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Abstract. This paper introduces a novel mathematical framework for analyzing cyber threat campaigns through 

fractal geometry. By conceptualizing hierarchical taxonomies (MITRE ATT&CK, DISARM) as snowflake-

like structures with tactics, techniques, and sub-techniques forming concentric layers, we establish a rigorous 

method for campaign comparison using Hutchinson's Theorem and Hausdorff distance metrics. Evaluation 

results confirm that our fractal representation preserves hierarchical integrity while providing a dimensionality-

based complexity assessment that correlates with campaign complexity. The proposed methodology bridges 

security taxonomy analysis and computational geometry, providing analysts with both mathematical rigor and 

interpretable visualizations for addressing the growing complexity of adversarial operations across multiple 

threat domains. 
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“Fractal geometry is not just a chapter of mathematics, but one that helps everyman to see the same world 

differently.” 

The Fractal Geometry of Nature (1982), Benoît Mandelbrot 

 

 

 

 

 

 

 

 

 

 



1   Introduction 

The systematic analysis of adversarial campaigns represents one of the most pressing challenges in contemporary 

security research. Whether in the cyber domain (Advanced Persistent Threat groups, APT) or information 

operations (disinformation campaigns), security analysts face increasingly complex, multi-faceted threats that 

deploy diverse tactics, techniques, and procedures. Current approaches rely heavily on manual classification using 

taxonomic frameworks such as MITRE ATT&CK for cyber threats and DISARM for disinformation operations 

[1][2].  

These taxonomies organize adversarial behaviors into hierarchical categories, typically using a three-level 

structure organized around a focal point: 

 

• Campaign: a grouping of adversaries’ behaviors with a specific timeframe and targeting. 

• Tactics: High-level adversarial goals (e.g., "Initial Access" or "Establish Legitimacy"). 

• Techniques: Methods to achieve those goals (e.g., "Phishing" or "Create Fake Experts"). 

• Sub-techniques: Specific implementations (e.g., "Spearphishing Attachment" or "Use Fake Academic 

Credentials"). 

 

While taxonomically robust, these frameworks lack formal mathematical representations that would enable 

rigorous comparison, aggregation, and detection of structural relationships between campaigns. 

 

We propose a fundamental reconceptualization: viewing hierarchical taxonomy structures as geometric objects 

with fractal properties. This insight emerged from visualizing campaign components as concentric layers (tactics 

at the center, techniques in the middle layer, sub-techniques in the outer layer), revealing structures reminiscent of 

snowflakes when projected on a plane. This visual analogy introduces a powerful mathematical framework—

fractal geometry—that aligns naturally with the hierarchical, self-similar organization of adversarial tactics. 

 

This paper makes the following contributions: 

1. Formally map security taxonomies and fractal geometric structures. 

2. A mathematical framework based on Iterated Function Systems (IFS), Hutchinson's Theorem, and 

Hausdorff distance metrics. 

3. An algorithm for comparing campaign structures  

4. Validation through case studies across multiple security domains 

5. A dimensionality-based complexity measure  

 

A crucial insight of our approach is its domain-agnostic nature. This enables comparative analysis across 

traditionally separate security domains (cyber operations, information warfare, physical security) using a unified 

mathematical language. 

2   Related Works 

2.1   Threat Campaign Modeling 

Existing approaches to threat campaign analysis have primarily focused on graph-based representations. In the 

cyber domain, attack graphs [3] and kill chains [4] provide process-oriented views of attacker progression. For 

information operations, network representations of narratives [5] and communication patterns [6] seem to 

dominate literature. 

 

The MITRE ATT&CK framework has become the de facto standard for cyber threat analysis [7]. DISARM 

frameworks provide structured taxonomies for information operations [1]. However, these frameworks lack formal 

mathematical representations for comparative analysis. 

 

Recent work by Lin et al. introduced a systematic approach to labeling attack tactics specifically tailored for cyber 

threat hunting [8]. Their methodology emphasizes the importance of structured taxonomic labeling in facilitating 

effective threat detection and response, reinforcing the need for rigorous analytical frameworks capable of 

capturing hierarchical tactic structures. 



2.2   Fractals in Complex Systems Analysis 

Fractal geometry has been successfully applied to various complex systems, including financial networks [9], 

urban growth patterns [10], and information propagation in social networks [11]. Faloutsos et al. demonstrated 

that internet topology exhibits self-similar patterns consistent with fractal structures [12]. 

In cybersecurity research specifically, fractal dimension has emerged as a promising metric for anomaly detection 

and threat attribution. For example, Siddiqui and Khan applied fractal analysis to APT’s network traffic for 

anomaly detection [13]. They also used fractal dimensions to characterize polymorphic malware behavior 

effectively [14]. Their results demonstrated that fractal-based features significantly improve classification 

accuracy compared to traditional methods, highlighting the potential of fractal geometry in cybersecurity analytics. 

However, the application of fractal geometry to taxonomy-based threat campaign behavioral structure remains 

unexplored. 

2.3   Machine Learning Techniques in Threat Attribution and Detection 

Machine learning techniques have increasingly been employed for advanced persistent threat (APT) attribution 

and detection due to their ability to handle complex data patterns effectively. Charan et al. systematically reviews 

various machine learning approaches and Data Mining techniques applied to APT scenarios (DMAPT) [15]. It 

highlights the strengths and limitations of existing methods, emphasizing the need for robust feature extraction 

techniques capable of capturing structural characteristics inherent in sophisticated threats. 

 

Similarly, Mohamed and Belaton proposes a behavior-based detection approach utilizing machine learning 

classifiers trained on anomalous credential usage patterns in APT attacks (Strange Behaviour Inspection, SBI) 

[16]. This work underscores the value of behavior-driven features in identifying subtle indicators of compromise 

within hierarchical attack structures. 

2.4   Structural Comparison Methods 

Graph similarity metrics seem to dominate structural comparison approaches, with recent work by Koutra et al. on 

fast approximate graph alignment showing promise for large-scale analysis [17]. The application of Hausdorff 

distances to structured data comparison has precedents in bioinformatics [18] and pattern recognition [19]. 

 

2.5   Positioning 

Our proposed geometric framework uniquely integrates fractal geometry with hierarchical security taxonomies, 

addressing gaps identified across existing literature: 

 

• Providing a mathematical and intuitive method grounded in fractal geometry. 

• Unlike prior fractal-based cybersecurity studies that primarily focus on traffic or malware analysis, we 

apply fractals directly to hierarchical taxonomy modeling. 

• Our approach complements existing machine learning-driven methods by offering robust geometric 

feature extraction that can enhance predictive modeling accuracy. 

• By formalizing hierarchical taxonomies into geometric objects, our method provides a unified 

mathematical language suitable for cross-domain security analysis—an aspect not addressed explicitly 

by prior literature. 

 

Thus, our paper bridges these previously separate research streams—fractal geometry applications, hierarchical 

taxonomy modeling, structural comparison metrics, and machine learning approaches—into a cohesive analytical 

framework applicable across cybersecurity domains. 

 

 

 



3   Theoretical Framework 

3.1   Hierarchical Taxonomy Formalization 

We begin by formalizing hierarchical security taxonomies as multi-level ordered sets. Let a campaign C consist of 

a collection of tactics Ti, each containing techniques τij, which may further contain sub-techniques σijk: 

 

 

𝐶 = {𝑇𝑖}𝑖=1
𝑛  ,  𝑇𝑖 = {τ𝑖𝑗}𝑗=1 

𝑚𝑖 ,  τ𝑖𝑗 = {σ𝑖𝑗𝑘}𝑘=1

𝑝𝑖𝑗  

 
This formalization applies equally to cyber campaigns (using MITRE ATT&CK) and information operations 

(using DISARM). 

3.2   Fractal Representation via Iterated Function Systems 

We map this hierarchical structure to fractal geometry through an Iterated Function System (IFS), where each 

taxonomic element corresponds to a contraction mapping in ℝ2: 

 

ℱ𝒞 = {𝑓1, 𝑓2, … , 𝑓𝑛} 

 

where each fi is a contraction with factor ri < 1. For hierarchical taxonomies, we define contractions at each level: 

 

𝑟tactic >= 𝑟technique >= 𝑟sub-technique 

 

Following Hutchinson's Theorem, this IFS converges to a unique attractor KC, our "campaign snowflake": 

 

𝐾𝐶 = ⋃ 𝑓𝑖(𝐾𝐶)

𝑛

𝑖=1

 

 

The resulting fractal object KC serves as a unique geometric signature for campaign C. 

 

3.3   Hutchinson Operator and Convergence 

The Hutchinson operator ℋ is defined as: 

 

ℋ(𝑆) = ⋃ 𝑓𝑖(𝑆)

𝑛

𝑖=1

 

 

for any set S ⊂ ℝ2. Hutchinson's Theorem guarantees that repeated application of this operator converges to the 

unique attractor: 

 

𝐾𝐶 = lim
𝑚→∞

ℋ𝓂 (𝑆0) 

 

for any initial non-empty compact set 𝑆0. 

 

3.4   Fractal Dimension and Campaign Complexity 

The box-counting dimension of the attractor 𝑲𝑪 provides a quantitative measure of campaign complexity: 

dimbox(𝐾𝐶) = lim
ϵ→0

log 𝑁 (ϵ)

log(1/ϵ)
 



where N(ϵ) is the minimum number of squares of side length ϵ needed to cover 𝐾𝐶 . For self-similar fractals 

generated by our IFS with uniform contraction factors, this dimension can be approximated by the similarity 

dimension: 

 

dimsim(𝐾𝐶) =
log(𝑛)

log(1/𝑟)
 

 

where n is the number of contractions and r is the contraction factor (assuming all factors are equal). 

 

When implementing strict hierarchical contraction factors (𝑟tactic > 𝑟technique > 𝑟sub-technique) the similarity 

dimension is instead determined by the unique value of (𝑑) that satisfies the implicit equation: 

 

∑ 𝑟𝑖
𝑑

𝑖

= 1 

 

This equation can be expanded for our three-level hierarchy as: 

 

[ ∑ (𝑟tactic)𝑑

𝑛tactic

𝑖=1

+ ∑ (𝑟technique)
𝑑

𝑛technique

𝑗=1

+ ∑ (𝑟sub-technique)
𝑑

𝑛sub-technique

𝑘=1

= 1] 

 

Which simplifies to: 

 

[𝑛tactic ⋅ (𝑟tactic)𝑑 + 𝑛technique ⋅ (𝑟technique)
𝑑

+ 𝑛sub-technique ⋅ (𝑟sub-technique)
𝑑

= 1] 

 

 

Where (𝑛tactic), (𝑛technique), and (𝑛sub-technique) represent the count of elements at each level. 

3.5   Comparison Metrics: Hausdorff 

For comparing campaigns, we employ the Hausdorff distance: 

 

𝑑𝐻(𝐾𝐶1
, 𝐾𝐶2

) = max { sup
𝑥∈𝐾𝐶1

inf
𝑦∈𝐾𝐶2

𝑑(𝑥, 𝑦), sup
𝑦∈𝐾𝐶2

inf
𝑥∈𝐾𝐶1

𝑑(𝑥, 𝑦)} 

 

4   Methodology 

4.1   Snowflake Generation Algorithm 

The transformation from hierarchical taxonomy to fractal snowflake follows a deterministic process: 

1. Map campaign tactics to central nodes with angular separation θ=2π/n for n tactics 

2. For each tactic node, generate technique branches with specified contraction factor rtech 

3. For each technique branch, generate sub-technique nodes with contraction factor rsubtech 

 

The algorithm implements Hutchinson's operator ℋ iteratively: 

 

𝑋𝑛+1 = ℋ(𝑋𝑛) = ⋃ 𝑓𝑖(𝑋𝑛)

𝑚

𝑖=1

 

Where fi are the contractions corresponding to taxonomy elements, producing the attractor KC as n→∞. 

 

 



4.2   Snowflake Generation Algorithm 

Campaign similarity is assessed through a three-stage process: 

1. Apply the Hutchinson operator to produce attractors KC1 and KC2 

2. Compute the Hausdorff distance dH(KC1,KC2) 

3. Convert to similarity score via Sim(𝐶1, 𝐶2) = 𝑒−λ𝑑𝐻(𝐾𝐶1 ,𝐾𝐶2) 

 

For campaign subset detection (e.g., C3⊂C1), we examine both the Hausdorff distance (approaching zero) and the 

dimensional relationship: 

 

𝑑𝐻(𝐾𝐶3
, 𝐾𝐶1

) ≈ 0 and dim(𝐾𝐶3
) < dim(𝐾𝐶1

) 

5   Case Study 

To demonstrate the versatility and robustness of our fractal-based framework for hierarchical attack taxonomy 

modeling, we present four case studies spanning both cyber and disinformation campaigns. These examples 

highlight the ability of our method to model campaigns at different levels of granularity, detect subset relationships, 

and compare structurally similar yet distinct operations. The selected campaigns include both Advanced Persistent 

Threat (APT) operations and disinformation campaigns, illustrating the domain-agnostic nature of our approach. 

 

5.1   APT29: Modeling an APT Group-Level Campaign 

APT29, also known as "Cozy Bear," is a sophisticated Russian state-sponsored threat actor group. Its operations 

typically focus on cyber-espionage targeting government entities, think tanks, and private sector organizations. At 

the APT group level, we model APT29's general tactics and techniques based on MITRE ATT&CK, but we choose 

to not be exhaustive as it is not useful for the sake of the mathematical demonstration. 

Table 1.  APT29 Group-level MITRE ATT&CK mapping (simplified) 

Tactic Technique Sub-technique 

Initial Access Phishing Spearphishing Attachments 

Initial Access Supply Chain Compromise Compromise Software Supply Chain 

Execution PowerShell N/A 

Persistence Registry Run Keys/Startup Folder N/A 

Persistence Abuse Elevation Control Mechanism Bypass User Account Control 

Defense Evasion Process Injection N/A 

Command and Control Application Layer Protocol Web Protocols 

 

Fractal representation 

• Center: APT29 aggregated campaigns tactics, techniques and procedures. 

• First Circle: 5 tactics 

• Second Circle: 7 techniques branching from tactics. 

• Third Circle: 3 sparse sub-techniques. 

 

Fractal dimension 

 

dim(𝐾𝐴𝑃𝑇29) =
log(𝑛)

log(1/𝑟)
=

log(15)

log(3)
 =  2.46 

 

where n=5 tactics + 7 techniques + 3 sub-techniques = 15 total branches, and assumed r=
1

3
 for simplicity. 

A python code for implicit equation is available at Appendix 3. 



5.2   APT29 SolarWinds Campaign: Subset Detection 

The SolarWinds campaign, attributed to APT29, represents a highly targeted subset of the group's broader 

operational capabilities. This campaign exploited the SolarWinds Orion platform to compromise supply chains 

and infiltrate U.S. government agencies. At the APT specific campaign level, we model APT29's general tactics 

and techniques based on MITRE ATT&CK, but we choose to not be exhaustive as it is not useful for the sake of 

the mathematical demonstration. 

 

Table 2.  APT29’s Solarwinds MITRE ATT&CK mapping (simplified) 

Tactic Technique Sub-technique 

Initial Access Supply Chain Compromise Compromise Software Supply Chain 

Persistence Abuse Elevation Control Mechanism Bypass User Account Control 

Defense Evasion Masquerading Match Legitimate Name or Location 

 

5.3   "Matriochka" Disinformation Campaign 

The "Matriochka" campaign, analyzed by VIGINUM (SGDSN, French Government), represents a complex 

disinformation operation attributed to Russian actors. Its goal was to manipulate public opinion by creating layers 

of false narratives ("matryoshka dolls") that concealed their origins. (See Appendix n°1 for DISARM mapping) 

 

5.4   APT28 DNC Hack (influence campaign) 

APT28 (Fancy Bear), another Russian state-sponsored group, conducted a disinformation operation targeting the 

Democratic National Committee (DNC) during the U.S. presidential election in 2016. This operation combined 

cyber intrusion with narrative manipulation to influence public opinion. (See Appendix n°2 for DISARM mapping) 

5.5   Results 

These case studies demonstrate that our fractal-based framework effectively models hierarchical attack structures 

across domains, detects subset relationships (e.g., SolarWinds ⊂ APT29), and quantifies campaign complexity 

through fractal dimensions (code available at Appendix 3). 

 
Figure 1 – Exemple of a fractal representation of the APT29 and the SolarWinds case studies 

 

 

 



Dimension analysis 

The hierarchical fractal dimensions using hierarchical contraction factors  

 

(𝑟tactic = 0,6 ;  𝑟technique = 0,4 ;   𝑟sub-technique  =  0,2) 

 

are consistently higher than those calculated with the simplified formula.  

 

Table 5.  Comparative Analysis of Fractal Dimensions 

Fractal  Structure Dimension 

(uniform contractor) 

Dimension 

(hierarchical contractor) 

APT29  
5 tactics, 7 techniques, 3 

subtechniques 
2.46 2.74 

SolwarWinds  
3 tactics, 3 techniques, 3 

subtechniques 
2.00 2.51 

Matriochka  
6 tactics, 19 techniques, 19 

subtechniques 
3.44 4.52 

DNCHack  
3 tactics, 6 techniques, 6 

subtechniques 
2.46 3.17 

 

This indicates that the simplified approach underestimates campaign complexity when properly accounting for the 

hierarchical nature of security taxonomies, but:  

1. Relative rankings remain consistent: Matriochka is still the most complex campaign, followed by DNC 

Hack and APT29, and finally SolarWinds. 

2. Hierarchical importance is properly represented: The corrected approach gives appropriate weight to the 

different taxonomic levels. 

3. Subset relationship is preserved: SolarWinds still has a lower dimension than APT29, confirming its 

subset status. 

 

Despite both APT29 and DNC Hack having the same total number of elements (15) in our use case, their different 

distribution across taxonomic levels results in distinct fractal dimensions when using hierarchical contraction 

factors. 

 

This mathematical outcome actually aligns with an important aspect of threat analysis: 

• Higher level of detail at the sub-technique level: DNC Hack uses fewer tactics but implements them with 

more specific sub-techniques, representing a more detailed implementation of a narrower tactical 

approach. 

• Tactical breadth vs. technical depth: APT29 employs more tactics (broader approach) but with less 

elaboration at the sub-technique level, while DNC Hack demonstrates greater technical depth within a 

more focused tactical scope. 

 

This analysis demonstrates that while the simplified formula provides a useful approximation, the implicit equation 

approach better captures the hierarchical nature of security taxonomies. 

 

Distance 

Using the hierarchical contraction factors with r_tactic=0.6, r_tech=0.4, and r_subtech=0.2, we obtain: 

 

Table 6.  Hausdorff Distance Calculation for Cyber Campaign Fractals 

Campaign pair  Hausdorff distance 

APT29 - SolwarWinds  0.384 

Matriochka - DNCHack  0.640 

 

The Hausdorff distance between APT29 and SolarWinds (0.384) is significantly smaller than between Matriochka 

and DNC Hack (0.640), which aligns with the paper's settings that SolarWinds campaign is a subset of APT29's 

broader capabilities. 

A python code for implicit equation is available at Appendix 4. 



 

 

Sensitivity analysis 

To understand how contraction factors affect the Hausdorff distance calculation, we performed additional 

computations with varying parameters: 

Table 7.  Impact of Contraction Factor on Hausdorff Distance Calculation for Cyber Campaign Fractals 

Contraction factors APT29-SolarWinds Matriochka-DNCHack 

r_t=0.5, r_te=0.3, r_s=0.1 0.3200 0.5333 

r_t=0.6, r_te=0.4, r_s=0.2 0.3840 0.6400 

r_t=0.7, r_te=0.5, r_s=0.3 0.4480 0.7467 

 

While the absolute values differ substantially, the relative ordering remains consistent: the APT29-SolarWinds 

relationship consistently demonstrates greater similarity than Matriochka-DNCHack across all parameter choices. 

6   Discussion 

This work demonstrates the versatility of a fractal-based framework for modeling and comparing hierarchical 

threat campaigns across domains, such as computer network operations and disinformation.  

 

Using fractal with hierarchical contraction factors 

 

While our hierarchical fractal representation uses contraction factors where rtactic > rtechnique > rsubtechnique to 

emphasize taxonomic structure, this ordering produces an interesting effect on dimension calculations. Campaigns 

with more sub-techniques relative to tactics (like DNC Hack) yield higher dimensions than campaigns with more 

tactics but fewer sub-techniques (like APT29), even when total element counts are identical. This mathematically 

captures how technical depth at lower taxonomy levels can contribute more to overall campaign complexity than 

tactical breadth—an insight aligned with threat analysis practice where sophisticated actors demonstrate more their 

capabilities at the technical implementations level rather than employing a wide range of tactics, emphasizing the 

discriminative nature of techniques over tactics. 

 

On the choice of contraction factors 

 

The sensitivity analysis demonstrates that the choice of contraction factors, while preserving insigths, significantly 

impacts the absolute values of Hausdorff distances. This has important methodological implications: 

1. Practitioners should calibrate their interpretation of Hausdorff distances based on the specific contraction 

factors used, rather than relying on absolute thresholds. 

2. Threat analysts should focus on relative relationships between campaign pairs rather than absolute 

distance values. 

3. For operational use, the security community would benefit from standardized contraction factors to enable 

consistent cross-organizational comparisons. 

 

The sensitivity analysis reveals that while the absolute values of Hausdorff distances are highly dependent on 

parameter choices, the fundamental threat analysis insights remain robust. The fractal framework continues to 

provide valuable comparative information about campaign relationships, supporting attribution decisions and 

complexity assessments despite parameter variation. 

 

Integrated Cyber-Disinformation Campaigns 

The DNC Hack by APT28 exemplifies a hybrid campaign combining cyber intrusion (e.g., data exfiltration) with 

disinformation (e.g., leak amplification). Our framework can seamlessly integrate such multi-domain operations 

by introducing an innermost concentric layer branching into domain-specific frameworks like MITRE ATT&CK 

(cyber) and DISARM (disinformation). Subsequent layers represent their respective tactics, techniques, and sub-

techniques. This unified representation enables cross-domain analysis (cyber operations, information warfare, 

physical security) while preserving the hierarchical integrity of each framework. 

 



Comparison to Previous Work 

In your previous work on APT behavioral signatures [20], the focus was on paired techniques—capturing 

interrelations between techniques within a campaign. While this approach excels in identifying operational 

patterns, it lacks the hierarchical perspective provided by our fractal model. Conversely, our framework 

emphasizes the branching structure of campaigns but does not explicitly capture interrelations within a single 

concentric layer (e.g., dependencies between techniques). This highlights complementary strengths: 

• Fractal Model: Ideal for quantifying complexity and detecting structural overlaps or subsets when we 

have a broad coverage of the mapped behavior. 

• Paired Techniques: Better suited for analyzing intra-layer relationships and operational dependencies 

when information is more limited about the observed campaign’s behavior. 

Future work could combine these approaches to create a hybrid model that captures both hierarchical branching 

and interrelations within layers. 

Limitations 

While effective for hierarchical modeling, this approach does not capture dependencies within a single layer 

(e.g., paired techniques in ATT&CK). This limits its ability to analyze operational sequences. 

The framework relies on precise mappings to established taxonomies (e.g., DISARM, ATT&CK). Errors or 

omissions can distort results. 

Calculating Hausdorff distances becomes resource-intensive for large datasets. 

The sensivity analysis highlight the importance of careful parameter selection and standardization for operational 

applications in threat intelligence, that is not covered in this research. 

7   Conclusion 

We have presented a novel approach to threat campaign analysis through fractal geometry, establishing a 

mathematical foundation for comparing hierarchical attack structures across both cyber and information security 

domains. By conceptualizing taxonomic elements from frameworks like MITRE ATT&CK and DISARM as 

snowflake-like fractal patterns, we enable both computational precision and intuitive visualization of complex 

threat landscapes. 

The application of Hutchinson's Theorem provides a formal mechanism for generating unique campaign 

signatures regardless of domain, while Hausdorff distance offers a principled metric for assessing structural 

relationships between campaigns. Our case studies demonstrate the approach's ability to detect campaign subsets 

(e.g., SolarWinds within APT29), measure similarity between independent operations, and quantify complexity 

across cyber operations and disinformation campaigns alike. 

This work establishes a new bridge between security taxonomy research and computational geometry, offering 

analysts both mathematical rigor and visual intuition for addressing the growing complexity of adversarial 

campaigns. The domain-agnostic nature of our framework makes it particularly valuable for analyzing hybrid 

threats that span multiple domains, such as the APT28 DNC Hack which combined cyber intrusion with 

disinformation tactics. 

As adversarial tactics continue to evolve across both cyber and information domains, geometric approaches may 

prove increasingly valuable in recognizing patterns across seemingly disparate operations, enhancing attribution 

capabilities, and ultimately improving defensive postures against sophisticated threats. 
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Appendix n°1 - "Matriochka" Disinformation Campaign DISARM Mapping 

 

Tactic Technique Sub-technique 

Narrative Development Create Fake Personas Use Fake Academic Credentials 

Narrative Development Develop Divisive Content Emotional Content Targeting 

Narrative Development Amplify Existing Narratives Exploit Polarizing Topics 

Narrative Development Fabricate Narratives Create False News Articles 

Platform Manipulation Amplify Messages Cross-Platform Coordination 

Platform Manipulation Hijack Trending Topics Use Hashtag Hijacking 

Platform Manipulation Exploit Platform Algorithms Optimize Content for Algorithmic Boost 

Platform Manipulation Spread Malicious Links Use Shortened URLs 

Audience Targeting Segment Audiences Target Based on Demographics 

Audience Targeting Deploy Microtargeting Use Behavioral Data 

Audience Targeting Exploit Cognitive Biases Appeal to Emotions 

Establish Legitimacy Create Fake Experts Use Fake Credentials 

Establish Legitimacy Develop Front Organizations Use Fake NGOs 

Establish Legitimacy Hijack Trusted Sources Impersonate Journalists 

Discredit Opponents Spread Negative Narratives Fabricate Scandals 

Discredit Opponents Create False Associations Link Opponents to Extremist Groups 

Discredit Opponents Amplify Negative Content Spread Edited Photos/Videos 

Platform Manipulation Exploit Bots Deploy Automated Accounts 

Platform Manipulation Exploit Troll Farms Coordinate Troll Activity 

 

(truncated for simplification purpose, limiting to 44 branches) 

  



Appendix n°2 - APT28 DNC Hack Campaign DISARM Mapping 

 

Tactic Technique Sub-technique 

Narrative Development Leak Amplification Amplify Leaked Documents 

Narrative Development Develop Divisive Narratives Frame Opponents as Corrupt 

Narrative Development Amplify Existing Narratives Exploit Polarizing Topics 

Platform Manipulation Amplify Messages Cross-Platform Coordination 

Platform Manipulation Exploit Platform Algorithms Optimize Content for Algorithmic Boost 

Audience Targeting Segment Audiences Target Based on Political Affiliation 

 

 

  



Appendix n°3 – Python code used to compute dimensions in the case studies 

 
import math 

 

def calculate_fractal_dimension(tactics_count, techniques_count, subtechniques_count,  

                               r_tactic=0.6, r_tech=0.4, r_subtech=0.2): 

    """Calculate the corrected fractal dimension for a hierarchical taxonomy.""" 

    # Define contraction factors for each level 

    tactic_scale = r_tactic 

    technique_scale = r_tactic * r_tech  # Compound scaling 

    subtechnique_scale = r_tactic * r_tech * r_subtech  # Compound scaling 

     

    # Define the implicit equation ∑_i r_i^d = 1 

    def f(d): 

        return (tactics_count * (tactic_scale ** d) +  

                techniques_count * (technique_scale ** d) +  

                subtechniques_count * (subtechnique_scale ** d) - 1) 

     

    # Bisection method to solve for d where f(d) = 0 

    low, high = 0.1, 10.0 

     

    for _ in range(100):  # Maximum 100 iterations 

        mid = (low + high) / 2 

        val = f(mid) 

         

        # If the value is sufficiently close to zero, break 

        if abs(val) < 1e-12: 

            break 

             

        if f(low) * val < 0: 

            high = mid 

        else: 

            low = mid 

     

    return mid 

 

# Case studies from the paper 

case_studies = [ 

    {"name": "APT29", "tactics": 5, "techniques": 7, "subtechniques": 3}, 

    {"name": "SolarWinds", "tactics": 3, "techniques": 3, "subtechniques": 3}, 

    {"name": "Matriochka", "tactics": 6, "techniques": 19, "subtechniques": 19}, 

    {"name": "DNC Hack", "tactics": 3, "techniques": 6, "subtechniques": 6} 

] 

 

# Calculate dimensions for all case studies 

for case in case_studies: 

    # Calculate original dimension using simplified formula 

    n = case["tactics"] + case["techniques"] + case["subtechniques"] 

    r = 1/3  # As used in the paper 

    original_dim = math.log(n) / math.log(1/r) 

     

    # Calculate corrected dimension using hierarchical factors 

    corrected_dim = calculate_fractal_dimension( 

        case["tactics"],  

        case["techniques"],  

        case["subtechniques"] 

    ) 

     

    print(f"{case['name']} - Original: {original_dim:.2f}, Corrected: {corrected_dim:.2f}") 

  



Appendix n°4 – Python code used to compute Hausdorff in the case studies 

 
import numpy as np 

from scipy.spatial.distance import directed_hausdorff 

import matplotlib.pyplot as plt 

 

def generate_fractal_points(tactics, techniques, subtechniques,  

                           r_tactic=0.6, r_tech=0.4, r_subtech=0.2): 

    """ 

    Generate points representing a fractal snowflake for a campaign 

    with hierarchical contraction factors 

    """ 

    points = [] 

     

    # Center point 

    center = np.array([0, 0]) 

    points.append(center) 

     

    # Generate tactic points in a circle around center 

    tactic_points = [] 

    tactic_angles = np.linspace(0, 2*np.pi, tactics, endpoint=False) 

     

    for angle in tactic_angles: 

        x = r_tactic * np.cos(angle) 

        y = r_tactic * np.sin(angle) 

        tactic_point = np.array([x, y]) 

        tactic_points.append(tactic_point) 

        points.append(tactic_point) 

     

    # Distribute techniques among tactics 

    techniques_per_tactic = techniques // tactics 

    remaining_techniques = techniques % tactics 

     

    technique_points = [] 

     

    for i, tactic_point in enumerate(tactic_points): 

        # Calculate how many techniques branch from this tactic 

        n_techniques = techniques_per_tactic 

        if i < remaining_techniques: 

            n_techniques += 1 

             

        if n_techniques == 0: 

            continue 

             

        # Generate technique points in a circle around the tactic 

        tech_angles = np.linspace(0, 2*np.pi, n_techniques, endpoint=False) 

         

        for angle in tech_angles: 

            # Apply compound scaling: tactic scale * technique scale 

            tech_radius = r_tactic * r_tech 

            x = tactic_point[0] + tech_radius * np.cos(angle) 

            y = tactic_point[1] + tech_radius * np.sin(angle) 

            technique_point = np.array([x, y]) 

            technique_points.append(technique_point) 

            points.append(technique_point) 

     

    # Distribute subtechniques among techniques 

    subtechniques_per_technique = subtechniques // max(1, len(technique_points)) 

    remaining_subtechniques = subtechniques % max(1, len(technique_points)) 

     

    for i, technique_point in enumerate(technique_points): 

        # Calculate how many subtechniques branch from this technique 

        n_subtechniques = subtechniques_per_technique 

        if i < remaining_subtechniques: 

            n_subtechniques += 1 

             

        if n_subtechniques == 0: 

            continue 

             

        # Generate subtechnique points in a circle around the technique 

        subtech_angles = np.linspace(0, 2*np.pi, n_subtechniques, endpoint=False) 

         

        for angle in subtech_angles: 

            # Apply compound scaling: tactic scale * technique scale * subtechnique scale 

            subtech_radius = r_tactic * r_tech * r_subtech 

            x = technique_point[0] + subtech_radius * np.cos(angle) 



            y = technique_point[1] + subtech_radius * np.sin(angle) 

            subtechnique_point = np.array([x, y]) 

            points.append(subtechnique_point) 

     

    return np.array(points) 

 

def calculate_hausdorff_distance(campaign1, campaign2, r_tactic=0.6, r_tech=0.4, 

r_subtech=0.2): 

    """ 

    Calculate the Hausdorff distance between two campaign fractals 

    """ 

    # Generate points for both campaigns 

    points1 = generate_fractal_points(*campaign1, r_tactic, r_tech, r_subtech) 

    points2 = generate_fractal_points(*campaign2, r_tactic, r_tech, r_subtech) 

     

    # Compute the directed Hausdorff distances 

    forward_hausdorff, _, _ = directed_hausdorff(points1, points2) 

    backward_hausdorff, _, _ = directed_hausdorff(points2, points1) 

     

    # Hausdorff distance is the maximum of the two directed distances 

    hausdorff_distance = max(forward_hausdorff, backward_hausdorff) 

     

    return hausdorff_distance 

 

# Define the four campaigns from the case studies 

apt29 = (5, 7, 3)  # 5 tactics, 7 techniques, 3 subtechniques 

solarwinds = (3, 3, 3)  # 3 tactics, 3 techniques, 3 subtechniques 

matriochka = (6, 19, 19)  # 6 tactics, 19 techniques, 19 subtechniques 

dnc_hack = (3, 6, 6)  # 3 tactics, 6 techniques, 6 subtechniques 

 

# Calculate Hausdorff distances with hierarchical contraction factors 

r_tactic = 0.6 

r_tech = 0.4 

r_subtech = 0.2 

 

# Compare APT29 and SolarWinds 

hausdorff_apt29_solarwinds = calculate_hausdorff_distance( 

    apt29, solarwinds, r_tactic, r_tech, r_subtech) 

 

# Compare Matriochka and DNC Hack 

hausdorff_matriochka_dnchack = calculate_hausdorff_distance( 

    matriochka, dnc_hack, r_tactic, r_tech, r_subtech) 

 

print(f"Hausdorff distance between APT29 and SolarWinds: {hausdorff_apt29_solarwinds:.6f}") 

print(f"Hausdorff distance between Matriochka and DNC Hack: {hausdorff_matriochka_dnchack:.6f}") 


