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ABSTRACT
Understanding and improving mobile broadband deploy-
ment is critical to bridging the digital divide and targeting
future investments. Yet accurately mapping mobile coverage
is challenging. In 2019, the Federal Communications Com-
mission (FCC) released a report on the progress of mobile
broadband deployment in the United States [6]. This report
received a significant amount of criticism with claims that
the cellular coverage, mainly available through Long-Term
Evolution (LTE), was over-reported in some areas, especially
those that are rural and/or tribal [12]. We evaluate the va-
lidity of this criticism using a quantitative analysis of both
the dataset from which the FCC based its report [5] and
a crowdsourced LTE coverage dataset [26]. Our analysis
is focused on the state of New Mexico, a region character-
ized by diverse mix of demographics-geography and poor
broadband access. We then performed a controlled measure-
ment campaign in northern New Mexico during May 2019.
Our findings reveal significant disagreement between the
crowdsourced dataset and the FCC dataset regarding the
presence of LTE coverage in rural and tribal census blocks,
with the FCC dataset reporting higher coverage than the
crowdsourced dataset. Interestingly, both the FCC and the
crowdsourced data report higher coverage compared to our
on-the-ground measurements. Based on these findings, we
discuss our recommendations for improved LTE coverage
measurements, whose importance has only increased in the
COVID-19 era of performing work and school from home,
especially in rural and tribal areas.

1 INTRODUCTION
Affordable, quality Internet access is critical for full partici-
pation in the 21st century economy, education system, and
government [24]. Mobile broadband can be achieved through
commercial Long-Term Evolution (LTE) cellular networks,
which are a proven means of expanding this access [13], but

are often concentrated in urban areas and leave economically
marginalized and sparsely populated areas underserved [6].
The U.S. Federal Communications Commission (FCC) incen-
tivizes LTE operators serving rural areas [7, 23] and main-
tains transparency by releasing maps from each operator
showing geographic areas of coverage [9]. Recently third
parties have challenged the veracity of these maps, claim-
ing these maps over-represent true coverage, and thus may
discourage much-needed investments.
Most of these claims, however, are either focused on lim-

ited areas where a few dedicated researchers can collect con-
trolled coverage measurements (e.g., through wardriving), or
are mainly qualitative in nature [1, 14, 25]. As dependence on
mobile broadband connectivity increases, especially in the face
of the COVID-19 pandemic, mechanisms that quantitatively
validate FCC coverage datasets at scale are becoming acutely
necessary to evaluate and direct resources in Internet access
deployment efforts [17, 22]. This is an issue of technology and
technology policy, with equity and fairness implications for
society.
An increasingly widespread approach to measure cover-

age at scale is through crowdsourcing wherein users of the
LTE network contribute to coverage measurements. The FCC
has recently advocated for the use of crowdsourcing to vali-
date coverage data reported by operators [19]. In this context,
we take a data-driven, empirical approach in this work, com-
paring coverage from a representative crowdsourced dataset
with the FCC data. More specifically, our analysis is guided
by the following questions: (i) How consistent are existing
LTE coverage datasets, ii) where and how do their coverage
estimations differ, and what trends are present?
We specifically consider a crowdsourced coverage esti-

mate from Skyhook, a commercial location service provider
that uses a variety of positioning tools to offer precise ge-
olocation. We select Skyhook because it crowdsources cel-
lular coverage measurements from end-user applications
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that subscribe to its location services. Such incidental crowd-
sourcing can potentially provide richer coverage data com-
pared to a voluntary form of crowdsourcing where a user
has to explicitly commit to contributing coverage data. We
examine this by comparing the Skyhook measurements with
those of OpenCellID, an open but voluntary crowdsourced
dataset [21]. As will be shown in Section 3.1, we find that
the density of the crowdsourced datasets varies significantly
by the methodology of data collection, especially in rural
areas. In the regions we studied, incidental crowdsourcing
(Skyhook) gathered up to 11.1x more cell IDs than voluntary
crowdsourcing (OpenCellID).

Using Skyhook as an extensive crowdsourced dataset, we
quantify how widely and where the crowdsourced coverage
data differs from the FCC data. We specifically focus on the
state of New Mexico1, selected for its mix of demographics,
diverse geographic landscape, and our partnership with com-
munity stakeholders within the state. We compare coverage
at the level of census blocks2 which are further grouped into
urban, rural, and tribal3 categories. We find that the FCC and
Skyhook LTE datasets have a disagreement as great as 15% in
rural census blocks with the data from FCC claiming higher
coverage than Skyhook. A major concern in interpreting
this comparison is accounting for coverage disagreement as
a result of lack of data points in the crowdsourced dataset.
To confirm the availability of users to provide data points,
we check for the presence of alternate cellular technologies
(e.g., 2G or 3G) within these census blocks and observe a
significant number (up to 9% in tribal rural areas) where such
alternates are present, providing evidence that users do visit
those blocks but cannot access LTE. These results, similar to
a recent study on fixed broadband [18], suggest a need for in-
corporating mechanisms to validate the operator-submitted
data into the FCC’s LTE access measurement methodology,
especially in rural and tribal areas.

Finally, we compare both FCC and Skyhook coveragemaps
to our own controlled coveragemeasurements collected from
a northern section of New Mexico. Interestingly, we find
that both FCC and Skyhook datasets report higher coverage
relative to our controlled measurements with the former
showing a higher degree (by up to 26.7%) of over-reporting
than the latter. Understanding the causes of these inconsis-
tencies is important for effectively using crowdsourced data
to measure LTE coverage, especially as crowdsourcing is
increasingly viewed as preferable to provider reports. We

1Our methodology is not specific to New Mexico and can be easily extended
to other regions in the U.S.
2We use the FCCmethodology wherein a census block is considered covered
if the centroid is covered [8]
3Tribal areas have consistently experienced the lowest broadband coverage
rates in the United States for the past decade [6]

Data Set Points of Format Methodology
Collection

FCC Polygon Shapefile Operator-reported
overlay with Form 477

Skyhook Cell signal CSV Incidental
point crowdsourcing

Author Controlled Cell signal CSV Wardriving
Measurements point

Table 1: Summary of coverage data sets.
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Figure 1: LTE operators by
census block coverage based
on FCC data.

Figure 2: Map of author
wardriving areas in New
Mexico.

conclude with recommendations for improving LTE cover-
age measurements, whose importance has only increased
in the COVID-19 era of performing work and school from
home.

2 BACKGROUND AND DATASETS
In this section, we first provide an overview of the LTE
network architecture. This is followed by a description of
the LTE coverage datasets compared in our analysis. These
datasets are summarized in Table 1. We also note the limita-
tions associated with each data collection methodology.

2.1 LTE Network Architecture
Internet access in an LTE network is available through base
stations (known as eNodeBs) operated by the network provider.
User equipment (UE), such as smartphones, tablets, or LTE
modems, connects to the eNodeB over the radio link. The
eNodeB is connected to a centralized cellular core known as
the Evolved Packet Core (EPC). This connection is typically
through a wired link forming a middle-mile connection. The
EPC consists of several network elements including a Packet
Data Network Gateway (PGW), which is the connecting node
between an end-user device and the public Internet. Thus,
LTE broadband access depends on multiple factors including
radio coverage, middle-mile capacity, and interconnection
links with other networks (e.g., transit providers, content
providers) in the public Internet. However, the focus of this
article is on understanding the last-mile LTE connectivity
characterized by the radio coverage of the eNodeB.
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An eNodeB controls a single cell site and consists of several
radio transceivers or cells mounted on a raised structure
such as a mast or a tower. The radio cells use directional
antennas, where each antenna provides coverage in a smaller
geographical area using one frequency band. The radio cells
can be identified through a globally unique number called
cell identifier (or cell ID), which is also visible to an end-user
device in range of the cell. The cell ID enables aggregation of
connectivity and signal strength information from multiple
UEs connected to the same cell, which can then be used to
estimate the geolocation of a cell along with its coverage
(see Section 2.3).

2.2 FCC Dataset
The FCC LTE broadband dataset consists of coverage maps
in shapefile format that depict geospatial LTE network de-
ployment for each cellular operators in the U.S. The FCC
compiles this dataset semi-annually from operators through
Form 477. Every operator that owns cellular network facili-
ties must participate in this data collection. The operators
submit shapefiles containing detailed network information
in the form of geo-polygons along with the frequency band
used in the polygon and the minimum advertised upload and
download speeds. The methodology used for obtaining these
polygons is proprietary to each operator. Ultimately, the FCC
publishes only a coverage map that represents coverage as
a binary indicator: in any location, cellular service is either
available though an operator, or it is not.
We use the binary coverage shapefiles, available on the

FCC’s website, from June 20194. Figure 1 shows the eight
LTE network operators present in the state of New Mex-
ico (NM) and the percentage of total census blocks in NM
covered by each operator. Note that we use one of the FCC
methodologies to report mobile broadband access, wherein a
census block is considered covered if the centroid of the cen-
sus block is covered [8]. In this paper, we limit our analysis
to the top four cellular operators due to their significantly
greater prevalence in NM; these operators are also the top
four cellular operators in the United States more broadly.
Limitations: These coverage maps are generated using pre-
dictive models that are proprietary to the operator [12]
and not generally reproducible. Furthermore, the publicly
available dataset consists of binary coverage and lacks any
performance-related data.5

4At the time of this analysis, data from December 2019 was also available
on the FCC website. However, we use data from June 2019 as the other two
datasets in our analysis are collected around this period.
5The FCC has only recently (beginning December 2019) started providing
speed data along with coverage information.

2.3 Skyhook Dataset
Skyhook is a location service provider that uses a variety
of positioning tools, including a database of cell locations,
to offer precise geolocation to subscribed applications [26].
Through apps that subscribe to Skyhook’s location services,
user devices report back network information, which is gath-
ered into anonymous logs and used to further improve the
localization service. Through a data access agreement we
are able to view the cell location database consisting of a
list of unique cell IDs along with the cell technology (e.g.,
3G vs LTE), estimated location, and the estimated coverage.
The database was originally constructed through extensive
wardriving but is now managed and updated using mea-
surements gathered by devices using the Skyhook API for
localization. The device measurements with the same cell ID
are combined to estimate the cell location and coverage in
the following manner:
Cell location estimation: A grid-based methodology simi-
lar to that proposed by Nurmi et al. [20] is used to estimate
the cell tower location. Specifically, Skyhook divides the ge-
ographic area into 7 m squares and groups measurements in
the same square to obtain a central measure of the square’s
signal strength. This is done to reduce the bias due to large
numbers of measurements coming from the same area (e.g.
a popular gathering place). A weighted average of the signal
strength is then used to estimate the cell location.
Estimation of cell coverage radius: Skyhook also pro-
vides an estimate of the cell’s coverage radius using a pro-
prietary method based on the path-loss gradient [27]. The
path-loss gradient approximates how the wireless signal at-
tenuates as a function of the distance from the transmitter
(radio cell in this case). The value of the path-loss gradient
depends on several factors such as environment (foliage,
buildings), geographic topography, and cell signal frequency.
Skyhook estimates the path-loss gradient using field obser-
vations of cell signal strength readings along with their dis-
tributed geographic locations. Ideally, the signal attenuation
varies based on the direction and the distance from the cell.
However, to reduce the complexity of coverage estimation,
Skyhook’s cell coverage estimation heuristic calculates only
one path-loss gradient for a single cell. The path-loss gra-
dient is then used in a set of parameterized equations to
estimate the cell coverage radius. The parameters in these
equations have been determined with careful research and
testing over more than 10 years.
The cell location database is updated regularly with re-

calculation of cell location and cell coverage radius using
the new device measurements that have been collected since
the last update. For our analysis, we use the cell location
database last updated on June 10, 2019.
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Limitations: Since database entries are crowdsourced when
the device passes within range of a cell, this dataset is more
comprehensive in population centers and highways where
people more often occupy. If there are too few measurements
overall, or if measurements are primarily sourced from the
same grid section, then the cell location estimate can be
inaccurate.

2.4 Targeted Measurement Campaign
To complement these datasets, we performed a targeted mea-
surement campaign collecting coverage information through
120 miles of Rio Arriba county in New Mexico over a pe-
riod of five days beginning May 28, 2019. Figure 2 shows
the locations of ground measurements and the four descrip-
tive area labels we use for this analysis. The North area
measurements were taken on highways passing primarily
through national forest. The Pueblo area measurements were
taken from highways within tribal jurisdiction boundaries. In
Santa Clara Pueblo, tribal leadership permitted us to collect
additional measurements in residential zones. Finally, the
Santa Fe area consists of highway measurements between
the pueblos and downtown Santa Fe. While limited in scale,
these active measurements provide an important compari-
son point for coverage and user experience. As described in
Section 1, we selected these areas of New Mexico for their
mix of tribal and non-tribal demographics; tribal lands tend
to have the highest coverage over-statements and the most
limited cellular availability within the United States [6].

Ourmeasurements consist of service state and signal strength
readings recorded on four Motorola G7 Power (XT1955-5)
phones running Android Pie (9.0.0). Service State is a dis-
crete variable indicating whether the phone is connected to
a cell. Measurements were collected using the Network Mon-
itor application [16]. An external GlobalSat BU-353-S4 GPS
connected to an Ubuntu Lenovo ThinkPad laptop gathered
geolocation tags that were matched to network measure-
ments by timestamp. Each phone was outfitted with a SIM
card from one of the four top cellular operators in the area:
Verizon, T-Mobile, AT&T, and Sprint. The phones recorded
service state and signal strength every 10 seconds while we
drove at highway speeds (between 40 and 65 miles per hour)
in most places and less than 10 miles per hour in residential
areas (Santa Clara Pueblo).
Limitations:Ourwardriving campaignwas intensive in terms
of human effort, economic cost, and time, making it difficult
to scale. The dataset does not capture any temporal varia-
tions in coverage as the measurements were collected over a
short span of time. It is possible that driving speed or device
configuration affects the measurements, e.g., indicating no

Figure 3: CDF of cell updates in Skyhook (S) and OpenCellID
(O).
coverage when a stationary measurement might have de-
tected coverage [10]. We have no evidence that this occurred,
but it might warrant some additional investigation.

3 ANALYSIS
In this section, we first evaluate of Skyhook as a representa-
tive crowdsourced dataset by comparing it with a popular
voluntary crowdsourced data from OpenCellID [21]. This is
followed by comparison of coverage across the FCC, Sky-
hook, and our wardriving measurement data. Our compar-
ison is guided by the following questions: (i) what is the
degree of coverage agreement across the datasets, ii) where
and how do their coverage estimations differ?

3.1 Comparison of Crowdsourced Datasets
We compare the Skyhook dataset with a publicly available
crowdsourced dataset – OpenCellID. Unwired Lab’s Open-
CellID6 project provides a publicly available dataset of cell
IDs along with their estimated location. The dataset is de-
rived from crowdsourced UE signal strength measurements
similar to Skyhook. However, the UE measurements in this
case come from users voluntarily installing the OpenCellID
application on their smartphone [21] and manually choosing
what data to upload. We differentiate this voluntary crowd-
sourcingmethod of data collection from Skyhook’s incidental
crowdsourcing method, where users of the Skyhook API con-
tribute to the data by default. We specifically compare the
number of unique LTE cells and the recentness of the mea-
surements in both datasets. We consider each of these factors
to contribute to the overall density of the dataset.
Methodology: While our coverage comparison will be fo-
cused on NewMexico, we analyze our selected crowdsourced
data more broadly by considering these datasets within a
set of counties of differing population densities across the
United States. The counties are selected from three areas of
the United States: Western (California), Central (NewMexico
and Colorado), and Eastern (Georgia). Within each region,

6OpenCellID Project is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.
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County
classification

Region County Population
density (per sq. mile)

Skyhook OpenCellID Common
CIDsName CIDs (#) % Overlap CIDs (#) % Overlap CIDs

Western Los Angeles, CA 2,490.3 133,484 28% 39,875 92% 36,816
Large Metro Central Denver, CO 4,683.0 11,061 24% 3,136 86% 2,689

Eastern Fulton, GA 1,994.0 27,809 22% 7,225 86% 6,194
Western Imperial, CA 43.5 1,818 17% 336 93% 311

Small Metro Central Doña Ana, NM 57.1 1,870 32% 663 89% 592
Eastern Bibb, GA 613.0 1,953 21% 464 89% 413
Western Tehama, CA 21.7 733 17% 158 80% 126

Micropolitan Central Rio Arriba, NM 6.7 333 8% 30 87% 26
Eastern Pierce, GA 61.3 164 9% 21 67% 14

Table 2: Characteristics and cell ID (CID) counts in selected counties.

we consider three different kinds of counties as defined by
the National Center for Health Statistics’ 2013 Urban-Rural
Classification Guide [3]. These are: (i) large metropolitan
(large), which contain a population of at least one million
and a principle city; (ii) small metropolitan (small), which
contain a population of less than 250,000; and (iii) microp-
olitan (micro), which must have at least one urban cluster
of at least 10,000, but a total population of less than 50,000.
This enables us to study differences based on population den-
sity and geographic region for the crowdsourced datasets.
We select three counties of each population category, for a
total of nine counties, to compare these two datasets. We
describe these counties in Table 2. For each county, we show
the 2018 population density estimated from the U.S. Census
Bureau’s 2010 census records [2]. We first count the num-
ber of unique cell IDs that appear in both datasets for each
county, as shown in Table 2. The “% Overlap" column in
Table 2 shows the percentage of each dataset’s cell IDs that
also appear in the other dataset, and the “Common CIDs"
column shows the exact number of common cell IDs.
Results: Overall, Skyhook reports a greater number of cells
(2.8x - 11.1x) for all counties. The difference is particularly
pronounced in micro counties. This suggests that relying
on volunteers to download an application and offer network
measurements may not be the most accurate method for
assessing LTE coverage in rural areas. Furthermore, Skyhook
includes a majority of the cells that appear in OpenCellID.
We next consider how recently each cell ID record was

updated with a new measurement. Figure 3 shows the CDF
of the latest measurement date for cells in both the datasets,
where cells are split into those located in urban and rural
census blocks. Almost 60% of the cells in Skyhook were last
updated in the month of June 2019, but the most recent
update in OpenCellID was in February 2019. Furthermore,
cells in rural census blocks were updated less recently than
urban census blocks in OpenCellID, while the difference is
negligible in the Skyhook dataset. This suggests that the
Skyhook dataset is updated more regularly than OpenCellID,

thus making it more likely to represent any changes in the
network infrastructure.

3.2 Comparison of Coverage
3.2.1 Coverage comparison between the FCC and Skyhook.
We first compare a coverage shapefile generated from Sky-
hook cell locations and estimated coverage ranges with the
FCC map for each operator.
Methodology: We consider coverage at the census block
level for this comparison. In addition to reporting coverage
shapefiles, the FCC reports coverage at a census block level
and considers a census block as covered if the centroid of the
census block falls within a covered region [8]. We generate a
similar census block level coverage map per-operator using
Skyhook’s estimated coverage. To do so, we first obtain the
coverage shapefile for each operator using a cell’s estimated
location and coverage radius. Then we use the FCC centroid
methodology to generate the Skyhook LTE coverage map
at the census block level. We use the Python GeoPandas
0.8.2 library for the associated spatial operations [11]. We
group census blocks into four categories: Non-Tribal Urban,
Non-Tribal Rural, Tribal Urban, and Tribal Rural. This is
done to explore whether the degree of agreement of the
two datasets varies across these dimensions. We use the
U.S. Census Bureau’s classification of urban and rural blocks
and its boundary definitions of tribal jurisdiction for this
categorization [4]. In this analysis we consider census blocks
as tribal if they overlap with any tribal boundaries. We varied
the tribal labeling schemes such as classifying a census block
tribal if the centroid of the block is within a tribal boundary.
However, the results remain qualitatively similar and do not
impact the findings presented here.
Results: Table 3 shows the percentage of total census blocks
covered by each cellular operator, according to the FCC and
Skyhook data, broken down by census block type. Among
the four operators, T-Mobile covers the greatest number of
census blocks based on both FCC and Skyhook data, while
Sprint covers the fewest. All four cellular operators have
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Census
block type

Total census
blocks

Verizon T-Mobile AT&T Sprint
FCC Skyhook FCC Skyhook FCC Skyhook FCC Skyhook

Non-Tribal Rural 93,680 89% 77% 94% 86% 85% 79% 39% 49%
Non-Tribal Urban 41,872 100% 100% 100% 100% 99% 99% 96% 99%

Tribal Rural 30,588 93% 80% 92% 63% 78% 73% 27% 41%
Tribal Urban 2,469 100% 99% 95% 94% 93% 94% 75% 88%

All 168,609 93% 84% 95% 85% 88% 83% 52% 61%
Table 3: Percentage of total census blocks covered according to FCC and Skyhook.

Block
type

Total
blocks Verizon T-Mobile AT&T Sprint

Non-Tribal Rural 93,680 14,013 9,025 8,705 1,355
Non-Tribal Urban 41,872 0 0 213 25

Tribal Rural 30,588 5,109 9,150 3,004 230
Tribal Urban 2,469 4 14 4 0

Table 4: Number of census blocks where there is coverage
according to FCC but no coverage according to Skyhook.

(a) Verizon (b) Sprint

Figure 4: Comparison of LTE coverage maps of New Mexico.
Yellow blocks are covered in the FCC map but not in Sky-
hook; purple blocks are covered in the Skyhookmap but not
the FCC. Green blocks are covered in both, and pink blocks
are covered in neither.

relatively higher coverage for both tribal and non-tribal ur-
ban census blocks. However, all operators except Verizon
offer their lowest coverage in tribal rural areas. For some
operators, the differences between non-tribal rural and tribal
rural are as great as 23% (based on Skyhook data) and 11%
(based on FCC data).

The extent of LTE coverage differs between the two datasets.
For three out of four providers, Skyhook shows lower cov-
erage than the FCC, particularly in the rural census blocks.
For instance, the FCC T-Mobile data shows coverage in 92%
of tribal rural blocks, whereas Skyhook shows coverage in
only 63% of such blocks. On the other hand, Skyhook shows
a higher number of census blocks covered than the FCC
for Sprint. The higher coverage in the case of Sprint could
have been due to multiple reasons, including: (i) there are
differences in the propagation models used by Skyhook and
Sprint to estimate coverage with the former’s models being
more generous than the latter’s, and (ii) the Skyhook data is

Block type Verizon T-Mobile AT&T Sprint
Non-Tribal Rural 528 (1%) 2,575 (3%) 5,342 (6%) 19 (<1%)
Non-Tribal Urban 0 (0%) 0 (0%) 213 (1%) 0 (0%)

Tribal Rural 2,655 (9%) 2,565 (8%) 2,166 (7%) 0 (0%)
Tribal Urban 0 (0%) 0 (0%) 4 (<1%) 0 (0%)

Table 5: Number of census blocks with LTE coverage accord-
ing to the FCC, but only 3G coverage according to Skyhook.
The numbers in parenthesis report the same data as a per-
centage of total census blocks of the corresponding type.

collected across time and Sprint may have discontinued or
temporarily disabled some of the cells, which is challenging
to detect from the crowdsourced data.
Figure 4 visually compares the LTE coverage maps from

the FCC and the Skyhook datasets for Verizon and Sprint.
We more deeply examine the discrepancy mapped in yellow
in Figure 4a. Table 4 shows the number of census blocks
where there is coverage according to the FCC but none ac-
cording to Skyhook for each operator. Coverage claims in
both tribal and non-tribal rural census blocks disagree the
most. The number of such blocks are particularly high for
Verizon (19, 126 overall) and T-Mobile (18, 189 overall). There
are two possible reasons for this disagreement: network oper-
ators lack adequate infrastructure in rural areas, but tend to
overestimate coverage while reporting it to FCC, or Skyhook
is missing data points from rural census blocks where fewer
people carry UEs. The latter case will lead to either some LTE
cells not being detected or an inaccurate characterization of
cell coverage due to fewer measurements.
To understand which of these potential reasons for dis-

agreement is more likely, we check whether Skyhook shows
3G coverage for these census blocks (where the FCC reports
LTE coverage but Skyhook does not). If Skyhook reports
3G coverage in these blocks, this suggests that users may
have contributed to the Skyhook dataset in these census
blocks, therefore LTE coverage would have been detected if
it existed. Note that a more accurate way would have been
to directly consider the location of end-user measurements
connected using 3G technology and analyze whether they
fall within LTE coverage areas in the FCC data. However, we
did not have access to these end-user measurements due to
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Skyhook’s privacy policy. Instead, we consider the 3G cov-
erage maps as a reasonable approximation for our analysis
and generate a 3G coverage map at the census block level for
these areas in the same manner as described previously for
LTE. The number of census blocks that show only 3G cover-
age according to Skyhook is presented in Table 5. We observe
a significant number of census blocks where Skyhook detects
3G coverage, indicating that the FCC LTE coverage claims
may be overstated in these areas. The number of such blocks
is greater for tribal rural areas (up to 9%), thus indicating a
higher mismatch of the two datasets in tribal rural areas.

3.2.2 Active measurements compared to FCC and Skyhook
coverage. In this section, we compare our own active mea-
surements with the coverage maps from the FCC and Sky-
hook described in Section 3.2.1. We focus now on the geo-
graphic region around Santa Clara Pueblo, which lies north
of Santa Fe (see Figure 2), a region with a mix of urban, rural,
and tribal population blocks.
Methodology: We use the Service State readings collected in
our measurements for this analysis (see Section 2.4). We also
collected information about the connected cell’s technology
(e.g. LTE) and the geolocation of the measurements. This
information is used to infer whether LTE coverage exists
at a location. We consider LTE to be available if the Service
State shows IN_SERVICE to indicate an active connection,
and if the associated cell is an LTE cell. We term this the
active LTE coverage. We then compare the FCC and Skyhook
coverage with the active LTE coverage to see whether the
datasets agree. Note that we use the coverage shapefiles for
both Skyhook and the FCC in this comparison instead of
the census block centroid approach in Section 3.2.1. This
allows us to compare coverage more precisely for a location,
especially if a census block is only partially covered.
Results: Table 6 shows the confusion matrices that compare
active LTE coverage with reported coverage from the FCC
and Skyhook maps. Both maps show coverage at locations
where our measurements did not. In the case of Verizon, 81%
of the measurements with no coverage are from locations
reported as covered by the FCC. This over-reporting is lowest
for Sprint and highest for T-Mobile.
We also observe significant disagreement (up to 79%) be-

tween Skyhook coverage and our measurements. Two pos-
sibilities may cause this: i) paucity in Skyhook UE signal
strength readings available for cell location and coverage
radius estimation, or ii) error in the cell propagation model it-
self possibly due to variations in the environment conditions
such as the terrain. In either case, Skyhook agrees better with
our measurements than the FCC in reporting areas with no
LTE coverage. E.g., in the case of AT&T, 75% of our mea-
surements with no LTE coverage belong to areas reported
as covered by the FCC as compared to 48% by Skyhook.

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 266 19% 81% 32% 68%
Coverage (C) 1,440 0% 100% 5% 95%

(a) Verizon

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 324 6% 94% 21% 79%
Coverage (C) 1,361 0% 100% 5% 95%

(b) T-Mobile

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 568 25% 75% 53% 48%
Coverage (C) 1,095 2% 98% 7% 93%

(c) AT&T

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 231 96% 4% 99% 2%
Coverage (C) 1,122 21% 79% 20% 80%

(d) Sprint

Table 6: Confusionmatrices comparing activemeasurement
coverage with FCC and Skyhook. Total denotes the number
of active measurements in each category.

4 RECOMMENDATIONS
In this section, we discuss some of the implications of our
experience collecting and analyzing coverage data, recom-
mendations based on our findings, and directions for future
work.

Recommendations for the FCC: Our findings make a
case for including mechanisms that validate ISP-reported
coverage data, especially in rural and tribal regions. Given
the scale of cellular networks, crowdsourcing coverage mea-
surements is a viable approach to validate access as opposed
to controlled measurements. Within crowdsourcing, we sug-
gest leveraging incidental rather than voluntary approaches,
possibly working with third-party services that collect net-
work measurements as part of their service process (as in
the case of Skyhook).

In addition, crowdsourcing alone may not be sufficient for
determining coverage in some cases. Even with the more
complete datasets provided through incidental crowdsourc-
ing, rural areas tended to receive significantly fewer mea-
surements per tower. In such cases, mechanisms need to be
developed to precisely determine areas of greatest disagree-
ment using sparse crowdsourced datasets. Resources can
then be focused to target data collection in these areas in-
stead of a blanket approach measuring coverage everywhere.
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Recommendations for crowdsourced data collection:
We find some shortcomings in the existing crowdsourced
datasets. First, existing datasets only report areas with pos-
itive coverage, i.e., areas where coverage is observed. This
makes it difficult to distinguish areas that lack coverage from
areas for which no measurements were gathered. Record-
ing areas that lack a usable signal can enable more stronger
conclusions from crowdsourced data.
Second, we note that even crowdsourced datasets are

prone to overestimation of coverage potentially due to er-
rors in cell location and coverage estimation. Research efforts
that effectively utilize the knowledge of cellular network de-
sign are needed for an accurate characterization of coverage
from crowdsourced measurements. For instance, existing
cell location estimation techniques localize cells indepen-
dently (see Section 2.3) and are prone to errors when there
are few end-user measurements [15]. Instead, one can uti-
lize the fact that a single physical tower in an LTE network
hosts multiple cells. Thus, algorithms that jointly localize
cells for whom the end-user measurements are in physical
proximity may provide higher accuracy even with fewer end-
user measurements. Similarly, alternate data sources can also
be considered for localizing cell infrastructure such as us-
ing geo-imagery data to identify physical towers or directly
obtaining infrastructure data from entities that build and
manage physical cell towers (usually different from cellular
ISPs).

Measuring access beyond binary coverage: While the
focus of this work is on understanding coverage, we recog-
nize that a binary notion of coverage alone does not necessar-
ily indicate the existence of usable LTE connectivity. Various
other factors can impact end-user experience in a “covered"
area such as low signal strength or poor middle-mile con-
nectivity. Thus, future coverage measurement efforts need
to augment coverage reports with measurements of perfor-
mance to provide models that are more aligned with user
experiences. Measuring such performance metrics poses a
greater challenge because end-user experience depends on a
myriad of factors beyond just last-mile link quality. We be-
lieve that efforts that lead to increased community awareness
(e.g., workshops in public libraries, community meetings) on
the importance of measuring mobile coverage is the way to
tackle this problem.
Finally, we also note that access and adoption are dif-

ferent and there are issues beyond access that might also
warrant measurement and consideration as accountability
measures for operators. Our collection of ground truth data
sets involved five days driving through Rio Arriba County
in northern New Mexico. In preparation for the trip, we
worked to obtain SIM cards that would enable us to access
the networks of the four major U.S. LTE operators. This was
surprisingly difficult; over the course of a month leading up

to the measurement campaign, we spent a collective 24 hours
in various operator kiosks and stores in three states in order
to obtain four SIM cards (one for each major operator). At
one of the stores in Santa Fe, we encountered a woman who
had to drive an hour from Las Vegas, NM to address some of
the issues she was having with her mobile service operator
that were preventing her from using her data plan. While
these anecdotal experiences mirror the qualitative claims
of coverage overestimation, they do introduce a new set of
issues that need to be taken into account to effectively reduce
the barriers of Internet access for rural communities.

5 CONCLUSION
In this paper, we quantitatively examine the LTE coverage
disagreement among existing datasets collected using dif-
ferent methodologies. We find that existing datasets display
the most divergence when compared with each other in ru-
ral and tribal areas. We discuss our findings with respect to
their implications for telecommunications policy. We also
identify several future research directions for the comput-
ing community, including: mechanisms to augment existing
datasets to precisely determine areas where more concerted
measurement efforts are needed, improved coverage esti-
mation models especially for areas with a lower density of
crowdsourced measurements, and accurate and scalable mea-
surement of access beyond a binary notion of coverage.
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