
Noname manuscript No.
(will be inserted by the editor)

Fuzzing-based Mutation Testing of C/C++ CPS

Jaekwon Lee · Fabrizio Pastore ·
Lionel Briand

Received: date / Accepted: date

Abstract Mutation testing can help minimize the delivery of faulty software.
Therefore, it is a recommended practice for developing embedded software in
safety-critical cyber-physical systems (CPS). However, state-of-the-art muta-
tion testing techniques for C and C++ software, which are common languages
for CPS, depend on symbolic execution. Unfortunately, symbolic execution’s
limitations hinder its applicability (e.g., systems with black-box components).

We propose relying on fuzz testing, which has demonstrated its effective-
ness for C and C++ software. Fuzz testing tools automatically create test
inputs that explore program branches in various ways, exercising statements
in different program states, and thus enabling the detection of mutants, which
is our objective.

We empirically evaluated our approach using software components from
operational satellite systems. Our assessment shows that our approach can
detect between 40% and 90% of the mutants not detected by developers’ test
suites. Further, we empirically determined that the best results are obtained

Jaekwon Lee
Kangwon National University, Chun-cheon, KR
E-mail: jaekwon.lee@kangwon.ac.kr

Fabrizio Pastore
SnT, University of Luxembourg, Luxembourg, LU
E-mail: fabrizio.pastore@uni.lu

Lionel C. Briand
Lero, University of Limerick, Limerick, IE
University of Ottawa, Ottawa, CA
E-mail: lbriand@uottawa.ca

This work was partially done while J. Lee was affiliated with the University of Ottawa and
the University of Luxembourg.

ar
X

iv
:2

50
3.

24
10

0v
1

 [
cs

.S
E

]
 3

1
M

ar
 2

02
5

2 Jaekwon Lee et al.

by integrating the Clang compiler, a memory address sanitizer, and relying on
laf-intel instrumentation to collect coverage and guide fuzzing. Our approach
detects a significantly higher percentage of live mutants compared to symbolic
execution, with an increase of up to 50 percentage points; further, we observed
that although the combination of fuzzing and symbolic execution leads to
additional mutants being killed, the benefits are minimal (a gain of less than
one percentage point).

Keywords Mutation testing, Fuzzing, Test data generation

1 Introduction

Ensuring high-quality test suites is essential for quality assurance of embedded
software in cyber-physical systems (CPS); indeed, this is the reason why inde-
pendent software validation and verification activities are required by safety
standards [1]. Further, although embedded software for CPS can be devel-
oped using dedicated visual languages [2], our experience in the space context
shows that most software is directly implemented using C and C++, which
suggests that approaches supporting validation and verification shall target
those languages.

Mutation analysis is an effective method to evaluate the quality of a test
suite. It involves measuring the mutation score, which is the proportion of pro-
grams with artificially injected faults (mutants) detected by the test suite [3].
There is a strong association between a high mutation score and a high fault-
revealing capability for test suites [4, 5]. Additionally, recent studies have
demonstrated that mutation analysis can be applied cost-effectively to large
CPS software [6].

In practice, mutation analysis warrants the selection of inputs for mutation
testing, as test cases should ideally detect all or at least a significant proportion
of the generated mutants. A mutant detected by a test suite is considered
killed. However, due to the typically high number of mutants generated in
large CPS projects, it is challenging for engineers to perform mutation testing
manually.

Unfortunately, we lack automated test data generation techniques (auto-
mated mutation testing techniques) suitable for the mutation testing of CPS.
Indeed, most existing techniques do not target C and C++, which are preva-
lent in CPS. Further, the state-of-the-art solution for automated mutation
testing of C software, SEMu [7], is based on the KLEE symbolic execution en-
gine [8]. While effective for command line utilities, it inherits the limitations
of symbolic execution. Specifically, it requires environmental modeling (e.g.,
network communication) and cannot be applied to programs needing complex
analyses for input generation (e.g., programs with floating point instructions).
Additionally, it generates test inputs for command line utilities, which are
rarely used in CPS, and does not produce unit test cases or target other CPS
interfaces.

Fuzzing-based Mutation Testing of C/C++ CPS 3

Search-based techniques developed for other programming languages (e.g.,
Java [9]) are impractical for C and C++ software due to the difficulty of in-
strumenting the software to compute dedicated fitness functions (e.g., branch
distance). For instance, computing branch distance at runtime necessitates
modifying all conditional statements in the software under test (SUT), requir-
ing the source code to be processed with static analysis tools that load all de-
pendencies. Configuring these tools to process the multiple source files in large
systems is often impractical unless the tool is well integrated with the compiler
used for the SUT. Moreover, CPS source files often rely on architecture-specific
C constructs (e.g., for the RTEMS compiler [10]) that are not successfully
parsed by static analysis frameworks [6].

Different from search-based testing techniques, grey-box fuzz testing tech-
niques [11] (hereafter, fuzzers) can generate test data without relying on com-
plex code instrumentation and thus can be easily applied to C and C++ soft-
ware. However, fuzzers target console software, while CPS software is usually
tested either with system-level test scripts interacting with a hardware emu-
lator or through unit and integration test cases implemented with the same
language as the SUT. In this paper, we focus on the automated generation of
unit test cases because fuzzing large systems is an open research problem [12].
Approaches for fuzzing function calls at unit or API level exist [13–17], al-
though in the case of large CPS software, their applicability might be limited
by static analysis’ scalability issues and difficulties in processing embedded
libraries. Further, approaches to generate fuzzing drivers for mutation testing
do not exist.

We propose MutatiOn TestIng with Fuzzing (MOTIF), an approach that
automatically generates fuzz drivers, leverage the data produced by fuzzers,
and exercise a mutated function and the corresponding original function, look-
ing for diverging outputs to detect mutants. MOTIF automatically generates
seed files for fuzzers and integrates strategies to process mutant-killing inputs
to eliminate false positives due to nondeterminism.

Instead of designing a dedicated fuzzing algorithm,MOTIF leverages state-
of-the-art (SOTA) fuzzers because we believe that the fuzzers’ bucket-based
coverage strategy can effectively select test inputs that eliminate mutants. This
strategy not only selects inputs that lead to different software states but also
tracks and is guided by the behavioral differences between the original and
mutated functions. Although MOTIF can target any C/C++ program, we
designed it taking into account characteristics that are prominent in embedded
software for CPS. Specifically, CPS software is not executed from the textual
console but directly within the operating system, largely relies on floating
point instructions, and leverages specific OS and libraries that complicates its
analysis or symbolic interpretation. For these reasons, we present MOTIF as
a tool for C/C++ embedded software for CPS.

We introduced MOTIF in a paper presented at the 2023 International
Conference on Automated Software Engineering [18] where we reported on its
effectiveness on three case study subjects in the space domain developed using

4 Jaekwon Lee et al.

the C language and demonstrated that it outperforms mutation testing based
on symbolic execution. In this paper, we extend our previous work by:

– Performing a large empirical study to investigate (RQ1) the best fuzzing
configurations (compiler, sanitizers, and coverage metric) for mutation test-
ing. Note that the identification of the best fuzzing configuration for differ-
ent application contexts remains an open problem [19]. Our experiments
show that the best results are obtained when relying (1) on the Clang

compiler, which leads to the quickest fuzz drivers, (2) the address san-
itizer (ASAN), which prevents false positives due to violation of function
preconditions, and (3) the LAF-Intel [20] optimization for coverage, which
enables computing a better fitness score for mathematical functions, which
are, in turn, among the most critical software components. Specifically, the
best fuzzing configuration, compared to a standard fuzzing configuration
(i.e., AFL++ [21] with the GCC [22] compiler), leads to an improvement
varying between 1.53 and 4.34 percentage points. Although limited, such
improvements may still enable the detection of critical faults; for example,
when reusing the generated test cases for regression testing. Further, our
findings help engineers make informed decisions on projects setups. For ex-
ample, mutation testing improvements may not justify a large development
endeavor to enable a project to be recompiled with Clang. However, when
compiling projects with Clang, ASAN, and LAF-Intel is feasible (e.g., it
is sufficient to change a few configuration parameters), the best configura-
tion is a better choice (e.g., enables testing additional boundary cases) and
might be considered also for other fuzzing applications beyond mutation
testing.

– Assessing (RQ4) the performance gain achieved by relying on hybrid-
fuzzing, which combines fuzzing and symbolic execution. Our results con-
firm the findings of related work that demonstrate that hybrid fuzzing
leads to improved test effectiveness; however, in our experiments, its ap-
plicability is limited as it helps significantly improve the mutation score
only one in four subjects. The key advantage observed with hybrid-fuzzing
is the reduction of killing time (up to 32% faster), which suggests using
hybrid-fuzzing for large projects leading to a large number of mutants.

– Evaluating (RQ5) the cost-effectiveness of reusing mutant-killing inputs to
test live mutants; our results suggest that reusing mutant-killing inputs to
kill other mutants is recommended when there is a sufficient test budget
of at least 5000 seconds per mutant.

– Replicating, with the best fuzzing configuration, our original [18] assess-
ments of the complementarity between fuzzing and symbolic execution for
mutation testing (RQ2), and the contribution of MOTIF ’s seeding strat-
egy to its results (RQ3). With our subjects, MOTIF kills between 39.5%
and 88.7% of mutants, on average, with most of the mutants (52% to 95%)
being killed by the search process, not the seed inputs. Further, MOTIF
outperforms, by 13.18 to 50.33 percentage points, the results obtained with
the mutation testing process based on symbolic execution implemented by

Fuzzing-based Mutation Testing of C/C++ CPS 5

the state-of-the-art tool SEMu, thus suggesting that MOTIF is the most
appropriate solution for the mutation testing of CPS embedded software.
This is the first work comparing fuzzing and symbolic execution for muta-
tion testing.

– Contributing to the software engineering literature with the first study of
mutation testing on industrial software for CPS. In this paper, we assess
MOTIF on the control software of ESAIL [23], a satellite currently on
orbit, and Sentinel-5 UVNS L1b Prototype Processor, a ground software
processing radiation data collected by the Sentinel mission of the Euro-
pean Space Agency (ESA) [24], in addition to the subjects considered in
our conference paper: a mathematical library qualified for flight systems,
a commercial utility library for nanosatellites, and a serialization/deserial-
ization library, all made available in the context of a project with ESA [25].

– Providing a technical solution enabling the application of MOTIF to
object-oriented C++ programs. Since state-of-the-art mutation testing
tools do not target C++ software, our solution enables mutation testing
assessment on a broader set of case study subjects.

MOTIF is available online [26]; also, we provide a replication package with
our open-source subjects and all our empirical data [27].

The paper proceeds as follows. Section 2 provides background (symbolic
execution and fuzzing) and related work (automated mutation testing). Sec-
tion 3 describes MOTIF . Section 4 presents our extensions to deal with object-
oriented programs in C++. Section 5 presents our empirical evaluation. Sec-
tion 6 concludes the paper.

2 Background and Related Work

This paper relates to the enormous body of work on automated mutation
testing and fuzzing; selected, relevant work is discussed below.

2.1 Symbolic execution

Symbolic execution (SE) is a program analysis technique that relies on an
interpreter to process the source code of the SUT and automatically gener-
ate test inputs [28]. Inputs are represented through symbolic values; during
the symbolic execution, the state of the SUT includes the symbolic values of
program variables at that execution point, a path constraint on the symbolic
values to reach that point, and a program counter. The path constraint is a
boolean formula that captures the conditions that the inputs must satisfy to
follow that path. Constraint solving [29] is then used to identify assignments
for the symbolic inputs that satisfy the path constraint.

SE presents several limitations, including (1) the need for abstract repre-
sentations for the external environment and any black-box components used
by the SUT—otherwise, the SE engine cannot know what outputs to expect

6 Jaekwon Lee et al.

from the environment, (2) path explosion—the SE engine may need to pro-
cess a large number of paths before satisfying a target predicate, (3) path
divergence—abstract representations do not behave like the real systems, (4)
the handling of complex constraints, e.g., solving constraints with floating
point variables.

A recent solution to partially address the above-mentioned limitations is
dynamic symbolic execution (DSE), which consists of treating only a portion
of the program state symbolically. Concrete program states help dealing with
complex constraints or path explosion (e.g., SE is used after a certain branch
has already been reached using a concrete input). However, most frameworks
with DSE capabilities, e.g., Angr [30], KLEE [8], and S2E [31], require some
degree of environment modeling (e.g., libc library modeling in KLEE), which
limits their practical applicability [32].

Compilation-based approaches like QSYM [33], SYMCC [32],
SymQEMU [34], and SYMSAN [35] augment the original program with
instructions to populate and solve symbolic expressions while the original
software is executed; such characteristic eliminates some limitations of
interpretation-based approaches, thus being applicable to a broader set of
software systems. For example, since the symbolic execution interacts with the
actual environment there is no need to emulate it within the interpretation
layer. SYMCC requires the source code of the SUT, while QSYM relies on
dynamic binary instrumentation. SymQEMU, instead, extends the applica-
bility of SYMCC to binary programs by relying on the QEMU emulator for
code instrumentation, while SYMSAN relies on dynamic data-flow analysis
to reduce the cost of symbolic state management. Since the above-mentioned
symbolic execution approaches have shown to provide their best results
when combined with fuzzing, a solution referred to as hybrid fuzzing (see
Section 2.2), we considered them when assessing the integration of MOTIF
with hybrid fuzzing (see Section 5).

2.2 Fuzzing

Fuzzing (or fuzz testing) is an automated testing technique that generates test
inputs by repeatedly modifying1 existing inputs; the selection of the inputs to
modify is usually driven by metrics collected during the execution of the SUT.
Depending on the information collected during program execution, fuzzing
techniques (i.e., fuzzers) are classified as black-box, white-box, or gray-box.

In this paper, we focus on grey-box fuzzers because they have demonstrated
to effectively maximize code coverage [36] and discover faults [37] (mainly
crashes and memory errors), two objectives that relate to the problem studied
in this paper; indeed, to kill a mutant it is necessary to (1) exercise a mu-
tated statement, which can be achieved by maximizing code coverage, and (2)
exercise the mutated statement with many different inputs (i.e., in different
states), a common practice in fuzzers to discover crashes and memory errors.

1 To avoid confusion, we avoid the term ‘mutation’ when describing fuzzing techniques.

Fuzzing-based Mutation Testing of C/C++ CPS 7

Most fuzzers generate input files to be used for system-level testing of
console applications and engineers are therefore required to implement driver
programs (hereafter, fuzzing drivers) that rely on the data generated by the
fuzzer to test other software interfaces (e.g., APIs, see Section 3.1). Most
fuzzers keep a pool of input files and rely on the following evolutionary search
process: (1) select an input file from the pool, (2) modify the input file to
generate new input files, (3) provide the new input files to the SUT and monitor
its execution, (4) report crashes or problems detected through code sanitizers
(hereafter, sanitizers [38]), (5) add to the pool all the input files that contribute
to improve code coverage.

What facilitates the adoption of fuzzers is that they rely on simple dynamic
analysis strategies to trace branch coverage of C/C++ programs. A common
strategy consists of dynamically identifying branches by applying a hashing
function to the identifiers assigned to code blocks by compile-time instrumen-
tation; it is implemented as an extension of popular C/C++ compilers [39].
Further, instead of relying on traditional branch coverage [40], most fuzzers
adopt a bucketing approach to track the number of times each branch has
been covered by each input file: only once, twice, three times, between four
and seven, between 8 and 15, between 16 and 31, etc.; the fuzzers add to the
pool those files that cover a bucket not observed before for at least one branch.
Such bucketing strategy helps reach software states that are not reachable by
simply relying on branch coverage.

Fuzzers mainly differ with respect to the strategy adopted to (1) select
what operations to apply in order to modify input files and obtain new ones
(e.g., MOpt [41] relies on a particle swarm optimization algorithm) and (2)
select the inputs from the input pool (e.g., AFLfast [42] and AFL++ [43]
rely on a simulated annealing algorithm and prioritize new paths and paths
exercised less frequently). Also, fuzzers differ in the strategy adopted to de-
termine interesting inputs. For example, directed grey-box fuzzers [44], instead
of maximizing code coverage, aim to reach specific targets, usually a subset
of program locations (e.g., modified code) or invalid sequences of operations
(e.g., use-after-free).

Hybrid fuzzers [33,45,46], instead, rely on grey-box fuzzing to explore most
of the execution paths of a program and leverage DSE to explore branches that
are guarded by narrow-ranged constraints when the fuzzer does not improve
coverage further. Well-known hybrid fuzzing solutions consist of combining
AFL [47] with QSYM [33] and SYMCC [32], which have been found to out-
perform earlier approaches such as Driller [46] and hybrid testing [45]. The
SOTA approach is Fuzzolic [48], which relies on QEMU to generate symbolic
queries and solves them with a fuzzing-based technique [49].

Some researchers have addressed the problem of generating test drivers
to fuzz test program functions as in unit testing [13–17]; however, except for
Hopper [17], they make the assumption that the function under test are already
integrated into consumer programs (i.e., programs using the library API) or
unit tests [16], and all of them rely on complex static and dynamic analyses
which are infeasible with large CPS software. Nevertheless, although existing

8 Jaekwon Lee et al.

tools do not target the generation of drivers for mutation testing, studying
their integration into MOTIF is part of future work.

To avoid relying on program analysis, building on the potential shown by
LLM-based test case generation [50–52], researchers and developers are investi-
gating LLM-based fuzz driver generation [53–55]. For example, a recent study
has demonstrated the feasibility of relying on large language models (LLMs)
to automatically generate fuzz driver [53]; specifically they could generate ef-
fective drivers (compile and cover the code) for 91% of the 86 APIs under
test with, however, some limitations such as violating API protocol (e.g., pa-
rameter initialization) in 39% of the cases. LLM-based generation of mutation
testing drivers in MOTIF is part of future investigations.

Other techniques address the problem of generating highly structured input
files [56,57]. TensileFuzz generates structured inputs (e.g., image or zip files) by
probing random executions to derive constraints for potential input fields, and
then relying on string constraint solving to derive inputs [56]. SkyFire, instead,
learns a probabilistic context-sensitive grammar to generate JSON and XML
files [57]. Such techniques can generate input files with a complex structure
but they do not generate unit test cases, which is necessary in our context;
however, leveraging those approaches to populate complex data structures may
also help with unit-level fuzz testing.

2.3 Automated mutation testing

To kill a mutant, a test case should satisfy three conditions: reachability (i.e.,
the test case should execute the mutated statement), necessity (i.e., the test
case should cause an incorrect intermediate state if it reaches the mutated
statement), and sufficiency (i.e., the observable state of the mutated program
should differ from that of the original program) [58]. Automated mutation
testing approaches differ regarding the strategy adopted to satisfy these con-
ditions.

There exist two families of automated mutation testing techniques based
respectively on: constraint solving and meta-heuristic search. Only one of them
relies on fuzzing [59], as further described below.

In this Section, we mainly focus on techniques targeting C and C++ pro-
grams because these languages are used in many CPS; unfortunately, the C and
C++ languages are more complex to process for static and dynamic analysis
techniques than the higher-level languages targeted by most of the techniques
in the literature (e.g., Java).

2.3.1 Techniques based on constraint solving

Inspired by the earlier work of Offut et al. [58], Holling et al. execute sym-
bolically the original and mutated functions with input data leading them to
generate different outputs [60]. A similar technique from Riener et al. [61] relies

Fuzzing-based Mutation Testing of C/C++ CPS 9

on a bounded model checker (BMC) to select the input values that kill the mu-
tant. Unfortunately, no prototype tools for the above-mentioned approaches
are available.

The SOTA tool for automated mutation testing is SEMu [7, 62], which
relies on KLEE to generate test inputs based on SE. To speed up mutation
testing, SEMu relies on meta-mutants (i.e., it compiles mutated statements
and the original statements together). First, SEMu relies on SE to reach mu-
tated statements (reachability condition). Then, for each mutant, it relies on
constraint solving to determine if inputs that weakly kill the mutant exist (ne-
cessity condition). For killable mutants, it symbolically runs the mutated and
the original program in parallel; when an output statement is reached (e.g., a
printf or the return statements of the main function), it relies on constraint
solving to identify input values that satisfy the sufficiency condition.

2.3.2 Techniques based on meta-heuristic search

Most of the work on automated mutation testing with meta-heuristic search
targets Java software; we report the most relevant techniques below. Ayari et
al. [63] rely on an Ant Colony Optimization algorithm [64] driven by a fit-
ness function that focuses on the reachability condition. Precisely, their fitness
measures the distance (number of basic blocks in the program’s control flow
graph) between the mutated statement and the closest statement reached by a
test case. Fraser and Zeller [9], instead, extended the EvoSuite tool [65] with a
fitness function considering the reachability and the necessity conditions (num-
ber of statements that are covered a different number of times by the original
and the mutated program). The integration of mutation testing into EvoSuite
has been further improved with branch distance metrics tailored to the oper-
ator used to generate the mutants [66]. Recently, EvoSuite has been further
extended by Almulla et al. with adaptive fitness function selection (AFFS), a
hyperheuristic approach that relies on reinforcement learning (RL) algorithms
to determine which composition of fitness functions to use [67]. Unfortunately,
when applied to mutation testing, AFFS does not perform better than SOTA
solutions [66].

Concerning C software, we should note the work of Souza et al. [68], who
rely on the Hill Climbing AVM algorithm [69]. They combine three fitness
functions that rely on branch distance to measure how far an input is from
satisfying each of the three killing conditions. The mutation score obtained
with simple C programs ranges between 52% and 93%. The approach has
been implemented on top of AUSTIN, a search-based test generation tool for
C [70–72]; however, this implementation is not available. A recent search-based
testing tool prototype for C is Ocelot [73]; however, it has not been extended
for automated mutation testing. Another key limitation of both Ocelot and
AUSTIN is that they implement preprocessing steps that do not work with
complex program structures (e.g., we couldn’t apply them to the subject pro-
grams considered in our empirical evaluation because of preprocessing errors).

10 Jaekwon Lee et al.

A recent mutation testing technique targeting C software is that of Dang
et al. [74], who propose a co-evolutionary algorithm that reduces the search
domain at each iteration (the original search domain is replaced by the joint
domain of the best solutions found); unfortunately, their prototype is not avail-
able.

2.4 Techniques based on fuzzing

The work of Bingham [59] is the only one to rely on fuzzing to automate
mutation testing for C software. For input generation, it relies on TOFU [75],
a grey-box, grammar-aware fuzzer that generates grammar-valid inputs by
modifying existing ones. Similar to Ayari’s work, TOFU’s input generation
strategy is guided by the distance between the mutated statement and the
closest statement reached by a test case; however, instead of generating unit
test cases, it generates input files matching a given grammar. Unfortunately,
the results obtained by Bingham are preliminary (they targeted only the Space
benchmark [76]) and a prototype tool is not available.

DifFuzz [77], instead, executes two distinct versions of a program and com-
pares their coverage and execution cost (e.g., time) to identify inputs that
trigger side channel attacks; although this procedure might be leveraged to
perform mutation testing (i.e., execute the original program and the mutant),
its implementation targets Java systems. Further it is worth noting that Dif-
Fuzz does not compute any difference in terms of code coverage, as well as,
the difference in execution time is delegated to a driver that needs to be man-
ually implemented by the software engineer, thus limiting the usability of the
approach.

Mu2 [78], which has been developed in parallel with MOTIF , is a fuzzer
that integrates the findings of search-based unit test generation [79] to gener-
ate test input files with fuzzing: it relies on the mutation score to drive the
generation of test inputs. Different from MOTIF , which tests each mutant in-
dependently from the others, potentially with different inputs, Mu2 tests every
live mutant with each generated input and, in the input pool, prioritizes those
inputs that increase the mutation score. Results show that Mu2 kills more
mutants than the inputs generated by a traditional fuzzer to test the original
function. However, it is unclear whether Mu2’s approach (i.e., testing all the
live mutants together) is more effective than that of MOTIF (i.e., executing a
fuzzer to test the original and mutated function in sequence). Unfortunately,
a direct comparison of Mu2 and MOTIF is not feasible because the scala-
bility of Mu2 is enabled by dynamic classloading and instrumentation, two
options that are feasible for Java programs but not for the C/C++ programs
targeted by MOTIF . Further, by targeting Java, Mu2 can easily determine if
mutants are killed by relying on the method ‘equals’, which is implemented by
every class to determine if two instances are equal; the method ‘equals’ is not
available in C and C++ software. Mu2’s results follow previous work show-
ing that, in Java benchmarks, prioritizing inputs that increase the mutation

Fuzzing-based Mutation Testing of C/C++ CPS 11

score may lead to higher branch coverage and mutation score than traditional
prioritization strategies based on branch coverage [80].

2.5 Industrial applications of mutation testing

Most mutation testing approaches target Java software; the few mutation
testing approaches targeting C/C++ software have been assessed with open
source console utilities [7] or simple algorithm implementations (e.g., merge
sort) [60,61], but there is no work assessing mutation testing tools on C/C++
industrial software. Last, most empirical studies on large industrial software
systems concern mutation analysis [81], not mutation testing.

2.6 Summary

To summarize, our research is motivated by the lack of support for automated
mutation testing of C/C++ software. The SOTA approach for the automated
mutation testing of C/C++ software (i.e., SEMu) relies on KLEE and inherits
its limitations, making it inapplicable to most CPS software; further, it does
not generate unit test cases but selects inputs for console programs. Other
SE tools (QSYM and SYMCC) also present technical limitations preventing
their application to CPS software. Search-based approaches for the mutation
testing of C/C++ software present acute feasibility challenges due to static
analysis, which is needed for branch distance fitness but does not scale in large
software projects. Though fuzzing appears to be a feasible input generation
strategy for mutation testing, existing fuzzers do not generate test drivers for
unit testing. The only fuzzer proposed for mutation testing is not available for
download and its results are very preliminary.

Last, our paper addresses the lack of empirical assessments of mutation
testing on industrial software by targeting libraries and control software used
in satellite systems as case studies.

3 Proposed approach: MOTIF

Inspired by the work of Holling et al. [60], MOTIF aims to identify a set of
test inputs that lead to different outputs when given to both the original and
mutated functions. To achieve such objective with fuzzing, MOTIF generates
a fuzzing driver for each mutated function. The fuzzing driver reads the input
data generated by the fuzzer and supplies it as arguments to both the original
and mutated functions. Finally, the fuzzing driver compares the outputs from
both functions. If the outputs differ, the mutant is considered killed.

Our intuition is that fuzzers might be effective at killing mutants because,
by invoking both the original and the mutated functions within the same
fuzzing driver, we can leverage the bucket-based fuzzing strategy to cover the

12 Jaekwon Lee et al.

SeedsSeedsSeeds

Step 1. Generate the fuzzing driver

Step 2. Generate seed files

Failures Regression Tests

Inputs killing the mutant

Post-processing

Fuzzing Driver

Executable Fuzzing Driver

Test Driver

Step 3. Compile

Generate the test driver

Step 4. Mutation testing

Step 5. Test the SUT

Log file

Execute fuzzer

Crashing Inputs

Compare with specifications (manual step)

Output Test Original SUT

FileB.c

SUT source codeLive mutants

FileA.c
FileA.c mut2

FileA.c mut1
MOTIF
configuration

User inputs

Repeat for every mutant

FileX mutX

FileB.c
FileA.c

MOTIF
configuration

Inputs

Fig. 1: The MOTIF process.

different branches in the two functions in diverse ways, thus reaching those pro-
gram states that enable killing mutants. Essentially, the bucket-based fuzzing
strategy may help kill mutants by preserving, during test generation, inputs
that lead to incorrect intermediate states but do not kill the mutant (i.e., they
do not meet the sufficiency condition). Subsequent iterations of the fuzzer’s
evolutionary search process (see Section 2.2) may modify these inputs so that
they not only reach an incorrect intermediate state but also meet the suffi-
ciency condition. Indeed, if differences in coverage between the original and
mutated functions are observed, it indicates that the functions behave dif-
ferently, resulting in different outputs and the mutant being killed [6, 82, 83].
Additionally, significant differences in coverage lead to new buckets being cov-
ered, and since fuzzing favors inputs that cover new buckets, it indirectly leads

Fuzzing-based Mutation Testing of C/C++ CPS 13

to inputs that kill mutants. We leave to future work the extension of fuzzers
with dedicated strategies; for example, instead of measuring the coverage of the
mutated function, the fuzzer could measure the difference in coverage between
the original and the mutated function, and use this information to prioritize
the inputs in the fuzzer queue (e.g., testing inputs that leads to larger differ-
ences first).

MOTIF creates all the necessary scaffolding to test both the original and
mutated functions, and to compare their outputs. Specifically, MOTIF follows
the workflow illustrated in Figure 1, which comprises the five steps detailed
below.

MOTIF takes as input a set of mutants (source files) to be killed; each
mutant matches the original source file except for the statements modified by
a mutation operator. The MOTIF Steps in Figure 1 are repeated for each
mutant. However, Steps 1 and 2 can be executed only once for all the mutants
belonging to the same function; indeed, the structure of the input and output
data of a function is not changed by mutation—we do not target interface
mutation [84].

3.1 Step 1 – Generate the fuzzing driver

In Step 1, MOTIF relies on the clang static analysis library [85] to analyse the
SUT and determine the types of the parameters required by the function under
test. This information is then used to generate a fuzzing driver for mutation
testing; an example fuzzing driver for the function T POS IsConstraintValid

belonging to our ASN1lib case study subject is shown in Listing 1. The fuzzing
driver renames the mutated function by adding the prefix mut .

The fuzzing driver contains two sets of variables (Lines 5-7 and 8-10) whose
types match the parameters of the function under test and are provided as
input to both the original and the mutated function. In our example, it de-
clares a struct T POS and an int variable. These two sets of variables are
then assigned by performing a byte-by-byte copy of a same portion of input
file provided by the fuzzer (Lines 16-17 and 23-24, achieved by the function
get value); MOTIF ensures to copy a number of bytes to match the size of
the assigned variable. If the input file provided by the fuzzer is shorter than
required (the file modifications performed by fuzzers include shortening files),
MOTIF extends it with random data (Line 2). Additionally, the fuzzing driver
declares the variables required to store the functions’ return values (Lines 11
to 13).

The original and the mutated functions are then invoked (Lines 19 and
26). The fuzzing driver then compares the outputs generated by both functions
(Lines 28-31). Unfortunately, in C and C++, distinguishing between input and
output parameters is complicated by the presence of pointer and reference ar-
guments. Additionally, determining input parameters through data-flow anal-
ysis is impractical, as it requires preprocessing the SUT with a static analysis
framework (e.g., LLVM [86]), which is often not feasible for CPS software [6].

14 Jaekwon Lee et al.

1 int main(int argc , char** argv){

2 load_file(argv [1]); // load the input file and

3 // extends the input with random data if needed

4
5 /* Variables for the original function */

6 T_POS origin_pVal; // for the first parameter

7 int origin_pErrCode; // for the second parameter

8 /* Variables for the mutated function */

9 T_POS mut_pVal; // for the first parameter

10 int mut_pErrCode; // for the second parameter

11 /* Variables for the return values */

12 flag origin_return; // for the original

13 flag mut_return; // for the mutant

14
15 /* Copy the input data to the variables for the original

function */

16 get_value (& origin_pVal , sizeof(origin_pVal), 0);

17 get_value (& origin_pErrCode ,sizeof(origin_pErrCode) ,0);

18 log("Calling the original function");

19 origin_return = T_POS_IsConstraintValid (& origin_pVal , &

origin_pErrCode);

20
21 /* Copy the same input data to the variables for the

mutated function */

22 seek_data_index (0); //reset the input data pointer

23 get_value (&mut_pVal , sizeof(mut_pVal), 0);

24 get_value (& mut_pErrCode , sizeof(mut_pErrCode), 0);

25 log("Calling the mutated function");

26 mut_return = mut_T_POS_IsConstraintValid (&mut_pVal , &

mut_pErrCode);

27
28 log("Comparing result values: ");

29 ret += compare_value (& origin_pVal , &mut_pVal , sizeof(

origin_pVal));

30 ret += compare_value (& origin_pErrCode ,& mut_pErrCode , sizeof

(origin_pErrCode));

31 ret += compare_value (& origin_return , &mut_return , sizeof(

origin_return));

32
33 if (ret != 0){

34 log("Mutant killed");

35 safe_abort ();

36 }

37 log("Mutant alive");

38 return 0;

39 }

Listing 1: Example fuzzing driver for the ASN1lib subject.

Therefore, we use a straightforward approach to compare outputs which con-
sists of comparing all parameters and return values of the original and mutated
functions; such approach does not lead to incorrect mutant killing because in-
put parameters remain unmodified. For pointers, we compare the data they
point to (e.g., an int instance for int*). If the pointer is used as an array,

Fuzzing-based Mutation Testing of C/C++ CPS 15

Table 1: Seeds assigned to types

Type Seed 1 Seed 2 Seed 3

int -1 0 1

Bool False True

float -3230283776.0 0.0 1072693248.0

double 13826050856027422720.0 0.0 4602891378046628864.0

char 0xFF 0x00 0x41

byte 0xFF 0x00 0x41

ISO8601 2145916800.999999999 1970-01-01T00:00:00Z 2038-01-01T00:00:00Z

the end-user can specify the expected length of the array, so the array data
can be compared. When arrays are inputs to the function under test, the end-
user may not need to provide the length, as MOTIF automatically generates
arrays with a default length of 100. If the function under test dynamically
allocates arrays, the end-user should specify the minimal possible length (e.g.,
an array of length one) to avoid false positives from out-of-bounds readings.
For data structures with pointer fields, the pointed data length and initializa-
tion procedure can be specified. If the outputs differ, the fuzzing driver halts
execution with an abort signal (Line 35 in Listing 1), allowing the fuzzer to
detect the aborted execution and store the input file. MOTIF then stops the
fuzzer because the mutant has been killed.

3.2 Step 2 – Generate seed files

In Step 2, MOTIF creates seed files based on the input parameter types for
the function under test. These seed files are used by the fuzzer to initiate the
testing process. Typically, fuzzers are executed with seed files that correspond
to typical inputs for the SUT. In our approach, we automatically generate seed
files that contain enough bytes to populate all input parameters with values
that cover basic cases. Specifically, for each primitive type, we have identified
three representative seed values for typical input partitions, as shown in Ta-
ble 1. For instance, for numeric values, we provide zero, a negative number,
and a positive number. Using these seed values, MOTIF generates up to three
seed files for each fuzzing driver, ensuring that each seed value is covered at
least once for every input parameter.

Example seed files for function T POS IsConstraintValid are provided in
Figure 2 (type definitions in Listing 2). MOTIF can also generate seed files
for complex input types. For instance, the struct T POS received as input by
function T POS IsConstraintValid consists of an enum (named kind), which
specifies the type of data stored inside the rest of the struct, and a union
(named u), which is sufficiently large to contain the data for all the data types
selectable with the variable kind. MOTIF treats such struct as an int array

16 Jaekwon Lee et al.

FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF
*
FFFF FFFF FFFF FFFF
FFFF FFFF

0001 0000 0001 0000
0001 0000 0001 0000
*
0001 0000 0001 0000
0001 0000

0000 0000 0000 0000
0000 0000 0000 0000
*
0000 0000 0000 0000
0000 0000

Seed 1 Seed 2 Seed 3

8048
bytes

Fig. 2: Seed files generated for the fuzzing driver in Listing 1.

1 typedef enum { T_POS_NONE , longitude_PRESENT ,

2 latitude_PRESENT , height_PRESENT ,

3 subTypeArray_PRESENT , label_PRESENT ,

4 intArray_PRESENT , myIntSet_PRESENT ,

5 myIntSetOf_PRESENT , anInt_PRESENT

6 } T_POS_selection;

7
8 typedef struct {

9 T_POS_selection kind;

10 union { asn1Real longitude; asn1Real latitude;

11 asn1Real height; My2ndInt anInt;

12 T_POS_label label; T_ARR intArray;

13 T_SET myIntSet; T_SETOF myIntSetOf;

14 T_POS_subTypeArray subTypeArray;

15 } u;

16 } T_POS;

Listing 2: Definition of struct T POS

thus filling it with the seeds 0xFFFFFFFF, 0x00000000, and 0x00000001. The
first four bytes in the seed files (see Figure 2) belong to the enum item kind, and
are filled with the seed values of the int type. The same happens for the union
field u but, since the union has a size of 8,052 bytes (size of subTypeArray with
4 bytes padding2), MOTIF repeats the same set of four bytes 2,013 times. The
last four bytes belong to the second parameter of T POS IsConstraintValid,
the int * pErrCode.

3.3 Step 3 – Compile the SUT

In Step 3, MOTIF produces an executable fuzzing driver by compiling the
source code of the fuzzing driver, the mutated function, and the SUT using the
fuzzer compiler, which is essential for gathering the code coverage information
needed by the fuzzer. This step also compiles a false positive driver (see Section
3.4 below).

2 https://research.nccgroup.com/2019/10/30/padding-the-struct-how-a-compiler-
optimization-can-disclose-stack-memory/

Fuzzing-based Mutation Testing of C/C++ CPS 17

3.4 Step 4 – Perform mutation testing

In Step 4,MOTIF runs the fuzzer to generate inputs for the executable fuzzing
driver; in our experiments we leverage the AFL++ fuzzer but the approach is
generic and can work with any grey-box fuzzer for C/C++. The fuzzer keeps
generating input files until it reports one or more crashes, after which MOTIF
halts the fuzzer. This process leads to the generation of fuzzing driver logs and
crashing inputs (i.e., input files that caused a crash during the execution of
the fuzzing driver). Since fuzzers generate several input files from each input
taken from the file pool, and since all of them are executed by the fuzzer, more
than one crashing input may be reported.

Fuzzing driver logs include checkpoints indicating the progress of testing
(see Lines 18, 25, 28, 34, 37 in Listing 1). For each crashing input, MOTIF
processes the corresponding logs to distinguish between:

– Crashes occurring during the execution of the original function. They indi-
cate either the presence of a fault in the original function or the violation
of preconditions. We ignore these inputs because they do not correspond
to inputs killing a mutant.

– Crashes occurring during the execution of the mutated function. Since the
mutated function is executed after the original one, we can safely conclude
that the test inputs do not cause any crash in the original function. There-
fore, the observed crashes indicate that the mutant introduced a fault that
was exercised by the input. Thus, we can conclude such inputs kill the
mutant.

– Aborted executions due to the fuzzing driver determining that the mutant
has been killed (see Line 35 in Listing 1).

MOTIF retains all test inputs that kill a mutant. However, the function
under test may produce non-deterministic outputs meaning that, despite ob-
served differences in outputs, the inputs may not have actually killed the mu-
tant. For instance, two consecutive invocations of a function that reads and
writes global variables may lead to different outputs even if the mutated state-
ment is not exercised; consequently, the input suggested by the fuzzer would be
a false positive. To minimize false positives, MOTIF automatically re-executes
every test input killing a mutant using a modified version of the fuzzing driver
that invokes the original function instead of the mutated function. If this false
positive driver, as we refer to it, reports a difference in outputs of the two func-
tion calls, it implies that the function under test is non-deterministic and thus
that the input may not kill the mutant. MOTIF considers mutants exclusively
killed by false positive inputs to be live. To kill mutants in functions that mod-
ify global state variables, the user must manually add, in the fuzzing driver
between the two function calls, instructions to reset each state variable, similar
to other fuzzing approaches for unit and library testing (e.g., LibFuzzer [87]).

18 Jaekwon Lee et al.

1 int main(int argc , char** argv){

2 load_file(argv [1]); /* load the input file */

3 // Declaration of variables and assignment with input file

data missing to save space ...

4 /* Invoke the original function */

5 _return = T_POS_IsConstraintValid (&pVal , &pErrCode);

6 /* Print output values of the original function */

7 printf_struct("pVal (T_POS)=", &pVal , sizeof(pVal));

8 printf("pErrCode (int) = %

9 printf("return (flag) = %

10 return 0;

11 }

Listing 3: Example test driver for the ASN1lib subject.

3.5 Step 5 – Test the SUT

In this Step, MOTIF generates a test driver for the SUT. An example test
driver for function T POS IsConstraintValid is shown in Listing 3. The test
driver is identical to the fuzzing driver except that (1) it only invokes the
original function (Line 5 in Listing 3), (2) instead of comparing outputs from
two function invocations, it prints the output data generated by the original
function (Lines 7 to 9), and (3) it includes assertions that compare the execu-
tion results of the original function with the expected results (expected results
are the ones observed during fuzzing for the original function). The test driver
is used to test the original SUT with the inputs that kill the mutant and
the outputs should then be verified by a software engineer based on the SUT
specifications. If the observed output values are correct, they can be used as
oracles for future regression testing, which is the reason why the test driver
already includes automatically generated test assertions (i.e., MOTIF gener-
ates a complete regression test case). Otherwise, a fault has been identified in
the SUT. This scenario highlights one of the key advantages of mutation test-
ing: When testing the SUT with inputs that detect simulated human mistakes
(mutants), actual faults in the SUT are more likely to be discovered than with
randomly selected inputs (e.g., in our experiments we discovered five faults in
our subjects).

In our test driver, the generation of print statements for structs and point-
ers is determined by the configuration of the fuzzing drivers. By default, all
bytes within a struct are printed. When pointers are involved, if the end-user
specifies the size of the data to which the pointers refer, the test driver prints
the data pointed to, rather than the pointer value.

4 MOTIF C++ extensions

In this Section, we describe how we extended MOTIF to test C++ programs.
This extension is necessary to accommodate the four key object-oriented pro-

Fuzzing-based Mutation Testing of C/C++ CPS 19

gramming (OOP) properties – abstraction, encapsulation, inheritance, and
polymorphism – and their impact on mutation testing with MOTIF . Note
that these problems are specific to C++ because mutation testing approaches
for higher-level programming languages such as Java [9, 78] can leverage re-
flection to overcome them, as described below. For the sake of clarity, in this
Section, we call MOTIF-C the version of MOTIF that handles C code and
was presented in Section 3, and MOTIF-C++ the version of MOTIF extended
to deal with C++ features. Listing 4 provides a running example.

Abstraction is a key property of grouping variables and operations that are
highly related. Classes are the means to declare those variables (i.e., attributes)
and operations (i.e., methods) as new data types. It reduces the complexity of
developing software by letting users use the classes without knowing how its
features are implemented. Instead, for testing, instantiating a class is necessary
to exercise the class instance methods. But MOTIF-C does not instantiate
classes since, in C, operations are implemented by functions, which do not
require any object to be instantiated. In C++, static methods play the same
role as C functions, however they are rare. Consequently, MOTIF-C cannot
be used to test most C++ methods.

1 class SatelliteModule {

2 private:

3 /** Charge in watts per hour **/

4 double getCharge (){ return power; }

5
6 protected:

7 /** Average consumption in watts per hour **/

8 double getAverageConsumption (){

9 return consumedWatts ()/elapsedTime ();

10 }

11
12 public:

13 /** Hours before being out of charge **/

14 double getAutonomy (){

15 return getCharge ()/getAverageConsumption ();

16 }

17 };

18
19 class ChargeableModule : public SatelliteModule {

20 private:

21 /** Average watts charged per hour **/

22 double getAverageCharging (){

23 return chargedWatts ()/elapsedTime ();

24 }

25
26 protected:

27 double getAverageConsumption (){

28 return super :: getAverageConsumption ()-

getAverageCharging ();

29 }

30
31 public:

32 ChargeableModule(double consumptionBoundary , double

chargeBoundary){

20 Jaekwon Lee et al.

33 this.consumptionBoundary = consumptionBoundary;

34 this.chargeBoundary = chargeBoundary;

35 }

36
37 /** True if the mission lasts less than the autonomy of

the module**/

38 bool isAutonomous(Mission mission){

39 return mission.duration () <= getAutonomy ();

40 }

41 };

42
43 /** Absract class for missions **/

44 class Mission {

45 public:

46 /** Duration in hours **/

47 virtual double duration ();

48 }

49
50 class StaticMission {

51 private:

52 double presetDuration;

53
54 public:

55 StaticMission(double presetDuration){

56 this ->presetDuration=presetDuration;

57 }

58
59 double duration (){

60 return presetDuration -elapsedTime ();

61 }

62 }

63
64 template <class ObjectiveT > class DynamicMission {

65 public:

66 void objectiveAchieved(ObjectiveT T){

67 // remove from the list of objectives to achieve

68 this ->objectives.remove(T);

69 }

70
71 double duration (){

72 return objectivesToAchieve ()/

objectivesAchievedPerHour ();

73 }

74 }

Listing 4: C++ example classes. For simplicity we show only in-class method
declarations and we hide some method declarations.

Encapsulation is realized by hiding (i.e., making private or protected) a
subset of the instance variables and methods implemented by a class. Con-
sequently, a subset of class methods (i.e., private and protected methods)
cannot be exercised by MOTIF-C ; indeed, functions that do not belong to a
class (e.g., the main function of the MOTIF fuzzing driver), cannot access the
class private and protected members.

Inheritance enables a class to reuse (i.e., inherit) the methods declared by
its superclass, if any. Inheritance complicates the unit testing automated by

Fuzzing-based Mutation Testing of C/C++ CPS 21

1 class mut_ChargeableModule : public SatelliteModule {

2
3 //... same code as in ChargeableModule

4
5 bool isAutonomous(Mission mission){

6 // MUTANT 1: replaced <= with <

7 return

8 mission.duration () < getAutonomy ();

9 }

10 };

Listing 5: Mutant class for a mutant of method isAutonomous.

MOTIF-C because it leads to dependencies between superclasses and sub-
classes. Indeed, not only a subclass may execute superclass methods but
the execution of a method declared by a superclass may trigger the exe-
cution of a method in a subclass. For example, the execution of method
ChargeableModule.isAutonomous() in Listing 4 triggers the execution of
the superclass method SatelliteModule.getAutonomy(), which, in turn,
triggers the execution of ChargeableModule.getAverageConsumption()

and ChargeableModule.getAverageCharging(). As a consequence, the
solution adopted by MOTIF-C to test mutants (i.e., creating a copy
of the original method and renaming it) would prevent the test-
ing of methods following such pattern; for example, renaming a mu-
tant of method getAverageConsumption() in ChargeableModule as
mut getAverageConsumption() would prevent its call from method
SatelliteModule.getAutonomy(), thus rendering testing ineffective.

Polymorphism refers to multiple language features. Ad hoc polymorphism
(i.e., method overloading) indicates that methods with a same name can
process arguments of different types. Since these methods have distinct im-
plementations, they do not affect MOTIF-C because it treats them as dis-
tinct functions. Parametric polymorphism (i.e., class templates) implies that
certain methods can be exercised only if the object they belong to has
been instantiated with appropriate parameters (i.e., a specific class name).
This is the case for class DynamicMission, which requires the specifica-
tion of the data type used to model mission objectives as in “mission =

new DynamicMission<Landmark>();” Subtype polymorphism occurs when the
code contains a call to a method belonging to a certain object, but the con-
crete method to be invoked is decided at runtime, depending on the object
type. This is the case for method ChargeableModule.isAutonomous(), which
invokes Mission.duration() and, at runtime, may execute the implementa-
tion of duration() provided by either StaticMission or DynamicMission.
To test those methods, it is necessary to determine the type of the object to be
instantiated and passed as argument, which is not supported by MOTIF-C .

To address the issues above, MOTIF-C++ implements a set of extensions
that are summarized in Table 2 and described below.

22 Jaekwon Lee et al.

Table 2: MOTIF-C++ extensions to deal with C++ language features.

Language feature MOTIF-C++ extension

Inheritance Copy mutant class.

Abstraction Automatically generate test utility class.

Ad hoc polymorphism Separate testing for each method.

Encapsulation

Manual editing of test utility class.Parametric polymorphism

Subtype polymorphism

1 class mut_ChargeableModule : public SatelliteModule {

2
3 //... same code as in ChargeableModule

4
5 protected:

6 double getAverageConsumption (){

7 // MUTANT 2: removed ’- getAverageCharging ()’

8 return super :: getAverageConsumption ();

9 }

10
11 //... same code as in ChargeableModule

12 };

Listing 6: Mutant class for a mutant of method getAverageConsumption.

To deal with inheritance, MOTIF-C++ injects the mutated method into
a copy of the original class. Examples are shown in Listing 5 and 6, which
present two distinct mutants of class ChargeableModule. Note that in the
case of Listing 6, the creation of a renamed class copy, instead of a renamed
method copy as in MOTIF-C , ensures that the mutated method is executed
when testing mut ChargeableModule.isAutonomous(). In Java, this issue is ad-
dressed in a similar but more efficient way [78], by leveraging the classloader
mechanism to load in memory both the hierarchy of the original class and its
mutated version (one for each mutant), which is not feasible in C++ because
of the lack of a classloader managed by a virtual machine.

To deal with abstraction, MOTIF-C++ creates a fuzz driver that, instead
of invoking the mutated method, creates an instance of a test utility class to
which it delegates the instantiation of the class under test and the execution
of the method under test. An example fuzz driver is shown in Listing 7; except
for the instantiation of the utility class, it matches the fuzz driver created by
MOTIF-C . A test utility class (i.e., MOTIF::TestUtil) is shown in Listing 8.
Test utility classes are automatically generated by MOTIF-C++ in Step 1,

Fuzzing-based Mutation Testing of C/C++ CPS 23

but often need to be manually modified as described in Section 4.1. A utility
class includes state variables to hold the values to be passed as arguments to
the constructor of the class under test and to the method under test (Lines
4-9 in Listing 8). Still in MOTIF::TestUtil, two additional state variables
are used to store references to the value returned by the method under test
(Line 11) and the instance under test (Line 13). The solutions implemented by
approaches targeting Java never need manual intervention because they can
leverage reflection to determine what are the constructors and, recursively the
constructors for their parameters, and just rely on automated trial and error
to identify appropriate initializations [9, 78].

In MOTIF::TestUtil, methods call and compare take care of the execu-
tion of the method under test and the comparison of the results obtained by
the original and the mutated method, respectively. Method call (Lines 13-25,
Listing 8), which executes the method under test, includes automatically gen-
erated instructions to populate parameters with fuzzed data (Lines 17 and 18).
If the constructor of a function under test receives as input an abstract type,
the instructions needed to construct the concrete type to be used shall be man-
ually added (Lines 22-24). Last, method call invokes the method under test
and stores the returned value (Line 26). Method compare, instead, is invoked
by the fuzzing driver (Line 13, Listing 7) to compare the results obtained by
the original and the mutated class after the execution of the mutant; its logic
follows the one of the fuzzing driver generated by MOTIF-C . Approaches for
Java [9, 78] can leverage programming conventions and reflection to compare
object states by leveraging the equals method, which is normally overridden
to compare two instances of a class, or inspector methods, which can be iden-
tified through naming conventions or purity analysis (simpler to achieve on
Java bytecode [88]).

To deal with protected and private methods (i.e., encapsulation), instead of
modifying the class under test to specify the test utility class as a friend class,
we suggest the end-user to exercise, in the fuzzing driver, a public method that
invokes the private/protected method under test. For example, to test mutant
2 in Listing 6, the end-user may still rely on the fuzzing driver shown in List-
ing 7, because it tests method isAutonomous, which, in turn, executes method
getAverageConsumption (i.e., the mutated method). In Java, protected and
private methods can be invoked through reflection [89].

4.1 Manual tuning of MOTIF ’s test utility class

Like MOTIF-C , MOTIF-C++ automatically identifies the variables to create
in the test utility class based on method signatures. However, MOTIF-C++
requires the manual specification of the class to instantiate to deal with para-
metric and subtype polymorphism. For example, if a method declares param-
eters of an abstract type (e.g., isAutonomous receives one parameter of the
abstract type Mission), the end-user needs to specify the additional parame-

24 Jaekwon Lee et al.

1 int main(int argc , char** argv){

2 load_file(argv [1]); // load the input file and

3 // extends the input with random data if needed

4
5 log("Calling the original function")

6 auto origin = new MOTIF::TestUtil <ChargeableModule >();

7 origin ->call();

8
9 log("Calling the mutated function")

10 auto mutant = new MOTIF::TestUtil <mut_ChargeableModule >();

11 mutant ->call();

12
13 if (orig ->compare(mut) != 0){

14 log("Mutant killed");

15 safe_abort ();

16 }

17 log("Mutant alive")

18 }

Listing 7: Example MOTIF-C++ fuzz driver.

ters required to instantiate the concrete class to be used to exercise the method
under test (Line 9).

Note that implementing such additional instructions is much less labor
intensive than manually identifying the inputs that kill the mutant. Indeed,
the proper initialization of the objects required for testing simply consists
of the invocation of constructor methods. In contrast, the identification of
the inputs that kill a mutant require a comparison between the mutated and
the original functions to determine which inputs makes their output differ.
Further, we expect that end-users can easily update MOTIF ’s test utility
classes by copying the code used in unit test cases, except for assignments to
primitive variables, which shall rely on the data provided by the fuzzer. Indeed,
in unit test cases, like in MOTIF ’s test utility class, all the objects required
by the method under test shall be instantiated; therefore, the instructions to
be manually-specified in the test utility class can be a copy of the ones used
in the manually implemented test cases, except for assignments to primitive
variables.

Last, we consider the need for the manual modification of test utility classes
a limitation of the MOTIF implementation rather than the approach itself.
Indeed, it is possible to integrate an additional lightweight static analysis step
into MOTIF to automate the generation of test drivers. Indeed, as demon-
strated by approaches for the generation of fuzz drivers for API fuzzing [13],
it is generally feasible to implement a lightweight static analysis parser that
automatically generates sequences of function calls by copying the content of
existing programs (test cases, in our context); however, implementing such a
parser goes beyond the objective of this paper which, for the C++ part, is con-
cerned with proposing and assessing a solution to determine when a mutated

Fuzzing-based Mutation Testing of C/C++ CPS 25

1 namespace MOTIF{

2 template <typename TypeA >

3 class TestUtil{

4 // parameters for the constructor

5 double constructor_1;

6 double constructor_2;

7 // parameters for the method under test

8 Mission parameter_1;

9 int manual_1;

10 // return value

11 bool _return;

12 // instance

13 TypeA object;

14
15 void call(){

16 // populate variables with fuzz data

17 get_value (& constructor_1 , sizeof(constructor_1));

18 get_value (& constructor_2 , sizeof(constructor_2));

19
20 // instantiate the class under test

21 this ->object = new TypeA(param1 , param2);

22 // instructions for parameters of an abstract type

23 get_value (&manual_1 ,sizeof(manual_1));// added

24 this ->parameter_1 = new StaticMission(manual_1);

25 // invoke the method under test

26 this ->_return = object ->isAutonomous(this ->parameter_1);

27 }

28
29 template <typename TypeB >

30 int compare(TestUtil <TypeB > *rhs){

31 int ret = 0;

32 ret += compare_value(this ->parameter_1 ,rhs ->parameter_1);

33 ret += compare_value(this ->_return ,this ->_return);

34 return ret;

35 }

36 }

37 }

Listing 8: Example utility class.

method is killed (i.e., through a test utility class and a copy of the mutated
class) rather than delivering a production-ready tool.

Concluding, although MOTIF-C++ delegates the handling of several C++
features to the manual tuning of the automatically generated test utility class,
the automated generation of both the fuzzing driver and the test utility class
still significantly decreases manual effort when compared to manual mutation
testing.

5 Empirical Evaluation

We address the following research questions:

26 Jaekwon Lee et al.

RQ1. What fuzzer configuration leads to best results in MOTIF? Fuzzing
results can vary depending on the configurations applied to the fuzzers, which
include the selection of compilers, sanitizers, and coverage metrics. Executa-
bles’ speed depend on compilers’ code optimization capability and affect
fuzzing effectiveness; indeed, quicker executions lead to more inputs being
tested and, likely, to more mutants being killed. Sanitizers are helpful in de-
tecting invalid behaviors, such as memory overflow and arithmetic overflow
during software execution; consequently, they may facilitate mutants detec-
tion (e.g., mutants leading to such invalid behaviours) although their overhead
may reduce the number of generated test inputs and, in turn, mutation testing
effectiveness. Coverage metrics are used to determine when an input should be
kept in the fuzzing queue, and can affect input generation and mutants killing;
for example, specific metrics may facilitate the discovery of unexplored paths,
which may include the mutated instructions. Through this research question,
we aim to determine what configurations would be optimal for MOTIF .

RQ2. How does mutation testing based on fuzzing compare to mutation
testing based on symbolic execution, for software where the latter is applicable?
Since certain CPS units may still satisfy the assumptions of SE approaches
(e.g., absence of floating-point instructions and black-box components), we
aim to assess what approach performs better in such cases.

RQ3. How does MOTIF’s seeding strategy contribute to its results? MOTIF
kills mutants either through the generated seeds or through fuzzed inputs;
we therefore aim to assess how the two strategies individually contribute to
MOTIF results in order to determine if fuzzing is indeed useful.

RQ4. Does hybrid-fuzzing improve the effectiveness of MOTIF? We aim to
assess hybrid-fuzzing approaches because they demonstrated to be effective in
increasing the code coverage obtained through fuzzing and thus may improve
mutants detection. Fuzzing can be an advantage to exercise conditions that
are easy to satisfy (e.g., branch conditions controlled by a relational operator
in a basic clause, such as x>0) whereas symbolic execution helps satisfy narrow
branch conditions (e.g., joining multiple clauses, such as x>0 && x<3) [33].

RQ5. Is it cost-effective to reuse mutant-killing inputs? Since mutants are
often redundant 3, multiple mutants can be killed by the same inputs. Con-
sequently, inputs generated by MOTIF that successfully kill some mutated
versions of a function might be used to test other mutated versions that re-
mained live. However, the execution of additional inputs increases mutation
testing time. This research question aims to assess the tradeoff between mu-
tation score improvement and increased testing time due to reusing mutant-
killing inputs.

Fuzzing-based Mutation Testing of C/C++ CPS 27

Table 3: Subject artifacts.

Subject Open-source LOC
Test
cases

Statement
coverage

Mutation
score (MS)

MLFS Yes 5,402 4,042 100.00% 81.80%

LIBU No 10,576 201 83.20% 71.20%

ASN1lib Yes 7,260 139 95.80% 58.31%

ESAIL No 2,235 384 95.36% 65.36%

S5 No 54,696 36 62.23% 64.13%

5.1 Subjects of the study

To address our research questions, we considered software deployed on space
CPS (satellites) currently in orbit. This included (a) MLFS , the Mathemati-
cal Library for Flight Software [91], which complies with the ECSS criticality
category B [1,92], (b) LIBU , which is a utility library developed by GomSpace
and used in NanoSatellites, (c) ASN1lib, a serialization/deserialization library,
(d) ESAIL, a subset of the control software of a micro-satellite developed by
LuxSpace to track ships worldwide, and (e) Sentinel-5 UVNS L1b Prototype
Processor (S5 , for brevity), which is ground software developed by Huld to pro-
cess radiation data received from the Sentinel 5 satellite instruments. ASN1lib
has been generated with ASN1SCC from a test grammar provided by ESA.
ASN1SCC is a compiler that generates C/C++ code suitable for low resource
environments [93,94]. All the subjects are implemented in C except S5 , which
is implemented in C++.

Our software subjects are provided with test suites whose code coverage is
reported in Table 3. Most test suites do not achieve 100% statement coverage
because they include components that are tested with specific hardware not
available to us; therefore, we generated mutants only for the covered state-
ments. We generated mutants with MASS [6, 95]; specifically, we rely on all
the mutation operators supported by MASS (i.e., the sufficient set [96] and the
deletion set [97,98]), which proved effective in previous experiments on similar
subjects. We excluded mutants that are identified as equivalent or duplicate ac-
cording to trivial compiler equivalence methods [6]. The last column in Table 3
provides the mutation score (MS) for our case study subjects; it corresponds
to the proportion of mutants detected by the test suite. The highest mutation
score is observed with MLFS, whose test suite achieves MC/DC adequacy [99].
The lowest mutation score is observed with ASN1lib, which is automatically
generated by ASN1SCC using a grammar-based approach [94]. Our subjects’
mutation scores are in line with empirical investigations reporting mutation
scores ranging from 55% to 95% [100,101], for CPS software.

3 A mutant is considered redundant if it can be killed by the same input that kills another
mutant, even though they may differ syntactically [90].

28 Jaekwon Lee et al.

To perform test data generation, we rely on the mutants not killed by the
original test suites. We assume that the live mutants are not equivalent (i.e.,
produce the same outputs for every input) to the original software. Although
this could be an under-approximation, it does not introduce bias in the com-
parison between the different approaches considered (i.e., SEMuP and MOTIF
configured with different fuzzers and options) because all of them cannot kill
equivalent mutants. Further, two mutants ma and mb can also be duplicates
(i.e., they lead to the same outputs for every input) or subsumed (i.e., ma is
killed by a superset of the test cases killing mb). However, the identification of
test inputs that kill mutants is a precondition to determine if mutants are du-
plicate or subsumed [102]; for this reason, including duplicate and subsumed
mutants should not introduce bias in the comparison of the approaches. In
other words, a mutation testing approach should easily kill mutants that are
either duplicates or subsume other killed mutants; if it does not happen, it is
correct to penalize such an approach in the empirical evaluation.

The number of live mutants for each subject is: 443 for LIBU , 1,347 for
ASN1lib, 3,891 for MLFS , 581 for ESAIL, and 99 for S5 . For LIBU , MLFS ,
and ESAIL, we configured MOTIF to generate arrays of a specific size and,
for void pointers (i.e., void *), to create variables or arrays considering the
expected data type. Regarding S5 , the relatively limited number of mutants
considered is due to the need for the manual editing of most of the fuzz drivers
generated by MOTIF (see Section 4). Indeed, advanced C++ features, includ-
ing abstract classes, templates, friend functions, and unnamed namespaces, as
well as the standard library implementations, render the drivers automatically
generated by MOTIF ineffective. For example, vector<>, one of the standard
template libraries (STL), uses pointers to trace the stored data, which ren-
ders the memcopy-based solution adopted by MOTIF to instantiate objects
inappropriate (pointer addresses cannot be filled with data generated by the
fuzzer). To address such limitation, we manually modified the fuzzing drivers
automatically generated by MOTIF . Precisely, in total, to kill 99 mutants,
MOTIF generated 25 drivers, 21 of which had to be manually modified. How-
ever, 14 drivers required a simple modification such as instantiating a template
class (e.g., vector<int>), while seven drivers required an initialization step
for the class under test, which we copied from the unit test cases provided by
S5 developers. In addition, recall that, as discussed in Section 4.1, the need for
such manual modifications is a limitation of the MOTIF implementation, not
the approach, and can be overcome through an improved static analysis step.
Further, compared to manual mutation testing, the automated generation of
both the fuzzing driver and the test utility class still significantly decreases
manual effort.

5.2 Experimental setup

We performed our experiments using a prototype implementation of MO-
TIF [18, 103].

Fuzzing-based Mutation Testing of C/C++ CPS 29

1 int main(int argc , char** argv){

2 // Declare variable to hold function returned value

3 _Bool result;

4 // Declare arguments and make input ones symbolic

5 T_POS pVal;

6 int pErrCode;

7
8 klee_make_symbolic (&pVal , sizeof(pVal), "pVal");

9 // Call function under test

10 result = T_POS_IsConstraintValid (&pVal , &pErrCode);

11 // Print output data

12 printf("pErrCode = %

13 printf("result = %

14 return (int)result;

15 }

Listing 9: Example SEMu driver corresponding to the fuzzing driver
in Listing 1.

To address all our RQs, as fuzzer for MOTIF , we selected AFL++ because
it is the fuzzer that performed better in terms of code coverage, according
to recent benchmarks in the literature [36, 104, 105]; moreover, along with
HonggFuzz [106], it is the fuzzer that maximizes fault coverage in another
recent benchmark [37].

To address RQ2, and compare MOTIF with a mutation testing approach
relying on symbolic execution, we modified the MOTIF pipeline to enable test
generation with SEMu; we call such pipeline SEMuP . At a high level, SEMuP
follows the same steps of MOTIF , with differences concerning how input and
output variables are defined.

For SEMuP , in Step 1, we generate SEMu drivers enabling symbolic execu-
tion. An example SEMu driver generated for function T POS IsConstraint-

Valid is shown in Listing 9. These drivers must specify what are the input
parameters to be treated symbolically (see Line 8 in Listing 9), a task per-
formed by the end-user. SEMu drivers do not include explicit comparisons
between the outputs of the mutated and the original function because such
comparison is handled by SEMu when symbolically executing the original
and the mutated functions in parallel (see Section 2.3.1). Precisely, the SEMu
driver invokes only the function under test and prints to standard output
the data values that should be considered to determine if a mutant has been
killed. Similar to MOTIF , SEMu also requires end-users to manually spec-
ify how to process data values belonging to data structures referenced with
pointers. SEMuP does not include a Step for the generation of seed input (i.e.,
MOTIF ’s Step 2). It includes a step (corresponding to MOTIF ’s Step 3) to
compile the mutated function and the SEMu drivers with LLVM, followed by
a step, corresponding to MOTIF ’s Step 4, for the execution of SEMu and the
processing of its logs to determine killed mutants.

30 Jaekwon Lee et al.

To address RQ3, to perform hybrid fuzzing, we selected SymCC [32], whose
performance is similar to that of the more recent tools Fuzzolic, SymSAN, and
SymQEMU [35]. We excluded SymSAN and its recent extension Marco [107]
because SymSAN requires 64-bit compilation, which is not feasible with some
of our subjects. We excluded Fuzzolic and SymQEMU since they rely on a
version of QEMU that cannot run on some of our subjects (e.g., ESAIL).
Therefore, in our response to RQ3, the benefits of hybrid fuzzing can be con-
sidered to be a lower bound.

To leverage hybrid fuzzing, we extended MOTIF ’s Step 3 to also compile
the fuzzing driver and SUT with SymCC’s compiler, in addition to AFL++’s. In
Step 4, MOTIF executes the two compiled executable drivers together, follow-
ing AFL++ procedures for hybrid fuzzing with SymCC4. When AFL++ discovers
new interesting inputs according to its coverage metrics, SymCC is triggered to
perform symbolic execution. The inputs found by SymCC are then merged into
the queue of AFL++. Once either tool finds inputs killing the mutant, fuzzing
stops and MOTIF proceeds with Step 4’s post-processing activity.

In our experiments, we test mutants in parallel, by leveraging the multiple
nodes of an HPC infrastructure [108]. This decision depends on the observa-
tion that leveraging parallelism (e.g., by relying on Cloud solutions) is a cost-
effective choice in the case of complex CPS with many live mutants. Parallel
testing of mutants is enabled by the fact that, in contrast to from MU2 [78],
MOTIF does not test live mutants with the same inputs. Therefore, MOTIF
can simply be deployed on different nodes and executed. However, we assess
(RQ4) how MOTIF’s effectiveness can be improved by reusing the mutant-
killing inputs obtained in the different, parallel executions.

To account for randomness, we executed each approach (i.e., different MO-
TIF setups and SEMuP) ten times for each subject. For each mutant, we
executed each approach for 10,000 seconds, which we determined, in a prelim-
inary study, to be sufficient for SEMuP to maximize the percentage of killed
mutants. Precisely, for fuzzing and hybrid fuzzing, we allocate 10,000 seconds
of time budget and stop fuzzing once this is reached. But for SEMuP , we
allocate 10,000 seconds to the symbolic execution process, which means that,
after the timeout, if the mutant has not been killed yet, SEMuP still tries to
generate test inputs using the path conditions traversed so far, which leads to
an execution time for SEMuP that is slightly higher than others (around 650
seconds more).

5.3 RQ1 - Fuzzer configurations

5.3.1 Design

Since we measure effectiveness in terms of percentage of killed mutants, to
address RQ1, we compare the percentage of mutants killed when different

4 Guideline for SymCC: https://github.com/AFLplusplus/AFLplusplus/tree/ stable/cus-
tom mutators/symcc

Fuzzing-based Mutation Testing of C/C++ CPS 31

fuzzer configurations are selected; specifically, we compare the configuration
parameters belonging to three distinct dimensions: compilers, sanitizers, and
coverage metrics. For each configuration considered in our experiment, we
execute MOTIF for at most 10,000 seconds for each mutant and track the
time required to kill each mutant. We compare distinct approaches in terms
of number of mutants killed (i.e., mutation score, MS) over time and evaluate
the significance of the difference by relying on the Mann–Whitney U-test, a
non-parametric test.

The first comparison focuses on the impact of the compiler choice on MO-
TIF ’s effectiveness. We consider two compilers: GCC and Clang. GCC is the
default compiler for most software projects in several domains (e.g., space).
Clang is a recent compiler that is gaining popularity across industries and is
particularly appealing for fuzzing because it integrates several optimization
techniques leading to faster programs56. We select Clang version 14, since it
supports all sanitizers and coverage options in AFL++, and GCC version 11.

The second comparison is among sanitizers. We consider four sanitizers
supported by AFL++: ASAN [109] which detects array out-of-bound and invalid
memory access, UBSAN [110] which detects undefined behavior such as arith-
metic overflow, LSAN [111] which focuses on heap memory leaks, and MSAN [112]
which focuses on uninitialized memory reads. We do not consider the two other
sanitizers supported by AFL++, Control Flow Integrity SANitizer (CFISAN)
and Thread SANitizer (TSAN), because they focus on problems specific for
object-oriented and concurrent programs that are unlikely caused by code mu-
tations (indeed, the mutation operators considered for our experiments don’t
aim at introducing multi-threading faults nor breaking control flows by alter-
ing pointer to functions). To perform our experiment, we compile our subjects
(fuzzing drivers and SUT) multiple times, one for each sanitizer, with Clang

(the best compiler based on our results, as discussed below), and execute MO-
TIF on each version. We compare the observed results (MS) with the ones
obtained with a baseline consisting of the use of Clang without any sanitiza-
tion options.

In the third comparison, we considered three coverage metric options sup-
ported by AFL++, which is motivated by the fact that, since fuzzers are driven
by code coverage, coverage metrics affect the fitness of inputs. They are: (1)
LAF [20], which splits complex comparison operations into multiple conditions7,
thus preserving inputs that exercise boundary cases differently than previous
inputs; (2) NGRAM [113] which tracks the coverage of sequences of N edges, thus
preserving inputs that exercise different sub-paths in a program, and context-

5 AFL++ with LLVM: https://github.com/AFLplusplus/AFLplusplus/ blob/stable/in-
strumentation/README.llvm.md

6 Clang-Features and Goals: https://clang.llvm.org/features.html
7 LAF splits conditions with non-strict relational operators such as if (a <= b)doA or if

(a >= b)doB) into compound conditions such as if (a == b){ doA } else if (a > b){
doA }). It also splits invocations of strcmp, to compare strings, into an appropriate set
of nested if conditions. Last it splits switch blocks into nested if conditions performing
comparisons by-by-byte.

32 Jaekwon Lee et al.

Table 4: Results obtained by MOTIF with different fuzzer configurations.
Each cell reports the average percentage of mutants killed over ten runs by
each configuration after 10,000 seconds and p-values based on U-test against
the baseline.

Experiment
group

Options LIBU ASN1lib MLFS ESAIL S5

Compilers
(baseline: GCC)

GCC 48.31% 85.44% 35.52% 38.38% 83.03%
Clang 49.68% (0.0009) 86.57% (0.0002) 38.43% (0.0002) 39.04% (0.0001) 82.73% (0.2641)

Sanitizers
(baseline: Clang)

ASAN 49.22% (0.1081) 86.82% (0.0200) 38.29% (0.0019) 39.36% (0.0048) 81.52% (0.0007)

UBSAN 51.35% (0.0003) 84.31% (0.0002) 23.78% (0.0002) 38.67% (0.0001) 82.42% (0.2781)

LSAN 47.39% (0.0002) 85.78% (0.0003) 37.60% (0.0002) 38.62% (0.0002) 80.81% (0.0000)

MSAN 45.56% (0.0002) 83.39% (0.0002) 34.33% (0.0002) 38.30% (0.0001) 6.06% (0.0000)

Coverage
metrics

(baseline: Clang)

LAF 49.79% (0.6158) 88.84% (0.0002) 40.09% (0.0002) 38.73% (0.0004) 82.53% (0.3006)

NGRAM 50.85% (0.0016) 86.27% (0.0023) 38.27% (0.0045) 38.97% (0.3446) 83.64% (0.0005)

CTX 50.89% (0.0030) 86.49% (0.3989) 38.29% (0.0070) 38.98% (0.5518) 83.74% (0.0001)

n.nn% and n.nn% : significantly outperformed the baseline with p ≤ 0.01 and p ≤ 0.05, respectively

n.nn% and n.nn% : significantly underperformed, compared to the baseline, with p ≤ 0.01 and p ≤ 0.05, respectively

sensitive coverage (CTX) [113] which combines edge coverage with information
on call points, thus enabling the fuzzer to distinguish between the execution of
the same code from different calling contexts. For LAF, we enabled the splitting
of all the types of compound expressions supported by LAF, and for NGRAM, we
set the parameter N to 2. To compile our subjects, we rely on Clang.

5.3.2 Results

Table 4 reports MOTIF ’s performance, for each subject, when different fuzzer
configurations are selected. Each row shows the average percentage of live mu-
tants killed by MOTIF over ten runs after 10,000 seconds, for a given fuzzer
configuration. p-values are shown in brackets, capturing the statistical sig-
nificance of the difference between the selected configuration and the Clang

baseline; for the compiler selection assessment, p-values simply capture the sig-
nificance of the difference between the results obtained using the two available
options. A green background highlights cases where the selected configuration
significantly outperformed the baseline; a red background highlights the oppo-
site. Cases not leading to any significant difference have a white background.

The compilers’ comparison results show that Clang outperforms GCC by
1.37 percentage points (pp) in LIBU , 1.13 pp in ASN1lib, 2.91 pp in MLFS ,
and 0.65 pp in ESAIL. For each subject of these four subjects, the results
obtained with the two compilers are significantly different at every minute.
The better performance of Clang is likely due to the fact that the number
of inputs generated by AFL++ with Clang is 4 to 20 times higher than the
one observed with GCC. Indeed, search algorithms (i.e., AFL++) are more
likely to explore a larger portion of the input space when they generate more
inputs. The larger number of inputs generated with Clang can be explained
by Clang generating executable programs (in our case, fuzz drivers) that are
quicker to execute than GCC ones and therefore AFL++ can try more inputs
with Clang than with GCC, for the same test budget. In contrast to the above,

Fuzzing-based Mutation Testing of C/C++ CPS 33

for S5 , Clang performed worse than GCC by 0.30 pp but the difference is not
statistically significant, enabling us to conclude that overall Clang is the best
choice for MOTIF .

The sanitizer results in Table 4 show that MOTIF equipped with sanitiz-
ers tends to perform worse than the baseline, MOTIF without any sanitizer.
ASAN led to the highest number of cases with improvements; indeed, it slightly
outperformed the baseline by 0.25 pp (p < 0.05) in ASN1lib and by 0.33 pp
(p < 0.01) in ESAIL. UBSAN, instead, led to the largest improvement, with a
proportion of killed mutants higher than the baseline by 1.67 pp (p < 0.01) in
LIBU ; however, it performs worse than the baseline for most of the subjects.

The primary reason why MOTIF with sanitizers cannot outperform the
baseline is the overhead of the instrumented code introduced by sanitizers to
detect invalid behaviors. Such overhead reduces the number of inputs gener-
ated by AFL++, consequently decreasing the number of mutants killed, even
though sanitizers may kill some mutants not killed without them. In our in-
vestigation, the worst performance is obtained with MSAN, which led to 96.77%
fewer inputs than the baseline, on average, and showed significantly lower per-
formance. The worst MSAN result is obtained with S5 , likely because of poor
support for C++ libraries (e.g., MSAN led to crashes whenever it encounters a
standard library function such as std::map and std::set). ASAN, instead, led
to 61.5% fewer inputs, on average, but enabled the detection of a large number
of additional mutants thus compensating the loss due to execution cost; conse-
quently, ASAN achieved results that are comparable to those obtained without
sanitizer. ASAN effectiveness in killing mutants mainly depends on its capability
to detect out-of-bound memory accesses caused by mutants; such mutants are
harder to detect otherwise because the sufficiency condition (see Section 2.3)
is hard to meet without a sanitizer (the effect of the out-of-bound access shall
affect the values assigned to an output variable). Further, ASAN prevents the
generation of test inputs that kill mutants but are not valid; those are in-
puts that violate function preconditions and cause out-of-bound accesses in
the original function under test, and are thus discarded by MOTIF . Different
from ASAN, UBSAN prevents the testing of several mutants because it detects
invalid behaviors in the original function (on average, 653.8 fuzzing drivers
failed when executing the original function), which need to be fixed before
proceeding with mutation testing. A representative example is provided by
MLFS , where UBSAN detects several arithmetic overflows caused by shift oper-
ators applied to variables that may have negative values. Although UBSAN may
have detected potential bugs in the SUT, by terminating the execution of the
original function, UBSAN prevents mutation testing. In summary, ASAN is the
only sanitizer that is beneficial to MOTIF for two of the subjects
(i.e., prevents false positives without largely affecting effectiveness).

Coverage metrics results in Table 4 show that their effectiveness vary across
subjects. Specifically, MOTIF with LAF outperformed the baseline (i.e., MO-
TIF with AFL++ using the default coverage options) by 2.27 pp and 1.66 pp,
with p-value ≤ 0.01, in ASN1lib and MLFS , respectively. With these two sub-
jects, LAF likely improves reachability (i.e., generating inputs that reach the

34 Jaekwon Lee et al.

mutated statement) because they present several conditional statements that
can be split into simpler conditions; indeed, ASN1lib contains compound con-
ditions that check input validity, while MLFS , relies on several signed and
floating point comparisons. In ESAIL, LAF performed significantly worse than
the baseline by 0.31 pp; however, the practical impact of such decrease in
performance is very limited (2 fewer mutants killed, in the worst case).

MOTIF with NGRAM and CTX outperformed the baseline in both LIBU and
S5 . In LIBU , we observe an improvement of 1.17 pp and 1.21 pp for NGRAM
and CTX, respectively (p-value ≤ 0.01). In S5 , the improvements are 0.91 pp
and 1.01 pp, respectively (p-value ≤ 0.01). In LIBU , the improvements are
likely due to LIBU including longer call sequences whose results depend on
state variables. In S5 , the improved performance is likely due to C++ language
features (i.e., overriding and polymorphism), resulting in method invocations
that behave differently depending on the call context. In the worst case, NGRAM
and CTX, decrease MOTIF ’s performance by 0.30 pp (NGRAM on ASN1lib) and
0.14 pp (CTX on MLFS), with an average of 4 to 6 fewer mutants being killed,
a small impact in practice. To summarize, it is not possible to identify
a coverage metric that works best with all the subjects; however,
since the differences are limited, engineers may select the option
that improves testing results in critical code units (e.g., LAF because
it improves MS in mathematical functions).

Although our results did not help identifying a sanitizer and coverage met-
ric configuration that provides effectiveness improvements across all subjects,
for the sake of simplifying the remaining experiments, we identify a config-
uration for MOTIF that is likely to provide improvements in most subjects.
It consists of combining Clang, ASAN, and LAF and we call such configuration
Best, . We selected ASAN because it performs similarly to the baseline in terms
of percentage of killed mutants but also prevents the generation of inputs that
are invalid and cause memory access errors. We selected LAF because it leads
to the largest number of killed mutants, across all subjects (3283 versus 3186
for NGRAM and 3190 for CTX), and further leads to the largest effectiveness
improvement (+2.27 pp), and also improves the subject with the most effective
test suite (i.e., MLFS , which achieves MC/DC and 81.80% MS).

To ensure that the selected configuration options do not interfere, we per-
formed ten additional executions of MOTIF configured with the Best settings,
with each subject, and compare the observed results with MOTIF relying on
the default AFL++ options (i.e., relying on GCC without additional sanitizers or
coverage metrics). Figure 3 shows the percentage of mutants killed by MO-
TIF after each second, when using GCC and Best, for each subject. Each line
captures the average percentage observed in ten runs, with the shaded area
capturing the upper and lower bounds across those runs. The vertical dashed
line shows the time budget for the experiment. With Best, the percentages of
killed mutants are 49.84% for LIBU , 88.74% for ASN1lib, 39.85% for MLFS ,
39.50% for ESAIL, and 82.53% for S5 . These performance results are sig-
nificantly better than those of our baseline (i.e., MOTIF with GCC) for four
subjects: it increases the percentage of killed mutants by 1.53 pp in LIBU ,

Fuzzing-based Mutation Testing of C/C++ CPS 35

20%

40%

60%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts

GCC Best

(a) LIBU

50%

60%

70%

80%

90%

100%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts

GCC Best

(b) ASN1lib

0%

10%

20%

30%

40%

50%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts

GCC Best

(c) MLFS

0%

10%

20%

30%

40%

50%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts
GCC Best

(d) ESAIL

40%

50%

60%

70%

80%

90%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts

GCC Best

(e) S5

Fig. 3: Comparison between MOTIF with GCC and MOTIF with the Best

fuzzer options.

3.30 pp in ASN1lib, 4.34 pp in MLFS , and 1.12 pp in ESAIL. For S5 , the
performance is similar to that of the baseline. Further, we manually inspected
the mutants killed only by the Best configuration and observed that 70% of
the generated test cases enable exercising boundary cases missed by the orig-
inal test suite, which include access to first/last items of arrays and use of
boundary values in conditional statement. We can thus conclude that Best

helps improve the quality of test suites because in safety-critical systems it is
desirable to exercise such situations. We can thus conclude that combining
Clang, ASAN, and LAF leads to the best results in MOTIF .

We leave the identification of solutions to overcome the mutation score
plateau (see Figure 3) to future work; however, it could also be partially due
to the presence of equivalent mutants.

36 Jaekwon Lee et al.

0%

25%

50%

75%

100%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts

MOTIF SEMuP

(a) LIBU

0%

25%

50%

75%

100%

0 2,000 4,000 6,000 8,000 10,000
Execution time (seconds)

K
ill

ed
 m

ut
an

ts

MOTIF SEMuP

(b) ASN1lib

Fig. 4: Percentage of mutants killed by MOTIF and SEMuP .

5.4 RQ2 - Fuzzing vs Symbolic Execution

5.4.1 Design

We compare fuzzing and symbolic execution in terms of cost-effectiveness. The
effectiveness of an automated mutation testing tool can be measured in terms
of the proportion of live mutants killed. Its cost is determined by the time
required to kill the mutants; indeed, lengthy test data generation may delay
the testing process and increase the usage of computing resources. Though cost
is also driven by the time required to manually inspect test outputs, MOTIF
and SEMuP should require the same manual inspection time because they
invoke the same functions under test and print out the same output values.
Therefore, regarding cost, we focus on execution time and thus compare cost-
effectiveness in terms of live mutants killed for different time budgets.

We could not consider MLFS to address RQ2 because it works mainly with
floating point arguments, which are not supported by KLEE. An old version
of KLEE addresses floating point variables but it is not integrated into SEMu.
We could not consider ESAIL and S5 because of the lack of KLEE support for
multi-threading libraries and C++. We therefore focus on LIBU and ASN1lib;
however, for LIBU we considered only four out of 27 source files, because all
the other source files included I/O operations, which are not supported by
KLEE/SEMu, or cannot be compiled into LLVM bitcode. This leads to 1,347
live mutants for ASN1lib and 153 for LIBU . For MOTIF , we considered the
Best configuration identified in RQ1.

5.4.2 Results

Figure 4 depicts the percentage of live mutants killed by MOTIF and SEMuP
for LIBU (4a) and ASN1lib (4b), respectively. Each line represents the average
percentage from ten runs, with the shaded area around each line indicating the
upper and lower bounds across those runs. The vertical dashed line means the
time budget for each experiment. At that point, SEMuP stops exploring paths
and generates inputs that satisfy the current path condition, which, sometimes,
is sufficient to identify inputs that kill mutants. We observe a rapid increase

Fuzzing-based Mutation Testing of C/C++ CPS 37

in the number of mutants killed by SEMuP for the ASN1lib, which includes
paths with several nested conditions.

The plots show that MOTIF outperforms SEMuP . After 10,000 seconds,
MOTIF kills between 117 (76.47%) and 120 (78.43%) mutants for LIBU (avg.
is 118.20, 77.25%) and between 1,190 (88.34%) and 1,200 (89.09%) for ASN1lib
(avg. is 1,195.30, 88.74%). In contrast, SEMuP kills 41 (26.80%) to 42 (27.45%)
mutants for LIBU (avg. is 41.2, 26.93%) and 1,017 (75.50%) to 1,018 (75.58%)
for ASN1lib (avg. is 1,017.8, 75.56%). On average, across the ten runs, MOTIF
kills a percentage of mutants that is 50.33 percentage points (pp) and 13.18
pp higher than SEMuP ’s, for LIBU and ASN1lib, respectively.

The difference between MOTIF and SEMuP is significant at every times-
tamp, based on a U-test (p < 0.01). For example, after one minute, MOTIF
kills, on average, 110.5 (LIBU) and 1,045.00 (ASN1lib) mutants, while SEMuP
kills 29 (LIBU) and 924.6 (ASN1lib) mutants. For both LIBU and ASN1lib,
MOTIF quickly reaches a near plateau; in LIBU , MOTIF reaches the plateau
quicker because of LIBU ’s simple control logic.

Though MOTIF outperforms SEMuP , they show some degree of comple-
mentarity, which justifies the integration of hybrid fuzzers in MOTIF (see
Section 2.2). If we consider the best run of each approach, in the case of
ASN1lib, MOTIF kills 257 (19.08%) mutants not killed by SEMuP , while
SEMuP kills 75 (5.57%) mutants not killed by MOTIF . In the case of LIBU ,
MOTIF kills an additional 78 (50.98%) mutants on top of the mutants killed
by SEMuP . We manually inspected some of the mutants and noticed that
SEMuP is sometimes better at generating inputs that satisfy narrow, simple
constraints. However, such a characteristic is more useful for ASN1lib, which
mainly performs boundary checks for nested data structures, rather than the
utility library. On the other hand,MOTIF is better when SEMuP fails to solve
complex constraints. For example, for LIBU , SEMuP could not kill 52 mutants
affecting a conditional statement with 24 bitwise operations, 44 mutants af-
fecting a conditional statement with 13 conditions expressed using inequalities,
and 5 mutants affecting the size of the buffer used in snprintf statements.
Finally, MOTIF enabled the discovery of four bugs that were confirmed by
developers: two concern missing checks for out-of-domain numerical inputs,
the other two are an integer overflow affecting operations on a numerical data
structure with multiple fields. We detected the missing checks by observing
that the generated test cases include an out-of-domain input but do not re-
sult in an execution error flag being set (likely they were not detected by test
cases because the valid domain is underspecified in specifications). The inte-
ger overflow was discovered by observing that the result of a sum of two large
numeric items led to a lower number. The integer underflow can be noticed by
observing that the difference between a zero-filled data instance and a data
instance with small positive numbers result in large positive numbers. SEMuP
discovered only three of them.

38 Jaekwon Lee et al.

5.5 RQ3 - Seeding effectiveness

5.5.1 Design

To discuss how MOTIF ’s seeds contribute to mutation testing results, we
focus on the proportion of mutants killed with seed inputs in the experiments
performed to address RQ1 with the MOTIF ’s Best configuration.

5.5.2 Results

MOTIF ’s seed inputs contributed to killing mutants as follows: 22.2 (5.08%)
for LIBU , 304 (22.57%) for ASN1lib, 81 (2.08%) for MLFS , 69 (11.88%) for
ESAIL, and 39 (39.39%) for S5 . However, although in all the subjects ex-
cept LIBU seed inputs killed the same mutants across the ten runs, in LIBU
the number of killed mutants varied between 22 and 23 because of a non-
deterministic function that computes the time difference before and after in-
voking the sleep() function.

The percentage of mutants killed by seed inputs largely depends on the
nature of the functions under test. For mutants in MLFS and LIBU , such
percentages are low because they mainly alter mathematical operations whose
mutants are killed with inputs satisfying complex constraints. For ASN1lib,
ESAIL, and S5 , the proportion of mutants killed is higher because the mutants
modified lines that affect the output observed with any input value. Please note
that seed inputs do not introduce bias in RQ2 results since SEMuP kills most
of the mutants killed by seed inputs (267/304 for ASN1lib and 1/1 for LIBU).

Concluding, although the selected seed inputs help kill mutants, the con-
tribution of the fuzzing process is significant with, at the very minimum (S5),

52.27% (i.e., 100%− 39.39%/
82.53%) of the killed mutants being killed by fuzzing.

5.6 RQ4 - Applying Hybrid-fuzzing

5.6.1 Design

We compare MOTIF with MOTIF -Hybrid, our MOTIF extension integrat-
ing AFL++ with SymCC to leverage hybrid fuzzing for mutation testing (see
Section 5.2). To ensure a fair comparison, we applied the Best fuzzing con-
figuration identified in RQ1 to both approaches. As for RQ2, we compare the
two approaches in terms of cost-effectiveness, by reporting on the MS and the
time taken to kill mutants.

We considered four subjects: LIBU , ASN1lib, MLFS , and ESAIL. We ex-
cluded S5 because SymCC cannot successfully compile C++ code relying on
the STL library. Also, since SymCC fails to correctly compile code chunks with
increment and decrement operators for boolean, we excluded two ESAIL mu-
tants. Finally, we executed the two approaches ten times on each subject for
10,000 seconds.

Fuzzing-based Mutation Testing of C/C++ CPS 39

Table 5: Complementarity between MOTIF -Hybrid, MOTIF , and SEMuP in
ASN1lib: number of mutants killed and not killed by the selected approaches,
for their best execution.

MOTIF -Hybrid SEMuP

KILLED LIVE KILLED LIVE

SEMuP
KILLED 955 63 - -

LIVE 267 62 - -

MOTIF
KILLED 1188 12 943 257

LIVE 34 113 75 72

5.6.2 Results

Figure 5 presents boxplots providing the distributions of MS (5a) after 10,000
seconds and the time taken to kill mutants (5b), across the ten experimental
runs.

MOTIF -Hybrid increases the percentage of killed mutants in ASN1lib by
up to 1.37 pp (18.5 mutants) on average, while the performance differences for
the other subjects are not statistically significant.

As for the time taken to kill mutants, we report that the mutants in
ASN1lib and MLFS were killed significantly faster with MOTIF -Hybrid. The
median per mutant for ASN1lib and for MLFS is 142.00 vs. 208.66 seconds
and 214.60 vs. 253.08 seconds, respectively, when compared with MOTIF . In
LIBU and ESAIL, the difference is not significant, however, with the me-
dian observed for MOTIF -Hybrid with LIBU being lower (57.13 seconds with
MOTIF -Hybrid vs. 66.13 seconds with MOTIF).

Additionally, we manually investigated the complementarity between MO-
TIF -Hybrid, MOTIF , and SEMuP in ASN1lib, which, in RQ2, showed that
MOTIF and SEMuP are complementary. Table 5 shows the number of killed
and live mutants observed in the best run of each approach. MOTIF -Hybrid
killed 267 mutants (19.82%) that were not killed by SEMuP . However, MO-

0.85
0.90
0.95

MOTIF MOTIF−Hybrid

0.35
0.40
0.45
0.50
0.55

LIBU ASN1 MLFS ESAIL

(a) Mutation score

0

100

200

LIBU ASN1 MLFS ESAIL

MOTIF MOTIF−Hybrid

(b) Kill time (seconds)

Fig. 5: Results observed when applying MOTIF with AFL++ (MOTIF) and
MOTIF with SymCC (MOTIF-Hybrid).

40 Jaekwon Lee et al.

Table 6: Comparison MOTIF with Best set of fuzzing options and results
after reusing inputs for five selected subjects

Subject Target
mutants

of killed mutants
(Avg. of 10 runs)

of inputs for
functions (10 runs)

Reuse time
(50 runs, seconds)

Kill time
(50 runs, seconds)

FUZZED REUSED DIFF Mean Min Max Mean Min Max Mean Min Max

LIBU 325 61.78% 62.71% 0.92 pp (0.0048) 299.49 1 3166 5.72 0.01 264.84 0.21 0.02 5.02

ASN1lib 762 80.09% 83.88% 3.79 pp (0.0002) 143.69 4 779 9.13 0.10 854.79 0.12 0.01 1.06

MLFS 3623 42.50% 43.57% 1.08 pp (0.0002) 125.65 1 1267 12.51 0.01 353.51 0.11 0.01 4.14

ESAIL 418 54.90% 55.02% 0.12 pp (0.2515) 246.78 1 1398 484.40 0.23 835.10 0.24 0.14 1.06

S5 28 88.21% 89.29% 1.07 pp (0.0767) 11.33 7 28 1.76 0.00 6.74 0.10 0.08 0.15

n.nn pp% : outperformed the baseline with p ≤ 0.01,

TIF -Hybrid killed only 12 of the 75 mutants killed by SEMuP but not by MO-
TIF ; the fact that SymCC cannot kill all the mutants killed by SEMuP shows
that SymCC presents some limitations compared to SEMuP (e.g., it may need
to augment the set of inputs executed symbolically). However, if we subtract
the mutants missed by MOTIF -Hybrid from the additional mutants killed by
MOTIF -Hybrid compared to SEMuP and MOTIF , we observe that MOTIF -
Hybrid still kills 204 more mutants than SEMuP and 22 more mutants than
MOTIF , thus remaining the most effective choice.

Concluding, MOTIF -Hybrid is the best approach for mutation
testing since it is faster at killing mutants and has a higher MS
in half of the subjects, while getting an equivalent MS with the oth-
ers, when technical limitations do not prevent its adoption (e.g., in
C++ projects like S5). MOTIF -Hybrid could therefore be a practi-
cal solution for large projects resulting in a significant number of
mutants. However, the setup required for MOTIF -Hybrid is more complex
than the one required for MOTIF ; indeed, it is necessary to set up additional
configurations for the AFL fuzzer and to compile the fuzzing drivers twice,
with the AFL compiler and with SYM-CC. Consequently, MOTIF -Hybrid is
less likely to be adopted in practice, in favor of MOTIF .

5.7 RQ5 - Reusing inputs

5.7.1 Design

RQ5 aims to assess the tradeoff between mutation score improvement and
increased testing time observed when reusing inputs killing mutants to kill
other mutants not successfully killed by MOTIF . For each mutated function
with at least one mutant killed by MOTIF , we rely on the mutant-killing
inputs generated by MOTIF to test the mutants not successfully killed by
MOTIF . Precisely, we collect the fuzzed files that kill mutants in a function
and, after excluding duplicates, provide them as inputs to the fuzzing driver for
a live mutant of the same function. We also apply the MOTIF post-processing
step to avoid false positives (see Step 4 in Section 3.4).

Fuzzing-based Mutation Testing of C/C++ CPS 41

We considered all the five subjects used for RQ1, and the mutant-killing
inputs obtained with the Best configuration. To account for randomness, we
apply the approach to the results of all the ten runs considered for RQ1.

To discuss effectiveness, we compare the MS obtained by reusing inputs
with the MS obtained by MOTIF after 10,000 seconds.

As for cost, we measure, for each mutant, the time taken to execute fuzzing
drivers with all inputs and the time taken until the mutant is killed. Since the
order of inputs may affect execution time, we repeat our experiment 50 times,
after shuffling each input set.

5.7.2 Results

Table 6 presents our results. Column target mutants reports the number of
mutants that belong to the functions that have at least one killed mutant.
Column FUZZED reports the MS obtained by MOTIF on average over 10 runs.
Column REUSED reports the MS obtained after reusing inputs to kill additional
mutants. Column DIFF shows the differences between FUZZED and REUSED, and
reports on the significance of the difference (we highlight significant improve-
ments). The next three sets of columns report statistics (mean, min, and max)
on the number of inputs available for reuse across target functions, the time
required to test each mutant with the reused inputs, and the time taken to
kill a mutant.

The experiment results indicate that MS can be improved by up to 3.79 pp
when reusing inputs, with significant improvements in most of the subjects,
which indicates that input reuse is beneficial for MOTIF . The time taken for
reusing inputs varies, taking up to 15 minutes (900 seconds) depending on
several factors, including the number of inputs, software size, and the type of
mutants. For instance, ESAIL has approximately 70% of its mutants within a
single function, which leads to a large number of additional executions when
reusing inputs. In the case of S5 , the larger size causes a longer execution time
for fuzzing drivers compared to other subjects, but the maximum execution
time is lower due to the number of inputs collected. The execution time is also
affected by the type of mutants. Specifically, some mutants took longer than
others because they modified stopping conditions in program loops.

Since, in the worst case, input reuse takes 855 seconds, and given that Fig-
ure 3 shows that after 9000 seconds MOTIF has already reached the plateau,
we can conclude that with a test budget of 10,000 seconds per mutant, it is
convenient to rely on input reuse. For lower test budgets input reuse may pro-
vide benefits only for a subset of subjects. However, based on our results, up
to 5000 seconds of test budget, input reuse is likely to be beneficial; indeed, in
all our subjects, after 4150 seconds, MOTIF has killed at most 1 pp mutants
less than at 10,000 seconds. Concluding, we suggest executing MOTIF
with a budget of 5000 seconds per mutant, and dedicate the last
900 seconds to input reuse.

42 Jaekwon Lee et al.

5.8 Threats to validity

To address threats to internal validity, we manually verified that MOTIF ,
SEMuP , and MOTIF -Hybrid correctly execute; and further, we manually in-
spected a large subset of the generated test cases and mutants killed in our
experiments. Further, our false positive driver ensures that MOTIF results
are not affected by the presence of global variables or, more generally, non-
determinism. Although we do not reset global state variables in fuzzing drivers,
note that across all experiment runs, out of 32,875 mutants reported as killed
by the fuzzing driver, only 125 were false positives (0.38%), thus showing that
non-determinism does not undermine the applicability of MOTIF .

Though our results may depend on the specific fuzzer used in our exper-
iments, AFL++ is one of the best performing grey-box fuzzers according to
recent benchmarks (see Section 5.2). Further, we assessed MOTIF with a
state-of-the art hybrid fuzzing solution. Although alternative hybrid fuzzers
were not applicable to some of our subjects (see Section 5.2), they might have
led to different and potentially better results; we leave their investigation to
future work.

To address generalizability issues, we selected diverse software subjects that
are installed and running on space CPS, including satellites currently in orbit: a
mathematical library, a utility library, a data serialization component, onboard
control software, and ground software. Since they implement a diverse set of
features (mathematical operations, serialization, string and time utilities), they
strengthen the generalizability of our results. Further, these types of software
components are typical in many CPS systems including avionics, robotics, and
automotive, thus suggesting the proposed approach may be useful in many
sectors other than space.

6 Conclusion

We propose MOTIF , an approach that leverages fuzzing to automatically gen-
erate test data for mutation testing of embedded software deployed in cyber-
physical systems (CPS). It aims to overcome the limitations of SOTA ap-
proaches, which rely on symbolic execution and cannot easily be applied in
many contexts, especially CPS ones.

MOTIF is implemented through a pipeline that generates a test driver that
processes the input data generated by the fuzzer, provides such input data to
the original and mutated versions of a function under test, and determines
when the outputs generated by the two functions differ (i.e., the mutant is
killed). By monitoring the coverage achieved when executing the original and
mutated functions, the fuzzer identifies inputs leading to different behaviors
across these functions and, consequently, is driven towards the identification
of inputs that kill the mutant.

We performed an empirical evaluation with embedded software deployed
on satellites currently in orbit. We empirically determined the fuzzer configu-

Fuzzing-based Mutation Testing of C/C++ CPS 43

rations leading to the best mutation testing results, which consists of relying
on the Clang compiler with address sanitization and LAF coverage optimiza-
tion. In our subjects, such configuration enables killing between 40% and 83%
of the mutants. Further, although our seeding strategy contributes to quickly
killing mutants, most of the mutants (between 60% and 97%) are killed thanks
to the fuzz testing process. We compared MOTIF with a SOTA approach
based on symbolic execution, which showed that the percentage of mutants
killed by MOTIF is higher than the SOTA approach by 13 and 50 percentage
points in our two case studies where symbolic execution is applicable. Our
results therefore clearly show that fuzzing should be adopted as the preferred
method to use to perform mutation testing. However, we also demonstrated
that hybrid-fuzzing, which integrates fuzzing and symbolic execution, leads to
slightly increasing the percentage of killed mutants (up to 1.37 pp).

Acknowledgment

The experiments presented in this paper were carried out using the HPC
facilities of the University of Luxembourg (see http://hpc.uni.lu). This
research was supported by ESA via a GSTP element contract (RFQ/3-
17554/21/NL/AS/kkIMPROVE) and by the NSERC Discovery and Canada
Research Chair programs. The authors would like to thank Oscar Cornejo and
Enrico Viganò for having contributed to the preliminary versions of MOTIF .

References

1. ESA, “ECSS-E-ST-40C - Software general requirements.” 2009. [Online]. Available:
http://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/

2. L. Buffoni, L. Ochel, A. Pop, P. Fritzson, N. Fors, G. Hedin, W. Taha, and M. Sjölund,
“Open source languages and methods for cyber-physical system development:
Overview and case studies,” Electronics, vol. 10, no. 8, p. 902, 2021. [Online].
Available: https://www.mdpi.com/2079-9292/10/8/902

3. M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman, “Mutation
testing advances: an analysis and survey,” in Advances in Computers, 2019.

4. M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores correlated with
real fault detection? a large scale empirical study on the relationship between mutants
and real faults,” in 2018 IEEE/ACM 40th International Conference on Software En-
gineering (ICSE). IEEE, 2018, pp. 537–548.

5. T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An empirical study on
mutation, statement and branch coverage fault revelation that avoids the unreliable
clean program assumption,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), 2017, pp. 597–608.

6. O. E. Cornejo Olivares, F. Pastore, and L. Briand, “Mutation Analysis for
Cyber-Physical Systems: Scalable Solutions and Results in the Space Domain,” IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 3913–3939, 2022. [Online].
Available: https://doi.org/10.1109/TSE.2021.3107680

7. T. T. Chekam, M. Papadakis, M. Cordy, and Y. L. Traon, “Killing stubborn mutants
with symbolic execution,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 30, no. 2, Jan. 2021.

http://hpc.uni.lu
http://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://www.mdpi.com/2079-9292/10/8/902
https://doi.org/10.1109/TSE.2021.3107680

44 Jaekwon Lee et al.

8. C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’08, vol. 8.
USA: USENIX Association, 2008, p. 209–224.

9. G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,” IEEE
Transactions on Software Engineering, vol. 38, no. 2, pp. 278–292, 2011.

10. Cobham Gaisler, “RTEMS Cross Compilation System,”
https://www.gaisler.com/index.php/products/operating-systems/rtems, 2021.

11. V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo, “The
art, science, and engineering of fuzzing: A survey,” IEEE Transactions on Software
Engineering, vol. 47, no. 11, pp. 2312–2331, 2019.

12. M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation for REST APIs:
no time to rest yet,” in ISSTA ’22: 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022,
S. Ryu and Y. Smaragdakis, Eds. ACM, 2022, pp. 289–301. [Online]. Available:
https://doi.org/10.1145/3533767.3534401

13. K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Automatic
fuzzer generation,” in 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Aug. 2020, pp. 2271–2287. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou

14. D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux,
L. Szekeres, and W. Wang, “Fudge: Fuzz driver generation at scale,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p. 975–985. [Online].
Available: https://doi.org/10.1145/3338906.3340456

15. C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying, J. Wang, and Y. Liu,
“APICraft: Fuzz driver generation for closed-source SDK libraries,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, Aug. 2021, pp.
2811–2828. [Online]. Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/zhang-cen

16. B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim, and Y. H. Hwang,
“UTopia: Automatic Generation of Fuzz Driver using Unit Tests,” in Proceedings -
IEEE Symposium on Security and Privacy, vol. 2023-May, 2023, pp. 2676–2692.

17. P. Chen, Y. Xie, Y. Lyu, Y. Wang, and H. Chen, “Hopper: Interpretative
fuzzing for libraries,” in Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1600–1614. [Online]. Available:
https://doi-org.proxy.bnl.lu/10.1145/3576915.3616610

18. J. Lee, E. Vigano, O. Cornejo, F. Pastore, and L. Briand, “Fuzzing for cps
mutation testing,” in 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). Los Alamitos, CA, USA: IEEE Computer Society,
sep 2023, pp. 1377–1389. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ASE56229.2023.00079

19. D. Zhang, A. Fioraldi, and D. Balzarotti, “On understanding and forecasting fuzzers
performance with static analysis,” in CCS 2024, 31st ACM conference on Computer
and Communications Security, 14-18 October 2024, Salt Lake City, UT, USA, ACM,
Ed., Salt Lake City, 2024.

20. “Laf-intel,” https://lafintel.wordpress.com/, accessed: 2024-02-28.
21. X. Zhu and M. Böhme, “Regression greybox fuzzing,” in Proceedings of the 28th ACM

Conference on Computer and Communications Security, ser. CCS, 2021.
22. F. Free Software Foundation, “GCC, the GNU Compiler Collection,”

https://gcc.gnu.org/, 2021.
23. European Space Agency, “ESAIL microsatellite,” 2021. [On-

line]. Available: https://www.esa.int/Applications/Telecommunications Integrated
Applications/ESAIL maritime satellite ready for launch

24. G. Soltana, M. Sabetzadeh, and L. C. Briand, “ESA sentinel missions,” 2021.
[Online]. Available: https://sentinel.esa.int/web/sentinel/home

https://doi.org/10.1145/3533767.3534401
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://doi.org/10.1145/3338906.3340456
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://doi-org.proxy.bnl.lu/10.1145/3576915.3616610
https://doi.ieeecomputersociety.org/10.1109/ASE56229.2023.00079
https://doi.ieeecomputersociety.org/10.1109/ASE56229.2023.00079
https://lafintel.wordpress.com/
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ESAIL_maritime_satellite_ready_for_launch
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ESAIL_maritime_satellite_ready_for_launch
https://sentinel.esa.int/web/sentinel/home

Fuzzing-based Mutation Testing of C/C++ CPS 45

25. “FAQAS project,” https://faqas.uni.lu, 2023.
26. J. Lee, E. Viganò, O. Cornejo, F. Pastore, and L. Briand, “MOTIF toolset,” https:

//github.com/SNTSVV/MOTIF, 2024.
27. J. Lee, F. Pastore, and L. Briand, “Replication package,” https://figshare.com/s/

5a9a1fa723c374f5d0fd, 2024.
28. S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,

M. J. Harrold, P. McMinn, A. Bertolino, J. Jenny Li, and H. Zhu, “An orchestrated sur-
vey of methodologies for automated software test case generation,” Journal of Systems
and Software, vol. 86, no. 8, pp. 1978–2001, 2013.

29. L. Bordeaux, Y. Hamadi, and L. Zhang, “Propositional satisfiability and constraint
programming: A comparative survey,” ACM Comput. Surv., vol. 38, no. 4, Dec. 2006.
[Online]. Available: https://doi.org/10.1145/1177352.1177354

30. Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state of) the art of war: Offensive
techniques in binary analysis,” in IEEE Symposium on Security and Privacy, 2016.

31. V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-path
analysis of software systems,” in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS XVI. New York, NY, USA: Association for Computing Machinery, 2011,
p. 265–278. [Online]. Available: https://doi.org/10.1145/1950365.1950396

32. S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t interpret, com-
pile!” in 29th USENIX Security Symposium (USENIX Security 20). USENIX Asso-
ciation, Aug. 2020, pp. 181–198.

33. I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical concolic exe-
cution engine tailored for hybrid fuzzing,” in 27th {USENIX} Security Symposium.
Baltimore, MD: USENIX Association, Aug. 2018, pp. 745–761.

34. S. Poeplau and A. Francillon, “SymQEMU: Compilation-based symbolic execution
for binaries,” in Network and Distributed System Security Symposium. Network &
Distributed System Security Symposium, February 2021.

35. J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and I. Shin,
“SYMSAN: Time and space efficient concolic execution via dynamic data-
flow analysis,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp. 2531–2548. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju

36. J. Metzman, L. Szekeres, L. Maurice Romain Simon, R. Trevelin Sprabery, and
A. Arya, “FuzzBench: An Open Fuzzer Benchmarking Platform and Service,” in
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2021. New York, NY, USA: Association for Computing Machinery, 2021,
p. 1393–1403. [Online]. Available: https://doi.org/10.1145/3468264.3473932

37. D. Asprone, J. Metzman, A. Arya, G. Guizzo, and F. Sarro, “Comparing
fuzzers on a level playing field with fuzzbench,” in 2022 IEEE Conference
on Software Testing, Verification and Validation (ICST). Los Alamitos, CA,
USA: IEEE Computer Society, apr 2022, pp. 302–311. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICST53961.2022.00039

38. CLANG, “Undefined Behavior Sanitizer,” http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-
checks, 2020.

39. M. Zalewski, “How AFL works,” 2022. [Online]. Available: https://afl-1.readthedocs.
io/en/latest/about afl.html#how-afl-works

40. P. Ammann and J. Offutt, Introduction to software testing. Cambridge University
Press, 2016.

41. C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah, “MOPT:
Optimized mutation scheduling for fuzzers,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1949–1966. [Online]. Available: https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

42. M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-Based Greybox Fuzzing as
Markov Chain,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer

https://faqas.uni.lu
https://github.com/SNTSVV/MOTIF
https://github.com/SNTSVV/MOTIF
https://figshare.com/s/5a9a1fa723c374f5d0fd
https://figshare.com/s/5a9a1fa723c374f5d0fd
https://doi.org/10.1145/1177352.1177354
https://doi.org/10.1145/1950365.1950396
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://doi.org/10.1145/3468264.3473932
https://doi.ieeecomputersociety.org/10.1109/ICST53961.2022.00039
https://afl-1.readthedocs.io/en/latest/about_afl.html#how-afl-works
https://afl-1.readthedocs.io/en/latest/about_afl.html#how-afl-works
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu

46 Jaekwon Lee et al.

and Communications Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 1032–1043.

43. A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining incremen-
tal steps of fuzzing research,” in 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, Aug. 2020.

44. P. Wang, X. Zhou, T. Yue, P. Lin, Y. Liu, and K. Lu, “The progress,
challenges, and perspectives of directed greybox fuzzing,” Software Testing,
Verification and Reliability, vol. 34, no. 2, p. e1869, 2024. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1869

45. R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th International Conference
on Software Engineering (ICSE’07), 2007, pp. 416–426.

46. N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing Through Selective Symbolic
Execution Nick,” Network and Distributed System Security Symposium, no. February,
pp. 21–24, 2016.

47. M. Zalewski, “American Fuzzy Lop: a security-oriented fuzzer,” 2020. [Online].
Available: http://lcamtuf.coredump.cx/afl/

48. L. Borzacchiello, E. Coppa, and C. Demetrescu, “FUZZOLIC: mixing fuzzing and
concolic execution,” Computers & Security, 2021.

49. ——, “Fuzzing symbolic expressions,” in 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), 2021, pp. 711–722.

50. J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software testing with
large language models: Survey, landscape, and vision,” IEEE Transactions on Software
Engineering, vol. 50, no. 4, pp. 911–936, 2024.

51. S. Y. Shin, F. Pastore, D. Bianculli, and A. Baicoianu, “Towards generating
executable metamorphic relations using large language models,” 2024. [Online].
Available: https://arxiv.org/abs/2401.17019

52. A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, and J. M. Zhang,
“Large language models for software engineering: Survey and open problems,” in 2023
IEEE/ACM International Conference on Software Engineering: Future of Software
Engineering (ICSE-FoSE), 2023, pp. 31–53.

53. C. Zhang, M. Bai, Y. Zheng, Y. Li, X. Xie, Y. Li, W. Ma, L. Sun, and
Y. Liu, “Understanding Large Language Model Based Fuzz Driver Generation,”
in Proceedings of the 33rd International Symposium on Software Testing and
Analysis (ISSTA). Association for Computing Machinery, 2024. [Online]. Available:
http://arxiv.org/abs/2307.12469

54. G. O.-F. Team, “Oss-fuzz-gen: Llm powered fuzzing via oss-fuzz,” https://github.com/
google/oss-fuzz-gen, 2024, accessed: 2024-08-28.

55. Y. Lyu, Y. Xie, P. Chen, and H. Chen, “Prompt Fuzzing for Fuzz Driver Generation,”
in Proceedings of the 31st ACM Conference on Computer and Communications
Security (CCS). Association for Computing Machinery, 2024. [Online]. Available:
http://arxiv.org/abs/2312.17677

56. X. Liu, W. You, Z. Zhang, and X. Zhang, “Tensilefuzz: Facilitating seed input
generation in fuzzing via string constraint solving,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis, ser. ISSTA
2022. New York, NY, USA: Association for Computing Machinery, 2022, p. 391–403.
[Online]. Available: https://doi.org/10.1145/3533767.3534403

57. J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed generation for
fuzzing,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 579–594.

58. A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and infeasible
paths,” Software testing, verification and reliability, vol. 7, no. 3, pp. 165–192, 1997.

59. D. B. Brown, Mutation Testing: Algorithms and Applications. The University of
Wisconsin-Madison, 2020.

60. D. Holling, S. Banescu, M. Probst, A. Petrovska, and A. Pretschner, “Nequivack:
Assessing mutation score confidence,” in 2016 IEEE Ninth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 2016,
pp. 152–161.

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1869
http://lcamtuf.coredump.cx/afl/
https://arxiv.org/abs/2401.17019
http://arxiv.org/abs/2307.12469
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
http://arxiv.org/abs/2312.17677
https://doi.org/10.1145/3533767.3534403

Fuzzing-based Mutation Testing of C/C++ CPS 47

61. H. Riener, R. Bloem, and G. Fey, “Test case generation from mutants using model
checking techniques,” in 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops. IEEE, 2011, pp. 388–397.

62. T. T. Chekam, “SEMu: Symbolic Execution-based Mutant Analysis Framework,”
https://github.com/thierry-tct/KLEE-SEMu, 2023.

63. K. Ayari, S. Bouktif, and G. Antoniol, “Automatic mutation test input data gener-
ation via ant colony,” in Proceedings of the 9th annual conference on Genetic and
evolutionary computation, 2007, pp. 1074–1081.

64. M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE computa-
tional intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

65. G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for object-
oriented software,” in Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 416–419. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025179

66. ——, “Achieving scalable mutation-based generation of whole test suites,” Empirical
Software Engineering, vol. 20, no. 3, pp. 783–812, 2015.

67. H. Almulla and G. Gay, “Learning how to search: generating effective test cases
through adaptive fitness function selection,” Empirical Software Engineering, vol. 27,
no. 2, p. 38, 2022. [Online]. Available: https://doi.org/10.1007/s10664-021-10048-8

68. F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E. Delamaro, “Strong mutation-
based test data generation using hill climbing,” in Proceedings of the 9th International
Workshop on Search-Based Software Testing, 2016, pp. 45–54.

69. B. Korel, “Automated software test data generation,” IEEE Transactions on Software
Engineering, vol. 16, no. 8, pp. 870–879, 1990.

70. K. Lakhotia, M. Harman, and H. Gross, “Austin: A tool for search based software
testing for the c language and its evaluation on deployed automotive systems,” in
2nd International symposium on search based software engineering. IEEE, 2010, pp.
101–110.

71. ——, “Austin: An open source tool for search based software testing of c programs,”
Information and Software Technology, vol. 55, no. 1, pp. 112–125, 2013, special sec-
tion: Best papers from the 2nd International Symposium on Search Based Software
Engineering 2010.

72. K. Lakhotia, “Honggfuzz,” https://github.com/kiranlak/austin-sbst, 2022.
73. S. Scalabrino, G. Grano, D. Di Nucci, M. Guerra, A. De Lucia, H. C. Gall, and

R. Oliveto, “Ocelot: A search-based test-data generation tool for c,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ser. ASE ’18. New York, NY, USA: Association for Computing Machinery, 2018, p.
868–871. [Online]. Available: https://doi.org/10.1145/3238147.3240477

74. X. Dang, X. Yao, D. Gong, and T. Tian, “Efficiently generating test data to kill
stubborn mutants by dynamically reducing the search domain,” IEEE Transactions
on Reliability, vol. 69, no. 1, pp. 334–348, 2019.

75. Z. Wang, B. Liblit, and T. Reps, “Tofu: Target-oriented fuzzer,” arXiv preprint
arXiv:2004.14375, 2020.

76. European Space Agency, “Space,” 2021. [Online]. Available: https://sir.csc.ncsu.edu/
portal/bios/space.php

77. S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: Differential fuzzing for side-
channel analysis,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 176–187.

78. V. Vikram, I. Laybourn, A. Li, N. Nair, K. OBrien, R. Sanna, and R. Padhye, “Guiding
greybox fuzzing with mutation testing,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. New York, NY, USA:
ACM, 2023, p. 929–941. [Online]. Available: https://doi.org/10.1145/3597926.3598107

79. G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation of whole test
suites,” Empirical Softw. Engg., vol. 20, no. 3, p. 783–812, jun 2015.

80. R. Qian, Q. Zhang, C. Fang, and L. Guo, “Investigating coverage guided fuzzing with
mutation testing,” in Proceedings of the 13th Asia-Pacific Symposium on Internetware,
ser. Internetware ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 272–281. [Online]. Available: https://doi.org/10.1145/3545258.3545285

https://github.com/thierry-tct/KLEE-SEMu
http://doi.acm.org/10.1145/2025113.2025179
https://doi.org/10.1007/s10664-021-10048-8
https://doi.org/10.1145/3238147.3240477
https://sir.csc.ncsu.edu/portal/bios/space.php
https://sir.csc.ncsu.edu/portal/bios/space.php
https://doi.org/10.1145/3597926.3598107
https://doi.org/10.1145/3545258.3545285

48 Jaekwon Lee et al.

81. R. Just, G. Fraser, M. Ivanković, and G. Petrovic, “Practical mutation testing at scale:
A view from google,” IEEE Transactions on Software Engineering, vol. 47, pp. 2780–
2795, 2021.

82. D. Schuler and A. Zeller, “Covering and uncovering equivalent mutants,” STVR, 2013.
83. D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing by checking invari-

ant violations,” in Proceedings of the eighteenth international symposium on Software
testing and analysis (ISSTA’18), 2009.

84. M. E. Delamaro, J. Maidonado, and A. P. Mathur, “Interface mutation: An approach
for integration testing,” IEEE transactions on software engineering, vol. 27, no. 3, pp.
228–247, 2001.

85. LLVM project, “Clang library,” https://clang.llvm.org/, 2023.
86. ——, “The LLVM compiler infrastructure project,” https://llvm.org/, 2023.
87. LLVM, “LLVM documentation - libfuzzer – a library for coverage-guided fuzz testing.”

https://llvm.org/docs/LibFuzzer.html, 2022.
88. A. Sălcianu and M. Rinard, “Purity and side effect analysis for java programs,”

in Verification, Model Checking, and Abstract Interpretation (VMCAI 2005), ser.
Lecture Notes in Computer Science, vol. 3385. Springer, 2005, pp. 199–215. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-540-30579-8 14

89. A. Arcuri, G. Fraser, and R. Just, “Private api access and functional mocking in
automated unit test generation,” in Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), March 13–17 2017,
pp. 126–137. [Online]. Available: https://homes.cs.washington.edu/∼rjust/publ/
mocking reflection testing icst 2017.pdf

90. D. Shin, S. Yoo, and D.-H. Bae, “A theoretical and empirical study of diversity-aware
mutation adequacy criterion,” IEEE TSE, 2017.

91. European Space Agency, “MLFS - mathematical library for
space software,” 2021. [Online]. Available: https://essr.esa.int/project/
mlfs-mathematical-library-for-flight-software

92. ESA, “ECSS-Q-ST-80C Rev.1 - Software product as-
surance.” 2017. [Online]. Available: http://ecss.nl/standard/
ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/

93. Semantix and Neuropublic, “ASN.1 certified compiler,” https://github.com/ttsiodras/
asn1scc, 2021.

94. G. Mamais, T. Tsiodras, D. Lesens, and M. Perrotin, “An ASN.1 compiler for
embedded/space systems,” in Embedded Real Time Software and Systems (ERTS2012),
Toulouse, France, Feb. 2012. [Online]. Available: https://hal.science/hal-02263447

95. O. Cornejo, F. Pastore, and L. Briand, “Mass: A tool for mutation analysis of space
cps,” in 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2022, pp. 134–138.

96. A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental deter-
mination of sufficient mutant operators,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 5, no. 2, pp. 99–118, 1996.

97. M. E. Delamaro, J. Offutt, and P. Ammann, “Designing deletion mutation operators,”
in 2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation. IEEE, 2014, pp. 11–20.

98. J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for
testing experiments?” in Proceedings of the 27th international conference on Software
engineering. ACM, 2005, pp. 402–411.

99. J. J. Chilenski and S. P. Miller, “Applicability of modified condition/decision coverage
to software testing,” Software Engineering Journal, vol. 9, no. 5, pp. 193–200, 1994.

100. R. Ramler, T. Wetzlmaier, and C. Klammer, “An empirical study on the application
of mutation testing for a safety-critical industrial software system,” Proceedings of
the ACM Symposium on Applied Computing, vol. Part F128005, no. Section 4, pp.
1401–1408, 2017.

101. P. Delgado-Pérez, I. Habli, S. Gregory, R. Alexander, J. Clark, and I. Medina-Bulo,
“Evaluation of mutation testing in a nuclear industry case study,” IEEE Transactions
on Reliability, vol. 67, no. 4, pp. 1406–1419, 2018.

https://llvm.org/
https://link.springer.com/chapter/10.1007/978-3-540-30579-8_14
https://homes.cs.washington.edu/~rjust/publ/mocking_reflection_testing_icst_2017.pdf
https://homes.cs.washington.edu/~rjust/publ/mocking_reflection_testing_icst_2017.pdf
https://essr.esa.int/project/mlfs-mathematical-library-for-flight-software
https://essr.esa.int/project/mlfs-mathematical-library-for-flight-software
http://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
http://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://github.com/ttsiodras/asn1scc
https://github.com/ttsiodras/asn1scc
https://hal.science/hal-02263447

Fuzzing-based Mutation Testing of C/C++ CPS 49

102. D. Shin, S. Yoo, and D. Bae, “A theoretical and empirical study of diversity-aware
mutation adequacy criterion,” IEEE Transactions on Software Engineering, vol. 44,
no. 10, pp. 914–931, Oct 2018.

103. J. Lee, E. Vigano, F. Pastore, and L. Briand, “Motif: A tool for mutation
testing with fuzzing,” in 17th IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2024. [Online]. Available: https:
//orbilu.uni.lu/handle/10993/61840

104. Fuzzbench Team, “FuzzBench: 2024-08-03-test report,” https://www.fuzzbench.com/
reports/2024-08-10-test/index.html, 2024.

105. J. Ounjai, V. Wüstholz, and M. Christakis, “Green fuzzer benchmarking,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1396–1406. [Online]. Available:
https://doi.org/10.1145/3597926.3598144

106. Google, “Honggfuzz,” https://github.com/google/honggfuzz, 2022.
107. J. Hu, Y. Duan, and H. Yin, “Marco: A stochastic asynchronous concolic explorer,”

in Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ser. ICSE ’24. New York, NY, USA: Association for Computing
Machinery, 2024. [Online]. Available: https://doi.org/10.1145/3597503.3623301

108. S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of an academic
HPC cluster: The UL experience,” in Proceedings of the 2014 International Conference
on High Performance Computing & Simulation (HPCS’14). IEEE, 2014, pp. 959–967.

109. K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A
fast address sanity checker,” in Proceedings of the USENIX ATC 2012, 2012. [On-
line]. Available: https://www.usenix.org/conference/usenixfederatedconferencesweek/
addresssanitizer-fast-address-sanity-checker

110. “Clang 19.0.0git documentation: Undefined bahavior sanitizer,” https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html, accessed: 2024-02-28.

111. “Clang 19.0.0git documentation: Leak sanitizer,” https://clang.llvm.org/docs/
LeakSanitizer.html, accessed: 2024-02-28.

112. E. Stepanov and K. Serebryany, “Memorysanitizer: Fast detector of uninitialized mem-
ory use in c++,” in Proceedings of the 2015 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2015, pp. 46–55.

113. J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive and collaborative:
Analyzing impact of coverage metrics in greybox fuzzing,” Proceedings of the 22nd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID2019),
pp. 1–15, 2019.

https://orbilu.uni.lu/handle/10993/61840
https://orbilu.uni.lu/handle/10993/61840
https://www.fuzzbench.com/reports/2024-08-10-test/index.html
https://www.fuzzbench.com/reports/2024-08-10-test/index.html
https://doi.org/10.1145/3597926.3598144
https://doi.org/10.1145/3597503.3623301
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html

	Introduction
	Background and Related Work
	Proposed approach: MOTIF
	MOTIF C++ extensions
	Empirical Evaluation
	Conclusion

