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Abstract 
Mobility restriction is considered one of the main policies to contain COVID-10 spreading. 
However, there are multiple ways to reduce mobility via differentiated restrictions, and it is not 
easy to predict the actual impact on virus spreading. This is a limitation for policy-makers who 
need to implement effective and timely measures. Notwithstanding the big role of data analysis 
to understand this phenomenon, it is also important to have more general models capable of 
predicting the impact of different scenarios. Besides, they should be able to simulate scenarios 
in a disaggregated way, so to understand the possible impact of targeted strategies, e.g. on a 
geographical scale or in relation to other variables associated with the potential risk of 
infection. This paper presents an agent-based model (ABM) able to dynamically simulate the 
COVID-19 spreading under different mobility restriction scenarios. The model uses the Italian 
case study with its 20 administrative regions and considers parameters that can be attributed 
to the diffusion and lethality of the virus (based on a virus spread risk model) and population 
mobility patterns. The model is calibrated with real data and reproduces the impact that 
different mobility restrictions can have on the pandemic diffusion based on a combination of 
static and dynamic parameters. Results suggest that virus spreading would have been similar 
if differentiated mobility restriction strategies based on a-priori risk parameters instead of a 
national lockdown would have been put in place in Italy during the first wave of the pandemic. 
The proposed model could give useful suggestions for decision-makers to tackle pandemics and 
virus spreading at a strategic level. 
 

1. Introduction 
The recent health emergency caused by the COVID-19 pandemic has forced people to change 
their mobility behaviours, with the reduction of leisure travels and the promotion of 
teleworking and online educational activities (de Vos, 2020). Among the most applied 
contagion control measures, those relating to the limitation of travels, the so-called "stay-at-
home" order, have become widespread with the aim of avoiding the circulation of the virus in 
public environments. Public transport has been highly impacted both by government 
restrictions and travellers’ choices (Jenelius and Cebecauer, 2020; Gutiérrez et al. 2020). 



In the acute phases of the emergency, the disease has forced government agencies to consider 
several preventive measures to control its spreading. In Italy, during the first wave of 2020 a 
national lockdown of about two months was imposed by the government to limit population 
mobility, provoking a reduction in urban travel and number of air flights. During the second 
wave started in fall 2020, differentiated strategies have been implemented according to the 
“colours” of the regions based on multiple sanitary indicators (Ministero della Salute, 2020). 
However, data are not easily accessible or clearly explained to the public, resulting in 
uncertainties and, sometimes, leading to protests from the regional government departments.  
Notwithstanding the effectiveness of social distancing measures, the debate on the actual 
impact of travel limitation measures is very lively, both in the academic world and in public 
opinion. Public transport is a case in point, being its influence on the virus spreading debated 
(Tirachini and Cats, 2020). 
Mobility restrictions indeed affect the economic conditions of both people and governments 
and are also responsible for a “segregation effect” of people with low income (Porcelli et al., 
2020). It is therefore important to quantify the effectiveness of various measures on the spread 
of the virus, to avoid overestimating the effects of health prevention that can generate various 
equally serious economic and social externalities. 
Recent literature tries to quantify the actual effects of these restrictions on the virus spreading, 
e.g. via a multiple linear regression model also including the number of tests/day and 
environmental variables (Cartenì et al., 2020). However, the use of data on the spread of the 
infection in terms of total number of cases can lead to incorrect analysis results, precisely 
because this value is conditioned by the actual number of swabs carried out on the population. 
Indeed, the quantification of the results of these restrictions is difficult, especially due to the 
biased data available.  
Some authors focused on data of excess deaths, which are likely to be less affected by specific 
assumptions, and correlated them with mobile data, showing that mobility is responsible for 
more than 90% of the initial spreading in Italy and in France (Iacus et al., 2020). Other studies 
referred to the USA and Chinese cases analysed huge amounts of data and statistical models 
were used to show the strong correlation of such restrictions on the virus spreading (Xiong et 
al., 2020; Badr et al., 2020; Kraemer et al., 2020).  
Data analysis techniques usually play a big role to understand this type of phenoma; however, 
due to the rapid development of the pandemic, it is also important to have more general models 
capable of predicting the impact of different scenarios, independent from the available infection 
data. Simulation models could help to understand the possible impact of differentiated 
strategies (e.g. according to the geographical scale), and replicate the related scenarios in a 
disaggregated way. 
In this respect, agent-based models (ABM) have many advantages, among them the possibility 
of having a very rich data scenario with country-specific demography, the possibility of 
simulating complex social interactions and population mobility patterns. A further advantage 
of using the ABM approach is the stochastic nature of the simulations, which allows to 
implement a component of randomness (Huppert & Katriel, 2013; Shi et al., 2014). ABM have 
been used to simulate virus spreading, drawing inspiration from the so called SIR-based models 
(i.e. susceptible–infective-removed) and applying them to a dynamic simulation environment. 
Silva et al. (2020) proposed the so called COVID-ABS to simulate different scenarios (e.g. 
lockdown, use of face masks) and estimated the economic impact of them. However, they do 
not apply the model in a real case study, but reproduce a synthetic population of a closed 
society. Najmi et al. (2020) extended an existing activity-based model named SydneyGMA 
model to replicate the case of Sydney by determining COVID-19-specific parameters and 
considering the interaction among agents and, thus, resulting in a useful model at a city level. 



This paper proposes an agent-based model to dynamically simulate the impact of mobility 
restrictions on the spreading of the COVID-19 at a national scale. The model proposed is new 
since it reproduces a real case study, i.e. Italy, at the level of details of country regions and 
considers multiple data sources and a-priori parameters that can be related to the risk of 
spreading. To build the ABM, we drew inspiration from a previous study aimed at measuring 
an a-priori risk index for each of the 20 regions in Italy (Pluchino et al., 2021). The Authors 
showed that the geographic distribution of this index correlates with the available COVID-19 
official data related to the pandemic spreading. Based on this, possible policy interventions 
have been suggested to tackle the virus spreading. In this study, a dynamical version of this 
model has been implemented in a simulation environment to test the previous findings through 
an agent-based approach. In addition, a scenario analysis will be presented, differentiating 
region by region the measures to restrict mobility that could have been implemented to 
struggle the pandemic. 
The remainder of the paper is organised as follows. Section 2 presents the data and methods 
used to build the ABM, while section 3 introduces the case study and the related model steps. 
Section 4 presents and discusses the results with some policy implications. Section 5 concludes 
the paper. 
 

2. Data and Methods 
  
The rationale behind the use of ABM is to evaluate how the epidemic spread changes on the 
basis of different mobility restriction policies. 
To build the ABM, authors drew inspiration from a previous study aimed at measuring an a-
priori risk index for each of the 20 regions in Italy (Pluchino et al., 2021). The study showed 
that the geographic distribution of this index correlates with the available COVID-19 official 
data about the number of infected individuals, patients in intensive care and the number of 
deaths. More in detail, the risk index was built combining the following indicators, extracted 
from data collected on a regional basis before the beginning of the pandemic: mean winter 
temperature (Wt),  since low temperatures affect the spread and transmission of the virus;  
housing concentration (Hc), since urbanization of cities leads to a more threatening diseases 
diffusion; healthcare density (Hcd), as it was found the potential of hospitals to favour super-
spreading events; population mobility (Pm), since this favour the interaction among people and 
the virus transmission; air pollution (Ap): the correlation between exposure to particulate 
pollution and the diffusion of COVID-19 is demonstrated by various studies; population over 60 
(P_over60), considered more vulnerable to suffer virus effects. References and more detailed 
information can be found in Pluchino et al. (2021). 
In the ABM proposed there are two type of agents: regions and individuals. Based on the actual 
population of each region, a proportional number of individuals is assigned, considering that 
each individual-agent is representative of a certain number of real individuals (with a scale of 
approximately 1:1000 based on the actual number of Italian population).  
This approximation was made in order to avoid excessive simulation time arising from 
considering the real scale of the Italian population. 
A description of the parameters affecting agents’ behaviours is provided in section 3.1. 
The construction of the model can be summarized in the following steps: 
- agents setup; 
- virus spreading model; 
- scenario setup; 
- scenario simulation. 



The ABM simulations were carried out through the NetLogo software, which is a multi-agent 
programmable environment for simulating and modelling complex systems by taking into 
account the evolution of the “agents” over time (Wilensky, 1999).  
 
In the following, the case study of Italy is presented more in detail together with a description 
of the related model’s phases . 
 

3. Case study 
 
The case study analysed in this work is related to Italy and its 20 administrative regions. Italy 
was the first European country in which the virus appeared, although the dynamics of spread 
and the date of the first infection remain uncertain. The first confirmed cases of contagion date 
back to 2020, January 23rd, when two tourists from China were tested positive for the virus in 
Rome. The first two outbreaks of COVID-19 infections with positive cases of Italian citizens 
were reported later on February 21st, in Lombardy and Veneto1. Since then, the infection has 
spread throughout Italy with varying intensity. Nevertheless, several studies have shown that 
there were actually cases even before (Apolone et al., 2020, Valenti et al., 2020). On March 7th a 
government measure imposed some travel limitations. On March 11th, the restrictive measures 
were converted into a national lockdown, with a “stay-at-home” order allowing travelling only 
for essential services or urgent reasons, with the aim of stopping the spread of the virus. This 
national lockdown of about two months has provoked a tough reduction both in short and long 
distance travelling.  
Figure 1a shows statistics on the number of daily cases in Italy. As can be seen, the trend 
increases starting from March and it seems to have a surge in this second wave starting from 
October 2020. The first trend is justified by the difficulty to accurately detect the actual number 
of infected (Tradigo et al., 2020).  Subsequently, with the growth in the number of swabs, the 
share of recorded infected people has gradually increased. Nevertheless, uncertainties on the 
actual number of cases still remain, due to the biased data available on the contagion rate.  
In October 2020, the World Health Organization (WHO) stated that 10 percent of the global 
world population was infected with the virus2. This leads to the belief that also in Italy the 
number of infected was actually much higher than reported by official data sources, touching 
the millions of infected. This number is also comparable with the average annual number of 
seasonal flu cases3. The number of daily deaths (Figure 1b) has instead the same order of 
magnitude in both waves.  
The absence of reliable data on the number of infections did not allow to have clear information 
on the actual effects of the restrictions imposed in the first COVID-19 wave on the virus 
spreading. 

 
Figure 1 - Daily New Cases (a); Daily Deaths (b) in Italy (source: https://www.worldometers.info/coronavirus/country/italy/) 

 
1 https://lab24.ilsole24ore.com/storia-coronavirus/  
2 https://www.cnbc.com/2020/10/05/who-10percent-of-worlds-people-may-have-been-infected-with-virus-.html 
3 https://www.epicentro.iss.it/influenza/stagione-2019-2020-primo-bilancio 
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https://www.worldometers.info/coronavirus/country/italy/
https://lab24.ilsole24ore.com/storia-coronavirus/


Based on these premises, we developed an ABM able to reproduce a contagion rate which 
matches WHO statistics (resulting in a higher number of total cases) and the differentiation of 
infections between the Italian regions visible from the data collected by the Italian Ministry of 
Health. In this paper the authors will use the model to simulate different mobility restriction 
scenarios and evaluate the related impacts during the first epidemic wave in 2020. As shown in 
Figure 2, the realistic geographical distribution of representative agents on the Italian territory 
allows to simulate the population mobility either in absence or in presence of restrictions, 
evaluating in real-time the virus diffusion and the corresponding effects in terms of infections 
and mortality. 
Thanks to the results obtained, it will be possible to provide suggestions on mobility 
restrictions for an emergency plan that could be adapted not only for the case of COVID-19, but 
also for other pandemics. 
 

 
Figure 2 - Simulation environment 

The steps of the ABM and the selected scenarios are described in the following.  
 
 

3.1. Model Steps 
 
Agents setup 
In the setup phase all the parameters relating to both regions and individuals are set. Each agent 
r (region) is characterized by the following parameters: Wt, Hc, Hcd, Ap, Pm and P_over60. Each 
agent i (representing individuals) inherits the first 5 parameters from its home region and is 
classified in an age-group depending on the percentage of P_over60.  
The dynamics of the model is given by the changes in the Pm parameter (Pm_reduction), which 
are evaluated for each agent r and different time windows, according to mobility restriction.  
Individual-agents in the model move according to the assigned mobility index multiplied by a 
variable probability of making a trip belonging to distances classes from 2 km to 50 km or more. 
(Figure 3). Trips over 50 km are considered as done by plane . For the mobility procedure 
reference was made from an Italian mobility report which provide an overview of the mobility 
habits of people in Italy (“16° Rapporto sulla mobilità degli italiani”, source: ISFORT4). For 
airline mobility, authors referred to a dataset containing Origin-Destination matrix of airline 
travel for each region (source: ENAC, 20195). 

 
4https://www.isfort.it/progetti/16-rapporto-sulla-mobilita-degli-italiani-audimob/ 
5https://www.google.com/search?q=enac+dati+traffico+2019/ 



 
Figure 3 - Scheme of distances classes 

 
The model is capable of dynamically reproduce mobility restrictions by using three main 
datasets that provided from March 7th until June 25th  the reduction of air flights, daily mobility 
radius, and number of trips. OpenData are used to gather information about mobility decrease 
considering, in particular, the reduction of air flights from 2019 to 2020 and the reduction of 
the radius and number of overall trips (references are reported in Table 1).  
Table 1 summarizes agents parameters (P). Each parameter has been normalized between 0 
and 1, as in Pluchino et al. (2021). 
 

P Description and unit Source Type 
Wt Average winter temperature 

(°C) 
Italian Ministry of 
Agriculture (2016-2017) 

Fixed for each region 

Hc Ratio between the total 
number of houses and the 
number of houses classified as 
"detached houses" 

Italian Ministry of Economic 
Policy Planning and 
Coordination (2011) 

Fixed for each region 

Hcd Number of hospital beds per 
inhabitant 

Italian Ministry of Health 
(2019)  

Fixed for each region 

Ap Exposure to concentrations of 
particulate matter (PM) 

WHO (2016) Fixed for each region 

Pm Ratio between the sum of 
commuting flows (incoming 
and outgoing) for a region and 
the population employed in 
the region. 

Italian Ministry of Economic 
Policy Planning and 
Coordination (2011) 

Fixed for each region 

Pm_reduction 1. reduction of air flights 
(%); 

2. reduction of the dimension 
of the daily mobility radius 
(%); 

3. reduction of the number of 
trips (%); 

 

1. EUROCONTROL; 
2. Covid19mm.github: first 

report; 
3. Google: covid19-mobility 

Dynamic time 
windows 

P_over60 Fraction of population over 60 ISTAT (2011)  Fixed for each region 
Table 1 - Summary of agents parameters 

Virus spreading model 



For the calculation of risk index (RI) authors referred to the Crichton’s Risk Triangle (Crichton, 
D., 1999), which evaluates RI as a function of three parameters: hazard, vulnerability, and 
exposure. (i) Hazard takes into consideration those factors that can intervene in the spread of 
the infection; (ii) Vulnerability is a measure of an individual's likelihood of being infected; (iii) 
Exposure refers to the number of exposed people.  
In the study of Pluchino et al. (2021), the RI is calculated for each region r as a floating point 
variable between 0 and 1 and is obtained as: 
 
RI = HAZARD ∙ VULNERABILITY ∙ EXPOSURE       (1) 
 
Hazard, vulnerability and exposure are also floating point variables between 0 and 1, in turn 
calculated as follows: 
 
HAZARD = 1/3 ∙ Hc + 1/3 ∙ Hcd + 1/3 ∙ Pm             (2) 
 
VULNERABILITY = 1/3 ∙ Wt + 1/3 ∙ Ap + 1/3 ∙ P_over60       (3) 
 
EXPOSURE = population of each region         (4) 
 
In the ABM model authors propose a dynamic version of RI by referring it to each individual-
agents. In this respect the new risk index (ri) is calculated as follow:  
 
ri = hazard ∙ vulnerability         (5) 
 
hazard= 1/3 ∙ Hc + 1/3 ∙ Hcd               (6) 
 
vulnerability= 1/3 ∙ Wt + 1/3 ∙ Ap         (7) 
 
The model provides a disaggregate version of RI in which the Pm, P-over60 and exposure 
component are specific characteristics referred to each agent i and therefore are not considered 
for the direct calculation of the risk index. 
In order to simulate the total Italian population (about 59433744 individuals at the beginning 
of 2020) we adopt 60000 agents i, each one representing 991 real individuals, then we 
distribute them at random inside the territory of each region (see the black dots in Figure 2), 
proportionally to the respective inhabitants.  
RI is therefore assigned to each region and also characterizes each individual living in that 
region, as explained below. Official data show that 95% of people died in Italy due to COVID-19 
were aged over-606. For this reason, for the calculation of RI, a distinction was made between 
under 60 and over 60, increasing the probability of being exposed for the latter category. 
By combining the RI with the mean infection duration, the model determines the status 
associated to each individual on the basis of a SIR-based approach (Kermack and McKendrick, 
1927): susceptible, infected, isolated (or not isolated), immune and dead.  
While hazard and vulnerability are parameters directly linked to each individual, virulence and 
lethality are related to the characteristic of the virus. Virulence, which corresponds to the 
contagiousness of the virus, is a fixed parameter. Its value has been chosen through a calibration 
procedure by reproducing different scenarios by varying virulence until obtaining results 
comparable to the real data in terms of number of deaths. Also for the lethality, which 
correspond to the mortality level of the virus, reference was made to real data.  

 
6 https://www.epicentro.iss.it/coronavirus/sars-cov-2-decessi-italia 

https://www.epicentro.iss.it/coronavirus/sars-cov-2-decessi-italia


Due to the data uncertainty, lethality value varies according to a Gaussian probability 
distribution with mean 0.02 and standard deviation 0.01, i.e. lethality oscillates around 2% 
(Russell et al., 2020).  
The mean infection duration, based on official data (Italian Ministry of Health7), is considered 
equal to 10 days.  
Individual-agents change their status according to the procedure summarized in the following 
flowchart below (Figure 4) and described in the following. 

 

 
Figure 4 - Individual’s status change procedure flowchart 

The simulation starts with two agents with the status “infected” which represent the “zero 
patients”. All the other individual-agents start from a status called “susceptible”. Once the 
simulation starts and the individuals begin to travel according to the assigned mobility index, if 
a “susceptible” individual encounters an “infected” one, it will have a probability to contract the 
virus based on the product between hazard and virulence. If the result of this product is more 
than a random floating number between 0 and 1 (random-float 1 in Figure 4) , individuals will 
change their status to "infected". After getting infected, the individual is assigned with a 
probability of being symptomatic (≤ 10%) or asymptomatic (≥ 90%)8, linked respectively to the 
new status or “isolated” and “not isolated”. Finally, after the mean infection duration, the 
individual dies or recovers from the infection, by comparing the product between vulnerability 
and lethality with a random floating number between 0 and 1, assuming respectively “dead” or 
“immune” status. 
 
Choice of analysis scenarios 

 
7 http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&id=5117  
8 https://www.istat.it/it/archivio/246156 



According to policies suggestions by Pluchino et al. (2021), the following scenarios have been 
tested: 
− Status Quo: Same total mobility restrictions for all regions; 
− Scenario N1: No mobility restrictions at all (RI=1 for all regions); 
− Scenario S1: Total mobility restrictions for all the regions (RI=1 for all regions); 
− Different mobility restrictions according to 3 zones based on the values of the following 

parameters (Table 2, Table 3 and Figure 5): 
o mobility index (Scenario M); 
o hazard (Scenario H); 
o vulnerability (Scenario V); 
o risk index (Scenario RI). 

More details on how these parameters were calculated can be found in Pluchino et al. (2021).  

 
Table 2 - Zone classification according to mobility index, hazard, vulnerability and risk index 

 
Risk index zone Parameter ZONE 1 ZONE 2 ZONE 3 
Scenario M mobility index 

No mobility 
restriction 

50% of mobility 
restriction 

Total mobility 
restriction 

Scenario H hazard 
Scenario V vulnerability 
Scenario RI risk index 

Table 3 - Characterization for zone-based scenarios 



   
 

Figure 5 – Classification in three zones, with increasing mobility restrictions, for scenarios defined in Table 3 

 
Scenario simulation 
Following the real case study, the analysis of different scenarios has the same starting date as 
the governmental restriction introduced in Italy (i.e.  March 7th, 2020). December 28th, 2019 
was chosen as the starting pandemic date for all scenario, due to the uncertainty of the 
beginning of the infection in the country (Apolone et al., 2020, Valenti et al., 2020).  
The two “zero patients” are in Lombardy and Lazio, regions where the first cases of COVID-19 
occurred and also those where hub airports are present; hence they were considered the 
regions with more connections to other countries.  
The output data of the simulation, calculated on June 25th, 2020 (after the end of the first 
epidemic wave), are the following:  

− Number of infected people for each region; 
− Number of dead people for each region. 

Each scenario was simulated 5 times and the results were averaged to have a statistic of the 
events. Computing simulation time for each scenario assume reasonable values (about 20 
minutes). 

4. Results and discussion 
 
In the following, results showed in Figure 6 and Figure 7 will be presented and discussed. 
In the first rows of these figures, a comparison will be made between the status quo (a scenario 
assuming the national lockdown adopted by the Italian Government during the first epidemic 
wave) and the real COVID-19 data concerning, respectively, the cumulated number of infected 

 

Scenario H 

Scenario V Scenario RI 

Scenario M 



and the cumulated number of deaths. It is worthy of notice that the order of magnitude for the 
simulated infection cases substantially differs from that one of official data, while it is the same 
for the number of deaths. As already anticipated, the absence of an adequate tests sampling, 
especially in the first wave, has led to an unreliable number of infected recorded by the official 
institutions. Through the simulations it has been verified that, in order to obtain a comparable 
total number of deaths (about 39,000 simulated against the 35,000 real, from December 28th, 
2019, until June 25th, 2020), it is necessary a number of circulating infected individuals running 
into the millions.  This finding confirms the hypothesis, already discussed in Section 3, that the 
official data about infected was heavily underestimated. However, in terms of relative 
distribution of cases in the various regions, the comparison of the two chromatic maps in the 
first row of Figure 6  is quite good. The same holds also for the analogous comparison in Figure 
7, where the simulated distribution of deaths among the Italian territories correctly identifies 
the northern regions as the most damaged, as in reality. The apparent discrepancy concerning 
the central and southern regions, which in the status quo simulation registered fewer deaths 
than in the real cases, can be explained recalling that the main approximation of the present 
model lies on the fact that each agent is representative of about 1,000 individuals. Therefore, 
the epidemic behaviour in regions with less than 1,000 deaths cannot be properly captured by 
the simulations, which return a null result.  
The next step is to compare the status quo scenario with other alternative zone-based scenarios, 
i.e. M, H, V and RI. Looking again at Figure 6 and Figure 7, second and third rows, it can be 
noticed the expected increase in the number of infected and dead people due to the lower 
restrictions. As summarized in Table 4, the increase is about 20% on average for the total 
number of infected and 25% for the total number of deaths for the whole Italian territory. The 
increase for the most damaged region, i.e. Lombardy, goes from 20% to 31% for both infected 
and dead people. This suggests that, even if solutions with partial lockdowns are of course 
preferable from the socio-economic point of view, the increment in terms of loss of human life 
is not negligible with respect to the total lockdown, and should be carefully evaluated. On the 
other hand, there are no relevant differences in the results of the four indicator-based 
scenarios. Therefore, the RI scenario can be considered as the best solution, since is the one 
implying less restrictions, i.e. fewer regions in lockdown. 
Pluchino et al. (2021) already demonstrated the effectiveness of RI as a good indicator of virus 
spreading and consequences on the population, by correlating its regional values with real data 
of the first wave of the pandemic. Here, we can try to support this result by simulating two new 
scenarios with RI = 1 for all regions, i.e. with the same a-priori risk for the whole territory, and 
showing that the results are not compatible with real data. Scenario N1 simulates virus 
spreading in absence of lockdown while scenario S1 simulates the same national lockdown of 
the status quo. As expected, a huge increase in the number of infected and deaths (more than 
100%) with respect to the simulated status quo is observed, particularly in scenario N1. This 
suggests that the consequences in terms of infected and deaths would have been much worse 
if a-priori conditions would have no influence on virus spreading. Moreover, in these scenarios 
damages would be more uniformly distributed over the Italian territory than in reality, without 
substantial differences between northern and central-southern regions.  



 
 

Figure 6 - Distribution of number of infected for each scenario 

Scenario H Scenario V 

Scenario N1 Scenario S1 

Status quo Real Data 

Scenario RI 
REI 

Scenario M 



 
          

Figure 7 - Distribution of number of deaths for each scenario 

 
 
 
 
 
 

Scenario N1 Scenario S1 

Scenario M 

Status Quo 

Scenario H Scenario V 

Scenario RI 

Real Data 



SCENARIO 
Number of region for each zone 

% increment of 
infected with respect 

to SQ 

% increment of 
deaths with respect 

to SQ 
ZONE 1 ZONE 2 ZONE 3 Total Lombardy Total Lombardy 

M 6 9 5 +22% +30% +28% +31% 
H 4 10 6 +17% +25% +30% +30% 
V 12 7 1 +22% +30% +18% +20% 
RI 13 6 1 +21% +28% +26% +30% 
N1 20 0 0 +123% +1% +187% +31% 
S1 0 0 20 +106% -12% +156% +18% 

Table 4 - Summary of the results obtained for each scenario 

In terms of policy implications, the main result is that differentiated mobility restrictions for 
the different regions are a suitable solution to limit virus spreading while reducing the overall 
impact on the economy. This is in line with the policies adopted by the national Government for 
the second wave that defined three zones (red, orange and yellow) based on multiple 
healthcare indicators, which depend both on the ability of each regions to cope with the virus 
spreading, and real-time data based on a continuous monitoring. However, our model suggests 
solutions that could be applicable for any sanitary emergency, regardless of real-time data, 
which could be, as in this case, naturally biased. In this respect, the ABM could be used to set 
the initial mobility restrictions, which should be updated according to the dynamic conditions 
linked to the virus spreading.  
In other words, the model could be considered a decision-support tool for any strategic plan to 
contrast pandemics based on respiratory diseases, allowing a classification of regions based on 
a-priori data that could be regularly updated to have an up-to-date risk assessment for each 
region and know in advance the impact of different mobility restrictions strategies. This is 
particularly important and needed, given the unpreparedness of different countries to cope 
with the virus and, in the case of Italy, the lively debate around the outdated pandemic plan9. 
Moreover, since the model predicts the impact of the reduction of the radius of trips on the virus 
spreading, it could be also used to simulate targeted policies based on municipal, regional or 
national mobility. In the performed simulations, a lower radius for trips (i.e. short trips) 
reduces the risk of contagion because of a lower probability of getting in touch with other 
people, and this suggests that local policy-makers should guarantee adequate accessibility to 
essential services on short distances during pandemics and promote the use of sustainable 
transport modes to reach them, also in the view of the effects of pollution on the transmission 
of respiratory disease, proven also in the case of COVID-19 (Hensher, 2020, Gutiérrez et al. 
2020). The Italian government is following this path, implementing national policies for the 
purchase of non-polluting vehicles (e.g. “Buono mobilità”), and promoting the construction of 
infrastructures dedicated to active mobility10,11. 
 
 
 
 
 
 
 
 

 
9https://www.theguardian.com/world/2020/aug/13/italy-pandemic-plan-was-old-and-inadequate-covid-report-finds 
10https://www.gazzetta.it/bici/03-11-2020/milano-50-chilometri-nuove-piste-ciclabili-l-obiettivo-2020-390550946007.shtml 

11https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2020-09-

05&atto.codiceRedazionale=20A04737&elenco30giorni=false 



 

5. Conclusion 
In this paper an ABM model for dynamically simulating the impact of mobility restrictions 
during COVID-19 pandemics in Italy is presented. Different mobility limitation scenarios have 
been simulated with the aim of suggesting possible policy measure to limit the virus spreading. 
The scenario construction is based on the assignment of different mobility restrictions: no 
mobility restrictions at all, total mobility restrictions or different mobility restriction 
corresponding to 3 zones according to different parameters (i.e. M, H, V and RI). The main 
results show that assigning an a priori regional risk allows to adopt policies of localized 
restrictions that maintain almost the same effectiveness as a complete closure, allowing the 
opening of a greater number of economic activities and a greater mobility. 
In this second wave, the Italian government decided a similar zonation, classifying Italian 
regions into three risk areas based on the progressive gravity of health emergency.  
These government measures consider only sanitary parameters and are suitable for real-time 
management of the health emergency. However, at the beginning of the pandemic, the adoption 
of an adequate pandemic plan could have led to less drastic economic consequences (Haug et 
al., 2020).  
In this respect, the model proposed in this paper aims at providing useful suggestions to 
contrast epidemic emergency in the context of a preliminary strategic plan.  The reproducibility 
of the model and its scalability to different territorial contexts makes it a tool able to provide 
valuable information for government agencies to undertake the proper interventions in the 
event of a pandemic diffusion. In this respect, as future research, it should be tested in other 
contexts where the virus spreading followed different patterns. Finally, the ABM can also be 
adapted to other health emergencies caused by respiratory diseases. 
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