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Abstract

The rapid spreading of SARS-CoV-2 and its dramatic consequences, are forc-
ing policymakers to take strict measures in order to keep the population safe.
At the same time, societal and economical interactions are to be safeguarded.
A wide spectrum of containment measures have been hence devised and im-
plemented, in different countries and at different stages of the pandemic
evolution. Mobility towards workplace or retails, public transit usage and
permanence in residential areas constitute reliable tools to indirectly photo-
graph the actual grade of the imposed containment protocols. In this paper,
taking Italy as an example, we will develop and test a deep learning model
which can forecast various spreading scenarios based on different mobility in-
dices, at a regional level. We will show that containment measures contribute
to “flatten the curve” and quantify the minimum time frame necessary for
the imposed restrictions to result in a perceptible impact, depending on their
associated grade.
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1. Introduction

Machine Learning (ML) [1, 2] has been extensively employed in the con-
text of time series modeling and forecasting [3]. Groundbreaking applications
in natural language processing [4], financial forecasting [5], speech recogni-
tion [6] have earned this particular subfield of ML lots of investments and
attention. Notably, the use of Deep Neural Networks [7, 8], with respect
to traditional approach to time series analysis, enabled the algorithm itself
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to learn from the data the relevant variables and their associated correla-
tions. Following the rapid spreading of SARS-CoV-2, numerous attempts
have been made for predicting the time evolution of epidemics across dif-
ferent spatial scales [9, 10, 11]. To this end ML techniques have been also
employed [12, 13, 14]. Although very accurate and useful, these models of-
ten lack the ability to incorporate the effects of containment measures as
implemented by local governments and solely rely on selected epidemiologi-
cal variables (e.g. number of tests performed, number of deaths) to predict
the spreading of the virus. The putative impact of different containment
strategies as devised by local governments is hence customarily modeled by
resorting to standard epidemiological tools [15, 16],a choice which potentially
limits the predictive ability of the trained ML devices. Starting from these
premises, we suggest that mobility indices provide solid, almost real-time,
indicators of the implemented containment strategies. When included in the
training, they are processed as key information for future forecasting of ML
algorithm. A self-consistent argument allows in turn to estimate the time it
takes for the imposed mobility restrictions to materialize in an effective drop
of the curve of infected individuals.

In the following, we will describe the adopted machine learning approach
which is tailored to predicting the SARS-CoV-2 epidemic evolution in the
twenty regions of Italy 1. The model is trained by using the time series of
selected epidemic quantities (number of infections, number of death, etc..)
and includes information on the population mobility. We will show that, by
looking at epidemic and mobility trends during the np past days, the model
is able to return sensible information on the values of a target epidemiologi-
cal parameter in the next nf days. Working in the proposed framework, we
are also able to estimate the time needed for the imposed restriction to yield
consequences that can be appreciated at the scale of the whole community
in terms of reduction of hospitalized individuals. To this end, we consider
different grades of imposed restrictions on individual mobility ranging from
a complete, nationwide lockdown to milder, regional-level restrictions to vir-
tually no restrictions at all.

1Valle d’Aosta, Piemonte, Lombardia, Trentino - Alto Adige, Veneto, Friuli Venezia
Giulia, Liguria, Emilia Romagna, Toscana, Marche, Umbria Lazio,Abruzzo, Molise, Cam-
pania, Apulia, Basilicata, Calabria, Sicilia e Sardegna
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2. Methods

2.1. Architecture

We worked with Recurrent Neural Networks (RNN) [17], a class of deep
learning architectures widely used in time series machine learning modeling.
Such architecture is designed to be sensitive to the ordering of the elements in
the input sequence [17]. This is achieved by introducing an inner state vector
that is updated by the network itself, during each successive iteration. This
latter vector allows the network to “keep memory” of the past input values.
RNNs suffer of the so-called vanishing gradient problem: the gradients in
later steps of the sequence fade away quickly in the backpropagation process,
without reaching earlier input signals and thus making it hard for the RNN
to apprehend and correctly incorporate long-range dependencies [17]. To
oppose this problem, gating-based architectures, such as the Long short-term
memory (LSTM), have been proposed [18]. Trainable vectors, called gates,
are accommodated for in the architecture and control the inner state update,
at each iteration. This technical solution makes it possible for the network
to “forget” or “store” the novel bits of information that are processed at
each time step, along the sequence of collected events. In this way, early
information deemed crucial for handling the forecasting task can be stored
in the bulk while, recent inputs, identified as unessential, are safetly removed
from the memory kernel. This is precisely the reason why we have decided to
employ a LSTM-like architecture for the problem at hand. In the following
we shall operate with a deep architecture composed by two LSTM hidden
layers of 300 and 20 nodes, respectively. Moreover, an additional dense layer
is introduced to produce the sought output. Further, use is made of Adam
[19] optimizer with a learning rate of 0.0005. The batch size is set to 100 and
the number of epochs during the learning procedure is assumed equal to 100.
We hand picked these hyper-parameters without any ad-hoc optimization.

2.2. Data set

The dataset consists in discrete daily series of length T of selected epi-
demic and mobility parameters for each of the 20 regions in Italy. More
specifically, we focus on the following quantities: (i) number of patients in
intensive care (ii) number of hospitalized patients (iii) number of patients in
home isolation (iv) number of deaths. Data from the COVID-19 Community
Mobility Reports of Google [20] are employed to track the change in time of
the degree of mobility, as associated to different regions of Italy. We calculate
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in particular the evolution as percentile change from baseline values2 of the
reported mobility indexes in the following areas:

1. retail and recreation

2. grocery and pharmacy

3. parks

4. transit stations

5. workplaces

6. residential

In Fig. 1 the evolution of the reference mobility indicators are displayed for
the case of Lombardy. The impact of the imposed restrictions on the mo-
bility indexes can be clearly appreciated by visual inspection of the depicted
global trends. It is hence surmised that the aforementioned mobility indica-
tors provide a faithful barometer to gauge the actual impact of the imposed
containment measures. As such, they could be accounted for when training
the LSTM to forecasting the future evolution of the epidemics.
Combining all these together, for each day of the time series, we access 10

Figure 1: Time evolution of mobility parameters in Lombardy. A seven-days moving
average was performed to filter out the weekly fluctuations and highlight the global trend.

2The base value is defined as the average value in the five weeks between 3th January
and 6th February 2020 for the considered week day, as explained in [20]
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distinct parameters, either referred to the evolution of the epidemics or the
mobility trends. Input entries are normalized so as to operate, during train-
ing stage, with quantities that span a definite range (details are provided in
the Figures’ captions). The above information are used in the supervised
learning problem and organized as follows. The input vector collects infor-
mation referred to the past np days. Epidemics and mobility data sum up
to a total of 10 scalar parameters per day of acquisition. The output target
vector has length nf , the time horizon of the prediction. More specifically,
each entry of the output vector returns a prediction for the number of pa-
tients in intensive care (IC) units, at the day of forecast, up to nf days
in the future. A schematic representation of data structure and processing
handling is provided in Fig. 2. The mobile window is made to slide along
the scrutinised time series, day after day. For each position of the window,
the information stemming from the np preceding days (including the current
day of observation) are acquired and confronted with the desired output,
the number of occupied IC units in the future nf days. During the training
phase, this information is used to adjust the weights of the LSTM. When
properly trained, this device is used for forecasting purposes by letting the
sliding window to explore a portion of the times series not supplied during
the learning phase. The computing apparatus is fed with the needed input
information referred to the past np days (including the day of elaboration) to
anticipate the future (the following nf days) in terms of expected COVID-19
patients necessitating IC units.

Summing up, the training data set is made of 20(T − np − nf ) examples
(that is, couples input-target) where the factor 20 stems from the number of
considered regions. In the analysis reported below np = 21 (meaning that
we process data from the last 21 days of observation) and nf = 7 (hence, for
each position of the sliding window, we look forward in time with a horizon
of prediction that covers one week in the future).

The data set is divided into two subsets: training and test sets. The first
set is used to train the model, whereas the second one is employed to test
the ability of the trained device to cope with data that were not supplied
during the learning stages. To probe the robustness of the method we have
devised two different procedures to split the data in training and test set,
respectively. These are listed in the following:.

1. The training set consists in a limited segment of the available times
series. In this second case, the training procedure is carried out by
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Figure 2: Each data consist of an ensemble of input parameters (concerning both epi-
demiological and mobility quantities and associated to the np days that precede the day
where the analysis is carried out.) and an output set that contains our forecast. This is
the number of occupied Intensive Care (IC) units in the following nf days (from the last
day of observation).

solely employing data up a prescribed date. The future evolution of
the system, beyond the last day of the processed observation, is used
to test the model. This makes it possible to test the performance of the
LSTM model against data that refer to a time window not processed
during learning.

2. The training set is a sub-set of the available regions. In this case, the
learning process is carried out over the entire length of the time series
associated to a subset of the 20 regions. The accuracy of the prediction
is tested against data referred to regions that were not used during the
learning phases.

In the next subsection we will discuss the obtained results and validate the
model as a viable tool to anticipate SARS-CoV-2 spreading across the Coun-
try.
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3. Results

We used the architecture and data set as described in the previous sec-
tion to define a learning problem that allows one to predict the evolution of
the number of intensive care units (IC) occupied by COVID-19 patients in
different regions of Italy.
We begin by adopting the first of the two aforementioned frameworks. This
implies dealing with the full set of available time series, up to a given time,
for the training phase. The trained network is then employed to forecast the
evolution of the epidemics. Results are reported in Fig. 3 for a subsets of
regions, namely Piedmont, Umbria and Veneto. The evolution of occupied
IC units (orange trace) is nicely predicted by the model (coloured dots).

For each day, the number of truly occupied IC units is compared to the
corresponding value, as predicted by the LSTM with different time horizons.
More specifically, yellow dots refer to predictions which exploit information
made accessible up to the preceding day. On the opposite limit, black dots
are forecast that process information older than one week (7 days). Interme-
diate color grades refer to predictions which interpolate between these two
extremes. The data reported (Fig. 3) are obtained by training the LSTM
with data up to November 16th, where the dashed line is positioned. From
here on, predictions are obtained by sliding the computing window (as de-
picted in Fig. 2) forward in time. The information relative to the np input
days are processed and used to anticipate the expected load of IC units in the
next nf days. The forecasted evolution agrees pretty well with the observed
curve of occupied IC units. Remarkably, the position of the peak is nicely
captured by the computed time series which is hence capable to anticipating
the evolution of the examined system.

In Fig. 4 the results obtained when dealing with the alternative setting as
listed above, are depicted. As mentioned, we now train the model by focusing
on a subset of the available regions and use this knowledge to predict the
evolution of IC units occupied by COVID-19 patients in regions that were
not supplied as part of the training set. Color are assigned following the same
code introduced above: yellow dots refer to prediction that looks to just one
day in the future. Black dots stand for the opposite extreme: the LSTM
anticipates the evolution one week ahead in time. The agreement between
predicted and observed times series is again remarkable.

In Fig. 5 the Root-Mean-Square Error (RMSE) associated to the predic-
tions is plotted. Each bar represents the error made when trying to predict
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Figure 3: Predicted evolution as compared to the experimentally recorded time series: the
plotted curves refer to the number of occupied Intensive Care (IC) units by SARS-CoV-2
patients in Piemonte, Umbria and Veneto. Red lines stand for the observed (hence, real)
evolution. Coloured dots represent the forecast of the LSTM model. Yellow dots are
predictions that look at one day in the future. Black symbols rely instead on processing
one week old data. Different color gradings, ranging from yellow to black, interpolate
between these two limiting scenarios. In this case np is set to 21. Data are rescaled by
using, for each variable of the set, its corresponding maximum value, as displayed in the
training interval. This latter value is also used to normalize data from the test set, so that
only information from the training set are effectively employed.

the target values d ∈ [1, nf ] days in the future, where the parameter nf de-
fines the forecast horizon of the model. The RMSE is computed over the test
set. Panel A of Fig. 5 is referred to nf = 7, whereas panel B is obtained
for nf = 14. As expected, the accuracy goes down when d becomes larger.
Although the model with larger nf allows us to make early predictions, the
accuracy of the predictions get worse when confronted with actual data: a
lower accuracy is found not only for distant predictions but also for closer
ones. The choice nf = 7 is a compromise between the need to cope with
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Figure 4: The number of occupied IC is plotted against time, expressed in days. Red traces
reflect the observed, hence true, numbers. Colored dots stand for the LSTM forecasst.
Here, the analysis is carried out for three regions that were not part of the training set.
The adopted color code is specified in the caption of Fig. 3. The analysis is carried out by
using np = 21. Here, epidemiological data are normalized by an arbitrary constant that
we assume to extensively scale with the size of the examined region.

reliable predictions, on the one side, and the request of imposing a plausible
temporal horizon, i.e. useful for forecast, on the other.

In the following, we will shortly elaborate on the role of the mobility and
highlight its reflexes on the evolution of the epidemics.

3.1. Change the mobility

Different containment measures have been imposed to contrast the spread-
ing of the COVID-19 epidemic. Such measures, like social distancing and
lockdown, result in a clear impact on the mobility. In Fig. 6 the evolution of
five normalized mobility parameters are plotted for Piedmont and Tuscany.
Data are processed by operating a 7 days moving average to obtain smoother
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Figure 5: Root-Mean-Square Error (RMSE) computed on the test set: the error compares
the real evolution of IC occupation number and the expected evolution on the basis of the
LSTM prediction at day d ∈ [1, nf ], from the last processed observation. Panel (A) and
panel (B) referred to LSTM models with nf = 7 and nf = 14, respectively.

profiles and remove weekly fluctuations. The averaged mobility indexes dis-
play global trends which bear the imprint of the containment measures as
imposed by national and local authorities. To support this claim, for each
region, five time intervals associated to different containment measures have
been identified. At the beginning of the time series, a depression of all the
mobility scores is detected (except for the parameter that quantifies mobility
in residential areas – purple lines – which in general, and as expected, shows
opposite trends as compared to those stemming from other parameters). This
has to be put in relation with the strict lockdown taken by the Italian gov-
ernment in the spring of 2020. Subsequently, the curves associated to the
parameters of not-residential areas grow up until they reach a new plateau.
The plateau follows a no-restrictions (or few-restrictions) period, during the
summer, when containment measures had been relaxed. Other characteristic
periods can be indeed identified, specifically at the end of November and at
the beginning of December. This last segment of the recorded time series is
indirectly influenced by the introduced color code labelling of the regions, as
reflecting the degree of local severity of the epidemics. Each region is in fact
associated to a color (respectively, yellow, orange and red in ascending order
of severity) and a different level of restrictions are adopted depending on
the region color. The correlation between the actual severity of the imposed
restrictions and the displayed mobility trends can be clearly appreciated by
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visual inspection of Fig. 6. To help visualization few (colored) vertical stripes
are depicted which refer to different conditions of the mobility, as outlined
above. The first bar, colored in grey, is traced in correspondence of the strict
lockdown back in the spring 2020. By averaging over the selected time in-
terval (the width of the greyish bar) we obtain an average estimate of the
mobility parameters, as associated to the lockdown phase. Similarly, the
other depicted bars identify other characteristic instances of the epidemics
evolution: the green stripe is meant to select mobility score referred to the
summer 2020. The red/orange/yellow bars identify the status of the region,
as follow the novel strategy to label the severity of the disease at the local
scale. Also in this case, by averaging over the width of the corresponding
intervals, one obtains a set of values for the mobility indexes which indirectly
reflect the imposed containment action (from draconian lockdown to no re-
strictions, via the intermediate settings as associated to different labelling
colors).

This information can be used in the attempt to predict the role of an
enforced modulation of the mobility, as follow the different scenarios recalled
above. More specifically, at any given day, one can change the mobility en-
tries as supplied to the trained LSTM (by fishing from the aforementioned
alternative classes, identified via the corresponding averaged entries). The
aim is examine the ensuing effect which materializes at the level of the fore-
casted evolution of the occupied IC units, the target of the LSTM. In Fig. 7
the result of the analysis is displayed for two reference regions, although the
reached conclusion holds in general. A punctual modulation of the mobility
(i.e. a change in the mobility that is confined to just one day) produced
sensible changes in the predicted hospitalization, the response being more
marked the stricter the reduction of the mobility being imposed. Remark-
ably, and according to the LSTM, the effect of a local change in the mobility
becomes visible 8-10 days in the future, a plausible outcome of the analysis
which calls for a timely planning of the containment protocols. On the ba-
sis of the above, it is hence surmised that machine learning schemes of the
type here analyzed could help devising optimal strategies for an intelligent
combination of openings and closures, at the local scale. Furthermore, notice
that the lag time quantified above provides an a posteriori justification for
choosing nf = 7 as a forecast horizon of the LSTM machinery.
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Figure 6: Mobility evolution in Piedmont and Tuscany, with reference to five distinct
categories, as outlined in the annexed legend. Data are from [20] and have been normalized
to yield quantities that range in the interval [0, 1]. A moving average of 7 days is operated
so as to remove spurious weekly fluctuations. The four vertical bars define the time
intervals over which the reference mobility values have been estimated.

4. Conclusions

To summarize our findings, using a simple LSTM model trained on both
epidemiological and mobility data we were able to correctly forecast the
spreading of SARS-CoV-2 across different regions and at different times. Our
model proved robust to alternative train/test splits in the spatial (hold out a
region) and temporal (hold out a temporal interval) domains. The choice of
employing available information on human mobility constitutes the novelty
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Figure 7: Predictions of IC units occupied by COVID-19 patients in Piedmont and Tuscany
made under the hypotheses of 6 different past mobility scenarios: true mobility (blue
dots), lockdown (black dots), no restrictions (green dots), red zone (red dots), orange zone
(orange dots) and yellow zone (yellow dots). In each column, from left to right, the change
in the mobility scores is operated at a different day, as measured from the time the first
prediction is made (see annexed legend).

of the proposed approach. The obtained forecasts are indeed shown to sen-
sibly depend on the imposed mobility scores. When artificially reducing the
degree of imposed mobility, yields a consistent flattening of the curve of ex-
pected occupied intensive care units. Importantly, the effect of an abatement
of the mobility materializes in a consequent contraction of the occupied IC.
The contraction becomes visible after 8-10 days, from the time the mobility
change became effective. Interestingly, punctual mobility stops (one day)
seem to generate a noticeable effect on the predicted IC occupation curve.
Elaborating further along these lines could help devising viable strategies to
oppose the spreading of the epidemics, with a minimal impact on both social
and economical activities.
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