
A Parametric Model for Near-Optimal Online
Synthesis with Robust Reach-Avoid Guarantees

Mario Gleirscher Philip Hönnecke

April 2, 2025

Abstract

Objective: To obtain explainable guarantees in the online synthesis
of optimal controllers for high-integrity cyber-physical systems, we re-
investigate the use of exhaustive search as an alternative to reinforcement
learning. Approach: We model an application scenario as a hybrid game
automaton, enabling the synthesis of robustly correct and near-optimal
controllers online without prior training. For modal synthesis, we employ
discretised games solved via scope-adaptive and step-pre-shielded discrete
dynamic programming. Evaluation: In a simulation-based experiment,
we apply our approach to an autonomous aerial vehicle scenario. Contri-
bution: We propose a parametric system model and a parametric online
synthesis.

1 Introduction
Motivation. To achieve complex and critical tasks, systems with a high grade
of autonomy perform decision making and control at strategic and tactical lev-
els under sparse human-machine interaction. Consider, for example, navigation
of autonomous aerial vehicles (AAVs), as illustrated in Figure 1. At the tac-
tical level (e.g., route segment tracking), often control problems of non-linear,
disturbed dynamical systems have to be solved by constructing provably ro-
bust (i.e., for safety) and near-optimal (i.e., for minimum-cost reachability)
controllers. To accommodate uncertainties (e.g., changing environments) and
perform at scale, this type of controller synthesis is preferably done online, that
is, during operation and right before the actual use of the controllers.

Challenges. Reinforcement learning (RL), a common and versatile type of
approximate dynamic programming (ADP) frequently used in online synthesis,
has shown to have several assurance-related drawbacks:

• partial, imprecise, or even missing guarantees (due to a lack of behavioural
coverage or an inappropriate initialisation [4, Sec. 6]),

1

ar
X

iv
:2

50
4.

01
00

6v
1

 [
ee

ss
.S

Y
]

 1
 A

pr
 2

02
5

Figure 1: Scene model for an AAV following a route r̄ from waypoint p0 to p7

• post-hoc explanations (i.e., identifying failure causes may require training
even with transparent algorithms [10]),

• lack of robustness to changing operational profiles (e.g., obstacle scenarios
not covered or differing from training setups [18, p. 30]), and

• limited or costly training (off-line/simulation or on-line/real interaction;
requires active supervision, e.g., real-time safety shielding [20, 13]).

These limitations together with a need for more precise and complete guaran-
tees revive exhaustive, hence, less efficient forms of synthesis. However, to keep
computation within bounds while guaranteeing critical properties, online syn-
thesis, whether or not based on RL, implies restrictive trade-offs (e.g., predictive
imprecision, latencies in segment tracking).

Research Question. Not focusing on real-time performance, what kind of
robust reach-avoid guarantees can exhaustive numerical algorithms for near-
optimal online synthesis provide and under which assumptions?

Approach and Application. We focus on an autonomous aerial vehicle (AAV)-
based delivery scenario (Figure 2) formalised as a hybrid game automaton (HGA).
The HGA enables tactical controller synthesis to be done online (i.e., during
operation) via discrete dynamic programming (DDP). We permit a perforated1

fixed obstacle cloud and bounded uncertain wind disturbance. Unsafe actions
possibly enabled by the discretisation are filtered during DDP before finishing a
search stage, which corresponds to pre-shielding. A supervisor [5], a high-level
controller, coordinates the interruption of the tactical controller by an obstacle
evasion unit if moving obstacles are about to intrude the planned trajectory.

Related Work. Online synthesis of controllers for autonomous systems has
been a research subject for many decades, with a steady activity around robustly
correct, near-optimal control. Below, we highlight some more recent works.

Real-time-capable online synthesis techniques have been proposed for special-
purpose control of single- and multi-agent systems. For example, Li et al. [15]

1Start and end of a given route must be connected with a wide enough tube.

2

AAV Task
Specification

Hybrid Game
Automaton

(a) Remote synthesis

Route Tracking

fly[u]

in(Xs)

depart

fly[u]

in(Xs)

cruise

fly[u]

in(Xs)

arrive

stable

in(X0)

standby

[start]
t → i++

[elevate]
in(X

s++
cruise

)

→ i++

[nextWP] i < n− 1
∧ in(X

s++
cruise

) → i++

[land] i ≥ n− 1
∧ in(X

s++
arrive

)

→ i++

[finish]
p|z = 0∧

v = 0 → i+ = 1
[init]

Dynamic Obstacle
Evasion

collm(u, Ōm) ¬ collm(u, Ōm)

AAV
Operation

(b) On-board synthesis

© ’24 clipart-library.com

Parameters (a) Controller
(b) Hyper-policy

Figure 2: Assured online synthesis with (a) remote or (b) on-board computation

apply a fast model-predictive control scheme focusing on stabilisation around a
given continuous reference trajectory. They use a quadratic cost term enabling
initialised, sequential quadratic programming. For AAV collision avoidance,
Bertram et al. [2] and Taye et al. [19] realise multi-agent reachability-based
state space reduction to accelerate backward Markov decision process (MDP)
policy search. In comparison, our approach is significantly slower but more
widely applicable, allowing non-convex cost terms, sparse reference trajectories,
near-optimality and guaranteed reach-avoidance under bounded disturbance,
and it is integrated into a flexible multi-tier hybrid control scheme.

Scalable offline synthesis techniques have been developed for discrete and
hybrid single- and multi-agent systems. For example, Ivanov et al. [12] ap-
ply deep-RL to compute contract-compliant controllers for each mode of a hy-
brid automaton. Gu et al. [8] use RL to perform synthesis at scale for timed
stochastic multi-agent systems. In [17], we refine a stochastic Petri-net abstrac-
tion with partial state observability to synthesise optimal schedules for tasked
robot collectives. By approximating fixpoints and sacrificing stochasticity in
the weighted reach-avoid game setting, we bypass an even higher complexity
of exact MDP synthesis. This enables us to pre-process up to 200 Mio. states
in non-real-time, going far beyond the state space in [17] and yet in a time
scale similar to approaches, such as [8, 12]. Our work provides reach-avoid
guarantees without a potentially intense training needed for RL. However, be-
cause of the scenario-sensitive parameterisation, our technique can currently not
be used in fast real-time settings, such as autonomous driving or for collision
avoidance [15, 12].

Contributions. Our approach enhances previous work as follows:

(i) Step-shielded online synthesis: We provide an algorithm for solving dis-
cretised modal games with reach-avoid winning conditions. The algorithm
uses step-shielded DDP and supports non- and quasi-stationary policies
(increasing robustness to disturbances at the cost of performance) [14].
We slightly reduce DDP’s curse-of-dimensionality problem by scope adap-
tation2 and fixpoint approximation for the winning region.

2The relevant fraction of the state space is selected according to the current system state

3

(ii) Parametric hybrid game model: We construct a parametric weighted HGA
covering a range of typical AAV scenarios. The automaton enables a three-
tier separation to allow a trading off of operational cost and flexibility:
higher-level supervision (e.g., moving obstacle evasion), near-optimal tra-
jectory tracking, and sub-tactical control enabling local policy learning
(e.g., via deep-RL). We embed our algorithm into a player for the HGA.

A preliminary variant of (i) and (ii) was implemented and evaluated in [11].

Outline. After the preliminaries (Section 2), we describe our AAV application
and control problem (Section 3). Our contributions to online synthesis with
guarantees follow in the Section 4. We evaluate our approach experimentally
(Section 5) and close with a discussion and remarks (Sections 6 and 7).

2 Preliminaries
Notation. For a set of variables Var = X⊎U⊎D, let X ⊂ ZX be an X-typed,
finite, m-dimensional Euclidean state space,3 and let U andD be U - and D-typed
control and disturbance ranges, each including 0. Moreover, let the classes of
terms T (Var) and constraints C(Var) over Var . ∥·∥ is the corresponding 2-norm,
A ⊕ B = {a + b | a ∈ A ∧ b ∈ B} the Minkowski sum of A,B ⊆ X, and A|Var ′

the projection of tuples in A to variables in Var ′ ⊆ Var ,4 and 99K indicates a
partial map. Point-wise operators are lifted as usual.5 Moreover, I and Ī denote
the lower and upper bounds of an interval I ⊆ R and I..Ī signifies that I ⊆ Z.
[[φ]]M denotes φ’s models in domain M,6 formally, [[φ]]M = {M ∈M |M |= φ}.
Given the finite sequences X⋆ over X, the length |x̄| of a sequence x̄ ∈ X⋆, and
its value x̄k ∈ X at position k ∈ 1..|x̄|, we use X̄(∆), X̃ ⊂ X⋆ to denote the
classes of trajectories with any two subsequent states inside some ∆ ⊆ Zm and
with X̃ = X̄([±1]m).

Weighted Hybrid Game Automata. Given a set of modes Q, an alpha-
bet A, events E ⊆ Q×A×Q, and the hybrid state space S = Q×X, a weighted
HGA G = (Gra,Var , Ini , Inv , f , Jmp, F) comprises a mode transition graph
Gra = (Q,A, E), initial conditions Ini : Q→ C(X), invariants Inv : Q→ C(X),
flow constraints f : S → C(Var ∪ Ẋ), jump conditions Jmp : E → C(Var ∪X+)
comprised of guards and updates, and weighted winning conditions F : S →
2T (Var), generalising final conditions Fin : Q → C(X) [9]. The copies Ẋ and
X+ refer to the time derivatives and discrete updates of X. grd(e) and upd(e)
denote the guard and update conditions of Jmp(e). In the remainder, we fre-
quently use s = (q,x) ∈ S for a state of G.

and extended on-the-fly to increase solvability of the online synthesis problem.
3For a 3D coordinate p, we use the typical naming convention p = (x, y, z)⊺.
4We omit set parentheses when referring to singleton sets in subscripts.
5For example, min,max on vectors of sets are evaluated element-wise and return a vector

of scalars. Negation of a set returns the set of negated elements.
6For example, the class of states, state pairs, sequences, or transition systems.

4

Integer Difference Games. Let ΠY = X × N+ 99K Y be a strategy space
for a player with alphabet Y. Given a flow constraint f and its discretised
Taylor expansion f̂ , we associate a state s of G with a discretised two-player
game Gs = (X , f̂ , F).7 We use u : ΠU and d : ΠD to describe the memory-less
strategy profile of the two players, the controller and the environment, based on
the non-empty control and disturbance ranges U and D. Then, for a horizon N
and the winning condition F = (L,Φ) with stage and terminal costs L and Φ, a
finite-horizon, discrete optimal controller u∗ : ΠU can be obtained from solving
a constrained, discrete dynamic optimisation problem [3]. Such a problem can
be solved with a forward-Euler DDP (Algorithm 1) for the period I = 1..N .

Algorithm 1 Discrete dynamic programming
1: procedure dDP(in Gs, I; out V ,u∗)
2: (V ,u∗)← §|X|×I ▷ §. . . undefined or maximal, e.g., ¦
3: V (X , Ī)← Φ(X , Ī) ▷ initialise terminal cost
4: for k ∈ [I, Ī − 1] do ▷ implies backward iteration
5: for x ∈ X do
6: xUD ← x+ f̂ (x,U,D, k) ▷ forward unit Euler set
7: V (x, k)← min

u∈U
max
d∈D

{
L(x, u, d, k) + V (xud, k + 1)

}
▷ value

8: u∗(x, k)← argmin
u∈U

max
d∈D

{
L(x, u, d, k) + V (xud, k + 1)

}

9: if f̂pdDP(k) then break ▷ approximate fixpoint found?

The single-step successor xud = x + f̂ (x, u, d, k) is lifted in Line 6, such
that xud ∈ xUD ⊆ X. Moreover, let xud ∈ X̄ be the N -step successor (tra-
jectory) of G emanating from x ∈ X under influence of (u,d), and xuD ⊆ X̄
be the family of such trajectories under D. V (x, k) ∈ [0,⊤] with ⊤ < ∞ is
the finite-horizon value corresponding to the optimal cost-to-go, using the op-
timal profile (u∗,d∗). Line 9 allows a check f̂pdDP for whether a fixpoint is
approximated prior to reaching N . While the actual fixpoint yields a station-
ary optimal strategy profile, a fixpoint approximation still guarantees bounded
correct (quasi-stationary and near-optimal) strategies under reduced memory
consumption and computational effort. Let G be the class of integer difference
games.

3 Aerial Delivery as a Hybrid Game
Assumptions. Let X = {p,v, i} with the AAV position8 p : Z3 and velocity
v : [±vmax]

3 (with an absolute maximum at vmax) and a next-waypoint index
i : N. We use convex sets Xs ⊆ X, called scopes,9 and P = X|p, the position grid
of the scenery. Given X, an AAV task T = (X, r̄,O) comprises a fixed obstacle
cloud O ⊂ P and a route r̄ = {pi}ni=1 where the predicate valid(r̄) requires r̄ to

7Players share the state and time but do not know each others’ future actions.
8p|z measures distance above local ground outside buildings.
9Xs is not included as a state variable in X because it can be derived from x.

5

strategic tactical
Navigation

(map/SLAM-based)
Route

Tracking
Segment
Tracking •¸ ¸ ¸

State Estimation
& Sensor Fusion

Obstacle Detection

abs2wp

Figure 3: Overall AAV control block structure

fly[u]

in(Xs)

depart

fly[u]

in(Xs)

cruise

fly[u]

in(Xs)

arrive

stable

in(X0)

standby[start]
t → i++

[elevate]
in(X

s++
cruise

)

→ i++

[nextWP] i < n− 1
∧ in(X

s++
cruise

) → i++

[land] i ≥ n− 1
∧ in(X

s++
arrive

)

→ i++

[finish]
p|z = 0∧

v = 0 → i+ = 1[init]

a: Parametric tactical control logic G[U, T]

Route Tracking

fly[u]

in(Xs)

depart

fly[u]

in(Xs)

cruise

fly[u]

in(Xs)

arrive

stable

in(X0)

standby[start]
t → i++

[elevate]
in(X

s++
cruise

)

→ i++

[nextWP] i < n− 1
∧ in(X

s++
cruise

) → i++

[land] i ≥ n− 1
∧ in(X

s++
arrive

)

→ i++

[finish]
p|z = 0∧

v = 0 → i+ = 1[init]

Dynamic Obstacle
Evasion

collm(u, Ōm) ¬ collm(u, Ōm)

b: Supervisor logic

Figure 4: Tactical AAV control (f /Inv are above/below the dashed lines in the
modes, and Jmp is shown in the transition labels) and supervisor logic

have n ≥ 4 different waypoints pi ∈ P with p1,n being on the ground, p2,n−1

(x, y)-superimposed, and p2..n−1 residing above a minimum height zmin. Given
a cube ∆δ = [±δ]3 for a small δ ∈ N0, we require O to be δ-perforated, such
that

∃x̄ ∈ X̃ : r̄ ⊆ x̄|p ⊕∆δ︸ ︷︷ ︸
cont. δ-tube

∧x̄|p ⊕∆δ ∩ O = ∅ . (1)

Informally, the route is enclosed in a tube with radius δ not colliding with
fixed obstacles. We assume (r̄,O) to be delivered by map- and SLAM-based
navigation and sensor fusion on-board the AAV (Figure 3) and allow (r̄,O) to
be updated at every pi invariant under (1) and valid(r̄).10

Tactical Control. We consider a HGA G (Section 2) combining the logic of
the AAV route and segment tracking units, where Gra, Inv , f , and Jmp are
illustrated in Figure 4a and Ini(q) = t for q ∈ Q. For brevity, (1) and valid(r̄)
as global invariants remain implicit in Ini and Inv . To compute the current

10In Figure 4 and below, we use predicates over O,Om, r̄, and u. O and r̄ are game
parameters, u is a parameter of the tactical control’s alphabet (Section 4), and Om and u are
parameters of the supervisor’s alphabet.

6

scope, we use the function

Xs =

(pi,0)⊕
(
[±δp,q]2 × [0,max{p,pi} q ∈ {depart,

+δp,q]× [±δv,q]3
)
× {i}, arrive, standby}(

[min{p,pi},max{p,pi}]× {0}
)
⊕ q ∈ {cruise}(

[±δp,q]3 × [±δv,q]3
)
× {i}

(2)

describing transition cuboids (Figure 1 left and right) around route segments for
moments when the AAV is near one waypoint and proceeds to the next. We use
δp,q and δv,q for position and velocity padding of mode q and the abbreviations
in(X) ≡ x ∈ X , X0 ≡ {x ∈ X | p|z = 0 ∧ v = 0 ∧ i = 1}, s++

q = (q, (pi,0, i +
1)⊺),11 and i++ ≡ i+ = i+ 1.

The AAV dynamics12 in all modes, except for standby, is given by

fly = ẋ =

ṗ
v̇

i̇

 =

v
u+ d+ g

0

 (3)

with an implicit unit mass (i.e., vehicle + payload = 1), an approximate13

gravitational force g = (0, 0,−10)⊺, and u ∈ U, d ∈ D for U,D : 2Z
3

. In standby
mode, the flow condition is stable ≡ ẋ = 0.

In our experiments, we use small U,D ⊆ [±2]3 to allow the AAV to accelerate
in 26 directions and wind disturbance to occur in 4 directions, as well as vmax =
10 ranging down to 5 for efficiently handling smaller scopes.

Supervisory Control. Strategic AAV control comprises a supervisor (Fig-
ure 4b), which separates route and segment tracking from moving-obstacle eva-
sion. The supervisor interrupts tactical control and resumes it after an evasion
manoeuvre. Encoded in F , for all modes but standby, the unsafe set encom-
passes (inevitable) collisions with fixed obstacles as14

collf(O) ≡ ∃o ∈ O : ∥o− p∥ ≤ δ, if q ̸= standby. (4)

For a set Õm of trajectories of moving obstacles tracked by the supervisor,

collm(u, Õm) ≡ ∃k ∈ I, ō ∈ Õm : xuD
k |p ∩ ōk ⊕∆δ ∩ p⊕∆sbd(v) ̸= ∅

indicates that the predicted trajectory ō of some moving obstacle crosses the
AAV trajectory xuD |p within safe braking distance ∆sbd. Evasion manoeuvres
(i.e., replacing u by an evasive ue) could be computed by Algorithm 1. However,
there are other ways of computing xuD |p efficiently (e.g., [1, 20]) and ue with

11Note how s++
q refers to the next waypoint pi and the one after that, pi+1. s++

q will be
used to compute the goal region for a modal game.

12At tactical control level, we employ a simplification of the dynamics to a point mass.
13g is omitted in the isolated dynamics. The compensation of numerical imprecision can be

delegated to lower-level stability control based on system identification.
14With ∥o− p∥ ≤ δ instead of p ∈ o⊕∆δ, we can work with δ = 1.5 in experiments.

7

guarantees (e.g., [16]). To simplify our setting, we assume Õm = ∅ and refer to
the broader treatment of supervision in, for example, [5].

Let us now formulate the synthesis problem focused on in this work.

Definition 1 (Online Synthesis Problem) Given a hybrid game automa-
ton G and a task T , continuously find tactical controllers u steering the system
along route r̄ while safely circumventing unsafe regions. For correctness, we
need u to be (i) δ-robust (i.e., safe under bounded disturbance D), (ii) near-
optimal (i.e., follow the minimum-cost path inside padded segment scopes, ap-
proximating all waypoints), and (iii) reaching the endpoint of r̄.

4 Online Synthesis via Parametric Games
Parametric Modal Games. We assume that Gra is controllable,15 such that
G reduces to a parametric reach-avoid integer difference game Gs = (Xs, f̂ , F)
to be solved for and played after a jump to s. The forward-Euler scheme in
Line 6 of Algorithm 1 uses an isolated16 variant of the right-hand side of f̂ . For
F = (L,Φ), we employ

L(u,d; s, k) =

0, if ρ ∧ ¬α
⊤, if α (shielded)
λ(u,d;x, k), otherwise

Φ(s) =

{
0, if ρ ∧ ¬α
⊤, otherwise

(5)

where ρ and α specify the goal and unsafe regions to be reached and avoided,
respectively. We assume that [[ρ]] ⊆ Xs and [[α]] ⊆ X with [[ρ]] \ [[α]] ̸= ∅.
Furthermore, λ(u,d;x, k) = x⊺Px + u⊺Qu + d⊺Rd is a weight term with cor-
respondingly dimensioned matrices P , Q, and R.

L penalises α and rewards ρ, maximally. Given (1), (5) implies V (0, ·) = 0.
Not shown here, k can be used in λ to penalise run-time. Overall, the call
dDP(Gs, I) (Algorithm 1) provides a near-optimal controller u∗

s .17

Bounded Correctness via Approximate Value Fixpoints. Let W (Xs, k) =
{x ∈ Xs | V (x, k) < ⊤} be an approximation of Gs’s winning region at time k
when playing no more than N − k steps. In particular, W (Xs, N) = {x ∈ Xs |
Φ(x) < ⊤}. To reduce the computational effort in Algorithm 1, we employ a
condition f̂pdDP for premature termination in Line 9. It is defined as

f̂pdDP(k) ≡ |W (Xs, k)| = |W (Xs, k + 1)| ∨ f̂pU(k) , (6)

where the conjunct

f̂pU(k) ≡ ∃k′ ≥ k : ⊤ ̸∈ V (x⊕∆δ, k
′)

15All jumps are solely controlled or chosen by the system.
16E.g., (3) without g and under a change of variables via xiso = xorig − (pi,0, 0)

⊺.
17Deviating from Section 2, we pass q to dDP by calling L and Φ with s = (q,x).

8

ensures that, latest at step k, x is δ-robustly located inside W (Xs, k). This ap-
proximation allows us to check whether the number of states with a robustly safe
and goal-reaching trajectory stabilises at k and, hence, within the horizon N .
Fixpoint approximation safes time but it limits our approach to bounded cor-
rectness and increases the deviation of the discrete solutions from optimality.

Scope Adaptation. To further reduce computational effort, we use Algo-
rithm 1 with a spatio-temporal scope extension. The result is Algorithm 2, with
the aim to increase solvability of Gs by checking f̂pU(1) in Line 7.

Algorithm 2 DDP with scope extension (in Line 4, note that s = (q,x))

1: procedure Uδ(in Gs, I; out V Ī′
,u∗,X ′, I ′)

2: (X ′, I ′,∆′
X , ¶I

′)← (Xs, I, 0, 0) ▷ initialise scope and prediction interval
3: repeat
4: (X ′, I ′)← (X ′ ⊕∆′

X , I ′..Ī ′ + ¶I
′) ▷ extend scope (not initially)

5: (V Ī′
,u∗)← dDP((X ′, f̂ , F), I ′) ▷ compute controller, Algorithm 1

6: (∆′
X , ¶I

′)← (∆X , ¶I) ▷ use hyper-parameters ∆X , ¶I
7: until f̂pU(1) ▷ is x robustly located in the 1-winning region?
8: return (V Ī′

,u∗,X ′, I ′)

Hyper-Policies and Pre-Computation. Algorithm 2 realises a hyper-policy
Uδ : G × 2N+ → (X × N+ 99K U) for the parametric G[U, T] in Figure 4a.
u∗
s = Uδ(Gs, I) is defined for X ′ × I ′ ⊂ X×N+ and solves Gs by determinising

the (U,D)-underspecified modal dynamics of G. u∗
s is intended to be computed

online, remotely or on-board (Figure 2), if x ∈ Inv(q). Any suffix of r̄ after pi

can be updated together with the corresponding update of u∗
s .

A Hybrid Game Player. Algorithm 3 combines Algorithm 2 with an exe-
cution routine for HGAs. A play of Gs is a co-execution of both players succes-
sively applying a strategy profile, presumably (u∗,d), to the dynamics f̂ . The
loop (Lines 3 to 10) plays Gs starting from x0 = s|x. For the possible jump in
Line 5, the ∃ of the switch is to be read as “check and pick e”.18 The numerical
integrator in Line 9 describes the simultaneous inputs (u∗,d) of both players
being used in the dynamics and adds the corresponding increment to the current
state x, resulting in a hybrid trajectory s̄ ∈ S̄.

Execution (Line 10) is constrained by several conditions: The first, Ω, spec-
ifies termination. The other three, x ̸∈ W (Xs, k), k ≥ N , and ¬Inv(q), specify
failure (i.e., unsafe behaviour, x ̸∈ [[ρ ∧ ¬α]] if k = N), timeout (beyond Ī = N ,
control choices can no more rely on V (x, k) < ⊤), and invariant violation (e.g.,
behaviour or an application of the controller outside Inv(q) is not specified).

18G as a specification is agnostic to when and how guards are used. We use guards as
triggers because Algorithm 3 interprets G as a simulator. Updates will be performed as soon
as a modal play enters the corresponding guard region.

9

Algorithm 3 Hybrid game player (with restricted task updates)
1: procedure hybridPlay(in (G,Uδ, T); inout s̄)
2: (s, Ä, k)← ((standby,x0),p ∈ X0|p, 1) ▷ initialise state and goal region
3: repeat k++ ▷ modal play for at most N steps
4: switch ∃e = (q, a, q′) ∈ E : x ∈ [[grd(e)]] do ▷ non-deterministic mode update
5: (s, Ä, k)← ((q′, upd(e)(x)),p ∈ X

s++
q′
|p, 1) ▷ jump (e.g., p-invariant)

6: T ← updTask(T) ▷ e.g., change O to update ³
7: Gs ← (Xs, f̂ , F [Ä]) ▷ set scope and winning condition
8: u∗

s ← Uδ,N (Gs) ▷ solve bounded modal game
9: d← genDist(s̄) ▷ opponent’s turn (e.g., random wind)

10: x← x+ f̂ (u∗
s ,d;x, k) ▷ move and feedback

11: until Ω (x ̸∈W (Xs, k) (k g N (¬Inv(q) ▷ termination condition

These three events, by definition, only occur if the current modal game Gs

could not be solved. In a simulator, these events can be used for model debug-
ging, while during operational tests, such events may serve, for example, system
identification and the adjustment of observers.

Liveness Considerations. Through updTask, Algorithm 3 allows restricted
updates of T during operation. To avoid unrealistic moving-target situations,
we simplify our setting to a fixed global state space X and route r̄ for the entire
operation and to a fixed unsafe region α for each modal play. This simplification
provides a conservative assumption for achieving strategic liveness. The liveness
proofs relying on these assumptions are provided in a working paper [6].

5 Implementation and Experiments
We implemented the Algorithms 1 to 3 in C++ and evaluated their accuracy
and performance in four AAV scenarios (i.e., navigating a small domestic yard,
a 200×250m2 industrial area, a 400×450m2 neighbourhood with several streets,
and a random obstacle cloud) covering a range of realistic situations. With our
simulator (Algorithm 3), we illustrate plays of the hybrid game (Figure 4a) for
the yard and industrial scenarios from [11] as well as the more complicated
streets scenario. We also highlight some data (Table 1).

Aerial Delivery Game Parameters. For the mentioned scenarios, we use

ρ ≡ p ∈ Xs++

q′
|p α ≡ collf(O) and λ(u,d; s, k) = x2 + u2. (7)

Informally, ρ enforces the AAV to reach the next waypoint segment (pi,pi+1),
except for the elevate segment during departure, and α enforces the vehicle to
avoid static obstacles. A corresponding collision check (i.e., safety pre-shielding)
with O is performed for each state and pair of control and disturbance inputs in
Line 7 of Algorithm 1 and cached for all time steps when α is computed for L.

10

Figure 5: Play of G with r̄ = {pi}ni=0 for the industrial scenario (n = 13)

In further experiments not shown here, we worked with a non-linear variant of
λ reciprocally weighing-in the distance to the nearest obstacle.

In Algorithm 2, we initialised our settings with a fixed I defining N to be the
maximum horizon and δI = 0 to disable temporal scope extension. For ∆X , we
employ a fixed small symmetric padding of 2 units across all scenarios. Overall,
U is only used for q ∈ {depart, cruise, arrive} where f̂ = fly . In Algorithm 3,
we use Ω ≡ q = standby. Under δ-perforation (1), updTask is constrained to
liveness-preserving updates of O.

Note how Algorithm 3 leaves standby, which fulfils Ω, by immediately per-
forming the globally enabled start event. In the AAV example, we keep jumps
deterministic. Our implementation would resolve non-deterministic jumps by
taking the first available. However, in complex applications, the discrete part
of the hybrid game will require an informed strategy as well.

To focus on the more relevant cases, genDist in Line 8 only generates
horizontal disturbances. In particular, wind (N, W, S, E) is simulated randomly,
following a semi-Markov scheme with finite memory. In the scenarios, wind is
more likely to change gradually than spontaneously.

Hybrid Game Plays. For validating our notion of robustness, the Figures 5
and 6 illustrate the plays of G in the industrial and streets scenarios and Figure 7
provides a 3D walkthrough of a play in the streets scenario. A play for the yard
scenario is shown in Figure 1. The blue AAV trajectory marks the center of a
reference tube (i.e., d = 0) and, for comparison, the red trajectory is the result
of random disturbance being applied (i.e., randomised d no worse than d∗). We
apply the cost function from (7).

The rectangle around a segment (pi+1,pi+2) indicates the goal region ρ of
the route tracking task for segment (pi,pi+1). ρ circumscribes the next pair of
waypoints and, thus, allows edge cases (cf. Figure 1) where certain waypoints
(e.g., p5) are circumvented for the benefit of shortcuts (e.g., (p4,p6)).

3D visualisation can provide valuable insights into the vertical scene topol-

11

Figure 6: Play of G with r̄ = {pi}ni=0 for the streets scenario (n = 11)

Figure 7: Snapshots of a robust play in the streets scenario. In blue, the near-
optimal reference trajectory enforced by u∗ without disturbance being applied.
In red, a simulation of u∗ with random d applied. Transparent rectangles
visualise goal regions.

12

Scenario Play
time
t(r̄)

Max.
#

stages
(N)

Max.
mem.
usage

Max.
||X

Avg.
||X

Max.
t per
dDP

Avg.
t per
106

states

Avg.
t(p0)
t(p>0)

[h:m] [GiB] ·106 ·106 [m:s] [s]

Yard 01:39 30 20.1 105 36.4 25:38 0.597 1.94
Industrial 01:51 60 37.4 108 25.8 47:58 0.798 3.52
Random 01:03 30 5.8 65 25.7 06:54 0.626 1.56
Streets 06:43 50 36.2 172 48.7 51:11 1.110 4.50

Table 1: δ-robust synthesis compared by metric across the scenarios

ogy and the trajectory resulting from a play. During model validation and game
design, it can help to identify parameters, such as beneficial placement of way-
points in the context of scope shaping or the robustness margin δ. The 3D
scenery can increase the confidence in the robustness guarantee provided by the
synthesised controllers through a comparison of the trajectories resulting from
a worst-case play and a play with random disturbance.

Data from the Plays. Table 1 summarises key indicators of the scenarios,
such as the total run-time t(r̄) of the play for route r̄, time t(pi) to compute u∗

for segment (pi,pi+1), and the maximum number (#) of states in X . Moreover,
the expected savings in peak memory usage of the quasi-stationary controller
are summarised in Figure 8 for comparison.

6 Evaluation and Discussion

Figure 8: Peak memory usage of Algo-
rithm 3 by scenario and controller type

Performance. Our example uses a
linear approximation and a quadratic
cost function and is, thus, amenable
to a solution by quadratic program-
ming. However, keeping our ap-
proach more widely applicable re-
quires significantly more time and
memory than (non-linear) model-
predictive control (MPC) schemes
(Table 1). Clearly, the C++ proto-
type is not ready for use in real-time
settings. Nevertheless, selective state
discretisation and omission (e.g., in-
terpolating across state-time dimensions, improved parameter settings) and
high-performance parallelisation can reduce average DDP run-time and space
requirements by at least two orders of magnitude, loosing optimality and pre-
cision but keeping much of the exhaustiveness of the scenario coverage. Such a
run-time reduction increases segment tracking speed as well as freedom in route

13

planning.

Operationalisation of the Hyper-Policy. Lines 8 to 9 of Algorithm 3 rep-
resent the environment part of the control loop: Based on the observation (i.e.,
x is an estimate provided by an observer), control input and disturbance are
applied in parallel, followed by the next observation. Because of this real-time
dependency, Lines 6 to 7 need to be pre-computed to be available after the
jumps.

Ideally, scenario parameters allow enough time to compute u for the next
segment (pi,pi+1) based on data from local environmental perception before
reaching pi. Alternatively, there is time to compute u for (p,pi) before being
required to give up p as a potential waiting position (e.g., where u is a PID con-
troller to robustly hold the AAV at p). However, if the scenario at hand does not
permit a strong enough approximation, U will have to be pre-computed (prior
to or during flight)19 for a sufficiently long prefix of r̄.

Sound Value-Fixpoint Approximations. In the Algorithms 1 and 2, the
fixpoint V ∗, required for u∗ to be stationary (i.e., applicable independent of
time, N ≈ ∞, [21]) and optimal, is approximated. In particular, f̂pdDP re-
places the ideal but more expensive, non-simultaneous fixpoint check V (Xs, k) =
V (Xs, k+1) for each k in Line 9 of Algorithm 1. On the one hand, the ideal check
might, due to numerical imprecision and instability or a too small N , never be
successful. On the other hand, the faster check ⊤ ̸∈ V (x ⊕∆δ, k) in Line 7 of
Algorithm 2 poorly approximates V ∗ and would turn our synthesis into plain
shortest-path finding. The latter might, however, suffice in some applications.

Accepting some deviation from optimality, we instead use |W (Xs, k)| =
|W (Xs, k+ 1)| to check in Algorithm 1 whether the number of states stabilises,
where a robustly safe and goal-reaching trajectory for at least k steps exists.
Then, we perform ⊤ ̸∈ V (x ⊕∆δ, k) in Algorithm 2. Although W (Xs, k) may
still evolve while preserving its cardinality, Algorithm 3 then either ensures
x ∈ W (Xs, k) before leaving the solver in Line 7 or it terminates with a failure
because of W (Xs, k) = ∅ in Line 10.

A comparison of the non-stationary u∗, obtained for [k,N] by the above
termination rule, and the quasi-stationary u∞ : X → U, derived via u∞(x) =
u∗(x, k), indicates (expected) improvements of u∞ (green) over u∗ (blue) in the
undisturbed case (Figure 9). Moreover, as the environment follows the controller
(i.e., u∗ cannot change its current choice based on d’s current choice), applying
disturbance (red) will have the same effect on u∞. Figure 9 (top right) illustrates
how u∞ deviates from u∗ to get closer to optimality according to (5).

Generalisation. Horizon N , stage k, and alphabets U and D are largely left
implicit in J , V , W , f̂ , and xud. Also, we employ time resolution 1. How-
ever, making these parameters explicit leads to non-essential extensions and our
approach can be parameterised by N and enhanced to time-varying dynamics

19Pre-computation is feasible for scope-padded segments (pi,pi+1) but not arbitrary s.

14

Figure 9: Partial trajectory triples (non-stationary reference, random distur-
bance applied, quasi-stationary reference) from the industrial (top left), ran-
dom (top right), streets (bottom left), and yard (bottom right) scenarios. The
random scenario highlights differences between non- and quasi-stationary refer-
ences.

and alphabets Uk and Dk as well as non-unit time resolutions. Moreover, it
can be extended from linear approximation (Algorithm 1 Line 6) to non-linear
approximation of the dynamics and to using non-linear cost-functions.

7 Conclusion
In this work, we specialise a conventional controller synthesis algorithm for
a parametric discretised variant of a weighted hybrid game G. We provide a
model for the integrated assurance of robust safety, liveness, and near-optimality
of controllers for G that are synthesised online, that is, during G’s execution.
The abstraction we chose combines hybrid games (e.g., reach-avoid reasoning),
performance optimisation, and numerical aspects (e.g., data sampling, quantisa-
tion) of digital control in a way amenable to formal reasoning. This combination
enables us to reason about robust safety and liveness guarantees of controllers
and how these guarantees impact the assurance of an overall system. Proofs of
key statements used in this work (e.g., Algorithm 3 ensures that x ∈W (Xs, k);
necessary and sufficient conditions for solvability of the weighted hybrid game)
are discussed in a companion working paper [6].

Our application focuses on the modelling of AAVs, the online synthesis of
tactical controllers, and integrating the latter with strategic and supervisory
control. Our approach can be an alternative if a combination of RL with a

15

shielding scheme is not desirable (e.g., lack of generalisability, controllability, or
explainability of RL’s value function approximation).

In future work, we will extend our approach to synthesise more complex
strategies and refine the integration with our work [7] at the supervisory con-
trol level. We will improve the performance of our algorithms as suggested in
Section 6 and extend our model to be able to deal with multiple AAVs that can
form an intelligent aerial transport collective.

References
[1] Althoff, M., Dolan, J.M.: Online verification of automated road vehi-

cles using reachability analysis. IEEE Trans. Rob. 30(4), 903–918 (2014).
https://doi.org/10.1109/TRO.2014.2312453

[2] Bertram, J., Wei, P., Zambreno, J.: A fast markov decision process-based
algorithm for collision avoidance in urban air mobility. IEEE Trans. In-
tell. Transp. Syst. 23(9), 15420–15433 (2022). https://doi.org/10.1109/
tits.2022.3140724

[3] Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1.
Athena Scientific, 4th edn. (2017)

[4] Clement, E., Perrin-Gilbert, N., Schlehuber-Caissier, P.: Layered Con-
troller Synthesis for Dynamic Multi-agent Systems, pp. 50–68. Springer,
Cham, CH (2023). https://doi.org/10.1007/978-3-031-42626-1_4

[5] Gleirscher, M.: Supervision of intelligent systems: An overview. In: Ap-
plicable Formal Methods for Safe Industrial Products – Essays Dedi-
cated to Jan Peleska on the Occasion of His 65th Birthday, LNCS, vol.
14165, pp. 1–21. Springer, Cham, CH (2023). https://doi.org/10.1007/
978-3-031-40132-9_13

[6] Gleirscher, M.: Solvability of approximate reach-avoid games. CoRR
(2025). https://doi.org/10.48550/arXiv.2502.04544

[7] Gleirscher, M., Calinescu, R., Douthwaite, J., Lesage, B., Paterson, C.,
Aitken, J., Alexander, R., Law, J.: Verified synthesis of optimal safety con-
trollers for human-robot collaboration. Sci. Comput. Program. 218, 102809
(2022). https://doi.org/10.1016/j.scico.2022.102809

[8] Gu, R., Jensen, P.G., Poulsen, D.B., Seceleanu, C., Enoiu, E., Lundqvist,
K.: Verifiable strategy synthesis for multiple autonomous agents: a scalable
approach. Int. J. Softw. Tools Technol. Trans. (2022). https://doi.org/
10.1007/s10009-022-00657-z

[9] Henzinger, T.A.: The theory of hybrid automata. In: Verification of Digi-
tal and Hybrid Systems, NATO ASI Series F: Computer and Systems Sci-
ences, vol. 170, pp. 265–92. Springer (2000). https://doi.org/10.1007/
978-3-642-59615-5_13

16

https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/tits.2022.3140724
https://doi.org/10.1109/tits.2022.3140724
https://doi.org/10.1007/978-3-031-42626-1_4
https://doi.org/10.1007/978-3-031-40132-9_13
https://doi.org/10.1007/978-3-031-40132-9_13
https://doi.org/10.48550/arXiv.2502.04544
https://doi.org/10.1016/j.scico.2022.102809
https://doi.org/10.1007/s10009-022-00657-z
https://doi.org/10.1007/s10009-022-00657-z
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13

[10] Heuillet, A., Couthouis, F., Díaz-Rodríguez, N.: Explainability in deep
reinforcement learning. Knowledge-Based Syst. 214, 106685 (2021). https:
//doi.org/10.1016/j.knosys.2020.106685

[11] Hönnecke, P.: Constrained Hybrid Optimal Control of Aerial Transport
Systems. Master thesis, under sup. of M. Gleirscher, U Bremen (2024)

[12] Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O.:
Compositional learning and verification of neural network controllers. ACM
Trans. Embed. Comput. Syst. 20(5s), 1–26 (2021). https://doi.org/10.
1145/3477023

[13] Kanashima, K., Ushio, T.: Finite-horizon shield for path planning ensur-
ing safety/co-safety specifications and security policies. IEEE Access 11,
11766–11780 (2023). https://doi.org/10.1109/access.2023.3241946

[14] Lewis, F.L., Vrabie, D., Vamvoudakis, K.G.: Reinforcement learning and
feedback control. IEEE Control Syst. 32(6), 76–105 (2012). https://doi.
org/10.1109/mcs.2012.2214134

[15] Li, N., Goubault, E., Pautet, L., Putot, S.: A real-time NMPC controller
for autonomous vehicle racing. In: ICACR. pp. 148–155. IEEE (2022).
https://doi.org/10.1109/icacr55854.2022.9935523

[16] Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification
of obstacle avoidance and navigation of ground robots. Int. J. Rob. Res.
36(12), 1312–1340 (2017). https://doi.org/10.1177/0278364917733549

[17] Schnittka, T., Gleirscher, M.: Synthesising robust strategies for robot col-
lectives with recurrent tasks: A case study. In: Luckcuck, M., Xu, M. (eds.)
FM Auton. Sys. (FMAS), 6th Workshop. EPTCS, vol. 411, pp. 109–125.
OPA (2024). https://doi.org/10.4204/EPTCS.411.7

[18] Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, rein-
forcement learning for autonomous driving. Tech. rep., Mobileye (2016)

[19] Taye, A.G., Valenti, R., Rajhans, A., Mavrommati, A., Mosterman, P.J.,
Wei, P.: Safe and scalable real-time trajectory planning framework for
urban air mobility. J. Aero. Inf. Sys. pp. 1–10 (2024). https://doi.org/
10.2514/1.i011381

[20] Thumm, J., Althoff, M.: Provably safe deep reinforcement learning for
robotic manipulation in human environments. In: ICRA. IEEE (2022).
https://doi.org/10.1109/icra46639.2022.9811698

[21] Tomlin, C.J., Lygeros, J., Sastry, S.S.: A game theoretic approach to
controller design for hybrid systems. Proc. IEEE 88(7), 949–970 (2000).
https://doi.org/10.1109/5.871303

17

https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.1145/3477023
https://doi.org/10.1145/3477023
https://doi.org/10.1109/access.2023.3241946
https://doi.org/10.1109/mcs.2012.2214134
https://doi.org/10.1109/mcs.2012.2214134
https://doi.org/10.1109/icacr55854.2022.9935523
https://doi.org/10.1177/0278364917733549
https://doi.org/10.4204/EPTCS.411.7
https://doi.org/10.2514/1.i011381
https://doi.org/10.2514/1.i011381
https://doi.org/10.1109/icra46639.2022.9811698
https://doi.org/10.1109/5.871303

	Introduction
	Preliminaries
	Aerial Delivery as a Hybrid Game
	Online Synthesis via Parametric Games
	Implementation and Experiments
	Evaluation and Discussion
	Conclusion

