from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen3-235B-A22B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")

prompt = "Explică conceptul de Mixture of Experts în modelele de limbaj."
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=32768, temperature=0.6)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
