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Abstract—A model-based signal processing framework is pro-
posed for pandemic trend forecasting and control by using non-
pharmaceutical interventions (NPI) at regional and country levels
worldwide. The control objective is to prescribe quantifiable NPI
strategies at different levels of stringency, which balance between
human factors (such as new cases and death rates) and cost of
intervention per region/country. Due to the significant differences
in infrastructures and priorities of regions and countries, strate-
gists are given the flexibility to weight between different NPIs,
and to select the desired balance between the human factor and
overall NPI cost.

The proposed framework is based on a finite-horizon optimal
control (FHOC) formulation of the bi-objective problem and
the FHOC is numerically solved by using an ad hoc extended
Kalman filtering/smoothing framework. The algorithm enables
strategists to select the desired balance between the human
factor and NPI cost with a set of weights and parameters. The
parameters of the model, are partially selected by epidemiological
facts from COVID-19 studies, and partially trained by using
machine learning techniques. The developed algorithm is applied
on real global data from the Oxford COVID-19 Government
Response Tracker project, which has categorized and quantified
the regional responses to the pandemic for more than 300
countries and regions worldwide, since January 2020. This
dataset has been used for NPI-based prediction and prescription
during the XPRIZE Pandemic Response Challenge. The source
codes developed for the proposed method are provided online.

I. INTRODUCTION

The COVID-19 pandemic highlighted the fact that social

life, as a dynamic system, has always been in a metastable

condition, which is continuously prone to pandemic outbreaks

(regardless of the severity or geographical origin of pan-

demics). Parallel to medical solutions and vaccinations against

known viruses, the rapid and effective response to future

pandemics requires proactive plans in various aspects and

by different scientific communities. Specifically, some of the

prominent contributions, which can be made by the signal pro-

cessing and data science communities include: 1) developing

accurate spatio-temporal forecasting models (at different levels

of abstraction), which simulate pandemic outbreaks and trends;

2) identifying quantifiable non-pharmaceutical intervention

(NPI) plans, with fact-based estimates of the effectiveness and

cost of each NPI [1]; 3) simulated multi-objective pandemic

response strategies, which balance between NPI cost and

effectiveness, to help governments and decision-makers in
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resource allocation and fact-based decision making to control

new pandemic waves.

In this context, non-pharmaceutical interventions refer to

actions and policies adopted by individuals, authorities or

governments that help slowing down the spread of epidemic

diseases. Enforcement of social distancing, face covering,

restrictions on social events and public transportation, etc.,

were among the NPIs that we have all experienced during

the COVID-19 pandemic. NPIs are among the best ways of

controlling pandemic diseases when vaccines or medications

are not yet available1.

During the COVID-19 pandemic, several attempts were

made to categorize and quantify the various NPIs of different

regions and nations. The quantification of the NPI is essential

for comparing the effectiveness of regional policies in con-

taining the pandemic spread. By using signal processing and

machine learning techniques, the quantified NPI can be used

to forecast the future trends of the pandemic and to simulate

“what if scenarios” for the better management of human

and medical resources, and to eventually prescribe appropriate

NPI for controlling the pandemic [2]. The Oxford COVID-

19 Government Response Tracker (OxCGRT) is one of the

NPI tracking projects, which were launched and regularly

updated during the COVID-19 pandemic [3]. Most recently,

this project has been used in the data science community

to launch data challenges for NPI-based prediction and pre-

scription plans. Specifically, the XPRIZE Pandemic Response

Challenge addressed the problem of predicting future trends

of the pandemic in different regions and countries under NPIs,

and prescribing Pareto efficient NPI that compromise between

the number of new cases and the weighted-cost of intervention

[4]. The challenge was motivated by the fact that due to the

variations in infrastructures, available resources and priorities,

policymakers worldwide tend to give different weights to each

NPI and are interested to know the impacts and consequences

of each policy in advance.

During this challenge, the Alphanumerics Team from the

Department of Biomedical Informatics at Emory University,

adopted a rigorous model-based signal processing approach,

based on estimation theory and finite horizon optimal control

to address the problem of weighted NPI prescription. The no-

tion of multi-objective finite horizon pandemic control has also

been considered by other researchers in simulated scenarios

[5], [6].

Since the only globally registered NPIs in the OxCGRT data

1See Centers for Disease Control and Prevention guidelines on NPIs: https://
www.cdc.gov/nonpharmaceutical-interventions/.
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are the total confirmed cases, the total confirmed deaths, and

the daily NPIs, we have adopted an extension of a generic

susceptible-infected (SI) compartmental model from our pre-

vious work [7], as the base model for all regions/countries.

The proposed model parameters are trained on historic data

and used to predict future trends from input NPI by using

an extended Kalman filter. It is further shown that the fore-

casting model can be integrated with a finite horizon optimal

controller to find the optimal daily NPIs with arbitrary NPI

cost weight vectors. It should be noted that since the XPRIZE

Challenge was held before the global availability of COVID-

19 vaccines, the interventions considered for all nations do

not include vaccinations. This fact is also reflected in the

compartmental model detailed in the sequel. Nevertheless, the

proposed framework is generic and can be extended to various

compartmental models, whenever more accurate data exist for

a specific region/nation. The source codes for the developed

models and algorithms are provided online [8].

Considering that the majority of recent data analysis re-

search tend to use data-driven machine learning (ML) tech-

niques, this research demonstrates how classical signal pro-

cessing and optimal control theories can be used and combined

with ML techniques for solving modern real-world problems.

In Section II the OxCGRT NPI data is explained. Section

III details the data model. The developed finite horizon op-

timal NPI prescription framework is elaborated in Section IV.

This framework is combined with an extended Kalman fil-

ter/smoother for pandemic forecasting in Section V, followed

by the details of model training and implementation in Section

VI. The results on real data from the COVID-19 pandemic and

a detailed discussion on the proposed method are presented in

Sections VII and VIII, followed by concluding remarks and

future directions.

II. THE NON-PHARMACEUTICAL INTERVENTIONS DATASET

To date, the Oxford COVID-19 Government Response

Tracker (OxCGRT) is an ongoing project [1], which cat-

egorizes and quantifies the NPI policies of different re-

gions/nations since the beginning of the pandemic. The dataset

was used in the XPRIZE Pandemic Response Challenge [4],

which addressed the problem of pandemic trend forecasting

in different regions/countries under social interventions (e.g.,

social distancing, mandatory mask wearing, social gathering

prohibitions, closure of schools and public transportation

limitations), and prescribing efficient NPIs that compromise

between human factors (infection and death rates) and a

weighted cost of intervention. The subset of OxCGRT NPI

codes used by the XPRIZE Challenge are listed in Table I.

Note that the OxCGRT dataset uses the Johns Hopkins Coro-

navirus dataset for US states [9], which provides a state-level

estimation/prescription for the US.

III. DATA MODEL

The two major classes of methods for epidemic disease

spread modeling are:

1) Compartmental models, which split the total population

of a region into various compartments (groups) such

s i
βα(t)i

Fig. 1. The base susceptible-infected compartmental model with NPI-
controlled infection rate

as susceptibles, exposed, infected, recovered, vaccinated,

diseased, etc. These compartments are used to form

differential/difference equations, which are fit on real

data and are analytically or numerically solved to predict

future trends of the disease spread.

2) Agent-based models, which model the behaviors of in-

dividuals and their interactions at a simplified level of

abstraction. Using these models, large groups of agents

are generated in stochastic simulated environments as

they randomly move, interact and probabilistically pass

the infection to one another, recover, pass away, etc. The

population-level properties are calculated by ensemble

averaging over the entire population.

Each approach has its advantages and limitations. For large

population sizes at regional or national levels— which is the

scope of the current study— the first approach is asymp-

totically accurate and is more advantageous as it can be

analytically studied in a rigorous mathematical framework and

combined with state estimation techniques for forecasting, and

optimal control theories for NPI prescription. Therefore, the

first approach was adopted for this study, using a contact-

controlled time-variant version of the so-called susceptible-

infected (SI) compartmental model shown in Fig. 1, which is

a simplified variant of the general multi-compartment models

studied in our previous work [7]. Apparently, more accurate

models can be used for the regions that further data such

as the number of recovered, hospitalized, vaccinated, or the

age pyramid of the population are available. However, for the

current study, since the global data provided in the Oxford

dataset were the number of daily confirmed cases, total death

cases, and the regional NPIs, the same SI model is used for

all regions and countries.

With this background, the nonlinear dynamic equations

corresponding to the proposed compartmental model are:

ṡ(t) = −α(t)s(t)i(t)

i̇(t) = α(t)s(t)i(t) − βi(t)
α̇(t) = −γα(t) + γh[u(t)]

(1)

where

• s(t): the fraction of population in a region/country that

is susceptible at time t (i.e., the susceptible population

divided by the population size N );

• i(t): the fraction of population that is infected and conta-

gious at t (i.e., the infected contagious population divided

by the regional population size N );

• u(t) ∈ R
L: the NPI vector considered as an exogenous

control input (L = 12 for the list of NPI in Table I, used

for the XPRIZE Challenge [4]). The full definition of the

Oxford data NPI set are detailed in [3];

• α(t): the time-variant contagion rate with inverse time

unit;

• h[u(t)]: a causal monotonic function of the NPI, which

maps the NPI to the contagion rate;

https://arxiv.org/abs/2102.06609
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TABLE I
SUBSET OF NPI INDEXES FROM THE OXFORD COVID-19 GOVERNMENT RESPONSE TRACKER (OXCGRT) PROJECT USED IN THIS STUDY, ADOPTED

FROM [1]

Index Description Values

C1 School closing 0: no measures 1: recommend closing or all schools open with alterations resulting in significant
differences compared to non-COVID-19 operations, 2: require closing (only some levels or categories,
e.g., only high school or public schools), 3: require closing all levels, Blank: no data

C2 Workplace closing 0: no measures, 1: recommend closing (or recommend work from home), 2: require closing (or work
from home) for some sectors or categories of workers, 3: require closing (or work from home) for
all-but-essential workplaces (e.g., grocery stores, doctors), Blank: no data

C3 Cancel public events 0: no measures, 1: recommend canceling, 2: require canceling, Blank: no data

C4 Restrictions on gatherings 0: no restrictions, 1: restrictions on very large gatherings (above 1000 people), 2: restrictions on gatherings
(101–1000 people), 3: restrictions on gatherings (11–100 people), 4: restrictions on gatherings (up to 10
people), Blank: no data

C5 Close public transport 0: no measures, 1: recommend closing (or significantly reduce volume/route/means of transport available),
2: require closing (or prohibit most citizens from using it), Blank: no data

C6 Stay at home requirements 0: no measures, 1: recommend not leaving house, 2: require not leaving house with exceptions for daily
exercise, grocery shopping, and ‘essential’ travels, 3: require not leaving house with minimal exceptions
(e.g. allowed to leave once a week, or only one person at a time), Blank: no data

C7 Internal movement restrictions 0: no measures, 1: recommend not to travel between regions/cities, 2: internal movement restrictions in
place, Blank: no data

C8 International travel controls 0: no restrictions, 1: screening arrivals, 2: quarantine arrivals from some or all regions, 3: ban arrivals
from some regions, 4: ban on all regions or total border closure, Blank: no data

H1 Public information campaigns 0: no COVID-19 public information campaign, 1: public officials urging caution about COVID-19, 2:
coordinated public information campaign (e.g. across traditional and social media), Blank: no data

H2 Testing policy 0: no testing policy, 1: only those who have symptoms AND meet specific criteria (e.g. key workers,
admitted to hospital, came into contact with a known case, returned from overseas), 2: testing all
symptomatic people, 3: open public testing (e.g. “drive through” testing available to asymptomatic people),
Blank: no data

H3 Contact tracing 0: no contact tracing, 1: limited contact tracing (not done for all cases), 2: comprehensive contact tracing
(done for all identified cases)

H6 Facial coverings 0: no policy, 1: recommended, 2: required in some specified shared/public spaces outside the home
with other people present, or some situations when social distancing not possible, 3: required in all
shared/public spaces outside the home with other people present or all situations when social distancing
not possible, 4: required outside the home at all times regardless of location or presence of other people

• β: the rate of elimination from the contagious group

(through quarantine, recovery, or death), assumed to be

constant in the simplified case;

• γ: the action to effect rate (or the inverse of the NPI

to individual contact rate lag), which accounts for the

delay between adopting an NPI policy and the onset of

its practical effectiveness in containing the pandemic. The

third equation in (1) is equivalent to α(t) = γ exp[−γ(t−
t0)]∗h[u(t)] (for t ≥ t0), which is a smoothed version of

h[u(t)]. As a corner case, γ → ∞ represents zero latency

between action and effect, resulting in α(t) = h[u(t)].

The parameters β, γ and the function h[u(t)] require learning

using the observed variables, as detailed in Section VI. Fur-

thermore, in [7] we showed how the infection reproduction

rate Rt can be calculated from α(t) and β. Specifically,

using the eigenanalysis-based definition of the reproduction

rate proposed in [7], during the pandemic outbreak (when

only several percents of the population are infected and herd

immunity has not been reached), we have:

Rt ≈ exp[∆(α(t) − β)] (2)

where ∆ is the reproduction rate generation time unit.

Finally, for estimation purposes, the dynamic equations in

(1) can be related to real-world reports of the fractions of new

cases:

n(t) = α(t)s(t)i(t)+ v(t), (3)

or through the fraction of total confirmed cases:

c(t) = s(t0)− s(t)+ v(t), (4)

where v(t) is measurement noise due to case report errors

(which inevitably existed during the COVID-19 global re-

ports), and s(t0) is the initial susceptible population fraction

at the beginning of the pandemic.

IV. FINITE HORIZON OPTIMAL NPI CONTROL

A. Cost function and problem statement

From (1), the total number of new infections over an

arbitrary time window [t0, t1] is:

J0(u) =

∫ t1

t=t0

α(t)s(t)i(t)dt, (5)

and the total weighted-cost of NPIs over the same time period

is

J1(u) =

∫ t1

t=t0

w(t)Tu(t)dt (6)

where w(t) is the NPI weight vector given as input. The

motivation for the user selected weight vector w(t) is that the

cost of intervention is different across regions. A stereotypical

example considered in the XPRIZE Challenge was that “clos-

ing public transportation may be much costlier in London than

it is in Los Angeles. Such preferences are expressed as weights

associated with each intervention plan dimension, given to the

prescriptor as input for each region [4].”

https://arxiv.org/abs/2102.06609
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With these assumptions, the optimal NPI prescription prob-

lem can be formulated as a bi-objective optimization problem,

with total cost:

J(u) = (1− ǫ)J0(u) + ǫJ1(u) s.t. u ∈ Γ (7)

where ǫ ∈ [0, 1] is a free parameter that compromises between

the human factor (J0) and the NPI cost (J1), and Γ is the set

of admissible inputs:

Γ = {u|umin ≤ u(t) ≤ umax, ∀t ∈ [t0, t1]} (8)

where umin and umax are (element-wise) the minimum and

maximum ranges of each NPI from the Oxford dataset

(‘Values’ column in Table I). Accordingly, umin = 0 and

umax = [3, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4]T

For a given weight pair {ǫ,w(t)}, the objective is to find

u∗(t) for all t ∈ [t0, t1], such that:

J(u∗) = min
Γ

(J(u)) (9)

B. The Pareto optimal solution

The problem (9) can be solved by finite horizon optimization

[10]. The inputs which satisfy this equation are known as

Pareto optimal (efficient), in optimal control theory. In fact,

for an arbitrary weight vector w(t), by sweeping ǫ over

[0, 1], the Pareto-optimal front of the optimization problem

is found, from which pandemic strategists can select the

desired free parameter ǫ (which balances the desired operation

point which balance between NPI effectiveness and cost) and

its corresponding optimal NPI u∗(t), to be adopted by the

country/region.

To solve (9), first the corresponding Hamiltonian function

is formed [10, Ch. 2]:

H = (1 − ǫ)α(t)s(t)i(t) + ǫw(t)Tu(t)
−λ1(t)α(t)s(t)i(t)
+λ2(t)[α(t)s(t)i(t) − βi(t)]
−γλ3(t){α(t) − h[u(t)]}

(10)

where λ1(t), λ2(t) and λ2(t) are known as co-states. Accord-

ing to Pontryagin’s minimum principle, the co-states and the

optimal solution u∗ satisfy [10, Ch. 6]:

λ̇1(t) = −
∂H

∂s
= [λ1(t)− λ2(t)− (1− ǫ)]α(t)i(t)

λ̇2(t) = −
∂H

∂i
= [λ1(t)− λ2(t)− (1− ǫ)]α(t)s(t) + βλ2(t)

λ̇3(t) = −
∂H

∂α
= [λ1(t)− λ2(t)− (1− ǫ)]s(t)i(t) + γλ3(t)

H(u∗) ≤ H(u), ∀u ∈ Γ
(11)

When the inputs are unconstrained, the Hamiltonian minimizer

input u∗, in the last condition of (11) can be found by solving

∇uH(u∗) = 0, (12)

where ∇uH denotes the Hamiltonian gradient with respect

to the input vector u, and the condition should hold element-

wise. In this case, a sufficient condition for the existence of

a solution is to have ∇
2
u
H(u∗) ≻ 0 (where ∇

2
u

denotes the

Hessian operator with respect to the input vector u, and ≻ 0
denotes positive-definiteness). In the constrained input case—

as in this problem— where the inputs are confined to the

admissible set (8), while the global solution of (12) might

not exist or belong to the admissible set (8), a Hamiltonian

minimizer optimal input still exists. In either case, the optimal

input is found as a parametric function of the costate λ3(t) and

the other model parameters.

The parametric optimal input found from (12) is next

combined with (11) and (1) to calculate the states, using the

initial conditions and appropriate boundary conditions (also

known as the transversality conditions) on the co-states and the

Hamiltonian. The desired boundary conditions, which satisfy

the pandemic control problem are:

λ1(t1) = 0, λ2(t1) = 0, λ3(t1) = 0. (13)

The conditions in (13) are the general free end-point condi-

tions of finite horizon optimization problems, which match

the objectives of the pandemic control problem. Alternative

transversality conditions that can be studied within the pro-

posed framework are [10, Section 2.7]:

1) When the end-time t1 is not fixed, but we require that

i(t1) reaches below imax by the end of the control period

(infinite horizon scenario). This requires the additional

condition: H(t1) = 0.

2) Assuming that the objective of any NPI policy over a

reasonable time period [t0, t1] (long enough to make the

NPIs effective) is to bring the number of active cases

down to i(t1) ≤ imax, where imax is some target fraction

of active cases (ideally zero), the second condition in (13)

can be replaced by: λ2(t1)[i(t1)− imax] = 0.

3) We require that i(t1) drops below imax any time before a

maximum end time tf , which requires (t1 − tf )H(t1) =
0.

C. The NPI to inter-human contact map

The solution of the NPI optimization problem depends on

the choice of h[u(t)], i.e. the NPI to inter-human contact

mapping model. By common sense, h[u(t)] is expected to be

a monotonically decreasing function of the input NPI vector

u(t). In other words, more strict restrictions on social contact

(corresponding to the higher values in Table I) should reduce

the person-to-person contact rates population-wise (this was

the globally accepted rationale behind the social restrictions

during the COVID-19 pandemic). However, the exact shape of

h[u(t)] generally requires learning from historic data, where

the monotonic decreasing assumption acts as a constraint

during learning.

Based on this empirical assumption, we study the following

two cases, which lead to closed form solutions for the optimal

input as functions of the model co-states.

1) Linear regression model: Let us take:

h[u(t)] = b+ aT [umax − u(t)] (14)

where a is a vector of input influence weights and b is a

constant bias (intercept value). The LASSO model falls into

this category. Adding the constraint a ≥ 0 guarantees the

monotonically decreasing relationship between the NPI and

https://arxiv.org/abs/2102.06609
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α. In other words, more stringent NPI policies have a non-

increasing effect on the human interactions parameter α (i.e.

the NPI do not have any counter-impacts on the contact rates).

Inserting h[u(t)] in (10) we find:

∇uH(u) = ǫw(t)− γλ3(t)a (15)

Now since ∇uH(u) is independent of u, depending on its

sign, the Hamiltonian (which is a linear function of u), admits

its minimum at one of the extreme ends of the admissible input

ranges (8). This eventually results in

u∗

k(t) =

{

umin
k : ǫwk(t) > γλ3(t)ak

umax
k : ǫwk(t) < γλ3(t)ak

(16)

for k = 1, . . . , L.

2) Quadratic regression: In the second case, we assume

h[u(t)] = b+aT [umax−u(t)]+
1

2
[umax−u(t)]TS[umax−u(t)]

(17)

where a ≥ 0 and S ∈ R
L is a positive definite matrix.

These assumptions guarantee the monotonically decreasing re-

lationship between the NPI and α(t). Multivariate constrained

polynomial fitting can be used to find S, a and b from

historic NPI and case-report data2. Therefore, the required

constraint polynomial fitting is straightforward to implement

by conventional least squares solvers. In this case, we have:

∇uH(u) = ǫw(t)− γλ3(t){a+ S[umax − u(t)]} (18)

and setting ∇uH(ũ) = 0 gives

ũ = umax − S−1[
ǫw(t)

γλ3(t)
− a] (19)

From the second partial derivative test, since ∇
2
u
H =

γλ3(t)S, and the fact that S is assumed to be positive definite,

three cases may occur: 1) if λ3(t) > 0, ũ is a local minimum,

2) if λ3(t) < 0, it is a local maximum, and 3) λ3(t) = 0
results in a saddle point. Therefore, by applying Pontryagin’s

minimum principle and considering the admissible input range

(8), after some algebraic simplifications we find:

u∗

k(t) =







umin
k : ǫwk(t) > γλ3(t)(ak + sk)

ũk : γλ3(t)ak < ǫwk(t) < γλ3(t)(ak + sk)
umax
k : ǫwk(t) < γλ3(t)ak

(20)

where ũk and sk are the kth entries of the vectors ũ and

S(umax − umin), respectively. Comparing (20) and (16), it is

clear how the quadratic case simplifies to the linear case when

S → 0. It is also seen that in the linear case, the “optimal NPI”

is always one of the extreme cases umin
k (no action) or umax

k

(maximum stringency). But when the NPI to contact rate map

h(·) is nonlinear, intermediate interventions may also be in the

optimal NPI set.

2Despite the quadratic form of (17), since it is linear in parameters S, a and
b, multivariate constrained polynomial fitting is applicable to find the unknown
parameters by using historic data (model fitting over previous NPI actions
adopted by different nations/states, since the beginning of the pandemic).

V. A UNIFIED PANDEMIC TREND PREDICTOR AND NPI

PRESCRIPTOR

For an ideal model, the state and co-state dynamic equations

detailed in Section IV can be solved with numerical toolboxes

for finite horizon control (cf. [11] for a MATLAB-based

solution). However, in practice, there are some major issues,

which limit the numerical performance, including: 1) model

inaccuracies, 2) noisy observations (inaccurate case reports),

3) missing reports (during holidays), 4) unknown or variable

parameters (which is inevitable for a highly dynamic multi-

aspect complex system, such as a global pandemic), 5) the

difficulty of incorporating the start- and end-point boundary

conditions from (13).

Due to these issues, we propose a novel technique, based

on optimal state estimation. Accordingly, we have integrated

the finite horizon NPI optimizer and the new-case predictor in

classical extended Kalman filter (EKF) and extended Kalman

smoother (EKS) schemes [12]. Using (1), (3) and (11), the

state-augmented dynamic equations for the EKF are:

ṡ(t) = −α(t)s(t)i(t)+ws(t)

i̇(t) = α(t)s(t)i(t) − βi(t)+wi(t)
α̇(t) = −γα(t) + γh[u∗(t)] +wα(t)

λ̇1(t) = [λ1(t)− λ2(t)− (1− ǫ)]α(t)i(t)+ η1(t)

λ̇2(t) = [λ1(t)− λ2(t)− (1− ǫ)]α(t)s(t) + βλ2(t)+ η2(t)

λ̇3(t) = [λ1(t)− λ2(t)− (1− ǫ)]s(t)i(t) + γλ3(t)+ η3(t)
n(t) = α(t)s(t)i(t)+ v(t)

(21)

where the first six equations are the state and co-state dynam-

ics, the last equation is the observation equation and h[u∗(t)] is

the impact of the optimal control calculated from (16) or (20).

The terms ws(t), wi(t), wα(t), η1(t), η2(t) and η3(t) in (21)

represent process noises, and v(t) is observation noise. Note

that for an estimation based on the total number of confirmed

cases (instead of the new cases), the last observation equation

in (21) can be replaced with (4). The dynamic system (21) may

now be numerically solved by using standard EKF and EKS

equations. The discretized version of (21), which is required

for the discrete-dime implementation of the EKF and EKS are

detailed in the Appendix.

The finite horizon optimal solution and the EKF/EKS-

based forecasting model can now be unified for optimal

NPI prescription and pandemic trend forecasting. The overall

proposed method which unifies both objectives is summarized

in Algorithm 1. The MATLAB implementation of the overall

developed algorithm is available in our online repository.

VI. MODEL TRAINING

The model parameters h[u(t)], β, γ and the EKF/EKS

parameters require region-wise training or fact-based selection.

For this study, we used classical techniques for Kalman filter

engineering, based on monitoring the properties of the innova-

tions process of the Kalman filter to select and automatically

adapt the Kalman filter parameters (initial/final states and

covariance matrices) over time [13, Ch. 8]. The parameters

related to the social and epidemic aspects of the model are

explained in the sequel.

https://arxiv.org/abs/2102.06609
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Algorithm 1 Summary of the proposed algorithm

Input: Historic case reports and NPI files (or an arbitrary

scenario file from the standard predictor model)

Input: The NPI weights w(t), per region/country

Input: The Pareto front tuning parameter ǫ ∈ [0, 1].
1: for all Regions do

2: Train the compartmental model parameters over

historic NPI and case reports (or the standard

predictor scenario file).

3: Use EKF and EKS for prediction and prescription of

finite horizon optimal control inputs u∗(t).
4: end for

The mapping h[u(t)] was trained over the Oxford dataset

historic cases and NPIs (as precised in the later demonstrated

results [3]) and tested over the end of training date up to the

current date. For this, the developed EKS was first applied to

the historic data by neglecting the explicit relation between the

NPI and contact rates (equivalent to h[u(t)] = 0). Referring

to (21), this assumption is equivalent to considering the input-

driven fluctuations of α(t) inside the process noise wα(t).
Therefore, the entry of the process noise covariance matrix,

which corresponds to wα(t) is selected to be higher, to

include the inaccuracy of the model due to neglecting h[u(t)].
The resulting EKS gives a primary estimate of α(t) over

the training period, which in the next stage is given to a

constrained LASSO or quadratic polynomial fitter (for the

linear and quadratic forms presumed in Section IV-C), to

estimate h[u(t)] using the historic NPI data. In the next phase,

the trained model h[u(t)], together with the historic data is

used in a second round of EKS; this time by using the historic

NPI and apparently a smaller a priori assumption for the

variance of wα(t) (as it no longer accounts for h[u(t)]). After

the secondary EKS, the new estimates of α(t) are once more

used to refine the model parameters of h[u(t)]. The refined

parameters are stored per country/region for utilization during

the prescription phase (over real or synthetic scenarios).

The action to effect rate parameter γ was selected intu-

itively. From various social experiences, it is reasonable to ex-

pect a smooth transition in α(t) due to any change in the NPI.

This is based on the social experience that imposing any policy

on a complex social system is rarely abrupt. Although the

transition is region and NPI dependent, in order to reduce the

model complexity, we have fixed γ=1/(7 days)=0.1429 days−1,

for all regions/countries.

The recovery parameter β was selected by educated guesses

from the CDC reports regarding recovery and contagion peri-

ods3. Accordingly, multiple scientific studies worldwide have

reported that an exposed subject is no longer infectious after

three to four weeks. This is evidently a stochastic range. To

clarify, with an exponential model such as the SI mode, in

absence of new infected cases (α = 0), we find the ratio

i(t0 + T )/i(t0) = exp(−βT ), which can be considered as an

3Refer to CDC guidelines for Interim Guidance on Ending Isolation and
Precautions for Adults with COVID-19: https://www.cdc.gov/coronavirus/
2019-ncov/hcp/duration-isolation.html

exponential law for the probability of infectiousness after T
time units (days). Combining the model with the CDC reports,

we derive the following rule for setting β:

β =
− log(probability of contagion after T time units)

T
(22)

For the later presented results, we have set the proba-

bility of contagion to 0.01 and T=21 days, resulting in

β=0.2193 days−1.

Following recent studies [14], the reproduction rate of the

pandemic during outbreak was taken to be R0=2.5, which

using (2) together with β were used to initialize α(t0), which

is the contact rate during outbreak.

Note that one of the advantages of the EKF/EKS framework

is that the model parameters can also be considered as state

variables and be state augmented with the other equations to

be estimated (or updated over time). This approach can be

used for both γ and β to refine the initial educated guesses.

Finally, the regional/national population sizes, as required

for normalizing the total and new contaminated cases to the

normalized variables of the SI model were obtained from

public global population datasets and assumed to remain fix

over the study (i.e., immigration, inter-border travels, natural

birth/deaths have been neglected throughout the study).

VII. RESULTS

The OxCGRT dataset has above 300 countries and re-

gions (states). Due to inconsistencies in the reported COVID-

19 cases some of the countries/regions were omitted from

the study during the XPRIZE Challenge and the proposed

prediction-prescription algorithm was trained and applied to a

total number of 235 regions/countries, with arbitrary NPI cost

weights. The training period for the model was from January

1, 2020 to Feb 7, 2021, and the test phase was from Feb 8,

2021 up to the current date (May 7, 2021 in the presented

results). As proof of concept, the bi-objective optimization

space of J1 (NPI cost) vs J0 (human factor) are shown in

Fig. 2 for several countries worldwide. Accordingly, each point

in this figure corresponds to a (J0, J1) pair for a sequence of

NPI scenarios over the test phase. In Fig. 2, the red points

are the result of the proposed method for different values

of ǫ (the bi-objective optimization free parameter). The black

crosses correspond to continuing the latest NPI policy of each

government (at the end of the training date). Finally the blue

points correspond to a pool of random constant stringency

u(t) = κ, κ ∈ [umin,umax], and random variable stringency

u(t) ∈ [umin,umax]. In all cases, the user defined NPI weight

vector was chosen to be equal for all NPI (w(t) = 1), i.e., the

NPI were considered equally weighted for the policymaker.

As a bi-objective problem, the Pareto efficient front com-

prises of the NPI points which either have a smaller value

of J0 or J1, while the non-efficient solutions are the ones

for which there exists at least a point that gives a smaller

cost of both J0 and J1. In other words, a Pareto efficient

solution should outperform any other solution either in its cost

or efficiency. As trivial cases, the maximum stringency case

ǫ = 0 (maximal enforcement of social limitations, to minimize

https://arxiv.org/abs/2102.06609
https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html
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human cost) and the minimum stringency case ǫ = 1 (no social

constraints, to minimize costs of intervention) are both Pareto

efficient; the former minimizes the human losses and the latter

minimizes the socioeconomic cost of intervention. Apparently,

policymakers prefer a balance between the these two objec-

tives. Therefore, the Pareto efficient NPI policies should be

close to the origin or along one of the left or bottom axes.

From Fig. 2, it is seen that none of the current NPI policies

adopted by countries/regions are optimal (assuming equal NPI

weights), and despite the significant differences between the

different studied countries, the Pareto optimal points all belong

to the proposed algorithm. Note that the “optimal point” is

clearly a function of the bi-objective parameter ǫ, eventually

selected by the policymakers.

Similar performance was obtained for all the 235 studied

countries and regions.

A sample result of tracking the trend of new cases and

the exponential growth using the hereby proposed extended

Kalman smoother on real daily reported cases of the US since

the 100th case report is shown in Fig. 3. For simplicity, the

effect of NPIs have not been considered in this example.

The proposed algorithm is computationally very efficient.

The MATLAB version of the codes applied to all regions and

countries (235 in total), takes less than 30 s to train over the

historic cases on a MacBook Pro laptop with 2.3 GHz Quad-

Core Intel Core i7 and 32GB of memory, without notable

optimizations. The run-time on the test scenarios takes about

15 s in total for all regions (as it contains only one EKS stage

during the test period, per region/country).

VIII. DISCUSSION

The highlights of the developed algorithm for predicting

pandemic trends and prescribing Pareto optimal NPI policies

include:

• The method is based on theoretical derivations and within

the scope of the proposed compartmental model accuracy

(which is asymptotically accurate for region/country-

level population sizes), it gives accurate Pareto efficient

solutions.

• The operation point on the Pareto front can be selected by

a single parameter ǫ ∈ [0, 1] selected by the policymaker,

where the corner case ǫ = 0 neglects the NPI cost (in

favor of the human factor) and ǫ = 1 neglects the human

factor (in favor of intervention cost).

• The prediction and prescription problems are integrated

in a unified framework. Nevertheless, the method is

applicable to both real-world data and any other machine-

learning based technique, which accurately predicts pan-

demic trends from historic data (see for example [2]).

• This framework can be used for targeted pandemic con-

trol, where strategists can target specific infection bounds

that match the medical resources of a country/region, over

a fixed or maximally bounded period of time. Therefore,

apart from the optimal NPI and fatality rate objectives,

such scenarios can also be considered: “how to bring

the pandemic reproduction rate below 0.8 by a specific

time?”, or “how to bring the new cases below 200 per

day in less than two months?” The training phase of the

pandemic over historic data together with the forecasting

model, can be used to study the feasibility of such

scenarios and the prescription of the required NPI policies

that would achieve these objectives.

• Both the model parameters and NPI cost weights can

be updated over time. Specifically, we do not assume the

NPI cost weights to be constant over time. Therefore, un-

precedented events such as vaccination or virus mutation

effects can be integrated in the model with appropriate

training. In fact, according to the so-called principle of

optimality, “any portion of an optimal control trajectory

is optimal [10, Sec 6.4]”, which implies that optimality of

future actions is independent of the past. Therefore, the

prescribed optimal control strategy may be adopted at any

point, regardless of the past actions of a region/nation.

• Since the Pareto front solutions are found by mathemati-

cal derivation (rather than trial and error or cumbersome

searches), the proposed framework is extremely computa-

tionally efficient and the run-time computational load for

testing arbitrary scenarios is minimal. This permits the

combination of the proposed method with other machine

learning methods to reduce the search space and to

improve the accuracy on other datasets and under more

complicated models such as the Long short-term memory

(LSTM), as in [2].

• The predictor part of the model gives confidence intervals

during both the prediction and prescription steps of the

algorithm. Therefore, the performance and well-function

of the algorithm can be continuously monitored and

adapted.

• The proposed framework is extendable to pharmaceutical

intervention plans and vaccinations, whenever sufficient

data is available to train alternative compartmental mod-

els.

• Finally, the hereby proposed method which utilized EKF

and finite-interval EKS to resolve the numerical problem

of finite horizon optimal control can be used for other

optimal prediction and control problems on real-world

data.

IX. CONCLUSION AND FUTURE WORK

In this research, a model-based approach was used for

the prediction and prescription of NPI that best balance

between an arbitrary weighted-cost of interventions and the

human factors (number of new cases) during a pandemic.

The proposed algorithm and the prescribed NPI were proved

to be Pareto optimal, to the extent of the accuracy of the

utilized compartmental model. Software implementations of

the proposed algorithms are online available at [8].

In future studies, different aspects of this framework can be

extended and improved, including:

• Using advanced machine learning algorithms for learning

the NPI to contact rate function h(·). The LSTM is

specifically a promising approach.

• For regions which have access to additional data (e.g.,

the number of hospitalized, number of vaccinated, fatality

https://arxiv.org/abs/2102.06609
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Fig. 2. Biobjective optimization space for sample countries. Black cross: fixed NPI (continuing current policies); Blue: random NPI inputs (both constant
and variable over time); Red: finite-horizon optimal input for 250 ǫ ∈ [0, 1]. h[u(t)] was found by linear regression over historic NPI from Jan 1, 2020 to
Feb 7, 2021, using a LASSO with positive coefficients constraint.

rate of the virus, the population age pyramid, etc.), more

accurate models such as the fatal susceptible-exposed-

infected-recovered (SEIR) can be used [7]. Other indexes

such as the daily death reports can be augmented as

additional observation equations in the dynamic model

(21), and will help to increase the EKF/EKS accuracies.

• Theoretical aspects of the proposed EKF/EKS frame-

works, including stability conditions, parameter identifi-

ability and robustness to parameter and modeling errors

require further studies.

APPENDIX

THE DISCRETE-TIME MODEL

For a discrete-time implementation of the EKF/EKS, the

discrete form of the dynamic system (21) is required. Accord-

ingly, we define

sk = [s(k∆), i(k∆), α(k∆)]T

wk = [ws(k∆), wi(k∆), wα(k∆), η1(k∆), η2(k∆), η3(k∆)]T

nk = n(k∆), ck = c(k∆), vk = v(k∆)

where ∆ is the discretization time unit. Assuming that ∆ is

small as compared with the variations of the pandemic trends,

a first order discrete approximation of (21) is found as follows:

sk+1 = sk −∆αkskik +∆wsk

ik+1 = ik +∆αkskik −∆βik +∆wik

αk+1 = αk −∆γαk +∆γh[u∗

k] +∆wαk

λ1,k+1 = λ1k +∆[λ1k − λ2k − (1 − ǫ)]αkik +∆η1k
λ2,k+1 = λ2k +∆[λ1k − λ2k − (1 − ǫ)]αksk +∆βλ2k +∆η2k
λ3,k+1 = λ3k +∆[λ1k − λ2k − (1 − ǫ)]skik +∆γλ3k +∆η3k
nk = αkskik + vk

(23)

https://arxiv.org/abs/2102.06609
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Fig. 3. Tracking the trend of new cases using the proposed extended Kalman
smoother on daily reported cases of the US, since the 100th case report.
The raw noisy daily reports have been adopted from the Oxford COVID-19
Government Response Tracker (OxCGRT) project [3]. The training period is
up to day 250 and used to forecast the trends thereafter.

which can be formulated in a compact form:

sk+1 = f(sk,wk;h(uk))
nk = g(sk) + vk

(24)

where f(·) and g(·) represent the nonlinear equations in (23).

Note that following (4), if the number of confirmed cases is

used as the observation, the second equation in (24) is replaced

with

ck = s0 − sk + vk (25)

which is a linear function of the state vector.

It is straightforward to linearize the discrete-time dynamic

model (23) by calculating its Jacobian matrices, as required

for the implementation of the EKF/EKS. An alternative ap-

proach is to use a continuous-dynamics discrete-observations

approach, which is a classical method in optimal state es-

timation. Accordingly, for implementing the EKF/EKS, the

state equations can be updated by using the continuous version

of the dynamic model (21), while the observations are only

updated on discrete-time intervals (e.g., on a daily basis).
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