might want to implement in their boot loading solution.

Description

1.6.3.1.1 Importance of Change the VID/PID
Discusses why it is critical to change the VID/PID in the example code to one unique to the product being developed.

Description

The USB Vendor ID (VID) and Product ID (PID) are special numbers (16-bits each) that all USB devices implement. These
numbers are especially important for bootloader operation, since they are the primary identifying numbers that a PC
application (such as the HID bootloader host/PC GUI program) needs in order to “find” and connect up to the correct USB
device on the bus (a USB root port can have up to ~127 USB devices attached to it, and some means must be used to “find”
specific products).

When implementing a USB device with a bootloader, it is especially important to change the VID/PID value from the
original/default value as distributed in the example firmware/PC application, to new values that are unique for your
application product line. This is important, to ensure that no unintended host/PC application software can ever unintentionally
connect up to your USB device, and reprogram it with an incorrect/incompatible USB firmware image, designed for some
other manufacturer’s product.

The VID/PID values can be modified in the bootloader firmware project by editing the USB device descriptor in the
usb_descriptors.c file. Once the value has been modified, the host/PC GUI bootloader program that performs the firmware

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

240

updating must also be modified, so as to search for and connect up to the proper USB device with the new VID/PID. In the
“\usb\device\bootloaders\utilities\qt5_src\Bootloader” host/PC GUI source code, the VID/PID values can be changed by
editing the #define VID and #define PID constants (which currently resides in the Comm.h file).

1.6.3.1.2 Safe Boot Loading Considerations
This section discusses some items to consider to avoid common pitfalls when implementing a boot loading solution.

Description

When an application implements self reprogramming capability, it is strongly recommended to also simultaneously
implement provisions to ensure the microcontroller does not execute at voltages that are too low for the configured
frequency (ex: don’t violate the voltage versus frequency graph in the datasheet). Overclocking the microcontroller (ex: by
running a full frequency, but at a voltage below the required minimum from the device datasheet) can result in possible
instruction op-code mis-fetch or mis-execution. This can result in unexpected code flows, allowing normally unreachable
code to get reached. This can potentially result in unintended activation of bootloader/flash memory self programming code,
possibly causing the erasure or corruption of important program memory. This potential problem is best avoided by
implementing provisions in both the bootloader firmware and the application firmware project, to either outright prevent all
code execution during the low/inadequate voltage condition (ex: by enabling and using BOR, and/or putting the
microcontroller to sleep mode), or by clock switching to a low enough frequency at runtime, so as to always meet the
datasheet voltage versus frequency requirements.

Additionally, special consideration is needed if enabling the watchdog timer (WDT) feature of the microcontroller. The WDT
can be used in applications with a bootloader, but the timeout period must always be configured to be longer than the worst
case flash page erase and block programming duration. Failure to do so may result in unexpected timeout/reset occurring
during the erase/program sequence, leading to unintended NVM contents.

1.6.3.1.3 Configuration Bits
Configuration bits and their impact on boot loading applications.

Description

Make certain that all configuration bit settings between the bootloader firmware project, and the application firmware project,
match 100% exactly. If they do not match, modify one or both projects until they do. The microcontroller hardware only
implements one set of configuration bits, and therefore, the configuration bit settings are always shared between the
bootloader firmware and application firmware projects.

Attempting to declare two sets of configuration bits (that are not 100% exactly the same) can prevent the application and
bootloader firmware image .hex files from being successfully merged when using the loadable project feature in MPLAB X
(see the Merging Bootloader and Application Project Output section).

By default, the HID bootloader does not reprogram the microcontroller config bits during an erase/program/verify sequence.
Reprogramming the configuration bits is generally not recommended, since doing so is generally considered much more
“dangerous” to the application, than reprogramming the normal application firmware code. When reprogramming the
configuration bits, it is very easy to leave the application in a permanently broken (“bricked”) condition, if any of the new
configuration bit settings are not 100% compatible with the hardware of the application. Certain config bit settings, such as
the oscillator, BOR, extended instruction set, WDT, etc., are especially hazardous, since changing them can easily leave
both the bootloader firmware and application firmware images in a non-operable (or non-USB operable) state, thereby
preventing further re-programming operations.

However, if absolutely necessary, the HID bootloader firmware and PC GUI applications do support reprogramming of the
configuration bits. Doing so requires a special PC GUI/bootloader firmware “unlock” sequence to be executed. This occurs
when the host/PC GUI program sends the “UNLOCK_CONFIG” bootloader command to the firmware. For applications that
will support config bit reprogramming, it is recommended to hide the option from the PC GUI program, so that it is not
accessible to end consumers, except in special circumstances when truly necessary.

For some USB microcontrollers (namely PIC18FxxJxx USB microcontrollers), the configuration bits are stored in normal
program flash memory, at the end of the application firmware program space. On these microcontrollers, the configuration

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

241

bits are therefore stored on the same flash memory erase page as other (non-critical) program memory space that could
theoretically be used by the application program. On these devices, it is generally recommended to modify the linker settings
for the application program image, so that the application project is built so that it does not use any of the program memory
that is shared with the flash memory erase page containing the configuration bits (ex: the last implemented flash memory
page). This ensures that the application firmware image can be fully re-programmed, without requiring the configuration bit
reprogramming mode to be enabled (by the UNLOCK_CONFIG) command.

NOTE: The HID bootloader PC application and firmware will not reprogram the last page of flash memory on these
PIC18FxxJxx devices (which is shared with the config bits), unless the user configures the bootloader PC GUI program to
perform config bit reprogramming operations, with the UNLOCK_CONFIG command. This restriction only applies to the
specific microcontrollers that implement the configuration bits in the program flash memory space.

1.6.3.1.4 Application Version Information
This section describes how to use the application version feature of the boot loader example.

Description

The application firmware version word resides in the application space, but it is used by the bootloader to read out the
application firmware version number. This makes it potentially possible to make a PC GUI that can check the currently
programmed application firmware image version and determine if the user is trying to program an older .hex file than what
was already programmed into the device. If a custom PC GUI application is used to perform the firmware updates, the GUI
application software can then use this information to warn the user about programming an older image than the existing
image, block the user from performing the operation, etc.

The Application Firmware Version Word can be read by the bootloader host/PC GUI software using the Extended Query
Command Response, described below.

In order to fully implement and use the application firmware version word feature, the application firmware image must place
a constant in the flash memory, at the magic version word address. For PIC18 targets, this would typically be done with code
in the application firmware project, such as:

Version Word with XC8

const unsigned int VersionWord @ 0x1016 = 0x0100; //Initialize to the appropriate
version value

Version Word with C18

#pragma code VersionWordSection=0x1016
rom unsigned int VersionWord = 0x0100; //Initialize to the appropriate version value
#pragma code

1.6.3.1.5 Host Application Responsibilities
Discusses some of the responsibilities of the host application. These tasks must be performed in order to insure proper boot
loading operation.

Description

In order to minimize the bootloader firmware program memory size and complexity, the bootloader is architected to perform
the most complex tasks in the host host/PC GUI software. Things such as .hex file parsing, and issuing commands, are
therefore the responsibility of the host/PC software. Additionally, the firmware is currently written in such a way as to impose
the following restrictions on the host/PC GUI software:

1. When the PROGRAM_DEVICE command is used, the total program data payload sent prior to the next
PROGRAM_COMPLETE command is sent, must be an exact integer number of program instructions. In other words for
PIC16 and PIC18 devices, the total program memory programmed must be an even number (since program instructions
are 2 bytes wide on these architectures). Sending an odd number of total data payload bytes is not supported, and
therefore should be padded with 0xFF (the blank/default value of the flash memory after an erase operation) if necessary
to achieve a total PROGRAM_DEVICE payload quantity (spanning multiple packets) that is even.

2. When multiple PROGRAM_DEVICE packets are sent to the device, the addresses sent must always be contiguous (ex:
second packet address must be equal to first packet’s address + the payload size), growing from lowest address to

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

242

highest address. Non-contiguous address jumping is only allowed, if the host/PC program sends the
PROGRAM_COMPLETE command in between the non-continuous address regions.

3. After sending one or more PROGRAM_DEVICE packets, the host/PC software must send the PROGRAM_COMPLETE
command once the end of the region is reached (of if it wants to abort operation of the entire region). The microcontroller
firmware is allowed to buffer up received bytes intended for programming, without necessarily committing all of them to
the non-volatile memory, until the PROGRAM_COMPLETE command is issued by the host/PC software.

1.6.3.2 Implementation Details
This section discusses the lower level details of the boot loader and how it was implemented.

Description

1.6.3.2.1 Command Set
Details the commands implemented in the HID boot loader example.

Description

The host application GUI program communicates with the USB HID bootloader firmware using a set of 9 commands. The
host application is the “master” of the bootloading operation, and is responsible for issuing commands to the bootloader
firmware that is responsible for fulfilling the requests.

All commands that the host application sends to the microcontroller firmware are fixed 64-byte USB packets that are sent
over the HID interrupt OUT endpoint to the device. Some commands that the host software sends to the microcontroller
firmware require that the firmware responds with a fixed 64-byte response packet on the HID interrupt IN endpoint, while
other commands require no response.

The first byte of the packet is always the command for the current packet. The remaining 63 bytes are command-specific
information, where required. The commands are listed and summarized below.

Command Byte
(Hex)

Command Device Response Packet
Expected

02 QUERY_DEVICE Yes

03 UNLOCK_CONFIG No

04 ERASE_DEVICE No

05 PROGRAM_DEVICE No

06 PROGRAM_COMPLETE No

07 GET_DATA Yes

08 RESET_DEVICE No

09 SIGN_FLASH No

0C QUERY_EXTENDED_INFO Yes

1.6.3.2.1.1 QUERY_DEVICE
The QUERY_DEVICE command (0x02) is a request from the host to determine the valid memory ranges that are allowed to
be programmed, among other things about the microcontroller.

Description

The QUERY_DEVICE command (0x02) is a request from the host to determine the valid memory ranges that are allowed to
be programmed, among other things about the microcontroller. This information can be obtained by the PC GUI application
by sending the QUERY_DEVICE command, and then reading back the response packet which will describe the device’s
programmable regions (ex: application firmware, EEPROM, and User ID programmable region addresses/size). The

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

243

command when sent to the device firmware has no data payload.

Table: QUERY_DEVICE command format (when sent from the host to the device).

Packet Byte Content

0 QUERY_DEVICE (0x02)

1-63 (padding – init to 0x00)

After the QUERY_DEVICE command packet has been sent to the device firmware, the device responds with an USB IN
(that is, IN to the host) packet, with the format:

Table: QUERY_DEVICE response format (sent from USB device firmware to host PC GUI application)

Packet Byte Content

0 QUERY_DEVICE (0x02)

1 bytesPerPacket

2 deviceFamily

3 Type1

4-7 Address1

8-11 Size1

12 Type2

13-16 Address2

17-20 Size2

… …

48 Type6

49-52 Address6

53-56 Size6

57 versionFlag

58-63 (padding)

The bytesPerPacket indicates how many data bytes are sent in the write or read command data payload section.

The deviceFamily parameter indicates which device family (ex: PIC18, PIC24, PIC32, etc.) that is the current target. Type1,
Type2 etc. indicate the type of memory (ex: flash, EEPROM, User ID, config bits) that is targeted by this memory range
description.

Address1, Address2 etc. is the 32-bit starting address of the data range (in little endian format). Size1, Size2 etc. is the size
of memory range in bytes (in 32-bit unsigned integer, little endian format).

The versionFlag is an indicator that is used to tell the PC GUI program that the version is v1.01 or later, and that it supports
the QUERY_EXTENDED_INFO command (v1.00 based bootloader firmware did not implement this particular command).

For each memory range a new range description is added. A total of 6 memory ranges will fit into the 64-byte packet. After
the entry of the last valid data field, the Type parameter for the next entry should be 0xFF (End of List).

The padding bytes should be treated as reserved and should be initialized to 0x00.

Table: Parameters for QUERY_DEVICE response deviceFamily field

Value Family

0x01 PIC18

0x02 PIC24F

0x03 PIC32

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

244

0x04 PIC16

Table: Parameters for QUERY_DEVICE response type field

Value Family

0x01 Program Memory

0x02 Data EEPROM

0x03 Config Words

0x04 User ID

0xFF End of list

1.6.3.2.1.2 UNLOCK_CONFIG
The UNLOCK_CONFIG (0x03) command is used to unlock protected sections of the program memory.

Description

The UNLOCK_CONFIG (0x03) command is used to unlock protected sections of the program memory (ex: configuration bit
reprogramming, and on PIC18FxxJxx devices, reprogramming of the last page of program flash memory). The Lock/Unlock
field allows the bootloader to either lock or unlock the configuration and other sensitive regions. A value of 0x00 unlocks the
configuration range, and a value of 0x01 locks it.

This command will cause the QUERY_DEVICE results of the device to change. To re-discover the valid memory ranges,
issue a second QUERY_DEVICE command.

This command does not directly have an associated response (although the host application is responsible for sending
another QUERY_DEVICE request, which will have a response).

Table: UNLOCK_CONFIG command format

Packet Byte Content

0 UNLOCK_CONFIG (0x03)

1 Lock (0x01) / Unlock (0x00)

2-63 (padding – init to 0x00)

1.6.3.2.1.3 ERASE_DEVICE
The ERASE_DEVICE (0x04) command erases all of the reprogrammable memory regions indicated by the response to the
QUERY_DEVICE command.

Description

The ERASE_DEVICE (0x04) command erases all of the reprogrammable memory regions indicated by the response to the
QUERY_DEVICE command. If it is necessary to erase the protected memory regions, issue the UNLOCK_CONFIG
command before the ERASE_DEVICE command.

The command does not have any data payload or associated response. Typically, the host application would issue a
QUERY_DEVICE following the ERASE_DEVICE command, as a means to “poll” for when the erasing process inside the
microcontroller has completed (since the firmware doesn’t respond to the QUERY_DEVICE command until the internal erase
operation completes).

Table: ERASE_DEVICE command format

Packet Byte Content

0 ERASE_DEVICE (0x04)

1-63 (padding)

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

245

1.6.3.2.1.4 PROGRAM_DEVICE
The PROGRAM_DEVICE (0x05) command sends the data that is going to be written to the device.

Description

The PROGRAM_DEVICE (0x05) command sends the data that is going to be written to the device. Since this command has
a maximum data payload of 58 bytes, it is necessary to issue multiple commands to program a single area of memory.

The data payload section of the packet is packed from the end, with the padding following the Size field. Ex: If the host
sends 4 bytes of data to be programmed, the resulting packet would have 54 bytes of padding followed by four bytes data.

This command does not have any associated response.

Table: PROGRAM_DEVICE command format

Packet Byte Content

0 PROGRAM_DEVICE (0x05)

1-4 32-bit address to program (little endian)

5 Size (1-58 bytes)

6-(n) Padding (0-57 bytes)

(n+1) Data Payload

1.6.3.2.1.5 PROGRAM_COMPLETE
The PROGRAM_COMPLETE command (0x06) is used to indicate to the device that the host program is finished sending
contiguous address PROGRAM_DEVICE commands.

Description

The PROGRAM_COMPLETE command (0x06) is used to indicate to the device that the host program is finished sending
contiguous address PROGRAM_DEVICE commands. This is required in case the device has any remaining bytes buffered
that it needs to commit to NVM, before a new memory address range can begin to be address/programmed. Always issue
this command after the last PROGRAM_DEVICE command is sent for any given memory region, or if the
PROGRAM_DEVICE address will contain a non-contiguous jump (ex: because the .hex file contains a blank region in
between implemented code sections, as one example).

The command does not have any data payload or associated response.

Table: PROGRAM_COMPLETE command format

Packet Byte Content

0 PROGRAM_COMPLETE(0x06)

1-63 (padding)

1.6.3.2.1.6 GET_DATA
The GET_DATA (0x07) command reads the requested data from the device.

Description

The GET_DATA (0x07) command reads the requested data from the device. This command is normally used to allow the
host/PC GUI software to perform programming verification operations, by reading back a program region that has just
recently been reprogrammed (and check it against the original input .hex file contents for that location). The Size field is the
number of bytes to be read from the device.

Table: GET_DATA command format (sent from host to device)

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

246

Packet Byte Content

0 GET_DATA(0x07)

1-4 Address

5 Size (1-58 bytes)

6-63 (padding)

The response to the GET_DATA command is almost identical to the PROGRAM_DEVICE command format. The address
and size fields of the response packet must match the command packet requesting the data.

Table: GET_DATA response format (sent from device to the host)

Packet byte Content

0 GET_DATA(0x05)

1-4 Address

5 Size (1-58 bytes)

6-(n) Padding (0-57 bytes)

(n+1) Data Payload

1.6.3.2.1.7 RESET_DEVICE
The RESET_DEVICE (0x08) command reads the requested data from the device.

Description

The RESET_DEVICE command (0x08) causes the device to issue a software reset. The command does not have any data
payload or associated response. This command is typically used to effectively switch from firmware update mode back into
application run mode.

Table: RESET_DEVICE command format (sent from host to device)

Packet Byte Content

0 RESET_DEVICE(0x08)

1-63 (padding)

1.6.3.2.1.8 SIGN_FLASH
The SIGN_FLASH command (0x09) causes a special flash signature word to be programmed at a fixed address in the flash
memory.

Description

The SIGN_FLASH command (0x09) causes a special flash signature word to be programmed at a fixed address in the flash
memory. The command does not have any data payload.

Table: SIGN_FLASH command format (sent from host to device)

Packet Byte Content

0 SIGN_FLASH(0x09)

1-63 (padding)

This command should only be issued once, after a fully completed (and successful) erase/program/verify operation on all
memory regions intended to be reprogrammed. The command should be followed by a QUERY_DEVICE command so as to
‘poll’ for the completion of SIGN_FLASH command request.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

247

1.6.3.2.1.9 QUERY_EXTENDED_INFO
The QUERY_EXTENDED_INFO command (0x0C) is used by the host PC application to get additional info about the device,
beyond the basic NVM layout provided by the QUERY_DEVICE command.

Description

The QUERY_EXTENDED_INFO command (0x0C) is used by the host PC application to get additional info about the device,
beyond the basic NVM layout provided by the QUERY_DEVICE command.

Table: QUERY_EXTENDED_INFO command format

Packet Byte Content

0 QUERY_EXTENDED_INFO

1-63 (padding)

The response packet to the QUERY_EXTENDED_INFO command is microcontroller architecture specific (ex: different
format for PIC18 versus PIC24 targets). See the the processor specific sections for the responses for each specific system.

1.6.3.2.2 Boot Loader Entry
This section discusses the methods of boot loader entry that are implemented in the example projects.

Description

When an application implements self reprogramming capability with a bootloader, some method needs to be implemented so
as to be able to enter into the bootloader “firmware update mode” (as opposed to the standard application run mode, where
self reprogramming is normally not performed).

There are lots of ways to end up in boot loader mode. The examples provided implement two possible methods for entry into
boot loader mode:

1. An I/O pin check at power-up/after any reset (ex: a user pressing a pushbutton attached to a general purpose input pin).

2. Software entry from the application run mode, into the bootloader firmware update mode, via an absolute jump to address
0x001C. This can be accomplished by receiving some application specific stimulus (ex: a custom command from a PC GUI
program intended to be used in conjunction with the USB application), and then in the firmware, executing an appropriate
goto instruction.

1.6.3.2.2.1 Input Button/Hardware Entry
Discusses hardware entry into boot loader mode.

Description

The HID bootloader firmware occupies the hardware reset vector of the microcontroller (ex: the reset vector is 0x0000, which
is part of the HID bootloader program memory space). During boot up of the microcontroller, firmware execution will
therefore begin from within the bootloader firmware project.

Early in the boot up sequence, the HID bootloader firmware can optionally perform a general purpose I/O pin check, which
would typically be connected to an external push button and pull up (or pull down) resistor. If the I/O pin is in the “active”
state (ex: user is actively pressing a button), as defined by the application, the HID bootloader firmware can decide to stay in
the “firmware update mode” and can therefore hold off normal execution of the application run mode image. If however the
I/O pin is in the inactive state (ex: button not pressed), then the boot up routine would normally decide to execute in
application run mode, and would perform a jump to the remapped application image reset vector (see Memory Map
Overview section).

The I/O pin check method is the most rugged method of entering the firmware update mode, since it does not require the
application firmware image to be intact (at all) to get into the bootloader mode. However, software entry is also possible and
may be more convenient in applications that do not have user exposed pushbutton(s) available.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

248

The I/O pin check entry method into the firmware update mode is optional, and can be disabled if entry into the bootloader
will only be performed by using the software entry method.

1.6.3.2.2.2 Software/Application Entry
Discusses software entry (entry from application) into boot loader mode.

Description

Optionally, the HID bootloader firmware may be configured to allow entry into the bootloader firmware update mode via
software entry at application runtime. This would typically be performed by:

1. Allowing the microcontroller to boot up into normal application run mode (as opposed to firmware update mode).

2. While in application run mode, some application specific event occurs, whereby the application decides it wants to switch
into firmware update mode.

3. The firmware executes an absolute “goto” instruction to jump to the software entry point into the HID bootloader (0x001C
for PIC16 and PIC18 based projects).

4. The bootloader begins executing and keeps the processor in application firmware update mode, until the user has
finished programming a new application run mode firmware image.

The software entry method stimulus event (step #2 above) is application specific, and needs to be implemented in the
application firmware image project (ex: the code associated with it does not reside in the bootloader firmware program
space). Typically, this would be implemented by having some custom host/PC application GUI program that sends a custom
command to the application firmware image (in normal “application run mode” over the normal application USB endpoints),
letting it know it should switch into the HID bootloader firmware update mode.

The software entry method is generally not as “rugged” as the I/O pin check entry method however. The software entry
method necessarily requires that the application firmware image be intact and functional, prior to receiving the stimulus
needed to switch into the firmware update mode. Therefore, programming a non-functional application firmware image into
the microcontroller, could prevent further entry back into the firmware update mode (needed for re-programming another
application firmware image). This creates a so called “chicken and egg” scenario, where recovery is not possible (without
reprogramming the microcontroller with a conventional ICSP™ based programming tool, such as the PICkit 3 or MPLAB ICD
3 programmer/debugger devices).

However, some recoverability in the event of failed reprogramming sequences, such as the case of sudden power loss or the
user unplugging the USB cable during the erase/program/verify sequence, is possible. This is achieved through the “Flash
Signature Process”.

The software based entry method into the bootloader firmware update mode is optional, and is not mutually exclusive with
the I/O pin check method. Applications may choose to use either or both entry methods as desired. The software entry
method is always available (even if not used). The I/O pin entry method can be enabled or disabled based on the
usb_config.h settings in the HID bootloader firmware project.

If the software entry method will be used, the entry into the firmware update mode can be accomplished by executing the
appropriate software entry routine.

Software Entry for PIC16 Devices

#asm
 movlp 0x00 //most significant bits of dest, needed for PIC16 devices
 goto 0x001C
#endasm

Software Entry for PIC18 Devices

#asm
 goto 0x001C
#endasm

The above assumes the XC8 compiler is used. If the MPLAB C18 compiler is used instead, the #asm and #endasm should
be changed to _asm and _endasm respectively.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

249

NOTE: When the "application" image is executing, the application may jump into firmware update mode by executing the
appropriate goto instruction. Before doing so however, the firmware should configure the current clock settings to be
compatible with USB module operation, if they are not already. Once the goto 0x001C has been executed, the USB device
will detach from the USB bus (if it was previously attached), and will re-enumerate as a HID class device with a new
VID/PID (adjustable via usb_descriptors.c settings in bootloader firmware), which can communicate with the associated
USB host software that loads and programs the new application .hex file.

1.6.3.2.3 Processor Specific Implementation Details
A boot loader is tied much closer to hardware specific features (core, tools, etc.) than most applications. As such, many
features of the boot loader are part specific. This section covers sections that are part specific, and how to make part specific
customizations.

Description

A boot loader is tied much closer to hardware specific features (core, tools, etc.) than most applications. As such, many
features of the boot loader are part specific. This section covers sections that are part specific, and how to make part specific
customizations.

1.6.3.2.3.1 PIC16 and PIC18
This section covers the PIC18 and PIC16 product line USB boot loaders.

Description

This section covers the PIC18 and PIC16 product line USB boot loaders.

1.6.3.2.3.1.1 Memory Map

Discussion of the PIC16/PIC18 memory map and how it is utilized in the USB boot loader.

Description

As configured by default, PIC16 and PIC18 USB HID bootloader uses the flash memory mapping as shown the figure below:

Memory Map

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

250

The figure below shows the table with currently implemented memory addresses for PIC16 and PIC18 USB bootloaders.

Actual flash memory address implementation values

Let us examine each section in the memory mapping closely:

1. Reset Vector – The reset vector is defined by hardware. This is located at address 0x0000. Any reset to the CPU will go
to the reset vector. The main job of the reset vector is to jump to the code that needs to be run. In the case of a
bootloader, this means jumping to the bootloader code (4)).

2. Interrupt Handler Vector – This is another section that is defined by the hardware. PIC18F devices have two interrupt

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

251

vectors, high priority interrupt vector and low priority interrupt vector, and they are located at 0x0008 and 0x0018
respectively. PIC16F devices have one interrupt vector located at 0x0004.

3. Bootloader Absolute Entry – This is the absolute entry point into the bootloader firmware, so application projects can jump
into bootloader mode at runtime. The entry address that is currently set in the PIC18 and PIC16 bootloader is 0x001C.

4. Bootloader code – This is where the bootloader code resides. This section handles all of the loading of the new
application code.

5. User Remapped Reset Vector – This section is defined by the bootloader. This is the remapped reset vector address that
indicates start of the main application code.

6. User Remapped Interrupt Vector – Since the hardware interrupt vector is located in the bootloader space, the bootloader
must remap all of the interrupts to the application space. This is done using user remapped interrupt vector. In PIC16 and
PIC18 bootloader implementations, user remapped interrupt vector(s) are defined in the bootloader code.

7. Application code – This section is where the main application code is located.

8. Flash Signature Word – This is the address in program memory in Application Space where Flash Signature Word is
located. This is a special program memory word that gets programmed (only after the entire erase/program/verify process
is completed successfully) with a known value, and indicates to the bootloader code that the application firmware image is
fully intact. It is necessary for the flash signature word to be located on the very first erase page during the erase
sequence, and must also be the very last portion of program memory that gets re-programmed. In the current
implementation, the Flash Signature Word is located within the application program memory space, at a specific fixed
address. Additional details on Flash Signature process are described in the Flash Signature section.

9. Application Firmware Version Word – This word also resides in the application space, but it is used by the bootloader
firmware to read out the application firmware version number. In the current implementation, this word is located at fixed
address in the application space. Additional details on Application Firmware Version Word are described below.

1.6.3.2.3.1.2 QUERY_EXTENDED_INFO Response

This section discusses the results returned by the QUERY_EXTENDED_INFO command for the PIC16/PIC18 devices.

Description

QUERY_EXTENDED_INFO is a command that may be sent from the PC GUI application controlling the bootloading
process, to the bootloader firmware. This command is only supported in bootloader firmware version 1.01 or later.

When the firmware receives this command from the host, the firmware is obligated to send back a response packet on the
HID interrupt IN endpoint. For PIC16 and PIC18 devices, the QUERY_EXTENDED_INFO has the following structure (note:
format is architecture specific, and will not necessarily be the same for devices identifying themselves as PIC24 or other
devices):

//Structure for the QUERY_EXTENDED_INFO command (and response)
 struct{
 unsigned char Command;
 unsigned int BootloaderVersion;
 unsigned int ApplicationVersion;
 unsigned long SignatureAddress;
 unsigned int SignatureValue;
 unsigned long ErasePageSize;
 unsigned char Config1LMask;
 unsigned char Config1HMask;
 unsigned char Config2LMask;
 unsigned char Config2HMask;
 unsigned char Config3LMask;
 unsigned char Config3HMask;
 unsigned char Config4LMask;
 unsigned char Config4HMask;
 unsigned char Config5LMask;
 unsigned char Config5HMask;
 unsigned char Config6LMask;
 unsigned char Config6HMask;
 unsigned char Config7LMask;
 unsigned char Config7HMask;
 };

The “ConfigxH/LMask” values in the response structure should be loaded with the appropriate AND mask values that the PC
application should use when performing the verify operation, and comparing the read out contents of memory versus the
.hex file contents. Generally speaking, unimplemented configuration bit positions should be excluded from the verify

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

252

operations, since the .hex file may contain a ‘1’ or ‘0’ in these locations, even though the microcontroller hardware may not
implement some of these locations. If the PC GUI application were to attempt to verify these locations, they would therefore
always read back as the default unimplemented value (ex: 0 for PIC18 devices), which may not necessarily match the .hex
file (ex: if it had a ‘1’ in the same location). Therefore, the firmware should properly respond to the host’s
QUERY_EXTENDED_INFO command, with AND mask values that the PC GUI program should use to AND the .hex file
values before comparing them to the read values, ensuring that the verify operation successfully ignores
unimplemented/unimportant locations.

1.6.3.2.3.1.3 Changing the Memory Footprint

Describes how to change the location and size of the memory that the boot loader uses.

Description

By default, the bootloader firmware project reserves and occupies the 0x000-0xFFF region (PIC18) or 0x000-0x8FF (PIC16)
program memory region. It is possible to move this boundary (ex: if more space is needed for the bootloader firmware, such
as when trying to build/use the bootloader with a free/non-optimizing version of the C compiler).

In order to move the boundary, the new boundary must be chosen that aligns perfectly with a native flash memory erase
block size (ex: the boundary cannot reside in the middle of an flash memory erase page). Additionally, moving the boundary
requires changing the bootloader definitions (REMAPPED_APPLICATION_RESET_VECTOR,
REMAPPED_APPLICATION_HIGH_ISR_VECTOR, REMAPPED_APPLICATION_LOW_ISR_VECTOR,
APP_SIGNATURE_ADDRESS, APP_VERSION_ADDRESS) in both the bootloader firmware project, as well as in the
application firmware project intended to be programmed by the bootloader firmware.

When moving the APP_SIGNATURE_ADDRESS, make sure that the newly selected address always resides fully on the
very first flash memory erase page that gets erased by the bootloader, in order to avoid defeating the robustness features
offered by the flash signing process.

Additionally, both the bootloader firmware project and application linker settings must be modified. When using the C18
compiler, this entails modifying both the application and bootloader firmware .lkr files, so as to allocate more space for the
bootloader. When using the XC8 compiler, the linker settings must be modified in both the bootloader firmware build
configuration, as well as the application firmware image project build configuration.

1.6.3.2.3.1.4 C18 Compiler

Discusses how to use the C18 compiler with the boot loader examples.

Description

The C18 compiler only supports PIC18 based targets, and therefore, this section is only relevant for PIC18 devices. For
PIC16 or PIC18 targets using the XC8 compiler, see the XC8 Compiler section.

The PIC18F HID bootloader firmware is compatible with both the C18 and XC8 compilers. When the firmware is build with
the C18 compiler, the bootloader project needs to be built with the all of the compiler optimizations full enabled, and using
the Default Storage Class “Static”. Using a free/unlicensed version of the compiler will not directly work, as some of the
compiler optimizations are disabled in the free version.

If the firmware project is built without the full compiler optimizations enabled, the total code size will be too large to fit within
the program memory range 0x000-0xFFF reserved by default for the bootloader firmware. It is possible, albeit not preferred,
to move the bootloader/application program memory space boundary, so as to allocate/reserve more flash memory for the
bootloader, if the bootloader will be built without full compiler optimizations enabled. See “Moving the Application/Bootloader
Flash Boundary”.

The bootloader project is provided with the modified linker scripts to be used with the bootloader project (ex:
BootModified.18f14k50_g.lkr), and modified example linker scripts that can be used with the application projects (ex: Linker
files for applications\ rm18f14k50_g.lkr). However, certain application projects may require a slightly modified application
linker script (ex: projects using large RAM buffers > 256 bytes in size for instance), but the provided application linker files
should still be used as a template/starting point when configuring the linker script.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

253

1.6.3.2.3.1.5 XC8 Compiler

Discusses using the XC8 compiler with the USB boot loader.

Description

1.6.3.2.3.1.5.1 Optimization Mode Requirements

Discusses compiler optimization requirements for using the USB boot loader.

Description

The currently implemented bootloader firmware may be built with the XC8 compiler v1.21 or later (in PRO mode), for both
PIC16 and PIC18 devices.

On PIC16 targets this bootloader firmware is intended to occupy the program memory region 0x000-0x8FF (14-bit word
addresses). The application firmware is supposed to occupy the 0x900-[end of flash] region of program memory.

On PIC18 targets, the bootloader firmware occupies the 0x000-0xFFF program memory region, while the application
firmware image is supposed to occupy the 0x1000-[end of flash] region of program memory.

In order to fit within the 0x000-0x8FF (or 0x000-0xFFF for PIC18) region, this bootloader project must be built with the PRO
mode optimizations enabled. If you attempt to build the bootloader firmware in either the Free or Standard modes, the code
size required for the bootloader firmware will likely be too large to fit within the reserved space for the bootloader, resulting in
one or more linker errors (with text typically referring to “cannot find space” for “such and such” section name).

It is therefore recommended to use the bootloader with the fully licensed PRO version of the XC8 compiler. If however a free
or standard version of the compiler must be used, it is potentially possible to move the bootloader/application program space
boundary. If this will be attempted, please see the Changing the Memory Footprint section.

1.6.3.2.3.1.5.2 Linking Options for PIC16 Devices

Link option modifications that are required for using XC8 on PIC16 devices for the USB boot loader.

Description

If the application firmware project needs to be programmable by this bootloader firmware, there are two linker setting
changes that are required to the application project:

1) Under the build configuration > XC8 global options > XC8 linker > Option categories: Additional options, the “Codeoffset”
must be set to 0x900

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

254

2) Under the build configuration > XC8 global options > XC8 linker > Option categories: Memory Model, the “ROM Ranges”
must be set to: default, -0-8FF, -91E-91F

NOTE: Once the above changes are made to the application project, the output .hex file will no longer work when
programmed stand alone, but it will be programmable by the HID bootloader firmware. This can make further application
development less convenient, until the bootloader and application project output is “merged” using the procedures
described in the Merging Bootloader and Application Project Output section.

1.6.3.2.3.1.5.3 Linking Options for PIC18 Devices

Link option modifications that are required for using XC8 on PIC18 devices for the USB boot loader.

Description

If the application firmware project needs to be programmable by this bootloader firmware, there are two linker setting

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

255

changes that are required to the application project:

1) Under the build configuration > XC8 global options > XC8 linker > Option categories: Additional options, the “Codeoffset”
must be set to 0x1000

2) Under the build configuration > XC8 global options > XC8 linker > Option categories: Memory Model, the “ROM Ranges”
must be set to: default, -0-FFF, -1006-1007,-1016-1017

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

256

NOTE: Once the above changes are made to the application project, the output .hex file will no longer work when
programmed stand alone, but it will be programmable by the HID bootloader firmware. This can make further application
development less convenient, until the bootloader and application project output is “merged” using the procedures
described in the Merging Bootloader and Application Project Output section.

1.6.3.2.3.1.6 Merging Bootloader and Application Project Output

Discusses how to generate a single .hex file that contains both the boot loader and the application project output.

Description

To “merge” the two projects together (so that the application firmware .hex file is not required to be programmed by the
bootloader, but may be programmed either stand alone via ICSP or by the bootloader), the following can be done:

1. Open and build the HID bootloader firmware project in the MPLAB X IDE.

2. Open the application firmware project in the MPLAB X IDE.

3. Add the “MPLAB.X.production.hex” file (generated by the HID bootloader firmware project) to the application firmware
project as a “Loadable” file in MPLAB X. This can be done from the project view window and right clicking on the
“Loadables” folder, and selecting the “Add Loadable File…” option.

4. Build the application firmware project. After the project builds, MPLAB X will automatically run the “HEXMATE” utility in
the background and generate a merged .hex file (which will contain both the bootloader firmware and application
firmware). This merged .hex file can be programmed either stand alone with an ICSP™ programmer or using the
bootloader.

If step number 4 above fails, this implies that there are overlapping but non-equivalent sections of the program memory
values in the two hex files (from the HID bootloader firmware and the application project). Normally, this error will be caused
by having slightly different configuration bit settings between the application firmware project and the HID bootloader
firmware project. To fix this error, you must modify the two projects so that the configuration bits are 100% identical between
the two or are only implemented in one of the firmware projects.

1.6.3.2.3.2 PIC24F
This section covers the PIC24F product line USB boot loaders.

Description

This section covers the PIC24F product line USB boot loaders.

1.6.3.2.3.2.1 Adding a boot loader to your project

This section covers how to add a boot loader to your application.

Description

The boot loader implementations available in the USB Library take a two application approach. What this means is that the
boot loader and the application are development, compiled, and loaded separately.

With this approach there are two separate linker scripts that are required, one for the boot loader, and one for the application.

For the PIC24F applications intended to be used with a boot loader, all that is required is to attach the specific linker file
designed for the applications of that boot loader to the project.

• No modifications are required to the linker file. Just attach the provided application linker file to the application project
without modification.

• No modifications are required to the application code. Just write your code as you always would and attach the provided
application linker file to the application project without modification.

The required application linker files are found in the folders that contain the targeted boot loaders. These linker files can be

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

257

referenced directly from the application projects, or can be copied locally to the project folder.

These provided linker files generate the required code to handle the reset and interrupt remapping sections that are required.

1.6.3.2.3.2.2 Memory Map

This section discusses the various memory regions in the PIC24F device and how they are arranged between the boot
loaders and the target applications.

Description

The PIC24F boot loaders have several different special memory regions. Some of these regions are defined by the
hardware. Others are part of the boot loader implementation and usage. This section discusses what each of these memory
regions are. For more information about how these sections are implemented or how to change them, please refer to the
Understanding and Customizing the Boot Loader Implementation section.

The different memory regions are shown below:

1) Reset Vector - the reset vector is defined by the hardware. This is located at address 0x0000. Any reset of the CPU will
go to the reset vector. The main responsibility of the reset vector is to jump to the code that needs to be run. In the case of
the boot loader, this means jumping to the boot loader code (section 4).

2) The interrupt vector table (IVT) is another section that is defined by the PIC24F hardware. The IVT is a fixed set of
addresses that specify where the CPU should jump to in the case of an interrupt event. Each interrupt has it's own vector in
the table. When that interrupt occurs, the CPU fetches the address in the table corresponding to that interrupt and jumps to

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

258

that address.

3) The alternate interrupt vector table (AIVT) behaves just like the IVT. The user must set a bit to select if they are using the
IVT or AIVT for their interrupt handling. The IVT is the default. For the current boot loader applications, the AIVT is either
used by the boot loader or is not remapped to user space so the AIVT is not available for application use.

4) The boot loader code - This section is where the boot loader code resides. This section handles all of the loading of the
new application code.

5) User Remapped Reset Vector - This is a section that is defined by the boot loader. The boot loader must always know
how to exit to the application on startup. The User Remapped Reset Vector is used as a fixed address that the boot loader
can jump to in order to start an application. The application must place code at this address that starts their application. In
the PIC24F implementations this is handled by the application linker file.

6) User Remapped Interrupt Vectors - Since the IVT is located in the boot loader space, the boot loader must remap all of
the interrupts to the application space. This is done using the User remapped interrupt vectors. The IVT in the boot loader
will jump to a specific address in the User remapped interrupt vector. The User remapped interrupt vector table jumps to the
interrupt handler code defined in the user code. In the PIC24F implementations this table is generated by the application
linker file and doesn't require any user modifications.

7) The user application code - this is the main application code for the project that needs to be loaded by the boot loader. In
the PIC24F implementation, only the application linker file for the specific boot loader needs to be added to the project. No
other files are required. No changes or additions are required to the user application code either in order to get the code
working.

The boot loader and application linker files provided with the USB Library enforce all of the memory regions specified above.
If an application tries to specify an address outside of the valid range, the user should get a linker error.

Separate linker files are required for the boot loader and the application. These linker files generate the material required for
several of the different memory regions in the device. Below is a diagram showing which sections of the final device image
are created by the linker files. All of the regions of the device are specified within one of the two linker files. This image
merely shows where the content for each of those regions is generated.

1.6.3.2.3.2.3 Startup Sequence and Reset Remapping

This section discusses how the device comes out of reset and how the control passes between the boot loader and the
application.

Description

Before continuing with this section, please review the preceding sections to understand some of the implementation details
that aren't discussed in detail in this section. Some of the implementation details of how this works is described the

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

259

Understanding and Customizing the Boot Loader Implementation section. This section covers the basic flow and how it
passes between the boot loader and the application.

In the boot loader implementations provided in USB Library library, the boot loader controls the reset vector. This is true for
the PIC24F boot loaders as well. The reset vector resides within the boot loader memory space. This means that the boot
loader must jump to the target application. This processes in show below in the following diagram and described in the
following paragraphs.

1) On PIC24F devices, when a reset occurs the hardware automatically jumps to the reset vector. This is located at address
0x0000. This address resides within the boot loader memory. The compiler/linker for the boot loader code places a 'goto'
instruction at the reset vector to the boot loader startup code.

2) The 'goto" instruction at the reset address will jump to the main() function for the boot loader.

3) In the boot loader startup sequence there is a check to determine if the boot loader should run or if the boot loader should
jump to the application instead. In the provided examples the code checks a switch to determine if it should remain in the
boot loader. If the switch is not pressed then the boot loader jumps to the user_remapped_reset_vector. At this point the
control of the processor has just changed from the boot loader to the application.

4) The code at the user_remapped_reset_vector is controlled by the application project, not the boot loader. This vector
effectively emulates the behavior that the normal reset vector would if a boot loader wasn't used. In this case it should jump
to the startup code for the application. This is done by modified linker script for the application.

1.6.3.2.3.2.4 Interrupt Remapping

This section discusses how interrupts are handled between the boot loader and application.

Description

Before continuing with this section, please review the preceding sections to understand some of the implementation details
that aren't discussed in detail in this section. Some of the implementation details of how this works is described the
Understanding and Customizing the Boot Loader Implementation section. This section covers the basic flow and how it
passes between the boot loader and the application.

In the boot loader implementations provided in USB Library library, the boot loader controls the interrupt vectors for PIC24F
devices. The hardware interrupt vector table resides within the boot loader memory space. This means that the boot loader
must jump to the appropriate user target application interrupt handler when an interrupt occurs. This processes in show
below in the following diagram and described in the following paragraphs.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

260

1) During the course of normal code execution, an interrupt occurs. The CPU vectors to the interrupt vector table (IVT) as
described in the appropriate PIC24F datasheet.

2) The IVT is located in boot loader space, but the application needs to handle the interrupt. The boot loader jumps to the
correct entry in the User Remapped Interrupt Vector Table. At this point the CPU is jumping from the boot loader memory
space to the application memory space and effectively transferring control to the application.

3) At the entry in the User Remapped Interrupt Vector table there is placed a 'goto' instruction that will jump to the
appropriate interrupt handler if one is defined in your application and to the default interrupt if there isn't a handler defined. In
this way the behavior of the application with or without the boot loader is identical. The User Remapped Interrupt Vector
table is created by the application linker file for the specific boot loader in use. This table is automatically generated and
doesn't need to be modified. More about how this table is generated can be found in the Understanding and Customizing the
Boot Loader Implementation.

4) Finally once the interrupt handler code is complete, the code will return from the interrupt handler. This will return the CPU
to the instruction that the interrupt occurred before.

1.6.3.2.3.2.5 Understanding and Customizing the Boot Loader Implementation

This sections discusses the customizations that have been made from the default linker scripts in order to make the boot
loader work and how to customize these implementations if you wish to change the behavior or location of the boot loader.

Description

1.6.3.2.3.2.5.1 Memory Region Definitions

This section describes how each of the memory regions gets defined.

Description

First let's take a look how each of the memory regions are defined. The address ranges for each of the regions seen in the
diagram below must be defined in either the application linker file or the boot loader linker files.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

261

Below is an excerpt from one of the HID boot loader linker files. This is from the linker script for the boot loader itself so this
will be covering sections (1), (2), (3), and (4).

/*
** Memory Regions
*/
MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 program (xr) : ORIGIN = 0x400, LENGTH = 0x1000
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

The region named "reset" is defined to start at address 0x0 and has a length of 0x4. This means that the first two instructions
of the device are used for the reset vector. This is just enough for one 'goto' instruction. This corresponds to hardware
implementation and should not be changed. This defines section (1).

Section (2) is the IVT table. This is defined with the "ivt" memory entry. It starts at address 0x4 and is 0xFC bytes long. This
corresponds to hardware implementation and should not be changed.

Section (3) is the AIVT table. This is defined with the "aivt" memory entry. It starts at address 0x104 and is 0xFC bytes long.
This corresponds to hardware implementation and should not be changed.

Section (4) is the section for the boot loader code. This section is covered by the "program" entry in the memory table. This
section starts at address 0x400 and is 0x1000 bytes long in this example (ends at 0x1400). As you can see with this section
it has been decreased from the total size of the device to limit the boot loader code to this specific area. This is how the
linker knows where the boot loader code is allowed to reside.

Looking in the corresponding application linker file will result in a similar table.

/*
** Memory Regions
*/
MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 app_ivt : ORIGIN = 0x1400, LENGTH = 0x10C
 program (xr) : ORIGIN = 0x1510, LENGTH = 0x296E8
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

262

 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

Note that the "reset", "ivt", and "aivt" sections are all still present in the application linker script. These sections remain here
so that applications compiled with the boot loader can be programmed with or without the boot loader. This aids in the
development of the application without having to use the boot loader while maintaining identical interrupt latency and
memory positioning.

Sections (5) and (6) are created in the special "app_ivt" section. The following discussion topic describes how the content of
this section is created. This entry in the memory table is how the space for that area is allocated. Note that the "app_ivt"
section starts at address 0x1400 (the same address that the boot loader ended at). Since different parts have different
number of interrupts, the size of the "app_ivt" section may change.

The "program" memory section has changed for the application space. It starts at address 0x1510 in this example. This will
vary from part to part based on the size of the "app_ivt" section. The "program" memory section corresponds to the user
application code (section (7)). Note that it takes up the rest of the memory of the device that is available to load.

1.6.3.2.3.2.5.2 Special Region Creation

This section covers how each of the special memory regions are created/populated within the linker files.

Description

The Memory Region Definitions section described how each of the memory regions are defined. This allocates the room for
each of the memory regions.

This discussion covers how the values of some of the special memory regions are created/populated. Please refer to the
earlier sections for an understanding of how the reset and interrupt remapping works before proceeding through this section.

Let's take a look at each of the memory regions in order. Please note that there are two linker scripts, one for the boot loader
and one for the application. In order for some of these section definitions to make sense, we will be showing excerpts from
either or both of these files for any given section. Please pay close attention to which linker file we are referring to when we
show an example.

1) Section (1) is the reset vector. This belongs to the boot loader space so this is located in the boot loader linker file. What
we need at the reset vector is a jump to the start of the boot loader code. In the boot loader linker script:

 /*
 ** Reset Instruction
 */
 .reset :
 {
 SHORT(ABSOLUTE(__reset));
 SHORT(0x04);
 SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
 SHORT(0);

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

263

 } >reset

The code in this section generates a "goto __reset" instruction located in the "reset" memory section. This will cause the
CPU to jump to the boot loader startup code after any device reset. This is common code that is present in any default linker
script for PIC24F.

2) The second section is the IVT. In the IVT we need to jump to the user's remapped IVT table.

__APP_IVT_BASE = 0x1400;
.ivt __IVT_BASE :
 {
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x004); /* __ReservedTrap0*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x008); /* __OscillatorFail*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x00C); /* __AddressError*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x010); /* __StackError*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x014); /* __MathError*/
...
 LONG(ABSOLUTE(__DEFAULT_VECTOR)); /* __Interrupt116 not implemented */
 LONG(ABSOLUTE(__DEFAULT_VECTOR)); /* __Interrupt117 not implemented */
 } >ivt

This linker code will place the _APP_IVT_BASE constant + an offset address at each of the IVT vector entries. This will
cause the CPU to jump to the specified vector in the user's remapped IVT table.

Note that each entry is 4 bytes away from the previous entry. Is is because the resulting remapped IVT will need to use
"goto" instructions at each entry in order to reach the desired handler. The "goto" instruction takes two instruction words at 2
bytes of memory address each.

3) Section (3), the AIVT, is either not used or is used by the boot loader and shouldn't be used by the application. If the boot
loader requires interrupts, then it uses the AIVT and switches to AIVT interrupts before starting and switches back to the IVT
before jumping to the customer code. No linker modifications are required here. For boot loaders that don't require interrupts,
some have the AIVT section removed since they are not remapped to the user space and not used by the boot loader.

4) Section (4), the boot loader code - the only modification required in the linker script for the boot loader code is the
changes to the memory region definitions discussed previously in the Memory Region Definitions section.

5) Section (5) is the user remapped reset. This is the address where the boot loader jumps upon completion. This address
needs to be at a fixed location in code that both the boot loader and the application know about. At this address there needs
to be a jump to the user application code. In the application linker script:

 .application_ivt __APP_IVT_BASE :
 {
 SHORT(ABSOLUTE(__reset)); SHORT(0x04); SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__ReservedTrap0) ? ABSOLUTE(__ReservedTrap0) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__ReservedTrap0) ?
(ABSOLUTE(__ReservedTrap0) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__OscillatorFail) ? ABSOLUTE(__OscillatorFail) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__OscillatorFail) ?
(ABSOLUTE(__OscillatorFail) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__AddressError) ? ABSOLUTE(__AddressError) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__AddressError) ?
(ABSOLUTE(__AddressError) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);

This section of code has been added to the default linker script. This creates a section in code located at __APP_IVT_BASE
address. In this case the __APP_IVT_BASE address is also defined in the application linker file:

__APP_IVT_BASE = 0x1400;

This address must match exactly between the boot loader code, boot loader linker file, and the application linker file. If any of
these do not match then the linkage between the interrupt remapping or reset remapping will not work and the application
will fail to run properly.

The first entry in this table is the user remapped reset. This code generates a "goto __reset" at address __APP_IVT_BASE.
This allows the boot loader to jump to this fixed address to then jump to the start of the user code (located at the __reset
label).

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

264

6) Section (6) is the remapped IVT table. This section allows the interrupt to be remapped from the boot loader space to the
application space. In order to do this the boot loader must either know the exact address of every interrupt handler, or must
have another jump table that it jumps to in order to redirect it to the correct interrupt handler. The second approach is the
one used in the implemented boot loaders. This is implemented in the following table:

 .application_ivt __APP_IVT_BASE :
 {
 SHORT(ABSOLUTE(__reset)); SHORT(0x04); SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__ReservedTrap0) ? ABSOLUTE(__ReservedTrap0) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__ReservedTrap0) ?
(ABSOLUTE(__ReservedTrap0) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__OscillatorFail) ? ABSOLUTE(__OscillatorFail) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__OscillatorFail) ?
(ABSOLUTE(__OscillatorFail) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__AddressError) ? ABSOLUTE(__AddressError) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__AddressError) ?
(ABSOLUTE(__AddressError) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);

This first entry in the table is the remapped reset vector that we just discussed. The second entry in the table is the first
possible interrupt. In this case it is the ReservedTrap0 interrupt. This line of linker code will look for the __ReservedTrap0
interrupt function. If it exists it will insert a "goto __ReservedTrap0" at the second address in this table. If it doesn't find the
__ReservedTrap0 function, it will put a "goto __DefaultInterrupt" at this entry in the table. In this way just by defining the
appropriate interrupt handler function in the application code, the linker will automatically create the jump table entry
.required.

Looking at an example application_ivt table as generated by the linker script where the ReservedTrap0 interrupt is not
defined and the OscillatorFail and AddressError handlers are defined, starting at address _APP_IVT_BASE you will have the
following entries in program memory:

goto __reset

goto __DefaultInterrupt

goto __OscillatorFail

goto __AddressError

...

7) Section (7), the user application code - the only modification to the linker script required for the application code is the
changes to the memory region definitions discussed previously in the Memory Region Definitions section.

1.6.3.2.3.2.5.3 Changing the memory footprint of the boot loader

This section covers how to modify how much memory is used by the boot loader. This can be useful when adding features to
the boot loader that increase the size beyond the default example or if a version of the compiler is used that doesn't provide
a sufficient level of optimizations to fit the default boot loader.

Description

This section covers how to modify the size of the HID boot loader. This can be useful when adding features to the boot
loader that increase the size beyond the default example or if a version of the compiler is used that doesn't provide a
sufficient level of optimizations to fit the default boot loader. The boot loaders provided by default assume full optimizations
and may not work with compilers that don't have access to full optimizations.

Please read all of the other topics in the PIC24F boot loader section before proceeding in this topic. This topic will show
where the modifications need to be made and how they need to match up, but will not describe what the sections that are
being modified are or how they are implemented. This information is in previous sections.

There are three places that require corresponding changes: the boot loader linker script, the application linker script, and the
boot loader code. You may wish to make copies of the original files so that you preserve the original non-modified files.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

265

In the following examples we will be increasing the size of the boot loader from 0x1400 to 0x2400 in length.

First start by determining the size that you want the boot loader to be. This must be a multiple of an erase page. On many
PIC24F devices there is a 512 instruction word erase page (1024 addresses per page). Please insure that the address you
select for the end of the boot loader corresponds to a page boundary. There are several ways to determine the size of the
boot loader application. Below is an example of one method.

1) Remove the boot loader linker script provided if it is causing link errors due either to optimization settings or added code.

2) Build the project

3) Open the memory window and find the last non-blank address in the program memory space.

4) Find the next flash erase page address after this address. Add any additional buffer room that you might want for future
boot loader development, growth, or changes. Use this address as your new boot loader end address.

Once the end address of the boot loader is known, start by modifying the boot loader linker script program memory region to
match that change. The boot loader linker script can either be found in the folder containing the boot loader project file or in a
folder that is specified for boot loader linker scripts. In the linker script find the memory regions.

MEMORY
{
data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
reset : ORIGIN = 0x0, LENGTH = 0x4
ivt : ORIGIN = 0x4, LENGTH = 0xFC
aivt : ORIGIN = 0x104, LENGTH = 0xFC
program (xr) : ORIGIN = 0x400, LENGTH = 0x2000
config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

Change the LENGTH field of the program memory section to match the new length. Note that this is length and not the end
address. To get the end address, please add LENGTH + ORIGIN.

Next, locate the __APP_IVT_BASE definition in the linker file. Change this to equal the end address of your boot loader.

__APP_IVT_BASE = 0x2400;

Once the length of the boot loader is changed, you will need to make similar changes in the application boot loader linker
script. The application boot loader linker scripts are typically found in a folder with the boot loader project. In the application
linker file, locate the memory regions section. In this section there are three items that need to change.

1. The first is the ORIGIN of the app_ivt section. This needs to be modified to match the new end address of the boot loader.

2. Second, move the ORIGIN of the program memory section to the ORIGIN of app_ivt + the LENGTH of the app_ivt section
so that the program memory starts immediately after the app_ivt section.

3. Last, change the LENGTH field of the program section so that it goes to the end of the program memory of the device.
Remember that the LENGTH field is the length starting from the origin and not the end address. An easy way to make
sure that this address is correct is by just subtracting off from the LENGTH the same amount that was added to the
ORIGIN.

MEMORY
{
data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
reset : ORIGIN = 0x0, LENGTH = 0x4
ivt : ORIGIN = 0x4, LENGTH = 0xFC
aivt : ORIGIN = 0x104, LENGTH = 0xFC
app_ivt : ORIGIN = 0x2400, LENGTH = 0x110
program (xr) : ORIGIN = 0x2510, LENGTH = 0x286E8
config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

The final changes that needs to be made are in the boot loader code itself. Open up the boot loader project.

1. Find the ProgramMemStart definition in the main.c file. Change the start address to match the new address.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

266

#define ProgramMemStart 0x00002400

2. Next find the #ifdef section that applies to the device that you are working with. This section will contain definitions used
by the boot loader to determine what memory is should erase and re-write.

#if defined(__PIC24FJ256GB110__) || defined(__PIC24FJ256GB108__) ||
defined(__PIC24FJ256GB106__)
#define BeginPageToErase 5 //Bootloader and vectors occupy first six 1024 word (1536 bytes
due to 25% unimplemented bytes) pages
#define MaxPageToEraseNoConfigs 169 //Last full page of flash on the PIC24FJ256GB110, which
does not contain the flash configuration words.
#define MaxPageToEraseWithConfigs 170 //Page 170 contains the flash configurations words on
the PIC24FJ256GB110. Page 170 is also smaller than the rest of the (1536 byte) pages.
#define ProgramMemStopNoConfigs 0x0002A800 //Must be instruction word aligned address. This
address does not get updated, but the one just below it does:
//IE: If AddressToStopPopulating = 0x200, 0x1FF is the last programmed address (0x200 not
programmed)
#define ProgramMemStopWithConfigs 0x0002ABF8 //Must be instruction word aligned address.
This address does not get updated, but the one just below it does: IE: If
AddressToStopPopulating = 0x200, 0x1FF is the last programmed address (0x200 not programmed)
#define ConfigWordsStartAddress 0x0002ABF8 //0x2ABFA is start of CW3 on PIC24FJ256GB110
Family devices
#define ConfigWordsStopAddress 0x0002AC00

3. Modify the BeginPageToErase to indicate which page is the first page it should erase. This will be the
ProgramMemStart/Page Size. In this case we are starting at 0x2400 and each page is 0x400 so this should now be 9.

#define BeginPageToErase 9

4. Locate the start of the main() function. In the first few lines of code there is a check to determine of the code should stay
in the boot loader or jump to the application code. Change the address in the "goto" statement to match the new end of
the boot loader and start of the application.

__asm__("goto 0x2400");

This should be all of the changes required in order to change the size of the HID boot loader.

Please note that since the boot loader and the application code are developed as two separate applications, they do not
need to use the same optimization settings.

1.6.3.2.4 Flash Signature
Discusses what a flash signature is, why it is important, and how it is used.

Description

The flash signature feature is a robustness/recoverability feature, which is particularly useful for applications that are not
using an I/O pin for entry into the bootloader mode, and instead rely on entry into the bootloader only by software from the
application firmware image.

Consider the following situation:

1. User boots up microcontroller and begins running application image.

2. User runs special PC application (or something similar) that sends command to the application image, to switch into the
bootloader mode.

3. Firmware executes a goto 0x001C jump straight into the bootloader mode (via software entry).

4. User starts an erase/program/verify sequence using the PC GUI program for bootloading new application firmware
images.

5. The firmware erases some or all of the application flash contents.

6. Before the flash has been reprogrammed with the new values, the user unplugs the USB cable and/or AC power is lost to
the entire system.

At this point, the application would normally be permanently “bricked” (unless the user plugs in a conventional ICSP
programmer like the MPLAB ICD3), since the application image would be corrupt or missing, and that may have been the
only method for receiving the command to jump into bootloader mode.

The above scenario can however be made recoverable, through the use of a “flash signature” process.

1.6 Demos MLA - USB Library Help Device - Boot Loader - HID

267

The flash signature is a special program memory word that gets programmed (only after the entire erase/program/verify
process is completed successfully) with a magic/known value. This value, when present and correctly programmed at the
magic address with the proper value, indicates to the bootloader code that the application firmware image is fully intact.

A typical (successful) bootloading sequence, that uses a flash signature, would be as follows:

1. User boots up microcontroller, which first checks the flash signature word is intact, with the correct/expected value.

1. Assuming the value is correct, this implies that the application image is intact, and the code jumps into the application
firmware run mode.

2. User runs special PC application or something that sends command to the application image, to switch into the
bootloader mode.

3. Firmware executes a goto 0x001C jump straight into the bootloader mode.

4. User starts an erase/program/verify sequence using the PC GUI program for bootloading new firmware images.

5. The firmware begins erasing pages of flash memory. Special care is taken in the implementation to ensure that the flash
signature word is located on the very first flash erase page that gets erased.

6. After total erasure of the application image is complete, the PC GUI sends commands to reprogram the entire application
firmware space with the new image.

7. The PC GUI performs a full verify read back of the flash contents, and verifies that every address contains exactly the
correct values from the hex file.

8. Assuming the entire “verify” operation is successful, the PC GUI sends a “sign flash” command to the bootloader firmware.

9. The bootloader firmware programs the special/magic known value into the special/fixed signature address.

At this point the bootloading process is complete. Upon rebooting the microcontroller, the bootup code checks the flash
signature address to verify that the contents of that flash memory word contain the correct/expected flash signature value.

1. If the value matches the correct/expected value, this implies that the previous erase/program/verify sequence was fully
successful, and therefore, it is safe to jump into and begin executing the application firmware image.

2. If the value does not match (ex: the flash signature word contains an invalid or erased value, like 0xFFFF), then the
bootup code knows that the previous erase/program/verify sequence failed at some point, and therefore, the bootup code
makes sure to stay in bootload mode, allowing the PC GUI application to connect to the firmware and perform another
attempt to erase/program/verify/sign flash sequence.

NOTE: In order for the flash signature feature to fully protect the application from bricking in the event of USB cable
disconnect and/or lost AC power, it is necessary for the flash signature word to be located on the very first erase page
during the erase sequence, and must also be the very last portion of the program memory that gets re-programmed, only
after the rest of the program/verify sequence has been fully completed successfully.
In the current implementation, the flash signature word is located within the application program memory space, at a
specific fixed address. For PIC18 devices, the default address for the flash signature word is 0x1006 (and 1007 for the
MSB). For PIC16 devices, the address for the flash signature word is 0x91E.

1.6.4 Device - CDC Basic Demo

This example shows how to create a basic CDC demo. CDC devices appear like COM ports on the host computer and be
communicated with via regular terminal software.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in

1.6 Demos MLA - USB Library Help Device - CDC Basic Demo

268

the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/cdc_basic/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo allows the device to appear like a serial (COM) port to the host. In order to run this demo first compile and
program the target device. Please see the following Windows, Linux, and Macintosh sections for how to connect to the
device on each of these systems.

Once connected to the device, there are two ways to run this example project. Typing a key in the terminal window will result
in the device echoing that key plus one. So if the user presses “a”, the device will echo “b”. If the pushbutton is pressed the
device will echo “ – Button Pressed – “ to the terminal window.

Note: Some terminal programs, like hyperterminal, require users to click the disconnect button before removing the device
from the computer. Failing to do so may result in having to close and open the program again in order to reconnect to the
device.

1.6.4.1 Windows
Attach the device to the host. If the host is a PC and this is the first time you have plugged this device into the computer then
you may be asked for a .inf file.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB Device - CDC –
Basic Demo\inf\win2k_winxp” directory.

1.6 Demos MLA - USB Library Help Device - CDC Basic Demo

269

Once the device is successfully installed, open up a terminal program, such as hyperterminal. Select the appropriate COM
port. On most machines this will be COM5 or higher.

1.6.4.2 Linux
Upon plugging in a USB CDC ACM virtual COM port device into a Linux machine, the OS will automatically enumerate the
USB device successfully, and a new object should show up as:

/dev/ttyACMx

(where ttyACMx is usually ttyACM0, but could be some other number such as ttyACM1, if some other ACM device is already
attached to the machine).

To determine the exact number value of “x”, a procedure like follows can be used:

1. Open a console.

2. Make sure the USB device has been plugged into the machine.

3. Type: lsusb

4. You should see a line like: Bus 005 Device 004: ID 04d8:000a Microchip Technology, Inc.

5. Type: modprobe cdc-acm vendor=0x04d8 product=0x000a

6. Type: dmesg

7. You should get the status, showing the ttyACMx value, ex: cdc_acm 5-1:1.0: ttyACM0: USB ACM device

Once you know the ttyACMx value, applications and terminal programs (such as GtkTerm) can interface with the USB serial
port by configuring them to connect up to the /dev/ttyACMx object.

1.6.4.3 Macintosh
Upon plugging in a USB CDC ACM virtual COM port device into a Mac OS X based machine, the OS should automatically
enumerate the USB device successfully, and a new object should show up as:

/dev/tty.usbmodemXXXX

(where XXXX is some value, such as “3d11”)

To run the example demo project: “USB\Device - CDC - Basic Demo” on a Mac OS X based machine, a procedure like
follows can be used:

Open TERMINAL. This can be done by clicking SPOTLIGHT and searching for TERMINAL. Spotlight is the little magnifying

1.6 Demos MLA - USB Library Help Device - CDC Basic Demo

270

glass in the upper right of the screen.

In Terminal, with the USB CDC ACM device NOT plugged in (yet), type:

ls /dev/tty.*

This will show all serial devices currently connected to the Mac. In the author’s case, the following list appears:

/dev/tty.Bluetooth-Modem

/dev/tty.Bluetooth-PDA-Sync

/dev/tty.Rob-1

Now, plug the USB CDC device into a USB port of the Mac. Hit the UP cursor, which will bring the search command back (ls
/dev/tty.*) and hit return. You should get the exact same list as before, but this time, with a new serial device. In the author’s
case, it was:

/dev/tty.usbmodem3d11

Once the complete name is know, the received serial port data can be displayed by typing:

screen /dev/tty.usbmodem3d11

(replace “3d11” in the above line with the value for your machine). If the microcontroller was programmed with the
“USB\Device - CDC - Basic Demo”, you can then press the user pushbutton, and the standard demo text should be printed
to the screen (ex: “BUTTON PRESSED ---”).

If the USB device is being operated as a USB to UART translator device (ex: using “USB\Device - CDC - Serial Emulator”
firmware, the baud rate can be set by using syntax like follows:

screen -U /dev/tty.usbmodem3d11 38400

Where “usbmodem3d11” should be replaced with the actual value of the device, and “38400” should be replaced with actual
desired baud rate (ex: 9600, 19200, 38400, 57600, 115200, etc.). More details and usage information for screen can be
found in the man page.

Note: Composite CDC + (any other interface) USB devices (such as the MCP2200, which is a composite CDC+HID device)
will only work on Mac OS X 10.7 (or later). Mac OS X 10.7 is the first OS X version that supports USB Interface Association
Descriptors (IADs), which are needed when implementing composite USB devices with multiple interfaces, with at least one
CDC-ACM function. Prior versions of Mac OS X did not support IADs, and therefore can only support non-composite, single
function CDC-ACM devices.

1.6.5 Device - HID - Custom Demo

Demo showing how to create a device that can transfer custom application data without the need of a driver installation
using the HID class.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/hid_custom/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

1.6 Demos MLA - USB Library Help Device - HID - Custom Demo

271

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a HID class USB device, but uses the HID class for general purpose I/O
operations. Typically, the HID class is used to implement human interface products, such as mice and keyboards. The HID
protocol is however quite flexible, and can be adapted and used to send/receive general purpose data to/from a USB device.
Using the HID class for general purpose I/O operations is quite advantageous, in that it does not require any kind of custom
driver installation process. HID class drivers are already provided by and are distributed with common operating systems.
Therefore, upon plugging in a HID class device into a typical computer system, no user installation of drivers is required, the
installation is fully automatic.

HID devices primarily communicate through one interrupt IN endpoint and one interrupt OUT endpoint. In most applications,
this effectively limits the maximum achievable bandwidth for full speed HID devices to 64kBytes/s of IN traffic, and
64kBytes/s of OUT traffic (64kB/s, but effectively “full duplex”).

The GenericHIDSimpleDemo.exe program, and the associated firmware demonstrate how to use the HID protocol for basic
general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the GenericHIDSimpleDemo.exe executable, you will need to have the Microsoft® .NET Framework
Version 2.0 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs
which were built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The
redistributable package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will
not need to install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for GenericHIDSimpleDemo.exe file was created in Microsoft Visual C++® 2005 Express Edition. The
source code can be found in the “<Install Directory>\ USB Device - HID - Custom Demos\Generic HID - Simple Demo - PC
Software” directory. Microsoft currently distributes Visual C++ 2005 Express Edition for free, and can be downloaded from
Microsoft’s website. When downloading Microsoft Visual C++ 2005 Express Edition, also make sure to download and install
the Platform SDK, and follow Microsoft’s instructions for integrating it with the development environment.

It is not necessary to install either Microsoft Visual C++ 2005, or the Platform SDK in order to begin using the
GenericHIDSimpleDemo.exe program. These are only required if the source code will be modified or compiled.

To launch the application, simply double click on the executable “GenericHIDSimpleDemo.exe” in the “<Install
Directory>\USB Device - HID - Custom Demos” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for HID class USB devices with VID = 0x04D8 and PID = 0x003F. The device descriptor in
the firmware project meant to be used with this demo uses the same VID/PID. If you plug in a USB device programmed with
the correct precompiled .hex file, and hit the “Connect” button, the other pushbuttons should become enabled. If hitting the
connect button has no effect, it is likely the USB device is either not connected, or has not been programmed with the correct
firmware.

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the HID class USB peripheral
device. The data will arrive on the interrupt OUT endpoint. The firmware has been configured to receive this generic data
packet, parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the
LED(s) on the demo board.

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the interrupt OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,

1.6 Demos MLA - USB Library Help Device - HID - Custom Demo

272

and will prepare an appropriate response packet depending upon the pushbutton state.

The PC then requests a packet of data from the device (which will be taken from the interrupt IN endpoint). Once the PC
application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

Running the demo on an Android v3.1+ device

There are two main ways to get the example application on to the target Android device: the Android Market and by
compiling the source code.

1. The demo application can be downloaded from Microchip’s Android Marketplace page:
https://market.android.com/developer?pub=Microchip+Technology+Inc

2. The source code for this demo is also provided in the demo project folder. For more information about how to build and
load Android applications, please refer to the following pages:

• http://developer.android.com/index.html

• http://developer.android.com/sdk/index.html

• http://developer.android.com/sdk/installing.html

While there are no devices attached, the Android application will indicate that no devices are attached.

1.6 Demos MLA - USB Library Help Device - HID - Custom Demo

273

When the device is attached, the an alternative screen will allow various control/status features with the hardware on the
board.

1.6.6 Device - HID - Digitizer Demos

These are examples of HID digitizers. There are single, and various multi-point touch examples.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/hid_digitizer/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

1.6 Demos MLA - USB Library Help Device - HID - Digitizer Demos

274

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

These demos use the selected hardware platform as a USB HID class digitizer device. The Single-Touch demo is a HID
class pen digitizer demo, which emulates a pen digitizer touch screen capable of sensing a single contact point. The
Multi-Touch demo emulates a touch sensitive touch screen, capable of sensing two simultaneous contact points. The
multi-touch demo can potentially be expanded to support additional simultaneous contacts (by modifying the HID report
descriptor), however, the standard built in gestures that are recognized by the Microsoft Windows 7 platform only use one or
two contacts.

To use the Single-Touch pen digitizer demo, plug the demo board into a free USB port on a Windows Vista or Windows 7
machine. The device should automatically enumerate as a HID class pen digitizer device, and certain additional functions
and capabilities built into the operating system will become activated. No manual USB driver installation is necessary, as the
built in HID class drivers are used for this device.

To use the Multi-Touch digitizer demo, plug the demo board into a free USB port on a Windows 7 machine. Windows 7 has
significantly more “Windows Touch” capabilities than Vista. Although the device will enumerate and provide limited
functionality on Windows Vista, multi-touch gestures will not be recognized unless run on Windows 7.

Since the standard demo boards that these demos are meant to be run on do not have an actual touch sensitive contact
area, the firmware demos emulate the data that would be generated by a real touch screen. Both demo projects use a single
user pushbutton. By pressing the button, the firmware will send a flurry of USB packets to the host, which contain contact
position data that is meant to mimic an actual “gesture” of various types. Each subsequent press of the pushbutton will
advance the internal state machine, and cause the firmware to send a gesture to the PC.

To use the demos, it is best to have Microsoft Internet Explorer installed on the machine (although some demo functions can
be observed using the pen flick practice area available from the control panel). The latest versions of Internet Explorer (when
run on the proper OS: preferably Windows 7, but some function on Windows Vista) supports recognition and use of certain
basic gestures, such as “back”, “forward”, as well as certain scroll and zoom operations.

Other Info: Windows 7 adds support for Windows messages such as “WM_GESTURE” and “WM_TOUCH”. These
messages can be used to help build customized “touch enabled” PC applications. Documentation for these messages can
be found in MSDN.

The following Microsoft developer blog contains useful additional information relating to Windows Touch:

http://blogs.msdn.com/e7/archive/2009/03/25/touching-windows-7.aspx

1.6.7 Device - HID - Joystick Demo

This demo shows how to create a USB joystick.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/hid_joystick/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

1.6 Demos MLA - USB Library Help Device - HID - Joystick Demo

275

Demo Operation

This demo uses the selected hardware platform as a USB Joystick. To test the joystick feature, open the JoystickTester.exe
in the demo project folder. This will launch a window as seen below:

Pressing the button will cause the device to:

• Indicate that the “x” button is pressed, but none others;

• Move the hat switch to the "east" position;

• Move the X and Y coordinates to the their extreme values;

1.6.8 Device - HID - Keyboard Demo

This example shows how to create a USB keyboard and how to send data to the host.

1.6 Demos MLA - USB Library Help Device - HID - Keyboard Demo

276

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/hid_keyboard/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a USB keyboard. Before pressing the button, select a window in which it
is safe to type text freely. Pressing the button will cause the device to print a character on the screen. The characters will
print a new letter/number for each press. If a key is held, it will emulate as if the key was held on a keyboard. Pressing the
CapsLock button on the host PC will cause an LED to light on the board.

1.6.9 Device - HID - Mouse Demo

This demo is a simple mouse demo that causes the mouse to move in a circle on the screen.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/hid_mouse/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a USB mouse. Before connecting the board to the computer through the
USB cable please be aware that the device will start moving the mouse cursor around on the computer. There are two ways
to stop the device from making the cursor to continue to move. The first way is to disconnect the device from the computer.
The second is to press the correct button on the hardware platform. Pressing the button again will cause the mouse cursor to
start moving in a circle again.

1.6 Demos MLA - USB Library Help Device - HID - Uninterruptible Power

277

1.6.10 Device - HID - Uninterruptible Power Supply

This demo shows how to create a Uninterruptible Power Supply (UPS) device.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/hid_ups/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a HID class USB Uninterruptible power supply (UPS). When the device is
plugged into a computer, the computer should have an indicator showing that it is connected to a UPS and it should show a
charge percentage of the battery of the UPS. This demo uses a fixed time derived from the USB start of frame (SOF)
packets to emulate the battery charging by sending updates about the battery status to the computer.

Holding the specified button on the demo board puts the UPS in a emulated discharge state, as if the main power has been
removed/failed. As time progresses the board sends updated information about the charge left on the battery. As the battery
approaches the minimum threshold, the UPS will send a command to shut down the computer. Release the button at any
point of time to simulate a reconnection of the main power supply and to emulate the UPS returning to a charging state.

1.6.11 Device - Mass Storage - Internal Flash Demo

This demo uses the selected hardware platform as an drive on the computer using the internal flash of the device as the
drive storage media.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/msd_internal_flash/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

1.6 Demos MLA - USB Library Help Device - Mass Storage - Internal Flash

278

Demo Operation

This demo uses the selected hardware platform as an drive on the computer using the internal flash of the device as the
drive storage media. Connect the hardware platform to a computer through a USB cable.

The device should appear as a new drive on the computer named “Drive Name”. The volume label or file information can be
changed in the Files.c file located in the project directory.

1.6.11.1 Troubleshooting
Issue 1: The device appears correctly in the device manager, but no new drive letters appear on a Windows® operating
system based machine.

Solution: See Microsoft knowledge base article 297694: http://support.microsoft.com/kb/297694

If there is a drive letter conflict (ex: because a network drive has been mapped to a letter low in the alphabet), on some
operating systems the newly attached USB drive may not appear. If this occurs, either obtain the hotfix from Microsoft, or
remap the conflicting mapped network drive to a letter at the end of the alphabet (ex: Z:).

Issue 2: The device enumerates correctly and I can access the new drive. Even though the drive is not full yet, when I try to
write to the drive, I get an error message something like, “Cannot copy (some name): The directory or file cannot be created.”

Solution: In order to copy new files onto the drive volume, both the file contents themselves must be copied to the drive, and
the FAT table must also be updated in order to accommodate the new file name and path. Even if the drive has plenty of free
space available, the FAT table may have reached its limit. In order to keep the default demos small, the FAT table is
configured to be only 512 bytes long. This is not very large, and can easily be exceeded, especially if the files on the drive
have long file names. In order to use the remaining space available on the drive, it is recommended to keep the individual file
names as short as possible to minimize their size in the FAT table. Alternatively, the firmware can be modified so that the
FAT table is larger, and therefore able to accommodate more file name and path characters.

Issue 3: When I try to format the drive, I get an error message and the drive does not get formatted properly.

Solution: By default, common Windows based operating systems will try to place a large FAT table on the newly formatted
disk (larger than the default 512 bytes of the demo firmware). If the FAT table is larger than the total drive space, the drive
cannot be formatted. In order to successfully format the drive, an alternative method of formatting will be needed that places
a smaller FAT table on the drive. For example, the drive can be effectively reformatted by reprogramming the microcontroller
with the original HEX file. Alternatively, if the firmware is modified to increase the total drive space, the Windows operating
system managed FAT table may be able to fit. Unfortunately, this will shrink the effective drive size, making less of it
available for actual file data.

Issue 4: When I format the drive, the drive size shrinks.

Solution: See the solution to issue #3 above.

1.6.12 Device - Mass Storage - SD Card Reader

This demo shows how to implement a simple SD card reader

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that

1.6 Demos MLA - USB Library Help Device - Mass Storage - SD Card Reader

279

the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/msd_sd_card_reader/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

Connect the hardware platform to a computer through a USB cable. If the device was attached to the computer while the
data logging occurred, you may need to remove the SD card from the card slot or disconnect and reconnect the device from
the computer for the files to appear. Most computers are not expecting the files on an attached drive to change if they are
not making the change so some operating systems will not look for additional drive changes.

The device should appear as a new drive on the computer named “Removable Drive”.

If no SD Card is inserted in the SD Card PICTail Plus, the following dialog will pop-up.

Once a compatible card is inserted in the card reader, files can be read, deleted, and manipulated like any other drive on the
computer.

1.6.13 Device - Vendor Driver Basic Demo

This demo creates a simple vendor class device using the libusb and WinUSB drivers. It includes PC/host software
examples as well.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

1.6 Demos MLA - USB Library Help Device - Vendor Driver Basic Demo

280

<install_directory>/apps/usb/device/vendor_basic/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

1.6.13.1 Windows
Running the demo on a Windows machine.

Description

This demo uses the selected hardware platform as a Libusb class USB device. Libusb-Win32 is a USB Library for the
Windows operating systems. The library allows user space applications to access any USB device on Windows in a generic
way without writing any line of kernel driver code. This driver allows users to have access to interrupt, bulk, and control
transfers directly.

The SimpleLibUSBDemo.exe program and the associated firmware demonstrate how to use the Libusb device drivers for
basic general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the SimpleLibUSBDemo.exe executable, you will need to have the Microsoft® .NET Framework Version
3.5 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs which were
built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The redistributable
package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will not need to
install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for SimpleLibUSBDemo.exe file was created in Microsoft Visual C++® 2008 Express Edition. The source
code can be found in the “<Install Directory>\ USB Device - Libusb - Generic Driver Demo\ Libusb Simple Demo - Windows
Application\Libusb Simple Demo - PC Application - MS VC++ 2008 Express” directory. Microsoft currently distributes Visual
C++ 2008 Express Edition for free, and can be downloaded from Microsoft’s website.

To launch the application, simply double click on the executable “SimpleLIbusbDemo.exe” in the “<Install Directory>\USB
Device - Libusb - Generic Driver Demo\Windows Application” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 3.5 Redistributable Package has not yet been installed. Please install it and try again.

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0204. The device descriptor in the
firmware project meant to be used with this demo uses the same VID/PID. To run the demo program the USB device with
the correct precompiled .hex file. If you are connecting the device for the first time, Windows pops up a window asking you to
install the driver for the device. When asked for the driver point it to the inf file provided along with the demo. Windows takes
while to install the driver for the USB device that is just plugged in. Open the Device manager and ensure that the USB
device is listed under the ‘Libusb Demo Devices’. Once the driver is installed hit the “Connect” button, the other pushbuttons
should become enabled. If hitting the connect button has no effect, it is likely the USB device is either not connected, or has
not been programmed with the correct firmware.

If a different VID/PID combination from the default is desired, then the descriptors in the firmware must be changed as well
as the inf file. The easiest way to change the inf file is to use the utility provided with the LibUSB download for windows on
the LibUSB website. This utility can create a new inf file based on a connected device. So make sure to change the VID/PID
combination first in the firmware, connect the device, and then run the inf file creator utility. After completing the utility, a new

1.6 Demos MLA - USB Library Help Device - Vendor Driver Basic Demo

281

signed driver with inf file is created.

Once the driver is installed hit the “Connect” button, the other pushbuttons should become enabled. If hitting the connect
button has no effect, it is likely the USB device is either not connected, or has not been programmed with the correct
firmware.

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the Custom class USB peripheral
device. The data will arrive on the Bulk OUT endpoint. The firmware has been configured to receive this generic data packet,
parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the LED(s) on
the demo board.

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the Bulk OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,
and will prepare an appropriate response packet depending upon the pushbutton state.

The PC then requests a packet of data from the device (which will be taken from the Bulk IN endpoint). Once the PC
application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

In order to build the application, copy the file <libusb-win32 unzipped folder>\
libusb-win32-device-bin-0.1.12.1\lib\msvc\libusb.lib and paste to ‘lib’ folder of the VC++. Also copy the file

<libusb-win32 unzipped folder>\ libusb-win32-device-bin-0.1.12.1\ include\usb.h and paste to the “<Install Directory>\USB
Device - Libusb - Generic Driver Demo\Windows Application\Microsoft VC++ 2008 Express\SimpleLibusbDemo’ folder.

1.6.13.2 Linux
Running the demo on a Linux machine.

Description

The SimpleLibUSBDemo program and the associated firmware demonstrate how to use the Libusb device drivers for basic
general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the SimpleLibUSBDemo executable, you will need to have the libusb 0.1 driver installed on your
computer. The libusb can be downloaded from sourceforge.net.

The source code for SimpleLibUSBDemo.exe file was created using QT3 Designer. The source code can be found in the
“<Install Directory>\ USB Device - Libusb - Generic Driver Demo\Libusb Simple Demo - Linux Application\ Libusb Simple
Demo - Linux Application -QT3” directory.

To launch the application, open the Terminal and navigate to the “<Install Directory>\USB Device - LibUSB - Generic Driver
Demo\Linux Application” directory and execute the following commands

1. chmod a+x SimpleLibusbDemo_Linux (This command gives executable right to the file on this Linux computer

2. sudo ./SimpleLibusbDemo_Linux.

Enter the Super user password when requested. A window like that shown below should appear:

1.6 Demos MLA - USB Library Help Device - Vendor Driver Basic Demo

282

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0204. The device descriptor in the
firmware project meant to be used with this demo uses the same VID/PID. To run the demo program the USB device with
the correct precompiled .hex file. If you are connecting the device for the first time, Windows pops up a window asking you to
install the driver for the device. When asked for the driver point it to the inf file provided along with the demo. Windows takes
while to install the driver for the USB device that is just plugged in. Open the Device manager and ensure that the USB
device is listed under the ‘Libusb Demo Devices’. Once the driver is installed hit the “Connect” button, the other pushbuttons
should become enabled. If hitting the connect button has no effect, it is likely the USB device is either not connected, or has
not been programmed with the correct firmware.

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the Custom class USB peripheral
device. The data will arrive on the Bulk OUT endpoint. The firmware has been configured to receive this generic data packet,
parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the LED(s) on
the demo board.

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the Bulk OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,
and will prepare an appropriate response packet depending upon the pushbutton state.

The PC then requests a packet of data from the device (which will be taken from the Bulk IN endpoint). Once the PC
application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

In order to build the application navigate to the “<Install Directory>\USB Device - LibUSB - Generic Driver Demo\Linux
Application\Qt3” directory and execute the command “make”.

1.6.13.3 Android 3.1+
Running the demo on an Android device.

Description

There are two main ways to get the example application on to the target Android device: the Android Market and by
compiling the source code.

1. The demo application can be downloaded from Microchip’s Android Marketplace page:
https://market.android.com/developer?pub=Microchip+Technology+Inc

1.6 Demos MLA - USB Library Help Device - Vendor Driver Basic Demo

283

2. The source code for this demo is also provided in the demo project folder. For more information about how to build and
load Android applications, please refer to the following pages:

• http://developer.android.com/index.html

• http://developer.android.com/sdk/index.html

• http://developer.android.com/sdk/installing.html

While there are no devices attached, the Android application will indicate that no devices are attached.

When the device is attached, the an alternative screen will allow various control/status features with the hardware on the
board.

1.6 Demos MLA - USB Library Help Device - Vendor Driver Basic Demo

284

1.6.14 Device - Vendor High Bandwidth Demo

This demo shows how to get (and measures) the maximum throughput using a vendor class driver.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC18F46J50 PIM this would be the following file:

<install_directory>/apps/usb/device/vendor_throughput_test/firmware/src/system_config/pic18f46j50_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo uses the selected hardware platform as a WinUSB class USB device. WinUSB is a vender specific driver
produced by Microsoft for use with Windows® XP service pack 2 and later operating systems. This driver allows users to
have access to interrupt, bulk, and control transfers directly.

The HighBandwidthWinUSB.exe program, and the associated firmware demonstrate how to use the WinUSB device drivers
for USB Bulk data transfers. Total Time taken to transmit the data & data transmission rate (Bytes/Sec) is shown in the GUI
once the data transmission of 9,60,000 bytes is completed from the PC side.

Before you can run the HighBandwidthWinUSB.exe executable, you will need to have the Microsoft® .NET Framework
Version 2.0 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs
which were built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The
redistributable package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will
not need to install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for HighBandwidthWinUSB.exe file was created in Microsoft Visual C++® 2005 Express Edition. The
source code can be found in the “<Install Directory>\ USB Device - WinUSB - High Bandwidth Demo\WinUSB High
Bandwidth Demo - PC Application - MS VC++ 2005 Express” directory. Microsoft currently distributes Visual C++ 2005

1.6 Demos MLA - USB Library Help Device - Vendor High Bandwidth Demo

285

Express Edition for free, and can be downloaded from Microsoft’s website. When downloading Microsoft Visual C++ 2005
Express Edition, also make sure to download and install the Platform SDK, and follow Microsoft’s instructions for integrating
it with the development environment.

It is not necessary to install either Microsoft Visual C++ 2005, or the Platform SDK in order to begin using the
HighBandwidthWinUSB.exe program. These are only required if the source code will be modified or compiled.

To launch the application, simply double click on the executable “HighBandwidthWinUSB.exe” in the “<Install
Directory>\USB Device - WinUSB - High Bandwidth Demo” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

As configured by default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0052. The device
descriptor in the firmware project meant to be used with this demo uses the same VID/PID. Once the device flashed with
corresponding firmware is connected to the PC, the below window appears:

Hitting the “Send Bulk OUT Packets” tab will transmit 960,000 bytes of data on the USB bus to the corresponding endpoints
(EP1 Only or EP1,EP2, EP3 Simultaneously depending upon the button pressed in the GUI). Elapsed Time (ms) &
Bandwidth (Bytes/Sec) are displayed in the GUI once the data transmission is complete.

1.6.15 Host - CDC Serial Demo

This demo shows how to interface to USB CDC devices. This typically includes many cell phone models and USB modems.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in

1.6 Demos MLA - USB Library Help Host - CDC Serial Demo

286

the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC24FJ256GB110 PIM for the Explorer 16, this would be the following file:

<install_directory>/apps/usb/host/cdc_basic/firmware/src/system_config/exp16/pic24fj256gb110_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This is a simple demo to show how an embedded CDC host can be implemented. When a CDC-RS232 device is attached to
the host, the demo host application polls for input data from the device and displays the data on the LCD mounted on the
explorer 16 board.

1.6.16 Host - HID - Keyboard Demo

This demo shows how to interface to USB keyboards. Many USB barcode scanners also appear as a USB keyboard.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC24FJ256GB110 PIM for the Explorer 16, this would be the following file:

<install_directory>/apps/usb/host/hid_keyboard/firmware/src/system_config/exp16/pic24fj256gb110_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

When the device is programmed correctly with the HID host keyboard application the LCD screen on the Explorer 16 should
read “Device Detached” if there is no device attached to the USB port. At this point plug in a USB keyboard, bar code
scanner that supports HID keyboard emulation, or magnetic card reader that supports HID keyboard emulation. Type a key
on the keyboard. This character should be printed on the LCD screen. Pressing the “ESC” key will clear the screen and
return the cursor to the first position.

Limitations:

• Neither compound nor composite devices are supported. Some keyboards are either compound or composite.

• The “~” prints as an arrow character instead (“->”). This is an effect of the LCD screen on the Explorer 16. The ascii
character for “~” is remapped in the LCD controller.

• The “\” prints as a “¥” character instead. This is an effect of the LCD screen on the Explorer 16. The ascii character for
“\” is remapped in the LCD controller.

• Backspace and arrow keys may have issues on Explorer 16 boards with certain LCD modules

1.6.17 Host - HID - Mouse Demo

This demo shows how to read the basic position and button information from a standard USB mouse.

1.6 Demos MLA - USB Library Help Host - HID - Mouse Demo

287

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC24FJ256GB110 PIM for the Explorer 16, this would be the following file:

<install_directory>/apps/usb/host/hid_mouse/firmware/src/system_config/exp16/pic24fj256gb110_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

When a device is not attached, the LCD screen indicates to attach a device. When a device is attached, the X/Y coordinates,
and left/right mouse button information should be shown on the LCD screen. Some screens don't have enough space to
show all of this information and might be truncated. Other boards might not have a screen or the demo has not been ported
yet to use their screen. These boards likely print the messages to RAM, which can be viewed using a debugger after the
device has been attached.

Limitations:

• Composite and compound device are not currently supported. These devices may not enumerate or operate correctly.
Devices with built in USB hubs are a compound device. Many multimedia devices with mouse as one of the interface
are composite devices.

1.6.18 Host - Mass Storage - Thumb Drive Data Logger

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Board I/O Mapping

Each demo board has a different number of push buttons, LEDs, and other features with various different names for these
components. To determine which board features are used for which demo features, please refer to the io_mapping.h file in
the demo folder under the system_config folder. Each demo board will have a corresponding folder with an io_mapping.h file
in it. For example, for the PIC24FJ256GB110 PIM for the Explorer 16, this would be the following file:

<install_directory>/apps/usb/host/msd_data_logger/firmware/src/system_config/exp16/pic24fj256gb110_pim/io_mapping.h

For more information about each demo board, please refer to the Demo Board Information section.

Demo Operation

This demo will cause the host to start logging the potentiometer data to a thumb drive once the drive is plugged into the
board. An LED will blink indicating that the data is being logged to the file. Press the pushbutton on the board to stop the
logging to the file. If the drive has an activity LED, wait for it to stop blinking. If it doesn't, wait a few seconds for the write to
complete before removing the drive.

1.6 Demos MLA - USB Library Help Host - Mass Storage - Thumb Drive Data

288

NOTE: remove the drive without stopping the write first by pressing the button can result in corrupted or missing data.

1.6.19 Host - Mass Storage (MSD) - Simple Demo

This demo is a simple example of how to write a file to a USB thumb drive.

Description

Supported Demo Boards

The matrix of which demos are supported on a specific board can be found in the Release Notes demo board support
section. Verify that the board you wish to use will work with this demo. This table also describes some of the limitations that
the board might have while running this demo.

Demo Operation

This demo is a simple example of how to write files to a thumb drive through the Microchip MDD file system library. When a
thumb drive is plugged in the code will create a text file on the drive. This process only takes a brief moment. Connect the
thumb drive to the board and wait for a couple of seconds. If the drive has an activity LED on it, wait for , remove the drive
and plug it back into a computer. There should be an additional text file created named “test.txt”.

Limitations:

• Due to the size of this demo, optimizations must be enabled in the compiler in order for this demo to work on the
certain hardware platforms. Optimizations are not available on all versions of the compilers.

1.6 Demos MLA - USB Library Help Host - Mass Storage (MSD) - Simple

289

1.7 Appendix (FAQs, Important Information,
Reference Material, etc.)

This section contains other useful information about various topics and more detailed information about topics already
presented in the help document.

Description

1.7.1 Using breakpoints in USB host applications

This section describes how to use breakpoints when running a USB host application without causing communication issues.

Description

This section describes how to use breakpoints when running a USB host application without causing communication issues.

USB has a periodic packet that is sent on the bus once every millisecond, called the start of frame (SOF) packet, that is used
to keep the bus from going into an idle/suspended state. When a the microcontroller hits a breakpoint, both the CPU and the
modules on the device stop operation. This will cause the attached USB device to enter the suspend mode. Some
programmers implement a method that allows specified peripherals to continue to run even after a breakpoint occurs. This
section describes how to enable this feature for the USB peripheral on PIC24F and PIC32 devices.

MPLAB v8.x

1) Select the desired debugger from the debugger menu

2) Go to the “Debugger->Settings” menu option

3) Go to the Freeze on Halt tab. For PIC24F devices, uncheck the UCNFG1 box. For PIC32 devices, uncheck the “All other
peripherals” box located below the scrolling menu.

1.7 Appendix (FAQs, Important MLA - USB Library Help Using breakpoints in USB host

290

PIC24F

PIC32

1.7 Appendix (FAQs, Important MLA - USB Library Help Using breakpoints in USB host

291

MPLAB X

1) In the projects window, right click on the project you are working on and select properties from the menu that appears.

2) In the properties window, select the debugger that you are currently using from the Categories navigation pane.

3) In the resulting form, select "Freeze Peripherals" in the "Option Categories" drop down box.

4) In the resulting list uncheck the box corresponding to the USB peripheral. If there is not one on the list, uncheck "All other
peripherals". Please note that on PIC24F the USB module may be named UCNFG1.

1.7 Appendix (FAQs, Important MLA - USB Library Help Notes on .inf Files

292

1.7.2 Notes on .inf Files

Describes important information about .inf file usage and behavior.

Description

Upon initially plugging in a USB device, in some cases Windows will prompt the user for a driver. Rather than having users
manually copy .sys files (driver binary files) into important system directories (such as within the “\Windows\system32\”
directory structure) and manually add registry entries, Windows automates the driver installation process through the use of
.INF files. INF files are plain text (can be edited with notepad) installation instruction script files.

Some types of USB devices will not require .INF files or user provided drivers (for example, a HID class mouse). For these
types of devices, the operating system makes use of drivers already built into/distributed with the operating system, so no
user provided driver or .INF file is necessary.

For other types of devices, Windows will prompt the user for a driver. In these cases, point Windows to the .INF file relevant
for the USB device. All of the example projects included in the MCHPFSUSB framework which need an INF file are provided
with an example INF file. The INF file will need slight modification (most importantly to change the VID and PID) before
commercial distribution.

The INF file for the custom demo can be found in <Install Directory>\USB Tools\MCHPUSB Custom Driver\MCHPUSB
Driver\Release.

The INF file for the CDC demos can be found in <Install Directory>\USB Tools\USB CDC Serial Demo\inf\win2k_winxp.

1.7.3 Vendor IDs (VID) and Product IDs (PID)

Describes important information about Vendor IDs (VID) and Product IDs (PID).

Description

Every USB product line must have a unique combination of VID and PID. All firmware examples use Microchip's VID
(0x04d8) and a unique PID. Prior to manufacturing and marketing a new USB product, the VID and PID need to be changed.
New VID and PID numbers can be obtained by purchasing a VID from the USB Implementers Forum:

http://www.usb.org/developers/vendor

Alternatively, Microchip has a free VID sublicensing program. An application form for obtaining a PID (for use with
Microchip’s VID: 0x04d8) from Microchip can be obtained through the following link:
http://www.microchip.com/usblicensing/Default.aspx

Once a new VID/PID combination is obtained, both the firmware and the .INF file (when applicable) will need to be updated.

To modify the VID/PID in one of the example USB firmware projects, open the usb_descriptors.c file (found in each of the
demo folders). They should appear in the table used for the USB Device Descriptor. Change both values as needed.

To modify the VID/PID in the .INF file, open the relevant INF file and search for the “[DeviceList]” sections. There are two
sections, one for 32-bit and one for 64-bit, both sections should be identical. In these sections, some text will appear with the
form “USB\VID_xxxx&PID_yyyy”. Update the “xxxx” and “yyyy” sections with the new hexadecimal format VID/PID values.

1.7.4 Using a Diff Tool

Refer to the Section "Using a Diff Tool" in help_mla_getting_started file for more details.

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

293

1.7.5 Driver Signing and Windows 8

This section provides information related to USB driver signatures, the types of signatures needed for the different versions
of Windows operating system, and how to get a signed driver package.

1.7.5.1 What are "Signed" Drivers?
What are “Signed” Drivers?

Most USB drivers operate in what is known as “kernel mode” on Windows based PCs. Kernel mode drivers have low level
access to the PC and its resources. This low level access to the PC is normally necessary to implement the kind of
functionality that the driver is intended to provide to top level applications.

However, low level access to a PC has potential security implications. Kernel mode is typically the “ideal” place where
malicious software developers would want their software to operate, since it provides the greatest control and access to the
PC. Therefore, in the interest of protecting Windows security, Windows OSes place restrictions on what code is allowed to
be operated in kernel mode.

Windows “trusts” drivers and executable programs that have been signed, more so than software that is unsigned. Signing a
driver package is analogous to placing an embossed wax seal on an envelope. The signature/wax seal does not effect or
alter the contents of the package, but it provides proof that the contents have not been modified or tampered with, since the
time that the signature/wax seal was first applied.

There are three types of USB driver signatures to be aware of:

Embedded digital signatures: This type of signature resides inside of driver .sys files (kernel mode driver binary files). No
additional/external files are associated with this type of signature. These types of signatures only protect against tampering
with the .sys file itself, and do not include other files that may be a part of the driver package (ex: .inf and .dll files). All
Microsoft OS provided driver .sys files, as well as most third party kernel mode drivers will contain at least this level of
signature.

“Full driver package” digital signature – Microsoft Authenticode: This type of signature can be though of as a “wrapper”
over the entire driver package content files. A driver package can be a simple as a single .inf file (a plain text installation
instruction file that Windows uses when installing new drivers), or may encompass additional files (such as .dll and/or .sys
files). The full driver package signature comes in the form of a properly created security catalog file (.cat), which will be part
of the driver package distribution. A driver package signed with an Authenticode signature is relatively easy to create, but it
less trustworthy to that of a WHQL digital signature.

“Full driver package” digital signature – WHQL: This type of signature is the most trusted by Windows, and is very similar
to the full driver package Microsoft Authenticode signature above, but is more expensive and harder to obtain. To obtain a
Windows Hardware Quality Labs (WHQL) signature, a driver package must undergo extensive testing, and passing log files
and submission fees must be supplied to Microsoft. If a driver package has already previously been tested and WHQL
certified, but has since been modified, in some cases it is possible to get the driver re-certified through a simpler and
cheaper "Driver Update Acceptable" process with Microsoft.

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

294

Any modifications to a driver package once the signature has been applied, including adding or deleting a single character of
whitespace in the driver .inf file, will invalidate a full driver package signature. A driver package can however have two
simultaneous signatures, one covering the full driver package, and one embedded inside the driver binary file(s). Inf file
modifications do not invalidate an embedded digital signature inside of a driver binary file.

Once a signature has been invalidated, Windows will no longer trust the driver package as much, and will place restrictions
on its installation (or outright prevent its installation on some OSes). The driver package can however be re-signed, to
restore the trustworthiness of the driver to Windows.

1.7.5.2 Minimum Driver Signature Requirements
Minimum Driver Signature Requirements

Full driver package WHQL signatures are the best and most trusted by all versions of Windows. Windows allows the
installation of properly WHQL signed drivers, without producing a prompt warning the user about the driver’s trustworthiness.

However, current Windows versions do not require WHQL signatures to allow installation. Lesser signatures (or no
signatures in some cases) are allowed, but will generate user dialogs/warnings during the installation process.

Operating System Minimum Signature to Allow Installation

Windows 2000 None

Windows XP 32-bit None

Windows XP 64-bit None

Windows Vista 32-bit None

Windows Vista 64-bit Embedded

Windows 7 32-bit Embedded

Windows 7 64-bit Embedded

Windows 8 32-bit Embedded

Windows 8 64-bit Embedded + Full package authenticode

Windows RT (ARM) Third party drivers and driver packages are not currently allowed. All
USB devices for this OS must use Microsoft supplied drivers.

1.7.5.3 Using Older Drivers with Windows 8
Using Older Drivers with Windows 8

In general, USB driver packages that are designed for Windows 7 and prior OS versions will also work in Windows 8, but
there is one important exception to this.

Starting with Windows 8 64-bit, all drivers must contain a proper “full driver package” digital signature (prior OSes only
required an embedded signature in the .sys file, rather than the entire driver package including the .inf file). The driver
package signature exists as a .cat file that comes with the driver package, and needs to be correctly referenced from within

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

295

the .inf file. If either the .cat file is entirely missing, or it is not being correctly referenced from the .inf file, Windows 8 will
generate an error message, when the user attempts to install the driver:

“The third party INF does not contain digital signature information”.

If the .cat file is present and is correctly referenced, but something in the driver package was modified since the signature
was applied, a slightly different error message will occur:

“The hash for the file is not present in the specified catalog file. The file is likely corrupt or the victim of tampering.”

In both cases, Windows 8 64-bit will not allow the driver package to be installed, even though it may technically be capable
of functioning correctly. To fix this, the driver package must be properly signed with a full package signature. This signature
may be either a WHQL signature (which is the best kind of signature), or a “Microsoft Authenticode” signature.

In the February 2013 or later version of the Microchip Libraries for Applications (MLA, available from
www.microchip.com/mla), the CDC, WinUSB, and MCHPUSB driver packages all include a WHQL signature and can be
installed successfully on Windows 8 32 and 64 bit (as well as prior OSes). When the firmware is using the same VID/PID as
the default value from the demo, then the latest driver package from the MLA should install directly.

When the application uses a customized .inf file (ex: VID/PID and/or strings are different), then it will not be possible to
directly use the driver package from the MLA. The reason for this, is that anytime anyone makes any changes whatsoever to
the driver package (including adding or deleting one character of whitespace in the .inf file), this will break and invalidate the
driver package signature. Therefore, even if the .cat file is present, the signature will be invalid (and still won’t install
correctly).

Therefore, if an application needs to use a custom modified driver package, the only practical solution is to make the
modifications, and then re-sign the driver package. A driver package can be signed with an authenticode signature using the
procedure outlined in the section “Using a Code Signing Certificate to Sign Driver Packages”. A package signed with the
Microsoft authenticode signature will install successfully on Windows 8, but will still produce a user prompt asking if they
would like to trust the company that signed the driver package. This user dialog can be suppressed if the driver package
instead contains a WHQL signature.

Although not very suitable for end consumers, Windows 8 does have a feature that allows one to temporarily disable driver
package signing enforcement. This is particularly useful for development and testing purposes. The feature is hidden under
several layers of menus and requires the following steps to enable:

1. From the desktop, move the mouse to the lower right hand corner of the screen, to launch the charm bar.

2. Click the Settings “gear” icon.

3. Click the "Change PC Settings" option.

4. In the PC Settings menu on the left, select the “General” option.

5. In the right hand pane, scroll down to the bottom of the options list. Under the “Advanced startup” section, click the
“Restart now” button. This doesn’t directly reboot the computer, but launches a page that provides additional restart options.

6. In the “Choose an option” page, select the “Troubleshoot” option.

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

296

7. From the Troubleshoot menu, click on “Advanced options”.

8. In the “Advanced options” dialog, click the “Startup Settings” option.

9. From the “Startup Settings” dialog, click the “Restart” button.

10. The computer should now begin a reboot cycle. During the boot up sequence, a special “Startup Settings” dialog screen
should appear.

11. On the “Startup Settings” dialog, press the “F7” key, to select the “Disable driver signature enforcement” option.

12. Allow Windows 8 to finish booting up.

Once driver signing enforcement is disabled, unsigned driver packages can then be installed. After rebooting the machine,
driver signing enforcement will be re-enabled, but Windows 8 will continue to allow the unsigned driver(s) that were installed
to be loaded for the hardware, without requiring the system to be repeatedly rebooted into the driver signing enforcement
disabled mode.

1.7.5.4 Driver Signatures in the Microchip Libraries for
Applications (MLA) Projects

Driver Signatures in the Microchip Libraries for Applications (MLA) Projects

Projects based on WinUSB: WinUSB is a Microsoft created/supplied driver. All Microsoft supplied drivers contain an
embedded signature from Microsoft. Additionally, WinUSB driver packages supplied in the February 2013 MLA release (or
later) also contain a full driver package Microsoft WHQL signature.

In operating systems prior to Windows 8, WinUSB based devices require the user to install a driver package for the
hardware. However, starting with Windows 8, it is possible to make WinUSB based devices that are fully plug and play, and
do not require any user supplied driver package. Windows 8 allows for automatic installation of the WinUSB driver, when the
device firmware implements the correct Microsoft specific “OS” and related USB descriptors. These special descriptors are
optional, but when implemented, allow for automatic driver installation using the in-box provided WinUSB driver that is
distributed with the operating system installation. These special OS descriptors are implemented starting the WinUSB based
firmware projects in the 2012-10-15 MLA Release. For all new application designs, it is recommended to include these
special descriptors as they will result in a better end user experience, free of any driver package/signing/installation concerns.

Projects based on CDC: When used with Windows, the CDC projects in the MLA use the Microsoft created/supplied
“usbser.sys” driver. This driver contains an embedded signature from Microsoft. Additionally, CDC driver packages supplied
in the February 2013 MLA release (or later), also contain a full driver package Microsoft WHQL signature.

Projects based on MCHPUSB: The MCHPUSB driver is a Microchip created/supplied driver. This driver contains an
embedded signature from Microchip. Additionally, this driver package contains a WHQL signature. However, when designing
a new application, it is suggested to consider using the WinUSB driver instead.

Projects based on libusb: There are multiple versions of the “libusb driver”. Libusb version 0.1 devices rely on a custom
driver that can be signed with “libwdi”. Libusb version 1.0 devices, when attached to Windows based machines, relies on the
Microsoft supplied WinUSB driver (see WinUSB section).

Projects based on PHDC: The PHDC projects in the MLA rely on the libusb driver (see libusb section).

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

297

Projects based on HID, MSD, audio class, CCID: These USB device classes/projects rely on Microsoft supplied drivers
that are distributed with the operating system, and do not require any user supplied driver packages or .inf files. Therefore,
driver package signing is usually not relevant for these types of applications, as the drivers will normally get installed
automatically when the hardware is attached to the machine.

1.7.5.5 Obtaining a Microsoft Authenticode Code Signing
Certificate

Obtaining a Microsoft Authenticode Code Signing Certificate

There are several Certificate Authority (CA) companies that can sell your organization a signing certificate that will allow you
to sign your own driver packages. However, when submitting a driver package to Microsoft for WHQL certification, either as
a new device/driver, or by reusing a previous submission through the “Driver Update Acceptable” (DUA) process, Microsoft
currently requires that the submitted files be signed with an authenticode signing certificate issued by VeriSign.

Therefore, it is generally preferred to obtain the Microsoft Authenticode code signing certificate from VeriSign (now a part of
Symantec Corporation). Before purchasing the certificate, it is recommended to search for possible promotional/discounted
rates. Historically Microsoft has run a program providing for discounted prices for first time purchasers of VeriSign
certificates.

Authenticode code signing certificates are usually sold on an annual or multi-year basis. Once purchased, the signing
certificate can normally be used to sign an unlimited number of driver package security catalog files (ex: .cat files), along with
other types of files (ex: .exe executable programs). The certificate itself (ex: typically a .pvk file, though other extensions are
possible) needs to be kept physically secure, and should never be distributed publicly.

1.7.5.6 Code Signing Certificates (Other Uses)
Code Signing Certificates – Other Uses

In addition to signing driver packages, a Microsoft Authenticode signing certificate can be used to sign certain other types of
files, such as executable (.exe) programs. Windows, especially Windows 8, does not trust unsigned executables as much as
signed executables. In Windows 8, an unsigned executable that has “no history” and has no reputation established with
Microsoft will be treated as relatively untrustworthy, and is blocked from execution, unless the user manually overrides the
OS behavior, through an advanced options dialogue that is typically hard for new users to find.

Additionally, some virus scanning applications also rely on executable signatures, to help establish relative trustworthiness.
In some cases, unsigned executables, free of malware/viruses, can still be blocked from execution by the virus scanning
software, until a history/reputation is built up establishing the executable as trustworthy. Signing the executable with a
Microsoft Authenticode signing certificate will generally make the executable more trustworthy and less likely to be
(incorrectly) flagged as malware.

1.7.5.7 Using a Code Signing Certificate to Sign Driver Packages
Using a Code Signing Certificate to Sign Driver Packages

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

298

If you make modifications to a driver package and need to re-sign the package, the easiest method is to sign it with a
Microsoft Authenticode code singing certificate. This can be done with the following procedure:

1. Start from a known working driver package .inf file from the latest MLA release.

2. Modify the .inf as desired. The .inf file is a plain text (ex: editable with Notepad) installation instruction/information file that
tells the OS what driver needs to be used for the hardware, and anything else that may need to happen during the driver
installation process. When changing the .inf file device list sections, please remove all existing Microchip VID/PIDs, before
replacing them with your own. The manufacturer and product strings should also be updated as applicable for your device.

3. Delete the security catalog file (.cat) that is already supplied with the package. After modifying the .inf file, the security
catalog file will no longer be valid and you will need to create a new one.

4. Download the latest version of the Windows Driver Kit (WDK) from Microsoft (this is currently at:
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487428.aspx). Version 8.0 or later is needed (prior versions
don’t have awareness of Windows 8 specifics).

5. Use the “Inf2Cat” utility in the WDK to re-generate a new .cat file from the modified .inf file.

1. Inf2Cat is a command line utility. Open a command prompt, navigate to the directory of the inf2cat tool, and then run it at
the command line to get a small help/explanation of usage syntax. The program is typically located in the following location:
C:\Program Files\Windows Kits\8.0\bin\x64 (or \x86 folder for 32-bit OS)

2. Typical usage syntax would be similar to the following (all on one line):

inf2cat /driver:C:\[path to dir with .inf file]
/os:XP_X86,XP_X64,Vista_X86,Vista_X64,7_X86,7_X64,8_X86,8_X64,Server2003_X86,Server2003_X64,Server2008_X86,
Server2008_X64,Server2008R2_X64,Server8_X64

Assuming the inf2cat utility runs successfully, it will generate a “raw” .cat file. The .cat file will still need to be signed, in order
to be useful.

6. If your organization does not already have one, purchase a code signing certificate from a Certificate Authority (CA) such
as VeriSign (now Symantec Corporation). See the section “Obtaining a Microsoft Authenticode Code Signing Certificate” for
more details.

7. Use the “signtool.exe” utility, along with the signing certificate purchased from the CA, to sign the .cat file. The signtool
utility is small Microsoft program that is distributed in the Windows SDK (and/or in older versions of the WDK, prior to v8.0).
The Windows SDK can currently be obtained from:

http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx

Typical syntax when using the signtool would be as follows (when executed in the directory of the .cat file, assuming
directory to the signtool is in the path, and the certificate has a .pfx extension without a password, and that the certificate
resides on "E:", like a typical USB flash drive):

signtool sign /v /f "E:\[path to certificate]\[certificate file name].pfx" /t http://timestamp.verisign.com/scripts/timestamp.dll
[FileNameToSign.cat]

8. Verify that the signature has been properly applied using the verify command line option:

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

299

signtool verify /a /pa [FileNameToSign.cat]

The verify step should report success. The driver package should now be correctly signed with a Microsoft Authenticode
signature. Test it on all target OSes. Distribute both the .inf file and .cat file together to the end consumer (along with any
other driver package files that may be necessary, which may include .dll files, particularly in the case of the WinUSB driver
package). Never distribute the signing certificate that you purchased from the CA, this should be kept in a safe place, out of
the hands of the public (the certificate can be re-used to sign any number of driver packages, as well as .exe files, which will
have some benefits).

1.7 Appendix (FAQs, Important MLA - USB Library Help Driver Signing and Windows 8

300

Index

_
__USBHOST_H__ 131

__USBHOST_H__ macro 131

_CLIENT_DRIVER_TABLE 122

_CLIENT_DRIVER_TABLE structure 122

_COMM_INTERFACE_DETAILS 144

_COMM_INTERFACE_DETAILS structure 144

_DATA_INTERFACE_DETAILS 144

_DATA_INTERFACE_DETAILS structure 144

_HID_COLLECTION 182

_HID_COLLECTION structure 182

_HID_DATA_DETAILS 182

_HID_DATA_DETAILS structure 182

_HID_GLOBALS 183

_HID_GLOBALS structure 183

_HID_ITEM_INFO 184

_HID_ITEM_INFO structure 184

_HID_REPORT 185

_HID_REPORT structure 185

_HID_REPORTITEM 185

_HID_REPORTITEM structure 185

_HID_STRINGITEM 186

_HID_STRINGITEM structure 186

_HID_TRANSFER_DATA 186

_HID_TRANSFER_DATA structure 186

_HID_USAGEITEM 187

_HID_USAGEITEM structure 187

_HOST_TRANSFER_DATA 123

_HOST_TRANSFER_DATA structure 123

_USB_CDC_ACM_FN_DSC 145

_USB_CDC_ACM_FN_DSC structure 145

_USB_CDC_CALL_MGT_FN_DSC 145

_USB_CDC_CALL_MGT_FN_DSC structure 145

_USB_CDC_CONTROL_SIGNAL_BITMAP 146

_USB_CDC_CONTROL_SIGNAL_BITMAP union 146

_USB_CDC_DEVICE_INFO 146

_USB_CDC_DEVICE_INFO structure 146

_USB_CDC_HEADER_FN_DSC 147

_USB_CDC_HEADER_FN_DSC structure 147

_USB_CDC_LINE_CODING 148

_USB_CDC_LINE_CODING union 148

_USB_CDC_UNION_FN_DSC 148

_USB_CDC_UNION_FN_DSC structure 148

_USB_HID_DEVICE_ID 188

_USB_HID_DEVICE_ID structure 188

_USB_HID_DEVICE_RPT_INFO 188

_USB_HID_DEVICE_RPT_INFO structure 188

_USB_HID_ITEM_LIST 190

_USB_HID_ITEM_LIST structure 190

A
Adding a boot loader to your project 257

Android 3.1+ 283

Appendix (FAQs, Important Information, Reference Material,
etc.) 290

Application Version Information 242

Audio Function Driver 70

B
Boot Loader Entry 248

BOOT_INTF_SUBCLASS 91

BOOT_INTF_SUBCLASS macro 91

BOOT_PROTOCOL 92

BOOT_PROTOCOL macro 92

C
C18 Compiler 253

CDC Client Driver 131

CDC Function Driver 71

CDCInitEP 74

CDCInitEP function 74

CDCNotificationHandler 74

CDCNotificationHandler function 74

CDCSetBaudRate 79

CDCSetBaudRate macro 79

CDCSetCharacterFormat 80

CDCSetCharacterFormat macro 80

CDCSetDataSize 81

CDCSetDataSize macro 81

CDCSetLineCoding 81

CDCSetLineCoding macro 81

2 MLA - USB Library Help

301

CDCSetParity 82

CDCSetParity macro 82

CDCTxService 75

CDCTxService function 75

Changing the Memory Footprint 253

Changing the memory footprint of the boot loader 265

CLIENT_DRIVER_TABLE 122

CLIENT_DRIVER_TABLE structure 122

Code Signing Certificates (Other Uses) 298

COMM_INTERFACE_DETAILS 144

COMM_INTERFACE_DETAILS structure 144

Command Set 243

Configuration Bits 241

Customizing for an Application 240

D
Data Types and Constants 63, 85, 91, 94, 121, 141, 178, 210

DATA_INTERFACE_DETAILS 144

DATA_INTERFACE_DETAILS structure 144

Demo Board Information 220

Demos 233

DESC_CONFIG_uint32_t 64

DESC_CONFIG_uint32_t macro 64

DESC_CONFIG_uint8_t 64

DESC_CONFIG_uint8_t macro 64

DESC_CONFIG_WORD 65

DESC_CONFIG_WORD macro 65

Device - Audio Microphone Basic Demo 233

Device - Audio MIDI Demo 235

Device - Boot Loader - HID 239

Device - CDC Basic Demo 268

Device - HID - Custom Demo 271

Device - HID - Digitizer Demos 274

Device - HID - Joystick Demo 275

Device - HID - Keyboard Demo 276

Device - HID - Mouse Demo 277

Device - HID - Uninterruptible Power Supply 278

Device - Mass Storage - Internal Flash Demo 278

Device - Mass Storage - SD Card Reader 279

Device - Vendor Driver Basic Demo 280

Device - Vendor High Bandwidth Demo 285

Device (Slave) Demo Board Support and Limitations 28

Device Stack 36

Device/Peripheral 36

DEVICE_CLASS_CDC 149

DEVICE_CLASS_CDC macro 149

DEVICE_CLASS_HID 192

DEVICE_CLASS_HID macro 192

DEVICE_CLASS_MASS_STORAGE 211

DEVICE_CLASS_MASS_STORAGE macro 211

DEVICE_INTERFACE_PROTOCOL_BULK_ONLY 211

DEVICE_INTERFACE_PROTOCOL_BULK_ONLY macro 211

DEVICE_SUBCLASS_CD_DVD 211

DEVICE_SUBCLASS_CD_DVD macro 211

DEVICE_SUBCLASS_FLOPPY_INTERFACE 211

DEVICE_SUBCLASS_FLOPPY_INTERFACE macro 211

DEVICE_SUBCLASS_RBC 212

DEVICE_SUBCLASS_RBC macro 212

DEVICE_SUBCLASS_REMOVABLE 212

DEVICE_SUBCLASS_REMOVABLE macro 212

DEVICE_SUBCLASS_SCSI 212

DEVICE_SUBCLASS_SCSI macro 212

DEVICE_SUBCLASS_TAPE_DRIVE 212

DEVICE_SUBCLASS_TAPE_DRIVE macro 212

deviceRptInfo 191

deviceRptInfo variable 191

Driver Signatures in the Microchip Libraries for Applications
(MLA) Projects 297

Driver Signing and Windows 8 294

DSC_HID 192

DSC_HID macro 192

DSC_PHY 192

DSC_PHY macro 192

dsPIC33EP512MU810 Plug-In-Module (PIM) 231

E
Embedded Host API 99

Embedded Host Stack 99

ERASE_DEVICE 245

EVENT_CDC_ATTACH 149

EVENT_CDC_ATTACH macro 149

EVENT_CDC_COMM_READ_DONE 149

EVENT_CDC_COMM_READ_DONE macro 149

EVENT_CDC_COMM_WRITE_DONE 149

EVENT_CDC_COMM_WRITE_DONE macro 149

2 MLA - USB Library Help

302

EVENT_CDC_DATA_READ_DONE 149

EVENT_CDC_DATA_READ_DONE macro 149

EVENT_CDC_DATA_WRITE_DONE 150

EVENT_CDC_DATA_WRITE_DONE macro 150

EVENT_CDC_NAK_TIMEOUT 150

EVENT_CDC_NAK_TIMEOUT macro 150

EVENT_CDC_NONE 150

EVENT_CDC_NONE macro 150

EVENT_CDC_OFFSET 150

EVENT_CDC_OFFSET macro 150

EVENT_CDC_RESET 150

EVENT_CDC_RESET macro 150

EVENT_HID_ATTACH 192

EVENT_HID_ATTACH macro 192

EVENT_HID_BAD_REPORT_DESCRIPTOR 193

EVENT_HID_BAD_REPORT_DESCRIPTOR macro 193

EVENT_HID_DETACH 193

EVENT_HID_DETACH macro 193

EVENT_HID_NONE 193

EVENT_HID_NONE macro 193

EVENT_HID_OFFSET 193

EVENT_HID_OFFSET macro 193

EVENT_HID_READ_DONE 193

EVENT_HID_READ_DONE macro 193

EVENT_HID_RESET 194

EVENT_HID_RESET macro 194

EVENT_HID_RESET_ERROR 194

EVENT_HID_RESET_ERROR macro 194

EVENT_HID_RPT_DESC_PARSED 194

EVENT_HID_RPT_DESC_PARSED macro 194

EVENT_HID_WRITE_DONE 194

EVENT_HID_WRITE_DONE macro 194

EVENT_MSD_ATTACH 212

EVENT_MSD_ATTACH macro 212

EVENT_MSD_MAX_LUN 213

EVENT_MSD_MAX_LUN macro 213

EVENT_MSD_NONE 213

EVENT_MSD_NONE macro 213

EVENT_MSD_OFFSET 213

EVENT_MSD_OFFSET macro 213

EVENT_MSD_RESET 213

EVENT_MSD_RESET macro 213

EVENT_MSD_TRANSFER 213

EVENT_MSD_TRANSFER macro 213

Explorer 16 229

F
Flash Signature 267

From v2.5 to v2.6 34

From v2.6 to v2.6a 34

From v2.6a to v2.7 34

From v2.7 to v2.7a 33

From v2.7a to v2.8 33

From v2.8 to v2.9 33

From v2.9 to v2.9a 33

From v2.9a to v2.9b 33

From v2.9b to v2.9c 33

From v2.9c to v2.9d 33

From v2.9d to v2.9e 33

From v2.9e to v2.9f 33

From v2.9f to v2.9g 32

From v2.9g to v2.9h 32

From v2.9h to v2.9i 32

From v2.9i to v2.9j 32

From v2.9j to v2.10 31

Functions 36, 70, 72, 88, 93, 96, 100, 133, 165, 203

G
Garage Band '08 [Macintosh Computers] 235

GET_DATA 246

getsUSBUSART 76

getsUSBUSART function 76

H
HID Client Driver 165

HID Function Driver 87

HID_COLLECTION 182

HID_COLLECTION structure 182

HID_DATA_DETAILS 182

HID_DATA_DETAILS structure 182

HID_DESIGITEM 183

HID_DESIGITEM structure 183

HID_GLOBALS 183

HID_GLOBALS structure 183

2 MLA - USB Library Help

303

HID_ITEM_INFO 184

HID_ITEM_INFO structure 184

HID_PROTOCOL_KEYBOARD 92

HID_PROTOCOL_KEYBOARD macro 92

HID_PROTOCOL_MOUSE 92

HID_PROTOCOL_MOUSE macro 92

HID_PROTOCOL_NONE 92

HID_PROTOCOL_NONE macro 92

HID_REPORT 185

HID_REPORT structure 185

HID_REPORTITEM 185

HID_REPORTITEM structure 185

HID_STRINGITEM 186

HID_STRINGITEM structure 186

HID_TRANSFER_DATA 186

HID_TRANSFER_DATA structure 186

HID_USAGEITEM 187

HID_USAGEITEM structure 187

HID_USER_DATA_SIZE 187

HID_USER_DATA_SIZE type 187

HIDReportTypeEnum 187

HIDReportTypeEnum enumeration 187

HIDRxHandleBusy 88

HIDRxHandleBusy macro 88

HIDRxPacket 89

HIDRxPacket macro 89

HIDTxHandleBusy 89

HIDTxHandleBusy macro 89

HIDTxPacket 90

HIDTxPacket macro 90

Host - CDC Serial Demo 286

Host - HID - Keyboard Demo 287

Host - HID - Mouse Demo 287

Host - Mass Storage - Thumb Drive Data Logger 288

Host - Mass Storage (MSD) - Simple Demo 289

Host Application Responsibilities 242

Host Demo Board Support and Limitations 29

HOST_DSC_RPT 194

HOST_DSC_RPT macro 194

HOST_TRANSFER_DATA 123

HOST_TRANSFER_DATA structure 123

I
Implementation Details 243

Importance of Change the VID/PID 240

INIT_CL_SC_P 125

INIT_CL_SC_P macro 125

INIT_VID_PID 125

INIT_VID_PID macro 125

Input Button/Hardware Entry 248

Interrupt Remapping 260

Introduction 16

itemListPtrs 192

itemListPtrs variable 192

L
Legal Information 17

Library Interface 36

Library Migration 31

Linking Options for PIC16 Devices 254

Linking Options for PIC18 Devices 255

Linux 270, 282

Low Pin Count USB Development Board 220

LUN_FUNCTIONS 94

LUN_FUNCTIONS structure 94

M
Macintosh 270

Mass Storage Client Driver 202

Memory Map 250, 258

Memory Region Definitions 261

Merging Bootloader and Application Project Output 257

Minimum Driver Signature Requirements 295

MSD Function Driver 93

MSD_COMMAND_FAILED 214

MSD_COMMAND_FAILED macro 214

MSD_COMMAND_PASSED 214

MSD_COMMAND_PASSED macro 214

MSD_PHASE_ERROR 214

MSD_PHASE_ERROR macro 214

MSDTasks 93

MSDTasks function 93

2 MLA - USB Library Help

304

mUSBUSARTIsTxTrfReady 83

mUSBUSARTIsTxTrfReady macro 83

mUSBUSARTTxRam 83

mUSBUSARTTxRam macro 83

mUSBUSARTTxRom 84

mUSBUSARTTxRom macro 84

N
Notes on .inf Files 293

NUM_STOP_BITS_1 86

NUM_STOP_BITS_1 macro 86

NUM_STOP_BITS_1_5 86

NUM_STOP_BITS_1_5 macro 86

NUM_STOP_BITS_2 86

NUM_STOP_BITS_2 macro 86

O
Obtaining a Microsoft Authenticode Code Signing Certificate
298

Online Reference and Resources 28

Operating System Support and Limitations 29

Optimization Mode Requirements 254

P
PARITY_EVEN 86

PARITY_EVEN macro 86

PARITY_MARK 87

PARITY_MARK macro 87

PARITY_NONE 87

PARITY_NONE macro 87

PARITY_ODD 87

PARITY_ODD macro 87

PARITY_SPACE 87

PARITY_SPACE macro 87

PIC16 and PIC18 250

PIC18 Starter Kit 223

PIC18F46J50 Plug-In-Module (PIM) 224

PIC18F47J53 Plug-In-Module (PIM) 225

PIC18F87J50 Plug-In-Module (PIM) Demo Board 226

PIC24EP512GU810 Plug-In-Module (PIM) 231

PIC24F 257

PIC24F Starter Kit 227

PIC24FJ256DA210 Development Board 227

PIC24FJ256GB110 Plug-In-Module (PIM) 230

PIC24FJ256GB210 Plug-In-Module (PIM) 230

PIC24FJ64GB004 Plug-In-Module (PIM) 230

PICDEM FS USB Board 222

Processor Specific Implementation Details 250

PROGRAM_COMPLETE 246

PROGRAM_DEVICE 246

putrsUSBUSART 77

putrsUSBUSART function 77

putsUSBUSART 77

putsUSBUSART function 77

putUSBUSART 78

putUSBUSART function 78

Q
QUERY_DEVICE 243

QUERY_EXTENDED_INFO 248

QUERY_EXTENDED_INFO Response 252

R
Release Notes 18

RESET_DEVICE 247

Revision History 18

S
Safe Boot Loading Considerations 241

SIGN_FLASH 247

Software/Application Entry 249

Special Region Creation 263

Startup Sequence and Reset Remapping 259

Support 27

T
Tool Information 31

TPL_ALLOW_HNP 126

TPL_ALLOW_HNP macro 126

TPL_CLASS_DRV 126

TPL_CLASS_DRV macro 126

TPL_EP0_ONLY_CUSTOM_DRIVER 126

TPL_EP0_ONLY_CUSTOM_DRIVER macro 126

2 MLA - USB Library Help

305

TPL_IGNORE_CLASS 126

TPL_IGNORE_CLASS macro 126

TPL_IGNORE_PID 126

TPL_IGNORE_PID macro 126

TPL_IGNORE_PROTOCOL 127

TPL_IGNORE_PROTOCOL macro 127

TPL_IGNORE_SUBCLASS 127

TPL_IGNORE_SUBCLASS macro 127

TPL_SET_CONFIG 127

TPL_SET_CONFIG macro 127

TRANSFER_ATTRIBUTES 123

TRANSFER_ATTRIBUTES type 123

Troubleshooting 279

U
Understanding and Customizing the Boot Loader
Implementation 261

UNLOCK_CONFIG 245

USB Library 15

USB PICTail Plus Daughter Board 231

USB_APPLICATION_EVENT_HANDLER 39

USB_APPLICATION_EVENT_HANDLER function 39

USB_CDC_ABSTRACT_CONTROL_MODEL 151

USB_CDC_ABSTRACT_CONTROL_MODEL macro 151

USB_CDC_ACM_FN_DSC 145

USB_CDC_ACM_FN_DSC structure 145

USB_CDC_ATM_NETWORKING_CONTROL_MODEL 151

USB_CDC_ATM_NETWORKING_CONTROL_MODEL
macro 151

USB_CDC_CALL_MGT_FN_DSC 145

USB_CDC_CALL_MGT_FN_DSC structure 145

USB_CDC_CAPI_CONTROL_MODEL 151

USB_CDC_CAPI_CONTROL_MODEL macro 151

USB_CDC_CLASS_ERROR 151

USB_CDC_CLASS_ERROR macro 151

USB_CDC_COMM_INTF 151

USB_CDC_COMM_INTF macro 151

USB_CDC_COMMAND_FAILED 152

USB_CDC_COMMAND_FAILED macro 152

USB_CDC_COMMAND_PASSED 152

USB_CDC_COMMAND_PASSED macro 152

USB_CDC_CONTROL_LINE_LENGTH 152

USB_CDC_CONTROL_LINE_LENGTH macro 152

USB_CDC_CONTROL_SIGNAL_BITMAP 146

USB_CDC_CONTROL_SIGNAL_BITMAP union 146

USB_CDC_CS_ENDPOINT 152

USB_CDC_CS_ENDPOINT macro 152

USB_CDC_CS_INTERFACE 152

USB_CDC_CS_INTERFACE macro 152

USB_CDC_DATA_INTF 153

USB_CDC_DATA_INTF macro 153

USB_CDC_DEVICE_BUSY 153

USB_CDC_DEVICE_BUSY macro 153

USB_CDC_DEVICE_DETACHED 153

USB_CDC_DEVICE_DETACHED macro 153

USB_CDC_DEVICE_HOLDING 153

USB_CDC_DEVICE_HOLDING macro 153

USB_CDC_DEVICE_INFO 146

USB_CDC_DEVICE_INFO structure 146

USB_CDC_DEVICE_MANAGEMENT 153

USB_CDC_DEVICE_MANAGEMENT macro 153

USB_CDC_DEVICE_NOT_FOUND 154

USB_CDC_DEVICE_NOT_FOUND macro 154

USB_CDC_DIRECT_LINE_CONTROL_MODEL 154

USB_CDC_DIRECT_LINE_CONTROL_MODEL macro 154

USB_CDC_DSC_FN_ACM 154

USB_CDC_DSC_FN_ACM macro 154

USB_CDC_DSC_FN_CALL_MGT 154

USB_CDC_DSC_FN_CALL_MGT macro 154

USB_CDC_DSC_FN_COUNTRY_SELECTION 154

USB_CDC_DSC_FN_COUNTRY_SELECTION macro 154

USB_CDC_DSC_FN_DLM 155

USB_CDC_DSC_FN_DLM macro 155

USB_CDC_DSC_FN_HEADER 155

USB_CDC_DSC_FN_HEADER macro 155

USB_CDC_DSC_FN_RPT_CAPABILITIES 155

USB_CDC_DSC_FN_RPT_CAPABILITIES macro 155

USB_CDC_DSC_FN_TEL_OP_MODES 155

USB_CDC_DSC_FN_TEL_OP_MODES macro 155

USB_CDC_DSC_FN_TELEPHONE_RINGER 155

USB_CDC_DSC_FN_TELEPHONE_RINGER macro 155

USB_CDC_DSC_FN_UNION 156

USB_CDC_DSC_FN_UNION macro 156

USB_CDC_DSC_FN_USB_TERMINAL 156

USB_CDC_DSC_FN_USB_TERMINAL macro 156

2 MLA - USB Library Help

306

USB_CDC_ETHERNET_EMULATION_MODEL 156

USB_CDC_ETHERNET_EMULATION_MODEL macro 156

USB_CDC_ETHERNET_NETWORKING_CONTROL_MODE
L
156

USB_CDC_ETHERNET_NETWORKING_CONTROL_MODE
L
macro 156

USB_CDC_GET_COMM_FEATURE 156

USB_CDC_GET_COMM_FEATURE macro 156

USB_CDC_GET_ENCAPSULATED_REQUEST 157

USB_CDC_GET_ENCAPSULATED_REQUEST macro 157

USB_CDC_GET_LINE_CODING 157

USB_CDC_GET_LINE_CODING macro 157

USB_CDC_HEADER_FN_DSC 147

USB_CDC_HEADER_FN_DSC structure 147

USB_CDC_ILLEGAL_REQUEST 157

USB_CDC_ILLEGAL_REQUEST macro 157

USB_CDC_INITIALIZING 157

USB_CDC_INITIALIZING macro 157

USB_CDC_INTERFACE_ERROR 157

USB_CDC_INTERFACE_ERROR macro 157

USB_CDC_LINE_CODING 148

USB_CDC_LINE_CODING union 148

USB_CDC_LINE_CODING_LENGTH 158

USB_CDC_LINE_CODING_LENGTH macro 158

USB_CDC_MAX_PACKET_SIZE 158

USB_CDC_MAX_PACKET_SIZE macro 158

USB_CDC_MOBILE_DIRECT_LINE_MODEL 158

USB_CDC_MOBILE_DIRECT_LINE_MODEL macro 158

USB_CDC_MULTI_CHANNEL_CONTROL_MODEL 158

USB_CDC_MULTI_CHANNEL_CONTROL_MODEL macro
158

USB_CDC_NO_PROTOCOL 158

USB_CDC_NO_PROTOCOL macro 158

USB_CDC_NO_REPORT_DESCRIPTOR 159

USB_CDC_NO_REPORT_DESCRIPTOR macro 159

USB_CDC_NORMAL_RUNNING 159

USB_CDC_NORMAL_RUNNING macro 159

USB_CDC_OBEX 159

USB_CDC_OBEX macro 159

USB_CDC_PHASE_ERROR 159

USB_CDC_PHASE_ERROR macro 159

USB_CDC_REPORT_DESCRIPTOR_BAD 159

USB_CDC_REPORT_DESCRIPTOR_BAD macro 159

USB_CDC_RESET_ERROR 160

USB_CDC_RESET_ERROR macro 160

USB_CDC_RESETTING_DEVICE 160

USB_CDC_RESETTING_DEVICE macro 160

USB_CDC_SEND_BREAK 160

USB_CDC_SEND_BREAK macro 160

USB_CDC_SEND_ENCAPSULATED_COMMAND 160

USB_CDC_SEND_ENCAPSULATED_COMMAND macro 160

USB_CDC_SET_COMM_FEATURE 161

USB_CDC_SET_COMM_FEATURE macro 161

USB_CDC_SET_CONTROL_LINE_STATE 161

USB_CDC_SET_CONTROL_LINE_STATE macro 161

USB_CDC_SET_LINE_CODING 161

USB_CDC_SET_LINE_CODING macro 161

USB_CDC_TELEPHONE_CONTROL_MODEL 161

USB_CDC_TELEPHONE_CONTROL_MODEL macro 161

USB_CDC_UNION_FN_DSC 148

USB_CDC_UNION_FN_DSC structure 148

USB_CDC_V25TER 161

USB_CDC_V25TER macro 161

USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL 162

USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL
macro 162

USB_CLIENT_EVENT_HANDLER 123

USB_CLIENT_EVENT_HANDLER type 123

USB_CLIENT_INIT 124

USB_CLIENT_INIT type 124

usb_device.h 66

usb_device_audio.h 70

usb_device_cdc.h 71

usb_device_generic.h 99

usb_device_hid.h 92

usb_device_msd.h 95

USB_DEVICE_STACK_EVENTS 64

USB_DEVICE_STACK_EVENTS type 64

USB_DEVICE_STATE 64

USB_DEVICE_STATE type 64

USB_EP0_BUSY 65

USB_EP0_BUSY macro 65

USB_EP0_INCLUDE_ZERO 65

USB_EP0_INCLUDE_ZERO macro 65

USB_EP0_NO_DATA 65

2 MLA - USB Library Help

307

USB_EP0_NO_DATA macro 65

USB_EP0_NO_OPTIONS 66

USB_EP0_NO_OPTIONS macro 66

USB_EP0_RAM 66

USB_EP0_RAM macro 66

USB_EP0_ROM 66

USB_EP0_ROM macro 66

USB_HANDLE 66

USB_HANDLE macro 66

USB_HID_CLASS_ERROR 195

USB_HID_CLASS_ERROR macro 195

USB_HID_COMMAND_FAILED 195

USB_HID_COMMAND_FAILED macro 195

USB_HID_COMMAND_PASSED 195

USB_HID_COMMAND_PASSED macro 195

USB_HID_DEVICE_BUSY 195

USB_HID_DEVICE_BUSY macro 195

USB_HID_DEVICE_DETACHED 195

USB_HID_DEVICE_DETACHED macro 195

USB_HID_DEVICE_HOLDING 196

USB_HID_DEVICE_HOLDING macro 196

USB_HID_DEVICE_ID 188

USB_HID_DEVICE_ID structure 188

USB_HID_DEVICE_NOT_FOUND 196

USB_HID_DEVICE_NOT_FOUND macro 196

USB_HID_DEVICE_RPT_INFO 188

USB_HID_DEVICE_RPT_INFO structure 188

USB_HID_ILLEGAL_REQUEST 196

USB_HID_ILLEGAL_REQUEST macro 196

USB_HID_INITIALIZING 196

USB_HID_INITIALIZING macro 196

USB_HID_INTERFACE_ERROR 196

USB_HID_INTERFACE_ERROR macro 196

USB_HID_ITEM_LIST 190

USB_HID_ITEM_LIST structure 190

USB_HID_NO_REPORT_DESCRIPTOR 197

USB_HID_NO_REPORT_DESCRIPTOR macro 197

USB_HID_NORMAL_RUNNING 197

USB_HID_NORMAL_RUNNING macro 197

USB_HID_PHASE_ERROR 197

USB_HID_PHASE_ERROR macro 197

USB_HID_REPORT_DESCRIPTOR_BAD 197

USB_HID_REPORT_DESCRIPTOR_BAD macro 197

USB_HID_RESET_ERROR 198

USB_HID_RESET_ERROR macro 198

USB_HID_RESETTING_DEVICE 198

USB_HID_RESETTING_DEVICE macro 198

USB_HID_RPT_DESC_ERROR 190

USB_HID_RPT_DESC_ERROR enumeration 190

usb_host.h 129

USB_HOST_APP_DATA_EVENT_HANDLER 101, 127

USB_HOST_APP_DATA_EVENT_HANDLER function 101

USB_HOST_APP_DATA_EVENT_HANDLER macro 127

USB_HOST_APP_EVENT_HANDLER 102, 127

USB_HOST_APP_EVENT_HANDLER function 102

USB_HOST_APP_EVENT_HANDLER macro 127

usb_host_cdc.h 162

usb_host_cdc_interface.h 164

usb_host_hid.h 198

usb_host_hid_parser.h 201

usb_host_msd.h 218

USB_HostInterruptHandler 102

USB_HostInterruptHandler function 102

USB_MSD_CBW_ERROR 214

USB_MSD_CBW_ERROR macro 214

USB_MSD_COMMAND_FAILED 214

USB_MSD_COMMAND_FAILED macro 214

USB_MSD_COMMAND_PASSED 215

USB_MSD_COMMAND_PASSED macro 215

USB_MSD_CSW_ERROR 215

USB_MSD_CSW_ERROR macro 215

USB_MSD_DEVICE_BUSY 215

USB_MSD_DEVICE_BUSY macro 215

USB_MSD_DEVICE_DETACHED 215

USB_MSD_DEVICE_DETACHED macro 215

USB_MSD_DEVICE_NOT_FOUND 215

USB_MSD_DEVICE_NOT_FOUND macro 215

USB_MSD_ERROR 216

USB_MSD_ERROR macro 216

USB_MSD_ERROR_STATE 216

USB_MSD_ERROR_STATE macro 216

USB_MSD_ILLEGAL_REQUEST 216

USB_MSD_ILLEGAL_REQUEST macro 216

USB_MSD_INITIALIZING 216

2 MLA - USB Library Help

308

USB_MSD_INITIALIZING macro 216

USB_MSD_INVALID_LUN 216

USB_MSD_INVALID_LUN macro 216

USB_MSD_MEDIA_INTERFACE_ERROR 217

USB_MSD_MEDIA_INTERFACE_ERROR macro 217

USB_MSD_NORMAL_RUNNING 217

USB_MSD_NORMAL_RUNNING macro 217

USB_MSD_OUT_OF_MEMORY 217

USB_MSD_OUT_OF_MEMORY macro 217

USB_MSD_PHASE_ERROR 217

USB_MSD_PHASE_ERROR macro 217

USB_MSD_RESET_ERROR 217

USB_MSD_RESET_ERROR macro 217

USB_MSD_RESETTING_DEVICE 218

USB_MSD_RESETTING_DEVICE macro 218

USB_NUM_BULK_NAKS 128

USB_NUM_BULK_NAKS macro 128

USB_NUM_COMMAND_TRIES 128

USB_NUM_COMMAND_TRIES macro 128

USB_NUM_CONTROL_NAKS 128

USB_NUM_CONTROL_NAKS macro 128

USB_NUM_ENUMERATION_TRIES 128

USB_NUM_ENUMERATION_TRIES macro 128

USB_NUM_INTERRUPT_NAKS 128

USB_NUM_INTERRUPT_NAKS macro 128

USB_PROCESSING_REPORT_DESCRIPTOR 198

USB_PROCESSING_REPORT_DESCRIPTOR macro 198

USB_TPL 125

USB_TPL type 125

USBCancelIO 39

USBCancelIO function 39

USBCDCEventHandler 79

USBCDCEventHandler function 79

USBCheckAudioRequest 70

USBCheckAudioRequest function 70

USBCheckCDCRequest 79

USBCheckCDCRequest function 79

USBCheckMSDRequest 93

USBCheckMSDRequest function 93

USBCheckVendorRequest 96

USBCheckVendorRequest function 96

USBCtrlEPAllowDataStage 40

USBCtrlEPAllowDataStage function 40

USBCtrlEPAllowStatusStage 40

USBCtrlEPAllowStatusStage function 40

USBDeferINDataStage 41

USBDeferINDataStage function 41

USBDeferOUTDataStage 42

USBDeferOUTDataStage function 42

USBDeferStatusStage 43

USBDeferStatusStage function 43

USBDeviceAttach 44

USBDeviceAttach function 44

USBDeviceDetach 44

USBDeviceDetach function 44

USBDeviceInit 45

USBDeviceInit function 45

USBDeviceTasks 46

USBDeviceTasks function 46

USBEnableEndpoint 47

USBEnableEndpoint function 47

USBEP0Receive 48

USBEP0Receive function 48

USBEP0SendRAMPtr 49

USBEP0SendRAMPtr function 49

USBEP0SendROMPtr 49

USBEP0SendROMPtr function 49

USBEP0Transmit 50

USBEP0Transmit function 50

USBGEN_H 97

USBGEN_H macro 97

USBGenRead 97

USBGenRead macro 97

USBGenWrite 98

USBGenWrite macro 98

USBGetDeviceState 50

USBGetDeviceState function 50

USBGetNextHandle 51

USBGetNextHandle function 51

USBGetRemoteWakeupStatus 53

USBGetRemoteWakeupStatus function 53

USBGetSuspendState 54

USBGetSuspendState function 54

USBHandleBusy 55

2 MLA - USB Library Help

309

USBHandleBusy function 55

USBHandleGetAddr 56

USBHandleGetAddr function 56

USBHandleGetLength 56

USBHandleGetLength function 56

USBHostCDC_Api_ACM_Request 134

USBHostCDC_Api_ACM_Request function 134

USBHostCDC_Api_Get_IN_Data 134

USBHostCDC_Api_Get_IN_Data function 134

USBHostCDC_Api_Send_OUT_Data 135

USBHostCDC_Api_Send_OUT_Data function 135

USBHostCDC_ApiDeviceDetect 135

USBHostCDC_ApiDeviceDetect function 135

USBHostCDC_ApiTransferIsComplete 136

USBHostCDC_ApiTransferIsComplete function 136

USBHostCDCDeviceStatus 136

USBHostCDCDeviceStatus function 136

USBHostCDCEventHandler 137

USBHostCDCEventHandler function 137

USBHostCDCInitAddress 138

USBHostCDCInitAddress function 138

USBHostCDCInitialize 138

USBHostCDCInitialize function 138

USBHostCDCResetDevice 139

USBHostCDCResetDevice function 139

USBHostCDCTasks 139

USBHostCDCTasks function 139

USBHostCDCTransfer 140

USBHostCDCTransfer function 140

USBHostCDCTransferIsComplete 141

USBHostCDCTransferIsComplete function 141

USBHostClearEndpointErrors 103

USBHostClearEndpointErrors function 103

USBHostDeviceSpecificClientDriver 103

USBHostDeviceSpecificClientDriver function 103

USBHostDeviceStatus 104

USBHostDeviceStatus function 104

USBHostGetCurrentConfigurationDescriptor 117

USBHostGetCurrentConfigurationDescriptor macro 117

USBHostGetDeviceDescriptor 117

USBHostGetDeviceDescriptor macro 117

USBHostGetStringDescriptor 118

USBHostGetStringDescriptor macro 118

USBHostHID_ApiDeviceDetect 175

USBHostHID_ApiDeviceDetect macro 175

USBHostHID_ApiFindBit 166

USBHostHID_ApiFindBit function 166

USBHostHID_ApiFindValue 167

USBHostHID_ApiFindValue function 167

USBHostHID_ApiGetCurrentInterfaceNum 168

USBHostHID_ApiGetCurrentInterfaceNum function 168

USBHostHID_ApiGetReport 176

USBHostHID_ApiGetReport macro 176

USBHostHID_ApiImportData 168

USBHostHID_ApiImportData function 168

USBHostHID_ApiResetDevice 176

USBHostHID_ApiResetDevice macro 176

USBHostHID_ApiSendReport 176

USBHostHID_ApiSendReport macro 176

USBHostHID_ApiTransferIsComplete 176

USBHostHID_ApiTransferIsComplete macro 176

USBHostHID_GetCurrentReportInfo 176

USBHostHID_GetCurrentReportInfo macro 176

USBHostHID_GetItemListPointers 177

USBHostHID_GetItemListPointers macro 177

USBHostHID_HasUsage 169

USBHostHID_HasUsage function 169

USBHostHIDDeviceDetect 169

USBHostHIDDeviceDetect function 169

USBHostHIDDeviceStatus 170

USBHostHIDDeviceStatus function 170

USBHostHIDEventHandler 170

USBHostHIDEventHandler function 170

USBHostHIDInitialize 171

USBHostHIDInitialize function 171

USBHostHIDRead 177

USBHostHIDRead macro 177

USBHostHIDResetDevice 172

USBHostHIDResetDevice function 172

USBHostHIDResetDeviceWithWait 172

USBHostHIDResetDeviceWithWait function 172

USBHostHIDTasks 173

USBHostHIDTasks function 173

USBHostHIDTerminateTransfer 173

2 MLA - USB Library Help

310

USBHostHIDTerminateTransfer function 173

USBHostHIDTransfer 174

USBHostHIDTransfer function 174

USBHostHIDTransferIsComplete 175

USBHostHIDTransferIsComplete function 175

USBHostHIDWrite 178

USBHostHIDWrite macro 178

USBHostInit 105

USBHostInit function 105

USBHostIsochronousBuffersCreate 106

USBHostIsochronousBuffersCreate function 106

USBHostIsochronousBuffersDestroy 106

USBHostIsochronousBuffersDestroy function 106

USBHostIsochronousBuffersReset 107

USBHostIsochronousBuffersReset function 107

USBHostIssueDeviceRequest 107

USBHostIssueDeviceRequest function 107

USBHostMSDDeviceStatus 203

USBHostMSDDeviceStatus function 203

USBHostMSDEventHandler 204

USBHostMSDEventHandler function 204

USBHostMSDInitialize 205

USBHostMSDInitialize function 205

USBHostMSDRead 208

USBHostMSDRead macro 208

USBHostMSDResetDevice 205

USBHostMSDResetDevice function 205

USBHostMSDTasks 206

USBHostMSDTasks function 206

USBHostMSDTerminateTransfer 206

USBHostMSDTerminateTransfer function 206

USBHostMSDTransfer 207

USBHostMSDTransfer function 207

USBHostMSDTransferIsComplete 208

USBHostMSDTransferIsComplete function 208

USBHostMSDWrite 209

USBHostMSDWrite macro 209

USBHostRead 108

USBHostRead function 108

USBHostReadIsochronous 119

USBHostReadIsochronous macro 119

USBHostResetDevice 109

USBHostResetDevice function 109

USBHostResumeDevice 110

USBHostResumeDevice function 110

USBHostSetDeviceConfiguration 110

USBHostSetDeviceConfiguration function 110

USBHostSetNAKTimeout 111

USBHostSetNAKTimeout function 111

USBHostShutdown 112

USBHostShutdown function 112

USBHostSuspendDevice 112

USBHostSuspendDevice function 112

USBHostTasks 113

USBHostTasks function 113

USBHostTerminateTransfer 114

USBHostTerminateTransfer function 114

USBHostTransferIsComplete 114

USBHostTransferIsComplete function 114

USBHostVbusEvent 115

USBHostVbusEvent function 115

USBHostWrite 116

USBHostWrite function 116

USBHostWriteIsochronous 120

USBHostWriteIsochronous macro 120

USBINDataStageDeferred 57

USBINDataStageDeferred function 57

USBIsBusSuspended 57

USBIsBusSuspended function 57

USBIsDeviceSuspended 58

USBIsDeviceSuspended function 58

USBMSDInit 94

USBMSDInit function 94

USBOUTDataStageDeferred 59

USBOUTDataStageDeferred function 59

USBRxOnePacket 59

USBRxOnePacket function 59

USBSoftDetach 60

USBSoftDetach function 60

USBStallEndpoint 60

USBStallEndpoint function 60

USBTransferOnePacket 61

USBTransferOnePacket function 61

USBTxOnePacket 62

2 MLA - USB Library Help

311

USBTxOnePacket function 62

USBUSARTIsTxTrfReady 85

USBUSARTIsTxTrfReady macro 85

Using a Code Signing Certificate to Sign Driver Packages 298

Using a Diff Tool 293

Using breakpoints in USB host applications 290

Using Linux MultiMedia Studio (LMMS) [Linux and Windows
Computers] 237

Using Older Drivers with Windows 8 295

V
v2.10 18

v2.7 25

v2.7a 25

v2.8 24

v2.9 23

v2.9a 23

v2.9b 22

v2.9c 21

v2.9d 21

v2.9e 20

v2.9f 20

v2.9g 19

v2.9h 19

v2.9i 19

v2.9j 18

Vendor Class (Generic) Function Driver 96

Vendor IDs (VID) and Product IDs (PID) 293

W
What are "Signed" Drivers? 294

What's Next 26

Windows 269, 281

X
XC8 Compiler 254

2 MLA - USB Library Help

312

