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A novel multiple instance learning framework for COVID-19 severity

assessment via data augmentation and self-supervised learning

Zekun Li†, Wei Zhao†, Feng Shi, Lei Qi, Xingzhi Xie, Ying Wei, Zhongxiang Ding,

Yang Gao, Shangjie Wu, Jun Liu⋆, Yinghuan Shi⋆, Dinggang Shen⋆

How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of people are suffering
from the pandemic around the world. Currently, the chest CT is regarded as a popular and informative imaging tool for COVID-19
diagnosis. However, we observe that there are two issues – weak annotation and insufficient data that may obstruct automatic
COVID-19 severity assessment with CT images. To address these challenges, we propose a novel three-component method, i.e., 1) a
deep multiple instance learning component with instance-level attention to jointly classify the bag and also weigh the instances, 2) a
bag-level data augmentation component to generate virtual bags by reorganizing high confidential instances, and 3) a self-supervised
pretext component to aid the learning process. We have systematically evaluated our method on the CT images of 229 COVID-19
cases, including 50 severe and 179 non-severe cases. Our method could obtain an average accuracy of 95.8%, with 93.6% sensitivity
and 96.4% specificity, which outperformed previous works.

Index Terms—COVID-19, Chest CT, Multiple instance learning, Data augmentation, Self-supervised learning

I. INTRODUCTION

Recently, a new coronavirus, named by the World Health

Organization (WHO) as COVID-19, has been rapidly spread-

ing worldwide. As of 23 October 2020, there have been more

than forty million confirmed COVID-19 cases globally. In

view of its emergency and severity, WHO has announced

COVID-19 outbreak a pandemic.

Due to the rapid spread, long incubation period and severe

respiratory symptoms of COVID-19, clinical systems around

the world are under tremendous pressure in multiple aspects.

In current study, how to fast and accurately diagnose COVID-

19 and assess its severity has become an important prerequisite

for clinical treatment.

At present, for the diagnosis of COVID-19, traditional

reverse transcription polymerase chain reaction (RT-PCR) is

widely employed worldwide as a gold standard. However,

due to its high false negative rate, repeat testing might be

needed to achieve an accurate diagnosis of COVID-19. The

chest computed tomography (CT) has been an imaging tool

† Zekun Li and Wei Zhao are the co-first authors.
* Asterisk denotes co-corresponding authors.
Zekun Li, Yinghuan Shi, and Yang Gao are with the State Key Laboratory

for Novel Software Technology, Nanjing University, China. They are also with
National Institute of Healthcare Data Science, Nanjing University, Nanjing,
210046, China.

Lei Qi is with School of Computer Science and Artificial Intelligence,
Southeast University, Nanjing, 210018, China.

Ying Wei, Feng Shi, and Dinggang Shen are with Department of Research
and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai,
201807, China. Dinggang Shen is also with School of Biomedical Engineer-
ing, ShanghaiTech University, Shanghai, China and Department of Artificial
Intelligence, Korea University, Seoul 02841, Republic of Korea.

Wei Zhao, Xingzhi Xie, and Jun Liu are with Department of Radiology,
The Second Xiangya Hospital, Central South University, Hunan, 410011,
China. Jun Liu is also with Department of Radiology Quality Control Center,
Changsha, 410011, China.

Zhongxiang Ding is with the Department of Radiology, Hangzhou First
People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhe-
jiang, China.

Shangjie Wu is with Department of Pulmonary and Critical Care Medicine,
The Second Xiangya Hospital, Central South University, Changsha, 410011,
China.

!"#$%&'&(&)&'&(&

Fig. 1. Examples of chest CT images with severe infection (left) and non-
severe infection (right) of COVID-19. The yellow arrows indicate represen-
tative infection regions.

frequently used for diagnosing other diseases, and because

it is fast and easy to operate, it has become a widely used

diagnosis tool for COVID-19 in China. However, not only is

manual diagnosis by CT images laborious, it is also prone

to the influence of some subjective factors, e.g., fatigue and

carelessness.

CT images are rather informative, with numbers of discrim-

inative imaging biomarkers, so they are useful in assessing the

severity of COVID-19. Based on the observation of Tang et al.

[1], the CT images of severe cases usually have larger volume

of consolidation regions and ground glass opacity regions, than

those of non-severe cases. Therefore, several computer-aided

methods [1], [2], [3] have been recently proposed. However,

we notice that current studies have neglected two important

issues.
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• Weak Annotation. Usually, it is rather time-consuming

for physicians to precisely delineate the infection regions

manually. Therefore, only the image-level annotation (i.e.,

label) for indicating the class of cases (i.e., severe or non-

severe) is available, which could be regarded as a weakly-

supervised learning setting. This inspires us to develop

a model that works under weakly-supervised setting

(merely with image-level annotation).

• Insufficient Data. According to current studies, it re-

mains difficult to collect and label a large set of COVID-

19 data. Besides, given the prevalence rate, the number of

non-severe cases is much larger than that of severe cases,

bringing about a significant issue of class imbalance,

that raises the challenge of learning a stable model by

avoiding overfitting. This motivates us to seek ways to

ease the imbalance of different classes and make the

most of the insufficient data.

Therefore, aiming to achieve the fast and accurate COVID-

19 severity assessment with CT images, we propose a novel

weakly supervised learning method via multiple-instance data

augmentation and self-supervised learning. Our method is

designed to solve the problems of weak annotation and in-

sufficient data in a unified framework.

On one side, the concept of weak annotation comes from

weakly supervised learning paradigm, whose goal is to develop

learning models under three types of supervision: inexact

supervision, incomplete supervision, and inaccurate supervi-

sion. In the severity assessment task, weak annotation is one

type of inexact supervision where only the image-level label

is provided by physicians whereas the region-level label is

unavailable. Formally, we model this weak annotation task

under multiple instance setting: We divide a CT image into

several patches (i.e., unannotated instances), to make it as

a bag consisting of multiple instances. Similar to multiple

instance learning setting, the image indicated with severe or

non-severe infection is considered as the positive or negative

bag, respectively.

On the other side, the problem of insufficient data greatly

challenges the robustness and stability of a learned model.

We notice that in current studies on COVID-19, sizes of

samples are often small. To tackle this challenge, we are

motivated by two major aspects: 1) to complement the original

data by generating additional “virtual” data by using data

augmentation technique, and 2) to leverage the patch-level

information to benefit the learning process, since the quantity

of patches is much larger than that of images. In particular,

1) we develop a simple yet effective multiple-instance data

augmentation method to generate virtual bags to enrich the

original data and guide stable training process; 2) Along

with the bag-level labels for supervised training, there is

also abundant unsupervised information that we can mine

from the sufficient unannotated instances, so we apply self-

supervised learning, in the form of patch location tasks, to

exploit characteristic information of the patches.

In this paper, we propose a method consisting of three major

components (see Fig. 2). Specifically, 1) we build a deep

multiple instance learning (MIL) model with instance-level

attention to jointly classify the bag and weigh the instances

in each bag, so as to find the positive key instances (i.e.,

instances with high confidence to the class of “severe”); 2) We

develop an instance-level augmentation technique to generate

virtual positive bags by sampling from these key instances,

which helps to ease the problem of class imbalance and

strengthen the learning process; 3) We introduce an auxiliary

self-supervised loss to render extracted features more discrim-

inative, by including characteristic information of the patches.

With extra information extracted from the unannotated in-

stances, the performance of MIL model could be further

improved. These three components are logically integrated in

a unified framework: 1) Three components are alternatively

updated to benefit each other in an end-to-end manner; 2)

Data augmentation could alleviate the label imbalance issue in

training of the MIL model, while the trained MIL model could

guide data augmentation to produce more meaningful bags; 3)

Self-supervised pretext task is able to benefit the MIL model

to being location-aware, which was ignored in traditional MIL

setting. In our evaluation, we extensively validated the efficacy

of our three components.

In the following four sections, we first introduce related

literature (Section II), then we present the technical details

of the proposed method (Section III), and finally report the

qualitative and quantitative experimental results (Section IV)

before drawing a conclusion (Section VI).

II. RELATED WORK

We would like to review related work on four aspects: 1)

COVID-19 severity assessment, 2) multiple instance learning,

3) data augmentation, and 4) self-supervised learning.

A. COVID-19 Severity Assessment

Along with diagnosis, severity assessment is another im-

portant factor for treatment planning. So far, there have been

a few relevant attempts at predicting severity of COVID-19

with CT images. Tang et al. [1] proposed a random forest

(RF)-based model to assess the severity of COVID-19 based

on 63 quantitative features, e.g., the infection volume/ratio of

the whole lung and the volume of ground-glass opacity (GGO)

regions. Besides, importance of each quantitative feature is

calculated from the RF model. Yang et al. [2] proposed to

evaluate the value of chest computed tomography severity

score (CT-SS) in differentiating clinical forms of COVID-19.

The CT-SS was defined by summing up individual scores

from 20 lung regions. In Yang et al.’s work, these scores

were assigned for each region based on parenchymal opaci-

fication. Li et al. [4] proposed a similar method depending

on the total severity score (TSS), which was reached by

summing the five lobe scores. Shan et al. [3] developed a

deep learning based segmentation system, namely “VB-Net”,

to automatically segment and quantify infection regions in

CT scans of COVID-19 patients. To accelerate the manual

delineation of CT scans for training, a human-involved-model-

iterations (HIMI) strategy was adopted to assist radiologists

to refine automatic annotation of each training case. Above

existing methods all depended on manually defined scores or

manual segmentations given by experts. Chao et al. [5] and
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Fig. 2. An overview of our method. In our method, the CT images are cropped into patches, which are then packed into MIL bags. In the kth epoch of
training process, the data for supervised training consists of real bags (i.e., training CT images) and virtual bags generated in the (k − 1)th epoch. Besides,
real bags are also used for the auxiliary self-supervised learning task (while virtual bags are not). After the training stage, the trained MIL model will take
the testing CT images (also modeled as MIL bags) as input to predict their labels (i.e., severe or non-severe).

Chassagnon et al. [6] further extended the problem to patient

outcome prediction, combining both imaging and non-imaging

(clinical and biological) data.

B. Multiple Instance Learning

Multiple instance learning is one paradigm of weakly super-

vised learning, which belongs to “inexact supervision” [7]. In

terms of existing MIL methods for image classification task,

they can be roughly divided into two categories, i.e., instance-

level methods and bag-level methods. Instance-level methods

assume that all instances in a bag contribute equally to the

prediction of the bag label [8], under which assumption, the

prediction of bag-level label is conducted by aggregating (e.g.,

voting or pooling) the prediction of instance-level labels in

each bag. However, this type of approaches [9], [10] suffer

from a major limitation – the label of each instance is usually

separately predicted without considering other instances (even

those in the same bag), rendering the label easily disrupted by

incorrect instance-level predictions. However, different from

instance-level methods, by considering the class information

of all instances, bag-level methods usually achieve higher

accuracy and better time efficiency, as proved in [8]. In this

sense, the promising property of MIL works quite well with

our weakly supervised image classification task, as indicated

by many current studies working towards this direction [11],

[12], [10].

As is known, medical images are usually infeasible to

obtain pixel-level annotations because this demands enormous

time and perfect accuracy from clinical experts. Therefore,

there has been a great interest in applying MIL methods

to medical imaging [13]. Quellec et al. [14] attempted to

divide the medical image into small-sized patches that can be

considered as a bag with a single label. Sirinukunwattana et

al. [15] further extended this application to the computational

histopathology where patches correspond to cells to indicate

malignant changes. Ilse et al. [16] proposed an attention-based

method that aims at incorporating interpretability to the MIL

approach while increasing its flexibility at the same time. Han

et al. [17] innovatively incorporated an automated deep 3D

instances generator into the attention-based MIL method, for

accurate screening of COVID-19. There are also other different

MIL approaches used in medical image analysis tasks, e.g.,

Gaussian processes [18] and a two-stage approach with neural

networks and expectation maximization (EM) algorithm to

determine the classes of the instances [19].

C. Data Augmentation

Data augmentation is a data-space solution to the problem of

limited data. To increase the amount and the diversity of data,

there has been a great interest in data augmentation recently,

since many applications, e.g., medical image analysis, might

not always have sufficient labeled training data to train. So far,

a number of techniques have been developed to enhance the

size and quality of training sets to build better deep learning

models.

One type of data augmentation methods are designed by

performing the basic image processing operators. For example,

Taylor and Nitschke [20] provided a comparative study of

the effectiveness of geometric transformations (e.g., flipping,

rotating, and cropping), and that of color space transformations

(e.g., color jittering, edge enhancement and PCA). Zhang et

al. [21] proposed mixup, which trains the learning model

on virtual examples constructed by a linear interpolation of

two random examples from the training set. Zhong et al.

[22] developed random erasing inspired by the mechanisms

of dropout regularization. Similarly, DeVries and Taylor [23]

proposed a method named as Cutout Regularization.

Note that there are also several attempts at learning-based

data augmentation. Frid-Adar et al. [24] tested the effec-

tiveness of using DCGANs to generate liver lesion medical

images. Applying meta learning concepts in neural architecture

search (NAS) to data augmentation, several methods such

as Neural Augmentation [25], Smart Augmentation [26], and

Auto-Augment [27], were further developed in recent litera-

ture.



4

Unfortunately, under the MIL setting, the labels of instances

are not available during training, which means previous data

augmentation methods cannot be directly borrowed. In order

to relieve the data scarcity problem during COVID-19 severity

assessment, we have to develop a novel augmentation tech-

nique that works for our MIL setting.

D. Self-supervised Learning

In many recent studies of unsupervised learning, a common

method is to define an annotation-free pretext task to provide

a surrogate supervision signal for feature learning. By solving

such pretext tasks, the trained model is expected to extract

high-level semantic features that are useful for other down-

stream tasks. So far, a large number of pretext tasks for self-

supervised learning have been designed. For example, Larsson

et al. [28] and Zhang et al. [29] predicted the colors of images

by removing its original color information. Doersch et al. [30]

and Noroozi and Favaro [31] predicted relative positions of

different image patches in the same image. Gidaris et al. [32]

predicted the random rotation applied to an image. Pathak et

al. [33] predicted the missing central part of an image by

building the prediction model with context information. He et

al. [34] presented a contrastive learning method, called Mo-

mentum Contrast (MoCo), which outperformed its supervised

pre-training counterpart in several vision tasks. Zhou et al.

[35] proposed a set of models trained by a robust, scalable

self-supervised learning framework, called Models Genesis,

for medical image analysis tasks. What these works have in

common is that they are all utilized to attain well pre-trained

networks on unannotated images.

Unlike these works above aiming at pre-trained models,

Chen et al. [36] aimed to improve the performance of gen-

erative adversarial networks by leveraging the supervision of

rotation prediction task. Similarly, Gidaris et al. [37] used

self-supervision as an auxiliary task and brought significant

improvements to few-shot learning.

Remark. As discussed above, both the weak supervision

manner and data scarcity in COVID-19 severity assessment

pose a considerable challenge to our work. So our intuition

includes the following two steps: 1) We found weak supervised

prediction of COVID-19 naturally agrees with the setting of

MIL; 2) Under the MIL setting, we try to solve the challenge

of data scarcity by considering the relation between bag and

instance. In a nutshell, by confronting the double challenges of

weak supervision and data scarcity, our solution for COVID-19

severity assessment is novel according to our best knowledge.

III. METHOD

In this section, we first analyze the problem of COVID-19

severity assessment and provide an overview of our method,

then present and discuss thoroughly the technical details of

three major components, i.e., bag-level prediction, instance-

level augmentation and auxiliary self-supervised loss.

A. Problem Analysis

In this part, we will first analyze the main challenges in

COVID-19 severity assessment caused by weak supervision

and data scarcity, and then provide corresponding countermea-

sures.

For the annotation of CT images, image-level labels directly

come from diagnosis results of corresponding patients, guided

by the Diagnosis and Treatment Protocol for COVID-19 (Trial

Version 7) from National Health Commission of the People’s

Republic of China. In this sense, infection regions in CT

images of COVID-19 patients remain unknown even when this

image has already been labeled. This poses a great challenge

for the utilization of traditional supervised learning models.

To address this challenge, we introduce the multiple instance

learning (MIL) framework, a typical weakly-supervised learn-

ing paradigm to deal with the image-level prediction without

knowing any region-level annotation.

In the MIL setting, each image could be regarded as a bag,

and regions inside this image are thus regarded as instances

in this bag. In our case, chest CT images are processed as

bags. To be more specific, each CT image consists of hundreds

of slices that show different cross sections of lung regions.

Moreover, each slice can be further cropped into several non-

overlapping patches. And the patches from the same CT image

make up a bag. Note that the label of a bag (i.e., the bag-

level label) depends on the information provided by physicians

on original CT images. These notions are illustrated in Fig.

3. In this work, the MIL bags with the label “severe” are

called positive bags, whereas those with the label “non-severe”

are called negative bags. It is also worth mentioning that

the instances (i.e., patches) related to the infection regions

in positive bags are without any annotated information during

training.

!"#$%&'() !*+,,(-#./0'1() 2/3)
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Fig. 3. A brief illustration of the notions of CT slices, instances (patches)
and bags. A CT image contains CT slices, and the slices are cropped to non-
overlapping patches, which are considered as instances. The patches from
the same CT image make up a MIL bag, with a bag-level label “severe” or
“non-severe”.

Another challenge is data scarcity, which usually makes

stable learning model hard to realize, especially when the

number of severe CT images is very limited. To address this

issue, we first adopt the data augmentation technique during

training by generating virtual samples. Though data augmenta-

tion has demonstrated its effectiveness in several other learning

tasks [38], [39], previous augmentation technique cannot be

directly applied to our MIL setting, because each bag consists
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of several instances and the instance-level label is unknown.

In our work, we notice that compared to other instances,

some instances usually play a much more important role

in determining the label of a bag, which we name as key

instances. This observation further drives us to develop a novel

instance-level augmentation technique to generate “virtual”

bags by gathering these key instances.

In addition to the data augmentation technique, we also

leverage self-supervised learning, a popular unsupervised

paradigm in recent studies. We notice that, although supervised

information of bag-level labels is limited due to data scarcity,

there is a wealth of unsupervised information hidden in

unannotated instances. Thanks to self-supervision, the patch-

wise location can be further exploited so that the network

can extract stronger instance features. As a result, the bag-

level features of positive and negative samples can be further

differentiated, further improving the performance of the MIL

model.

In a word, to address the aforementioned challenges, our

method has three major components: 1) bag-level prediction,

2) instance-level augmentation and 3) auxiliary loss based on

self-supervised learning. In particular, we build a deep multiple

instance learning model with attention mechanism to predict

the bag-level label (i.e., severe or non-severe). Instances with

higher attention weights, that are expected to have larger

influence on the bag-level label, can be regarded as key

instances, while other instances are considered to be regular

instances. According to the learned attention, we randomly

sample key instances and regular instances to generate virtual

bags to enrich current training samples. In the training stage,

we incorporate self-supervision into MIL model by adding an

auxiliary self-supervised loss.

B. Bag-level Prediction

The first component of our method – bag-level prediction

aims to predict the label of a CT image as either severe or non-

severe. A chest CT image consisting of hundreds of slices can

be divided into smaller sized patches, making the CT image

itself a bag with a single label (severe or non-severe) and the

patches instances. In this work, Y = 1 indicates that the image

is labeled as severe case while Y = 0 indicates that it is non-

severe. Since these patches are non-overlapping, we assume

there is no dependency or sequential relationship among the

instances within a bag. Furthermore, K denotes the number

of instances in a bag, and we assume K could vary from bag

to bag.

The framework of this component is shown in Fig. 4. We

use a convolutional neural network [40] to extract the feature

embedding hk of each instance xk, where hk ∈ R
M and

M is the dimensionality of instance features. Suppose H =
{h1, . . . ,hK} is a bag of K embeddings, the embedding of

bag X is calculated by attention-based MIL pooling proposed

by Ilse et al. [16]:

z =
K
∑

k=1

akhk, (1)

where

ak =
exp

(

w
⊤ tanh

(

Vh
⊤

k

))

∑K

j=1
exp

(

w⊤ tanh
(

Vh
⊤

j

)) , (2)

w ∈ R
L and V ∈ R

L×M are the parameters to learn.

The hyperbolic tangent tanh(·) element-wise non-linearity is

utilized to include both negative and positive values for proper

gradient flow. Finally, we use a fully connected layer to decide

the label according to the bag feature. The categorical cross-

entropy loss is used to optimize the MIL model defined as

follows:

LMIL = −
1

Nb

Nb
∑

i=1

1
∑

c=0

δ (Yi = c) log
(

P (Yi = c)
)

, (3)

where Nb is the number of bags. δ (yi = c) is the indicator

function (i.e., δ (yi = c) = 1 when yi = c and 0 otherwise)

and P (Yi = c) denotes the predicted probability.

It is worth mentioning that large weights refer to key

instances with relatively high confidence, that are most rel-

evant to the bag-level label. This means that not only can

the MIL model provide final diagnostic results, it can also

help physicians to identify possible severe infection regions,

which has a great clinical significance for COVID-19 severity

assessment.

With the trained MIL model, we are able to automatically

assess the severity of the disease with CT images. In the testing

stages, we divide the CT image into non-overlapping patches

in the same way as in training. Along with the assessment, the

model also outputs the attention weights, that can help find the

regions relevant to severe infection.

C. Instance-level Augmentation

For severity assessment, scare data significantly deteriorates

the overall performance. What’s more, the imbalance of class,

i.e., the number of non-severe cases is much larger than that

of severe cases, is also harmful for learning a stable model.

To confront these problems, we propose a novel data aug-

mentation technique to generate “virtual bags” on original bags

to enrich current training process. By rethinking the attention

mechanism in multiple instance learning, we notice that the

patch with higher responses in attention usually indicates a

higher relation to its current class label. In positive bags,

there are some instances with significantly higher weights, as

shown in Fig. 5. We consider them (positive) key instances

while other instances regular instances. However, according

to the experiments, in negative bags, all instances have similar

low weights, roughly confirming the rule in traditional MIL.

Therefore, we only take positive bags and corresponding key

instances in them into consideration.

In the training process, when a positive bag is correctly pre-

dicted to be severe, instances with top-⌊αK⌋ highest weights

in this bag will be appended to the list of key instances, where

K is the number of instances in the bag. In the meantime,

other instances are treated as regular instances. Considering

time cost and memory usage, we only append instances with

top-⌊γN⌋ lowest weights to the list of regular instances. In
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Fig. 4. The framework of deep MIL model. Firstly, the instance features are extracted. Secondly, the attention weights of the instance features are determined
by the network. Then, the MIL pooling layer combines the instance features to generate a bag feature. Finally, the bag feature is mapped by a fully connected
(FC) layer to decide the label.
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Fig. 5. An example of key instances in a positive bag. It indicates that the
patches are likely to be related to the severe infection regions. Note that, we

rescaled the attention weights of the patches in the same slice using a
′

k
=

ak/
∑

i
ai

our observation, we notice that different positive bags may

have different proportion of positive key instances. Therefore,

in order to prevent regular instances from being mistaken

as key instances, the proper parameter α should be set to a

relatively small value as a strict rule to judge the key instance.

In practice, the value is set to no larger than each positive

bag’s actual proportion. For the generation of virtual positive

bags, assuming the average number of instances per bag is

K̄, we randomly sample ⌊αK̄⌋ key instances and ⌊(1−α)K̄⌋
regular instances, then pack them into a virtual bag. Among

the parameters above, K and K̄ are easy to obtain, while α

and γ need to be set before training. The process of generating

virtual bags is visualized in Fig. 6.

With the help of attention mechanism, this process can be

plugged in the training phase. In each training epoch, the

model generates virtual bags based on attention weights and

these virtual bags generated are further used as a part of

training data in the next epoch.

D. Auxiliary Self-supervised Loss

We also incorporate self-supervision into the MIL model

by adding an auxiliary self-supervised loss. By optimizing

the self-supervised loss, the model learns to exploit more

information from unannotated instances.

In this work, we consider the following two pretext tasks

for the self-supervised loss: 1) to predict the relative location

of two patches from the same slice, which is a seminal task

in self-supervised learning as originally proposed in [30]; and

2) to predict the absolute location of a single patch, which is
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Fig. 6. A sketch map of generating virtual bags. For positive bags, instances
with high weights are appended to the list of key instances while instances
with low weights to the list of regular instances. Virtual bags are generated
by randomly sampling key instances and regular instances.

similar to the former task, but more suitable under the MIL

problem setting.
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Fig. 7. A CT slice is divided to 12 patches. For the relative patch location
task, we are able to create 16 pairs of patches: (a0, a1), . . . , (a0, a8) and
(b0, b1), . . . , (b0, b8). For the absolute patch location task, we directly predict
each patch’s location among l1, . . . l12.

SSL task 1: Relative Location Prediction. Predicting the

relative location of a pair of patches from the same image is

a seminal task in self-supervised learning. More specifically,

given a pair of patches, the task is to predict the location of the

second patch with regard to the first one, among eight possible

positions, e.g., “on the bottom left” or “on the top right”. This

task is particularly suitable for the MIL setting, because there

are many pairs of patches in a bag, that we can predict the

relative location of. To be more specific, for one slice, we

are able to create 16 pairs of patches: (a0, a1), . . . , (a0, a8)
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and (b0, b1), . . . , (b0, b8), as shown in Fig. 7. We extract the

representation of each patch and then generate pair features

by concatenation. We train a fully connected network G
r
φ(·, ·)

with parameters φ to predict the relative patch location of each

pair.

The self-supervised loss of this relative location prediction

task is defined as:

Lr
SSL =

1

Ns

Ns
∑

s=1

16
∑

i=1

LCE

(

G
r
φ(pi),rloc(pi)

)

, (4)

where Ns is the number of slices. pi stands for the pair of

patches, specifically p1, . . . , p8 for (a0, a1), . . . , (a0, a8) and

p9, . . . , p16 for (b0, b1), . . . , (b0, b8). There are 16 pairs in

total. LCE(·, ·) is the cross-entropy loss function and rloc(pi)
is the ground truth of the relative patch location.

SSL Task 2: Absolute Location Prediction. Under the

MIL setting of COVID-19 severity assessment, the CT slices

containing two lungs are quite similar. This has made us to

realize that the task can be designed in a more straightforward

way, i.e., to predict the absolute location of a single patch in

an entire CT slice, or more specifically, to predict the location

of a patch among 12 possible positions l1, . . . l12 as shown in

Fig. 7. We also train a fully-connected network G
a
φ(·) with

parameters φ to predict the absolute patch location.

The self-supervised loss of this absolute location prediction

task is defined as:

La
SSL =

1

Ns

Ns
∑

s=1

12
∑

i=1

LCE

(

G
a
φ(xi),aloc(xi)

)

, (5)

where Ns is the number of slices. xi stands for the patch in

the position of li. aloc(xi) = li is the ground truth of the

absolute patch location. There are 12 patches per slice.

Formally, let LSSL be the either kind of self-supervised loss,

the total loss of the training stage can be written as

Ltotal =
LMIL + µLSSL

1 + µ
, (6)

where LMIL stands for the loss of MIL model (i.e., the bag-

level prediction task), as defined previously. The positive hy-

perparameter µ controls the weight of self-supervised loss. By

optimizing self-supervised loss, the instance feature extractor

can learn more informative features, further improving the

performance of the MIL model. Note that, only real bags will

be used for self-supervised learning tasks.

IV. EXPERIMENT

In the section, we will report the quantitative and qualitative

results of our method. First, we present the details of our

COVID-19 dataset and the process of data preprocessing.

Then, we discuss the experimental setup in our evaluation and

provide the implementation details of our method. After that,

we conduct ablation studies, and compare our method with

existing methods, while analyzing the interpretability of our

method. Finally, we discuss some of the choices we have made

in network structures, parameter values and pretext tasks.

A. Dataset

We collect a dataset, that contains chest CT images of

229 patients with confirmed COVID-19. For each patient, the

severity of COVID-19 is determined according to Diagnosis

and Treatment Protocol for COVID-19 (Trial Version 7) issued

by National Health Commission of the People’s Republic of

China. The severity includes four types: mild, common, severe

and critical. We categorize patients into two groups: non-

severe group (mild and common) and severe group (severe

and critical), because the number of patients with mild or

critical types is extremely small. Among these patients, 179

are non-severe cases while 50 severe cases. The categories of

patients are used as image-level labels of their corresponding

CT images. Moreover, the gender distribution of the patients

is shown in Table I and their age distribution is shown in Fig.

8.

TABLE I
THE GENDER DISTRIBUTION IN OUR STUDY

Gender Severe Non-severe Total

Male 32 92 124

Female 18 87 105

Total 50 179 229
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Fig. 8. The age distribution of the patients in our dataset.

All chest CT images were acquired at the Second Xiangya

Hospital of Central South University and its collaborating

hospitals with different types of CT scanners, including Anke

(ANATOM 16HD), GE (Bright speed S), Hitachi (ECLOS),

Philips (Ingenuity CT iDOSE4) and Siemens (Somatom per-

spective). The scanning parameters are as follows: 120 kVp,

100-200 mAs, pitch 0.75-1.5 and collimation 1-5 mm.

B. Data Preprocessing

Though in the previous section, we have introduced how to

process the CT images as MIL bags briefly, when it comes to

the implementation, we give more details. The CT images are

originally stored in DICOM files and converted to PNG file

format for further processing. Each PNG file corresponds to a

CT slice. After the CT images have been sliced, those slices

with few lung tissues are removed. For each slice, we locate

the bounding box of two lungs and crop the region containing
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two lungs. The cropping region is then resized to 240 × 180
and divided into 12 non-overlapping patches of size 60× 60.

To remove inter-subject variation, we further perform min-max

normalization on each patch individually.

Eventually, we obtained a dataset consisting of 229 bags,

179 of which are negative (i.e., non-severe cases) and 50

of which are positive (i.e., severe cases). There are 49,632

instances (patches) in total, with around 217 instances per bag

on average.

C. Experimental Setup

We employ the standard 10-fold cross-validation, where

each sample would be tested at least once. Each experiment

is performed 5 times and an average (± a standard deviation)

is reported to avoid possible data-split bias.

In our experiments, we use the following metrics to eval-

uate the performance: accuracy, sensitivity (true positive rate,

TPR), specificity (true negative rate, TNR), F1-Score and the

area under the receiver operating characteristic curve (AUC).

Specifically, these metrics are defined as:

Accuracy =
TP + TN

TP + FP + FN + TN
, (7)

Sensitivity =
TP

TP + FN
, (8)

Specificity =
TN

TN + FP
, (9)

F1-score =
TP

TP + 1

2
(FP + FN)

, (10)

where TP, FP, TN, and FN represent the True Positive, False

Positive, True Negative and False Negative, respectively.

D. Implementation Details

In this part, we provide the implementation details of the

three components of our method.

1) Bag-level Prediction

For bag-level prediction, we construct a deep attention-

based MIL model. In order to keep the consistency with the

previous work [16], we choose LeNet [40] as the instance

feature extractor and the dimensionality of features is 512.

In attention mechanism, the parameter L is set as 128. A

fully connected (FC) layer with Sigmoid function works as

a linear classifier and the classification threshold is set as

0.5. All layers are initialized according to [41] and biases

are set as zero. The network architecture is shown in Table

II. In Table II, conv (5,1,0)-36 means the size of kernel

as 5, stride as 1, padding as 0 and the number of output

channels as 36, respectively. The model is trained with the

Adam optimization algorithm [42]. The hyperparameters of

the optimization procedure are given in Table III.

2) Instance-level Augmentation

In virtual-bag generation, the value of parameter α is very

important. As aforementioned in Section IV.C, in our setting, α

should be smaller than the actual proportion to prevent regular

instances from being mistaken for key instances. So we set

α as 0.025, because it shows the greatest accuracy on the

TABLE II
THE DETAILS OF OUR NETWORK ARCHITECTURE

Layer Type

1 conv(5,1,0)-36 + ReLU

2 maxpool (2,2)

3 conv(5,1,0)-36 + ReLU

4 maxpool (2,2)

5 conv(5,1,0)-48 + ReLU

6 maxpool (2,2)

7 fc-512 + ReLU

8 MIL-attention-128

9 fc-1 + Sigm

TABLE III
THE SETTING OF PARAMETERS IN OUR EXPERIMENTS

Hyperparameters Value

β1, β2 0.9, 0.999

Learning rate 0.0001

Weight decay 0.0005

Batch Size 1

Epoch 50

validation set. On the contrary, since regular instances are not

useful to identify the positive bag, the parameter γ just need

to be relatively small, to make sure that no key instance gets

into the list of regular instances incorrectly. In our experiments,

γ is fixed as 0.2, which shows good performance according

to our evaluation. Besides, in the beginning of the training

phase, the MIL model is under-fitting so it cannot provide

very accurate weights. Therefore, in our experiment, the model

starts to generate virtual bags from the 26th epoch to the last

epoch.

3) Self-supervised Loss

For the relative patch location task, given two patches, the

network G
r
φ(·) gets the concatenation of their feature vectors

as input to two fully connected layers. For the absolute patch

location task, another network G
a
φ(·) consisting of two fully

connected layers gets as input the feature of a single patch and

predicts its location. For both tasks, we set µ as 0.3. We also

optimize the auxiliary loss with the Adam algorithm [42]. The

hyperparameters of the optimization algorithm are consistent

with those shown in Table III.

E. Ablation Study

To evaluate the effectiveness of different components of

the proposed method, we have conducted ablation studies. We

have experimented on the following configurations:

• (A) MIL Only: our method without data augmentation

and self-supervised learning;

• (B) MIL + Augmentation: our method without self-

supervised learning;

• (C) MIL + Self-supervised: our method without data

augmentation;
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• (D) MIL + Both: our method.

The values of hyperparameters involved have already been

described above. For self-supervised learning, we choose the

absolute patch location task as the pretext task, because exper-

imental evidence shows that it outperforms the relative patch

location task in our problem setting. See further discussion for

details.

The results of all these configurations are illustrated in

Table IV. The statistical comparison (i.e., two-sample t-test)

on AUC metrics is conducted and p-values are reported

below. Comparing (B) with (A), we find that the proposed

data augmentation technique significantly improves the overall

performance of the MIL model (p = 0.015 < 0.05), especially

the sensitivity criteria important for COVID-19 diagnosis.

Similarly, the comparison between (C) and (A) shows the

auxiliary self-supervision loss also results in performance gain

(p = 0.028 < 0.05). Comparing (D) with other configura-

tions (A, B and C), the MIL model incorporating both data

augmentation and self-supervised learning achieves the best

performance (p = 0.006, 0.027, 0.007< 0.05).

Fig. 9. Visualization of the bag-level features extracted in different configu-
rations. The left corresponds to (A), while the right corresponds to (D). Red
and green points stand for severe and non-severe cases, respectively.

The visualization in Fig. 9 indicates that our method can

learn more discriminative feature representations than the

original MIL model.

F. Comparison with Existing Methods

We have compared our method with the existing works by

Tang et al.’s [1] and Yang et al.’s [2], which share the same

problem setting with ours. For the size of datasets, compared

with chest CT images of 179 patients in Tang et al. ’s work and

those of 102 patients in Yang et al. ’s work, our work includes

a larger dataset of 229 patients. In terms of data annotation, our

method works under weak annotation setting, with only image-

level labels (severe or non-severe) available. However, their

works need additional manual annotation besides image-level

labels. Tang et al. ’s work depends on 63 quantitative features

calculated from accurate segmentation results of infection

regions. The segmentation network needs manual delineations

for training. Yang et al. ’s work depends on manually defined

severity scores of lung regions provided by chest radiologists.

Table V displays the comparison between our proposed

method and the existing methods. Because their data and

codes are not accessible, the results in the first two lines are

directly reported from their papers. The third line shows that

our MIL model itself has achieved better performance in terms

of accuracy and AUC metrics. As shown in the last line, our

proposed method with data augmentation and self-supervised

learning reveals a superior performance on a larger dataset

when compared with these two state-of-the-arts methods.

G. Efficiency of MIL Method

We implemented our experiments on one Nvidia GeForce

RTX 2080 Ti GPU. In 10-fold cross-validation, for each data

split, training our MIL model (with data augmentation and

auxiliary self-supervised loss) on 206 samples would take

213.7 ± 5.1 seconds in average, and testing on 23 samples

would take less than 1 second. It is shown that the proposed

method is quite efficient in computation.

H. Interpretability of MIL Method

Along with a predicted label, the MIL model also outputs

attention weights for each patch. Although the model is not

designed to accurately segment the lesions, it can still help to

indicate the regions relevant to severe infection. In Fig. 10,

we show that the attention weights can be useful for finding

severe infection regions.

I. Method Designing Details

Now we would like to discuss some of the choices we made

in designing our method. Experiments on the validation set

show that the values of parameters α and µ, as well as the

selection of pretext task, can affect the performance of our

method.

1) Bag-level Prediction

For the instance feature extractor, we do not use deeper

ResNet [43] or DenseNet [44], because the experiment shows

that deeper networks cannot significantly improve the perfor-

mance, but rather increase the time consumed instead. For

MIL attention pooling, we test the following dimensions (L):

64, 128 and 256. The differences in dimensions only result in

minor changes of the model’s performance.

2) Instance-level Augmentation

For the data augmentation technique, we evaluate the per-

formance for different α, the results of which are illustrated in

Fig. 11. Our experiment shows that different γ doesn’t bring

great variation on the model’s performance.

3) Self-supervised Loss

We have evaluated the performance of two pretext tasks, and

the results on are shown in Table VI. According to the results,

utilizing the absolute patch location task can approach better

performance than utilizing the relative patch location task (p =
0.041 < 0.05). The reason could be that different lung regions

play different roles in COVID-19 severity assessment as shown

by an existing study [1], while the absolute patch location

task may help to extract both high-level semantics and spatial

information. For the absolute patch location task, we further

conduct experiments to find the best value of µ, and the results

are illustrated in Fig. 12.

There exist some other pretext tasks in self-supervised

learning, such as colorization [45], denoising [46], image

restoration [47] and so on. However, we argue that the patch

location prediction is applicable for our method, because it is
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TABLE IV
THE RESULTS OF THE ABLATION STUDY

Method Accuracy Sensitivity Specificity F1-Score AUC

(A) MIL Only 0.908± 0.029 0.740± 0.084 0.954± 0.031 0.776± 0.064 0.932± 0.022
(B) MIL + Augmentation 0.942± 0.025 0.916± 0.022 0.949± 0.036 0.874± 0.045 0.971± 0.004

(C) MIL + Self-supervision 0.937± 0.029 0.844± 0.129 0.963± 0.009 0.850± 0.079 0.964± 0.030
(D) MIL + Both 0.958 ± 0.015 0.936 ± 0.032 0.964 ± 0.024 0.895 ± 0.029 0.981 ± 0.006

TABLE V
COMPARISONS BETWEEN OUR PROPOSED METHOD AND THE EXISTING APPROACHES. NOTE THAT OUR METHOD REQUIRES NO ADDITION ANNOTATION

OTHER THAN IMAGE-LEVEL LABELS, WHILE TANG et al.’S WORK REQUIRES ACCURATE SEGMENTATION OF INFECTION REGION AND YANG et al.’S

WORK DEPENDS ON MANUALLY DEFINED SEVERITY SCORES.

Method Accuracy Sensitivity Specificity F1-Score AUC

Tang et al.’s [1] 0.875 0.933 0.745 - 0.910

Yang et al.’s [2] 0.833 0.940 - 0.892

MIL Only (Ours) 0.908± 0.029 0.740± 0.084 0.954± 0.031 0.776± 0.064 0.932± 0.022
MIL + Both (Ours) 0.958 ± 0.015 0.936 ± 0.032 0.964 ± 0.024 0.895 ± 0.029 0.981 ± 0.006
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Fig. 10. Visualization of the attention mechanism in our method. Presented above are some examples of the (slice-wise rescaled) attention weights of patches.
Severe infection regions identified by experts are marked with yellow boxes. It can be seen that the patches with high weights are probably relevant to severe
infection.

TABLE VI
PERFORMANCE OF DIFFERENT PRETEXT TASKS

Method Accuracy Sensitivity Specificity F1-Score AUC

Baseline 0.908± 0.029 0.740± 0.084 0.954± 0.031 0.776± 0.064 0.932± 0.022
Relative Patch Location 0.916± 0.004 0.796± 0.114 0.949± 0.032 0.801± 0.024 0.951± 0.014
Absolute Patch Location 0.937 ± 0.029 0.844 ± 0.129 0.963 ± 0.009 0.850 ± 0.079 0.964 ± 0.030
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Fig. 12. Performance of different µ. The best µ is 0.3.

patch-oriented pretext task. Considering that patches have been

previously defined and cropped in the MIL setting, no more

image transformation is required. Besides, in our preliminary

experiments, we noted that other pretext tasks might not be

applicable in severity assessment of COVID-19 due to the

property of strong spatial relation and low CT contrast.

V. DISCUSSION

For future directions of our current study, we consider four

following aspects to improve our work:

• Data preprocessing. We will consider a better way of

data preprocessing. In the current study, we mainly focus

on designing the learning method, thus implementing the

data preprocessing in a simple way. In our future work,

we will incorporate automatic segmentation methods to

obtain more fine-grained patches, for further performance

improvement. In the meanwhile, we can also reduce a

large number of irrelevant patches to further improve the

effectiveness and efficiency of our method.

• Self-supervised representation. In this study, the effi-

cacy of self-supervise learning has been evaluated. In our

future work, we will further incorporate more advanced

methods of self-supervised contrastive learning. In this

way, we can exploit informative representation from

unsupervised manner.

• Longitudial information. Longitudial information could

benefit the prediction of changing trend for better severity

assessment. In our future work, we will also incorporate

longitudinal CT scans for severity assessment, to provide

better treatment and follow-up of COVID-19 patients.

• Manual delineation. Since manual annotation is labori-

ous, we will investigate semi-supervised learning model

to further alleviate the requirement of amount of annota-

tion.

For possible clinical applications, we believe that our pro-

posed method has great potential. First, by training with a

small number of weak-annotated CT images, our proposed

method can predict the severity of COVID-19 in a high

accuracy. Second, our proposed method provides a powerful

feature extractor for CT images. Specifically, the bag features

are actually features of CT image, and can act as imaging

attributes, which can be combined with clinical/biological

attributes for other tasks (e.g., patients’ outcome prediction).

Moreover, our proposed method can be extended to other

problems, in which the challenges of weak annotation and

insufficient data also exist, besides COVID-19 severity assess-

ment.

VI. CONCLUSION

In this paper, we investigate a challenging clinical task of

fast and accurately predicting the severity level of COVID-

19. We observe two issues that may obstruct the COVID-19

severity assessment: weak annotation and insufficient data. To

meet these challenges, we develop a deep attention-based MIL

method combined with data augmentation and self-supervised

learning. Experimental results successfully demonstrate the

effectiveness of our proposed components, including 1) the

MIL model for bag-level prediction, 2) the instance-level

augmentation technique by generating virtual positive bags,

and 3) the auxiliary self-supervised loss for extracting more

discriminative features. Also, our approach shows remarkably

better performance when compared with the existing methods.
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