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Abstract—The recent outbreak of COVID-19 poses a serious threat to people’s lives. Epidemic control strategies have also caused
damage to the economy by cutting off humans’ daily commute. In this paper, we develop an Individual-based Reinforcement Learning
Epidemic Control Agent (IDRLECA) to search for smart epidemic control strategies that can simultaneously minimize infections and the
cost of mobility intervention. IDRLECA first hires an infection probability model to calculate the current infection probability of each
individual. Then, the infection probabilities together with individuals’ health status and movement information are fed to a novel GNN to
estimate the spread of the virus through human contacts. The estimated risks are used to further support an RL agent to select
individual-level epidemic-control actions. The training of IDRLECA is guided by a specially designed reward function considering both
the cost of mobility intervention and the effectiveness of epidemic control. Moreover, we design a constraint for control-action selection
that eases its difficulty and further improve exploring efficiency. Extensive experimental results demonstrate that IDRLECA can
suppress infections at a very low level and retain more than 95% of human mobility.

Index Terms—COQOVID-19, RL, GNN

1 INTRODUCTION

The recent outbreak of COVID-19 has caused thousands of
infections and deaths. Similar to most epidemics that can
spread via human contact [1], control the spread of the
COVID-19 virus requires cutting off human contacts. Gov-
ernments have taken different epidemic-control strategies,
such as travel-restriction orders, individual quarantine poli-
cies, and city lockdown [2]. However, restricting human’s
daily mobility and gathering will inevitably pose a negative
effect on economic growth. The current epidemic control
strategies for COVID-19 has ultimately caused damage to
the economy [3], [4].

To control the epidemic both efficiently and effec-
tively, researchers have proposed smart and computational
Epidemic-Prevention-and-Control (EPC) strategies in both
group level and individual level. Group-level EPC strategies
[5], [6] aim to select customized epidemic-control actions for
each population group. These works are mainly based on
the SIR model [7] which can characterize the development
trend of the epidemic from a group-level view. However,
Group-level EPC strategies ignore the unique situation of
each individual, which may easily cause unnecessary mo-
bility intervention costs or secondary transmission of infec-
tion. By contrast, individual-based EPC strategies exploit
individual information to estimate infection risk for each
individual, and further select a customized epidemic-control
action for each individual [8]. However, current individual-
based EPC strategies [9], [10], [11], [12], [13] lack a module to
estimate the spread of the virus through complex contacts
between individuals. To achieve an efficient and effective
EPC result, we in this paper aim to maximally make use of
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available information and design an individual-based EPC
strategy that can both minimize the number of infections
and the social cost of epidemic control.

The main challenges of our research are three-fold. First,
primitive individual information can hardly reflect an in-
dividual’s infection risk. For example, an asymptomatic
patient who has a very high infection risk is usually hard
to detect just through symptoms. In other words, the large
population and their complex information form a vast state
space for control, making it very hard to extract effective
information to support the selection for control actions.
Second, the large and complex action space exacerbates the
difficulty of control-action selection. If there exist M people
and d kinds of control actions, the action space is M 4 which
is growing exponentially. Third, searching for a policy that
achieves the dual objective of minimizing both infections
and the social cost of implementing the strategy is hard. The
two optimization goals will influence each other. For exam-
ple, better control of the epidemic requires greater control
efforts, which will naturally increase mobility intervention
costs.

To solve the above challenges, we propose an Individual-
based Reinforcement Learning Epidemic Control Agent
(IDRLECA) by combining Graph Neural Network and Rein-
forcement Learning approach. Specifically, to deal with the
vast-state-space challenge, we design an infection probabil-
ity model to calculate the current infection probability of
each individual, whose result is further added to the indi-
vidual’s state as auxiliary information. In order to better ex-
tract individual features hidden in his/her daily commute,
we design a novel GNN which inputs with individuals’
states their visiting history and estimates their infection
risks of individuals. As for the large-action-space challenge,
we design and impose a constraint to control-action selec-
tion by requiring individuals with larger calculated infection
probability should receive more stringent control actions.
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In response to the dual-objective optimization challenge,
we carefully design a reward function considering both
the social cost of EPC and the effectiveness of infection
suppression. More importantly, the reward function is able
to efficiently guide training.

We build a simulation environment based on the PAPW
Challengeﬂ and experimentally compare the performance
of expert EPC strategies, winners in the PAPW Challenge,
and our proposed IDRLECA. Extensive results show that
IDRLECA achieves the best performance for both infection-
suppression and mobility-retaining in all three compared
scenarios.

In summary, this paper makes the following contribu-
tions:

e We propose IDRLECA to minimize the number of
infections and the social cost of EPC. IDRLECA
achieves the best performance in both infection-
suppression and mobility-retaining compared with
expert baselines and PAPW winners.

o We propose a method to address the vast-state-space
problem in individual-based EPC. Our method in-
cludes an infection-probability model and a novel
GNN.

e We design and impose a constraint to control-action
selection to improve the exploration efficiency of
IDRLECA in the extremely large action space.

The remainder of this paper is as follows. We first
introduce our problem formulation in Section 2 and intro-
duce our method in Section 3. The experiment results are
presented in Section 4. We introduce the related works in
Section 5 and conclude our paper in Section 6.

2 PROBLEM FORMULATION AND CHALLENGES

In this section, we formulate the problem of individual-
based EPC and discuss the challenges in finding an effective
EPC policy.

2.1 Formulation

We consider a within-city epidemic control scenario. The
city is assumed to be composed of N areas and has a
population of M. Each individual’s health status can be:
Susceptible, Asymptomatic, Symptomatic, and Recovered.
Asymptomatic and Symptomatic individuals are both in-
fected. Each individual will commute between different
areas according to some predefined commute rules. When
people are staying in the same area, they have a probability
to contact each other and their health status will change
from Susceptible to Asymptomatic. The Asymptomatic sta-
tus will Symptomatic after a predefined incubation time.
Symptomatic individuals will be sent to the hospital and
transit to Recover after a predefined time of treatment. Note
that policymakers cannot distinguish between Susceptible
individuals and Asymptomatic individuals. The goal of
individual-based EPC is to select a control action for each in-
dividual in the Susceptible group and Asymptomatic group
to minimize the number of infected people and the cost of
intervention measures. Specifically, we define four kinds of

1. PAPW 2020: https:/ /prescriptive-analytics.github.io/.
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control actions: No Intervention, Confine (no contact with
people living outside his/her residential area), Quarantine
(no stranger contact), Isolate (no contact). The above mod-
eling for epidemic transmission and individual-based EPC
actions is shown in Figure 1.
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Fig. 1. Epidemic Spread and Intervention(CDC: Center for Disease
Control and prevention).

Once the number of infected people exceeds a threshold,
the medical system will be penetrated, leading to a rapid
increase in medical costs. On the other hand, when the
mobility intervention is greater than a certain threshold, the
economic system will be paralyzed, also leading to a sharp
increase in social cost. So we design the metric Score to
evaluate the total cost of an EPC policy to consider reducing
the infections and maintaining the mobility at the same time.
The smaller Score value indicates better EPC results. Score
is defined as follows:

Q=Ap*Np+ X% Ny + Ay * Ny + A Ng,

I
Score = exp + exp Q ,
0r 0o

where I denotes the total number of infected people within
all simulation days, ) denotes the aggregate of mobility
interventions, Ny, N;, Ny and N, denote the accumulated
number of hospitalized, isolated, quarantined, and confined
people for all simulation days, 0; and 0g refers to the
soft thresholds for medical system'’s capacity and economic
system’s endurance. Ay, A;, Aq and A, denote scale factors.
In this paper, we aim to find an EPC policy that gives
daily control actions for all individuals to minimize Score.

2.2 Challenges

Finding an effective EPC policy is challenging in three
aspects:

2.2.1 Vast State Space

The invisibility of asymptomatic patients and people’s com-
plex contacts makes the state space vast. It’s difficult to ex-
tract effective features for control-action selection. To tackle
this challenge, we propose two solutions. We design an
infection probability model to calculate the current infection
probability of each individual. The probability is added
to the state of each individual as auxiliary information.
Moreover, IDRLECA employs a novel GNN acquires the
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whole individuals’ state and the area visited history as
input, which can estimate the infection risks through the
contact between individuals. The estimated infection risks
which measure the individual’s ability to potentially infect
others are further used as action thresholds to support the
selection for actions.

2.2.2 Large Action Space

Individual-level epidemic control aims to select a control
action for each individual, which brings an extremely large
action space for this control problem. This further leads
to low exploration efficiency for reinforcement learning. In
order to solve this challenge, we design an infection proba-
bility model to calculate the current infection probability for
each person and use IDRLECA to output different action
control thresholds for each individual. The estimated risks
are further used to support RL’s selection for action actions.

2.2.3 Dual Objective Optimization

Since our goal is to minimize the social cost Score which
contains two optimization objectives of the entire epidemic
control process. To solve this problem, we propose a spe-
cial design instant reward, which considers the number of
new infections on two consecutive days and the mobility
intervention cost on the current day.

3 METHODOLOGY

To tackle the above challenges, we develop an Individual-
based Reinforcement Learning Epidemic Control Agent
(IDRLECA) that employs a novel GNN and RL approach to
search for smart control policies. An overview of IDRLECA
is shown in Figure |2} At each time step, IDRLECA collects
the health status, intervention state and area-visit-history for
each individual and gives each a customized intervention
action. In the rest of this section, we will provide the details
of the IDRLECA.
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Fig. 2. The detailed structure of proposed IDRLECA.

3.1 Infection Probability Model

The difficulty of epidemic prevention and control lies in
how to find asymptomatic infections and how to take timely
and effective measures. To help the latter part of IDRLECA
efficiently take use of effective information, we here design
an infection probability model to estimate the probability
of an individual being infected. We define the probability

3

of infection and health of the i-th person as p."/® and ph*!,
respectively. The infection probabilities of contacting with
strangers and acquaintances are calculated by the simula-
tion environment, denoted as p, and p., respectively. The
infection probability model works as follows:

Step 1: Trace back all individuals’ area-visit history in
the past T" time steps.

Step 2: For individual ¢,7 = 1,2, ..., M, define his/her
probability of being healthy as p?jl at time step t. p%l is
initialized to be 1 if individual 7 is not infected. we have the

following equation to update p?jl:

hel

Ninfe
plel = phel w1 —psNZi;ia),t =1,2,..,T, 1)
t—1

where NZT{ ¢ and Ng,e, refer to the number of discovered
infections and total number of visitors to the same area as
individual ¢, respectively.

Step 3: Update pfeTl for acquaintances’ contacts:

PP =g« (1= po). @)

Step 4: Acquire infection probability:
" =1-p5, ®3)

After the above steps, we can obtain the estimated
probability of an individual being infected. We will use it
as auxiliary information and add it to each individual’s
state. Also, the estimated probabilities are used as prior
knowledge for the agent selection control actions. Note that
this estimation is not 100% accurate since our estimation
simplifies the process of contact and spread of virus between
people. In the later part, we will combine GNN to solve this
problem.

3.2 Reinforcement Learning

We propose IDRLECA to search smart strategies to mini-
mize the spread of epidemic and cost of intervention at the
same time. We treat all individuals in the area as one agent.
Therefore, for IDRLECA, its status and actions are for all
people. We use one day as the decision time interval. In the
following, we will introduce our design of state, action and
reward:

o State: The state of IDRLECA is the integration of
each individual’s information, which is obtained
at the start of one day. For each individual, the
state includes infection state, intervention state, and
the probability of infection calculated by Equation
H~(3).

o Action: The action at each step for the agent is to
determine the intervention measure of each individ-
ual. The action contains no intervention, confine, and
quarantine. In order to ensure the flexibility of the
policy, we set the implementation time of actions to
one day.

o Reward: The goal of our method is to minimize the
total number of infected people, and to minimize the
total intervention cost at the same time. Considering
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our dual objective optimization, we set the reward r
as follows,

AT A
r:—emp{al}—emp{ef}, (4)

where AT and A(Q) denote the daily incremental part
of the number in the infected population between
consecutive days and the cost of mobility interven-
tion on the day, respectively.

e Learning Algorithm: IDRLECA employs a Proximal
Policy Optimization(PPO) [14] agent to find the op-
timal strategy that minimizes the number of infected
people and the cost of prevention at the same time.
The PPO agent adopts the actor-critic framework.
The critic network is used to estimate the long-term
reward of the action, and the actor network is to find
the optimal action policy to achieve dual objective
optimization. We also add an entropy bonus to en-
sure sufficient exploration when RL training [14].

3.3 Individual Contact GNN

Since asymptomatic patients are indistinguishable, it’s hard
to trace all the contacts and infections caused by them.
Moreover, vast modern traffic and complex social network
structure make it more challenging to estimate the infection
risk of each individual. To deal with this challenge, we
propose a novel GNN, namely Individual Contact GNN,
to estimate the infection risk of each individual. Individual
Contact GNN is used to build both the actor network and
critic network in IDRLECA. The GNN regards individuals
and city areas as two kinds of nodes. This enables us to
model individual-individual contacts by individual-area-
individual contacts, which further helps us to avoid the
extremely large individual-individual contract matrix (size
M« M).

Specifically, Individual Contact GNN is designed on the
basis of GraphSage [15]. The state input to the GNN consists
of health status, intervention state, infection probability for
all individuals, and the edge-information inputs are the
area-visit-history at different time steps. We use f~ .. fk .
to denote for the area-nodes’ features and individual-nodes’
features outputted by the k-th GNN layer, respectively. The
detailed layer-calculation of Individual Contact GNN is as
follows:

I = softmaz (i), )
hen = o (W T fE 4+ B, ©)
fha=oWFrf1fht + BY), @)

where %=1 denotes for the area’s visit history at the k — 1
time step, W+~ B*~1 W* B* denotes for trainable pa-
rameters.

In the above equations, Equation (5) uses the area-visit-
history as edge weights; Equation (6) aggregates weighted
visitors’ characteristics to calculate the area-node feature;
Equation (7) aggregates the features of areas where an
individual has visited to calculate individual-node feature.

3.4 Constraint for Control-Action Selection

As discussed before, the EPC problem has a extremely large
action space, which challenges policy search. To address
this issue, we incorporate prior knowledge into the control-
selection step. Specifically, we let the actor network of
IDRLECA first outputs four values < p; 1,p;2,Pi3,Pija >
for individual 4,7 = 1,2,3,..., M. Then, we transform the

four values to three thresholds:

e Pi1
Fia = e~ Pil 4 e=Pi2 4 e~ Pi3 4 g Pia’ ®)
e Pi1 + e Pi2
Pisg=— —_— &)
e il + e Pi2 +e Pi,3 + e Pi4
e Pi1 + e Pi2 + e Pis3

T e=Pil L e Pi2 4 e Pi3 | e Pid

(10)

Through the above equations, we can ensure 0 < P;; <
P2 < P;3 < 1. Thus, P;1, P, P;3 can be used as different
infection risk levels, which considers the risk of individual
infection and individual’s ability to potentially infect others.
It's natural and reasonable to expect that an individual
with a higher infection risk should receive a more stringent
control action. The infection risk levels are further used as
the thresholds for the infection probabilities estimated in
Section 2, which imposes a constraint that individuals with
higher infection probability will have higher infection risk
and receive more stringent control actions. In this way, indi-
viduals with high probability of infection are not identified
as low risk, thus reducing unnecessary strategy exploration.

~ By comparing the pre-calculated infection probability
pﬁ"f ¢ with < Pj;, Pja, Pi3 >, we define the action-selection
rule in Table 1. It can be seen from Table 1 that as the infec-
tion probability goes from low to high, the corresponding
intervention actions become more and more stringent. There
are different thresholds for different individuals, which fully
takes into account the differences in individual states.

TABLE 1
Action-Selection Rule.

Infection probability | Intervention actions

0<pie < Py

No intervention

Py < Pznfc < Pi2 Confine
Py < p;nfc < Pi3 Quarantine
Pz < p:nfc <1 Isolate

3.5 Avoiding extreme experiences

Similar to DURLECA where RL is used for epidemic control
[6], it is possible to encounter extreme states or actions
during the RL exploration in IDRLECA'’s training. This may
severely impact exploration efficiency and result in local
optimums. Inspired by DURLECA, we have a rule to avoid
these extreme experiences:

e The infection-increase threshold I;: During the
agent’s exploration process, if the number of new
infections on a certain day exceeds I;, the current
episode will be stopped and a large penalty will be
given to the reward of the agent.
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4 EXPERIMENTS

In this section, we conduct extensive experiments on four
scenarios to answer the following research questions:

e ROQ1: Can IDRLECA minimize the number of infec-
tions and the cost of interventions?

e RQ2: Can IDRLECA be adapted to different scenar-
ios?

e RQ3: How does IDRLECA compare to expert poli-
cies and PAPW winners?

4.1 Experiment Setup

In the following, we introduce more details about our ex-
periment design.

4.1.1 Simulation Enviroment

We build a simulation environment mainly based on the
PAPW Challenge El The simulated disease has an R0 range
from 2 to 2.5, which is similar to COVID-19 [| The total
simulation time is 60 days. Every individual has a pre-
defined commute pattern. To simulate a more practical EPC
scenario, we add a new rule in the original simulator: all
symptomatic patients should be sent to the hospital.

4.1.2 Comparison Scenarios

We define ts14,+ as the days to start epidemic intervention
after discovering the first patient.

e Scenario-Default: N = 11, M = 10000, tstqrt = 1.
This scenario is to verify the EPC performance of
IDRLECA in a ordinary epidemic scenario.

e Scenario-Larger: N = 98, M = 10000, tstqrt = 1.
This scenario is to verify whether IDRLECA is suit-
able for scenarios with greater individual mobility.

e Scenario-Changeable: N = 11, M = 10000, tstqrt =
1. Compared with Scenario-Default, people’s com-
mute patterns are more changeable in this scenario.
This scenario is to verify whether IDRLECA is appli-
cable when there are greater differences in individu-
als’ characteristics.

e Scenario-Late: N = 11,M = 10000, tsqrt = 5.
Compared with Scenario-Default, this scenario starts
intervention after 5 days of discoverying the first pa-
tient. This scenario is to verify the EPC performance
of IDRLECA with a late intervention.

Evaluation Metrics

e I: The total number of infected people in all simula-
tion days. It is used to measure the effectiveness of
EPC strategies in suppressing infections.

e (): The aggregated mobility interventions defined in
Section 2. To have a fair comparison with PAPW
winners, we set A\, = 1, \; = 0.5, Ay, = 0.3 and

2. PAPW 2020: https:/ /prescriptive-analytics.github.io/. Simulator:
https:/ /hzw77-demo.readthedocs.io/en/round2/.

3. World Health Organization. (2020, May 8). Report of the WHO-
China Joint Mission on Coronavirus Disease 2019 (COVID-19).
Retrieved May 8, 2020, from: https://www.who.int/docs/default-
source/ coronaviruse/who-china-joint-mission-on-covid-19-final-
report.pdf
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Ae = 0.2, which are the same with the setting in the
PAPW Challenge.

e Score: The social cost of epidemic control policy
which is defined in Section 2. We set ; = 500 and
6o = 10000, which are the same with the setting in
the PAPW Challenge.

4.1.4 Comparison Baselines

We set up 4 expert baselines to simulate EPC strategies in
the real world:

e No Intervention: No intervention at all.

e Lockdown [2]: Lockdown the city for successive 60
days.

o Expert(0.01) and Expert(0.015): Baselines based on
the infection probability model. Isolate individuals
whose infection probability is higher than a given
threshold.

We compare DIRLECA with two baselines commonly
used in epidemic research:

e Degree — Sample [13]: If the number of an indi-
vidual’s acquaintances n is more than 4, isolate the
individual with a probability (n — 4)/n.

e Degree — Order [12]: Count the number of contacts
of an individual in the past 5 days. Select the top 30%
for isolation.

We compare IDRLEC A with PAPW winners:

e GBM [9]: a baseline for epidemic intervention by
predicting individual health states, which strikes a
balance between precision and recall.

e FEITL [10]: a heuristic baseline that adjusts the epi-
demic strategy through a heuristic algorithm, which
based on evaluating the intervention action effec-
tiveness and understanding resulting patterns and
interpret causality.

e HRLI [11]: a state-of-the-art RL baseline combining
individual prevention with regional control.

4.2 Results Analysis

We compare IDRLECA with all the baselines when
tstart = lday. Table 2 shows our main results. IDRLECA
is better than all baselines in three scenarios in metric Score.
For instance, compared with the best baseline HRLI in
Scenario-Default, our method can reduce the number of
infected persons by 26.73% and the cost of mobile inter-
vention by 34.12%.

In the four expert baselines, we can find that No
Intervention will aggravate the spread of infectious dis-
eases and eventually lead to the paralysis of the medical
system. The other three expert baselines can limit the spread
of epidemic to some extent. However, these strategies have
paid huge mobile intervention costs in order to reduce the
number of infections, thereby greatly increasing the total
social cost. For example, Lockdown is a common method in
our real life when dealing with epidemic, which achieves
best performance in minimizing infections at the expense
of the maximum mobile intervention cost. Compared with
the four expert baselines, IDRLECA can minimize the
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TABLE 2
Performance comparison in three scenarios when ts¢qrt = ldays

Scenario-Default Scenario-Larger Scenario-Changeable
Method I Q Score Q Score I Q Score
No Intervention 8289  123153.00 >10000 | 6588  92563.00  >10000 | 8115 113596.00  >10000
Lockdown [2] 58  294460.50  >10000 294508.50  >10000 55~ 29449150  >10000
Expert(0.01) 276 6997.50 3.75 204 9187.50 4.01 294 7837.00 3.99
Expert(0.015) 319 8210.00 4.16 269 8404.50 4.03 328 8724.50 4.32
Degree-Sample [13] || 1108 212940.00 >10000 | 1212 211146.50 >10000 | 943  212498.00  >10000
Degree-Order [12] 3557 120731.00 >10000 | 2302  92569.50  >10000 | 3133 119958.50  >10000
GBM [9] 210 6408.21 3.42 177 4794.87 3.04 193 6091.76 3.31
EITL [10] 220 7067.01 3.58 190 5640.15 3.22 205 7899.03 3.71
HRLI [11] 187 5689.79 3.22 183 4935.03 3.08 187 7112.14 3.49
IDRLECA 137 3748.58 2.77 170 4606.17 2.99 153 4068.09 2.86
TABLE 3 In Figure 3, we compared the number of infections

Performance comparison in Scenario-Late when tsiq.¢ = 5days

Scenario-Late |

Method I Q Score

No Intervention 8040 119175.00 >10000

Lockdown [2] 70 274364.50  >10000
Expert(0.01) 340 8985.50 4.43
Expert(0.015) 323 8388.00 422

Degree-Sample [13] 2091  195949.00 >10000

Degree-Order [12] 3331 115858.00 >10000
GBM [9] 304 7808.13 4.02
EITL [10] 291 8193.50 4.06
HRLI [11] 270 7197.86 3.77
IDRLECA 193 5061.64 3.13

infections and retain large amounts of mobility at the same
time.

Compared to GBM, EITL and two baselines com-
monly used in epidemic research, I D RLEC A performs bet-
ter than them mainly because it considers more individual
characteristics and the long-term impact of current actions
when making decisions.

Compared to HRLI, we find that IDRLEC A outper-
forms them in all metrics which may be because the GNN
in our method models the contact between individuals
and estimates individual infection risks through contact.
IDRLECA can find hidden infections through GNN and
thus be able to stop the spread of epidemic quickly at
minimal mobility intervention cost, which will be verified
in Case Study.

From the results of Scenario-Larger and Scenario-
Changeable, we can find IDRLEC A can still guarantee the
minimum number of infections and mobility intervention
costs in more changeable and flexible scenarios.

Late intervention to an epidemic is very common in the
real world. An effective control strategy should be able to
stop the spread of the epidemic in time with the least cost
of mobility intervention in the case of late intervention. We
perform our experiment in Scenario-Late, and the results
are shown in Table 3. The results show that our method
performs best in metric Score compared with other baselines
in the case of late intervention.

and the cost of mobility intervention between IDRLECA
and the best baseline method HRLI in Scenario-Late with
tstart = Ddays within 60 days. It can be found that our
method can not only stop the spread of epidemic diseases
faster, but also reduce the cost of intervention during the
peak period of the epidemic.

In order to verify the effectiveness of our method for
individual epidemic prevention and control, we randomly
select 100 individuals in Scenario-Default, and draw a heat
map of the infection probability change within 60 days in
Figure 4. It can be found that the infection probability of 100
people reaches its peak in about 15 days, but soon under
the influence of intervention measures by IDRLECA, the
probability of infection is soon reduced to 0 around the 40th
day.

4.3 Case Study

In order to verify the effectiveness of our method in individ-
ual prevention and control, we conduct two case studies.
Evaluating individual intervention: To verify the spe-
cific effects of our method on individual intervention, we
draw the infection probability of a person and the changes in
prevention and control measures within 60 days of Scenario-
Default in Figure 5. It can be found that our method is
very sensitive to the action control of different infection
probabilities and can effectively reduce the risk of infection.
Finding hidden infections: In order to verify whether
our method can discover hidden infections, we used IDR-
LECA to output actions to individuals with ID 927 and 959
on the 20th day of Scenario-Default: quarantine and confine.
However, the infection probability of these two individuals
is 0.004 and 0.34 respectively, whose numerical order is
exactly opposite to the prevention and control level. We
further found that the first person had more contacts and
acquaintances in the past five days than the second person.
This is because the infection probability calculated in Sec
3.1 only considers the impact of the current discovered
infections and simplifies the spread of the epidemic by
individual contacts. Our GNN models the contact between
individuals and can estimate the individual’s potential risk
of infection and the ability to potentially infect others.
Therefore, although the first person is relatively low in
the probability of infection, our model takes into account
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the infection risk which measures the harm and risk of
secondary transmission of potentially infected individuals,
so more strict measures are taken for the first person. Two
days later, the first person was detected as infected during
the intervention period, which also verifies our findings.
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Fig. 3. Q(the aggregated mobility interventions defined in Section 2) and
H (the number of healthy people) are changing over time.
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action types.

4.4 Ablation Study

To evaluate the effectiveness of our proposed Individual
Contact GNN and RL exploration strategy(Avoiding ex-
treme experiences), we take ablation study in this section.
We select three baselines and perform experiments in two
scenes. No Intervene is the baseline of the blank control.
RL-NoGraph and RL-NoEP denote removing GNN and RL
exploration strategy(Avoiding extreme experiences) com-
pared with IDRLECA. The results in Table 4 show that
removing the GNN network structure will make it diffi-
cult for RL to find hidden infections, which will increase
the number of infections and the cost of prevention and
control. The removal of the exploration strategy(Avoiding
extreme experiences) will make it hard for RL to further
reduce the number of infections and the cost, falling into a
local optimum. Compared with RL-NoGraph and RL-NoEP,
IDRLECA can better find hidden infections with the help
of GNN, and ensure reasonable and effective exploration
under the exploration strategy, so that it can learn better
results.

TABLE 4
Ablation study

Scenario-Default

Scenario-Default(tsiart = Hdays)
Method 1 Q

Score I Q Score
No Intervene || 8289  123153.00 >10000 | 8040 119175.00 >10000
RL-NoGraph 200 6606.32 342 313 7699.32 4.03
RL-NoEP 192 5779.26 3.25 285 6678.26 3.82
IDRLECA 137 3748.58 2.77 193 5061.64 3.13

5 RELATED WORKS

5.1 Individual-based Infection Simulation and Control
Model:

Individual-based Infectious Diseases Model(IBIDM) is an
epidemiology model that has emerged in recent years [16].
Compared with traditional infectious disease models, IB-
DIM can reflect the heterogeneity of individuals and reflect
individual-level behavior dynamics, thus more precisely
reflect the spread of the epidemic. IBIDM models each in-
dividual as a unit, and measures the contact relationship be-
tween individuals through social contact network. The Los
Alamos Laboratory in the United States has developed an
individual-based infectious disease simulation tool, called
EpiSimS system, which can effectively simulate the spread,
prevention and control of the epidemic based on individual
characteristics [17]]. Later, some researchers propose Epifast
to simulate the spread of Ebola in West Africa, which has
higher prediction accuracy and simulation preciseness than
traditional methods [18]. There are also many researches
related to epidemic control based on these epidemic simula-
tion. [19] studies the trade off between spread of COVID-19
and economic impact and proposes some mechanisms based
on group scheduling to strike a balance between epidemic
control and economic development. [12], [13]], [20] regard
individuals as nodes of the graph, and the connections
between individuals as edges, and find the individuals who
need to be isolated through graphs. [21] introduces mean-
field models and complex networks to solve the individual
prevention and control of the epidemic.
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However, current researches are hard to to effectively
extract the status of individuals and their strategies are
often unable to cope with various scenarios and conditions.
They often only pay attention to the current prevention and
control effects, and do not care about the long-term impact
of the current decision-making. Therefore, we develop IDR-
LECA which considers not only how to track and control the
infectious and asymptomatic based on the infection status
of individuals, but also how to achieve better epidemic
prevention while minimizing economic losses in the long
term.

5.2 Graph Neural Network for Individual Contacts:

Graph Neural Networks (GNN) are mainly used for node
prediction, link prediction and graph prediction tasks. Node
prediction refers to predicting the type of a given node [22],
[23]]. Link prediction means predicting the connection status
of two given nodes [24], [25]. Graph prediction aggregates
all node features in the graph as the graph feature, and
then classifies the type of the graph based on it [26], [27].
There are some commonly used GNN methods. GCN uses
the adjacency matrix of nodes as input to learn the rela-
tionship between nodes [22]]. GAT introduces an attention
mechanism on the basis of GNN [28]. GraphSage learns
node relationships by aggregating information from neigh-
bor nodes [15].

However, current GNN methods lack a framework to
model the spread of epidemic between individuals over
a dynamic graph. Therefore, we propose a novel GNN
structure to characterize the epidemic-spreading between
individuals, whose nodes and edges represent the state
features of individuals and contacts between individuals
respectively.

5.3 PPO:

PPO algorithm is a new type of policy gradient algorithm
and has been applied in many aspects. [14] proposes that
PPO strikes a balance between implementation simplicity,
sample complexity and difficulty of tuning and achieves
good results in many games. [29], [30] proves that PPO can
perform well in solving some problems with large-scale and
complex state and action space.

Since the PPO algorithm has good stability and adapt-
ability, and can achieve good results in large-scale state and
action space problems, we choose PPO as RL algorithm in
our problem.

6 CONCLUSION

In this paper, we propose IBRLECA that employs a novel
GNN and RL approach to minimize infections as well
as the mobility intervention cost in EPC. The proposed
GNN can estimate the spread of the virus through contacts
between individuals. The training of IBRLECA is guided
by a specially designed reward. We design and impose a
constraint for control-action selection that eases its difficulty
and further improve exploration efficiency. Extensive exper-
iments are conducted on different scenarios to show the
effectiveness of our proposed method.

7 APPENDIX

To help reproduce the results, here we present the details of
the simulatmﬁ and experiment settings.

7.1 Introduction of Simulator

The simulator contains a human mobility model and a
disease transmission model. The simulator uses these two
models to simulate individuals’ movements and the spread
of the epidemic among individuals. The two models are
briefly introduced below:

Human Mobility Model: The human mobility model simu-
lates individual mobility in a city of N areas with M people.
Each area is assumed to belong to one of the three cate-
gories: working, residential, and commercial. An individual
is associated with two fixed areas: a residential area and a
working area. We assume that an individual has different
modes of mobility during weekdays and weekends. On
weekdays, an individual will move from his/her residential
area to his/her working area. After work, he/she may visit
a nearby commercial area and then will return to his/her
residential area. On weekends, an individual will visit a
random commercial area. After that, he/she will return to
the residential areas.

Disease Transmission Model: The disease can transmit
from an infected individual through acquaintance con-
tacts and stranger contacts. Contacts happen among people
within the same region. The infection probabilities of contact
with acquaintances and strangers are P, and P, respec-
tively. The disease transmission is simulated every hour.

7.2 Experiment Setting

We set the infection probabilities of contacting with
strangers ps = 0.01 and infection probabilities of contacting
with acquaintances p. = 0.05. The estimated R0 is 2-2.5. For
the extreme-experience policy, we set (); = 250. For Score,
weset A\, =1, \; = 0.5, A\; = 0.3 and A\, = 0.2, which are
the same with the setting in the PAPW Challenge. For the
reward and Score, we set §; = 500 and g = 10000.

In the training process, the beginning state of an episode
is random every time. We train IDRLECA for 200,000 steps,
using Adam optimizer with learning rate 0.0001. During
testing, the initial setting is fixed in both IDRLECA and
the baseline methods. Taking into account the randomness
of the simulator, we compared the average results of all
methods tested with three random seeds.

7.3 Privacy and implementation issues

Privacy issues: Each area’s visited history, the total number
of people visiting a particular area and person-person rela-
tionship [31]can be obtained by individuals’ trajectories. In
practical system, user anonymity can be used to reduce the
risk of privacy leakage for the individual trajectories and the
health history data.

Implementation issues: Our system runs on a central server
instead of individuals” smartphones and usually the poli-
cymaker has the ability to collect the data needed in our

4. PAPW 2020: https:/ /prescriptive-analytics.github.io/. Simulator:
https:/ /hzw77-demo.readthedocs.io/en/round2/.
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model. Besides, some recent techniques like Apple and
Google APISE] can be used to collect data without using
private information. In the practical implementation of our
method, distributed servers and federated learning can be
used to protect privacy. The city will be divided into small
areas. In each area we have a distributed server that receives
encrypted data from smartphones and conducts federated
learning with the central server. After training, each dis-
tributed server pulls the model from the central server and
send reminders to users” smartphones.
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