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ABSTRACT

Background and Objective: Coronavirus Disease 2019 (COVID-19) has caused great casualties and
becomes almost the most urgent public health events worldwide. Computed tomography (CT) is a
significant screening tool for COVID-19 infection, and automated segmentation of lung infection in
COVID-19 CT images will greatly assist diagnosis and health care of patients. However, accurate
and automatic segmentation of COVID-19 lung infections remains to be challenging. In this paper we
propose a dilated dual attention U-Net (D2A U-Net) for COVID-19 lesion segmentation in CT slices
based on dilated convolution and a novel dual attention mechanism to address the issues above.
Methods: We introduce a dilated convolution module in model decoder to achieve large receptive
field, which refines decoding process and contributes to segmentation accuracy. Also, we present a
dual attention mechanism composed of two attention modules which are inserted to skip connection
and model decoder respectively. The dual attention mechanism is utilized to refine feature maps and
reduce semantic gap between different levels of the model.
Results: The proposed method has been evaluated on open-source dataset and outperforms cutting-
edges methods in semantic segmentation. Our proposed D2A U-Net with pretrained encoder achieves
a Dice score of 0.7298 and recall score of 0.7071. Besides, we also build a simplified D2A U-Net
without pretrained encoder to provide a fair comparison with other models trained from scratch, which
still outperforms popular U-Net family models with a Dice score of 0.7047 and recall score of 0.6626.
Conclusion: Our experiment results have shown that by introducing dilated convolution and dual
attentionmechanism, the number of false positives is significantly reduced, which improves sensitivity
to COVID-19 lesions and subsequently brings significant increase to Dice score. Significance: Our
proposed method improves segmentation performance on COVID-19 lesions in CT slices, and can be
regarded as a potential AI-based approach utilized in diagnosis and prognosis of COVID-19 patients.

1. Introduction
COVID-19 pandemic caused by SARS-nCov-2 contin-

ues to spread all over the world [24], and most of the coun-
tries have been affected in this unprecedented public health
event. By August 2020, more than 23.75 million of cases of
COVID-19 have been reported and more than 810,000 died
[2] of COVID-19 infection. Due to the strong infectivity of
SARS-nCov-2, identification of people infected by COVID-
19 is significant to cut off the transmission and slow down
virus spread. Reverse transcriptase-polymerase chain reac-
tion (RT-PCR) is considered as the gold standard of diagno-
sis [29] for its high specificity, but it is time-consuming and
laborious. Also, the capacity of RT-PCR tests can be rather
insufficient in less-developed regions, especially during the
pandemic. Computed tomography (CT) imaging is one of
the most commonly used screening methods to detect lung
infection and has proved to be efficient in the diagnosis and
follow-up prognosis of COVID-19.

Compared with chest X-ray images, CT imaging is more
sensitive, especially in the early stage of infection. Ground
glass pattern is the most common finding in COVID-19 in-
fections, usually in the early stage, while pulmonary consol-
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idation can be observed in the later stage. Pleural effusion
can also be observed in pathological CT slices. These typ-
ical features of COVID-19 lung infection are shown in Fig.
1.

Figure 1: Example of COVID-19 CT slices, where the red,
green and blue masks denote the ground glass, consolidation
and pleural effusion respectively. The images are collected from
[1].

Thus, chest CT imaging is regarded as a convenient, fast
and accurate approach to diagnose COVID-19. The evalua-
tion of localization and geometric features of infection area
could provide adequate information of disease progress and
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help doctors make better treatment [10] [16] [19]. However,
manual annotation of infection regions is a time-consuming
and laborious work. Also, the annotation made by radiolo-
gists can be subjective and biased due to individual experi-
ence and personal judgements.

Recently, a number of deep learning systems using con-
volutional neural networks (CNNs) have been proposed to
detect COVID-19 infection. For instance, Wang and Wong
[27] have developed a COVID-Net to perform ternary clas-
sification between healthy people, COVID-19 patients and
people infected with other pneumonia in chest X-ray im-
ages, which achieves an overall accuracy of 93.3%. In terms
of deep learning systems for CT imaging, Zhou and Canu
[39] have proposed an automatic network facilitated with at-
tention mechanism to segment infection area in CT slices.
Fan et. al [6] developed an Inf-Net and corresponding semi-
supervision algorithm to perform CT segmentation. Zheng
et al. [37] proposed aweakly-supervised deep learningmethod
to detect COVID-19 in CT volumes. Xi et al. [18] presented
a dual-sampling attention network to diagnose COVID-19
from community acquired pneumonia. However, detecting
lung infection caused by COVID-19 in CT images remains
to be challenging. As infection regions vary in shape, posi-
tion and texture, and the boundaries with normal tissues can
be rather blurred, which add to the difficulty in COVID-19
detection and limit model performance, especially in terms
of recall score.

To address the issues above, we proposed a dilated dual
attention U-Net (D2A U-Net) framework to automatic seg-
ment lung infection in COVID-19 CT slices. Since infected
tissues can be hardly distinguishable with normal tissues, we
introduce a dual attention mechanism consisting of a gate
attention module (GAM) and a decoder attention module
(DAM) to refine feature maps and produce more informa-
tive feature representation. The proposed GAM is utilized
by fusing features and semantic-rich gate signals to refine
skip connections. The proposed DAM is introduced to the
decoder of the network to improve model decoding quality
and better segment blurred infected tissues. As COVID-19
infection varies in position and size, we utilize dilated convo-
lution with different dilation rate in the model decoder to ob-
tain larger receptive fields and balance the segmentation on
both large and tiny objects, which thus provides better seg-
mentation results. Such refinement improves segmentation
recall score and thus provides better segmentation results.

The paper is organized as follows: Section 2 offers a re-
view of related works on CT segmentation. Section 3 de-
scribes the overview of this work and details our model. Sec-
tion 4 presents the details of our experiments and provides
both quantitative and qualitative segmentation results. Sec-
tion 5 discusses the proposedmethod and concludes ourwork.

2. Related Works
In this section, we will go through 4 types of most re-

lated works, which includes chest CT segmentation, atten-
tion mechanism, dilated convolution and AI-based COVID-

19 segmentation systems.

2.1. Chest CT Segmentation
Chest CT imaging is one of the most popular screening

methods for lung disease diagnosis[9]. Segmentation of or-
gans and lesions provides crucial information for disease di-
agnosis and prognosis. However, manual segmentation re-
mains time-consuming and laborious and subjective error
is inevitable, thus automatic CT segmentation gains much
popularity in the research fields. Recent researches upon
automatic segmentation mainly focus on utilizing machine
learning techniques. Relatedworksmost feature a pixel-wise
classifier to infer from extracted features to make predic-
tions. For example, Mansoor et. al [13] proposed a texture-
based feature classifier for pathological lung segmentation in
CT images. Yao et. al [34] utilized texture analysis and sup-
port vector machine to segment infections in lung tissues.
These algorithms have realized automatic segmentation in
chest CT images but several issues remain unsolved, includ-
ing subjective bias in feature extraction and difficulties in
segmenting nodule regions. Deep learning algorithms fea-
ture powerful fitting capacity and require no laborious pre-
processing. Most cutting-edge segmentation algorithms are
based on deep learning approaches. For example, Shaziya
et. al [23] used U-Net to segment lung tissues in chest CT
scans. Zhao et. al [36] proposed a fully convolutional neural
network with multi-instance and conditional adversary loss
for pathological lung segmentation.

2.2. Attention Mechanism
Attention plays an important role in human perception

and visual cognition [5]. One significant property in human
perception is that humans hardly process visual information
as a whole. Instead, humans usually process visual informa-
tion recurrently, where top information is utilized to guide
bottom-up feedforward process [15]. Inspired by this prin-
ciple, attention mechanism has been widely used in com-
puter vision, especially in image classification [7] [31] [25].
Related algorithms typically refine feature maps in spatial
dimension, channel dimension or both. For example, Hu et
al. [7] introduced a Squeeze-and-Excitation module, where
global average pooling is performed on input features to pro-
duce channel-wise attention. Woo et. al [31] proposed a
convolutional block attention module (CBAM) to introduce
a fused attention consisting of channel attention and spatial
attention. Wang et al. [25] presented a residual attention
network, which contains an attention module featuring an
encoder-decoder architecture. Attentionmechanism has also
been utilized in semantic segmentation tasks to make more
accurate dense predictions. For instance, Li et. al [11] pro-
posed a Pyramid Attention Network to exploit the impact of
global contextual information in semantic segmentation.

These typical algorithms resemble in some aspects. Cer-
tain operations, such as global pooling, convolution and the
combination of downsampling and upsampling, are utilized
to enhance informative regions in the feature maps and sup-
press unrelated information, which makes the network learn
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Figure 2: The proposed D2A U-Net architecture with a ResNeXt-50 (32×4d) backbone,
which takes a CT slice as input and outputs infection region predictions. See 3.1 for details.

more generalized visual structures and improves robustness
to noisy inputs.

2.3. Dilated Convolution
Traditional deep convolutional networks often involve

convolution with stride or pooling operations to improve re-
ceptive fields, and input images are downsampled in this
process. However, these operations often lead to the loss
of global information in dense predictions, such as seman-
tic segmentation and object detection. Yu and Koltun [35]
introduced dilated convolution to deep networks, which has
proved useful in dense predictions. The basic idea of dilated
convolution is to insert “holes” (zeros) in convolution ker-
nels to obtain large receptive fields without downsampling.
Dilated convolution avoids information loss during down-
sampling and has been widely used in semantic segmenta-
tion tasks [30] [14] [20]. However, it has been observed that
simply stacking dilated convolution in CNNsmay cause grid
effects and irrelevant long-ranged information [35] and lead
to performance deterioration. Wang et. al [28] proposed a
hybrid dilated convolution (HDC) framework to avoid grid
effects and improve segmentation performance on both large
and tiny objects.

2.4. AI-Based COVID-19 Segmentation Systems
Artificial intelligence has beenwidely utilized in fighting

against COVID-19. We mainly focus on AI-based semantic
segmentation systems upon CT scans. Many works focus on
learning robust and noise-insensitive representations from
limited or noisy inputs. For example, Xie et. al [33] pro-
posed a RTSU-Net for segmenting pulmonary lobes in CT
scans. A non-local neural networkmodule was introduced to
learn both visual and geometric relationships among feature
maps to produce self-attention. Wang et. al [26] presented
a noise-robust framework for COVID-19 lesion segmenta-
tion. They utilized a noise-robust Dice loss and adaptive
self-ensembling strategy to learn from noisy labels. Chen
et. al [4] proposed a residual attention U-Net which intro-
duced aggregated residual transformations and soft attention
mechanism to learn robust feature representations. Also, re-
searchers look into segmentation solutions that achieve both

high speed and high accuracy. For example, Zhou et. al [38]
developed a rapid, accurate and machine-agnostic segmen-
tation and quantification method for automatic segmentation
on COVID-19 lesions. The innovation of their work lies in
the first CT scan simulator for COVID-19 and a novel net-
work architecture which solves the large-scene-small-object
problem. Qiu et. al [21] developed a parameter-efficient
framework to achieve fast segmentation of COVID-19 lung
infection with relatively low computational cost.

3. Methods
In this section we will go through the details of the pro-

posed D2A U-Net architecture. In the first part, we will of-
fer the overview of proposed network. We then provide de-
tails about dual attention mechanism and proposed attention
modules. Finally we introduce our proposed decoder blocks.

3.1. Overview of Network Architecture
Basically, our proposed network is based on the U-Net

[22] architecture, which is quite popular in medical image
segmentation. Compared with original U-Net, dilated con-
volution and a novel combination of attentionmechanism are
integrated in our framework to obtain better feature represen-
tation. As COVID-19 pandemic broke out rapidly, available
open access CT image data with gold-standard annotations
is hard to acquire, and thus utilizing pretrained encoder in
the segmentation model can offer a better parameter initial-
ization and improve generalization ability. Therefore, in this
work, we utilize a ResNeXt-50 (32×4d) [32] pretrained on
ImageNet as the encoder of our model. Furthermore, we
integrate a dual attention mechanism in model decoder. A
gated attention mechanism is inserted inside skip connec-
tions to utilize both high and low levels of feature represen-
tations and reduce semantic gap between encoder and de-
coder. Also, we introduce another fused attention mecha-
nism in model decoder to refine feature maps after upsam-
ling. We utilize a hybrid dilated convolution module [28] as
the basic block of model decoder to enlarge receptive field
and produce better dense predictions. The network scheme
is shown in Fig. 2.
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Figure 3: The proposed gate attention module, which takes guiding signal and features
as input to generate fused attention. The number shown in the parentheses inside conv
block means the number of outchannels. See 3.2.1 for details.

3.2. Dual Attention Mechanism
We introduce a dual attention mechanism composed of a

gate attention module (GAM) and a decoder attention mod-
ule (DAM) to our network. GAM is utilized to refine fea-
tures extracted by model encoder and reduce semantic gap
by fusing high and low level feature maps. DAM is inserted
in model decoder to refine feature representations after up-
sampling.

3.2.1. Gate Attention Module
Feature concatenation from encoder to decoder is the

typical topological structure in U-Net, where the combina-
tion of high-resolution features in the encoder and upsam-
pled features in the decoder enables better localization of
segmentation targets [22]. However, not all visual repre-
sentations in encoder feature maps contribute to precise seg-
mentation. Also, semantic gap between encoder and decoder
could limit model performance as well. Thus, we introduce a
gate attention module before concatenation to refine features
coming from model encoder and reduce semantic gap.

Oktay et. al [17] proposed an attention gate to refine en-
coder features with attention mechanism. But in their pro-
posed attention gate only spatial attention mechanism is im-
plemented to refine features. We believe introducing channel
attention and spatial attention simultaneously will improve
the efficiency of attention mechanism. Thus, inspired by the
global attention upsample module proposed in pyramid at-
tention network [11] and CBAM [31], we provide a novel
design of a gate attention module to enable both channel at-
tention and spatial attention. Detailed scheme of the pro-
posed GAM is shown in Fig. 3. Two feature maps are fed
into the attention module. The guiding signal refers to the

feature map coming from model decoder (or the last convo-
lution block in model encoder), and the feature refers to fea-
ture maps coming from model encoder to concatenate with
upsampled feature maps. We useG ∈ ℝCg×Hg×Wg to denote
guiding signal and F ∈ ℝCf×Hf×Wf to denote features.

In a U-Net shaped architecture, compared with F,G con-
tains more deep and high-resolution semantic information
which is encoded in channel dimension. We utilize global
average pooling and a multilayer perception (MLP) to create
a channel attention map Zc(F) ∈ ℝCf×1×1. The output size
of the MLP is smaller than the input size, thus we suppress
irrelevant feature representations in channel dimension and
implement channel-wise attention mechanism. In short, we
compute channel attention as follows:

Zc(F) = �(MLP (Pavg(G)))
= �(WCf (ReLU (WCg∕r(Pavg(G)))))

(1)

where � denotes sigmoid activation, Pavg denotes global av-
erage pooling, W0 ∈ ℝCg∕r×Cg and W1 ∈ ℝCf×Cg∕r, r de-
notes reduce ratio and in our experiments it is set to 16.

Spatial attention is guided by both guiding signal and in-
put feature itself. We use convolution operation with 1 filter
to squeeze channel dimension ofG and F. Then reduced fea-
turemap fromG is upsampled tomatch the size ofF. A com-
bination of convolution operation with different kernel size
is utilized to produce spatial attention Zs(F) ∈ ℝ1×Hf×Wf .
In short, we compute spatial attention as:

Zs(F) = �(f3×3([Fr ,Gr]) + f5×5([Fr ,Gr]) + f7×7([Fr ,Gr]))
wℎere Fr = f r1×1(F), Gr = upsample(f r1×1(G))
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Figure 4: The proposed residual attention block (left) and decoder attention module
(right). RAB integrates a hybrid dilated convolution module and a DAM; n in the paren-
theses refers to dilation rate. DAM is utilized to refine post-upsample features; the number
shown in the parentheses inside conv block means the number of outchannels. See 3.3 for
details about RAB and 3.2.2 for details about DAM.

(2)

where � denotes sigmoid activation, f3×3, f5×5 and f7×7 de-
note convolution operation with corresponding kernel size.
f r1×1 is used to squeeze channel dimension.

Thenwe use element-wisemultiplication to combine spa-
tial and channel attention to produce fused attention Z(F):

Z(F) = F ∗ Zs(F) ∗ Zc(F) (3)

3.2.2. Decoder Attention Module
In semantic segmentation, high-resolution visual repre-

sentations in the encoder need to be upsampled tomake dense
predictions. Transposed convolution and interpolation are
both popular solutions to image upsampling, but both have
their drawbacks. Compared with interpolation, transposed
convolution is trainable and offers more nonlinearity to deep
networks, which improves model fitting capacity. But grid
effect is hard to avoid if hyperparameters are not config-
ured properly, while such drawback can be more trouble-
some when stacking more than one transposed convolution
layer. Thus we propose a combination of bilinear interpola-
tion and following convolution to upsample feature maps.
However, as interpolation is not trainable, it is inevitable
to introduce irrelevant information or noise to upsampling.

We introduce a decoder attention module to solve this is-
sue. A fused attention mechanism is utilized to refine post-
upsampling feature maps in both channel and spatial dimen-
sions. The scheme is shown in Fig. 4. Compared with
GAM, DAM is more simplified and only takes one input,
but the implementation of both channel and spatial attention
is quite similar. We use Zc(F) ∈ ℝC×1×1 to denote channel
attention, Zs(F) ∈ ℝ1×H×W to denote spatial attention and
Z(F) to denote fused attention. In short, DAM is computed
as follows:

Zc(F) = �(MLP (Pavg(F)))
= �(W1(ReLU (W0(Pavg(F)))))

(4)

where � denotes sigmoid activation, Pavg denotes global av-
erage pooling, W0 ∈ ℝC∕r×C andW1 ∈ ℝC×C∕r, r denotes
reduce ratio and in our experiments it is set to 16.

Zs(F) = �(f3×3(f r1×1(F))+f5×5(f
r
1×1(F))+f7×7(f

r
1×1(F))

(5)

where � denotes sigmoid activation, f3×3, f5×5 and f7×7 de-
note convolution operation with corresponding kernel size.
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Table 1
Dataset Description

Num Dataset Description Split

1 COVID-19 CT segmentation dataset[1] 110 slices with 100 containing annotations. Test Set

2 Segmentation dataset nr. 2[1]
9 CT volumes (373 out of the total of 829 slices
have been evaluated by a radiologist as positive

and segmented.)
Training Set

3
COVID-19 CT Lung and Infection

Segmentation Dataset[8]

20 CT volume (Left lung, right lung, and infections
are labeled by two radiologists and verified by an

experienced radiologist, and 1,844 out of the total of
3520 slices contains infection regions.)

Training Set

f r1×1 is used to squeeze channel dimension.

Z(F) = F ∗ Zs(F) ∗ Zc(F) (6)

3.3. Residual Attention Block
Standard convolution hardly reaches a large receptive field

due to kernel size. Such drawback in traditional design of
U-Net based network decoder can limit the performance in
segmentation. Inspired by the design of hybrid dilated con-
volution [28], we proposed a residual attention block (RAB)
as the basic module in model decoder. Unlike similar works
using dilated convolution in the encoder, we explore to use
it in the decoder to capture multiscale patterns of upsampled
feature maps. Hybrid dilated convolution is utilized in our
RAB to acquire large receptive fields and avoid grid effects.
The stem of RAB is a stack of dilated convolution with ker-
nel size 3 and dilation rate [1, 2, 5], followed by a decoder
attention module. The scheme is shown in Fig. 4.

We assume initial receptive field as 1× 1. The equivalent
kernel size of dilated convolution is computed as follows:

K = k + (k − 1)(n − 1) (7)

where K denotes equivalent kernel size, k denotes actual
kernel size and n denotes dilation rate.

Thus, the equivalent kernel size of dilated convolution
with kernel size 3 and dilation rate [1, 2, 5] is 3, 5, 11, re-
spectively. According to the definition of receptive field,
such design of stacked dilated convolution reaches a recep-
tive field of 17 × 17, which enables the capture of global
information. Also, dilated convolution with different dila-
tion rate can capture multiscale information in feature maps,
which can contribute to the accurate segmentation on both
large and small objects.

As we use a ResNeXt-50 (32 × 4d) as model encoder, we
utilize residual connection in decoder as well to avoid gradi-
ent vanishing. Dilated convolution is followed by a DAM to
refine upsampled features and produce fused attention maps.
In short, the output of our RAB is computed as follows:

Y = X +DAM(HDC(X)) (8)

where DAM denotes decoder attention module and HDC
denotes hybrid dilated convolution.

4. Experiments
4.1. CT Segmentation Dataset

CT slices used in our experiments consist of 3 datasets[1][8].
Details about dataset used are shown in Table 1. Dataset
1 contains 100 axial CT slices from more than 40 patients,
which have been rescaled to 512× 512 pixels and grayscaled.
All slices are segmented by a radiologist using three labels:
ground-glass opacity, consolidation and pleural effusion. Dataset
2 contains 9 axial CT volumes, where 373 out of the total of
829 slices have been evaluated by a radiologist as positive
and segmented using 2 labels including ground-glass opac-
ity and consolidation. Dataset 3 contains 20 CT axial vol-
umes, which have been segmented by two radiologists and
verified by an experienced radiologist.

Dataset 2 and Dataset 3 contain 29 CT volumes in to-
tal, but not all slices contain infection regions. We choose to
discard all slices containing no COVID-19 infection and use
slices with annotations only. As annotations in Dataset 3 do
not distinguish ground-glass opacity and consolidation, we
take both ground-glass opacity and consolidation in Dataset
2 as COVID-19 lesions and do not distinguish them as well,
thus creating a binary segmentation dataset. An intensity
normalization has been applied on both datasets and all slices
have been rescaled to 512 × 512 pixels to match Dataset 1.
We take all ground-glass, consolidation and pleural effusion
in Dataset 1 as COVID-19 lesions, just the same as what we
have done to Dataset 2.

We did not choose to combine processed Dataset 1 to 3
together and then split them randomly, because in this way
slices of one certain subject can exist in both training and
test datasets, which could be regarded as a data leakage and
cause a virtual-high model performance. Instead, we finally
obtain 1645 processed slices from processed Dataset 2 and
Dataset 3 in total and use these slices as our final training
dataset, and then we use 100 axial slices from Dataset 1 as
our final test dataset. Such data split can best evaluate model
generalization capacity.
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4.2. Implementation Details
4.2.1. Model Hyperparameters and Settings

Model encoder is a ResNeXt-50 (32 × 4d) pretrained on
ImageNet-1K. We remove the global average pooling and
full connection layers from original network. Number of
output channels is 64, 256, 512, 1024, 2048, respectively,
just the same as original paper of ResNeXt. Convolution
operations in model decoder are padded, without stride, if
not specified. Bilinear interpolation is utilized to upsam-
ple feature maps, and scale factor is set to 2. Dice loss is
widely utilized in semantic segmentation, but the differen-
tial of Dice loss is sometimes numerically unstable and may
lead to oscillation in training process. The combination of
Dice loss and cross-entropy could avoid this issue. Thus we
combine Dice loss d and binary cross-entropy loss c as
our final loss function:

seg = d + �c (9)

where � = 1 in our experiments.

4.2.2. Training Details
Our model is implemented using PyTorch on an Ubuntu

16.04 server. We use a NVIDIA RTX 2080 Ti GPU to accel-
erate our training process. Data augmentation is utilized in
our training process to reduce overfitting and improve gen-
eralization capacity. First all input images are rescaled to
560 × 560, followed by random flip, random rotation, ran-
dom gamma and log transform. Finally images are randomly
cropped to 448× 448 and fed into network. The model is op-
timized by an Adam optimizer with �1 = 0.9, �2 = 0.999,
� = 1e−8. L2 regularization is utilized to reduce overfitting
as well. We set model weight decay to 1e-4. Initial learning
rate is set to 1e-4 and reduced when faced with plateau, with
reduce factor being 0.1 and patience being 10. The batch
size is set to 6 and we perform evaluation on test set after 30
epochs. The training process takes approximately 140 min-
utes.

4.3. Evaluation Metrics
We use Dice similarity coefficient and pixel error as the

main metrics to evaluate segmentation performance of our
D2A U-Net. Dice is a statistic used to gauge the similarity
of two samples, and has been widely used to evaluate perfor-
mance in semantic segmentation. Pixel error measures the
number of pixels predicted falsely in the image, which shows
the global segmentation accuracy of the proposed models.
Both metrics measure segmentation performance in a global
way. In addition, we calculate recall score of infection re-
gions as recall score measures model’s sensitivity to lung
infection, which is rather significant in terms of COVID-19
infection. We use G to denote ground truth, P to denote
dense predications, TP to denote true positive, FP to de-
note false positive, TN to denote true negative and FN to
denote false negative. These metrics are calculated as fol-

lows:

Dice =
2|G

⋂

P |
|G| + |P |

= 2TP
2TP + FP + FN

(10)

P ixel Error = FP + FN
TP + TN + FP + FN

(11)

Recall = TP
TP + FN

(12)

4.4. Comparison with Cutting-Edge Methods
We compared the performance of proposed network with

U-Net [22], Attention U-Net [17] and U-Net++ [40]. The
VGG-style backbone refers to the encoder design proposed
in original U-Net paper [22].

Also, we compared our model with 2 cutting-edge mod-
els widely used in natural image segmentation, including
FCN8s [12] and DeepLab v3 (output stride = 8) [3], with
both models containing a pretrained backbone as well.

Apart from model performance comparison, model pa-
rameters and computational costs (FLOPs) are also com-
pared in our experiments.

As our model differs with other U-Net family models in
terms of model encoder, to best evaluate our design of model
decoder and attention mechanism, we also build a simpli-
fied D2A U-Net with a VGG-style backbone as well. We
believe the simplified version offers more fair comparison
between proposed network and other U-Net based models,
while standard D2A U-Net with backbone ResNeXt-50 (32
× 4d) provides best segmentation results.

To best evaluate model performance, all the metrics re-
ported in Table 2 are averaged in 5 reduplicate experiments
to report a fair and reliable result.

4.5. Segmentation Results
4.5.1. Quantitative Analysis

Detailed comparison among different models in our ex-
periments is shown in Table 2. As has been shown, without
pretrained backbone, our proposed network outperforms U-
Net, Attention U-Net and U-Net++ in terms of Dice, pixel
error and recall. As these models are identical in model en-
coder, it is clear that the proposed dual attention mechanism
and RAB contribute to infection segmentation a lot. The
utilization of attention mechanism aids the model to detect
infected tissues more accurately, which reduces the number
of false positives and improves recall score. Also, RAB in
model decoder captures both large and tiny visual structures,
which is helpful to segment infection lesions with different
size. Also, it should be noted that proposed D2A U-Net with
VGG-style backbone outperforms U-Net++ with compara-
bly lower model parameters and computational costs, which
could prove the balance of efficiency and performance in our
models.
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Table 2
Quantitative analysis of infection regions on our dataset. Backbone VGG-style refers to
the encoder proposed in [22], and backbone ResNet-101 and ResNeXt-50 (32 × 4d) are
pretrained on ImageNet-1K.

Model Backbone Param. FLOPs Dice Pixel Error Recall

U-Net VGG-style 7.85 M 43.13 G 0.6384 0.0332 0.5512

Attention U-Net VGG-style 8.12 M 43.78 G 0.6646 0.0390 0.6470

U-Net++ VGG-style 9.16 M 106.81 G 0.6830 0.0332 0.6417

DeepLab v3 (os=8) ResNet-101 58.63 M 185.00 G 0.7095 0.0323 0.6780

FCN8s ResNet-101 51.94 M 165.67 G 0.6825 0.0315 0.6348

D2A U-Net VGG-style 8.95 M 53.19 G 0.7047 0.0323 0.6626

D2A U-Net ResNeXt-50 90.05 M 149.97 G 0.7298 0.0311 0.7071

Utilizing pretrained backbone could also improve model
performance. As can be seen, our D2A U-Net with pre-
trained ResNeXt-50 (32 × 4d) backbone outperforms other
networks including ones with similar pretrianed backbones
in terms of Dice, pixel error and recall by a large margin
and yields best results on our dataset. Also, our D2A U-Net
with pretrained ResNeXt-50 (32 × 4d) backbone takes fewer
computational resources than FCN8s and DeepLab v3 (out-
put stride = 8). As can be seen from Table 2, pretrained
encoder could offer a better initialization of model param-
eters and reduce overfitting, especially when data amount
is insufficient. Overall, the proposed architecture performs
better than existing cutting-edge models.

4.5.2. Qualitative Analysis
We visualized segmentation results, as is shown in Fig.

5. It can be seen from the visualization that our proposed
model outperforms other models obviously. U-Net and At-
tention U-Net are the least sensitive to COVID-19 lesions,
and the background pixels havemuch stronger activation com-
pared with other models. U-Net++ produces more accurate
segmentation results, but still not promising as some tiny
lesions or lesions with blurred edge are segmented poorly.
D2A U-Net with VGG-style backbone produces most accu-
rate segmentation masks compared with other U-Net based
models mentioned above, and when backbone is switched to
ResNeXt-50 (32 × 4d), D2A U-Net produces the best seg-
mentation results, which is comparably more sensitive to
blurred or tiny lesions than other models.

4.5.3. Ablation Study
Several ablation experiments were conducted to evaluate

the performance of components presented in our model, as
is shown in Table. 3.

Effectiveness of Proposed GAM To evaluate the valid-
ity of proposed GAM in our experiments, we designed two
baselines shown in Table. 3, including No.1 (U-Net only)
and No.2 (U-Net + GAM). Experimental results have shown

that introducing GAM to U-Net model can boost the perfor-
mance, which leads to a better Dice score and recall.

Effectiveness of Proposed RAB Weconducted similar ex-
periments (No.1 and No.3) to explore the effectiveness of
proposed RAB, which includes a hybrid dilated convolution
block and a decoder attention module. Experimental results
indicate that introducing RAB to our model yields better re-
sults as well, but the performance boost is comparably lim-
ited compared with GAM.

Effectiveness of Combining GAM, RAB and PB As can
be seen fromTable. 3, in experiment No.4, introducingGAM
and RAB together (proposed D2A U-Net) yields best results
in our experiments, and the performance boost exceeds the
simple addition of each module’s performance boost. Such
experimental results indicate that introducingGAMandRAB
together promotes the performance mutually. Also, in No.5,
pretrained backbone as better parameter initialization could
further improve model performance.

5. Conclusion
In this paper we proposed a novel segmentation network,

D2A U-Net, for COVID-19 CT segmentation. Inspired by
global attention upsample and CBAM, we propose a novel
gated attention mechanism, called gate attention module, to
produce a fused attention map on features extracted by en-
coder. We introduce a decoder attention module as well,
which helps refine upsampled feature maps. Also, inspired
by hybrid dilated convolution, we present a residual atten-
tion block containing a hybrid dilated convolution and a de-
coder attention module; we use it as the basic block in model
decoder. Attention mechanism is utilized to increase model
sensitivity to positive pixels and improve recall score. And
we use residual attention block as decoder basic block to
refine upsampled feature maps and increase receptive field
simultaneously. Experimental results indicate that our net-
work design is capable of segment COVID-19 lesions from
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Figure 5: Visual comparison of COVID-19 lesions segmentation results.

Table 3
Ablation analysis of proposed D2A U-Net, where GAM denotes gate attention module,
RAB denotes residual attention block and PB denotes pretrained backbone.

Method Dice Pixel Error Recall

(No.1) U-Net 0.6384 0.0332 0.5512

(No.2) U-Net + GAM 0.6771 0.0343 0.6445

(No.3) U-Net + RAB 0.6579 0.0354 0.6154

(No.4) U-Net + RAB + GAM 0.7047 0.0323 0.6626

(No.5) U-Net + RAB + GAM + PB 0.7298 0.0311 0.7071

CT slices automatically, and achieves best results among pop-
ular cutting-edge models evaluated in our experiments. But
our work is still limited to some degree, as only binary seg-
mentation is performed in our experiments, which can limit
model’s potential use in both diagnosis and health care. We
expect to gather more CT scans and performmulti-class seg-
mentation in the future. Also, despite the significantly bet-
ter performance of our D2A U-Net with ResNeXt-50 (32 ×
4d) backbone, the model has much more model parameters
than other architectures with similar backbones (FCN8s and

DeepLab v3). We believe that as ResNet family models have
a large number of channels (eg. 1024 and 2048 in the last two
layers), the parameters of model decoder becomes extremely
large. Such problem might be addressed by introducing so-
called Bottleneck in ResNets to the decoder of D2A U-Net
to reduce channels and thus model parameters.
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