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Abstract—2020 has been a year marked by the COVID-19
pandemic. This event has caused disruptions to many aspects
of normal life. An important aspect in reducing the impact of
the pandemic is to control its spread. Studies have shown that
one effective method in reducing the transmission of COVID-
19 is to wear masks. Strict mask-wearing policies have been
met with not only public sensation but also practical difficulty.
We cannot hope to manually check if everyone on a street is
wearing a mask properly. Existing technology to help
automate mask checking uses deep learning models on real-
time surveillance camera footages. The current dominant
method to perform real-time mask detection uses Mask-R-
CNN with ResNet as backbone. While giving good detection
results, this method is computationally intensive and its
efficiency in real-time face mask detection is not ideal. Our
research proposes a new approach to the mask detection by
replacing Mask-R-CNN with a more efficient model “YOLO”
to increase the processing speed of real-time mask detection
and not compromise on accuracy. Besides, given the small
volume as well as extreme imbalance of the mask detection
datasets, we adopt a latest progress made in few-shot visual
classification, simple CNAPs, to improve the classification
performance.
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1. INTRODUCTION

Under the current COVID-19 background, it is vitally
important to control the spread of the disease. Studies have
shown that mask-wearing can significantly decrease the risk
of COVID-19 transmission. However, it is unreasonable to
expect that everyone is able and willing to wear a mask.
Many countries and regions have imposed laws to enforce
mask wearing in public places. However, these legislations
are incredibly difficult to enforce using pure human labor,
especially in public places. Automation techniques are
necessary to perform detections in real time. There are
existing methods that automates mask-detection.

The most dominant of these methods employ a deep
neural network model called Mask-RCNN to automatically
detect people who are wearing and not wearing masks from
a video source. The problem with these methods is that
Mask-RCNN is computationally heavy. This means that
systems that rely on Mask-RCNN requires adequate
computing power to run the model in real time. The bar in
computing power presents a difficulty to deploy real-time
mask detection systems, especially in places where such
devices are not affordable. Our project aims to reduce the
computation cost of such automated mask detection system
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by replacing the Mask-RCNN with the YOLO model, which
achieves the same level of accuracy and is two-degrees
faster. This significant reduction in computation costs allows
for less expensive device to be deployed for mask detection.
We believe that this would help in enforcing mask wearing
policies and consequently reducing the cases of COVID-19
infection.

II. RELATED WORKS

R-CNN and Mask-R-CNN is a family of convolutional
neural networks (CNNs) that perform object detection on
images. Proposed in 2014, the original R-CNN is the first to
use CNNs to perform object detection. R-CNNs yields
significantly better results compared to traditional feature
extraction methods such as Scale-invariant feature transform
(SIFT), Histogram-of-oriented-gradients (HoG) features and
bag-of-features methods [3]. R-CNN detects objects by
making around 2000 region proposals from the input image
via the Selective Search algorithm, warping the regions in
the same way, and passing them through a CNN feature
extractor. The output of the CNN is then fed into a simple
Support Vector Machine (SVM) classifier for classifying
objects in the proposed regions and a regressor for
generating the bounding boxes. R-CNN is extremely slow
because detecting objects in a single image requires passing
all of the region proposals through the CNN. Running time
for R-CNN predictions is usually around 1 minute. The R-
CNN is very difficult to train because it is RAM heavy and
requires training the CNN, the SVM and the regressor. [3].
Improvements to R-CNN was swiftly made with its original
author introducing Fast R-CNN in 2015 [2]. Fast R-CNN
achieves significantly better running time by eliminating the
repeated feed-forward feature extraction of proposed regions.
This is done by directly feeding the image through a CNN
and use the resulting feature map for region proposals
instead via Selected Search. The proposals were then warped
into the same shape through a special Region-of-Interest
(Rol) layer and then fed into fully connected (FC) layers.
The SVM is replaced by a SoftMax layer to perform
classification, hence making Fast R-CNN easier to train. Ren
et al. further improved on Fast R-CNN by replacing the
Selective Search algorithm, which turned out to be the
bottle-neck in speed and accuracy of R-CNNs, with a CNN.
This CNN, called the Region-proposal Network (RPN) is
responsible for proposing regions instead. RPN works in
accordance with Rol pooling by sharing the feature maps
generated by the feature extractor CNN. Result is a model
that can be run in real-time at 5 frames per second on a
graphical processing unit (GPU) [9]. Adding arguments on



why this is still not okay, we want a faster algorithm: lower
computation cost so that we can process more data on
cheaper machines/on edge devices to improve coverage of
this automated face-mask detection system.

YOLO, abbreviation for “You only look once”, is
another type of model that performs object detection on
images. Instead of taking the two-stage propose-and-classify
approach defined by the family of R-CNN models, YOLO
achieves object detection in a single stage by treating the
task as a regression problem. This allowed YOLO to achieve
a 45 frames-per-second detection speed on a Titan X GPU
[7]. Proposed in 2016 by Redmond et al., the original YOLO
model divides the input image into a 19x19 grid of cells.
Each cell is responsible for predicting 2 bounding boxes by
giving a confidence level on if an object exists in each
bounding box. The bounding box predictions are non-max
suppressed. The final prediction results are those with the
highest Intersection over Union (IoU) scores [7]. The
original YOLO model had several limitations. 1) Difficulty
to detect objects that appear in groups or have unusual
aspect ratios or configurations, because each grid cell is
responsible for predicting only 2 bounding boxes of fixed
aspect ratios; 2) Localization inaccuracies because the loss
function treats low and high dimension localization errors
equally. Redmon et al. made improvements on the YOLO
model in their subsequent research by adding Batch
Normalization layers, replacing fully-connected layers with
anchor boxes, and using a custom DarkNet-19 convolutional
layer to reduce the number of floating-point observations.
Redmon et al. made some final consolidations in YOLOvV3,
the most notable of which is expanding the DarkNet-19 to a
larger but more accurate DarkNet-53 CNN that incorporates
residual layers while adding minimal computational
overhead. The result is a fast, accurate model that can
process images at 30 frames-per-second on a Pascal Titan X
GPUJ[8]. Notably, YOLO provides different model
architectures that allows for different trade-offs in
processing speed and accuracy.

Few-Shot Visual Classification. The goal of few-shot
learning is to automatically adapt models such that they
work well on instances from classes hardly seen at training
time. Most of last decade’s few-shot learning works can be
differentiated along two main axes: 1) how images are

transformed into vectorized embeddings, and 2) how”
distances” are computed between vectors in order to assign
labels.

Siamese network [5], an early approach to few-shot
learning and classification, used a shared feature extractor to
produce embeddings for both the support and query images.
Relation networks, and recent GCNN [4] variants, extended
this by parameterizing and learning the classification metric
using a Multi-Layer Perceptron (MLP). Matching networks
[11] learned distinct feature extractors for support and query
images which were then used to compute cosine similarities
for classification. The feature extractors used in such works
are usually obtained by fine-tuned transfer-learned networks.

This paper adopts Simple CNAPS to solve problems
caused by small and imbalanced dataset. Methods that are
most similar to approach are Simple CNAPS [1], CNAPS
[10] (and the related TADAM) and Prototypical networks. It
is the state-of-the-art approach for few-shot image
classification. In this kind of methods, CNAPS use a
pretrained feature extractor augmented with FiLM layers [6]
that are adapted for each task using the support images
specific to that task. Different from CNAPS, simple CNAPS
[1] makes improvements in the following ways. CNAPS has
demonstrated the importance of adapting the feature
extractor to a specific task. Simple CNAPS demonstrates an
improved choice of Bregman divergence and proposes that
the use of the Mahalanobis distance is helpful for image
classification. In addition, simple CNAPS makes it no extra
parameters, which is easier for training and can be used for
different classification tasks.

III. IMPLEMENTATION

A. Dataset

Masks play a significant role in protecting the health of
individuals against virus spread in air, as is one of the few
precautions available for COVID-19 in the absence of
immunization. Hence, it is very important for us to detect
whether an individual wear a mask and whether they wear
correctly as a means of tracing the infection.

Currently, data-driven detection and classification
models must be fitted with a dataset to function properly.
Mask detection and classification dataset in this paper come
from one of the latest Face Mask Detection and Kaggle.
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Figure 1. Structures of simple CNAPS [1]

This dataset contains 853 images belonging to the 3
classes described below, as well as their bounding boxes in
PASCAL VOC format:
®  With mask
®  Without mask
®  Mask worn incorrectly

This dataset is well prepared for detection and
classification models, that is, in every single image, there
might be multiple targets with different classes. This task is
what Yolo framework designed for.

Additionally, based on this dataset, we also built a
simpler dataset consisting of target slices in the original
images, in order to train and test Yolo-based classification-
only models. In the training set, there are 3145 images, with
2546 with mask, 508 without mask, and 91 masks worn
incorrectly. The above numbers tell us that the dataset is
limited in size and is very biased towards the “Wearing
Mask” class.

B. Traditional Detection & Classification Task

While most proposed solutions in the Kaggle Face Mask
Detection Dataset competition use Faster R-CNN to achieve
good detection results, these R-CNN models are still
computationally expensive and does not have good frames-
per-second performance in real time. Our first task is to
adjust a well-trained Yolov3 model to this traditional
detection & classification task to obtain equal accuracy and
faster speed than the proposed solutions.

Our work began with the GitHub
ultralytics/yolov3. The repository is

repository
maintained by

ultralytics, a U.S.-based particle physics and Al startup with
over 6 years of expertise supporting government, academic
and business clients.

Based on their work and our original dataset, we did the

following training and tuning strategies:

e Weighted Loss Function: We found that, during
training, the model has a tendency to converge better
in bounding box and object loss and less well in class
loss. To mitigate this problem, we used a weighted loss
function that can be expressed as:

L=aLg+ ﬁLobj + (B = a = B)Lppox (1)

e Data Augmentation: based on the limited size of
training data, we adopted a series of data augmentation
methods including:

— Random Rotation / Translation / Scaling / Flip
— Random Hue / Brightness / Inverse / Saturation
— Random Gaussian Blur

¢ Undersampling: Given that target Correctly wearing
the mask has much more samples than the other two
classes, we believe that it is necessary to adopt
undersampling technique to make the training data
more balanced.

e Hyper-parameters tuning: We manually tuned the
hyperparameters including batch size, grid size,
learning rate schedule.
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C. Few-Shot Classification-Only Task

While fitting the traditional detection & classification
model, we found that our model had a low classification
accuracy. We decided to investigate the cause. After we
built the classification-only dataset, we found that the dataset
is imbalanced in the distribution of the class samples.
Images that belong to Mask worn incorrectly class are very
few. For this reason, we adopted the latest Few-Shot
classification techniques to perform this classification only
task. Goals are:

e To get better classification scores than the traditional

detection & classification models on the target slices

e To compare the performance of feature extraction

between two backbones that have relatively equal
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(a) Squared Euclidean Distance
Figure 2.

One of the great differences between simple CNAPS
classifier and traditional FC-layer Classifier used in CNN, is
that simple CNAPS adopts the concept of Mahalanobis
distance (class-covariance based) instead of Euclidean
distance as the metric. An advantage of using a class-
covariance based metric during classification is that such
metrics take the distribution in feature space into account
and give improved decision boundaries for non-linear
classifiers. In Mask Detection task, the decision boundary
between With mask and Mask worn incorrectly are very
close. We identify this as the source of misclassification by
our model.

Additionally, in the implementation of simple CNAPS,
every class is treated equally with its Class Mean and Class
Covariance Estimates, which indicates that this classifier
will be less influenced by the imbalanced dataset.

Furthermore, adopting simple CNAPS decreases the

number of FC layers with only a few extra parameters stored.

This result is also in line with our initial purpose of the this
research: to train a high efficiency detection and
classification model for real-time use cases.

To implement the simple CNAPS-based classifier, we
designed a full 3-stage training-inferring process by using
simple CNAPS for classification. This is not mentioned in
the original paper. The 3-stage process includes pretraining,
finetuning and querying(Figure 2).

D. Video Processing

We use OpenCV visualize the prediction results in
videos. OpenCV supports reading streams of videos from

number of parameters: Mobilenetv3 backbone and
YoloNano
To achieve goals, we implemented Simple CNAPS.
Simple CNAPS [1] is first proposed by Peyman Bateni, et al.,
based on the previous work about CNAPS, which is one of
the state-of-the-art in the Few-Shot classification domain.
Compared with the original CNAPS, simple CNAPS makes
the few-shot classifier no parameters. Their work is
published in CVPR 2020 and showed that simple CNAPS
can achieve good performance in few-shot classification task
that is even better than the conventional CNAPS. Because
there is no source code that has implemented simple CNAPS,
we reproduce the model ourselves.

(b) Squared Mahalanobis Distance

Difference between Euclidean Distance and Mahalanobis Distance

external devices and files from the local file system. Given a

trained model on a mask-detection dataset, we expect the

output of the model to contain at least the following fields:

®  An array of images used in the prediction

® An array of predictions generated by the model, of
tuples of the following format

(@) x, y coordinates of the top left corner of the
bounding box, normalized to image width and
height.

(b) x, y coordinates of the bottom right corner of the
bounding box, normalized to image width and
height.

(c) a floating-point confidence level

(d) a number indicating the predicted class 3. an
array of label names

The video source is read as an iterable stream of frames
of images. Each frame of image is passed into our model at
their original height and width (e.g., 1080 pixels wide, 1920
pixels high). Our model generates inference results
conforming to the above format. We use the results to draw
the bounding boxes, predicting class names and confidence
level for each detected object (face, face masks, face masks
worn incorrectly) on this frame of image. The drawn frame
is then passed into a video encoder to be saved as a frame in
the output video. The end result is a new video with the
above visualizations with MPEG-4 encoding. The input
video is not modified in any way.
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Figure 3. Designed training routine for simple CNAPS.

Processing videos with OpenCV adds overhead to model
prediction. The overhead comes from reading frames from
the input video, drawing the visualizations and writing the
drawn frame to the output video. Model is very performant,
achieving a 2 frames-per-second on a modest dual-core Intel
Xeon CPU at 1920%1080 resolution.

IV. RESULTS

A. Traditional Detection & Classification Task

We trained a Faster RCNN, an original Yolov3 and our
customized weight loss Yolov3 with fine-tuned hyper-
parameters, based on original Face Mask detection dataset.
The original data set is randomly divided into training set

and validation set in a ratio of 4:1. The training process was
carried on a server with modest dual-core Intel Xeon CPU
and NVidia RTX 2080 Ti video card. Each model is trained
in an 8-batch size with 200 epochs. The following table
shows their performances on the same validation set. In the
weighted loss Yolov3, we set:

a=125p=1.0 2)

From the results above, we see clearly that Faster RCNN
tends to perform better than Yolov3. We believe that it
might because the Faster R-CNN uses a larger feature
extractor (ResNet-50). However, with a little loss in the
accuracy, Yolov3 has a much better running speed.

TABLE L PERFORMANCES OF DIFFERENT MODELS
Method Precision Fl1 Speed*
Faster R-CNN 0.932 0.721 175.2
Yolov3 0.905 0.706 96.42
Yolov3 Weighted Loss 0.919 0.731 95.78

*Here the speed is calculated in the time cost (ms) per 100 images

We can also see that the F1 score is not as good as the
precision. This reveals the imbalance of the dataset as we
have mentioned before. However, as we applied our
customized weighted loss, which added the proportion of
Lgs , our new model achieves a better F1 score. The
experiment results proved our hypothesis.

B. Few-Shot Classification-only Task

We trained the traditional classification network with
FC-layer predictor. We chose a Mobilenetv3 backbone with
2,826,736 trainable variables and a YoloNano backbone

with 2,771,991 trainable variables as our candidate feature
extractors. Experiment results are listed as follows

In order to avoid the influence of imbalanced dataset, we
adjust the ratio of each class in the validation set. Our
validation set has 183 ”"With Mask” images, 40 "Mask worn
incorrectly” images, and 129 ”No Mask” images.

From the table above we see the feature extracting ability
of YoloNano is not worse than the state of art mobile feature
extractor MobileNetv3 (large version). What’s more,
YoloNano shows a better performance in avoiding
overfitting on small datasets.



TABLE II. FEW-SHOT CLASSIFICATION TRAIN SET
Settings Mobilenetv3 YoloNano
FC Classifier 0.9014 0.8693
Simple CNAPS-50 0.8243 0.8245
Simple CNAPS-100 0.8718 0.8752
Simple CNAPS-500 0.8574 0.8457
Simple CNAPS-full 0.8693 0.8543

*Here “Simple CNAPS-50” means that we set the size of support images of CNAPS as 50, and
“Simple CNAPS-full” means we set all images in the training set as support images when querying.

Validation Set Performance

TABLE III. FEW-SHOT CLASSIFICATION VALIDATION SET
Settings Mobilenetv3 YoloNano
FC Classifier 0.8457 0.8590
Simple CNAPS-50 0.8536 0.8557
Simple CNAPS-100 0.8617 0.8876
Simple CNAPS-500 0.8777 0.8776
Simple CNAPS-full 0.8457 0.8513

Besides, we see a remarkable improvement in test
accuracy after using simple CNAPS instead of the FC layer
predictor.

== Mobilenetvd == yolov4
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Figure 4. Curves of validation set performance

When inspecting the curves, we see that when the
support images number increase, the simple CNAPS’s
performance first improves and then worsens. This matched
the results that Peyman et al. mentioned in their paper.
Hence, when using simple CNAPS, tuning the number of
support images is be very important.

V. DISCUSSION

A. Performance Evaluation for the Yolo Family

When Faster RCNN and Mask RCNN are so popular,
why we still consider networks from the Yolo family. With
this question, our work showed that the Yolo family
networks have great capabilities in feature extraction and
object detection that are no worse than the current state-of-
the-art such as faster/mask RCNN and MobileNet.
Additionally, Yolo family networks have faster execution
times, which is better-suited for practical application in real-
time use cases that we proposed: detecting masks in real
time.

B. Using Simple CNAPS in Practical Task

We first designed a full training process for simple
CNAPS in a real-life task, and proved that it is helpful in
improving the few-shot class classification scores. The next

step might be adopting simple CNAPS on the traditional
detection & classification frame works.

C. Improvements on Video Processing Pipeline

Further improvements can still be made based on our
video processing pipeline. These improvements may not be
directly related to our model. 1) We do not need to pass
every frame to our model. This is based on the assumption
that continuous frames in the input video are likely to
contain similar content. By strategically skipping frames, we
can improve the processing speed of our entire pipeline. 2)
We can incorporate instance tracking in our video
processing pipeline. Instance tracking compares the pixel
content of frames to predict the movement of detected
objects. This takes significantly less floating-point
operations than passing frames to our model for inferencing
and hence will improve our overall processing speed.

D. Meaning of Project

This project has practical value under the current context
of the COVID-19 pandemic. Pipeline is already capable of
detecting people with, without and incorrectly wearing
masks with reasonable accuracy. With some improvements,
we envision that product can be used as a component in a
contact tracing system. Product is also relatively



computationally efficient. The hardware threshold for
deploying our project is low. This means that product is less
restricted by budget or the level of economic development at
the location of its deployment and hence can reach more
places where COVID-19 infections pose more threat to
people.

E. Privacy Concerns

Deep learning models have vulnerabilities. While it is
possible to conduct adversarial attacks on our model if it is
deployed, such attacks are unlikely not cause direct, physical
harm to people whose faces are detected. It is worth
mentioning that, with minimum improvements, our model is
capable of memorizing detected faces (e.g., through a face-
recognition deep-learning framework). This is a likely use
case if our model is incorporated into a contact-tracking
system where facial-recognition and storing faces are
required. Facial features are generally considered to have
some level of privacy. In such cases, we should implement
counter measures such as implementing safe deep learning
models, obfuscating stored faces and putting our product
behind a safe strong-point to protect the stored human faces.

VI. CONCLUSION

In this paper, we examined the performance of neural
networks from the Yolo family in real-time detection tasks.
Results showed that this Yolo is capable of achieving state-
of-the-art performance in object detection and classification
with a much lower inference time. This showed that Yolo is
well-suited for detection and classification tasks in real-time
settings such as the one we proposed: face-mask detection in
real time. Additionally, we implemented the Simple CNAPS
model and found that it improves our model performance on
the small and biased dataset that is available to us. We have
also implemented a sample video processing pipeline to
demonstrate our model performance.

VII. APPENDIX

A. Dataset

As detailed in section 3.1, our dataset is acquired from
Kaggle. The dataset contains 853 images and one boxing
box specification file in PASCAL VOC format for each
image. This dataset is used to build simpler dataset
containing only the target slices of the original images. This
dataset is used to train and test the Yolo-based classification-
only models. There are 3145 images in the training set. 2546

with mask, 508 without mask, 91 masks are worn incorrectly.

This dataset is very small and imbalanced.

B. Experiment Details

1) Libraries and Frameworks. For the video processing
portion of our code, we used PyTorch as our deep learning
model framework. We used OpenCV-Python to read and
write video streams.

2) Models

a) Traditional Detection & Classification Weighted
Loss Yolov3 batch=8 width=512 height=512 channels=3
momentum=0.9 decay=0.0005 angle=0 saturation = 1.5
exposure = 1.5 hue=.1

b) Learning rate=0.001 burn in=100 max batches =
5000 policy=steps steps=4000,4500 scales=.1,.1

¢) Simple CNAPS few-shot detection Mobilenetv3 +
simple CNAPS Yolo + simple CNAPS batch=64 width=32
height=32 channels=3 momentum=0.9 decay=0.0005
learning rate=0.0001

d) Method to select the best
configuration: Manually Tuned

hyperparameter

e) The exact number of training and evaluation runs:
200 epoch

C. Computing Infrastructure

For traditional detection and classification task, we
trained our models on a container with an Intel Xeon CPU
E5-2695v3 with default frequency of 2.30GHz, a GTX 2080
Ti GPU (11GB Memory) and 52.8 GB RAM. The video
processing portion of our code is run in a standard Google
Colab environment with GPU acceleration.
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