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Abstract—Robots assist in many areas that are considered
unsafe for humans to operate. For instance, in handling pandemic
diseases such as the recent Covid-19 outbreak and other out-
breaks like Ebola, robots can assist in reaching areas dangerous
for humans and do simple tasks such as pick up the correct
medicine (among a set of bottles prescribed) and deliver to
patients. In such cases, it might not be good to rely on the
fully autonomous operation of robots. Since many mobile robots
are fully functional with low-level tasks such as grabbing and
moving, we consider the mixed-initiative control where the user
can guide the robot remotely to finish such tasks. In this
paper, we proposed a novel haptic-enabled mixed reality system,
that provides haptic interfaces to interact with the virtualized
environment and give remote guidance for mobile robots towards
high-level tasks. The system testbed includes the local site with
a mobile robot equipped with RGBD sensor and a remote site
with a user operating a haptic device. A 3D virtualized real-
world static scene is generated using real-time dense mapping.
The user can use a haptic device to “touch” the scene, mark the
scene, add virtual fixtures, and perform physics simulation. The
experimental results show the effectiveness and flexibility of the
proposed haptic-enabled mixed reality system.

Index Terms—Haptic Rendering, Dense Mapping, Haptic
Guidance, Mixed Reality, Mixed-initiative Control

I. INTRODUCTION

Networked mixed reality has become popular for all kinds
of the applications such as distributed collaborations [1],
training [2], and video streaming [3]. Such a networked mixed
reality system can merge the real and virtual worlds to produce
new environments where physical and virtual objects interact
with each other in real-time. Many researchers have applied
mixed reality for robot teleoperations [4], [5], human-robot
interaction control [6], [7], [8] and mixed-initiative control [9],
[10]. Among all these robot controls, mixed-initiative control
is a hot topic that has drawn much attention. [11], [12], [13]
introduced the different levels of autonomy: full autonomy
(robot-initiative), mixed-initiative and teleoperation (human-
initiative). In reality, more control systems are designed with
the capability to “sliding autonomy”, which means the system
supports the seamless transfer to different levels of control.
Mixed-initiative control is to give the robot high-level com-
mands instead of teleoperation, as shown in Figure 1. It
becomes more important in particular for improving situational
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awareness, decreasing the workload of the human operator and
at the same time guaranteeing safe operations.

Fig. 1: The system setup in our proposed work. Left is local site:
KUKA youBot with a Kinect V2 placed on top. Right is the remote
site, the user interacted with the 3D reconstructed scene and guide
the robot using haptic device.

Some previous methods have introduced haptic feedback
and mixed reality for mixed-initiative control [9], [10], most of
them applied haptic device as a multidimensional teleoperation
controller or used haptic guidance force and environment
force as the feedback of robot motions. In this paper, we
consider how 3D haptic interaction in the mixed reality could
be expanded to help the robot mixed-initiative control. Haptic
interaction with the 3D virtual environment is very popular
in computer graphics applications to provide immersive expe-
riences, which is to use a haptic avatar to explore freely in
a 3D world and interact with 3D objects (push, touch) and
feel the force feedback. Combining haptic interaction with
mixed-initiative control will provide more flexibility towards
the control.

Several high-quality sensors can be used to provide the
mapping and localization information for mobile robots, such
as Light Detection and Ranging (LIDAR), RGBD cameras,
etc. The sensor data can generate the virtualized real-world
scene with dense geometry [14]. Users can use a mouse
cursor, joystick, or any other input device to operate the
virtualized objects in a mixed reality environment to realize
some goals [15]. The introduction of the haptic interaction
into the mixed reality environment will add more flexibil-
ity to operations. Haptic devices provide more degrees of
freedom for cursor motions and provide force feedback for
more immersive experiences. Using haptic devices, users can
remotely “touch” and mark the virtualized environment from
the streaming data [16]. Furthermore, the haptic interface
can be integrated with the physics simulation of objects, the
virtualized object can be moved in the scene. These operations
can provide more flexible control and guidance for the mobile
robot since the robot also uses dense mapping for localization
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and navigation [17].
In this paper, we assume the robots have the full functional-

ity for low-level tasks such as grabbing, moving based on the
input 3D objects and positions. To have such a haptic-enabled
mixed reality system for mixed-initiative remote control, there
are several challenges:

(i) The first challenge is real-time streaming of virtualized
data over a network that is susceptible to data loss and
delays.

(ii) The second challenge comes from the requirement of the
haptic rendering with the 3D virtualized environment,
which needs to be robust, efficient, and smooth.

(iii) Object segmentation from the 3D scene that will be
needed. The segmented object will be the input for robot
grabbing.

(iv) Furthermore, network latency will delay the guidance
commands from the server, and hurt the haptic interac-
tions, which might lead to the disparity of goal motions
and real-world motions for the robot.

To address these challenges, we have proposed a novel
haptic-enabled mixed reality system for mixed-initiative re-
mote control. The system provides a haptic interface to interact
with the virtualized environment and gives remote guidance for
mobile robots towards high-level tasks. The system includes
a local site with a mobile robot equipped with an RGBD
sensor and a remote site with a user operating a haptic
device. A 3D virtualized real-world static scene is generated
using real-time dense mapping. The user can use a haptic
device to remotely “touch” the scene, mark the scene, add
virtual fixtures, and perform physics simulation. Specifically,
the technical contributions of our method are as follows:
• A real-time efficient and robust mixed reality platform

for mixed-initiative control is proposed to enable haptic
interactions with streaming data.

• A TSDF-based haptic rendering method with the streaming
surface is proposed to ensure the smooth and robust haptic
interaction with a virtualized static scene.

• A superpixel-enhanced instance segmentation method is
proposed to segment objects fast and accurately.

• Different types of haptic interfaces are introduced in the
mixed reality platform, and a robot state prediction method
is proposed to compensate network delays.

II. RELATED WORK

Researchers have worked hard towards the haptic-enabled
Tele-operation field to deal with the challenges of communi-
cation delay, control strategy [4], [5], [8]. Networked mixed
reality platform is widely introduced to provide a remote
immersive platform to improve the robot control, and en-
able the interactions between the physical robots and virtual
objects [18], [14], [19]. [6] presented a mixed reality (MR)
platform: an integrated physical and virtual environment, in
which the user interacts with a teleoperated robot by passing
a graphical object. [7] proposed a mixed reality interface
for a remote robot using both real and virtual data acquired
by a mobile equipped with an omnidirectional camera and
a laser scanner. The MR interface can enhance the current

remote robot teleoperation visual interface. Son et al. [20]
investigated 3 haptic cues for bilateral teleoperation of multiple
mobile robots, and found force cue feedback best support
the maneuverability. In [14], dense geometry and appearance
data were used to generate a photorealistic synthetic exterior
line-of-sight view of the robot including the context of its
surrounding terrain. This technique converted remote teleop-
eration into a line-of-sight remote control with the capacity
to remove latency. Chouiten et al. [18] proposed a distributed
mixed reality system that implemented the real-time display
of digital video stream to web users, by mixing 3D entities
with 2D live videos by a teleoperated ROV. Some methods
introduced the haptic feedback into the mixed reality control
platforms. A mixed reality system [9] is developed with GUI
interfaces and force feedback including path guidance forces,
collision preventing forces or environmental force to improve
the performance of high-level tasks operations. Later, Cacace
et al. [10] proposed a mixed-initiative control system to add a
human loop to control the velocity of aerial service vehicles,
and force feedback is used to enhance the control experience.
Different from these methods, our system introduced the haptic
interaction with 3D scenes into mixed reality, which will bring
more flexibility. Lee et al. [21] proposed a visual guidance
algorithm that dynamically manipulates the virtual scene to
compensate for the spatial discrepancies in a haptic augmented
virtuality system. In [19], an interface based on Microsoft
HoloLens is proposed, which can display the map, path,
control command, and other information related to the remote
mobile robot, also provide interactive ways for robot control.

Recently, many robots are equipped the depth sensors for
localization and mapping [22], [17], [23]. KinectFusion[24],
[25] is one of the most popular methods, which fuses the
streaming RGBD data from the Kinect camera, and saves it as
a Truncated Signed Distance Function (TSDF). KinectFusion
can provide the full-scene dense geometry to enable mixed
reality. [16] firstly introduced the real-time haptic rendering
with streaming deformable surface generated by KinectFusion.
Besides the simulation of surface deformation, this method
provided a haptic rendering pipeline including collision de-
tection, proxy update, and force computation. The collision
detection is performed by ray casting in the TSDF data
structure that is saved in GPU. At each time step, based on
the haptic interaction position (HIP), this method finds the
corresponding proxy: the nearest surface point to HIP. Finally,
the haptic force is computed by the positions of proxy and
HIP. This method is computationally efficient and integrated
well with the KinectFusion framework. However the force
rendering of this method only works well with the planes,
and it will be unstable at the intersecting boundary of two or
more planes. In the real-world scenes, the complex geometry
nature harnesses the stability using this method. We borrowed
the idea of haptic interaction with the streaming dense surface
and proposed a new pipeline of haptic rendering to keep both
the stability and efficiency.

Object segmentation from images has been an essential
topic for scene understanding computer vision society [26],
[27]. Later, RGBD images are used for semantic mapping:
which includes both dense mapping (like Kinect fusion) and



object detection, semantic classification [28], [29], [30], [31],
[32]. Our method aims to interact with the reconstructed object
surface, therefore we chose to only segment the object in
real-time, rather than semantic classification. The segmentation
algorithms include many categories: region growing [26], [27],
clustering [33], [28], and deep learning based methods [34],
[35], [32]. In our system, since we used haptic interaction,
therefore we developed an interactive region growing method
for object segmentation using both color image and depth
image, and fuse the information into the TSDF data structure.

III. OVERVIEW

As shown in the Figure 2, our mixed reality system com-
prises three layers:
• The Robot Layer connected with a mobile robot (in our

implementation, it is KUKA youBot) and a Kinect V2
placed on the top of the robot. This layer collects the color
and depth images and sends them to the Execution Layer.
There is a low-level task executor to execute the control
commands that are sent by the controller in the Execution
Layer.

• The Execution Layer gets the RGBD images and per-
forms simultaneous localization and mapping (SLAM) using
KinectFusion [24]. Then KinectFusion generates a point
cloud every time step for visual rendering. It will combine
the object segmentation module to segment and mark the
object if necessary. The layer also includes a separate thread
for haptic rendering. This module will compute the force
feedback and send it to a haptic device. The physics simu-
lation module handles the situation that a haptic interaction
interface is enabled to interact with a virtual object. The
Execution Layer also includes the path planner to generate
a path based on the user’s marking or the virtual obstacles
that the user adds. The controller module is used to generate
a predicted position and commands for the robot to follow.

• The User Layer provides all the interfaces and outputs. The
user can either use the teleoperation interface to directly
operate the robot, or use haptic interfaces to interact with
the 3D environments. Haptic guided object segmentation
interface is only used for segmentation. Haptic interaction
interface enables the user to use haptic to push the virtual
object as the target or the obstacle. Haptic marking can
either define a path on the ground or mark one object, then
the robot will try to follow the path or approach the object.
The virtual obstacle interface enables the user to add virtual
obstacles (any form of geometry) into the scene, then the
path planner will search for a new path to avoid the obstacle.
The Robot Layer and Execution Layer are connected over

the Internet. The dense mapping is done in Execution Layer
instead of Robot Layer since the RGBD image data has a
smaller size than the 3D point cloud. Another reason is that
haptic rendering with TSDF data has very good performance
[16].

In the real world, the system includes two sites: local site
and remote site, that are connected with high speed Internet
(10 Mbps), TCP/IP protocol is applied for the data transfer.
A Kinect v2 is placed onto the KUKA youBot, and it is

Fig. 2: The proposed system architecture.

connected with a Linux machine to where the Robot Layer
belongs to. The system transfers the RGBD images to the
remote site by 15-20 fps. At the remote site, the server machine
implements the Execution Layer and User Layer.

IV. TSDF-BASED HAPTIC RENDERING WITH 3D
STREAMING ENVIRONMENT

Since KinectFusion is applied for dense mapping and local-
ization, dense geometry is generated as the streaming surface
of the 3D virtualized environment. Inspired from the work [16]
of haptic rendering, we proposed a new processing pipeline
to handle the proxy update, as shown in Figure 3. We also
proposed a novel proxy update method with force shading,
which is more efficient and guarantees stable rendering in the
intersecting boundaries of different planes. Furthermore, we
proposed the method to add surface properties such as friction
and haptic textures.

Fig. 3: The haptic rendering pipeline: collision detection method [16]
is used; a new proxy update method is used to find proxy; Friction
and texture are added to simulate the properties.

A. Proxy Update with Force Shading

The proxy update is the most important part of the
constraint-based haptic rendering [36], since the proxy is not
only used to compute the force but also rendered visually to
the viewers. If the proxy update is not stable and smooth, the
force rendering and visual rendering will not be smooth.

In [16], the proxy update uses a gradient-based method to
find the nearest surface point. As shown in Figure 4, the left
figure shows a scenario that haptic interact with a surface
with a sharp change, which is like the intersecting boundary
with two flat planes. In this scenario, the haptic interaction
point (HIP) is moved by the user from hi−1 to hi, the proxy
position is changed from pi−1 to pi. Since the proxy is always
the nearest surface point according to HIP, the proxy has a
sudden change in position. It would feel as though it “jumps”
to the other side of the surface, and computed force is changed
vigorously to an almost reversed direction.



Fig. 4: Left is the proxy update method proposed in [16]; right is our
proxy update method using force shading. For the same movement,
the left has a jump change of proxy positions, and the right has much
smoother proxy updates.

In this paper, we proposed a proxy update method with
force shading. Force shading was first introduced into haptic
rendering in [36], which borrows the idea from Phong shading
rendering in computer graphics applications. Our method will
handle two scenarios:

a. If the HIP is the first contact to the surface, the proxy
is to find the nearest surface point. Instead of the gradient-
based iterative method proposed in [16], we integrate the task
of finding the nearest surface point into the ray casting step
in KinectFusion. The reason is that our application will not
consider the deformable property for the surface, therefore the
ray casting is performed after the haptic rendering. Per-pixel
ray marches in TSDF to generate the point cloud for the whole
surface. During this procedure, the distances between the HIP
and every point on the surface are computed and saved. The
nearest surface point finding problem now becomes a parallel
problem that finds the minimum in the distance array. This
problem can be solved through parallel reduction [37]. This
algorithm is shown in Algorithm. 1.

Algorithm 1 Nearest Surface Point Finding in Ray Casting

Require: Given the starting point h
1: Parellelized thread: each pixel’s corresponding ray
2: Marches from minimum depth, stop when zero crossing

to get surface point s
3: Compute the distance d = |s− h|
4: Parallel reduction to get minimal distance, return the

corresponding surface point as the nearest one

b. After the HIP penetrates into the surface, the subsequent
proxy position needs to be updated since the HIP will penetrate
further into the volume. As shown in Figure 4, the nearest
surface point is not appropriate for this scenario, a more
correct way is to constrain the successive proxy. The previous
time step normal ni−1 is used to define a tangent plane, the
normal of proxy will be computed every time step. Tracking
this normal is like tracking a tangent gliding plane over the
surface physically. As shown in the right of Figure 4, the
tangent plane Ti−1 is “dragged” by the new proxy position
hi while attached on the surface. So, the tangent plane can be
treated as a constraint plane for the proxy. First, we drop a
perpendicular from hi to this constraint plane to get a goal
position gi, which is the first approximation of the proxy.
Then, the nearest surface finding in the ray casting step will
find the new proxy pi. This two-step method is similar to the

force shading method [36]. The core of the method is to use
the tangent plane to constraint the new proxy in a physically
plausible way, then refine it as the nearest surface point. The
whole procedure is shown as Algorithm. 2.

Algorithm 2 Subsequent Proxy Update with Force Shading

1: Based on the normal ni−1, get the tangent plane Ti−1

2: Drop a perpendicular from current HIP hi to Ti−1 to get
gi

3: Use Algorithm. 1 initialized from gi to compute the final
proxy pi

B. Surface Properties

Surface properties can simulate friction force and differen-
tial haptic textured surface. Similar to [38], the friction force
can be simulated by a simple change using the known friction
cone. The angle α defines a cone starting from the current HIP
hi, as shown in Figure5. The friction cone has an interaction
circle with the tangent plane. α = arctan(µ), where µ is
a user-defined friction coefficient. If the previous time step
proxy pi−1 is inside the circle, the new proxy will be directly
set the same as before: pi = pi−1. If outside, then the goal
position (approximated proxy) gi = ci, where ci is the point
closest to pi−1 on the circle. The two scenarios correspond to
static friction and dynamic friction. The haptic texture can be
easily extended by using the bump texture method [39]. It can
generate constraints for each point to change the normal.

Fig. 5: Proxy update for friction. Left simulates the stick force: when
the previous proxy is inside the friction cone, the proxy will not
be updated; right simulates slip force: when the previous proxy is
outside, the proxy will be updated as the nearest boundary point on
the boundary cone.

V. INTERACTIVE 3D OBJECT SEGMENTATION

It is very necessary to provide the interface to segment 3D
objects in the scene. Such an interface enables more flexible
haptic interaction, e.g. haptic texture, material properties for
different objects, and also provides the object position and
orientation for robot grasping tasks. Many researchers com-
bine object detection and semantic classification into dense
mapping [28], [29], [30], [35], [31], [32]. Our system aims to
build haptic-enabled interfaces for the mixed-initiative control,
therefore the high-level semantic segmentation is beyond our
scope. We propose an interactive 3D object segmentation
method that is not only efficient but also compatible with the
popular high-level object semantic algorithms as the input.

The straightforward way is to segment the 3D object from
the 3D point cloud. It is also possible to use the KD-tree
to speed up the neighbor search for points. This method
takes extra processing time. Another way is to perform the
segmentation based on TSDF data and save the segmentation



information into the TSDF. In the KinectFusion pipeline, the
depth image is fused for surface reconstruction at each time
step. Based on this observation, we propose a two-phase
algorithm. In the first phase, the 2D segmentation is performed
from both depth image and color image. After the 2D segmen-
tation, a label image Li is generated. In the second phase, the
segmentation is fused into the TSDF together with the depth
image. In this way, the segmentation is seamlessly integrated
into the KinectFusion and reduces the time cost. Moreover,
the segmentation information will be fused by weight, which
generates robust segmentation results. The whole pipeline is
shown as Figure 6.

Fig. 6: The proposed method for interactive 3D object segmentation.
In the first phase of our method, firstly user uses the haptic

avatar to touch and mark an object of interest in a 3D scene.
Then the 3D mark is transformed to the current color image
coordinates. At the next time step, starting from the mark point
in the image, the pixels are clustered through a region growing
method until there are no pixels to be added. The region is
treated as a cluster, then the distance between the neighboring
pixels and the cluster center is computed as the combination
of two Euclidean distances as shown in the Equation 1:

d(xi,S) = ‖I(xi)− I(S)‖2 + β‖P (xi)− P (S)‖2 (1)

where xi is the neighbor pixel position and S is the center
of the region. I is the CIELAB color space value of the
pixel in the color image, which is widely considered as
perceptually uniform for small color distances [33]. P are
the 3D coordinates that are computed from the depth image.
The values for cluster center: I(S) and P (S) are computed
as the averages of the values of all pixels in this cluster.
β = m

g is a parameter that controls the compactness of a
region. m is the variable to control the compactness, g is the
grid interval. we first carried out an experiment comparing the
region growing with RGBD data and only with RGB data, as
shown in Figure 7. With RGBD data, the boundary of the
object is kept better than that only using RGB data.

Fig. 7: Interactive region growing 2D segmentation method. Left is
only using RGB image, right is using both RGB image and depth
image, which keep the better boundary for the object.

The greater the value of m, the more spatial proximity is
emphasized and the more compact the cluster. This value can

be in the range [1, 20]. We choose m = 10 for all the results
in this paper. The distance threshold can be chosen by the user.

VI. HAPTIC-ENABLED MIXED-INITIATIVE CONTROL

In most previous works [9], [10], haptic force feedback is
used to generate path guidance forces, collision preventing
forces, or environmental force to improve the performance
of high-level tasks operations. However, our system uses a
haptic device in a different way. The haptic device is used as
the 3D avatar to remotely “touch”, explore and interact with
the virtualized real-world environment. The haptic interaction
provides more flexible operations similar to using ”virtual
hands”.

A. Haptic Interfaces

The haptic interfaces can intervene in the robot control
procedure, and add a new path or change destinations. These
interfaces will not influence the velocity, but only the paths
and target points.
Haptic Marking for Path Guidance Since haptic rendering
with the surface is in real-time and efficient, our system
provides a haptic marking interface. The user can use HIP to
touch the floor to mark a path. Then the control manager takes
this marked path as input to invoke path planning. The marking
is saved as the ordering point sets and saved separately in the
remote server. The interface is shown as Figure 8.

Fig. 8: Haptic marking interface, the user can touch the floor, and
mark a path (yellow color) on the point cloud.

Haptic Marking for Object When the user wants the robot to
approach an object and grab it, the user can use the interface to
first segment the object, and then set the object as the target to
approach. The snapshot of this marking is shown in Figure 9.

Fig. 9: After object segmentation, set this object to be target (blue).



Virtual Obstacle Some researchers have used augmented
reality to set up virtual objects [9]. In our system, this
operation is much easier since a haptic device can locate a 3D
position fast and accurately. The proposed system provides an
interface that users can put virtual obstacles on the ground.
The ground plane is located and saved at the first several time
steps. The virtual objects can be treated as obstacles, and the
path planner will regenerate the new path to avoid them. The
snapshot of this obstacle is shown in Figure 10.

Fig. 10: User use the haptic cursor to place a virtual obstacle (green
sphere).
Haptic Enabled with Physics Simulation In computer graph-
ics applications, the haptic-enabled physics simulation is very
popular. Since virtual objects can be placed, users can use a
haptic avatar to interact with the virtual objects. These objects
can be treated as new visual cues, marks, or obstacles. The
interface is shown as Figure 11.

Fig. 11: User use the haptic cursor to push a virtual cube.

B. Control and Latency Compensation

Our system requires a control system with the following
features:

(i) High-level mix-initiative control needs to consider the
network latency.

(ii) The system supports sliding autonomy. Both au-
tonomous and human-in-the-loop control modalities
need to be supported.

To incorporate these features, the control architecture will
be distributed in both Robot Layer and Execution Layer,
which is shown in Figure 12. The Execution Layer includes
Task Planner, Path Supervisor, Path Planner, and Primitive
Supervisor. The Robot Layer includes Trajectory Planner,
Controller, and the Robot. The user uses haptic interfaces to
invoke high-level tasks, including haptic marking a position
or an object, haptic interaction with a virtual object. These

Fig. 12: The proposed control architecture, Execution Level and
Robot Level are listed as blue and orange respectively.

operations are passed to Task Planner. Task Planner is a high-
level manager to communicate with the Plan Supervisor. It
can parse the task into the micro-actions plan, and receive the
replanning request. Plan Supervisor can request and receive the
path between two points from Path Planner. In our framework,
the path generation is based on a Rapidly-exploring Random
Tree algorithm [40].

In our mixed-initiative control, human-in-the-loop happens
in this Primitive Supervisor module, as shown in Figure 12.
The low-level Primitive Supervisor receives the path infor-
mation such as waypoints and micro-actions from the Plant
Supervisor. It will receive the planned path, and also the
haptic marking path, and generate a goal position for the
robot motion. In the Robot Layer, Trajectory Planner monitors
and controls the trajectory towards the goal position. The
haptic marking path provides a marking point xm, and the
planned path provides a path point xp. The goal position xg

is chosen from these two points by choosing the maximal
distance between the point and the current robot position.
Network delays may influence the mapping and localization
from KinectFusion. To compensate for the delay, we propose
a method to generate a predicted goal position. Assuming the
current velocity of the robot is vi = (ai, bi, ci) at ith time
step, the straightforward way to predict the next velocity is
to compute the velocity and acceleration with the last several
frames. Most Kalman filters are based on an empirical model
of this linear form. In this paper, we applied the general linear
model to predict the next velocity vi+1 :

ai+1 = α0ai + α1ai−1 + ...αmat−m

bi+1 = β0bi + β1bi−1 + ...βmbt−m

ci+1 = γ0ci + γ1ci−1 + ...γmct−m

(2)

For a given time series of points in a path, the matrix V is
defined as Eq. 3:

V =


a0 . . . am b0 . . . bm c0 . . . cm
a1 . . . am+1 b1 . . . bm+1 c1 . . . cm+1

...
ai . . . ai+m bi . . . bi+m ci . . . ci+m


(3)

Let v to be the predicted positions
(vm+1, vm+2, ..., vi+m+1, ...)

T . The problem now is to



solve and obtain three parameter vectors α, β, and γ. The
general solution of these linear problem are shown as follows:

α = (VT V)VTa

β = (VT V)VT b

γ = (VT V)VT c

(4)

Every time step, this linear prediction model generates new
parameters, and then predicts the next goal position xgi+1 =
xgi +vi+1t, where t is the round time delay. This goal position
will be sent to Trajectory Planner for the low-level autonomous
control.

VII. HAPTIC-ENABLED MIXED-INITIATIVE CONTROL
EXPERIMENT

Here, we demonstrate the experimental setup and results.
The remote site is an Intel i7 3.50 GHz machine with 32 GB
RAM. Equipped GPU is GeForce GTX 670. For KinectFusion,
the dimension of the TSDF volume is usually set to be
512*512*512, voxel size is about 10 mm, the truncated depth
distance is set to be 50 mm. In KinectFusion, a 3-level iterative
closest point (ICP) structure is applied by iterations 4/5/15.
The local site includes a KUKA youBot mobile robot, and
a Kinect V2 is placed on top of the robot. The robot can
move in 4 directions, and turn by 45 degrees every time. The
Kinect sensor is connected to a Linux machine with ROS for
robot control. With a network operating at 10 Mbps, TCP/IP
protocol is employed for the data transfer. The system transfers
the RGBD images to the remote site at a rate of 15-20 fps. The
testbed setup is shown in Figure 1. We used KUKA youBot
mobile robot and Force Dimension Omega.3 haptic device.
Omega.3 has 3 degrees of freedom, 14.5 N/mm stiffness, and
up to 12.0 N force.

A. Haptic Rendering

The TSDF resolution determines the 3D geometry density,
and it will further influence the time efficiency of the proposed
haptic rendering method. We carried out the experiments for
haptic rendering using different TSDF resolutions. The average
processing time is recorded and shown as Table. I. Proxy
update belongs to the “collision detection and handling”. As
shown in the results, all modules of our haptic rendering
method are efficient. The proposed haptic rendering with
KinectFusion can support the real-time mixed reality appli-
cations, even using a high TSDF resolution.

The accuracy of the haptic rendering is evaluated by using
the HIP to move with a sharp boundary. In this experiment,
a box is placed in the scene. The front of the box and the
floor generates a sharp concave boundary. Figure 13 shows the
experimental scenario and results. As shown in Figure 13(c),
haptic rendering in [16] cannot lead to smooth proxy update
when moving over the corner. Since the force feedback is
computed based on the distance between proxy and HIP, the
abrupt change of proxy leads to abrupt force change or even
vibration force. Our proxy update method with force shading
solves this problem and provides smooth force feedback.

Fig. 13: The accuracy of haptic rendering. (a) The side view of a
boundary between front face of the box and ground. (b) Sketch of
the haptic interaction with a sharp corner of two planes. (c) A two
dimensional crossing section of the proxy (asteroid) positions when
moving over the surface, using haptic rendering method in [16]. (d)
Crossing section of proxy positions using our method.

B. Interactive Segmentation

In our system, users are free to interact with the whole
surface or one specific object surface. To evaluate the in-
teractive object segmentation method, we compare the 2D
image segmentation on the BSDS500 benchmark [41]. This
database consists of natural images with five different human
ground truth segmentations. In the comparison, we use the
mouse to mark the starting pixel instead of the haptic device.
We compare the results with popular segmentation methods:
normalized cut [42], meanshift [43] and Compression-based
Texture Merging (CTM) [44]. The comparison result is shown
in Table. II. The comparison results show our method has
comparable performance with the other popular segmenta-
tion methods. We use 3 performance measures: Probabilistic
Rand Index (the fraction of pairs of pixels whose labels
are consistent between the computed segmentation and the
ground truth), Boundary Displacement Error (the average
displacement error of boundary pixels between two segmented
images) and Global Consistency Error (the extent to which one
segmentation can be viewed as a refinement of the other) [27].

C. Control and Execution

We have carried out an experiment to testify the system
control and execution performance. The robot control loop
is performed with a small delay (less than 60 ms). The first
control scenario is to approach the target after it is marked, as
shown in Figure 14. The second scenario is to add the virtual
obstacle in the scene, as shown in Figure 15. We involved 2
students and each subject was asked to repeat the experiment 5
times in the testbed. For both scenarios, we executed 10 times.
We have collected the mean, min, max, standard deviation
(STD) of time of planning (Tp), time of replanning (Tr),
length of the executed path (Lp), and a total time of execution



TABLE I: Processing time of different components using different TSDF resolution.

Average Processing Time
TSDF Resolution Total Time Segmentation and KinectFusion Collision Detection and Handling

64*64*64 16.4ms 11.8ms 0.6ms
128*128*128 20.3ms 14.3ms 1.3ms
256*256*256 22.2ms 15.5ms 1.6ms
384*384*384 31.9ms 22.5ms 2.4ms
512*512*512 38.8ms 27.3ms 2.7ms

TABLE II: Comparison results of segmentation on BSDS500 benchmark.

Measurement
Methods Probabilistic Rand Index Boundary Displacement Error Global Consistency Error

Normlized Cut 0.73931 17.1560 0.2232
CTM 0.7796 19.1981 0.3647

Meanshift 0.7769 13.1616 0.5811
Our method 0.73876 14.216 0.5432

(Te). The results show that the control/execution performance
is compatible with the operative scenario requirements [45].
Since we focus on haptic-enabled mixed-mediated control, the
control optimization is beyond our scope.

Fig. 14: The haptic marking control scenario. After the user set target
to be the box, the robot approach the box.

Fig. 15: (a) The user firstly defines a target, then adds a virtual
obstacle (green ball) into the scene. (b)(c)(d) The robot find the path
to avoid the obstacle.

D. Latency Compensation

To verify the delay compensation method, we applied two
delays (100ms, 200ms) over the Internet. We recorded the real-
time robot positions and also the predicted positions generated
from the proposed linear model. The error is defined as the
Euclidean distance along X-axis since robots are moving along
the x-axis in two experiments. If big error means the newly
planned position sent from server to robot is very far from
the real position. Based on the control test, if this error
is beyond 20cm then the trajectory will be influenced. As
shown in Figure 12, the trajectory planner might generate
a costly trajectory, and the robot may move back and forth
because of the delay. The robot positions are computed for
each frame from the odometry. Figure 16 shows two-position
curves (along X-axis) over the Internet with 200ms latency.
The average position error for 100ms is 2.34cm, and 3.47cm
for 200ms. The maximal error for both latencies is lower than
7.0cm, which shows good control performance. To further test
the latency, we have one more experiment that adding time-
varying network delay from 100ms to 200ms as shown in
Figure 17. The difference between the two curves is very close,
and lower than 7.0cm. These results show that our latency
compensation can handle up to 200ms network latency.

TABLE III: Control and Execution Results.

Control Measurements
Method Mean STD Max Min

Tp 0.082s 0.013s 0.09s 0.04s
Tr 0.614s 0.43s 1.70s 0.01s
Te 70.8s 25.1s 83s 42s
Lp 15.4m 2.35m 19m 12m



Fig. 16: The comparison between the real-world robot position curve
and predicted position curve with 200ms network latency.

Fig. 17: The comparison between the real-world robot position curve
and predicted position curve with time varying network latency from
100ms to 200ms.

VIII. MIXED-INITIATIVE CONTROL FOR DEXTEROUS
ROBOTIC HAND FOR VARIOUS APPLICATIONS -A

PERSPECTIVE

The Kuka YouBot robot used in the previous section is great
for applications requiring maneuvering in-house and precise
control. However, the robotic arm has a limited degree of free-
dom and will not be able to replicate human-like actions from
remote locations. Here, we describe the essential elements
that are needed for improving the capabilities of our current
work and use them to solve engineering/healthcare problems.
These are listed as follows: 1) designing a robotic hand with
five fingers, 2) Use the hands for special operations such as
healthcare and military applications. The general healthcare
and military applications have their own requirements and
hence require unique solutions.

A. Dexterous Humanoid Hand Design and Control for Com-
plex Tasks in Healthcare and Hazard Mitigation

Five-fingered robotic hands are needed in many applica-
tions to imitate human action in a remote location. We have
designed such hands using the 3D printing method and using
parametric-based CAD software [46], [47]. The parametric-
based hand design can be easily customized and scaled as
needed, we can print big adult size hands or small child size.
It is a low-cost but highly dexterous robotic hand that can
carry out complex tasks, the robotic hand can be actuated

using novel actuators such as TCP muscles. Twisted and
Coiled Polymer (TCP) muscles or actuators are soft polymers
that enable the realization of low-cost and high-performance
humanoid robots [46], [48]. TCP muscles contract when
heated and return to their original shape, like natural muscles.
They do not produce any noise, as a result, can be used
for silent operations. This is the key advantage of designing
robotic arms using soft actuators rather than motors and
pneumatics. We have been studying the TCP materials to
develop a novel musculoskeletal system. TCP muscles could
provide large strain (20-49%), large stress (1-35MPa) and high
mechanical work (5.3 kW/kg) [46], [49]. More importantly, the
material cost for making the muscle is low compared to shape
memory alloy actuators [49]. Therefore, it is worth studying
this material further to develop high-performance and low-cost
robots including the closed-loop control systems [50].

Fig. 18: Grasping objects using our robotic hand, UTD Hand that is
made out of TCP muscles [46].

When referring to literature, several robots and robotic
hands have been developed in universities and research in-
stitutes [51], [52], [53], [54]. The actuators typically used in
these robots are expensive and are not biomimetic. Some of
the advanced humanoids include Boston Dynamics’s Atlas,
ASIMO, Robonaut, HUBO and HRP-4C. These robots are
extremely expensive and most of them are not available
commercially. For example, ASIMO costs about $1 million
and even $100,000 for a rent [55] mimetic and affordable.
We have made several efforts in the last 10 years in creating
humanoids using various smart actuation technologies: piezo-
electric, conducting polymer, shape memory alloy actuators
and the latest humanoid hand that is actuated by TCP muscles
and using additive manufacturing technology Figure 18. The
key feature of the design is that 1) it can grasp various daily
used objects, 2) the actuators do not require large space , they
are kept in the forearm, 3) The structure is lightweight as it
is polymer based and 4) No electromagnetic noise generated.
Key scientific challenges and performance of smart materials
were described in our previous works [56], [57], [58], [59].
The TCP muscles are used for actuation of fingers of the
robots [46], [48] and hence we will investigate this hand with
the proposed mixed-initiative method in the future.

B. Dexterous Hand for Complex Tasks in Healthcare Appli-
cation via Teleoperation

Our main objective is to show the benefit of maturing
technologies presented in this paper, identifying and solving
the key challenges in healthcare. The goal is to develop a
low-cost but highly dexterous robotic hand that can carry



Fig. 19: Robots for use in healthcare innovation: (a) temperature
measurement using Braun ThermoScan®, (b) pressure measurement
of a subject, (c) wound cleaning.

out complex tasks, especially those that might be dangerous
for humans such as handling contagious diseases. This aspect
makes the proposed command and control of a robotic hand
transformative because of the tradeoff between cost, overall
system size, weight, operation noise, and performance in
handling objects. We would like to show the use of the
proposed solution in three different cases that require their
own requirements.

Case 1: Demonstration of Command and Control in
Healthcare- Prolonged Field Care (PFC)

In some applications, robots are desired to monitor and help
individuals in need in remote field geographic location for an
extended period of time. This could be physical assistance
combined with visual monitoring. Our demonstration will be
focused on prolonged field care (PFC) and well suited in this
area particularly for especial cases, an epidemic disease that is
not safe for medics, because our proposed robot can monitor
the subject 24/7 as well as act as needed (such that help the
patients, providing water, food and other items, (Figure 19
a-c).

We will have two main applications and research efforts: (i)
body temperature measurement, and (ii) wound management
in field care units that the military needs. Our solution is
particularly useful for special missions that are difficult or
unsafe for humans to do.

Case 2: Body temperature measurement from Remote
Location

Another great application of the proposed method in this
paper is taking a body temperature measurement from a human
subject via teleoperation. We would like to experiment with
the hand developed in the previous section to take temperature
measurement of a patient simulator using hand-held Braun
ThermoScan® (Figure 19 a). Patient simulators are a great
way to expedite such research as human subject tests typically
require multiple processes of IRB approval at this initial
stage. First, we will perform simple experiments to let the
robot grasp ThermoScan and manipulate it by developing
algorithms. Inverse kinematics [60], [61], [62], camera and
hand coordination will be employed to direct the thermometer
to the patient simulator’s forehead, and the robot will read the
instrument display. We will use Object Character Recognition
(OCR) [63] program to detect the actual temperature reading.
The temperature and other procedures require multiple actions
of the robot following particular algorithms and experiments.
We will also determine the reachable positions (workspace)
of the robot hand using the Denavit-Hartenburg (DH) method,

a convention used to represent the relationships of linkage
parameters in robotic manipulators. We have done some pre-
liminary tests on the actuation of the robot locally, without
using the teleoperation, to see the practical issues and identify
the actuation variable. Some of the prior works are presented
in [64]. Our humanoid robotic with the specialized hands
(Figure 20 c) will be mounted on a mobile and it can
accomplish such a task by performing a series of experiments.
We will customize our robots to perform these tasks. We have
some representative video of our robot can be found from
https://youtu.be/WKc32gcdgj0.

Case 3: Low-cost and High-performance Biped Robots
and Mobile 3D Printed robots-for Hazardous Substance

Fig. 20: Robotic hand with TCP muscles, picking and placing an
object: (a) The hand-powered with TCP muscle and the inset of the
muscle, (b) Our 3D printed humanoid robot actuated by servomotors
and TCP powered hands; (c) holding and moving an object - as seen
by the 2 fire-wire cameras in the head and the 3D camera in the
chest; (d) HBS 1 Biped; (e) Buddy wheeled robot.

Low-cost humanoids are needed to manipulate hazardous
substances and explosives. They can be made again if it
is destroyed during operations or field trials. Our team has
designed and developed a 3D printed robot, HBS-1 robot
(Figure 20 a) that has mechanical systems, electrical and
mechatronic systems. The materials cost of this robot is
$10,000-$15,000 [46], [65]. The overall dimension of robot
HBS-1 is 120 cm x 33cm x 14 cm, which match closely a
7-year-old boy [66]. HBS-1 consists of two 4-DOF legs, a
2-DOF waist, two 4-DOF arms, two 15-DOF hands, and a
3-DOF head (51 DOF in total). The robot is powered by a
DC power supply connected through wires while tethered.
HBS-1 utilizes 14 Dyanmixel servos. Shape memory alloy
and TCP actuators have been used for the design of the
fingers since they can be installed in the limited volume of the
forearm. Otherwise, it would have been difficult to actuate all
five fingers. HBS-1 is equipped with Firewire stereo cameras
which are housed in the head. The torso is equipped with
an orientation sensor (UM7-LT), which combines gyroscopes,
accelerometers, magnetic sensors, and an onboard 32-bit ARM
Cortex processor to compute sensor orientation. Two servo
controllers in the torso actuate the 21 servo motors. The other
robot called Buddy (Figure 20b) consists of a wheeled mobile
base, a cloud camera, an ultrasonic position sensor, battery,
wireless communication module, flexible touch sensor skin,
two 4-DOF arms, and a 2-DOF neck (15-DOF in total). The
overall dimensions of the robot are a height of 580 mm, an
arm space of 925 mm, a shoulder width of 230 mm, and a
chest thickness of 172.5 mm [67], [68]. These components
took 56% of the total material cost. The total material cost of
this robot is $3000 including the mechanical and off-the-shelf
mechatronic components. This robot can be modified and used



for experimenting the teleoperation and handling dangerous
substances.

Overall, 3D printability, dexterity, mobility are some of the
key components of low-cost, high-performance teleoperated
robotic systems in the three case studies presented. The other
important aspect is the 3D printed robotic hand that is actuated
by coiled and twisted polymer muscles. We have recently
reported such an innovative robotic hand in 2017 [46], [64],
[69], [70]. The hand called UTD Hand can grasp various
objects, which was made of inexpensive polymer muscles
(Twisted and Coiled Polymer) TCP muscles. The muscles are
reported in Science Magazine in [49]. The robotic hand can
handle and manipulate various objects of different sizes and
shapes which will guarantee the success of this project as
shown in [46]. This robotic hand was featured as a unique
design in the review of robotic hands in the last century [71].
We will use this robotic hand combined with mixed-initiative
teleoperation to achieve better performance.

IX. CONCLUSION AND DISCUSSION

In this paper, we have proposed a haptic-enabled mixed
reality system for mixed-initiative remote control. The system
provides an efficient haptic rendering method with smooth
and stable force feedback. The haptic rendering also sup-
ports the simulation of the surface properties such as friction
and texture. The haptic rendering enhances the immersive
environments and supports more haptic user interfaces for
more flexible control commands such as pushing a virtual
obstacle to change the robot’s motion. An interactive 3D object
segmentation method is also provided to segment objects fast
and accurately. This segmentation result can be treated as
the input for the high-level semantic classification of objects.
The system also provides different types of haptic interactions
in the mixed reality platform, and a prediction method to
compensate for network delays. The delay can be compensated
to support the complex interaction such as placing obstacles
during the robot movement. The experimental results show
the efficiency and functionality of our system. This system
expands the user interfaces using haptic devices. In the fu-
ture, the following user study will be performed to compare
different user interface configurations. It is very meaningful
to verify which haptic interface mode contributes more to
task completion. Also, the prediction method can be tuned
by using more complicated methods such as a non-linear
model. Haptic-guided segmentation can be augmented by
incorporating a learning method for semantic labeling. Our
system provides haptic-guided mixed-initiative control. It can
be naturally extended to more levels of autonomy using our
mixed reality platform.
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