
The Crucial Role of Problem Formulation in
Real-World Reinforcement Learning

Georg Schäfer∗†‡, Tatjana Krau§, Jakob Rehrl∗†, Stefan Huber∗†, Simon Hirlaender‡
∗Salzburg University of Applied Sciences, Salzburg, Austria

†Josef Ressel Centre for Intelligent and Secure Industrial Automation, Salzburg, Austria
‡Paris Lodron University of Salzburg, Salzburg, Austria

§University of Applied Sciences Kempten, Kempten, Germany
georg.schaefer@fh-salzburg.ac.at

Abstract—Reinforcement Learning (RL) offers promising so-
lutions for control tasks in industrial cyber-physical systems
(ICPSs), yet its real-world adoption remains limited. This paper
demonstrates how seemingly small but well-designed modifica-
tions to the RL problem formulation can substantially improve
performance, stability, and sample efficiency. We identify and
investigate key elements of RL problem formulation and show
that these enhance both learning speed and final policy quality.
Our experiments use a one-degree-of-freedom (1-DoF) helicopter
testbed, the Quanser Aero 2, which features non-linear dynamics
representative of many industrial settings. In simulation, the
proposed problem design principles yield more reliable and
efficient training, and we further validate these results by training
the agent directly on physical hardware. The encouraging real-
world outcomes highlight the potential of RL for ICPS, especially
when careful attention is paid to the design principles of problem
formulation. Overall, our study underscores the crucial role of
thoughtful problem formulation in bridging the gap between RL
research and the demands of real-world industrial systems.

Index Terms—Reinforcement Learning, Problem Formulation,
Industrial Cyber-Physical System.

I. INTRODUCTION

Reinforcement Learning (RL) is a machine learning
paradigm where an agent learns to make decisions by interact-
ing with an environment and iteratively adjusting its policy to
maximize cumulative rewards [1]. This approach has shown
impressive success in domains such as robotics [2], video
gaming [3], and Cyber-Physical Systems (CPSs) [4]. In RL,
the agent does not require an a priori model of the environ-
ment; instead, it learns directly from data generated through
interaction, making it particularly attractive for complex or
uncertain scenarios.

Industrial CPSs (ICPSs) combine physical processes with
computational control, forming the backbone of many modern
industrial systems in manufacturing, energy management, and
smart transportation [4]. Conventional control approaches for
ICPSs often rely on mathematical models, which are difficult
to derive when facing dynamic, high-dimensional, or stochas-
tic processes [5]. RL reduces this challenge by providing

Financial support for this study was provided by the Christian Doppler As-
sociation (JRC ISIA), the corresponding WISS Co-project of Land Salzburg,
the European Interreg Österreich-Bayern project BA0100172 AI4GREEN and
by the Federal Ministry of Education and Research (BMBF) under the project
iCARus.

techniques that learn controllers or decision-making policies
through direct experimentation or simulation. However, while
RL offers significant potential, its application in real-world
ICPSs remains limited. One main reasons for this is the
lack of standardization in problem formulation and broader
engineering workflows.

In comparison to supervised learning pipelines, where data
preprocessing, model selection, training, evaluation, and de-
ployment are well-defined steps [6], in RL there are no
universally systematic frameworks for problem design and
experimentation established yet. This gap frequently leads to
an overemphasis on hyperparameter tuning at the expense of
carefully specifying the environment, reward function, as well
as state and action spaces. Yet, thoughtful problem formulation
is critical for ensuring that RL solutions align with physical
constraints (e.g., temperature limits, actuator torque bounds)
and industrial objectives (e.g., safety, production quality). In
this paper, we claim that structured problem design is essential
to closing the gap between RL research and its real-world
application in ICPSs.

A. Contributions

1) We propose a set of structured problem-design principles
for RL in ICPSs.

2) We systematically examine how factors such as nor-
malization, target signal randomization, horizon lengths,
initial state distributions, and action penalties influence
training stability and performance.

3) We validate these design principles on a one-degree-of-
freedom (1-DoF) helicopter testbed, highlighting their
real-world applicability and efficiency.

4) We demonstrate that RL can be trained directly on
physical hardware without relying on a priori models, un-
derscoring its practical feasibility for industrial settings.

II. DESIGN PRINCIPLES OF RL PROBLEM FORMULATION

Formulating the problem in RL is crucial to the success of
the learning process. The interactions between the agent and
the environment are often described by an infinite-horizon,
discounted Markov Decision Process (MDP)

M = (S,A,P, r, γ, µ)

ar
X

iv
:2

50
3.

20
44

2v
1

 [
ee

ss
.S

Y
]

 2
6

M
ar

 2
02

5

where S is the state space, A the action space, P the
transition function, r the reward function, γ the discount factor,
and µ the initial state distribution [7].

However, in practical settings (particularly in real-world en-
gineering tasks), one often adopts a finite-horizon or episodic
approach to training and evaluation. Although the horizon
length T is not strictly part of the MDP formalism, it plays
a central role in how we structure each training episode,
terminate interactions, and evaluate performance. Following
Puterman’s classification [8], the decision epochs may be
bounded by a finite horizon or treated in an infinite-horizon
framework.

A. Components of Markov Decission Processes

1) State Space: The state space S defines all possible
configurations the agent can encounter in the environment,
forming the basis for decision-making. It can be discrete
or continuous, and must be designed to satisfy the Markov
property, where future states depend only on the current
state and action [1], influencing the choice of suitable RL
algorithms. An effective state space must include all necessary
information for optimal decision-making, while avoiding ex-
cessive complexity that leads to the curse of dimensionality [9].
When key information is missing from the state representation
(partial observability), recurrent neural networks or additional
sensor inputs may be required [10].

2) Action Space: The action space A is the set of all
possible actions the agent can take in any given state. It may
be discrete (e.g., specific commands) or continuous (e.g., real
valued control adjustments). An effective action space should
reflect physical constraints of real-world systems. Hierarchical
action structures [11] for complex tasks may improve scala-
bility and efficiency. Details on action space shaping can be
found in [12].

3) Transition Function: The transition function P (s′|s, a)
describes the environment’s dynamics, determining the prob-
ability of transitioning from state s to state s′ after taking
action a. The transition function should align with the Markov
property, ensuring that future states depend solely on the
current state and action. This property is aligned with Linear
Time-Invariant (LTI) state space models, where the following
system state is determined solely by current inputs and the
current state [13]. The shared principles of the Markov prop-
erty in RL and time invariance in control theory highlight
the compatibility of RL methods, such as those based on
MDPs [14], with control-theoretic frameworks.

In real-world applications, the transition function is gen-
erally not explicitly available, requiring either approximation
through simulation or learning from interaction data. Model-
based RL approximates or uses a known transition function
to simulate dynamics, enabling greater sample efficiency by
reducing the interactions with the environment [15]. However,
inaccuracies in the model can lead to suboptimal policies.

In contrast, model-free approaches, such as Q-Learning
[16] and PPO [17], bypass this explicit modeling, relying on
interaction data to learn policies or value functions directly,

thus typically require more environment interactions to achieve
comparable performance. The choice between model-based
and model-free methods depends on task complexity and
computational constraints, with hybrid approaches emerging
as promising solutions [18].

4) Reward Function: The reward function guides the agent
by assigning rewards for transitions. It is substantial to design
the reward function with the task’s goals. Sparse rewards
simplify the design, but provide limited feedback, which
slows learning. Dense rewards, on the other hand, accelerate
learning by rewarding intermediate steps but risk introducing
noise or instability if poorly designed. Proper weighting of
multiple objectives (e.g., efficiency and safety) is essential to
avoid unintended behavior. Reward shaping, a term formalized
by Ng et al. in [19], describes a technique in RL where
additional rewards are designed and added to the environment
to guide the agent’s learning process. Balancing between
sparse and dense rewards is a critical challenge that can
significantly affect the efficiency and effectiveness of learning
algorithms [20], [21].

5) Discount Factor: The discount factor γ ∈ [0, 1) de-
termines the importance of future rewards in the agent’s
decision-making process [7]. Higher γ values encourage long-
term planning, whereas lower γ values prioritize immediate
rewards [1].

6) Initial State Distribution: The initial state distribution
µ ∈ ∆(S) where ∆(S) is the space of probability distributions
over S defines the probability of the system starting in the
initial state s0 [7]. It plays a critical role in shaping the agent’s
initial interactions with the environment and the subsequent
learning process.

• Relevance: The initial distribution should cover realistic
scenarios to ensure the agent’s learned policy is trained
on the practical applications.

• Diversity: A diverse initial state distribution can improve
the agent’s reliability by exposing it to a wide range
of starting configurations, reducing the likelihood of
overfitting to a specific set of initial conditions.

• Alignment: The choice of µ should align with the task
objectives and the environment’s expected usage, ensur-
ing that critical states are not underrepresented during
training.

In practice, the initial state distribution can be defined
deterministically (e.g., a fixed starting state) or stochastically
(e.g., sampled from a predefined distribution). Tasks involving
exploration or environments with complex dynamics may
benefit from stochastic initializations to avoid biasing the
agent’s learning toward specific regions of the state space.

III. A REAL-WORLD RL APPLICATION

The testbed used for the experiments is the Quanser Aero 2
system, configured in its 1-DoF mode. The system is equipped
with two motors that control the pitch of the beam by adjusting
the voltages applied to the motors. We define the control task
as achieving and maintaining desired pitch angles over time
by applying appropriate voltage inputs. The motors operate

within a voltage range of −24 V to 24 V. To determine the
performance of the control strategy, the deviation to the
target is considered. Although relatively compact, the Quanser
Aero 2 features non-linear system dynamics that mirror many
of the challenges found in industrial control processes, making
it an effective and representative platform for evaluation RL
approaches.

A. Simulation and Real-World Environments

The experiments were conducted in both a simulation
environment and on the real-world environment. A detailed
explanation of how these environments were accessed can be
found in [22]. A description of the model is proposed in [23].

1) Simulation Environment: The system was first modeled
in Simulink to allow for a safe and controlled training
process, meaning that no actual hardware is exposed to
risk (e.g., the beam cannot crash into its socket or cause
damage if a suboptimal policy is attempted).

2) Real-world Environment: The most promising problem
formulation identified in simulation was then deployed
directly on the physical Quanser Aero 2, to evaluate the
feasibility of training on directly on the real hardware.

B. Performance Metrics

The performance of the RL agent in this study is primarily
evaluated using the average deviation to the target. This metric
is defined as the mean absolute error between the actual pitch
angle and the target pitch, and directly aligns with the base
reward function used in the training process. Other common
control performance metrics, such as steady-state deviation,
overshoot and rise-time (as proposed in [23]), are excluded
from this evaluation.

To evaluate the RL training performance, three additional
criteria are considered. The first is training stability, measured
by the standard deviation of returns across multiple training
runs. A lower standard deviation indicates more consistent
performance, reflecting the reliability of the training process.
The second criterion is sample efficiency, measured as the
number of training steps required to achieve the specified
performance threshold of 4° average deviation to the target.
This metric is particularly relevant for real-world applications
where interaction time with the environment is limited. Finally,
the average absolute voltage applied to the system is measured,
reflecting the energy efficiency of the policy. All performance
metrics were recorded on an evaluation environment identical
to the environment from the baseline problem formulation.

C. Baseline Problem Formulation

The original problem formulation in [23] employed a time-
limited setup with a fixed target profile. This choice was
motivated by practicality and by the goal of maintaining a
straightforward, comparable setup. Inspired by this formu-
lation, we define the baseline problem formulation for our
experiments as follows:

• State Space: For each time step t, the state is defined
as (Θt, ωt, rt), where Θt represents the pitch angle,

ωt = Θt − Θt−1 denotes angular velocity, and rt is
the desired target angle. This formulation was chosen
to simplify the agent’s state representation while still
capturing the essential dynamics of the system, as the
pitch and angular velocity naturally represent the states
of the mechanical system.

• Action Space: The action space consists of a single con-
tinuous action, which represents the voltage applied to the
motors. This action space was bounded by the physical
constraints of the system (−24 V to 24 V). The motors
operate in opposition, meaning one motor applies positive
voltage while the other applies an equal magnitude of
negative voltage.

• Reward Signal: The reward is defined as the negative
absolute difference between the current pitch angle Θt

and the target pitch angle rt, i.e., Rt = −|Θt−rt|. If the
system truncates (|Θt| ≥ π/2), the reward is scaled by the
remaining time steps, penalizing premature truncation.

The test task is structured as follows: the system aims to
achieve a sequence of target angles over an 80 s time frame
with a sample time of 0.1 s. Every 10 s, the target pitch is
updated to a new value, following the predefined profile 0°,
5°, -5°, 20°, -20°, 40°, -40°, 0°. This formulation provides
a controlled setting to evaluate the agent’s ability to track a
series of reference angles.

IV. CRUCIAL ASPECTS OF PROBLEM FORMULATION

Effective problem formulation is essential for successful RL
applications in ICPSs. Subtle adjustments to states, actions,
and rewards can significantly impact training efficiency and
performance.

A. Improvements to the Problem Formulation

Building on the core components of MDPs, we propose five
hypotheses (A–E) to enhance RL outcomes in this context:
A) Normalization Improves Convergence and Sample Effi-

ciency: Large or inconsistent input ranges can destabilize
gradient updates in deep RL. Normalization of states,
actions, or rewards can help constrain the domain of the
learning signal, improving gradient flow and accelerating
exploration.

B) Randomizing Target References Improves Generalization:
With a fixed target trajectory, the agent overfits rather than
learning a more flexible control policy. Randomizing the
target references across episodes broadens the range of
scenarios encountered during training.

C) Longer Episodes Provide Richer Trajectories and Ac-
celerate Learning: Short episodes can limit the agent’s
exposure to delayed rewards and reduce state-space ex-
ploration.

D) Randomizing Initial States Encourages Better Explo-
ration: Always starting from the same initial condition
restricts early exploration to a narrow region of the state
space.

E) Combining All Factors Leads to Stable and High-
Performing Convergence: Each of the above techniques

addresses weaknesses in RL problem formulation. When
applied together, these techniques should create a com-
plementary effect, leading to improved training stability,
faster convergence, and higher overall performance by
addressing multiple challenges simultaneously.

To test these hypotheses, we define two main configurations:
(i) the original problem definition from Sec. III-C called
“Baseline”, and (ii) applying all improvements simultaneously
to a configuration called “New setting”. The differences of
those two environments is summarized in Table I.

TABLE I
PARAMETER COMPARISON OF “BASELINE” AND “NEW SETTING”.

Baseline New setting

stop time 80 s 100 000 s
target tilt fixed random
initial tilt 0° random
norm obs no yes
norm action no yes
action penalty 0.0 0.25

B. Studies on the Influence of Suggested Improvements

For each hypothesis A–D, we conduct an addition and an
ablation study:

• “Baseline” with “New” Parameter: We start from the
“Baseline” and apply one change from the “New setting”
(e.g., just add normalization).

• “New Setting” with “Baseline” Parameter: We start from
the “New setting” and change that parameter to match the
“Baseline” configuration (e.g., remove normalization).

This isolates the direct effect of each parameter. We use
Proximal Policy Optimization (PPO) from the Stable Base-
lines3 (SB3) library [24] with default hyperparameters and
train for 1 million steps, repeating each experiment over 10
seeds. Every 10 000 steps, an evaluation run is triggered. This
allows us to record (i) how many steps it takes to reach an
average deviation of 4° or better on the evaluation profile, (ii)
final performance metrics (mean/min/max/standard deviation
of pitch deviation) after 1 million steps, (iii) the average
absolute voltage applied, indicating how aggressively the agent
acts. Additionally, we conduct a training run on the real system
using the parametrization from the “New setting”, starting the
training process from scratch without utilizing any pretrained
agent.

C. Implementation Details of Suggested Improvements

1) Stop Time: The simulation horizon was increased from
80 s to 100 000 s, allowing the agent to explore a longer
sequence of states. With 1 000 000 training steps and a sample
time of 0.1 s this results in a single episode per training run if
no truncation occurs.

2) Random Target Tilt: Rather than training with a single,
fixed target tilt profile, the “New setting” environment dy-
namically changes the target. At each time step, there is a 1%
probability that the target tilt is randomly redrawn from the

range of −40° to 40°. On average, this results in a target change
every 10 s (i.e., every 100 steps), ensuring that the agent does
not converge to a narrow policy specialized to a single tilt
profile. Introducing this variation fulfills the Markov property,
as the environment state no longer follows a static target.

3) Random Initial Tilt: When the environment is reset, the
tilt angle is uniformly sampled from a range of −40° to 40° in
the “New setting”, instead of being fixed at 0°. This introduces
additional variability into each trial and forces the agent to
adapt from a variety of starting positions.

4) Observation Normalization: In the “New setting”, each
component of the observation vector is normalized by its
maximum expected magnitude. Specifically, the pitch and
target angles are divided by π/2, while the velocity is scaled
by a factor of 0.2441, based on empirical measurements. This
normalization ensures that the inputs to the agent remain
within specific ranges (−1 to 1) and helps stabilize the learning
process.

5) Action Normalization: The action space is rescaled from
direct voltages values from the range of −24 V to 24 V to a
normalized range of −1 to 1. To apply the action in the actual
system, the agent’s chosen action a ∈ [−1, 1] is multiplied by
the maximum voltage of 24 V. Hence, the true control voltage
becomes voltage = 24 · a.

6) Action Penalty: Finally, an action penalty factor was
added to the reward function in the “New setting” to discour-
age large fluctuations in the applied voltage. Over a 1-second
window, the standard deviation of the normalized applied
voltage is computed and then multiplied by the action penalty
factor (0.25). This term is subtracted from the original reward,
thus encouraging smoother voltage profiles.

By incorporating these modifications, either individually
(for the hypothesis tests A–D) or collectively (in the full “New
setting”) for hypotheses E, we can isolate and examine the
effect of each parameter choice and observe how it impacts
the agent’s learning progress.

D. Remark on Real-World Applications

When training RL on a physical setup, additional con-
siderations are necessary to preserve hardware integrity and
ensure safe operation. In simulation, aggressive of “bang-
bang” control policies may appear highly effective, as virtual
environments do not exhibit real-world wear-and-tear. In con-
trast, physical motors, actuators, and sensors face constraints
such as temperature limits, friction, and mechanical stress.
Repeatedly applying large, abrupt control signals can lead to
overhearing, premature failures, or damage to the system’s
components. To mitigate these risks, we introduce an action
penalty term that motivates smoother, more gradual voltage
changes. This adjustment not only improves the longevity of
the hardware but also encourages the agent to learn control
policies that avoid abrupt power surges.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In Table II, we summarize the performance of the different
experiments based on the results of 10 repeated training runs

each. For each metric and each experiment we assume that
the outcomes follow a normal distribution. To compare two
experiments for a given metric, we essentially ask for the
probability, when we draw a sample of each, that the value
for one experiment would be less (or greater) than the other.

Say we have X1 = N (µ1, σ1) for experiment 1 and
X2 = N (µ2, σ2) for experiment 2 then X1 − X2 is dis-
tributed N (µ1−µ2,

√
σ2
1 + σ2

2) and we ask for the probability
P (x1 < x2) when x1 ∼ X1, x2 ∼ X2. This leads to the score

z(X1, X2) =
µ1 − µ2√
σ1

2 + σ2
2

used as follows: P (x1 < x2) is equal to the probability that
N(0, 1) gives a value greater than z(X1, X2), i.e., the smaller
z(X1, X2) the higher the probability for x1 < x2. This under-
pins the following notation: We call X1 is significantly better
(smaller) than X2 (indicated by ↑) when z(X1, X2) < −1; we
call X1 significantly worse (greater) than X2 (indicated by ↓)
when z(X1, X2) > 1, and otherwise there is no significant
difference (indicated by ∼).

A. Analysis of Hypotheses (A–E)

We summarize our findings for each hypothesis below:

• Normalization (Hypothesis A): Normalizing states and ac-
tions emerges as a key factor in stabilizing and expediting
training. In the “Baseline” setting, normalization alone
enables the agent to reach the 4° threshold in every run. In
the “New setting”, removing normalization significantly
degrades performance. Additional experiments isolating
action and state normalization confirm that action nor-
malization exerts a greater influence in our case: the
observation space already lies in a relatively low range,
while action space spans −24 V to 24 V.

• Random Targets (Hypothesis B): Allowing the agent to
experience a variety of target reference angles during
training improves sample efficiency in the “Baseline”
configuration and does not yield a significant impact by
removing it from the “New setting”. To analyze the actual
impact of the generalizability, additional evaluations runs
must be conducted using a variety of target trajectories,
which is out of scope of this work.

• Longer Episodes (Hypothesis C): Increasing the horizon
provides more continuous state-space exploration before
resets occur. In the “Baseline”, this markedly enhances
performance, whereas in the “New setting” its effect is
less pronounced.

• Random Initial Pitch (Hypothesis D): Introducing a
stochastic range of initial pitch angles encourages better
coverage of the state space during early training. Al-
though it greatly benefits the “Baseline”, in the “New
setting” the effect is smaller, as long episodes reduce
reliance on any single initial condition.

• Combining All Factors (Hypothesis E): Aggregating these
individual improvements yields the fastest and most
stable convergence. The “New setting” outperforms the

“Baseline” in both sample efficiency and final perfor-
mance, underscoring the complementary nature of these
design choices.

Even though the “Baseline” configuration appears to yield
lower action magnitudes, this can be deceptive: the agent may
simply fail to achieve the goal and therefore minimizing con-
trol effort (i.e., doing almost nothing). By contrast, the “New
setting” applies notably high control signals, effectively resem-
bling a “bang-bang” strategy. Introducing an action penalty
term into the “New setting” does not degrade performance; in
fact, it marginally improves the final policy while substantially
reducing abrupt control actions, thereby mitigating hardware
stress when deployed to the real system.

Fig. 1 illustrates the training performance, measured as
the average deviation from the target, over 1 million training
steps. The “New setting” demonstrates superior performance
compared to the “Baseline”, excelling in sample efficiency,
overall performance, and stability. Training on the real system
reached the predefined goal of 4° within 200 000 steps and
quickly converged to within 5° degrees. Fig. 2 provides a
detailed view of the actual pitch, the target, and the applied
voltages of the agent trained on the real system after 250 000
steps.

0 2 4 6 8 10
Timesteps ×105

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

de
vi

at
io

n
(°

)

Baseline
New setting
Real system
Goal (4°)

Fig. 1. Average deviation to the target for the “Baseline” and “New setting”
configurations on the evaluation profile during training. The “Baseline” and
“New setting” configurations were trained on the simulation model for 1
million steps. Additionally, the plot includes the results for the “New setting
with action penalty” configuration trained on the real system for 250 000 steps.

25

0

25

Pi
tc

h
in

 °

Target
Pitch

0 10 20 30 40 50 60 70 80
Time in s

20

0

20

Ac
tio

n
in

 V

Fig. 2. Evaluation on the real system with an agent trained for 250 000 steps,
showing the target pitch, actual pitch, and applied voltage.

TABLE II
COMPARISON OF THE DIFFERENT EXPERIMENTS DERIVED FROM THE HYPOTHESES (A–E).

Method steps to 4° z deviation (°) z voltage (V) z

Baseline n/a ± n/a (0 %) 6.88 ± 1.94 2.81 ± 0.37

Baseline with normalization 63 000 ± 22 825 (100 %) n/a ↑ 2.91 ± 0.23 -2.03 ↑ 8.78 ± 5.42 1.10 ↓
Baseline with random targets 940 000 ± 0 (10 %) n/a ↑ 6.37 ± 1.66 -0.20 ∼ 2.84 ± 0.38 0.06 ∼
Baseline with long episodes 886 667 ± 26 247 (30 %) n/a ↑ 5.47 ± 2.04 -0.50 ∼ 3.15 ± 0.79 0.39 ∼
Baseline with random initial pitch 872 500 ± 83 179 (40 %) n/a ↑ 4.80 ± 1.21 -0.91 ∼ 3.37 ± 0.55 0.85 ∼

New setting 40 000 ± 11 832 (100 %) 3.05 ± 0.15 21.47 ± 2.28

New setting without normalization 595 000 ± 123 119 (60 %) 4.49 ↓ 3.72 ± 1.27 0.53 ∼ 3.84 ± 0.63 -7.45 ↑
New setting without random targets 42 000 ± 22 271 (100 %) 0.08 ∼ 2.88 ± 0.23 -0.63 ∼ 10.29 ± 6.36 -1.65 ↑
New setting without long episodes 35 000 ± 9220 (100 %) -0.33 ∼ 2.97 ± 0.31 -0.24 ∼ 13.00 ± 6.12 -1.30 ↑
New setting without random initial pitch 34 000 ± 14 967 (100 %) -0.31 ∼ 3.05 ± 0.16 0.01 ∼ 21.30 ± 2.22 -0.05 ∼

New setting with action penalty 26 000 ± 9165 (100 %) -0.94 ∼ 3.08 ± 0.23 0.11 ∼ 4.29 ± 0.19 -7.51 ↑

New setting with action penalty on real system 200 000 3.58 3.85

VI. CONCLUSION AND FUTURE WORK

This paper showed that minor yet carefully chosen ad-
justments to RL problem formulation can significantly boost
performance, training stability, and efficiency in ICPSs. Our
experiments on a 1-DoF helicopter testbed confirm that nor-
malization, randomizing targets and initial states, extending
episodes to horizons, and reward shaping all foster more reli-
able and sample-efficient learning. Moreover, training directly
on the real hardware without a prior model illustrates the
feasibility of real-world RL applications. Future research will
focus on establishing a robust RL engineering pipeline for
ICPSs, integrating advanced approaches such as data-driven
probabilistic Model Predictive Control (MPC) or physics-
informed RL, and incorporating additional performance met-
rics for further optimization.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in robotic
applications: a comprehensive survey,” Artificial Intelligence Review,
vol. 55, no. 2, pp. 945–990, 2022.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] X. Liu, H. Xu, W. Liao, and W. Yu, “Reinforcement learning for cyber-
physical systems,” in 2019 IEEE International Conference on Industrial
Internet (ICII). IEEE, 2019, pp. 318–327.

[5] P. Sánchez-Sánchez and M. A. Arteaga-Pérez, “Simplied methodology
for obtaining the dynamic model of robot manipulators,” International
Journal of Advanced Robotic Systems, vol. 9, no. 5, p. 170, 2012.

[6] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. ” O’Reilly Media, Inc.”, 2022.

[7] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun, “Reinforcement
learning: Theory and algorithms,” CS Dept., UW Seattle, Seattle, WA,
USA, Tech. Rep, vol. 32, p. 96, 2019.

[8] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[9] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[10] X. Xiang and S. Foo, “Recent advances in deep reinforcement learning
applications for solving partially observable markov decision processes
(pomdp) problems: Part 1—fundamentals and applications in games,
robotics and natural language processing,” Machine Learning and
Knowledge Extraction, vol. 3, no. 3, pp. 554–581, 2021.

[11] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical rein-
forcement learning: A comprehensive survey,” ACM Computing Surveys
(CSUR), vol. 54, no. 5, pp. 1–35, 2021.

[12] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action space shaping
in deep reinforcement learning,” in 2020 IEEE conference on games
(CoG). IEEE, 2020, pp. 479–486.

[13] C.-T. Chen, Linear system theory and design. Oxford University Press,
Inc., 1995.

[14] S. Kamthe and M. Deisenroth, “Data-efficient reinforcement learning
with probabilistic model predictive control,” in International conference
on artificial intelligence and statistics. PMLR, 2018, pp. 1701–1710.

[15] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker et al., “Model-
based reinforcement learning: A survey,” Foundations and Trends® in
Machine Learning, vol. 16, no. 1, pp. 1–118, 2023.

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.
279–292, 1992.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[18] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal,
and S. Levine, “Combining model-based and model-free updates for
trajectory-centric reinforcement learning,” in International conference
on machine learning. PMLR, 2017, pp. 703–711.

[19] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml,
vol. 99, 1999, pp. 278–287.

[20] J. Eschmann, “Reward function design in reinforcement learning,”
Reinforcement Learning Algorithms: Analysis and Applications, pp. 25–
33, 2021.

[21] S. Ibrahim, M. Mostafa, A. Jnadi, and P. Osinenko, “Comprehensive
overview of reward engineering and shaping in advancing reinforcement
learning applications,” arXiv preprint arXiv:2408.10215, 2024.

[22] G. Schäfer, M. Schirl, J. Rehrl, S. Huber, and S. Hirlaender, “Python-
based reinforcement learning on simulink models,” in 11th International
Conference on Soft Methods in Probability and Statistics (SMPS 2024),
Salzburg, Austria, Sep. 2024.

[23] G. Schäfer, J. Rehrl, S. Huber, and S. Hirlaender, “Comparison of
Model Predictive Control and Proximal Policy Optimization for a 1-DOF
Helicopter System,” in 2024 IEEE 22nd IEEE International Conference
on Industrial Informatics (INDIN). Beijing, China: IEEE, Aug. 2024.

[24] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	Introduction
	Contributions

	Design Principles of RL Problem Formulation
	Components of Markov Decission Processes
	State Space
	Action Space
	Transition Function
	Reward Function
	Discount Factor
	Initial State Distribution

	A Real-World RL Application
	Simulation and Real-World Environments
	Performance Metrics
	Baseline Problem Formulation

	Crucial Aspects of Problem Formulation
	Improvements to the Problem Formulation
	Studies on the Influence of Suggested Improvements
	Implementation Details of Suggested Improvements
	Stop Time
	Random Target Tilt
	Random Initial Tilt
	Observation Normalization
	Action Normalization
	Action Penalty

	Remark on Real-World Applications

	Experimental Results and Discussion
	Analysis of Hypotheses (A–E)

	Conclusion and Future Work
	References

