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Since two people came down a county of north Seattle with
positive COVID-19 (coronavirus-19) in 2019, the current
total cases in the United States (U.S.) are over 12 million.
Predicting the pandemic trend under effective variables is
crucial to help find a way to control the epidemic. Based
on available literature, we propose a validated Vector Au-
toregression (VAR) time seriesmodel to predict the positive
COVID-19 cases. A real data prediction for U.S. is provided
based on the U.S. coronavirus data. The key message from
our study is that the situation of the pandemic will getting
worse if there is no effective control.
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1 | INTRODUCTION

COVID-19 (coronavirus-19) a new type virus, belonging to the Coronaviridae family, spreads from Wuhan, China in
2019.[1] The Coronaviridae family consists of two main subfamilies: Coronavirinae and Torovirinae. These viruses
affect the neurological, gastrointestinal, hepatic, and respiratory systems and can be grown by humans, livestock,
etc.[2, 3, 4]

Since the appearance, COVID-19 has infected over 59 million people worldwide. [5]The worst situation experienced
by the United States (U.S.) followed by the United Kingdom, Italy, France, and Spain. The U.S. has a cumulative 12
million positive cases up to now. It found itself grappling with the worst outbreak after Italy and Spain.[6]The Centers
for Disease Control and Prevention (CDC) has verified evidence that COVID-19 is distributed from human to human,
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and has also reported that COVID-19 spreads through touching surfaces, close contact, air, or objects that contain
viral particles. In the incubation period, it can spread to others. It should be noted that the incubation period and
median age of confirmed cases are 3 days and 47 years respectively. [7, 8]

The economic and social disruption caused by the pandemic is devastating. The disease prevention and control is
eager for a disease prediction guidance. Efficient models for short-term forecasting has a pivotal role to develop
strategic planning methods in the public health system. Under the guidance of the prediction model, we know the
severity and the trends of epidemic under different strategies. It can arouse public awareness and help government
take the most benefit measures to avoid deaths and reduce infection, such as ordered school closure, case-base mea-
sures, the banning of public events, the encouragement of social distancing, and lockdown.

Per literature, a system of differential equations for Susceptible-Infected-Removed (SIR) sequences is a typical math-
ematical epidemiological model for COVID-19 forecasting.[5, 9, 10, 11, 12, 13, 14] Joining SIR models, Khan et al.
proposed the SQUIDER compartmental model to predict the coronavirus 2019 spread [15], and Xu et al. applied
the generalized fractional-order SEIR model.[16] The SIR model has a good fitting for the simulation and data of the
outbreak in the early stage of the disease. However, the obvious limitations are not limited to that the overall model
system has a small external control power, and the number of patients presents a typical exponential growth, which
is due to the absence of external drugs and preventive measures.

Other works on COVID-19 prediction has been carried out in Deep Learning and ARIMA (Auto Regressive Integrated
Moving Average) univariate time series model. To assess the dynamics of epidemic diseases, time series analysis tools
and deep learning are also widely used in publications. Zeroual et al., Shahid et al., and Chimmula et al. performed the
Recurrent Neural Network to predict the spread.[17, 18, 19] With time series tools, Alzahrani et al., Sahai et al., and
Kumar et al. predicted the COVID-19 by ARIMA univariate model.[20, 21, 22] Deep learning requires a high number
of training samples. However, the data we have are still few, so the model generalization is unappealing, namely over-
fitting. In the time series field, the ARIMA model is quite simple, requiring only endogenous variables and no other
exogenous variables. A Stationary is required for the time series, or it is stationary after differencing. Essentially, it
lays a shortfall in explaining the causality between different variables.

This article aims to build a generalized VAR (Vector Autoregressive) model for predicting the dynamics of COVID-19
daily cases of the epidemic. VAR is a comprehensivemodel integrating the advantages ofmultiple linear regression and
the advantages of time series model (the influence of lag term can be analyzed). It applies linear relations to describe a
stable system. Under the stationary condition, we can achieve a consistent estimator with the least-square estimation.
Besides, VAR can describe the dynamic linear correlation between variables that affect each other, whether used for
prediction, interpretation, or sensitivity analysis are clear. With the selected correlated variables among undetected
infected, detected deaths, detected recovered, average temperature, precipitation, wind speed, humidity, population
density, social trust and civic engagement, that are commonly cited in other epidemiology publications, VARmultivari-
ate model can have a better performance on forecasting and provide an interpretive result. [15, 23, 24, 25, 26, 27, 28]

The correlated variables we choose are useful for analyzing the critical factors driving epidemics. Not only for COVID-
19 but may also this model enlighten other epidemics prediction. For the result, some publications tend to be more
concerned with the cumulative positive cases, while this article has a very definite awareness of the daily increase
cases. A cumulative positive cases prediction is less meaningful than a daily cases increase, since the latter is a better
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representative signal for epidemic severity. It is also a critical indicator to access the efficiency of COVID-19 control.

In the next section (Section 2), we describe the data we used in the analyses. The method section (Section 3) elab-
orates the proposed VAR model and analysis plan. The Results section (Section 4) provides the prediction results by
VARmodeling and an internal validation/evaluation of the model. Section 5 discusses the model performance, further
improvement, and comparison with other models.

2 | THE DAILY REPORTED COVID-19 DATA

The COVID-19 disease has been reported by CDC (Centers for Disease Control and Prevention) and published in
nation and fifty states in the United States by the Center for Systems Science and Engineering (CSSE) at Johns Hop-
kins University. We obtain the data from https://covidtracking.com/data/downloadmaintained by “The Atlantic
Monthly Group”. The data contain the number of death confirmed, death increasing, death probable, hospitalized, hos-
pitalized cumulative, positive confirmed, positive case viral, positive increasing, etc. The available data is beginning
on January 22, 2020 to November 24, 2020 (now).

3 | METHOD

3.1 | A Vector Autoregressive Panel Time Series Model

VAR model was proposed by Christopher Sims in 1980s, using all the current variables in the model to carry out re-
gression for some lagged variables. It is an extension of the AR (autoregression) model, which has been widely used
for time series. VAR model takes each endogenous variable as a function of the lag value of all endogenous variables
in the system, thus extending the univariate autoregressive model to the "vector" autoregressive model composed of
multiple time series variables.

Let Xt be a causal, stationary multivariate process, then the VAR model can be expressed as:

Xt = α + Φ1Xt−1 − · · · − ΦpXt−p + at (1)

where Xt = (Xt1, . . . ,Xtm )T is anm × t matrix; Φk is a real-valuedm ×m matrix for each k = 1, . . . , p ; at is multivariate
white noise with covariance matrix Å

[
at aTt

]
= Γa ; 4. α =

(
I − Φ1 − · · · − Φp

)
µ, and µ = Å (Xt ) ; I = {1, 1, . . . , 1}. Now

Xt is called a VAR (p) process, that is, a vector AR process of order p .

Equation (1) can be expressed in multivariate operator notation way: Φ (B) (Xt −µ) = at , where Φ (B) = I − Φ1B −
· · · − ΦpB

p and BkXt = Xt−k .

A multivariate process Xt satisfying the difference equation in Equation (1) is a stationary and causal VAR (p) pro-

https://covidtracking.com/data/download


4 Wang et al.

cess if and only if the roots of the determinantal equation, |Φ (z ) | =
��I − Φ1z − · · · − Φp z p �� = 0 lie outside the unit

circle. A detailed proof see Brockwell et al. and Reinsel et al. [29, 30]

3.2 | Variables potentially correlated to outcome

Several potential variables might influence the number of COVID-19 positive cases according to literature [15, 23,
24, 25, 26, 27, 28]: undetected infected, detected deaths, detected recovered, average temperature, precipitation,
wind speed, humidity, population density, social trust, civic engagement, that are considered in other publications of
epidemic prediction.

In Chowdhury et al. [31], climate changes directly affect five infectious disease transmission. Altered climatic con-
ditions may increase the vector biting rate and the vector’s reproduction rate and shorten the pathogen incubation
period. Furthermore, depending on the report, If the temperature is higher than 25.0◦C, there is a significant negative
correlation between increasing temperature and pneumonia (p = 0.017). [31] That is, if the temperature is decreasing
under 25.0◦C, pneumonia would spread out faster. [31] In Liu et al. [32], when the temperature is lower than 13.0◦C,
the number of hospital admission increases, which means the speed of infection also rises up. Those are the reason
why COVID-19 positive confirmed cases appear rebound tendency after October. [32]

Depending on data reported by the Tasci et al. [33], during the periods of high, normal, and low humidity, the number
of days admitted with pneumonia was higher at high humidity rates (p < 0.05). AS a result, the speed of COVID-19
transmission would increase at high humidity situation. In other words, the positive confirmed cases show a signifi-
cant positive relationship with humidity.[33]

According to Brundage et al. [34], the pneumonia rate has a stronger positive correlation with mortality. The mortality
increase would affect COVID-19 spreading out faster than before. However, the number of death increased would
happen after COVID-19 transmission rising. [34]

Recovered cases should also have a negative correlationwith COVID-19. If recovered cases becomemore, the number
of patients with the virus should be less than before. As a result, fewer patients with the virus would match the lower
spread of the virus. When the recovered cases are increasing, the transmission of COVID-19 transmission would be
controlled.

3.3 | Model selection

As shown in Section 3.1, we need determine the lag order p of the VAR model. There are diverse criteria, Akaike
Information Criterion (AIC), Hannan-Quinn Criterion (HQC), Schwarz Criterion (SC), and Final Prediction Error (FPE),
to find the optimal p . Specifically, AIC is an estimator of out-of-sample prediction error and thereby relative quality of
statistical models for a given set of data. [35, 36] Suppose that we have a statistical model of some data. Let k be the
number of estimated parameters in the model and L be the maximum value of the likelihood function for the model.
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Then the AIC value of the model is AIC = 2k −2 ln(L) . [37, 38] HQC is an alternative to AIC and Bayesian information
criterion (BIC). It is given as HQC = −2L + 2k ln(ln(n)) , where n is the number of observations.

Schwarz criterion (SC) is given as SC = log(n)k − 2 log(L(θ̂)) , where θ is set of all parameter values and L (θ̂) is
likelihood of the model returning the data we have, when tested at the maximum likelihood values of θ. Final Predic-
tion Error (FPE) criterion provides a measure of model quality by simulating the situation where the model is tested
on a different data set. It is givin as det

(
1
n

∑n
1 e

(
t , θ̂i

) (
e

(
t , θ̂i

))T) (
1+dn
1−dn

)
, where n is the number of values in the

estimation data set, e (t ) is a n-by-1 vector of prediction errors, θ̂i represents the i -th estimated parameters, d is the
number of estimated parameters.

The ordinary least square (OLS) approach is applied to achieve the model estimation. Besides, the model residuals are
diagnosed to see if the VAR model assumptions meet.

4 | RESULT

4.1 | Preliminary analysis

According to literature and correlation analysis, we include cumulative death, cumulative recovered patients, temper-
ature and humidity in the VAR model. Considering the positive cases prediction nationwide, we choose the climate
data of Washington D.C. that could be representative.

The correlation analyses are shown in Figure 1. Even though ’Death’ and ’Humidity’ have relatively small correla-
tive coefficients, 0.071 and 0.016, with daily positive case increase, we still keep these two variables. Because the
COVID-19 have been verified correlated with cumulative death cases and different humidity.[33, 34]

A descriptive analysis for cumulative death case, cumulative recovered case, temperature, humidity is shown in Fig-
ure 2. The cumulative death cases and the cumulative recovered cases presents straight up tendency.

Since co-integration between daily positive cases and other selected variables is required by VAR model. We run
the co-integration test (Engle Granger test) on all the variables (series). This test is for daily increase positive cases
with other variables. The null hypothesis is that there is no co-integration relationship between the two variables. If
the variables are all co-integrated with daily positive cases, we can claim that they have are stably correlated in a long
run. Results see Appendix Table 3. As all p-values are less than 0.05, we have all variables co-integrated with daily
increase positive cases. Based on the above results, it is considered that there is a stable relationship and there is no
spurious regression for the constructed model.
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F IGURE 1 Correlation matrix plot. (Death: Cumulative death case; Pos.Case: daily positive case; Recovered:
cumulative recovered case; Temp: temperature)

4.2 | Model selection

To determine the lag order of our VAR model, we take AIC, HQC, SC and FPE into consideration (results see Appendix
Table 4). The optimal lag order is determined to be 8.

With the suggested lag order 8, we estimate our model using ordinary least square technique. We show the pa-
rameter estimates in Table 1.

To verify the assumptions of VARmodel, we plot residuals and residuals autocorrelation as shown in Appendix Figure 4.
Themean value of residual is almost zero (-1.45e-14) and autocorrelation coefficients are within 95% confidence inter-
val (CI; blue dotted line). We also test the residuals by Ljung-Box test and have p-value 0.20 (null hypothesis is that the
data are independently distributed). Hence, the fitted model satisfies the assumptions mentioned above: Å (e t ) = 0
and Å

(
e t e

T
t−k

)
= 0, where e t is the residual at time t .

4.3 | COVID-19 daily positive cases prediction

The objective is predicting the trend of the daily increase positive cases. We predict 30-day daily positive cases start-
ing from July 2, August 21, and November 24, respectively, for internal validation purpose. We pick these three dates
for particular reasons. First, 30-day daily increase positive cases after July 2 and August 21 are not fluctuating too
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F IGURE 2 Time series from March 25 to November 24, 2020: (a) Cumulative death of COVID-19 cases in US; (b)
Cumulative recovered cases; (c) Temperature in Washington D.C.; (d) Humidity in Washington D.C..

TABLE 1 VAR model parameters estimation1

Lag order/ Variables Death Pos.Case Recovered Temp Humidity

1 3.62 2.29 7.49 1.30 4.97

2 -5.07 -1.28 -3.46 -3.68 -1.21

3 3.25 -4.38 -1.53 -2.96 4.12

4 -5.00 -40.62 9.61 2.66 -3.91

5 9.06 2.09 1.67 -1.61 -1.69

6 7.43 -2.46 -2.92 -3.96 8.07

7 -6.89 5.80 -1.50 3.61 -6.47

8 1.53 -1.29 1.94 -5.22 -2.83

Note: 1 “constant” item is 8327.24.
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F IGURE 3 Real data (black line) and prediction (red line) with 95% confidence interval (blue dotted line).
(i). For validation purpose: (a) 30 days prediction from July 2, 2020. (b) 30 days prediction from August 21, 2020. (c)
30 days prediction from September 6, 2020.
(ii). Real prediction: (d) 30 days prediction from November 24, 2020.

much. It is a preliminary test on model performance. Critically, the trend after September 6 becomes steep suddenly.
However, the trend before September 6 is similar to before July 2 and before August 21. It may be trapped for the
model to identify these three conditions. We want to test if the model will predict the correct rapid increase after
September 6.

As mentioned, the first three plots (a) – (c) in Figure 3 are for internal validation purpose. As we can see that the
model is useful, since the real data (black) is covered by the predicted 95% confidence interval (blue dotted line). To
be specific, in Figure 3 (a), the black line is the real selected positive confirmed cases daily data, which presents a
stable tendency in the first three months, around 40,000 cases every day. After that, in the middle of June, the real
data begin to increase. The short red color line is our prediction using proposed model. The black line and the red line
are almost overlapped. One thing need to mention is that the black line fluctuates slightly larger than the red, but the
predicted is mostly covered by the 95% confidence interval. It concludes a satisfied prediction. In Figure 3 (b), after the
middle of July, the number of daily positive confirmed cases decreases and experiences the first peek of 80,000 cases.
However, both the black and red lines show a stable trend then, and the figure shows almost the same appearance
as the first 30-day prediction. In Figure 3 (c), the real data experiences a decreasing trend. But, at the beginning of
September, the number of daily positive confirmed cases appears a rebound, directed straight up to the second peak
value. The peak value even reaches two hundred thousand cases for one day. Our predicted values are a little lower
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TABLE 2 The real values and predictions of the daily increase positive cases on Tuesday with 95% confidence
interval1.

Date Real value Prediction Lower 95% CI Upper 95% CI

2020-07-09 58961 64116 58240 69993

2020-07-16 70446 66497 57820 75173

2020-07-23 71225 66129 56216 76043

2020-07-30 68806 71059 60634 81484

2020-08-25 36588 35466 28817 42115

2020-09-01 42426 30940 21343 40536

2020-09-08 22137 30037 17357 42717

2020-09-15 34904 32092 16668 47515

2020-11-03 86662 86890 77433 96348

2020-11-10 131182 104960 89508 120411

2020-11-17 156722 121455 100033 142878

2020-11-24 167012 152604 123769 181438

2020-12-01 176995 161998 191993

2020-12-08 185548 160309 210787

2020-12-15 194945 159893 229998

2020-12-22 208196 164852 251539

1 Values on December 1, December 8, December 15, December 22 are blank since real data are not available until now.

than real values. The reason can include Halloween holiday parties and some assemblies because those happened at
the end of October, and many COVID-19 cases can be confirmed in early November. Furthermore, those are some
extrinsic factor besides the ones in our VAR model. As a result, it is reasonable that the black line is higher than the
red prediction line and the confidence interval’s upper bound. The success is that the model correctly predicts the
rapidly increasing trend after August 21.

The last plot (d) in Figure 3 is our main result that predicts the daily positive COVID-19 cases 30 days later start-
ing from November 24 (now), that is, a prediction for unknown future trend (to December 24). It is obvious that the
the future 30-day growth trend will increase if government are not taking any new measures to control the transmis-
sion of COVID-19. During the Christmas, the predicted daily positive case is around 240,000 in US.

Table 2 shows a comparison of real values and predictions with a 95% confidence interval. Considering that the
daily cases increase data on Monday is partly derived from the cases accumulation over the weekend, we compare
the predicted data on each Tuesday with the real values. In Table 2, the real values are generally within the 95% con-
fidence level. For the predictions on November 3, 10, 17, 24, the model predicts 86,890, 104,960, 121,455, 152,604
and upper bounds are 96,348, 120,411, 142,878 and 181,438. The real values exceed upper bounds on November
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10 and 17 by around 10,000. It still shows the real values are within the confidence interval since the real values do
not deviate from the upper bound too far. The model has good performance of catching a rapid increase trend and
regular trend.

5 | DISCUSSION

The study proposed and applied the VAR model for predicting the dynamics of daily COVID-19 positive cases. We
selected relevant variables according to literature and checked their correlation coefficients and co-integration. We
evaluated our model by comparing the predicted values and real values.

We can introduce more relevant variables in the future to improve the performance if outside force appears to in-
fluence viral transmission, control or exacerbate. The most possible variables available may be the estimation of
social distance and the number of vaccination. Then the model will be still useful after vaccine comes out. It enables
the model to predict the decrease of infections at the vaccination initial stage. It is also the reason why we investigate
the application of VAR model on pandemic predictions. The VAR model is different from and better than SIR and
ARIMA. Because SIR and ARIMA have an unsatisfied performance when outside force gets involved.

The proposed model can be strongly generalized because it is not limited to specific data, since the structure of
the model is constructed. Based on the generalization, this model can be used to predict other epidemics with the
same characteristics as COVID-19.
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Appendix

TABLE 3 Result for Engle-Granger test (co-integration test)

Variables Statistics p-value Co-integration

Cumulative death cases 0.0656 < .0001 Y

Cumulative recovered cases 0.0864 < .0001 Y

Temperature 0.0472 < .0001 Y

Humidity 0.0373 < .0001 Y

TABLE 4 Lag order selection: AIC, HQ, SC, and FPE

Lag order AIC HQC SC FPE

1 5.57 5.59 5.62 1.57

2 5.50 5.54 5.59 7.82

3 5.48 5.53 5.61 6.52

4 5.47 5.53 5.63 5.67

5 5.45 5.53 5.65 4.76

6 5.44 5.54 5.68 4.45

7 5.42 5.52 5.69 3.42

8 5.39 5.51 5.69 2.49

9 5.39 5.53 5.73 2.55

10 5.39 5.55 5.78 2.76
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F IGURE 4 Residual plot (left) and its autocorrelation (right). Blue dash lines are upper and lower bound of 95%
confidence interval.
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