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ABSTRACT
Design of new drug compounds with target properties is a key
area of research in generative modeling. We present a small drug
molecule design pipeline based on graph-generative models and
a comparison study of two state-of-the-art graph generative mod-
els for designing COVID-19 targeted drug candidates: 1) a varia-
tional autoencoder-based approach (VAE) that uses prior knowl-
edge of molecules that have been shown to be effective for earlier
coronavirus treatments and 2) a deep Q-learning method (DQN)
that generates optimized molecules without any proximity con-
straints. We evaluate the novelty of the automated molecule gen-
eration approaches by validating the candidate molecules with
drug-protein binding affinity models. The VAE method produced
two novel molecules with similar structures to the antiretroviral
protease inhibitor Indinavir that show potential binding affinity
for the SARS-CoV-2 protein target 3-chymotrypsin-like protease
(3CL-protease).

1 INTRODUCTION
Deep learning has demonstrated the potential to revolutionize drug
design by reducing the initial search space in the early stages of
discovery [25, 33, 49, 51]. By applying the appropriate algorithm
trained on the appropriate data, novel molecules can be generated
with target properties [13, 24, 29, 43]. Here, we evaluate meth-
ods for the high-performance intelligent design of small-molecule
drug candidates with anti-SARS activity, with a specific focus on
SARS-CoV-2, otherwise known as COVID-19. However, discover-
ing potential lead candidates for COVID-19 presents a challenge
to the scientific community due to the long timescale of the drug
development process. There is a need to accelerate the design pro-
cess through AI-driven workflows for effective drug compound
development.

The potential drug space is composed of over 1020 compounds,
and candidates with suitable activity against specific proteins only
narrows the search space to 104 − 105 structures. Machine learning
(ML) methods are actively used in this search-and-screen process.
Candidate molecules generated by ML methods are passed to down-
stream verification via virtual high-throughput drug-protein bind-
ing techniques, drug synthesis, biological assay, and finally clinical
trials [5, 16, 44].

Heterogeneous graphs provide a natural representation for small-
molecule organic compounds, with nodes representing atoms in
the molecular structure and edges representing bonds between
the atoms [48]. This approach motivated the exploration of graph-
generative models such as graph convolutional policy networks
[49], variational autoencoders [26, 27, 40], and variants of deep
reinforcement learning [45, 52] for the target-driven optimization
of drug molecules. The drug-molecule design task is defined as
generating a set of graphs 𝐺𝑜𝑝𝑡 such that for each graph 𝑔 ∈ 𝐺𝑜𝑝𝑡 ,
𝑓𝑜𝑝𝑡 (𝑔) ≥ 𝛿 , where 𝑓𝑜𝑝𝑡 is a property optimization function and 𝛿 is
a user-specified threshold. Most methods optimize target molecules
for properties that can be derived from themolecular structure, such
as the octanol-water partition coefficient (logP) [2] and quantitative
estimate of druglikeness (QED) [7].

The focus of our work is two-fold to generate compounds for
drug discovery, specifically for SARS-CoV-2. In the first similarity
approach, a junction-tree based variational autoencoder (JT-VAE)
[27] is trained on a database of known drugmolecules that has pIC50
activity [15]. The trained VAE is used to generate novel molecules
optimized towards specific properties using Bayesian optimization
(BO). The second approach extends a graph-based deep reinforce-
ment learning (DQN) method [52] to generate molecules that are
not constrained by their proximity to past anti-SARS compounds.
For comparison, we use the same set of property scoring func-
tions (𝑓𝑜𝑝𝑡 ) as the respective optimization and reward functions for
benchmarking the JT-VAE and DQN approaches.

Contributions. 1) The goal of our study is to perform multi-
objective optimization for generating molecular structures by con-
sidering critical bioactivity properties that are typically not con-
sidered in structure-activity relationship approaches. Specifically,
we focus on pIC50 [42], which captures the potency of the drug
towards a protease target and cannot be accurately estimated from
the chemical structure [3]. 2) In this context, we assembled a new
protease dataset with molecules that are active against various en-
zymatic assays. This is considered to be one of the key properties
while generating new drug molecules. These molecules are filtered
from experimental pharmacology data in CheMBL, BindingDB, and
ToxCat [6]. 3) Finally, we validate all top-ranking molecules against
a Drug Target Binding Affinity (DBTA) classifier [25] to asses poten-
tial anti-SARS-CoV-2 activity. Full details of our implementation and
source code are available at https://github.com/exalearn/covid-
drug-design.
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Figure 1: Depiction of workflow developed for this work. The anti-SARS database is used to train a MPNN to predict pIC50
and the JT-VAE model. The trained MPNN is used as the scoring function in both JT-VAE (top row) and DQN-based molecular
generation (bottom). Candidatemolecules are screened by pIC50 (>8) and validated by a Drug Target Binding Affinity classifier.

2 BACKGROUND AND RELATEDWORK
In response to the COVID-19 global pandemic, researchers have
pushed to identify marketed drugs that can be repurposed for SARS-
CoV-2 treatment [18, 20, 35, 44, 51]. Born et al. amended their Pac-
cMann RL approach, originally intended to generate anticancer
drugs, to generate molecules with affinity to viral target proteins
and controlled toxicity [10]. Batra et al. applied an ML-based screen-
ing approach to find known compounds with binding affinity to
either the isolated SARS-CoV-2 S-protein at its host receptor region
or to the S-protein-human ACE2 interface complex [5]. Huang et al.
developed a deep learning toolkit for drug repurposing, called Deep-
Purpose, with the goal of recommending candidates with high bind-
ing affinity to target amino acid sequences from known drugs [25].
These approaches screen large databases of known compounds,
which have the potential to miss novel molecules with anti-SARS
activity. Chenthamarakshan et al. developed the generative mod-
eling framework CogMol to design drug candidates specific to a
given target protein [13].

Here we discuss which properties should be considered during
lead optimization [14]. LogP is a measure of lipophilicity, which
provides an understanding of the behavior of a drug in the body.
Compounds intended for oral administration should have a logP
no greater than 5, according to Lipinski’s Rule of 5 [34]. Further
analysis has shown that logP values between 1 and 3 may be more
appropriate considering the effect of logP on absorption, distribu-
tion, metabolism, elimination, and toxicology (ADMET) properties
[47]. Though oral bioavailability is an important factor, a sole focus
on logP has the potential to screen out otherwise useful compounds
[50]. QED has been proposed as a more holistic druglikeness met-
ric [8], from 0 (low) to 1 (high). Druglikeness provides a general

metric for ADMET properties, but does not indicate the activity
or effectiveness of a drug towards a specific target. The half max-
imal inhibitory concentration (IC50), on the other hand, provides
a quantitative measure of the potency of a compound to inhibit a
specific biological process. IC50 is obtained by measurement, and no
universal ab initio method of computing its value exists. A number
of methods have been developed to approximate IC50, many based
on QSPR and recently some based on machine learning [1, 3, 9, 38].
Similarity to known drugs is also an important factor in drug dis-
covery [30, 36], as is the ability to synthesize the molecule, which
can be estimated by the synthetic accessibility (SA) score [from 1
(easy) to 10 (difficult)] [17].

3 METHOD
3.1 Surrogate Model for pIC50 Prediction
We trained a message-passing neural network (MPNN) [19, 41]
to predict pIC50 (the inverse log of IC50) for a given molecular
structure. Following the formalism of Gilmer et al. [19], our net-
work is composed of message, update and readout operations (eqns.
1-3) and our choices for these functions are based on networks
developed by St. John et al. for polymer property prediction. [28]

The original state of each atom (ℎ𝑣 ) and bond (𝛼𝑣𝑤 ) in our mole-
cule (𝐺) is a 256-length vector with values defined by an embedding
table based on the atomic number and bond type (e.g., single, dou-
ble, aromatic). The states of these atoms are modified by eight
successive “message” layers. Each message layer uses a two-layer
multi-layer perceptron (MLP) with sigmoid activations to compute
a message that uses the state of an atom (ℎ𝑣 ), the state of the neigh-
boring atom (ℎ𝑤 ) and the bond which joins them (𝛼𝑣𝑤 ). The atom
and bond states are updated according to the following equations:
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𝑚𝑡+1
𝑣 =

∑︁
𝑤∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑣)

𝑀𝑡 (ℎ𝑡𝑣, ℎ𝑡𝑤 , 𝛼𝑡𝑣𝑤) (1)

ℎ𝑡+1𝑣 = ℎ𝑡𝑣 +𝑚𝑡+1
𝑣 (2)

𝛼𝑡+1𝑣𝑤 = 𝛼𝑡𝑣𝑤 +𝑀𝑡 (ℎ𝑡𝑣, ℎ𝑡𝑤 , 𝛼𝑡𝑣𝑤) (3)
The atom states output from the last layer (ℎ𝑇𝑣 ) are used to predict

the 𝑝𝐼𝐶50 of the molecule using a "readout" function (𝑅).

𝑦 = 𝑅(ℎ𝑇𝑣 |𝑣 ∈ 𝐺) (4)
We use several variants of the readout function in our study.

We tested both “molecular fingerprints,” where the states of each
node are combined before using a multi-layer perceptron (MLP) to
reduce to compute pIC50, and an “atomic contribution,” where we
combine the nodes after MLP to compute a per-node contribution
to pIC50. We experimented with the use of five different functions
to reduce the atomic state/contributions to a single value for each
graph: summation, mean, maximum, softmax, and attention. The
attention functions are created by learning an attention map by
passing the node states through a MPNN. We tested all combina-
tions of “molecular fingerprint” vs. “atomic contribution” and the
five readout functions, for a total of 10 networks, training each
on network the same 90% of our pIC50 dataset and comparing its
performance on the withheld 10% of the data. We used an MPNN
that uses attention maps to reduce contributions from each atom
to a single pIC50 of a molecule in all subsequent experiments.

3.2 Junction Tree Variational Autoencoder
We use a junction-tree (JT) based variational autoencoder (VAE)
method [27] for generating molecules with high proximity to anti-
SARS drug molecules. This model generates novel molecular graphs
by laying a tree-structured scaffold over substructures in the mole-
cule, which are then combined into a valid molecule using a MPNN.
The JT-VAEmodel allows for the incremental expansion of amolecu-
lar graph through the addition of subgraphs, or “vocabulary" of valid
components (denoted 𝑉𝐷 ), derived from the training set (Figure 1).
The subgraphs are used to encode a molecule into its vector repre-
sentation and decode latent vectors into valid molecular graphs. The
use of subgraphs, rather than building a molecule atom-by-atom,
maintains chemical validity at each step, while also incorporating
functional groups common to the training set. Chemical graphs
generated from the vocabulary will be structurally similar to those
in the training set, which is a benefit when attempting to design
drugs with similar properties to those in the training set.

Given a molecular graph 𝐺 = (𝑉 , 𝐸), JT-VAE coarsens 𝐺 into
a junction tree data structure T = (𝑉𝑇 , 𝐸𝑇 ) such that each node
𝑣 ∈ 𝑉𝑇 in T represents a subgraph of 𝐺 . The subgraphs can be
coarsened by using either automated JT construction algorithms
from the graphical model literature [32] or a vocabulary based
mapping approach that reduces to important building blocks of
chemical structures.

Next, the JT-VAE method uses a message-passing network (as de-
scribed in section 3.1) to encode T (Figure 1) into a vector represen-
tation ZT . We refer the reader to [27] for specific implementations
of the MPNN-based encoders for the input graph and the junction
tree. The decoder component of the VAE learns to generate the

same junction tree structure from ZT by maximizing the likelihood
function 𝑝 (T |ZT ).

Once the VAE model is trained, the next phase involves a two-
step process for generating a molecular graph structure that is
optimized for a target property. The first step involves drawing a
sample from the latent space learnt by the VAE and transforming
the sampled vector representation into a corresponding junction
tree structure. The second step pursues a Bayesian optimization
(BO) strategy to map the junction tree to a molecular graph that
maximizes the target properties. Using the JT-VAE trained on our
SARS-related database, we perform Bayesian optimization (BO),
using the method of Kusner et al. [31] to produce novel molecules
with target properties described in section 3.4.

3.3 Deep Reinforcement Learning
We follow the Q-learning approach of Zhou et al. for our deep rein-
forcement learning approach [52]. We consider tasks in which an
agent interacts with an environment E represented as a molecular
graph. The agent starts with a null graph. At each time-step the
agent selects an action 𝑎𝑡 from an action space A that includes
addition of single atoms, changing the type of bonds or remov-
ing bonds from the graph. The agent also receives a reward R at
each time step depending on a property scoring function. All the
property scoring functions are described in section 3.4.

In this setting, we cast the molecule generation problem as a
Markov Decision Process (MDP) [37] to learn a policy network 𝜋

that determines the best sequence of actions that start with an initial
molecular graph and transform it a larger graph with desirable
properties in a step-by-step fashion (Figure 1). At each step, we
enumerate all possible actions and then select those which produce
valid molecules (e.g., respect valency rules). Next, we train a multi-
layer perceptron (MLP) to predict to predict the value [37] of a
certain action by passing the Morgan fingerprints [39] as input.
The MLP approximates the value of an action computed using the
Bellman equation, where the score of a state and the maximum
score of the subsequent state is multiplied by a decay factor. As
established with other Deep Q-Learning approaches, the addition
of the value of the next state increases the value of moves which
will lead to higher future rewards.

3.4 Scoring Functions
The scoring functions described in this section are used for both
Bayesian optimization in the VAE based approach and reward com-
putation for the deep reinforcement-learning based approach. Fol-
lowing Jin et al. [27], we first compute a score that penalizes logP
by the SA score (recall from section 2 that higher SA values are
discouraged) and number of cycles with more than 6 atoms (eqn. 5).
Considering that QED is a more comprehensive heuristic than logP,
we also use a similar scoring function composed of QED penalized
by the SA score and number of long cycles (eqn. 6). We then ex-
amine the utility of a SARS-specific scoring function based on the
pIC50 predicted by our MPNN penalized by the SA score and num-
ber of long cycles. Finally, we examine a multi-objective scoring
function that accommodates both pIC50 and penalized QED.

𝑙𝑜𝑔𝑃𝑃 (𝑚) = 𝑙𝑜𝑔𝑃 (𝑚) − 𝑆𝐴(𝑚) − 𝑐𝑦𝑐𝑙𝑒 (𝑚) (5)
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𝑄𝐸𝐷𝑃 (𝑚) = 𝑄𝐸𝐷 (𝑚) − 𝑆𝐴(𝑚) − 𝑐𝑦𝑐𝑙𝑒 (𝑚) (6)

𝑝𝐼𝐶50 (𝑚) = 𝑅(𝑔𝑟𝑎𝑝ℎ(𝑚)) (from eqn. 4) (7)

𝑝𝐼𝐶50 +𝑄𝐸𝐷𝑃 (𝑚) = 𝑝𝐼𝐶50 (𝑚) +𝑄𝐸𝐷 (𝑚) −𝑆𝐴(𝑚) −𝑐𝑦𝑐𝑙𝑒 (𝑚) (8)

4 EXPERIMENTAL ANALYSIS
We conduct experiments to answer two questions: Q1: What are
the best possible ways to generate molecules with targeted activity
towards SARS-CoV-2? Q2: How do we evaluate the novelty of our
generated molecules?

4.1 Dataset and Analysis
We assembled a dataset with molecules active against various enzy-
matic assays filtered from experimental pharmacology data logged
in CheMBL, BindingDB, and ToxCat [6]. Details of this dataset are
provided in section 5.1. Following the workflow in Figure 1, we first
train a pIC50 model, and subsequently use it to train the JT-VAE
and DQN models. We begin with a discussion of the pIC50 model
given its key role in training the JT-VAE and DQN models.

4.2 Training pIC50 surrogate model
We tested multiple variants of the pIC50 prediction model. We found
that MPNNs that limited the computation of the pIC50 to contri-
butions from only a few specific atoms in the molecule performed
the best. As shown in Table S1, the models which use max and soft-
max functions for aggregating the atom-level representations to a
molecule-level representation (equation 4) have higher 𝑅2 scores
than those which use summation or mean outputs.

The relative performance of different networks can be explained
by the physical mechanism behind the performance of anti-viral
drugs. The presence or absence of a specific pattern in the molecular
structure (e.g., functional groups, substituents) controls whether
the molecule will bind with a certain portion of a target virus pro-
tein. We hypothesize that the “maximum” function, in particular,
models this “all-or-nothing” physics well. The other atoms in the
molecule play a role in determining whether the molecule will stay
affixed at the target site. The reduced but non-negligible effect of
the side groups could explain why the “atomic”-contribution model,
which only uses the contribution from a single atom, performs
less well than the whole-molecule fingerprint. These trends give
us confidence that the MPNNs are operating based on well-known
physics, but we would require comparison of which atoms are con-
tributing to the predicted pIC50 to results from molecular binding
simulations to determine if the networks are indeed interpretable.

4.3 Effect of the scoring function
Molecule generation setup using JT-VAE. We trained JT-VAE
for 8,300 iterations on the full database, with the following hyper-
parameters: hidden state dimension of 450, latent code dimension
of 56, and graph message passing depth of 3. Analysis of the trained
JT-VAE is given in Figure S1. To optimize towards the specified
scoring functions, we trained a sparse Gaussian process (SGP) to
predict a score given the latent representation learned by JT-VAE
and then perform 10 iterations of batched BO (sampling = 50) based
on the expected improvement.

0.0 0.2 0.4 0.6 0.8 1.0
QED

3

4

5

6

7

8

9

10

pI
C 5

0

RL
JT-VAE

Figure 2: QED versus pIC50 for molecules generated from
DQN-based RL and JT-VAE with all scoring functions.

Molecule generation setup using DQN. Our DQN approach
builds up molecules from a single atom to large molecules atom-by-
atom and bond-by-bond. Each “episode” starts with a blank slate
and the RL agent is allowed up to 40 steps. We update a model of
the Q-function to predict the value of each move after each step
in each episode and, as this model improves during training, we
smoothly turn down the probability that we will choose a random
move over the prediction of this model.

The DQN finds tens of thousands of candidate molecules with
high pIC50, as shown in Figure 2 and Table 1. Using the multi-
objective reward function led to fewer molecules with pIC50> 8,
but with increased druglikeness. Approximately two-thirds of the
molecules with pIC50> 8 foundwith themulti-objective reward also
show QED> 0.5. In contrast, only 5% of the molecules in the pIC50-
based search showQED > 0.5. The addition of QED reduces the total
number of high-pIC50molecules found by 25%, but increases the
number of high-pIC50molecules found by over 10 times. Therefore,
we recommend incorporating synthesizability and/or druglikeness
into RL-driven searches for drug-like molecules.

Comparing JT-VAE andDQN. Table 1 shows the three highest-
scoring molecules generated by the two generative models with
each scoring function. The DQN models always outperform JT-
VAE in finding a molecule with a superior value of the scoring
function being optimized. The performance disparity is particularly
apparent when optimizing for logP: the maximum logP from DQN
is 12.6 compared to only 4.1 for JT-VAE. We attribute the difference
in optimization performance to JT-VAE implicitly sampling from
a distribution of drug-like molecules and DQN having no such
constraints.

The candidate molecules generated by JT-VAE have consistently
better druglikeness and SA scores even when those values are not
explicitly optimized for. When optimizing towards logP, the top-3
molecules generated by JT-VAE have moderate-to-high QEDs, while
the top-3 from DQN are below 0.11. We attribute the exceptionally
large disparity in optimal logP and associated QED values between
the two methods to the fact that drugs typically have logP values
between -0.4 and 5.6. The molecules fromwhich JT-VAEwas trained
were all drug-like molecules, which makes it improbable to sample
molecules with logP values far outside that range. Similarly, the
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Table 1: Properties of the three highest-scoring molecules generated by each model using the specified scoring function.

Scoring function pIC50 QED logP SA Score
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

logP𝑃 (JT-VAE) 4.93 4.57 4.60 0.45 0.78 0.71 4.05 4.27 4.20 1.70 2.08 2.08
logP𝑃 (DQN) 6.10 8.17 4.98 0.04 0.07 0.11 13.86 12.64 12.52 3.59 2.97 2.93
QED𝑃 (JT-VAE) 4.15 4.23 4.71 0.91 0.84 0.91 3.72 2.19 2.20 1.80 1.71 2.25
QED𝑃 (DQN) 6.80 6.80 6.80 0.77 0.77 0.77 3.46 3.46 3.46 2.05 2.05 2.05
pIC50 (JT-VAE) 10.22 10.07 10.07 0.15 0.12 0.12 4.86 3.80 3.06 4.52 4.94 4.98
pIC50 (DQN) 10.57 10.56 10.39 0.09 0.11 0.41 1.51 2.03 −0.44 6.90 6.71 5.57
pIC50+QED𝑃 (JT-VAE) 8.58 5.98 8.18 0.83 0.87 0.70 4.02 3.37 3.82 1.93 1.74 1.50
pIC50+QED𝑃 (DQN) 10.27 10.27 10.27 0.80 0.80 0.80 3.02 3.02 3.02 2.90 2.90 2.90

molecules in the JT-VAE training set were experimentally synthe-
sized. The SA score for these molecules is low, which could explain
why the optimized molecules from the JT-VAE are also low even
when this property was not optimized for. The RL agent uses no in-
formation about the space of experimentally studied drugmolecules
during its training process and, accordingly, finds molecules far
from it.

Overall, we find two different purposes for JT-VAE and RL-based
molecular optimization. JT-VAE implicitly uses the distribution of
molecules in its training set to bias towards realistic molecules,
albeit at the expense of finding better candidates. The RL-based
approach lacks such constraints and, for better or worse, can op-
timize without even implicitly regarding synthesizability or any
other characteristic not explicitly encoded in the scoring function.

4.4 Qualitative analysis from a drug discovery
perspective

We observed an interesting structural trend in the molecules gener-
ated by JT-VAE when using pIC50 as the scoring function. Figure
3 shows the structures of both the molecules with pIC50 > 8 and
the anti-HIV drug Indinavir, an antiretroviral protease inhibitor.
A common backbone is shared between Indinavir and the top-6
predictions. The Tanimoto similarity scores [4] of these six gen-
erated molecules against Indinavir range from 0.65 to 0.91. Indi-
navir has been proposed as a drug to treat SARS-CoV-2 due to
favorable docking to the coronavirus 3-chymotrypsin-like protease
(3CL-protease), a promising drug target for combating coronavirus
infections [11, 21, 22]. Notably, three of the generated molecules
have a higher predicted pIC50 than does Indinavir.

Experimental confirmation of Drug-Target-Interaction (DTI) is
challenging and time-consuming [46]. In silico Drug-Target Binding
Affinity (DTBA) methods offer an alternative to evaluate DTI [23].
We employ a ML-based DTBA model to validate the interaction
of molecules generated by JT-VAE against a target SARS-CoV2-L
protease [12]. We trained a DBTA binary classification model us-
ing extended connectivity fingerprint [39] encoding for the drug
molecule and the target protease sequence encoding using a Convo-
lution Neural Network (CNN) as implemented in the DeepPurpose
toolkit [25]. The default hyperparameters provided in the DeepPur-
pose toolkit were found to be sufficient. The DBTA model classified

10.22 0.15 4.86 4.52 10.07 0.12 3.80 4.94 10.07 0.12 3.06 4.98

8.77 0.27 2.51 4.12 8.56 0.32 3.98 3.57 8.41 0.32 3.98 3.61

8.78 0.26 2.87 4.01

Indinavir
antiretroviral protease 

inhibitor

pIC50 QED logP SA

Figure 3: The top-6 molecules generated by the JT-VAE
method optimized using the pIC50 scoring function.

four of the top 11 molecules (including the top two in Figure 3)
with probability > 0.5 to have interaction with SARS-CoV2-3CL
protease.

5 CONCLUSIONS
We compared two graph generative models, JT-VAE and DQN, for
the task of discovering potential small-molecule candidates with
activity against SARS-CoV-2. DQN always outperformed JT-VAE
in finding a molecule with a superior value of the scoring function
being optimized. However, JT-VAE generated molecules that were
more structurally similar to those in the database due to substruc-
ture representation, which produced a lower SA score and logP < 5.
JT-VAE tended to produce what looked to be drug molecules, while
DQN produced precursor-like candidates with optimized proper-
ties, which could be used as starting structures to add additional
substituents aimed at the specific target.

5



REFERENCES
[1] P. Armutlu, M. E. Ozdemir, F. Uney-Yuksektepe, I. H. Kavakli, and M. Turkay.

2008. Classification of drug molecules considering their IC50 values using mixed-
integer linear programming based hyper-boxes method. BMC Bioinformatics 9
(2008), 411. https://doi.org/10.1186/1471-2105-9-411

[2] A Avdeef, KJ Box, JEA Comer, C Hibbert, and KY Tam. 1998. pH-Metric logP 10.
Determination of liposomal membrane-water partition coefficients of lonizable
drugs. Pharmaceutical Research 15, 2 (1998), 209–215.

[3] A. Bag and P. K. Ghorai. 2016. Development of Quantum Chemical Method to
Calculate Half Maximal Inhibitory Concentration (IC50). Mol Inform 35, 5 (2016),
199–206. https://doi.org/10.1002/minf.201501004

[4] Dávid Bajusz, Anita Rácz, and Károly Héberger. 2015. Why is Tanimoto index
an appropriate choice for fingerprint-based similarity calculations? Journal of
cheminformatics 7, 1 (2015), 20.

[5] Rohit Batra, Henry Chan, Ganesh Kamath, Rampi Ramprasad, Mathew J.
Cherukara, and Subramanian Sankaranarayanan. 2020. Screening of Therapeutic
Agents for COVID-19 using Machine Learning and Ensemble Docking Simula-
tions. arXiv e-prints, Article arXiv:2004.03766 (April 2020), arXiv:2004.03766 pages.
arXiv:q-bio.BM/2004.03766

[6] A Patrícia Bento, Anna Gaulton, Anne Hersey, Louisa J Bellis, Jon Chambers,
Mark Davies, Felix A Krüger, Yvonne Light, Lora Mak, Shaun McGlinchey, et al.
2014. The ChEMBL bioactivity database: an update. Nucleic Acids Research 42,
D1 (2014), D1083–D1090.

[7] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and An-
drew L Hopkins. 2012. Quantifying the chemical beauty of drugs. Nature
Chemistry 4, 2 (2012), 90.

[8] G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and An-
drew L. Hopkins. 2012. Quantifying the chemical beauty of drugs. Nature
chemistry 4, 2 (2012), 90–98. https://doi.org/10.1038/nchem.1243

[9] Esben Jannik Bjerrum. 2017. SMILES Enumeration as Data Augmentation
for Neural Network Modeling of Molecules. CoRR abs/1703.07076 (2017).
arXiv:1703.07076 http://arxiv.org/abs/1703.07076

[10] Jannis Born, Matteo Manica, Joris Cadow, Greta Markert, Nil Adell Mill, Modestas
Filipavicius, and María Rodríguez Martínez. [n.d.]. PaccMannRL on SARS-CoV-2:
Designing antiviral candidates with conditional generative models. ([n. d.]).

[11] Y. et al. Chang. 2020. Potential Therapeutic Agents for COVID-19 Based on the
Analysis of Protease and RNA Polymerase Docking. Preprints (2020), 2020020242.
https://doi.org/10.20944/preprints202002.0242.v1

[12] Yu Wai Chen, Chin-Pang Bennu Yiu, and Kwok-Yin Wong. 2020. Prediction
of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual
screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates.
F1000Research 9 (2020).

[13] Vijil Chenthamarakshan, Payel Das, Inkit Padhi, Hendrik Strobelt, Kar Wai Lim,
Ben Hoover, Samuel C Hoffman, and Aleksandra Mojsilovic. 2020. Target-specific
and selective drug design for covid-19 using deep generative models. arXiv
preprint arXiv:2004.01215 (2020).

[14] Robert A Copeland, David L Pompliano, and Thomas D Meek. 2006. Drug–target
residence time and its implications for lead optimization. Nature Reviews Drug
Discovery 5, 9 (2006), 730–739.

[15] Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster.
2016. SARS and MERS: recent insights into emerging coronaviruses. Nature
Reviews Microbiology 14, 8 (2016), 523.

[16] Ron O Dror, Robert M Dirks, JP Grossman, Huafeng Xu, and David E Shaw. 2012.
Biomolecular simulation: a computational microscope for molecular biology.
Annual Review of Biophysics 41 (2012), 429–452.

[17] Peter Ertl and Ansgar Schuffenhauer. 2009. Estimation of synthetic accessibility
score of drug-like molecules based on molecular complexity and fragment contri-
butions. Journal of Cheminformatics 1, 1 (2009), 8. https://doi.org/10.1186/1758-
2946-1-8

[18] Hua-Hao Fan, Li-Qin Wang, Wen-Li Liu, Xiao-Ping An, Zhen-Dong Liu, Xiao-Qi
He, Li-Hua Song, and Yi-Gang Tong. 2020. Repurposing of clinically approved
drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-
related coronavirus model. Chinese medical journal 133, 9 (2020), 1051–1056.
https://doi.org/10.1097/CM9.0000000000000797

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 1263–1272.

[20] David E. Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten
Obernier, Kris M. White, Matthew J. O’Meara, Veronica V. Rezelj, Jeffrey Z. Guo,
Danielle L. Swaney, Tia A. Tummino, Ruth Huettenhain, Robyn M. Kaake, Ali-
cia L. Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey Haas,
Maya Modak, Minkyu Kim, Paige Haas, Benjamin J. Polacco, Hannes Braberg,
Jacqueline M. Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J. Bennett,
Merve Cakir, Michael J. McGregor, Qiongyu Li, Bjoern Meyer, Ferdinand Roesch,
Thomas Vallet, Alice Mac Kain, Lisa Miorin, Elena Moreno, Zun Zar Chi Naing,
Yuan Zhou, Shiming Peng, Ying Shi, Ziyang Zhang, Wenqi Shen, Ilsa T. Kirby,

James E. Melnyk, John S. Chorba, Kevin Lou, Shizhong A. Dai, Inigo Barrio-
Hernandez, Danish Memon, Claudia Hernandez-Armenta, Jiankun Lyu, Christo-
pher J. P. Mathy, Tina Perica, Kala B. Pilla, Sai J. Ganesan, Daniel J. Saltzberg,
Ramachandran Rakesh, Xi Liu, Sara B. Rosenthal, Lorenzo Calviello, Srivats
Venkataramanan, Jose Liboy-Lugo, Yizhu Lin, Xi-Ping Huang, YongFeng Liu,
Stephanie A. Wankowicz, Markus Bohn, Maliheh Safari, Fatima S. Ugur, Cassan-
dra Koh, Nastaran Sadat Savar, Quang Dinh Tran, Djoshkun Shengjuler, Sabrina J.
Fletcher, Michael C. O’Neal, Yiming Cai, Jason C. J. Chang, David J. Broadhurst,
Saker Klippsten, Phillip P. Sharp, Nicole A. Wenzell, Duygu Kuzuoglu, Hao-
Yuan Wang, Raphael Trenker, Janet M. Young, Devin A. Cavero, Joseph Hiatt,
Theodore L. Roth, Ujjwal Rathore, Advait Subramanian, Julia Noack, Mathieu
Hubert, Robert M. Stroud, Alan D. Frankel, Oren S. Rosenberg, Kliment A. Verba,
David A. Agard, Melanie Ott, Michael Emerman, Natalia Jura, et al. 2020. A SARS-
CoV-2 protein interaction map reveals targets for drug repurposing. Nature
(2020). https://doi.org/10.1038/s41586-020-2286-9

[21] Gideon A. Gyebi, Olalekan B. Ogunro, Adegbenro P. Adegunloye, Oludare M.
Ogunyemi, and Saheed O. Afolabi. 2020. Potential inhibitors of coronavirus
3-chymotrypsin-like protease (3CL(pro)): an in silico screening of alkaloids and
terpenoids from African medicinal plants. Journal of Biomolecular Structure and
Dynamics (2020), 1–13. https://doi.org/10.1080/07391102.2020.1764868

[22] C Harrison. 2020. Coronavirus puts drug repurposing on the fast track. Nature
Biotechnology 38, 4 (2020), 379.

[23] Tong He, Marten Heidemeyer, Fuqiang Ban, Artem Cherkasov, and Martin Ester.
2017. SimBoost: a read-across approach for predicting drug–target binding
affinities using gradient boosting machines. Journal of Cheminformatics 9, 1
(2017), 1–14.

[24] Julien Horwood and Emmanuel Noutahi. 2020. Molecular Design in Synthetically
Accessible Chemical Space via Deep Reinforcement Learning. arXiv preprint
arXiv:2004.14308 (2020).

[25] Kexin Huang, Tianfan Fu, Cao Xiao, Lucas Glass, and Jimeng Sun. 2020. Deep-
Purpose: a Deep Learning Based Drug Repurposing Toolkit. arXiv preprint
arXiv:2004.08919 (2020).

[26] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2020. Multi-Objective
Molecule Generation using Interpretable Substructures. arXiv e-prints, Article
arXiv:2002.03244 (Feb. 2020), arXiv:2002.03244 pages. arXiv:cs.LG/2002.03244

[27] Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. 2018. Junction Tree
Variational Autoencoder for Molecular Graph Generation. CoRR abs/1802.04364
(2018). arXiv:1802.04364 http://arxiv.org/abs/1802.04364

[28] Peter C. St. John, Caleb Phillips, Travis W. Kemper, A. NolanWilson, Yanfei Guan,
Michael F. Crowley, Mark R. Nimlos, and Ross E. Larsen. 2019. Message-passing
neural networks for high-throughput polymer screening. Journal of Chemical
Physics 150, 23 (June 2019), 234111. https://doi.org/10.1063/1.5099132

[29] Yash Khemchandani, Steve O’Hagan, Soumitra Samanta, Neil Swainston, Timo-
thy J Roberts, Danushka Bollegala, and Douglas B Kell. 2020. DeepGraphMol, a
multi-objective, computational strategy for generating molecules with desirable
properties: a graph convolution and reinforcement learning approach. bioRxiv
(2020).

[30] Ashutosh Kumar and Kam Y. J. Zhang. 2018. Advances in the Development of
Shape Similarity Methods and Their Application in Drug Discovery. Frontiers in
chemistry 6 (2018), 315–315. https://doi.org/10.3389/fchem.2018.00315

[31] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. 2017. Grammar
Variational Autoencoder. arXiv:stat.ML/1703.01925

[32] Steffen L Lauritzen and David J Spiegelhalter. 1988. Local computations with
probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society: Series B (Methodological) 50, 2 (1988),
157–194.

[33] Yibo Li, Liangren Zhang, and Zhenming Liu. 2018. Multi-objective de novo drug
design with conditional graph generative model. Journal of Cheminformatics 10,
1 (2018), 33. https://doi.org/10.1186/s13321-018-0287-6

[34] Christopher A Lipinski. 2004. Lead-and drug-like compounds: the rule-of-five
revolution. Drug Discovery Today: Technologies 1, 4 (2004), 337–341.

[35] Hongzhou Lu. 2020. Drug treatment options for the 2019-new coronavirus (2019-
nCoV). BioScience Trends 14, 1 (2020), 69–71. https://doi.org/10.5582/bst.2020.
01020

[36] Gerald Maggiora, Martin Vogt, Dagmar Stumpfe, and Jurgen Bajorath. 2014.
Molecular similarity in medicinal chemistry: miniperspective. Journal of medici-
nal chemistry 57, 8 (2014), 3186–3204.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[38] S. J. Patankar and P. C. Jurs. 2000. Prediction of IC50 Values for ACAT Inhibitors
fromMolecular Structure. Journal of Chemical Information and Computer Sciences
40, 3 (2000), 706–723. https://doi.org/10.1021/ci990125r

[39] David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.
Journal of Chemical Information and Modeling 50, 5 (2010), 742–754.

[40] Bidisha Samanta, DE Abir, Gourhari Jana, Pratim Kumar Chattaraj, Niloy Gan-
guly, and Manuel Gomez Rodriguez. 2019. Nevae: A deep generative model for

6

https://doi.org/10.1186/1471-2105-9-411
https://doi.org/10.1002/minf.201501004
http://arxiv.org/abs/q-bio.BM/2004.03766
https://doi.org/10.1038/nchem.1243
http://arxiv.org/abs/1703.07076
http://arxiv.org/abs/1703.07076
https://doi.org/10.20944/preprints202002.0242.v1
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1097/CM9.0000000000000797
https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1080/07391102.2020.1764868
http://arxiv.org/abs/cs.LG/2002.03244
http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1802.04364
https://doi.org/10.1063/1.5099132
https://doi.org/10.3389/fchem.2018.00315
http://arxiv.org/abs/stat.ML/1703.01925
https://doi.org/10.1186/s13321-018-0287-6
https://doi.org/10.5582/bst.2020.01020
https://doi.org/10.5582/bst.2020.01020
https://doi.org/10.1021/ci990125r


molecular graphs. In AAAI Conference on Artificial Intelligence, Vol. 33. 1110–
1117.

[41] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61–80.

[42] JL Sebaugh. 2011. Guidelines for accurate EC50/IC50 estimation. Pharmaceutical
statistics 10, 2 (2011), 128–134.

[43] Ganesh Sivaraman, Nicholas Jackson, Benjamin Sanchez-Lengeling, Alvaro
Vasquez-Mayagoitia, Alan Aspuru-Guzik, Venkatram Vishwanath, and Juan de
Pablo. 2020. A machine learning workflow for molecular analysis: application to
melting points. Machine Learning: Science and Technology (2020).

[44] Micholas Smith and Jeremy C. Smith. 2020. Repurposing Therapeutics for COVID-
19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and
Viral Spike Protein-Human ACE2 Interface. https://doi.org/10.26434/chemrxiv.
11871402.v3

[45] Niclas Ståhl, Göran Falkman, Alexander Karlsson, Gunnar Mathiason, and Jonas
Bostrom. 2019. Deep reinforcement learning for multiparameter optimization in
de novo drug design. Journal of Chemical Information and Modeling 59, 7 (2019),
3166–3176.

[46] Maha Thafar, Arwa Bin Raies, Somayah Albaradei, Magbubah Essack, and
Vladimir B Bajic. 2019. Comparison Study of Computational Prediction Tools for
Drug-Target Binding Affinities. Frontiers in Chemistry 7 (2019).

[47] Michael J Waring. 2010. Lipophilicity in drug discovery. Expert Opinion on
Drug Discovery 5, 3 (2010), 235–248. https://doi.org/10.1517/17460441003605098
arXiv:https://doi.org/10.1517/17460441003605098 PMID: 22823020.

[48] David Weininger. 1990. SMILES. 3. DEPICT. Graphical depiction of chemical
structures. Journal of Chemical Information and Computer Sciences 30, 3 (1990),
237–243.

[49] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018. Graph
convolutional policy network for goal-directed molecular graph generation. In
Advances in Neural Information Processing Systems. 6410–6421.

[50] Ming-Qiang Zhang and Barrie Wilkinson. 2007. Drug discovery beyond the
‘rule-of-five’. Current Opinion in Biotechnology 18, 6 (2007), 478 – 488. https:
//doi.org/10.1016/j.copbio.2007.10.005 Chemical biotechnology / Pharmaceutical
biotechnology.

[51] Yadi Zhou, Yuan Hou, Jiayu Shen, Yin Huang, William Martin, and Feixiong
Cheng. 2020. Network-based drug repurposing for novel coronavirus 2019-
nCoV/SARS-CoV-2. Cell Discovery 6, 1 (2020), 14. https://doi.org/10.1038/s41421-
020-0153-3

[52] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. 2019.
Optimization of Molecules via Deep Reinforcement Learning. Scientific Reports 9,
1 (2019), 10752. https://doi.org/10.1038/s41598-019-47148-x

S1

https://doi.org/10.26434/chemrxiv.11871402.v3
https://doi.org/10.26434/chemrxiv.11871402.v3
https://doi.org/10.1517/17460441003605098
http://arxiv.org/abs/https://doi.org/10.1517/17460441003605098
https://doi.org/10.1016/j.copbio.2007.10.005
https://doi.org/10.1016/j.copbio.2007.10.005
https://doi.org/10.1038/s41421-020-0153-3
https://doi.org/10.1038/s41421-020-0153-3
https://doi.org/10.1038/s41598-019-47148-x


SUPPLEMENTARY MATERIAL
5.1 Dataset Description
Preparation. We prepared and assembled the protease datasets with molecules active against various protease in enzymatic assays filtered
from experimentally pharmacology data such as CheMBL, BindingDB, and ToxCat [6]. The database was filtered out with the IC50 activity
standard types and their potency. Molecules with size larger than 1000 Dalton were removed due to the limitation of the representation of
large molecules in cheminformatics. We also filtered out non-drug like molecules containing metals and polypeptides. The curated data was
standardized using the logarithmic scale –log10 of a numeric value in nM for all compounds. We used the mean average for a molecule with
more than one IC50 value. The resulting dataset contains 6545 unique molecules accompanied by their SMILES strings and experimental
IC50 values.

Quantitative Characterization. We computed the metrics included in our scoring functions for each molecule in the database. The
range of values can be seen in Figure S1. The highest pIC50 is 10.89, while the lowest pIC50 is 1.22. The most common pIC50 is 4.0, which is
shared by 320 structures, and the vast majority of structures (91.5%) have pIC50 values greater than 4.0. LogP values range from -10.36 to
16.65 in a near Gaussian distribution with a mean of 3.70; 77.0% of all structures meet the requirement of Lipinski’s Rule of 5 that logP be no
greater than 5. QED values range from 0.01 to 0.94, while SA values range from 1.35 to 8.24, with 96.3% being below 5.

We computed the Tanimoto similarity for all pairs of compounds to gain insight into the structural diversity of molecules in our database
(Figure S2). The entries in the matrix were ordered in increasing pIC50 values. The similarity is represented by the color bar, with yellow
representing low similarity (0) and red high similarity (1). We observe that structures tend to become more similar to their neighbors as
pIC50 increases, indicating that compounds with high pIC50 values tend to be structurally similar, supporting the consideration of molecular
similarity during drug discovery.

Figure S1:We generated 1,000molecules using the trained JT-VAE, of which 560 were unique. The figure shows the comparison
of the QED, logP, SA score, and pIC50 of compounds in the database and those generated by the JT-VAE. The JT-VAE reproduced
the range of values present in the database, minus outliers. The similar values indicate that the JT-VAE is able to reproduce
the wide range of structures present in the database. The pIC50 values for generated molecules were estimated by our MPNN.
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Figure S2: Heat map of the Tanimoto similarity between all compounds in the database. Entries are ordered in increasing
pIC50. The Tanimoto similarity is generally higher among structures with high pIC50 (located towards bottom right of the
matrix), indicating the importance of considering structural similarity in drug discovery.
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Table S1: 𝑅2 scores for MPNN models trained to predict the pIC50 of drugs from their molecular structure. Each model was
trained using a different readout function (columns) to combine atomic contributions to pIC50 or to create a single molecular
fingerprint. Bold indicates the model used in our experiments and underscore indicates the best-performing model.

atomic molecular
readout

attention 0.57 0.56
max 0.61 0.71
mean 0.57 0.61
softmax 0.61 0.70
sum 0.51 0.54
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Figure S3: Performance of DQN agent using the multi-objective (MO) and pIC50 reward functions. The solid lines indicate the
number of unique molecules with pIC50> 8 found after a certain number of steps. The dashed lines indicate unique molecules
with pIC50> 8 and QED > 0.5
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Figure S4: Comparison of the properties ofmolecules optimized with different scoring functions by JT-VAEmethod. The pIC50
value was estimated using our MPNN.
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