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Abstract

The novel COVID-19 is a global pandemic disease overgrowing worldwide. Computer-aided

screening tools with greater sensitivity is imperative for disease diagnosis and prognosis as

early as possible. It also can be a helpful tool in triage for testing and clinical supervi-

sion of COVID-19 patients. However, designing such an automated tool from non-invasive

radiographic images is challenging as many manually annotated datasets are not publicly

available yet, which is the essential core requirement of supervised learning schemes. This

article proposes a 3D Convolutional Neural Network (CNN)-based classification approach

considering both the inter- and intra-slice spatial voxel information. The proposed system

is trained in an end-to-end manner on the 3D patches from the whole volumetric CT im-

ages to enlarge the number of training samples, performing the ablation studies on patch

size determination. We integrate progressive resizing, segmentation, augmentations, and

class-rebalancing to our 3D network. The segmentation is a critical prerequisite step for

COVID-19 diagnosis enabling the classifier to learn prominent lung features while excluding

the outer lung regions of the CT scans. We evaluate all the extensive experiments on a

publicly available dataset, named MosMed, having binary- and multi-class chest CT image

partitions. Our experimental results are very encouraging, yielding areas under the ROC

curve of 0.914± 0.049 and 0.893± 0.035 for the binary- and multi-class tasks, respectively,
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applying 5-fold cross-validations. Our method’s promising results delegate it as a favorable

aiding tool for clinical practitioners and radiologists to assess COVID-19.

Keywords: COVID-19, 3D convolutional neural network, Volumetric chest CT scans, 3D

patches, Progressive resizing.

1. Introduction

Pneumonia of unknown cause discovered in Wuhan, China, was published to the World

Health Organization (WHO) office in China on 31st December 2019. It was consequently

assigned to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because of hav-

ing similar genetic properties to the SARS outbreak of 2003. On 11th February 2020, WHO

termed that new disease as COVID-19 (Coronavirus disease), which displays an upper res-

piratory tract and lung infection [106]. The clinical characteristics of critical COVID-19

pandemic are bronchopneumonia that affects cough, fever, dyspnea, and detailed respira-

tory anxiety ailment [14, 60, 100]. According to the WHO reports, COVID-19’s general

indications are equivalent to that of ordinary flu, including fever, tiredness, dry cough,

shortness of breath, aches, pains, and sore throat [48]. Those shared signs turn it challeng-

ing to recognize the virus at an ancient step. The aforementioned is a virus, which works

on bacterial or fungal infections [48, 108] with no possibility that antibiotics can restrict

it. Besides, people suffering from medical complications, like diabetes, chronic respiratory

and cardiovascular diseases, are prone to undergo COVID-19. An explanatory statement of

the Imperial College advised that the affection rate will be more than 90.0 % of the world’s

people, killing 40.6 million people if no reduction actions are grasped to combat the virus

[99].
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Advanced presumed discovery of COVID-19 is also a challenge for public health security

and control of pandemic. The COVID-19 detection failure increases the mortality rate

exponentially. The incubation period, which is a time between catching the virus and causing

to have indications of the illness, is 1 ∼ 14 days, making it remarkably challenging to identify

COVID-19 infection at a preliminary stage of an individual’s symptoms [48]. The clinical

screening test for the COVID-19 is Reverse Transcription Polymerase Chain Reaction (RT-

PCR), practicing respiratory exemplars. However, it is a manual, complicated, tiresome,

and time-consuming fashion with an estimated true-positive rate of 63.0% [103]. There

is also a significant lack of RT-PCR kit inventory, leading to a delay in preventing and

curing coronavirus disease [112]. Furthermore, the RT-PCR kit is estimated to cost around

120 ∼ 130 USD. It also requires a specially designed biosafety laboratory to house the PCR

unit, each of which can cost 15, 000 ∼ 90, 000 USD [1]. Nevertheless, the utilization of

a costly screening device with a delayed test results makes it more challenging to restrict

the disease’s spread. Inadequate availability of screening workstations and measurement

kits constitute an enormous hardship to identify COVID-19 in this pandemic circumstance.

In such a situation, speedy and trustworthy presumed COVID-19 cases are an enormous

difficulty for related personals.

However, it is observed that most of the COVID-19 incidents have typical properties on

radiographic CT and X-ray images, including bilateral, multi-focal, ground-glass opacities

with a peripheral or posterior distribution, chiefly in the lower lobes and early- and late-stage

pulmonary concentration [18, 42, 88, 110]. Those features can be utilized to build a sensitive

Computer-aided Diagnosis (CAD) tool to identify COVID-19 pneumonia, which is deemed

an automated screening tool [59]. Currently, deep Convolutional Neural Networks (CNNs)

allow for building an end-to-end model without requiring manual and time-consuming fea-

ture extraction and engineering [57, 58], demonstrating tremendous success in many domains

of medical imaging, such as arrhythmia detection [4, 28, 113], skin lesion segmentation and

classification [17, 23, 24, 35], breast cancer detection [13, 19, 31], brain disease segmentation

and classification [93, 97], pneumonia detection from chest X-ray images [79], fundus image

segmentation [34, 94], and lung segmentation [26]. Most recently, various deep CNN-based
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methods have been published for identifying COVID-19 from X-rays and CT images, sum-

marizing and bestowing in Table 1. Though the results obtained in the current articles are

promising, they exhibit limited scope for use as a CAD tool, as most of the works, especially

on x-ray images, have been based on data coming from different sources for two distinct

classes (Covid Vs. Normal) [8, 38, 53, 67, 74, 84, 88, 102]. This brings inherent bias on

the algorithms as the model tends to learn the distribution of the data source for binary

classification problem [32]. Therefore, these models perform very low when used in practical

settings, where the models have to adapt to data from different domains [32]. Recently,

Morozov et al. [66] launched a public chest volumetric CT scan dataset with 1110 COVID-

19 related studies (see details in subsection 2.1). However, the published articles [65, 114]

on this dataset consider only intra-slice spatial voxel information to isolate COVID-19 and

regular healthy patients.

This article aims to evaluate the proposed 3D-CNN classifier’s performance for identifying

COVID-19 utilizing volumetric chest images, where the volumes have come from the same

source (details in subsection 2.1). However, the core contributions in this article are enlisted

as follows:

• Designing a 3D-CNN-based classification network for volumetric CT images as the 3D

networks account for the inter- and intra-slice spatial voxel information while the 2D

networks consider only the intra-slice spatial voxel information [37, 44, 52, 89, 114, 118]

• Conducting 3D patch-based classification as it increases the sample numbers in the

smaller datasets, where we perform ablation studies to determine a proper patch size

• Progressively increasing the input patch size of our network up to the original CT size

of R×C×S, where the trained network with the patch size of (R/2n+1)× (C/2n+1)×
(S/2n+1) is a pre-trained model of a network with the patch size of (R/2n)× (C/2n)×
(S/2n)

• Developing an unsupervised lung segmentation pipeline for allowing the classifier to

learn salient lung features while omitting the outer lung areas of the CT scans
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Table 1: Numerous published articles for the COVID-19 identification with their respective utilized datasets

and performances exhibiting different metrics such as mSn, mSp, and mF1 respectively for mean sensitivity,

specificity, and F1-score. The mixed datasets indicate that data have come from different open-sources.

Different methods Datasets Results

A pre-trained 2D MobileNet-v2 [82] architecture on ImageNet [20] was used to extract massive

high-dimensional features to classify six different diseases using the fully-connected layers [7]
Mixed

mSn: 0.974

mSp: 0.994

DeTraC [2, 3], where the network was trained first using a gradient descent optimization [81], and then,

the class-composition layer of DeTraC was used to refine the final detection results [2]
Mixed

mSn: 0.979

mSp: 0.919

A multi-objective differential evolution–based CNN method fine-tuning iteratively using mutation,

crossover, and selection operations to discover the best possible results [88]
Mixed

mSn: 0.907

mSp: 0.906

An ensemble of VGG-16 [87], Inception [92], Xception [16], Inception-ResNet [91], MobileNet [41],

DenseNet [43], and NasNet [77] optimizing the hyperparameters using a greedy search algorithm [10, 78]
Mixed

mSn: 0.990

mSp: 0.990

Support vector machine [31, 107]-based method to classify the in-depth features from the pre-trained

MobileNet and SqueezeNet [46] from the restructured the data using a fuzzy color technique [96]
Mixed

mSn: 0.983

mSp: 0.997

An ensemble of three lightweight pre-trained SqueezeNet, ShuffleNet [116], and EfficientNet-B0 [95] at

various depths and consolidates feature maps in diverse abstraction levels [70]
Mixed

mSn: 0.978

mSp: 0.985

A fusing and ranking of in-depth features for classifying using a support vector machine, where the

pre-trained CNN models on ImageNet were used to extract the COVID-19 features [72]
Mixed

mSn: 0.989

mSp: 0.976

A DenseNet-201 [43]-based transfer learning to extract features using its learned weights on the

ImageNet was used to classify the patients as COVID infected or not [49]
SARS-COV-2 [6]

mSn: 0.960

mSp: 0.960

A transfer learning-based approach using one of the VGG, ResNet [36], Inception, or Xception

pre-trained deep learning model on ImageNet as a backbone [55]
Zhao et al. [117]

mSn: 0.996

mSp: 0.100

A weakly-supervised learning schema, where the lung region was segmented using a pre-trained UNet

[80]; then, a 3D network was used to predict the probability of COVID-19 infectious [104]
Wang et al. [104]

mSn: 0.911

mSp: 0.881

A multi-scale-multi-encoder ensemble of CNN model aggregating the outputs from two different

encoders and their different scales to obtain the final prediction probability [30]
Mixed

mSn: 0.997

mSp: 0.997

Advanced deep network architectures proposing a transfer learning strategy on ImageNet using a

custom-sized input tailored for each architecture to achieve the best possible results [5]
Mixed

mSn: 0.996

mSp: 0.998

A pre-trained CNN-based schema leveraging the strength of multiple texture descriptors and base

classifiers at once, where data was re-balanced using resampling algorithms [76]
Mixed

mSn: −

mF1: 0.889

A deep ResNet-based transfer learning technique with a top-2 smooth loss function and a cost-sensitive

attribute to handle noisy and imbalanced COVID-19 datasets [75]
Mixed

mSn: 0.915

mSp: 0.948

An auxiliary classifier generative adversarial network-based design to generate synthetic images, where

the synthetic images produced CNN’s enhanced results for the prediction [98]
Mixed

mSn: 0.900

mSp: 0.970

A framework consisting of a CNN-based feature extractor and k-nearest neighbor [29, 33], support

vector machine, and decision tree [33]-based classifiers using the Bayesian algorithm [69]
Mixed

mSn: 0.894

mSp: 0.998

An architecture based on the deep residual neural network using two parallel levels with different kernel

sizes for capturing both local and global features of the inputs images [71]
Mixed

mSn: −

mF1: 0.967

A classification architecture combining ResNet and Xception to investigate the challenges and

limitations of deep CNN and different datasets for building generic COVID-19 classifiers [32]
Mixed

mSn: 0.976

mSp: −

An average rank pooling, multiple-way augmentation, and deep feature fusion-based CNN and graph

CNN was developed to fuse individual image-level features and relation-aware features [102]
Wang et al. [102]

mSn: 0.963

mSp: 0.970

An end-to-end DarkCovidNet architecture [74] based on DarkNet [74] gradually increasing the number

of filters, where each convolutional layers were followed by BatchNorm [47] and LeakyReLU [109]
Mixed

mSn: 0.951

mSp: 0.953

A CoroNet model based on pre-trained Xception architecture on ImageNet for automated detection of

COVID-19 infection and trained in end-to-end manners [53]
Mixed

mSn: 0.993

mSp: 0.986

Comparative analyses of different pre-trained models considering several important factors such as

batch size, learning rate, epoch numbers, and type of optimizers to find the best-suited model [68]
Mixed

mSn: 0.100

mSp: 0.967

A comparative analysis of different CNN models, such as VGG, Resnet, Inception, Xception,

Inception-ResNet, DenseNet, and NASNet-Large [119], to decide a proper one for multi-modal image

classification minimizing the image quality imbalances in the image samples as a preprocessing [40]

Mixed

mSn: 0.820

mSp: −

mF1: 0.820

A pipeline consisting of segmentation and subsequent classification employing both 3D and 2D CNNs,

where the promising results for detecting were obtained in the 3D-CNNs than the 2D CNNs [37]
He et al. [37]

mSn: 0.891

mSp: 0.911
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• Class rebalancing and augmentations, such as intensity- and geometry-based, are em-

ployed to develop a general network, although a small dataset is being utilized

The remainder of the article is prepared as follows. Section 2 details the materials

and methods practiced in the study, including a brief introduction to the methodology and

end-to-end 3D-CNN training. Section 3 describes the experimental operations and their

corresponding obtained results. Lastly, section 4 concludes the article.

2. Materials and Methods

In this section, we describe the utilized materials and methods to conduct the widespread

experiments. We summarize the adopted dataset in the first subsection 2.1. The essential

integral preprocessing, such as segmentation, augmentation, and class-rebalancing, are re-

ported in the second subsection 2.2. The design of the proposed 3D-CNN-based COVID-19

classifier, along with its training protocol, is explained in the third subsection 2.3. Finally,

in the fourth subsection 2.4, we represent used hardware to execute the aimed method and

evaluation criterion.

2.1. Dataset

This article’s experimentations utilize a publicly usable MosMedData dataset adminis-

tered by municipal hospitals in Moscow, Russia, from March to April 2020 [66]. This dataset

includes anonymized human chest lung CT scans with and without COVID-19 related find-

ings of 1110 studies. The population of MosMedData is distributed as 42 % male, 56 %

female, and 2 % others, where the median age of the subjects is 47 years (18 ∼ 97 years).

All the studies (n = 1110) are distributed into five following categories, as presented in Ta-

ble 2. We design two experimental protocols using the MosMedData dataset, such as binary-

and multi-class identification, to evaluate our proposed workflow. In binary-class evaluation,

we use NOR vs. NCP (Novel COVID-19 Positive), where NCP includes MiNCP-, MoNCP-,

SeNCP-, and CrNCP-classes, while in multi-class evaluation, we use NOR vs. MiNCP vs.

MoNCP vs. SeNCP. In multi-class protocols, we merge SeNCP- and CrNCP-classes, naming
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Table 2: Distribution of utilized MosMedData dataset for COVID-19 identification with a short class de-

scription.

Class acronym Description PPI∗ Samples (%)

NOR Not consistent with pneumonia, including COVID-19, and

refer to a specialist

− 254 (22.8 %)

MiNCP Mild novel COVID-19 positive with ground-glass opacities

and follow-up at home using mandatory telemonitoring

=< 25 % 684 (61.6 %)

MoNCP Moderate novel COVID-19 positive with ground-glass opac-

ities and follow-up at home by a primary care physician

25− 50 % 125 (11.3 %)

SeNCP Severe novel COVID-19 positive with ground-glass opacities

and immediate admission to a COVID specialized hospital

50− 75 % 45 (4.1 %)

CrNCP Critical novel COVID-19 positive with diffuse ground-glass

opacities and emergency medical care

>= 75 % 2 (0.2 %)

Total Samples (%) 1110 (100 %)

PPI∗: Pulmonary parenchymal involvement

them as SeNCP, as CrNCP has only two samples in the MosMedData dataset. We have ap-

plied a cross-validation technique to choose training, validation, and testing images as those

are not explicitly given by the data provider. The class-wise distribution of MosMedData

dataset in Table 2 illustrates that the class distribution is imbalanced. Such an imbalanced

class distribution produces a biased image classifier towards the class having more training

samples. We apply various rebalancing schemes to develop a generic classifier for COVID-19

identification, even though the dataset is imbalanced.

2.2. Preprocessing

The recommended integral preprocessing consists of segmentation, augmentations (both

geometry- and intensity-based), and class-rebalancing, which are concisely explained as fol-

lows:

Segmentation. The segmentation, to separate an image into regions with similar prop-

erties such as gray level, color, texture, brightness, and contrast, is the significant element

for automated detection pipeline [39]. It is also a fundamental prerequisite for the COVID-
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19 identification as it extracts the lung region and delivers explanatory information about

the shapes, structures, and textures. However, this article proposes an unsupervised Lung

Segmentation (LS) technique applying different image processing algorithms, as a massive

number of annotated COVID-19 images are not available yet in this pandemic situation.

Fig. 1 depicts the pipeline of the proposed LS method. The proposed threshold-based LS’s

HU Transformation Thresholding Removing border blobs

Largest area extraction Morphological operations Filling holes

Figure 1: The proposed block diagram of an unsupervised lung segmentation pipeline, without requiring a

manually annotated lung region.

primary step is transforming all the CT volumes to Hounsfield units (HU), as it is a quan-

titative measure of radiodensity for CT scans. We set the HU unit as -1000 to -400 as

the study shows that lung regions are within that range, which was also used in many

articles [56, 85, 101]. The thresholded binary lung masks are then refined to exclude dif-

ferent false-positive regions, such as the connected blobs with the image border and other

small false-positive areas, and false-negative regions, such as small holes in the lung regions.

Firstly, the border connected regions are eradicated. Secondly, the two largest areas are

picked using the region properties algorithm. Thirdly, morphological erosion to separate

the lung nodules attached to the blood vessels and morphological closing to keep nodules

attached to the lung wall. Finally, the false-negative regions are removed using binary hole

fill algorithms. Such an unsupervised thresholding-based segmentation method is better in

terms of efficiency, taking only a few seconds, and yields utterly reproducible LS.

Augmentation. The CNN-based classifiers are profoundly dependent on large data

samples to evade the overfitting. Lamentably, various medical imaging fields, especially the

current COVID-19 pandemic, suffer from an inadequate dataset size as manually annotated
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massive training samples are still not available. In such a scenario, the augmentations are

very dormant preprocessing for increasing the training samples as they are incredibly dis-

criminative [45]. Data augmentation incorporates a method that magnifies training datasets’

size and property to develop a better-CNN classifier [86]. The geometric-based augmenta-

tion, including a rotation (around row/2 and col/2) of −25◦, −15◦, 10◦, 30◦ and height &

width shifting by 20 %, the intensity-based augmentation, including gamma correction &

adding Gaussian random noise, and Elastic deformation2 are applied in this article as a part

of the recommended preprocessing. Two values of gamma (γ), such as 0.7 and 1.7, have

used in gamma correction to adjust the luminance of the CT volumes by Vout = V γ
in, where

Vout and Vin individually denote the output and input values of the luminance.

Rebalancing. The utilized dataset in Table 2 is imbalanced. This situation is pretty

obvious in the medical diagnosis field due to the scarcity of massive manually annotated

training samples, especially in COVID-19 datasets. The undesired class-biasing occurs in

the supervised learning systems towards the class with majority samples. However, we

apply two techniques to rebalance the imbalanced class distribution, such as adding extra CT

volumes from the publicly available CC-CCII dataset [115] and weighting the loss function for

penalizing the overrepresented class. The latter approach rewards more extra consideration

to the class with minority samples. Here, we estimate the class weight using a portion of

Wn = Nn/N , where Wn, N , and Nn separately denote the nth-class weight, the total sample

numbers, and the samples in nth-class. We employ both the class-rebalancing strategies

in the binary-class protocol, whereas the only class weighting method is adopted in the

multi-class protocol.

2.3. Methodologies

2.3.1. Architecture

The deep neural network is a machine learning framework with a wide range of applica-

tions, from natural language processing [21] to medical image classification [12], segmenta-

tion [12], and registration [25]. In special, CNNs have become a prevalent technique in the

2https://pypi.org/project/elasticdeform/
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computer vision community. They are practiced in diverse tasks, including object detection

[50], classification [22], and localization [63]. The CNN-based deep neural systems are also

popularly adopted in recent pandemic for COVID-19 identification [11, 73] (see in Table 1).

CNN is an excellent discriminant feature extractor at various abstraction levels, which is

translation-invariant. Consequently, utilizing it to classify medical images evades compli-

cated and expensive feature engineering [83]. The early few CNN layers learn low-level image

features and later layers learn high-level image features particular to the application types

[52]. However, the 2D-CNNs are frequently employed in natural RGB and grayscale images

to extract the spatial features only in two dimensions [92]. The 2D-CNN also can be applied

to the volumetric medical image datasets taking cross-sectional 2D slices of the CT, MRI,

or similar scans. However, the recent experimental results have revealed the advantages of

3D-CNN over 2D-CNN, where the 3D-CNN accepts the volumetric spatial information as an

input [62]. Conventional 2D-CNNs’ effectiveness is degraded due to loss of spatial voxel in-

formation for volumetric 3D medical imaging tasks. A 3D-CNN, a 3D space implementation

of convolution and pooling operation, is practiced to overcome spatial voxel information loss

as in the 2D-CNNs. The image becomes scalable in the spatial direction using a 3D-CNN,

allowing accurate image detection with different frame sizes [64]. Therefore, we propose a

classifier based on 3D-CNN to identify COVID-19 from the volumetric CT scans.

Fig. 2 represents the constructional structure of our proposed COVID-19 base classifier.

The proposed base network in Fig. 2 essentially consists of two modules, such as feature

extractor and feature classifier. The former module is a stack of convolutional, pooling, and

batch normalization layers, whereas the latter module is a stack of fully-connected layers

followed by a softmax layer. We involve 3D layers for all the feature extractor module

components to operate on volumetric medical images for extracting the most discriminating

features, accounting for both the intra- and inter-slice spatial voxel information. In our

network, each 3D convolutional layer with ReLU activation is followed by a 3D max-pooling

layer, where the pooling layer increases translational invariances of the network. The pooled

feature maps are then used as an input to the successive layers, which may dynamically

change during training at each training epoch [89]. The more enormous changes prone
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Figure 2: The architectural construction of the proposed base network, training with the most smaller 3D

patches. This trained base network is applied as a pre-trained model for the next bigger patches. Best view

in the color figure.

to bring difficulties for searching an optimal parameter or hyperparameter; often become

computationally expensive to reach an optimal value [47]. Such a problem is mitigated by

integrating batch normalization layers in our network [47]. It also facilitates the smooth

training of the network architectures in less time [89]. The Global Average Pooling (GAP)

[61] is used as a bridge layer between the feature extractor and feature classifier modules,

converting the feature tensor into a single long continuous linear vector. In GAP, only

one feature map is produced for each corresponding category, achieving a more extreme

dimensionality compression to evade overfitting [61]. A dropout layer [90] is also employed

as a regulariser, which randomly sets half of the activation of the fully-connected layers to

zero through the training of our network.

Again, as mentioned earlier, the CNNs are heavily reliant on the massive dataset to

bypass overfitting and build a generic network. The acquisition of annotated medical images

is arduous to accumulate, as the medical data collection and labeling are confronted with

data privacy, requiring time-consuming expert explanations [111]. There are two general
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resolving directions: accumulating more data, such as crowdsourcing [51] or digging into

the present clinical reports [105]. Another technique is investigating how to enhance the

achievement of the CNNs with small datasets, which is exceptionally significant because

the understanding achieved from the research can migrate the data insufficiency in the

medical imaging fields [111]. Transfer learning is a widely adopted method for advancing the

performance of CNNs with inadequate datasets [15]. To our most trustworthy knowledge,

there is no public pre-trained 3D-CNN model for the COVID-19 identification from the

volumetric chest images with limited samples. Therefore, we create a pre-trained model

by training our base model (see in Fig. 2) on the extracted 3D patches from whole chest

CT scans (see details in subsection 2.3.2). Then, we double the patches’ size and use them

for training the modified base network, where we also double the base model’s input size

applying a stack of convolutional, pooling, and batch normalization layers (see details in

Fig. 3). At the same time, we keep the base model’s trained weights for the smaller patches.

We repeat to enlarge (nth-times) the patch and network sizes until we arrive at the provided

CT scans’ size, as pictured in Fig. 3. Such training is called progressive resizing [9], where

the training begins with smaller image sizes followed by a progressive expansion of size. This

training process is continued until the last patch and network sizes are as same as the initial

image dimension.

2.3.2. Training protocol

We first extract five different patches with different sizes (see in Fig. 4) to begin the

experimentations. We perform ablation studies in subsection 3.1 looking for the best patch

size. The weights of the base network in Fig. 2 is initialized with Xavier normal distribution.

The weights of the first progressively resized network are initialized with the weights of the

base network. In general, the weights of the network with the patch size of (R/2n) ×
(C/2n) × (S/2n) are initialized with the weights of the network with the patch size of

(R/2n+1)× (C/2n+1)× (S/2n+1) for the original CT volume size of R× C × S.

Categorical cross-entropy and accuracy are utilized as a loss function and metric, re-

spectively, for training all the networks in this article. We use Adam [54] optimizer with
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64 2
n ×M

2n ×N

64 2
1 ×M

21 ×N

M

N

Base network

Base classifier (3D-CNN)

Progressive resizing (1st time)

Progressive resizing (nth times)

3DConvwithReLU 3DPool 3DBatchNorm

Figure 3: The proposed progressively resized network’s architectural structure, where the base model (see in

Fig. 2) is trained with the smaller 3D patches and sequentially doubles the base network’s size from smaller

to larger sizes. The network trained with the smaller patches is the pre-trained model for the next bigger

patches. Best view in the color figure.

initial learning rate (LR), exponential decay rates (β1, β2) as LR = 0.0001, β1 = 0.9, and

β2 = 0.999, respectively, without AMSGrad variant. The exponential decaying LR schedule

is also employed for the networks’ optimization. Initial epochs are set as 200, and training

is terminated if validation performance stops growing after 15 epochs.

2.4. Hardware and evaluation criterion

We execute all the comprehensive experiments on a Windows-10 machine utilizing the

Python, with various Keras [27] and image processing APIs, and MATLAB programming

languages. The device configurations of the used machine are: Intel® CoreTM i7-7700 HQ

CPU @ 3.60GHz processor with a install memory (RAM) of 32.0GB, and GeForce GTX

1080 GPU with a memory of 8.0GB (GDDR5).

We evaluate all the experimental outcomes by employing numerous metrics, such as re-

call, precision, and F1-score, for evaluating them from diverse perspectives. The recall mea-
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sures the type-II error (the patient having positive COVID-19 characteristics, erroneously

abandons to be repealed), whereas the precision estimates the positive predictive values (a

portion of absolutely positive-identification amid all the positive-identification). The har-

monic mean of recall and precision is manifested using the F1-score, conferring the tradeoff

between these two metrics. Furthermore, we also quantify the prognostication probability

of an anonymously selected CT sample using a Receiver Operating Characteristics (ROC)

with its Area Under the ROC Curve (AUC) value.

3. Results and Discussion

In this section, the achieved results from different experiments are reported with com-

prehensive discussion. In subsection 3.1, we confer the results of COVID-19 identification

utilizing various 3D patches and compare them with original CT image utilization on the

same experimental conditions and network. We discuss the results of progressive resizing

over a single fixed size in subsection 3.2. We demonstrate the effects of different proposed

preprocessing on COVID-19 identification in subsection 3.3. Finally, in subsection 3.4, we

show the results for binary- and multi-class COVID-19 identification applying our proposed

network and preprocessing.

3.1. Patch Selection

We extract five different 3D patches, named P1, P2, P3, P4, and P5, having respective

size of 16×16×9, 32×32×12, 64×64×15, 128×128×20, and 256×256×27. The original

CT scans having size of 512× 512× 36 is named as P6. The height and width of the patch

P5 is half of the P6, whereas these dimensions of the patch P4 is one-fourth of the P6, and

so on. We extract 2n number of patches for a nth-time reduction of the height and width.

Therefore, we train and test our network with 71040, 35520, 17760, 8880, 4440, and 1110

samples for the 3D volumes P1 to P6, respectively. The examples of the extracted patches

are shown in Fig. 4, where we select the middle slices of the extracted patches of the same

CT scan. Different patches in Fig. 4 shows their respective resolutions, where it is seen that
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(a) (c)(b)

(d) (f)(e)

Figure 4: Example of various extracted patches having different sizes, as mentioned earlier, where patches

P1 to P6 are displayed in a) to f), respectively. The middle slices of each 3D patches are illustrated for

the same sample (study 0258.nii.gz ) in the MosMedData dataset. Slices are captured using a ITK-Snap

windows versiona.

ahttp://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3

the patches P1 and P2 demonstrate very low resolutions. However, the effects of those patch

resolutions are judged by classifying the NOR vs. NCP classes (see in subsection 2.1).

The classification results are presented in Fig. 5 for all the patches (P1 to P5) and original

CT scans (P6) employing our 3D network without any type of preprocessing. The results

show that the network inputting with P1 patch outputs COVID-19 identification with type-

II errors as 69.0 % and 25.0 % for NOR- and NCP-classes, respectively. Such results confirm

that NCP-class has been identified more accurately (44.0 % more in NCP-class), pointing

that classifier is biased towards the NCP-class. On the other hand, the utilization of patch P2

produces identification results with type-II errors as 56.0 % and 39.0 % for NOR- and NCP-

classes, which reduce the differences between two classes (only 17.0 % more in NCP-class).

Although the P1 patch has double samples, it fails to provide a class-balanced performance
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Figure 5: The binary classification results from our 3D-CNN utilizing different 3D-patch sizes, where the

bars with dots, horizontal lines, stars, and diagonal hatching respectively denote recall and precision of

NOR- and NCP-classes. Best view in the color figure.

than the P2 patch. This is because of having a better-resolution in the P2 patch than the

P1 patch (see in Fig. 4), as other experimental settings are constant. Again, the patch P3

further improves the identification results with type-II errors as 54.0 % and 28.0 % for NOR-

and NCP-classes. Approximately, the patch P4 also provides similar results to the P3 patch.

It is noteworthy from those experimentations that P3 or P4 patches have much fewer samples

than P1 (4-times and 8-times, respectively); still, they outperform the identification results

of P1 and P2 patches with the same experimental settings.

Furthermore, the utilization of patch P5 further reduces the performances (type-II errors

as 6.0 % and 99.0 % for NOR- and NCP-classes) than all the previous patches discussed

above. Such a result shows that it produces a more biased model towards the NCP-class.

From Fig. 4 shows that the patch P4 and P5 are visually looking similar but P4 has two-

times samples as of P5. This experiment exposes that having fewer samples also generates

class-biased classifiers if input images are similar in resolution.

Finally, the network with the original images also provides less COVID-19 identification
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performance as in the patch P5 (see in Fig. 5). All the experiments show that our network

with P3 or P4 patches has outputted better-identification results. Such experimental results

undoubtedly prove that both the input resolution and the number of samples play an im-

portant role in CNN-based classifiers. We can not increase the number of samples taking

the smaller patch sizes, as it has a shallow resolution, which adversely affects the classifiers.

3.2. Progressive Resizing

The aforementioned results reveal that the utilization of better-resolution with more

sample numbers increases the performance of CNN. Therefore, we propose to employ pro-

gressive resizing of our proposed 3D-CNN (see details in subsection 2.3). Firstly, we begin

training our network with a suitable 3D patch with more training samples from the previous

experiments, acting as a base model. Then, we add some CNN layers to the input of the

base model with the higher resolution (2-times more in this article), where the base model

is adopted as a pre-trained model (see details in subsection 2.3). We repeat this network

resizing until we reach to original given CT size (P6).

The results for such a progressive resizing are presented in the confusion metrics in Table 3

and ROC curves (with respective AUC values) in Fig. 6. The confusion matrix in Table 3,

Table 3: Normalized confusion matrix employing our network with progressive resizing, where we progres-

sively increase the input resolution from P4 to P5 then to P6 (original resolution). The first table (left) for

the resolution of P4, the second table (middle) for resolution of P4 7−→ P5, and the last (right) for resolution

of P4 7−→ P5 7−→ P6.

Actual
P4

NOR NCP

NOR 24.26 % 13.52 %

P
re

d
ic

t

NCP 75.74 % 86.48 %

Actual
P4 7−→ P5

NOR NCP

NOR 21.08 % 5.38 %

P
re

d
ic

t

NCP 78.92 % 94.62 %

ActualP4 7−→ P5

P5 7−→ P6 NOR NCP

NOR 39.22 % 9.30 %

P
re

d
ic

t

NCP 60.78 % 90.70 %

for more detailed analysis of the identification results, points that 24.26 %-NOR samples are

accurately classified as NOR, whereas 86.48 %-NCP samples are correctly classified as NCP

while utilizing the 3D patch P4 with 8880 samples. This training is set as a base model.

Now, employing the base model as a pre-trained model, the utilization of P5 patch, with
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Figure 6: The ROC curves for the progressive resizing of our 3D network. Best view in the color figure.

4440 samples, decreases the false-negative rate of NCP by 8.14 % although false-positive rate

increases by 3.18 % (see in Table 3 (left and middle)). This training is a first-time progressive

resizing (P4 7−→ P5). Again, employing P4 7−→ P5 as a pre-trained model, the utilization

of P6 (original CT scans), with 1110 samples, increases the false-negative rate of NCP by

3.92 %, still less than baseline false-negative rate of 13.52 %. It also decreases the false-

positive rate by a margin of 18.14 %, which is less than the former two false-positive rates

(see all tables in Table 3). Furthermore, the proposed final progressively resized network

(P4 7−→ P5 7−→ P6) obtains an AUC of 0.754, which indicates that the probability of correct

COVID-19 identification is as high as 75.4 % for any given random CT samples (see in

Fig. 6). It has beaten the baseline P4 and P4 7−→ P5 respectively by 17.0 % and 7.70 %

in terms of AUC, as presented in Fig. 6. Although the final progressively resized network

(P4 7−→ P5 7−→ P6) has an input of the original CT scans, its performance is far better

than the network training with P6 alone (see in Fig. 5). All the above discussions in this

subsection experimentally validate the progressive resizing supremacy for the COVID-19

identification instead of training using single size input CT scans.
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3.3. Prepossessing Employment

This subsection presents the COVID-19 identification results from our progressively re-

sized 3D network employing different preprocessing, such as augmentation, segmentation,

and class-rebalancing.

Table 4 bestows different experimental results, where we explicitly explicate the outcomes

of each preprocessing for the COVID-19 identification from volumetric CT scans. The base-

Table 4: The COVID-19 identification results on the MosMedData dataset from our 3D-CNN network

utilizing different preprocessing.

Class-wise and weighted average metrics

Recall PrecisionDifferent experiments

NOR NCP Avg. NOR NCP Avg.

Baseline model 0.137 0.983 0.789 0.700 0.793 0.772

Progressively Resized Network (PRN) 0.392 0.907 0.789 0.556 0.834 0.770

PRN with Augmentation (PRNA) 0.529 0.884 0.803 0.574 0.864 0.798

PRN with Lung Segmentation (PRNS) 0.333 0.971 0.825 0.773 0.831 0.818

PRNA and PRNS with Class-rebalancing (PRNASCR) 0.706 0.919 0.870 0.720 0.913 0.869

line model, without progressive resizing and inputting with original CT scans (P6), produces

low identification consequences resulting in type-II errors of 86.3 % and 1.7 % respectively

for NOR- and NCP-classes, showing high class-imbalanced results. The weighted average

type-II error is also only 21.1 % with respective average positive predictive value as 77.2 %.

Highly imbalanced training samples (NOR : NCP = 1 : 3.37) with less intra-class het-

erogeneity and high inter-class similarity are the probable causes for providing such a poor

result. However, the utilization of different 3D patches improves intra-class heterogeneity

and inter-class similarity and appliance of progressive resizing, where the base model acts

as a pre-trained model, can mitigate those aforementioned difficulties, which reflects in the

PRN results (see in the second row of Table 4). The appliance of PRN successfully reduces

the class-imbalanced results improving the type-II error of NOR-class by a margin of 25.5 %,

while the weighted average type-II error is identical (21.1 %).
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Augmentation. The employment of different image augmentations, such as random rota-

tion, height & width shifting, gamma correction, adding Gaussian noise, and Elastic defor-

mation (see details in subsection 2.2) with PRN further improves the COVID-19 identifi-

cation results, showing far better class-balance (type-II error of NOR-class improved by a

margin of 13.7 % with significantly less reduction as 2.3 % in NCP-class). The weighted aver-

age type-II error is increased by 1.4 % with respective increases in average positive predictive

value by 2.8 % for the appliance of augmentations with the PRN.

Segmentation. The well-defined segmentation, with less-coarseness, is an essential require-

ment for further identification. The incorporation of segmentation with the PRN further

promotes the identification results than the PRN alone, as exposed in Table 4. Several

examples of the segmented lung from our proposed unsupervised pipeline (as described in

subsection 2.2) are depicted in Fig. 7 for qualitative evaluation. However, the COVID-19

Figure 7: Examples of lung segmentation results applying our unsupervised pipeline, as described in sub-

section 2.2.

identification results incorporating lung segmentation with the PRN reflects its supremacy

over the PRN alone, extending the weighted average type-II error by 1.4 % with respective

improvements in average positive predictive value by 2.8 % (see in Table 4). The class-

imbalanced identification is also dwindled due to segmented lung area utilization over the

full CT volumes. The reasonable ground for those enhanced performances due to the seg-

mentation is that it extracts an abstract region, enabling the classifier to learn only the
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precise lung areas’ features while avoiding the surrounding healthy tissues of the chest CT

scans.

Augmentation, Segmentation, and Class-rebalancing. The combination of augmen-

tations, segmentation, and class-rebalancing with the PRN provides the best COVID-19

identification results of this article. This experiment identifies the COVID-19 from the chest

CT scans with relatively less class-imbalance with the weighted average type-II error of

13.0 % with respective average positive predictive value as 13.1 %. All the preprocessing

employment heightens the former metric by a margins of 8.1 % and the latter metric by

9.7 % from the baseline model (see in Table 4) with less class-imbalance performance. Be-

sides, Fig. 8 displays the ROC curves of our PRN with/without all the preprocessing and

a baseline model with their corresponding AUC values. The proposed PRNASCR achieves
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Figure 8: The ROC curves for the employment of various preprocessing to our 3D network. Best view in

the color figure.

an AUC of 0.897, showing the probability of accurate COVID-19 recognition is as large as

89.7 % for any yielded random CT sample. For AUC, the proposed PRNASCR betters the

baseline model, PRN, PRNA, and PRNS respectively by 18.9 %, 14.3 %, 10.9 %, and 7.3 %.

From Fig. 8 and given 10.0 % false-positive rates, the true-positive rates of COVID-19 iden-

tification from the baseline model, PRN, PRNA, PRNS, and PRNASCR are approximately
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22.0 %, 35.0 %, 46.0 %, 52.0 %, and 67.0 %, respectively, showing the improvements of 45.0 %

from the baseline 22.0 %.

3.4. Binary- Vs. Multi-class Evaluation

This subsection displays the COVID-19 identification results using our proposed PRNASCR

for binary- and multi-class (see in subsection 2.1) utilizing the 5-fold cross-validation. The

Table 5: The confusion matrix for the COVID-19 identification on the MosMedData dataset from our

proposed 3D-CNN network and preprocessing for both the binary- (left) and multi- (right) class problems.

Actual
2-classes

NOR NCP

NOR
167

65.75 %

8

0.94 %

P
re

d
ic

t

NCP
87

34.25 %

848

99.06 %

Actual
4-classes

NOR MiNCP MoNCP SeNCP

NOR
188

74.02 %

67

9.80 %

3

2.40 %

2

4.26 %

MiNCP
62

24.41 %

580

84.80 %

29

23.2 %

13

27.66 %

MoNCP
3

1.18 %

22

3.22 %

86

68.80 %

1

2.13 %

P
re

d
ic

t

SeNCP
1

0.39 %

15

2.18 %

7

5.60 %

31

65.95 %

detailed class-wise performance of our PRNASCR for both the binary- and multi-class is

exhibited in the confusion metrics in Table 5 (left) and Table 5 (right), correspondingly.

The binary-classification results in Table 5 (left) show that among 254-NOR CT sam-

ples, correctly classified samples are 167 (67.75 %), whereas only 87 (34.25 %) samples are

erroneously classified as NCP (false positive). It is also noteworthy that among 856-

NCP samples, rightly classified samples are 848 (99.06 %), whereas only 8 (0.94 %) sam-

ples are wrongly classified as NOR (false negative). Again, the matrix in Table 5 (right)

for multi-class recognition reveals the FN and FP for the COVID-19 identification, where

number of wrongly classified CT images (type-I or type-II errors) are 66/256 (25.78 %),

104/684 (15.20 %), 39/125 (31.20 %), and 16/47 (34.04 %) respectively for the NOR-, MiNCP-

, MoNCP-, and SeNCP-classes. Those binary- and multi-class results expose that the NOR-

class performance has been improved by 8.27 % margin with other constant experimental
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settings. The identification results for the severity prediction (MoNCP vs. SeNCP) confer

tremendous success in our pipeline, where barely 5.60 %-MoNCP and 2.13 %-SeNCP samples

are prognosticated as SeNCP- and MoNCP-classes, respectively (see in Table 5). Although

overall macro-average AUC of the binary classification defeats the multi-class recognition

(see in Fig. 9) by a margin of 2.1 %, the later protocol has better class-balance results. The
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Figure 9: The ROC curves for the binary- and multi-class identification of COVID-19, applying 5-fold

cross-validations. Best view in the color figure.

multi-class protocol also provides less inter-fold variation than the binary-class, as depicted

in Fig. 9. However, our approach for the COVID-19 identification exhibits praiseworthy

achievement with high AUC values with less inter-fold variation in both of the class proto-

cols.

4. Conclusion

During the current COVID-19 pandemic emergency, to mitigate the permanent lung

damage due to coronavirus, precise recognition with negligible false negative is highly es-

sential. This article aimed to design an artificial screening system for automated COVID-19

identification. A progressively resized 3D-CNN classifier is recommended in this study, incor-

porating lung segmentation, image augmentations, and class-rebalancing. The experimental
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analysis confirms that the CNN classifier’s training with the suitable smaller patches and

progressively increasing the network size enhance the identification results. Furthermore, in-

corporating the lung segmentation empowers the classifier to learn salient and characteristic

COVID-19 features than utilizing whole chest CT images, driving to improved COVID-19

classification performance. Again, the augmentations and class-rebalancing result in im-

proved COVID-19 identification with high class-balanced recognition, shielding the network

from being biased to a particular overrepresented class. In the future, the proposed pipeline

will be employed in other volumetric medical imaging domain to validate its efficacy, ver-

satility, and robustness. We also aim to deploy our trained model to a user-friendly web

application for clinical utilization. The proposed system can be an excellent tool for clinicians

to fight this deadly epidemic by the quicker and automated screening of the COVID-19.
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