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We show that by intensifying the gravitational interaction between electron pairs it is possible to produce
pair binding energies on the order of 10 eV, enough to keep electron’s pairs (Cooper Pairs) at ambient
temperatures. By means of this method, metals can be transformed into superconductors at ambient
temperature.
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1. Introduction

A pair of weakly bound electrons in a
superconductor is called Cooper pair; it was

first described in 1956 by Leon Cooper [1]. @ Gle @
As showed by Cooper, an attraction between o

electrons in a metal can cause a paired state ® @

of electrons to have a lower energy than the € @©

Fermi energy, which implies that the pair is
bound. In conventional superconductors, this
attraction is due to the electron—phonon @ © &) @
interaction. The Cooper pair state is (@)

responsible  for  superconductivity, as
described in the BCS theory developed by @ ® ©) @
John Bardeen, John Schrieffer and Leon
Cooper for which they shared the 1972 Nobel

Prize [2]. @ ®
In spite of Cooper pairing to be a ®@_@®

quantum effect the reason for the pairing can ® @

be seen from a simplified classical @ ®

explanation [3]. In order to understand how
an attraction between two electrons can
occur, it 1s necessary to consider the @ ® @) ©)
interaction with the positive ions lattice of
the metal. Usually an electron in a metal
behaves as a free particle. Its negative charge @) @ @ @)
causes attraction between the positive ions
that make up the rigid lattice of the metal.

This attraction distorts the ion lattice, moving @ © ©) ©)
the ions slightly toward the electron,

increasing the positive charge density of the e o
lattice in the local (See gray glow in Fig.1 € @ @ @

(a)). Then, another electron is attracted to the
positive charge density (gray glow) created
by the first electron distorting the lattice € ©) ©) €
around itself. This attraction can overcome
the electrons' repulsion due to their negative . © .

charge and create a binding between the two Fig. 1 = Cooper Pair Formation




electrons (See Fig.1 (b)). The electrons can
then travel through the lattice as a single
entity, known as a Cooper Pair (See Fig.1
(c)). While -conventional conduction is
resisted by thermal vibrations within the
lattice, Cooper Pairs carry the supercurrent
relatively unresisted by thermal vibrations.

The energy of the pairing interaction is
quite weak, of the order of 107eV, and
thermal energy can easily break the pairs. So
only at low temperatures, are a significant
number of the electrons in a metal in Cooper
pairs.

Here is showed that, by intensifying the
gravitational interaction ~ [4] between
electrons pairs, it is possible to produce pair
binding energies on the order of 107'eV,
enough to keep them paired at ambient
temperatures. Thus, by this way, metals at
ambient temperature can have a significant
number of the electrons in Cooper pairs,
transforming such metals in superconductors
at ambient temperature.

2. Theory

The quantization of gravity showed
that the gravitational mass my and the
inertial mass m; are correlated by means of
the following factor [4]:

where m,, is the rest inertial mass of the
particle and Ap is the variation in the
particle’s kinetic momentum; ¢ is the speed
of light.

When Ap is produced by the
absorption of a photon with wavelength 4, it
is expressed by Ap=h/A1. In this case, Eq.
(1) becomes

%
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where 1, =h/m,c is the DeBroglie
wavelength for the particle with rest inertial
mass m,,.

In general, the momentum variation
Apis expressed by Ap = FAt where F is the

applied force during a time interval At. Note
that there is no restriction concerning the
nature of the force, i.e., it can be mechanical,
electromagnetic, etc. For example, we can
look on the momentum variation Ap as due

to absorption or emission of electromagnetic
energy by the particle.

This means that, by means of
electromagnetic fields, the gravitational mass
can be decreased down to become negative
and increased (independently of the inertial
mass m,). In this way, the gravitational

forces can be intensified. Consequently, we
can use, for example, oscillating magnetic
fields in order to intensify the gravitational
interaction between electrons pairs, in order
to produce pair binding energies enough to
keep them paired at ambient temperatures.
We will show that the magnetic field used in
this case must have extremely-low frequency
(ELF).

From Electrodynamics we know that
when an electromagnetic wave with
frequency f and velocity C incides on a

material ~ with relative  permittivity &, ,
relative magnetic permeability 4z, and
electrical conductivity o, its velocity is
reduced to v =c/n, where n, is the index of

refraction of the material, given by [5]

n :E:J&_;r(,/u(g/wg)z a) 0
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If o>>wes,w=2af,Eq. (3)reduces to

HO
= 4
k Are, )

Thus, the wavelength of the incident
radiation (See Fig. 2) becomes

v c¢/f A 4
ﬂ“mod:_:/_:_: _ﬂ- (5)
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Fig. 2 — Modified Electromagnetic Wave. The
wavelength of the electromagnetic wave can be
strongly reduced, but its frequency remains the same.

If a lamina with thickness equal to&

contains N atoms/m3, then the number of
atoms per area unit isn&. Thus, if the

electromagnetic radiation with frequency
f incides on an area S of the lamina it

reachesnS¢& atoms. If it incides on the total
area of the lamina, S , then the total number

of atoms reached by the radiation is
N =nS;&. The number of atoms per unit of

volume, N, is given by

L o

where N, = 6.02x10?°atoms/kmole is the

Avogadro’s number; p is the matter density
of the lamina (in kg/m®) and A is the molar
mass(kg/kmole).

When an electromagnetic wave incides
on the lamina, it strikes N; front atoms,

where N; ;(n Sf)¢;rl , @ 1s the “diameter” of

3

the atom. Thus, the electromagnetic wave
incides effectively on an area S=N;S, , where

S, :%ﬂﬁi is the cross section area of one atom.
After these collisions, it carries out n

with the other atoms (See Fig.3).

collisions

Fig. 3 — Collisions inside the lamina.

Thus, the total number of collisions in the
volume S¢&is

Neorisiors Nr Honisior= NS "'(r] & —ﬂnsﬁn) =
=NS¢ 7

The power density, D, of the radiation on the
lamina can be expressed by

p=r-_F (8)
S N,S,
We can express the total mean number
of collisions in each atom,n,, by means of
the following equation

n N s
__ " total photons collisions
n, = s e ©)

Since in each collision a momentum h/A4 is

transferred to the atom, then the total
momentum transferred to the lamina will be

Ap=(nN)h/A. Therefore, in accordance
with Eq. (1), we can write that

Tl _ - 1+[(nlN)%} 1=

Mo

2
Ay
=41- \/1 +|:ntotal photonJ\IcoIIision57 -1 (1 0)




Since Eq. (7) gives N ynisions = MSE , we get

P
r]total photons N collisions — (hf J(n Sf) (1 1)

Substitution of Eq. (11) into Eq. (10) yields

s o] e

Substitution of P given by Eq. (8) into Eq.
(12) gives

2
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Substitution ofN; =(nS; 4, and S=N;S,
into Eq. (13) results

Mo _J o) [y [SeS ¢2§D 1)} (14)
rT\o(l) mioICf A

where mi0(|) = ,0(|)V(|).

Now, considering that the lamina is
inside an ELF electromagnetic field with
E and B , then we can write that [6]

n,E’
22 - (15)
0

Substitution of Eq. (15) into Eq. (14) gives
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Note that E =E_ sinot.The average value
for E® is equal to % E_; because E varies
sinusoidaly (E, is the maximum value
forE). On the other hand, E, =E, /2.

Consequently we can replace E* for E}

ms °
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Thus, for A =A4_,, the equation above can

be rewritten as follows

m - ( nl stzﬂiafrmsJ_ -1 (1 7)
Mo 2uMoC ) Ao
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Electrodynamics tells us that
Eyms = VByys = (6/1,() B,y - Substitution of

this expression into Eq. (17) gives

Mo )y \/1 Suh Bne 111
T m Z{ %mo P ¥y 4

Since A, = 4/, then Eq. (I18) can be

rewritten in the followmg form

P I 12[\/1 —SmeM ”“51] (19)
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In order to calculate the expressions of
Xge for the particular case of a free electron

inside a conductor, subjected to an external
magnetic field B, with frequency f, we

must consider the interaction with the
positive ions that make up the rigid lattice of
the metal.

The negative charge of the free
electron causes attraction between the
positive ions lattice of the metal. This
attraction distorts the ion lattice, moving the
ions slightly toward the electron, increasing
the positive charge density of the lattice in
the local (See gray glow in Fig.1 (a)). Then,
another electron is attracted to the positive
charge density (gray glow) created by the
first electron distorting the lattice around
itself, which produces a strong attraction
upon the electron deforming its surface as
showed in Fig. 4. Under these circumstances,
the volume of the electron does not vary, but
its external surface is strongly increased,
becomes equivalent to the external area of a
sphere with radius r, >>r, (r,is the radius

of the free electron out of the ions “gage”



showed in Fig. 1 (a)). Based on such
conclusions, we substitute in Eq.(19) n, by

Fig. 4 — Schematic diagram of Electrons’
structure inside the ion lattice. The positive ions
lattice around the electron produces a strong
attraction upon the electron deforming its surface.
The volume of the electron does not vary, but its
external surface is increased and becomes
equivalent to the area of a sphere with radius

Me >>T,.

Fig. 5 — The deformation of the proton.

A :l/%lﬂ"e3 , S; by (SSA,)p.V, (SSA,is the
specific surface area for electrons in this
case. SS'% =2 Ab/me ) A%/peve :27zrx2e/peve ):
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Sm by Se = mxze > ‘/::‘Z by ¢m = 2rxe and miO(I)
by m,. The result is

18fr£nS -1 (20)

45567°r B!
AT et

In order to calculate the value of r,, we
start considering a hydrogen atom, where the
electron spins around the proton with a
velocity v, =3x10°m.s™". The electrical

force acting on the proton is F, = e /4zz, 1,
which is equal to the centrifuge force
F, =m w;r,where ,is the angular velocity
of the electron and r,is the distance between

the inertial center of the proton and the center
of the moving proton (See Fig. 5, where we
conclude that 2(r0 + rp): My +1,5 Iis the
radius of the sphere whose external area is
equivalent to the increased area of the
proton). Thus, we get r,= %(rxp - rp).
Substitution of this value into expression of
F. = F, gives

2

~14
e =-—"—"—""—"5+r =32x10""m
4re MV,

Therefore, we can write that r,, =k, r,,
where

Ir

Ky, =—>=25.6
r

p

The electron is similarly deformed by the
relative movement of the proton in respect to
the electron. In this case, by analogy, we can

write that
2

e -
=————+r,=64x10""m
dre,m,V,

rxe

and r,, =k,r,, where ris the radius of the

xe'e?
sphere whose external area is equivalent to
the increased area of the electron. The radius

of free electron is r,=6.87x10""m (See

Appendix A). However, for electrons in the
atomic eletrosphere the value of r, can be

calculated starting from Quantum Mechanics.



The wave packet that describes the electron
satisfies an uncertainty principle
(ApAx>11), where Ap=hAk and AK is

the approximate extension of the wave
packet. Thus, we can write that (AkAX 2%)

For the *“square" packet the full width in K is
Ak =27/, (A, =h/mcis the average
wavelength). The width in X is a little harder
to define, but, lets use the first node in the
probability found at (2z/4,)x/2=7 or
X =4,. So, the width of the wave packet is
twice this or Ax=24,. Obviously, 2r,
cannot be greater than AX, i.e., r, must be
smaller and close to A4, =h/m,c=2.43x10""m.
Then, assuming that r, =2.4x107”m, we
get

k, =" =266
r

e

Note that k,, =k, . In the case of electrons
inside the ion lattice (See Fig. 4), we can note
that, in spite of the electron speed V, be null, the

deformations are similar, in such way that, in this
case, we can take the values above.

Substitution of these values into Eq.
(20) gives

kzzr4B4
Zoe ={12{\/1+3.8x1057 Tm 1]}:
B4
={12[\/1+2.8x1042%1}} (21)

Similarly, in the case of proton and neutron
we can write that

1 \/l 4556 B, 2
Xop=\ =4 M —F 555~
p Cz/Lész)fz

45567°r*B?
Hon=91-2 [l+— 2™ ] (23
Homycf
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In the case of the neutron, k,, =1 due to its

electric charge be null. The radius of protons
inside the atoms (nuclei) is r, =1.2x107°m
[7.8], 1, = Mo then we obtain from Egs. (22)

and (23) following expressions:

i 4
. :{12 \/1+2.2x1022%1]} (24)

i 4
ZB“:{12 \/1+2.35><109B]fg“1]} (24n)

Since Mg = ygM,, My, = ygM, and
My, = ¥s,M,, it easy to see, by means of
Egs. (21), (24) and (24a), that m_ is much
greater than m and m, . This means that, in

the calculation of the gravitational force
F, (between the positive ions + electron and

the external electron), we can disregard the
effects of the gravitational masses of the
ions. Thus, the expression of F; reduces to

the expression of the gravitational forces
between the two electrons, i.e.,

F,=-G r:ge =—7:.G re (25)

For the creation of the Cooper Pairs F,

must overcome the electrons' repulsion due
to their negative charge (ez/ 47u%r2). Thus, we

must have 2 .Gt >e*/4zs, or

Xe > (e/m.) =-2x10"" (26)

J4rg,G

For the Cooper Pairs not be destructed by the
thermal vibrations due to the temperature T ,

we must have ya.GNE/r>kT whence we
conclude that T < y2.Gm? /r . Consequently,

the transition temperature, T
expressed by the following expression

.» can be



2 2
-]-C — ZBeGme (27)
k&

where ¢ is the size of the Cooper pair, which

is given by the coherence length of the
Cooper-pair wavefunction. It is known that
the coherence length is typically 1000 A
(though it can be as small as 30A in the
copper oxides). The coherence length of the
Cooper-pair in Aluminum superconductor is
quite large (&£ =1 micron[9]). Substitution

of this value into Eq. (27) gives
T, =4x107 42, (28)
For T, = 400K (~127°C) we obtain
Zoe =—1x107 (29)

By comparing (29) with (26), we can
conclude that this value of y, is sufficient
for the creation of the Cooper Pairs, and also
in order that they do not be destructed by the
thermal vibrations due to the temperature up
to T, = 400K (~127°C).

In order to calculate the intensity of the
magnetic field B, with frequency f,
necessary to produce the value given by

Eq.(29), it is necessary the substitution of Eq.
(29) into Eq. (21). Thus, we get

B4
{12[\/1+2.8x1042%1}}:—1%022 (30)

For f =2Hzthe value of B, is

B, > 3T
Therefore, if a magnetic field with frequency
f =2Hz and intensityB, . >3T © is applied
upon an Aluminum wire it becomes
superconductor at ambient temperature
(T, =400K (~127°C)). Note that the

rms

" Modern magnetic resonance imaging systems work
with magnetic fields up to 8T [10, 11].

7

magnetic field is used only during a time
interval sufficient to transform the Aluminum
into a superconductor. This means that the
process is a some sort of “magnetization”
that transforms a conductor into a
“permanent” superconductor. After the
“magnetization” the magnetic field can be
turned off, similarly to the case of
“magnetization” that transforms an iron rod
into a “permanent” magnet.



Appendix A: The “Geometrical Radii”” of Electron and Proton

It is known that the frequency of
oscillation of a simple spring oscillator is

1 K
f=—_— Al
27\ m ( )

where m is the inertial mass attached to the
spring and K 1is the spring constant (in
N'm ). In this case, the restoring force
exerted by the spring is linear and given by

F =—Kx (A2)

where X 1s the displacement from the
equilibrium position.

Now, consider the gravitational force:
For example, above the surface of the Earth,
the force follows the familiar Newtonian

function, i.e., F:—GMg@mg/rz, where
Mgye is the mass of Earth, m, is the

gravitational mass of a particle and ris the
distance between the centers. Below Earth’s
surface the force is linear and given by

CMeMy |
RS
where R is the radius of Earth.
By comparing (A3) with (A2) we

obtain

KoK O
m ym Ry \X

MakingX=r =R, and substituting (A4)

into (A1) gives

F=— (A3)

GM
s (a9

fo
2 R%

In the case of an electron and a positron, we
substitute M g bymg,, ¥ by y.and Rg by

R., where R, is the radius of electron (or

positron). Thus, Eq. (A5) becomes

1 [CMeze
27\ R

f (6)

The value of y, varies with the density of

energy [4]. When the electron and the
positron are distant from each other and the
local density of energy is small, the value of
. becomes very close to 1. However, when

the electron and the positron are penetrating
one another, the energy densities in each
particle become very strong due to the
proximity of their electrical charges € and,
consequently, the value of y, strongly

increases. In order to calculate the value of
z.under these conditions (X=r=R,), we

start from the expression of correlation
between electric charge g and gravitational

mass, obtained in a previous work [4]:
q=x 472'806 mg(imaginary) [ (A7)

where m is the imaginary

g(imaginary )
gravitational mass, and i =+/—1.

In the case of electron, Eq. (A7) gives

0 :W Mge(imaginary =
= m (ZemiOe(imaginar))i):
- A7l 7 o)
= W(% ﬂ(emioe(lreal))= ~L6x1077C (A3

where we obtain

Ze =—1.8x10% (A9)

This is therefore, the value of y, increased

by the strong density of energy produced by
the electrical charges e of the two particles,
under previously mentioned conditions.



Given that mg, = y,Mj,, Eq. (A6)

f :i GlezmiOe (Al()
2z R

From Quantum Mechanics, we know that

yields

SN~~—"

hf =m;,c’ (A1)

where h is the Planck’s constant. Thus, in
the case of m;, = m;,, we get

(A12)

By comparing (A10) and (A12) we
conclude that

MigeC’ _ Gya Mg, (A13)
h  2z\ R

Isolating the radius R, , we get:

1 2

3 h \3

R, = S (Lz] =6.87x10"*m (A14)
Moe 2r ¢

Compare this value with the Compton sized
electron, which predicts R, =3.86x107"°m
and also with standardized result recently
obtained of R, =4 -7 x 107" m [12].

In the case of proton, we have

4y =TS Myt -
= m(},’p miOp(imaginar}j):
=m(_lp 5 miOp(real)iz):
= 4762 2y} =16x10°°C (A13

where we obtain

2p =-9.7x10" (A16)

Thus, the result is

1 2
G [ xh ) i}
Rp:[—J [ P 2} =3.72x10""m (A17)

Note that these radii, given by
Equations (Al4) and (Al17), are the radii of

free electrons and free protons (when the
particle and antiparticle (in isolation)
penetrate themselves mutually).

Inside the atoms (nuclei) the radius of
protons is well-known. For example, protons,
as the hydrogen nuclei, have a radius given

by R,=12x10"°m [7, 8]. The strong
increase in respect to the value given by Eq.

(A17) is due to the interaction with the
electron of the atom.
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